

Lecture Notes in Computer Science 6415
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Tiziana Margaria Bernhard Steffen (Eds.)

Leveraging Applications
of Formal Methods,
Verification, and Validation

4th International Symposium
on Leveraging Applications, ISoLA 2010
Heraklion, Crete, Greece, October 18-21, 2010
Proceedings, Part I

13

Volume Editors

Tiziana Margaria
University of Potsdam
August-Bebel-Str. 89
14482 Potsdam
Germany
E-mail: margaria@cs.uni-potsdam.de

Bernhard Steffen
TU Dortmund University
Otto-Hahn-Str. 14
44227 Dortmund
Germany
E-mail: steffen@cs.tu-dortmund.de

Library of Congress Control Number: 2010936699

CR Subject Classification (1998): F.3, D.2.4, D.3, C.2-3, D.2, I.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-16557-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16557-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains the conference proceedings of the 4th International Sym-
posium on Leveraging Applications of Formal Methods, Verification and Valida-
tion, ISoLA 2010, which was held in Greece (Heraklion, Crete) October 18–21,
2010, and sponsored by EASST.

Following the tradition of its forerunners in 2004, 2006, and 2008 in Cyprus
and Chalchidiki, and the ISoLA Workshops in Greenbelt (USA) in 2005, in
Poitiers (France) in 2007, and in Potsdam (Germany) in 2009, ISoLA 2010 pro-
vided a forum for developers, users, and researchers to discuss issues related to
the adoption and use of rigorous tools and methods for the specification, analy-
sis, verification, certification, construction, testing, and maintenance of systems
from the point of view of their different application domains. Thus, the ISoLA
series of events serves the purpose of bridging the gap between designers and
developers of rigorous tools, and users in engineering and in other disciplines,
and to foster and exploit synergetic relationships among scientists, engineers,
software developers, decision makers, and other critical thinkers in companies
and organizations. In particular, by providing a venue for the discussion of com-
mon problems, requirements, algorithms, methodologies, and practices, ISoLA
aims at supporting researchers in their quest to improve the utility, reliability,
flexibility, and efficiency of tools for building systems, and users in their search
for adequate solutions to their problems.

The program of the symposium consisted of special tracks devoted to the
following hot and emerging topics:

• Emerging services and technologies for a converging telecommunications/Web
world in smart environments of the Internet of Things

• Learning techniques for software verification and validation
• Modeling and formalizing industrial software for verification, validation and

certification
• Formal methods in model-driven development for service-oriented and cloud

computing
• Tools in scientific workflow composition
• New challenges in the development of critical embedded systems—an “aero-

motive” perspective
• Web science
• Leveraging formal methods through collaboration
• Resource and timing analysis
• Quantitative verification in practice
• Worst case traversal time (WCTT)
• Model transformation and analysis for industrial scale validation
• Certification of software-driven medical devices
• Formal languages and methods for designing and verifying complex engi-

neering systems

VI Preface

• CONNECT: status and plan
• EternalS: mission and roadmap

and five co-located events

• Graduate/postgraduate course on “Soft Skills for IT Professionals in Science
and Engineering”

• RERS—challenge on practical automata learning
• IT Simply Works—editorial meeting (ITSy)
• CONNECT internal meeting
• EternalS Task Force meetings

We thank the Track organizers, the members of the Program Committee and
their subreferees for their effort in selecting the papers to be presented.

Special thanks are due to the following organization for their endorsement:
EASST (European Association of Software Science and Technology), and our
own institutions—the TU Dortmund, and the University of Potsdam.

August 2010 Tiziana Margaria
Bernhard Steffen

Organization

Committees

Symposium Chair

Tiziana Margaria University of Potsdam, Germany

Program Chair

Bernhard Steffen TU Dortmund, Germany

Program Committee

Yamine Ait Ameur LISI/ENSMA, France
Frédéric Boniol IRIT/ENSEEIHT, France
Anne Bouillard ENS Cachan, France
Marc Boyer ONERA, France
Karin Breitman PUC-Rio, Brazil
Marco Antonio Casanova PUC-Rio, Brazil
Samarjit Chakraborty TU München, Germany
Noel Crespi Institut Telecom, France
Rémi Delmas ONERA, France
Howard Foster City University London, UK
Pierre-Löıc Garoche ONERA, France
Dimitra Giannakopoulou CMU/NASA Ames, USA
Stefania Gnesi ISTI-CNR, Pisa, Italy
Kevin Hammond University of St Andrews, UK
Boudewijn Haverkort ESI, The Netherlands
Michael Hinchey LERO, Ireland
Valérie Issarny INRIA, France
Visar Januzaj TU Darmstadt, Germany
He Jifeng East China Normal University, China
Joost-Pieter Katoen RWTH Aachen University, Germany
Joost Kok Leiden University, The Netherlands
Jens Knoop Vienna University of Technology, Austria
Stefan Kugele TU München, Germany
Anna-Lena Lamprecht TU Dortmund, Germany
Kim G. Larsen Aalborg University, Denmark
Boris Langer Diehl Aerospace, Germany

VIII Organization

Mark Lawford McMaster University, Canada
Gyu Myoung Lee Institut Télécom, France
Björn Lisper Mälardalen University, Sweden
Zhiming Liu UNU-IIST, Macao
Tom Maibaum McMaster University, Canada
Steven Martin LRI, France
Dominique Mery University Nancy, France
Pascal Montag Daimler AG, Germany
Alessandro Moschitti University of Trento, Italy
Corina Pasareanu CMU/NASA Ames, USA
Alexander K. Petrenko ISPRAS, Moscow, Russia
Abhik Roychoudhury NUS, Singapore
Christian Schallhart Oxford University, UK
Jean-Luc Scharbarg IRIT, France
Amal Seghrouchni University Pierre and Marie Curie, France
Laura Semini Pisa University, Italy
Giovanni Stea Pisa University, Italy
Eric Thierry ENS Lyon, France
Helmut Veith Vienna University of Technology, Austria
Alan Wassyng McMaster University, Canada
Virginie Wiels ONERA, France
Mark D. Wilkinson Heart and Lung Institute, and Canada
Rostislav Yavorskiy Microsoft UK/Moscow, Russia
Lenore Zuck University of Illinois at Chicago, USA

Table of Contents – Part I

New Challenges in the Development of Critical
Embedded Systems – An “aeromotive” Perspective

New Challenges in the Development of Critical Embedded Systems—An
“aeromotive” Perspective . 1

Visar Januzaj, Stefan Kugele, Boris Langer,
Christian Schallhart, and Helmut Veith

Certification of Embedded Software – Impact of ISO DIS 26262 in the
Automotive Domain . 3

Bernhard Schätz

Enforcing Applicability of Real-Time Scheduling Theory Feasibility
Tests with the Use of Design-Patterns . 4

Alain Plantec, Frank Singhoff, Pierre Dissaux, and Jérôme Legrand

Seamless Model-Driven Development Put into Practice 18
Wolfgang Haberl, Markus Herrmannsdoerfer, Stefan Kugele,
Michael Tautschnig, and Martin Wechs

Timely Time Estimates . 33
Andreas Holzer, Visar Januzaj, Stefan Kugele, and
Michael Tautschnig

Compiler-Support for Robust Multi-core Computing 47
Raimund Kirner, Stephan Herhut, and Sven-Bodo Scholz

Formal Languages and Methods for Designing and
Verifying Complex Embedded Systems

Thematic Track: Formal Languages and Methods for Designing and
Verifying Complex Embedded Systems . 58

Yamine Ait Ameur, Frédéric Boniol, Dominique Mery, and
Virginie Wiels

Analyzing the Security in the GSM Radio Network Using Attack
Jungles . 60

Parosh Aziz Abdulla, Jonathan Cederberg, and Lisa Kaati

Formal Modeling and Verification of Sensor Network Encryption
Protocol in the OTS/CafeOBJ Method . 75

Iakovos Ouranos, Petros Stefaneas, and Kazuhiro Ogata

X Table of Contents – Part I

Model-Driven Design-Space Exploration for Embedded Systems:
The Octopus Toolset . 90

Twan Basten, Emiel van Benthum, Marc Geilen, Martijn Hendriks,
Fred Houben, Georgeta Igna, Frans Reckers, Sebastian de Smet,
Lou Somers, Egbert Teeselink, Nikola Trčka, Frits Vaandrager,
Jacques Verriet, Marc Voorhoeve, and Yang Yang

Contract-Based Slicing . 106
Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto

Worst-Case Traversal Time (WCTT)

Special Track on Worst Case Traversal Time (WCTT) 121
Anne Bouillard, Marc Boyer, Samarjit Chakraborty, Steven Martin,
Jean-Luc Scharbarg, Giovanni Stea, and Eric Thierry

The PEGASE Project: Precise and Scalable Temporal Analysis for
Aerospace Communication Systems with Network Calculus 122

Marc Boyer, Nicolas Navet, Xavier Olive, and Eric Thierry

NC-Maude: A Rewriting Tool to Play with Network Calculus 137
Marc Boyer

DEBORAH: A Tool for Worst-Case Analysis of FIFO Tandems 152
Luca Bisti, Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea

A Self-adversarial Approach to Delay Analysis under Arbitrary
Scheduling . 169

Jens B. Schmitt, Hao Wang, and Ivan Martinovic

Flow Control with (Min,+) Algebra . 184
Euriell Le Corronc, Bertrand Cottenceau, and Laurent Hardouin

An Interface Algebra for Estimating Worst-Case Traversal Times in
Component Networks . 198

Nikolay Stoimenov, Samarjit Chakraborty, and Lothar Thiele

Towards Resource-Optimal Routing Plans for Real-Time Traffic 214
Alessandro Lori, Giovanni Stea, and Gigliola Vaglini

Partially Synchronizing Periodic Flows with Offsets Improves
Worst-Case End-to-End Delay Analysis of Switched Ethernet 228

Xiaoting Li, Jean-Luc Scharbarg, and Christian Fraboul

Analyzing End-to-End Functional Delays on an IMA Platform 243
Michaël Lauer, Jérôme Ermont, Claire Pagetti, and Frédéric Boniol

Table of Contents – Part I XI

Tools in Scientific Workflow Composition

Tools in Scientific Workflow Composition . 258
Joost N. Kok, Anna-Lena Lamprecht, and Mark D. Wilkinson

Workflows for Metabolic Flux Analysis: Data Integration and Human
Interaction . 261

Tolga Dalman, Peter Droste, Michael Weitzel,
Wolfgang Wiechert, and Katharina Nöh

Intelligent Document Routing as a First Step towards Workflow
Automation: A Case Study Implemented in SQL . 276

Carlos Soares and Miguel Calejo

Combining Subgroup Discovery and Permutation Testing to Reduce
Reduncancy . 285

Jeroen S. de Bruin and Joost N. Kok

Semantically-Guided Workflow Construction in Taverna: The SADI
and BioMoby Plug-Ins . 301

David Withers, Edward Kawas, Luke McCarthy,
Benjamin Vandervalk, and Mark D. Wilkinson

Workflow Construction for Service-Oriented Knowledge Discovery 313
Vid Podpečan, Monika Žakova, and Nada Lavrač

Workflow Composition and Enactment Using jORCA 328
Johan Karlsson, Victoria Mart́ın-Requena, Javier Rı́os, and
Oswaldo Trelles

A Linked Data Approach to Sharing Workflows and Workflow
Results . 340

Marco Roos, Sean Bechhofer, Jun Zhao, Paolo Missier,
David R. Newman, David De Roure, and M. Scott Marshall

Emerging Services and Technologies for a
Converging Telecommunications / Web World in
Smart Environments of the Internet of Things

Towards More Adaptive Voice Applications . 355
Jörg Ott

Telco Service Delivery Platforms in the Last Decade - A R&D
Perspective . 367

Sandford Bessler

Ontology-Driven Pervasive Service Composition for Everyday Life 375
Jiehan Zhou, Ekaterina Gilman, Jukka Riekki,
Mika Rautiainen, and Mika Ylianttila

XII Table of Contents – Part I

Navigating the Web of Things: Visualizing and Interacting with
Web-Enabled Objects . 390

Mathieu Boussard and Pierrick Thébault

Shaping Future Service Environments with the Cloud and Internet of
Things: Networking Challenges and Service Evolution 399

Gyu Myoung Lee and Noel Crespi

Relay Placement Problem in Smart Grid Deployment 411
Wei-Lun Wang and Quincy Wu

Web Science

Towards a Research Agenda for Enterprise Crowdsourcing 425
Maja Vukovic and Claudio Bartolini

Analyzing Collaboration in Software Development Processes through
Social Networks . 435

Andréa Magalhães Magdaleno, Cláudia Maria Lima Werner, and
Renata Mendes de Araujo

A Web-Based Framework for Collaborative Innovation 447
Donald Cowan, Paulo Alencar, Fred McGarry, Carlos Lucena, and
Ingrid Nunes

A Distributed Dynamics for WebGraph Decontamination 462
Vanessa C.F. Gonçalves, Priscila M.V. Lima, Nelson Maculan, and
Felipe M.G. França

Increasing Users’ Trust on Personal Assistance Software Using a
Domain-Neutral High-Level User Model . 473

Ingrid Nunes, Simone Diniz Junqueira Barbosa, and
Carlos J.P. de Lucena

Understanding IT Organizations . 488
Claudio Bartolini, Karin Breitman,
Simone Diniz Junqueira Barbosa, Mathias Salle,
Rita Berardi, Glaucia Melissa Campos, and Erik Eidt

On the 2-Categorical View of Proofs . 502
Cecilia Englander and Edward Hermann Haeusler

Model Transformation and Analysis for Industrial
Scale Validation

WOMM: A Weak Operational Memory Model . 519
Arnab De, Abhik Roychoudhury, and Deepak D’Souza

Table of Contents – Part I XIII

A Memory Model for Static Analysis of C Programs 535
Zhongxing Xu, Ted Kremenek, and Jian Zhang

Analysing Message Sequence Graph Specifications . 549
Joy Chakraborty, Deepak D’Souza, and K. Narayan Kumar

Optimize Context-Sensitive Andersen-Style Points-To Analysis by
Method Summarization and Cycle-Elimination . 564

Li Qian, Zhao Jianhua, and Li Xuandong

A Formal Analysis of the Web Services Atomic Transaction Protocol
with UPPAAL . 579

Anders P. Ravn, Jǐŕı Srba, and Saleem Vighio

SPARDL: A Requirement Modeling Language for Periodic Control
System . 594

Zheng Wang, Jianwen Li, Yongxin Zhao, Yanxia Qi, Geguang Pu,
Jifeng He, and Bin Gu

AutoPA: Automatic Prototyping from Requirements 609
Xiaoshan Li, Zhiming Liu, Martin Schäf, and Ling Yin

Systematic Model-Based Safety Assessment Via Probabilistic Model
Checking . 625

Adriano Gomes, Alexandre Mota, Augusto Sampaio,
Felipe Ferri, and Julio Buzzi

Learning Techniques for Software Verification and
Validation

Learning Techniques for Software Verification and Validation – Special
Track at ISoLA 2010 . 640

Dimitra Giannakopoulou and Corina S. Păsăreanu

Comparing Learning Algorithms in Automated Assume-Guarantee
Reasoning . 643

Yu-Fang Chen, Edmund M. Clarke, Azadeh Farzan, Fei He,
Ming-Hsien Tsai, Yih-Kuen Tsay, Bow-Yaw Wang, and Lei Zhu

Inferring Compact Models of Communication Protocol Entities 658
Therese Bohlin, Bengt Jonsson, and Siavash Soleimanifard

Inference and Abstraction of the Biometric Passport 673
Fides Aarts, Julien Schmaltz, and Frits Vaandrager

From ZULU to RERS Lessons Learned in the ZULU Challenge 687
Falk Howar, Bernhard Steffen, and Maik Merten

Author Index . 705

Table of Contents – Part II

EternalS: Mission and Roadmap

Introduction to the EternalS Track: Trustworthy Eternal Systems via
Evolving Software, Data and Knowledge . 1

Alessandro Moschitti

HATS: Highly Adaptable and Trustworthy Software Using Formal
Methods . 3

Reiner Hähnle

SecureChange: Security Engineering for Lifelong Evolvable Systems 9
Riccardo Scandariato and Fabio Massacci

3DLife: Bringing the Media Internet to Life . 13
Ebroul Izquierdo, Tomas Piatrik, and Qianni Zhang

LivingKnowledge: Kernel Methods for Relational Learning and
Semantic Modeling . 15

Alessandro Moschitti

Task Forces in the Eternals Coordination Action . 20
Reiner Hähnle

Modeling and Analyzing Diversity: Description of EternalS Task
Force 1 . 23

Ina Schaefer

Modeling and Managing System Evolution: Description of EternalS
Task Force 2 . 26

Michael Hafner

Self-adaptation and Evolution by Learning: Description of EternalS
Task Force 3 . 30

Richard Johansson

Overview of Roadmapping by EternalS . 32
Jim Clarke and Keith Howker

Formal Methods in Model-Driven Development for
Service-Oriented and Cloud Computing

Adaptive Composition of Conversational Services through Graph
Planning Encoding . 35

Pascal Poizat and Yuhong Yan

XVI Table of Contents – Part II

Performance Prediction of Service-Oriented Systems with Layered
Queueing Networks . 51

Mirco Tribastone, Philip Mayer, and Martin Wirsing

Error Handling: From Theory to Practice . 66
Ivan Lanese and Fabrizio Montesi

Modeling and Reasoning about Service Behaviors and Their
Compositions . 82

Aida Čaušević, Cristina Seceleanu, and Paul Pettersson

Design and Verification of Systems with Exogenous Coordination Using
Vereofy . 97

Christel Baier, Tobias Blechmann, Joachim Klein,
Sascha Klüppelholz, and Wolfgang Leister

A Case Study in Model-Based Adaptation of Web Services 112
Javier Cámara, José Antonio Mart́ın, Gwen Salaün,
Carlos Canal, and Ernesto Pimentel

Quantitative Verification in Practice

Quantitative Verification in Practice (Extended Abstract) 127
Boudewijn R. Haverkort, Joost-Pieter Katoen, and
Kim G. Larsen

Ten Years of Performance Evaluation for Concurrent Systems Using
CADP . 128

Nicolas Coste, Hubert Garavel, Holger Hermanns, Frédéric Lang,
Radu Mateescu, and Wendelin Serwe

Towards Dynamic Adaptation of Probabilistic Systems 143
S. Andova, L.P.J. Groenewegen, and E.P. de Vink

UPPAAL in Practice: Quantitative Verification of a RapidIO
Network . 160

Jiansheng Xing, Bart D. Theelen, Rom Langerak, Jaco van de Pol,
Jan Tretmans, and J.P.M. Voeten

Schedulability Analysis Using Uppaal: Herschel-Planck Case Study 175
Marius Mikučionis, Kim Guldstrand Larsen,
Jacob Illum Rasmussen, Brian Nielsen, Arne Skou, Steen Ulrik Palm,
Jan Storbank Pedersen, and Poul Hougaard

Model-Checking Temporal Properties of Real-Time HTL Programs 191
André Carvalho, Joel Carvalho, Jorge Sousa Pinto, and
Simão Melo de Sousa

Table of Contents – Part II XVII

CONNECT: Status and Plans

Towards an Architecture for Runtime Interoperability 206
Amel Bennaceur, Gordon Blair, Franck Chauvel,
Huang Gang, Nikolaos Georgantas, Paul Grace, Falk Howar,
Paola Inverardi, Valérie Issarny, Massimo Paolucci,
Animesh Pathak, Romina Spalazzese, Bernhard Steffen, and
Bertrand Souville

On Handling Data in Automata Learning: Considerations from the
CONNECT Perspective . 221

Falk Howar, Bengt Jonsson, Maik Merten, Bernhard Steffen, and
Sofia Cassel

A Theory of Mediators for Eternal Connectors . 236
Paola Inverardi, Valérie Issarny, and Romina Spalazzese

On-The-Fly Interoperability through Automated Mediator Synthesis
and Monitoring . 251

Antonia Bertolino, Paola Inverardi, Valérie Issarny,
Antonino Sabetta, and Romina Spalazzese

Dependability Analysis and Verification for Connected Systems 263
Felicita Di Giandomenico, Marta Kwiatkowska, Marco Martinucci,
Paolo Masci, and Hongyang Qu

Towards a Connector Algebra . 278
Marco Autili, Chris Chilton, Paola Inverardi,
Marta Kwiatkowska, and Massimo Tivoli

Certification of Software-Driven Medical Devices

Certification of Software-Driven Medical Devices . 293
Mark Lawford, Tom Maibaum, and Alan Wassyng

Arguing for Software Quality in an IEC 62304 Compliant Development
Process . 296

Michaela Huhn and Axel Zechner

Trustable Formal Specification for Software Certification 312
Dominique Méry and Neeraj Kumar Singh

Design Choices for High-Confidence Distributed Real-Time Software 327
Sebastian Fischmeister and Akramul Azim

Assurance Cases in Model-Driven Development of the Pacemaker
Software . 343

Eunkyoung Jee, Insup Lee, and Oleg Sokolsky

XVIII Table of Contents – Part II

Modeling and Formalizing Industrial Software for
Verification, Validation and Certification

Improving Portability of Linux Applications by Early Detection of
Interoperability Issues . 357

Denis Silakov and Andrey Smachev

Specification Based Conformance Testing for Email Protocols 371
Nikolay Pakulin and Anastasia Tugaenko

Covering Arrays Generation Methods Survey . 382
Victor Kuliamin and Alexander Petukhov

Resource and Timing Analysis

A Scalable Approach for the Description of Dependencies in Hard
Real-Time Systems . 397

Steffen Kollmann, Victor Pollex, Kilian Kempf, and Frank Slomka

Verification of Printer Datapaths Using Timed Automata 412
Georgeta Igna and Frits Vaandrager

Resource Analysis of Automotive/Infotainment Systems Based on
Domain-Specific Models – A Real-World Example . 424

Klaus Birken, Daniel Hünig, Thomas Rustemeyer, and
Ralph Wittmann

Source-Level Support for Timing Analysis . 434
Gergö Barany and Adrian Prantl

Practical Experiences of Applying Source-Level WCET Flow Analysis
on Industrial Code . 449

Björn Lisper, Andreas Ermedahl, Dietmar Schreiner,
Jens Knoop, and Peter Gliwa

Worst-Case Analysis of Heap Allocations . 464
Wolfgang Puffitsch, Benedikt Huber, and Martin Schoeberl

Partial Flow Analysis with oRange . 479
Marianne de Michiel, Armelle Bonenfant, Clément Ballabriga, and
Hugues Cassé

Towards an Evaluation Infrastructure for Automotive Multicore
Real-Time Operating Systems . 483

Jörn Schneider and Christian Eltges

Table of Contents – Part II XIX

Context-Sensitivity in IPET for Measurement-Based Timing
Analysis . 487

Michael Zolda, Sven Bünte, and Raimund Kirner

On the Role of Non-functional Properties in Compiler Verification 491
Jens Knoop and Wolf Zimmermann

Author Index . 497

New Challenges in the Development of Critical
Embedded Systems—An “aeromotive”

Perspective

Visar Januzaj2, Stefan Kugele3, Boris Langer5,
Christian Schallhart4, and Helmut Veith1

1 Technische Universität Wien
AB Formal Methods in Systems Engineering

Favoritenstraße 9, 1040 Wien, Austria
veith@forsyte.at

2 Technische Universität Darmstadt, Fachbereich Informatik,
FG Formal Methods in Systems Engineering,
Hochschulstr. 10, 64289 Darmstadt, Germany

januzaj@forsyte.de
3 Technische Universität München, Institut für Informatik,
Boltzmannstr. 3, 85748 Garching bei München, Germany

kugele@in.tum.de
4 Oxford University Computing Laboratory

Wolfson Building, Parks Road, OX1 3QD Oxford, United Kingdom
christian.schallhart@comlab.ox.ac.uk

5 Diehl Aerospace GmbH, Business Line Avionics
An der Sandelmühle 13, 60439 Frankfurt, Germany

boris.langer@diehl-aerospace.de

During the last decades, embedded systems have become increasingly important
in highly safety-critical areas such as power plants, medical equipment, cars,
and aeroplanes. The automotive and avionics domains are prominent examples
of classical engineering disciplines where conflicts between costs, short prod-
uct cycles and legal requirements concerning dependability, robustness, security,
carbon footprint and spatial demands have become a pressing problem. This set-
ting necessitates a disciplined, rigorous approach to systems engineering which
is able to find good trade-offs between complex and conflicting requirements. A
successful large-scale project thus needs to be based on a well-defined process
model. The functional safety standard ISO 26262 (“Road vehicles – Functional
safety”), which is ubiquitous in the development of automotive software, defines
such a process along with the involved activities. Dr. Bernhard Schätz from for-
tiss GmbH, Germany, will focus in his invited talk Certification of embedded
software—Impact of ISO DIS 26262 in the Automotive Domain on the chances
and questions arising from ISO 26262 in practice.

In such large-scale safety-critical systems, the strong requirements for system
quality and absence of errors need to be addressed in a way that accounts for
the high complexity of distributed systems. Model-driven development (MDD)
is considered as the most promising technique to tackle this complexity and is

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 1–2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 V. Januzaj et al.

accepted as a de-facto standard in the industry. In the article Seamless Model-
driven Development put into Practice Haberl et al. propose three important
cornerstones which a proper MDD approach has to support, namely, a well-
defined modelling theory, a defined process, and an integrated tool(-chain). To
support seamless modelling, all tools are built upon the same product data
model, facilitating the modelling of artefacts on different levels of abstraction.

Besides a sophisticated modelling environment, powerful analysis techniques
are essential for system development. The analysis of general timing aspects
and of temporal system behaviour are crucial to guarantee the correct, safe and
intended operation of distributed real-time systems. Plantec et al. contribute to
this field in their paper Enforcing Applicability of Real-time Scheduling Theory
Feasibility Tests with the use of Design-Patterns. They propose a technique to
help designers in checking whether an architectural system model specified in
AADL is compliant with the real-time scheduling theory. Early performance
verification of architectural models is possible by using a set of architecture
design-patterns.

The challenge of early timing analysis is also addressed by Holzer et al. in
their paper Timely Time Estimates. The authors propose a framework capable
to supply engineers with execution time estimates at an early development stage.
Their approach allows developers to ask for time estimates in a demand-driven
manner on the level of C code. Using a repository of benchmarks and results,
they avoid the need for a detailed and very expensive hardware model at an
early stage.

Due to the increased functional range of automotive software as well as the in-
creased complexity of the technology itself—for instance, in multi-core systems—
a posteriori analysis of software models has become very challenging. Kirner et al.
propose in Compiler-Support for Robust Multi-Core Computing to tackle this
problem by developing an enhanced compiler. They propose to implement sup-
port for software-controlled robustness for multi-core architectures within the
SaC research compiler. Its functional input language simplifies classic questions
such as fault-recovery.

In summary, this track is intended to foster interaction between the different
technologies involved in the development of “aeromotive” systems. The contribu-
tions collected here range from modelling and analysis to technical aspects and
certification.

Certification of Embedded Software – Impact of ISO
DIS 26262 in the Automotive Domain

Bernhard Schätz

fortiss gGmbH
Guerickestr. 25, 80805 München, Germany

schaetz@fortiss.org

Abstract. The publication of the ISO 26262 (”Road vehicles – Functional safety”)
as Draft International Standard (DIS) and its expected release as international
standard in 2011 has a substantial impact on the development of automotive soft-
ware. By defining the current state of technique for the development of safe au-
tomotive software, the lack of or inadequate use of these techniques has severe
legal consequences.

Like its ancestor, IEC 61508, as a process standard the ISO DIS 26262 de-
fines artifacts and activities of the development process; consequently, Part 6 of
the ISO standard (”Product development: Software Level”) defines the artifacts
and activities for requirements specification, architectural design, unit implemen-
tation and testing, as well as system integration and verification. Depending on
the hazard analysis and risk assessment, and on the resulting Automotive Safety
Integrity Level (ASIL) of the function under development, the standard, e.g.,
prescribes the use of (semi)formal methods for the verification of requirements,
(semi-)formal notations for software design, the use of control and data flow ana-
lysis techniques, static and semantic code analysis, the use of test case generation,
or in-the-loop verification mechanisms. Furthermore, the standard specifically ac-
knowledges the application of model-based development in automotive software
engineering.

Currently, several of these rather advanced techniques are only required for
higher safety integrity levels. Consequently, even though embedded software has
become the leading innovation factor in automotive applications, many highly
safety-critical automotive functionalities are only reluctantly implemented with
software-based solutions. Here, by advancing the applicability and scalability
of these advanced technologies and providing support in form of qualified tool
chains, a substantial change in the development of automotive software can be
achieved, allowing not only to virtualize and thus substitute physical solutions
of automotive functions (e.g., X-by-wire solutions), but also to implement a new
range of functionalities (e.g., autonomic driving).

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, p. 3, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Enforcing Applicability of Real-Time Scheduling
Theory Feasibility Tests with the Use of

Design-Patterns

Alain Plantec1, Frank Singhoff1, Pierre Dissaux2, and Jérôme Legrand2

1 LISyC, University of Brest, UEB, 20 av. Le Gorgeu, 29238 Brest, France

{alain.plantec,frank.singhoff}@univ-brest.fr
2 Ellidiss Technologies, 24 quai de la douane, 29200 Brest, France

{pierre.dissaux,jerome.legrand}@ellidiss.com

Abstract. This article deals with performance verifications of architec-

ture models of real-time embedded systems. We focus on models verified

with the real-time scheduling theory. To perform verifications with the

real-time scheduling theory, the architecture designers must check that

their models are compliant with the assumptions of this theory. Unfor-

tunately, this task is difficult since it requires that designers have a deep

understanding of the real-time scheduling theory. In this article, we in-

vestigate how to help designers to check that an architecture model is

compliant with this theory. We focus on feasibility tests. Feasibility tests

are analytical methods proposed by the real-time scheduling theory. We

show how to explicitly model the relationships between an architectural

model and feasibility tests. From these models, we apply a model-based

engineering process to generate a decision tool what is able to detect from

an architecture model which are the feasibility tests that the designer can

apply.

1 Introduction

Performance verifications of embedded real-time architectures can be performed
with the real-time scheduling theory. Real-time scheduling theory provides an-
alytical methods, called feasibility tests, which make possible timing constraints
verifications. A lot of feasibility tests have been elaborated during the last 30
years in order to provide a way to compute different performance criteria such
as worst case task response time, processor utilization factor and worst case
blocking time on shared resources.

Each criterion requires that the target system fulfils a set of specific assump-
tions that are called applicability constraints. Thus, due to the large number
of feasibility tests and due to the large number of applicability constraints, it
may be difficult for a designer to choose the relevant feasibility test for a given
architecture to analyze. Then, it appears that in many practical cases, no such
analysis is performed with the help of real-time scheduling theory although ex-
perience shows that it could be profitable.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 4–17, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Enforcing Applicability of Real-Time Scheduling Theory Feasibility Tests 5

In order to help the designer, we have proposed, in [4], a set of architecture
design-patterns that allows early performance verifications of architecture mod-
els. These design-patterns model usual communication paradigms of multi-tasked
real-time software. Given a particular architecture model, these design-patterns
are used in order to choose the relevant set of feasibility tests. We have defined
four design-patterns called Synchronous data flows, Ravenscar, Blackboard and
Queued buffer. For each design-pattern, several feasibility tests can be applied.
For example, in the case of the Synchronous data flows design-pattern, we have
listed 10 feasibility tests that can be applied in 64 possible cases, depending
on the parameters of each architecture components (tasks, processors, shared
resources, etc). It implies that only defining a set of design-patterns may not
be enough to really help the designer to automatically perform performance
verifications with feasibility tests.

In this article, we investigate how to automatically check that an architecture
model is compliant with a design-pattern, in order to ensure that a particular set
of feasibility tests is relevant. We show how to explicitly model the relationships
between an architectural design-pattern and the compliant feasibility tests. From
these models, we apply a model-based engineering process to generate a decision
tool which is able to identify, from an architecture model, the feasibility tests
the designer is allowed to compute. Then, this decision tool helps the designer to
choose the feasibility tests that he is allowed to apply to his architecture models.

This article is organized as follows. In section 2, we introduce our design-
pattern approach. Section 3 presents an example: the Synchronous data flows
design-pattern. In section 4, we explain how the decision tool is currently imple-
mented and how we plan to integrate it into a schedulability tool called Cheddar.
Then, section 5 is devoted to related works and we conclude and present future
works in section 6.

2 The Design-Pattern Approach

During the last decades, a lot of emphasis has been given to software modeling
techniques, in a continuous move from traditional coding activities to higher level
of abstractions. Several standardized languages such as the MARTE profile for
UML [17] or the AADL language [21] provide a set of categorized components
that are appropriate for real-time system and software modeling activities. These
modeling languages allow not only the applicative architecture to be described,
but also its interaction with the underlying executive. As an example, a thread is
a kind of AADL component which can be scheduled by the run-time executive.

Nevertheless, although it becomes now easier to describe real-time architec-
tures, their validation still remains a subject of investigation. For instance, the
lack of a single property may sometimes be enough to prevent a real-time archi-
tecture from being properly processed by a schedulability analysis tool.

This is why, the next step in the improvement of the development process
of real-time systems consists in providing to the end user a set of predefined
composite constructs that match known real-time scheduling analysis methods.

6 A. Plantec et al.

The composite constructs we have studied correspond to the various inter-task
communication paradigms that can be applied in an architecture and that can
be considered as real-time design-patterns.

Four design-patterns that are compliant with the real-time scheduling theory
are proposed in [4]. These design-patterns are:

1. Synchronous Data Flows Design-Pattern: this first design-pattern is
the simplest one. Task share data by clock synchronizations: each task reads
data at dispatch time or writes data at complete time. This design-pattern
does not require the use of shared data components.

2. Ravenscar Design-Pattern: the main drawback of the previous pattern is
its lack of flexibility at run time. Each task will always execute read and write
data at pre-defined times, even if useless. In order to introduce more flexi-
bility, asynchronous inter-task communications is proposed with this design-
pattern: tasks access shared data components asynchronously according to
priority inheritance protocols.

3. Blackboard Design-Pattern: Ravenscar allows task to share data pro-
tected by semaphores. Semaphores can be used to build various synchro-
nization protocols such as critical section, barrier, readers-writers, private
semaphore, producers-consumers and others [28]. The blackboard design-
pattern implements a readers-writers synchronization protocol.

4. Queued Buffer Design-Pattern: in the blackboard design-pattern, at
any time, only the last written message is made available to the tasks.
Queued buffer allows to store all undelivered messages in a memory unit.

Each of these design-patterns models a typical communication and synchroniza-
tion paradigm of multi-tasked real-time software. Design-patterns are specified
with a set of constraints on the architecture model to verify. There are two
types of constraints expressed in a design-pattern: Architectural constraints and
Property constraints.

– Architectural constraints are restrictive rules which specify the kind of ar-
chitectural element that are allowed. As an example, a design-pattern can
forbid declaration of a shared data component or a buffer in a model. They
may also constraint component connections.

– Property constraints are related to the architecture components properties
and constraint further their value. As an example, a design-pattern can as-
sume that the quantum1 property of a processor component must be equal
to zero.

For each design-pattern, according to their architectural and property constraints,
we have identified which feasibility tests the designer can compute to perform
the verification of his architecture.

With this approach, the designer can verify its real-time system architecture
in two steps: (1) he first looks for the design-pattern which is matching his
1 A quantum is a maximum duration that a task can run on a processor before being

preempted by another.

Enforcing Applicability of Real-Time Scheduling Theory Feasibility Tests 7

architecture. Then (2), assuming that a matching design-pattern is found, the
designer can compute all the feasibility tests associated with this design-pattern.

3 Example of the Synchronous Data Flows
Design-Pattern

In order to specify our architecture models, we are using the AADL modeling
language. AADL is a textual and graphical language for model-based engineer-
ing of embedded real-time systems that has been published as SAE Standard
AS-5506 [21]. AADL is used to design and analyze software and hardware archi-
tectures of embedded real-time systems. Many tools provide support for AADL:
Ocarina implements Ada and C code generators for distributed systems [10],
TOPCASED, OSATE and Stood provide AADL modeling features [5,3,22], the
Fremont toolset and Cheddar implement AADL performance analysis meth-
ods [26,25]. An updated list of supporting tools can be found on the official
AADL web site http://www.aadl.info.

An AADL model describes both the hardware part and the software part
of an embedded real-time system. Basically, an AADL model is composed of
components with different categories: data, threads or processes (components
modeling the software side of a specification), processors, devices and buses
(components modeling the hardware side of a specification). A data component
may represent a data structure in the program source text. It may contain sub-
programs such as functions or procedures. A thread is a sequential flow of control
that executes a program and can be implemented by an Ada task or a POSIX
thread. AADL threads can be dispatched according to several policies: a thread
may be periodic, sporadic or aperiodic. An AADL process models an address
space. In the most simple case, a process contains threads and data. Finally,
processors, buses and devices represent hardware components running one or
several applications.

This section presents one of the simplest design-patterns: the Synchronous
data flows design-pattern. First, we specify the design-pattern by its architec-
tural and property constraints. Then, we present the feasibility tests that are as-
signed to this design-pattern. In the sequel, we also illustrate this design-pattern
with a compliant AADL model.

3.1 Specification of the Synchronous Data Flows Design-Pattern

The Synchronous data flows design-pattern is inherited from Meta-H. An AADL
architecture model is compliant with this design-pattern if it is only composed of
process, thread, sub-program and processor components. We also assume that the
architecture model meets the constraints expressed by the following seven rules:

Rule 1: All threads are periodic.

Rule 2: We assume that threads are scheduled either by a fixed priority scheduler
or by EDF [14]. In the case of a fixed priority scheduler, any kind of priority
assignment can be used (Rate Monotonic or Deadline Monotonic) but we assume
that all threads have different priority levels.

http://www.aadl.info

8 A. Plantec et al.

Rule 3: The scheduler may be either fully preemptive or non preemptive.

Rule 4: We assume that the scheduler do not use quantum (see the POSIX 1003
scheduling model [7]).

Rule 5: Thread communications do not make use of any data component, of any
shared resource or buffer and there is no connection between threads and data
components.

Rule 6: Threads are independent: thread dispatches are not affected by the inter-
thread communications. In this synchronization schema, communications between
threads are achieved by pure data flows with AADL data ports: each thread reads
input data at dispatch time and writes output data at completion time.

Rule 7: Each processor owns only one process and there is no virtual processor.
This rule expresses that there is no hierarchical scheduling (see the ARINC 653
standard [1]).

3.2 Feasibility Tests Assigned to the Synchronous Data Flows
Design-Pattern

For an AADL model compliant with Synchronous data flows, we can perform
performance analysis with real-time scheduling theory feasibility tests. For this
design-pattern, we can check performances by computing two performance cri-
teria: (1) the worst case response time of each thread and (2) the processor
utilization factor. For such a purpose, we have assigned 10 feasibility tests to
compute these performance criteria [23].

However, it does not mean that for each AADL model compliant with this
design-pattern, we can apply the 10 feasibility tests. For a given AADL model,
depending on the value of the AADL component properties, we will be able to
apply one or several feasibility tests among this set of feasibility tests. We have
identified 64 different cases depending on component properties values, which
represent applicability assumptions of the feasibility tests. This shows that even
for this simplest design-pattern, choosing the right feasibility test to apply may
be difficult for architecture designers.

One of these feasibility tests is called the ”worst case response time feasibility
test” and consists in comparing the worst case response time of each thread with
its deadline.

For this feasibility test, the thread components of the Synchronous data flows
design-pattern are defined by three parameters: their deadline (Di), their period
(Pi) and their capacity (Ci). Pi is a fixed delay between two release times of the
thread i. Each time the thread i is released, it has to do a job whose execution
time is bounded by Ci units of time. This job has to be ended before Di units
of time after the thread release time.

Joseph and Pandia [13] have proposed a way to compute the worst case re-
sponse time of a thread with pre-emptive fixed priority scheduling by equation:

ri = Ci +
∑

∀j∈hp(i)

⌈
ri

Pj

⌉
· Cj (1)

Enforcing Applicability of Real-Time Scheduling Theory Feasibility Tests 9

Where ri is the worst case response time of thread i and hp(i) is the set of
threads that have a higher priority level than thread i.

This feasibility test is one of the most simple tests which can be applied to
the Synchronous data flows design-pattern. This test has several applicability
assumptions. For example, this test assumes that deadlines are equal to periods
and that all threads have an equal first release time.

3.3 Example of an AADL Model Compliant with the Synchronous
Data Flows Design-Pattern

Figure 1 shows a part of an AADL model. This example is composed of several
periodic threads defined into a process and that are run on a single processor.
AADL component are always specified by a type definition (line number 1) and a
component implementation (from line 2 to line 9). The model also contains sev-
eral AADL properties. Some properties of thread components define deadlines,
periods, capacities and the thread priority. The properties of the processor com-
ponent defines how the scheduler works. In this example, the processor embeds
a preemptive Rate Monotonic scheduler with a quantum equal to zero (from line
24 to line 27).

This AADL model is compliant with the Synchronous data flows design-
pattern because all rules of the section 3.1 are met. We assume that the designer
has previously checked the compliance of this model with this set of rules.

1thread T1 end T1;
2

3thread implementation T1. impl
4properties
5Dispatch Protocol => Periodic;
6Compute Execution time => 1 ms . . 2 ms;
7Deadline => 10 ms;
8Period => 10 ms;
9Cheddar Properties : : Fixed Prior i ty => 128;
10end T1. impl;
11

12thread T2 end T2;
13

14thread implementation T2. impl
15properties
16end T2. impl
17

18process implementation process0. impl
19subcomponents
20a T2 : thread T2. impl;
21end process0. impl
22

23processor implementation rma cpu. impl
24properties
25Scheduling Protocol => Rate Monotonic Protocol;
26Cheddar Properties : : Preemptive Scheduler => True;
27Cheddar Properties : : Scheduler Quantum => 0 ms;
28end rma cpu. impl;

Fig. 1. Part of an AADL model

10 A. Plantec et al.

Fig. 2. A screenshot of Cheddar, a tool which implements several feasibility tests

To compute feasibility tests of the Synchronous data flows design-pattern, we
are using Cheddar. Cheddar is a framework which aims at providing performance
analysis of concurrent real-time applications [25]. With Cheddar, a real-time ap-
plication is modeled as a set of processors, shared resources, buffers and tasks.
Cheddar is able to handle architecture models described by an AADL specifica-
tion and also by its own simplified architecture design language. Cheddar already
implements numerous feasibility tests [23]. Figure 2 shows a screenshot of Ched-
dar. The top part of this window displays the scheduling analysis of the model
of figure 1 and the bottom part shows the feasibility tests results computed for
this AADL model.

4 A Decision Tool to Check the Compliance of an AADL
Model with the Design-Patterns

In the previous section, we have presented a design-pattern and an AADL model
that is compliant with it. To automatically perform performance verifications of
an AADL model with Cheddar, we have assumed that designers are able to
check the compliance of their AADL models with a design-pattern. This task is,
however, not easy for users who are not experts on real-time scheduling theory.
To facilitate this task, we propose a second tool, called decision tool, which is
able to automatically perform this compliance analysis.

We plan to integrate this decision tool as a new functionality of Cheddar. As de-
picted by figure 3, within Cheddar, the decision tool will be able to automatically

Enforcing Applicability of Real-Time Scheduling Theory Feasibility Tests 11

Fig. 3. AADL model analyzer overview

detect which design-pattern a real-time system is compliant with and then to au-
tomatically compute the relevant feasibility tests.

So far, the design-patterns are themselves currently elaborated. Thus, for now
we are using a prototype of the decision tool. This prototype is built with the
Platypus tools. In this section we first briefly describes the Platypus tool and its
usage for prototyping the decision tool. Then we explain how Cheddar will be
enriched with the decision tool.

4.1 Prototyping within Platypus

Platypus [20] is a software engineering tool which embeds a modeling environ-
ment based on the STEP standard [11]. First of all, Platypus is a STEP en-
vironment, allowing data modeling with the EXPRESS language [12] and the
implementation of STEP exchange components automatically generated from
EXPRESS models. Platypus includes an EXPRESS editor and checker as well
as a STEP file reader, writer and checker.

In Platypus, a meta-model consists in a set of EXPRESS schemas that can be
used to describe a language. The main components of the meta-model are types
and entities.

From an EXPRESS schema and a data set made of instances of entities de-
scribed by the EXPRESS schema, Platypus is able to check the data set confor-
mity by evaluating the constraint rules specified in the EXPRESS model.

Thus, given that the design-patterns are specified with EXPRESS, the de-
cision tool prototype directly benefits from the Platypus STEP generic frame-
work. The figure 4 shows the prototype components and the data flow when
an architecture model is analyzed. The prototype is first made of the shared
meta-model named Cheddar meta-model schema. This meta-model specifies the
internal Cheddar representation of a real-time architecture to verify. Then, each
design-pattern is composed of two models which are defined in order to further
constraint the Cheddar meta-model. These models correspond to the two kinds
of constraints as explained in the section 2. In the figure 4, they are specified by
the architectural constraints and property constraints schemas.

12 A. Plantec et al.

Fig. 4. The decision tool prototype within Platypus

Due to the current usage of the prototype, in order to be analyzed, an AADL
architecture model must be encoded as an XML or a STEP data exchange file
conforming to the Cheddar meta-model. Cheddar can be used for that purpose.
Then, each design-pattern is evaluated separately. Evaluating a design-pattern
consists in interpreting all rules specified in the architectural constraints and
property constraints schemas.

4.2 Design-Pattern Modeling Framework

As depicted by figure 5, the modeling framework is made of three main lay-
ers: (1) the Architecture resources, (2) the Feasibility test resources and (3) the
Feasibility test design-patterns layers. Each of these layers are made of one or
several EXPRESS schemas. This section briefly describes them and gives some
illustrative EXPRESS samples.

The Architecture resources layer. This layer is the most generic one, it
contains the specification of all domain entities which are used for architectures

Fig. 5. The three layers of the Design-pattern modeling framework

Enforcing Applicability of Real-Time Scheduling Theory Feasibility Tests 13

29SCHEMA Tasks;
30ENTITY Periodic Task SUBTYPE OF (Generic Task) ;
31Period : Natural type;
32J i t t e r : Natural type;
33ENDENTITY; . . .
34ENDSCHEMA;
35

36SCHEMA Schedulers;
37TYPE Preemptive Type = ENUMERATION OF
38(fully preemptive , non preemptive , partial ly preemptive) ;
39ENDTYPE;
40

41ENTITY Generic Scheduler;
42Quantum : Natural type;
43Preemptivity : Preemptive Type;
44ENDENTITY; . . .
45ENDSCHEMA;
46

47SCHEMA Processors . . . ENDSCHEMA;
48SCHEMA Buffers . . . ENDSCHEMA;

Fig. 6. Part the Cheddar Meta-model

modeling. Indeed, it is specified independently of any design-pattern. It mainly
contains the Cheddar meta-model. A particular real-time architecture is made
of instances of this meta-model because it specifies the internal representation
of a real-time architecture within Cheddar. As depicted by the figure 6, it is
composed of entities such as Generic Task or Generic Scheduler but also Buffer
or Processor. These entities store all attributes that are required for the analysis
of an AADL architecture model.

The Feasibility test resources layer. This is the intermediate layer which
makes use of entities of the Architecture resources layer and in addition is made of
new entities, functions and rules which are reusable across several design-patterns.

49SCHEMA Period Equal Deadline Constraint;
50USE FROM Tasks;
51

52RULE Period Equal Deadline FOR (Periodic Task) ;
53WHERE
54SIZEOF (QUERY (p <∗ Periodic Task | p. Period <> p. Deadline)) = 0;
55ENDRULE;
56ENDSCHEMA;

The Period Equal Deadline constraint concerns only the set of all Periodic Task instances. This

constraint is satisfied if there is no Periodic Task instance which have a period value which is

different from its deadline.

Fig. 7. EXPRESS model of the Feasibility tests resources layer

As an example, the Period Equal Deadline constraint is shown in the figure 7.
This constraint is typically reusable for several design-patterns. It is specified by
an EXPRESS rule which ensure that, for each instance of the Periodic Task
entity, the value of the Period and of the Deadline attributes are equal.

14 A. Plantec et al.

The Feasibility test design-patterns layer. Each model of this layer is called
a design-pattern model, it concerns a particular design-pattern and is made of one
or several EXPRESS schemas which reuse parts of the other layers. In addition,
each design-pattern model defines very specific rules that represent constraints
which are to be checked for the related design-pattern.

57SCHEMA Data Flow Constraints;
58USE FROM Tasks; USE FROM Schedulers; USE FROM Buffers;
59

60RULE All Tasks Are Periodic FOR (Generic Task) ;
61WHERE
62R1 : SIZEOF (QUERY (t <∗ Generic Task |
63NOT (’TASKS. PERIODIC TASK’ IN TYPEOF (t)))) = 0;
64ENDRULE;
65. . .
66RULE No Shared Ressource FOR (Generic Resource, Buffer);
67WHERE
68R5 : (SIZEOF (generic resource) = 0) AND (SIZEOF (Buffer) = 0) ;
69ENDRULE;
70ENDSCHEMA;

Fig. 8. EXPRESS model for the data flow design-pattern

As an example, the Data Flow Constraints EXPRESS schema shown in
figure 8 is for the Data Flow design-pattern. Only the rules 1 and 5 given for
this design-pattern are shown (see section 3.1 page 7): the Rule 1 is speci-
fied by the All Tasks Are Periodic EXPRESS constraint and the Rule 5 by the
No Shared Ressource one.

4.3 Toward an Implementation within Cheddar

As we are currently elaborating EXPRESS models for the work presented in
this article, it is very efficient to be able to directly test them from the Platypus
modeling environment itself.

But having to use Cheddar together with Platypus is not comfortable for
end-users and Platypus, as a STEP based data modeling environment, is not
user friendly enough. We plan to use a model driven engineering process in
order to automatically generate the decision tool in Ada, the implementation
language of Cheddar. For such a purpose, Platypys will have to handle EXPRESS
models of figures 6, 7 and 8. Today, Cheddar is already partly automatically
generated by Platypus from EXPRESS models of the figure 6. As an example,
the Cheddar meta-model schema is used in order to produce the core components
of Cheddar [19,24].

5 Related Works

This article has shown an approach to check that an architectural model of a
real-time system is compliant with a set of constraints. Many other approaches
also investigated how to perform such verifications.

Enforcing Applicability of Real-Time Scheduling Theory Feasibility Tests 15

First, UML together with its standard constraint language OCL could be used
for the purpose of designing and building feasibility test checkers.

Second, in [8], Gilles and al. have proposed a similar constraint language for
AADL. The proposed language is called REAL (REAL stands for Requirement
Enforcement Analysis Language). REAL is developed by Télécom-Paris-Tech
and ISAE. It should be adopted as an annex of the AADL standard. This lan-
guage is then specifically designed for the modeling of real-time architectures.
REAL allows to express various type of constraints on AADL architecture and
their authors have shown that it can express some of the applicability constraints
of the real-time scheduling theory.

Another approach of a similar move towards more analyzable constructs built
on top of a modeling language can be found in the history of the HOOD
method [15]. The first versions of this modeling approach defined a quite ba-
sic concept of component (called HOOD objects) which aimed at representing
more or less an Ada 83 package. In 1995, two specializations of HOOD were
specified: HOOD 4 [16] which targets Object-Oriented programming languages
and especially Ada 95, and HRT-HOOD [2] which goal is to comply with the
Ada Ravenscar model (now included into Ada 2005 [27]). In both cases, the
original concepts and principles of the HOOD methodology have been kept, and
specific composite constructs have been identified in order to support properly
Ada 95 tagged types or Ravenscar cyclic, sporadic and protected objects. More
recently, in the context of the IST-ASSERT project, Panunzio and al. [18] pro-
posed to integrate some HRT-HOOD components with UML models. For such
a purpose, they have proposed an engineering process based on a meta-model
called RCM (RCM stands for Ravenscar Computational Model). In this process,
performance verifications are performed with the MAST framework [9], which
also implements several feasibility tests.

Finally, PPOOA proposes a similar approach [6]. PPOOA is an architectural
style for concurrent object oriented architectures. PPOOA is implemented as an
extension of UML and provide several coordination mechanisms such as buffers,
semaphores, transporters, Ada rendezvous and others. All these coordination
mechanisms are similar to our design-patterns.

6 Conclusion

Feasibility tests of real-time scheduling theory may be difficult to be used by
system designers. In this article, we investigate how to increase their usability
with an approach based on design-patterns.

In this approach, we have defined a list of design-patterns and a set of feasibil-
ity tests is assigned to each design-pattern. When a designer wants to perform
a performance analysis of an AADL model, he must check that his model is
compliant with one of these design-patterns. If the model is actually compliant
with a design-pattern then he can call Cheddar to automatically compute the
feasibility tests assigned to the selected design-pattern.

However, checking compliance of his models to the design-patterns may be diffi-
cult to achieve, especially if designers are not expert on real-time scheduling theory.

16 A. Plantec et al.

To automatically check compliance, we propose a framework, called decision tool,
which relies on the Platypus environment.

In the current implementation of our approach, designers have to handle two
different tools: Cheddar and the decision tool. In a next step, we plan to integrate
the decision tool into Cheddar. Having only one tool to deal with should facilitate
the performance analysis of AADL models.

A second future work is related to the list of design-patterns. Indeed, we only
have investigated how to check compliance with the Synchronous data flows
design-pattern. In the next months, we will do the same work for the other
design-patterns: Ravenscar, Queued Buffer and BlackBoard [4].

Finally, in this approach, we expect to verify if an AADL model is fully com-
pliant with a set of design-patterns. But in some cases, architectural models
of practitioners may be compliant with none of the proposed design-patterns.
Then, we plan to investigate how the designers can eventually be helped with a
set of metrics. These metrics should allow the designers to compare their AADL
models with our design-patterns and to improve their models in order to be
compliant with the real-time scheduling theory.

References

1. Arinc: Avionics Application Software Standard Interface. The Arinc Committee

(January 1997)

2. Burns, A., Wellings, A.: HRT-HOOD: A Design Method for Hard Real-time Sys-

tems. Real Time Systems Journal 6(1), 73–114 (1994)

3. Dissaux, P.: Using the AADL for mission critical software development. In: 2nd

European Congress Erts, Embedded Real Time Software Toulouse (January 2004)

4. Dissaux, P., Singhoff, F.: Stood and Cheddar: AADL as a Pivot Language for

Analysing Performances of Real Time Architectures. In: Proceedings of the Euro-

pean Real Time System Conference, Toulouse, France (January 2008)

5. Farail, P., Gaufillet, P., Canals, A., Camus, C.L., Sciamma, D., Michel, P., Crégut,

X., Pantel, M.: From MDD Concepts to Experiments and Illustrations. In: ISTE

(ed.) TOPCASED: An Open Source Development Environment for Embedded Sys-

tems, ch. 11, pp. 195–207 (September 2006)

6. Fernandez, J.L., Marmol, G.: An Effective Collaboration of a Modeling Tool and a

Simulation and Evaluation Framework. In: 18th Annual International Symposium,

INCOSE 2008, Systems Engineering for the Planet, The Netherlands (June 2008)

7. Gallmeister, B.O.: POSIX 4: Programming for the Real World. O’Reilly and As-

sociates, Sebastopol (January 1995)

8. Gilles, O., Hugues, J.: Expressing and enforcing user-defined constraints of AADL

models. In: The Proceedings of the 15th IEEE International Conference on En-

gineering of Complex Computer Systems, International workshop on AADL and

UML, University of Oxford, UK, pp. 337–348 (March 2010)

9. Harbour, M.G., Garc̀ıa, J.G., Gutiérrez, J.P., Moyano, J.D.: MAST: Modeling

and Analysis Suite for Real Time Applications. In: Proc. of the 13th Euromicro

Conference on Real-Time Systems, Delft, The Netherlands, pp. 125–134 (June

2001)

10. Hugues, J., Zalila, B., Pautet, L., Kordon, F.: Rapid Prototyping of Distributed

Real-Time Embedded Systems Using the AADL and Ocarina. In: 18th IEEE/IFIP

Enforcing Applicability of Real-Time Scheduling Theory Feasibility Tests 17

International Workshop on Rapid System Prototyping (RSP 2007), Porto Allegre,

Brazil (June 2007)

11. ISO 10303-1: Part 1: Overview and fundamental principles (1994)

12. ISO 10303-11: Part 11: edition 2, EXPRESS Language Reference Manual (2004)

13. Joseph, M., Pandya, P.: Finding Response Time in a Real-Time System. Computer

Journal 29(5), 390–395 (1986)

14. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard

Real-Time Environnment. Journal of the Association for Computing Machin-

ery 20(1), 46–61 (1973)

15. Masson and Prentice-Hall: HOOD Reference Manual release 3.1, HOOD User

Group (1993)

16. Masson and Prentice-Hall: HOOD Reference Manual release 4.0, HOOD User

Group (1995)

17. OMG: A UML Profile for MARTE, Beta 1. OMG Document Number: ptc/07-08-04

(August 2007)

18. Panunzio, M., Vardanega, T.: A Metamodel-Driven Process Featuring Advanced

Model-Based Timing Analysis. In: Abdennahder, N., Kordon, F. (eds.) Ada-Europe

2007. LNCS, vol. 4498, pp. 128–141. Springer, Heidelberg (2007)

19. Plantec, A., Singhoff, F.: Refactoring of an Ada 95 Library with a Meta CASE

Tool. ACM SIGAda Ada Letters 26(3), 61–70 (2006)

20. Platypus Technical Summary and download (2007),

http://cassoulet.univ-brest.fr/mme/

21. SAE: Architecture Analysis and Design Language (AADL) AS 5506. Tech. rep.,

The Engineering Society For Advancing Mobility Land Sea Air and Space,

Aerospace Information Report, Version 2.0 (January 2009)

22. SEI: OSATE : An extensible Source AADL Tool Environment. SEI AADL Team

technical Report (December 2004)

23. Singhoff, F.: A taxonomy of real-time scheduling theory feasibility tests. LISyC

Technical report, number singhoff-01-2010 (February 2010),

http://beru.univ-brest.fr/~singhoff/cheddar

24. Singhoff, F., Plantec, A.: Towards User-Level extensibility of an Ada library: an

experiment with Cheddar. In: Abdennahder, N., Kordon, F. (eds.) Ada-Europe

2007. LNCS, vol. 4498, pp. 180–191. Springer, Heidelberg (2007)

25. Singhoff, F., Plantec, A., Dissaux, P., Legrand, J.: Investigating the usability of

real-time scheduling theory with the Cheddar project. Journal of Real-Time Sys-

tems 43(3), 259–295 (2009)

26. Sokolsky, O., Lee, I., Clark, D.: Schedulability Analysis of AADL models. In: Inter-

national Parallel and Distributed Processing Symposium, IPDPS 2006, vol. 2006

(April 2006)

27. Taft, S.T., Duff, R.A., Brukardt, R.L., Ploedereder, E., Leroy, P.: Ada 2005 Refer-

ence Manual. Language and Standard Libraries. International Standard ISO/IEC

8652/1995(E) with Technical Corrigendum 1 and Amendment 1. LNCS, vol. 4348.

Springer, Heidelberg (2006)

28. Tanenbaum, A.: Modern Operating Systems. Prentice-Hall, Englewood Cliffs

(2001)

http://cassoulet.univ-brest.fr/mme/
http://beru.univ-brest.fr/~singhoff/cheddar

Seamless Model-Driven Development
Put into Practice

Wolfgang Haberl1, Markus Herrmannsdoerfer1, Stefan Kugele1,
Michael Tautschnig2, and Martin Wechs3

1 Institut für Informatik

Technische Universität München

Boltzmannstr. 3, 85748 Garching b. München, Germany
2 Formal Methods in Systems Engineering, Faculty of Informatics

Vienna University of Technology

Favoritenstr. 9, 1040 Wien, Austria
3 BMW Forschung und Technik GmbH

Hanauer Straße 46, 80992 München, Germany

Abstract. Model-driven development (MDD) today is the most promis-

ing approach to handle the complexity of software development for dis-

tributed embedded systems. Still, no single tool-chain exists that meets

all needs of companies employing MDD. Moving back and forth between

the tools in today’s iterative development processes thus requires manual

integration steps, which are error-prone and hamper reuse and refinement

of models. A possible workaround is developing adapters for each pair of

tools. Despite its large overhead, industry started pursuing this approach

because of a lack of better alternatives. A proper solution is a tool-chain

building on an integrated modeling language. We have realized this in

cooperation with BMW Research and Technology. To increase the de-

gree of automation during development, the modeling language builds

upon a core featuring a rigorous semantics. This enables automatic anal-

ysis, facilitating an automatic transition from model-based designs to a

distributed system running on the target platform.

1 Introduction

As embedded systems, ranging from music players and mobile phones over car-
diac pacemakers to airbag controllers, become ubiquitous, the need for quality
escalates. Up to 98% of all processors are built into embedded systems [1,2].
Many of these perform mission-critical tasks in systems such as flight controllers
or air condition systems in premium-class cars. In such large-scale safety-critical
systems, an imminent need for quality and absence of errors meets the complex-
ity of developing software for distributed systems.

In industry, model-driven development (MDD) is seen as the most promising
technique to tackle this complexity. Consequently, software industry created a
wide range of tools to aid the developer in many steps of an MDD process. Still,
there is not a seamless tool-chain, let alone an integrated tool, covering the entire

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 18–32, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Seamless Model-Driven Development Put into Practice 19

development process from requirements and design models to code executable
on the target platform. Instead, developers must deal with a multitude of tools,
which requires converting process artifacts back and forth as the product evolves.

Industry tries to work around these largely manual steps by building tool
adapters. This approach may seem to be the simplest at first sight, but it is
surely not future-proof. This is, however, the least of a problem: in fact, it is
often technically unsound. An automated translation between tools requires that
the underlying modeling languages have well-defined and compatible semantics.
As this is often not the case, each transition—be it manual or automatic—bears
the risks of loss of information and inadvertent introduction of additional errors.

Looking at the amount and structure of warranty costs in the automotive
domain, a need for improvement is imminent: billions of dollars are spent for
warranty costs each year. These costs amount to a total of up to US$ 500 per
vehicle [3]. According to IBM research, about 30% of these costs are attributable
to software and electronics defects. With current tools, a decrease in the number
of implementation errors seems largely out of reach. In industrial embedded sys-
tems development, however, not only the number of design and implementation
errors poses a challenge. Architectural and cost constraints require optimization
at system level. Due to the isolation of tools, currently optimization can only be
applied locally. In consequence, automatic global optimizations—such as fewer
and cheaper controllers, smaller packaging, or reduced weight—are impossible.

As the amount of software in cars continues to grow exponentially, improved
tools alone will not suffice. Instead, an appropriate development process and cor-
responding tool support will be required. Especially in the automotive domain,
struggling with the enormous cost pressure, this is an important issue. Short
product cycles require that iterative processes have both short and few itera-
tions, requiring best possible automation at low overhead. All these facts collide
with the state-of-the-art, where manual and error prone conversion is involved.
In cooperation with BMW Research and Technology, we developed an approach
to overcome those hurdles. In this paper we give an overview of our process and
tool chain. We refer to previous publications describing specific technical aspects
in detail where appropriate.

2 Requirements for Seamless Model-Driven Development

To tackle these, we propose a seamless model-driven development approach [4].
Starting from requirements and continuing to design and code generation, deep
integration of all constituents is required. More specifically, this is required for

– the modeling language which provides an easy-to-use syntax and a well-
defined semantics for all artifacts,

– the modeling process which describes how to create the artifacts step by step
using the modeling language, and

– the modeling tool which supports the developer to author the artifacts and
automates the process steps as far as possible.

20 W. Haberl et al.

In the following, we will detail on the necessary prerequisites to provide integra-
tion for each of these constituents.

Integrated Modeling Language. An integrated modeling language enables
integration of all artifacts created during the development process. The inte-
grated modeling language shall rigorously define the syntactic structure of all
artifacts as well as their relation. Moreover, a concrete syntax that visualizes the
artifacts in a human-understandable way has to be provided by the integrated
modeling language. It needs to be based on a common modeling theory giving
the artifacts a precise semantics. First, this theory is essential to prove properties
over all kinds of artifacts created along different process steps. Second, model
transformation as well as code generation require a common modeling theory to
ensure preservation of semantics when advancing between process steps. The in-
tegrated modeling language must support all process steps in a seamless manner
to enable an integrated modeling process.

Integrated Modeling Process. An integrated modeling process is required to
seamlessly develop an embedded system in a stepwise manner. The integrated
modeling process needs to define the interplay of all the process steps necessary to
create the desired artifacts. Each process step needs to be defined in a way such
that it can be either automated by a model transformation or at least supported
by the modeling tool. The integrated modeling process must be able to cope with
the stringent constraints of embedded systems on reliability, robustness, correct-
ness, and an overall optimized system with respect to execution time and resource
usage. Building on the well-defined semantics of the modeling language, verifica-
tion is performed continuously together with design and implementation activi-
ties. Consequently, many design errors can already be ruled out at higher levels of
abstraction, reducing cost induced by correcting these errors at a later stage.

Integrated Modeling Tool. An integrated modeling tool is required to pro-
vide seamless tool support for the development of all artifacts. It needs to be
based on a central repository that contains all artifacts and their relationships.
The central repository avoids redundancy and inconsistency that results from
parallel modification of artifacts by different developers. All the authoring and
transformation tools provided by the integrated modeling tool need to operate
directly on this central repository—supervised by a well-defined concurrency
control. Moreover, seamless change and configuration management is only pos-
sible by maintaining all the artifacts in the central repository. The integrated
modeling tool shall further enable pervasive tool support to guide the engineers
throughout the modeling process.

3 Realization of Seamless Model-Driven Development

Following the requirements listed in the preceding section, we describe a solution
to the problems stated in Section 1. We first give a short account of the inte-
grated modeling language COLA, and then outline its use in both the integrated
modeling process and the integrated modeling tool.

Seamless Model-Driven Development Put into Practice 21

3.1 COLA – The Component Language

COLA, the COmponent LAnguage, is an integrated modeling language for
the design of distributed, safety-critical real-time systems. The key concepts
of COLA follow those of well-known modeling languages, such as FODA [5] and
Lustre [6]. The resulting language is structured into different layers of abstrac-
tion along which a system is modeled. These layers help to reduce the complexity
involved in the design of large-scale embedded systems. Each abstraction layer
focuses on a certain aspect, and adds new detail to the information contained
in higher layers. COLA defines three layers of abstraction which are called Fea-
ture Architecture (FA), Logical Architecture (LA), and Technical Architecture
(TA), as proposed by Pretschner et al. [7] and Broy et al. [8]. Figure 1 illustrates
the core modeling constructs of each layer, and the relations between them, in
screenshots from our integrated modeling tool.

COLA is based on the synchronous data-flow paradigm and has a well-defined
semantics [9]. It is assumed that operations start at the same instant of time and
are performed simultaneously, respecting data dependencies. The computation
of the system over time can be subdivided into discrete steps, called ticks. The
execution is performed in a stepwise manner over a discrete uniform time-base.

Feature Architecture (FA). The Feature Architecture formalizes functional
requirements on behavior observable at the system boundary [10]. Similar to
FODA [5], the overall system behavior is decomposed into a hierarchy of features
to reduce complexity. A feature is a function which is observable by the customer
at the system boundary. The inner nodes of the tree are composite features
which are decomposed into sub-features. The leaves of the tree represent atomic
features which cannot be decomposed further and model a function accessible to
the customer. Figure 1 depicts the graphical representation of an example feature
hierarchy. In the graphical syntax of COLA, the feature hierarchy is represented
as a tree, the sub-feature relationship as lines with a diamond, and features as
rounded rectangles. In a complex system, however, features are not independent,
but rather influence each other. These dependencies are represented as arrows
between the corresponding features (see Figure 1). We extended FODA to be
able to rigorously define the behavior of atomic and composite features as well
as feature dependencies. To ease the transition to the next layer, the behavior
is defined by means of constructs provided by the LA, e. g., data-flow networks.

Logical Architecture (LA). The Logical Architecture maps features onto a
software architecture, and refines them to obtain a platform-independent model
of the overall system functionality. The constructs to model the system function-
ality are based on Lustre [6]. The system can be successively decomposed into
or composed of modular units. These units may be defined in-place, as described
next, or taken from user-defined libraries, which enable reuse. The behavior of
a unit is hidden behind the unit’s interface which is defined by a number of
typed input and output ports. Figure 1 depicts the graphical representation of a
number of units: interfaces are represented as rounded rectangles and ports as

22 W. Haberl et al.

Hardware Architecture Cluster Architecture

Network

Automaton

ECU

Bus
Cluster

L
o

g
ic

al
A

rc
h

it
ec

tu
re

(L
A

)
T

ec
h

n
ic

al
A

rc
h

it
ec

tu
re

(T
A

)

State Transition

Sub-unit Channel

A
llo

ca
tio

n

F
ea

tu
re

 A
rc

h
it

ec
tu

re
(F

A
)

Composite
Feature

Dependency

Feature Hierarchy

Atomic
Feature

Fig. 1. Integrated Modeling Language COLA

triangles. The root unit of a system does not have any unconnected input or out-
put ports, but communicates with the environment using so-called sources and
sinks. These sources and sinks model sensor and actuator interaction. COLA

defines three kinds of units: networks, automata, and blocks.
A system can be decomposed into smaller units, establishing data-flow net-

works. These smaller units are called sub-units of the network, which are con-
nected by channels. A channel connects an output port with one or more
suitably typed (cf. [11]) input ports. The synchronous semantics of COLA de-
fine communication over channels to take no time. Channels determine data-flow
dependencies between sub-units and induce a causal order of execution. Feed-
back loops of channels (transitively) connecting an output port of a unit to an
input port of the same unit must contain a delay block which defers propagation
by one time interval. A delay serves as data storage: it retains values from one
tick to the next. Figure 1 depicts the graphical representation of an example

Seamless Model-Driven Development Put into Practice 23

network: sub-units are represented by rounded rectangles, and channels by lines
connecting the sub-units.

Control flow in networks is modeled by automata. An automaton consists of a
number of states where exactly one is active at a time. The automaton’s behavior
is defined by the currently active state. Each state is implemented by a sub-unit.
Transitions determine how the activated state of an automaton may change
over time. The condition for a transition is again implemented by a unit, the
evaluation of which is based on the inputs of the automaton. The semantics of
COLA requires to check for possible transitions before evaluating the activated
state’s behavior. Figure 1 depicts the graphical representation of an example
automaton: states are represented by ellipses, and transitions by arrows.

COLA provides a number of basic building blocks, e. g., arithmetic or Boolean
operators. These blocks execute their respective operation based on the values
present at the input ports and emit the according result at their output port.

In the course of computation, a unit may act differently depending on its
history. Such units are considered stateful. In COLA, only delays and automata
retain information of previous computations; all other kinds of units are stateless.
Note that a unit containing a stateful sub-unit becomes stateful as well.

Technical Architecture (TA). The Technical Architecture maps system func-
tionality, specified by the LA, onto a hardware platform. As shown in Figure 1,
the TA consists of Hardware Architecture, Cluster Architecture, and Allocation.

The Hardware Architecture describes the structure and the properties of the
target hardware platform. The main construct of the Hardware Architecture is
the electronic control unit (ECU) which forms a computing node of the dis-
tributed platform and can be composed of processors, sensors, and actuators.
Sensors and actuators model interaction with the environment, whereas proces-
sors execute the system functionality. ECUs can be connected via a bus which
provides a communication mechanism. The characteristics of each hardware ele-
ment, e. g., the resources provided by a processor, can be determined by a number
of properties, e. g., clock frequency, storage capacity, etc.

The Cluster Architecture partitions the system functionality—as defined in
the LA—into distributable entities, called clusters. These will be mapped to the
electronic control units of the Hardware Architecture. The Cluster Architecture
may be specified manually by the developer, or can be derived automatically
from the LA based on characteristics specified in the Hardware Architecture,
such as available processing speed or memory. In the latter case, the derivation of
the Cluster Architecture can be performed based on some optimization criteria,
like for example shortest average turnaround time for all tasks on all nodes, or
equally distributed memory consumption for all nodes.

The Allocation establishes the relationship between the Cluster Architecture
and the Hardware Architecture. Therefore the Allocation maps each cluster onto
an ECU. For the Allocation to be valid, the resources provided by each ECU,
like computing power, memory, etc., have to match the resource requirements of
the clusters placed thereon for all nodes of the system. To estimate the resource
requirements of a cluster, its worst-case execution time (WCET) needs to be

24 W. Haberl et al.

calculated. The Allocation can then be automatically generated based on both
Hardware and Cluster Architecture taking into account optimization criteria.

3.2 Model Analysis and System Synthesis

The automated transition from a modeled system to executable code is supported
by our integrated modeling tool. This transition directly follows the proposed
process. We will detail on the necessary steps below, due to space limitations
focusing on the transformation from the LA down to an executable system. The
artifacts arising during the described transition are depicted in Figure 2.

Model Analysis. The formal semantics of our modeling language enables au-
tomatic analysis. For such a technique to be useful for the systems engineer, it
must not only report the presence of errors, but also yield diagnostic informa-
tion, i. e., provide the reason of a problem. Furthermore, we require all analyses
to be push-button. We have implemented a stack of such methods in our tool.

First, consistency checks according to constraints, which are part of our for-
mal modeling language, are performed. This analysis reports syntax errors and
violated model invariants. On top of our modeling language we provide a static
type system with type variables, which includes an extension to support physical
units. Automatic type inference detects and diagnoses errors at interconnected
component interfaces, i. e., syntactically incompatible interfaces [11].

To complement these syntactic checks, COLA enables several static semantic
analyses: we have implemented a check to verify the absence of nondeterminism
in the modeled automata. This analysis reports states of automata that may have
more than one activated outgoing transition at the same time. Such behavior
must be avoided as code generated from the model would otherwise define the
order of execution in a non-foreseeable manner. Further we interface with model
checkers to verify the conformance of a design to requirements expressed in
SALT (Structured Assertion Language for Temporal Logic) [12]. This analysis
is fully automatic and the model checker will return a counterexample for any
unsatisfied requirement, which helps to diagnose the underlying problem.

We augment static analysis with dynamic methods for early validation. Our
tool contains a simulation engine [13] which enables step-wise execution of the
system according to its formal semantics using (i) manually set input data, (ii)
values obtained in random testing, (iii) data fed back by an environment model,
or (iv) simulation based on traces of previous runs on the target platform.

The formal semantics not only facilitate bug hunting at model level, but also
allow for early performance analysis, automatic computation of allocations of
distributable software components to the hardware platform given in the TA, and
automatic scheduling. Furthermore, executable code and platform configuration
are generated automatically. These techniques are detailed in the following.

System Partitioning and Code Generation. Using the information of both
LA and TA, automatic system synthesis can be performed. Initially, code for
each distributable software component specified in the Cluster Architecture is

Seamless Model-Driven Development Put into Practice 25

ECU
1

ECU
2

ECU
3

+

ECU
1

ECU
2

ECU
3

Model
Analysis

System
Partitioning

Resource
Estimation

System
Distribution

Scheduling

ECU 1

ECU 2

ECU 3

Software Model
and

Hardware Model Checked Model

Source Code
Files

Resource Usage
Figures

Distribution Decision

System Schedule

.c

System
Synthesis

Executable System

Runtime
Data Logging

Partitioned Model

Code
Generation

Fig. 2. Artifacts generated along the development process; solid arrows depict regular

workflow while dashed arrows indicate optional refinement iterations

26 W. Haberl et al.

generated [14]. To test correctness of code generation, we also implemented an
I/O conformance tester building upon the TorX ioco test framework [15].

Calls to a middleware realize both interaction of distributed software compo-
nents and interfacing with sensors and actuators. These calls are injected into
the code during system synthesis, as introduced in [16]. The middleware also
retains the state of the components between cyclic invocations and provides a
global clock for timely execution of time-triggered tasks.

Resource Estimation. The resource requirements of each distributable soft-
ware component have to be evaluated for subsequent distribution and scheduling
decisions. Automated performance estimation calculates the worst-case execu-
tion time and memory consumption of each component. Using the SciSim [17]
framework, the generated code is instrumented and analyzed to compute its
resource usage for every processing node the component might be executed on.

System Distribution. Based on this resource estimation, an optimal place-
ment of distributable software components to run on computing nodes modeled
in the Hardware Architecture is computed (cf. [18]). We use an integer linear
programming solver to determine a solution yielding minimal cost under the
hardware capability constraints. This includes their processing power and mem-
ory, as well as the communication systems interconnecting the nodes. It may
turn out that no distribution of components exists that satisfies all constraints.
In that case another refinement iteration is necessary as depicted in Figure 2.

Scheduling. Once a placement of software components has been determined, a
suitable schedule is computed for each processing node. In doing so, data- and
control flow dependencies must be considered, using the technique described
in [19] to guarantee preservation of semantics on the target system. We use a
satisfiability modulo theories (SMT) solver to determine a valid schedule. The
result guarantees that starting times are always greater than finishing times
plus communication delays of all components depended on. Again, the system
distribution refinement process is initiated, if there is no feasible solution.

For implementing the computed schedules, and to preserve the synchronous
semantics of COLA, we rely on time-triggered, non-preemptive execution, which
must be supported by the employed operating system. In addition, the use of a
global time-triggered schedule facilitates the definition of system-wide operating
modes which are switched synchronously, as presented in [20].

Platform Configuration. Being a synchronous language, COLA assumes the
model to be cyclically executed at discrete points in time. To preserve the models’
semantics down to a concrete implementation, this assumption is safely approx-
imated using a time-triggered schedule for execution of software components.
To guarantee execution times calculated in the scheduling step, each component
must be processed without being interrupted. Thus the employed operating sys-
tem has to offer a non-preemptive scheduling algorithm.

We realize communication between software components, which are either
co-located or allocated to different system nodes, in a generic middleware, as

Seamless Model-Driven Development Put into Practice 27

introduced in [16]. Besides transparent communication, the middleware is re-
sponsible for storing each software component’s state between cyclic invocations.
Moreover, a global clock is provided by the middleware, enabling synchronized
execution of software components according to the calculated schedule. Finally,
the middleware features transparent hardware interaction for application tasks.
To fulfill these duties, the middleware has to be configured according to the ac-
tual allocation of software tasks onto hardware nodes. This configuration file is
generated as part of the code generation step. This defines the location of sensors
and actuators as well as a mapping of exchanged messages to logical addresses.

Model Level Debugging. The employed middleware includes an optional
logging mechanism, which allows logging of runtime data in the target system.
For each cluster the logging facility may be activated in the design model. The
middleware then retains all input and output data, as well as the internal state
of the cluster, and stores them for later review. These data can subsequently be
downloaded to a development computer and imported by our simulator for offline
inspection. This technique enables model level debugging of systems designed
with COLA, thus making classical debugging at source code level, e. g., using
screen outputs or remote debuggers, redundant. Using this option, the presented
approach closes the development circle depicted in Figure 2, allowing round-trip
engineering for successive design improvements.

3.3 Tool Integration

In order to enable seamless integration of the tools, we maintain all models
in a central repository. The models required for development are based upon
an explicit metamodel that defines the syntax of the integrated modeling lan-
guage. This metamodel enables uniform, homogeneous access to all models, and
therefore eases the definition of model transformation steps. Furthermore, the
central model repository prevents redundancy, and allows to check consistency
between models. This comes at the price that tools have to be re-implemented
from scratch to follow the desired paradigm. Thus, we also envision a framework
that eases the development of tools and provides cross-cutting functionality like
configuration management. We will report on this framework in future work.

We implemented a front-end that allows the engineer to access the models in
the repository using the concrete syntax provided by the integrated modeling
language. To this end, the front-end provides editors that present the models
in graphical, textual, or tabular notation. The implementation builds upon the
Eclipse platform, the plug-in architecture of which permits the extensibility of
the tool. We have implemented a number of plug-ins that realize different steps
in our seamless modeling process as described in the preceding section. Figure 3
gives an impression of the front-end we developed for COLA.

In addition, we realized a back-end to handle resource intensive steps like
verification. Time-consuming tasks are moved to the back-end in order to not
affect the performance and responsiveness of the engineer’s workstation (front-
end). The back-end should also be used to perform continuous analysis and

28 W. Haberl et al.

Fig. 3. Front-end of the integrated COLA engineering tool

integration of the models. This approach enables the early detection of errors,
and helps to guarantee the quality of the resulting system.

The seamless development process is operationalized by a separate process en-
gine. The process engine controls the creation of the models in that it coordinates

Seamless Model-Driven Development Put into Practice 29

the process activities carried out by different stakeholders. In combination with
the model repository, it enables the systematic, distributed development of a sys-
tem. In order to tailor it to specific requirements, the process engine is parametrized
by an explicit process model. The process model defines the activities and how
they have to be orchestrated. For each process step a distinct set of model con-
sistency constraints is defined as part of the process model. These ensure proper
transitions to subsequent activities.

4 Case Study

We realized a case study, using the concepts and tools described before, to prove
the viability of our approach. We built the model car shown in Figure 4 and
implemented an autonomous parking system based on several distance sensors
on this platform. Additionally, the system is controllable manually via Bluetooth
connection to a cell phone. Furthermore, it should initiate an emergency stop
when reaching a given minimum distance to obstacles.

Fig. 4. Model car used in the case study on a scale 1:10

The model car is equipped with three Gumstix R© micro computers connected
through an Ethernet network. The previously mentioned middleware is employed
for data exchange and clock synchronization services. Distances are measured
using two infrared and one ultrasonic sensor. Bluetooth is used as another input,
connected to the cellular phone. As actuators we have the model car’s motor and
steering, as well as indicator, reversing, and breaking lights.

We specified the desired system using the proposed architectural levels from
FA over LA to TA and were able to generate code for the specified software
components as well as the middleware configuration files. The according COLA

model consisted of 37 automata and 225 networks. These elements were then
partitioned into 11 distributable clusters. Our code generator transformed the
model into 14 C code files with a total of 6089 LOC, and the configuration file
for our middleware. After cross-compilation of the code, the system behaved
correctly without the need of any manual changes.

30 W. Haberl et al.

5 Related Work

During the last years both academic and industrial research and development
projects were engaged in model-based development for safety-critical embedded
systems. Yet, there is no fully integrated tool which covers the complete de-
velopment process. Such a process should start with requirements specification
in a formal way, proceed with the behavioral system design phase, and finally
result in an automatically deployed and configured product. After relating the
concept presented in this paper to commercial off-the-shelf products, we proceed
to comment on projects from academia.

Of course, there are tools for each of the mentioned phases. IBM’s Rational
DOORS, and Reqtify from Geensys are widely used requirement specification
and management tools. MATLAB/Simulink/Statechart from The MathWorks,
SCADE by Esterel Technologies which is based on the synchronous data-flow
language Lustre, and ASCET-SD from ETAS cover system and software design.
Finally, for target code generation, e. g., the Real-Time Workshop Embedded
Coder from The MathWorks or the KCG code generator by Esterel Technologis
are employed. The mentioned tools have varying levels of integration: those of
the same vendor are highly integrated, those from different vendors have an
integration which is often restricted to synchronization mechanisms or rely on
third party adapters like OmniLink by Omniteam. For the latter, neither an
integrated data model is used nor a 100% data compatibility is guaranteed.

The EU project DECOS [21] is similar to the presented approach in a way that
they aim also at the development of dependable embedded systems. They present
a tool-chain of more or less integrated existing tools like SCADE for behavioral
modeling as well as TTPlan and TTPbuild by the TTTech Computertechnik AG
for configuration and scheduling. Neither a central repository to store all artifacts
created during the development process nor a formalization of requirements in
the early development phase are considered.

Similar to the our work, do Nascimento et al. propose to separate specification
of platform independent (PIM) (comparable to our LA) and platform specific
(PSM) (comparable to our TA) models, however using different metamodels [22].
Currently, they solely support UML for behavioral modeling which—according
to Broy [2]—does not cater for the specific needs of the domains of embedded
systems design, e.g., in the automotive industry. The Systems Modeling Lan-
guage (SysML) [23] tries to overcome this limitation, by restricting UML to
only essential language constructs. In return, it adds for instance requirement
diagrams to efficiently capture, e. g., functional requirements. The UML2 Profile
for Modeling and Analysis of Real-Time and Embedded systems (MARTE) [24],
which is currently being standardized, enriches UML by concepts to support the
development of real-time embedded systems. It captures aspects like hardware
and software modeling as well as schedulability and performance analysis.

In [25], the authors present a layered approach to implement MATLAB/Simu-
link models via a translation to SCADE/Lustre on the distributed time-triggered
platform TTA [26]. This work completely ignores formalization and management

Seamless Model-Driven Development Put into Practice 31

of requirements, thus lacking support during early design phases and the possi-
bility of automated reasoning about the designed models.

6 Conclusion

We have outlined and implemented an integrated modeling process that makes
specification as well as implementation of embedded systems a controllable busi-
ness. The procedural manner suggested here convinces with its agility as well
as efficiency, that we believe to be beyond what can be achieved by applying
a high level of automation only. The prerequisite for doing so is a well-defined
formal integrated modeling language that covers all process steps. It empowers
the developer to implicitly derive a mathematical representation of the modeled
artifacts as a designated side effect. Several design problems can then be solved
automatically by utilizing computational support. We were already able to prove
the stated benefits, using our integrated modeling tool during the realization of
the described case study.

References

1. Schulz, S., Rozenblit, J.W., Buchenrieder, K.: Multilevel testing for design ver-

ification of embedded systems. IEEE Design & Test of Computers 19(2), 60–69

(2002)

2. Broy, M.: Automotive software and systems engineering (panel). In: MEMOCODE,

pp. 143–149 (2005)

3. Arthur, S., Breed, H.N., Schmitt-Luehmann, C.: Shifting car makeup shakes up

OEM status quo: Software strength is critical. IBM White Paper (2003),

http://www.ibm.com/services/in/igs/pdf/

g510-1692-00-shifting-car-makeup-shakes-up-oem-status-quo.pdf

(last access: 2009-07-13)

4. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu, D.: Seamless

model-based development: From isolated tools to integrated model engineering

environments. Proceedings of the IEEE 98(4), 526–545 (2010)

5. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented

domain analysis (FODA) feasibility study. Technical report, Software Engineering

Institute, Carnegie Mellon University (1990)

6. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow

programming language LUSTRE. Proceedings of the IEEE 79(9), 1305–1320 (1991)

7. Pretschner, A., Broy, M., Krüger, I.H., Stauner, T.: Software engineering for auto-

motive systems: A roadmap. In: FOSE, pp. 55–71 (2007)

8. Broy, M., Feilkas, M., Grünbauer, J., Gruler, A., Harhurin, A., Hartmann, J.,

Penzenstadler, B., Schätz, B., Wild, D.: Umfassendes Architekturmodell für das

Engineering eingebetteter Software-intensiver Systeme. Technical Report TUM-

I0816, Technische Universität München (2008)

9. Kugele, S., Tautschnig, M., Bauer, A., Schallhart, C., Merenda, S., Haberl, W.,

Kühnel, C., Müller, F., Wang, Z., Wild, D., Rittmann, S., Wechs, M.: COLA –

The component language. Technical Report TUM-I0714, Technische Universität

München (2007)

http://www.ibm.com/services/in/igs/pdf/g510-1692-00-shifting-car-makeup-shakes-up-oem-status-quo.pdf
http://www.ibm.com/services/in/igs/pdf/g510-1692-00-shifting-car-makeup-shakes-up-oem-status-quo.pdf

32 W. Haberl et al.

10. Rittmann, S.: A methodology for modeling usage behavior of multi-functional sys-

tems. PhD thesis, Technische Universität München (2008)

11. Kühnel, C., Bauer, A., Tautschnig, M.: Compatibility and reuse in component-

based systems via type and unit inference. In: SEAA, pp. 101–108 (2007)

12. Bauer, A., Leucker, M., Streit, J.: SALT—structured assertion language for tem-

poral logic. In: Liu, Z., He, J. (eds.) ICFEM 2006. Bauer, A., Leucker, M., Streit,

J, vol. 4260, pp. 757–775. Springer, Heidelberg (2006)

13. Herrmannsdoerfer, M., Haberl, W., Baumgarten, U.: Model-level simulation for

COLA. In: MISE, pp. 38–43 (2009)

14. Haberl, W., Tautschnig, M., Baumgarten, U.: From COLA Models to Dis-

tributed Embedded Systems Code. IAENG International Journal of Computer

Science 35(3), 427–437 (2008)

15. Tretmans, J., Brinksma, E.: TorX: Automated model-based testing. In: First Eu-

ropean Conference on Model-Driven Software Engineering (2003)

16. Haberl, W., Birke, J., Baumgarten, U.: A Middleware for Model-Based Embedded

Systems. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp.

253–259. Springer, Heidelberg (2008)

17. Wang, Z., Sanchez, A., Herkersdorf, A.: Scisim: a software performance estimation

framework using source code instrumentation. In: WOSP, pp. 33–42 (2008)

18. Kugele, S., Haberl, W., Tautschnig, M., Wechs, M.: Optimizing automatic deploy-

ment using non-functional requirement annotations. In: ISoLA, pp. 400–414 (2008)

19. Kugele, S., Haberl, W.: Mapping Data-Flow Dependencies onto Distributed Em-

bedded Systems. In: SERP, pp. 272–278 (2008)

20. Haberl, W., Kugele, S., Baumgarten, U.: Reliable operating modes for distributed

embedded systems. In: MOMPES, pp. 11–21 (2009)

21. Herzner, W., Schlick, R., Schlager, M., Leiner, B., Huber, B., Balogh, A., Cser-

tan, G., LeGuennec, A., LeSergent, T., Suri, N., Islam, S.: Model-based develop-

ment of distributed embedded real-time systems with the decos tool-chain. In: SAE

Aerotech (2007)

22. do Nascimento, F.A.M., Oliveira, M.F.S., Wagner, F.R.: Modes: Embedded systems

design methodology and tools based on mde. In: MOMPES, pp. 67–76 (2007)

23. Object Management Group: Systems Modeling Language (SysML). OMG docu-

ment: v1.1-08-11-01.pdf (2008)

24. Object Management Group: UML profile for modeling and analysis of real-time

and embedded systems (marte), beta 2. OMG document: ptc/08-06-07 (2008)

25. Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S., Niebert, P.: From

simulink to SCADE/lustre to TTA: a layered approach for distributed embedded

applications. In: LCTES, pp. 153–162 (2003)

26. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Ap-

plications. Kluwer, Dordrecht (1997)

Timely Time Estimates

Andreas Holzer1, Visar Januzaj2, Stefan Kugele3, and Michael Tautschnig1

1 Technische Universität Wien

AB Formal Methods in Systems Engineering

Favoritenstr. 9, 1040 Wien, Austria

{holzer,tautschnig}@forsyte.at
2 Technische Universität Darmstadt, Fachbereich Informatik,

FG Formal Methods in Systems Engineering - FORSYTE,

Hochschulstr. 10, 64289 Darmstadt, Germany

januzaj@forsyte.de
3 Technische Universität München, Institut für Informatik,

Boltzmannstr. 3, 85748 Garching bei München, Germany

kugele@in.tum.de

Abstract. Estimations of execution time are essential for design and

development of safety critical embedded real-time systems, such as avion-

ics, automotive and aerospace systems. In such systems, execution time is

part of the functional specification, hence correct behaviour requires suf-

ficiently powerful target hardware to meet deadlines or achieve required

polling rates, etc. Yet, grossly overestimated resource usage results in

excessive cost per unit. For a proper choice of the target platform, qual-

itatively good execution time estimates are required at an early stage of

the development process.

In this paper we propose a framework which provides software engi-

neers with execution time estimates of the software under development in

a demand-driven manner, i. e., the engineers ask for timing information

at program or function level with respect to different target hardware

platforms. In a platform-independent manner we extract the necessary

information from the code and combine it with platform-specific infor-

mation, resulting in the time estimate. We implemented our framework

on top of the test input generator FShell and its query language FQL.

Preliminary experiments on C code show the viability of our approach.

1 Introduction

During the last decades, embedded systems have become ubiquitous in everyday
life. They are used in consumer electronics devices as well as in highly safety-
critical areas such as medical equipment, cars, and aeroplanes. Especially in
such safety-critical systems, time plays an important and crucial role: correct
behaviour requires timely execution. In the automotive domain, for example, an
airbag system has to inflate in a given amount of time to perform its mission-
critical task successfully. In the avionics domain, during flight the wings have to
be stabilised periodically in a millisecond range, in order to avoid an undesired
build up (resonance disaster), which endangers a stable and safe flight.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 33–46, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

34 A. Holzer et al.

Development of large-scale real-time systems, as found in the automotive and
aerospace domains, is performed by a sizeable number of stakeholders. Conse-
quently, each engineer has only limited, if any, access to the target platform at
early stages of the development process. In these early phases, however, execu-
tion time information is essential—especially in the context of hardware/software
co-design—to select suitable hardware, i. e., processors, memory, and other pe-
ripherals. As the system is still expected to evolve, however, execution time of
software components can at best be an estimate. Still, it is crucial that these
estimates assumed in early development phases are as precise as possible with
regard to the complete executable system: According to [1,2], the cost for com-
plete system redesign or larger system changes due to functional errors increases
considerably at later stages of the development process. Gustafsson et al. [3] ar-
gue that it behaves similarly for errors in the time domain, if wrong assumptions
were made right at the beginning.

In this paper we present an approach that enables the software developer to ob-
tain estimates of the timing behaviour of the software under development without
direct access to the target platform. Moreover, the engineer can ask for timing esti-
mates not only for whole programs, but even at the granularity of single functions.
This is advantageous if the entire system has not yet been completed, but time es-
timates of subsystems or functions are of interest. This paper is a follow-up to our
work in progress paper [4], describing the realisation and experiments.

In our approach, we first run several commonly used benchmarks on potential
target platforms. We thereby obtain the platform specific execution time informa-
tion (hardware profile). This is the only point in time where we require access to
the target hardware. Given sufficient information from hardware manufacturers,
however, even the hardware profile could be synthesised. These profiles are stored
in a repository for later reuse. Once the platform specific information has been
assembled, time estimation is performed solely on the development workstation.
The process of obtaining time estimates is easy for the developer and comprises
the following three steps: (i) specification of the source code or function(s) to be
analysed, (ii) stating quality criteria, i. e., on which basis (statement coverage, or
path coverage, etc.) the time estimate is to be computed, and (iii) choice of the
intended execution platform. In order to obtain time estimates for the code range
specified in step (i), the source code is first translated into the LLVM [5] interme-
diate representation (bytecode program) and is then instrumented. For steps (i)
and (ii) the software engineer uses the query language FQL [6]. FQL has been
designed for software developers and ease of use, and comes with a back-end such
as FShell [7,8], which automatically generates test inputs and a test harness for
the instrumented source code. For each generated test input, the test harness in-
cluding the instrumented program is executed. During program execution instruc-
tion counts are obtained by counting the number of each instruction type of the
LLVM intermediate representation. For each instruction type, e. g., ADD, MUL, or
RET, weights have to be determined. This is done by selecting appropriate bench-
marks from the repository and computing their weights. Finally, the sum of the
weighted instruction counts yields the time estimate.

Timely Time Estimates 35

Time Es�ma�on
Framework

C Source Code

Time Es�mate

Requirements
Query

Develop

Check

Fig. 1. Software engineer using the framework

Organisation. In Section 2 we describe our framework in detail. We discuss
preliminary experiments in Section 3. We relate our approach to existing work
in Section 4 and conclude in Section 5.

2 Framework

The idea behind our approach is illustrated in Figure 1. Integrating our frame-
work in the software development process allows the software engineer to observe
the timing behaviour of the software being developed with respect to the given
(time) requirements. This means, the software engineer can query (ask ques-
tions) about the execution time of the software when run on a particular target
platform. In response to the query the framework yields a time estimate, which
can then be checked against the corresponding requirements. If the requirements
are not satisfied, the software can be improved or an alternative target platform
may be chosen, until the requirements are finally met. The software engineer can
state queries about the whole software or parts of it, such as functions, particular
paths in the code/function or even simple code chunks. This flexibility allows
the engineer to check, for instance, time estimates relative to different system
modes, as can be found in automotive/avionics systems, e. g., accelerating, taking
off, landing or braking.

Figure 2 depicts the high-level structure of our framework. Upon input of C
source code, the code unit to be analysed, e. g., a function in the given source
code, and the choice of a target platform, we automatically compute an estimate
of the execution time. To do so, we first translate the choice of the code unit into
an FQL statement. Together with a coverage specification chosen by the engi-
neer we compute test inputs and automatically build an adequate test harness.
Running the original program using this test harness will yield executions that
(a) achieve the specified code coverage and (b) are guaranteed to pass through
the specified code unit. For successive time estimation, however, we actually run
an instrumented version of the program that contains instruction counters. The

36 A. Holzer et al.

FShell

Test Execu on

Time Es ma on

Time Cost
Repository

Test Inputs and
Test Harness

Instruc on
Counter Values

Time Es mate

FQL Query

Time Cost
Informa on

Instrumented
Bytecode Program

Code
Instrumenta on

Benchmark
Selec on

Code Unit

Query Genera on

Pla orm C Source Code

Fig. 2. Time Estimation Framework

time estimator combines the valuations of these counters collected after each
execution with platform-specific instruction timing information to compute the
desired time estimate. In the following we describe each of these aspects in detail.

2.1 Code Instrumentation

We use the LLVM compiler framework [5] for code instrumentation to perform
a translation of the source code into the LLVM bytecode intermediate repre-
sentation. LLVM offers a modified version of the GNU C compiler that allows
the inclusion of platform-independent optimisations during the translation step.
This narrows the gap between high-level C code and the instructions that are
actually executed on the target platform, which supposedly improves later time
estimates. On the LLVM bytecode level we introduce instruction counters, i. e.,
variables that keep track of the number of instruction executions for each in-
struction type, e. g., ADD, MUL, JMP, or CALL. Upon execution the instrumented
bytecode yields the occurrence set, consisting of tuples (cn, in), where cn is the
instruction counter value corresponding to the n-th LLVM instruction in, e. g.,
(9, ADD) meaning that the instruction ADD is executed 9 times. In our imple-
mentation, these counters can be recorded for each function invocation, i. e.,

Timely Time Estimates 37

the number of the executed instructions for each function run can be tracked
separately.

2.2 Test Input Generation and Test Harness

Our test input generator, FShell [7,8], uses FQL [6], which we briefly describe
below, as query language: The user describes test suites using FQL, and FShell

efficiently computes adequate test inputs. These test inputs yield, upon execution
of the program on such a set of inputs, the desired code coverage. For automated
execution of the program on the computed test inputs FShell includes an au-
tomatic test harness builder. Such a test harness is effectively a wrapper, given
as C code, that executes the function under test with the computed inputs.

FQL queries describe test suites over source code in a declarative way and
have the general form cover A passing B. Therein, A is a so-called coverage
pattern and B is a path pattern. Both types of patterns build on the concept
of filter functions, which provide a means to identify parts of the source code,
e. g., the filter function @FUNC(foo) refers to the source code in function foo,
whereas ID refers to the source code as a whole. There are also filter functions
referring to code structures needed by standard coverage criteria like basic block
coverage or condition coverage: @BASICBLOCKENTRY yields all basic block entries
and @CONDITIONEDGE yields all evaluations of conditions. We can also refer to the
entry and exit of a C function f using the filter functions @ENTRY(f) and @EXIT(f),
respectively.

FQL enables the user to refer to program locations, program edges, or bounded
program paths inside of program parts identified by filter functions by the key-
words NODES, EDGES, and PATHS, respectively. A program edge is a transition be-
tween two program locations annotated with a statement. For example, the
expression EDGES(@LABEL(L)) refers to the edges in the code annotated with code
label L. The expression PATHS(ID, 2) denotes all program paths, i. e., sequences
of program edges, where no edge occurs more than twice.

Using expressions of the form NODES(T), EDGES(T), and PATHS(T, k) as alpha-
bet, we formulate regular languages whose words describe program executions,
e. g., the program executions denoted by EDGES(ID)*.EDGES(@LABEL(L)).EDGES(ID)*

pass after finitely many steps an edge annotated with code label L. Here, ‘.’ de-
notes concatenation and ‘*’ the Kleene star. Additionally, FQL contains the
operator ‘+’ representing an alternative. Since EDGES is used commonly, FQL

allows to omit it, e. g., the pattern above can be given as ID*.@LABEL(L).ID*.
Coverage and path patterns are regular languages as given in the preceding

paragraph. Every word in a coverage pattern denotes a test goal and since a
test suite has to be finite, coverage patterns do not permit the application of
the Kleene star operator. But, one can introduce path patterns as new alphabet
symbols in coverage patterns using quoting: The query

cover "ID*".@LABEL(L)."ID*"

requests for a test suite that covers all program edges annotated with code
label L preceded and succeeded by an arbitrary number of program edges. Here,

38 A. Holzer et al.

by quoting, the pattern "ID*" does not introduce an infinite number of words
but yields only one new alphabet symbol.

The semantics of a query cover A passing B requires a test suite which (i)
contains for each word in A, called test goals, at least one matching test case, and
(ii), contains only test cases which are matched by B. For example, to achieve
decision coverage with the constraint that line 17 is reached at least once we use
cover "ID*".@DECISIONEDGE."ID*" passing ID*.@LINE(17).ID*

The integration of FQL/FShell into our time estimation framework allows
the user to write queries at the level of small code chunks, such as functions or even
paths within functions, yielding corresponding test inputs which are used for time
estimation. In this way the user can inspect the timing behaviour with respect to
system modes, e. g., take off or landing in case of avionics software. The developer
may then fine-tune their software to meet the corresponding requirements.

1 int min(int a, int b, int c)

2 {
3 int m;

4 if (a <= b) {
5 if (a <= c) m = a;

6 else m = c;

7 } else {
8 if (b <= c) m = b;

9 else m = c;

10 }
11 return m;

12 }

Listing 1. Sample program

As an example consider the code in Listing 1, which returns the minimal value
of three integer variables. In case we want to obtain a time estimate for function
min, we first determine a test suite covering, e. g., all basic blocks of min. For
this purpose, we state the query
cover "ID*".(@FUNC(min) & @BASICBLOCKENTRY)."ID*"

Given this query and the source code of Listing 1, FShell computes four dif-
ferent sets of test inputs, i. e., evaluations of parameters a, b, and c, in order to
cover all basic blocks in min (cf. Table 1).

Table 1. Example test suite

Test Case a b c

1 44437522 35655690 44437522

2 0 2 −2147483645

3 1207959552 1140850690 1073741828

4 0 1073741826 4

Timely Time Estimates 39

1 int main(int argc, char∗ argv[])

2 {
3 long tc = −1;

4 if (argc != 2)

5 {
6 printf (”Expected test case id as single argument\n”);

7 return 1;

8 }
9 errno = 0;

10 tc = strtol(argv [1], NULL, 10);

11 if (errno != 0)

12 {
13 printf (”Failed to parse test case id\n”);

14 return 2;

15 }

17 switch(tc)

18 {
19 case 1:

20 min(44437522,35655690,44437522);

21 break;

22 case 2:

23 min(0,2,−2147483645);

24 break;

25 case 3:

26 min(1207959552,1140850690,1073741828);

27 break;

28 case 4:

29 min(0,1073741826,4);

30 break;

31 default:
32 printf (”No test case available for id %ld\n”, tc);

33 return 3;

34 }

36 return 0;

37 }
Listing 2. Test harness

Subsequently a test harness is derived. The result for these four test cases is
shown in Listing 2. The test harness is a main function that serves as a wrapper
which calls function min according to the selected test case. In our approach
the generated test harness is then linked to the instrumented version of function
min (cf. Section 2.1). By running the resulting executable with the different test
inputs, we obtain values for the instruction counters (cf. Table 2) and are able
to determine time estimates for every test case (cf. Section 2.5).

40 A. Holzer et al.

Table 2. Instruction counters resulting from generated test suite

LLVM Instruction TC 1 TC 2 TC 3 TC 4

Load 19 31 19 31

Br 9 20 9 20

Alloca 24 36 24 36

Store 19 26 19 26

ZExt 4 11 4 11

BitCast 4 6 4 6

ICmp 11 22 11 22

Select 3 0 3 0

Ret 1 1 1 1

2.3 Time Cost Repository and Hardware Benchmarking

The time cost repository can be filled in different ways: one way is to extract
the time cost information from data sheets [9]. This approach is practical for
timing (cycle) information of existing processors but remains problematic with
respect to the time estimation accuracy, since pipelining and cache effects are
not considered. Furthermore, the mapping between LLVM instructions and ac-
tual processor instructions requires a deeper hardware knowledge. Another way
(which we apply on our approach) is to collect the time cost information by
running benchmark programs on the target platform, cf. [9,10]. The time cost
repository stores the results of selected benchmarks, e. g., from Mälardalen [11]
and SPEC [12] benchmarks for each target platform.

More precisely, the repository holds information about the benchmarking re-
sults of each available target platform, i. e., for each target platform the time cost
of each executed benchmark is stored, e. g., for benchmarks B1 and B2 with ex-
ecution times tB1 = 15ms and tB2 = 7ms, respectively, measured on platform P
there is an entry

P : {(tB1 = 15ms), (tB2 = 7ms)}
in the repository. Furthermore, for each benchmark Bi the number and the type
of the executed LLVM instructions, the occurrence set, is stored, e. g.,

Bi : {(13, ADD), (15, MUL), . . . , (1, RET)}

2.4 Benchmark Selection

Initially, we measure for each benchmark program B the execution time tB for
a specific test input and a specific target platform. Furthermore, we determine
for B the number of executed LLVM instructions as described above. Thereby,
we get for every LLVM instruction i the number of executions ci. Since LLVM
instructions are not executed directly, but are translated into machine code dur-
ing the compilation phase this approach introduces a source of inaccuracy into
our framework.

Timely Time Estimates 41

We start with the hypothesis that the equation

c1 · w1 + . . . + cn · wn = tB

holds for weights wi. Having fixed the instruction counts ci for 1 ≤ i ≤ n, and
the execution time tB by measurements on the actual target platform, it re-
mains to determine the instruction weights wi. To constrain the solution space
for these weights we consider several benchmarks at once. Furthermore, we want
to ensure that each weight is strictly positive. In general, however, this system of
linear constraints will be infeasible: The model does not capture effects of low-
level compiler optimisations, cache effects, or sublinear execution times through
pipelining. Therefore, we accept a certain error in our equations and use the
method of steepest descent (with respect to the deviation of measured and cal-
culated execution times) to determine the weights (starting at a point where all
weights are initially equal) while ensuring the mentioned additional constraints.
Later the resulting weights are used for time estimation and thus form our time
cost repository. For each target platform we have an additional entry in the
repository with the set of instruction weights, e. g., for the instruction weights
w1 = 0.001 for ADD and w2 = 0.002 for MUL on platform P we have

P : {(0.001, ADD), (0.002, MUL)}
In our current setting, we cluster benchmarks, which yields weights with small er-
ror margins (at maximum 15 percent deviation from the actual execution time),
and select for a given source code the weights according to the matching cluster.

2.5 Time Estimation

Once the occurrence sets corresponding to the user’s query are determined, these
counter values are multiplied with the computed weight and summed up, yielding
the estimated execution time of the code unit being analysed. The weights are the
time cost information taken from the time cost repository, respectively calculated
regarding the benchmark selection, and are specific for each instruction type.

Figure 3 illustrates the time estimation process. After FShell has calculated
the test inputs and the corresponding test harness, we integrate each test input
separately into the instrumented bytecode program and execute it. Each exe-
cution yields an occurrence set Oj , 1 ≤ j ≤ m, where m is the number of all
test inputs, thus for each execution we get the instruction counter values of the
executed instructions with respect to the test input j. We multiply each counter
value ci of the occurrence set Oj with the corresponding weight wi from the time
cost information and the overall sum represents the estimated execution time of
the code unit regarding the current test input j, thus we have:

time(Oj) = Σn
i=1ci · wi.

We calculate similarly for each execution the corresponding time estimate and
select the maximal estimate, which represents the final time estimate of the code
unit under analysis.

42 A. Holzer et al.

Time Es�ma�on

Time Es�mate

Instrumented
Bytecode Program

Test Harness

Time Cost
Informa�on

Test Inputs

Occurrence Sets
(Instruc�on Counter Values)

max �me

O1 O2 O3 O4 Om

�me(O1), �me(O2), �me(O3), . . . , �me(Om)

. . .

. . .

1 2 m43

Fig. 3. Time estimation

3 Experiments

In our experiments, we obtained the hardware profile for an AVR1 and a MIPS2

platform by executing programs from the WCET benchmark suite [11], on these
systems. After measuring their execution times we instrumented these programs,
as described in Section 2, and determined the occurrence sets for the benchmarks.
Before determining the weights for the instructions (see Section 2.4), we clustered
the benchmark programs with respect to common characteristics of the source
code [9] in order to get meaningful values within each cluster. Then, for every
benchmark cluster, we derived weights. These coefficients in combination with
the clusters constitute the time cost repository for our experiments.

To check the quality of the calculated coefficients, we used further programs
and determined a time estimate for them using coefficients from their corre-
sponding clusters. The errors of the time estimates, compared to the execution
time measured on the real platforms, were below 15 percent (cf. Table 3). The
time estimates showed over- as well as underapproximation. This behaviour oc-
curred even for the same benchmark when estimating time for different target
platforms.

1 AVR32B rev. 1, AT32AP700x rev. A, 140 MHz, i-cache: 16K, d-cache: 16K.
2 CUST WSX16 (CN3860p3.X-500-EXP), Cavium Octeon V0.3.

Timely Time Estimates 43

Table 3. Time estimates for benchmarks

Benchmark Estimated Execution Time [ms] Actual Execution Time [ms] Error [%]

AVR MIPS AVR MIPS AVR MIPS

DUFF 39.6 8.9 45.0 8.0 12.0 11.3

EDN 2433.9 526.1 2550.0 460.0 4.6 14.4

4 Related Work

We compare our work to existing approaches for early resource estimation with a
focus on the two aspects of hardware modelling and execution time computation.
For an overview of a wide range of techniques for worst-case execution time
(WCET) analysis cf. [13].

Most approaches use variations of Implicit Path Enumeration (IPET) [14]
to compute execution times of a given piece of software. In IPET, a program
is described as a system of linear inequalities that describe the control flow
over the frequencies of basic blocks as variables. To compute the WCET an
objective function is added that sums up the cost of each basic block multiplied
by the frequency. Solving this linear programming problem for the maximum
(minimum) yields the worst-case (best-case) execution time. The cost of each
basic block can be determined in several ways. In its most basic variation the
execution time of a basic block is assumed to be the sum of execution times of
all contained statements [15]. Extensions of this schema to account for features
of modern architectures have been proposed in [16]. In these approaches, the
execution time of each statement is taken from hardware data sheets.

In [17] an alternative approach using measurements is proposed. The execution
time of each (assembly-level) basic block is measured over a series of inputs to
the program. Using the execution counts of each basic block as coefficients an
equation system is formed and solved. Effects of (simple) pipelines are accounted
for by adding extra variables for inter-basic-block effects. In contrast to this
approach we determine execution times for each single statement to reuse this
information for execution time estimation for yet unknown software in design
space exploration.

In the area of hardware/software co-design effective design space exploration
is well established and often based on simulation. For a discussion of problems
of performing early performance validation for software-centric systems see [18].
In [19] a simulation-based approach was proposed for early hardware evalua-
tion for embedded software-centric systems. They use simulation to estimate
execution times on various target hardware architectures.

Early architecture evaluation is generally expected to yield results quickly.
Hence, both simulation and costly WCET computation techniques are deemed
inappropriate. Therefore Timing Explorer [20], which is based on AbsInt’s aiT
WCET analyser, only uses cheap (and less precise) analysis techniques. aiT
requires detailed micro-architectural models. For early architecture evaluation
Timing Explorer allows the user to easily configure models for new processors.

44 A. Holzer et al.

For the analysis it further requires a working compiler for the target architecture
and reference code. Whereas aiT performs analysis at assembly code level, the
approach proposed in [21] works on LLVM bytecode. Together with detailed
processor models an analysis can be performed without the need for a working
target compiler.

All the above approaches not based on measurements require (precise) micro-
architectural models. Obtaining these is costly and time consuming, which ham-
pers their applicability for early evaluation. Only recently an approach was
presented which alleviates this problem the same way we do: Gustafsson et
al. [3] propose the same technique for timing model identification using bench-
marks and measurements. For estimation of execution times of single statements
they suggest to build a linear equation system to be solved with regression meth-
ods. It will be implemented in the SWEET tool (SWEdish Execution time Tool).
Whereas we use LLVM bytecode, they use ALF (ARTIST2 Language for WCET
Flow Analysis) [22] as their analysis target language. Computation of WCET
of software systems is subsequently performed using IPET, whereas we also use
instrumentation and concrete execution to also compute execution times other
than best/worst-case scenarios.

Such instrumentation-based approaches were also described in [9,23]: These
approaches use counters for an abstract instruction set, which is then translated
into machine-specific cycle-accurate information. To achieve high precision, this
requires a detailed micro-architectural information, which we can avoid using
our hardware benchmarking approach.

5 Conclusion

We have presented a framework for demand-driven time estimates. The combina-
tion of an automatic test input generation approach with a platform-independent
timing estimation approach enables the continuous availability of timing infor-
mation which can be gathered in a systematic and simple manner.

The time estimates generated by our framework cannot represent the exact
execution time of the software being analysed, but provide good estimates that
can help the developer to observe/monitor the behaviour of the software under
development. The calculation of time estimates relies on the quality and type
of the benchmarks used for platform benchmarking. In order to get the best
benchmark representatives, we perform a software characteristics check, i. e., we
choose only the benchmarking data of those benchmarks that have a similar-
ity to the software under investigation. For instance, the benchmarking data
of benchmarks performing mostly arithmetic operations is hardly suitable for
software that performs extensive memory operations. This characteristics check
increases the accuracy of the time estimates.

We have to stress here that the goal of our approach is not to replace a detailed
timing analysis, which is normally performed after the software development
process is completed. Instead we aim at providing the software engineer with a
framework which is meant to be used at an early development stage, where exact

Timely Time Estimates 45

timing analysis are impossible, time consuming and too expensive. This shall aid
to reduce time to market and possible rework cost. Our early time estimates are
indeed not as exact as the actual execution time of the software on the target
platform. They can, however, serve as a guide for the software engineer to make
reasonable design decisions and to get an idea of how the software will behave
on a specified target platform. This ensures that development is moving towards
a suitable end product.

Our preliminary experiments show the principal viability of our approach,
yet, a more rigid investigation in the context of a complex software development
process has to be carried out to assess its impact on industrial development
practice.

References

1. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs

(1981)

2. Westland, J.C.: The cost of errors in software development: evidence from industry.

Journal of Systems and Software 62(1), 1–9 (2002)

3. Gustafsson, J., Altenbernd, P., Ermedahl, A., Lisper, B.: Approximate worst-case

execution time analysis for early stage embedded systems development. In: Lee,

S., Narasimhan, P. (eds.) SEUS 2009. LNCS, vol. 5860, pp. 308–319. Springer,

Heidelberg (2009)

4. Holzer, A., Januzaj, V., Kugele, S.: Towards Resource Consumption-aware Pro-

gramming. In: ICSEA, pp. 490–493 (2009)

5. Lattner, C., Adve, V.S.: Llvm: A compilation framework for lifelong program anal-

ysis & transformation. In: CGO, pp. 75–88 (2004)

6. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you specify your

test suite? In: ASE 2010 (to appear, 2010)

7. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: Query-Driven Program Test-

ing. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp.

151–166. Springer, Heidelberg (2009)

8. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: Systematic Test Case

Generation for Dynamic Analysis and Measurement. In: Gupta, A., Malik, S. (eds.)

CAV 2008. LNCS, vol. 5123, pp. 209–213. Springer, Heidelberg (2008)

9. Giusto, P., Martin, G., Harcourt, E.: Reliable estimation of execution time of em-

bedded software. In: DATE, pp. 580–589 (2001)

10. Januzaj, V., Mauersberger, R., Biechele, F.: Performance Modelling for Avion-

ics Systems. In: Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.) Com-

puter Aided Systems Theory - EUROCAST 2009. LNCS, vol. 5717, pp. 833–840.

Springer, Heidelberg (2009)

11. Mälardalen WCET research group: WCET Benchmarks (2010),

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

12. Standard Performance Evaluation Corporation: SPEC CPU2006 (2010),

http://www.spec.org/

13. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.B.,

Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,

Puschner, P.P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-

lem - overview of methods and survey of tools. ACM Trans. Embedded Comput.

Syst. 7(3) (2008)

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.spec.org/

46 A. Holzer et al.

14. Li, Y.T.S., Malik, S.: Performance analysis of embedded software using implicit

path enumeration. In: DAC, pp. 456–461 (1995)

15. Puschner, P., Schedl, A.: Computing maximum task execution times – a graph-

based approach. Journal of Real-Time Systems 13(1), 67–91 (1997)

16. Ottosson, G., Sjödin, M.: Worst case execution time analysis for modern hardware

architectures. In: SIGPLAN, pp. 47–55 (1997)

17. Lindgren, M., Hansson, H., Thane, H.: Using measurements to derive the worst-

case execution time. In: RTCSA, pp. 15–22 (2000)

18. Smith, C.U., Woodside, M.: Performance validation at early stages of software

development. In: System Performance Evaluation: Methodologies and Applications,

pp. 383–396 (2000)

19. Mohanty, S., Prasanna, V.K., Neema, S., Davis, J.R.: Rapid design space ex-

ploration of heterogeneous embedded systems using symbolic search and multi-

granular simulation. In: LCTES-SCOPES, pp. 18–27 (2002)

20. Nenova, S., Kästner, D.: Worst-case timing estimation and architecture exploration

in early design phases. In: WCET (2009)

21. Wuerges, E., dos Santos, L.C.V., Furtado, O.J.V., Rigo, S.: An early real-time

checker for retargetable compile-time analysis. In: SBCCI (2009)

22. Gustafsson, J., Ermedahl, A., Lisper, B., Sandberg, C., Källberg, L.: Alf - a lan-

guage for wcet flow analysis. In: WCET (2009)

23. Wang, Z., Sanchez, A., Herkersdorf, A.: Scisim: a software performance estimation

framework using source code instrumentation. In: WOSP, pp. 33–42 (2008)

Compiler-Support for Robust Multi-core Computing�

Raimund Kirner, Stephan Herhut, and Sven-Bodo Scholz

Department of Computer Science, University of Hertfordshire, Hatfield, United Kingdom
{r.kirner,s.a.herhut,s.scholz}@herts.ac.uk

Abstract. Embedded computing is characterised by the limited availability of
computing resources. Further, embedded systems are often used in safety-critical
applications with real-time constraints. Thus, the software development has to
follow rigorous procedures to minimise the risk of system failures. However, be-
sides the inherent application complexities, there is also an increased technology-
based complexity due to the shift to concurrent programming of multi-core
systems. For such systems it is quite challenging to develop safe and resource-
efficient systems.

In this paper we give a plea for the need of better software development tools
to cope with this challenge. For example, we outline how compilers can help to
simplify the writing of fault-tolerant and robust software, which keeps the appli-
cation code more compact, comprehensive, and maintainable. We take a rather
extreme stand by promoting a functional programming approach. This functional
programming paradigm reduces the complexity of program analysis and thus al-
lows for more efficient and powerful techniques. We will implement an almost
transparent support for robustness within the SAC research compiler, which ac-
cepts a C-like functional program as input. Compared to conventional approaches
in the field of automatic software-controlled resilience, our functional setting will
allow for lower overhead, making the approach interesting for embedded comput-
ing as well as for high-performance computing.

1 Introduction

In embedded computing it is important to have a high utilisation of resources, as re-
sources tend to be limited. Furthermore, in safety-critical computing it is quite impor-
tant to provide fault-tolerance for the most severe sources of faults. The classical term
of fault tolerance implies that one has to built a fault model for the faults to be toler-
ated [1]. However, with increasing system complexity it has come to the point where it
is very hard to identify the severe faults on a real physical system. As a result, the way
to deal with this situation is to make systems robust, basically by enriching them with
behaviour patterns that are believed to increase the likelihood of service-sustainability
of the system [2]. Actually, robustness is a term still in the beginning of its solid def-
inition, as it needs more research for behaviour patterns of a system that increase its
robustness.

� The research leading to these results has received funding from the IST FP-7 research project
”Asynchronous and Dynamic Virtualization through performance ANalysis to support Con-
currency Engineering (ADVANCE)”.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 47–57, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

48 R. Kirner, S. Herhut, and S.-B. Scholz

Besides inclusion of robustness into the system design, it is also mandatory to fol-
low a stringent engineering approach that minimises the risk of unintended system be-
haviour. For example, in the avionics domain the de-facto standard DO-178b [3] is
used and in the automotive domain there is currently an active development of the ISO
26262 [4] standard as a guide for development of embedded software.

With the increasing concurrency within systems, it is also important to improve soft-
ware development tools so provide a sufficient level of assistance to the developer. For
example, in future embedded computing we have the challenge of providing robustness
as well as efficient use of multi-core processors.

Our approach to tackle this problem is to develop a compiler that provides support
for software-controlled robustness on multi-core architectures. There has been a lot of
research in the area of compiler support for fault-recovery, especially in the field of
high-performance computing [5,6,7]. However, there are a lot of technical issues like
the overhead of checkpointing and the complexity of recovery.

Our approach is to use the functional programming paradigm, which simplifies many
of the issues of fault-recovery, as the state of a component can always be narrowed down
to the input data of this component, which allows for an efficient fine-grained recovery
strategy. As a concrete compiler framework we use SAC (Single Assignment C), which
is a functional programming language that has a syntax quite close to ANSI C [8,9].
SAC has a special strength on array data structures that allows a compiler to automat-
ically generate concurrent code for that. Technically, SAC compiles to ANSI C code
together with library calls to manage the concurrency. Thus, SAC is also a good choice
for portability to embedded platforms, even though it has been originally developed for
high-performance computing machines.

2 Robustness in Embedded Computing

Embedded systems are often used in a safety-critical environment where the correct
behaviour of the system is of utmost importance. To achieve dependability, the classic
approach is to enrich the system with mechanisms that allow to tolerate a set of explic-
itly described faults. The prerequisite to design fault-tolerant systems is the definition of
a fault model and the intended level of tolerance. Though quite useful as a design con-
cept, fault-tolerant computing is only as good as the level of realism of the fault model
is. For example, slightly-off-specification faults can be quite subtle and it is very hard
to completely prerecognize them [10]. With this realisation, the focus in dependable
computing is currently shifting from fault-tolerance to robustness, where the basic idea
of a system to be robust is to maintain an acceptable level of service despite various un-
expected perturbations [11,2]. The origin of unexpected perturbations can be manifold,
as described by Obermaisser and Kopetz:

“Robustness comprises the provision of an acceptable level of service despite
the occurrence of transient and permanent hardware faults, design faults, im-
precise specifications, and accidental operational faults.” [12]

A robust system is expected to maintain operation but may reduce the level of service
during operation, even producing less accurate but still useful output. Robustness is a

Compiler-Support for Robust Multi-core Computing 49

system property that is inherently hard to evaluate, as it by definition deals with unex-
pected perturbations. However, there are behaviour patterns that are believed to make
a system robust. Among these patterns are resilience, adaptability, recovery, recursive
restartability, repairability, anytime computation, or degeneracy [2]. Note that these pat-
terns are not strictly orthogonal, some of them even enforce other.

resilience is the system’s ability to compensate for a temporal degradation of the pro-
vided level of service.

adaptability is the system’s ability to change its behaviour, or internal or external
structure in order to compensate for perturbations or changing requirements.

recoverability is the system’s ability to detect and remove errors by restoring a correct
state of the affected component. Recoverability avoids the accumulation of errors
within the system state.

recursive restartability is the system’s ability to restart small parts of the system in-
dependently in order to remove any erroneous state in these parts after a transient
fault. A partial restart is expected to cause less delay and service disruption than a
full restart. The “recursiveness” comes from the subdivision of a system into sub-
systems, where a restart of a (sub)system will require to also restart all its nested
subsystems.

repairability is the system’s provision of an interface and mechanisms that allow to
repair a system after a transient or permanent fault has occurred. After the repair of
a system component, the system has to be able to reintegrate the component and its
providing services into the system.

anytime computation is an approximating implementation style where the system it-
eratively refines the result. The benefit of anytime computation is that the inter-
mediate result can be used as an approximation of the final result in case that the
system gets short on computational resources [13,14].

degeneracy is the degree to which a part of the system can take over the functionality
of another part of the system. Degeneracy is different from redundancy, as redun-
dancy is meant to add extra resources for the provision of the same service, while
degeneracy focuses on the ability of changing the use of a resource by reusing it for
the provision of a different service.

In fact, above list of behaviour patterns is not meant to be exhaustive, nor does it mean
that a system has to implement all of them to be sufficiently robust, as it is always a
matter of application context to decide what level of robustness is sufficient. And of
course, it is impossible to implement an absolutely robust system that can withstand
whatever kind of perturbations will come.

3 Compiler Support for Robustness

In the following we discuss how development tools like a compiler can support the
system developer in developing robust concurrent applications.

There are certain robustness patterns that are best achieved by explicitly program-
ming them at the application level. For example, to deploy the anytime computa-
tion [13,14] patterns one has to choose appropriate algorithms that are suitable for

50 R. Kirner, S. Herhut, and S.-B. Scholz

anytime computation. Translating a program automatically into anytime computation
has not been done so far and it is also questionable whether an automatic translation
would result in efficient resource usage. Further, anytime computation is not meant to
be applied for individual instructions. Instead the whole algorithm should be trimmed to
anytime computation. Thus, anytime computation so far is not considered as a subject
for compiler support.

The adaptability pattern is also tightly linked to the concrete application semantics.
However, the adaptability behaviour is still somehow orthogonal to the logic operations
performed by the application. Thus, it would make sense to program adaptability be-
haviour in a coordination language like S-Net [15,16]. We are currently working on
adding such support for robustness into the S-Net compiler. As some first results we
derived a specialised variant of S-Net, which is resource-boundable [17]. To perform
system adaptation it is first also necessary to be able to detect the errors to react on.
However, this does not necessarily have to be a reactive process. There exists also re-
search towards automatic proactive fault detection [18,19,20].

Resilience is an emerging behaviour pattern that is driven by others. For example, re-
silience can be realised based on recovery. Given that the system state is saved on some
regular basis, whenever an error is detected a recovery can be evoked by restoring the
last saved correct system state [21,22]. Depending on the type of fault and the system
architecture, it might be sufficient to restore the state only partially, which would be
more efficient than a global state restoration [23]. However, such a selective recovery is
more complex to realise. If there is a permanent fault, a reconfiguration might be neces-
sary for proceeding the operation. Till having finished the recovery process the system’s
level of service may temporarily degrade. The placement of checkpoint code and recov-
ery code can be controlled by the compiler, as it has a relatively rich knowledge about
the program code.

Whenever there is a faulty local state detected in part of the system, resilience might
be also achieved by restarting this part of the system, thus bringing it back to a correct
initial state. In general, restarting is a more simple technique than recovery as it does
not require to regularly store the system state for recovery. However, in complex cal-
culations a recovery might be more beneficial as a restart, as the restart will cause to
loose any intermediate result having been calculated so far by this part of the system.
The compiler support for recursive system restart is similar to the second part of system
recovery, the detection of erroneous states and their removal.

The Repairability pattern makes the overall design choices to achieve robustness
explicit. Accepting that it is not always possible to avoid all faults or to mask them,
one has to provide efficient solutions to regain a correct system state. A repair action
typically consists of the following actions [2]:

1. Error detection
2. Location of the erroneous part of the system
3. Analysis to direct the repair action
4. Repair action
5. Reintegration of the service

The specific repair action can be one of the already discussed measures like restart,
rollback, etc. It is important that the runtime system provides the support for the

Compiler-Support for Robust Multi-core Computing 51

reintegration of the repaired component. This reintegration might be an issue for the
compiler is case that the reintegration is done at the level of a runtime layer that is
generated by the compiler.

Degeneracy is an import design criterion of robustness, that also offers a potential
for strong benefit from compiler support. The compiler can generate the code of a ser-
vice implementation for different platforms such that the runtime system can migrate
a service to a different hardware component. In less resource-constrained systems the
recompilation for a different hardware itself may be also performed during runtime,
adding further flexibility to this robustness pattern.

4 Robustness in a Functional Setting

As detailed in the previous section, we consider recoverability, recursive restartability
and degeneracy as the key aspects of robustness that should be tackled, at least partially,
at the compiler level. All three of these require that a thread of execution can be stopped
and its state captured. In the context of recoverability, it suffices to store the state of
the entire system or application, commonly referred to as checkpointing, such that the
system can be resumed from there later. However, the main overhead in checkpointing
in modern systems stems from storing the associated state [21]. Therefore it is beneficial
to minimise the state that is to be stored. Rich type systems as they are commonly
found in functional programming languages can be of great value in this context. By
exploiting structural information on heap objects derived from their types, the size of
the checkpoint data can easily be reduced by up to 70% [22].

Rich type information becomes even more valuable in the context of recursive
restartability. Here, a global checkpoint does not suffice, as this would only allow to
restart the entire computation. Instead, checkpoints for each sub-computation need to
be generated and stored. Reducing checkpoint size is therefore even more important.
Another key aspect in this setting, however, is to compute the containment of a sub
computation, i.e., those parts of the global state that are required to restart the compu-
tation and those that are modified by the computation. Again, functional programming
languages have key advantages here. Due to their call-by-value semantics, which ensure
that arguments to functions are immutable, and explicit modelling of side-effects, con-
tainment of function state is well defined in a functional setting. Only the arguments to
a function are required to restart its computation and the function itself does not mod-
ify any global state. Therefore, support for reversing and repeating a computation in a
compiler for functional languages is simple to implement compared to the imperative
setting [24].

Lastly, rich type information and the strict containment of function state can be ex-
ploited in the context of degeneration, as well. A key requirement to be able to tolerate
the failure of a hardware component or subsystem is the ability to migrate the pro-
gram and its state from the failed component to another component of the system. In
today’s heterogeneous systems, this migration might involve, apart from capturing the
state, a conversion of the data. In weakly typed imperative settings like C, migrating
state across platforms requires sophisticated compiler support and involves significant
runtime costs [25]. The two key challenges involved, capturing the state of a compu-
tation and analysing the data-layout, are greatly simplified in a functional setting. We

52 R. Kirner, S. Herhut, and S.-B. Scholz

Existing Approaches to Robustness Our Compiler-Based Approach to Robustness

Fig. 1. Overview of our approach to compiler based robustness versus classical approaches

have argued for the former before. The latter, data-layout analysis, is supported greatly
by the rich type annotations. It is common practise in functional languages to generate
boiler-plate code like serialisers and representation transformations automatically [26].

A general overview of our approach and the divide between programmer supported
tasks and compiler supported tasks in robust concurrent programming is given in
Figure 1. In classical approaches, as shown on the left-hand side, the full responsibility
lies with the application programmer. In the source code the arithmetic programming
is typically mixed up with concurrency programming and, if needed, also robustness
programming. We shift the responsibility for concurrency and robustness, at least in
part, to the compiler, as shown on the right-hand side of Figure 1. We see concurrency
programming ideally as an implicit activity to simplify concerns, or even separate it
by using a coordination language like S-Net for it. Robustness programming should
also be kept separate from the algorithmic programming of the application. Robustness
programming would also fit quite will into the concept of a coordination language like
S-Net. Further, we see a significant contribution of robustness programming can be done
automatically by the compiler, with optional guidance by the developer.

4.1 SAC - Data-Parallel Functional Programming

To investigate the techniques and key challenges in compiler support for robustness in
the setting of functional languages, we have chosen to use Single Assignment C [27,8]
and its compiler1 as test environment.

Single Assignment C, or SAC for short, is a first-order applicative functional pro-
gramming language designed initially with high-performance and high-productivity

1 The compiler is available for download from the project’s website at
http://www.sac-home.org

http://www.sac-home.org

Compiler-Support for Robust Multi-core Computing 53

programming in mind. It has a syntax similar to C, combined with a programming
model that resembles that of MATLAB.

The focus on high programmer productivity shows on two levels in SAC. Firstly,
SAC programs are specified using a rather high level of abstraction compared to clas-
sical high-performance languages in the imperative domain. To allow for this, we have
developed compiler technology that maps programs specified at high levels of abstrac-
tion to efficient low-level implementations on various architectures.

Secondly, those complexities of programming that do not contribute to the actual
algorithm design, i.e., memory management, concurrency and scheduling, are handled
implicitly by the compiler, as opposed to being done by the programmer like in most
other languages. This, on the one hand, simplifies program specification and reduces
the likelihood of programming errors. On the other hand, and even more importantly in
the context of compiler supported robustness, it gives the compiler full control over the
actual realisation of those aspects.

Although SAC was designed for large-scale high-performance applications, many
of its features prove beneficial in the embedded domain, as well. In large-scale high-
performance applications, efficient use of resources is of similar importance as in em-
bedded systems. For instance, the memory footprint needs to be minimised to ensure
that applications can run within existing resource bounds. Using deferred heap manage-
ment by means of garbage collection, which is predominantly used in functional pro-
gramming languages, therefore is not an option in SAC. To minimise memory usage,
frequent garbage collection phases would be required. Those, however, have a detri-
mental effect on program runtime. SAC therefore uses non-deferred heap management
via reference counting. Using reference counting, the size of the heap can be constantly
kept at a minimum without periodically disrupting program execution. Instead, refer-
ence counting operations are explicitly inserted throughout the program code, leading to
a predictable runtime cost. The latter property of reference counting, i.e., its predictable
runtime behaviour and cost, is also important in the context of real-time systems.

As mentioned before, functional programming languages in general use call-by-
value semantics, i.e., state is not shared across function boundaries but instead argu-
ments are copied. However, for performance reasons, this property is often weakened
in practise. For larger data-structures like arrays, where copying comes at a significant
runtime cost, references and mutable data-structures are used instead. This, however,
impedes static analyses and reasoning on programs. In SAC, all data-structures are im-
mutable on the language level. Thus, once defined, their value cannot change regardless
of the context they are passed into. Updating a value, at least conceptually, always pro-
duces a fresh copy. This rather rigorous setting allows us to apply advanced program
rewriting techniques. Even more importantly, it gives the SAC compiler ultimate free-
dom to place objects in memory, distribute them and schedule their computation, as
different threads of computation cannot share state but merely values. Of course, to
achieve good runtime performance, at runtime mutable objects are used. However, the
important distinction here is that these are introduced by the compiler as opposed to by
the programmer.

Finally, the last feature that is of particular importance in the context of compiler sup-
port for robustness is the implicit nature of concurrency in SAC. By design, SAC puts

54 R. Kirner, S. Herhut, and S.-B. Scholz

forward a programming model that supports the programmer in expressing algorithms
such that they naturally contain implicitly parallel operations. These are then mapped
by the SAC compiler to the concurrency resources of the target platform. The mapping
thereby can make use from large degrees of freedom, allowing the compiler to compute
a range of schedules, from fully sequential to fine-grained massively parallel execution.
Combined with the platform independent nature of SAC, this allows us to generate code
for a range of systems from standard platforms like symmetric multi-processors to very
restricted targets like GPGPUs.

4.2 Support for Robustness with SAC

Our roadmap for adding robustness support to the SAC research compiler currently lists
three major sub projects. Firstly, we will explore different fault detection techniques
like software-based replication [6] and timeout-based failure detection. For the former,
we are particularly interested to find what advantages a functional setting offers with
respect to replicated execution. Apart from the simplified separation of state, we expect
easier code generation for checking the validity of states in a coarser grained fashion.

Supplying interfaces to the underlying operating system and hardware to cater for
proactive fault detection would be an interesting addition here. However, we do not
expect an advantage from the functional setting in this case and will thus leave this as
an optional future addition.

With this concept we hope to address single-event upsets as well as permanent local
faults of hardware components. However, a thorough investigation of possible fault
sources and techniques how to detect or tolerate them is another crucial component of
this step.

Once we have the techniques in place to detect faults, a next step will be to adapt
code generation such that faults can be tolerated and program execution can recover. In
this setting, we plan to focus on adapting the scheduling of concurrent tasks in SAC to
a robust setting. As SAC features fully implicit memory management and concurrency,
we have a tight grip on the actual implementation of these by the compiler. Other than in
C, for instance, where the communication pattern and scheduling is usually hard-wired
using POSIX threads or MPI, in SAC the compiler has more freedom. If the failure
of one computation is detected, the computation can be restarted. Here, the functional
nature of SAC and the use of immutable data structures in SAC turns out to be very
beneficial. By using our existing liveness analysis for reference counting, we can easily
detect the active heap objects that take part in a computation. Furthermore, functions
and parallel operations seem to be a natural guide for the granularity of recovery. As
found previously in the context of ZPL [28], checkpoints are best placed in between
parallel sections of execution. These optimal code positions are easily identifiable in
SAC. Other than the previous work, however, in SAC we will implement recovery using
a much finer granularity. Due to the side-effect free nature of parallel computations in
SAC, we are able to restart each thread of computation and recover on the level of partial
results. For this, we borrow techniques originally developed in the setting of software
transactual memory for functional languages [29].

Lastly, we will investigate support for degeneracy in the SAC compiler. Our cur-
rent compiler already features many of the required techniques. For instance, due to

Compiler-Support for Robust Multi-core Computing 55

the high-level nature of SAC, we are able to generate code for a variety of platforms
from a single source specification. Thus, we can support truly portable migration by
using the compiler alone. As an example, consider a setup with a legacy computing
node equipped with a special purpose co-processor like a GPU. Initially, we would
emit code for the special purpose processor to maximise throughput and reduce energy
costs. However, if such processor fails, we could automatically fall back to a generic
implementation on the legacy node.

We are currently extending this approach to runtime adaptive codes [30]. The idea
here is to recompile the program at runtime to adapt to a changing environment. Our
current implementation focuses on adapting to changes in the input data, however this
could be extended to fault-tolerance scenarios, as well.

5 Discussion

One might wonder whether the functional paradigm has any potential impact in the field
of embedded computing. But, for example, with the programming language HUME
there exist already well-suited functional programming environments for the embedded
domain [31,32,33]. Furthermore, in safety-critical computing, people use code guide-
lines like MISRA [34] in the automotive domain, that provide rules that restrict conven-
tional imperative programming languages almost to functional programming patterns.
Thus, whenever it comes to safety-critical systems, the functional computing paradigm
has a realistic impact potential.

The approach presented so far just highlights the potential for software-controlled
robustness. However, we have already identified some special benefits of deploying a
functional setting for software-controlled robustness. Exploiting the rich static knowl-
edge about resource usage and the structure of a system’s state, combined with the side-
effect free nature of computation in the functional setting, has the potential to find more
simple and efficient solutions as have been developed so far for conventional imperative
programming paradigms.

We think that increased tool support for software-controlled robustness and multi-
core deployment will become essential for the development of future embedded appli-
cations in the avionic and automotive domain. With the current rather inflexible devel-
opment approaches it will become increasingly challenging to maintain efficiency and
robust behaviour for future development platforms.

References

1. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of de-
pendable and secure computing. IEEE Transactions on Dependable and Secure Comput-
ing 1(1), 11–33 (2004)

2. Mikolasek, V.: Dependability and robustness: State of the art and challenges. In: Proc. Work-
shop on Software Technologies for Future Dependable Distributed Systems, Tokyo, Japan
(March 2009)

3. RTCA: Software considerations in airborne systems and equipment certification. RTCA/DO-
178B (1992)

56 R. Kirner, S. Herhut, and S.-B. Scholz

4. ISO/DIS: Road vehicles – functional safety. ISO/DIS standard 26262
5. Treaster, M.: A survey of fault-tolerance and fault-recovery techniques in parallel systems.

ACM Computing Research Repository (CoRR) abs/cs/0501002 (2005)
6. Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I.: SWIFT: Software im-

plemented fault tolerance. In: Proc. 3rd International Symposium on Code Generation and
Optimization (CGO) (March 2005)

7. Chang, J., Reis, G.A., August, D.I.: Automatic instruction-level software-only recovery.
IEEE Micro 27(1), 36–47 (2007)

8. Grelck, C., Scholz, S.B.: SAC: A functional array language for efficient multithreaded exe-
cution. International Journal of Parallel Programming 34(4), 383–427 (2006)

9. Grelck, C.: Shared memory multiprocessor support for functional array processing in SAC.
Journal of Functional Programming 15(3), 353–401 (2005)

10. Ademaj, A.: Slightly-off-specification failures in the time-triggered architecture. In: Proc. 7th
IEEE International Workshop on High Level Design Validation and Test, Cannes, France, pp.
7–12 (October 2002)

11. Mikolasek, V.: Robustness in complex systems - state of the art report. Research Report
26/2008, Technische Universität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-
1, 1040 Vienna, Austria (2008)

12. Obermaisser, R., Kopetz, H.: From ARTEMIS requirements to a cross-domain embedded
system architecture. In: Proc. Embedded Real Time Software and Systems, Toulouse, France
(May 2010)

13. Horvitz, E.J.: Reasoning about beliefs and actions under computation resource constraints.
In: Proc. Workshop on Uncertainty in Artificial Intelligence, Seattle, Washington (1987)

14. Boddy, M., Dean, T.: Solving time-dependent planning problems. In: Proc. 11th International
Joint Conference on Artificial Intelligence (August 1989)

15. Grelck, C., Scholz, S.B., Shafarenko, A.: A Gentle Introduction to S-Net: Typed Stream
Processing and Declarative Coordination of Asynchronous Components. Parallel Processing
Letters 18(2), 221–237 (2008)

16. Shafarenko, A., Scholz, S.B., Grelck, C.: Streaming networks for coordinating data-parallel
programs. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 451–455.
Springer, Heidelberg (2007)

17. Kirner, R., Scholz, S.B., Penczek, F., Shafarenko, A.: PS-NET - a predictable typed coordina-
tion language for stream processing in resource-constrained environments. In: Proc. 1st Int’l
Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking
(submitted, November 2010)

18. Vallee, G., Engelmann, C., Tikotekar, A., Naughton, T., Charoenpornwattana, K., Leangsuk-
sun, C., Scott, S.L.: A framework for proactive fault tolerance. In: Proc. 3rd Int’l Converence
of Availability, Reliability and Security, Barcelona, Spain, pp. 659–664 (May 2008)

19. Lee, C., Lee, D., Koo, J., Chung, J.: Proactive fault detection schema for enterprise informa-
tion system using statistical process control. In: Proc. Conference on Symposium on Human
Interface 2009, pp. 113–122. Springer, Heidelberg (2009)

20. Wang, C., Mueller, F., Engelmann, C., Scott, S.L.: Proactive process-level live migration in
hpc environments. In: Proc. ACM/IEEE conference on Supercomputing (SC 2008), Piscat-
away, NJ, USA. IEEE Press, Los Alamitos (2008)

21. Elnozahy, E.N.M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-recovery
protocols in message-passing systems. ACM Compututing Surveys 34(3), 375–408 (2002)

22. Choi, S.E., Deitz, S.J.: Compiler support for automatic checkpointing. In: Proc. 16th An-
nual International Symposium on High Performance Computing Systems and Applications,
Washington, DC, USA, p. 213. IEEE Computer Society, Los Alamitos (2002)

Compiler-Support for Robust Multi-core Computing 57

23. Dinan, J., Singri, A., Sadayappan, P., Krishnamoorthy, S.: Selective recovery from failures
in a task parallel programming model. In: Proc. IEEE International Symposium on Cluster
Computing and the Grid, pp. 709–714. IEEE Computer Society, Los Alamitos (2010)

24. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory transactions. In:
Proc. 10th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 48–60. ACM, New York (2005)

25. Ramkumar, B., Strumpen, V.: Portable checkpointing for heterogeneous archtitectures. In:
Proc. 27th International Symposium on Fault-Tolerant Computing (FTCS 1997), Washing-
ton, DC, USA, p. 58. IEEE Computer Society, Los Alamitos (1997)

26. Hinze, R.: A new approach to generic functional programming. In: Proc. 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 119–132.
ACM Press, New York (2000)

27. Scholz, S.B.: Single Assignment C — efficient support for high-level array operations in a
functional setting. Journal of Functional Programming 13(6), 1005–1059 (2003)

28. Choi, S.E., Deitz, S.J.: Compiler support for automatic checkpointing. In: HPCS 2002: Pro-
ceedings of the 16th Annual International Symposium on High Performance Computing Sys-
tems and Applications, Washington, DC, USA, p. 213. IEEE Computer Society, Los Alami-
tos (2002)

29. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory transactions. In:
PPoPP 2005: Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pp. 48–60. ACM, New York (2005)

30. Grelck, C., van Deurzen, T., Herhut, S., Scholz, S.B.: An Adaptive Compilation Framework
for Generic Data-Parallel Array Programming. In: 15th Workshop on Compilers for Parallel
Computing (CPC 2010), Vienna University of Technology, Vienna, Austria (2010)

31. Patai, G., Hanák, P.: Embedded functional programming in Hume. In: IASTED on Software
Engineering, Innsbruck, Austria, pp. 328–333. ACTA Press (2007)

32. Hammond, K., Michaelson, G.: The design of Hume: A high-level language for the real-
time embedded systems domain. In: Lengauer, C., Batory, D., Consel, C., Odersky, M. (eds.)
Domain-Specific Program Generation. LNCS, vol. 3016, pp. 127–142. Springer, Heidelberg
(2004)

33. Hammond, K., Michaelson, G.: Hume: A domain-specific language for real-time embedded
systems. In: Pfenning, F., Smaragdakis, Y. (eds.) GPCE 2003. LNCS, vol. 2830, pp. 37–56.
Springer, Heidelberg (2003)

34. MISRA, T.M.I.S.R.A.: MISRA-C 2004: Guidelines for the Use of the C Language in Critical
Systems. MISRA (October 2004), ISBN: 0-9524156-4-X (pdf version)

Thematic Track:
Formal Languages and Methods for Designing
and Verifying Complex Embedded Systems

Yamine Ait Ameur1, Frédéric Boniol2,
Dominique Mery3, and Virginie Wiels2

1LISI/ENSMA, Poitiers France

amine@ensma.fr
2ONERA/DTIM, University of Toulouse, France

firstname.name@onera.fr
3LORIA, University of Nancy, France

mery@loria.fr

Nowadays, it is well accepted that the develop- ment of critical systems in-
volves the use of formal methods. One of the major fields where these methods
made a lot of progress are the avionics, aerospace, transport areas, telecom, etc.
These systems are responsible for various functions, such as navigation, guid-
ance, stability, power management, board/ground communications, passenger
entertainment. . . . Moreover, their complexity is continuously growing.

Due to safety constraints, these systems often have to go through certifica-
tion. This requires testing, and a design process based on a set of tight rules.
However, due to the increasing complexity of described systems, there is clearly
no guarantee that such tight rules and rigorous testing will lead to error free sys-
tems. An alternative approach for helping system designers is formal methods,
i.e. fundamental languages, techniques and tools for design, analysis, validation
or transformation of systems in a provably correct way.

Indeed, formal techniques, in particular formal specification languages and
associated proof tools, could be an advantageous alternative or at least a good
complement which would facilitate a significant reduction in test phases. Sev-
eral formal languages methods, tools and techniques have been applied for the
development of such systems in different parts of the world and they have been
put into practice during the development of actual, specific programs (aircraft,
space vehicle. . .).

This thematic track is devoted to compile the state-of-the-art in formal meth-
ods applied to the development of embedded systems. It will highlight on the
recent advances in the use of these methods.

The four papers of the “Formal Languages and Methods for Designing and
Verifying complex Engineering Systems” track are representative of the ISOLA
ambition.

Two papers concern application of formal methods in security. “Analyzing the
security in the GSM radio network using attack jungles” proposes the concept
of attack jungles to formalize vulnerabilities of systems and a method to analyze

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 58–59, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Formal Languages and Methods Track 59

security attacks. “Formal modeling and verification of sensor network encryp-
tion protocol in the OTS/CafeOBJ method” describes the formal verification of
security properties of an encryption protocol using an algebraic framework.

Two papers provide necessary ingredients for applications to be possible: tools
and leveraging techniques. “Model-Driven Design-Space Exploration for Embed-
ded Systems: The Octopus Toolset” presents a toolset that facilitates reuse of
models and combination of different analyzes for design space exploration of em-
bedded systems. “Contract-based slicing” proposes a technique for slicing pro-
grams using contract-based annotations included in these programs.

Analyzing the Security in the GSM Radio
Network Using Attack Jungles

Parosh Aziz Abdulla1, Jonathan Cederberg1, and Lisa Kaati2,�

1 University of Uppsala, Sweden

{parosh,jonathan.cederberg}@it.uu.se
2 FOI Swedish Defence Research Agency, Sweden

lisa.kaati@foi.se

Abstract. In this paper we introduce the concept of attack jungles,

which is a formalism for systematic representation of the vulnerabilities

of systems. An attack jungle is a graph representation of all ways in

which an attacker successfully can achieve his goal. Attack jungles are

an extension of attack trees [13] that allows multiple roots, cycles and

reusability of resources. We have implemented a prototype tool for con-

structing and analyzing attack jungles. The tool was used to analyze the

security of the GSM (radio) access network.

1 Introduction

Analyzing the security of complex systems is a difficult but important task. In
industrial projects, security analysis is usually performed by a team of experts
that create a model of the system and then analyze the security manually. The
drawback of this approach is that, for complex systems, the model grows to a
size that no longer permits manual analysis, thus creating a need for tools that
partially automate the process.

In collaboration with a team of security experts at Ericsson Research the
security of the GSM radio network was analyzed. To do this, we used a formalism
called attack trees where the vulnerability of a system is modeled by finding all
possible attacks towards a system. Attack trees were first introduced by Bruce
Schneier [13] and later formalized by Mauw and Oostdijk in [11]. An attack tree
is an acyclic graph with one root node. The root node represents the global goal
and the tree itself encodes all attacks that are possible on the system. There
are two types of nodes in an attack tree, and-nodes and or-nodes. Satisfying a
node means either satisfying all predecessor nodes (and-node) or satisfying one
predecessor node (or-node).

When using the formalism described in [11], we encountered problems regard-
ing both the modeling and the analysis of attacks. One problem that occurred
when modeling the attacks was the appearance of cycles. A problem that oc-
curred when analyzing attacks was the fact that some nodes could, once they
hade been accomplished, be re-used over and over again.
� This work was supported by a grant from The Swedish Governmental Agency for

Innovation Systems.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 60–74, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Analyzing the Security in the GSM Radio Network 61

To overcome these problems we have extended the notion of attack trees to
attack jungles. There are three aspects that distinguish attack jungles from attack
trees. First of all, an attack jungle may have several root nodes (an attack tree
only has one root), where each root is a global goal of an attacker. Secondly, we
introduce the possibility to use nodes that are reusable. A reusable node reflects
the fact that the knowledge gained from a node can be used in several attacks.
An example of reusability is obtaining a secret cryptographic key. If an attacker
obtains a secret key, all messages encrypted using the key can also be decrypted
by the attacker. Reusability is an important property since some resources only
need to be exploited once but can affect several of the identified threats. Finally,
we allow an attack jungle to contain cycles. Cycles are useful when modeling
attacks that depend on each other. One example is if you have an address you
can easily find the name of the person living at the address and vice versa.

Once the attack jungle is created, it can be analyzed to gain information about
the security of the system. The analysis is done using an algorithm that relies
on the principle of backward reachability analysis.

The analysis of an an attack jungle can answer a number of different questions
about the attack jungle, such as “Is any attack possible?”, “What is the minimum
cost of performing an attack?” and “What is the minimum required skill level
for an attack?”

The formal representation of an attack jungle enables tools to both identify
and analyze possible threats to a specific system. Good tool support is required
since attack jungles can become large and complex (a full attack jungle may
contain thousands of different paths all leading to completion of the attack).

We have implemented a prototype tool that can be used to model and analyze
attack jungles. The tool was used in a study conducted to analyze the security
of the GSM radio access network where attacks towards the network were both
modeled and analyzed. For attacks that had a high risk of occurring, counter-
measures were designed and the tool was used to evaluate the impact/benefit of
implementing the different countermeasures.

1.1 Related Work

Attack trees was introduced by Schneier [13] and later formalized by Mauw and
Oostdijk in [11] where the authors provide a framework for attack trees including
algorithms to analyze the attack trees.

Defence trees [5] are an extension of attack trees with attack countermea-
sures. In a defence tree each leaf is decorated with a set of countermeasures.
Each countermeasure represents a possible risk relaxation when the specific vul-
nerability is used. In [4] defence trees are used to represent attack scenarios and
game theory to analyze the possible strategies of the attacker and the defender
(or system administrator). In [6] defence trees that are enriched with conditional
preferences are introduced. These structure called are called CP-defence trees.

Attack trees are not only used to analyze the security of existing computer
systems. A similar formalism called obstacle trees [9] are used when caring
for security at requirements engineering time. Obstacle trees are a part of a

62 P. Aziz Abdulla, J. Cederberg, and L. Kaati

goal-oriented framework, where anti-goals that threatens the security of the sys-
tem are setup by an attacker [15]. Another way to use attack trees are described
in [7] were they are used as a tool by intelligence analysts and decision-makers
in their work.

Another approach to analyze the security of a system is to use a formalism
with a similar name called attack graphs [14] [12]. Attack graphs are automati-
cally generated from a model of the system and the attacks towards the system
are found automatically using model checking techniques.This approach is com-
pletely different from ours since the attacks themselves are not modeled, instead
the system is modeled and then the attacks are found automatically.

There are some commercial tools that use attack trees. One is AttackTree+
by isograph [3] and another is SecurITree by Amenaza Technologies [10]. These
tools do not allow the attack tree to contain cycles and the concept of reusability
of resources can not be modeled.

1.2 Outline

In the next section we introduce the concept of an attack jungle. Section 3
presents an algorithm used for analyzing an attack jungle based on backward
reachability analysis. Section 4 describes how to use the result of the analysis to
automatically derive certain attributes of the modeled system. Section 5 contains
a case study of the security in the GSM network, we give a short description of
the different components in the GSM network and describe some of the threats
towards the GSM radio access network that was identified. Finally, in section 6
we give some concluding remarks and some directions for future work.

2 The Attack Jungle Formalism

In this section we give some preliminaries of Attack Jungles. The presentation
follows that of [11] in many respects, but we have reformulated some concepts
to fit our more general formalism.

For a set A, we use M(A) to denote the set of multisets over A. For a multiset
m ∈ M(A), we write m(a) to denote the number of occurrences of a in m.
Sometimes, we write multisets as lists, so [a, a, b] denotes the multiset with two
occurrences of a and one of b (i.e. m(a) = 2 and m(b) = 1). For a multiset m and
an element a, we write a ∈ m to denote that m(a) > 0. For multisets m1 and m2,
we let m1 +m2 be the multiset such that (m1 +m2)(a) = m1(a)+m2(a), and we
let m1 − m2 be the multiset such that (m1 − m2)(a) = max(0, m1(a) − m2(a)).
For multisets m1 and m2, we use m1 ≤ m2 to denote that m1(a) ≤ m2(a) for
all a. We define |m| :=

∑
a∈m m(a) i.e., |m| is the sum of the multiplicities of all

elements in m.
We show a typical example of an attack jungle in Figure 1. An attack jungle

is a graph with two types of nodes: and-nodes and or-nodes. An attack jungle
encodes in a hierarchical manner a set of attacks on a specific target. More
formally, an attack jungle is a multigraph J = (V, E, A), where

Analyzing the Security in the GSM Radio Network 63

– V is a set of nodes, each describing an attack goal.
– E ∈ M(V × V) is a multiset of edges
– A ⊆ V is a unary relation on the nodes, describing which nodes are and-

nodes. The complement V \ A a set of all or-nodes.

Note that some of the nodes in the attack jungle have no incoming edges. These
nodes are called attack components and are the lowest level of abstraction that
the model provides. The set of attack components is denoted by C.

We illustrate how to interpret an attack jungle using the example of Figure 1.
Consider the attack jungle in Figure 1. Each node in the graph describes an
attack goal. Most such goals are not what we intuitively would think of as the
goal of an attack, but rather some component (intermediate step) of an attack.
For example, “get address” is not really an attack in itself, but a necessary
component of an attack where something is to be sent to the victim. To realize
the attack goal “buy bomb”, the attacker has to “find seller” and “pay seller”.
The attack goal “find seller”, in turn, can be accomplished either by a “search on
Internet” or “ask friends”. When realizing “buy bomb” we have to accomplish all
attack goals below, but for “find seller” any one will suffice. This is because the
former node is an and-node, whereas the latter is an or-node. This is illustrated
in Figure 1 by the existence of a small arc between the incoming arrows of “buy
bomb”, whereas there is no such arc for “find seller”.

Note that in the definition of the attack jungle, the set of edges is a multiset
rather than an ordinary set, making the graph a multigraph rather than a stan-
dard graph. The reason for this is to capture situations where one needs multiple
instances of a resource to accomplish a goal.

With this interpretation of an attack jungle, a question arises: Given an attack
goal v, how does one identify all multisets of attack components from which we
can accomplish v? To answer this question, we first need to make precise the
notion of accomplishing an attack goal.

For an attack jungle (V, E, A), a state is a multiset s ∈ M(V). Being in a
specific state, means that all the attack goals corresponding to the nodes in the
state are accomplished. To formalize the notion of accomplishing an attack goal,

buy bomb

send mailbomb

get a bomb

get nameget address

dumpster diving

name and address

send horse head

shadow vicitm
R R

pay seller get recipefind seller

make own bomb

buy ingrediens

ask friends search on Internet

buy horse head

Fig. 1. An Attack Jungle

64 P. Aziz Abdulla, J. Cederberg, and L. Kaati

we define a transition relation on states that describes how a specific attack
goal can be accomplished from other attack goals. We first define a relation Γ ⊆
M(V)×V describing how we can accomplish a specific attack goal from its direct
predecessors in the attack jungle. As described above, we need only accomplish
one of the direct predecessors of an or-node, whereas all direct predecessors of
an and-node have to be accomplished. More formally,

Γ (m, v) iff
{

v ∈ A and m(u) = E((u, v)) for all u ∈ V
v �∈ A, m = [u] for some u ∈ V, and (u, v) ∈ E

We are now ready to define a transition relation −→ on states. For states s, s′,
we have that s −→ s′ iff there is a multiset m ≤ s such that Γ (m, v) and
s′ = (s − m) + [v].

The meaning of the transition relation is illustrated by the following example.
If the attack jungle in question is the one depicted in Figure 1, we can make a
transition from the state [“name and address”, “make own bomb”] to the state
[“name and address”, “get a bomb”], and then to the state [“send mailbomb”].

Given this formalism, we can see that the problem of identifying sets of attack
components from which we can accomplish a goal node g ∈ V reduces to the
problem of determining reachability in the above transition system. Formally,
this amounts to finding the set A ⊆ M(C) such that for each a ∈ A, a

∗−→ G
where G ≥ [g], i.e., the set of initial states in the transition system is M(C),
and the set of final states is {G ∈ M(C) : G ≥ [g]} In the next section, we will
show how to solve this problem.

3 Algorithm

To solve the problem described in the previous section, we will employ the tech-
nique of Symbolic Backwards Reachability. We first identify an interesting prop-
erty of the transition system: its monotonicity.

A monotonic transition system has the property that for states s1, s2, s3, such
that s1 −→ s3 and s1 ≤ s2, there is a state s4, such that s2 −→ s4 and s3 ≤ s4.
The monotonicity of our transition system follows directly from its definition.

Monotonicity allows for efficient representation of sets of states through the
concept of upward-closed sets of states, using the minimal element of such sets
as representative. The upward closed set represented by a state s is the set
{s′|s ≤ s′}. For a monotonic transition system, upward-closedness is preserved
by the transition relation. For more details on monotonic transition systems and
their properties, see [2].

The idea behind backward reachability analysis is to start with the final state
we want to reach, and then successively compute all states from which this target
is reachable. If we reach an initial state during this analysis, we know that the
target is reachable from the set of initial states.

Analyzing the Security in the GSM Radio Network 65

Algorithm 1. Algorithm for analyzing an attack jungle

Find-All-Attacks(J, t)

1 visited ← ∅
2 working ← {t}
3 while working �= ∅
4 do choose v ∈ working

5 for each w ∈ Pre−→(v)

6 do if ∀u ∈ (visited ∪ working) : u �≤ w
7 then working ← working ∪ {w}
8 visited ← visited ∪ {v}
9 working ← working − {v}

10 return visited ∩ M(C)

The algorithm takes as input an attack jungle J and a target state t, and
returns the set of minimal initial states from which t is reachable. Typically t
would be of the form [v], where v is a sink (i.e. have no outgoing edges), or
a node close to a sink. Returning to our example in Figure 1, a typical target
would be [“send horse head”]. Taking t to include more than one element allows
for analysis of simultaneous goals.

Termination. Since the relation ≤ on multisets is a well quasi-order, our algo-
rithm is guaranteed to terminate [2]. Note that the termination is independent
of the structure of the attack jungle. In particular, the existence of cycles in the
attack jungle is permitted.

4 Analyzing an Attack Jungle

When we have computed all possible states from which the target is reachable,
we can use the framework of [11] to compute certain attributes of the system.
The general idea is that we can assign attributes such as cost or difficulty to
the attack components, and then automatically compute the cost or difficulty
of the attack goal. This is formalized through the use of an attribute domain.
Intuitively, an attribute domain describes the way in which values are assigned
to states, and how to determine which among a set of such values that should
be assigned to the final attack goal.

To faithfully model certain attacks, we need to extend the framework of [11].
The reason is that we believe that the concept of reusability is crucial to faithfully
model certain attacks. Reusability is a property of an attack component, with the
meaning that once used, it can be used multiple times at no extra cost. For ex-
ample, we can think of some information that once acquired, can be taken into
account multiple times without being destroyed. This is the case in the attack jun-
gle in Figure 1, where the two attack components “shadow victim” and “dump-
ster diving” are annotated with a capital R, signifying that they are reusable. In

66 P. Aziz Abdulla, J. Cederberg, and L. Kaati

particular, the reusability of “shadow victim” means that we can accomplish both
“get address” and “get name” by shadowing the victim only once. Not having
reusability can lead to problems in the analysis of the result of an attack jungle,
since it can cause the analysis to overestimate the cost of attacks.

We now give some preliminaries of how to compute attributes, closely follow-
ing the presentation of [11]. An attribute α : C → D is a function which given a
set D of attribute values, assigns a value to each attack component. To assign a
value not only to individual attack components, but also to states, two functions
called the disjunctive and conjunctive combinator are used. The idea is that for
each state, we use the conjunctive combinator to combine the attribute values of
the attack components. This way, we get an attribute value for each state. We
then use the disjunctive combinator to combine the attribute values of the states
into one attribute value for the whole attack jungle. For example, if the question
we seek to answer is “What is the minimum cost of performing an attack?”, a
reasonable choice for attribute domain would be N. The attribute α would as-
sign to each attack component a value reflecting the cost of accomplishing that
attack component. We would use summation to combine the values for a state,
as we need to accomplish all components, paying for each attack component
individually. Finally, since we ask for the minimal cost, we would the minimum
function to combine the values of all attacks into one value.

We now state this formally. The following definition is taken from [11]:
Let C be a set of attack components. An attribute domain is a structure (D, �,)
where D is the set of attribute values, � : D × D → D is the disjunctive combi-
nator for attribute values and 	 : D × D → D is the conjunctive combinator for
attribute values. We require that the combinators are associative and commu-
tative, and that 	 distributes over �. The associativity and commutativity of
the combinators make natural forward to generalize them to multisets.

To handle the concept of reusability, we introduce the reducing function, ρ :
M(C) → M(C). Intuitively, ρ(m) is a multiset identical to m except that for all
reusable attack components, all duplicates have been discarded. More formally,
for each r ∈ m such that r is reusable, ρ(m)(r) = 1 if m(r) > 0 and ρ(m)(r) = 0
if m(r) = 0. Note that we allow for ρ to depend on the particular attribute that
we are considering. This allows an attack component to be reusable with respect
to one attribute, but some other another attribute.

We can now define the answer to a question about the attack jungle in the
following way. Assume an attribute domain (D, �,), an attack jungle J and a

Table 1. Examples of attribute domains and corresponding questions

Attribute Domain Question

({F, T},∨,∧) Is any attack possible?

({F, T},∧,∨) Is [some property] needed for all attacks?

(N,min, max) What is the minimum required skill level for an attack?

(N,min, +) What is the minimum cost of performing an attack?

Analyzing the Security in the GSM Radio Network 67

buy bomb

send mailbomb

get a bomb

get nameget address

dumpster diving

name and address

send horse head

shadow vicitm
R R

pay seller get recipefind seller

make own bomb

buy ingrediens

ask friends search on Internet

buy horse head

$10000

$0 $0

$900

$5

$500

$1

Fig. 2. An attack jungle with attributes

target state t. Let Ω be the set of all minimal states from which we can reach
the state t, i.e. the output of our algorithm. Also assume a reducing function ρ.
Under these conditions, the answer to the question represented by the attribute
domain is

�s∈Ω 	c∈ρ(s) α(c)

Table 1 shows some examples of attribute domains and corresponding questions.
We conclude this section by applying our analysis to the attack jungle in

Figure 2.
In Table 2, we give possible attributes to the attack components of the attack

jungle. We also provide labels for the attack components to enable compact
representation of states. The question we are trying to answer in this example
is “What is the minimum cost of performing an attack?”, and thus we have
(N, min, +) as our attribute domain. In Table 3, we give the result of the analysis
for two different target states.

This example illustrates why reusability can be needed to model attacks.
As can be seen from Table 3, the resulting number would be too large if we
simply applied our combinator functions to the minimal initial states. This is

Table 2. Labels and costs for the attack components

Name of attack component label cost (α)

Pay seller a $10000

Ask friends b $0

Search on Internet c $0

Buy ingredients d $900

Shadow victim e $5

Dumpster diving f $1

Buy horses head g $500

68 P. Aziz Abdulla, J. Cederberg, and L. Kaati

Table 3. Initial states and costs for the possible threats

Name of attack goal possible initial states reduced initial states cost

Send mailbomb [a, b, c, d, e, e] [a, b, c, d, e] $10905

[a, b, c, d, e, f] [a, b, c, d, e, f] $10906

[a, b, c, d, f, f] [a, b, c, d, f] $10901

[a, c, c, d, e, e] [a, c, c, d, e] $10905

[a, c, c, d, e, f] [a, c, c, d, e, f] $10906

[a, c, c, d, f, f] [a ,c, c, d, f] $10901

Minimum cost: $10901

Send horse’s head [e, e, g] [e, g] $505

[e, f, g] [e, f, g] $506

[f, f, g] [f, g] $501

Minimum cost: $501

very problematic since we are trying to find the minimum cost, and therefore
have to be very conservative in our estimations.

5 Case Study: The GSM Network

This section gives a brief description on how attack jungles were used for ana-
lyzing the security of the GSM network with focus on the radio access network,
called GERAN.

First we give a short description of the GSM system. For a more detailed
description of the GSM system see [16,8].

5.1 The GSM System

Global System for Mobile communications (GSM) is the most common standard
for mobile phones in the world. This study focus on the parts of the GSM system
that provides basic connectivity and hence leaves parts of the network related
to higher layer services out. The GSM system can be grouped into three main
parts: the user equipment, the radio access network, and the core network.

User equipment. The user equipment (UE) is the part of the GSM network
that a user operates. It consists of a smart card used in the subscriber authen-
tication process and the device used to access the network. The device could be
a mobile phone or some other equipment with at GSM modem.

The Radio Access Network (GERAN). The radio access network is the
part of the GSM network that provides radio connectivity for the UE to the GSM
network. It consists of two elements, the Base Transceiver Station (BTS) and
the Base Station Controller (BSC). The BTS consists of the radio transmitter
receivers, and their associated antennas that communicate directly with the user
equipment and is the node that is sometimes referred to as a base station. The
BTS provides encryption of the traffic to and from the UE. The BSC controls
a group of BTSs. It manages the radio resources and controls items such as
allocation of channels and handover within the group of BTSs.

Analyzing the Security in the GSM Radio Network 69

The core network. The core network contains a variety of different elements.
It provides the main control and interfacing for the whole mobile network. There
are two types of accesses, one circuit switched and one packet switched. On a very
high level, the difference between circuit switched access and packet switched
access is that in the case of circuit switched, a channel is allocated between the
two communicating parties when the connection is set-up, and the capacity of
the channel cannot be used for other purposes as long as the connection is up. In
the case of packet switched, the data transmitted between two communicating
parties is packetized and the connection only uses as much capacity as there is
data to be transmitted. This gives a more effective utilization of the network
resources. The packet switched service was added to the GSM system at a later
stage, and introduced two new nodes in the architecture.

The main element of the circuit switched part of the core network is the Mobile
switching Services Center (MSC). The MSC provides functionality to enable
the requirements of a mobile user to be supported. These include registration,
authentication, call location, and call routing to a mobile subscriber. To enable
the MSC to perform its functions it requires data from a number of databases.
One is the Visited Location Registry (VLR) that contains information about
the identities of the UEs that are currently in the area that is served by this
network. To make access faster and more convenient, the VLR is (commonly)
integrated in the MSC. Another database is the Home Location Register (HLR).
It contains administrative information about each subscriber together with their
last known location.

The packet switched part of the core network mainly adds two new nodes
compared to the circuit switched part; it contains one node called the Serving
GPRS Support Node (SGSN). If the UE is attached to the packet switched
domain, it is the SGSN that handles the authentication of the user equipment

BTS

BTS

BTS BSC

MSC
VLR

MSC
VLR

SGSN

IPX

INTERNET

HLR

GGSN

UE

UE

UE

BSC

Fig. 3. The architecture of the GSM system

70 P. Aziz Abdulla, J. Cederberg, and L. Kaati

by using information from the HLR database. It is also the SGSN that performs
encryption of the data to and from the UE in the packet switched domain.
Typically the SGSN is located in a trusted, physically protected place. This gives
a higher security compared to the circuit switched case where the encryption is
terminated in the BTS, which can be located in physically insecure places (and
the links from the BTS to the core network do not have a standardized protection
mechanism; sometimes micro wave links are also used for this).

The Gateway GPRS Support Node (GGSN) is the node that provides the UE
with an IP point of presence when it is attached to the packet switched domain,
it interfaces to external IP networks. The GGSN also collects billing information,
provides packet filtering and is responsible for GPRS session management. The
architecture of the radio part of the GSM network is shown in Figure 3.

The GSM network provides two main security services to the user: subscriber
authentication and encryption of the data sent to and from the UE. In addition
to this, there is identity protection by the use of temporary identities.

5.2 Creating the GSM Attack Jungle

Security experts studied the GSM network (focusing on GERAN) carefully and
possible threats and corresponding attacks towards the security of the system
were realized.

All attacks were modeled in an attack jungle using our tool. The complete
attack jungle contained 323 nodes.

Table 4 provides a short description of some of the threats (and corresponding
attacks) that were identified by the security experts as possible to realize. For
a more detailed description containing all the identified threats (and attacks)
that were identified in this case study see [1]. The threat “false base station”,
was already known to be a quite serious threat to GSM, which in fact lead to
countermeasures taken in 3G networks (UMTS). Nevertheless, re-confirmation
of known security issues is also useful as it helps to validate the model and
analysis.

5.3 Analyzing the GSM Attack Jungle

In this particular study, each attack component in the created attack jungle was
ranked with the probability that it might occur and each threat was ranked with
the seriousness (how big the damage would be if the threat was realized).

Ranking the probability. Each attack component was ranked on a scale from
one to five, where rank one means “negligible” and rank five “almost certain”.
An example of an attack with rank one is an attack that is successful with a
probability of guessing or breaking an 80bit (cryptographic) key. An attack of
rank 5 is an attack that can be performed by single, averagely skilled “hackers”
with standard PC/phone resources, possibly using “attacking tools” developed
by someone else found on the Internet.

Analyzing the Security in the GSM Radio Network 71

Table 4. A small set of the identified threats and their corresponding attacks

Threat Attack(s)

Sensitive information re- - The UE is fooled to reuse a previously compromised crypto-

garding the user is revealed. graphic key.

- The UE is/will be fooled to reuse the same cryptographic key

with an insecure encryption algorithm.

- The cryptographic key is disclosed by other means.

False base station (BTS) - Attacker disables (for example cutting antenna connection or

cutting the power) a real base station and puts up a false base

station. Attacker can now fake a base station towards the net-

work and fake a network towards the UE. The attacker can then

easily get the information that is sent.

The UEs are not able to use

signalling towards the net-

work.

- An attacker sets up a false BSC (could be implemented in

a false base station), that broadcasts a ”barred access class”

message (unencrypted). This messige disables signalling between

the network and a set of UEs. UEs does not try to reconnect after

receiving theis message (except for emergency calls).

UE is forced to use a differ-

ent network.

- An attacker changes an ”location update accept” message to

an ”location update reject” with a cause code of ”PLMN not

available”. This forces the UE to look for another network (this

is a man-in-the-middle attack).

The UE accepts faked au-

thentication signalling mes-

sages.

- The attacker sends a random number (RAND) that is already

used (replayed) to the UE.

Successful impersonation of

a subscriber

- For an attacker to sucessfully impersonate a subscriber, crypt-

analysis of one of the encryption algorithms that are used has

to be done.

Long-term subscriber key is

disclosed

- The key is disclosed by preforming cryptanalysis of a encryp-

tion algorithm (AKA).

- The key is leaked from manufacturer.

- The key is leaked when it is installed in the autentication

center.

Ranking the Seriousness. The seriousness of the threats (or attack goals)
were estimated and ranked on a scale from one to five where one means “mini-
mal” and five “very high”. Attack goals of rank one are threats that would not
imply anything for user privacy, QoS (Quality of Service), or charging, e.g. being
able to occasionally increase a phones transmit power. Attack goals of rank five
are attacks that if they are realized it would make frontpage news and seriously
damage the trust in mobile networks, either from users or operators point of
view.

Risk Assessment. By computing the product of the seriousness and the prob-
ability for each threat a measure for the risk can be deduced.

For threats with the highest risk protection mechanism (countermeasures) to
counter the identified risks can be designed.

Countermeasures. Analyzing the attack jungle and determining the high risk
threats gives the opportunity to design and evaluate possible countermeasures
that are suitable for the system.

72 P. Aziz Abdulla, J. Cederberg, and L. Kaati

In this case study, some of the possible identified countermeasures for the high
risk threats are:

– Add new encryption algorithms.
– Remove insecure encryption algorithms.
– Add integrity protection to broadcasted messages.
– Enlarge the size of encryption keys.
– Add integrity protection to broadcast signalling.

A more detailed description of all the identified countermeasures can be found
in [1].

To analyze the effect of the identified countermeasures, each countermeasure
was added to the attack jungle. The attack jungle was analyzed using our back-
ward reachability algorithm and the security experts could assure that the coun-
termeasures worked as expected. Each countermeasure was evaluated separately
and possible advantages, disadvantages, main vulnerabilities and remaining se-
curity issues carefully analyzed.

6 Conclusion

We have introduced a formal, methodical way of describing the security of sys-
tems called attack jungles. In this model we allow multiple roots, cycles and
reusability of resources. The analysis of an attack jungle is done in two steps;
first we extract all possible paths in the attack jungle that leads to an attack
goal. Secondly, we assign attributes to the attack components in the extracted
paths. By decorating the attack components with different attributes we can
answer questions such as “What is the minimum cost of performing an attack?”
and “What attack is most likely to happen?”

Previously, analyzing the security of systems was traditionally done by hand.
However when analyzing a large and complex system such as the GSM net-
work this approach is impossible and the notion and implementation of at-
tack jungles was a necessary and helpful tool for analyzing the security of
such a system. Using the ability to model the security of system with cycles,
multiple roots and reusable nodes both modeling and the analysis was signif-
icantly simplified. The backward reachability algorithm described in this pa-
per easily verifies properties of the attacks. Countermeasures can be added
to the model and the algorithm can verify that each countermeasure works
as expected and also analyze the behavior of different combinations of several
countermeasures.

We have tested our approach by implementing a prototype tool where we
can both model and analyze attack jungles. The tool have been used to model
possible attacks towards the security in the GSM radio network. A set of pos-
sible threats and corresponding attacks towards the security in the GSM radio
network where modeled using the tool. For the attacks with the highest risk,

Analyzing the Security in the GSM Radio Network 73

countermeasures were designed and the tool was used to evaluate the impact/
benefit of implementing the different countermeasures.

When analyzing the attack jungle and the designed countermeasures, the
analysis showed that some of the countermeasures was not secure enough to
remove all attacks. This should be considered when updating the system since
the money and effort put into implementing the countermeasure might not be
reasonable.

Several extension can be carried out to the attack jungle formalism. We plan
to extend the model by adding weights to each edge in the tree. The weight could
for example symbolize how important an attack component are for the ability
to accomplish a specific attack. Another direction for future work is to encode
attack jungles symbolically and extend our algorithm to work on a symbolic
encoding of the attack jungle.

References

1. Specification of GERAN vulnerabilities (2007),

http://www.3gpp.org/ftp/Specs/html-info/33801.htm

2. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.: Algorithmic analysis of programs

with well quasi-ordered domains. Inf. Comput. 160(1-2) (2000)

3. Isograph AttackTree+ (2007), http://www.isograph-software.com/atpover.htm

4. Bistarelli, S., Dall’Aglio, M., Peretti, P.: Strategic games on defense trees. In: Dim-

itrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2006. LNCS,

vol. 4691, pp. 1–15. Springer, Heidelberg (2007)

5. Bistarelli, S., Fioravanti, F., Peretti, P.: Defense tree for economic evaluations of

security investment. In: ARES 2006, pp. 416–423. IEEE Computer Society, Los

Alamitos (2006)

6. Bistarelli, S., Peretti, P., Trubitsyna, I.: Analyzing security scenarios using defence

trees and answer set programming. Electronic Notes in Theoretical Computer Sci-

ence (ENTCS) 197(2), 121–129 (2008)

7. Brynielsson, J., Horndahl, A., Kaati, L., Mårtenson, C., Svenson, P.: Development

of computerized support tools for intelligence work. In: Proceedings of ICCRTS

(2009)

8. Goleniewski, L., Jarrett, K.W.: Telecommunications Essentials, Second Edition:

The Complete Global Source, 2nd edn. Addison-Wesley Professional, Reading

(2006)

9. Van Lamsweerde, A., Brohez, S., De Landtsheer, R., Janssens, D.: From system

goals to intruder anti-goals: Attack generation and resolution for security require-

ments engineering. In: Proc. of RHAS 2003, pp. 49–56 (2003)

10. Amenaza Technologies Limited. A quick tour of attack tree based risk analysis

using SecureITree (2002)

11. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)

ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2005)

12. Lippmann, R., Sheyner, O., Haines, J., Jha, S., Wing, J.M.: Automated generation

and analysis of attack graphs. In: Proceedings of the IEEE Symposium on Security

and Privacy (2002)

http://www.3gpp.org/ftp/Specs/html-info/33801.htm
http://www.isograph-software.com/atpover.htm

74 P. Aziz Abdulla, J. Cederberg, and L. Kaati

13. Schneier, B.: Attack trees. Dr Dobbs Journal 24(12) (1999)

14. Sheyner, O., Wing, J.M.: Tools for generating and analyzing attack graphs. In:

de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2003.

Sheyner, O., Wing, J.M, vol. 3188, pp. 344–371. Springer, Heidelberg (2004)

15. van Lamsweerde, A.: Elaborating security requirements by construction of inten-

tional anti-models. In: Proc. of ICSE 2004, pp. 148–157 (2004)

16. Wisniewski, S.: Wireless and Cellular Networks. Prentice-Hall, Inc., Englewood

Cliffs (2004)

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 75–89, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Formal Modeling and Verification of Sensor Network
Encryption Protocol in the OTS/CafeOBJ Method

Iakovos Ouranos1,2, Petros Stefaneas3, and Kazuhiro Ogata4

1 School of Elec. and Comp. Eng., National Tech. Univ. of Athens (NTUA)
2 Hellenic Civil Aviation Authority, Heraklion Airport

3 School of Appl. Math. and Phys. Sci., National Tech. Univ. of Athens (NTUA)
4 School of Info. Sci., Japan Adv. Inst. of Sci. and Tech. (JAIST)

iouranos@central.ntua.gr, petros@math.ntua.gr, ogata@jaist.ac.jp

Abstract. Sensor Network Encryption Protocol (SNEP) is one of the secure
building blocks of the SPINS Protocol Suite and provides data confidentiality,
two-party data authentication and evidence of data freshness in a wireless
sensor network. We have formally analyzed SNEP and a node-to-node key
agreement protocol based on it, using the OTS/CafeOBJ method. Among other
invariants, we have verified that the protocols possess the important security
properties of authenticity and confidentiality of relevant message components.
To our knowledge, we are the first to formally analyze SNEP using algebraic
specification techniques.

Keywords: Algebraic Specification, Wireless Sensor Networks, Security,
CafeOBJ, Observational Transition Systems, Formal Verification.

1 Introduction

Security for wireless sensor networks is a challenging task, since sensors, compared
to conventional desktop computers, have limited resources and cannot use the compu-
tationally expensive asymmetric cryptography. As a result, the security protocols
designed for such settings should provide high level of assurance with the use of
symmetric cryptographic primitives. This makes formal analysis of these protocols
even more necessary.

Sensor Network Encryption Protocol (SNEP) is the building block of SPINS pro-
tocol suite [1] that provides data confidentiality, authentication, integrity and weak
message freshness using symmetric cryptographic primitives. In this paper, which is
a revised version of [2], we formally analyze SNEP and an application of it to the
node-to-node key agreement, using the OTS/CafeOBJ method [3]. The main differ-
ences between the work reported in [2] and this paper are:

a) the formal models of the two protocols are different since we have added a data
part at each message constructor, the constructors for most data types used are differ-
ent, and finally, transitions describing the OTS are more.

b) the verified properties are different and more critical for the protocols, since we
have verified additionally a secrecy property, while also authentication property is
expressed correctly for a more general case.

76 I. Ouranos, P. Stefaneas, and K. Ogata

c) we report on related work on formal analysis of sensor network protocols and
systems and present some lessons learned.

In the method we use, a protocol, algorithm, or software system is modeled as an
Observational Transition System (OTS), which is a kind of transition system that can
be written straightforwardly in terms of equations. Next, the OTS is described in
CafeOBJ algebraic specification language [4]. Properties to verify are then expressed
as CafeOBJ terms, and proof scores showing that the specified OTS model has de-
sired properties are also written in CafeOBJ. Finally, proof scores are executed with
the CafeOBJ system. Even if the protocol we analyze here is used in wireless sensor
networks, location information does not affect the properties we verify. As a result,
we need not model mobility in the specification. But in case mobility of sensors
should be taken into account, OTSs can be also used as mathematical models by sim-
ply adding the corresponding operators. To our knowledge, we are the first to analyze
SNEP using algebraic specification techniques. This work is part of our research on
modeling, specifying and verifying mobile systems using formal methods [12].

The rest of the paper is organized as follows: Section 2 explains the OTS/CafeOBJ
method, while section 3 describes the protocols to be analyzed. Section 4 and Section
5 deal with the formal modeling and verification of SNEP and Node-to-Node Key
Agreement protocol, respectively. Section 6 discusses some lessons learned while
Section 7 presents related work. Finally, Section 8 concludes the paper.

2 The OTS/CafeOBJ Method

2.1 Introduction to CafeOBJ

CafeOBJ [4] is an executable algebraic specification language/system. The main un-
derlying logics of CafeOBJ are order-sorted algebras [5] and hidden algebras [6-7].
The former is used to specify abstract data types while the latter to specify abstract
state machines, providing support for object oriented specifications. There are two
kinds of sorts in CafeOBJ, visible sorts representing abstract data types, and hidden
sorts representing the set of states of a state machine. The operations to hidden sorts
are classified into actions, observations and hidden constants. An action can change
the state of an abstract machine. It takes a state of the abstract machine and zero or
more data, and returns another or the same state of the abstract machine. An observa-
tion is used to observe the value of a data component in an abstract machine. It takes a
state of an object and zero or more data, and returns the value of a data component in
the abstract machine. Hidden constants denote initial states of abstract machines.
Declarations of observation and action operators start with keyword bop or bops, and
those of other operators with op or ops. Equations start with eq while ceq is used for
the case of conditional ones. The CafeOBJ system rewrites a given term by regarding
equations as left-to-right rewrite rules.

2.2 Observational Transition Systems

An Observational Transition System, or OTS [3], is a kind of transition system that
can be written in terms of equations in an algebraic specification language. We as-
sume that there exists a universal state space called Υ and we also suppose that each

 Formal Modeling and Verification of SNEP in the OTS/CafeOBJ Method 77

data type we need to use in the OTS, including the equivalence relationship for that
data type, has been declared in advance. An OTS S is the triplet 〉〈 TIO ,, where:

• O : A finite set of observers. Each Oo ∈ is a function DYo →: , where
D is a data type that may differ from observer to observer. Given an OTS
S and two states Yuu ∈21, , the equivalence (21 uu S=) between them w.r.t.

S is defined as).()(. 21 uouoOo =∈∀

• I : The set of initial states such that YI ⊆ .

• :T A set of conditional transitions. Each Τ∈τ is a function YY →:τ , such
that)()(21 uu S ττ = for each SYuu =∈ /, 21 . For each Yu ∈ ,)(uτ is called

the successor state of u w.r.t. τ . The condition τc of τ is called the effec-

tive condition. Also for each Yu ∈ , uu S=)(τ if)(ucτ¬ .

Observers and transitions may be parameterized. Generally, observers and transitions

are denoted as
1 ,..., mi io and

1 ,..., ni iτ respectively, provided that , 0m n ≥ and there exist

data types
kD such that),...,,,...,(11 nmk jjiikDk =∈ .

An OTS is described in CafeOBJ. Observers are denoted by CafeOBJ observation
operators, and transitions by CafeOBJ action operators.

An execution of S is an infinite sequence ,..., 10 uu of states satisfying:

1. Initiation: ∈0u I .

2. Consecution: For each { },...1,0∈i ,)(1 iSi uu τ=+ for some .Τ∈τ

A state is called reachable w.r.t. S if and only if it appears in an execution of S . Let

SR be the set of all the reachable states w.r.t. S . All properties considered in this

paper are invariants, which are defined as follows: Any state predicate BoolYp →:

is called invariant w.r.t. S if p holds (i.e. is true) in all reachable states w.r.t.

S . Bool denotes the sort of Boolean values, and is defined in the built-in CafeOBJ
module BOOL.

3 The SPINS Protocol Suite

SPINS [1] protocols were designed to support the security requirements of sensor
networks. The limited computation resources of sensors make it impossible to use
asymmetric cryptography. As a result, the designers of SPINS protocols use purely
symmetric cryptographic primitives. The security requirements of sensor networks
include data confidentiality, data authentication, data integrity and data freshness. To
achieve these security requirements, two protocols were designed and implemented:
SNEP and μTESLA. SNEP provides data confidentiality, two-party data authentica-
tion, integrity and freshness. μTESLA provides authentication for data broadcast. In
addition, they built an authenticated routing application using the μTESLA, and a
two-party key agreement protocol, based on SNEP. In this paper we are going to
analyze SNEP and the two-party key agreement protocol.

78 I. Ouranos, P. Stefaneas, and K. Ogata

The notation we follow is the same as in [1]:

• A, B are communicating nodes.
• S is a base station.
• Ni, i { }BA,∈ , is a nonce generated by node i. A nonce is an unpredictable bit

string, usually used to achieve freshness.
• M1 | M2 denotes the concatenation of messages M1 and M2.
• Kij, i, j { }BAS ,,∈ , ,ji ≠ denotes the secret encryption keys shared between i,

j. The way keys are produced is described in [1].
• Ri, i { }BA,∈ , denotes some data produced by node i.

• Ci, i { }BA,∈ , denotes a counter of a message sent from i.

• { }
ijKM , i, j { }BAS ,,∈ , ,ji ≠ denotes the encryption of message M with

symmetric key shared by nodes i and j.
• { } >< IVKij

M , , i, j { }BA,∈ , ,ji ≠ denotes the encryption of message M with the

key Κij and the initialization vector IV which is used in encryption modes
such as cipher-block chaining (CBC), output feedback mode (OFB), or
counter mode (CTR).

• MAC(Kij,M), i, j { }BAS ,,∈ , ,ji ≠ denotes the message authentication code

of message M, encrypted with key Kij.

3.1 The Sensor Network Encryption Protocol

The entire SNEP protocol, works as follows: If a node A wants to authenticate node B,
it generates randomly a nonce NA and sends it along with RA to B. On receipt of the
message, B obtains NA and RA and sends back RB encrypted with shared key KBA and
the counter CB, which is the initialization vector, has different value for each message
and direction of communication and is shared between the two parties. With the use
of counter, the protocol achieves the so-called semantic security which ensures that an
intruder has no information about the plaintext, even if it sees multiple encryptions of
the same plaintext. The messages exchanged are:

,,: AA RNBA →

{ } { }).||,(,: ,
'

, BBABBA CKBBABACKB RCNKMACRAB →

Additionally, to optimize the process of achieving strong data freshness, instead of
simply returning the nonce with the response message RB in an authenticated protocol,
B sends NA, CB and the encrypted RB in a message authentication code (MAC) en-
crypted with K’

BA. On receipt of the message, A decrypts it, obtains RB and verifies the
MAC. If the verification succeeds, then it is sure that B generated the response after it
sent the request. If confidentiality and data authentication are needed also for the first
message, then the message can be altered as follows:

{ } { })||,(,|: ,
'

, AABAAB CKAAAABCKAA RNCKMACRNBA →

 Formal Modeling and Verification of SNEP in the OTS/CafeOBJ Method 79

Apart from semantic security, SNEP provides:

• Replay protection: The counter value in the MAC prevents replaying old
messages. If the counter were not present in the MAC, an adversary could
easily replay messages.

• Strong freshness: If the MAC is verified successfully, node A knows that
node B generated the response after it sent the request.

• Data Authentication: To achieve two-party authenticity, the protocol uses a
MAC. If the MAC verifies correctly, the receiver can be assured that the
message originated from the claimed sender.

• Low communication overhead: The counter state is kept at each point and
does not need to be sent in each message.

3.2 The Node-to-Node Key Agreement Protocol

To bootstrap secure connections, a protocol for symmetric key setup is needed. The
protocol has been constructed solely from symmetric key algorithms. It uses a base
station as a trusted agent for key setup.

Assume that node A wants to establish a secret session key SKAB with node B.
Since A and B do not share any secrets, they need to use a trusted third party S, which
is the base station. In the trust setup, both A and B shared a secret key with the base
station KAS and KBS, respectively. The protocol shown below achieves secure key
agreement as well as strong key freshness.

ANBA A ,:→

)|||,(,,,,: BANNKMACBANNSB BABSBA→

{ } { })||,(,:
ASAS KABAASKAB SKBNKMACSKAS →

{ } { })||,(,:
BSBS KABBBSKAB SKANKMACSKBS →

The protocol is an application of SNEP with strong key freshness. Nonces NA and NB
ensure strong key freshness to both A and B. The SNEP protocol is responsible to
ensure confidentiality of the established session key SKAB, as well as message authen-
ticity to make sure that the key was really generated by the base station. MAC in the
second message helps defend the base station from Denial-of-Service attacks (DoS),
so the base station only sends two messages to A and B if it received a legitimate
request from one of the nodes.

4 Formal Modeling and Verification of SNEP

4.1 Modeling

We suppose that there exist untrustable nodes as well as trustable ones. Trustable
nodes exactly follow the protocol, but untrustable ones may do something against the
protocol as well, namely eavesdropping and/or faking of messages. The combination

80 I. Ouranos, P. Stefaneas, and K. Ogata

and cooperation of untrustable nodes is modelled as the most general intruder [8]. The
cryptosystem used is perfect and so, the intruder can do the following:

• Eavesdrop any message flowing in the network.
• Glean any nonce, data, ciphertext and message authentication code (MAC)

from the message; however the intruder can decrypt a ciphertext only if he
knows the corresponding key to decrypt.

• Fake and send messages based on the gleaned information; however the
intruder cannot guess unknown nonces and data.

We first formalize data types that constitute messages in terms of order-sorted alge-
bras. We declare the following visible sorts and the corresponding data constructors
for those data types:

• Node denotes sensor nodes. Constant enemy denotes the intruder.
• Rand denotes random numbers which makes nonces unguessable and unique.
• Nonce denotes nonces. Given nodes a, b and a random number r, n(a,b,r)

denotes the nonce created by a for b. Projections creator, forwhom and rand
return the first, second and third arguments.

• Data1, Data2 denote the data RA and RB, respectively. Given node a, d(a) de-
notes the data created by node a. Projection n returns the node created the data.

• Key denotes symmetric keys shared by two nodes. Given nodes a, b k(a,b)
denotes the key shared by the nodes. Operators s, r return the first and
second arguments.

• Mackey models the keys used for the creation of message authentication
codes.

• Counter denotes the counter shared by two nodes. Given nodes a, b, c(a,b) is
the data constructor of the counter.

• Cipher denotes ciphertexts. Given a symmetric key k, a counter c and data of
the type Data2 d, enc(k,c,d) denotes the ciphertext obtained by encrypting d
with k and c. Operators k, c, and d return the first, second and third arguments.

• Mac denotes MACs. Given a Mackey k, a Nonce n, a Counter c and a Cipher
ci, mac(k,n,c,ci) denotes the MAC obtained by encrypting nonce, counter and
cipher with k. Operators k, c, n, ci return the arguments of mac(k,n,c,ci).

In addition to the above visible sorts, we use the visible sort Bool that denotes truth
values, declared in the built-in module BOOL.

Formalization of Messages. The operators to denote the two kinds of messages are
declared as follows:

op m1 : Node Node Node Nonce Data1 -> Msg
op m2 : Node Node Node Cipher Mac -> Msg

The visible sort Msg denotes messages. Projections crt, src, dst return the first (actual
creator), second (seeming sender), and third (receiver) arguments of each message.
The first argument is meta-information that is only available to the outside observer
and the node that has sent the corresponding message, and cannot be forged by the

 Formal Modeling and Verification of SNEP in the OTS/CafeOBJ Method 81

intruder, while the remaining arguments may be forged by the intruder. So, if the first
argument is the enemy and second one is not, then the message has been faked by the
intruder. A predicate mi?, }2,1{∈i , checks if the given message is of the type m1 or

m2. Projections n, d return the fourth and fifth argument of the first message, while c,
m the fourth and fifth argument of the second message.

Formalization of the Network. The network is modeled as a multiset of messages,
which is used as the storage that the intruder can use. Any message that has
been sent or put into the network is supposed to be never deleted from the network.
As a consequence, the emptiness of the network means that no messages have
been sent.

The intruder tries to glean six kinds of quantities from the network. These are
the nonces, the two kinds of data, the ciphers, the message authentication codes
and the counters. The collections of these quantities are denoted by the following
operators:

op nonces : Network -> ColNonces . op ciphers : Network -> ColCiphers .
op data1 : Network -> ColData1. op data2 : Network -> ColData2 .
op macs : Network -> ColMacs . op counts : Network -> ColCounts .

Network is the visible sort denoting networks. ColX is the visible sort denoting collec-
tions of quantities denoting by visible sort X (X = Nonce, Cipher, Data1, Data2, Mac,
Counter). For example, given a snapshot nw of the network, nonces(nw) and
macs(nw) denote the collection of nonces and message authentication codes available
to the intruder.

Those operators are defined with equations. For the case of nonces the equations
are as follows:

eq N \in nonces(void) = (creator(N) = enemy) .
ceq N \in nonces(M,NW) = true if m1?(M) and n(M) = N .
ceq N \in nonces(M,NW) = true if m2?(M) and
 (s(k(m(M))) = enemy or r(k(m(M))) = enemy) and
 n(m(M)) = N .
ceq N \in nonces(M,NW) = N \in nonces(NW) if not(m1?(M) and n(M) = N) and
 not(m2?(M) and (s(k(m(M))) = enemy or r(k(m(M))) = enemy)
 and n(m(M)) = N) .

Constant void denotes the empty bag, while N, M, NW are CafeOBJ variables for
Nonce, Msg and Network, respectively. Operator _\in_ is the membership predicate of
collection, while _,_ is the data constructor of bags. So, M,NW denotes the network
obtained by adding message M to the network NW. The first equation says that ini-
tially, the intruder’s nonce is the only available to him. The second equation says that
if there exists a message M of the type m1 in the network, then the nonce N of
the message is available to the intruder, since it is sent in clear. Third equation defines
the case in which the intruder can obtain a nonce from message of the second type.
The last equation says that in the rest cases, the intruder cannot get any nonces from
the message M.

82 I. Ouranos, P. Stefaneas, and K. Ogata

The equations defining macs are:

eq MC \in macs(void) = false .
ceq MC \in macs(M,NW) = true if m2?(M) and
 not(s(k(m(M))) = enemy and r(k(m(M))) = enemy)
 and MC = m(M) .
ceq MC \in macs(M,NW) = MC \in macs(NW) if not(m2?(M) and

not(s(k(m(M))) = enemy and r(k(m(M))) = enemy)
and MC = m(M)) .

The first equation says that initially no macs are available to the intruder. Messages in-
cluding macs are only m2 messages. If there exists an m2 message and the mac in the
message is not encrypted with the intruder’s key, then the intruder gleans the mac. If the
mac is encrypted with the intruder’s key, the intruder does not have to glean it, because
he can reconstruct it from the quantities that constitute it. If a message is not m2, any
macs cannot be gleaned from the message, and if the mac in a m2 is encrypted with the
intruder’s key, the intruder does not glean the mac, which is denoted by the last equation.

Equations defining the remaining operators are written likewise.

Formalization of Trustable Nodes. The behavior of the protocol is defined in the
main module of the OTS specification called SNEP. The state space of the protocol is
denoted by the hidden sort Snep. The values observable from the outside of the proto-
col are the set of used random numbers and the network. These values are denoted by
CafeOBJ observation operators ur and nw, respectively:

bop ur : Snep -> Urand . bop nw : Snep -> Network .

where URand is the visible sort denoting sets of random numbers. A really fresh ran-
dom number does not exist in the set of used random numbers.

The behaviour of trustable nodes is sending the two kinds of messages following
the protocol and is denoted by two CafeOBJ action operators:

bop sdm1 : Snep Node Node Rand -> Snep . bop sdm2 : Snep Node Msg Rand -> Snep

The operators are defined with equations. For example, the equations defining sdm2
are shown below:

op c-sdm2 : Snep Node Msg Rand -> Bool
eq c-sdm2(S, P2, M1,R)
 = (M1 \in nw(S) and m1?(M1) and P2 = dst(M1) and
 n(src(M1),P2,R) = n(M1) and rand(n(M1)) = R) .
ceq nw(sdm2(S, P2, M1,R))
 = (m2(P2, P2, src(M1), enc(k(P2,src(M1)),
 c(P2,src(M1)), d(P2)), mac(kmac(P2,src(M1)),
 n(src(M1),P2,R), c(P2,src(M1)),
 enc(k(P2,src(M1)),c(P2,src(M1)),d(P2)))),nw(S)) if c-sdm2(S, P2, M1,R) .
eq ur(sdm2(S, P2, M1,R)) = ur(S) .
bceq sdm2(S, P2, M1,R) = S if not c-sdm2(S,P2,M1,R) .

The condition c-sdm2(S, P2, M1,R) means that there exists a valid m1 message de-
noted by M1 in the network, which has been sent to node P2, and random number R
has been used to create M1. If sdm2 is applied when the condition holds, the set of

 Formal Modeling and Verification of SNEP in the OTS/CafeOBJ Method 83

used random does not change, which is denoted by the third equation, and message
m2(P2,P2,src(M1),…) is added to the network (see the second conditional equation).
The last conditional equation says that nothing changes if sdm2 is applied when the
condition does not hold.

Formalization of the Intruder. Part of the intruder has been modeled as the network.
The intruder can send faked messages based on the information he gleans. Transition
faking messages are denoted by CafeOBJ action operators. We have 4 transitions
modeling faking m1 and one transition modeling faking m2. Action operator fkm21
denotes faking message m2 and is defined with equations as follows:

op c-fkm21 : Snep Node Node Cipher Mac -> Bool
eq c-fkm21(S, P1, P2, CI, M) = (CI \in ciphers(nw(S)) and M \in macs(nw(S))) .
ceq nw(fkm21(S, P1, P2, CI, M)) = (m2(enemy, P1, P2, CI, M),nw(S))
 if c-fkm21(S, P1, P2, CI, M) .
eq ur(fkm21(S, P1, P2, CI, M)) = ur(S) .
ceq fkm21(S, P1, P2, CI, M) = S if not c-fkm21(S,P1,P2,CI,M) .

The above action operator is obtained as follows: Since the body of an m2 message
consists of ciphers and macs, all needed is that Cipher and Mac is available to the
intruder, or can be computed by the intruder. Therefore, there are the following possi-
ble ways to fake m2 message:

1. Using a Mac and a Cipher available to the intruder.
2. Computing a Mac and/or Cipher based on gleaned quantities.

In the second way, the intruder has to compute macs and/or ciphers based on keys that
he owns. But these kinds of messages are refused by the other node, so it is meaning-
ful to add them in the specification. Consequently, the first way is used to model fak-
ing m2 messages.

The remaining operators are defined likewise.

4.2 Verification

We have verified the following properties:

1. If a node receives a valid message m2 in response to a message sent by him,
the message always originates from the claimed sender.

2. The data sent by the node B in the second message (i.e. RB) cannot be leaked.

Formally, the above properties are defined as invariants as following:

a. For any reachable state s, any three nodes y, p1, p2, any random number r,
not (p2 = enemy) and not (p1 = enemy) and m1(p1,p1,p2,n(p1,p2,r),d(p1)) \in nw(s) and
m2(y,p2,p1,enc(k(p2,p1),c(p2,p1),d(p2)),
 mac(kmac(p2,p1), n(p1,p2,r), c(p2,p1), enc(k(p2,p1), c(p2,p1), d(P2)))) \in nw(S)
 implies
 m2(P2,P2,P1,enc(k(P2,P1),c(P2,P1),d(P2)),
 mac(kmac(P2,P1), n(P1,P2,R), c(P2,P1), enc(k(P2,P1), c(P2,P1), d(P2)))) \in nw(S) .

84 I. Ouranos, P. Stefaneas, and K. Ogata

b. For any reachable state s, any data2 d,
d \in data2 (nw(s)) implies n(d) = enemy .

Property 2 can be stated as that any data2 gleaned by the intruder is the intruder’s
own. In the definition of Property 1, node y (i.e. the actual sender of m2) may be dif-
ferent from p1 (i.e. the seeming sender of m2), implying that y is the enemy.

We have used five more state invariants as lemmas to prove the above properties
and four lemmas on data types.

In the following, we describe an inductive case of the proof of property 1, where it
is shown that fkm21 preserves the property. The inductive case needs another invari-
ant which is called property 102, to strengthen the inductive hypothesis:

For any reachable state S, any nodes p1, p2, any random number r,

not (P1 = enemy) and
mac(kmac(P2,P1),n(P1,P2,R),c(P2,P1),enc(k(P2,P1),c(P2,P1),d(P2))) \in macs(nw(S))
and m1(P1,P1,P2,n(P1,P2,R),d(P1)) \in nw(S) implies
m2(P2,P2,P1,enc(k(P2,P1),c(P2,P1),d(P2)),mac(kmac(P2,P1),n(P1,P2,R),c(P2,P1),
 enc(k(P2,P1),c(P2,P1), d(P2)))) \in nw(S)

We declare the operators denoting the properties in a module INV and define them with
equations. Next, we declare the basic formula to prove in each inductive case of the
proof of property 1 and the corresponding equations in a module ISTEP as follows:

eq istep1 = inv1(s,y,p1,p2,r) implies inv1(s’,y,p1,p2,r) .

istep1 is a constant of Bool. s and s’ are constants of Snep. The former denotes an arbi-
trary state and the latter its successor.

The case in which the property 102 is needed to strengthen the inductive hypothe-
sis is as follows:

c-fkm21(s,q1,q2,ci,m) = true
∧ ¬ (p1 = enemy)
∧ ¬ (p2 = enemy)
∧ m1(p1,p1,p2,n(p1,p2,r),d(p1)) \in nw(s)
∧ m2(y,p2,p1,enc(k(p2,p1),c(p2,p1),d(p2)),
 mac(kmac(p2,p1),n(p1,p2,r),c(p2,p1),
 enc(k(p2,p1),c(p2,p1),d(p2)))) = m2(enemy,q1,q2,ci,m)
∧ ¬ m2(p2,p2,p1,enc(k(p2,p1),c(p2,p1),d(p2)),
 mac(kmac(p2,p1),n(p1,p2,r),c(p2,p1),
 enc(k(p2,p1),c(p2,p1),d(p2)))) \in nw(s)

For more details on the OTS/CafeOBJ method someone can consult [3].

5 Formal Analysis of Node-to-Node Key Agreement Protocol

Following the same methodology, we have modelled the node-to-node key agreement
protocol as an OTS, specified it in CafeOBJ and verified two invariant properties.
This protocol is more complex than SNEP, since there are 4 messages in the protocol
and apart from sensor nodes, the base station as a participant.

 Formal Modeling and Verification of SNEP in the OTS/CafeOBJ Method 85

In this case, the quantities that the intruder tries to obtain from the network and
from the messages are nonces used in the first and second message, the ciphers of the
third and fourth message, the encrypted key shared between the two nodes and is part
of the third and fourth message, and the message authentication codes used in the
second, third and fourth message.

The properties we verified are as follows:

1. If a node receives a valid message m3 from a base station b1 in response to a
message sent by him to another node, the message always originates from the
claimed base station.

2. The key sent by a base station in a m3 message cannot be leaked.

The second property is a secrecy property and is formalized in CafeOBJ as follows:
For any reachable state S, any node key NK,

NK \in keys(nw(S)) implies n1(NK) = enemy or n2(NK) = enemy or b(NK) = ibase

The first property is an agreement property and is formalized as follows:

not (N1 = enemy) and not (N2 = enemy) and not (B1 = ibase) and
m1(N1, N1, N2, n(N1,N2,R1) ,N1) \in nw(S) and
m2(X,N2,B1,n(N1,N2,R1),n(N2,B1,R2), N1,N2,
 mac1(k(N2,B1),n(N1,N2,R1),n(N2,B1,R2),N1,N2)) \in nw(S) and
m3(Y,B1,N1,enc(k(N1,B1),k(B1,N1,N2)),mac2(k(N1,B1), n(N1,N2,R1), N2,
 enc(k(N1,B1),k(B1,N1,N2)))) \in nw(S) implies
m3(B1,B1,N1,enc(k(N1,B1),k(B1,N1,N2)),mac2(k(N1,B1),
 n(N1,N2,R1),N2,enc(k(N1,B1),k(B1,N1,N2)))) \in nw(S)

We need case splitting and five more invariants as lemmas to prove the property.
For example, for the case of transition fkm31 which models the faking of message
m3 based on the gleaned ciphers and message authentication codes, we need the
following lemma to discard a subcase:

mac2(k(N1,B1),n(N1,N2,R1),N2,enc(k(N1,B1),k(B1,N1,N2))) \in macs2(nw(S))
and not (N1 = enemy) and not (B1 = ibase) implies
m3(B1,B1,N1,enc(k(N1,B1),k(B1,N1,N2)),mac2(k(N1,B1),n(N1,N2,R1),N2,
 enc(k(N1,B1),k(B1,N1,N2)))) \in nw(S)

which means that the existence of a message authentication code used in a message
m3, which is encrypted with the key shared between a trustful node N1 and a trustful
base station B1, formed following the protocol, implies that a message m3 with the
appropriate arguments exists in the network and originates from the claimed base
station B1.

6 Lessons Learned

When specifying formally complex software systems, syntax and/or logical errors are
common. Syntax errors can be tackled by the compiler of the language. But logical
errors can be detected through formal verification. In the OTS/CafeOBJ method we

86 I. Ouranos, P. Stefaneas, and K. Ogata

apply, if some data constructor, observation or transition used in the specification is
not expressed according to the behaviour of the protocol, then some property that
should hold and contains this expression cannot be verified. In this case we should go
back and check again our specification expressions, which is a painful and time con-
suming process. Another possible error of an inexperienced specifier is the incorrect
formal expression of a property. This could lead to incorrect conclusions regarding
correctness of a protocol’s specification. For example, in our case study, during writ-
ing proof scores we realized that an expression for the first property of SNEP did not
hold for our specification. More specifically, the property was expressed in CafeOBJ
terms as follows:

For any reachable state s, any four nodes x, y, p1, p2, any random number r,
not (p2 = enemy) and not (p1 = enemy) and m1(x,p1,p2,n(p1,p2,r),d(p1)) \in nw(s) and
m2(y,p2,p1,enc(k(p2,p1),c(p2,p1),d(p2)), mac(kmac(p2,p1), n(p1,p2,r), c(p2,p1),
 enc(k(p2,p1), c(p2,p1), d(p2)))) \in nw(S)
implies m2(p2,p2,p1,enc(k(p2,p1),c(p2,p1),d(p2)), mac(kmac(p2,p1), n(p1,p2,r), c(p2,p1),
 enc(k(p2,p1), c(p2,p1), d(p2)))) \in nw(s)

The only difference between this expression and the correct one is in the first argu-
ment of m1 message. But this minor difference changes the meaning of the property
from:

• If a node receives a valid message m2 in response to a message (really) sent
by him, the message always originates from the claimed sender.

to:

• If a node receives a valid message m2 in response to a message that (seems
to) have been sent by him, the message always originates from the claimed
sender.

When we tried to verify the second property, we used two more lemmas:

For any reachable state S, any three nodes x, p1, p2, any random number r,
not (p1 = enemy) and not (p2 = enemy) and m1(x,p1,p2,n(p1,p2,r),d(p1)) \in nw(s)
implies m1(p1,p1,p2,n(p1,p2,r),d(p1)) \in nw(s) .

and, for any reachable state s, any two nodes p1, p2, any random number r,
not (p1 = enemy) and not (p2 = enemy) and r \in ur(s)
implies m1(p1,p1,p2,n(p1,p2,r),d(p1)) \in nw(s) .

The first lemma was used to discard the following subcase for the main property:

c-fkm11(s,q1,q2,r1) = true
∧ ¬ (p1 = enemy) ∧ ¬ (p2 = enemy)
∧ (m1(x,p1,p2,n(p1,p2,r),d(p1)) = m1(enemy,q1,q2,n(q1,q2,r1),d(q1)))
∧ ¬ m2(q2,q2,q1,enc(k(q2,q1),
 c(q2,q1),d(q2)),mac(kmac(q2,q1),n(q1,q2,r1),
 c(q2,q1),enc(k(q2,q1),c(q2,q1),d(q2)))) \in nw(s)

∧ m2(y,q2,q1,enc(k(q2,q1),c(q2,q1),d(q2)),
 mac(kmac(q2,q1),n(q1,q2,r1),c(q2,q1),enc(k(q2,q1),
 c(q2,q1),d(q2)))) \in nw(s)

 Formal Modeling and Verification of SNEP in the OTS/CafeOBJ Method 87

while the second lemma was used to discard the following subcase for the first
lemma:

c-fkm11(s,q1,q2,r1) = true
∧ ¬ (p1 = enemy) ∧ ¬ (p2=enemy)
∧ (m1(x,p1,p2,n(p1,p2,r),d(p1)) = m1(enemy,q1,q2,n(q1,q2,r1),d(q1)))
∧ ¬ m1(enemy,q1,q2,n(q1,q2,r1),d(q1)))\in nw(s)
∧ ¬ m1(q1,q1,q2,n(q1,q2,r1),d(q1)))\in nw(s)

But while writing proof scores for the second lemma, CafeOBJ returned false for a
subcase, that we could not use a lemma to discard it or proceed to further case split-
ting. So we could not prove the main property. By observing the cases for which we
should use lemmas, we found out that the problem was with cases where
(m1(x,p1,p2,n(p1,p2,r),d(p1)) = m1(enemy,q1,q2,n(q1,q2,r1),d(q1))), i.e. when x is equal to
the enemy agent, when applying action fkm11. The counterexample is as follows:

Let us assume that sensor node p1 creates a nonce n(p1,q1,r) and sends it along
with data d(p1) to node q1 in an initial message m1. A malicious node called enemy
steals n(p1,q1,r) and d(p1), creates m1’ which is equal to
m1(enemy,p1,q1,n(p1,q1,r),d(p1))) and sends it to q1. Upon receiving m1’, q1 replies
with a well formed message of the type m2, thinking that the node sent m1’ was p1.

This counterexample led us to revise the property expression and substituting it
with the correct one, which was proved as presented above.

But we realized that the property expression did not hold after having written a lot
of code. A solution to this problem has been proposed in [11], where model checking
is combined with interactive theorem proving to falsify and verify systems. More
specifically, prior to verification, model checking is applied for a bounded state space
of the OTS. If model checking succeeds, then verification is applied for all reachable
states. Otherwise, the specification and/or property expression is revised, and model
checking is reapplied. In this way, verification process can be more efficient. Since
CafeOBJ does not provide model checking capabilities, the specification is written or
translated into a language such as Maude [19]. Tools for such specification translation
have already been developed.

7 Related Work

The only papers found in the literature related to formal analysis of SNEP are [9-10].
In [10], the authors verify the key agreement protocol based on SNEP using the modal
logic of Coffey-Saidha-Newe (CSN) [15] which combines the logic of belief and
knowledge to evaluate trust and security of communication protocols. In addition,
they propose some additional axioms relating to MAC authentication which are used
to simplify the verification of protocols that involve MAC authentication. The verifi-
cation is performed at the logic level, since no formal executable language or tool is
used. In [9], the authors use the HLPSL [13] language used by the AVISPA tool [14]
to model check SNEP. They claim that since any intruder can create a false request
for a node in a message of the type m1, then a resource and bandwidth consumption
attack is possible. To prevent this kind of attack, they propose adding a MAC compu-
tation over the first message. The authors do not present some lessons learned by the
use of AVISPA tool to model check SNEP protocol.

88 I. Ouranos, P. Stefaneas, and K. Ogata

Generally, formal verification of security protocols has been studied by many re-
searchers. The induction-based verification method we applied in this paper has been
proposed by CafeOBJ community researchers and several case studies have been
successfully conducted [3,16,17]. An alternative simulation-based method has been
also proposed for OTSs in [22], where authors claim that the choice of the method
depends on the OTS and the invariant property to be verified. Finally, researchers
from the Maude community [18], which is a sibling language of CafeOBJ, have ap-
plied their methodology based on rewriting logic [19], to the analysis of algorithms
used in sensor networks settings [20].

8 Conclusions and Future Work

We have modelled Sensor Network Encryption Protocol and a key agreement proto-
col based on it as an Observational Transition System in CafeOBJ, and verified with
proof scores some important properties of them. The case study demonstrates that the
OTS/CafeOBJ method can be applied to the formal verification of security protocols
for sensor networks. In addition, we have presented some lessons learned and how a
combination of model checking and theorem proving that has been proposed by
CafeOBJ community researchers can speed up the verification process.

Our research group works on the formal verification of TESLA [21] protocol,
which is a more complex security protocol with real time constraints, to demonstrate
the application of the Timed OTS/CafeOBJ method, a real time extension of the
OTS/CafeOBJ method, to the formal analysis of such protocols.

References

1. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.: SPINS: Security Protocols for
Sensor Networks. Wireless Networks 8, 521–534 (2002)

2. Ouranos, I., Stefaneas, P.: Verifying Security Protocols for Sensor Networks using Alge-
braic Specification Techniques. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS,
vol. 4728, pp. 247–259. Springer, Heidelberg (2007)

3. Ogata, K., Futatsugi, K.: Some Tips on Writing Proof Scores in the OTS/CafeOBJ method.
In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computa-
tion. LNCS, vol. 4060, pp. 596–615. Springer, Heidelberg (2006)

4. Diaconescu, R., Futatsugi, K.: CafeOBJ Report. World Scientific, Singapore (1998)
5. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple in-

heritance, overloading, exceptions and partial operations. TCS 105, 217–273 (1992)
6. Goguen, J.A., Malcolm, G.: A Hidden Agenda. TCS 245, 55–101 (2002)
7. Diaconescu, R., Futatsugi, K.: Behavioural coherence in object-oriented algebraic specifi-

cation. Journal of Universal Computer Science 6, 74–96 (2000)
8. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Trans. on Inf. The-

ory 29, 198–208 (1983)
9. Tobarra, L., Cazorla, D., Cuartero, F.: Formal Analysis of Sensor Network Encryption Pro-

tocol (SNEP). In: Proc. IEEE MASS 2007, Pisa, Italy, pp. 1–6 (2007)
10. Newe, T.: On the Formal Verification of SNEP Key Agreement Protocol for Wireless Sen-

sor Networks. In: Proc. SENSORCOMM 2007, pp. 186–191 (2007)

 Formal Modeling and Verification of SNEP in the OTS/CafeOBJ Method 89

11. Ogata, K., Nakano, M., Kong, W., Futatsugi, K.: Induction - Guided Falsification. In: Liu,
Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 114–131. Springer, Heidelberg (2006)

12. Ouranos, I., Stefaneas, P., Frangos, P.: An Algebraic Framework for Modeling of Mobile
Systems. IEICE Trans. Fund. E90-A (9), 1986–1999 (2007)

13. Chevalier, Y., et al.: A high level protocol specification language for industrial security-
sensitive protocols. In: Proc. SAPS, pp. 193–205 (2004)

14. Viganò, L.: Automated Security Protocol Analysis with the AVISPA Tool. In: Proc. MFPS
2005. ENTCS, vol. 155, pp. 61–86 (2005)

15. Newe, T., Coffey, T.: Formal verification logic for hybrid security protocols. Int. Journal
of Comput. Syst. Sci. and Eng. 18, 17–25 (2003)

16. Ogata, K., Futatsugi, K.: Flaw and modification of the iKP electronic payment protocols.
IPL 86(2), 57–62 (2003)

17. Ogata, K., Futatsugi, K.: Equational approach to formal analysis of TLS. In: Proc. 25th
ICDCS, pp. 795–804 (2005)

18. Clavel, M., et al.: Maude: Specification and Programming in Rewriting Logic.
TCS 285(2), 187–243 (2002)

19. Marti-Oliet, N., Meseguer, J.: Rewriting Logic: Roadmap and Bibliography. TCS 285(2),
121–154 (2002)

20. Ölveczky, P.C., Thorvaldsen, S.: Formal Modeling, performance estimation, and model
checking of wireless sensor network algorithms in Real-Time Maude. TCS 410(2-3), 254–
280 (2009)

21. Perrig, A., et al.: Efficient Authentication and Signing of Multicast Streams over Lossy
Channels. In: Proc. IEEE Sec. and Privacy Symp., pp. 56–73 (2000)

22. Ogata, K., Futatsugi, K.: Simulation based verification for invariant properties in the
OTS/CafeOBJ method. Electr. Notes Theor. Comput. Sci. 201, 127–154 (2008)

Model-Driven Design-Space Exploration for
Embedded Systems: The Octopus Toolset�

Twan Basten1,2, Emiel van Benthum2, Marc Geilen2, Martijn Hendriks3,
Fred Houben3, Georgeta Igna3, Frans Reckers1, Sebastian de Smet4,
Lou Somers2,4, Egbert Teeselink2, Nikola Trčka2, Frits Vaandrager3,

Jacques Verriet1, Marc Voorhoeve2, and Yang Yang2

1 Embedded Systems Institute,
2 Eindhoven University of Technology,

3 Radboud University Nijmegen,
4 Océ Technologies

a.a.basten@tue.nl

Abstract. The complexity of today’s embedded systems and their de-

velopment trajectories requires a systematic, model-driven design ap-

proach, supported by tooling wherever possible. Only then, development

trajectories become manageable, with high-quality, cost-effective results.

This paper introduces the Octopus Design-Space Exploration (DSE)

toolset that aims to leverage existing modeling, analysis, and DSE tools

to support model-driven DSE for embedded systems. The current toolset

integrates Uppaal and CPN Tools, and is centered around the DSE Inter-

mediate Representation (DSEIR) that is specifically designed to support

DSE. The toolset architecture allows: (i) easy reuse of models between

different tools, while providing model consistency, and the combined use

of these tools in DSE; (ii) domain-specific abstractions to support dif-

ferent application domains and easy reuse of tools across domains.

Keywords: Design-space exploration, Modeling, Analysis, Embedded

Systems, CPN Tools, Uppaal.

1 Introduction

High-tech systems ranging from smart phones to printers, from cars to radar
systems, and from wafer steppers to medical imaging equipment contain an em-
bedded electronic core that typically integrates a heterogeneous mix of hardware
and software components. The resulting platform is often distributed, and it typ-
ically needs to support a mix of data-intensive computational tasks with event-
processing control components. These embedded components more and more
often have to operate in a dynamic and interactive environment. Moreover, not
only functional correctness is important, but also quantitative properties related
� This work was carried out as part of the Octopus project with Océ Technologies

B.V. under the responsibility of the Embedded Systems Institute. This project is

partially supported by the Netherlands Ministry of Economic Affairs under the Bsik

program.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 90–105, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

a.a.basten@tue.nl

Model-Driven Design-Space Exploration for Embedded Systems 91

PlatformApplication

Mapping

Analysis

Diagnostics

Fig. 1. The Y-chart DSE method

to timeliness, quality-of-service, resource usage, and energy consumption. The
complexity of today’s embedded systems and their development trajectories is
thus increasing rapidly. At the same time, development trajectories are expected
to produce high-quality and cost-effective products.

A common challenge in development trajectories is the need to explore ex-
tremely large design spaces, involving multiple metrics of interest (timing, re-
source usage, energy usage, cost). The number of design parameters (number
and type of processing cores, sizes and organization of memories, interconnect,
scheduling and arbitration policies) is typically very large and the relation be-
tween parameter settings and design choices on the one hand and metrics of
interest on the other hand is often difficult to determine. Given these obser-
vations, embedded-system design trajectories require a systematic approach,
that is automated as far as possible. To achieve high-quality results, the de-
sign process and tooling needs to be model-driven. No single modeling approach
or analysis tool is best fit for all the observed challenges. We propose to lever-
age the combined modeling and analysis power of various formal methods tools
into one integrated Design-Space Exploration (DSE) framework, the Octopus
framework. The framework is centered around an intermediate representation,
DSEIR (Design-Space Exploration Intermediate Representation), to capture de-
sign alternatives. DSEIR models can be exported to various analysis tools. This
facilitates reuse of models across tools and provides model consistency between
analyses. The use of an intermediate representation supports domain-specific
abstractions and reuse of tools across application domains.

The design of DSEIR follows the Y-chart philosophy [1,16] that is popular in
hardware design, see Fig. 1. The Y-chart philosophy is based on the observation
that DSE typically involves the co-development of an application, a platform,
and the mapping of the application onto the platform. Diagnostic information is
used to, automatically or manually, improve application, platform, and/or map-
ping. DSEIR follows the Y-chart philosophy by supporting, and separating, the
specification of its main ingredients, applications, platforms, and mappings. This
separation is important to allow independent evaluation of various alternatives
of one of these system aspects while fixing the others. Often, for example, various
platform and mapping options are investigated for a fixed (set of) application(s).

92 T. Basten et al.

This paper presents a first version of the Octopus DSE toolset. It integrates
CPN Tools [13] for stochastic simulation of timed systems and Uppaal [2] for
model checking and schedule optimization. Through an illustrative running ex-
ample, we present DSEIR, its translations to CPN Tools and Uppaal, and the
envisioned use of complementary formal analysis tools in a DSE process. We also
evaluated DSEIR on two industrial printer data paths. Simulation and analysis
times in CPN Tools and Uppaal for automatically generated models are very
similar to the simulation and analysis times for handcrafted models [12].

The paper is organized as follows. We discuss related work in Section 2.
Section 3 introduces a typical DSE question, serving as our running example. Sec-
tion 4 briefly presents the toolset architecture and current realization. DSEIR
and the translations to CPN Tools and Uppaal are presented in Sections 5 and 6.
Section 7 illustrates the use of the toolset for the running DSE example, and it
summarizes the results for the two printer case studies. Section 8 concludes.

2 Related Work

There exists a plethora of academic and commercial frameworks supporting Y-
chart-based DSE of embedded systems [4,5,6,7,17,22,23,24,25,28]. Some support
formal analysis, in particular the Metropolis/Metro II [5], SHE [25], and Uppaal-
based [4,6] frameworks. Others build on simulators, like SystemC or Simulink,
and offer no or limited support for other types of analysis such as formal ver-
ification or scheduler/controler synthesis. Moreover, most frameworks provide
their own modeling and analysis methods and do not support other input and
output formats. In contrast, Octopus is open and extensible. Through its in-
termediate representation DSEIR, it provides a generic interface between input
languages and analysis tools; its modeling features can be compared to those
of an assembly language (albeit on a much higher abstraction level). Octopus
intends to combine well established formal methods in one framework, so that
every method can be used for what it is best for. Through its link with Uppaal,
it is for example possible to integrate the schedulability analyses of [4,6].

Closest to our work is the Metropolis/Metro II [5] framework. This also aims
to be extensible, and to apply formal techniques in DSE. It provides several
backends to interface with different analysis tools. The connection with the SPIN
model checker in particular can be used to verify declarative modeling constraints
expressed in linear temporal logic. The Octopus initiative is complementary to
the Metro II framework in the sense that we have integrated different analysis
tools. If Metro II is made available to the scientific community, then it should
be straightforward to connect the two to combine their strengths.

The already discussed frameworks and tools are all based on the Y-chart
approach. There is also a wide range of DSE tools and approaches for specific
classes of systems that are not (explicitly) based on the Y-chart. These provide
modeling and analysis support and/or automatically explore (parts of) a design
space. A good overview of DSE tools can be found in [9]. More recent examples
of academic tools are [15,21]. Two industrial frameworks that provide formal
modeling and analysis support for DSE are Scade [8] and SymTA/S [10].

Model-Driven Design-Space Exploration for Embedded Systems 93

Some other DSE frameworks target generic applicability while focusing on
generic search and optimization algorithms (such as evolutionary algorithms)
needed to explore the design space. Prominent examples are Pisa [3] and Opt4J
[19]. These frameworks focus on automating the dashed feedback edges in
Fig. 1. The current version of Octopus focuses on the analysis part of the Y-chart,
i.e., obtaining the performance metrics for design alternatives. It is complemen-
tary to these other frameworks. As future work, we plan to connect Octopus to
frameworks like Pisa and Opt4J to automate the exploration of those parts of
the design space that are amenable to automatic exploration.

3 Motivating Example

Fig. 2 presents a typical DSE problem. It is used as an illustrative example
throughout the paper and as a test case for the Octopus framework. The ex-
ample shows a pipeline of tasks for processing streams of data objects. The
tasks are executed on a heterogeneous multiprocessor platform with two memo-
ries and a bus-based interconnect. The example system incorporates ingredients
typically observed in today’s embedded systems. The task pipeline exhibits dy-
namic workload variations, depending on the complexity of the data object being
processed. Video decoding and encoding, graphics pipelines, and pdf processing
for printing are applications showing such data-dependent workload variations.
The example platform combines a general-purpose processor (CPU), a graphics
processor (GPU) and an FPGA (Field-Programmable Gate Array). Such a mix
is often chosen for performance and energy efficiency. An FPGA for example
is well suited for executing regular data-intensive computation kernels without
much dynamic variation. Multiple kernels can share an FPGA and execute in
parallel. A typical DSE question for a system as illustrated in Fig. 2 is to optimize
performance while minimizing the resources needed to obtain the performance.

Memory 1, M1

GPU

Memory 2, M2

A, x B, 5

C, 1

F, 5

D, 1

G,1

E, 6

CPU FPGA

y 10 15

10 20 15 10

y

2

6

20

x

1

3

10

low

normal

high

B1

B2

B3

B5
B4

freq.

20%

50%

30%

Requirements:

- maximize throughput

- minimize M1+M2

[high]

Fig. 2. A running example

The detailed specification of the example system is as follows. The applica-
tion has tasks A through G, mapped onto a platform consisting of one CPU,
one GPU, an FPGA, and two memories, all connected by a bus. Tasks process
data objects, one at a time, and need to be executed in an iterative, streaming
fashion. The DSE question is to minimize the memory sizes M1 and M2 such
that throughput in terms of data objects per time unit is maximized, and to find
a simple scheduling policy that achieves this throughput.

94 T. Basten et al.

Tasks A and G share the CPU. The order of execution can be chosen freely
and preemption is possible. Task B runs on the GPU. Tasks C through F share
the FPGA but can be executed in parallel. The annotated dashed arrows be-
tween tasks and memories specify memory requirements. The indicated amount
is claimed at the task execution start and released at the task completion. The
numbers inside tasks indicate the execution time of one execution of the task. A
task can only be executed if all required memory is available.

Task A has three execution modes with different workloads (low, normal, high,
with average occurrence frequencies of 20%, 50%, and 30%, resp.). The different
workloads come with different execution times and memory requirements as
indicated in the small table in the figure. Task F is only executed for objects
with high workloads, indicated in the figure by the ‘[high]’ precondition.

The edges between tasks indicate data dependencies. Five dependencies in-
volve the transfer of data objects between processing resources. These transfers
use the memories, as indicated by the dashed arrows B1 through B5. A data
object corresponds to 10 memory units. The memory for an object to be pro-
duced by a task execution on an output edge is needed at the execution start, to
make sure that sufficient space is available. The data object is available for the
successor task immediately upon completion of the producing task. The mem-
ory of an object being read by a task is released at the execution end, so that
the complete data object is available during the entire task execution. The data
transfers between tasks C, D, and E are handled inside the FPGA.

For simplicity, we assume that context switching time (on the CPU) and time
needed for data transfers over the bus are included in the task execution time.

We would like to leverage existing formal analysis tools to solve the sketched
DSE problem. The system combines a stochastic part, the A-B subsystem, and
a relatively static part, the B-G subsystem. Simulation tools like CPN Tools are
particularly suitable to analyze stochastic (sub)systems, whereas model checking
tools like Uppaal are well suited to optimize non-stochastic (sub)systems.

4 The Octopus Architecture and Current Realization

The Octopus toolset aims to be a (i) flexible toolset that provides (ii) formal
analysis support for DSE by (iii) leveraging existing tools, also in combina-
tion; the toolset should be applicable (iv) across application domains within
the embedded-systems domain, and it should allow (v) domain-specific modeling
abstractions. To achieve these goals, the most important architectural choice,
illustrated in Fig. 3, is to separate the main ingredients of the Y-chart approach
into separate components with well-defined interfaces, centered around an in-
termediate representation, DSEIR, specifically designed for Y-chart-based DSE.
We distinguish three groups of components: (i) editing support, for applications,
platforms and mapping; (ii) analysis support; (iii) diagnostics and visualization.

The design of DSEIR is crucial in achieving our goals. It should be sufficiently
expressive to allow the specification of design alternatives at the required level
of detail. At the same time, it should be well structured and precisely defined, to
allow model transformations to various analysis tools that preserve properties of

Model-Driven Design-Space Exploration for Embedded Systems 95

Analysis

Uppaal

Domain-specific Scenario Editors

DSEIR
(Design-Space Exploration

Intermediate Representation)

Model Transformations

Diagnostics

Octopus DSE Toolset
Architecture

CPNTools

ResVis

Printer Data Path Editor

Printer Data Path

Editor

DSEIR2CPN

DSEIR2Uppaal

CPN

TA

DSEIR

library

Excel
Performance

metrics

ResVis
Gantt charts &

Resource usage

Trace

filesMetric

files

DSEIR

model

CPNTools
Petri net simulation

Uppaal
Timed automata
model checking

Fig. 3. The Octopus toolset: Architecture (left) and current realization (right)

interest and that provide models that can be efficiently analyzed in the targeted
tools. The next two sections explain DSEIR and the transformations to CPN
Tools and Uppaal that currently have been implemented. Section 7 provides
experimental results that indicate that DSEIR achieves its goals.

The right part of Fig. 3 shows the current Octopus implementation. At the
core is a Java library implementing DSEIR. Modules DSEIR2CPN and
DSEIR2Uppaal implement the interfaces with CPN Tools and Uppaal. A domain-
specific Data Path Editor for modeling printer data paths has been developed
and will be integrated in the near future. A printer data path is the electronic
heart of a printer that does the image processing for printing, scanning, and
copying. Analysis output is visualized through Excel, for (trends in) typical per-
formance metrics such as throughput and memory usage, and ResVis, a simple
but powerful tool for visualizing Gantt charts and resource usage over time.

5 DSEIR

DSEIR is implemented as a Java library. Specifications can be entered directly in
Java or in an XML format derived from the Java implementation. We present the
main principles of DSEIR, focusing on the Java interface. The formal definition
of DSEIR and its operational semantics can be found in [26].

Application modeling: DSEIR captures the application side of the Y-chart
by means of Parameterized Timed Partial Orders (PTPOs). A PTPO is a stan-
dard task graph, extended with (i) task parameters – for simplifying large (and
even infinite), albeit structured, precedence relations, (ii) time – for specifying
minimal timing delays between tasks, and (iii) four different types of precedence
rules, for fine-grained specifications in terms of task enabling and completion
events. The expressivity of PTPOs is that of timed event-based partial orders;
every PTPO can, in principle, be unfolded to such a, possibly infinite, structure.

Fig. 4a shows the PTPO for our example. Tasks have a parameter p, iden-
tifying the objects being processed. Its range is specified in the top left. The
condition above F restricts the scope of p for F to objects with high workloads
(with size 7–9). A condition p′ = p on an edge denotes that the precedence only
exists between the same instance of the left and right tasks (the p′ is the p of

96 T. Basten et al.

a)

A(p) B(p)

C (p)

F(p)

D(p) E (p)

G(p)

1 p 2000

[s ize(p) 7]

=p

=p =p

=p

=p=p

=p

=p+1

>p

=p+1=p+1

=p+1 =p+1 =p+1

C E

C E

C E

C E

C E

C E C E

C E

C E

C E

C E

C E C EC E

b) Parameter p = dseir.addParameter("p", 1, 2000);
PTask A = dseir.getApplication().addTask("A", TRUE, p);

...
ParameterProperty size_p = p.addProbProperty("Size", 0, 9,

ParameterProperty.Type.PROBABILISTIC);
PTask F = dseir.getApplication().addTask("F", ge(cnst(size_p), cnst(7)), p);
PTask G = dseir.getApplication().addTask("G", TRUE, p);
dseir.getApplication().addEdge(A, A, EdgeType.CE,

eq(cnst(p,true),add(cnst(p),ONE)), ZERO);
dseir.getApplication().addEdge(A, B, EdgeType.CE, eq(cnst(p,true),cnst(p)), ZERO);

Fig. 4. a) PTPO for the running example; b) part of its Java DSEIR specification

the right task). The PTPO thus specifies that A(1) should be executed before
B(1), B(1) before C(1), etc. There is no direct causal relationship between e.g.
A(2) and C(1). The self-loop precedences with condition p′ = p + 1 eliminate
auto-concurrency, i.e., they ensure that no two instances of the same task can
be executed at the same time. The self-loop for task F requires condition p′ > p
because, due to the conditional execution, the range of objects it processes may
be non-consecutive. We need only the CE precedence type, specifying a causal
relation between the completion (C) of one task and the enabling (E) of another.
The other three E-C combinations are typically used for specifying task periods
and minimal durations. The example PTPO has no time constraints (all minimal
delays zero); we do not impose any delays at the application level, but expect
them at the resource level. Fig. 4b shows how the PTPO is specified in DSEIR.

Specifying a platform: A platform in DSEIR is a set of generic resources. Each
resource has a name and a capacity (an integer at least zero), and can support
preemption or not. No distinction is made between computational, storage and

a) Resource cpu = dseir.getPlatform().addResource("cpu", 1, true);
Resource mem1 = dseir.getPlatform().addResource("mem1", 200, false);
Resource mem2 = dseir.getPlatform().addResource("mem2", 200, false);

b) dseir.getMapping().addDuration(A, iF(lt(cnst(size_p),cnst(2)),cnst(1), iF(
lt(cnst(size_p),cnst(7)),cnst(3),cnst(10))));

dseir.getMapping().addUtilizationBound(A, cpu, ONE, ONE);
dseir.getMapping().addUtilizationBound(A, mem1, iF(lt(cnst(size_p),cnst(2)),cnst(12), iF(

lt(cnst(size_p),cnst(7)),cnst(16),cnst(30))), iF(lt(cnst(size_p),cnst(2)),cnst(12),
iF(lt(cnst(size_p),cnst(7)),cnst(16),cnst(30))));

c) dseir.getMapping().addHandover(BC, mem2, cnst(10));
dseir.getMapping().addHandover(BF, mem2, iF(lt(cnst(size_p),cnst(7)),cnst(0),cnst(10)));

d) dseir.getScheduler().addPriority(A, sub(cnst(1), mult(cnst(10), cnst(p))));
dseir.getScheduler().addPriority(B, sub(cnst(2), mult(cnst(10), cnst(p))));

...
dseir.getScheduler().setPreemptive(A, cpu, TRUE);

Fig. 5. The running example in DSEIR a) resources; b) duration function; c) handover;

d) scheduling

Model-Driven Design-Space Exploration for Embedded Systems 97

communications resources, nor is any connection between resources explicitly
specified. Fig. 5a shows the specification of the CPU and the two memories.
Both memories have a capacity of 200 units; the CPU has capacity 1, modeling
that it is either free or busy. The preemption flag is true only for the CPU.

Mappings: The mapping part of the Y-chart is captured in DSEIR through the
concepts of a duration function and a resource handover function.

A duration function specifies the duration of a task for any possible resource
configuration. If the duration is zero, a task execution is instantaneous once it
gets its resources; if the duration is infinite, a task makes no progress with the
given resources. The specification of a duration function is split into the spec-
ification of the minimum-required resource configuration (the unique minimal
configuration yielding finite duration), the maximum-required resource configu-
ration (the unique minimal configuration yielding the shortest possible duration)
and the actual duration for configurations in between. This can be seen as speci-
fying interval-based resource claims for every task, quantifying resource sharing.

Computational-resource claims that allow sharing are usually specified with
the minimum-required configuration of 1 (at least one resource unit is needed),
maximum-required configuration of 100 (with less than 100 resource units the
task does not run at full pace) and a linear function mapping assigning duration
for every capacity in the interval [1, 100]. If a task needs exclusive access to a
certain amount of resource, as the tasks in our example, then both the mini-
mum-required configuration and the maximum-required one should be equal to
the required amount. Storage resources are typically claimed in this way.

Fig. 5b shows the duration function for task A. The first line defines how
the duration depends on the parameter of A. The expression has no resource
information as A only claims fixed resource amounts. The next lines specify that
A needs the CPU exclusively, and that it claims 12, 16 or 30 units of Memory 1
(including the 10 units for output), depending on the current object’s size.

Often, a task reads, and subsequently deletes, data that some previous task
produced. It is, moreover, sometimes desired to have a task reserve some resource
for an upcoming task. DSEIR captures these situations by means of handover
functions. A handover function for a task specifies the amount of resources that
are kept upon its completion for some other task. Handovers are typically as-
signed to CE edges. Fig. 5c specifies the memory sharing between task B and
tasks C and F . The two lines describe that B leaves 10 units of Memory 2 to
both C and F , but the latter only when F is to be executed for the same object.

Scheduling: Schedulers are part of the platform in the Y-chart; concrete policies
for specific resources and applications are part of the mapping. Nevertheless,
DSEIR treats scheduling separately. We predefined a preemptive, event-driven,
priority-based scheduler that is activated each time a task is enabled or finishes.
The user can specify priorities and the tasks that allow their resources to be
taken away at run time (for resources that allow preemption). Fig. 5d shows an
example priority assignment for tasks A and B that gives a task processing a
lower-numbered object priority over a task processing a higher-numbered one.
The code also specifies that task A may be preempted.

98 T. Basten et al.

Extensions: The current version of DSEIR supports the three main ingredients
of the Y-chart approach. Future extensions will provide support for the DSE pro-
cess itself, allowing the user to specify experiments, properties and performance
metrics of interest, and verification and optimization objectives. We also consider
developing a language to support the compositional specification of schedulers
(e.g., in the style of [18,20]). Complex multiprocessor platforms typically contain
multiple interacting schedulers (including arbiters for e.g. buses and memories).
Structured language support for scheduling is an enabler for formal analysis of
such compositions of schedulers.

6 Model Transformations

The current toolset has interfaces to CPN Tools and Uppaal. This section in-
troduces the model transformations implemented to translate DSEIR models to
Coloured Petri Nets (CPNs) and Timed Automata (TA). Based on the semantics
of CPN [14], Uppaal TA [27], and DSEIR [26], it can be shown that both transla-
tions preserve equivalence; the models generate observation equivalent [11] timed
transition systems when considering task enabling and completion events.

6.1 Transforming DSEIR Models to Coloured Petri Nets

CPNs [14] are a well-established graphical formalism, extending classical Petri
nets with data, time, and hierarchy. CPNs have been used in many domains
(manufacturing, workflow management, distributed computing, embedded sys-
tems) and are supported by CPN Tools [13], a powerful framework for modeling,
functional verification (several techniques) and performance analysis (stochastic
discrete-event simulation). This makes CPNs very suitable for Octopus.

CPN

template

file

(basics)

CPN file

reader

CPN

Java

objects

Add PTPO and

concrete

resource info

using CPN API

CPN

Java

objects

CPN file

writer

CPN

file

(DSEIR)

Fig. 6. Translating DSEIR specifications to CPN models

The interface between the DSEIR library and CPN Tools is realized in the
DSEIR2CPN module. Any DSEIR specification can be converted. Several special
cases are recognized to optimize the translated model in terms of simulation
time. For maintainability and extensibility, the conversion uses a CPN template
file containing the basic structure of the CPN model, high-level dynamics of the
resource handler and monitors for producing simulation output. The information
from DSEIR is added to this template, generating an executable CPN model.
To allow reading and writing CPN models in Octopus, we built a Java API for
a reasonably large class of CPN models. Fig. 6 shows the conversion process.

Fig. 7 shows the generated CPN model for our example, with a manually
improved graphical layout to improve presentation. We do not go into details
of the transformation, but rather briefly explain the generated model. The SYS
CPN page shows that, at the highest level, the system consists of a PTPO (page

Model-Driven Design-Space Exploration for Embedded Systems 99

Fig. 7. CPN model obtained from the DSEIR specification of the running example

TPO), a resource handler (page RH) and the interface between them (places
TPO to RH and RH to TPO). In the picture only the translations of tasks E and F
and their connections to B, D, and G are shown. Tasks are split into an enabling
and completion event, modeled as transitions with a place in between (E e,
E c, and p EC E for task E); these transitions are connected to the appropriate
interface places to RH and from RH. Parameter-scope restrictions are modeled as
guards (only task F has a guard – predicate Size). Precedences are captured by
a place between the two corresponding transitions of these tasks (place p D c E e
for the CE precedence between D and E). A special init transition (not in the
picture) is always the first transition to fire in a model. Its main purpose is to
take a sample for any stochastic property in the PTPO (the workload in our
example). The TPO page is the only part of the CPN model that has to be
completely generated from DSEIR. The RH page is to a large extent generic for
every DSEIR model, with many parts predefined in the template. Most of the
scheduling dynamics is hidden in the CPN ML functions on the left.

6.2 Transforming DSEIR Models to Timed Automata

Timed Automata (TA) are a suitable formalism to capture at least a subset of the
systems that DSEIR can express. Powerful tools, the model checker Uppaal [2]
being one of them, are available for the analysis of TA. Uppaal’s powerful analysis
engine and relatively mature modeling support (ease of use, extensiveness of the
modeling language) make it very suitable for integration in Octopus.

The DSEIR2Uppaal module implements the translation of DSEIR to Uppaal’s
input language. It unfolds the PTPO to a concrete task partial order without
parameters, which is possible for finite parameter ranges. Each task instance is
modeled by a separate TA. The TA broadcast their start and end events via
channels. Each TA has a number of waiting locations, and the enabled, active
and done locations. Location enabled indicates that a task is schedulable for

100 T. Basten et al.

execution. Fig. 8 shows the TA for the first instance of task G of our example. It
has two waiting locations, as G must wait for tasks E and F . When G is enabled,
it can actually start if it can take all required resources, which is modeled by the
guard canClaim(). If it starts, it broadcasts its start over the started0 channel,
takes the resources via the claim() function, and resets its x cpu clock. The
transition from active to done then happens after exactly time() time units.
The TA broadcasts that it is finished, and releases the resources.

release()

canClaim()

claim(),
x_cpu[cpu_i(id)]=0

finished0!
started0!

waiting_1 active

x_cpu[cpu_i(id)]==time()
&& canFinish()

waiting_0 enabled done
x_cpu[cpu_i(id)] <= time()

finished1?finished1?

finished4? finished4?

Fig. 8. The Uppaal timed automaton specification for the first instance of task G

A resource that is not shared is modeled by an integer variable that represents
the remaining capacity and one or more clocks. These resources are claimed by
decreasing the variable (function claim() in Fig. 8), and released by increasing
the variable (function release()). If a task TA has claimed a resource, then it
can use the clock of that resource for its timing. The TA in Fig. 8 uses one of
the x cpu clocks. Shared resources are modeled by a set of TA that implement
preemption and redistribution of the resource amounts when a task starts or
stops using the resource. Preemption cannot be modeled exactly with Uppaal,
but it can be approximated with arbitrary precision [12]. Unfortunately, this
technique fragments the symbolic representation of time that Uppaal uses and
will generally have a negative effect on the performance of the analysis.

As in the CPN case, special cases of the transformation may be recognized.
If no two instances of the same task can run concurrently, it is not necessary to
unfold the PTPO. All instances of one task can then be captured in a single, it-
erative TA. This limits the number of automata in the model, thereby improving
performance and reducing the size (in terms of bytes of memory) of a state.

7 Case Studies

Our first experimental evaluations with the Octopus toolset involve the running
example used throughout this paper and two printer data path designs.

7.1 The Running Example

We use the combined strengths of CPN Tools and Uppaal, i.e., (stochastic)
simulation and schedule optimization, to solve the DSE problem of Section 3.

Problem refinement: From the expected CPU workload of 5.7 per data object
and the task E execution time of 6 time units, we conclude that 1/6 objects/time
unit is an upper bound for throughput. The B-G subsystem allows this through-
put if memory M2 is sufficiently large. Due to incidental peak workloads on the
CPU, this bound however can never be reached. It can be approached arbitrarily

Model-Driven Design-Space Exploration for Embedded Systems 101

close though with a sufficiently large M1 memory. We decide to aim for memory
sizes that allow a throughput within 2% of the upper bound. We also want a
simple scheduling policy that provides this throughput. Because of the stochas-
tic nature of the system, we are satisfied if repeated simulations show that the
desired throughput is achieved with a 99% confidence.

Initial evaluation: The DSEIR model used throughout Section 5 (without task
priorities, because the specification does not give priorities) is our initial model.
Memories M1 and M2 are both set to the sufficiently large value of 200. Input
streams, sampled from the distribution in Fig. 2, have 2000 objects.

Initial CPN Tools simulations show deadlocks. These are caused by the mem-
ory allocation strategy, and occur both on M1 and on M2. Both the A-B and
the B-G subsystems are pipelines. If the heads of those pipelines work ahead too
far and claim all the memory, tasks further down the pipeline are blocked.

The deadlocks occur independent of the memory sizes. We therefore change
the memory allocation, switching from task-based allocation to object-based al-
location. In this strategy, the first task needing a memory resource (A for M1, B
for M2) claims the maximum amount needed in the pipeline and upon termina-
tion hands over to its successor the maximum amount needed in the remaining
pipeline, releasing the rest (if any). This handover and release strategy is adopted
by all tasks in the pipeline. This strategy is deadlock-free by construction.

M2 optimization: The next steps further investigate the B-G subsystem, to
optimize M2. At the end, we then plan to reduce M1 as far as possible. We
start with a binary search using CPN Tools simulations to determine an initial
M2 bound with the object-based memory allocation. We further prioritize the
execution of tasks further down the pipeline over tasks earlier in the pipeline.
This is not necessary but it is expected to give better performance. It turns out
that an M2 size of 120 is needed for the desired throughput.

We then want to use Uppaal to investigate whether it is possible to optimize
the B-G subsystem and further reduce the M2 size by smart scheduling. For a
sufficiently large M1, we may assume that B always has data to execute. Re-
moving task A and memory M1 and conservatively (from the resource usage
perspective) assuming that F is always executed then removes all stochastic
behavior in the model, allowing the use of Uppaal. To maximize scheduling free-
dom, we remove task priorities and revert back to task-based memory allocation
(which is more efficient than object-based allocation). We use an observer TA
to monitor throughput. A binary search for M2 with the upper bound from the
simulations shows that a size of 110 is needed to allow an execution with the
optimal throughput (which is 1/6 objects/time unit for this subsystem).

Given that a throughput-optimal execution exists for an M2 size smaller than
the earlier bound of 120, we want to find simple scheduling rules that provide an
optimal throughput within this 110 bound. Not all executions are throughput-
optimal. Some, for example, still lead to deadlock; as before, tasks early in the
pipeline work too far ahead of tasks later in the pipeline. We decide to investi-
gate scheduling rules XY (k) that constrain the difference between the execution
counts of tasks Y and X by integer k. For example, GB(3) states that B(p + 3)
should not become enabled before G(p) has completed. These rules can be

102 T. Basten et al.

integrated into the PTPO via CE precedences. We investigate rules BG(k),
which limit how far tasks early in the pipeline can work ahead. We further
investigate rule DF (0), which guarantees that F becomes only enabled after
completion of D on the same object. This disallows the simultaneous execution
of memory-expensive tasks D and F , exploiting the fact that F is not in the
time-critical path of the application. Inspection of optimal schedules obtained
with Uppaal suggests that rule GF (2) would be a possible alternative for DF (0).
GF (2) has a similar effect but is less restrictive.

We combine the scheduling rules with greedy scheduling, without priorities,
that non-deterministically resolves conflicting memory claims. It turns out that
GB(3) with GF (2) is the best combination. With an M2 size of 110, it guar-
antees an optimal throughput for all executions. GB(4) and GB(5), both with
GF (2), provide good alternatives, guaranteeing an optimal throughput when M2

is 120 and 130, respectively. When using the task priorities introduced earlier for
simulations both combinations give optimal throughput also with an M2 size of
110. These alternatives are of interest because they are less sensitive to intermit-
tent stalls of task B, which may occur in the full system due to peak workloads
for task A. GF (2), which we would not have considered without analyzing the
Uppaal results, outperforms DF (0).

Final optimization: For the final optimization step, we take the full system
with object-based memory allocation for the A-B subsystem and task-based
memory allocation for the B-G subsystem. We investigate the three mentioned
combinations of scheduling rules, with greedy, priority-based scheduling (with
the mentioned priority scheme). The full system should achieve a throughput of
at most 2% below the bound of 1/6 objects/time unit. CPN Tools simulations
indicate that the GB(5)-GF (2) combination performs best. An M1 size of 110
suffices, and due to the slightly relaxed throughput constraint and the fact that
F is not always executed, the size of M2 can be further reduced to 100. Thus,
the final result of the DSE is that M1 and M2 sizes need to be 110 and 100.

Concluding remarks: The unique selling point of a model checker is its ability
to exhaustively explore the state space of a model and check whether desired
properties hold. In this case study, Uppaal has been used to prove that any
greedy scheduler in combination with various scheduling rules and memory sizes
guarantees the required throughput. Such results are hard if not impossible to
obtain with simulators. On the other hand, Uppaal cannot handle stochastic
behavior, and it does not scale to very large models. With limited input streams
for the Uppaal analyses, all simulation and analysis experiments performed for
this DSE take at most a few minutes on normal laptops. The example DSE illus-
trates that CPN Tools and Uppaal may complement each other. The automatic
translations to CPN Tools and Uppaal from common DSEIR specifications made
experimenting very easy.

7.2 Modeling Printer Data Paths

To evaluate the expressive power of DSEIR, we did two case studies involving
digital printer data paths of Océ Technologies, based in Venlo, the Netherlands.

Model-Driven Design-Space Exploration for Embedded Systems 103

Fig. 9. The platforms in the printer case studies

The left picture in Fig. 9 is an abstracted version of an FPGA-based platform.
It is used in a printer that supports use cases such as printing, copying, scan-
ning, scan-to-email, and print-from-store. The machine can be accessed locally,
through the scanner and the controller, and remotely, through the controller. The
use cases all use different components in the platform. Various tasks can execute
in parallel. Resources like the memory and the associated memory bus, as well
as the USB are shared among tasks and among print and scan jobs running in
parallel. The available USB bandwidth moreover dynamically fluctuates depend-
ing on whether it is used in one or in two directions simultaneously. Finding the
fastest schedule for a sequence of jobs on the sketched platform is non-trivial. In
[12], we modeled and analyzed this system with Uppaal. A novelty introduced in
[12] was the already mentioned discrete approximation of the dynamic USB be-
havior. For the current paper, we modeled the system in DSEIR, automatically
generated Uppaal models, and compared the results with the results obtained
from the handcrafted models used for [12]. We achieved the same results, with
similar analysis times (typically in the order of a few minutes).

The right picture in Fig. 9 shows a heterogeneous multiprocessor platform
that combines one or more CPUs (running windows) with a GPU, one or more
Harddisks (HDDs), and an FPGA. Because of heterogeneity and the use of
general CPUs, the platform is more challenging than the platform of the first case
study. We modeled the print use case for this platform in CPN Tools, to analyse
the achieved throughput in images per second under dynamically fluctuating
workloads, and to find out the appropriate buffer sizes between components. We
later modeled the print use case on this platform in DSEIR and automatically
derived a CPN model. Also in this case, we obtained matching results.

Together, the two case studies show that DSEIR is sufficiently expressive to
capture a variety of realistic systems.

8 Conclusions

We have presented our ideas about model-driven design-space exploration (DSE)
for embedded systems, and a first version of the Octopus DSE toolset based on
these ideas. This toolset is organized around an intermediate representation,
DSEIR, that is specifically designed to support DSE. It allows the independent

104 T. Basten et al.

specification of applications, platforms, and mappings in a compact and precise
way. The notion of a Parameterized Timed Partial Order for capturing applica-
tions is a novel element of DSEIR. The toolset is open and extensible. It aims
to integrate existing formal analysis and simulation tools in the DSE process, to
leverage their combined strengths. Our case studies show that combining tools is
meaningful and useful. The toolset, DSEIR in particular, provides model consis-
tency between analyses with different tools and easy experimentation. It allows
easy reuse of tools among application domains by providing an intermediate
between domain-specific modeling abstractions and formal analysis tools.

In future work, we plan to evaluate the toolset in other application domains.
The current work mostly focuses on connecting tools, and on modeling and an-
alyzing design alternatives. Future work will also focus on capturing experiment
design and on automating (parts of) the DSE process itself, among others sched-
ule optimization. We plan to develop a structured DSE method in which tools
complement each other. New analysis tools will be added when the need or op-
portunity arises. Other relevant additions are a model repository with support
for model versioning, and decision support. An interesting extension beyond the
core DSE process is code generation support. The latest information about the
Octopus toolset is available through dse.esi.nl.

References

1. Balarin, F., et al.: Hardware-Software Co-design of Embedded Systems: The POLIS

Approach. Kluwer, Dordrecht (1997)

2. Behrmann, G., et al.: Uppaal 4.0. In: Proc. QEST, pp. 125–126. IEEE, Los Alamitos

(2006)

3. Bleuler, S., et al.: PISA – A Platform and Programming Language Independent

Interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb,

K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg

(2003)

4. Brekling, A.W., et al.: Models and Formal Verification of Multiprocessor System-

on-Chips. J. Log. Algebr. Program. 77(1-2), 1–19 (2008)

5. Davare, A., et al.: A Next-Generation Design Framework for Platform-based De-

sign. In: Proc. DVCon 2007 (February 2007)

6. David, A., et al.: Model-based Framework for Schedulability Analysis Using Uppaal

4.1. In: Model-based Design for Embedded Systems, pp. 121–143. Taylor & Francis,

Abington (2009)

7. CoFluent Design. CoFluent Studio (2010), http://www.cofluentdesign.com
8. Esterel, Scade (2010),

http://www.esterel-technologies.com/products/scade-suite
9. Gries, M.: Methods for Evaluating and Covering the Design Space during Early

Design Development. Integration, the VLSI Journal 38, 131–183 (2004)

10. Hamann, A., et al.: A Framework for Modular Analysis and Exploration of Het-

erogeneous Embedded Systems. Real-Time Systems 33, 101–137 (2006)

11. Hennessy, M., Milner, R.: On Observing Nondeterminism and Concurrency. In: de

Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309.

Springer, Heidelberg (1980)

12. Igna, G., et al.: Formal Modeling and Scheduling of Data Paths of Digital Docu-

ment Printers. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215,

pp. 170–187. Springer, Heidelberg (2008)

http://www.cofluentdesign.com
http://www.esterel-technologies.com/products/scade-suite

Model-Driven Design-Space Exploration for Embedded Systems 105

13. Jensen, K., et al.: Coloured Petri Nets and CPN Tools for Modelling and Validation

of Concurrent Systems. STTT 9(3-4) (2007)

14. Jensen, K., Kristensen, L.M.: Coloured Petri Nets. Springer, Heidelberg (2009)

15. Keinert, J., et al.: SystemCoDesigner – An Automatic ESL Synthesis Approach by

Design Space Exploration and Behavioral Synthesis for Streaming Applications.

ACM Trans. Design Automation of Electronic Systems 14, Art. No. 1 (2009)

16. Kienhuis, B., et al.: An Approach for Quantitative Analysis of Application-specific

Dataflow Architectures. In: Proc. ASAP 1997, pp. 338–34. IEEE, Los Alamitos

(1997)

17. Ledeczi, A., et al.: Modeling Methodology for Integrated Simulation of Embedded

Systems. ACM Trans. Model. Comput. Simul. 13(1), 82–103 (2003)

18. Lee, I., et al.: Resources in Process Algebra. J. Log. Algebr. Progr. 72, 98–122

(2007)

19. Lukasiewycz, M., et al.: Opt4J: Meta-heuristic Optimization Framework for Java.

opt4j.sourceforge.net (2010)

20. Mousavi, M.R., et al.: PARS: A Process Algebra with Resources and Schedulers. In:

Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 134–150.

Springer, Heidelberg (2004)

21. Palermo, G., et al.: Multi-objective Design Space Exploration of Embedded Sys-

tems. J. Embedded Computing 1, 305–316 (2005)

22. Pimentel, A.D.: The Artemis Workbench for System-Level Performance Evaluation

of Embedded Systems. Int’l J. Embedded Systems 3(3), 181–196 (2008)

23. Sander, I., Jantsch, A.: System Modeling and Transformational Design Refinement

in ForSyDe. IEEE T. Comput.-Aid. Design 23(1), 17–32 (2004)

24. MLDesign Technologies. MLDesigner (2010), http://www.mldesigner.com

25. Theelen, B.D., et al.: Software/Hardware Engineering with the Parallel Object-

Oriented Specification Language. In: Proc. Memocode 2007, pp. 139–148. IEEE,

Los Alamitos (2007)

26. Trcka, N., et al.: Parameterized Timed Partial Orders with Resources: Formal Def-

inition and Semantics. Tech. Rep. ESR-2010-01, Eindhoven Univ. of Tech. (2010)

27. Uppaal Web Site, Web Help (2010), http://www.uppaal.com

28. Viskic, I., et al.: Design Exploration and Automatic Generation of MPSoC Platform

TLMs from Kahn Process Network Applications. In: Proc. LCTES, pp. 77–84.

ACM, New York (2010)

http://www.mldesigner.com
http://www.uppaal.com

Contract-Based Slicing

Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto

Departamento de Informática / CCTC

Universidade do Minho, 4710-057 Braga, Portugal

{danieladacruz,prh,jsp}@di.uminho.pt

Abstract. In the last years, the concern with the correctness of pro-

grams has been leading programmers to enrich their programs with an-

notations following the principles of design-by-contract, in order to be

able to guarantee their correct behaviour and to facilitate reuse of veri-

fied components without having to reconstruct proofs of correctness.

In this paper we adapt the idea of specification-based slicing to the

scope of (contract-based) program verification systems and behaviour

specification languages. In this direction, we introduce the notion of

contract-based slice of a program and show how any specification-based

slicing algorithm can be used as the basis for a contract-based slicing

algorithm.

1 Introduction

Program slicing plays an important role in program comprehension, enabling
engineers to focus on just a relevant part (with respect to a given criterion) of a
program. After Weiser’s pioneering work [13], many researchers have searched for
more effective or more powerful slicing techniques; since then, many application
areas have been identified, including program debugging, software maintenance,
software reuse, and so on. See [14] for a fairly recent survey of the area.

Many studies have proposed the use of slicing for software testing. In the
context of complex applications, which are by their very nature, size and archi-
tecture difficult to comprehend and test, slicing may be an invaluable help when
a certification process has to be carried out.

On the other hand a strong demand for formal methods that help program-
mers developing correct programs has been present in software engineering for
some time now. The Design by Contract (DbC) approach to software develop-
ment [12] facilitates modular verification and certified code reuse, and has be-
come a standard approach to the design of architecturally complex systems. The
contract for a component (a procedure) can be regarded as a form of enriched
software documentation that fully specifies the behavior of that component.

The development and broad adoption of annotation languages for the most
popular programming languages reinforces the importance of using DbC princi-
ples in the development of programs. These include for instance the Java Mod-
eling Language (JML) [4]; Spec# [2], a formal language for C# API contracts,
and the SPARK [1] subset of Ada.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 106–120, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Contract-Based Slicing 107

Traditional program slicing is based on control and data dependency anal-
yses, but forms of slicing based on logical assertions have also been studied
for over 10 years now, which combine slicing techniques with program verifica-
tion, to identify synergies and take advantage of good practices on both sides.
Comuzzi introduced the concept of p-slice [7], which is a slice calculated with
respect to the validity of a given postcondition Q. The idea is that all program
statements that are not required for the validity of Q upon termination are re-
moved from the program (this only makes sense if Q holds as postcondition for
the initial program). Canfora and colleagues used preconditions in their con-
ditioned slicing technique [5] as a means to specify a set of initial states for
computing a slice, resulting in a mixed form halfway between static and dy-
namic slicing. Preconditions and postconditions were combined by Chung and
colleagues [6] to calculate what they called specification-based slices. Finally, Fox
et al [9] introduced the backward conditioning technique, based on symbolic exe-
cution, to slice statements which, when executed, always lead to the negation of
a given postcondition. The goal here is to use slicing as an aid in the verification
of programs, in particular to find bugs.

In this paper we consider programs as sets of contract-annotated procedures,
and study notions of assertion-based slicing for such programs with contracts.
Specifically, we introduce the concept of contract-based slice of a program. Given
any specification-based slicing algorithm (working at the level of commands), a
contract-based slice can be calculated by slicing the code of each individual
procedure independently with respect to its contract (which we call an open
slice), or taking into consideration the calling contexts of each procedure inside
a program (which we call a closed slice). We study both notions and then go on
to introduce a more general notion of contract-based slice, which encompasses
both open and closed slices as extreme cases. We remark that although the
language used in this paper to illustrate our ideas is very simple, the principles
and algorithms presented here scale up to realistic languages.

Structure of the Paper. Section 2 introduces a simple imperative language with
annotated mutually recursive procedures, and sets up a verification conditions
generator (VCGen) for that language. Section 3 then formalizes the notion of
specification-based slice for the language. Sections 4 and 5 introduce contract-
based slicing in their more specific (open and closed) and general forms respec-
tively; section 6 then shows how a contract-based slicing algorithm (working
at the inter-precedural level) can be synthesized from any desired specification-
based slicing algorithm (working at the intra-precedural level). Section 7 illus-
trates our ideas through an example, and Section 8 concludes the paper.

2 Foundations: Verification Conditions and
Specification-Based Slicing

To illustrate our ideas we use a simple programming language. Its syntax is
defined in Figure 1, where x and p range over sets of variables and procedure

108 D. da Cruz, P. Rangel Henriques, and J. Sousa Pinto

Exp[int] � e ::= . . . | −1 | 0 | 1 | . . . | x | x˜ | result | −e | e + e | e − e | e ∗ e
| e div e | e mod e

Exp[bool] � b ::= true | false | e == e | e < e | e <= e | e > e | e >= e | e != e
| b && b | b ‖ b | ! b

Comm � C ::= skip | C ; C | x := e | if b then C else C | while b do {A}C | call p

Assert � A ::= true | false | e == e | e < e | e <= e | e > e | e >= e | e != e
| ! A | A && A | A ‖A | A → A | Forallx. A | Existsx. A

Proc � Φ ::= pre A post A proc p = C

C wp(C, Q) VC(C, Q)

skip Q ∅
C1 ; C2 wp(C1, wp(C2, Q)) VC(C1, wp(C2, Q))

∪ VC(C2, Q)

x := e Q[e/x] ∅
if b then Ct else Cf (b → wp(Ct, Q)) && (! b → wp(Cf , Q)) VC(Ct, Q) ∪ VC(Cf , Q)

while b do {I}C I {(I && b) → wp(C, I),
(I && ! b) → Q}
∪ VC(C, I)

call p Forallxf . ∅`
pre(p) → post(p)

ˆ
x/x ,̃ xf/x

˜´

→ Q[xf/x]

with x = N (post(p)) ∪N (Q)

– The operator N (·) returns a sequence of the variables occurring free in its
argument assertion.

– Given a sequence of variables x = x1, . . . , xn, we let xf = x1f , . . . , xnf and
x˜ = x1 ,̃ . . . , xn˜

– The expression t[e/x], with x = x1, . . . , xn and e = e1, . . . , en denotes the
parallel substitution t[e1/x1, . . . , en/xn]

Fig. 1. Abstract syntax of programming language with annotations and VCGen rules

names respectively. A program is a non-empty set of mutually recursive pro-
cedure definitions that share a set of global variables (note that this is also
an appropriate model for classes in an object-oriented language, whose meth-
ods operate on instance attributes). Operationally, an entry point would have
to be defined for each such program, but that is not important for our current
purpose. For the sake of simplicity we will consider only parameterless procedures

Contract-Based Slicing 109

that work exclusively on global variables, used for input and output, but the
ideas presented here can be easily adapted to cope with parameters passed by
value or reference, as well as return values.

Each procedure consists of a body of code, annotated with a precondition and
a postcondition that form the procedure’s specification, or contract. The body
may additionally be annotated with loop invariants. Occurrences of variables in
the precondition and postcondition of a procedure refer to their values in the
pre-state and post-state of execution of the procedure respectively; furthermore
the postcondition may use the syntax x̃ to refer to the value of variable x in the
pre-state (this is inspired by the SPARK syntax). For each program variable x,
x̃ is a special variable that can only occur in postconditions of procedures; the
use of auxiliary variables (that occur in assertions only, not in code) is forbidden.

C-like syntax is used for expressions; the language of annotated assertions
(invariants and contracts) extends boolean expressions with first-order quan-
tification. Note that defining the syntax of assertions as a superset of boolean
expressions is customary in specification languages based on contracts, as used
by verification toolsets for realistic programming languages such as the SPARK
toolset [1]. This clearly facilitates the task of programmers when annotating code
with contracts.

A program is well-defined if all procedures adhere to the above principles,
and moreover all defined procedure names are unique and the program is closed
with respect to procedure invocation. We will write P(Π) for the set of names
of procedures defined in Π . The operators pre(·), post(·), and body(·) return
a routine’s precondition, postcondition, and body command, respectively, i.e.
given the procedure definition pre P post Q proc p = C with p ∈ P(Π), one
has preΠ(p) = P , postΠ(p) = Q, and bodyΠ(p) = C. The program name will
be omitted when clear from context.

We adopt the common assumptions of modern program verification systems
based on the use of a verification conditions generator (VCGen for short) that
reads in a piece of code together with a specification, and produces a set of
first-order proof obligations (verification conditions) whose validity implies the
partial correctness of the code with respect to its specification. Recall that given
a command C and assertions P and Q, the Hoare triple {P} C {Q} is valid if
Q holds after execution of C terminates, starting from an initial state in which
P is true [10]. A set of first-order conditions Verif({P} C {Q}) whose validity is
sufficient for this is given as

Verif({P} C {Q}) = {P → wp(C, Q)} ∪ VC(C, Q)

Where the functions wp(·, ·) and VC(·, ·) are defined in Figure 1. The first con-
dition states that P is stronger than the weakest precondition that grants the
validity of postcondition Q, and the remaining verification conditions ensure
the adequacy of certain preconditions. For instance, the precondition of a loop

110 D. da Cruz, P. Rangel Henriques, and J. Sousa Pinto

command can only be considered to be equal to the annotated invariant if this
is indeed an invariant (whose preservation is ensured by a verification condition)
and moreover it is sufficient to establish the truth of the required postcondition
upon termination of the loop.

Definition 1 (Verif. Conditions of a Program). For a program Π consist-
ing of the set of procedures P(Π), the set of verification conditions Verif(Π)
is

Verif(Π) =
⋃

p∈P(Π) Verif({pre(p) && x == x˜}body(p) {post(p)})

Note pre(p) is strengthened to allow for the use of the˜notation in postconditions.
Let |= A denote the validity of assertion A, and |= S, with S a set of assertions,
the validity of all A ∈ S. This VCGen algorithm can be shown to be sound with
respect to an operational semantics for the language, i.e. if |= Verif(Π) then for
every p ∈ P(Π) the triple {pre(p)} call p {post(p)} is valid.

The intra-procedural (command-level) aspects of the VCGen are standard, but
the inter-procedural aspects (program-level) are less well-known. We make the
following remarks.

– Although this is somewhat hidden (unlike in the underlying program logic),
the soundness of the VCGen is based on a mutual recursion principle, i.e. the
proof of correctness of each routine assumes the correctness of all the routines
in the program, including itself. If all verification conditions are valid, cor-
rectness is established simultaneously for the entire set of procedures in the
program. This is the fundamental principle behind design-by-contract.

– The weakest precondition rule for procedure call takes care of what is usually
known as the adaptation between the procedure’s contract and the postcondi-
tion required in the present context. The difficulty of reasoning about proce-
dure calls has to do with the need to refer, in a contract’s postcondition, to the
values that some variables had in the pre-state. We adapt to our context the
rule proposed by Kleymann [11] as an extension to Hoare logic, and refer the
reader to that paper for a historical discussion of approaches to adaptation.

Lemma 1. Let |= Q1 → Q2 with Q1, Q2 any two assertions. Then |= wp(C, Q1)
→ wp(C, Q2) and moreover |= VC(C, Q1) implies |= VC(C, Q2).

3 Specification-Based Slicing

This section reviews the basic notions of specification-based slicing at the com-
mand level.

Informally, a command C′ is a specification-based slice of C if it is a portion of
C (a syntactic notion) and moreover C can be refined to C′ with respect to a given
specification (a semantic notion). We now give the formal definitions.

Contract-Based Slicing 111

skip � C

C1 � C2

C1 ; C � C2 ; C

C1 � C2

C ; C1 � C ; C2

C1 � C2

if b then C1 else C � if b then C2 else C

C1 � C2

if b then C else C1 � if b then C else C2

C1 � C2

while b do {I}C1 � while b do {I}C2

Fig. 2. Definition of portion-of relation

Definition 2 (Portion-of relation). The · � · relation is the transitive and re-
flexive closure of the binary relation generated by the set of rules given in Figure 2.

Definition 3 (Specification-based slice [6]). Let C, C′ be commands and P ,
Q assertions such that |= Verif({P} C {Q}) holds, thus C is correct with respect to
the specification (P, Q). C′ is a slice of C with respect to (P, Q), written C′�(P,Q)C,
if C′ � C and |= Verif({P} C′ {Q}).

A specification-based slicing algorithm is any function slice that takes a command
and a specification, and produces a slice of the command w.r.t. the specification,
i.e. slice(C, P, Q) �(P,Q) C.

Given program C correct with respect to the specification (P, Q), one wants to
be able to identify portions of C that are still correct w.r.t (P, Q), i.e., portions
in which some irrelevant statements (in the sense that they are not required for
the program to be correct) are removed. Naturally, many such slices may exist, as
well as methods for calculating them. These methods differ with respect to efficacy
(being able to precisely identify all removable commands and effectively removing
the highest possible number of such commands) and efficiency (how the execution
time of the slicing algorithm varies with the number of lines of code). In [3] we
explain the issues involved in detail, survey the existing algorithms, and propose
improvements over those algorithms, concerning both precision and efficiency.

We remark that in practice one would not want to slice a block of code C with
respect to its own specification (P, Q), unless maybe to confirm that it does not
contain unnecessary code; but consider the situation in which one is asked to ful-
fill a weaker specification (P ′, Q′), i.e. |= P ′ → P and |= Q → Q′. Then the
code C can be reused, since it is necessarily also correct with respect to (P ′, Q′),
but it may contain code that, while being necessary to satisfy (P, Q), is irrelevant
with respect to satisfying (P ′, Q′). Thus in such a specialization reuse context,
it makes sense to slice C with respect to the new specification to eliminate the
unnecessary code.

112 D. da Cruz, P. Rangel Henriques, and J. Sousa Pinto

A Specification-Based Slicing Algorithm

We have designed a specification-based slicing algorithm that improves on previ-
ous algorithms with respect to the number of statements removed from the pro-
grams. In fact we show in [3] that this algorithm produces the smallest slice of a
program relative to a given specification (modulo an oracle for first-order proof
obligations). The algorithm works on a labelled control-flow graph, whose edges
are labelled with a pair of assertions corresponding to the strongest postcondition
(calculated by propagating the specified precondition forward) and the weakest
precondition (calculated by propagating the specified postcondition backward) at
the program point represented by that edge. The graph is then extended by adding
additional edges corresponding to subprograms S such that the strongest postcon-
dition at the point immediately before S is stronger than the weakest precondition
immediately after S (this implicative formula can be checked by an external proof
tool). The resulting slice graph contains as subgraphs representations (in the form
of labelled CFGs) of all the specification-based slices of the initial program with
respect to its specification, and the smallest such slice can be calculated using
standard graph algorithms.

Figure 3 shows an example slice graph for a program. Sliceable sequences are
signaled by edges (and possibly skip nodes) added to the initial labeled CFG
(shown as thick lines). Our online laboratory [8] implements this algorithm. The
laboratory also allows for the visualization of these labelled control-flow graphs,
which are useful as an aid in debugging, when the verification of a program
fails.

4 Open / Closed Contract-Based Slicing

How can specification-based slicing be applied in the context of a multi-procedure
program? Since a program is a set of procedures carrying their own contract spec-
ifications, it makes sense to investigate how the contract information can be used
to produce useful slices at the level of individual procedures, and globally at the
level of programs. A natural approach consists in simply slicing each procedure
based on its own contract information. The idea is to eliminate all spurious code
that may be present and does not contribute to that procedure’s contract.

Definition 4 (Open Contract-based Slice). Given programs Π, Π ′ such that
|= Verif(Π) and P(Π) = P(Π ′), we say that Π ′ is an open contract-based slice of
Π, written Π ′�oΠ, if for every procedurep ∈ P(Π) the following holds: preΠ′(p) =
preΠ(p); postΠ′ (p)= postΠ(p); and

bodyΠ′(p) �(pre(p) && x==x ,̃post(p)) bodyΠ(p)

i.e. the body of each routine in Π ′ is a specification-based slice (with respect to its
own annotated contract) of that routine in Π.

Contract-Based Slicing 113

� �

1 i f (y > 0) then x := 100 ; x := x+50; x := x−100

2 else x := x−150; x := x+100; x := x+100
� �

Fig. 3. Example program and its slice graph w.r.t. specification (y > 10, x ≥ 0)

114 D. da Cruz, P. Rangel Henriques, and J. Sousa Pinto

As expected, open contract-based slicing produces correct programs:

Proposition 1. If |= Verif(Π) and Π ′ �o Π then |= Verif(Π ′).

Given some specification-based slicing algorithm slice(·, ·, ·), program Π , and pro-
cedure p ∈ P(Π), it is straightforward to lift it to an algorithm that calculates
contract-based slices. Let

procsliceo(p) .= pre (preΠ(p))
post (postΠ(p)
proc p = slice(bodyΠ(p),preΠ(p),postΠ(p))

Then progsliceo(Π) .= { procsliceo(p) | p ∈ P(Π) }.

Proposition 2. For any program Π such that |= Verif(Π), progsliceo(Π) �o Π.

As was the case with specification-based slicing, one may want to calculate open
contract-based slices just to make sure that a program (already proved correct)
does not contain irrelevant code. This notion of slice of a program assumes that all
the procedures are public and may be externally invoked – the program is open.
But consider now the opposite case of a program whose procedures are only in-
voked by other procedures in the same program, which we thus call a closed pro-
gram (this makes even more sense if one substitutes class for program and method
for procedure in this reasoning). In this situation, since the set of callers of each
procedure is known in advance (it is a subset of the procedures in the program),
it is possible that weakening the procedures’ contracts may still result in a correct
program, as long as the assumptions required by each procedure call are all still
respected. In other words the procedures may be doing more work than is actually
required. Such a program may then be sliced in a more aggressive way, defined as
follows.

Definition 5 (ClosedContract-based Slice).Let Π, Π ′ be programs such that
|= Verif(Π) and P(Π) = P(Π ′). Π ′ is a closed contract-based slice of Π, written
Π ′ �c Π, if |= Verif(Π ′) and additionally for every procedure p ∈ P(Π)

1. |= preΠ′(p) → preΠ(p);
2. |= postΠ(p) → postΠ′(p); and
3. bodyΠ′(p) �(preΠ′ (p) && x==x ,̃postΠ′ (p)) bodyΠ(p)

Note that in general weakening the contracts of some procedures in a correct pro-
gram may result in an incorrect program, since the correctness of each procedure
may depend on the assumed correctness of other procedures; thus the required
condition |= Verif(Π ′) in the definition of closed contract-based slice.

5 Contract-Based Slicing: General Case

Clearly the notion of closed contract-based slicing admits trivial solutions: since
all contracts can be weakened, any precondition (resp. postcondition) can be set

Contract-Based Slicing 115

to false (resp. true), and thus any procedure body can be sliced to skip. A more
interesting and realistic notion is obtained by fixing a subset of procedures of the
program, whose contractsmust be preserved. All other contracts may be weakened
as long as the resulting program is still correct.

Definition 6 (Contract-based Slice). Let Π, Π ′ be programs such that
P(Π) = P(Π ′) and S ⊆ P(Π); Π ′ is a contract-based slice of Π, written Π ′�S Π,
if the following all hold:

1. |= Verif(Π ′).
2. for every procedure p ∈ S,

– preΠ′ (p) = preΠ(p) and postΠ′(p) = postΠ(p);
– bodyΠ′(p) �(pre(p) && x==x ,̃post(p)) bodyΠ(p)

3. for every procedure p ∈ P(Π) \ S,
– |= preΠ′ (p) → preΠ(p);
– |= postΠ(p) → postΠ′ (p); and
– bodyΠ′(p) �(preΠ′ (p) && x==x ,̃postΠ′ (p)) bodyΠ(p)

This notion is very adequate to model slicing when applied to code reuse. When
program (or class) Π is reused, some of its procedures may not need to be pub-
lic, since they will not be externally invoked (but they may be invoked by other,
public procedures in the program). In this case the contracts of the private proce-
dures may be weakened according to their usage inside the program, i.e. the actual
required specification for each private procedure may be calculated from the set
of internal calls, since it is guaranteed that no external calls will be made to pri-
vate procedures. One may then want to reflect this in the annotated contracts,
in order to produce a contract-based slice stripped of the redundant code. Pri-
vate procedures whose contracts are not required internally may indeed see their
bodies sliced to skip.

Note that even for closed programs this notion makes more sense. Since its pro-
cedures are not invoked externally from other programs’ procedures, every closed
program will naturally have a main procedure to be executed as an entry point,
whose contract is fixed (cannot be weakened).

Finally, it is easy to see that both open and closed contract-based slicing are
special cases of Definiton 6: Π ′ �o Π ⇔ Π ′ �P(Π) Π and Π ′ �c Π ⇔ Π ′ �∅ Π .

6 A Contract-Based Slicing Algorithm

Again any specification-based slicing algorithm (at the command level) can be
used for calculating contract-based slices according to Definition 6. A contract-
based slice of program Π can be calculated by analyzing Π in order to obtain
information about the actual preconditions and postconditions that are required
of each procedure call, and merging this information together. Specifically, we
may calculate for each procedure the disjunction of all required preconditions and
the conjunction of all required postconditions; this potentially results in a weaker

116 D. da Cruz, P. Rangel Henriques, and J. Sousa Pinto

contract with respect to the annotated contract of the procedure, which can thus
be used to slice that procedure.

To implement this idea for a given program Π we consider a preconditions table
T0 that associates to each procedure p ∈ P(Π) a precondition, initialized with
T0[p] = false, and a postconditions table T that associates to each procedure
p ∈ P(Π) a postcondition, initialized with T [p] = true. The algorithm executes
the following steps to produce progsliceo(Π).

1. Calculate Verif(Π) and while doing so, for every invocation of the form
wp(call p, Q) set T [p] := T [p] && Q.

2. An alternative set of verification conditions based on strongest postconditions
can be defined by rules that are fairly symmetric to those given in Figure 1
(omitted here). We calculate this set, and while doing so, for every invocation
of the form sp(call p, P) set T0[p] := T0[p] ‖ P .

3. For p ∈ P(Π)\S let

procsliceS(p) .= pre T0[p]
post T [p]
proc p = slice(body(p), T0[p], T [p])

4. Then progsliceS(Π) = { procsliceo(p) |p ∈ S }∪{procsliceS(p) | p ∈ P(Π)\S}

Proposition 3. For any program Π such that |= Verif(Π), progsliceS(Π) �S Π.

Note that step 1 (or 2) can be skipped, in which case T [p] (resp. T0[p]) should
be set to post(p) (resp. pre(p)), and slicing will be less aggressive, based on
preconditions or postconditions only. Section 7 illustrates the application of this
contract-based slicing algorithm (using only postconditions, i.e. with step 2 of the
algorithm skipped) to a program containing a procedure p that calculates a num-
ber of different outputs given an input array; this program is being reused in a
context in which no external calls are made to p, and two internal procedures do
call p, but some of the information computed by p is not required by either of the
calls. Then maybe some statements of p can be sliced off.

7 An Illustrative Example

In this section we intend to illustrate the concept of contract-based slice through an
example. We have implemented a prototype program slicer1 for a subset of Spec#,
which includes many different specification-based slicing algorithms, and which
we have used to calculate the slices shown below. Note that in an object-oriented
language if we substitute the notions of class, method, and instance attribute for
those of program, procedure, and global variables of our previous imperative set-
ting, the ideas introduced earlier essentially apply without modifications.

1 Available through a web-based interface from

http://gamaepl.di.uminho.pt/gamaslicer

Contract-Based Slicing 117

� �

1 int summ, sumEven , productum , maximum, minimum ;

2 public int [] ! a = new int [1 0 0] ;

3 public int l ength = 100 ;

4

5 public void OpersArrays ()

6 ensure s summ == sum{ int i in (0 : l ength) ; a [i] } ;

7 ensure s sumEven ==

8 sum{ int i in (0 : l ength) ; (((a [i] % 2)== 0)? a [i] : 0) } ;

9 ensure s productum == product{ int i in (0 : l ength) ; a [i] } ;

10 ensure s maximum == max{ int i in (0 : l ength) ; a [i] } ;

11 ensure s minimum == min{ int i in (0 : l ength) ; a [i] } ;

12 {
13 summ = 0 ; sumEven = 0 ; productum = 0 ;

14 maximum = Int32 . MinValue ; minimum = Int32 . MaxValue ;

15 for (int n = 0 ; n < l ength ; n++)

16 i n va r i an t n <= length ;

17 i n va r i an t summ == sum{ int i in (0 : n) ; a [i] } ;

18 i n va r i an t sumEven ==

19 sum{ int i in (0 : n) ; (((a [i] % 2)== 0)? a [i] : 0) } ;

20 i n va r i an t productum == product { int i in (0 : n) ; a [i] } ;

21 i n va r i an t maximum == max{ int i in (0 : n) ; a [i] } ;

22 i n va r i an t minimum == min{ int i in (0 : n) ; a [i] } ;

23 {
24 summ += a [n] ;

25 productum ∗= a [n] ;

26 i f ((a [n] % 2) == 0) { sumEven += a [n] ; }
27 i f (a [n] > maximum) { maximum = a [n] ; }
28 i f (a [n] < minimum) { minimum = a [n] ; }
29 }
30 }

� �

Listing 1. Annotated method OpersArrays

Listings 1 and 2 contain extracts from a class Π containing an annotated
method, called OpersArrays, which computes several array operations: the sum
of all elements, the sum of all the even elements, the iterated product, and the
maximum and minimum. Π contains two other methods Average and Multiply;
the former computes the average of the elements belonging to the array, and the
latter multiplies the minimum of the array by a parameter y. The code contains
appropriate contracts for all methods, as well as loop invariants. All 3 methods
are correct with respect to their contracts – we assume this has been established
beforehand.

Moreover suppose that OpersArrays is a private method, i.e. in a given context
it is known that it will not be invoked externally. As can be observed in
Listing 3, the method Average calls the method OpersArrays and then uses the
calculated value of the variable summ, and Multiply calls OpersArrays and then
uses the value of variable minimum. Then it makes sense to calculate a contract-
based slice of this class with S = {Average, Multiply}, which will result in the
method OpersArrays being stripped of the irrelevant code.

118 D. da Cruz, P. Rangel Henriques, and J. Sousa Pinto

� �

1 public double Average ()

2 ensure s r e s u l t == (sum{ int i in (0 : l ength) ; a [i]}) / l ength ;

3 {
4 double average ;

5 OpersArrays () ;

6 average = summ / length ;

7 return average ;

8 }
9

10 public int Mult ip ly (int y)

11 r e qu i r e s y >= 0 ;

12 ensure s r e s u l t == (min{ int i in (0 : l ength) ; a [i]})∗ y ;

13 {
14 OpersArrays () ;

15 int x = minimum , q = 0 , i =0;

16 while (i <y)

17 i n va r i an t 0 <= i <= y ;

18 i n va r i an t q == (i ∗ x) ;

19 {
20 q = q + x ;

21 i= i +1;

22 }
23 return q ;

24 }
� �

Listing 2. Annotated method Average and Multiply

In order to calculate progsliceS(Π), T is first initialized as

T [OpersArrays] := true

After performing the first step of the algorithm we set

T [OpersArrays] := true && Q1 && Q2

where (calculations omitted)

Q1 =
summ

length
==

sum{int i in(0 : length); a[i]}
length

Q2 =0 ≤ i ≤ y && q == i × minimum

So, as the component OpersArrays is called twice in the context of the two previ-
ous components, the result is the weaker postcondition true && Q1 && Q2. The
final step in the calculation of the slice using table T gives us

progslicec(Π) .= {procsliceo(Average), procsliceo(Multiply),
procsliceS(OpersArrays)}

Contract-Based Slicing 119

� �

1 public void OpersArrays ()

2 ensure s summ == sum{ int i in (0 : l ength) ; a [i] } ;

3 ensure s minimum == min{ int i in (0 : l ength) ; a [i] } ;

4 {
5 summ = 0 ;

6 minimum = Int32 . MaxValue ;

7 for (int n = 0 ; n < l ength ; n++)

8 i n va r i an t n <= length ;

9 i n va r i an t summ == sum{ int i in (0 : n) ; a [i] } ;

10 i n va r i an t minimum == min{ int i in (0 : n) ; a [i] } ;

11 {
12 summ += a [n] ;

13 i f (a [n] < minimum) { minimum = a [n] ; }
14 }
15 }

� �

Listing 3. Sliced method OpersArrays

Calculating slice(body(OpersArrays),pre(OpersArrays), T [OpersArrays]) re-
sults in cutting the statements present in lines 14, 27, 28 and 29 (after removing
from the invariant the predicates in lines 20–23, which contain only occurrences of
variables that do not occur in T [OpersArrays]). The final sliced method is shown
below. The other two methods remain unchanged.

8 Conclusion

We introduced notions of slicing for programs developed according to design-by-
contract principles. The motivation was to bring to the inter-procedural level the
power of specification-based slicing, which we believe has great application poten-
tial and will surely become more popular in coming years, profiting from advances
in verification and automated proof technology. We believe that the ideas pro-
posed can be useful in the traditional fields of application of slicing, such as source
code analysis (to help in debugging or program comprehension); program main-
tenance (when more precision is required); certification of programs constructed
by reusing annotated components; and the specialization of programs composed
of fully annotated and certified procedures.

This work sets up a theoretical framework for slicing multi-procedure, contract-
annotated programs, and is part of a bigger effort that includes a fundamental
investigation of command-level (intra-procedural) specification-based slicing al-
gorithms [3], as well as the development of an online laboratory for assertion-based
slicing [8] that interacts with external automatic theorem provers for discharging
slicing conditions. Our approach can be applied to program comprehension (as it
makes easier to understand the process of slicing a program with contracts) and
program reuse (it can be seen as a lever to integrate annotated components with
other programs in an easier manner).

120 D. da Cruz, P. Rangel Henriques, and J. Sousa Pinto

As future work we intend to continue with the development of GamaSlicer in
order to perform tests with more examples as well as to confirm that our approach
scales up.

Acknowledgment. This work was partially supported by projects RESCUE (FCT
contract PTDC / EIA / 65862 / 2006) and CROSS (FCT contract PTDC / EIA-
CCO / 108995 / 2008).

References

1. Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Security,

1st edn. Addison Wesley, Reading (March 2003)

2. Barnett, M., Rustan, K., Leino, M., Schulte, W.: The Spec# programming system:

An overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T.

(eds.) CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

3. Barros, J., da Cruz, D., Henriques, P.R., Pinto, J.S.: Assertion-based Slicing and

Slice Graphs. In: Fiadeiro, J.L., Gnesi, S. (eds.) Proceedings of the 8th IEEE Inter-

national Conference on Software Engineering and Formal Methods (SEFM 2010)

(2010)

4. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, K., Poll,

E.: An overview of jml tools and applications (2003)

5. Canfora, G., Cimitile, A., De Lucia, A.: Conditioned program slicing. Information

and Software Technology 40(11-12), 595–608 (1998)

6. Chung, I.S., Lee, W.K., Yoon, G.S., Kwon, Y.R.: Program slicing based on specifi-

cation. In: SAC 2001: Proceedings of the 2001 ACM Symposium on Applied Com-

puting, pp. 605–609. ACM, New York (2001)

7. Comuzzi, J.J., Hart, J.M.: Program slicing using weakest preconditions. In: Gaudel,

M.-C., Woodcock, J.C.P. (eds.) FME 1996. LNCS, vol. 1051, pp. 557–575. Springer,

Heidelberg (1996)

8. da Cruz, D., Henriques, P.R., Pinto, J.S.: Gamaslicer: an Online Laboratory for Pro-

gram Verification and Analysis. In: Proceedings of the 10th Workshop on Language

Descriptions Tools and Applications, LDTA 2010 (2010)

9. Fox, C., Danicic, S., Harman, M., Hierons, R.M.: Backward conditioning: A new

program specialisation technique and its application to program comprehension. In:

IWPC, pp. 89–97. IEEE Computer Society, Los Alamitos (2001)

10. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of

the ACM 12, 576–580 (1969)

11. Kleymann, T.: Hoare logic and auxiliary variables. Formal Aspects of Comput-

ing 11(5), 541–566 (1999)

12. Meyer, B.: Applying ”design by contract”. Computer 25(10), 40–51 (1992)

13. Weiser, M.: Program slicing. In: ICSE 1981: Proceedings of the 5th International

Conference on Software Engineering, Piscataway, NJ, USA, pp. 439–449. IEEE

Press, Los Alamitos (1981)

14. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.

SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)

Special Track on Worst Case Traversal Time
(WCTT)

Anne Bouillard1, Marc Boyer2, Samarjit Chakraborty3, Steven Martin4,
Jean-Luc Scharbarg5, Giovanni Stea6, and Eric Thierry7

1 ENS Cachan, France
2 ONERA, France

3 Technische Universität München, Germany
4 LRI, France
5 IRIT, France

6 University of Pisa, Italy
7 ENS Lyon, France

Real-time systems are increasingly becoming communication intensive, where
different functions are implemented using distributed real-time tasks mapped
onto different physical systems (sensors, processors, and actuators). To ensure
global correctness, one has to ensure the correctness of each task, schedulability
of the tasks on each system, and finally also bound the communication time, i.e.,
the worst case (network) traversal time (WCTT).

Moreover, as systems grow bigger, connecting dozens to hundreds of systems,
managing thousands of traffic flows, with each one interacting with the others, is
becoming a challenging problem. This special track is devoted to formal methods
on worst case traversal time in networks, with a special interest on scalable
methods and on handling multi-hop networks.

Our conviction is that WCTT is an emerging area, made up of people from
different communities, using different methods, and publishing in different con-
ferences and/or journals.

People from several active research groups in this domain were contacted, and
almost all of them have submitted a paper, despite the very short deadline. This
reactivity confirms the desire of a community to find places to meet and discuss.

The aim of this track is to be the first meeting dedicated to WCTT, allowing
us to capture a snapshot of this area, and also for fostering discussions on how
this area should evolve.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, p. 121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The PEGASE Project: Precise and Scalable
Temporal Analysis for Aerospace

Communication Systems with Network Calculus�

Marc Boyer1, Nicolas Navet2, Xavier Olive3, and Eric Thierry4

1 ONERA, 2 av. E. Belin 31055 Tououse Cedex 4, France

Marc.Boyer@onera.fr
2 INRIA / RealTime-at-Work (RTaW), 615 rue du Jardin Botanique,

54600 Villers-lès-Nancy, France

Nicolas.Navet@realtimeatwork.com
3 Thales Alenia Space, Research Department, 100 bd du Midi, 06156 Cannes La

Bocca Cedex

xavier.olive@thalesaleniaspace.com
4 LIP, ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France

Eric.Thierry@ens-lyon.fr

Abstract. With the increase of critical data exchanges in embedded

real-time systems, the computation of tight upper bounds on network

traversal times is becoming a crucial industrial need especially in safety

critical systems. To address this need, the French project PEGASE group-

ing academics and industrial partners from the aerospace field has been

undertaken to improve some key aspects of the Network Calculus and

its implementation.

1 Introduction

Critical real-time embedded systems (cars, aircrafts, spacecrafts) are nowadays
made up of multiple computers communicating with each other. The real-time
constraints typically associated with local applicative tasks now extend to the
communication networks between sensors/actuators and computers, and be-
tween the computers themselves. Once a communication medium is shared, the
time between sending and receiving a message depends not only on the techno-
logical constraints, but mainly on the interactions between the different streams
of data sharing the media.

It is therefore necessary to have techniques to guarantee, in addition to local
scheduling constraints, the worst case traversal time of the network (WCTT)
and thus ensure a correct global real-time behaviour of the distributed applica-
tions/functions. If the temporal evaluation techniques used are too pessimistic,
it leads to an over-dimensioning of the network which involves extra cost, weight
and power consumption. In addition to being precise, these verification tech-
niques must be scalable. For instance, in a modern aircraft, thousands of data
� This work has been partialy funded by French ANR agency under project id ANR-

09-SEGI-009.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 122–136, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The PEGASE Project 123

streams share the network backbone and therefore the complexities of the algo-
rithm should be at most polynomial.

In the French PEGASE project, we aim to improve the theory of Network
Calculus [1,2], which has already been used to certify the AFDX network of the
A380, and its algorithmic implementation in order to meet the scalability and
tigthness requirements. To assess the gains achieved and the practicability of
the software tool in an industrial context, 3 case-studies have been undertaken
respectively on AFDX [3], SpaceWire [4] and a NoC.

Section 2 presents the industrial context of embedded real-time networks.
Section 3 provides a recap of the main techniques that can be used to compute
worst-case traversal times. The case-studies of the project are described in sec-
tion 4. The last two sections of the paper gives an overview of the first results
of the project: some theoretical results in section 5, and the current version of
the tool in section 6.

2 Industrial Context

2.1 Wide-Scale Communicating Systems

As described in the introduction, modern real-time critical embedded systems
are composed of dozens to hundreds of electronic equipments (including com-
puters, smart sensors...), communicating through thousands of data flows. To
guarantee the correctness of the system’s functions, real-time behavior of each
application on each equipment must be ensured (with schedulability analysis),
but the temporal validity of the data consumed (their “freshness”) must also be
managed, that is to say, the delivery of the data must be guaranteed and the
delay introduced by the network must be bounded.

2.2 Shared Resources: Homogeneous vs. Heterogeneous Flows

To reduce weight and integration costs, networks are shared resources. But this
sharing could have different degrees. In a first industrial step, networks are shared
by homogeneous flows: one network for control command flows (small data, small
bandwidth, need of low latency), and another for mission data flows (large images
in spacecraft without real time constraints but guarantee of delivery is needed).
In a second step, the network can be shared by heterogeneous flows (control
command and mission data). One can also distinguish critical and non critical
flows (control command versus entertainment in aircraft).

Mixing critical and non-critical, control/command and mission-specific streams
may lead to significant gains. It is the opportunity to have a single on-board
data network providing thus some significant savings. Besides, the margins can
be factorized, reducing de-facto the need of over-sizing the system to fulfill the
dependability requirements. Some other elements speak also in favor of this het-
erogeneous data mix, and all permits to save some time and money in general.
Nevertheless, the validation or certification of such network architecture requires
providing for each flow a bound on data delivery, and the proof of segregation
(i.e. no interaction) between the flows.

124 M. Boyer et al.

2.3 Mono-Segment vs. Multi-hop (Homogeneous or Heterogeneous)

The last point is the evolution from mono-segment to multi-hop networks. If the
system is small enough, all the nodes can be connected to the same segment.
There are numerous network technologies suited for this type of architecture, for
example, MIL-STD-1553, CAN, TTP, FlexRay, etc, but each one has limits on
the global bandwidth and the number of equipments that can be connected1.
Therefore, a complete system could be too large for a single segment. In this case,
a multi segments network must be built, interconnecting segments with gateways
or switches. In this context, an end-to-end communication can be multi-hops.

Moreover,multi-hop communications can be homogeneous (with the same tech-
nologies at each segment, like the AFDX or SpaceWire technologies), or heteroge-
neous: a sensor could be connected to a low-bandwidth segment, interconnected
to a system backbone, where nodes reading the sensor values are connected. The
real-time communication is, in this case, multi-hop and heterogeneous.

2.4 Use of Formal Methods in the Development Process

If computing WCTT is an important issue in designing critical real-time systems,
this is not the only one from a global industrial point of view: three others (at
least) should be considered: design complexity, method stability and method
simplicity.

Verification of a platform is the second half of a problem: building a config-
uration is the first half. From an industrial point of view, a system too hard to
be (efficiently) configured can be rejected, even if there are methods to verify it.
For example, priority levels are a way to ensure performances and segregation,
but they are not an intrinsinc characteristic of an applicative data flow. It might
be difficult to map, in an efficient manner, thousands of data-flows onto dozens
or hundreds of priority levels.

There is also a trade-off between complexity of the verification and confidence:
if a formal method or a model is too complex, it is prone to contain errors, or
its implementation tool might have bugs. From the industrial point of view, the
simplest method to guaranty/certify the WCTT will be the easiest to adopt.

3 Related Works

The need for formal models to compute end-to-end bounds on delays and buffer
consumptions is relatively new in embedded systems, due to a change in the tech-
nologies used. Until recently, the embedded bus technologies were quite simple,
leading to constant or at least easy to bound delays (ARINC429, MIL-STD-1553,
CAN). But the introduction of new technologies (AFDX, SpaceWire), more ef-
ficient in some ways but also more complex, creates the need for new and/or
improved analysis methods. These models must be correct, i.e. the computed

1 Sometimes, such as for TTP or FlexRay, is is required to have a distributed global

clock over all components, which is usually a strong constraint in large-scale systems.

The PEGASE Project 125

bounds must be true bounds (possibly over-estimated). Moreover, they should
be as tight as possible, i.e. not too pessimistic (otherwise, this leads to an over-
dimensioning, extra weight and power consumption). Finally, they should be
efficient and scalable, to handle modern embedded architectures with hundreds
of computers and thousands of flows.

3.1 Main Approaches to Timing Verification

The timing verification approaches can be classified into three main categories:
methods from real-time systems (often industrial ones), methods from computer
networks performances (like Internet, ATM...) and methods from timed systems
(model-checking mainly).

– Model-checking is correct, tight, but not scalable. There exist very-efficient
timed model-checkers [5], and even if they are not designed to compute de-
lay, the delay can be found by trying to verify a property like “The message
arrives before date D”, and to compute the bound by a dichotomic search
on D. Such model-checkers have been extended to perform parametric veri-
fications [6] which allows to compute D directly. But even if great advances
have been done in algorithms and tools efficiency, model-checking still suffers
from the combinatorial explosion of the state space, and cannot be used for
large systems.

– Real-time scheduling is a wide research area, with a long history and a lot of
diverse results. If most results in real-time scheduling have been used for local
scheduling, or distributed scheduling with the network delays as an input
of the problem, some studies have been done to handle communications [7],
(which associates some well known local methods with a fixed point iteration)
or to see one bus as a local scheduling problem [8]. More recently, approaches
known as “trajectorial” have been developed [9,10]. Such approaches give
good results [10], but the complexity is relatively high: computing the release
time of a message created at time t requires solving a non-linear system,
and this computation must be repeated for each significant instant, whose
number depends on the least common multiple of the period of the flows.

– Network Calculus is a theory to get deterministic upper bounds in networks
that has been developed by R. Cruz [11,12], and popularized with two books
[1,2]. A nice overview of can be found in [13]. It is mathematically based on
the (min,+) dioid and from the modelling point of view, it is an algebra for
computing and propagating constraints given in terms of envelops. A flow
is represented by its cumulative function R(t) (that is, the amount of data
sent by the flow up to time t). A constraint on a flow is expressed by an
arrival curve α(t) that gives an upper bound for the amount of data that
can be sent during any interval of length t. Flows cross service elements that
offer guarantees on the service. A constraint on a service is a service curve
β(t) that is used to compute the amount of data that can be served during
an interval of length t. It is also possible to define in the same way minimal
arrival curves and maximum service curves. Then such constraints envelop
the processes and the services.

126 M. Boyer et al.

3.2 Why Network Calculus Fits Embedded Systems

Among the other temporal verification techniques, Network Calculus fits well
critical embedded systems for several reasons. First of all, it relies on strong
mathematical foundations since network calculus is based on the (min,plus) al-
gebra [14] with well-identified mathematical assumptions.

Most often, classical scheduling-based methods are based on the exhibition of
a “worst case scenario”, which must be translated into an analytical expression,
that in turn should be solved to obtain numerical results. This process mainly
relies on human reasoning, which could lead to errors, as it happened for the CAN
schedulability analysis, considered as solved in [15], and which was found to be
slightly flawed and corrected 13 years later in [8]. With its strong mathematical
background, Network Calculus is less sensitive to this kind of problem but it is
of course sensitive to mathematical aspects, like continuity, limits, etc.

Network Calculus also handles natively multi-hops networks, one of its famous
result is the “pay burst only once”, which allows seeing multiple hops as a single
element. Since this is a generic method, it also handles heterogeneous networks
and allows to consider an end-to-end path with, for example, a CAN and an
AFDX segment.

A last property is of special interest: Network Calculus allows a lot of sound
over-approximations2. Such feature enables to reduce the computation time (at
the expense of the results accuracy), which could be useful for a coarse-grained
design or to evaluate large-scale systems. But, on top of it, it lets the user
opt for a simple model, or simple verification algorithms, if the more accurate
and complex ones are too hard to verify, qualify or certify (depending on the
industrial context).

Of course, these benefits are counterbalanced by the pessimistic approxima-
tions made by the theory.

3.3 Network Calculus: An Overview of the State of the Art

In its simplest form, Network Calculus enables to perform the following
operations:

– compute the exact output cumulative function or, at least, bounding func-
tions,

– compute output constraints for a flow (like an output arrival curve),
– compute the remaining service curve, that is, the service that is not used by

the flows crossing a server,
– compose several servers in tandem,
– give upper bounds on the worst-case delay and backlog (bounds are tight for

a single server or a single flow).
– the operations used for this are an adaptation of filtering theory to (min,+):

(min,+) convolution and deconvolution, sub-additive closure.

2 Soundness, in this context, means that the bound computed in the over-

approximated model are still bounds, probably pessimistic but always valid.

The PEGASE Project 127

These possibilities have been extended in several directions. First the notion
of service curve can be defined in several manners, depending on the chosen
model. To compute remaining service curves, one has to work with strict service
curve [16], but to study FIFO scheduling policy, the notion of service curve
is enough [17]. Real-Time calculus is mainly based on Network Calculus, but
also uses concepts of real-time scheduling theory [18]. For this approach, the
elementary operator transforms an arrival curve of a flow and a service curve of
a service elements into the output arrival curve and a remaining service curve,
and this operator has good compositional properties to study systems with fixed
priorities. Finally, there are some adaptations of Network Calculus to Stochastic
Network Calculus [2,19]) in order to relax a bit the constraints, but worst-case
delay bounds cannot be computed with this theory.

Concerning the results achieved in the Network Calculus field, a lot of studies
are now focused on computing performances in networks and composing network
elements. Up to our knowledge, the networks that have been extensively studied
are: servers in tandem or sink trees [17,20,16]. Some other studies focus on general
networks with cyclic dependencies, and exhibit networks where, against intuition,
the load is very small in each server but can be unstable (that is, the backlog is
not bounded). To get such results, the authors construct ad-hoc scenarios [21].
More compositional methods have been used very recently for both Network
Calculus and Real-Time Calculus, giving sufficient conditions to get stability
and worst-case delay upper bounds [22,23].

The prominent software tool is Rockwell-Collins ConfGen Tool which is a pro-
prietary tool that uses network calculus to compute traversal times on AFDX.
It has been for instance used to validate the delays in AFDX network for Air-
bus A380. The bounds on end-to-end delays provided by this tool were really
larger than what was observed on simulations and experimentations [24]. The
PEGASE proposal aims to develop an ambitious successor of this tool providing
several improvements and additional features: more realistic bounds, handling of
cyclic dependencies, new class of protocols (e.g., wormhole routing) and design
assistance. These features must be based on new theoretical investigations.

3.4 Objectives and Novelty of the PEGASE Project

The main idea of the family of Network Calculus techniques is to take into
account the traffic characteristics under the form of regulating functions and
to model network nodes (switches, filters, cables) as operators acting on those
functions.

Thus, Network Calculus operates at the flow level and not at the packet level
(unlike the trajectorial approach, for example) and never uses the state space
of the system (unlike model checking). These two features of Network Calculus
make it perfectly fit to analyse systems whose state spaces are very large or with
a combinatorial complexity making them hard to analyse with approaches based
on a fine description of their behaviour.

This project has two objectives, one is rather theoretical and aims at improv-
ing Network Calculus in terms of control of bounding errors and assertion of its

128 M. Boyer et al.

descriptive power. The other is to demonstrate its usefulness for the design of
communicating embedded systems, especially for the aeronautic and the space
industry.

Industrial objectives: simplify and tighten. This project focuses on the
communication networks of embedded real-time systems, where the worst end-to-
end delay must be characterised and taken into account. The industrial objectives
are:

– tighten the computed worst end-to-end delay to reduce over-provisioning
which leads to extra weight and power consumption,

– simplify the design of such networks (dimensioning, routing) to reduce con-
ception costs,

– provide some analysis tools to facilitate the validation of critical real time
embedded data networks transporting different classes of traffic (guaranteed
delivery in time, assured delivery, best effort. . .).

Scientific objectives: pushing the limits of Network Calculus. To achieve
these industrial goals, we propose to work on three scientific axes:

1. Eliminate some current over-approximations to tighten the bounds: some
preliminary works have shown that the difference between the computed
bounds and the real worst case comes from the poor modelling of some char-
acteristics of embedded network elements. For example, the non-preemptive
aspects are handled in a pessimistic way. Furthermore, the global analysis is
often done by the recursive use of local results, and it has been shown in [16]
that it could produce very pessimistic results. New global methods should
be developed.

2. Extend the class of systems that can be modelled and analysed: up to now,
some systems can not or incompletely be handled with Network Calculus
(cyclic dependencies between flows, wormhole routing). So far, such config-
urations must be avoided if one wants to apply Network Calculus formulas.
We aim at removing these restrictions.

3. Provide help in the design (dimensioning, routing): in the current network
design process, the worst end-to-end delay is taken into account a poste-
riori (once the system is designed, worst-case bounds can be computed to
validate the design). On the opposite, in classical scheduling theory, there
exist heuristics to help the design (priorities, placement). We would like to
develop similar methods in the Network Calculus framework to help with
dimensioning and routing in embedded networks.

There are of course scientific hard points, the main challenges addressed by
PEGASE can be grouped into three main points:

1. Semantics relations: Network Calculus have been extended in various direc-
tions for various purposes, but the differences between model hypotheses
are not always clear. In particular, they all use notions of arrival curve and

The PEGASE Project 129

service curve, sometimes without precise definitions of the assumptions or
without discussions about the conditions of application. What real system
behaviour can be modelled by each definition? Some preliminary results can
be found in Section 5.

2. Modelling granularity: one main asset of Network Calculus is the liberty in
the modelling granularity. A complex behaviour can always be approximated
by a lower (resp. upper) service curve (resp. arrival) curve. Such approxima-
tion is conservative, i.e. the results obtained with the coarse model are still
valid but often not very tight. But, in general, the precise modelling is too
computation consuming. Then, a trade-off between computation cost and
tight modelling must be find.

3. Are shared memory flow control protocols (min,plus) systems?: All Network
Calculus flavours are based on some (min,plus) theory. But it is not clear
whether flow control protocols with shared memory (like wormhole routing
used in SpaceWire or some NoC) are such kind of systems.

4 Case-Studies : AFDX, SpaceWire and NoC

To assess the extent to which network calculus can be an effective tool in vari-
ous industrial contexts, three real applications based on distinct communication
protocols are used as case-studies during the project.

4.1 AFDX

The AFDX technology (ARINC 664 standard, part 7, [3]) is an embedded net-
work based on the Ethernet technology, in order to take benefit of a largely de-
ployed technology and reach acceptable costs. Ethernet offers large bandwidth,
but suffers from indeterminism (in particular, the well known random back-
off algorithm involved in collision). In AFDX, each end-system is connected to
a switch with full-duplex links: there is no more collision, and indeterminism
comes only from waiting time in switch shared queues. To get guarantees on this
shared network, incoming flows must respect some traffic contract. In AFDX,
this contract is a Virtual Link (VL). Each VL is a static multicast mono-source
route in the net (a tree), with a priority level, and three parameters related to
bandwidth: a minimal frame size, a maximal frame size, and a Bandwidth Allo-
cation Gap (BAG) which is the minimum time between two frame emissions by
the source.

A typical AFDX network could have a dozen of switches, hundred of connected
equipments, thousand of VL, and a total incoming throughput between 150Mb/s
and 200Mb/s. Given an AFDX configuration, it is possible to compute upper
bounds on delays and buffer sizes (see for instance [25,26]), however there are
still some challenges left:

– more accurate temporal verification that enables to obtain the same guar-
antees on performance with less embedded switches,

– automatic configuration design.

130 M. Boyer et al.

4.2 SpaceWire

The purpose of the SpaceWire standard [4] is:

– to facilitate the construction of high-performance onboard data-handling
systems,

– to help reduce system integration costs,
– to promote compatibility between data-handling equipment and sub-systems,
– to encourage re-use of data handling equipment across several different

missions.

The SpaceWire network enhances the communication capabilities, but induces
more complexity in the traffic management, so requiring enhancement of classical
methods of validation. In addition, high speed network (for command/control
data) is a new field of embedded designs for Space. Traffic complexity increases
is due to (i) the presence of routers and switch matrices (presence of multiple
application data and sources, wormhole routing); (ii) the overheads introduced
by multiple layered protocols; (iii) the SpaceWire standard features (various and
high data rates, no bus controller, arbitration within routers, non predictable
dispersion in delays, links shared by different data flows...). The new challenges
for SpaceWire adoption are about:

– Defining adequate network topology (no bottleneck, redundancy),
– Consolidating communication designs and performances (latency delays),
– Sizing local resources (temporary storage).

Thales Alenia Space provides, as case study, a long-term horizon architecture
based on a single and common SpaceWire network for the transport of com-
mand/control and mission (science, observation) data. It consists of 14 nodes (9
instruments and 5 platform equipments) and 4 routers. The Figure 1 shows an
overview of the architecture. It deals with 39 data flows (9 mission flows and 30
control/command flows). Flows are asynchronous and follows a known policy for
production / consumption of data.

4.3 Network on Chip

Integration is a multi-level concern in embedded systems. Shared network is
now the current solution on embedded chips, either as interconnecting different
devices on a single chip (system on chip - SoC) or replacing the bus on multi-
core CPU. To compute the worst case execution time (WCET) of code on such
hardware, the delay introduced by this internal communication medium must
be taken into account. But current trend in chips is to increase performances
and reduce predictability. In critical system, it makes no sense to have a chip
with high mean performances if the worst case cannot be reasonably bounded.
This case study is the most prospective one of the project: several hard issues
have been identified. To begin, there are a lot of routing technologies in NoC,
and some could be easier to verify than other with network calculus. A first
issue is to choose and/or define a manageable NoC. Second main issue is the
characterization of the data flow exchanged by the different components in order
to help the mapping of the application (Design Space Exploration)

The PEGASE Project 131

Fig. 1. SpaceWire architecture

5 Some Theoretical Improvements

The first months of the project have been spent to clarify the relationships
between the main variants of envelope-based models, like the Real-Time Calcu-
lus [18], variable capacity nodes, strict service and minimum service [27]. Some
restrictions on strict priority (SP) residual service have also been lifted. Tight
bounds have been obtained for the FIFO policy [28,29] with results on the com-
plexity of computing these bounds [29].

5.1 Model Hierarchy

Considering that it exists four main notions of service: RTC, variable capacity
nodes, strict service and minimum service, the question of their relationship
naturally arises.

When looking deeply at definition, it also appears that the notion of strict
service curve can have two interpretations, one weak and one strict one.

It has been shown in [27,30] that these notions forms a strict hierarchy,
with equality between notion depending on the kind of curves considered. Some
monotony results have been also found for each model, allowing to obtain, in
most cases, a canonical version of each service curve.

5.2 Strict Priority Residual Services

When several flows share a network element, one may be interested by the service
offered to each one (depending on the service policy and the others flows) which
is called the “residual service”.

This residual service is often assumed to have a wide-sense increasing curve,
restricting the kind of usable curves. This restriction has been lifted in [27], and
the links with strict service curve has been made explicit.

132 M. Boyer et al.

5.3 Tight Results under Blind Policy

Network calculus, in general, computes pessimistic bounds. One challenge is to
get tight bounds, i.e. bounds that could be reached. It is well known that bound
are tight for a single server [1, Th 1.4.4]. There also are results for FIFO policy
in some specific topologies [31].

[28,29] describe the first algorithm which computes the maximum end-to-end
delay for a given flow, as well as the maximum backlog at a server, for any feed-
forward network topology under blind multiplexing, with concave arrival curves
and convex service curves.

5.4 Complexity Problem

The computational complexity of the approach in [28,29] is high, probably supra-
exponential. The intrinsic complexity of computing an exact bound have been
studied on a specific topology: it is NP-hard [29] (by equivalence with X3C prob-
lem, using only two-slopes piecewise linear functions). This complexity suggests
that only approximated methods are suited to analyse large systems.

6 Tool Support

The complexity of the targeted systems and of the verification methods im-
poses the usage of a software tool. But the development of a software tool that
implements new mathematical methods and that satisfies the practicability re-
quirements of an industrial context requires preliminary exploratory work and
proofs of feasibility. Furthermore, researchers need tools that allow them to eval-
uate the relevance of the theoretical findings through concrete computations on
industrial case-studies. For this reason, a prototype is being developed during
the project and it is expected to facilitate a rapid transfer of the outcomes of
the project to the industry.

6.1 Requirements on the Tool

The practicability of such a tool in an industrial context depends on several
aspects:

– acceptance by the certification authorities,
– contained computation time to obtain the results,
– domain-specific support for creating system descriptions that helps to avoid

modeling errors,
– ease of understanding and visualization of the analysis and optimization

result.

The usefulness of such a tool in an academic context depends on two main
aspects:

– as general as possible models – even if to the detriment of raw performance,
– extendibility that enables exploratory work.

The PEGASE Project 133

6.2 Design Considerations

Network Calculus uses (min,+)-algebra operations whose complexity is strongly
dependent on the considered class of arrival and service curves. The more spe-
cific the class of curves are (sufficient for industrial applications), the lower the
complexity and the more general the class of curves (needed for research), the
higher complexity. In order to solve these and other contradictory requirements
between industrial and academic usage, the prototype has been structured into
several distinct components (see Figure 2), with several different implementa-
tions in some cases.

Fig. 2. Components of the prototype (UML notations)

6.3 Implementation

Java has been chosen as programming language for its lower risk for program-
ming errors and because of its link with the Eclipse framework that will be
used for the graphical editor. Furthermore continuous integration with frequent
releases is performed in order to get rapid feedback from the academic and indus-
trial partners. At the time of writing, the (min,plus) library and the (min,plus)
interpreter are fully operational and validated, the network representation (data
model) is done and the network calculus core routines are being developed.

6.4 Tool Validation

Given the safety requirements of the application domain, a particular effort is
put on the validation of the code:

– Numerous unit tests of the different components of the tools with the manda-
tory objective of 100% of source code coverage,

134 M. Boyer et al.

– Static analysis of the code with the tool SONAR,
– Extensive automated comparison tests with the Network Calculus tool NC-

maude [32].

7 Conclusion

The PEGASE project has been submitted in 2009 to the French call ARPEGE
from the ANR (National Research Agency) and it has been selected for funding.
The project has started in October 2009 for a duration of 36 months. News from
the project, and some of its outcomes, can be found on the project WEB page
[33].

The first year of the project already produced some theoretical results
(section 5) and the first part of the tool: a (min,+) interpreter (section 6)3.
These preliminary theoretical results suggest that exact temporal verification
techniques will not probably be suited to large scale systems such as avionics
ones. The complexity threshold from which approximate techniques are required
remains to be more precisely identified. One of the main ongoing objective is to
come up with sound approximation techniques, whose accuracy ideally could be
chosen by the user.

References

1. Le Boudec, J.Y., Thiran, P.: Network Calculus. LNCS, vol. 2050, p. 3. Springer,

Heidelberg (2001), http://lrcwww.epfl.ch/PS_files/NetCal.htm

2. Chang, C.S.: Performance Guarantees in communication networks. In: Telecom-

munication Networks and Computer Systems. Springer, Heidelberg (2000)

3. AEEC: Arinc 664p7-1 aircraft data network, part 7, avionics full-duplex switched

ethernet network. Technical report, Airlines Electronic Engineering Committee

(September 2009)

4. ECSS: Spacewire – links, nodes, routers and networks. Technical Report ECSS-E-

ST-50-12C, European cooperation for space standardization (ECSS), ESA-ESTEC,

Requirements & standards division, Noordwijk, The Netherland (July 31, 2008)

5. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal - a tool

suite for automatic verification of real-time systems. In: Alur, R., Sontag, E.D.,

Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg

(1996)

6. Hune, T., Romijn, J., Va, F.: Linear parametric model checking of timed automata.

Journal of Logic and Algebraic Programming (2001)

7. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time

systems. Microprocess. Microprogram. 40(2-3), 117–134 (1994)

8. Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J.: Controller area network (CAN)

schedulability analysis: Refuted, revisited and revised. Real-Time Systems 35(3),

239–272 (2007)

3 This interpreter is available free of charge for non-commercial use and can be down-

loaded at [34].

http://lrcwww.epfl.ch/PS_files/NetCal.htm

The PEGASE Project 135

9. Migge, J.: L’ordonnancement sous contraintes temps réel: un modele á base de

trajectoires – Real-time scheduling: a trajectory based model. PhD thesis, Univesity

of Nice (1999)

10. Martin, S., Minet, P., George, L.: The Trajectory Approach for the End-to-End

Response Times with Non-preemptive FP/EDF*. In: Dosch, W., Lee, R.Y., Wu,

C. (eds.) SERA 2004. LNCS, vol. 3647, pp. 229–247. Springer, Heidelberg (2006)

11. Cruz, R.L.: A calculus for network delay, part I: Network elements in isolation.

IEEE Transactions on Information Theory 37(1), 114–131 (1991)

12. Cruz, R.L.: A calculus for network delay, part II: Network analysis. IEEE Trans-

actions on Information Theory 37(1), 132–141 (1991)

13. Fidler, M.: A survey of deterministic and stochastic service curve models in the

network calculus. IEEE Communications Surveys & Tutorials 12(1) (2010)

14. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and Linearity,

An algebra for discrete event systems. John Wiley and Son, Chichester (1992)

ISBN: 978-0471936091,

http://cermics.enpc.fr/~cohen-g//SED/book-online.html

15. Tindell, K.W., Burns, A.: Guaranteeing message latencies on controller area net-

work (CAN). In: Proceedings of 1st International CAN Conference, pp. 1–11 (1994)

16. Schmitt, J., Zdarsky, F., Fidler, M.: Delay bounds under arbitrary multiplexing:

When network calculus leaves you in the lurch. In: Proc. of the 27th IEEE Inter-

national Conference on Computer Communications, INFOCOM 2008 (2008)

17. Lenzini, L., Mingozzi, E., Stea, G.: Delay bounds for FIFO aggegates: a case study.

Computer Communications 28, 287–299 (2004)

18. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard

real-time systems. In: Proceedings of ISCAS 2000 (2000)

19. Jiang, Y., Liu, Y.: Stochastic Network Calculus. In: Computer Communication and

Networks. Springer, Heidelberg (2009)

20. Schmitt, J.B., Zdarsky, F.A.: The DISCO network calculator - a toolbox for worst

case analysis. In: Proceedings of the First International Conference on Performance

Evaluation Methodologies and Tools (VALUETOOLS 2006), Pisa, Italy. ACM,

New York (November 2006)

21. Andrews, M.: Instability of FIFO in session-oriented networks. In: Proceedings of

the eleventh annual ACM-SIAM symposium on Discrete algorithms (SODA 2000),

pp. 440–447. SIAM, Philadelphia (2000)

22. Rizzo, G., Le Boudec, J.Y.: Stability and delay bounds in heterogeneous networks

of aggregate schedulers. In: Proc. of the 27th IEEE Conference on Computer Com-

munications (INFOCOM 2008), April 13-18, pp. 1490–1498 (2008)

23. Jonsson, B., Perathoner, S., Thiele, L., Yi, W.: Cyclic dependencies in modular

performance analysis. In: Proc. of the ACM International Conference on Embedded

Software, EMSOFT (2008)

24. Charara, H., Fraboul, C.: Modelling and simulation of an avionics full du-

plex switched ethernet. In: Advanced Industrial Conference on Telecommunica-

tions/Service Assurance with Partial and Intermittent Resources Conference/E-

Learning on Telecommunications Workshop (AICT/SAPIR/ELETE 2005), pp.

207–212. IEEE Computer Society, Los Alamitos (2005)

25. Frances, F., Fraboul, C., Grieu, J.: Using network calculus to optimize AFDX

network. In: Proceeding of the 3thd European congress on Embedded Real Time

Software (ERTS 2006), Toulouse (January 2006)

http://cermics.enpc.fr/~cohen-g//SED/book-online.html

136 M. Boyer et al.

26. Boyer, M., Fraboul, C.: Tightening end to end delay upper bound for AFDX net-

work with rate latency FCFS servers using network calculus. In: Proc. of the 7th

IEEE Int. Workshop on Factory Communication Systems Communication in Au-

tomation (WFCS 2008), IEEE Industrial Electrony Society, May 21-23, pp. 11–20

(2008)

27. Bouillard, A., Jouhet, L., Thierry, E.: Service curves in Network Calculus: dos and

don’ts. Research Report RR-7094, INRIA (2009)

28. Bouillard, A., Jouhet, L., Thierry, E.: Tight performance bounds in the worst-

case analysis of feed-forward networks. In: Proc. of the 19th IEEE International

Conference on Computer Communications (IEEE INFOCOM 2010), pp. 1–9 (14-

19, 2010)

29. Bouillard, A., Jouhet, L., Thierry, E.: Tight performance bounds in the worst-case

analysis of feed-forward networks. Research Report RR-7012, INRIA (2009)

30. Bouillard, A., Jouhet, L., Thierry, E.: Comparison of different classes of service

curves in network calculus. In: Proc. of the 10th International Workshop on Dis-

crete Event Systems (WODES 2010), Technische Universität Berlin, August 30 -

September 1 (2010)

31. Lenzini, L., Martorini, L., Mingozzi, E., Stea, G.: Tight end-to-end per-flow delay

bounds in FIFO multiplexing sink-tree network. Performance Evaluations 63, 956–

987 (2005)

32. Boyer, M.: NC-maude: maude for computation of worst bounds on real-time (em-

bedded) networks. Technical Report 1/16417, ONERA (2010)

33. Boyer, M.: PEGASE home page (2010), http://sites.onera.fr/pegase

34. RealTime-at-Work (RTaW): Downloadable software,

http://www.realtimeatwork.com/?page_id=1217

http://sites.onera.fr/pegase
http://www.realtimeatwork.com/?page_id=1217

NC-Maude: A Rewriting Tool to Play with
Network Calculus

Marc Boyer

ONERA – Toulouse, France

Marc.Boyer@onera.fr

Abstract. Embedded real-time systems are more and more distributed

communicating systems. Then, to ensure correctness of application, re-

spect of task dead-line must be ensured, but communication delays must

also be bounded. Network calculus is a theory designed to compute such

bounds (it have been successfully applied on A380 AFDX backbone). In

order to disseminate, and to experiment new results, a tool is needed. Un-

like other tools, its purposes are to be open, to allow the user to see the

class of function manipulated (sub-additive, star-shaped, concave), the

theorems used to get results, etc. To get a code as close as possible to

the mathematical context, we chose to use a rewriting language, Maude.

1 Introduction

Networks introduce delays in communications between computers. When these
computers run critical real-time applications, like in avionic systems, the delays
introduced by the network must be bounded.

The AFDX is the technology chosen by Airbus for its backbone. AFDX is
an Ethernet based technology. AFDX have been chosen because it offers a large
bandwidth (100Mb/s), allow connections of hundreds of computers, and is a
mature technology. It uses full duplex links to avoid collisions and the indeter-
ministic random backoff retransmission algorithm. Then, the only indeterminism
comes from the delays in shared switch queues.

Among other theories, network calculus (NC) was chosen to certify the AFDX
backbone in Airbus A380 [Gri04]. Network calculus allows to compute upper
bounds on network delays, assuming that one have constraints on the incoming
flows (some traffic contract, expressed as an arrival curve), and guaranties on
the service offered by the network elements (expressed as a service curve).

From the first works on network calculus [Cru91a, Cru91b] to recent works
[BT07, LMS04], with two reference books [LBT01, Cha00], and several exten-
sions [TCN00], network calculus is an active research area. Network calculus
have a solid mathematical background: it is based on the (min,plus) algebra
[BCGQ92].

Network calculus have been chosen for avionic embedded systems among other
theories (based on scheduling theories) because it allows to handle very large
systems (thousands of data flows), at the expense of pessimistic approximation
on computed delay bounds.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 137–151, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

138 M. Boyer

The need of an open tool arises because of several reasons:

1. a tool is needed because the size of the targeted systems excludes all hand-
made results,

2. such a tool must be open because the domain is very active, to allow each
researcher to add its results to a “state of the art” code,

3. moreover, teaching and disseminating network calculus is facilitated by the
existence of an open tool, which allow to play with different elements of the
theory, not a complete configuration.

Of course, there are already some tools, but they either are incomplete, or ded-
icated to specific extensions, or linked to no free tools.

To begin, Section 2 presents network calculus. Section 3, refines this need of
developing another tool. Section 4 presents the reasons of the choice of rewriting.
Section 5 is an overview of NC-maude, the Maude code dedicated to computa-
tions in network calculus. Section 6 concludes.

Appendix A describes a technical detail about tools DISCO and RTC.

2 Network Calculus

Notations R is the set of real numbers, ∧ denotes the minimum operator, and
[x]+ def= max(0, x).

Here is a (very short) introduction to network calculus. The reader should
refer to [Cha00, LBT01] for a complete presentation.

Network calculus is a theory to get deterministic upper bounds in networks. It
is mathematically based on the (∧, +) dioid (∧ denotes the minimum operator).

Network calculus mainly handles non decreasing functions, null before 0: F .
They are, among others, four common parametrised curves, δd, λR, βR,T , γr,b,
defined by: δd(t) = 0 if t ≤ d, ∞ otherwise, λR(t) = Rt, βR,T (t) = R[t − T]+,
and γr,b(t) = rt + b if t > 0, 0 otherwise.

Three basic operators on F are of interest, convolution ∗, deconvolution �
and the sub-additive closure f∗.

F = {f : R → R x < y =⇒ f(x) ≤ f(y), x < 0 =⇒ f(x) = 0} (1)
(f ∗ g)(t) = inf

0≤u≤t
(f(t − u) + g(u)) (2)

(f � g)(t) = sup
0≤u

(f(t + u) − g(u)) (3)

f∗ = δ0 ∧ f ∧ (f ∗ f) ∧ (f ∗ f ∗ f) ∧ · · · (4)

A flow is represented by its cumulative function R ∈ F , where R(t) is the total
number a bits send by this flow up to time t. A flow R is said to have a function
α ∈ F as arrival curve iff ∀t, s ≥ 0 : R(t + s) − R(t) ≤ α(s). It means that, from
any instant t, the flow R will produce at most α(s) new data in s time units. An
equivalent condition, expressed in the (∧, +) dioid is R ≤ R ∗ α. If α is an arrival
curve for R, also is α∗. A server has a service curve β iff for all arrival flow, the

NC-Maude 139

t

γr,b

βR,T

h(γr,b, βR,T)

Fig. 1. Common curves and delay

R R′ R′′

S S′

Fig. 2. A flow going through two network elements in sequence

relation R′ ≥ R ∗ β holds between the input flow R and the output flow R′. In this
case,α′ = α�β is an arrival curve for R′. The delay experimented by the flowR can
be bounded by the maximal horizontal difference between curves α and β, formally
defined by h(α, β) (a graphical interpretation of h can be found in Figure 1).

h(α, β) = sup
s≥0

(inf {τ ≥ 0 α(s) ≤ β(s + τ)})

These first results allow to handle linear topologies, like the one of Figure 2.
Given the arrival curve α of flow R, and the services curves β, β′ of network
elements S, S′, we are able to compute a bound on the delay in S: h(α, β), and
another for the delay in S′: h((α � β)∗, β′).

In case of more realistic topology, when a network element is shared by dif-
ferent flows, with some service policy (FIFO, static priority, etc.), it also exists
results to compute bounds on each flow. For example, with the non preemptive
static priority policy, it is known1 that the lower priority flow has the residual
service βL = [β −αH]+, if the network element has service curve β and the high
priority flow has arrival curve αH .

Considering that the flow R1 of Figure 3 has the low priority, the delay in
S can be bounded by h(α1, [β − α2]+) and the delay in S′ can be bounded by
h((α1 � [β − α2]+)∗, [β′ − α3]+).

1 To be precise, there is a restriction on the flavor of service, which must be strict. See

[LBT01, Def 1.3.2, Cor. 6.2.1,] for details.

140 M. Boyer

R1

R2 R3

R′
1 R′′

1

S S′

Fig. 3. A topology with shared network elements

This little example shows the three main features of a network calculus tool:
encoding the network (topology and characteristics), applying network calculus
results, computing (∧, +) operations on curves.

Lets us consider the last one, (∧, +) operations: these operators are mathe-
matically defined, a lot of properties have been shown (distributivity, isotonic-
ity...), but the effective computation is defined only on some specific classes
(mainly piecewise linear functions, concave, convex, pseudo-periodic [BT07]),
and the computation cost of each operator depends on the considered class.
For example, if f, f ′ are concave functions, f ∗ f ′ = f ∧ f ′, f∗ = f . In the
general case of piecewise linear pseudo-periodic, such computations are
polynomials.

The second one, applying network calculus results, is the main objective of
the tool: the system must be open to allow users to apply different theorems on
configurations, to see the effects of different modellings, and to add new results.

Last feature, encoding the network, is just data representation.

3 WhAT: Why Another Tool?

They are several tools already developed for network calculus. As presented in
introduction, the size of the targeted systems (thousands of flows) prevents from
any hand-made system analysis, and any researcher in the area must have some
running code to experiment its results. But, each time, the same question arises:
going from an existing tool or developing a new one.

One the one hand, developing a tool is a good way to get experience in a
domain, but it could be very time consuming. On the other hand, extending an
existing academic source could be harder than rewriting it from scratch2...

But here, they are also others reasons.

3.1 DISCO

The DISCO network calculator [GZMS08, SZ06, DIS] is developed by the DISCO
research group of technical university of Kaiserslautern (Germany). As presented
in the web page, it is a network calculus library developed in Java, and “the core
of this library is the class ”Curve” which represents piecewise-linear curves and
provides min-plus-algebraic operations on these.”
2 Especially when the code uses break and continue instructions.

NC-Maude 141

DISCO is as open as a Java code could be: it is mainly an API, which allow to
create curves and topologies, and also to compute delays, using several analysis
methods.

The kind of curves manipulated is wide-sense increasing piece-wise linear func-
tions, with a finite set of segments. This is a smaller class than the one described
in [BT07] and implemented in [COI].

DISCO is made of around 5000 lines of Java code and 500 lines of comments.

3.2 COINC

COINC is the implementation of the algorithms presented in [BT07]. The aim
of [BT07] was to find a manipulable (i.e. with algorithms) class of functions
closed under the operators used in network calculus (sum, difference, minimum,
maximum, convolution, deconvolution, and sub-additive closure). The piece-wise
linear functions, with a finite set of segments, seems a good candidate (this is
the choice of [GZMS08]). But the sub-additive closure goes out of this class, and
one need to consider the set of piece-wise finally pseudo-periodic functions (with
rational values) to keep a class closed by all operators.

In [BT07], the algorithms for all operators in this class are given, and their
implementation is the aim of [COI]. COINC activity have been stuck a few years
as an interpreter where sub-additive closure was not implemented. During year
2009, the implementation have been completed and the C++ code can be called
from Scilab [Sci].

COINC is made of 4000 lines of C++ with about 1000 lines of comments,
mostly in french.

3.3 CyNC

The Cyclic Network Calculus tool (CyNC, [Sch]) have been developed to illus-
trate the ability of network calculus to handle cyclic dependencies
[SJDL05, SNLJ06].

The tool is a Matlab/Simulink library, which allow to graphically describe a
system, and analyse it.

The project seems to be frozen (the last update on [Sch] is from July 2005).
CyNC is made of 800 lines of Matlab code, with 26 lines of comments, without

any explanation on the data model, which makes its reuse very hard.

3.4 RTC

The Real-Time Calculus Toolbox [WT06] is presented as a Matlab library, but
it is more than that: it is a Java library with an API, and a Matlab interface.

The kind of curve manipulated by RTC is the same than COINC: piece-wise
affine functions finally pseudo-periodic. Most operators are implemented, except
sub-additive closure.

The theory implemented in RTC is not the basic network calculus, but the
Real-Time Calculus, an extension of the basic theory [TCN00], and a specific
solution for cyclic dependencies MPA [TS09].

142 M. Boyer

RTC is made of 4000 lines of Matlab code, and 3500 lines of comments. The
Java code is not distributed, but the API is distributed under html format,
generated by javadoc, and presents 22 classes.

3.5 DEBORAH

DEBORAH is devoted to the computation of bounds in networks with FIFO
policy, rate-latency services and token-bucket arrival curves [BLMS10]. It im-
plements the results of [LMS04, LMMS05, LMS07]. It computes upper bound
on delay. This implies solving some piecewise-linear programming problems3. It
also computes lower bounds on the worst delay, considering specific behaviour.

DEBORAH is made of 6000 lines of C++, and about 1500 comment lines. It
is distributed under the GPL licence.

3.6 PEGASE

The french national project PEGASE is devoted to aerospace communication
systems, including new results in network calculus and industrial transfer
[PEG10, BNOT10]. In this context, the company RealTime-at-Work develops
a network calculus tool [Rea]. It is decomposed in several blocs: one min-plus
computing library, a network calculus core, and some professional features like
a user friendly GUI, network editor, etc [BNOT10, § 6].

The min-plus part is a Java implementation of the results of [BT07], and
is free for academic use. This module has the same objectives as COINC (see
section 3.2) but has been re-developed for several reasons, including intellectual
properties, implementation language, code maintenance, code validation, etc. To
increase its confidence, it imports (and passes) the unitary tests of NC-maude.

3.7 NC-Maude Objectives

Once we have presented the other tools, what are the design challenges of a new
one?

The aim is to be more “open” for beginners: having a syntax close to the
mathematics used in the papers, having an interpreter to allow to interactively
manipulate the different elements, and manipulating (∧, +) and network calculus
object in the same environment.

The goal is not to have a black-box, with user-friendly GUI, taking a network
topology as input and giving some bounds as output. Such tool is, of course,
necessary to an industrial use, but is not NC-maude goal.

Let make some comparisons with other tools.
Compared to COINC, the goal was to consider a smaller class of functions,

with simpler (and so more readable) implementation, but also to implement the
network calculus results, not only the (∧, +) algebra.

3 The complexity is theoretically exponential, but some heuristics keep the computa-

tion time reasonable on real example.

NC-Maude 143

All of these tools handle coarsely the types of functions: they all works with
piecewise linear functions, but information such as concavity are not in the
type system, and the code is full of test like if (!isConvexe(...)). And such
type information are useful in this context: for example, it is known that the
convolution of two concave functions, both null at zero, is equal to the minimum
of such functions (which is easier to compute).

The NC-maude code handles very finely variety types of functions, wide-sense
increasing, null at 0, star-shaped, concave, convexe, etc.

DISCO implements network calculus results, but does not have any interpreter
or interface. One must write Java code to define functions and net topologies.

The DISCO and RTC tools made some approximations with the mathemati-
cal background, on continuity for example, which does not affect the quality of
the results, but could be disturbing for beginners. In the RTC tutorial is written
the following “The various functions of the RTC Toolbox will interpret a dis-
continuity correctly as either left- or right-continuous depending on the context
of the curve.”. An example of such approximation is presented in appendix A.
NC-maude tries to be strictly conform to the theory.

At least, the relationships between RTC and NC are, up to now, unclear, and
our goal was dissemination of NC.

Its should also be free to help dissemination: any Matlab toolbox is linked to
Matlab, which is an affordable tool for academics, but not really a free tool.

A last difference with other tools: NC-maude uses rationals, not floating point
numbers. It takes more computation time, but gives tractability to the results.

The author of NC-maude is also involved in the PEGASE project, where the
PEGASE tool is currently developed. It implies some common points between
both project (the min-plus module is written in Java, but the network-calculus
module should use some rewriting based language). But NC-maude is designed
to be an academic open prototype, since PEGASE is designed to be an industrial
tool, which can be used by networks engineers without any deep knowledge of
NC theory.

4 Why Rewriting?

Note: in this section, we are using the term “rule” as a generic term that de-
scribes a rewriting pattern on terms, without distinction between equations, rule,
conditional or not, as made in some tools.

Once the decision to write an open extensible tool was made, the choice of a
language had to be done.

We chose to use rewriting-based language for the following reasons.

1. The syntax of a rewriting based tool expresses very naturally mathematical
equations, and since networks calculus have a very formal mathematical part,
a rewriting based code have several benefits.

Readability. The code is very closed to the problem itself, sorts, rewriting
rules, are very closed to the mathematical definitions and theorems,

144 M. Boyer

Tractability. Each non-trivial rule can be labelled by the reference of the
theorem is implements. The link between specification and the code is
really easy to do.

Confidence. Since the kernel of a rewriting tool is just the application of
individual rules, the confidence into the results comes from the tractabil-
ity on each rule. Moreover, if necessary, the rewriting trace can be used
as a proof, since it is often easier to certify a specific proof than a generic
tool.

2. Rewriting tools come with efficient matching algorithms, dedicated to math-
ematical based properties (associativity, commutativity, etc.), and exonerate
the programmer to recode it.

Of course, when using a specific language, some questions arise about the diffi-
culty to add its own new algorithms or the efficiency of the programs. Sections 5.3
discusses this point.

5 NC-Maude

The aim of NC-maude [Boy] is to be an open, extensible tool, designed for
dissemination of NC theory. To achieve this goal of dissemination, we want the
interactions from the user with the tool to be very close to the theory. Like
other tools, the user must be able to describe a topology and to ask for bounds
on flows. But, unlike others, it uses a syntax really closed to the theoretical
papers, it allows the user to ask to the tool if a given function is known as
star-shaped, to know which theorem is used at some point, etc. NC-maude uses
rational computation: it costs more CPU than simple floating point numbers,
but tractability is easier.

Graphical output is done by generating gnuplot command which must be
copied/pasted by the user into gnuplot.

5.1 An Example of Interaction

An example could gives a quicker overview than general description. Then, here
are some examples of interactions.

Keep in mind than NC-maude is designed to be a tool to support discovering
of NC. In this illustrative section, we are going to use some domain-specific
objects, like common functions γr,b, βR,T , or operators (horizontal deviation h),
presented in Section 2.

The Figure 4 shows an interaction example, on the (∧, +) domain.
First request, line 8, is the sum of terms γ5,2 + γ3,5. The tool computes the

result, and gives the type of the result. We can wonder if the result is concave.
This is done by using the built-in operator :: of Maude (line 11). And the
interpreter answers it is. A last request in the (∧, +) world is the computation of
the horizontal deviation between two curves: h(γ4,5, β10,2) (line 14). Notice that
the syntax of the request is really closed to the mathematical syntax.

NC-Maude 145

1 boyer-laptop% maude startNC.maude

\||||||||||||||||||/

--- Welcome to Maude ---

/||||||||||||||||||\

5 Maude 2.4 built: Nov 6 2008 17:14:50

Copyright 1997-2008 SRI International

Fri Aug 21 13:29:56 2009

Maude>red (Gamma 5 2) + (Gamma 3 5) .

reduce in START-NC : Gamma 3 5 + Gamma 5 2 .

10 result Gamma: Gamma 8 7 .

Maude> red Gamma 8 7 :: Concave .

reduce in START-NC : Gamma 8 7 :: Concave .

result Bool: true

Maude> red h(Gamma 5 3, Beta 9 2) .

15 reduce in START-NC : h(Gamma 5 3,Beta 9 2) .

result PosRat: 7/3

Maude> parse flow("R",Gamma 5 3) .

Flow: flow("R",Gamma 5 3)

Maude> parse netElem("S",Beta 9 2) .

20 NetworkElement: netElem("S",Beta 9 2)

Maude> red delay(flow("R" , Gamma 5 3) , netElem("S" , Beta 9 2)) .

reduce in START-NC : delay(flow("R",Gamma 5 3),netElem("S",Beta 9 2)) .

result PosRat: 7/3

Maude> red flow("R" , Gamma 5 3) | netElem("S" , Beta 9 2) .

25 reduce in START-NC : flow("R",Gamma 5 3) | netElem("S",Beta 9 2) .

result Flow: flow("R|S",Gamma 5 13)

Fig. 4. NC-maude interaction illustration

1 mod SIMPLE-EX is

protecting START-NC .

*** Constant declaration

ops r r’ : -> Flow .

5 ops s s’ : -> NetworkElement .

*** Constant definition

eq r = flow("R", Gamma 5 4) .

eq r’ = r | s .

eq s = netElem("S" , Beta 10 2) .

10 eq s’ = netElem("S’" , Beta 20 1).

endm

red r’ .

red r | s | s’ .

red delay(r , s) .

15 red delay(r’ , s’) .

red delay(r , s ; s’) .

Fig. 5. NC-maude module describing the simple architecture of Figure 2

The user could also notice that the delay result is given as a rational, not a
floating point number.

To describe a topology, some domain-specific operators have been defined. A
flow can be described by its name and it arrival curve (line 17), and a server can

146 M. Boyer

be described by also its name and its service curve (line 19). We can then ask
the tool to compute the delay experimented by the flow in the server (line 21),
and also the output flow (denoted with the pipe operator, by analogy with Unix
shell syntax – line 24).

To describe a complete topology, it is easier to define constants (operators
without argument in Maude) in a module. A simple example in given in
Figure 5. It describes the architecture presented in Figure 2 where a flow R
goes in sequence through two servers S and S′.

5.2 NC-Maude Code Description

The NC-maude tool is decomposed into three main parts (could be named pack-
ages in another language).

The first one is the representation of the (∧, +) algebra. It defines some sorts
on the set F (see section 2) of functions (denoted naturally F in the Maude
code), the common operators (sum, min, max...), some of they basic properties
(distributivity), and some domain-specific operators (convolution and deconvo-
lution). It also defines some common functions and they related equations.

This is done in a syntax very closed to the domain, as illustrated in the
following lines, extracted from the code.

1 sort F .

op _ + _ : F F -> F [assoc com] .

op _ /\ _ : F F -> F [assoc com] .

vars f g h : F .

5 eq [DistAddMin] : f + (g /\ h) = (f + g) /\ (f + h) .

op Gamma _ _ : Rat Rat -> F .

ceq [MinGammaGamma] :

(Gamma r b) /\ (Gamma r’ b’) = Gamma r b

if r <= r’ /\ b <= b’

10 eq [SumGammaGamma] :

(Gamma r b) + (Gamma r’ b’) = Gamma (r + r’) (b + b’) .

One specific sub-sort of function in F is the set of concave piece-wise linear
(CPL) functions . Such a function can be represented as the minimum of a set of
γ functions. This interpretation is sufficient to manipulate such functions, based
on the individual properties of minimum and other operators (for example, the
sum of two CPL functions can be implemented using distributivity of sum over
minimum and the sum of two γ functions). But even is such interpretation is
true, it could be inefficient. One representation of such functions as a sorted
set of segments allows for example to implement sum with a linear complexity
(cf Figure 6). Then, the second part of the system is dedicated to an efficient
implementation of the basic operations on the CPL sort.

The third part of the tool is dedicated to the network calculus itself: represen-
tations of the flows, of the servers, and equations encoding the main theorems
of the theory. For example, the code to compute an output flow from input flow

NC-Maude 147

f = f ′ ∧ f ′′

g = g′ ∧ g′′

f + g

Fig. 6. Sum of CPL functions

and network element or to compute a bound on delay of a flow in a network
element look like the following.

var Name : String .

var SC : F .

eq [arrival-deconv-th-1.4.3] :

5 aflow | netElem(Name , SC)

=

flow(name(aflow) + "|" + Name ,

arrivalCurve(aflow) deconv SC) .

eq delay(aflow, netElem(Name, SC))

10 =

h(arrivalCurve(aflow), SC) .

1 var aflow : Flow .

At current time, NC-maude has 33 sorts, about 800 equations (with 250 con-
ditional equations), and about 650 unitary tests. It contains 4000 lines of code,
and 1400 comments lines (without unitary tests).

The implementation was a background task over more than tree years, and it
is hard to determine the coding effort. It should be about 6-9 months...

5.3 Extending NC-Maude

NC-maude has been designed to be open, to allow any one to add and test its
new algorithms. But what is the related difficulty?

They are mainly two origins: the first is the use of an unknown language,
Maude, the second is the architecture of the program NC-maude itself.

On the use of Maude, our feedback can be found in [Boy10]. In a few words,
Maude can be seen as a pure functional language, very well designed for local
operations on terms.

148 M. Boyer

The architecture of the code, as presented in previous section, is based on the
mathematical framework of network calculus, as presented in [LBT01]. Its had
been designed to be modular and extensible, for people already aware of the NC
theory.

One can also wonder about the performances. NC-maude has not been de-
signed for performances: for example, its handle about 10 sorts of functions,
when in most common cases, only one is sufficient (the set of concave piecewise
linear function, CPL). As well, it was designed to use rational numbers, with
infinite precision (even if a floating point version is under development).

Nevertheless, the performances are acceptable for a prototype: for a configu-
ration with 7000 flows and more than 250 queues, on a laptop with a 1,4GHz
processor, its takes on average 1.5s per queue to compute the delay bound of the
queue, on the floating point version, and 10,5s on the rational version.

5.4 Licence

NC-maude is distributed under the CeCILL licence, a GNU-GPL compatible
licence. This new licence have be developed because the use of licenses created
in the US, such as the GNU General Public License raises some legal issues in
France. To provide a better legal safety while keeping the spirit of these licenses,
three French public research organisations, the CEA, the CNRS and INRIA have
launched a projet to write Free Software licenses conforming to French law: the
CeCILL licence. CeCILL is the first license defining the principles of use and
dissemination of Free Software in conformance with French law, following the
principles of the GNU GPL.

6 Conclusion

We have developed a new tool to disseminate network calculus. Its main char-
acteristics are: openness, rewriting language, and direct map of mathematical
background.

NC-maude is written in Maude, a rewriting language. The (∧, +) part is im-
plemented mainly as a direct translation from the mathematical domain4, and
the properties of the (∧, +) algebra are rewriting rules, used to reduce term
i.e. compute results (sum, convolution, deconvolution, etc). The encoding on
networks (flows, servers, topology) is also done in an algebraic way. The theo-
rems of network calculus are also rewriting rules. Computing delay bound on a
flows through a network is the recursive application of local reduction rules, and
topology traversal.

Any network calculus beginner can make requests in a syntax very close of
the one used in theoretical papers, and have access to all step of reduction, if
needed.

It is internally used for years at ONERA, and can now be adopted by new
users.
4 For performance reasons, the specific class of piecewise linear concave functions is

implemented in a more algorithmic way.

NC-Maude 149

References

[BCGQ92] Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization

and Linearity, An algebra for discrete event systems. John Wiley and

Son, Chichester (1992) ISBN: 978-0471936091,

http://cermics.enpc.fr/~cohen-g//SED/book-online.html

[BLMS10] Bisti, L., Lenzini, L., Mingozzi, E., Stea, G.: DEBORAH: a tool for worst-

case analysis of FIFO tandems. In: Margaria, T., Steffen, B. (eds.) ISoLA

2010. LNCS, vol. 6415, pp. 210–226. Springer, Heidelberg (2010)

[BNOT10] Boyer, M., Navet, N., Olive, X., Thierry, E.: The PEGASE project: pre-

cise and scalable temporal analysis for aerospace communication systems

with network calculus. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004.

LNCS, vol. 6415, pp. 180–194. Springer, Heidelberg (2010)

[Boy] Boyer, M.: NC-maude home page,

http://www.onera.fr/staff/marc-boyer/tools.php

[Boy10] Boyer, M.: NC-maude: maude for computation of worst bounds on real-

time (embedded) networks. Technical Report 1/16417, ONERA (2010)

[BT07] Bouillard, A., Thierry, É.: An algorithmic toolbox for network calculus.

Discrete Event Dynamic Systems 17(4) (October 2007),

http://www.springerlink.com/content/876x51r6647r8g68/

[Cha00] Chang, C.-S.: Performance Guarantees in communication networks. In:

Telecommunication Networks and Computer Systems. Springer, Heidel-

berg (2000)

[COI] COINC home page,

http://www.istia.univ-angers.fr/~lagrange/software.php

[Cru91a] Cruz, R.L.: A calculus for network delay, part I: Network elements in iso-

lation. IEEE Transactions on Information Theory 37(1), 114–131 (1991)

[Cru91b] Cruz, R.L.: A calculus for network delay, part II: Network analysis. IEEE

Transactions on Information Theory 37(1), 132–141 (1991)

[DIS] The DISCO network calculator home page,

http://disco.informatik.uni-kl.de/content/Network_Calculator

[Gri04] Grieu, J.: Analyse et évaluation de techniques de commutation Ether-

net pour l’interconnexion des systèmes avioniques. PhD thesis, Institut

National Polytechnique de Toulouse (INPT), Toulouse (Juin 2004)

[GZMS08] Gollan, N., Zdarsky, F.A., Martinovic, I., Schmitt, J.B.: The DISCO Net-

work Calculator. In: 14th GI/ITG Conference on Measurement, Model-

ing, and Evaluation of Computer and Communication Systems (MMB

2008), Dortmund, Germany, GI/ITG (March 2008)

[LBT01] Le Boudec, J.-Y., Thiran, P.: Network Calculus. LNCS, vol. 2050.

Springer, Heidelberg (2001),

http://lrcwww.epfl.ch/PS_files/NetCal.htm

[LMMS05] Lenzini, L., Martorini, L., Mingozzi, E., Stea, G.: Tight end-to-end per-

flow delay bounds in fifo multiplexing sink-tree network. Performance

Evaluations 63, 956–987 (2005)

[LMS04] Lenzini, L., Mingozzi, E., Stea, G.: Delay bounds for FIFO aggegates: a

case study. Computer Communications 28, 287–299 (2004)

[LMS07] Lenzini, L., Mingozzi, E., Stea, G.: End-to-end delay bounds in fifo-

multiplexing tandems. In: Glynn, P. (ed.) Proc. of the 2nd International

Conference on Performance Evaluation Methodologies and Tools (Value-

Tool 2007), Nantes, France, October 23-25, ICST (2007)

http://cermics.enpc.fr/~cohen-g//SED/book-online.html
http://www.onera.fr/staff/marc-boyer/tools.php
http://www.springerlink.com/content/876x51r6647r8g68/
http://www.istia.univ-angers.fr/~lagrange/software.php
http://disco.informatik.uni-kl.de/content/Network_Calculator
http://lrcwww.epfl.ch/PS_files/NetCal.htm

150 M. Boyer

[PEG10] Pegase home page (2010), http://sites.onera.fr/pegase

[Rea] RealTime-at-Work. Realtime-at-work home page,

http://www.realtimeatwork.com

[Sch] Schiøler, H.: CyNC home page,

http://www.control.auc.dk/~henrik/CyNC/

[Sci] Scilab consortium. Scilab hme page, http://www.scilab.org

[SJDL05] Schiøler, H., Jessen, J.J., Dalsgaard, J., Larsen, K.G.: Network calculus

for real time analysis of embedded systems with cyclic task dependencies.

In: Proceedings of the 20th Int. Conf. on Computers and Their Applica-

tions (CATA 2005), pp. 326–332 (2005)

[SNLJ06] Schiøler, H., Nielsen, J.D., Larsen, K.G., Jessen, J.: CyNC: A method for

real time analysis of systems with cyclic data flows. Journal of Embedded

Computing 2(3-4), 347–360 (2006)

[SZ06] Schmitt, J.B., Zdarsky, F.A.: The DISCO network calculator - a tool-

box for worst case analysis. In: Proceedings of the First International

Conference on Performance Evaluation Methodologies and Tools (VAL-

UETOOLS 2006), Pisa, Italy. ACM, New York (November 2006)

[TCN00] Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for schedul-

ing hard real-time systems. In: Proc. IEEE International Symposium on

Circuits and Systems (ISCAS), pp. 101–104 (2000)

[TS09] Thiele, L., Stoimenov, N.: Modular performance analysis of cyclic

dataflow graphs. In: EMSOFT 2009: Proceedings of the 9th ACM In-

ternational Conference on Embedded software, Grenoble, France, pp.

127–136 (2009)

[WT06] Wandeler, E., Thiele, L.: Real-Time Calculus (RTC) Toolbox (2006),

http://www.mpa.ethz.ch/Rtctoolbox

A Example of Distance Between Theory and
Implementation

In section 3.7, we claim that the DISCO and RTC tools implementation is not
a direct mapping of the theory.

As example of this approximation, we will show that what is called “decon-
volution” in the codes is not exactly the mathematical definition of the decon-
volution.

To make the difference visible (i.e. printable), we introduce γ̇r,b, the left-
continuous extension of γr,b (γ̇r,b(x) = rx + b, and we use three specific results
(with domain R+): γr,b ∗ γr,b = γr,b, γ̇r,b ∗ γ̇r,b = γ̇r,2b and γr,b � βR,T = γ̇r,b+rT .

In both RTC and DISCO, when creating a γ function (with the rtccurve func-
tion for RTC and createTokenBucket for DISCO), computing its deconvolution
(with resp. commands rtcmindeconv and deconvolve) by a β function (ie f =
γr,b � βR,T , which can be in both tools plotted and looks like γr,b+rT or γ̇r,b+rT ,
the continuity being hard to see on screen) computing the auto-convolution f ∗f
(with resp. commands rtcminconv and convolveAlmostConcave), we get f ,
when we should get γ̇r,2b+2rT .

What is really computed by functions with name “deconvolution” in DISCO
and RTC is not really the deconvolution, but the composition of convolution and

http://sites.onera.fr/pegase
http://www.realtimeatwork.com
http://www.control.auc.dk/~henrik/CyNC/
http://www.scilab.org
http://www.mpa.ethz.ch/Rtctoolbox

NC-Maude 151

minimum with δ0, ie, if deconv(f,g) denotes the implementation in these tools,
we have deconv(f, g) = (f � g) ∧ δ0, instead of f � g.

It is not a real bug: the computed bounds are still true, since the deconvolution
in network calculus is always used for computing arrival curves, and it is known
that, if f is an arrival curve for a flow, than also is f ∧ δ0. But this distance
between mathematical domain and implementation does not help beginners to
discover the network calculus.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 152–168, 2010.
© Springer-Verlag Berlin Heidelberg 2010

DEBORAH: A Tool for Worst-Case Analysis of FIFO
Tandems

Luca Bisti, Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea

Dipartimento di Ingegneria dell’Informazione, University of Pisa
Via Diotisalvi 2, I-56122 Pisa, Italy

{luca.bisti,l.lenzini,e.mingozzi,g.stea}@iet.unipi.it

Abstract. Recent results on Network Calculus applied to FIFO networks show
that, in the general case, end-to-end delay bounds cannot be computed in a
closed form, whereas solving non-linear programming problems is instead re-
quired. Furthermore, it has been shown that these bounds may be larger than the
actual worst-case delay, which also calls for computing lower bounds on the lat-
ter. This paper presents DEBORAH (Delay Bound Rating AlgoritHm), a tool
for computing upper and lower bounds to the worst-case delay in FIFO tandem
networks. DEBORAH can analyze tandems of up to several tens of nodes in
reasonable time on off-the-shelf hardware. We overview the various algorithms
used by DEBORAH to perform the various steps of the computations, and de-
scribe its usage.

1 Introduction

Computing good end-to-end delay bounds in networks employing per-aggregate re-
source management (such as DiffServ [2] or MPLS [4]) is a challenging task. A delay
bound is as good as it is tight, i.e. close to the actual worst-case delay (WCD) for a bit
of the flow being analyzed. While it is fairly simple to compute the WCD under per-
flow resource management [3], this task appears to be considerably more complex in
networks employing per-aggregate resource management. A recent work shows that
WCD computation is actually NP-hard under blind multiplexing [15], i.e. where no
assumption is made regarding the flow multiplexing criterion (e.g. both FIFO and
strict-priority fit this definition). Tools for computing delay bounds in the above set-
tings have also been released [12-13,15]. As for FIFO-multiplexing networks (where
the FIFO hypothesis generally allows for smaller delays), our previous works [1,9-11]
describe a methodology for computing per-flow delay bounds in tandem networks of
rate-latency nodes traversed by leaky-bucket shaped flows. The method, called Least
Upper Delay Bound (LUDB), is based on the well-known Network Calculus theorem
that allows a parametric set of per-flow service curves to be inferred from a per-
aggregate service curve at a single node. As shown in [11], we can derive end-to-end
service curves only for nested tandems, where the path traversed by a flow a is either
entirely included into the path of another flow b or has a null intersection with it.
Non-nested tandems, instead, have to be cut into a number of nested sub-tandems,
which have to be analyzed separately using LUDB. Then, per sub-tandem delay
bounds are computed and summed up to obtain the end-to-end delay bound. In this

 DEBORAH: A Tool for Worst-Case Analysis of FIFO Tandems 153

case, there are always several ways for cutting a tandem, and there is no way to state a
priori whether one leads to better results than the others. The algorithmic difficulties
involved into computing the LUDB are non trivial: closed-form solutions are known
only for specific topologies (e.g., tree networks [10] and tandems with 1-hop persis-
tent interfering traffic [9]). In the other cases, the piecewise linear problem that comes
out of (sub-)tandem analysis has not been proved to be convex. Moreover, the number
of possible cuts for a non-nested tandem may grow exponentially with the tandem
length. Therefore, software tools that allow tandem analysis are necessary even for
small-scale problems. Moreover, recent research [1] has shown that the LUDB may
actually be larger than the WCD. Therefore, it is also important to compute lower
bounds on the WCD, which requires the ability to perform operations (e.g., multiplex-
ing/demultiplexing and convolution) on cumulative arrival functions.

In this paper we present the algorithms used within DEBORAH (DElay BOund
Rating AlgoritHm, [14]), an open-source C++ tool, for computing upper and lower
bounds on the WCD. The algorithms are in general exponential, but – thanks to clever
implementations – appears to be fast enough to manage tandems of up to several tens
of nodes within a reasonable time.

The rest of the paper is organized as follows: we report some background on Net-
work Calculus in Section 2. Section 3 reports the system model. We describe the
LUDB methodology in Section 4, and Section 5 highlights the algorithms coded into
DEBORAH and presents its interface. Section 6 concludes the paper.

2 Network Calculus Background

We report a minimal background on Network Calculus, essentially with the purpose
of laying down the notation for the remainder. Interested readers are referred to the
abundant literature for further information [3,5-6,8,16].

Let ()A t and ()D t be the (wide-sense increasing) Cumulative Arrival and Cumu-

lative Departure functions (CAF, CDF) for a flow at a network element. That network
element can be modeled by the service curve ()tβ if:

() () (){ } ()()
0
inf

s t
D t A t s s A tβ β

≤ ≤
≥ − + = ⊗ , (1)

for any 0t ≥ . The flow is said to be guaranteed the (minimum) service curve β ,

which is the min-plus convolution (⊗) of A and β . Min-plus convolution is com-

mutative and associative, and convolution of concave curves with ()0 0f = is equal

to their minimum. Several network elements, such as delay elements, links, and regu-
lators, can be modeled by service curves. For example, network elements which have
a transit delay bounded by ϕ can be described by the following service curve:

()
0

t
t

tϕ
ϕ

δ
ϕ

+∞ ≥⎧
= ⎨ <⎩

.

154 L. Bisti et al.

Many commonplace packet schedulers can be modeled by a family of simple service

curves called the rate-latency service curves, defined as () [],R t R tθβ θ += ⋅ − for

some 0θ ≥ (the latency) and 0R ≥ (the rate). Notation []x
+

 denotes { }max 0, x . A

fundamental result of Network Calculus is that the service curve of a feed-forward
sequence of network elements traversed by a data flow is obtained by convolving the
service curves of each of the network elements.

Arrival curves constrain the CAFs. A wide-sense increasing function α is said to

be an arrival curve for CAF A if () () ()A t A tτ α τ− ≤ − , for all tτ ≤ . A flow regu-

lated by a leaky-bucket shaper, with sustainable rate ρ and burst size σ , is con-

strained by the affine arrival curve () () { }, 01 tt tσ ργ σ ρ >= + ⋅ ⋅ . Function { }1 expr is equal

to 1 if expr is true, and 0 otherwise.
End-to-end delay bounds can be derived by combining together arrival and service

curves. Given a FIFO network element (or tandem thereof) characterized by a service
curve β and a flow traversing it, constrained by arrival curve α , the delay is

bounded by the horizontal deviation:

() () (){ }
0

, sup inf 0 :
t

h d t d tα β α β
≥
⎡ ⎤≥ − ≤⎣ ⎦ . (2)

From (2) it follows that () ()1 2 1 2, ,h hβ β α β α β≤ ⇒ ≥ . Notation 1 2β β≤ means that

() ()1 2t t tβ β∀ ≤ . Regarding FIFO multiplexing of flows into the same service curve

element, a fundamental result ([7], [3], Chapter 6) allows one to derive per-flow ser-
vice curves from per-aggregate ones:

Theorem 1 (FIFO Minimum Service Curves, [3])
Consider a lossless node serving two flows, 1 and 2, in FIFO order. Assume that
packet arrivals are instantaneous. Assume that the node guarantees a minimum ser-
vice curve β to the aggregate of the two flows. Assume that flow 2 has 2α as an

arrival curve. Define the family of functions:

() () () () { }2, , 1 tE t t t τβ α τ β α τ +

>= − − ⋅⎡ ⎤⎣ ⎦ (3)

For any 0τ ≥ such that ()(), ,E tβ α τ is wide-sense increasing, then flow 1 is guar-

anteed the (equivalent) service curve ()(), ,E tβ α τ .

Theorem 1 describes an infinity of equivalent service curves, each instance of which
(obtained by selecting a specific value for the τ parameter), is a service curve for
flow 1, provided it is wide-sense increasing. Hereafter, we omit repeating that curves
are functions of time (and, possibly, of other parameters such as τ) whenever doing
so does not generate ambiguity.

It has been proved in [10-11] (to which the interested reader is referred for more
details and proofs) that pseudoaffine curves effectively describe the service received
by single flows in FIFO multiplexing rate-latency nodes. We call a pseudoaffine
curve one which can be described as:

 DEBORAH: A Tool for Worst-Case Analysis of FIFO Tandems 155

, ,
11

x x x xD D
x nx n

σ ρ σ ρπ δ γ δ γ
≤ ≤≤ ≤

⎡ ⎤ ⎡ ⎤= ⊗ = ⊗⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⊗ ∧ , (4)

i.e., as a multiple affine curve shifted to the right, the latter inequality stemming from
the fact that affine curves are concave. We denote as offset the non-negative term D ,
and as leaky-bucket stages the affine curves between square brackets. We denote with

*
πρ (long-term rate) the smallest sustainable rate among the leaky-bucket stages be-

longing to the pseudoaffine curve π , i.e. ()*

1,...,
min xx nπρ ρ
=

= . A rate-latency service

curve is in fact pseudoaffine, since it can be expressed as , 0,R Rθ θβ δ γ= ⊗ . Although

more general than rate-latency curves, pseudoaffine curves are still fairly easy to
manage from a computational standpoint: the convolution of two pseudoaffine curves
is in fact still a pseudoaffine curve. Furthermore, Theorem 1 can be specialized for the
case of pseudoaffine service curves and leaky-bucket arrival curves as follows:

Corollary 2 [10]
Let π be a pseudoaffine service curve, with offset D and n leaky-bucket stages

,x xσ ργ , 1 x n≤ ≤ , and let ,σ ρα γ= , with *
πρ ρ≥ . If a node guarantees a minimum

service curve π to the aggregate of the two flows, and flow 2 has α as an arrival

curve, then the family of functions (){ }, , , 0E s sπ α ≥ , with:

() () (){ } (), , ,
1

, ,
x x xh s s h D

x n

E s α π ρ α π σ σ ρ ρπ α δ γ+ + − − − −
≤ ≤

⎡ ⎤= ⊗ ⎢ ⎥⎣ ⎦⊗ , (5)

are pseudoaffine equivalent service curves for flow 1. Furthermore, set

(){ }, , , 0S E s sπ α ≥ includes all the equivalent service curves which are relevant

for computing delay bounds.

Therefore, all the “good” performance bounds that can be found by applying Theorem 1
can also be found by applying Corollary 2. As (5) is much more compact than (3), and
perfectly equivalent from the point of view of computing performance bounds, we will
use the former henceforth.

3 System Model

We analyze a tandem of N nodes, connected by links and traversed by flows, i.e.
distinguishable streams of traffic. We are interested in computing a tight end-to-end
delay bound for a tagged flow, which traverses the whole tandem from node 1 to N .
At each node, FIFO multiplexing is in place, meaning that all flows traversing the
node are buffered in a single queue First-Come-First-Served. Furthermore, the aggre-
gate of the flows traversing a node is guaranteed a rate-latency service curve, with
rate kR and latency kθ , 1 k N≤ ≤ . A flow can be identified by the couple (),i j ,

1 i j N≤ ≤ ≤ , where i and j are the first and last node of the tandem at which the

flow is multiplexed with the aggregate. Flows are fluid, i.e. we assume that it is

156 L. Bisti et al.

feasible to inject and service an arbitrarily small amount of traffic at a node, and are
constrained by a ,σ ρ leaky-bucket arrival curve at their ingress node. Leaky-bucket

curves are additive, hence we can safely assume that at most one flow exists along a
path and identify it using the path as a subscript. Based on how the paths of their
flows are interleaved, tandems can be either nested or non-nested. In a nested tandem,
flows are either nested into one another, or they have null intersection, i.e. no two
flows (),i j , (),h k exist with i h j k< ≤ < . Fig. 1a represents a nested tandem of

three nodes, where flow ()3,3 is nested within flow ()2,3 . Furthermore, flows ()1,1 ,

()3,3 and ()2,3 are nested within the tagged flow ()1,3 . The level of nesting (),l i j

is the number of flows (),h k into which (),i j is nested. With reference to Fig. 1a, it

is () ()1,1 2,3 2l l= = , ()3,3 3l = , and ()1,3 1l = . The level of nesting of the tandem is

the maximum level of nesting of one of its flows, i.e. the maximum number of flows
crossing a single node. A tandem of N nodes has a level of nesting no greater than
N , and that the maximum number of distinguishable flows in an N -node nested
tandem is 2 1N − .

()1,3

()1,1

()2,3

()3,3

1 2 3

()1,3

()1,2

()2,3

1 2 3

()1,3

()2,3

()3,3

1 2 3

Fig. 1. a) A nested tandem; b) a fully nested tandem; c) a non-nested tandem

A particular case of n -level nested tandem is the one where there is only one flow

at each level of nesting, i.e. () (), 1 , ! , : ,x x n i j l i j x∀ ≤ ≤ ∃ = . We call such a tandem

a fully nested tandem. A sink-tree tandem, where there are exactly N flows (),i N ,

1 i N≤ ≤ (see Fig. 1b, above), is a fully nested tandem (whose level of nesting is N).
On the other hand, a tandem is non-nested if it does not verify the above definition, as
the one shown in Fig. 1c. In that case, we say that flow ()1,2 intersects flow ()2,3 .

Finally, as far as rate provisioning is concerned, we assume that a node’s rate is no
less than the sum of the sustainable rates of the flows traversing it, i.e. for every node
1 h N≤ ≤ , ()() ,, :

h
i ji j i h j

Rρ
≤ ≤

≤∑ . Note that this allows a node’s rate to be utilized up

to 100%, and it is therefore a necessary condition for stability. Moreover, we assume
that the buffer of a node is large enough as to guarantee that traffic is never dropped.

 DEBORAH: A Tool for Worst-Case Analysis of FIFO Tandems 157

4 The LUDB Methodology

In this paragraph, we briefly describe the Least Upper Delay Bound (LUDB) method-
ology [1,11]. We first explain it on nested tandems, and extend it to non-nested tan-
dems later on. At a first level of approximation, LUDB consists in computing all the
service curves for the tagged flow: we start from the aggregate service curves at each

node, we apply Corollary 2 iteratively in order to remove one flow (),i j ≡ ()1, N

from the tandem, and we convolve the service curves of nodes traversed by the same
set of flows. Every time Corollary 2 is used, a new free parameter (),i js is introduced.

Therefore, we compute in fact a multi-dimensional infinity of service curves. From
each of these we can compute a delay bound for the tagged flow, hence the minimum
among all the delay bounds is the least upper delay bound.

2β

()2,3α

()1,3α () ()()1
1,1 1,1, ,E sβ α () ()()3

3,3 3,3, ,E sβ α

1β 2β 3β

()2,3α

()1,1α ()3,3α

()1,3α

()2,3α

()1,3α () ()()1
1,1 1,1, ,E sβ α () ()()2 3

3,3 3,3, ,E sβ β α⊗

()1,3α () ()()1
1,1 1,1, ,E sβ α () ()() () ()()2 3

3,3 3,3 2,3 2,3, , , ,E E s sβ β α α⊗

()1,3α () ()() () ()() () ()()1 2 3
1,1 1,1 3,3 3,3 2,3 2,3, , , , , ,E s E E s sβ α β β α α⊗ ⊗

Fig. 2. An example of application of the LUDB methodology

For instance, Fig. 2 shows how to compute the set of end-to-end service curves for the
tagged flow (1,3) in the nested tandem shown in Fig. 1a. The set of resulting (pseu-

doaffine) service curves { }1,3π depend on three parameters, ()1,1s , ()2,3s , ()3,3s . More

generally, let us consider a nested tandem of N nodes, whose level of nesting is 2n ≥
(otherwise the problem is trivial). The algorithm for computing the delay bound for the
tagged flow is the following. As a first step, we build the nesting tree of the tandem,
which is in fact a simplified representation of the tandem. Let us define two sets:

() () () (){ }, , : and , , 1h kS i j h i j k l i j l h k= ≤ ≤ ≤ = + ,

 i.e. the set of flows which are nested right into (),h k , and:

() () (){ }, ,: and , , or h k h kC l h l k i j S l i l j= ≤ ≤ ∀ ∈ < > ,

158 L. Bisti et al.

i.e. the set of nodes in path (),h k that are not in the path of any flow in (),h kS . Note

that, if (),h kS = ∅ , then () { }, , 1,...,h kC h h k= + .

For the sake of clarity, hereafter the nodes in the nesting tree are called t-nodes, in
order to distinguish them from the nodes in the path of the tagged flow. In the nesting
tree, there are two kind of t-nodes: non-leaf t-nodes represent flows, and leaf t-nodes
represent sets of nodes in the path. More specifically, each non-leaf t-node contains a
flow (),h k . The root t-node contains ()1, N . Furthermore, each t-node whose content

is (),h k has all flows () (),, h ki j S∈ as direct descendants. Furthermore, if (),h kC ≠ ∅ ,

(),h k has one more direct descendant representing (),h kC (which is a leaf t-node).

The level of nesting of a flow is the depth of the corresponding t-node in the nesting
tree. Accordingly, we henceforth write that () (), ,i j h k→ iff () (),, h ki j S∈ , (),h kS

being the set of non-leaf direct descendants of (),h k , and that () ()*, ,i j h k→ to

denote that (),i j is a (possibly non-direct) descendant of (),h k . Fig. 3 shows the

nesting tree of the tandem of Fig. 1a. Leaf t-nodes are shown as circles, while non-
leaf nodes are ellipses. For instance, it is () ()2,3 1,3→ and () ()*3,3 1,3→ , whereas

() *1,1 → ()2,3 .

Once the nesting tree has been constructed, the set of end-to-end service curves for

()1, N is computed by visiting the nesting tree from the leaves to the root as follows:

For each leaf t-node representing (),h kC for some parent t-node (),h k , compute

()
()

,

,

h k

h k

C j
j Cπ β∈= ⊗ . Then, at a non-leaf t-node (),h k , compute a service curve as:

{ } ()

() ()

{ }
() ()(),

,

, ,
, ,

,

, ,h k

h k

Ch k i j

i j i j
i j S

E sπ π π α
∈

⎡ ⎤
= ⊗ ⎢ ⎥

⎢ ⎥⎣ ⎦
⊗ , (6)

i.e. as the convolution of i) the service curves obtained by applying Corollary 2 to the

service curve computed at all child t-nodes, and ii) service curve (),h kCπ , if (),h kC ≠ ∅

(otherwise assume for completeness that (),

0 0,
h kCπ δ β +∞= =).

The set of end-to-end service curves for ()1, N , call it { }1,Nπ , is obtained by com-

puting the service curve at the root t-node. The LUDB for the tagged flow is the
following:

()
() ()

()
{ }

() () ()()(){ }
,

*

1, *
1, ,0,

, 1,

min , : , 1,
i j

N

N i js

i j N

V h s i j Nα π
≥

→

= → . (7)

Since { }1,Nπ is pseudoaffine and ()1,Nα is an affine curve, problem (7) is an optimiza-

tion problem with a piecewise linear objective function. Computing the LUDB means
solving a piecewise-linear programming (P-LP) problem.

 DEBORAH: A Tool for Worst-Case Analysis of FIFO Tandems 159

()1,3

()1,1 ()2,3

()3,3

()1,3

()1,1

()2,3

()3,3

1 2 3

Fig. 3. A nested tandem and the related nesting tree

The LUDB methodology cannot be applied directly to non-nested tandems, such as
the one shown in Fig. 1c. In fact, in that case, two flows intersect each other. In [11],
it was observed that a non-nested tandem can always be cut into at most 2N⎡ ⎤⎢ ⎥

disjoint nested sub-tandems. Therefore, one can use LUDB to compute partial, per
sub-tandem delay bounds, and an end-to-end delay bound can be then computed by
summing up the partial delay bounds. For instance, the tandem of Fig. 1c can be cut in
two different ways, i.e. placing the cut before or after node 2. This way, two different
end-to-end delay bounds can be computed, call them aV and bV , both using LUDB.

Now, a bV V V= ∧ is an end-to-end delay bound for the tagged flow, and both aV
and bV can actually be the minimum, depending on the actual values of the nodes
and flows parameters. As shown in [11], for each sub-tandem other than the first one,
computing the output arrival curve for all the flows that traverse the cut is also re-
quired. For instance, if the cut is placed before node 2, the output arrival curve of flow
(1,3) and (1,2) at the exit of node 1 are required in order to be able to analyze sub-
tandem {2,3}. We proved in [11] that computing these output arrival curves is in fact
identical to solving a simplified LUDB problem, and proposed algorithms to keep
flows bundled as much as possible, for the sake of tightness. Therefore, the problem
of computing bounds in non-nested tandem can be exploded into a number of LUDB
computations, once an algorithm for computing sets of cuts is given.

5 DEBORAH

Hereafter, we overview the algorithms coded into DEBORAH [14] for computing
upper bounds - in both nested and non-nested tandems - and those for computing
lower bounds, which are common to both. We conclude the section by describing how
to use the tool.

5.1 Nested Tandems

As shown in [11], P-LP problems such as (7) can be decomposed into a number of
simplexes. Assume for ease of notation that:

160 L. Bisti et al.

{ }1,
,

1
x x

N
D

x n
σ ρπ δ γ

≤ ≤

⎡ ⎤= ⊗ ⎢ ⎥⎣ ⎦∧ ,

where D and xσ , 1 x n≤ ≤ , are linear functions of (),i js , () ()*, 1,i j N→ . Then,

problem (7) can be formulated as follows:

()

() () ()

1,

1

*
,

min

. .

0, , 1,

xN

x n
x

i j

V D

s t

s i j N

σ σ
ρ

+

≤ ≤

⎧ ⎫−⎡ ⎤⎪ ⎪= + ∨ ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

≥ ∀ →
.

The above problem has a piecewise linear objective function, due to the maximum
operator. It can however be decomposed into 1n + problems, as many as the terms in
the max operator between square brackets (i.e., all the n leaky bucket stages of

{ }1,Nπ , plus the null term given by []+
). In each sub-problem, the max is assumed to

be achieved either for generic term x , 1 x n≤ ≤ , or for the null term, and the ine-
qualities which are required for these assumptions to hold are added accordingly. We
henceforth call each of those instances a decomposition of the original (P-LP) LUDB
problem. The generic decomposition x , 1 x n≤ ≤ , and the 1n + th one are shown
below:

()

() () ()
() ()

()

1,

*
,

1, 1,

1,

min

. .

0, , 1,

, 1

0

xN

x
x

i j

x yN N

x y

xN

x

V D

s t

s i j N

y y n

σ σ
ρ

σ σ σ σ
ρ ρ
σ σ

ρ

−⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭

≥ ∀ →

− −
≥ ∀ ≤ ≤

−
≥

 and
{ }

() () ()
()

1

*
,

1,

min

. .

0, , 1,

0 ,1

n

i j

yN

y

V D

s t

s i j N

y y n
σ σ

ρ

+ =

≥ ∀ →

−
≤ ∀ ≤ ≤

.

Then, the LUDB is computed as { }
1 1
min x

x n
V V

≤ ≤ +
= . The offset D and the bursts xσ of

the n stages of { }1,Nπ can either be affine functions of () () ()*
, 0, , 1,i js i j N≥ → , in

which case all the decompositions are simplexes, or can themselves be piecewise
linear functions of () () ()*

, 0, , 1,i js i j N≥ → . In this last case, however, they are ob-

tained by composing sum and maximum operations recursively according to the nest-
ing tree structure. Therefore, each problem can be recursively decomposed into a
number of other problems, working out maxima and adding constraints at each recur-
sive step, until the resulting problems turn out to be simplexes themselves. We call
each such simplex a recursive simplex decomposition (RSD) of that LUDB problem.
The problem with this approach is that the number of RSDs grows exponentially with

 DEBORAH: A Tool for Worst-Case Analysis of FIFO Tandems 161

the number of flows and nodes. As an example, for a case-study tandem with 30
nodes and 31 flows, nested up to level five, we obtain 91.5 10Ω = ⋅ RSDs.

A much more efficient solution algorithm can be obtained by observing that most
RSDs are infeasible and can be identified as such at a small cost. In fact, thanks to the
recursive structure of the LUDB problem, it is fairly easy to identify small sets of
infeasible constraints, each one of which may appear in possibly many RSDs. Once a
set of constraints is identified as infeasible, all the RSDs which include that set can be
safely skipped, reducing the overall number of simplexes to be solved to a much
smaller figure. Thus, the key to a faster solution algorithm is to work bottom-up in the
nesting tree: starting from the t-nodes immediately above the leaves, we compute the
LUDB for the sub-tree rooted at each of them. In doing so, we check the feasibility of
each resulting RSD, and we mark infeasible constraints or sets thereof. Moving up-
wards towards the root, at each father t-node we solve the LUDB problem, this time
considering only those RSDs which do not include infeasible (sets of) constraints of
child t-nodes. As soon as new infeasible RSDs are identified, they are marked and
ruled out from then on. The bottom-up approach is considerably faster than a brute-
force recursive simplex decomposition. For instance, in sink-tree tandems it reduces

the number of simplexes from !M to ()2O M . In the previously mentioned case

study, the overall number of RSDs to be solved or proved infeasible is reduced from
91.5 10⋅ to 61.67 10⋅ . In this last case, DEBORAH finds the solution in less than 20

minutes on a 2.4GHz Intel Core2 E6600 processor.

5.2 Non-nested Tandems

With non-nested tandems, before computing the LUDBs for each sub-tandem, we
have to cut it into a number of nested sub-tandems. Flows (),i j can be stored in a

flow matrix F , such that , 1i jF = is flow (),i j exists. Interdependencies can be effi-

ciently located by exploring F using simple bitwise operations. For instance, for flow

(),i j the interdependent flows are the 1s in [] [] [] []1, 1 , 1 1, 1,i i j i j j N− × − ∪ + × + .

Let d be the number of such dependencies. As a first step, an N d× binary De-
pendency Matrix (DM) is computed. Fig. 4 shows a non nested tandem and its F and
DM. For each couple of interdependent flows (),i j and (),h k , the dependency is

severed if we cut the tandem at any node in [], 1h j + . Accordingly, the DM has a 1 at

all the rows [], 1h j + for that dependency. Row n of the DM is thus the set of de-

pendencies nD which would be severed by cutting the tandem at node n . We are

interested in finding sets of cuts such that: i) the resulting sub-tandems are all nested,
ii) all the dependencies are satisfied, and iii) no cut can be eliminated without violat-
ing i). We call the above Primary Sets of Cuts (PSCs).

PSCs are those subsets of rows (i.e., nodes) such that at least a 1 can be found for
every column (i.e. dependency), and no row dominates the other, i.e. {3} and {2,4} in
the example of Fig. 4. The number of PSCs grows exponentially with the number of
nodes, however with a small exponent: for a dense tandem, i.e. one including all possi-
ble flows, our experiments show that this number grows as 0.40.73 2 N⋅ , i.e. about 33 10⋅

162 L. Bisti et al.

1 2 3 4

1

2

3

4

F

× × ×
×

×

()
()

()
()

()
()

1,2 1,3 2,3

2,3 3,4 3,4

1

2

3

4

DM

×
× × ×

× ×

321 4

()1, 2

()2,3

()3, 4()1,3

()1, 4

Fig. 4. A non-nested tandem, its flow matrix (left) and dependency matrix (right)

for 30N = . There is unfortunately no way to tell which PSC will yield the smallest
bound beforehand: intuitive principles like “minimum number of cuts/flows/overall sum
of ρ s” may not yield the optimal result. Hence, all PSCs should be tried in principle.
While this requires to compute exponentially many LUDBs, each LUDB is also expo-
nentially simpler because sub-tandems are generally shorter due to the cutting, hence the
computation time does not differ too much with respect to the nested tandem case. Fur-
thermore, a considerable speedup (e.g., up to 80% for dense tandems of 30 nodes) can
be harvested by caching partial per sub-tandem computations. It turns out, in fact, that
the same sub-tandem can be common to many PSCs, hence computing its partial delay
bound once (instead of once per PSC it belongs to) improves the efficiency. The exact
procedure for computing LUDBs once PSCs are known is described in [11], to which
the interested reader is referred to for the details.

5.3 Lower Bounds

As proved in [1], the LUDB is not always equal to the WCD. While the two are al-
ways equal in sink-tree tandems [10], this cannot be generalized to nested tandem, nor
to fully nested tandems either. Therefore, it becomes important to compute also lower
bounds on the WCD, so as to bound the region where the WCD is included, thus
implicitly assessing how overrated the LUDB can be with respect to the WCD itself.
As every achievable delay is itself a lower bound on the WCD, we heuristically setup
a scenario where delays are large, so as to create a reasonably pejorative case. The
algorithm for computing the lower bound is the following:

a) assume that all nodes are lazy, i.e. that () () ()i i iD A β= ⊗ for each node i.

b) The tagged flow ()1, N sends its whole burst ()1,Nσ at time 0t = and then stops.

Therefore, the ()1,Nσ th bit of the tagged flow experiences a larger delay than the other

()1, 1Nσ − , and that delay is our lower bound on the WCD.

c) Every cross flow (),i j sends “as much traffic as possible” while the bits of the

tagged flow are traversing the node, so as to delay the ()1,Nσ th bit of the tagged flow.

Among the infinite Cumulative Arrival Functions (CAFs) that follow this rule, we

 DEBORAH: A Tool for Worst-Case Analysis of FIFO Tandems 163

pick the greedy one, i.e. one such () () () ()0 0, ,i j i jA t t t tα− = − , 0t being the time instant

where the first bit of the tagged flow arrives at node i, and the delayed-greedy one,
where cross flow (),i j sends the whole burst just before the last bit of the tagged

flow arrives. It turns out that, depending on the values associated to the nodes and
flows parameters, using either greedy or delayed greedy CAFs for the cross flows
actually leads to different delays, and it is not always possible to establish which is
the largest beforehand.

Within DEBORAH, each CAF is represented as a piecewise linear function, not
necessarily convex. This allows us to approximate any kind of curve. Furthermore,
the curves that we use are themselves piecewise linear, so their representation is ex-
act. Each CAF (),

k
i jA is a list of (),

k
i jQ breakpoints; each breakpoint iB is represented

through its Cartesian coordinates ,it b and a gap ig , i.e. a vertical discontinuity

which allows for instantaneous bursts: (), ,i i i iB t b g= , () (){ }, ,, 1k k
xi j i jA B x Q≡ ≤ ≤ . As

the CAFs are wide-sense increasing, the abscissas of the breakpoints are strictly in-
creasing, and 1i i ib b g+ ≥ + . The number of breakpoints is finite. This is because, since

the worst-case delay stays finite, then it is achieved for sure in finite time, and there-
fore we can safely assume that the CAF remains constant after the last breakpoint. For
instance, an affine CAF with initial burst σ and a constant slope ρ up to time τ is

represented as () (){ }0,0, , , ,0σ τ ρ τ σ⋅ + .

The operations required for computing the CDF of the tagged flow at node N are:

1. FIFO multiplexing of several CAFs at the entrance of a node, so as to compute the
aggregate CAF.

2. Convolution between the aggregate CAF and a node’s rate-latency service curve,
i.e. computation of a lower bound for the aggregate CDF.

3. FIFO de-multiplexing of flows at the exit of a node, i.e. computation of per-flow
CDFs from the aggregate CDF. This is required to take into account flows leaving
the tandem.

The multiplexing is a summation of CAFs, which boils down to computing the union
of the respective breakpoints and summing their ordinates. The convolution algorithm
is explained in [3], Chapter 1.3, in its most general form. Our implementation capital-
izes on the service curve being latency-rate and on the CAF being piecewise linear. In
this case, all it takes is comparing the slope of the linear pieces in the CAF against the
rate of the service curves, and computing intersections. The resulting CDF has a dif-
ferent set of breakpoints with respect to the CAF, and it is continuous, even if the
CAF is not, since the service curve is itself continuous. The third operation, i.e. FIFO
de-multiplexing, exploits the FIFO hypothesis: more specifically, for all flows (),i j

traversing node k as part of a FIFO aggregate, 0t∀ ≥ () () () ()(), ,
k k
i j i jD t A x t= , where

() () (){ }sup : k kx t t A D tτ τ= ≤ = . Let outR be the rate of ()kD t in [)1 2,t t . If ()kA t

is continuous in () ())1 2,x t x t⎡⎣ , call inR and (),
in
i jR its rate and that of () (),

k
i jA t in that

164 L. Bisti et al.

interval. Then, the rate of () (),
k
i jD t in [)1 2,t t is equal to () (), ,

out in out in
i j i jR R R R= ⋅ . If in-

stead ()kA t has a discontinuity in t due to flow f ’s burst, so that () 0
kA t b− = and

() 1 0
kA t b b+ = > , then all the traffic in the aggregate CDF in () () () ())1 1

0 1,k kD b D b
− −⎡

⎢⎣

belongs to flow f . Thus, if outR is the rate of ()kD t in that interval, the rate of

() (),
k
i jD t in the same interval is equal to (){ },

1out
i j f

R ≡⋅ . Fig. 5 reports a graphic represen-

tation of the FIFO multiplexing and de-multiplexing of two CAFs.

1
1 2r r+

2
1 2r r+

1t 2t 3t 4t()1x t () ()2 3x t x t= ()4x t

()1
kD t

()2
kD t

()3
kD t

()4
kD t

1t 2t 3t 4t()1x t () ()2 3x t x t= ()4x t

1r

1
2r

2
2r

1
1

1 2

out r
R

r r
⋅

+
1

2
1 2

out r
R

r r
⋅

+

()kA t ()kD t

()1
kD t()1

kA t

()2
kA t

outR

Fig. 5. Basic operations at a FIFO node

Other tools that have been developed for Network Calculus. The DISCO calculator
[12] computes output arrival curves from (concave) input arrival curves, assuming
blind multiplexing (instead of FIFO). The COINC library [13] implements basic (min,
+) algebra operations, hence – although not a tool itself, lacking network representa-
tion, it can be used to build a tool. The RTC [18] and CyNC [19] toolboxes allow one
to compute CDFs from CAFs through (min,+) convolution. However, as far as we
know, they cannot compute LUDBs in FIFO systems, and we are not aware that they
implement demultiplexing of flows at the output of a FIFO server, which is necessary
for our lower bound analysis.

 DEBORAH: A Tool for Worst-Case Analysis of FIFO Tandems 165

5.4 Using DEBORAH

In this section we show how to use DEBORAH for analyzing user-defined network
topologies. DEBORAH is a command-line program written in portable C++, which
can be compiled for a number of architectures; so far it has been successfully run on
Linux, Windows and MacOS X. Its arguments can be classified into three functional
categories: a) specification of the tandem topology; b) indication of the desired com-
putation (currently LUDB, lower bound and per-node upper bound); c) network pro-
visioning modifiers, e.g. to scale the rates assigned to flows or nodes by a constant
factor or to explicitly select the tagged flow. We illustrate the most significant fea-
tures offered by the tool via a couple of practical examples. As a first case we con-
sider a nested tandem of 10 nodes and 11 flows as shown in Fig, 6. The service curves
at each node and the arrival curves of each flow are specified in Table 1 and 2.

()1,1

()1,10

()1,8

()1,3 ()4,7

()9,9()8,8()3,3 ()4, 4 ()5,5 ()6,6

Fig. 6. Case-study nested tandem

The tandem topology is input in a text file (say “ex1.conf”) using a straightfor-
ward syntax. The file must begin with the directive TANDEM N F , which denotes a
tandem with N nodes and F flows. Next, the service curve of each node is config-
ured by means of a “NODE n θ R ” line, where n is the node ID from 1 to N , and

, Rθ are its latency and the rate respectively. Similarly, flows are specified using
“FLOW i j σ ρ ”, where ,i j are the source and sink nodes and ,σ ρ are the flow’s

leaky bucket parameters. The tagged flow is automatically selected as the one span-
ning the longest segment (usually the whole tandem), or it can be manually specified
by using TFLOW instead of FLOW in its declaration. Apart from the TANDEM directive,
which is expected to come first in the file, the other lines can appear in just any order.
Lines beginning with a hash (#) character are treated as comments and ignored.

A tandem configuration file is normally the first command line argument. If no
other arguments are specified, DEBORAH parses the topology, performs some sanity
checks (e.g. checks that the nodes’ rates are sufficient) and prints a report. For nested
tandems, for instance, it will print the associated nesting tree using a text notation.

The LUDB and the lower bound are computed by specifying the –ludb and –lb
options after the configuration file name: ./deborah ex1.conf –ludb [–lb].

Regarding the LUDB, the tool reports detailed information including the numeric
value of the optimal (),i js parameters and the symbolic expression of the service curve,

and performance figures such as the number of simplexes evaluated and the total com-
putation time. By default, DEBORAH runs the exact LUDB algorithm described in this
paper. A heuristic approximation (not described here for reasons of space, see [17]) can
be requested using the –ludb-heuristic k option, where k is the maximum number
of randomly-selected RSDs used at each node in the nesting tree.

166 L. Bisti et al.

Table 1. Node provisioning Table 2. Flow parameters

Node ID , Rθ (i,j) σ,ρ

1 0.3, 70 1, 10 200, 1
2 0.2, 10 1, 1 100, 60
3 0.1, 40 1, 3 200, 3
4 0.1, 40 3, 3 2000, 30
5 0.2, 60 1, 8 100, 2
6 0.1, 55 4, 4 400, 30
7 0.2, 7 4, 7 300, 2
 8 0.3, 70 5, 5 300, 50
9 0.1, 60 6, 6 200, 45

10 0.2, 10 8, 8 100, 55
 9, 9 300, 55

When LUDB computation is invoked, the tool detects the tandem to be non-nested

and sets to cutting the tandem into multiple disjoint sub-tandems. Each computed PSC
is reported in the program output along with the associated delay bound, the minimum
of which is elected as the LUDB. As the critical performance factor here is repre-
sented by the possibly large number of PSCs, the latter can be controlled with the –
ludb-cuts-len L option, which throws away PSCs exceeding the shortest one by
more than L cuts. In fact, as L grows larger, a diminishing likelihood of finding good
bounds can be observed. Finally, per-node bounds can be computed, using –per-
node. The latter can be used as a baseline, as they are generally largely overrated.

For the lower bounds, DEBORAH prints the number of flow combinations ana-
lyzed versus the maximum possible, as well as the computation time. Again, the tool
provides an option to deal with performance scalability issues by adding —lb-
random-combo p to the command line, which forces the total number of combina-
tions to be computed to stay below p% of the theoretical limit.

While it is easy to create and analyze custom topologies using text files, DEB-
ORAH provides means to generate particular classes of tandems in an analytical way,
which can be useful to conduct systematic studies. Specifically, it is possible to gen-
erate nested topologies whose nesting tree is a balanced trees of any order and depth,
and non-nested tandems populated with an arbitrary number of flows. For the first
case, the syntax is: ./deborah –gen-tree O K file.conf where O is the order
of the tree (the number of children for each node), K is the tree depth and file.conf is
the name of the file where the configuration will be stored. Nodes and flows are pro-
visioned according to stochastic variables which can be controlled using dedicated
switches. For non-nested tandems, command -gen-nnested N F file.conf is
used, where N is the number of nodes and F is the percentage of flows (randomly
selected) with respect to a maximum of ()1 2N N⋅ − .

Finally, loaded configurations can be altered before processing takes place. For in-
stance it is possible to override the tagged flow ID with –tagged N, or to scale the
rates by a given factor simultaneously with –scale-rates Rf Rn, where the rates
of flows and nodes are multiplied by Rf and Rn respectively.

 DEBORAH: A Tool for Worst-Case Analysis of FIFO Tandems 167

140

150

160

170

180

190

200

210

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

LUDB lower bound

de
la

y
(m

s)

Rf

Fig. 7. LUDB / lower-bound comparison

As an example, Fig. 7 reports the LUDB and lower bound as a function of the flow
rates for the nested tandem of Fig. 6. The figure was obtained using, a simple BASH
script to repeatedly invoke DEBORAH with the different values for Rf. Computation
times (subject to the coarse precision of Linux timers) are feebly, if at all, affected by
the load, and they are 10ms and 40ms for the upper and lower bounds respectively.

6 Conclusions

This paper presented DEBORAH, a tool for computing upper and lower bounds on
the worst-case delay in FIFO tandems using Network Calculus. We described the
algorithms used for i) computing the LUDB in nested tandems, ii) cutting a non-
nested tandem into nested sub-tandems, so as to enable partial LUDB computations,
and iii) computing lower bounds on the worst-case delay. We have also described
how to use the tool for analysis. To the best of our knowledge, DEBORAH is the first
tool to compute bounds on the delay in FIFO tandem networks.
Future work on the tool will consider employing integer fractions – instead of floating
points – to model slopes in the computation of the lower bounds, so as to reduce the
impact of floating point arithmetic errors in the computations.

References

1. Bisti, L., Lenzini, L., Mingozzi, E., Stea, G.: Estimating the Worst-case Delay in FIFO
Tandems Using Network Calculus. In: VALUETOOLS 2008, Athens, GR, October 21-23
(2008)

2. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture for
Differentiated Services. IETF RFC 2475 (1998)

3. Le Boudec, J.-Y., Thiran, P.: Network Calculus. LNCS, vol. 2050. Springer, Heidelberg
(2001)

4. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Label Switching Architecture. IETF
RFC 3031 (January 2001)

5. Cruz, R.L.: A calculus for network delay, part i: Network elements in isolation. IEEE
Transactions on Information Theory 37(1), 114–131 (1991)

6. Cruz, R.L.: A calculus for network delay, part ii: Network analysis. IEEE Transactions on
Information Theory 37(1), 132–141 (1991)

168 L. Bisti et al.

7. Agrawal, R., Cruz, R.L., Okino, C., Rajan, R.: Performance Bounds for Flow Control Pro-
tocols. IEEE/ACM Trans. on Networking 7(3), 310–323 (1999)

8. Chang, C.S.: Performance Guarantees in Communication Networks. Springer, New York
(2000)

9. Lenzini, L., Mingozzi, E., Stea, G.: Delay Bounds for FIFO Aggregates: a Case Study. El-
sevier Computer Communications 28(3), 287–299 (2005)

10. Lenzini, L., Martorini, L., Mingozzi, E., Stea, G.: Tight End-to-end Per-flow Delay
Bounds in FIFO Multiplexing Sink-tree Networks. Performance Evaluation 63, 956–987
(2006)

11. Lenzini, L., Mingozzi, E., Stea, G.: A Methodology for Computing End-to-end Delay
Bounds in FIFO-multiplexing Tandems. Performance Evaluation 65, 922–943 (2008)

12. Schmitt, J.B., Zdarsky, F.A.: The DISCO Network Calculator - A Toolbox for Worst Case
Analysis. In: Proc. of VALUETOOLS 2006, Pisa, Italy. ACM, New York (October 2006)

13. Bouillard, A., Thierry, É.: An Algorithmic Toolbox for Network Calculus. Journal of Dis-
crete Event Dynamic Systems 18(1), 3/49 (2008)

14. Website of the Computer Networking Group at the University of Pisa, continuously up-
dated, http://cng1.iet.unipi.it/wiki/index.php/Deborah

15. Bouillard, A., Johuet, L., Thierry, E.: Tight performance bounds in the worst-case analysis
of feed-forward networks. In: Proc. INFOCOM 2010, San Diego, US, March 14-19 (2010)

16. Fidler, M.: A Survey of Deterministic and Stochastic Service Curve Models in the Net-
work Calculus. IEEE Communications Surveys and Tutorials 12(1), 59–86 (2010)

17. Bisti, L., Lenzini, L., Mingozzi, E., Stea, G.: Computation and Tightness assessment of de-
lay bounds in FIFO-multiplexing tandems. Technical Report, Pisa (May 2010),
http://info.iet.unipi.it/~stea/

18. Wandeler, E., Thiele, L.: Real-Time Calculus (RTC) Toolbox,(2006),
http://www.mpa.ethz.ch/Rtctoolbox

19. Schioler, H., Schwefel, H.P., Hansen, M.B.: CyNC – a MATLAB/Simulink Toolbox for
Network Calculus. In: Proc. VALUETOOLS 2007, Nantes, FR (October 2007)

A Self-adversarial Approach to Delay Analysis
under Arbitrary Scheduling

Jens B. Schmitt, Hao Wang, and Ivan Martinovic

{jschmitt,wang,martinovic}@cs.uni-kl.de

Abstract. Non-FIFO processing of flows by network nodes is a frequent
phenomenon. Unfortunately, the state-of-the-art analytical tool for the
computation of performance bounds in packet-switched networks, net-
work calculus, cannot deal well with non-FIFO systems. The problem
lies in its conventional service curve definitions. Either the definition is
too strict to allow for a concatenation and consequent beneficial end-
to-end analysis, or it is too loose and results in infinite delay bounds.
Hence, in this paper, we propose a new approach to derive tight bounds
in tandems of non-FIFO nodes, the so-called self-adversarial approach.
The self-adversarial approach is based on a previously proposed method
for calculating performance bounds in feedforward networks [30]. By nu-
merical examples we demonstrate the superiority of the self-adversarial
approach over existing methods for the analysis of non-FIFO tandems
as well as that for low to medium utilizations it even stays close to cor-
responding FIFO performance bounds.

1 Introduction

1.1 Motivation

In the recent past, network calculus [10,25] has shown promise as an alternative
methodology, besides classical queueing theory, for the performance analysis of
packet-switched networks. It has found usage as a basic tool for attacking sev-
eral important network engineering problems: most prominently in the Internet’s
Quality of Service proposals IntServ and DiffServ, but also in other environments
like wireless sensor networks [22,29], switched Ethernets [31], Systems-on-Chip
(SoC) [8], or even to speed-up simulations [21], to name a few. Unfortunately, it
comes up short in certain fundamental aspects to really catch on as the system
theory for the Internet as which it is sometimes advertised (see for the subtitle
and the discussion in the introduction of the book by Le Boudec and Thiran
[25]). Two prominent fundamental limitations that can be raised are: (1) its de-
terministic nature, and (2) its dependence on strict FIFO processing of flows.
While still being open to some degree, the first issue has been dealt with ex-
tensively in literature, and particularly recent approaches towards a stochastic
relaxation of network calculus can, for example, be found in [20,11,16]. Yet, the
second issue about non-FIFO processing is still largely unexplored. In the next
subsection, we provide an overview of the previous scarce work we could find on

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 169–183, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

170 J.B. Schmitt, H. Wang, and I. Martinovic

this topic. In contrast, non-FIFO multiplexing between flows was an intensive
subject in previous work (see, for example, [30,7] and the references therein to
recent contributions on the so-called arbitrary or general multiplexing). In this
paper, we are concerned with the scheduling within a flow under analysis, so we
deal with the questions when work units are processed by a node and in which
order. The first question on how a node provides its capacity to a flow is flexibly
answered by the network calculus concept of service curves, while the second
question has so far always been answered by assuming a FIFO processing order.
The goal of this paper is to provide a more flexible answer to this questions. In
the following, we provide some arguments on why besides being of theoretical
interest this issue should be addressed.

Assuming that the work units of a flow under analysis are processed in FIFO
order constitutes a logical break for the worst-case methodology in a certain
sense, as we discuss now. Assume that a flow traverses a system resulting in a
certain output process. The real delay1for a work unit input at time t and output
at time t′ is simply defined as

rd(t) = t′ − t.

Any processing order other than FIFO results in an increase of the worst-case
real delay; this can be easily seen by the following argument: Assume at time
t0 a work unit which experiences the worst-case real delay is input to a FIFO
system. Now assume we can change the processing order of work units. If the
work unit is further delayed by scheduling work units that arrived later, then
certainly the real delay of that work unit under the new processing order will
be worse. Processing that work unit earlier will make its new real delay rd′(t0)
smaller, yet, the work unit which was processed just ahead of the above work
unit is now leaving the system when the above work unit would have left, yet
that work unit has arrived at time t1 ≤ t0 such that the new real delay of that
work unit rd′(t1) is higher than or equal to the one from the FIFO worst-case
work unit, i.e., rd(t0) ≤ rd′(t1). So, in this sense FIFO can be viewed as the best-
case assumption on the processing order of the flow under analysis. Therefore,
it can be seen as consistent with a worst-case methodology to release the FIFO
processing assumption.

Furthermore, by providing the following real-world examples where non-FIFO
behavior is exhibited, we also want to stress the practical relevance of this work:

Packet Reordering: In several studies of Internet traffic it has been shown
that packet reordering is a frequent event (see, for example, [4,19]). According
to these studies this is occurs because of the growing amount of parallelism on a
global (use of multiple paths or parallel links) as well as on a local (device) level.
In particular, for scalability reasons high-speed routers often contain a complex
multi-stage switching fabric which cannot ensure to preserve the preservation
of arrivals at its output. This is due to a common design trade-off where FIFO

1 The word real is chosen for the purpose of contrasting it to the virtual delay, later
on defined as delay under FIFO processing of a flow.

A Self-adversarial Approach to Delay Analysis under Arbitrary Scheduling 171

service at the input queues is relaxed in order to avoid head-of-line blocking by
choosing from a set of packets in the input queue (often some window-based
scheme is used). Furthermore, the use of link aggregation, where multiple physi-
cal lines are aggregated into a single virtual link, may often lead to a non-FIFO
behavior [6].

Content-Dependent Packet Scheduling: As the last example, let us mention
wireless sensor networks (WSN) where packet scheduling decisions may be based
on the contents of packets following a WSN-typical data-centric paradigm. Under
such circumstances hardly anything can be assumed about the scheduling order,
let alone the FIFO behavior.

So, from a methodological as well as an application perspective there is a clear
need for an investigation on how network calculus can be extended towards an
analysis without any FIFO assumptions. Immediate questions that come up are:

– Can the existing network calculus concepts be carried over to the non-FIFO
case?

– Is an efficient end-to-end analysis still possible?
– What is the cost in terms of performance bounds compared to pure FIFO

systems?

1.2 Related Work

There is amazingly little existing work on the treatment of non-FIFO systems in
the context of network calculus. Remarkably, in his pioneering paper [12], Cruz
briefly showed how to derive a delay bound for a single work-conserving server
under a general scheduling assumption (comprising any non-FIFO processing
order) based on the observation that the maximum backlogged period can be
bounded given that traffic is regulated. Similar results can also be found in [10].
Yet, the multiple node case as well as more general server models are not treated
therein.

In [24], Le Boudec and Charny investigate a non-FIFO version of the Packet
Scale Rate Guarantee (PSRG) node model as used in DiffServ’s Expedited For-
warding definition. They show that the delay bound from the FIFO case still
applies in the single node case while it does not in a specific two node case. They
leave more general concatenation scenarios for further study.

In [30], we dealt with the problem of computing tight delay bounds for a
network of arbitrary (non-FIFO) aggregate multiplexers. They show the tightness
of their bounding method by sample path arguments. Yet, in contrast to the
problem setting in this paper, we still make a FIFO assumption on the processing
order within a flow and only allow for non-FIFO behavior between flows (see the
discussion in the previous subsection). Bouillard et al. recently provided more
advanced and general results for the same setting in [7], yet nevertheless, they
were still based on FIFO processing per flow.

To the best of our knowledge, the only previous work that also tries to de-
rive end-to-end delay bounds without any FIFO assumptions was done by Rizzo

172 J.B. Schmitt, H. Wang, and I. Martinovic

and Le Boudec [27]. They investigate delay bounds for a special server model,
non-FIFO guaranteed rate (GR) nodes, and show that a previously derived de-
lay bound for GR nodes [17] is not valid for a non-FIFO case (against common
belief). Furthermore, they derive a new delay bound based on the network calcu-
lus results. Their delay bound no longer exhibits the nice pay-bursts-only-once
phenomenon. Based on sample path arguments, they argue that their bound
is tight and thus conclude that “pay bursts only once does not hold for non-
FIFO guaranteed rate nodes”. In contrast, we show that non-FIFO systems may
still possess a concatenation property. This seeming contradiction is discussed
in more detail at the very end of this paper.

1.3 Contributions

In this work, the following contributions are made:

– We demonstrate difficulties with existing service curve definitions under non-
FIFO processing.

– We introduce a new approach, called self-adversarial, that enables a true
end-to-end analysis for non-FIFO systems.

– We show that, somewhat contrary to the results presented in literature, the
pay-bursts-only-once phenomenon still holds for non-FIFO systems.

2 Preliminaries on Network Calculus

Network calculus is a min-plus system theory for deterministic queueing systems
that builds upon the calculus for network delay in [12], [13]. The important con-
cept of service curve was introduced in [2,9,14,23,28]. The service curve based
approach facilitates the efficient analysis of tandem queues where a linear scaling
of performance bounds in the number of traversed queues is achieved as elabo-
rated in [11] and also referred to as pay-bursts-only-once phenomenon in [25]. A
detailed treatment of min-plus algebra and of network calculus can be found in
[3] and [10], [25], respectively.

As network calculus is built around the notion of cumulative functions for
input and output flows of data, the set F of real-valued, non-negative, and wide-
sense increasing functions passing through the origin plays a major role:

F =
{
f : R+ → R+, ∀t ≥ s : f(t) ≥ f(s), f(0) = 0

}
.

In particular, the input function F (t) and the output function F ′(t), which
cumulatively count for the number of work units that are input to, respectively
output from, a system S, are in F . Throughout the paper, we assume in- and
output functions to be continuous in both time and space. Note that this is not a
general limitation as there exist transformations between discrete and continuous
models [25].

A Self-adversarial Approach to Delay Analysis under Arbitrary Scheduling 173

There are two important min-plus algebraic operators:

Definition 1. (Min-plus Convolution and Deconvolution) The min-plus convo-
lution and deconvolution of two functions f, g ∈ F are defined to be

(f ⊗ g) (t) = inf
0≤s≤t

{f(t − s) + g(s)} ,

(f � g) (t) = sup
u≥0

{f(t + u) − g(u)} .

It can be shown that the triple (F ,∧,⊗), where ∧ denotes the minimum operator
(which ought to be taken pointwise for functions), constitutes a dioid [25]. Also,
the min-plus convolution is a linear operator on the dioid (R ∪ {+∞},∧, +),
whereas the min-plus deconvolution is not. These algebraic characteristics result
in a number of rules that apply to those operators, many of which can be found
in [25], [10]. Let us now turn to the performance characteristics of flows that can
be bounded by network calculus means:

Definition 2. (Backlog and Virtual Delay) Assume a flow with input function
F that traverses a system S resulting in the output function F ′. The backlog of
the flow at time t is defined as

b(t) = F (t) − F ′(t).

The virtual delay for a work unit input at time t is defined as

vd(t) = inf {τ ≥ 0 : F (t) ≤ F ′(t + τ)} .

So, this is the point where the FIFO assumption sneaks in the network calculus
as far as delay is concerned, because rd(t) = vd(t) for all t only under FIFO
processing of the flow. We use the usual network calculus terminology of the
so-called virtual delay in contrast to the real delay, as defined above (see Sec-
tion 1.1). Next, arrival and departure processes specified by input and output
functions are bounded based on the central network calculus concepts of arrival
and service curves:

Definition 3. (Arrival Curve) Given a flow with input function F , a function
α ∈ F is an arrival curve for F iff

∀t, s ≥ 0, s ≤ t : F (t) − F (t − s) ≤ α(s) ⇔ F = F ⊗ α.

A typical example of an arrival curve is given by an affine arrival curve γr,b (t) =
b + rt, t > 0 and γr,b (t) = 0, t ≤ 0, which corresponds to token-bucket traffic
regulation.

Definition 4. (Service Curve – SC) If the service provided by a system S for
a given input function F results in an output function F ′ we say that S offers a
service curve β iff

F ′ ≥ F ⊗ β.

For continuous functions F and β this is equivalent to the following condition

∀t ≥ 0 : ∃s ≤ t : F ′(t) ≥ F (s) + β(t − s).

174 J.B. Schmitt, H. Wang, and I. Martinovic

A typical example of a service curve is given by a so-called rate-latency function
βR,T (t) = R(t − T) · 1{t>T}, where 1{cond} is 1 if the condition cond is satis-
fied and 0 otherwise. Also, nodes operating under a delay-based scheduler and
guaranteeing that a work unit arriving at any time t will leave the node at time
t′ ≤ t + T for some fixed T > 0, i.e. ∀t ≥ 0 : rd(t) ≤ T , are known to provide a
service curve δT = ∞ · 1{t>T}. We also call these bounded latency nodes.

Using those concepts it is possible to derive tight performance bounds on
backlog, virtual delay and output:

Theorem 1. (Performance Bounds) Consider a system S that offers a service
curve β. Assume a flow F traversing the system has an arrival curve α. Then
we obtain the following performance bounds:

backlog: ∀t : b(t) ≤ (α � β) (0) =: v(α, β),
virtual delay: ∀t : vd(t) ≤ sup

t≥0
inf {τ ≥ 0 : α(t) ≤ β (t + τ)} =: h (α, β) ,

output (arrival curve α′for F ′): α′ = α � β.

Here, note again that the delay bound is only a virtual one, meaning that it is
based on the FIFO assumption for the flow under analysis. One of the strongest
results of the network calculus is the concatenation theorem that enables us to
investigate tandems of systems as if they were single systems:

Theorem 2. (Concatenation Theorem for Tandem Systems) Consider a flow
that traverses a tandem of systems S1 and S2. Assume that Si offers a service
curve βi to the flow. Then the concatenation of the two systems offers a service
curve β1 ⊗ β2 to the flow.

Using the concatenation theorem, it is ensured that an end-to-end analysis of
a tandem of servers achieves tight performance bounds, which in general is not
the case for an iterative per-node application of Theorem 1.

3 Conventional Network Calculus and Non-FIFO
Systems

In this section, we investigate how the existing network calculus can cope with
non-FIFO systems. The crucial aspect is the node model. We start with the
typical service curve model as defined in the previous section and then turn
to strict service curves, only to find out that both of them encounter problems
under non-FIFO processing.

3.1 Using Service Curves (SC) for Non-FIFO Systems

As the SC definition bears the advantages that many systems belong to that
class and that it possesses a concatenation property, it is worthwhile an attempt
to apply it also in the case of non-FIFO systems. Yet, the following example
shows that it is impossible to bound the real delay in non-FIFO systems solely
based on the SC definition:

A Self-adversarial Approach to Delay Analysis under Arbitrary Scheduling 175

Example 1. (SC Cannot Bound the Real Delay) Assume a single node system S
which offers a rate-latency service curve β = β2,1 to a flow F which is constrained
by an affine arrival curve α = γ1,0. Now assume the flow to be greedy, that means
F = α and the server to be lazy, that means F ′ = F ⊗ β. Thus, we obtain

F ′ = α ⊗ β = γ1,0 ⊗ β2,1 = γ1,0 ⊗ γ2,0 ⊗ δ1

= (γ1,0 ∧ γ2,0) ⊗ δ1 ≤ γ1,0 ⊗ δ1 < γ1,0 = F.

Hence, ∀t ≥ 0 : F ′(t) < F (t), or equivalently, ∀t ≥ 0 : b(t) > 0, which means
that the system remains backlogged the entire time. Therefore, without any
assumptions on the processing order, a certain work unit can, under these cir-
cumstances, be kept forever in the system. Thus, the real delay of that work unit
is unbounded. Note that using the standard FIFO processing assumption, we can
of course bound the real delay of the system by ∀t ≥ 0 : rd(t) = vd(t) ≤ 3

2 .

From this example, we see that the SC property is too weak as a node model for
analyzing non-FIFO systems. Therefore, it is sensible to look for more stringent
node models, as it is done in the following subsection.

3.2 Using Strict Service Curves (S2C) for Non-FIFO Systems

A number of systems provides more stringent service guarantees than captured
by SC, fulfilling the so-called strict service curve [25] (also known as strong
service curve [15,2] and related to the universal service curve concept in [26])

Definition 5. (Strict Service Curve – S2C) Let β ∈ F . System S offers a strict
service curve β to a flow, if during any backlogged period of duration u the output
of the flow is at least equal to β(u). A backlogged period of duration u at time t
is defined by the fact that ∀s ∈ (t − u, t] : b(s) > 0.

Note that any node satisfying S2C also satisfies SC, but not vice versa. For
example, a bounded latency node does not provide δT as a strict service curve.
In fact, it does not provide any S2C apart from the trivial case β = 0. On
the other hand, there are many schedulers that offer strict service curves; for
example, most of the generalized processor sharing-emulating schedulers (e.g.,
PGPS [26], WF2Q [5], or round robin schedulers like SRR [18], to name a few),
offer a strict service curve of the rate-latency type.

Now for bounding the real delay under S2C: In fact, as was already shown by
Cruz [12] (and can also be found in [10] (Lemma 1.3.2)), the intersection point
between an arrival and a strict service curve constitutes a bound on the length
of the maximum backlogged period and thus also a bound on the real delay for
such a system:

Theorem 3. (Real Delay Bound for Single S2C Node) Consider a system S
that offers a strict service curve β. Assume a flow F traversing the system has
an arrival curve α. Then we obtain the following bound on the real delay:

rd(t) ≤ sup{s ≥ 0 : α(s) ≥ β(s)} =: i(α, β).

176 J.B. Schmitt, H. Wang, and I. Martinovic

So, the situation has improved in comparison to the SC case: Based on the single
node result one can conceive, for the multiple node case, an iterative application
of Theorem 3 together with the output bound from Theorem 1. More specifically,
if a tandem of n S2C non-FIFO nodes, each providing a strict service curve
βj , j = 1, . . . , n, is to be traversed by an α-constrained flow then a bound on the
real delay can be calculated as

rd(t) ≤
n∑

j=1

i(α �
j−1⊗
k=1

βk, βj).

Setting for example βj = βR,T , j = 1, . . . , n and α = γr,b this results in

rd(t) ≤ n(b + RT) + n
2 (n − 1)rT

R − r
. (1)

Here, we see a typical drawback of additive bounding methods, with the burst
of the traffic being paid n times as well as a quadratic scaling of the bound
in the number of nodes [11,25]. The key to avoid this behavior is to perform
an end-to-end analysis based on a concatenation theorem. Yet, as known and
demonstrated in the next example, S2C does not possess such a concatenation
property.

Example 2. (S2C Possesses No Concatenation Property) Assume two systems
S1 and S2, both providing a strict rate-latency service curve βi = β1,1, i = 1, 2,
which are traversed in sequence by a flow F . Let F ′

1 and F ′
2 be the output

functions from S1 and S2, respectively. As a candidate strict service curve for
the composite system, we consider β1,2 = β1 ⊗ β2 = β1,2.

We now construct a backlogged period [t1, t2] of the composite system such
that

F ′
2(t2) − F ′

2(t1) < β1,2(t2 − t1).

thereby showing that β1,2 is not a strict service curve for the composite system:
Let t1 = 0 and t2 = 3 and assume the following behavior of the input and

output function

F (t) =
{

ε 0 < t < 2
2ε 2 ≤ t ≤ 3 , F ′

1(t) =
{

0 0 ≤ t ≤ 1
ε 1 < t ≤ 3 ,

F ′
2(t) =

{
0 0 ≤ t ≤ 2
ε 2 < t ≤ 3 ,

with any ε > 0. It is easy to check that the composite system is continuously
backlogged during [0, 3] as well as that each individual system is not violating
its strict service curve property. Nevertheless, for any choice of ε < 1 we obtain

F ′
2(3) − F ′

2(0) = ε < β1,2(3) = 1,

which shows that β1,2 is not S2C for the composite system (while, of course,
being SC for it). In fact, by extending the example appropriately it can be

A Self-adversarial Approach to Delay Analysis under Arbitrary Scheduling 177

shown that the only strict service curve that can be guaranteed by the composite
system is the trivial case β = 0. This can be seen by making ε arbitrarily small
and alternating between backlogged and idle periods of the individual systems
sufficiently often. Another way to view this, is that the backlogged period of a
composite system cannot be bounded based on the individual systems providing
a strict service curve.

4 The Self-adversarial Approach

In this section, we devise an approach, called the self-adversarial method, to
compute a tight delay bound for non-FIFO systems based on a technique that
was introduced in [30].

4.1 The Self-adversarial Method

As briefly discussed in Section 1.2, in [30], we proposed a technique for computing
tight delay bounds in the network of arbitrary (non-FIFO) aggregate multiplex-
ers, yet we still made a FIFO processing order assumption per flow. So, this
technique is not directly applicable when releasing all FIFO assumptions and
besides arbitrary multiplexing also assumes arbitrary scheduling within a flow.
Nevertheless, there is a way to exploit the proposed method for the problem at
hand by transforming the arbitrary scheduling problem into an arbitrary aggre-
gate multiplexing problem. More specifically, we split the original flow, with the
arrival curve α, into two sub-flows: one with the arrival curve α1 = γ0,ε and the
other one with the arrival curve α2 = α − γ0,ε. Both flows traverse the same
servers as the original flow. This transformation is illustrated in Figure 1.

...

...

Fig. 1. Transformation of the pure non-FIFO problem into an arbitrary aggregate
multiplexing problem

Now the method from [30] allows us to find the maximum left-over end-to-end
service curve under arbitrary multiplexing, i.e., under any possible interleaving
of the two sub-flows. To that end, the problem is reformulated as an optimization
problem that can be solved by using standard methods. In [30,7], it is shown
that this approach achieves tight delay bounds. So, in our case we can proceed
with the following steps:

178 J.B. Schmitt, H. Wang, and I. Martinovic

1. Computation of the left-over service curve for sub-flow 1 according to [30]:
βl.o.

1 .
2. Computation of the delay bound for sub-flow 1: d1 (ε) = h

(
α1, β

l.o.
1

)
.

3. Letting the delay bound for sub-flow 1 go to the limit: d = limε→0 d1 (ε).

What is effectively done here, is to assume that a part of the flow pretends to be
an adversary to the other part of the flow when it comes to competition for the
forwarding resources. This is why we call it the self-adversarial method. Taking
this behavior to the limit, i.e., making the adversary part as large as possible, gives
us a real delay bound as experienced by a single (infinitesimally small) work unit.

We remark that the computation of the horizontal deviation in step 2 im-
plicitly makes a FIFO assumption for sub-flow 1. Yet, in the limit this is not
a problem because a single work unit provides no degrees of freedom for the
processing order any more.

Note that for the splitting of the original flow into two sub-flows we assumed
that ε > 0 is chosen such that α2 ≥ 0. In fact, for some arrival curves this may
not be possible. More precisely, if α(t) is continuous at t = 0 (e.g., a constant
rate arrival curve), then the splitting described is not feasible. In such cases, the
original arrival curve should be shifted to the left by some small amount Δ and
set to zero for t ≤ 0. The approach is then performed on this new (strictly larger)
arrival curve. To find the delay bound under the original arrival curve, one lets
Δ → 0. We decided to neglect this (rarely occurring) technicality in the above
description of the self-adversarial method in order not to (further) complicate it.

4.2 Self-adversarial vs. Additive Bounding Method

Let us investigate by a simple example how the self-adversarial method works
and also compare it to an additive bounding based on S2C. Assume a token-
bucket arrival curve γr,b for the flow under investigation (b > 0), which traverses
two servers providing strict rate-latency service curves βRiTi , i = 1, 2. According
to the additive bounding based on S2C the delay bound then becomes:

dAD = T1 + T2 +
b + rT1

R1 − r
+

b + r (T1 + T2)
R2 − r

.

For the self-adversarial method we first split the flow into two sub-flows: subflow 1
with γ0,ε and subflow 2 with γr,b−ε as arrival curves. Proceeding with the steps
described in the previous section we obtain the following delay bound:

1. Computation of the left-over service for sub-flow 1 according to [30]:

βl.o.
1 = β

min{R1,R2}−r,T1+T2+
b−ε+rT1

min{R1,R2}−r
+

rT2
R2−r

.

2. Computation of the delay bound for sub-flow 1:

d1 (ε) =
ε

min {R1, R2} − r
+ T1 + T2 +

b − ε + rT1

min {R1, R2} − r
+

rT2

R2 − r
.

A Self-adversarial Approach to Delay Analysis under Arbitrary Scheduling 179

3. Letting the delay bound for sub-flow 1 go to the limit (ε → 0):

dSA = T1 + T2 +
b + rT1

min {R1, R2} − r
+

rT2

R2 − r
.

A simple inspection shows that dSA ≤ dAD , where equality only holds if b =
0∧(T1 = 0∨r = 0), which are strong restrictions. Hence, this demonstrates that
the additive method is not tight under most circumstances. Similar problems
with purely min-plus algebraic methods are reported and extensively discussed
in [30]. These problems are inherent in using the min-plus algebraic approach.
In particular, by the application of a min-plus convolution the knowledge on the
order of servers is lost. Yet, this order is crucial to derive tight delay bounds
for non-FIFO systems. The min-plus algebraic approach automatically maps
a tandem of system to the worst-case order it could be in (see [30] for more
discussions along this line).

So, with respect to the tightness of the computed bounds, the self-adversarial
method is superior to the additive method. A potential drawback for the self-
adversarial method is that the computational effort for the self-adversarial
method can become very high. In particular, if arrival and service curves are
piecewise-linear functions then a set of optimization problem needs to be solved
first before the final left-over service curve can be constructed according to [30]
(in [7] a more efficient and provably tight approach is proposed, on which the
self-adversarial method could also be based). The cardinality of that set grows
exponentially in the number of nodes traversed and may quickly become pro-
hibitive. For details see [30], or even better [7], which also demonstrates the
problem of computing a tight delay bound under arbitrary multiplexing in gen-
eral feedforward networks to be NP-hard.

We also remark that the self-adversarial method requires S2C servers (as in
other cases like, e.g., fixed priority schedulers or arbitrary multiplexing scenar-
ios). This requirement is crucial for setting up the optimization problem in [30]
and a relaxation towards only assuming SC seems infeasible. This means, in par-
ticular, that bounded latency nodes cannot be analyzed. Similarly, according to
[30], the self-adversarial method can only be applied to piecewise-linear concave
arrival and convex service curves. Such a restriction does not apply, in principle,
to the additive bounding method.

While the tightness of the self-adversarial method is “inherited” from [30], it
can also be understood in the original system. In particular, if the processing or-
der applied is to always choose the work unit that has entered the network last
(assuming work units are time-stamped when they enter the network) then we
conjecture that the bound can actually be achieved. This processing order has also
been coined shortest-in-system (SIS) in the realm of adversarial queueing theory
[1]. If only one node is traversed, then SIS becomes LIFO and clearly constitutes
the worst-case processing order. In multi-node scenarios, we conjecture that SIS
produces a worst-case sample path if greedy arrivals (exactly following the arrival
curve) and lazy servers (exactly following the service curve) are assumed.

180 J.B. Schmitt, H. Wang, and I. Martinovic

As the last remark, we note that if there is also cross-traffic from other flows we
can first apply [30] to derive a left-over service curve for the flow of interest and
then apply the self-adversarial method to arrive at tight bounds under arbitrary
multiplexing and scheduling, i.e., a completely non-FIFO scenario.

5 Numerical Experiments

To give some feeling for the improvements achievable by using the self-adversarial
approach compared to an additive bounding based on S2C we provide some
numerical experiments. In addition, we demonstrate what cost is incurred when
releasing the FIFO assumption. For these numerical experiments we use simple
settings: as arrival curve for the flow to be analyzed we assume a token bucket
γr,b where we set r = 10[Mbps] and b = 5[Mb] (unless we vary the rate r to
achieve a certain utilization); for the service curves of the nodes to be traversed
we use a rate-latency function βR,T with R = 20[Mbps] and T = 0.01[s]. Unless
we use the number of nodes as a primary factor in the experiments we assume
n = 10 nodes to be traversed by the flow under investigation.

5.1 Comparison of Self-adversarial and Additive Bounding

In this first set of numerical experiments we investigate how the self-adversarial
(SA) and additive (AD) bounding methods compare to each other. In Figure 2(a)
the two methods are shown for a varying number of nodes (from 2 to 20). To em-
phasize the bad scaling of the additive method we also provide results for the same
experiment with a larger number of nodes to be traversed (up to 100) in Figure
2(b). In both graphs it is obvious that the end-to-end analysis facilitated by the
self-adversarial approach is highly superior and scales linearly with the number of
nodes, whereas the additive bounding method scales quadratically with the num-
ber of nodes traversed and thus becomes a very conservative bound quickly.

A different view on the relative performance of self-adversarial and additive
methods is provided in Figure 2(c). Here, the acceptable utilizations (captured
by the ratio of the the rate for the flow under investigation and the service rate
of the tandem, i.e., r

R) for a given delay bound are shown for both methods.
This information can be used for admission control purposes. Again, as can be
clearly seen, the self-adversarial method outperforms the additive bounding by
far, especially for lower delay bounds. For example, if we desire a delay bound
of 2s, then an admission control using the additive bounding would return with
an infeasible reply, whereas under the self-adversarial approach we could admit
traffic up to ≈ 80% of the service rate.

5.2 FIFO vs. Non-FIFO Delay Bounds

In the next set of numerical experiments, we investigate the cost of releasing
the FIFO assumption in terms of delay bounds. For that purpose, we vary the
utilization by increasing the sustained rate of the traffic flow under investigation
(while at the same time scaling the bucket depth proportionally). As we can

A Self-adversarial Approach to Delay Analysis under Arbitrary Scheduling 181

0 5 10 15 20

0
2

4
6

8
10

12

Number of nodes

D
el

ay
 b

ou
nd

 [s
]

SA
AD

(a) Delay bounds for self-adversarial and
additive bounding methods

0 20 40 60 80 100

0
10

20
30

40
50

Number of nodes

D
el

ay
 b

ou
nd

 [s
]

SA
AD

(b) Exposing the quadratic scaling of the
additive bound

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Delay bound [s]

P
os

si
bl

e
ut

ili
za

tio
n

SA
AD

(c) Possible utilizations for a target de-
lay bound under SA and AD

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

Utilization

D
el

ay
 b

ou
nd

 [s
]

SA
AD

FIFO

(d) FIFO vs. non-FIFO delay bounds
depending on the utilization

Fig. 2. Comparison of self-adversarial approach to other analysis methods under dif-
ferent metrics. Subfigures (a) and (b) show results for 50% utilization.

observe from Figure 2(d), only for higher utilizations there is a significant differ-
ence between the FIFO and non-FIFO delay bounds if using the self-adversarial
bounding approach. On the other hand, if the additive bounding was used, the
cost of releasing FIFO assumptions is high, which may be why FIFO behavior
is often assumed a necessary condition to achieve good delay bounds [27]. Yet,
under strict service curve assumptions and using the self-adversarial approach
this assumption is not necessarily required any more.

From an application perspective, the bottom line is that only for highly uti-
lized systems it is necessary to enforce a FIFO behavior, as far as delay bounds
are concerned. For systems with lower utilizations, optimizations such as for ex-
ample link aggregation or multi-stage switching fabrics do not incur a high cost
in terms of worst-case delay bounds.

6 Conclusion and Discussion

In this paper, it was our goal to extend the scope of network calculus to-
wards non-FIFO systems, as non-FIFO behavior is a reality in many networking

182 J.B. Schmitt, H. Wang, and I. Martinovic

scenarios. It turned out that the existing service curve definitions are not satisfy-
ing under non-FIFO scheduling: they are either too loose to enable any bounding
or too strict to allow for an efficient end-to-end analysis. Therefore, we devised
a new approach, called the self-adversarial bounding method, which is based on
previous work of ours and is provably tight. By numerical examples, we showed
that the self-adversarial approach is far superior to existing methods.

The self-adversarial approach allows to recover the pay-bursts-only-once phe-
nomenon for non-FIFO systems, which had been disputed to be valid under
non-FIFO scheduling in literature [27]. This seeming contradiction is due to dif-
ferent assumptions on the service provided by nodes, guaranteed rate as in [27],
or strict service curve, as in this paper. Since the concatenation of guaranteed
rate nodes is based on their equivalence to rate-latency service curves (modulo
packetization effects), a convolution of them only provides an SC guarantee and
thus cannot bound the real delay, as discussed in Section 3. Hence, the only resort
is an additive bounding which, however, cannot recover the pay-bursts-only-once
phenomenon for the arbitrary scheduling case.

References

1. Raghavan, P., Sudan, M., Borodin, A., Kleinberg, J.M., Williamson, D.P.: Adver-
sarial queuing theory. Journal of the ACM 48(1) (2001)

2. Agrawal, R., Cruz, R.L., Okino, C., Rajan, R.: Performance bounds for flow control
protocols. IEEE/ACM Transactions on Networking 7(3), 310–323 (1999)

3. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and Linear-
ity: An Algebra for Discrete Event Systems. Probability and Mathematical Statis-
tics. John Wiley & Sons Ltd., Chichester (1992)

4. Bennett, J.C.R., Partridge, C., Shectman, N.: Packet reordering is not pathological
network behavior. IEEE/ACM Trans. Netw. 7(6), 789–798 (1999)

5. Bennett, J.C.R., Zhang, H.: WF2Q: Worst-case fair weighted fair queueing. In:
Proc. IEEE INFOCOM, pp. 120–128 (March 1996)

6. Blanquer, J.M., Özden, B.: Fair queuing for aggregated multiple links. SIGCOMM
Comput. Commun. Rev. 31(4), 189–197 (2001)

7. Bouillard, A., Jouhet, L., Thierry, E.: Tight performance bounds in the worst-case
analysis of feed-forward networks. In: Proc. IEEE INFOCOM, pp. 1–9 (March
2010)

8. Chakraborty, S., Kuenzli, S., Thiele, L., Herkersdorf, A., Sagmeister, P.: Perfor-
mance evaluation of network processor architectures: Combining simulation with
analytical estimation. Computer Networks 42(5), 641–665 (2003)

9. Chang, C.-S.: On deterministic traffic regulation and service guarantees: A sys-
tematic approach by filtering. IEEE Transactions on Information Theory 44(3),
1097–1110 (1998)

10. Chang, C.-S.: Performance Guarantees in Communication Networks. In: Telecom-
munication Networks and Computer Systems. Springer, Heidelberg (2000)

11. Ciucu, F., Burchard, A., Liebeherr, J.: A network service curve approach for the
stochastic analysis of networks. In: Proc. ACM SIGMETRICS, pp. 279–290 (June
2005)

12. Cruz, R.L.: A calculus for network delay, Part I: Network elements in isolation.
IEEE Transactions on Information Theory 37(1), 114–131 (1991)

A Self-adversarial Approach to Delay Analysis under Arbitrary Scheduling 183

13. Cruz, R.L.: A calculus for network delay, Part II: Network analysis. IEEE Trans-
actions on Information Theory 37(1), 132–141 (1991)

14. Cruz, R.L.: Quality of service guarantees in virtual circuit switched networks. IEEE
Journal on Selected Areas in Communications 13(6), 1048–1056 (1995)

15. Cruz, R.L., Okino, C.M.: Service guarantees for window flow control. In: Proc.
34th Allerton Conf. Communications, Control, and Computing (October 1996)

16. Fidler, M.: An end-to-end probabilistic network calculus with moment generating
functions. In: Proc. of IEEE IWQoS, pp. 261–270 (June 2006)

17. Goyal, P., Lam, S.S., Vin, H.M.: Determining end-to-end delay bounds in hetero-
geneous networks. Multimedia Syst. 5(3), 157–163 (1997)

18. Guo, C.: SRR: An O(1) time complexity packet scheduler for flows in multi-service
packet networks. IEEE/ACM Transactions on Networking 12(6), 1144–1155 (2004)

19. Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D.: Measurement and
classification of out-of-sequence packets in a tier-1 IP backbone. IEEE/ACM Trans.
Netw. 15(1), 54–66 (2007)

20. Jiang, Y.: A basic stochastic network calculus. In: Proc. ACM SIGCOMM, pp.
123–134 (September 2006)

21. Kim, H., Hou, J.C.: Network calculus based simulation: theorems, implementation,
and evaluation. In: Proc. IEEE INFOCOM (March 2004)

22. Koubaa, A., Alves, M., Tovar, E.: Modeling and worst-case dimensioning of cluster-
tree wireless sensor networks. In: Proc. of RTSS 2006, Rio de Janeiro, Brazil, pp.
412–421. IEEE Computer Society, Los Alamitos (2006)

23. Le Boudec, J.-Y.: Application of network calculus to guaranteed service networks.
IEEE Transactions on Information Theory 44(3), 1087–1096 (1998)

24. Le Boudec, J.-Y., Charny, A.: Packet scale rate guarantee for non-fifo nodes. In:
Proc. IEEE INFOCOM, pp. 23–26 (June 2002)

25. Le Boudec, J.-Y., Thiran, P.: Network Calculus. LNCS, vol. 2050. Springer, Hei-
delberg (2001)

26. Parekh, A.K., Gallager, R.G.: A generalized processor sharing approach to flow
control in integrated services networks: The single-node case. IEEE/ACM Trans-
actions on Networking 1(3), 344–357 (1993)

27. Rizzo, G., Le Boudec, J.-Y.: Pay bursts only once does not hold for non-fifo guar-
anteed rate nodes. Performance Evaluation 62(1-4), 366–381 (2005)

28. Sariowan, H., Cruz, R.L., Polyzos, G.C.: Scheduling for quality of service guaran-
tees via service curves. In: Proc. IEEE ICCCN, pp. 512–520 (September 1995)

29. Schmitt, J.B., Roedig, U.: Sensor network calculus - a framework for worst case
analysis. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS
2005. LNCS, vol. 3560, pp. 141–154. Springer, Heidelberg (2005)

30. Schmitt, J., Zdarsky, F., Fidler, M.: Delay bounds under arbitrary aggregate mul-
tiplexing: When network calculus leaves you in the lurch... In: Proc. IEEE INFO-
COM (April 2008)

31. Skeie, T., Johannessen, S., Holmeide, O.: Timeliness of real-time IP communica-
tion in switched industrial ethernet networks. IEEE Transactions on Industrial
Informatics 2(1), 25–39 (2006)

Flow Control with (Min,+) Algebra

Euriell Le Corronc, Bertrand Cottenceau, and Laurent Hardouin

Laboratoire d’Ingénierie des Systèmes Automatisés, Université d’Angers,

62, Avenue Notre Dame du Lac, 49000 Angers, France

{euriell.lecorronc,bertrand.cottenceau,laurent.hardouin}@univ-angers.fr
http://www.istia.univ-angers.fr/LISA/

Abstract. According to the theory of Network Calculus based on the

(min,+) algebra, analysis and measure of worst-case performance in com-

munication networks can be made easily. In this context, this paper deals

with traffic regulation and performance guarantee of a network i.e. with

flow control. At first, assuming that a minimum service provided by a

network is known, we aim at finding the constraint over the input flow

in order to respect a maximal delay or backlog. Then, we deal with the

window flow control problem in the following manner: The data stream

(from the source to the destination) and the acknowledgments stream

(from the destination to the source) are assumed to be different and the

service provided by the network is assumed to be known in an uncertain

way, more precisely it is assumed to be in an interval. The results are

obtained by considering the Residuation theory which allows functions

defined over idempotent semiring to be inverted.

1 Introduction

Theory of (min,+) algebra enables the study of Discrete Event Dynamic Sys-
tems (DEDS) characterized by delay and synchronization phenomena such as
production systems, communication networks and transportation systems (see
[2]). Such systems can be described by linear models, thanks to the particular
algebraic structure called idempotent semiring or dioid. In particular, the theory
of Network Calculus aimed at worst-case performance analysis in communica-
tion networks. For instance, end-to-end delay or backlog can be computed with
curves representing constraints over traffic and service provided by a network.
Furthermore, operations defined over idempotent semiring and residuation the-
ory allows some traffic control elements to be computed. Indeed, some model
matching problems are already solved by the way of control structures (open-
loop or close-loop structures) as presented in [7,9].

By leaning on Network Calculus as well as known control synthesis problem,
the work introduced in this paper deals with control and performance guarantee
of traffic in networks. On the one hand, the computation of the optimal constraint
applied on the input flow in order to respect a maximum delay or backlog is
given. By optimal we mean that it is the lower constraint such that the delay or
backlog is satisfied: if the input flow is greater than this constraint, the resulting

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 184–197, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.istia.univ-angers.fr/LISA/

Flow Control with (Min,+) Algebra 185

delay or backlog will be exceeded. This computation is made assuming that a
minimum service provided by the network is known. On the other hand, optimal
window size of a feedback configuration (window flow control) is studied. For that
computation, a difference is made between the data stream (from the source to
the destination) and the acknowledgments stream (from the destination to the
source). Moreover, the service provided by the network is assumed to be included
in an interval.

In order to introduce this work, the paper is organized as follows. Section 2
recalls the links between Network Calculus and (min,+) algebra. In particular
some properties of the algebraic tools called idempotent semiring or dioid and
classical operations of Network Calculus are presented. In the third section,
the modelling of a communication network is given with cumulative functions,
arrival and service curves and bounds on performances (delay and backlog) of a
network. Finally, problems addressed previously are stated in the fourth section
and an application is given in the last section.

2 An Algebraic Approach of Network Calculus

Network Calculus is a theory based on the (min,+) algebra and devoted to the
analysis of performance guarantee in communication networks (see [5], [6] and
[8]). This study lies on the particular algebraic structure called idempotent semir-
ing whereas well-known operations as deconvolution and subadditive closure can
be seen from the point of view of the residuation theory for the former and the
solution of implicit equation x = ax ⊕ b for the latter. All these properties are
recalled in this section.

2.1 (Min,+) Algebra

(Min,+) algebra is very closed to the lattice theory and the definition below
of the idempotent semiring gives the basis of the particular algebraic structure
used in this algebra (see [2]).

Definition 1. An idempotent semiring D is a set endowed with two inner op-
erations denoted ⊕ and ⊗. The sum ⊕ is associative, commutative, idempotent
(i.e. ∀a ∈ D, a ⊕ a = a) and admits a neutral element denoted ε. The product ⊗
is associative, distributes over the sum and accepts e as neutral element.

When ⊗ is commutative (i.e. ∀a, b ∈ D, a ⊗ b = b ⊗ a), the idempotent semiring
D is said to be commutative. Furthermore, an idempotent semiring is said to be
complete if it is closed for infinite sums and if the product distributes over infinite
sums. Then, the greatest element of D is denoted T (for Top) and represents the
sum of all its elements (T =

⊕
x∈D x).

Due to the idempotency of the addition, a canonical order relation can be
associated with D by the following equivalences: ∀a, b ∈ D, a � b ⇔ a = a⊕ b ⇔
b = a ∧ b. Because of the lattice properties of a complete idempotent semiring,
a ⊕ b is the least upper bound of D whereas a ∧ b is its greatest lower bound.

An example of this structure is the idempotent semiring Rmin defined below.

186 E. Le Corronc, B. Cottenceau, and L. Hardouin

Example 1 ((Min,+) algebra). The set Rmin = (R ∪ {−∞, +∞}) endowed with
the min operator as sum ⊕ and the pointwise addition as product ⊗ is a complete
idempotent semiring where ε = +∞, e = 0 and T = −∞. On Rmin, the greatest
lower bound ∧ takes the sense of the max operator.

Remark 1. It is important to note that the order relation in Rmin corresponds
to the reverse of the natural order:

5 ⊕ 3 = 3 ⇔ 3 � 5 ⇔ 3 ≤ 5.

In the rest of this document, the order relation of Rmin is used (� and �) but
the natural order (respectively ≤ and ≥) will be written clearly too when it will
be necessary.

2.2 Other Algebraic Preliminaries

Residuation is a general notion in lattice theory which allows “pseudo-inverse”
of some isotone maps (see [3] and [2]) to be defined. In particular, the residuation
theory provides optimal solutions to inequalities f(x) � b, where f is an order-
preserving mapping (i.e. an isotone mapping: a � b ⇒ f(a) � f(b)) defined over
ordered sets.

Definition 2 (Residuation). Let f : D → C be an isotone mapping where D
and C are complete idempotent semirings. Mapping f is said residuated if ∀b ∈ C,
the greatest element denoted f �(b) of subset {x ∈ D|f(x) � b} exists and belongs
to this subset. Mapping f � is called the residual of f . Furthermore, when f is
residuated, f � is the unique isotone mapping such that f ◦ f � � IdC and f � ◦ f �
IdD, where IdC and IdD are respectively the identity mappings on C and D.

Fixed point theory allows one to find greatest finite solutions to equations f(x) =
x, where f is an isotone mapping defined over complete idempotent semiring
D. In particular, thanks to the following theorem, the optimal solution of the
implicit equation x = ax ⊕ b is provided.

Theorem 1. [2, section 4.5.3] Implicit equation x = ax⊕ b defined over a com-
plete dioid D admits x = a�b as lower solution where ∀a ∈ D, a� =

⊕
i≥0 ai and

a0 = e.

These two theories will be necessary in the definition of operations linked to
Network Calculus, as the next section shows it.

2.3 Operations of Network Calculus

Once (min,+) algebra and other tools are defined, first main operations used
by Network Calculus as pointwise minimum and inf-convolution can be given.
To this end, the set F brings together non-decreasing functions f : R �→ Rmin

where f(t) = 0 for t < 0. A restriction of this set is the set F0 where f(0) = 0.
Let now f and g be two functions of F0, the following operations are defined:

Flow Control with (Min,+) Algebra 187

• pointwise minimum

(f ⊕ g)(t) = min[f(t), g(t)],

• pointwise maximum

(f ∧ g)(t) = max[f(t), g(t)],

• inf-convolution

(f ∗ g)(t) �
⊕
τ≥0

{f(τ) ⊗ g(t − τ)} = min
τ≥0

{f(τ) + g(t − τ)}.

Thanks to these operations, another idempotent semiring can be defined.

Definition 3. The set F0 endowed with the two inner operations ⊕ as point-
wise minimum and ∗ as inf-convolution is a commutative idempotent semiring
denoted {F0,⊕, ∗} where ε and e are defined by:

∀t, ε : t �→ +∞ and e : t �→
{

0 for t < 0,
+∞ for t ≥ 0.

Remark 2. As in usual algebra, operator ∗ can be omitted in order to save place:

ab = a ∗ b.

Then, two another well-known operations of Network Calculus are the one of
deconvolution denoted ◦/ and the one of subadditive closure denoted �. Firstly,
thanks to the residuation theory (see Definition 2), mapping Ra : x �→ x ∗ a
defined over F0 is said to be residuated. Its residual is usually denoted R�

a : x �→
x◦/a and called deconvolution. Therefore, b◦/a is the greatest solution to inequality
x ∗ a � b, i.e.:

b◦/a = x̂ =
⊕

{x | x ∗ a � b}.

Remark 3. This operation of deconvolution is also called right quotient and a
similar mapping, called left quotient and denoted L�

a : x �→ a ◦\x exists. This
mapping is the residual of La : x �→ a ∗ x defined over F0 and a ◦\b = x̂ =⊕{x | a ∗ x � b}. However, since F0 is commutative b◦/a = a ◦\b.

Secondly, according to theorem 1, the subadditive closure operation � takes the
sense of the optimal solution of a given implicit equation a� =

∧{x | x = ax⊕e}.
Finally, ∀f, g ∈ F0 operations of deconvolution and subadditive closure are given:

• deconvolution

(f◦/g)(t) �
∧
τ≥0

{f(τ) − g(t − τ)} = max
τ≥0

{f(τ) − g(τ − t)},

188 E. Le Corronc, B. Cottenceau, and L. Hardouin

• subadditive closure

f�(t) �
⊕
τ≥0

f τ (t) = min
τ≥0

f τ (t) with f0(t) = e.

Numerous properties are associated with both deconvolution and subadditive
closure. The following theorem brings together some of useful properties.

Theorem 2. Firstly, ∀x, y, a ∈ {F0,⊕, ∗}:

x � y ⇒
{

a ◦\x � a ◦\y (x �→ a ◦\x is isotone),
x ◦\a � y ◦\a (x �→ x ◦\a is antitone). (1)

Then:

(x ∗ a)◦/a � x, (2)
x◦/(b ∗ a) = (x◦/a)◦/b, (3)
a◦/b � x ⇔ a � xb, (4)

(a�)� = a�. (5)

And in particular about the subadditive closure:

a� =
⊕

{x | x� � a�}, (6)

a� =
∧

{x | x = x�, x � a}. (7)

Proof. Proofs of these equations are found in literature. For equation (1), see [10]
whereas for equations (2) until (5) see [2]. Finally, for equations (6) and (7) see [9]
with the following precision for the latter: a� is a solution of this equation because
a� � a and it is also the smallest one because (a�)� � a� ⇔ a� � a� ⇔ x� � a�.

��

3 Network Calculus Modelling

3.1 Input and Output Flows, Arrival and Service Curves

Input and output flows. A communication network can be seen as a blackbox
denoted S with an input flow and an output flow. These flows are respectively
described by cumulative functions belonging to F0 and denoted u and y. Element
u(t) corresponds to the total amount of data introduced in the system until time
t whereas y(t) corresponds to the total amount of data that has left the system
until this time. The main assumption made about input and output flows is a
characteristic of causality:

u � y,

which means that for all t, u(t) ≥ y(t). So, the amount of data leaving the
network is always lower than the one getting in.

In order to guarantee performance in network, constraints are applied over these
flows. For instance, an arrival curve is applied over the input flow whereas the ser-
vice provided by S is constrained by a lower curve as well as an upper curve.

Flow Control with (Min,+) Algebra 189

Arrival curve. One says that a given flow u ∈ F0 is constrained by an arrival
curve α ∈ F0 if it is such that ∀s ≤ t ∈ R+, u(t) − u(s) ≤ α(t − s) (u is said
α-smooth). So, the amount of data arriving between time s and time t is at most
α(t − s). Firstly, according to the definition of the inf-convolution:

u(t) − u(s) ≤ α(t − s) ⇔ u ≤ αu. ⇔ u � αu.

Secondly, thanks to the isotony of the inf-convolution, this inequality can be
written as below:

u � αu ⇒ αu � (α2u) ⇒ (α2u) � (α3u) ⇒ . . .

and therefore:
u = u ⊕ (αu) ⊕ (α2u) ⊕ . . . =

⊕
n≥0

αnu.

Finally:
u � αu ⇔ u = α�u. (8)

So, α is an arrival curve1 for u if and only if for the input flows considered we
have: u = α�u.

Service curve. As regards to the service provided by S, it is framed by two
service curves β and β ∈ F0 such that β � β (β ≥ β). These curves constitute
interval [β , β] where β corresponds to the minimum service provided by S for
all input flows and β corresponds to its maximum service. Then, output flow y
is included in an interval too:

βu � y � βu ⇔ y ∈ [βu , βu]. (9)

All these Network Calculus elements (input and output flows, arrival and service
curve) are illustrated in Figure 1.

Fig. 1. Network Calculus diagram

3.2 Performance Characteristics: Delay and Backlog

Two characteristics used as performance indicator in Network Calculus are the
delay and the backlog (see [4]). The former denoted d(t) corresponds to the
waiting time of a paquet in a FIFO order whereas the latter denoted b(t) is the
amount of paquets in a network at time t. Let u and y be the input and the
output flow of a network:

d(t) � inf
τ≥0

{τ | u(t) ≤ y(t + τ)},

b(t) � u(t) − y(t).
1 And α� is also an arrival curve for u.

190 E. Le Corronc, B. Cottenceau, and L. Hardouin

These data are given for all time t in the network. However, according to
the following theorem coming from the second order theory of (min,+) linear
systems detailed in [10] and used in [11], upper bounds on their worst-case can
be measured easily.

Theorem 3. Let v1 and v2 be two functions of F where2 v1 � v2. Function
v1◦/v2 is called the correlation of v1 over v2 and contains the maximal distances,
denoted τmax and νmax, between v1 and v2 respectively in time and event domain.
More precisely, τmax and νmax are such that:

τmax = inf
τ≥0

{τ | (v1◦/v2)(−τ) ≤ 0},
νmax = (v1◦/v2)(0).

Remark 4. It is possible that v1◦/v2 = ε. In such a case, maximal time and event
distances τmax and νmax are infinite.

Then, thanks to theorem 3, we are able to provide two kinds of distances for
a network S:

– if input and output flows u and y of S are assumed to be known then, its
maximal delay and backlog can be computed,

– if arrival curve of u and minimum service curve of S are assumed to be
known then, upper bounds on maximal delay and backlog can be computed.

These measures as well as links between them are given in the following proposi-
tion. This is a different formulation of some well known results (see [8, §3.1.11])
but with different tools.

Proposition 1. On the one hand, let u, y ∈ F0 be input and output flows of a
network S such that u � y. On the other hand, let α be the arrival curve of input
u such that u = α�u and β be a minimum service curve of S such that y � βu.
Then:

d(t) ≤ Δmax = inf
Δ≥0

{(u◦/y)(−Δ) ≤ 0} ≤ Dmax = inf
D≥0

{(α�◦/β)(−D) ≤ 0},
b(t) ≤ Γmax = (u◦/y)(0) ≤ Bmax = (α�◦/β)(0).

Distances Δmax and Γmax are the maximal delay and backlog of S whereas Dmax

and Bmax are their upper bounds (see Figure 2).

Proof. Since u = α�u and y � βu (see equations (8) and (9)) are the relation
between real flows of network S and constraints over these flows, the following
inequality shows that from the correlation u◦/y another correlation with α� and
β is found:

y � βu ⇒ u◦/y � (α�u)◦/(βu) since u = α�u and see (1),
� ((α�u)◦/u)◦/(β) see (3),
� α�◦/β see (2).

2 Recall that v1 � v2 ⇔ ∀t, v1(t) ≥ v2(t).

Flow Control with (Min,+) Algebra 191

(a) Flows u and y
with distances Δmax

and Γmax

(b) Curves α� and β
with distances Dmax

and Bmax

(c) Correlations u◦/y
and α�◦/β

Fig. 2. Maximal delay and backlog and their upper bounds

So, according to the Rmin order relation:

u◦/y � α�◦/β ⇔ u◦/y ≤ α�◦/β. ��
Remark 5. In the Network Calculus literature, maximal distances Dmax and
Bmax are obtained by horizontal and vertical deviations between elements of
correlation α�◦/β as shown in Figure 2b.

3.3 Functions Associated to Delay and Backlog

In the next sections dealing with some control problems, we will need to handle
given delay and backlog as fixed value of pure delay and amount of data. To this
end, particular functions are defined below.

Definition 4. Let τ and ν be respectively a pure delay and an amount of data.
Then, function denoted δτ is defined by:

δτ (t) =
{

0 for t < τ,
+∞ for t ≥ τ,

and the one denoted γν by:

γν(t) =
{

ν for t < 0,
+∞ for t ≥ 0.

Remark 6. Some properties can be associated to these functions:

δτ ∗ δ−τ = e,

γν ∗ γ−ν = e.

Moreover, in relation to input flow u, these functions are such that:

∀t, (δτ ∗ u)(t) = u(t − τ),
∀t, (γν ∗ u)(t) = ν + u(t).

192 E. Le Corronc, B. Cottenceau, and L. Hardouin

4 Flow Control

In this section, we consider the traffic regulation in order to get a guaranteed
performance of a network, this is known as the flow control.

4.1 Arrival Curve Computation

The first problem addressed in this paper is the next one. Assuming that a
minimum service provided by a network is known, we aim at finding the arrival
curve, i.e. a constraint applied over input flow, in order to respect a maximal
delay or backlog. By definition of an arrival curve (see equation (8) with u � αu
and so u = α�u), this optimal curve is a subadditive closure. Moreover, an
optimal curve represents the minimal constraint applied over the input in order
to eventually reach but not exceed the given delay or backlog. The problem from
the point of view of time performance is given in the following proposition.

Proposition 2. Let β be a minimal service curve of a network S and τ be a
fixed worst end-to-end delay. The optimal arrival curve α̂� which guarantees the
respect of τ is given by:

α̂� =
∧

{α� | α� � δ−τβ} = (δ−τβ)�

where δ−τ is the function associated with τ .

Proof. First of all, according to proposition 1 and definition 4, upper bound Dmax

of worst end-to-end delay is given by correlation α�◦/β and can be represented
by function δ−Dmax . So, the following relation is given:

Dmax = − sup{D | (α�◦/β)(D) ≤ 0} ⇒ α�◦/β � δ−Dmax .

Then, if the worst end-to-end delay τ is chosen Dmax = τ ⇔ δ−Dmax = δ−τ and
thanks to equation (4), arrival curve α� has to follow these following inequalities:

α�◦/β � δ−τ ⇔ α� � δ−τβ.

Finally, thanks to equation (7), the minimal α� which respects the inequality is
(δ−τβ)�. ��
The next proposition states the problem from the point of view of data
performance.

Proposition 3. Let β be the known minimal service curve of a network S and
ν be a fixed worst backlog. The optimal arrival curve α̂� which guarantees the
respect of ν is given by:

α̂� =
∧

{α� | α� � γνβ} = (γνβ)�

where γν is the function associated with ν.

Proof. The proof is the same as in proposition 2. ��

Flow Control with (Min,+) Algebra 193

Fig. 3. Chosen configuration of the window flow control system

4.2 Window Flow Control

The second problem of traffic regulation and performance guarantee is the one
of the window flow control where its optimal window size is computed.

First of all, let us recall this control context. A window flow controller aims at
bounding the amount of data admitted in a network in such a way that its total
amount in transit is always less than some positive number, i.e. the window size.
This problem has already been treated in literature but not in the same manner.
The window flow control introduced in [8] do not have the same model than in
[6]. In this paper, we adopt the Chang’s modelling which is homogeneous with
the one introduced in [7].

Moreover, this problem is studied here with two associated configurations.
On the one hand, the service provided by the network is assumed to be included
in interval. Indeed, assuming that minimum and maximum service curves are
known, the size of the window can be computed as well as for the worst case
than for the best case of traffic without damaging the service provided. On the
other hand, a difference is made between the data stream (from the source to
the destination) and the acknowledgments stream (from the destination to the
source) since these acknowledgments requires considerably less bandwidth than
the data itself (see [1]). So, the computation of the window size will have ben-
efit of this profit of bandwidth. This configuration is described in the following
proposition and illustrated in Figure 3.

Proposition 4. Let S1 be the system representing the data stream where [β
1

,

β1] (β
1

� β1) is the interval containing its provided service. In the same way,
let S2 be the system representing the acknowledgments stream where [β

2
, β2]

(β
2

� β2) is the interval containing its provided service. Then, let γw be the
representative function of the window size w. The service curve of the whole
system is included in the interval:

[β
1
(γwβ

2
β

1
)� , β1(γwβ2β1)

�].

Proof. The output flow y is described by the following equation:

β
1
u � y � β1u,

194 E. Le Corronc, B. Cottenceau, and L. Hardouin

whereas intermediate flow u is included in:

min(v, γwβ
2
β

1
u) � u � min(v, γwβ2β1u),

v ⊕ γwβ
2
β

1
u � u � v ⊕ γwβ2β1u see operator ⊕,

(γwβ
2
β

1
)�v � u � (γwβ2β1)

�v see theorem 1.

Therefore:

β
1
(γwβ

2
β

1
)�v � y � β1(γwβ2β1)

�v. ��
By considering this configuration, the computation of the optimal window size
ŵ can be studied. The chosen point of view is to compute a minimal window
size such that the global network behavior, i.e. the controlled one, is the same
as the open-loop network behavior, i.e. the one of S1 only. The behavior of S1 is
described by the interval of service curve [β

1
, β1], this objective can be stated

as follows:

γ̂w =
⊕

{γw | β
1
(γwβ

2
β

1
)� = β

1
and β1(γwβ2β1)

� = β1}. (10)

The following proposition puts forward the computation of such a window size.

Proposition 5. In order to obtain a behavior of the closed-loop system un-
changed in comparison to the one of the open-loop (see equation (10)), the opti-
mal window size ŵ represented by function γ̂w is given below:

γ̂w = (β
1
◦\β

1
◦/(β

2
β

1
)) ∧ (β1 ◦\β1◦/(β2β1)).

Proof. Firstly, by considering the minimal bound, let Gc be the minimal behavior
of the controlled network and Gref be the reference behavior we want to reach,
so the one of β

1
:

Gc = β
1
(γwβ

2
β

1
)� and Gref = β

1
.

Equation (10) can be written as follow:

γ̂w =
⊕

{γw | Gc � Gref}.

Then:

Gc � Gref ⇔ β
1
(γwβ

2
β

1
)� � β

1
,

⇔ (γwβ
2
β

1
)� � β

1
◦\β

1
see (4),

⇔ γwβ
2
β

1
� β

1
◦\β

1
since a � a�,

⇔ γw � β
1
◦\β

1
◦/(β

2
β

1
) see (4). (11)

Secondly, this proof is the same for the maximal bound and thus we obtain:

γw � β1 ◦\β1◦/(β2β1). (12)

Flow Control with (Min,+) Algebra 195

Then, in order to satisfy both equations (11) and (12), function γw is given by:

γ̂w = (β
1
◦\β

1
◦/(β

2
β

1
)) ∧ (β1 ◦\β1◦/(β2β1)). ��

Remark 7. Thanks to this optimal window size, the interval including the service
curve of the controlled system is the same as the one of the open-loop system:

[β
1
(γ̂wβ

2
β

1
)� , β1(γ̂wβ2β1)

�] = [β
1

, β1].

5 Application: Window Flow Control with a Given Delay

Let us see an example of a window flow control with a given delay to respect.
This application takes the main propositions of this paper into account, namely
proposition 2 about the computation of an arrival curve according to a given
delay (its backlog version given in proposition 3 is not treated in this example)
and proposition 5 about optimal size of a window flow controller.

5.1 Configuration

For this application, the scheme of the network is the same as described in
proposition 4 and illustrated in Figure 3. All the service provided by element
S1 is included in interval [β

1
β1]. Services curves β

1
and β1 are rate-latency

functions with a latency of 16ms for the former, 20ms for the latter and a rate
of 100Mb/s for both of them:

β
1
(t) = 16ms + 100Mb/s · t and β1(t) = 20ms + 100Mb/s · t.

By considering the service provided by element S2 included in interval [β
2

β2]
with rate-latency functions as services curves β

2
and β2:

β
2
(t) = 12ms + 100Mb/s · t and β2(t) = 14ms + 100Mb/s · t.

For this network, the upper bound Dmax of the worst end-to-end delay from v
to y is fixed to 90ms. This delay is represented by function δ−Dmax .

5.2 Computation of the Arrival Curve α̂�

Firstly, proposition 2 is applied in order to find the minimal arrival curve α̂�

which allows Dmax to be respected in the open-loop context. Thus:

α̂� = (δ−Dmaxβ1)
� ⇒ α̂�(t) = (−90ms) ∗ (20ms + 100Mb/s · t),

= 9Mb + 100Mb/s · t.
This arrival curve is the lowest one, so the less restrictive one enabling eventually
to reach but not to exceed the given delay. If an arrival curve still less restrictive
is chosen, the network will be subjected to congestions and the maximum end-
to-end delay of the network will increase.

196 E. Le Corronc, B. Cottenceau, and L. Hardouin

5.3 Computation of the Window Size ŵ

Secondly, we can compute the optimal window size ŵ for this configuration.
However, the maximum end-to-end delay Dmax has to be respected again and
thus the optimal arrival curve α̂� previously computed is used as follows: input
v of the global system is constrained by α̂� such that v = α̂�v. So, the open-loop
behavior is the following interval:

α̂�[β
1

, β1]

whereas the closed-loop one is:

α̂�[β
1
(γ̂wβ

2
β

1
)� , β1(γ̂wβ2β1)

�].

Then, proposition 5 is applied in order to find the minimal window size ŵ which
allows the same behavior in closed-loop context than in open-loop context to be
obtained and function γ̂w is given by:

γ̂w = ((β
1
α̂�) ◦\(β

1
α̂�)◦/(β

2
β

1
)) ∧ ((β1α̂

�) ◦\(β1α̂
�)◦/(β2β1)).

The proof of this result is left to reader by following the one of proposition 5.
Finally, the optimal window size is obtained:

ŵ = 2, 8Mb.

This window size is the minimal one for the largest bandwidth of the network
without congestion it. Moreover, this window size respect the maximum end-to-
end delay given in the assumption.

6 Conclusion

In this paper, traffic regulation and performance guarantee of a network have
been treated. First of all, we recalled the algebraic linked to Network Calculus
operations thanks to the (min,+) algebra and the residuation theory. Once these
useful properties defined, we used them in the context of flow control in order
to solve two problems enabling to avoid congestion in the network.

The first case shows the computation of an optimal arrival curve in order to
respect a maximal delay or backlog, assuming that the minimum service provided
by a network is known. This arrival curve is said to be optimal because it is the
less restrictive one where the given delay is not exceeded.

The second case brings forward the computation of a window size in a closed-
loop structure. Assuming that the data stream and the acknowledgments are
different, this window size is said to be optimal. Moreover, the service provided
by network elements are included in an interval so the window flow controller is
computed as well as for the worst case than for the best case of traffic.

Finally, an example applies propositions made in order to solve these two
problems and optimal arrival curve and window size are found.

Flow Control with (Min,+) Algebra 197

References

1. Agrawal, R., Cruz, R.L., Okino, C., Rajan, R.: Performance bounds for flow control

protocols. IEEE/ACM Transactions on Networking (TON) 7(3), 310–323 (1999)

2. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronisation and linearity:

an algebra for discrete event systems. Wiley and sons, Chichester (1992)

3. Blyth, T.S., Janowitz, M.F.: Residuation theory. Pergamon, Oxford (1972)

4. Bouillard, A., Jouhet, L., Thierry, E.: Computation of a (min,+) multi-dimensional

convolution for end-to-end performance analysis. In: Proceedings of the 3rd Inter-

national Conference on Performance Evaluation Methodologies and Tools, Value-

Tools 2008 (2008)

5. Chang, C.S.: On deterministic traffic regulation and service guarantees: asystematic

approach by filtering. IEEE Transactions on Information Theory 44(3), 1097–1110

(1998)

6. Chang, C.S.: Performance guarantees in communication networks. Springer, Hei-

delberg (2000)

7. Cottenceau, B., Hardouin, L., Boimond, J.-L., Ferrier, J.-L.: Model reference con-

trol for timed event graphs in dioids. Automatica 37(9), 1451–1458 (2001)

8. Le Boudec, J.-Y., Thiran, P.: Network calculus: a theory of deterministic queuing

systems for the internet. Springer, Heidelberg (2001)

9. Maia, C.A., Hardouin, L., Santos-Mendes, R., Cottenceau, B.: Optimal closed-

loop control of timed event graphs in dioids. IEEE Transactions on Automatic

Control 48(12), 2284–2287 (2003)

10. Plus, M.: Second order theory of min-linear systems and its application to dis-

crete event systems. In: Proceedings of the 30th IEEE Conference on Decision and

Control, Brighton, CDC 1991 (1991)

11. Santos-Mendes, R., Cottenceau, B., Hardouin, L.: Adaptive feedback control for

(max,+)-linear systems. In: Proceedings of the 10th IEEE Conference on Emerging

Technologies and Factory Automation, ETFA 2005 (2005)

An Interface Algebra for Estimating Worst-Case
Traversal Times in Component Networks�

Nikolay Stoimenov1, Samarjit Chakraborty2, and Lothar Thiele1

1 Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland

{stoimenov,thiele}@tik.ee.ethz.ch
2 Institute for Real-Time Computer Systems, TU Munich, Germany

samarjit@tum.de

Abstract. Interface-based design relies on the idea that different com-

ponents of a system may be developed independently and a system de-

signer can connect them together only if their interfaces match, without

knowing the details of their internals. In this paper we propose an inter-

face algebra for analyzing networks of embedded systems components.

The goal is to be able to compute worst-case traversal times and verify

their compliance to provided deadlines in such component networks in

an incremental manner, i.e., as and when new components are added or

removed from the network. We lay the basic groundwork for this algebra

and show its utility through an illustrative example.

1 Introduction

Today most embedded systems consist of a collection of computation and com-
munication components that are supplied by different vendors and assembled by
a system manufacturer. Such a component-based design methodology is followed
in several domains such as automotive, avionics, and consumer electronics. The
system manufacturer responsible for component assembly has to take design de-
cisions (related to the choice of components and how they are to be connected,
e.g., using a bus or a network-on-chip) and perform system analysis. One such
important analysis is related to the computation of end-to-end delays or worst-
case traversal times (WCTTs) of data through the component network.

To carry out such an analysis, it is important to model the internals of each
component, which is often difficult because of the complexity of the components
and their proprietary nature. To get around this problem, an interface-based
design methodology may be appropriate. Here, components may be connected if
and only if their interfaces match. Further, the timing behavior of the network
may be computed in an incremental manner – i.e., as and when new components
are added or existing ones are modified – without always having to analyze the
� The work is partially supported by NCCR-MICS, a center supported by the Swiss

National Science Foundation under grant number 5005-67322, and by the DFG

through the SFB/TR28 “Cognitive Automobiles”.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 198–213, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Interface Algebra for Estimating Worst-Case Traversal Times 199

entire system from scratch. In this paper, we develop an interface algebra for es-
timating the worst-case traversal times and verify their compliance to provided
upper bounds, where the different components exchange data through first-in
first-out (FIFO) buffers. Such architectures are common for streaming applica-
tions, e.g., audio/video processing and distributed controllers where data flows
from sensors to actuators while getting processed on multiple processors. Our
proposed interface algebra is an extension of [4,8] and is motivated by the con-
cept of assume/guarantee interfaces from [1]. In particular, we cast the Real-Time
Calculus framework from [3] within the assume/guarantee interface setting. At
a high level, two interfaces match when the guarantees associated with one of
them comply with the assumptions associated with the other. Our main tech-
nical result is Theorem 1 which describes how to compute the assumptions and
guarantees associated with components based on a monotonicity property. This
result is then used to compute the WCTT in a component network incremen-
tally, and validate that it complies to a given deadline. Our approach may be
summarized in the following three steps:

1. Define an abstract component that describes the real-time properties of a
concrete system component. This involves defining proper abstractions for
component inputs and outputs, and internal component relations that mean-
ingfully relate abstract inputs to abstract outputs.

2. To derive the interface of an abstract component, we need to define interface
variables as well as input and output predicates on these interface variables.

3. Derive the internal interface relations that relate incoming guarantees and as-
sumptions to outgoing guarantees and assumptions of a component’s
interfaces.

In the setting we study here, event streams are processed on a sequence of
components. An event or data stream described by the cumulative function R(t)
enters the input buffer of the component and is processed by the component
whose availability is described by the cumulative function C(t). Formally, the
cumulative functions R(t) ∈ IR≥0 and C(t) ∈ IR≥0 for t ≥ 0 denote the number
of events/data items that have been received or could be processed within the
time interval [0, t), respectively. After being processed, events are emitted on the
component’s output, resulting in an outgoing event stream R′(t). The remaining
resources that were not consumed are available for use and are described by
an outgoing resource availability trace C′(t). The relations between R(t), C(t),
R′(t) and C′(t) depend on the component’s processing semantics. For example,
Greedy Processing (GP) denotes that events are always processed when there
are resources available. Typically, the outgoing event stream R′(t) will not equal
the incoming event stream R(t) as it may, for example, exhibit more or less
jitter.

While cumulative functions such as R(t) or C(t) describe one concrete trace
of an event stream or a resource availability, variability characterization curves
(VCCs) capture all possible traces using upper and lower bounds on their timing

200 N. Stoimenov, S. Chakraborty, and L. Thiele

properties. The arrival and service curves from Network Calculus [5] are specific
instances of VCCs and are more expressive than traditional event stream mod-
els such the periodic, periodic with jitter, sporadic, etc. Arrival curves αl(Δ)
and αu(Δ) denote the minimum and the maximum number of events that can
arrive in any time interval of length Δ, i.e., αl(t − s) ≤ R(t) − R(s) ≤ αu(t − s)
for all t > s ≥ 0. In addition, αl(0) = αu(0) = 0. We also denote the tuple
(αl, αu) with α. Service curves characterize the variability in the service pro-
vided by a resource. The curves βl(Δ) and βu(Δ) denote the minimum and the
maximum number of events that can be processed within any time interval of
length Δ, i.e., βl(t − s) ≤ C(t) − C(s) ≤ βu(t − s) for all t > s ≥ 0. In addition,
βl(0) = βu(0) = 0. We also denote the tuple (βl, βu) with β. An event stream
modeled by α(Δ) enters a component and is processed using the resource mod-
eled as βl(Δ). The output is again an event stream α′(Δ), and the remaining
resource is expressed as β′l(Δ). Note that the domain of the arrival and ser-
vice curves are events, i.e., they describe the number of arriving events and the
capability to process a certain number of events, respectively. The generaliza-
tion towards physical quantities such as processing cycles or communication bits
can be done by means of workload curves which is another instance of a VCC
(see [6]).

2 Timing Analysis of Component Networks

In this section, we describe a timing analysis framework (in particular, for com-
puting worst-case traversal times) for component networks that is based on
Real-Time Calculus [3,7]. This calculus is an adaptation of Network Calculus
[5] that was designed to analyze communication networks. Here, we consider
three basic types of abstract components: Processing Element (PE), Playout
Buffer (PB), and Earliest Deadline First (EDF) component. For the component
models of Greedy Shapers, Time Division Multiple Access, servers, and hierar-
chical scheduling, please refer to [9,10,11]. In Sect.3 we lift this framework to an
interface-theoretic setting and present our main technical result.

2.1 Processing Element

The PE component can be used to model a single processing element which
processes one input stream. However, it can also be composed with other com-
ponents of the same type, and model components processing more than one
input stream using a fixed priority (FP) scheduling. Consider a concrete GP
component that is triggered by the events of an incoming event stream. A fully
preemptive task is instantiated at every event arrival to process the incoming
event, and active tasks are processed in a FIFO order, while being restricted
by the availability of resources. The completion of each task execution results
in the corresponding event being removed from the input buffer and an event
being emitted on the outgoing event stream.

An Interface Algebra for Estimating Worst-Case Traversal Times 201

Following results from Real-Time and Network Calculus [3,5], such a compo-
nent can be modeled by an abstract component PE with the following internal
component relations1:

α′u = αu � βl, α′l = αl ⊗ βl, (1)

β′l(Δ) = sup
0≤λ≤Δ

{
βl(λ) − αu(λ)

}
:= RT (βl, αu) , (2)

and the backlog of the input buffer is bounded by sup0≤λ≤Δ

{
αu(λ) − βl(λ)

}
. If

the available buffer space in the input buffer is constrained by bmax, the backlog
should never become bigger than the buffer size, i.e., we have a buffer overflow
constraint. In this case, we can obtain the following component-based constraint
on the admissible arrival and service curves:

αu(Δ) ≤ βl(Δ) + bmax, ∀Δ ∈ IR≥0 . (3)

If the input arrival and service curves satisfy the above constraint, the backlog
will never be bigger than bmax. Before continuing with the computation of the
WCTT for a PE component, we need to define the following shift function:

r(α, c, Δ) =
{

α(Δ − c) if (Δ > c) ∧ (Δ �= 0)
0 if (Δ ≤ c) ∨ (Δ = 0) (4)

which simply shifts a given curve α(Δ) by the amount c to ’the right’. The
WCTT experienced by an event in the component, defined as its finishing time
minus its arrival time, can be computed as:

Del(αu, βl) := sup
λ≥0

{
inf{τ ≥ 0 : αu(λ) ≤ βl(λ + τ)}} .

It is also possible to have systems with processing elements that process more
than one data stream. For this purpose, the remaining service output of a higher
priority PE component, computed with (2), can be connected to the service
input of a lower priority PE component. This way we can model an FP resource
sharing between PE components.

2.2 Playout Buffer

The PB component models a playout buffer. It receives data and stores it in
a buffer which is read at a constant (usually periodic) rate. The buffer has a
maximum size Bmax. We make the assumption that at the start of the system,
there are already B0 initial data items in the playout buffer, e.g., due to a
playback delay. Data items in the playout buffer are removed at a constant
rate. In particular, P (t) data items are removed within the time interval [0, t).
This behavior can be described by the readout VCC ρ(Δ) = (ρl(Δ), ρu(Δ)),
i.e., ρl(t − s) ≤ P (t) − P (s) ≤ ρu(t − s) for all t > s ≥ 0. What needs to be

1 See the Appendix for definitions of ⊗ and �.

202 N. Stoimenov, S. Chakraborty, and L. Thiele

guaranteed is that the playout buffer never overflows or underflows. Following
results on Real-Time and Rate Interfaces [4], for a PB component with input
and readout event streams characterized by the VCCs α and ρ, respectively, and
B0 initial events, the playout buffer size B(t) is constrained by 0 ≤ B(t) ≤ Bmax

at all times if

αl(Δ) ≥ ρu(Δ) − B0, and αu(Δ) ≤ ρl(Δ) + Bmax − B0, ∀Δ ∈ IR≥0 . (5)

The WCTT experienced by an event in the component can be computed as
Del(αu, ρl

τ) where

ρl
τ (Δ) = r(ρl, τ, Δ) (6)

is the lower readout curve ’shifted to the right’ by the initial playback delay
τ ≥ 0 necessary to accumulate B0 events.

2.3 Earliest Deadline First Component

The EDF component is similar to PE but it models processing of several data
streams with a resource shared using the earliest deadline first scheduling policy.
This requires a new abstract component with different internal relations [10].
Such a component processes N input event streams and emits N output event
streams. Each input event stream i, 1 ≤ i ≤ N , is associated with a fully
preemptive task which is activated repeatedly by incoming events. Each input
event stream i has an associated FIFO buffer with maximum size bi max where
events are backlogged. Tasks process the head events in these buffers and are
scheduled in an EDF order. Each task has a best-case execution time of BCETi,
a worst-case execution time WCETi, and a relative deadline Di where 0 ≤
BCETi ≤ WCETi ≤ Di. The completion of a task execution results in the
corresponding input event being removed from the associated buffer and an
output event being emitted on the associated output event stream.

For an EDF component with a service curve β and event streams characterized
by arrival curves αi, all tasks are processed within their deadlines if and only if

N∑
i=1

r(αu
i , Di, Δ) ≤ βl(Δ), ∀Δ ∈ IR≥0 , (7)

using the shift function r from (4). The output streams can be characterized by
arrival curves computed for all streams i as:

α′u
i (Δ) = r(αu

i ,−(Di − BCETi), Δ), α′l
i (Δ) = r(αl

i, (Di − BCETi), Δ) , (8)

and the number of events in input buffers do not exceed their capacity bi max if

αu
i (Di) ≤ bi max, ∀i . (9)

The EDF component schedulability condition (7) can be related to the demand
bound functions described in [2]. Given that the condition is satisfied, the service

An Interface Algebra for Estimating Worst-Case Traversal Times 203

curve provided to each stream can be modeled with a burst-delay function [5]
defined for each stream i as:

βl
Di

(Δ) =
{

+∞ if Δ > Di

0 otherwise (10)

The WCTT experienced by an event from a stream can be computed as
Del(αu

i , βl
Di

) which is bounded by Di for each stream.

2.4 Worst-Case Traversal Times of Component Networks

The worst-case traversal time of an event from an input stream which is processed
by a sequence of components can be computed as the sum of the worst-case
traversal times of the individual components. However, this would lead to a
very pessimistic and unrealistic result as it would assume that the worst-case
traversal times occur in all components for the same event. A better bound on
the worst-case traversal time can be achieved by considering a concatenation
of the components. This is a phenomenon known as “pay bursts only once” [5].
Following results from Network Calculus, this leads to the following computation
for the WCTT.

For an input event stream α traversing a sequence of components which
consists of a set of PEs, a set of PBs, and a set of EDF components de-
noted as PE , PB and EDF , respectively, the worst-case traversal time that
an event can experience can be computed as Del(αu, βPE ⊗ ρPB ⊗ βEDF) with
βPE =

⊗
c∈PE βl

c, ρPB =
⊗

c∈PB ρl
τ c, βEDF =

⊗
c∈EDF βl

Di c, and βl
c is the

service availability of PE component c, ρl
τ c is the lower readout curve for PB

component c as defined with (6), and βl
Di c is the service availability provided

to the stream served with relative deadline Di by EDF component c as defined
with (10). A WCTT constraint on the sequence of components Del(αu, βPE ⊗
ρPB ⊗ βEDF ⊗ σGS) ≤ D can be written as follows:

βPE ⊗ ρPB ⊗ βEDF ≥ r(αu, D, Δ), ∀Δ ∈ IR≥0 , (11)

using the shift function r from (4).

3 Interface Algebra

In this section, we develop an interface-based design approach which will allow us
by only inspecting the interfaces of two components to check whether WCTT and
buffer underflow/overflow constraints would be satisfied if the components are
composed together. The proposed interface algebra includes concepts from Real-
Time Calculus, Assume/Guarantee Interfaces [1], and constraints propagation.

In our setup each component has two disjoint sets of input and output ports
I and O. The actual input and output values of an abstract component are
VCC curves. A connection from output j of one component to the input i of
some other component will be denoted by (j, i). The interface of a component

204 N. Stoimenov, S. Chakraborty, and L. Thiele

makes certain assumptions on I, which are specified using the predicate φI(I).
Provided this predicate is satisfied, the interface guarantees that the component
works correctly and its outputs will satisfy a predicate φO(O).

In order to simplify the presentation, we introduce the complies to relation �
between two VCC curves a(Δ) and b(Δ) as follows:

a � b = (∀Δ : (al(Δ) ≥ b l(Δ)) ∧ (au(Δ) ≤ bu(Δ))) .

In other words, a complies to b (a � b) if for all values of Δ the interval
[al(Δ), au(Δ)] is enclosed by [b l(Δ), bu(Δ)].

Following the introduced notation, for any VCC α, we can define the input
and output predicates for some component input i and output j as φI

i (αi) =
(αi � αA

i) and φO
j (αj) = (αj � αG

j), respectively, where αA and αG are assume
and guarantee curves provided by the component interface.

We would like to have that if the input predicates of a component are all
satisfied, then it works correctly and all output predicates are satisfied. In other
words the condition

∧
∀i∈I φI

i (αi) ⇒ ∧
∀j∈J φO

j (αj) must be satisfied by the
interfaces of all components.

If we now connect several components, we want to be able to check if the
whole system can work correctly by just checking whether their interfaces are
compatible. This can be done by testing whether the relation

∧
∀ (j,i) φO

j (αj) ⇒∧
∀ (j,i) φI

i (αi) is satisfiable. In other words, we must check if there exists some
environment in which the components can be composed. The relation is hence
the weakest precondition on the environment of the system.

We also need to propagate information about the predicates between the in-
terfaces, see also [8]. This way, we combine interface theory with constraints
propagation, which enables parameterized design of component-based systems.
We propagate the assume and guarantee curves of the input and output predi-
cates through the interfaces. Each interface connection would have both assume
and guarantee curves propagated in opposite directions. We connect the inter-
faces, i.e., the corresponding guarantee and assume curves, as ∀ (j, i) : (αG(i) =
αG(j)) ∧ (αA(j) = αA(i)).

Now, we can determine whether two abstract components are compatible by
checking the compatibility of their interfaces. Let us suppose that the assume
and guarantee variables of an interface of any component and their relation to
the input and output values of the corresponding abstract component satisfy

(∀i ∈ I : αi � αG
i � αA

i) ⇒ (∀j ∈ J : αj � αG
j � αA

j) , (12)

where the component has inputs I and outputs J . Then if for a network of
components, the relation αG

i � αA
i is satisfied for all inputs i, we can conclude

that the system works correctly.
Now we need to develop the relations between guarantees and assumptions

in order to satisfy (12) for every component. We will first describe a general
method how these relations can be determined and then apply it to the abstract
components described so far.

An Interface Algebra for Estimating Worst-Case Traversal Times 205

To this end, as we are dealing with stateless interfaces, I and O can be related
by a transfer function, e.g., O = F (I). The actual function depends on the
processing semantics of the modeled component.

We need to define the concept of a monotone abstract component. Note that
the ’complies to’ relation � has been generalized to tuples, i.e., (ai : i ∈ I) � (bi :
i ∈ I) equals ∀i ∈ I : ai � bi.

Definition 1. An abstract component with a set of input and output ports, I
and J , respectively, and a transfer function F that maps input curves to output
curves, is monotone if ((α̃i : i ∈ I) � (αi : i ∈ I)) ⇒ ((α̃j : j ∈ J) � (αj : j ∈ J))
where (αj : j ∈ J) = F (αi : i ∈ I) and (α̃j : j ∈ J) = F (α̃i : i ∈ I).

In other words, if we replace the input curves of an abstract component with
curves that are compliant, then the new output curves are also compliant to the
previous ones. Note that all components we look at in this paper satisfy this
monotonicity condition, see for example (1), (2), and (8).

The following theorem leads to a constructive way to compute the input as-
sumes and output guarantees from the given input guarantees and output as-
sumes. We make use of the individual components of the transfer function F ,
i.e., αj = Fj(αi : i ∈ I) for all j ∈ J where I and J denote the input and
output ports of the corresponding abstract component, respectively. The theo-
rem establishes that we can simply determine the output guarantees using the
components of a given transfer function of an abstract component. For the input
assumes we need to determine inverses of the transfer function Fj with respect
to at least one of its arguments. All arguments of some Fj are determined by
the input guarantees but one, say for example αG

i∗ . This one we replace by αA
i∗

and try to determine this curve such that the result of the transfer function
still complies to the given output assumes. If we choose the same i∗ for several
components of the output function, then the resulting αA

i∗ needs to comply to
all partial ’inverses’.

Theorem 1. Given a monotone component with input ports I, output ports
J , and a transfer function F that maps input curves to output curves, i.e.,
(αj : j ∈ J) = F (αi : i ∈ I). Let us suppose that we determine the output
guarantees using:

αG
j = Fj(αG

i : i ∈ I) ∀j ∈ J , (13)

and the input assumes are computed such that

∀j ∈ J ∃ i∗ ∈ I :
(

Fj(αG
i : i ∈ I)

∣∣∣
αG

i∗←αA
i∗

� αA
j

)
, (14)

where αG
i∗ ← αA

i∗ denotes that in the preceding term αG
i∗ is replaced by αA

i∗ .
Then (12) holds.

Proof. Let us assume that for all input ports i ∈ I we have αi � αG
i , see (12).

Using the monotonicity of F , we can now see that (∀i ∈ I : αi � αG
i) ⇒ F (αi :

i ∈ I) � F (αG
i : i ∈ I) ⇒ (∀j ∈ J : αj � αG

j).

206 N. Stoimenov, S. Chakraborty, and L. Thiele

EDF

α′ 1
G

α′ 1
A

α′ N
A

α′ N
G

α 1
G

α 1
A

α N
A

α N
G

βG βA

.

.

.

.

.

.

PE

PB

ρG ρA

βG βA

αG

αA

PE

β′G β′A

α 1
G

α 1
A

α′ 1
G

α′ 1
A

α 2
A

α 2
G

α′ 2
A

α′ 2
G

a) b) c)

Π′ 1
G

Π′ 1
A

Π 1
G

Π 1
A

Π′ 2
G

Π′ 2
A

Π 2
G

Π 2
A

Π′
G

Π′
A

Π
G

Π
A

Π′ 1
G

Π′ 1
A

Π 1
G

Π 1
A

Π′ N
G

Π′ N
A

Π N
G

Π N
A

Fig. 1. Interface models for: a) two PE components processing two streams with FP

scheduling b) PB component c) EDF component processing N streams

We still need to show that (∀i ∈ I : αG
i � αA

i) ⇒ (∀j ∈ J : αG
j � αA

j)
using the construction in (13). At first note that this expression is equivalent to
∀j ∈ J ∃i∗ ∈ I :

(
(αG

i∗ � αA
i∗) ⇒ (αG

j � αA
j)
)
. We also know that for any i∗ ∈ I

we have (αG
i∗ � αA

i∗) ⇒ ((αG
i : i ∈ I) � (αG

i : i ∈ I) |αG
i∗←αA

i∗
).

Because of the monotonicity of F we can derive that for any i∗ ∈ I we have
(αG

i∗ � αA
i∗) ⇒ (F (αG

i : i ∈ I) � F (αG
i : i ∈ I) |αG

i∗←αA
i∗

), and using (13) we
find ∀j ∈ J ∃i∗ ∈ I such that ((αG

i∗ � αA
i∗) ⇒ (Fj(αG

i : i ∈ I) � Fj(αG
i : i ∈

I) |αG
i∗←αA

i∗
) ⇒ (αG

j � αA
j)). ��

Next, we show how to compute the largest upper curve and smallest lower curve
for which the respective relations still hold. This leads to the weakest possible
input assumptions. We do this for the three types of components introduced so
far.

3.1 Processing Element

Now, using the relation between interface values, assumptions and guarantees in
(12), and following the results from Theorem 1, we can deduce that the equa-
tions describing the output guarantees are equivalent to those for the abstract
component, i.e., (1), just using interface guarantees instead of values. Therefore,
we have:

α′uG = αuG � βlG, α′lG = αlG ⊗ βlG .

In order to calculate the input assumptions of the PE abstract component, we
need to determine inverse relations corresponding to (1) and (3). Following re-
sults from Network Calculus [5], we can do this by determining the pseudo-
inverse functions which have the following definition f−1(x) = inf{t : f(t) ≥ x}.

In order to guarantee that all relations hold if the input and output predicates
are satisfied, we then need to use the minimum (in case of the upper curves) or
the maximum (in case of the lower curves) of all the determined pseudo-inverses.

An Interface Algebra for Estimating Worst-Case Traversal Times 207

From the pseudo-inverses of (1), we get the inequalities αlA ≥ α′lA � βlG

and βlA ≥ α′lA � αlG. Here we use the duality relation between the � and ⊗
operators (see the Appendix). Similarly, we get the inequalities βlA ≥ αuG�α′uA

and αuA ≤ βlG ⊗α′uA. Inverting the buffer overflow constraint (3) is trivial and
we get the inequalities αuA ≤ βlG + b and βlA ≥ αuG − bmax.

If a PE component shares the service it receives with other lower priority
PE components, the remaining service is bounded by (2). In terms of output
guaranteed values, this can be expressed as β′lG(Δ) = RT (βlG, αuG) where the
RT operator is defined in (2). In order to obtain the input assumptions of a
component using FP scheduling, we need to use the inverses of the RT operator
(see the Appendix).

After combining all inverses, the assumptions related to component PE can
be determined as follows:

αuA = min{βlG ⊗ α′uA, βlG + bmax, RT−α(β′lA, βlG)}, αlA = α′lA � βlG,

βlA = max{α′lA � αlG, αuG � α′uA, αuG − bmax, RT−β(β′lA, αuG)} . (15)

The interface connections for two PE components are illustrated in Fig.1a.

3.2 Playout Buffer

For a PB component, the relations are simpler. We only need to determine the
inverse relations for the buffer constraints (5), which directly yield the following
relations:

αuA = ρlG + Bmax − B0, αlA = ρuG − B0,

ρuA = αlG + B0, ρlA = αuG − (Bmax − B0) . (16)

The interface connections for a single PB component are illustrated in Fig.1b.

3.3 Earliest Deadline First Component

Similarly to the PE component, equations describing the output guarantees are
again equivalent to those for the abstract component, i.e., (8). They only need
to be expressed in terms of interface variables instead of values for all streams i:

α′uG
i (Δ) = r(αuG

i ,−(Di − BCETi), Δ), α′lG
i (Δ) = r(αlG

i , (Di − BCETi), Δ) ,

using the definition of the shift function r in (4).
Similarly, for the resource and buffer constraints, (7) and (9), we obtain:

N∑
i=1

r(αuG
i , Di, Δ) ≤ βlG(Δ), ∀Δ ∈ IR≥0,

αuG
i (Di) ≤ bi max, ∀i .

208 N. Stoimenov, S. Chakraborty, and L. Thiele

Determining the input assumptions of the EDF component also involves find-
ing the pseudo-inverse functions of the relations. Finding the input assumes
for the upper arrival curves involves inverting (7) and (9). Again, we need to
compute the largest upper curves for which the relations still hold. Finding the
inverses and combing them, we find for all streams i:

αuA
i (Δ) = min

{
βlG(Δ + Di) −

N∑
j=1
j =i

r(αuG
j , (Dj − Di), Δ),

s(α′uA
i , (Di − BCETi), Δ), t(Di, bi max, Δ)

}
,

using functions s(α, c, Δ) and t(d, b, Δ) defined as:

s(α, c, Δ) =

⎧⎨
⎩

α(Δ − c) if Δ > c
limε→0{α(ε)} if 0 < Δ ≤ c
0 if Δ = 0

t(d, b, Δ) =

⎧⎨
⎩

∞ if Δ > d
b if 0 < Δ ≤ d
0 if Δ = 0

Calculating the input assumption for the lower curve is much simpler as it in-
volves finding the smallest lower curve solution to the pseudo-inverse of (8) or
αlA

i (Δ) ≥ α′lA
i (Δ + (Di − BCETi)) for all i. Therefore, we can determine the

following assume interface function for the lower curve of each input data stream:

αlA
i (Δ) = r(α′lA

i ,−(Di − BCETi), Δ), ∀i ,

using the shift function r as defined in (4).
Similarly, for the assume of the lower service curve we invert (7) which yields

the inequality βlA(Δ) ≥ ∑N
i=1 r(αuG

i , Di, Δ). Therefore, the input assume for
the lower service curve of an EDF component can be determined as:

βlA(Δ) =
N∑

i=1

r(αuG
i , Di, Δ) . (17)

The interface model for the EDF component is illustrated in Fig.1c.

3.4 Worst-Case Traversal Time Interface

We develop an additional type of interface to alleviate design of systems with
WCTT constraints. It is an interface-based interpretation of the analytical com-
putation of WCTT with (11).

The ’complies to’ relation � for this interface connection is defined as ΠG(Δ) �
ΠA(Δ) = (∀Δ : ΠG(Δ) ≥ ΠA(Δ)), where ΠA expresses the minimum service
requested from all subsequent components such that the WCTT constraint is
satisfied, and ΠG expresses the minimum service guaranteed by all subsequent
components.

Computing the guarantee for a sequence of components follows directly from
(11) and can be done with ΠG = βG

PE⊗ρG
PB⊗βG

EDF . Connecting a PE component

An Interface Algebra for Estimating Worst-Case Traversal Times 209

to the sequence would change the combined service to Π ′G = βlG⊗ΠG where βlG

is the lower service guaranteed by the PE. Similarly, connecting a PB component
we would have Π ′G = ρlG

τ ⊗ΠG, where ρl
τ (Δ) is the lower guaranteed shifted

readout curve as defined with (6). For an EDF component, we have Π ′G =
βlG

Di
⊗ΠG where βlG

Di
is the service curve for the stream with relative deadline Di

as defined in (10).
Inverting (11), we can compute the assume on the combined service of a

sequence of components as ΠA = r(αuG, D, Δ) which expresses the minimum
necessary service in order to meet a WCTT constraint of D for the input αuG.
Propagating the assume value through a sequence of components can be done
for the three types of components by inverting (11) as follows:

PE: ΠA = Π ′A�βlG, PB: ΠA = Π ′A�ρlG
τ , EDF: ΠA = Π ′A�βlG

Di
.

We can also compute component-wise constraints on the resources provided by
each component given the resource assumption from preceding components Π ′A,
and the resource guarantee from subsequent components ΠG:

PE: βlA ≥ Π ′A�ΠG, PB: ρlA
τ ≥ Π ′A�ΠG, EDF: βlA

Di
≥ Π ′A�ΠG .

The above constraints can be combined with the previously computed input
assumes for the resources of the three components with (15), (16), and (17).
By doing this, satisfying all interface relations of components composed in a
sequence will guarantee that the WCTT constraint on the sequence of compo-
nents is satisfied. The WCTT interfaces for the PE, PB, and EDF components
are shown in Fig.1.

4 Illustrative Example

In this section we show how our proposed theory can be applied to an example
system shown in Fig.2. Towards this, each PE, PB, and EDF component is
considered to be an independent component, and our objective is to connect
them together to realize the architecture shown in the figure. In order to decide
whether two components can be connected together, we would only inspect their
interfaces. Two compatible interfaces implicitly guarantee that the buffers inside
their respective components will never overflow or underflow, and in addition,
the WCTT constraints are satisfied.

The main message in this section is an illustration of how the internal de-
tails of a component (e.g., its buffer size, scheduling policy, processor frequency,
deadline) are reflected (or summarized) through its interfaces. We show that if
these internal details are changed then the component’s interfaces also change
and two previously compatible components may become incompatible (or vice
versa).

Experimental Setup. We consider the system illustrated in Fig.2. It consists of
a multiprocessor platform with four CPUs. A distributed application is mapped
to the platform. It processes two data streams, a high priority one denoted as

210 N. Stoimenov, S. Chakraborty, and L. Thiele

PB1

ρG ρA

PB2

ρG ρA

α HP
G

α HP
A

α LP
A

α LP
G

Π′
G

Π′
A

CPU1

PE1

βG βA

CPU2

PE2

βG βA

CPU3

PE3

βG βA

PE4

CPU4

EDF

βG βA?
1 1 1 1

2 2

3 3

2 2

4 4

Fig. 2. Interface model of an example stream processing system

HP , and a low priority one denoted as LP . The application consists of six tasks.
Streams are preprocessed by the tasks modeled with components PE1 and PE2
which are mapped separately to CPU1 and CPU2, respectively. Afterwards,
they are processed by components PE3 and PE4 which are mapped to CPU3.
The tasks share the resource using FP scheduling where stream HP is given
higher priority. Additionally, streams are processed by two tasks mapped to
CPU4 which they share with the EDF policy. This is modeled with the EDF
component. The fully processed streams are written to playout buffers which
are read by an I/O interface at a constant rate. The buffers are modeled with
components PB1 and PB2. For simplicity, the communication is not modeled
here. If necessary, it can be taken into account by additional components in the
model.

Data packets from the streams have bursty arrivals described with period p,
jitter j, and minimum inter-arrival distance d. For the HP stream the parameters
are p = 25ms, j = 40ms, d = 0.1ms, and for LP stream they are p = 25ms,
j = 30ms, d = 0.1ms. Each data packet from the two streams has a constant
processing demand of 1 cycle. CPU1 is fully available with service availability of
0.3 cycles/ms. For CPU2, CPU3, and CPU4, the respective service availabilities
are 0.3, 0.4, and 0.4 cycles/ms. Components PE3 and PE4 have internal buffer
sizes of 2 and 3 packets, respectively. The buffers should never overflow. The
EDF component schedules tasks processing streams HP and LP with relative
deadlines of 8ms and 10ms, respectively, with both buffers being limited to 3
packets. These buffers should also never overflow. Components PB1 and PB2 are
read at a constant rate of 25 packets/ms. Both components have maximum buffer
sizes of 8 data packets, and initially they contain 4 data packets. Both buffers
should not underflow and overflow. Additionally, we have a WCTT constraint
on the LP stream of 200ms.

Results. We consider three different scenarios of the system’s parameters. In
each of them, we check the compatibility of component PE1 with the partially
designed system when all other components are already connected. Compatibility
is checked by only inspecting the interface connection between PE1 and the

An Interface Algebra for Estimating Worst-Case Traversal Times 211

0 50 100 150
0

5

10

Δ [ms]

a) b) c)

0 50 100 150
0

5

10

Δ [ms]

0 50 100 150
0

5

10

Δ [ms]

da

ta
 p

ac
ke

ts

αG
PE1

αA
PE3

Fig. 3. Interface connection between the output guarantee of component PE1 and the

input assumption of component PE3 shows: a) compatibility b) incompatibility when

WCTT for stream LP is reduced to 192ms c) incompatibility when buffer of component

PB2 is decreased to 5 packets.

system which is marked with ’?’ in Fig.2. Compatibility meaning that the output
guarantee is fully “enclosed” by the input assumption.

Case I: The system is considered with the specified parameters. The components
turn out to be compatible. The interface connection is illustrated in Fig.3a. It
shows that the guarantee on the output stream rate αG

PE1 expressed by PE1s
interface is compatible with the assumption on the input rate αA

PE3 expressed
by PE3s interface.

Case II: The WCTT constraint on the LP stream is decreased to 192ms. This
leads to incompatibility between components PE1 and PE3 which reveals in
the interface connection as shown in Fig.3b.

Case III: The maximum buffer size of component PB2 is decreased to 5 packets
which leads to incompatibility as shown in Fig.3c.

In summary, we have shown through a concrete example how incremental
compatibility checking can be done using the proposed interfaces. Clearly, such
interfaces can also be used in a straightforward manner for resource dimension-
ing and component-level design space exploration. Typical questions that one
would ask are: What is the minimum buffer size of a component such that its
interface is compatible with a partially existing design? What is the minimum
processing frequency such that the interface is still compatible? Or what are the
feasible relative deadlines in an EDF component? In this paper, we are concerned
with buffer and WCTT constraints however, one can imagine developing similar
interfaces for power, energy, and temperature constraints.

5 Concluding Remarks

In this paper we proposed an interface algebra for checking whether multiple
components of an embedded system may be composed together while satisfying
their worst-case traversal time (WCTT) constraints. The main advantage of such
an interface-based formulation is that component composition only requires a
compatibility checking of the interfaces of the components involved, without

212 N. Stoimenov, S. Chakraborty, and L. Thiele

having to compute the WCTT of the entire component network from scratch,
each time a new component is added or an existing component is modified. This
has a number of advantages. It significantly reduces design complexity, it does
not require components to expose the details of their internals, and it allows a
correct-by-construction design flow.

The interfaces studied here were purely functional in nature, i.e., they do not
contain any state information. This might be restrictive in a number of settings,
e.g., when the components implement complex protocols. As an example, the
processing rate of a component might depend on the “state” or the fill level of an
internal buffer. As a part of future work, we plan to extend our interface algebra
to accommodate such “stateful” components. This may be done by describing
an automaton to represent an interface, with language inclusion or equivalence
to denote the notion of compatibility between components.

References

1. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In:

Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165.

Springer, Heidelberg (2001)

2. Baruah, S., Chen, D., Gorinsky, S., Mok, A.: Generalized multiframe tasks. Real-

Time Systems 17(1), 5–22 (1999)

3. Chakraborty, S., Kunzli, S., Thiele, L.: A general framework for analysing system

properties in platform-based embedded system designs. In: Design, Automation

and Test in Europe (DATE), p. 10190 (2003)

4. Chakraborty, S., Liu, Y., Stoimenov, N., Thiele, L., Wandeler, E.: Interface-based

rate analysis of embedded systems. In: 27th IEEE International Real-Time Systems

Symposium (RTSS), pp. 25–34 (2006)

5. Le Boudec, J.Y., Thiran, P.: Network Calculus: A Theory of Deterministic Queuing

Systems for the Internet. Springer, Heidelberg (2001)

6. Maxiaguine, A., Künzli, S., Thiele, L.: Workload characterization model for tasks

with variable execution demand. In: Design, Automation and Test in Europe

(DATE), p. 21040 (2004)

7. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard

real-time systems. In: IEEE International Symposium on Circuits and Systems

(ISCAS), vol. 4, pp. 101–104 (2000)

8. Thiele, L., Wandeler, E., Stoimenov, N.: Real-time interfaces for composing real-

time systems. In: 6th ACM & IEEE International Conference on Embedded Soft-

ware (EMSOFT), pp. 34–43 (2006)

9. Wandeler, E., Maxiaguine, A., Thiele, L.: Performance analysis of greedy shapers

in real-time systems. In: Design, Automation and Test in Europe (DATE), pp.

444–449 (2006)

10. Wandeler, E., Thiele, L.: Interface-based design of real-time systems with hierar-

chical scheduling. In: 12th IEEE Real-Time and Embedded Technology and Ap-

plications Symposium (RTAS), pp. 243–252 (2006)

11. Wandeler, E., Thiele, L.: Optimal TDMA time slot and cycle length allocation for

hard real-time systems. In: Asia and South Pacific Design Automation Conference

(ASP-DAC), pp. 479–484 (2006)

An Interface Algebra for Estimating Worst-Case Traversal Times 213

Appendix: Min-Max Algebra

The min-plus algebra convolution and deconvolution operators are defined as:

(f ⊗ g)(Δ) = inf
0≤λ≤Δ

{f(Δ − λ) + g(λ)}, (f � g)(Δ) = sup
λ≥0

{f(Δ + λ) − g(λ)}.

The duality between ⊗ and � states that: f � g ≤ h ⇐⇒ f ≤ g ⊗ h .
The inverses of the RT (β, α) are defined as:

α = RT−α(β′, β) ⇒ β′ ≤ RT (β, α), β = RT−β(β′, α) ⇒ β′ ≤ RT (β, α),

with solutions:

RT−α(β′, β)(Δ) = β(Δ + λ) − β′(Δ + λ) for λ = sup {τ : β′(Δ + τ) = β′(Δ)} ,

RT−β(β′, α)(Δ) = β′(Δ − λ) + α(Δ − λ) for λ = sup {τ : β′(Δ − τ) = β′(Δ)} .

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 214–227, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Towards Resource-Optimal Routing Plans for
Real-Time Traffic

Alessandro Lori, Giovanni Stea, and Gigliola Vaglini

Dipartimento di Ingegneria dellíInformazione, University of Pisa
Via Diotisalvi 2, I-56122 Pisa, Italy

{a.lori,g.stea,g.vaglini}@iet.unipi.it

Abstract. We discuss the issue of computing resource-optimal routing plans in
a network domain. Given a number of known traffic demands, with associated
required delays, we discuss how to route them and allocate resources for them
at each node so that the demands are satisfied. While a globally optimal routing
plan requires joint computation of the paths and of the associated resources
(which was claimed to be NP-hard), in this paper we stick to existing ap-
proaches for path computation, and use mathematical programming to model
resource allocation once the paths are computed. We show that the problem is
either convex or non-convex, depending on the scheduling algorithms adopted
at the nodes. Our results show that, by computing resources per-path, instead
of globally, the available capacity can be exceeded even at surprisingly low
utilizations.

1 Introduction

Real-time traffic over IP networks has become a reality. Several applications, e.g.
industrial control, remote sensing and surveillance systems, live IPTV and VoIP etc.,
all requiring real-time guarantees (i.e., a bound on the end-to-end delay) are increas-
ingly being deployed. Internet Service Providers are already facing, or will soon face,
the challenge of configuring their network domains so as to provide deterministic
delay bound guarantees to their customers – whether single users or lower-tier pro-
viders themselves – by negotiating real-time oriented Service Level Agreements
(SLAs). Supporting SLAs with real-time constraints requires proper Traffic Engineer-
ing (TE) and resource optimization practices. Multi-Protocol Label Switching (MPLS,
[2]) with TE extensions (MPLS-TE, [17]) allows traffic trunks to be routed along
arbitrary paths, and resources to be allocated on those paths at the time of flow setup.

Supporting delay constrained traffic requires in fact both computing paths and re-
serving resources along those paths. The usual assumption (to which we stick in the
rest of the paper) is that traffic trunks are scheduled at each node so as to be reserved
a minimum guaranteed rate. As far as path computation is concerned, a relevant
amount of literature has been published since the late ‘90s, under the name of QoS
routing, a good review of which can be found in [25]. Most papers (see, e.g. [21-23]),
assume that delays are static and/or additive per-link metrics. However, delay bounds
do depend on the amount of reserved resources at each link, i.e. on the number and
amount of flows traversing them, and the expression of the delay bound is not linear

 Towards Resource-Optimal Routing Plans for Real-Time Traffic 215

in the number of links. Other papers tackle the problem from a probabilistic point of
view, assuming a stochastic characterization of traffic and attempting to minimize or
bound the average delay, which is hardly relevant for real-time traffic (e.g. [25]). A
limited number of works [18-19] propose path computation techniques constrained by
deterministic (non additive) delay bound constraints, taking resource allocation into
account. [18] shows that it is possible to compute a shortest path for a single flow,
subject to end-to-end delay bounds, also computing the rate to be reserved on each
node during path computation, at a polynomial cost. It also assumes that an equal rate
has to be reserved at each node for the path. [19] proposes lower-complexity ap-
proximate solutions to the problem solved exactly in [18].

As far as resource allocation is concerned, the problem is often referred to as QoS
partitioning in the literature. On that topic, several works exist that achieve optimal
partitions for additive delays on a given path (see, e.g., [25]). An interesting work [20]
shows that, when using end-to-end delay bounds as constraints, reserving the same
rate (as done in [18-19]) may be suboptimal and lead to failing of paths which might
indeed be admissible. Authors propose an algorithm that allows a delay-feasible re-
source allocation to be computed on a given path, if such an allocation exists.

To the best of our knowledge, the problem of making a global routing and resource
allocation plan under delay bound constraints has received little attention so far. [19]
claims that the problem is NP-hard1. However, this does not mean that it is not solv-
able for practical dimensions (i.e., comparable to those of today’s and tomorrow’s
network domains), nor it implies that good suboptimal solutions cannot be computed
in reasonable time, even for large dimensions. Besides, global routing plans do not
need to be computed in real time. Network engineering and optimization cycles –
where new routing plans are made from scratch, based on the traffic forecast and
negotiated SLAs – do not take place more frequently than daily or weekly, hence
computation time can be traded for optimality. Second, per-path computation and
resource allocation is feasible in a dynamic environment (online TE), but is clearly
suboptimal when routing plans are considered (offline TE).

In this paper we mark a first step in this direction by tackling global resource allo-
cation with delay bound constraints in a network domain. We assume that paths have
been selected (and we evaluate several existing options for the path computation
phase), and we exploit optimization techniques to minimize the amount of rate re-
served in the network domain. We show that the problem can be solved optimally for
several classes of schedulers. For some schedulers it has a convex formulation, which
means that optimal solutions can be found in a reasonable time. Our first results show
that, even at surprisingly low network loads, global allocation is necessary to be able
to guarantee delay bounds when it is indeed feasible to do so, as per-path solutions are
generally ineffective.

While in this work we assume that routing is given, and we only aim at optimizing
the resource allocation, the long-term goal of this stream of research is to provide
effective algorithms for joint path computation and resource reservation in a network
domain, which is actively being pursued at the time of writing.

The rest of the paper is organized as follows: in section 2 we describe the system
model. We formulate the resource optimization problem in Section 3. Section 4

1 The paper reports the statement as “proposition 1”, without a proof or a reference to one.

216 A. Lori, G. Stea, and G. Vaglini

reports numerical results related to a case-study network. We conclude the paper in
Section 5.

2 System Model

We represent a network domain through a graph { },G V E≡ , where V is a set of

nodes, i.e. routers, and (){ }, : , ,E i j i j V i j≡ ∈ ≠ are a set of directed links. We

assume that links are bidirectional, so that () (), ,i j E j i E∈ ∈ . Each link is charac-

terized by a physical link speed (),i jW , a propagation delay (),i jpd , both constant,

and a reservable TE capacity () (), ,i j i jC W≤ . While it is normally () (), ,i j j iW W=

and () (), ,i j j ipd pd= due to technological constraints, the same cannot be said a priori

regarding TE capacities without this affecting the generality. Nodes may have a con-
stant transit delay xtd , x V∈ . This does not include queuing delays, which are vari-

able and considered separately. Routers are further distinguished into core and edge

nodes. Let B V⊆ be the set of edge routers, so that { } (){ }\ , ,F B B i i i B= × ∈

denotes the possible routes for traffic flowing through the domain. Note that we can
account for local destinations inside the domain by including into B those LSRs
where traffic is originated/destined. Furthermore, note that – in general – the same
route can be connected by traversing different paths, i.e. sequences of nodes and
links. Define a path that connects the route (),i e as:

()
() ()

() (),

,

,
1 1,

, ,1 :

, , :1 1
i e

j j i e

i e
N j ji e

x y E j N
P

x i y e j j N y x +

∈ ≤ ≤
=

= = ∀ ≤ ≤ − =

i.e. a set of links that connect node i to node e . We are only interested in loop-free
paths, i.e. those for which j kj k y y≠ ⇔ ≠ . Note that the above formulation allows

paths to be arbitrary, i.e. not to form a tree based at the destination node (as would
happen instead with destination-based forwarding).

Within the domain, traffic trunks or flows have to be accommodated. The latter are
characterized by a route (),i e F∈ , which denotes their ingress and egress points, a

traffic constraint in the form of leaky-bucket parameters () (), ,,i e i eσ ρ , and a required

delay bound (),i eδ . For the sake of readability (i.e., to avoid adding further subscripts),

we describe the model under the assumption that one flow exists for a given route.
The alert reader will easily notice that multiple flows on the same route can be
accounted for in this model.

We assume that each link is managed by a packet scheduler, which arbitrates pack-
ets of different flows according to their reserved rates. The only assumption that we
make on the scheduling algorithms is that they can be modeled via rate-latency ser-
vice curves [3]. Several types of commonplace schedulers fit into this category, from

 Towards Resource-Optimal Routing Plans for Real-Time Traffic 217

Packet Generalized Processor Sharing (PGPS, [4]) to Worst-case Fair Weighted Fair
Queuing (WF2Q, [15]), to Self Clocked Fair Queuing (SCFQ, [10]), to Deficit Round
Robin (DRR, [5]). This kind of service curves, however, leaves out some popular
schedulers, such as the well-known Earliest Deadline First (EDF), which have often
been used in connection with QoS partitioning problems [24]. Schedulers need not be
the same at each link for the model to be valid: nevertheless, we will often assume so
when performing the analysis, especially to show that different schedulers lead to
different performance. A rate-latency scheduler is able to divide the reservable TE
capacity among the flows, giving to each one a reserved (long-term) rate, subject to a
short-term vacation called latency. We denote with () (), , ,x y i eR the reserved rate at link

(),x y for flow (),i e . The latter may be null, for instance if flow (),i e does not trav-

erse link (),x y . TE capacity constraints need be accounted for, which is done by

ensuring that:

() ()
()

(), , , ,
,

x y i e x y
i e F

R C
∈

≤ (1)

The latency is denoted by () (), , ,x y i eθ , and it is monotonically decreasing with the re-

served rate. The exact expression for the latency is scheduler-specific. We will come
back to this later on, showing that rate-latency schedulers may fall into three catego-
ries, thus giving birth to slightly different formulations for the problem.

Whatever the expression for the latency, the end-to-end delay for a flow along path

(),i eP is the following:

() () () ()
() ()

()

() ()
() (){ },

,

,

,

, , , ,
,

, , ,,
mini e

i e

i e

i e

P xx y i e x y
x y P

x y i ex y P

D tp td
R

σ
θ

∈
∈

= + + + , (2)

provided that:

() ()
() (){ } ()

,
, , , ,,

min
i e

x y i e i ex y P
R ρ

∈
≥ ,

and
(),i ePD = ∞ otherwise.

2.1 Scheduling and Latency

That of packet scheduling for wired networks has been a flourishing literature stream
during the last two decades (see, e.g., [7]). Some (actually, a minority) of the devised
scheduling algorithms have been implemented in commercial routers (e.g., [5,12]), or
made their way into the codebase of open-source operating systems (e.g., [5]). There
are three main expressions for latency, to which we associate names for ease of nota-
tion. A good survey on the subject can be found in [8]. Call L the Maximum Trans-
mit Unit (MTU) in the network (assumed to be equal at all links and for all flows for
notational simplicity, although the model can be easily generalized). The following
latency expressions can be defined.

218 A. Lori, G. Stea, and G. Vaglini

1. Strictly rate-proportional (SRP) latency (PGPS [4], WF2Q [15], Virtual Clock [13],
etc.):

() ()
() () ()

, , ,
, , , ,

x y i e
x y i e x y

L L

R W
θ = + (3)

2. weakly rate proportional (WRP) latency (e.g., Self-Clocked Fair Queuing, [10]):

() ()
() ()

()()
()

, , , ,
, , , ,

1x y i e x y
x y i e x y

L L
n

R W
θ = + − ⋅ , (4)

where (),x yn is the number of flows traversing link (),x y .

3. frame-based (FB) latency (e.g. DRR [5], [11]2):

() ()
()

() () ()()
() () ()

() (){ } () ()
()

,

, , , , , , , ,
, , , ,, , ,, : ,

1 1

min
a b

x y i e x y x y i e x y

x y x y i ex y a ba b x y P

L
W R n

W RR
θ

∈

= − ⋅ + + (5)

Other frame-based schedulers have recently been derived from DRR (e.g. EBDRR
[13], ALiQueM [11] etc.), and improve on its latency by dividing some of the above
addenda by a constant term. As the purpose of this paper is to investigate resource
allocation under delay constraints (rather than surveying all possible schedulers) we
leave these minor generalization to the interested reader.

In all three cases, increasing the rate of a flow decreases its latency, although the
effectiveness of such a tuning clearly decreases when we move from category 1) to 3).
In fact, 2) contains an (),x yn term, whereas 3) includes the latter and a minimum rate

at the denominator, which cannot be modified by increasing () (), , ,x y i eR .

2.2 Path Computation Algorithms

The path computation algorithms that we consider in this work are the following:

1. Constrained Multicommodity Shortest Path First (CM-SPF): assuming that links
are characterized by capacities and have unitary weights, it computes the shortest
path from a source to a destination having at least the required capacity. All re-
quests are considered jointly, and the result is the set of paths having the minimum
total number of hops.

2. Constrained Shortest Path First (C-SPF): the same as the previous one, but with
sequential computations, so that the outcome depends on the order in which path
requests are considered.

3. Widest-Shortest Path First (WPF): the same as 2), with the difference that links
have weights which are inversely proportional to the residual capacity on each link.

4. Maximum Maxflow (MM, [27]): for each request, the path that yields the maxi-
mum (weighted) sum of the maxflows between any source and destination pair is

2 The latency expression reported here can be worked out via straightforward algebraic manipu-

lations from the one reported in [11]. The one in [8] is instead an overrated bound.

 Towards Resource-Optimal Routing Plans for Real-Time Traffic 219

selected. This way, the ability to route future requests between a source and desti-
nation is maximized, though generally at the expenses of having longer paths. MM
was proved in [27] to be NP-hard. Authors propose a heuristic algorithm (called
Minimum Interference Routing, MIRA) to approximate the MM solution in poly-
nomial time.

3 Optimal Resource Allocation

A joint routing and resource allocation problem can be formulated as follows:

Joint Routing and Resource Allocation Problem (JRRA)
For each flow (),i e , i) compute a path (),i eP and ii) reserve a rate on all the links in

(),i eP (subject to constraints (1)) so that
() (), ,i eP i eD δ≤ , if it is possible to do so.

The above one is a feasibility problem, claimed to be NP-hard in [19] (where, how-
ever, it is formulated assuming that () () (), , , ,x y i e i eR R= , although we do not believe that

relaxing the above constraint is going to make the problem any easier). It can be
turned into an optimization problem once a suitable objective function to be mini-
mized or maximized is identified. Several such functions can be envisaged, such as:

1. maximizing the minimum slack with respect to the delay bound. A non-positive
objective means that all slacks are non negative, i.e. that all delay bound inequali-
ties are verified, hence the solution is feasible. It has been shown in [6], although in
a slightly different context, that this formulation leads to robust schedules, which
can easily tolerate uncertainties in the parameters. On the cons side, such an ap-
proach tends to allocate rates too liberally, thus depleting the resources. Even
though we deal with a static environment, where all requests are known a priori, it
is intuitively reasonable to try to minimize the amount of reserved rate, so as to
leave the maximum possible room for future requests or cope with parameter un-
certainties.

2. Maximizing the total unreserved capacity in the network, i.e. the sum of the slacks
in (1), again having the delay bounds as constraints. This allows for a higher num-
ber of future requests to be considered. If necessary, a cost (),x yc can be statically

associated to a capacity unit on each link, so as to reflect their relative importance.
3. Maximizing the sum of the maxflows between each source/destination pairs.

As already anticipated, in this paper we do not solve the above problem, but instead
mark a first step in that direction by researching the utility of global resource minimi-
zation techniques. We reformulate the resource allocation sub-problem as follows:

Global Resource Allocation Problem (GRA)
Given a set of paths (),i eP for all flows (),i e F∈ , compute the vector of the allocated

rates along a path (),i eP , () () (){ }, ,, ,x y i eR x y P= ∈R , (subject to constraints (1)) so that i)

() (), ,i eP i eD δ≤ , and ii) the sum of the allocated rates is minimum, if it is possible to do so.

220 A. Lori, G. Stea, and G. Vaglini

The GRA problem assumes that paths have been precomputed, using any of the
techniques described in Section 2.2. Given the flow routes, leaky-bucket profiles and
deadline requirements, the GRA problem can be formulated as the following optimi-
zation problem:

(,)

(,) (,)

(,),(,)
(,) (,)

(,)
min (,),(,) (,)

min

s.t. : (,)

(,) , (,)

i e

i e

x y i e
i e x y P

P

i e
x y i e i e

i e i e F

x y eR R i F

R

D

P

δ
∈

≤ ∀ ∈
∀ ∈ ∀≤ ∈

We select the sum of the allocated rates as the objective to be minimized, without
considering link costs. The latter can obviously be added back if necessary, without
changing the nature of the problem. The 1st constraint ensures that all the flows meet
their deadline delay requirements on their respective paths. The

(),i ePD delay expres-

sion can be defined using any of the three latencies defined in Section 2.1. Latencies
(3) and (4) are convex, since they involve summations of convex function, while (5)
is not defined. Hence the resulting GRA problems are convex non-linear optimization
problems for latencies (3) and (4), non-convex non-linear optimization problems for
latency in (5) respectively. The non linear constraints of the convex formulations
contain hyperbolic constraints that can be reformulated as Second Order Cone Pro-
gramming (SOCP) programming [32] and solved using a solver for quadratically
constrained programs. In this case, interior point methods can be used, which com-
plete in polynomial time and are generally very fast. In the non convex case, instead,
global optimization is required, which is considerably more complex. We solved these
problems using general purpose solvers such as CPLEX [28] and BARON [29].

To deal with the min operator in (2), additional variables (,)
min

i eR , representing the

minimum rate on a path (),i eP , are required: the 2nd constraints couple these variables

with the link rates. Since the objective function is a minimization problem of the link
rates, these variables will be assigned the lowest rate that guarantees that no deadline
is violated, according to the 1st constraint. If the latency defined in (5) is used instead,
additional variables (,)

min
x yR , representing the minimum rate at a link (),x y (among

those allocated to the flows traversing that link), are also required together with the
following constraints:

(,)
min (,),(,) (,)(,) , (,)x y

x y i e i eR R Px y i e F∀ ∈ ∀ ∈≤

The above problem has ()O F E⋅ variables and constraints.

As already observed in [20], allocating the same rate at all links for a flow, i.e.

() (), , ,x y i eR R= , () (),, i ex y P∈ , may lead to suboptimal rate allocations. However, under

that assumption the allocation problem can be solved analytically, once the path and
the schedulers at all links are known. Hence, we will use this approach (henceforth
referred to as equal rate allocation, ERA) as a comparison, to test how much can be
harvested by using global minimization. The minimum required rate on a single path
can be computed by solving (2) with respect to the rate, under the assumption that

 Towards Resource-Optimal Routing Plans for Real-Time Traffic 221

() (), ,i eP i eD δ= . Such allocation is in fact exploited by RSVP to compute the rates to

allocate at each link for IntServ guaranteed-rate connections [1]. We remark that,
since this allocation is done path-wise, then (1) may be violated even if a feasible (e.g.
globally computed) rate allocation exists.

For strictly and weakly rate-proportional latencies (3) and (4), the alert reader can
check that the ERA solutions are the following:

() ()
() ()

()
()

()
() (),

, ,

, ,

, ,
, ,

max ,

i e

i e i e

i e i e

xi e x y
x y P x y

P L
R

L
tp td

W

σ
ρ

δ
∈

⋅ +
=

− + +

, (6)

() ()
() ()

() ()()
()

()
() (),

, ,

, ,

, , ,
, ,

max ,

1
i e

i e i e

i e i e

xi e x y x y
x y P x y

P L
R

L
n tp td

W

σ
ρ

δ
∈

⋅ +
=

− − ⋅ + +

, (7)

if the denominator is positive (which is a necessary condition for the problem to have

a solution at all to the allocation problem, whether global or path-wise). (),i eP de-

notes the number of hops in path (),i eP .

On the other hand, for frame-based latency (5), computing the same required rate

(),i eR is considerably more involved, and requires global optimization, due to the

min term in that expression. In fact, since the latency at a link depend on the mini-
mum rate allocated at a link (possibly to some other flow), all flows traversing the
same link should be considered simultaneously in order to determine the latency of
each one. However, we can do a reasonable approximation by considering that, by
definition, it is:

() () () ()
() ()

() (){ }
,

,

, , , ,, : ,
,

min
a b

i e

i e x y a ba b x y P

x y P

R R
∈

∈

≥ .
(8)

Hence, we can obtain a rate (),i eR that leads to feasible delays (if that rate is indeed

available at all links), by merging (5) and (2) and assuming that equality holds in (8):

() ()
() ()

() ()()
()

()
() (),

, ,

, ,

, , ,
, ,

2
max ,

2
i e

i e i e

i e i e

xi e x y x y
x y P x y

P L
R

L
n tp td

W

σ
ρ

δ
∈

⋅ +
=

− − ⋅ + +

 (9)

222 A. Lori, G. Stea, and G. Vaglini

Note that, with (9), it is
() (), ,i eP i eD δ≤ , and inequality may actually hold, i.e. the rate

can be overprovisioned with respect to the one strictly required to meet the deadline.
The alert reader can easily check that the amount of required rate to meet a given
deadline increases with the latency model, from (6) to (7) to (9).

4 Numerical Results

In order to prove the effectiveness of the proposed approach, we performed simula-
tions on a sample network, shown in Fig. 1. Links are bidirectional, with either

(),x yW =35Mbps or (),x yW =75Mbps speed. We assume that (), 0x ytp = , 0xtd = and

() (), ,x y x yC W= for simplicity. Furthermore, it is 1.5L = kB.

We generate 96 flows, between random pairs of nodes. All the flows have homo-
geneous QoS requirements with 1ρ = Mbps, 12σ = kB and 15δ = ms. We use all

the path computation algorithms mentioned in Section 2.2, and all the latency models
of Section 2.1, and we compute both the optimal solution of the GRA in the above
settings and the ERA (6), (7) and (9).

ERA is known to be optimal when link capacities are unbounded [25]. While this
seems to imply that at low loads, i.e., when capacity bounds are not active constraints,
an equal allocation is the optimal one, we show that even at low utilizations this ap-
proach may yield infeasible solutions. For instance, in our case the total available
bandwidth is 2530Mbps, and the overall rate demand is 96Mbps, which is 3.8%. Us-
ing ERA, the average link utilization is between 20% and 24%, depending on the path
computation scheme and latency adopted. Yet, there are links whose capacity is ex-
ceeded, thus leading to an unfeasible solution, whereas a feasible one can be found by
optimally solving the GRA.

Consider for instance the case of C-SPF and strictly rate-proportional latencies. In
this case, the capacity reserved by ERA at link (6,3) exceeds the available one by
6.28%, and accordingly bounds cannot be guaranteed to all flows traversing that link.
On the other hand, the optimal solution to the GRA problem is feasible, as it exploits
the ability to assign different rates on different links of the same flow path. For in-
stance, the optimal assignment for flow (8,0) – which traverses link (6,3) – is the
following:

Link (x,y) () (), , 8,0x yR (Mbps) Link utilization

(8,5) 3.90 1
(5,6) 6.91 1
(6,3) 1.14 1
(3,2) 5.52 1
(2,0) 10.75 0.97

The ERA rate would instead have been 1.16 Mbps, i.e. slightly more (although
critically so) than the one allocated by GRA on the critical link. Note that the lack of
rate at the critical link is made up for by allocating more resources on uncongested

 Towards Resource-Optimal Routing Plans for Real-Time Traffic 223

peripheral links, so that the allocated rate is highly inhomogeneous. For flows travers-
ing unloaded links the rate provided using the analytical framework is the optimal
solution as shown for the rate assignment of flow (12, 4):

Link (x,y) () (), , 12,4x yR Link utilization

(7,4) 1.16 0.11
(13,7) 1.16 0.14
(12,13) 1.16 0.56

Fig. 1. Sample network for numerical analysis

On a more general note, we can also derive some considerations from aggregated
utilization data. Fig. 2 shows the number of oversubscribed links for each path computa-
tion, rate-proportional latency model and resource allocation scheme. Note that, for
frame-based latency, we only report one example, using C-SPF as path computation
(due to the larger overhead of solving non-convex problems). Furthermore, the scenar-
ios with FB latency are with a reduced number of flows (80 instead of 96), otherwise the
problem is not feasible. As the figure shows, GRA always finds feasible solutions,
whereas ERA is always unfeasible. The oversubscribed links with ERA are (6,3),
whereas (3,6) is oversubscribed under WRP and FB latency, and (5,8), only with CM-
SPF and WRP latency. Data related to the MM path computation scheme were not
reported, as no feasible solution to the GRA can be found for the scenario under consid-
eration in that sense.

Fig. 3 shows the average utilization for the links under the various configurations.
The figure shows that, while the latency model does not play a big difference with
ERA (few percentage points), it does so under GRA, where WRP latency requires
almost double as many resources to be allocated than SRP latency, in order to main-
tain feasible delays. The figure also shows that negligible differences exist among the
path computation schemes (except for the case of MM, as already explained). The
main difference between MM and the rest is that the former computes considerably
longer paths, so that the amount of resources required to maintain feasible delays is
multiplied by a higher path length.

224 A. Lori, G. Stea, and G. Vaglini

Fig. 4 and 5 show the utilization per link under WRP latency and CM-SPF, with
both ERA and GRA. Consecutive pairs of links are the forward and reverse direction
of the link showed in the horizontal axis. As already explained, ERA oversubscribes
three links, whereas GRA does not. What is remarkable in that figure is that the
amount of resources that are required in order to keep the delay bounds within s
bounded is indeed taxing, with eight links fully booked. This seems to suggest that
there is room for improving the efficiency of the allocation by jointly solving routing
and resource allocation.

Fig. 2. Number of oversubscribed links

Fig. 3. Average utilization for the links

 Towards Resource-Optimal Routing Plans for Real-Time Traffic 225

Fig. 4. Link utilization – CM-SPF, with WRP latency, ERA

Fig. 5. Link utilization – CM-SPF, with WRP latency, GRA

5 Conclusions and Future Work

This paper explored the space for global optimization in resource allocation for guar-
anteed-delay traffic engineering. We formulated and solved the problem under differ-
ent latency models, showing that the adopted latency does indeed make a difference
as far as resource consumption is concerned. Our results on a case-study network
show that, even at surprisingly low average loads, using global optimization can help
feasible schedules to be computed, whereas local resource allocation schemes would
fail to do so.

This work marks the first exploration in a rather broad research field, and, as
such, calls for extension along several directions. The first one is to derive a joint

226 A. Lori, G. Stea, and G. Vaglini

framework for path computation and resource allocation, taking into account real-time
constraint. Second, we are currently considering including stochastic network calculus
[30] in the framework. This would allow us to relax the assumption of deterministic
worst-case delay, while still retaining quantifiable probabilistic guarantees, although
possibly at the expenses of additional hypotheses on the traffic. This, in turn, would
allow us to capitalize on statistical multiplexing, possibly increasing the amount of
carried traffic within the network. Third, while the pipe (i.e., point-to-point) path
model is probably the most widely used in TE practices, the funnel and hose models
(i.e., multipoint-to-point and point-to-multipoint respectively) can also be used. In
those cases, resource allocation is done on a per-tree basis, and delay bounds have
different formulations [31]. Analyzing these networks is part of the ongoing work.

References

1. Braden, R., Clark, D., Shenker, S.: Integrated Services in the Internet Architecture: an
Overview. RFC 1633, The Internet Society (June 1994)

2. Rosen, E., Viswanathan, A., Callon, R.: Multi Protocol Label Switching Architecture.
IETF RFC 3031 (2001)

3. Le Boudec, J.-Y., Thiran, P.: Network Calculus. LNCS, vol. 2050. Springer, Heidelberg
(2001)

4. Parekh, K., Gallager, R.G.: A Generalized Processor Sharing Approach to Flow Control in
Integrated Services Networks: the Single Node Case. IEEE/ACM Trans. on Networking 1,
344–357 (1993)

5. Shreedhar, M., Varghese, G.: Efficient Fair Queueing Using Deficit Round Robin.
IEEE/ACM Trans. on Networking 4, 375–385 (1996)

6. Cappanera, P., Lenzini, L., Lori, A., Stea, G., Vaglini, G.: Optimal Link Scheduling for
Real-time Traffic in Wireless Mesh Networks in both Per-flow and Per-path Frameworks.
In: Proceedings of WoWMoM 2010, Montreal, CA (June 2010)

7. Zhang, H.: Service Disciplines for Guaranteed Performance Service in Packet-Switching
Networks. Proceedings of the IEEE 83(10), 1374–1396 (1995)

8. Stiliadis, D., Varma, A.: Latency-Rate Servers: A General Model for Analysis of Traffic
Scheduling Algorithms. IEEE Transaction on Networking 6(5), 675–689 (1998)

9. Goyal, P., Vin, H.M., Cheng, H.: Start-Time Fair Queueing: A Scheduling Algorithm for
Integrated Services Packet Switching Networks. IEEE/ACM Trans. on Networking 5(5),
690–704 (1997)

10. Golestani, S.J.: A Self-Clocked Fair Queueing Scheme for Broadband Applications. In:
Proc. of IEEE INFOCOM 1994, Toronto, Canada, pp. 636–646 (June 1994)

11. Lenzini, L., Mingozzi, E., Stea, G.: Tradeoffs between Low Complexity, Low Latency and
Fairness with Deficit Round Robin Schedulers. IEEE/ACM Transactions on Networking,
681–693 (August 2004)

12. Lenzini, L., Mingozzi, E., Stea, G.: Performance Analysis of Modified Deficit Round
Robin Schedulers. IOS Journal of High-Speed Networks 16(4), 399–422 (2007)

13. Lenzini, L., Mingozzi, E., Stea, G.: Eligibility-Based Round Robin for Fair and Efficient
Packet Scheduling in Interconnection Networks. IEEE Transactions on Parallel and Dis-
tributed Systems, 254–266 (March 2004)

14. Zhang, L.: Virtual clock: a new traffic control algorithm for packet switching networks.
ACM SIGCOMM Computer Communication Review 20(4), 19–29 (1990)

 Towards Resource-Optimal Routing Plans for Real-Time Traffic 227

15. Bennett, J.C.R., Zhang, H.: WF2Q: Worst-case Fair Weighted Fair Queueing. In: INFO-
COM 1996 (March 1996)

16. Osborne, E., Simha, A.: Traffic Engineering with MPLS. Cisco Press (July 17, 2002)
17. Awduche, D., Malcolm, J., Agogbua, D., O’Dell, M., McManus, J.: Requirements for

Traffic Engineering Over MPLS. RFC 2702 (September 1999)
18. Ma, Q., Steenkiste, P.: Quality-of-Service Routing for Traffic with Performance Guaran-

tees. IFIP Networking (1997)
19. Orda, A.: Routing with End to End QoS Guarantees in Broadband Networks. IEEE/ACM

Transactions on Networking (1999)
20. Diwan, A., Kuri, J., Kumar, A.: Optimal per-Node Rate Allocation to provide per-Flow

End-to-End Delay Guarantees in a Network of Routers supporting Guaranteed Service
Class. In: ICC 2002, New York, USA, April 28 - May 2, vol. 2, pp. 1112–1117 (2002)

21. Misra, S., Xue, G., Yang, D.: Polynomial Time Approximations for Multi-Path Routing
with Bandwidth and Delay Constraints. In: INFOCOM 2009 (2009)

22. Lorenz, D.H., Orda, A.: Optimal Partition of QoS Requirements on Unicast Paths and
Multicast Trees. IEEE/ACM Transactions on Networking 10(1), 102–114 (2002)

23. Yang, W.-L.: Optimal and heuristic algorithms for quality-of-service routing with multiple
constraints. Performance Evaluation 57, 261–278 (2004)

24. Elsayed, K.M.F.: A Framework for End-to-End Deterministic-Delay Service Provisioning
in Multiservice Packet Networks. IEEE Transactions on Multimedia 7(3), 563–571 (2005)

25. Saad, M., Leon-Garcia, A., Yu, W.: Optimal Network Rate Allocation under End-to-End
Quality-of-Service Requirements. IEEE Transactions on Network and Service Manage-
ment 4(3) (December 2007)

26. Chen, S., Nahrstedt, K.: An Overview of Quality-of-Service Routing for the Next Genera-
tion High-Speed Networks: Problems and Solutions. IEEE Network Mag. 12(6), 64–79
(1998)

27. Kar, K., Kodialam, M., Lakshman, T.V.: Minimum Interference Routing of Bandwidth
Guaranteed Tunnels with MPLS Traffic Engineering Applications. IEEE Journal on Se-
lected Areas in Communications 18, 2566–2579 (2000)

28. ILOG CPLEX software, http://www.ilog.com
29. BARON solver (available freely via the NEOS server),

http://archimedes.cheme.cmu.edu/baron/baron.html
30. Jiang, Y., Liu, Y.: Stochastic Network Calculus. Springer, Heidelberg (2008)
31. Lenzini, L., Martorini, L., Mingozzi, E., Stea, G.: Tight End-to-end Per-flow Delay

Bounds in FIFO Multiplexing Sink-tree Networks. Performance Evaluation 63, 956–987
(2006)

32. Lobo, M., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of Second-Order Cone
Programming. Linear Algebra and its Applications 284, 193–228 (1998)

Partially Synchronizing Periodic Flows with
Offsets Improves Worst-Case End-to-End Delay

Analysis of Switched Ethernet

Xiaoting Li, Jean-Luc Scharbarg, and Christian Fraboul

Université de Toulouse - IRIT/ENSEEIHT/INPT - Toulouse, France

{Xiaoting.Li,Jean-Luc.Scharbarg,Christian.Fraboul}@enseeiht.fr

Abstract. A switched Ethernet network needs a worst-case delay anal-

ysis to prove that real-time applications can be correctly implemented

on it. Existing approaches for upper bounding end-to-end delay assume

that there is either no-synchronization or a global synchronization of

flows which needs a global clock. Conversely, flows emitted by the same

end-system can be easily synchronized using the existing local clock. This

paper explains how the partial synchronization of periodic flows can be

integrated in the worst-case delay analysis provided by Network Calculus

approach. End-to-end delays computed on switched Ethernet configura-

tions show that the proposed method clearly reduces the upper bounds

of end-to-end delay.

1 Introduction

Full duplex switched Ethernet network eliminates the CSMA/CD indetermin-
ism but shifts the issue at the switch level where temporary congestion on an
output port can lead to variable delays. Thus, using such a technology in a
real-time context implies a worst-case delay analysis. Indeed, it is important
to demonstrate that an upper bound can be determined for end-to-end (ETE)
communication delay on such network. This guarantee can be provided by dif-
ferent approaches [1,2,3,4]. These approaches consider that all the flows are not
synchronized, which leads to pessimistic upper bounds for scheduled periodic
flows. A global synchronization of the flows induces an extra cost (global clock)
which cannot be neglected. However partial synchronization of flows transmitted
by the same source node can be easily done according to the local clock of this
system.

The aim of this paper is to evaluate the improvement brought by partial syn-
chronization of flows on worst-case delay analysis. To achieve that, an approach
based on the Network Calculus is developed so as to introduce the scheduling
of periodic flows in the worst-case analysis. This scheduling can be modeled by
associating offsets to different periodic flows.

The paper is organized as follows. Section 2 presents the network model and
the influence of the partial synchronization brought by each node on the flows.
The worst-case analysis on ETE delay based on Network Calculus approach with

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 228–242, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Partially Synchronizing Periodic Flows 229

the partial synchronization is developed in Section 3. In Section 4, two topologies
of switched Ethernet are evaluated and the improvements in terms of computed
ETE delay upper bounds are presented. Section 5 concludes and discusses the
direction for future work.

2 End-to-End Delay Analysis

2.1 Network and Traffic Model

This work focuses on the worst-case delay analysis of a switched Ethernet net-
work, composed of multiple nodes interconnected by switches using a store and
forward pattern. All the links are point-to-point bidirectional full-duplex, in or-
der to guarantee a collision-free system. All the nodes and switches support the
first-in-first-out (FIFO) queuing.

The incoming flows are strictly periodic. Each periodic flow (PF) sends frames
from the source node to the destination nodes (multicast case included). One
PF consists of one or several paths which are statically defined. A PF pfm is
characterized by its period Pm and the lower and upper bounded frame sizes
Lm

min and Lm
max.

The end-to-end delay of a frame following a path consists of the transmission
delay on links, the switch-dependent delay caused by an upper bounded techno-
logical latency and the waiting delay caused by competition with other frames in
the output buffers. The upper bounds of the first two parts are fixed and depend
on the transmission rate of links, the number of switches in the path, the size
of frames and the technological latency of each switch. The last part is variable
because it depends on the load of the output ports of each crossed switch at the
time when the considered frame reaches it. The ETE delay upper bounds rely on
the upper bounded third part. Meanwhile, the minimum ETE delay of a frame
is the sum of the first two parts.

The set of flows emitted by a given source node Ni are scheduled by Ni.
Conversely, the different nodes are totally asynchronous. It leads to a partial
synchronization of flows, which affects the last part of the ETE delay. This
influence is studied in the next paragraph.

2.2 Influence of Partial Synchronization

The small example depicted in Figure 1 is considered to illustrate the influ-
ence of the partial synchronization on flows. The parameters of each PF of the
configuration in Figure 1 are given in Table 1.

N1

N2

pf1 pf2

S2S1

pf1 pf2

pf3 pf4pf3 pf4 pf1 pf2 pf3 pf4

pf1 pf2

Fig. 1. Example of a switched Ethernet

230 X. Li, J.-L. Scharbarg, and C. Fraboul

Table 1. Configuration of sample switched Ethernet

PF P (ms)Lmax (Byte)Lmin (Byte)

pf1 8 500 125

pf2 4 750 125

pf3 2 500 250

pf4 16 1000 500

Let’s focus on the temporal distance between a frame f1 of pf1 and a frame
f2 of pf2 at N1 in Figure 1. Without partial synchronization at N1, there is no
constraint on pf1 and pf2. It means that f1 and f2 can arrive at the same time.
Then one frame can be delayed by the other one. This situation is depicted
as A in Figure 2, where aNi

fm
is the arrival time of frame fm at Ni. However,

each source node schedules its PFs using its local clock. This scheduling can be
modeled by the offset assigned to each PF.

Definition 1. The Definitive Offset (DO) of a given PF pfm is the release
time of its first frame at its source node Ni, denoted ONi

d,m.

Obviously, the Definitive Offset is settled by the scheduling of the corresponding
node. For pf1 and pf2 in Figure 1, ON1

d,1 = aN1
f1

and ON1
d,2 = aN1

f2
, and the DOs

of pf1 and pf2 are assigned to ON1
d,1 = 0μs, ON1

d,2 = 1500μs (B in Figure 2). The
DOs can bring some temporal separations between frame transmissions. This
temporal separation can be modeled by a relative offset.

Definition 2. The Relative Offset (RO) is defined based on a benchmark
PF (bPF). The RO of another PF pfn is the minimum possible time interval
between any frame fm of the bPF pfm and the first frame fn of pfn transmitted
after fm.

The RO of pfn at Ni when pfm is the bPF is denoted ONi
r,m,n. In the general

case, a source node Ni schedules x PFs: pf1, ..., pfx. The Relative Offsets have
to be computed considering each PF among pf1, ..., pfx as the benchmark PF.
Defining a set J = {1, ..., x}, then each ONi

r,m,n with m ∈ J , n ∈ J \ m needs to
be computed. Considering N1 in Figure 1, ON1

r,1,2 and ON1
r,2,1 have to be computed.

For a set of periodic flows scheduled by a given source node Ni, the compu-
tation of the ROs ONi

r,m,n for any pfm and pfn is straightforward. Let’s consider
that ONi

r,m,n(k, l) is the time interval between the kth frame of pfm and the lth

frame of pfn. Then ONi
r,m,n(k, l) = (ONi

d,n + Pn · l) − (ONi

d,m + Pm · k). The Rel-
ative Offset ONi

r,m,n is the smallest non negative value of ONi
r,m,n(k, l) for any

k ≥ 0, l ≥ 0:
ONi

r,m,n = min
k≥0,l≥0

O
Ni
r,m,n(k,l)≥0

(ONi
r,m,n(k, l)) (1)

For N1 in Figure 1, ON1
r,1,2(k, l) = (1500 + 4000 × l) − (0 + 8000 × k), then

ON1
r,1,2 = 1500 μs when k = 0, l = 0. Similarly ON1

r,2,1 = 2500 μs (B in Figure 2).

Partially Synchronizing Periodic Flows 231

N1
d,2O = 1500

= 0Od,1
N1

a f1
N1

a f2
N1

a f1
N1 a f2

N1 a f2
N1

a f1
N1

=1500O r,1,2
N1

a f1
S2

a f1
S1a f4

S1

a f1
S2a f2

S2

a f1
S1

a f4
S1 a f2

S1

t(us)

t(us)

pf2

pf4 pf2

pf2

t(us)

A:N1

B:N1

pf1

pf1

pf1

t(us)

t(us)

pf2

pf4 pf2

pf1

pf1

synchronization
with partial

synchronization
without partial

O N1
r,2,1

=1470Or,1,2 r,2,1O = 2450

C:S1

from N1 to S1
delay of f2

t(us)

pf1 pf2

0 t(us)

pf2 pf1

Or,1,2 r,2,1O =2320

delay of f2
from N1 to S2

from N1 to S2

from N1 to S1
delay of f1

a f2
S1

delay of f1 f2a S2

= 2500

D:S2

=1340S2 S2

S1S1

Fig. 2. Relative offsets of pf1 and pf2

For two flows pfm and pfn scheduled by the same source node Ni and sharing
the path {Ni, ..., Sk}, the ROs have to be computed on every switch output port
shared by pfm and pfn. Let’s consider the general case depicted in Figure 3. The
frame fm of pfm and the frame fn of pfn are separated by the RO of pfn at Ni

when pfm is bPF: ONi
r,m,n. The RO of pfn at switch Sk when pfm is the bPF is

denoted OSk
r,m,n. In the scenario in Figure 4, the delay of fm from Ni to Sk is

bigger than that of fn because fm is delayed by more competing flows between
Ni and Sk. In this case, the time interval between fm and fn at Sk becomes
smaller than ONi

r,m,n. OSk
r,m,n is the smallest time interval between fm and fn at

Sk, which means that it may not be equal to ONi
r,m,n as illustrated in Figure 4.

Hence, it is necessary to compute Relative Offset at each switch output port.
In order to achieve the minimum time interval OSk

r,m,n between fm and fn,
the delay of fm from Ni to Sk should be maximized while that of fn should be
minimized. The maximum delay of frame fm from the source node Ni to the
input of the switch Sk is denoted DSk

max,m, and occurs when fm is delayed by
all possible competing flows at each crossed switch between Ni and Sk. Let’s
consider pf1 in Figure 1 as the bPF. Its delay between N1 and S2 should be

pfm pfm pfn
pfn

Switched
Ethernet

Ni
...

Sk

Fig. 3. General case

fm

fm

fn

fn

fnfm

Or,m,n
Ni

Sk

Ni

delay of delay of
Ni and Skbetween between Ni and Sk

Fig. 4. One possible scenario

232 X. Li, J.-L. Scharbarg, and C. Fraboul

maximized in order to compute OS2
r,1,2. At N1, there is no competing flows for

f1 because of the offsets and then DS1
max,1 = 40 μs as depicted in B in Figure 2.

At the output of S1, pf1 and pf2 compete with pf3 and pf4. pf3 and pf4 are
scheduled at N2 and separated by the offsets, therefore only one of them can
delay pf1 at S1. Since L4

max of pf4 is larger than L3
max of pf3, the worst case

for pf1 occurs when the frames of pf1 and pf4 arrive at S1 at the same time (C
in Figure 2) and DS2

max,1 = 196 μs. Section 3 will present an approach for the
computation of this worst case delay.

The minimum delay of frame fn from the source node Ni to the input of the
switch Sk is denoted DSk

min,n and occurs when fn is not delayed by any competing
flows. Provided that the transmission rate of switched Ethernet is R, there are h
segments between Ni and Sk, and the technological latency is Tl, the minimum
delay is given by:

DSk

min,n = (
Ln

min

R
× h) + Tl × (h − 1) (2)

On the example in Figure 1, DS1
min,2 = 10 μs and DS2

min,2 = 36 μs.

To summarize, OSk
r,m,n is given by:

OSk
r,m,n = ONi

r,m,n + DSk

min,n − DSk
max,m (3)

Then on the example in Figure 1, by formula 3, we have:

OS1
r,1,2 = ON1

r,1,2 + DS1
min,2 − DS1

max,1 = 1500 + 10 − 40 = 1470 μs

OS2
r,1,2 = ON1

r,1,2 + DS2
min,2 − DS2

max,1 = 1500 + 36 − 196 = 1340 μs

A similar computation can be done with pf2 as the bPF. The results are depicted
in C and D in Figure 2.

The ROs have an influence on the ETE delays of flows. The next section
shows how these ROs can be integrated in the worst-case delay analysis of a
switched Ethernet network.

3 Worst-Case Delay Analysis with Partial
Synchronization

3.1 Basic Network Calculus Approach for ETE Delay Analysis

The Network Calculus has been introduced for calculating network worst-case
delay and it has been applied to switched Ethernet [5,6,7]. The Network Calculus
is briefly summarized in this context.

For a network element, its input function F (t) is defined as the amount of
traffic that arrives at the element over time, while its output function F

′
(t) is

defined as the amount of traffic that departs from the element over time. Based

Partially Synchronizing Periodic Flows 233

on min-plus algebra, the convolution and deconvolution of two functions f and
g are defined respectively as follows:

(f ⊗ g) (t) = inf
0≤s≤t

{f(t − s) + g(s)} , (f � g)(t) = sup
u≥0

{f(t + u) − g(u)}

A flow represented by its input function F (t) is constrained by an arrival curve
α(t) if and only if F (t) ≤ (F ⊗ α)(t). In the context of switched Ethernet,
the PF is constrained by a leaky bucket model α(t) = rt + b, with the burst
tolerance b = Lmax and the peak rate r = Lmax

P . Let’s consider the example in
Figure 1. For pf1, L1

max is 500× 8 = 4000 bits and P1 is 8000 μs. Consequently
r = 4000

8000 = 0.5 and αpf1(t) = 0.5t+4000. Similarly, for pf2, αpf2 (t) = 1.5t+6000.
αpf1 and αpf2 are depicted in Figure 5.

pf2α

pf2αα pf1

α pf1

Tl

h

h=116us

r1+r2

b2=6000
b1=4000

b1+b2

β]
+

=R[t−T +α=

r2 = 1.5

r1 = 0.5

l

t(us)

Fig. 5. Illustration of Network Calculus approach

A server offers to the flow with input function F (t) a service curve β(t) if and
only if F

′
(t) ≥ (F ⊗ β)(t), where the output function F

′
(t) is constrained by

α
′
(t) = (α � β)(t). The service curve provided by each output port of switch

is β(t) = R[t − Tl]+ where R is the transmission rate of link, Tl is the upper
bounded technological latency and [x]+ = max(0, x). Let’s consider that the
network works at 100Mb/s, and the technological latency is upper bounded by
16μs. Then, R = 100Mb/s and Tl = 16μs. The service curve at each port of Sk

is β(t) = 100[t − 16]+.
The delay of a flow with an arrival curve α in a network element which offers

a service curve β is bounded by the horizontal deviation between α and β:

h(α, β) = sup
s≥0

[inf{τ : τ ≥ 0 and α(s) ≤ β(s + τ)}]

When there are at least two flows competing for a given output port, the maxi-
mum delay at this port is obtained by considering the overall arrival curve which
is the sum of the arrival curves of all the competing flows.

A path of a PF can be modeled as the concatenation of a source node output
port and several switch output ports. The Network Calculus computation starts

234 X. Li, J.-L. Scharbarg, and C. Fraboul

from the first switch along this path. Therefore the ETE delay experienced by
a frame following this path is the waiting and transmission delays at the source
node adding the sum of delays encountered at each output port of the crossed
switches.

Let’s focus on the output port of S1 shared by pf1 and pf2 (Figure 1). The
overall arrival curve α which is the sum of αpf1 and αpf2 is depicted in Figure 5.
The delay h(α, β) = 116 μs is computed from α and the service curve β offered
by the considered output port of S1.

3.2 Arrival Curves with Partial Synchronization of Flows

The integration of the partial synchronization of PFs in the Network Calculus
approach is based on the aggregation of the flows coming from the same source
node. This aggregation technique allows the integration of the ROs in the overall
arrival curve of each switch output port.

Let’s consider an output port Sk where n PFs from x source nodes compete.
The computation of the overall arrival curve at this port processes as follows:

1. Classification of n PFs into x subsets based on source, where for subset SSi,
1 ≤ i ≤ x, there are ni PFs. Then, n1 + n2 + ... + nx = n.

2. Aggregation of the PFs of each subset SSi as one flow, and characterization
of its arrival curve αi at Sk.

3. Computation of the overall arrival curve α at Sk which is the sum of x arrival
curves αi, 1 ≤ i ≤ x corresponding to x subsets, i.e. α = α1 + α2 + ... + αx.

Since the Network Calculus approach propagates the computation port by port
along the considered path, the proposed approach is illustrated on one example
output port. The output port of S1 where four PFs: pf1, pf2, pf3 and pf4 pass
through in Figure 1 is considered.

The input PFs pf1 and pf2 are scheduled at the same source node N1, and
the inputs PFs pf3 and pf4 are scheduled at the same source node N2. These
four PFs compete for the output port of S1. Then, n = 4, and there are two
subsets:SS1 = [pf1, pf2] and SS2 = [pf3, pf4]. So, x = 2, n1 = 2, and n2 = 2.

pf1 and pf2 are aggregated as one flow since they both come from N1. Sim-
ilarly, pf3 and pf4 are aggregated. The next step is to characterize the arrival
curves α1 and α2 of the two aggregated flows.

The DOs of the four PFs are arbitrarily fixed to ON1
d,1 = 0 μs, ON1

d,2 = 1500 μs,
ON2

d,3 = 0 μs and ON2
d,4 = 500 μs. From the formula 1, the ROs at the source nodes

are ON1
r,1,2 = 1500 μs, ON1

r,2,1 = 2500 μs, ON2
r,3,4 = 500 μs and ON2

r,4,3 = 1500 μs.
Let’s first analyze the flow aggregating pf1 and pf2. The arrival curves αpf1

and αpf2 at the output port of S1 have been determined in Section 3.1.
In order to generate the arrival curve of the aggregated flow of pf1 and pf2

at S1, we first take pf1 as the bPF and compute the RO OS1
r,1,2 = 1470μs (the

computation is detailed in Section 2). The integration of this RO shifts the
arrival curve of pf2 to α

′
pf2

(t) = αpf2 (t − OS1
r,1,2). It is depicted in Figure 6(a).

Partially Synchronizing Periodic Flows 235

Then one Possible Arrival Curve (PAC) of the aggregated flow of pf1 and pf2

is obtained by summing αpf1 and α
′
pf2

as depicted in Figure 6(a). It is denoted

α
pf1,{pf2}
1 since pf1 is the bPF.
Obviously, for the same aggregated flow, pf2 can be regarded as the bPF, and

there is another PAC α
pf2,{pf1}
1 of this aggregated flow at this output port. This

second PAC is depicted in Figure 6(b).
In a general case, m flows have to be aggregated, leading to m PACs. Define a

set J = {1, 2, ..., m}, then α
pfx,{pfy}
i (x ∈ J , y ∈ J \ x) represents one Possible

Arrival Curve (PAC) of the aggregated flow of subset SSi when pfx is the bPF.
For pf3 and pf4, the ROs at S1 are computed: OS1

r,3,4 = 500 μs, OS1
r,4,3 =

1440 μs. Their aggregated flow has also two PACs α
pf3,{pf4}
2 and α

pf3,{pf4}
2 .

Therefore, there are four combinations of arrival curves, and each combina-
tion gives a possible overall arrival curve, which is the sum of α

pfm ,{pfn}
1 and

α
pfx,{pfy}
2 and denoted αm,x, at this port as shown in Figure 7. The overall ar-

rival curve α is the highest among these possible overall arrival curves. In the
case of switch S1, α(t) = max(α1,3(t), α2,3(t), α2,4(t), α1,4(t)).

In the general case, at one output port of a switch Sk, the total number of
combinations for the overall arrival curve is N = n1 × n2 × ... × nx. If each
ni ≥ 10 and x ≥ 10, then N ≥ 1010, which is a huge number of computation
and can become intractable. In order to solve this problem, we propose an over-
approximation of the arrival curve of the aggregated flow at the output port of
the switch based on the following definition.

Definition 3. At any output port, m serialized PFs from the same source node
could be classified to one subset SSi, and generates m Possible Arrival Curves,
denoted α

pfx,{pfy}
i with J = {1, 2, ..., m}, x ∈ J , y ∈ J \ x, when consid-

ering each serialized PF as the benchmark PF. Safe Arrival Curve (SAC) αi

of this subset is piecewise max of the m Possible Arrival curves, i.e. αi(t) =
max{αpfx,{pfy}

i (t)}, for t ≥ 0.

By definition, the Safe Arrival Curve is worse than any Possible Arrival Curve
because it always takes the largest value at any time among all the possibilities.
Considering the specific situation of pf1 and pf2 described above, m = n1 = 2,
α1(t) = max{αpf1,{pf2}

1 (t), αpf2,{pf1}
1 (t)}. We obtain the SAC α1 of the subset

SS1 shown in Figure 6(c).
The SAC for pf3 and pf4 is obtained by a similar process. By summing these

two Safe Arrival Curves, we obtain the overall arrival curve at this output port
of S1 in Figure 8(a).

Figure 8(b) compares the arrival curve obtained from the Safe Arrival Curves
with the four combinations of arrival curve presented in Figure 7. α in Figure 8(b)
represents the overall arrival curve at S1 when considering the influence of the
partial synchronization, while α

′
is the overall arrival curve without considering

that. The upper bounded delays at this port are given by h = 156 μs for α and
h

′
= 236 μs for α

′
. Obviously, h < h

′
, so the proposed approach should provide

tighter upper bound of ETE delay.

236 X. Li, J.-L. Scharbarg, and C. Fraboul

r,1,2

1
α pf1,{pf2}

O =1470S1

r1 = 0.5

r2 = 1.5

α pf1

pf2

t(us)

α

r=r1+r2=2

’

6000
4000

7795

(a) PAC : α
pf1{pf2}
1

r,2,1

α pf2,{pf1}
1

S1O =2450

r2 = 1.5

r1 = 0.5

α pf2

α pf1

t(us)

’

r = r1+r2 = 2

6000
4000

8775

(b) PAC : α
pf2{pf1}
1

r,1,2 r,2,1
O =1470S1 S1O =2450

α pf2,{pf1}
1

1
α pf1,{pf2}

α1

t(us)

4000
6000

(c) SAC : α1

Fig. 6. The Possible Arrival Curves and the Safe Arrival Curve of the aggregated flow

F

α

F

D

F

2

26160

8000

4000

1

B

500 1470
pf1 and pf3 are the bPFs

t(us)

B:(1470,10735)
C:(500,13000)
D:(1470,15425)
E:(500,17250)
F:(1470,26160)

A:(500,4250)

31550

6000

10000

4000

α1

A:(500,6750)

C:(500,13000)
D:(2450,17875)

F:(2450,31550)
E:(500,19750)

500 2450 t(us)
pf2 and pf3 are the bPFs

B:(2450,13675)

14000

8000
6000

1

A:(1440,8160)
B:(2450,13675)
C:(1440,12720)
D:(2450,15245)
E:(1440,20880)
F:(2450,28920)

t(us)24501440

B

23530

12000

8000

4000

D

B

F:(1470,23530)
E:(1440,17440)
D:(1470,12795)
C:(1440,12720)
B:(1470,10735)

t(us)1440 1470

pf2 and pf4 are the bPFs pf1 and pf4 are the bPFs

E

C

A

17250

α1,3

α E

C

19750

A

A

A:(1440,4720)
C

E

F

17440

A

α1,4
28920

α2
α2

α 2,3

α 2,4

E

D

C

20880

B

D

α
2

pf1,{pf2}

pf3,{pf4}
pf3,{pf4}

pf2,{pf1}

pf4,{pf3}
α 2 pf2,{pf1} pf4,{pf3}

pf1,{pf2}
α 1

Fig. 7. Four combinations of the arrival curves

Partially Synchronizing Periodic Flows 237

t(us)1470500 2450

α

max{ α ,
14000

6000
8000

max{ α
pf3,{pf4} pf4,{pf3}

α,

α }

}

pf2,{pf1}pf1,{pf2}

31550

26160

19750

(a) The overall arrival curve α

Tl

α’

t(us)500 2450

31550

26160

8000

1440 1470

14000
12000
10000

19750

α1,4

α
α1,3

2,4

α2,3

αβ

h’

h

22000

(b) Comparison

Fig. 8. The overall arrival curve and the comparison with other possibilities

The next section evaluates the improvement on ETE delay provided by the
integration of the partial synchronization in the Network Calculus approach on
some classical switched Ethernet architectures.

4 Evaluation of the Proposed Approach

The evaluation needs an offset assignment algorithm which is used by each source
node. The algorithm considered in this paper is presented in the next paragraph.

4.1 Example of an Offset Assignment

Different algorithms have been proposed (see for instance [8], [9]). Defining such
an algorithm is out of the scope of this paper. We simply choose for the switched
Ethernet network an algorithm which has been proposed for automotive CAN
network in [10].

This algorithm considers a discrete time system based on a time interval
granularity g. The release time of each frame and the period of each PF are
multiple of g. Then time intervals can be allocated to the frames of the different
PFs transmitted by the source node.

For n PFs from the same source node, the assignment of offsets is over discrete
time interval [0,Pmax

g) , where Pmax = max1≤k≤n{Pk}, and the offset for each
PF pfk is chosen in the interval [0,Pk). The sequence of frame transmissions is
stored in an ordered array R, which has Pmax

g elements. The n PFs are numbered
by increasing value of their periods and proceeded from pf1 to pfn. The first PF
pf1 is assigned with the DO ONi

d,1 = 0. The offset assignment of pfk (k > 1) is
achieved by the following steps:

1. look for one of the longest least loaded interval in [0, Pk). The first and last
possible release time of the interval are noted by Bk and Ek respectively.

238 X. Li, J.-L. Scharbarg, and C. Fraboul

Table 2. The example of offset assignment

Time 0 2 4 6 8 10 12 14

PRT i 1 2 3 4 5 6 7 8

R[i] f1,1 f2,1 f1,2 f3,1 f1,3 f2,2 f1,4 f4,1

PRTi is the abbreviation of Possible release time i
R[i] records the released frames

2. then set the offset ONi

d,k in the middle of the selected interval, and the
corresponding possible release time is rk.

3. finally store the frames of pfk in the array R:

∀i ∈ N and rk + i · Pk

g
≤ Pmax

g
, do R[rk + i · Pk

g
] = R[rk + i · Pk

g
] ∪ fk,i+1

This algorithm is illustrated by the following small example. Four PFs pf1, pf2,
pf3, pf4 scheduled at Ni with periods of 4ms, 8ms, 16ms, 16ms respectively
are sorted by increasing periods and Pmax = 16ms. pf1 is assigned with offset
ONi

d,1 = 0 which means R[1] = f1,1. According to step 3, R[3] = f1,2, R[5] = f1,3

and R[7] = f1,4. Then for pf2, B2 = 2 and E2 = 3 (step 1), thus r2 = 2. The
array R is update with R[2] = f2,1 and R[6] = f2,2 (step 3). The same process
is done for pf3 and pf4, the R array is listed in Table 2, from which we can see
that ONi

d,2 = 2 ms, ONi

d,3 = 6 ms and ONi

d,4 = 14 ms.
The algorithm presented in this section calculates the Definitive Offsets asso-

ciated to PFs.

4.2 Obtained Results

The tree topology and linear topology are mainly used to build switched Ethernet
architectures [11,12,13]. With a tree topology, nodes are connected to a local switch
which is connected to a upper-layer switch or a root switch (Figure 9(a)). When
there is only one switch, it is the star topology. The disadvantage of this topology is
that it demands maximum cabling which is of concern to automation technology.
The linear topology consists of a cascade of switches which are linked two by two
(Figure 9(b)). This topology reduces the costs of infrastructure, but because of
higher load per link, it generates an unfavorable topology for real-time systems.

Root Switch

Node Node Node Node

Local Switch Local Switch

Level 1

Level 2

(a) The tree topology

Local Switch

Node Node

Local Switch

Node Node

Local Switch

Node Node

(b) The linear topology

Fig. 9. Topologies of switched Ethernet

Partially Synchronizing Periodic Flows 239

Table 3. Tree topology

Configuration switch node PF layer maxL

config.1 1 10 100 1 2

config.2 4 30 300 2 4

config.3 13 90 900 3 6

Table 4. Linear topology

Configuration switch node PF maxL

config.1 1 10 100 2

config.2 2 20 200 3

config.3 3 30 300 4

config.4 4 40 400 5

config.5 5 50 500 6

The evaluated configurations of these two topologies are listed in Table 3 and
Table 4. The columns switch, node and PF respectively mean the total number of
switches, nodes and PFs in this configuration. The column layer means the total
number of layers in the tree topology. The column maxL means the maximum
path length. The total number of PFs increases with the total number of nodes
which increases with the total number of switches.

The evaluation for each configuration is repeated, and each time the path and
parameters of each PF are chosen randomly. The period of each PF is randomly
chosen from the range [1 ms, 128 ms]; The Lmax and Lmin of each PF are ran-
domly chosen from the ranges [500Bytes, 1500Bytes] and [100Bytes, 500Bytes]
respectively. The transmission rate of link is R = 100 Mb/s and the technological
latency of each switch is upper bounded by Tl = 16 μs.

10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

Percentage of scheduled PFs (%)

R
ed

u
ct

io
n

 o
f

E
T

E
 d

el
ay

 u
p

p
er

 b
o

u
n

d
 (

%
)

Tree network topology ETE delay upper bound reduction

config.1
config.2
config.3

Fig. 10. Reduction of ETE delay upper bounds with tree topology

The offset assignment presented in Section 4.1 is applied to a subset of the
PFs at each node of each configuration. The upper bounds of ETE delay are
computed using the modified Network Calculus approach. Figure 10 shows the
average obtained results with the tree topology, and Figure 11 shows those with
the linear topology. The X axis represents the ratio of scheduled PFs to the total
number of PFs, which describes the extend of partial synchronization. The Y

240 X. Li, J.-L. Scharbarg, and C. Fraboul

10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

Percentage of scheduled PFs (%)

R
ed

u
ct

io
n

 o
f

E
T

E
 d

el
ay

 u
p

p
er

 b
o

u
n

d
 (

%
)

Linear network topology ETE delay upper bound reduction

config.1
config.2
config.3
config.4
config.5

Fig. 11. Reduction of ETE delay upper bounds with linear topology

axis gives the reduction of ETE delay upper bound with partial synchronization
compared to the case without synchronization.

The obtained curve shows that the partial synchronization of PFs clearly
reduces the computed upper bounds for each configuration. This reduction in-
creases with the percentage of scheduled PFs. Among different configurations of
a given topology, the reduction reduces with the increase of the total number
of switches and nodes. It means that the influence of partial synchronization is
more obvious on simple configurations than that on complex ones. Moreover,
the offsets brought by this partial synchronization work better on tree topology
than on linear topology within the scope of evaluated configurations.

The mean value and standard deviation of each obtained ETE upper bound
reduction are listed in Table 5 and Table 6. They are also marked besides each
point in Figure 10 and Figure 11. These small standard deviations imply that
the improvements of end-to-end delay upper bounds are constant and stable.

Table 5. Mean and standard values of the obtained results with tree topology

Network
Param.

Percentage of scheduled PFs (%)

Config. 20 30 40 50 60 70 80 90 100

Config.1
mean (%) 4.15 9.36 16.46 24.05 30.48 37.17 45.16 52.80 62.71

st.dev (%) ±0.62 ± 1.01 ±1.02 ±1.62 ±1.55 ±1.36 ±0.78 ±1.59 ±1.14

Config.2
mean (%) 3.05 8.29 14.11 21.52 27.48 34.03 41.78 49.91 60.9

st.dev (%) ±0.37 ±0.79 ±0.95 ±0.96 ± 1.07 ±0.85 ±1.34 ±1.08 ±1.11

Config.3
mean (%) 2.82 7.60 13.15 19.78 25.25 31.14 38.78 45.68 55.67

st.dev (%) ± 0.27 ± 0.44 ±0.50 ±0.58 ±0.54 ±0.69 ± 0.53 ±0.79 ±0.36

Partially Synchronizing Periodic Flows 241

Table 6. Mean and standard values of the obtained results with linear topology

Network
Param.

Percentage of scheduled PFs (%)

Config. 20 30 40 50 60 70 80 90 100

Config.1
mean (%) 4.16 9.82 16.01 23.97 30.26 37.44 45.14 53.10 62.50

st.dev (%) ±0.67 ± 0.83 ±0.98 ±1.46 ±1.35 ±1.70 ±2.19 ±1.45 ±1.14

Config.2
mean (%) 3.53 8.39 14.30 21.59 26.54 32.47 39.95 44.35 54.58

st.dev (%) ±0.57 ±0.96 ±1.40 ±1.77 ± 1.52 ±2.16 ±2.11 ±1.87 ±2.82

Config.3
mean (%) 3.52 8.52 14.19 21.46 26.71 32.00 38.46 44.57 53.86

st.dev (%) ± 0.36 ± 0.97 ±0.89 ±1.39 ±1.46 ±1.42 ± 1.66 ±2.15 ±2.52

Config.4
mean (%) 3.06 7.48 12.22 17.68 21.28 25.96 30.91 35.16 41.31

st.dev (%) ± 0.49 ± 0.81 ±0.48 ±1.26 ±1.51 ±1.55 ± 2.06 ±2.61 ±1.30

Config.5
mean (%) 2.99 6.54 10.94 15.40 19.23 22.14 26.62 29.02 34.89

st.dev (%) ± 0.38 ± 0.87 ±0.95 ±1.12 ±1.37 ±1.54 ± 1.99 ±1.89 ±2.01

5 Conclusion and Future Work

In this paper, the partial synchronization of periodic flows brought by the local
clock of each source node is presented. In order to evaluate the influence of this
partial synchronization on worst-case delay analysis in the context of switched
Ethernet, an approach is developed by introducing the scheduling of periodic
flows (PFs) in the Network Calculus approach. The scheduling is modeled by
the offset associated to each PF. With a basic offset assignment algorithm, the
analysis of classical examples of switched Ethernet configurations shows that the
computed ETE delay upper bounds are clearly reduced.

Further studies should be conducted on more general and complex switched
Ethernet configurations so as to confirm the improvement brought by partial
synchronization of flows on ETE delays done by the Network Calculus approach.
The exact worst-case ETE delay can be computed by model checking for a small
scale network in [14]. It could help to evaluate the pessimism introduced by the
proposed approach. Moreover, further studies also deal with the introduction of
partial synchronization of flows in other approaches for worst-case ETE delay
analysis, such as the trajectory approach [4].

As switched Ethernet is used in avionic embedded system (AFDX: Avionics
Full DupleX Switched network), evaluation of partial synchronization of flows in
an AFDX context is underway.

References

1. Cruz, R.: A Calculus for Network Delay, part 1, part 2. Trans. Inf. Theory. 37,

114–141 (1991)

2. Le Boudec, J.-Y.: Application of Network Calculus To Guaranteed Service Net-

works. Trans. Inf. Theory. 44, 1087–1096 (1998)

242 X. Li, J.-L. Scharbarg, and C. Fraboul

3. Le Boudec, J.-Y., Patrick, T.: Network Calculus: A Theory of Deterministic Queu-

ing Systems for the Internet. Springer, Heidelberg (2001)

4. Martin, S., Minet, P.: Schedulability Analysis of Flows Scheduled With FIFO:

Application To the Expedited Forwarding Class. In: IPDPS 2006, Rhodes Island,

pp. 8–15 (2006)

5. Cholvi, V., Echague, J., Le Boudec, J.-Y.: On the Feasible Scenarios at the Output

of a FIFO Server. IEEE Communication Letters 9 (2005)

6. Loeser, J., Haertig, H.: Low-Latency Hard Real-Time Communication over

Switched Ethernet. In: ECRTS 2004, Catania, Italy, pp. 13–22 (2004)

7. Charara, H., Scharbarg, J.-L., Ermont, J., Fraboul, C.: Method for Bounding End-

to-End Delays on an AFDX Network. In: ECRTS 2006, Dresden, Germany, pp.

192–202 (2006)

8. Goossens, J.: Scheduling of Offset Free Systems. J. Real-Time Systems 24, 239–258

(2003)

9. Grenier, M., Goossens, J., Navet, N.: Near-optimal Fixed Priority Preemptive

Scheduling of Offset Free Systems. In: RTNS 2006, Poitiers, France (2006)

10. Grenier, M., Havet, L., Navet, N.: Pushing the Limits of CAN - Scheduling Frames

with Offsets Provides a Major Performance Boost. In: 4th European Congress on

Embedded Real Time Software, Toulouse, France (2008)

11. Jasperneite, J., Neumann, P., Theis, M., Watson, K.: Deterministic Real-Time

Communication with Switched Ethernet. In: WFCS 2002, Vsters, Sweden, pp. 11–

18 (2002)

12. Georges, J.P., Rondeau, E., Divoux, T.: Evaluation of Switched Ethernet in an

Industrial Context by Using Network Calculus. In: WFCS 2002, Vsters, Sweden,

pp. 19–26 (2002)

13. Fan, X., Jonsson, M., Jonsson, J.: Guaranteed Real-Time Communication in

Packet-Switched Networks with FCFS Queuing. J. The International Journal of

Computer and Telecommunications Networking 53, 400–417 (2009)

14. Adnan, M., Scharbarg, J.-L., Ermont, J., Fraboul, C.: Model for Worst Case Delay

Analysis of an AFDX Network using Timed Automata. In: WiP, ETFA 2010,

Bilbao, Spain (2010)

Analyzing End-to-End Functional Delays on an
IMA Platform

Michaël Lauer1, Jérôme Ermont1, Claire Pagetti1,2, and Frédéric Boniol2

1 Université de Toulouse - IRIT - INPT/ENSEEIHT
2 Université de Toulouse - ONERA

Abstract. The Integrated Modular Avionics (IMA) platform is the lat-

est generation of embedded architecture, in which functions share both

the execution and communication resources. Functions execute in pre-

defined time slots and communicate through an AFDX network. The

purpose of the analysis presented is the verification of freshness require-

ments on the data exchanged between IMA applications.

The two contributions of this paper are : (1) a modeling approach for

IMA platforms based on networks of timed automata. For small models,

it is possible to compute exact evaluation of temporal properties using

symbolic reachability analysis, (2) the collaborative use of efficient meth-

ods for worst case traversal time (WCTT) computation on the AFDX

network, which results are injected in the timed automata model to help

the functional analysis.

1 Introduction

1.1 Context

The concept of Integrated Modular Avionics (IMA) architecture has been pro-
posed in the early 90s and is embedded in particular in the A380 and B787
families. The main idea is to share the computation and the communication
resources in order to reduce the weight and the maintenance. The shared cal-
culators, called modules, have dedicated operating systems normalized by the
standard Arinc 653 [ARI97]. Practically, Arinc 653 segregates avionics functions
executing on a same module, both physically and temporally. Physically, each
function owns its proper memory zones. Temporally, each function executes on
distinct pre-defined time slots. The communication between modules is realized
via a network compliant to the standard Arinc 664 1 [ARI02]. Arinc 664, based on
Ethernet technology, segregates the data flows produced by different functions.

Thus, an IMA platform can be seen as a set of modules, switches and links.
A loaded IMA platform is an IMA platform on which a set of functions is al-
located. In avionics, the configuration is static, meaning that the allocation of
the functions on the resources is fully defined off-line. To fulfill the high level

1 In A380, the implementation is the AFDX, for Avionics Full Duplex Switched Eth-

ernet. In the sequel, we will often refer to the AFDX.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 243–257, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

244 M. Lauer et al.

requirements, the loaded platform must satisfy several properties, and the vali-
dation of these properties must response to the certification authorities criteria.
This includes some mathematical demonstrations of real-time properties. Gener-
ally, the real-time properties are decomposed in : (1) the study of the functional
behavior of a module, this includes the analyze of the schedulability and the
adequacy with the pre-defined slots, (2) the evaluation of the network traversal
time, that is the time for a frame to cross the network from source to destination
and (3) the combination of the two analyzes: knowing the worst cast traversal
time, it is possible to validate the coherence between data used in some treat-
ment and more generally the freshness of data. The objective of the paper is to
define a formal modeling of a loaded IMA platform and a general methodology
for studying the functional delays2.

1.2 Objective: Evaluation of Functional Delays

Usually, the papers that refer to end-to-end delays, such as [CSEF06, FS06,
MM06] for instance, focus on the delays on the network, that is the time elapsed
from the output of a module to the reception by an other module. Functional
delays compute the time from the functional production to the functional con-
sumption. If the data crosses a network, the functional delay includes the network
traversal time and possibly several if the data crosses several modules.

For computing these delays, we first need to formalize the loaded IMA plat-
form and determine the data paths. The traceability of the path followed by a
data is necessary to compute functional delays and freshness. The authors of
[SB07] study functional data paths on IMA platform. They allocate the func-
tions on the resources in order to respect requirements of safety. However, they
do not consider the real-time aspects and do not evaluate delays.

In [CB06], the authors analyze functional delays in a distributed system linked
by a switched Ethernet network. They model the system as a network of timed
automata and several abstractions are proposed to tackle the problem of combi-
natorial explosion. However, there are two shortcomings for our objective : (1)
the architecture is not based on IMA hypothesis (2) the abstractions remain
insufficient for realistic system. Thus, to the best of our knowledge, there is no
existing comprehensive IMA platform formalization including temporal behavior
and there is no global method for computing functional delays.

1.3 Contribution

To illustrate our purpose, we use all along the paper an understandable example
of a loaded IMA platform (section 2). The platform is composed of four modules
and two switches. Five functions cohabit on the platform and can be seen as

2 This work is supported by the French National Research Agency within the

SATRIMMAP (Safety and time critical middleware for future modular avionics plat-

forms) project : http://www.irit.fr/satrimmap/

http://www.irit.fr/satrimmap/

Analyzing End-to-End Functional Delays on an IMA Platform 245

a simplified Navigation and Guidance System. For this example, we want to
analyze the freshness of some data.

Formal Modeling. The first contribution is to provide a formal modeling of
a loaded IMA platform. This is done using a network of timed automata. The
modeling approach is modular, since two different IMA platforms, with different
physical and functional architectures, can be represented by assembling basic
modeling elements provided in a library. The model can be simulated using the
tool Uppaal. For small models, it is also possible to compute exact evaluation
of temporal properties using symbolic reachability analysis (section 4.1). Unfor-
tunately, as models grow bigger, we run into combinatorial explosion problems.
This is the reason why we provide a solution to the scalability issue by mixing
model-checking technique with trajectory approach.

Methodology for evaluating functional delays. Most of the complexity of
the model comes from the network. In practice, the Arinc 664 works as follows: the
frames producedby the functions are sent (resp. received) in somevirtual link (VL).
A VL corresponds to a predefined multicast path through the switched network,
where each output port is a queue. This behavior is complex and is full of delays.
Despite the use of the VL, the network traversal times are non deterministic.

Several techniques of worst case traversal time (WCTT) evaluation have
been successfully applied on Arinc 664. The complexity is good enough for
real configurations but at the price of an over-approximation. Network calculus
[LBT01, FFG09] is used within the AFDX network and the results are shown to
the certification authorities. The authors of [BD10] have proposed an extension
of the network calculus to take into account the scheduling of functions on a
module, but the scheduling was of type rate monotonic which does not fit with
the IMA pre-defined slots. The real-time calculus [TCN00] and the trajectory ap-
proach [MM06] can be used to compute WCTT. Collaborative methods between
real-time calculus and timed automata have been proposed in [LPT09]. Model-
checking is used to derive flows characteristics from timed automata behavior.
The usability of this approach on large systems is an open question.

The previous methods evaluate efficiently WCTT while we want to compute
functional delays. We propose to mix efficient methods for WCTT computation
on the AFDX network and model-checking. For this, we extract information for
the WCTT computation and we inject the obtained results in the timed au-
tomata model to help the functional analysis. We build an abstraction of the
network : each VL is modeled with a timed channel which defines a commu-
nication link between a sender and a receiver. This channel imposes a delay
in [BCTT,WCTT] to the communication, where BCTT stands for best cast
traversal time. Thus all behaviors of the concrete model are included in the ab-
stract model. This methodology can be applied with any technique of WCTT
evaluation and in the paper, we have chosen the trajectory approach [MM06]
(section 4.2). At last, we propose an extension of the trajectory approach
to leverage some pessimism in order to obtain tighter WCTT evaluation
(section 4.3). The point is to avoid scenarios that cannot happen.

246 M. Lauer et al.

2 A Simplified Navigation and Guidance System

Let us consider a simplified version of a Navigation and Guidance System which
aims at controlling and guiding an aircraft. It is composed of five functions: (1)
the Autopilot function (AP) elaborates flight commands to reach an attitude
defined by the next way-point of the flight plan. It requires regular updates
on the position, altitude and speed of the aircraft, (2) the Multifunction Control
Display Unit (MCDU) is the interface between the system and the crew. It allows
the crew to define or to modify the flight plan, and it informs the crew of system
failures, (3) the Flight Management function (FM) manages the flight plan,
and periodically sends to AP the next way-point (pos) to reach, (4) the Flight
Warning function (FW) reports on equipment status (sens stat) to MCDU and
finally (5) the Anemometer (Anemo) computes and broadcasts speed (M) and
altitude (Z) of the aircraft to AP. These five functions are mapped onto an IMA
platform composed of 4 core processing modules and 2 switches (cf. figure 1(a)).

Each module is managed by a real-time operating system compliant to the
Arinc 653 standard [ARI97]. According to this standard, each function executes
periodically within a partition. A partition is group of time slices in a Major
Frame (MAF) on a module. Moreover, for the sake of determinism, executions
are often composed of three consecutive steps: (1) a reception step (Rx) where the
function acquires its input data, (2) a processing step (Proc) where it computes
its new output and internal data, and (3) a transmission step (Tx) where it emits
its output data to the module output. These three steps execute sequentially
in each period. We consider in this article that each step is executed within
a fixed time interval with respect to the beginning of the module MAF. The
timing characteristics of the five partitions above are defined in figure 1(b). For
instance, the time interval [12, 14] associated with the Rx step of partition FW
means that FW acquires its input at least 12 and at most 14 millisecond after
the beginning of the MAF of module 1. In the same way, FW emits its output
data between 17 and 19. The periodic execution of ANEMO and FW is depicted
on figure 1(c).

According to the IMA principles, partitions exchange data through an AFDX
protocol [ARI02]. As explained in introduction, this protocol is based on Virtual
Links (VL). Data transmitted through VL are encapsulated into frames. The
allocation of data in frames and on VL is statically defined off-line. A VL defines a
static route between a source partition and one or several destination partitions.
In order to limit traffic bursts in the network, each VL input port implements
a leaky bucket traffic shaper defined by its BAG (Bandwidth Allocation Gap)
parameter: the minimum time interval between two successive frames emitted by
the input port of the VL is equal to BAG time units. For the sake of simplicity,
we consider that VL output ports (in each destination partition) are sampling
ports: whenever a frame arrives at a destination module, the data transmitted
by the frame are extracted and are stored in the input buffer of the destination
partition, the previous data (from the previous frame) being replaced by these
new data. Figure 1(a) presents the VL definition of the case study. For instance,
Z and M are transmitted by VL1 from Anemo to AP via switches SW1 and

Analyzing End-to-End Functional Delays on an IMA Platform 247

FM

FW

Anemo
AP

MCDU

SW1 SW2

M
Z

pos

sens stat

VL1

VL2

VL3
VL4

VL1

VL2

VL3

VL1
VL2

VL3

VL1
VL2
VL3

module1

module2 module3

module4

flight plan

VL4

VL4

(a) Allocation of the functions

Func Per. Rx Proc Tx

Anemo 20 [0,3] [3, 8] [8,10]

FW 20 [12,14] [14,17] [17,19]

FM 20 [0,5] [5,15] [15,19]

MCDU 20 [0,5] [5,17] [17,20]

AP 15 [0,4] [4,12] [12,15]

(b) Function characteristics

Anemo AnemoFW FW

time

MAF

period Anemo
period FW

TxRx Rx TxProc P TxRx Rx TxProc P

(c) Static scheduling of module1

Fig. 1. Loaded IMA platform

SW2. We suppose however that Z and M are emitted in two distinct frames. We
also assume that (1) all VLs have the same BAG value b = 2ms, (2) all frames
have the same size s = 4000 bits, and (3) all physical links work at 100Mbits/s.

Given these specifications, the property we want to study is the following: the
worst case age of Z (altitude) consumed by AP is less than 25ms.

3 Formal modeling

3.1 The Model

An IMA system is composed (1) an hardware architecture, (2) a functional
architecture, and (3) a mapping of the latter on the former. Let us note M , S and
L the sets of modules, switches, and links composing the hardware architecture.
Let us note Pa, D, Fr and V the sets of partitions, data, frames and virtual
links composing the functional architecture.

Modules and switches. A module or a switch x ∈ M ∪ S has ports. Let us
note x.input.i (resp. x.output.j) the ith (resp. jth) input (resp. output) port of
x. The mapping specification of partitions on modules is denoted by a part(m)
which associates each module m ∈ M with a set of partitions in Pa. p ∈ part(m)
means that p is executed on m.

Links. A link connects an output port of a module or a switch to an input port
of another module or switch. It is characterized by a physical bandwidth. We
denote conn(l) =< x.output.i, y.input.j > to mean that l ∈ L connects the ith

output port of x ∈ M ∪ S the to the jth input port of y ∈ M ∪ S. We also note
bw(l) the bandwidth (in Mbits/s) of link l.

248 M. Lauer et al.

Partitions, data, and frames. Partitions produce and consume data. Data are
encapsulated in frames, and frames are transmitted through virtuals links. Let
us note in(p) and out(p) the set of data consumed and produced by p ∈ Pa. We
denote by data(fr) the set of data encapsulated in the frame fr ∈ Fr, frame(vl)
the set of frames transmitted on the virtual links vl ∈ V and vl part(p) the set
of VLs of p.

Virtual links. A virtual link is defined by both its static path through the
nodes of the architecture, and its BAG. We define path(vl) = [n1, . . . , nk] a
function which associates each virtual link vl ∈ V with its physical path. This
physical path is an ordered sequence of nodes ni ∈ M ∪S (modules or switches)
interconnected by links from L. We define then BAG(vl) the BAG value of vl.

Scheduling. We define the scheduling of p ∈ Pa by a period and two time
intervals (for the two steps Rx and Tx). The scheduling specification of p is
sched(p) =< π, [Rx min, Rx sup], [Tx min, Tx sup] > where π is the period of
p and the other parameters are the intervals Rx and Tx. The sched function of
the case study is given figure 1(b).

Given the sets M , S, L, Pa, D, Fr and V , a system syst is completely defined
by the ten functions :

syst =< part, conn, bw, in, out, data, frame, path, BAG, sched >

We define the behavior of such a system by expressing it as a network of ex-
tended timed automata [AD94, LPY97]. We associate a functional and temporal
behavior with each element.

3.2 Behavioral Description with Timed Automata

Modules behavior. A module contains a set of partitions periodically sched-
uled within a time frame. The global behavior of a module results then in the
composition of the behavior of each partition, combined with the behavior of
the communication layer (data encapsulation and frames transmission through
VL traffic shaper). From a formal point of view, this global behavior is defined
as a network of timed automata presented (in case of module1) figure 2, and
composed of:

– a scheduler automaton which periodically activates the partitions;
– an automaton for each partition;
– an automaton for modeling the encapsulation of each data into each frame.

Frame transmissions are represented by a signal frame[i][j] where i identifies
a network component and j identifies the frame. For instance, frame[1][0]
represents the arrival of frame 0 in the component 1 (VL1 traffic shaper)
and frame[6][0] the transmission of this frame to the component 6 (module1

output port);
– an automaton modeling the behavior (i.e. the traffic shaper) of each VL;
– an automaton modeling the behavior of each output port.

Analyzing End-to-End Functional Delays on an IMA Platform 249

start anemo

start fw

send anemo

send FW

frame[1][0]

frame[1][1]

frame[2][2]

frame[6][0]
frame[6][1]

frame[6][2]

Partition Encapsulation VL traffic shaper Module ouput
port

Altitude

Mach

Sens stat

VL1

VL2

m1 output

FW

Anemo

Scheduler

m1 sched

Fig. 2. Module1 modeled by a network of timed automata

The scheduler automaton. According to the Arinc 653 standard, parti-
tions are scheduled on each module within a periodic MAF (Major Frame). This
MAF, implemented by the sched function, associates to each partition a pe-
riod and a set of time intervals defining when the partition reads and writes
its inputs and its outputs. The scheduler automaton models the periodic ac-
tivation of partitions allocated on each module. The timing aspects (i.e., the
time intervals Rx and Tx) are then modeled in each partition automaton. Fig-
ure 3(a) models the scheduling of Anemo and FW during a periodic MAF of
20000μs.

Partitions automata. After being activated by the scheduler, each partition p
runs in its own time slices defined by sched(p). Let us consider partition Anemo.
Its behavior is defined by the timed automaton on the top of Figure 3(b) (in
this example, only the data transmission is considered). The transmission occurs
(node SEND) during [8000, 10000] μs. The system sends the altitude and the
speed as depicted on the bottom of Figure 3(b).

Switch/module output port automata. A switch/module output port im-
plements a FIFO queuing policy. The transmission time of a frame depends on
its size and the port throughput. A frame is transmitted to the next element
on its path. For a frame i and an output port j, SERVICE TIME[i][j] gives the
service time of i and ROUTE[i][j] gives the next element crossed by it. Figure 3
shows the modeling of a generic output port. idPort identifies the port. list is a
local array storing identifiers of frames.

Virtual link traffic shaper automata. A virtual link traffic shaper imple-
ments a leaky bucket algorithm. The maximum rate is one frame every BAG.
Modeling is similar to output port except : (1) service time is the same for
each frame and it is equal to the BAG, (2) the queue is considered empty only
BAG time units after the transmission of the last frame, (3) a frame is instantly
transmitted (service time is null) if the queue is empty when it arrives.

Global behavior. As expressed above, the behavior of each module can be
obtained by composing several timed automata. In the same way, the global
behavior of the system is obtained by composing the modules behavior together
with the switches behavior. This leads to a global timed automata network
modeling the exact behavior of the whole system.

250 M. Lauer et al.

WAIT_PERIOD

clock_module_1 <= 20000

START_FWSTART_ANEMOINIT

clock_module_1 <= 20000
clock_module_1 == 20000
clock_module_1 = 0

start_fw!start_anemo!clock_module_1 = 0

(a) module1 automaton

REINITSEND

clock_module_1 <= 10000

WAIT_TX

clock_module_1 <= 8000

WAIT_START

i == 0

i > 0
anemo_reinit_send!

i--

i == 2

i < 2
anemo_send!

i++

clock_module_1 == 8000start_anemo?
i = 0

WAIT_REINITENCAP_ALTITUDESTART

anemo_reinit_send?

frame[1][0]!anemo_send?
WAIT_REINITENCAP_MACHSTART

anemo_reinit_send?

frame[1][1]!anemo_send?

(b) Anemometer partition automaton and its encapsulation automata

EMIT
h <= SERVICE_TIME[list[0]][idFifo]

UPDATE _QUEUE

EMPTYlen == 0
list[0] = 0, i = 0

idFrame : rangeFrame
frame[idFifo][idFrame]?
list[0] = idFrame, len=1, h=0

idFrame : rangeFrame
frame[idFifo][idFrame]?
list[len] = idFrame, len++

len > 0 and len == i
list[i] = 0, i=0

i<len
list[i] = list[i+1], i++

h == mu [list[0]][idFifo] and len > 0
frame[ROUTE[list[0]][idFifo]] [list[0]]!
len--,i=0,h=0

(c) Module/switch output port automaton

Fig. 3. Timed automata of the model

As illustration, the timed automata network of the case study is composed of 24
automata: 4 scheduler automata (one per module), 5 partition automata (one per
partition), 5 encapsulation automata (one per data), 4 VL traffic shaper automata
(one per VL), 6 output port automata (3 module output ports for module 1, 2 and
3; 1 output port for switch SW1 and 2 output ports for switch SW2).

4 Analysis and Verification

4.1 Model-Checking Verification

The property to verify is “the age of Z must be lower than Max Age when read
by the autopilot”. This property is expressed by a test automaton. As described
in [BnA98, BBF+01], a test automaton implements an unhappy state which is
reached if the property does not hold. Thus, the verification becomes a decidable
reachability problem, which can be tackle with model-checking tools. In our
model, the maximum reachable age of Z computed is 24200μs. Furthermore,
the model-checker gives us a scenario reaching this worst case. Let Z1 and Z2

be two successive values of Z. The maximum age of Z is reached when : (1)

Analyzing End-to-End Functional Delays on an IMA Platform 251

the distance between Z1 and Z2 production is maximum, (2) Z2 experiences
maximum delay to reach AP and finally (3) the last reading of Z1 coincides with
Z2 arrival in AP. Z2 experiences maximum delay when : (1) Z2 and a speed data
(M) are produced simultaneously, (2) M is placed first in VL1 traffic shaper, (3)
Z2 and a position data arrive simultaneously in SW1 output port and (4) Z2

and a flight plan data arrive simultaneously in SW2 output port.

4.2 A Mixed Verification Technique

Model-checking is an exact computing technique which is applicable on small
case studies. However this technique does not scale well. There are at least
three sources of complexity : the asynchronism of the module clocks, the non-
deterministic order of the frames sent by the partitions and the network queues.
To reduce the complexity, we use a two-step verification methodology. First we
calculate QoS properties of flows in the network with the trajectory approach,
and second we abstract the network with these QoS properties.

Recalls on trajectory approach. The trajectory approach [MM06] is a tech-
nique for computing deterministic bounds on WCTT which can be applied to
AFDX network [BSF09]. The network is represented as a graph where the nodes
are the output ports of the modules and the switches, and the vertices are the
connections between two components. The approach analyses flows of frames.
A VL is a flow and is characterized by its path path(vl), the minimum inter-
arrival time between two successive frames BAG(vl) and the maximum pro-
cessing time of a frame in the nodes of its path Cvl. The processing time of a
frame corresponds to the time required by the output of a node to emit this
frame.

We briefly explain how the WCTT of VLi can be obtained. Let Pi be equal
to path(VLi) = [ni1 , . . . , nik

]. Let f be a frame of VLi arriving in the network
at time t. The exact WCTT is : Re

i = maxt≥0

{
LS

nik
i (t) + Ci − t

}
, where Ci =

CVLi and LS
nik

i (t) is the latest starting time of f in its last node. Since the result
of the trajectory approach does not depend on the choice of f , the WCTT of f
is also the WCTT of VLi (consequently, expressions relative to f are indexed by
i). The trajectory approach bounds LS

nik

i (t) with:

LS
nik
i (t) ≤

∑
j∈X(i)

WLflow
j (δi,j(t)) +

∑
h∈Pi\{nik

}

(
max

j∈vl node(h)
{Cj}

)
− Ci (1)

– X(i) : the set of VLs crossing the path Pi of VLi. Thus, X(i) = {j|Pj ∩ Pi �= ∅};
– δi,j(t) : the time interval during which the frames of j interfere with f ;

– WLflow
j (x) : the workload produced by j during time interval x;

– vl node(h) : the set of VLs crossing node h;

–
∑

h∈Pi\{nik
}
(
maxj∈vl node(h){Cj}

)
: the sum of the maximum processing times for

each node along the path of VLi (except the last node);

252 M. Lauer et al.

In [MM06], WLflow
j (x) is bounded by :

(
1 +

⌊
L(x)
BAGj

⌋)
·Cj , with L(x) the length

of x. And it is proved that ∀(t, j) ∈ R+ × X(i), δi,j(t) ⊆ Δi,j(t) where :

– Δi,j(t) = [M
firsti,j

i − S
firsti,j
maxj , t + S

firsti,j
maxi − S

firsti,j

min];

– firsti,j : the first node where VLi and VLj cross each other;

– Sh
maxi

: maximal time for a frame of VLi to go from its source to h;

– Sh
minj

: minimal time for a frame of VLj to go from its source to h;

– sub(Pi, h): set of all nodes that precede node h along Pi;

– Mh
i =

∑
h′∈sub(Pi,h)

(
minj∈vl node(h′){Cj}

)
: the sum of minimum processing time

of the VL for each node in sub(Pi, h);

– t + Ai,j denotes the length of Δi,j(t).

Thus ∀t ∈ R+,
∑

j∈X(i) WLflow
j (δi,j(t)) ≤ ∑

j∈X(i)

(
1 +

⌊
t+Ai,j

BAGj

⌋)
· Cj. Hence an

upper bound of the WCTT of VLi is RT
i = maxt≥0

{
W

nik
i (t) + Ci − t

}
where

W
nik

i (t) is an upper bound of the latest starting time of f in its last node:

W
nik
i (t) =

∑
j∈X(i)

(
1 +

⌊
t + Ai,j

BAGj

⌋)
· Cj +

∑
h∈Pi\{nik

}

(
max

j∈vl node(h)
{Cj}

)
− Ci (2)

We apply these results to determine the WCTT of VL1 (denoted WCTT(VL1)).

1 2 3

4 5

VL1

VL2

VL3 VL4

Fig. 4. Network graph

Figure 4 depicts the path P1 = [1, 2, 3] and the

interfering VLs X(1) = {1, 2, 3, 4}. Node 1 is

module1 output port, node 2 is SW1 output port

and node 3 is the output port of SW2. Nodes 4

and 5 are the output port of module2 and module3

respectively.

In order to evaluate W 3
1 (t), we need to determine A1,1, A1,2, A1,3 and A1,4.

From equation 2 we can see that W
nik

i (t) is a recursive expression. Indeed, Ai,j

depends on S
firsti,j
maxi which is the WCTT of VLi on sub(Pi,firsti,j). We describe

part of A1,4 calculation. VL1 and VL4 first meet in node 3, thus :

A1,4 = S3
max1 −

∑
h′∈{1,2}

(
min

j∈vl node(h′)
{Cj}

)
+ S3

max4 − S3
min4 (3)

VL4 only crosses node 5 until node 3 and it is the only flow on this sub path,
hence S3

max4
= S3

min4
= C4. From equation 2 and S3

max1
definition we have:

S
3
max1

= max
t≥0

{(
1 +

⌊
t + A1,1

BAG1

⌋)
C1 +

(
1 +

⌊
t + A1,2

BAG2

⌋)
C2 +

(
1 +

⌊
t + A1,3

BAG3

⌋)
C3 + max

j∈{1,2}
{Cj} − t

}

The first common node of VL1 and VL2 is their source node 1, hence A1,1 =
A1,2 = 0. We do not detail the calculation of A1,3 = C1 = 40μs. Thus, we have:

S3
max1 = max

t≥0

{(
1 +

⌊
t

2000

⌋)
40 +

(
1 +

⌊
t

2000

⌋)
40 +

(
1 +

⌊
t + 40

2000

⌋)
40 + 40 − t

}

Hence, S3
max1

= 160μs. Injecting these results in equation 3, we have: A1,4 =
160 − (40 + 40) = 80μs. We are now able to evaluate W 3

1 (t) and consequently
WCTT(VL1). The calculation gives WCTT(VL1) = 240μs.

Analyzing End-to-End Functional Delays on an IMA Platform 253

Network abstraction in the timed automata model. First we project the
model by only keeping elements contributing to the functional analysis. Only
the partitions Anemo and Autopilot are involved in the maximum age of Z data
analysis. Second, we replace the network by a timed channel whose delay is in
[BCTT (VL1), WCTT (VL1)] = [120, 240]. Indeed the authors of [CB06] have
shown that a switched Ethernet network which offers deterministic guarantees
on traversal time can be abstracted by an end-to-end timed channel. BCTT
happens when a frame of VL1 is alone on its path : BCTT = 3 × C1 = 120μs.

We apply a verification technique similar to the one described in section 4.1
on the reduced system. We obtain a maximum age for Z of 24240μs which is
slightly worse than the previous analysis. However, computation time is reduced
dramatically : first method requires several hours while the second requires less
than a second. The variation is as‡ substantial because the reduced model con-
tains only a pair of modules.

In the worst case sens stat data does not delay Z. The specific scheduling
of the partitions Anemo and FW prevents their respective VL to interfere.
Trajectory approach is not designed to take into account these specificities. The
pessimism comes in particular from the ignorance of relationship between arrival
times of frames (note that network calculus or real-time calculus encounter the
same pessimism). In section 4.3 we introduce an extension of the trajectory
approach, which allows us to take into account the specific behavior of the IMA
platform. This leads to tighter WCTT evaluation.

4.3 Offset-Based Trajectory Approach

In the classical trajectory approach, all flows are assumed to be asynchronous.
For two distinctive flows, there is no correlation between the arrival times of their
respective frames in the network. The partitions hosted by a same IMA module
share a common clock and execute sequentially according to the pre-defined slots.
Thus all flows at a module output are correlated. We describe a methodology to
leverage this specificity in order to obtain tighter bounds on WCTT. We rewrite
inequality 1 in order to group the workload of the VL produced by a common
module.

LS
nik
i (t) ≤

∑
m∈M

∑
j∈X(m,i)

WLflow
j (δi,j(t)) +

∑
h∈Pi\{nik

}

(
max

j∈vl node(h)
Cj

)
− Ci (4)

– X(m, i): the set of VLs emitted by modulem and crossing the path of VLi;

–
∑

j∈X(m,i) WLflow
j (δi,j(t)) the global workload produced by modulem.

Our idea is to bound in inequation 4 this global workload by a maximal workload
function that takes into account the scheduling of the partitions on modulem.
With respect to classical real-time analysis this function is called a maximal
interference function. For each module we define : (1) an interval of interfer-
ence (a time interval where all frames delaying f are produced), (2) a maximal
interference function.

254 M. Lauer et al.

Interval of Interference. As proved in [MM06], all frames of VLj interfering
with VLi are produced during the interval Δi,j(t). We define an interval including
all the Δi,j(t) = [ai,j(t), bi,j(t)] of the VLs of a module (we denote t + Am

i the
length of this interval):

Δm
i (t) = [min

j∈X(m,i)
{ai,j(t)}, max

j∈X(m,i)
{bi,j(t)}] (5)

Hence, we have :∑
m∈M

∑
j∈X(m,i)

WLflow
j (δi,j(t)) ≤

∑
m∈M

∑
j∈X(m,i)

WLflow
j (Δm

i (t))
(6)

Maximal Interference Function of a Module. We introduce the concept
by determining the interference of module1 on a frame f during x units of time.
There are two cases: either a VL of Anemo first interferes with f or it is a VL
of FW. We call the first partition to interfere the initiator partition. We denote
by Im,c(x) the interference of modulem where c is the initiator partition.

Figure 5(a) and 5(b) depict I1,Anemo(x) and I1,FW(x) respectively. We use
the concept of minimum phasing between partitions. It is the smallest distance
between the end of the transmission step of a partition and the start of an-
other one. Figure 5(c), ΦFW,Anemo (resp. ΦAnemo, FW) is the minimum phasing
between Anemo and FW (resp. FW and Anemo).

0 2 7 1820 27

(μs)

40
80

120

I1,Anemo(x)

x(ms)

ΦFW,Anemo

(a) I1,Anemo(x)

0 18

(μs)

40
80

120

x(ms)911 2931

I1,FW (x)

ΦAnemo,FW

(b) I1,FW(x)

Anemo AnemoFW FW time

TxRx Rx TxProc P TxRx Rx TxProc P

ΦAnemo,FWΦFW,Anemo

MAF1

(c) Minimum phasing

Fig. 5. Interference and minimum phasing concepts

I1,Anemo is constructed as follows:

– ∀x ∈ [0, 2], I1,Anemo(x) = C1. Anemo sends two frames at the end of its
transmission step. However VL1 traffic shaper prevents the sending of more
than one frame;

– ∀x ∈ [2, 7,]I1,Anemo(x) = I1,Anemo(0) + C1. The second frame of Anemo is
released by VL1 traffic shaper;

Analyzing End-to-End Functional Delays on an IMA Platform 255

– ∀x ∈ [7, 18], I1,Anemo(x) = I1,Anemo(2) + C2. Since 7ms is the minimum
phasing ΦAnemo,FW, a frame can be sent by FW. Next frame release of FW
occurs periodically every MAF1;

– ∀x ∈ [18, 20], I1,Anemo(x) = I1,Anemo(7)+C1. 18ms is the minimum distance
between the first and the second transmission step of Anemo: it is equal
to the MAF minus the length of the transmission step of Anemo. Anemo
releases two frames and only one is delivered because of VL1 traffic shaper.
Next releases of frames will occur periodically every MAF1;

We denote by Im(x) the maximal interference caused by modulem (independently
of the initiator partition). Thus Im(x) = maxc∈part(m) Im,c(x). For instance,
since ∀x ∈ R+ , I1,Anemo(x) ≥ I1,FW(x), we have I1(x) = I1,Anemo(x).

Formalization. The formalization of the previous idea is inspired by the work
on offset-based real-time analysis such as described in [MTN08]. Let us first
introduce some useful notations: Ni is the maximal number of frames delivered
on VLi every MAFm, Txp = [ap, bp] is the interval of transmission of p. To
compute Im(x), we must compute, for every partition c of module m, Im,c(x).
We first introduce an intermediate function WLp(x) which returns the maximal
workload produced by a partition p during x units of time.

Formula for WLp(x). WLp(x) is defined on R+ by:

WLp(x) =
∑

i∈vl part(p)

[(
1 +

⌊
x

MAFm

⌋)
· Ni · Ci −

(
Ni − 1 −

⌊
x∗

BAGi

⌋)+

· Ci

]
(7)

– x∗ = x mod MAFm;

–

(
1 +

⌊
x

MAFm

⌋)
· Ni · Ci is the maximum workload p can deliver to VLi;

–

(
Ni − 1 −

⌊
x∗

BAGi

⌋)+

·Ci regulates the previous term in order to respect VLi traffic

shaper. Its value is (Ni−1)·Ci each time the partition delivers a burst of Ni frames.

Then its value decreases of Ci every BAGi, until it becomes null;

– ∀a ∈ R , (a)+ = max{0, a}.

Formula for Im,c(x) and Im(x). We first compute the minimum phasing be-
tween two partitions (p, c) ∈ part(m)2 : Φp,c = (ap −ac +(bc −ac)) mod MAFm

In the worst case, the initiator partition emits its frames at the end of its trans-
mission step and the other partitions emit their frames at the start of their
respective transmission step. In the worst case, a partition p starts contributing
to the interference when x = Φp,c. Thus we have:

Im,c(x) =
∑

p∈part(m)

WLp(x − Φp,c) (8)

Formula for Im(x) is simply: ∀x ∈ R+, Im(x) = maxc∈part(m){Im,c(x)}. And
we have for all time interval x and modulem:

∑
j∈X(m,i) WLflow

j (x) ≤ Im(L(x)).

256 M. Lauer et al.

Hence, with inequalities 4 and 6, we can upper bound LS
nik

i (t) and WCTT(VLi)
is bounded by RO

i = maxt≥0

{
WO

nik
i (t) + Ci − t

}
where:

WO
nik
i =

∑
m∈M

Im(t + Am
i) +

∑
h∈Pi\{nik

}

(
max

j∈vl part(h)
Cj

)
− Ci (9)

Application. We apply these results to determine the WCTT of VL1. Figure 4
depicts the path P1 = [1, 2, 3] and the interfering VLs grouped by module are :
X(1, 1) = {1, 2}, X(2, 1) = {3}, X(3, 1) = {4}, X(4, 1) = ∅. Since module4 does
not interfere with VL1, ∀t ∈ R , I4(t) = 0. Thus we have :

WO3
1 = I1(t + A1

1) + I2(t + A2
1) + I3(t + A3

1) +
∑

h∈{1,2}

(
max

j∈vl node(h)
Cj

)
− Ci (10)

We describe part of A2
1 calculation. From 5 we have: A2

1 = S2
max1

− S2
min3

−
M2

1 + S2
max3

. We have S2
max3

= S2
min3

= C3 = 40μs, M2
1 = 40μs and S2

max1
=

maxt≥0

{
I1(t + A1

1) − t
}
. The first common node of VL1 and VL2 is their source

node 1, hence A1
1 = 0. We have shown in the informal presentation that ∀x ∈

R , I1(x) = I1,Anemo(x). Hence:

S2
max1 = max

t≥0

⎧⎨
⎩

∑
p∈{Anemo,FW}

WLp(t − Φp,Anemo) − t

⎫⎬
⎭ (11)

With ΦAnemo,Anemo = −2000μs, ΦAnemo,Anemo = 7000μs, MAF1 = 20000μs
and BAG1 = BAG2 = 2000μs we have S2

max1
= 40μs. Thus A2

1 = 0. We find
WCTT(VL1) = 200μs.

5 Conclusion and Perspectives

In this paper we have presented a modeling approach for IMA platforms based on
networks of timed automata. On small systems, verification of complex temporal
requirements and exact evaluation of temporal properties are possible. The scal-
ability issue has been tackle with an abstraction technique. Communications in
the system are abstracted with timed channels. These abstractions are built with
the help on an efficient WCTT evaluation technique : the trajectory approach.
However, due to specificities of the IMA platform, the WCTT is pessimistic.
We proposed an extension of the trajectory approach which takes into account
the Arinc 653 scheduling and thus provides tighter bounds. A tool applying our
methodology is being developed.

References

[AD94] Alur, R., Dill, D.L.: Theory of Timed Automata. Theoritical Computer Sci-

ence 126(2), 183–235 (1994)

[ARI97] Aeronautical Radio Inc.: ARINC 653. Avionics Application Software Stan-

dard Interface (1997)

Analyzing End-to-End Functional Delays on an IMA Platform 257

[ARI02] Aeronautical Radio Inc.: ARINC 664. Aircraft Data Network, Part 1: Sys-

tems Concepts and Overview (2002)

[BBF+01] Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L.,

Schnoebelen, P.: Systems and Software Verification. Model-Checking Tech-

niques and Tools. Springer, Heidelberg (2001)

[BD10] Boyer, M., Doose, D.: Collaboration entre méthode d’ordonnancement et

calcul réseau. Presented at the GDR GPL Day (2010)

[BnA98] Arjona, A.B.: Vérification et synthèse de systèmes temporisés par des

méthodes d’obervation et d’analyse paramétrique (in english). PhD thesis,

Supaero, Toulouse, France (1998)

[BSF09] Bauer, H., Scharbarg, J.-L., Fraboul, C.: Applying and optimizing trajec-

tory approach for performance evaluation of AFDX avionics network. In:

Emerging Technologies and Factory Automation, ETFA (2009)

[CB06] Carcenac, F., Boniol, F.: A formal framework for verifying distributed em-

bedded systems based on abstraction methods. International Journal on

Software Tools for Technology Transfer (STTT) 8(6) (2006)

[CSEF06] Charara, H., Scharbarg, J.-L., Ermont, J., Fraboul, C.: Methods for bound-

ing end-to-end delays on an AFDX network. In: Euromicro Conference on

Real-Time Systems, ECRTS (2006)

[FFG09] Frances, F., Fraboul, C., Grieu, J.: Using network calculus to optimize the

AFDX network. In: European Congress on Embedded Real-Time Software

(ERTS), Toulouse France, 25/01/06-27/01/06, SIA/3AF/SEE (2009)

[FS06] Fidler, M., Schmitt, J.B.: On the way to a distributed systems calculus: an

end-to-end network calculus with data scaling. In: SIGMETRICS 2006/Per-

formance 2006: Proceedings of the Joint International Conference on Mea-

surement and Modeling of Computer Systems. ACM, New York (2006)

[LBT01] Le Boudec, J.-Y., Thiran, P.: Network Calculus. LNCS, vol. 2050. Springer,

Heidelberg (2001)

[LPT09] Lampka, K., Perathoner, S., Thiele, L.: Analytic real-time analysis and

timed automata: a hybrid method for analyzing embedded real-time sys-

tems. In: EMSOFT 2009: Proceedings of the Seventh ACM International

Conference on Embedded Software. ACM, New York (2009)

[LPY97] Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. International

Journal on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

[MM06] Martin, S., Minet, P.: Schedulability analysis of flows scheduled with fifo:

application to the expedited forwarding class. In: Guo, M., Yang, L.T., Di

Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.) ISPA 2006. LNCS,

vol. 4330. Springer, Heidelberg (2006)

[MTN08] Maki-Turja, J., Nolin, M.: Efficient implementation of tight response-times

for tasks with offsets. Real-Time Systems Journal (2008)

[SB07] Sagaspe, L., Bieber, P.: Constraint-based design and allocation of shared

avionics resources. In: 26th AIAA-IEEE Digital Avionics Systems Confer-

ence, Dallas (2007)

[TCN00] Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling

hard real-time systems. In: ISCAS, pp. 101–104 (2000)

Tools in Scientific Workflow Composition

Joost N. Kok1, Anna-Lena Lamprecht2, and Mark D. Wilkinson3

1 Leiden Institute of Advanced Computer Science,

Leiden University, Leiden, The Netherlands

joost@liacs.nl
2 Chair for Programming Systems,

Technical University Dortmund, Dortmund, Germany

anna-lena.lamprecht@cs.tu-dortmund.de
3 Heart + Lung Institute at St. Paul’s Hospital,

University of British Columbia, Vancouver, BC, Canada

markw@illuminae.com

Scientific workflows are combinations of activities and computations in order to
solve scientific problems. In contrast to, for instance, business workflows that im-
plement business processes involving different persons and information systems,
scientific workflows are used to carry out computational experiments, possibly
confirming or invalidating scientific hypotheses [1]. Scientific workflow systems
[2,3] support and automate the execution of error-prone, repetitive tasks such as
data access, transformation, and analysis. Several systems for different purposes
and following different approaches have been developed in the last decade, and
research in this comparatively new field is currently going into many different
directions.

This ISoLA 2010 special track is devoted to “Tools in Scientific Workflow
Composition”. Its papers comprise subjects such as tools and frameworks for
workflow composition, semantically aware workflow development, and automatic
workflow composition, as well as some case studies, examples, and experiences.
The contributions are primarily from the bioinformatics domain, but do also
contain examples from other (scientific) application domains. One group of con-
tributions presents concrete workflow applications:

– The paper Workflows for Metabolic Flux Analysis: Data Integration
and Human Interaction (Tolga Dalman, Peter Droste, Michael Weitzel,
Wolfgang Wiechert, Katharina Nöh) describes a workflow environment for
13C metabolic flux analysis (MFA) that supports the full cycle of graphical
network modeling, model configuration, simulation, and visualization. This
work puts a strong focus on the integration of interactive steps into the
workflows, since 13C MFA relies on human expert knowledge in several parts
of the analysis process.

– In Intelligent Document Routing in SQL: a Case Study (Carlos
Soares, Miguel Calejo) the authors describe the development of a document-
routing workflow for a large institution. They apply data-mining techniques
to establish correlations between document-content and previous routings,
and then use this knowledge for the routing of new documents. This paper

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 258–260, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Tools in Scientific Workflow Composition 259

describes well the difficulties of a small data mining project and includes the
results of a simple implementation.

– The paper Combining Subgroup Discovery and Permutation Test-
ing to Reduce Redundancy (Jeroen S. de Bruin, Joost Kok) investigates
the benefits of scientific workflows for a genomics experiment that requires
intensive computing and parallelization. The results show that simple work-
flow parallelization can lead to substantial optimizations in rule redundancy
elimination.

Another group of papers within this special track addresses the challenge of
semantically supported workflow design and management. The Semantic Web
[4] aims at thoroughly equipping individual data and services with machine-
processable meta-information in order to simplify the discovery of relevant re-
sources. The usefulness of properly semantically annotated data and services has
been recognized by the life science community earlier than by other application
domains, and thus various projects have made significant progress towards a Se-
mantic Web for bioinformatics [5,6]. Three papers in the track apply semantic
information about types and services for supporting workflow development:

– In Workflow composition and enactment using jORCA (Johan Karls-
son, Victoria Mart́ın-Requena, Javier Rı́os, Oswaldo Trelles) the authors
present the latest improvements to the jORCA system for semantically-
guided workflow construction. Making use of the Magallanes framework,
jORCA is able to automatically or semi-automatically construct complete
workflows given an input and desired output data type. Moreover it is pos-
sible to store and execute the created pipelines of web services. In the dis-
cussion section the authors make some important observations regarding the
applicability of automatic service composition techniques and the structure
and size of required meta-data ontologies.

– The paper Workflow Construction for Service-Oriented Knowledge
Discovery (Vid Podpečan, Monika Žakova, Nada Lavrač) describes a frame-
work for semi-automatic creation of data mining workflows. An existing data-
mining tool suite is made available in a service-oriented fashion using web
services technology, and combined with a knowledge discovery ontology, and
planning and ontological reasoning techniques.

– A comparison between two Taverna plug-ins for semantically-guided service
discovery is given in the paper Semantically-guided Workflow Con-
struction in Taverna: The SADI and BioMoby Plug-ins (David With-
ers, Edward Kawas, Luke McCarthy, Benjamin Vandervalk, Mark Wilkin-
son). The plugins embed a functionality to find suitable successors for work-
flow nodes into the workflow system, chaining tools based on output-input-
type matching.

Finally, the track contains a contribution that is not directly concerned with se-
mantically supported workflow development, but rather with the documentation
and publication of in-silico experiments:

260 J.N. Kok, A.-L. Lamprecht, and M.D. Wilkinson

– A Linked Data Approach to Sharing Workflows and Workflow Re-
sults (Marco Roos, Sean Bechhofer, Jun Zhao, Paolo Missier, David New-
man, Dave de Roure, M. Scott Marshall) identifies the problem of providing
a digital equivalent of the “Materials and Methods” section (as custom in
biological wet lab publications) for bioinformatics publications. The pro-
posed linked-data approach to tackle this problem is based on the idea to
formally describe bioinformatics experiments using workflows, web-based in-
formation repositories, and Semantic Web technology. The authors describe
a prototype end-to-end linked data model for discovering and annotating
workflows, and for capturing and representing provenance information when
those workflows are executed.

We think that the seven papers in this track give a good impression about current
topics in research on scientific workflows. In closing, we would like to thank all
contributors and the conference organizers for their efforts, which made this
special track on “Tools in Scientific Workflow Composition” possible. We hope
that you will enjoy the presentations, the discussions with your colleagues, and
your visit to Crete.

References

1. Ludäscher, B., Weske, M., McPhillips, T., Bowers, S.: Scientific Workflows: Business

as Usual? In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) Business Process

Management. LNCS, vol. 5701, pp. 31–47. Springer, Heidelberg (2009)

2. Ghanem, M., Curcin, V.: Scientific workflow systems - can one size fit all? In: Cairo

International Biomedical Engineering Conference, CIBEC 2008, pp. 1–9 (2008)

3. Zhao, Y., Raicu, I., Foster, I.: Scientific Workflow Systems for 21st Century, New

Bottle or New Wine? In: Proceedings of the 2008 IEEE Congress on Services - Part

I, pp. 467–471. IEEE Computer Society, Los Alamitos (2008)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web - A new form of Web

content that is meaningful to computers will unleash a revolution of new possibilities.

Scientific American 284(5), 34–43 (2001)

5. Cannata, N., Schroder, M., Marangoni, R., Romano, P.: A Semantic Web for bioin-

formatics: goals, tools, systems, applications. BMC Bioinformatics 9(suppl. 4), S1

(2008)

6. Burger, A., Paschke, A., Romano, P., Splendiani, A.: Semantic Web Applications

and Tools for Life Sciences 2008. In: Proc. of 1st Workshop SWAT4LS 2008. CEUR

Workshop Proceedings, Edinburgh, United Kingdom (November 2008)

Workflows for Metabolic Flux Analysis:
Data Integration and Human Interaction

Tolga Dalman, Peter Droste, Michael Weitzel, Wolfgang Wiechert,
and Katharina Nöh

Institute of Biotechnology 2, Forschungszentrum Jülich,

52425 Jülich, Germany

{t.dalman,p.droste,m.weitzel,w.wiechert,k.noeh}@fz-juelich.de

Abstract. Software frameworks implementing scientific workflow ap-

plications have become ubiquitous in many research fields. The most

beneficial advantages of workflow-enabled applications involve automa-

tion of routine operations and distributed computing on heterogeneous

systems. Particular challenges in scientific applications include grid-scale

orchestration of complex tasks with interactive workflows and data man-

agement allowing for integration of heterogeneous data sets.

We present a workflow for the 13C isotope-based Metabolic Flux Anal-

ysis (13C-MFA). The core of any 13C-MFA study is the metabolic net-
work modeling workflow. It consists of sub-tasks involving model set-up

and acquisition of measurement data sets within a graphical environ-

ment, the evaluation of the model equations and, finally, the visualization

of data and simulation results. Human intervention and the integration of

various knowledge and data sources is crucial in each step of the model-

ing workflow. A scientific workflow framework is presented that serves for

organization and automation of complex analysis processes involved in

13C-MFA applications. By encapsulating technical details and avoiding

recurrent issues, sources for errors are minimized, the evaluation proce-

dure for 13C labeling experiments is accelerated and, moreover, becomes

documentable.

Keywords: Scientific Workflows, Human Tasks, Database Integration,

13C-MFA, SOA.

1 Introduction

In recent years, scientific workflows emerged as a key technology in a growing
number of research fields. The most beneficial advantages of workflow-enabled
scientific applications involve automation of routine operations and distributed
computing on heterogeneous systems. Scientific workflow systems have been real-
ized successfully in various research fields [13,7,11,14] and nowadays a plenitude
of successful workflow applications are available [16,12,1]. The diversity of these
examples show: scientific workflow frameworks are inherently domain-dependent.

Current challenges in the workflow field include Grid-scale orchestration of
complex, long-running tasks with interactive workflows. We present an appli-
cation in the field of Metabolic Engineering where all of these challenges need

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 261–275, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

262 T. Dalman et al.

to be addressed. In particular, we show that domain-specific requirements for a
scientific workflow framework managing Metabolic Engineering applications is
of central importance.

1.1 Metabolic Flux Analysis with Labeling Experiments

The major objective in Systems Biology and Metabolic Engineering is to under-
stand complex processes in biological organisms [10,18]. In these research fields
a combination of huge amounts of diverse data, advanced analytical tools, and
the use of mathematical models aims at a targeted in silico design of optimized
cell factories.

The major functional determinants of cell physiology are the in vivo reac-
tion rates, i.e. the velocity in which certain substances are transformed into
another. Thus, the understanding of the microorganisms’ metabolic pathways is
the key for a directed cell engineering towards the next generation of, e.g., high-
performance producing strains. The intracellular reaction rates, however, cannot
be directly observed. Instead, the rates, or synonymously fluxes, have to be in-
directly estimated by a model-based analysis of stable isotope patterns from
carbon labeling experiments, called 13C-Metabolic Flux Analysis (13C-MFA)
[21,26,28].

Fig. 1. Principle of Metabolic Flux Analysis with carbon labeling experiments

Current practice of 13C-MFA involves a variety of steps: post-processing of
measured raw data from labeling experiments, computer-aided knowledge acqui-
sition of metabolic pathways, the employment of sophisticated software tools for
modeling and specially-tailored visualization for the interpretation of analysis
results. A typical workflow can be sketched as follows:

1. In a carbon labeling experiment, living cells are fed with specifically 13C-
labeled substrates. The distribution of labeling patterns within intracellu-
lar metabolites is detected with highly sensitive mass spectrometry devices.
Subsequently, these measurements are post-processed and collected in spread
sheets.

Workflows for Metabolic Flux Analysis 263

2. Organism-specific information about metabolic reactions is acquired from
publicly available resources and expert knowledge. Based on this informa-
tion, a metabolic model is set up.

3. Mass balance equations are automatically generated that describe the metabo-
lites’ labeling patterns in detail. Various in silico methods are utilized to ex-
plore the capabilities of the model for different parameter settings.

4. By comparison of the experimentally acquired measurement data with the
simulated measurement data, the real flux distribution is estimated from an
iterative parameter estimation approach.

The 13C-MFA procedure shown in Fig. 1 is reviewed in more detail elsewhere
[26,28]. In real world applications, this workflow is far from being a straightfor-
ward procedure, but involves many iterative cycles. Thus, a scientific workflow
system organizing 13C-MFA processes in an automated fashion is needed.

1.2 Scientific Workflow Applications in the 13C-MFA Domain

The term scientific workflow emphasizes the extended needs of workflow appli-
cations in the research domain [22]. Contemporary topics closely related to Grid
computing and scientific workflows include:

– Workflow orchestration: a scientific workflow engine is responsible for the in-
vocation and distribution of tasks onto (compute) resources. In the scientific
community, Taverna [7] and Kepler [13] are widely known workflow engines.

– Grid provisioning: on-demand acquisition of Grid resources is a desirable
feature of a scientific workflow framework. Various applications address the
integration of resource provisioning into workflow frameworks [2,14,24].

– Data management : scientific applications often require the handling of large
amounts of data. The integration of scientific data into workflow and Grid
frameworks has been presented in various projects [19,1].

Each scientific domain imposes specific requirements onto a scientific workflow
framework. These non-standard requirements for workflow-enabled 13C-MFA
applications have been identified:

(a) Human interaction: 13C-MFA workflows typically involve manual tasks con-
sciously performed by human experts. The scientific workflow framework
needs to be capable of modeling and integrating human actor steps in an
appropriate way.

(b) Dynamic workflows : because typical 13C-MFA workflows consist of several
steps interconnected by conditional branches and loops, a control-based work-
flow modeling scheme is preferred to solutions with an emphasis on data-
driven workflow modeling [13,20]. The capability of modeling fault handlers
(e.g. automatic retry of failed tasks) is of special interest for large-scale sci-
entific workflows [17,9].

(c) Domain-specific graphical user interfaces: assistance with the modeling pro-
cedure as well as the visualization of simulation results is crucial for user
acceptance and success. Specially tailored techniques emerged in the field of
13C-MFA (cf. Fig. 6 for an example) [5].

264 T. Dalman et al.

The BPEL-based open-source solution ActiveBPEL was elected as control-based
scientific workflow engine, allowing fine-grained modeling of large-scale 13C-MFA
applications. Several valuable ActiveBPEL extensions are readily available, like
legacy code wrapping, fault-tolerant workflow execution and on-demand Grid
integration [8,9,2]. Because BPEL-defined workflows are exposed as web services
in a service-oriented architecture (SOA), 13C-MFA applications can be composed
of reusable sub-workflows.

1.3 Aims of this Contribution

A scientific workflow framework supports users of scientific applications by hid-
ing technical aspects, and thus significantly reduces the complexity of applica-
tions. Even more important, processing steps become reproducible and, in turn
documentable. This contribution focuses on two important aspects in the con-
text of 13C-MFA workflows: data integration and graphical user interfaces. In
Section 2, the modeling and visualization software Omix, the simulation toolbox
13CFLUX2, and the scientific workflow architecture are introduced. Section 3
presents the modeling workflow as application example in detail. For the inte-
gration of existing 13C-MFA software tools into the scientific workflow frame-
work, two aspects of implementation are focused on in detail in Section 4: first,
a plug-in interface for Omix is presented; second, the web service integration
of 13CFLUX2 into the workflow framework is demonstrated by means of the
parameter fitting procedure. Finally, Section 5 concludes this contribution.

2 Ingredients for 13C-MFA

Because the 13C-MFA method is a model-based approach, adequate software
tools supporting the modeling process are required. In the following, a scientific
workflow framework for 13C-MFA applications is presented. This workflow sys-
tem utilizes the graphical model editing and visualization software Omix, and
the high-performance simulation toolbox 13CFLUX2.

2.1 Model Editing and Visualization with Omix

In order to set up models of biochemical organisms in an appropriate way, ex-
pert knowledge is necessary. Therefore, modelers make heavy use of various
knowledge sources, such as published literature and reaction databases. Beside
the modeling process of metabolic networks, the second important task of 13C-
MFA is the visualization of intermediate and final results from experimental
and simulation studies. Omix is a highly sophisticated metabolic network editor
which is developed for modeling and visualization purposes [4]. In Omix, results
from experiment and simulation are displayed in the context of the same graph-
ical network representation. The software is developed in Java using the Jambi
wrapper of the Qt framework for the graphical user interface.

Workflows for Metabolic Flux Analysis 265

2.2 High-Performance Simulation Toolbox: 13CFLUX2

13CFLUX2 is a set of high-performance software programs implementing the
13C-MFA method [25]. 13CFLUX2 consists of about 20 distinct applications
written in C++, Perl and Python. These programs are command-line applica-
tions, which can be categorized as follows:

– Tools for Simulation and Exploration: programs for simulation form the core
of the 13CFLUX2 toolbox. Other tools in this category include Monte Carlo
sampling methods for the characterization of the solution space, flexible pa-
rameterization of system equations and various methods for advanced stoi-
chiometric analysis.

– Tools for Parameter Fitting: based on a model and a set of measurements,
flux parameters are estimated. Different optimization strategies with specific
parameterizations can be selected.

– Tools for Statistical Analysis : linearized statistics tools are implemented here
[27], but also nonlinear Monte Carlo methods are available for estimating
confidence regions of the determined flux parameters. Tools for optimal ex-
perimental design are also included [15].

– Miscellaneous Tools: various tools for data management, consistency check-
ing and conversion are also part of 13CFLUX2.

2.3 Scientific Workflows for 13C-MFA

The scientific workflow framework presented here is a recent development that
aims at the adoption of scientific workflow automation to 13C-MFA applica-
tions. This framework integrates 13CFLUX2, Omix and expert knowledge into
scientific workflow applications.

Many software packages consist of a plenitude of programs, database and user
interfaces usually developed independently. This often results in a heterogeneous
software environment, making automation efforts with workflows difficult to im-
plement. Program interfaces provided by 13CFLUX2 and Omix are designed
for web service extensibility, thus allowing optimal integration into a distributed
environment (cf. Section 4.2). Having set up a 13C-MFA SOA environment, web
service-enabled programs can be orchestrated by a scientific workflow framework.

An overview of the 13C-MFA workflow architecture is depicted in Fig. 2. A
database middleware provides web service access to measurement and reaction
databases (top). Using this middleware interface, 13C-MFA workflows (i.e. mod-
eling, simulation and visualization workflows) can also access public databases,
e.g. KEGG. The simulation workflows (i.e. exploration, parameter fitting and
statistics) are exposed as web and Grid services. With Omix, models for 13C-
MFA simulations are graphically edited and results are visualized (middle, left
to right). Scientific workflows are orchestrated using ActiveBPEL (bottom).

3 Metabolic Reaction Network Modeling Workflow

Having the main ingredients for 13C-MFA introduced, the core modeling work-
flow is selected to demonstrate workflow realization within our scientific workflow

266 T. Dalman et al.

Fig. 2. The general architecture of the scientific workflow system for 13C-MFA. The

building blocks are the scientific workflow system (bottom), applications (middle) and

database middleware (top).

system. The modeling process basically consists of the following four steps (cf.
Fig. 3):

1. Graphical Modeling: biochemical networks are either derived from exist-
ing models or built from scratch. This step not only handles the setup of
the network topology, but also the specification of the carbon atoms’ fates.
Biological knowledge and various information sources are incorporated into
the model, such as published data from literature or public databases.

2. Model Configuration: the network structure is extended by different
classes of stoichiometric equality and inequality constraints. One class sim-
ply restricts the directionality of selected biochemical reactions, other classes
tie together certain reaction rates or limit the range of allowed flux values.

3. Simulation and Evaluation: assuming that the stoichiometric constraints
defined in the previous step are feasible, simulated measurements are ob-
tained from the solution of the model equations. Combining the simulation
results with measurement data obtained from isotope labeling experiments,
the unknown fluxes are then estimated using an iterative, computationally
intensive fitting approach. Subsequently, confidence regions of the estimated
fluxes are derived using statistical methods.

4. Visualization: finally, simulation results are visualized. Therefore, Omix is
employed as a specialized toolkit allowing data visualization in association
with metabolic network diagrams.

Workflows for Metabolic Flux Analysis 267

Fig. 3. A typical 13C-MFA modeling workflow. This workflow consists of the four

steps model editing, configuration, parameter estimation with measurement data and

visualization of simulation results.

The four steps of this workflow are discussed in detail in the following sections.

3.1 Graphical Network Modeling with Omix

An elegant way to prevent technically involved and, thus, error-pronemanual edit-
ing of model description documents is the graphical editing of metabolic network
models. These models are constituted by enzyme-catalyzed biochemical reactions
converting substrate pools to intermediate and product pools. Key properties for
the quantitative understanding of cellular metabolism are absolute metabolite
concentrations and the reaction rates, the fluxes. Both, concentrations and fluxes
are correlated quantities. In a graphical modeling process the modeler inserts pool
and reaction symbols into a diagram and interconnects them with lines (cf. Fig. 4).
The modeled network structure is easy to grasp because of its visual representa-
tion. Hence, errors in the model can be discovered very fast.

Omix mimics the functionality found in other popular vector drawing tools
(see Fig. 5 a)). This warrants intuitive access to the software and eases the
modeling of metabolic networks, even for users having little experience with
computational tools. In principle, there are two ways to set up a network model
in Omix :

(a) The network diagram can be drawn manually bottom up, i.e. every pool and
reaction symbol is drawn individually and the connection lines are inserted
one by one. Typical sources of information are network diagram taken from
scientific publications or expert knowledge.

(b) Network topologies can be imported from already existing files or reaction
databases and merged in whole or in part into the edited document.

268 T. Dalman et al.

Fig. 4. Scheme of a metabolic network model consisting of metabolite pools (A,B,C,D)

converted by biochemical reactions (u,v,p,q)

Both methods can be combined in any order to built up models of metabolic
networks. To accelerate the drawing process, Omix offers several semi-automatic
graph drawing techniques.

An important feature of Omix is that the software is equipped with a plug-
in interface. The utilization of the plug-in interface facilitates the integration
of Omix into the scientific workflow framework. For example, an Omix plug-in
for database connectivity to KEGG1 enables the user to inspect the metabolic
networks provided by the KEGG database, to gather and select network parts
for importing them into the Omix document. The Omix plug-in interface is
described in more detail in Section 4.1.

3.2 Network Model Configuration

An XML-based document format called FluxML was developed for applica-
tions in the 13CFLUX2 environment [25]. Beside network topology informa-
tion, FluxML documents contain full information required for model parameter-
ization including stoichiometric constraints, atom transitions and measurement
specifications.

In order to generate a FluxML document from the drawn network model,
an Omix plug-in manages the import/export of FluxML documents including
a comprehensive validation functionality. Additionally, a network graph is aug-
mented with other essential information:

– atom transitions : carbon atom mappings of each reaction are defined in the
document.

– measurement specification: labeling patterns for input substrates are speci-
fied. In addition, measurement values can be stored.

– constraint and parameter configurations : parameters constraining the net-
work specification and flux parameter values are supplied.

The Omix FluxML plug-in offers dialog windows for editing all of these param-
eters. E.g. atom transitions can be edited graphically using the FluxML plug-in
(cf. Fig. 5 b). Alternatively, parameters are adopted from an imported docu-
ment. Inconsistent parameters or an invalid network topology are rejected by
the validation tool included in the FluxML plug-in.
1 http://www.genome.jp/kegg

Workflows for Metabolic Flux Analysis 269

Fig. 5. Screenshot of Omix — a) The central window component is the drawing area

for network diagrams. Toolbars containing icons around this component make various

editing options available. Sidebars provide information about network properties. b)

Atom transitions of the reactions can be edited graphically with drag and drop.

3.3 Simulation and Evaluation

Given a valid metabolic network model, fluxes can be estimated with 13CFLUX2.
For successful execution of the parameter fitting process, measurements from iso-
tope labeling experiments need to be incorporated into the FluxML document.
Simulation and parameter estimation of high-dimensional and nonlinear 13C-
MFA models are computationally sophisticated procedures (cf. Fig. 1) described
elsewhere [25]. Subsequent to the parameter fitting, a statistical analysis is con-
ducted to identify the determined flux distribution’s certainty. In particular,
confidence intervals of all fluxes are determined.

3.4 Visualization

Simulation results are finally visualized in the Omix network diagram (cf. Fig. 6
for typical flux distribution maps). Visualization in Omix is programmable by
a scripting language called Omix Visualization Language (OVL) and therefore
fully customizable to any user requirement. In particular, OVL allows a fast and
simple access to visual properties of network symbols like color, shape and line
width, just to mention a few. For instance, OVL allows the user to implement
interactive components, to parse data files and to assign data to visual properties
of the network diagram ([4,3]).

Fig. 6 a) shows a network diagram representing the central metabolism of a
microbial organism. The diagram contains metabolite pools and fluxes of central
metabolic pathways connected by arrow-headed lines. If reactions are reversible,

270 T. Dalman et al.

Fig. 6. Visualization in the context of MFA – a) metabolic network diagram with

highlighted pathways (e.g. gluconeogenesis - green, pentose phosphate pathway - or-

ange, citric acid cycle - red etc.); boxes show metabolites; diamond symbols represent

reactions where their color codes for the pathway the reaction is assigned to. b) and

c) show the network in two different levels of detail augmented with flux distribution

data from a 13C-MFA. d) shows the atom transitions of a simple example network

visualized in 3D by the Omix plug-in CumoVis.

i.e. without preferred directionality, this is indicated visually by a double arrow-
headed line. For ease of recognition, biochemical reactions are often grouped
to metabolic pathways. This is indicated by highlighting color strokes in the
background of the pathway.

Because network diagrams can be large and very complex, Omix offers the
option to reduce the level of detail of a network diagram by hiding whole classes
of network components. In the visualization example, flux symbols as well as
pathways are hidden (Fig. 6 b) and all details except pathways are concealed
(Fig. 6 c), respectively.

Beside showing different levels of detail, the network is augmented with data
from the simulation study. In the example, the flux value is mapped to the
width of the connection lines of a reaction: line width indicates the velocity of
the conversion rate (cf. Fig. 6 b). The width of the pathway stroke indicates the
overall activity of reactions in the pathway (cf. Fig. 6 c). A global view of the
carbon flow over the whole network is facilitated utilizing another Omix plug-in
called CumoVis [5] (cf. Fig. 6 d).

4 Implementation Details

Having presented the workflow components for the modeling of a metabolic net-
work, we now focus on two specific integration aspects of Omix and 13CFLUX2
into the scientific workflow framework.

Workflows for Metabolic Flux Analysis 271

4.1 Omix Plug-In Interface

Omix provides an interface which allows to extend the facilities of the software.
This interface is called the Omix API. An Omix plug-in is a Java archive con-
taining Java plug-in code and a specification file. The specification file describes
the plug-in interface in detail, including plug-in name, license information, ver-
sion and type of the plug-in. The following extension types can be realized as
Omix plug-ins:

– Interaction Extension equip the Omix main window with graphical and
interactive components, e.g. with menus or toolbars as document-based or
document independent feature.

– Model I/O File Filters handle file import and export.
– Image Export Filters are used to implement the export of graphics into

various image and animation formats, like SWF.
– Network Communication Protocols implement Internet transfer inter-

faces. For example, the network protocols SSH or SMB are available as web
communication plug-ins.

– Data Type Management for editing plug-in-specific data types, i.e. model
parameters (cf. Section 3.1).

– Plug-in Configuration attach custom configuration window components
to the main configuration manager window of Omix.

An Omix plug-in can realize and combine an arbitrary number of these exten-
sion types. The FluxML plug-in, for instance, realizes an interaction extension and
hereby provides the network validation feature in the menu bar. Simultaneously, it
realizes a network I/O filter and a data type manager for the parameter modeling
feature. The KEGG Database Import likewise implements an interaction exten-
sion using the privilege to establish database connectivity and to compose new
documents in Omix. Because this plug-in interface is well documented any third
party can develop plug-ins in order to extend Omix with specific functionality.

4.2 Web Service Implementation of the Parameter Fitting Program

As a typical 13CFLUX2 program, the parameter estimation program fitfluxes
is chosen to exemplarily demonstrate web service extensibility. This Unix con-
sole application takes several program arguments. For basic functionality, the
following arguments are required to be specified:

-i [file]: input FluxML model
-o [file]: output XML file with estimated flux parameters

Several optional command-line arguments are available, e.g. for tuning the op-
timization procedure:

-O [string]: select optimizer package
-g [string]: select gradient mode

272 T. Dalman et al.

A typical call of fitfluxes is:

fitfluxes -i model.fml -o out.xml -O IPOPT -g analytic

Here, the input (model.fml) and output (out.xml) files are specified, the optimizer
package IPOPT [23] and the analytic gradient mode are used. Converting this
program into a web service is accomplished by wrapping the call by a Java web
service program:

1@WebService ()
2public class FitFluxesWS {
3@WebMethod(operationName = ” f i t f l u x e s ”)
4public int f i t f l u x e s (
5@WebParam(name = ” i n f i l e ”) St r ing fml ,
6@WebParam(name = ” o u t f i l e ”) St r ing fwd ,
7@WebParam(name = ” opt imize r ”) St r ing opt ,
8@WebParam(name = ” grad i ent ”) St r ing grad)
9{
10St r ing f i t f luxesCmd = . . . ; /∗ assemble the command ∗/
11/∗ run f i t f l u x e s ∗/
12prc = Runtime . getRuntime () . exec (f i t f luxesCmd) ;
13/∗ handle f a i l u r e s , proces s r e s u l t s ∗/
14return 0 ;
15}
16}

Listing 1.1. Java web service definition for fitfluxes

Being an illustrative example for wrapping existing command-line programs with
web services, the general procedure imposes several limitations:

– The web service is assumed to share a common networking file system. How-
ever, in a real world Grid environment, this is typically not the case. Thus,
data exchange has to be modeled as well.

– A web service wrapper for each 13CFLUX2 program needs to be imple-
mented. This manual procedure is an inflexible, laborious and, hence, error-
prone procedure.

– Unix I/O streams need to be modeled as well. For example, 13CFLUX2
programs write error logging messages to the standard error stream.

Several solutions for wrapping legacy application code into a SOA are available,
e.g. GEMLCA, Soaplab or GMS [22]. The Legacy Code Description Language
(LCDL) is elected, because 13CFLUX2 programs can be intuitively modeled as
web services in the scientific workflow framework in a graphical manner [8]. In
LCDL, web service interfaces are designed graphically using the Eclipse Model-
ing Framework. Data transfer between LCDL-generated web services is realized
with the Flex-SwA middleware [6]. With LCDL and Flex-SwA, the integration of

Workflows for Metabolic Flux Analysis 273

existing 13CFLUX2 programs into the scientific workflow architecture is easily
possible.

5 Conclusions

In the contribution we sketched the implementation of the metabolic network
modeling workflow within our scientific workflow framework. The modeling work-
flow basically consists of the following four interlinked steps: (1) visual modeling
of a metabolic reaction network, (2) mathematical modeling of reactions, atom
transitions and biochemical constraints, (3) evaluation of experimental data sets,
i.e. the estimation of model parameters, and (4) visualization of temporary and
final results. Data integration and dynamic human tasks are involved in all steps
of the 13C-MFA workflow.

The presented scientific workflow framework approaches the integration of
human tasks and knowledge sources by recombining well-established software
tools. While leaving the core software untouched, Omix was extended by a flex-
ible plug-in interface, allowing user-oriented integration of scientific knowledge
sources. The integration of the high-performance simulation toolbox 13CFLUX2
into a SOA was performed by wrapping each program with a simple web ser-
vice interface. Thus, these programs are seamlessly integrated into the workflow
framework, allowing an intuitive usage of scientific 13C-MFA applications. The
graphical web service modeling framework LCDL and the Flex-SwA data ex-
change middleware are used for the integration of 13CFLUX2 programs into
a SOA environment. These tools have been proven to work well together in
combination with the workflow orchestration software ActiveBPEL [8,2].

The presented modeling workflow was implemented aiming at liberating sci-
entists from organizational and recurring tasks. Basic knowledge acquisition,
routine data conversion and processing steps are handled by the scientific work-
flow framework. This software-aided treatment not only reduces complexity of
13C-MFA applications, but also helps to avoid manual errors. The major aim
of the scientific workflow framework is automation and, in turn, acceleration of
the overall processing time. At the end, this paves the way for a reproducible
handling of higher-throughput data.

Future work in this area includes the implementation of a 13C-MFA database
system, offering models, experimental data and simulation results. Major chal-
lenges for a 13C-MFA database middleware are user management and access
control. After augmenting all 13CFLUX2 programs with web service function-
ality, the development of further 13C-MFA scientific workflows with automation
and Grid provisioning can be easily achieved.

Acknowledgments. We would like to thank Ernst Juhnke, Tim Dörnemann
and Bernd Freisleben (Dept. of Mathematics and Computer Science, University
of Marburg) for their support with LCDL, Flex-SwA and ActiveBPEL. We thank
Tobias Vehrkamp for implementing the KEGG plug-in.

274 T. Dalman et al.

References

1. Barseghian, D., Altintas, I., Jones, M.B., Crawl, D., Potter, N., Gallagher, J.,

Cornillon, P., Schildhauer, M., Borer, E.T., Seabloom, E.W., Hosseini, P.R.: Work-

flows and extensions to the kepler scientific workflow system to support environ-

mental sensor data access and analysis. Ecological Informatics 5(1), 42–50 (2010)

2. Dörnemann, T., Juhnke, E., Freisleben, B.: On-Demand Resource Provisioning for

BPEL Workflows Using Amazon’s Elastic Compute Cloud. In: Proceedings of the

9th IEEE/ACM International Symposium on Cluster Computing and the Grid

(CCGrid 2009), pp. 140–147. IEEE Press, Los Alamitos (2009)

3. Droste, P., von Lieres, E., Wiechert, W., Nöh, K.: Customizable Visualization

on Demand for Hierarchically Organized Information in Biochemical Networks.

In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares,

J.M.R.S. (eds.) CompIMAGE 2010. LNCS, vol. 6026, pp. 163–174. Springer, Hei-

delberg (2010)

4. Droste, P., Noack, S., Nöh, K., Wiechert, W.: Customizable Visualization of Multi-

omics Data in the Context of Biochemical Networks, pp. 21–25. IEEE Computer

Society, Los Alamitos (2009)

5. Droste, P., Weitzel, M., Wiechert, W.: Visual exploration of isotope labeling net-

works in 3D. Bioprocess and Biosystems Engineering 31, 227–239 (2007)

6. Heinzl, S., Mathes, M., Friese, T., Smith, M., Freisleben, B.: Flex-SwA: Flexible

Exchange of Binary Data Based on SOAP Messages with Attachments. In: Proc.

of the IEEE International Conference on Web Services, Chicago, USA, pp. 3–10.

IEEE Press, Los Alamitos (2006)

7. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.:

Taverna: a tool for building and running workflows of services. Nucleic Acids Re-

search 34, 729–732 (2006)

8. Juhnke, E., Seiler, D., Stadelmann, T., Dörnemann, T., Freisleben, B.: LCDL: An

Extensible Framework for Wrapping Legacy Code. In: Proceedings of ERPAS 2009,

pp. 646–650 (2009)

9. Juhnke, E., Dörnemann, T., Freisleben, B.: Fault-Tolerant BPEL Workflow Execu-

tion via Cloud-Aware Recovery Policies. In: Software Engineering And Advanced

Applications, SEAA 2009, pp. 31–38 (2009)

10. Kitano, H.: Systems Biology: A Brief Overview. Science 295(5560), 1662–1664

(2002)

11. Lamprecht, A.L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-

based service composition. BMC Bioinformatics 10(suppl. 10), S8 (2009)

12. Lamprecht, A.L., Margaria, T., Steffen, B., Sczyrba, A., Hartmeier, S., Giegerich,

R.: GeneFisher-P: variations of GeneFisher as processes in Bio-jETI. BMC Bioin-

formatics 9(suppl. 4), S13 (2008)

13. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,

E.A., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system.

Concurrency and Computation: Practice and Experience 18(10), 1039–1065 (2006)

14. Mietzner, R., Karastoyanova, D., Leymann, F.: Business Grid: Combining Web

Services and the Grid. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions

on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 136–151.

Springer, Heidelberg (2009)

15. Möllney, M., Wiechert, W., Kownatzki, D., de Graaf, A.A.: Bidirectional reaction

steps in metabolic networks,: Optimal design of isotopomer labeling experiments.

Biotechnology and Bioengineering 66(2), 86–103 (1999)

Workflows for Metabolic Flux Analysis 275

16. Neuweger, H., Albaum, S.P., Dondrup, M., Persicke, M., Watt, T., Niehaus, K.,

Stoye, J., Goesmann, A.: Meltdb: a software platform for the analysis and integra-

tion of metabolomics experiment data. Bioinformatics 24(23), 2726–2732 (2008)

17. Ngu, A.H., Bowers, S., Haasch, N., Mcphillips, T., Critchlow, T.: Flexible Scien-

tific Workflow Modeling Using Frames, Templates, and Dynamic Embedding. In:

Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 566–572.

Springer, Heidelberg (2008)

18. Nielsen, J., Jewett, M.C.: Impact of systems biology on metabolic engineering of

Saccharomyces cerevisiae. FEMS Yeast Research 8(1), 122–131 (2008)

19. Shoshani, A., Rotem, D.: Scientific Data Management: Challenges, Technology,

and Deployment. Chapman & Hall/CRC (2009)

20. Tan, W., Missier, P., Foster, I., Madduri, R., De Roure, D., Goble, C.: A Com-

parison of Using Taverna and BPEL in Building Scientific Workflows: the case of

caGrid. Concurr. Comput.: Pract. Exper. 22(9), 1098–1117 (2010)

21. Tang, Y.J., Martin, H.G., Myers, S., Rodriguez, S., Baidoo, E.E.K., Keasling, J.D.:

Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass

Spectrometry Reviews 28(2), 362–375 (2009)

22. Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science:

Scientific Workflows for Grids. Springer, New York (2006)

23. Wächter, A.: An Interior Point Algorithm for Large-Scale Nonlinear Optimization

with Applications in Process Engineering. Ph.D. thesis, Carnegie Mellon University

(2002)

24. Wang, J., Crawl, D., Altintas, I.: Kepler + Hadoop: A General Architecture Fa-

cilitating Data-Intensive Applications in Scientific Workflow Systems. In: WORKS

2009: Proceedings of the 4th Workshop on Workflows in Support of Large-Scale

Science, pp. 1–8. ACM, New York (2009)

25. Weitzel, M.: High Performance Algorithms for Metabolic Flux Analysis. Ph.D.

thesis, University of Siegen, Germany (2009)

26. Wiechert, W.: 13C Metabolic Flux Analysis. Metababolic Engineering 3(3), 195–

206 (2001)

27. Wiechert, W., Siefke, C., de Graaf, A.A., Marx, A.: Bidirectional reaction steps in

metabolic networks, Part II: Flux estimation and statistical analysis. Biotechnology

and Bioengineering 55(1), 118–135 (1997)

28. Zamboni, N., Fendt, S.M., Rühl, M., Sauer, U.: 13C-based metabolic flux analysis.

Nature Protocols 4(6), 878–892 (2009)

Intelligent Document Routing as a First Step
towards Workflow Automation: A Case Study

Implemented in SQL

Carlos Soares1,2 and Miguel Calejo3,4

1 LIAAD-INESC Porto LA, Univ. of Porto, R. Ceuta, 118, 6.,

4050-190 Porto, Portugal
2 Faculdade de Economia, Universidade do Porto

3 Declarativa
4 Information Systems Department, Universidade do Minho, Portugal

csoares@fep.up.pt, mc@declarativa.pt

http://www.declarativa.pt/

Abstract. In large and complex organizations, the development of work-

flow automation projects is hard. In some cases, a first important step in

that direction is the automation of the routing of incoming documents.

In this paper, we describe a project to develop a system for the first

routing of incoming letters to the right department within a large, pub-

lic portuguese institution. We followed a data mining approach, where

data representing previous routings were analyzed to obtain a model

that can be used to route future documents. The approach followed was

strongly influenced by some of the limitations imposed by the customer:

the budget available was small and the solution should be developed in

SQL to facilitate integration with the existing system. The system de-

veloped was able to obtain satisfactory results. However, as in any Data

Mining project, most of the effort was dedicated to activities other than

modelling (e.g., data preparation), which means that there is still plenty

of room for improvement.

1 Introduction

In spite of the maturity of Information Systems (IS) and the central role that
they play in organizations today, they have not eliminated the need for paper
[7]. In fact, in many cases they have increased the amount of paper circulat-
ing within and between organizations. In many cases, they have also failed to
improve the efficiency of the processes of organizations. The area of workflow au-
tomation addresses these problems. Its goal is “to automate business processes
by coordinating and controlling the flow of work and information between par-
ticipants” in those processes [7]. Note that the term “participants” includes not
only members of the organization but also external partners (e.g., customers and
suppliers).

The automation of workflows cannot be achieved simply by installing some
software for that purpose. Most of the time, it requires managerial changes which

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 276–284, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Intelligent Document Routing as a First Step towards Workflow Automation 277

are difficult. The difficulties in making these changes (or, alternatively, ignoring
the need to make them) increases the probability of failure of workflow automa-
tion projects [7], especially in large and complex organizations.

An easier task is the elimination of paper. Many public and private institutions
have significantly reduced the amount of paper in their operations, particularly
for internal documents. Elimination of external documents, both incoming and
outgoing, is harder (e.g., authentication). However, having documents in digital
form does not eliminate the need to route them to the right people who can
process them. This issue is particularly important in the moment that exter-
nal documents enter the organization. Sending a document to the wrong person
will delay its processing, reducing the efficiency of the organization and pos-
sibly causing inconveniences to their customers, suppliers and other partners.
However, given that the documents are in digital form, it is possible to develop
software to automate the process of routing them [5,3]. In many cases, this is a
first step towards workflow automation that raises less resistance while enabling
important gains in the efficiency and efficacy of the processes of the organization.

Our case study is concerned with routing of incoming documents in a large
public institution. This institution has a document management system. When
documents arrive, they are digitized and inserted into this system by a human
operator. This operator then routes the document to one of the many depart-
ments of the institution. The document may require further routings within the
same department or to different departments. However, the first routing is criti-
cal because it is done by an operator who is moderately skilled and may forward
the document incorrectly, which reduces the efficiency of the organization, as dis-
cussed earlier. Further routings are typically done by employees who are more
familiar with the process that the document is associated with and, thus, have
less probability of error. Additionally, the operator must read the document,
even if superficially. In an institution with a large volume of correspondence, the
amount of effort required for this operation is significant.

This project addresses the problem of providing automatic support to the
first routing with the goal of making it a more efficient and eventually less error-
prone process. The aim is to develop a model to make recommendations to the
operator concerning where to route the document to. We note that the routing is
not fully automatic, as the operator is always given the possibility to override it.

A data mining approach is followed. Historical data of previously made rout-
ings are used to obtain a model that relates characteristics of documents to
their destination. However, this project was shaped by important constraints.
Firstly, the budget is rather small. Only a few persons/days are available. Due
to the uncertain nature of data mining projects, which will only be successful if
the data available contains the necessary information, this kind of short-term,
preliminary study is becoming increasingly popular, possibly also due to the cur-
rent economical context. A second constraint is technical. Although the project
could be developed with any tool, the solution must be easy to integrate into
the software. Ideally, it should be in SQL, as this is the main technology of the
workflow and document management software used by this institution.

278 C. Soares and M. Calejo

In the remainder of the paper we describe the project, loosely following the
CRISP-DM methodology, which was, again loosely, followed in this project [1].
In Section 2 we describe the business and data understanding phases. Next,
we discuss the preprocessing operations required to prepare the data for min-
ing (Section 3). In Section 4 we describe the modelling phase as well as the
results, and the implementation is described in Section 5. We finish with some
conclusions in Section 6.

2 Business and Data Understanding

It is well known that these two phases are essential to the success of a data
mining project [1,4]. If they are not given sufficient attention, the user may end
up looking for the answers to the wrong questions. Therefore, they usually take
a significant amount of the time allocated to DM projects. However, due to
the small size of the project described here, a very limited amount of time was
dedicated to them. Essentially, the activities carried out were:

– a couple of initial meetings to specify the problem and establish the goals,
– reading software documentation, focusing particularly on the description of

the schema of the database that contains the data to be used in the project,
and

– a few dozen emails and phone calls to clarify remaining issues.

One important issue is that it was not possible, due to the constraints of the
project, to quantify business or data mining goals. There was a common agree-
ment regarding the impossibility of doing so in a short project. Therefore, it
was decided to establish the following objectives: simply prove that it is possible
to implement a feasible solution for the problem, technically and in terms of
the quality of the routings recommended by the model (i.e., the model is doing
better than a suitable baseline).

As mentioned earlier, the model was obtained using historical data. This data
was available in a database that supports the document management system
of the organization. It contains more than 20 tables, storing information about
more than 600,000 documents. Much of the information in this database is not
relevant for this work, so the first step was to identify relevant information.

In particular, the database may contain many routings for each document.
Since the object of analysis in this project is the first routing of a document, the
relevant subset of routings was determined. This is not as easy as it may seem
due to issue concerning the schema of the database. Thus, given the limited
time available and the complexity of the database, it was very important to
do this phase in very close collaboration with both the domain experts and
the developers of the software. After a few attempts it was decided that the
developers of the software should provide a query to identify the set of first
routings. The complexity of the database is illustrated by the fact that this
query combined data from five different tables.

No matter how carefully this step is carried out, there is a high probability
that the set of objects selected for analysis is incorrect, either because it contains

Intelligent Document Routing as a First Step towards Workflow Automation 279

Table 1. Number of documents in the various iterations of the process

Iteration Number of documents

0 (original database) 621,587

1 116,757

2 153,614

2 (containing references to legislation) 15,331

objects which should not be selected or because it is missing some which should
have been selected. This project was no exception to this rule. The first definition
of first routings given by the domain experts was incorrect. This problem was
identified after some time and a new query was provided representing the correct
definition. As expected by the domain experts, the selection of first routings for
analysis significantly reduced the number of documents to be handled in the
project (Table 1). The results presented here refer to the second iteration, except
when stated otherwise.

Due to the large number of tables in the database and the complexity of its
organization, it was important to identify a small number of variables that are
expected to contain information that is useful in predicting the first routing
of a document. According to the domain experts, two types of information are
expected to be useful:

references to legislation the documents contain references to laws and other
kinds of official documents. These references tend to contain a lot of informa-
tion about the subject of the document and, consequently, about who should
process it. Recently the document management software was enhanced with
capabilities to detect these references, so they can be used as predictors of
the routing destination.

subject the subject of the document is also expected to contain information
about its purpose. However, as it is free text, it is much noisier.

By focusing on these variables, we were able to add only one more table as
a source of data. As can be seen in Table 1, given that the identification of
references to legislation is quite recent, the number of documents for analysis is
significantly reduced. On the other hand, given the limited time available, the
analysis based on the subject was only carried out with the documents selected
in the first iteration (i.e., with the earliest definition of first routing which ended
up to be incorrect).

Finally, the target variable was identified as the department where the doc-
ument was first routed to. To determine the target variable it was necessary
to use three more tables. This means that only nine of the tables were used in
total. This reduction in the number of tables that must be dealt with is essen-
tial in a small project such as this one. This is unike what would happen in a
larger project. In the latter case, the focus would be on using as much useful
information as possible, requiring much more work to collect it.

280 C. Soares and M. Calejo

3 Preprocessing and Exploratory Data Analysis

After selecting the data it is very important to get familiar with it and also to
prepare it for the modeling phase. Therefore a significant proportion of project
time was dedicated to this task. One particularly important goal of this phase is
to assess the quality of the data and, if necessary, correct it. The exploration of
the data typically consists of generating a large number of statistics and plots
and then analyzing more carefully the most relevant observations. Here we will
discuss only a few of the observations made.

Data exploration is usually done using a sample of the data. However, the
limited time available for the project forced us to work with the full data imme-
diately. This raised important challenges in terms of the computational efficiency
of the tools, which must be very high.

Table 2 shows some basic statistics. As can be observed, only 20 of the 56
departments have 100 or more routings. This means that for the majority of
the departments (36), the number of documents available to identify routing
patterns is very small. Therefore, using the current set of data, it is expected to
be very difficult to obtain accurate routing models for these departments.

Besides the target variable, it is also very important to explore the infor-
mation in the predictor (independent) variables. Some statistics concerning the
references to legislation in the documents are presented in Tables 3 and 4.

Note that, as stated earlier, the number of documents that are represented
in the database having references to legislation is very small because this fun-
cionality was implemented only very recently.

Several data quality problems were identified in this analysis. Table 3 illus-
trates one of them: there are three documents with almost more than 100 ref-
erences to legislation. This may be due to errors in the automatic process of
identifying those references. Even if it is not, these documents represent out-
liers, which may affect the models obtained.

Table 2. Class frequency: number of departments with the given number of first

routings

Routed documents Departments

1 or more 56

20 or more 35

100 or more 20

Table 3. Frequency of references to legislation per document: number of documents

with the number of references indicated

Number of references to legislation Documents

1 7,266

10 or more 669

100 or more 3

Intelligent Document Routing as a First Step towards Workflow Automation 281

Table 4. Documents per law (or other official document): number of laws referred in

the given number of documents

Number of documents Number of laws (or other official document)

1 or more 8,779

50 or more 149

100 or more 59

Given the similarities of this problem with the document classification prob-
lem, the representation of the documents was based on the bag-of-words concept
[6], as is usual in text mining and information retrieval. Each document is, thus,
represented as a binary vector. Each element of a vector represents a law (or
other official document) or, in the second type of predictor variables, a term in
the subject. The binary vector represent the presence or absence of the refer-
ence/term in the document.

4 Modeling and Results

According to the domain experts, in many cases, the references to legislation
determined the department to which the document should be routed. Therefore,
we started with a very simple mode based on conditional probability tables, as
follows:

pi,j = p(depi|refj) (1)

in which depi is the department i and refj is law (or official document) j. A
routing rule is created for each pi,j > t, where t is a given threshold. This
rule means that a document containing a reference to refj should be routed to
department di.

Therefore, for each new document, the routing rules that apply are determined
given the references to legislation in that document. This process may yield the
following outcomes:

unique routing the applicable rule(s) route the document to a single depart-
ment. In this case, a routing to that department is recommended.

conflict several rules apply and some point to different departments. In this
case, a meta-rule to solve these conflicts is necessary. This could be, for in-
stance, the department, among those that are recommended, with the high-
est prior probability, p(i), or the routing suggested by the routing with the
highest probability.

no routing none of the rules apply. In this case, it is necessary to have a default
routing (i.e., the department with the highest prior probability, p(i)), the
operator is asked to do the routing manually or rules with a probability
smaller than the established threshold t could be applied.

A suitable methodology is required in order to evaluate the model. In this case,
a hold-out strategy was followed. The set of documents was split into two sub-
sets, training and test, with approximately 70% and 30% of the documents,
respectively. Table 5 presents the results on the test set.

282 C. Soares and M. Calejo

Table 5. Results obtained with the routing rules

number of documents 4,600 (30%)

unique routing 1,080 (24%)

accuracy of unique routing 67%

conflicts 77

Besides this approach, which was only tried with references to legislation, a
series of other common machine learning and statistical algorithms were also
tested with the two representations (references to legislation and subject), in-
cluding naive Bayes, decision trees, support vector machines and random forests.
However, no significant improvements were obtained and the computational cost
was much higher. Additionally, their integration with the document management
system was technically more complex.

5 Implementation

During the development of the project, the following tools were used:

– SQL Server Express 2005 running on an HP server
– R 2.9.0 on a Macbook with an Intel Core duo 2 GHz, 4G of memory and

running Mac OS X (10.4)
– SQL Server Management Studio Express on HP Compaq 8000 Intel Core

duo 2 GHz, 4G of memory and running Windows XP
– SQL Server Management Studio Express on HP running Windows XP

One of the constraints of the project, as mentioned earlier, was to implement
the solution in SQL. This implementation proved to be quite easy, involving:

– 2 new tables
– 3 views for modeling
– 7 views for recommendation

The solution proved also to be quite efficient. Execution on the system indicated
above took less than 10 minutes, including the time to build the dataset from
the set of original 600,000 documents.

We note that the deployment phase is critical in most data mining projects.
Many projects with good modeling results fail because the solution developed is
not adequately integrated in the existing information systems. This helps explain
our concern with the technical restrictions of the project.

6 Conclusions and Future Work

This paper described a small project to develop a system for supporting docu-
ment routing in a public institution, more specifically, the recommendation of

Intelligent Document Routing as a First Step towards Workflow Automation 283

the right department within the institution of which incoming correspondence
should be sent.

A data mining approach was followed, where data representing previous rout-
ings were analyzed to obtain a model that can be used to route future documents.
The approach followed was largely influenced by some of the limitations imposed
by the customer: the budget available was quite small and a SQL-based solution
was required, to facilitate integration with the existing system. A very simple
solution was devised and successfully deployed.

The work carried out is summarized in Table 6.

Table 6. Summary of results

Documents

All 621,587

Selected 15,331

Test 4,600

Training 10,731

Departments (target variable)

All 56

With 100 or more documents 20

Representation binary (bag-of-words style)

Experimental methodology hold-out 70/30

Algorithm simple conditional probabilities

Results

routed documents 1,080 (24%)

... with accuracy 67%

conflicts 77 (2%)

From an implementation perspective, the project was a success: the solution
was easily integrated with the existing system and it is very computationally
efficient. In terms of the quality of the recommendations, the results were as
satisfactory as could be expected from a project with such strong limitations,
mainly in terms of human resources. Some of the data preparation and modeling
issues that should be addressed in a follow-up project are:

– explore the database further, in order to identify more variables with pre-
dictive ability;

– address the problem of unbalanced class distribution [2];
– complete the data cleaning step, namely by assessing how the quality of the

routings in the data (i.e., are all routings represented in the data correct);
– explore other document classification approaches [6].

In terms of implementation, further work is equally necessary. First of all, it is
necessary to implement a maintenance mechanism. This implies recording every
recommendation made by the model and the routing made by the operator,
if the recommendation is not followed. This information, together with further

284 C. Soares and M. Calejo

routing data, can be used to monitor the quality of the model. Additionally, it
would be interesting to test the data mining primitives that are implemented in
SQL Server.

This work is also a first step in the development of a workflow automation sys-
tem for the organization. The success of the solution described here is expected
to make people more open to a larger workflow automation project, which will
probably imply some changes to their work processes.

This project also raises some interesting issues concerning the development
of low-budget data mining projects. The first one concerns the methodology.
CRISP-DM is designed for medium to large-scale projects. It is flexible enough to
be adapted for smaller projects, as shown here. However, it would be important
to have a simplified version of the methodology, which helps the data miner focus
on the essentials. Three issues we found very important are:

customer participation it is essential that the customer has some experience
on participation in data mining projects. If there is some knowledge of data
mining in the customer, this is even better.

data readiness if the previous item is true, then it should be possible that the
customer may provide you with a version of the data which is almost ready
for data mining. This means, representing the correct population of objects
to be analyzed, including the most important predictor variables and being
minimally clean. The effort required to make the data ready for the data
mining tools should be minimal.

experimental setup readiness after the preparation of the data, as described
in the previous issue, modeling should mostly consist of pushing a button and
then analyzing results. The issue of efficiency of the tools is very important
in this context as well. We observed that database management systems
(DBMS) are one possibility that should be considered.

References

1. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth,

R.: CRISP-DM 1.0: Step-by-Step Data Mining Guide. In: SPSS (2000)

2. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from

imbalanced data sets. SIGKDD Explor. Newsl. 6(1), 1–6 (2004)

3. Cheng, I., Srinivasan, S., Boyette, N.: Exploiting XML technologies for intelligent

document routing. In: DocEng 2005: Proceedings of the 2005 ACM Symposium on

Document Engineering, pp. 26–28. ACM, New York (2005)

4. Frawley, W.J., Piatetsky-Shapiro, G., Matheus, C.J.: Knowledge discovery in

databases: an overview. AI Mag. 13(3), 57–70 (1992)

5. Krishna, V., Deshpande, P.M., Srinivasan, S.: Towards smarter documents. In:

CIKM 2004: Proceedings of the Thirteenth ACM International Conference on In-

formation and Knowledge Management, pp. 634–641. ACM, New York (2004)

6. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput.

Surv. 34(1), 1–47 (2002)

7. Stohr, E.A., Zhao, J.L.: Workflow automation: Overview and research issues. Infor-

mation Systems Frontiers 3(3), 281–296 (2001)

Combining Subgroup Discovery and Permutation
Testing to Reduce Reduncancy

Jeroen S. de Bruin1,2 and Joost N. Kok1

1 LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
2 LUMC, Biomolecular Mass Spectrometry unit, Department of Parasitology, Einthovenweg

20, Postbus 9600, 2300 RC Leiden, The Netherlands

Abstract. Scientific workflows are becoming more popular in the research com-
munity, due to their ease of creation and use, and because of the benefits of
repeatability of such workflows. In this paper we investigate the benefits of work-
flows in a genomics experiment which requires intensive computing as well as
parallelization, and show that substantial optimizations in rule redundancy reduc-
tion can be achieved by simple workflow parallelization.

1 Introduction

Over the past few years, scientific workflows became a popular topic of research, es-
pecially in areas that deal with computationally-intensive, repetitive processes such as
genomics and proteomics. We define a workflow as a collection of components and
relations among them, together constituting a process. Components in a workflow are
entities of processing or data. They are connected by relations, which can either be data
transport entities that connects inputs and outputs from one component to another, or
control flow entities that impose conditions on the execution of a component.

Due to the increased popularity of workflows, workflow editors and frameworks have
become increasingly popular over the last few years, since they enable a scientist to
graphically construct a process of interconnected building blocks, allowing for easier
experiment design and easier use of distributed resources. Taverna [17] is an example
of a workflow designer that allows for easy creation of workflows, possibly with remote
resources.

When performing experiments within the fields of genomics or proteomics, e.g. mi-
croarray or SNP experiments for gene expression, or FTICR protein identification ex-
periments, the outcome is usually an identifier of a gene or peptide accompanied by a
certain score or indication of likelyhood. Interpreting such a list is often hard, some-
times because of the sheer number of the identifiers, or because relations between iden-
tifiers are not so clear or straightforward.

A way to make relations between concepts or identifiers more clear is through the
use of ontologies. An ontology, as seen in information science, is the hierarchical struc-
turing of knowledge about things by subcategorizing them according to their essential
(or at least relevant and/or cognitive) qualities [19]. Over time, many efforts have been
made by the computer science community together with the bio-informatics community
to create ontologies in order to have a common reasoning platform [3,18].

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 285–300, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

286 J.S. de Bruin and J.N. Kok

When generating rules from a ranked list of identifiers, the rules usually reflect the
ranking. It is therefore good practise, where possible, to make sure that the ranking is
correct (or at least plausible), and to make sure that rules generated and reported are
specific to that ranking, and not a product of randomness or chance, which can some-
times occur. We can do this by using a variation on Fisher’s Exact Test [8,9], which
generates permutations of the original input. By generating permutations of a ranked
list, one can check if these permutations generate similar rules. If so, then the rules be-
come less important and interesting, for they are not specific to the original ranking.

We propose a service called Fantom that uses ontologies to uncover and clarify rela-
tions between identifiers in an experiment. The service mines all interesting subgroups
and describes them by a conjunction of ontological predicates. The service is designed
in a generic way so that we can apply it in a variety of fields. As input, it uses a set of
identifiers coupled to a set of scores and allowed ontological predicates. As output, it
presents the user with a set of rules and an appreciation of those rules in the form of a
score measure. Furthermore, we also apply input permutation to the rules generated in
Fantom to improve rule pruning and threshold selection.

This paper is organized as follows. In Section 2, we will discuss work related to
our Fantom approach, and discuss various knowledge sources that are used in Fantom
as well. In Section 3, we will discuss Fantom itself, providing a detailed overview of
inputs and outputs, rule generation and rule pruning algorithms. In Section 4, we dis-
cuss exact testing with Fantom on a single-class problem, generating a rule list with
rules unique to the original permutation. We also discuss exact testing with Fantom
for multi-class problems, whereby different groups of identifiers are compared to each
other. We explain the difference with the normal experimental setup, provide detailed
workflows, and present the algorithm behind automatic thresholding of different rule
participants. In Section 5, we present experimental results on both variations using a
gene expression dataset. Finally, in Section 6 we present some conclusions and future
work.

2 Related Work

In this section we present work related to the Fantom service, as well as work related to
structured knowledge sources, knowledge mappings and other sources of information
used in Fantom.

2.1 Ontologies

Due to the increased focus on data mining with ontologies, related technologies such
as representations of ontologies, description logic and ontology reasoning have been
given much attention as well. Currently, there is a wide range of (ontology) description
languages available, and each of them has their own specific role. For representation
of ontology elements and data, usually a form of the XML is applied, sometimes to-
gether with the Resource Description Framework (RDF) [25]. For representation of
relations among the data elements and extensions to allow reasoning over these entity-
relationship models, currently the Web Ontology Language (OWL) [26] and the older

Combining Subgroup Discovery and Permutation Testing to Reduce Reduncancy 287

F-Logic [4] are commonly used. Within bio-informatics, the Gene Ontology (GO) [3]
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) [18] are widely known.
A good overview of ontology languages is provided in [21].

2.2 Annotations and Mappings

Within Fantom we use ontological terms as rule predicates. This would not be possible
if a mapping that associates or correlates an element with one or more ontology terms
was not available. In the field of bio-informatics, there are many identifiers that can
be used in genomics and proteomics [15,20,16,27] and they are usually accompanied
by mappings between those identifiers and ontologies, or those identifiers and other
identifiers.

Fantom provides an option to generate interaction association rules. By using a data
source that states interactions between identifiers, Fantom can uncover patterns that
describe these indirect relations. These interaction patterns have the form of ”interacts
with (rule)”. In genomics, interactions can for example be obtained from the GeneRIF
project [5] and Reactome [24].

2.3 Related Algorithms

The Fantom algorithm is based on the SEGS algorithm described in [22] and its predeces-
sor [23]. While SEGS uses a similar method to Fantom, it is restricted to only one entry
per (sub)ontology, is tailored specifically to microarray experiments, and does not prune
rules that provide redundant information, nor does it provide clustering of similar rules.

In [14] subgroups are matched to a subset of GO terms in a probabilistic way,
which induces a greater portion of error and false discoveries than an exhaustive search
through the search-space. The GOEAST [28] algorithm also checks for gene enrich-
ment in GO terms, but only checks for a single GO term, and takes as input raw mi-
croarray data, which again restricts its applicability.

Another tool that mines gene lists is DAVID [12], the Database for Annotation, Visu-
alization and Integrated Discovery. Its functionality is similar to Fantom: it can classify
large gene lists into functional related gene groups by relating them to ontologies (so far
only the GO ontology was seen in the outputs), rank the importance of the discovered
gene groups and summarize the major biology of the discovered gene groups. It also
has capabilities to visualize genes and their functional annotations in a group.

The main difference is that DAVID does not allow for scored lists of genes. It solely
acts on the genes that are entered in a list, and thus treats each gene as equally im-
portant. Furthermore, the number of genes allowed to experiment on is restricted to
3000, which is not much considering microarray experiments can easily comprise tens
of thousands of genes. Furthermore, rule mining based on interaction associations is
not available, and clusterering is done by using fuzzy heuristic partitioning instead of
a similarity measurement. Finally, DAVID is not available as a web service but as a
website, making it more complex to integrate in modern workflow designer tools.

A lot of work has also been done on scoring functions. Typically, there is not just one
scoring function that is considered the best, it all depends on what research is being con-
ducted and what properties are considered interesting. In the case of Fantom, the aim

288 J.S. de Bruin and J.N. Kok

is to have a score for a subset of elements from a ranking of identifiers and scores; the
group score is thus dependent on the score of individual elements. In bio-informatics,
well-known algorithms that perform this kind of scoring are found in [10,13].

3 The Fantom Service

Fantom is a service that relates subgroups of identifiers to ontological knowledge that
these subgroups have in common, or to ontological descriptions of identifier groups
that they interact with. It takes as input a set of identifiers and their scores, background
knowledge in the form of ontologies, mappings and interaction data, a scoring function,
and thresholds for rule generation, and through rule generation and pruning delivers a
non-redundant set of rules that describe subgroups of the input set. In this section we
will discuss the most important aspects of Fantom, such as the ontologies, mapping,
output, scoring, rule generation and rule pruning.

3.1 Ontologies

The Fantom service aims to find groups of identifiers that relate to a conjunction of
terms within an established knowledge base. We use ontologies as that knowledge base.
An ontology is a hierarchical structuring of knowledge, whereby broader, more general
terms form the root of the ontology, and subsequent specifications and differentiations
of those root terms form the children. We call these ontological terms concepts.

In the ontologies used in Fantom we place a restriction, namely that they must be
organized in a directed acyclic graph, whereby each connection between concepts has
a specialization (”is a”) or aggregation (”part of”) relationship.

3.2 Mapping

Mappings and interactions are used to relate identifiers to associated concepts, or to re-
late identifiers to other identifiers. In the Fantom service we strive to keep one identifier
class central, and use mappings to map the central class to other classes, and vice versa.
For example, in case of our bio-informatics experiments, we keep mappings of EN-
TREZ [15] gene identifiers to ontologies like GO and KEGG, and use mappings from
SYMBOL [27] to ENTREZ in order to translate the input ranking and output rules. The
same is true for interaction definitions; all interaction between genes that were found in
[5] and Reactome [24] are expressed by ENTREZ identifiers.

3.3 Scoring

The scoring functions are those functions that take as input a subset of identifiers cor-
responding to a rule along with their individual scores, and have as output a single
numeric value indicating the interestingness of the rule, a value that lies between 0 and
1, 0 being most uninteresting and 1 being most interesting. By default, the Enrichment
Score (ES) function [10] is selected, which calculates the score of a subgroup based on
the score of its individual members as well as the members not in the subgroup.

Combining Subgroup Discovery and Permutation Testing to Reduce Reduncancy 289

Despite the fact that this measurement was devised to express the interestingness of
gene sets, we think that it is in no way restricted to that purpose. We argue that any
ranked set with a individual scores that indicate correlation or effect with respect to a
certain experiment can be used in this scoring measurement.

3.4 Output

As output, Fantom generates a text file that contains all the rules that remain after prun-
ing. Furthermore, rules with the same subset of identifiers are clustered together, im-
proving readability. An example rule looks like this:

Rule 1
Score: 0,761
Participants: [Epha1, Epha2, Epha8, Ephb2, Ephb3, Ephb4]

All genes in the subgroup
have the following properties:
molecular_function(protein tyrosine kinase activity),
molecular_function(ATP binding),
biological_process(protein amino acid phosphorylation),
biological_process(tyrosine kinase signaling pathway),
KEGG_pathway(Axon guidance)

The example rule describes a certain subgroup containing the genes Epha1, Epha2,
Epha8, Ephb2, Ephb3, Ephb4 and relates them to GO and KEGG terms, a process we
call Knowledge Fitting. By relating subgroups of the input to established knowledge
sources, we strive to increase the interpretability of knowledge.

3.5 Rule Generation

Rule generation in the Fantom service is based on the Apriori algorithm, which is fre-
quently used in itemset mining [1] and refined many times since its conception [11,6].
Within the Fantom service, the algorithm repeatedly executes three stages: candidate
generation, candidate appreciation and candidate pruning. A central structure that man-
ages rules in all these procedures is the SubsetCollection structure, which provides
methods for inserting, retrieving and discarding rules.

A rule is a data structure with two lists; one list contains the identifiers that partic-
ipate iin the rule, while the second list contains the ontological concepts that form the
rule. Rule generation proceeds on the basis of subset combination; two rules that con-
tain a conjunction of m concepts are combined with each other to form a rule that has
a conjunction of m + 1 concepts. However, if the two concepts that are combined are
hierarchically related, then the combination is invalidated, and the rule is discarded.

3.6 Rule Pruning

Rule pruning is done to make sure only the most interesting rules are reported back
once the experiment is over, to make sure redundant information is left out, but also

290 J.S. de Bruin and J.N. Kok

to minimize the amount of rules generated in the experiment. Within each stage, rule
pruning is done in three phases. First, rules generated and appreciated in the previous
two phases are now compared to the input constraints; all rules whose number of par-
ticipants do not satisfy the support or score constraints are pruned. The remainder will
be inserted in the SubsetCollection structure, where further pruning will take place.

Within the SubsetCollection structure, pruning proceeds in a bi-dimensional way,
hence we called it Bi-Cohortal Pruning. First we prune the rules in a horizontal cohort,
comparing rules of the same dimensionality (by dimensionality we mean the number of
concepts that an rule contains). The remaining rules are inserted one by one.

For every rule containing m > 1 ontological concepts, m subgroups are created. For
each subgroup, the rule is compared to other rules of the same dimensionality for re-
dundant knowledge, checking whether their differentiating concepts (the two concepts
these rules do not have in common) are related. If this is the case, and the score of the
more specific rule is higher than or equal to the score of the more general one, then the
more general rule is discarded as a rule (but is still kept for future rule generation, and
inserted in all the subgroups it belongs to).

After pruning of the horizontal cohort has finished, pruning of the longitudinal cohort
commences. The remainder of the still valid rules of dimensionality m are compared
to those of dimensionality 1...m− 1, since rules of dimensionality m are more specific
than rules of a lesser dimensionality, and can thus render those rules obsolete. To this
end, all subsets of dimensionality 1...m − 1 are generated from each remaining rule of
dimensionality m, and these are subgroups are compared to in the subset collection by
comparing them to related entries in the castable of their respective dimensionality.

4 Exact Testing for Pruning and Optimization

In this section we discuss exact testing with Fantom to optimize pruning and automatic
optimal theshold determination through the use of workflows and paralellism that are
inherent to the workflows.

4.1 Exact Testing: Single-Class Pruning Optimization

In this variant of Fantom, we use the Fantom algorithm repeatedly to generate rules
from multiple identifier lists. One list is the original ranking, which reflects the origi-
nal experiment data, and the other lists are the results of permutations of that data or
ranking. It is up to the experimenter to create those permutations, although we created
a permutation algorithm for microarray expression data.

Exact testing for single-class pruning is a three-stage process, as shown in Figure 1.
In the first stage, input permutations are generated. The output of this phase, a set of
ranked lists, will be presented to the second stage, along with the original ranked list.

The second stage is the concurrent execution of the Fantom service on all ranked lists
generated in phase one. Depending on how many permutations have been generated, all
or a portion of the permutations are processed on the dedicated Fantom services, until
all permutations have been processed. The resulting rules are then forwarded to the final
phase.

Combining Subgroup Discovery and Permutation Testing to Reduce Reduncancy 291

Fig. 1. Workflow for single-class exact optimization

In the third and final phase, the output is gathered and combined. First, the rules gen-
erated on the original input, from here on called the original rule set, are loaded into
the system. After that, the rules generated on the permutations are loaded and compared
to the original rule set. If there are any rules more specific than or equal to rules in the
original rule set, and with a higher or equal score, then those rules in the original rule
set are pruned.

4.2 Exact Testing: Multi-class Threshold Optimization

Fantom can also be used to perform multi-class comparison problems. The goal of these
kinds of problems is to investigate what a specific group of the identifiers belonging to
the interest class have in common, opposed to the rest of the identifiers belonging to the
control class, which serve as contrast information to the interest class. When generating
rules, subgroup rules that contain many identifiers in the interest class and few in the
control class gain a higher score.

As an example of this kind of experiment, let us consider a wine comparison prob-
lem. Suppose we have a list of wines, all with unique identifiers, and we want to in-
vestigate what the 10 most popular wines have in common according to a certain wine
ontology, for example the one described in the OWL documentation [26]. We would
label the popular wines with ClassInterest, and the rest with ClassControl. When
running Fantom, the service will strive to find all the rules that describe subgroups of
the interest class, considering the control class purely as contrast information used in

292 J.S. de Bruin and J.N. Kok

the score measurement of the rules. Experiments of these kind are usually shorter and
faster in Fantom, since the support threshold only applies to the interest class.

An interesting question here is: if we set specific thresholds on the interest group and
control group, for what thresholds would we find the most interesting set of rules? To
this end, a so-called Permutation Counting Matrix (PCM) was implemented.

A PCM is a structure that registers how many rules in the experiment apply to
various threshold boundaries. On both axes, threshold boundaries are represented in
percentages.

On the horizontal axis, also called the max threshold axis, the control group is
represented. Each threshold on this axes represents the percentage of identifiers in the
entire control ranking that a rule can have at maximum. Note that if a rule satisfies a
certain threshold x on a matrix of resolution n ≥ x, then it satisfies all subsequent
thresholds x + 1, . . . , n.

On the vertical axis, which is called the min threshold axis, the interest group is
represented. In this case, each threshold represents the percentage of identifiers in the
entire interest ranking that a rule can have at minimum. This implies that if a rule satis-
fies a certain threshold x on a matrix, then it satisfies all previous thresholds 1, . . . , x.

Consider PCM A below, which has a resolution of m · n, whereby m represents the
min threshold resolution, and n is the max threshold resolution.

A =

⎛
⎜⎜⎜⎝

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

⎞
⎟⎟⎟⎠

According to the properties discussed above, am,n ≥ am,n−1 ≥ . . . ≥ am,1, and
a1,n ≥ a2,n ≥ . . . ≥ am,n. This implies that the rules with potentially best scores
have a high m index, while the n index is low, ultimately making am,1 a heaven point,
containing rules that describe many interest group identifiers, while none or very little
of the control group. However, these rules might not be the most interesting ones, if
they are also generated in other experiments.

We can use the structure above to determine optimal threshold settings for interest
and control classes, by using exact testing. With optimal, we mean threshold settings
that have the most differential value for the original input with respect to the permuta-
tions. To calculate these settings, we again generate permutations on the original input.
After that we generate the original PCM, and permutation PCMs for each of the per-
muted rankings. Finally, we subtract the permutation PCMs from the original one, and
prune the rules of the original matrix simultaneously. The optimal thresholds are indi-
cated by the matrix element with the highest value, and the ruleset returned are the rules
adhering to those thresholds.

A workflow of multi-class exact testing is shown in Figure 2. As can be seen, phases
one and two are the same, only phase three differs. Not only pruning takes place here,
but also recombination of PCMs, and determination of the optimal class thresholds.

Combining Subgroup Discovery and Permutation Testing to Reduce Reduncancy 293

Fig. 2. Workflow for multi-class exact optimization

5 Experimental Results

In this section we discuss the experimental results of the two versions of exact test-
ing with Fantom. We applied both versions on the AML vs. ALL publicly available
microarray data set that compares gene expression profiles of AML and ALL [2], and
present statistics on run times, pruning and parallelism.

Before we discuss the different experiments we will first provide a basic description
of that data set. In the ALL vs. AML microarray data set, there are a total of 7, 129
probes, and 72 measurements per probe, 25 for AML patients, 47 for ALL. Mapping
from probes to ENTREZ gene identifiers was performed with the Hu6800 annotations
supplied by Affymetrix, and after elimination of probes that have no gene association
or multiple ones, 5, 445 unique genes remained. To normalize the raw data, we used
Quantile normalization again [7]. Rankings are obtained by performing t-value calcu-
lation with the Student’s t-test between groups labelled with AML and ALL.

For the remainder of this section, all experiments were carried out on one or multiple
machines all with the same configuration, namely an Intel Core Duo 2 times 2 GHz,
with 4 GB of RAM.

5.1 Exact Testing: Single-Class Pruning

Single-class pruning is a process of three phases: permutation generation, rule discov-
ery, and rule pruning. In the first phase of our experiments, permutations were gener-
ated from the microarray data set by swapping labels. By generating permutations in
this way, instead of modifying values in the ranked list, we ensure that dependencies

294 J.S. de Bruin and J.N. Kok

between genes are preserved. Since there are 72 labels to consider, the total number of
unique permutations would be:

72!
25!·47! = 1.53 ∗ 1019

Since this number exceeded our computational resources, which were limited to 16
computers in parallel, we generated 15 random permutations for each experiment, and
ran all 16 simultaneously. We performed two different experiments, one generating
rules that associates ontological concepts directly with genes, and another that uses the
interaction option, indirectly associating genes with ontological terms through interac-
tion with other genes. For each of these types, we performed three different experiments
with low, medium, and high thresholds. To generate as many experiments as possible,
we modified Fantom so that it will only allow at most one concept for each predicate per
rule. Both the GO and KEGG ontologies were used which resulted in rules containing
a maximum of four predicates.

Since interaction experiments are far more intensive in terms of computation and
data access, a normal, unbiased way of experimentation resulted in a rule explosion that
was unfeasible to be evaluated by experts. This is due to the interaction data, which
documented many interactions, and thus many genes were associated to each ontolog-
ical term. As a result, we had to insert a bias, declaring a list of genes that had to be
in the rules. In our case, we declared this list to be the top 200 and bottom 200 genes,
which are most differentially expressed. The participation threshold then only applies
to the biased part instead of the entire ranking. This way, we avoided rule explosion
at the cost of exhaustiveness. However, since the genes in the list were already at the
top of the ranking, rules that could be found without a bias were likely to have a low
interestingness. Note that due to the identifier association explosion, thresholds in the
interaction experiments are still high in terms of participation.

First let us consider speed results of the experiments, shown in Table 1. We outlined
several statistics for each configuration, such as participation threshold P , minimum
interestingness score I , average completion time of the original input TO in minutes
(m) and seconds (s), lowest completion time of a permutation min(TPe), highest com-
pletion time of a permutation max(TPe), average completion time of permutations
avg(TPe), and overhead of exact rule pruning TPr, which is the time of pruning the
original rules by evaluating the outcome of the permutations. Note that for direct as-
sociation experiments, all values are the averages of 20 runs, where in each run we

Table 1. Exact test pruning benchmarks

Profile P I TO min(TPe) max(TPe) avg(TPe) TPr

Direct 8 0.40 2m 1m58s 2m 2m 5m41s
Direct 10 0.50 1m47s 1m41s 1m48s 1m44s 3m47s
Direct 12 0.70 1m23s 1m11s 1m26s 1m18s 18s

Interaction 60 0.35 233m05s 203m31s 222m18s 210m14s 17m41s
Interaction 75 0.40 149m51s 134m32s 148m22s 146m12s 10m11s
Interaction 80 0.50 129m50s 119m11s 131m27s 124m34s 1m27s

Combining Subgroup Discovery and Permutation Testing to Reduce Reduncancy 295

Table 2. Exact test pruning results

Profile P I RO min(RPe) max(RPe) avg(RPe) avg(RPr)
Direct 8 0.40 2,964 2,625 2,815 2,762 224
Direct 10 0.50 1,252 539 775 681 95
Direct 12 0.70 27 0 6 4 3

Interaction 60 0.35 26,212 17,544 21,996 20,112 1,766
Interaction 75 0.40 13,612 5,344 11,278 9,775 728
Interaction 80 0.50 4 0 2 1 0

generated different random permutations. Since interaction association experiments
took much longer, all values of those experiments are the averages of 10 runs.

As can be seen in Table 1, interaction association experiments are much more data
and processing intensive, yet exact pruning overhead increases much less dramatically.
This is because options in interaction association experiments contain many genes asso-
ciated to them, which makes the calculation of the maximum ES score very expensive.
Exact pruning is only dependent on the number of rules in the original rule set and those
of the permutations, which increase less dramatic.

Another observation is that execution times tend to increase exponentially with even
a minor change in threshold setting, thus starting out with a high threshold and then
moving to lower ones seems like the best strategy to apply.

A final observation is that rule generation times do not seem to differ much between
the original input and the permutations, although experiments with permutations do
seem to consistently take less time. This is because in some permutations very few
rules could be generated with the given thresholds, sometimes even none, which re-
duces experiment times significantly.

Now let us consider pruning results of the experiments, shown in Table 2. We again
outline several measurements for each configuration, such as the number of rules gen-
erated in the original input RO, the minimum number of rules generated in the per-
mutations min(RPe), the maximum number of rules generated in the permutations
max(RPe), the average number of rules generated in the permutations avg(RPe), and
the average number of rules pruned from the original set avg(RPr).

As expected, we can see in Table 2 that permutations structurally yield less rules,
which explains the shorter experiment time. Pruning statistics do not differ much be-
tween direct and interaction association experiments, if we consider the last measure-
ment an outlier. In both direct and interaction association experiments, higher settings
result in relatively better pruning; at low settings around 6–7% of the original rules
get pruned, while in higher settings this is as much as 11% (an interaction association
experiment with a slightly less high setting resulted in pruning of about 10%).

5.2 Exact Testing: Multi-class Threshold Optimization

In multi-class experiments we investigate what the interest class or classes have in com-
mon with each other, or how they differ with respect to the rest of the identifiers that are

296 J.S. de Bruin and J.N. Kok

outside these classes. In our experiments we labelled all genes with a t-value of more
than 0.5 as interesting, and compared this group against the rest of the genes in the in-
put. Thus instead of the whole group of 5, 445 genes to be considered, the interest group
now contained only 662 genes, while the rest was merely there for scoring purposes.

Participation thresholds in these experiments kept very low, since we want to un-
cover the optimal thresholds for which to return rules for to the user. Setting thresholds
too high could interfere with this process, and yield a suboptimal result. Note that all
participation thresholds set above now hold for the interest group instead of the whole
ranking. This has implications for the permutations generated, since there have to be
at least that many genes in the interest group to generate any rules at all. Therefore,
a bit of bias in the permutations cannot be avoided, and thus we cannot speak of true
randomness.

Once again we consider speed results of the experiments, which are shown in Table 3.
All measured statistics and repetitive settings were kept the same as in Section 5.1.

Table 3. Exact test multi-class pruning benchmarks

Profile P I TO min(TPe) max(TPe) avg(TPe) TPr

Direct 4 0.40 1m19s 1m12s 1m19sm 1m4s 8s
Direct 4 0.50 1m14s 1m8s 1m12s 1m11s 7s
Direct 4 0.70 1m7s 1m2s 1m10s 1m6s 5s

Interaction 30 0.35 610m05s 418m12s 584m12s 556m59s 44s
Interaction 30 0.50 608m33s 432m32s 600m17s 541m51s 32s
Interaction 30 0.60 605m41s 444m21s 567m22s 554m22s 11s

As can be seen in Table 3, compared to the single-class experiments, these experi-
ments take less time for the direct associations, but more time for the interaction asso-
ciations. This is due to the fact that direct association experiments are not negatively
influenced as much by a lower threshold as interaction association experiments are. In
interaction associations, groups in rules tend to experience an explosive growth, and
this gets worse when lower thresholds are allowed.

Another observation is that experiment times seem to be rather constant. This is
not surprising, since the experimental participation threshold was kept constant, and
Fantom’s pruning effect can really be seen in later stages of rule generation. Since we
modified Fantom to only allow one ontological concept per predicate, those later stages
never appear, and thus pruning on the basis of Enrichment Scoring is minimal.

Finally, it seems that pruning takes a very short time, indicating that there were few
rules that could be used for pruning. This could either be because few rules were gen-
erated, or that the rules that were generated had a lower score than the original rules
generated.

Now let us consider the pruning results, shown below in Table 4. Note that all de-
scriptors are the same as in Table 2, with the addition of ROpt, which is the resulting
number of rules after pruning.

As can be seen, rule generation fluctuates more between the different thresholds
than in a single-class experiment, but on the optimized thresholds the end result yields

Combining Subgroup Discovery and Permutation Testing to Reduce Reduncancy 297

Table 4. Exact test multi-class pruning results

Profile P I RO ROpt min(RPe) max(RPe) avg(RPe) avg(RPr)
Direct 4 0.40 1,182 638 0 5 3 2
Direct 4 0.50 946 524 0 3 2 0
Direct 4 0.70 436 227 0 1 1 0

Interaction 30 0.35 171,071 21,349 1,325 1,833 1,411 21
Interaction 30 0.50 11,113 4,453 0 121 32 8
Interaction 30 0.60 1 1 0 1 0 0

a pruning optimization in rules of 60 to 90 percent. The fact that initially more rules are
generated is due to the lower thresholds.

We also see that again permutations do not yield many rules, and as a result additional
exact pruning also has very little result. This is due to the design of the experiment. We
set the threshold for over-expression to a t-value of 0.5. However, when generation
permutations of the class labels, we influenced the t-values of the permutations, and
thereby the ranking. There were less permutations that had sufficient genes with a t-
value over 0.5, and when they did it was usually just barely over this threshold. Hence,
permutations structurally yield less rules.

Another reason why pruning yields so little result is because of the low thresholds.
Rules with small subgroups often contain very specific rules with high scores. In per-
mutations, other genes are bound to be in the interest sets, yielding rules that are more
specific in other parts of the ontology. As a result, these rules cannot be used to prune
the original ones since they are not related to these rules.

6 Conclusions and Future Work

In this paper we discussed a subgroup discovery service called Fantom that finds sub-
groups given a set of weighed elements. We explained the technologies behind the al-
gorithm, its data sources, and its way of combining that data to generate comprehensive
patterns that are tailored to the expert knowledge of the researcher. We also showed how
the service could be embedded in workflows to perform two ways of exact testing in
order to prune Fantom outputs even further, and to optimize participation thresholds in
case of a multi-class problem. We described how through a variation on Fisher’s Exact
Test we could prune more rules additional to the standard Fantom pruning algorithms,
by generating permutations on the rankings. We also showed that with permutation test-
ing we could find optimal participation thresholds for multi-class problems, as well as
use the exact pruning method on it, but with less effect.

In single-class problems, both direct association and interaction association experi-
ments had benefit from exact pruning, ranging from 6% with low thresholds to about
10% when thresholds are set high. A reason for this difference is that at high settings,
there are not many rules, so if one does get pruned, the impact is much higher than on
lower settings, where the impact is less. Therefore we predict that an overall perfor-
mance of this algorithm is to prune about 6–8% of the rules.

298 J.S. de Bruin and J.N. Kok

In terms of performance, exact pruning on single-class problems is especially worth-
while in interaction association problems. Where in direct-association problems the
overhead is sometimes grave in relative terms, e.g., more than 200%, it is relatively low
for interaction association experiments, where the experiments themselves can some-
times take hours. Overall, overhead on interaction association experiments was between
1–7%, which was much better compared to the direct association experiments.

In multi-class problems, experimental time was more or less constant if the partic-
ipation threshold was fixed, since pruning had minimal effect for rule generation for
small collections of rule concepts. Since exact pruning had little effect, those pruning
overheads were significantly lower for direct association experiments as well, between
7–10% of the experiment time. Overhead for the interaction association experiments
was almost negligible.

Pruning due to optimized constraints of the rules yielded good results in both direct
and interaction association experiments. For direct associations, pruning varied between
45–50% of the rules generated. For interaction associations, this number was higher,
pruning from 65% to as much as 88% of the rules. Usually the optimal participation
thresholds were greater than the minimum we applied, meaning that we could do these
experiments faster with the same result. Exact pruning had almost no effect on both
data sets, due to the experimental design and the fact that low thresholds create highly
specific rules with high scores, which are unlikely to be pruned by rules generated from
a permutation on the class labels, since that can modify the ranking profoundly.

Finally, we would like to discuss future work. Apart from pruning with exact tests,
p-values for resulting rules could also be established with some modifications to the
algorithm, although that would require more permutations than the 15 we generated.
These p-values could give an even better indication on how special a specific rule is.

For multi-class problems, we kept the number of classes to two for now, but there
are many problems that deal with more than two classes, so one interesting question is
how to deal with those. Furthermore, we created a matrix based on participation thresh-
olds. It would be interesting to see if the optimized rules would differ much when we
optimize on the basis of score thresholds, or a mixture between score and participation.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in
large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, pp. 207–216. ACM Press, New York (1993)

2. Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R., den Boer, M.L., Minden, M.D.,
Sallan, S.E., Lander, E.S., Golub, T.R., Korsmeyer, S.J.: MLL translocations specify a dis-
tinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30, 41–47
(2002)

3. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,
Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis,
A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.:
Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat.
Genet. 25(1), 25–29 (2000)

4. Balaban, M.: The F-logic Approach for Description Languages. Annals of Mathematics and
Artificial Intelligence 15, 19–60 (1995)

Combining Subgroup Discovery and Permutation Testing to Reduce Reduncancy 299

5. for Biotechnology Information, N.C.: GeneRIF – Gene Reference Into Functions (2009),
http://www.ncbi.nlm.nih.gov/projects/GeneRIF/

6. Bodon, F.: A fast apriori implementation. In: FIMI 2003, Frequent Itemset Mining Imple-
mentations, Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Imple-
mentations (2003)

7. Bolstad, B.M., Irizarry, R.A., Astrand, M., Speed, T.P.: A comparison of normalization meth-
ods for high density oligonucleotide array data based on variance and bias. Bioinformat-
ics 19(2), 185–193 (2003)

8. Fisher, R.A.: On the interpretation of χ2 from contingency tables, and the calculation of p.
Journal of the Royal Statistical Society 85(1), 87–94 (1922)

9. Fisher, R.: Statistical methods for research workers, 13th edn. Biological monographs and
manuals, vol. 5. Oliver and Boyd (1967)

10. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller,
H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular
classification of cancer: Class discovery and class prediction by gene expression monitoring.
Science 286(5439), 531–537 (1999)

11. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: SIGMOD
Conference, pp. 1–12. ACM, New York (2000)

12. Huang, D., Sherman, B., Tan, Q., Collins, J., Alvord, W.G., Roayaei, J., Stephens, R., Baseler,
M., Lane, H.C., Lempicki, R.: The DAVID gene functional classification tool: A novel bio-
logical module-centric algorithm to functionally analyze large gene lists. Genome Biology
8(9), R183+ (2007)

13. Leung, E., Bushel, P.R.: PAGE: phase-shifted analysis of gene expression. Bioinformat-
ics 22(3), 367–368 (2006)

14. Lu, Y., Rosenfeld, R., Simon, I., Nau, G.J., Bar-Joseph, Z.: A probabilistic generative model
for go enrichment analysis. Nucl. Acids Res., 434+ (2008)

15. Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez gene: gene-centered information at
ncbi. Nucleic Acids Res. 33(Database issue) (2005)

16. Mao, X., Cai, T., Olyarchuk, J.G.G., Wei, L.: Automated genome annotation and path-
way identification using the kegg orthology (ko) as a controlled vocabulary. Bioinformat-
ics 21(19), 3787–3793 (2005)

17. MyGrid: Taverna workbench 2.0 (2008), http://taverna.sourceforge.net/
18. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: KEGG: Kyoto ency-

clopedia of genes and genomes. Nucleic Acids Res. 27(1), 29–34 (1999)
19. Online, C.D.: Ontology definition in information science (2007),

http://www.computer-dictionary-online.org/
ontology.htm?q=ontology

20. Pruitt, K.D., Tatusova, T., Maglott, D.R.: Ncbi reference sequences (refseq): A curated
non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res.
35(Database issue), D61–D65 (2007)

21. Todorova, C., Stefanov, K.: Selection and use of domain ontologies in learning networks for
lifelong competence development. In: Proceedings of the 2006 International Workshop on
Learning Networks for Lifelong Competence Development, pp. 11–17. Springer, Heidelberg
(2006)

22. Trajkovski, I., Lavrač, N., Tolar, J.: Segs: Search for enriched gene sets in microarray data.
J. Biomed. Inform., 588–601 (2007)

23. Trajkovski, I., Zelezný, F., Tolar, J., Lavrac, N.: Relational subgroup discovery for descriptive
analysis of microarray data. In: R. Berthold, M., Glen, R.C., Fischer, I. (eds.) CompLife 2006.
LNCS (LNBI), vol. 4216, pp. 86–96. Springer, Heidelberg (2006)

http://www.ncbi.nlm.nih.gov/projects/GeneRIF/
http://taverna.sourceforge.net/
http://www.computer-dictionary-online.org/ontology.htm?q=ontology
http://www.computer-dictionary-online.org/ontology.htm?q=ontology

300 J.S. de Bruin and J.N. Kok

24. Vastrik, I., D’Eustachio, P., Schmidt, E., Joshi-Tope, G., Gopinath, G., Croft, D., de Bono, B.,
Gillespie, M., Jassal, B., Lewis, S., Matthews, L., Wu, G., Birney, E., Stein, L.: Reactome: A
knowledgebase of biological pathways and processes. Genome Biology 8, 39+ (2007)

25. W3C, T.W.W.W.C.: Resource description framework, rdf (2004),
http://www.w3.org/RDF/

26. W3C, T.W.W.W.C.: Web ontology language, OWL (2004),
http://www.w3.org/2004/OWL/

27. Wain, H.M., Lush, M., Ducluzeau, F., Povey, S.: Genew: The human gene nomenclature
database. Nucleic Acids Research 30(3), 169–171 (2002)

28. Zheng, Q., Wang, X.J.J.: GOEAST: A web-based software toolkit for gene ontology enrich-
ment analysis. Nucleic Acids Research, 358–363 (2008)

http://www.w3.org/RDF/
http://www.w3.org/2004/OWL/

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 301–312, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Semantically-Guided
Workflow Construction in Taverna:

The SADI and BioMoby Plug-Ins

David Withers, Edward Kawas, Luke McCarthy, Benjamin Vandervalk,
and Mark Wilkinson

Heart + Lung Institute at St. Paul’s Hospital,
University of British Columbia, Vancouver, BC, Canada

markw@illuminae.com

Abstract. In the Taverna workflow design and enactment tool, users often find
it difficult to both manually discover a service or workflow fragment that
executes a desired operation on a piece of data (both semantically and syntacti-
cally), and correctly connect that service into the workflow such that appropri-
ate connections are made between input and output data elements. The
BioMoby project, and its successor the SADI project, embed semantics into
their data-structures in an attempt to make the purpose and functionality of a
Web Service more computable, and thereby facilitate service discovery during
workflow construction. In this article, we compare and contrast the functional-
ity of the BioMoby and SADI plug-ins to Taverna, with a particular focus on
how they attempt to simplify workflow synthesis by end-users. We then com-
pare these functionalities with other workflow-like clients we (and others) have
created for the BioMoby and SADI systems, discuss the limitations to manual
workflow synthesis, and contrast these with the opportunities we have found for
fully automated workflow synthesis using the semantics of SADI.

Keywords: Semantic Web, Web Services, SADI, BioMoby, Taverna,
workflow.

1 Introduction

Biology is increasingly becoming an in silico science, largely as a result of the rapid
advance of high-throughput technologies for DNA sequencing, protein analysis, gene
expression, metabolic profiling, and genotyping. Many studies currently being under-
taken in bio/medicine require access to, integration of, and analysis of some or all of
these data types. The scale, scope, and complexity of these analyses makes the tradi-
tional approach of copy/pasting data into Web pages untenable, and thus has led to the
emergence of Workflows as a primary “object” in modern biology [1]. This shift
from manual Web-based analysis to semi- or fully-automated analytical pipelines has
been mirrored by the concomitant emergence of software and community support for
this new in silico paradigm.

302 D. Withers et al.

For non-coders, workflow design and enactment software makes it possible to con-
duct the kinds of high-throughput analyses that were formerly the exclusive domain
of bioinformatics professionals. Moreover, emergent public workflow repositories
like myExperiment [2] will increasingly play a role in supporting workflow construc-
tion by end-users - either through reuse, extension, or re-purposing of other research-
ers workflows [3]. Nevertheless, recent studies [4, 5, 6] have demonstrated that
end-user biologists continue to have problems constructing useful or functional work-
flows, even when presented with existing scaffolds or templates. This is, at least in
part, due to the difficulty of manually discovering a service or workflow fragment that
does what is necessary, and correctly integrating that service into the workflow, both
syntactically and semantically.

Taverna is a general-purpose workflow design tool designed to manage most “fla-
vours” of Web Service (CGI, SOAP, BioMoby, etc.), and handle data flow related to
any domain of investigation [7]. This broad support is important given that many
biomedical investigations require access to various types of biological and chemical
data, pathway data, and statistical algorithms; however it comes at a cost of complex-
ity – that is, the number of Web Services available in the default Taverna interface is
already on the order of 3000 or more, and adding additional service endpoints is
straightforward. This makes Taverna distinct from some other workflow tools in the
bioinformatics space (for example, GenePattern [8]), where the available services are
pre-screened and pre-selected by the software designers to solve specific problems,
and therefore only number in the tens or hundreds of services. Consequently, how-
ever, Taverna suffers an embarrassment of riches, or more precisely, the end-users of
Taverna “suffer” when they must identify and chose the service they require from a
vast myriad of options at any given point in workflow construction.

One of the earliest examples of semantically-supported Web Service discovery was
exhibited by the TAMBIS (Transparent Access to Multiple Bioinformatics Informa-
tion Sources) project [9]. Since then, a wide variety of initiatives have taken similar
approaches to improving service discovery (three early high-profile projects are re-
viewed in Lord et al. [10]). The common thread between all of them is that their
individual service registries contain semantic information beyond that provided by the
Service’s WSDL file. Here we are going to compare and contrast only two of these –
BioMoby [11], and the SADI Framework [12] – since both of these Semantic Web
Service frameworks have created plug-ins to Taverna that leverage the additional
semantic search power of their respective registries.

In the remainder of this article we will first briefly describe the BioMoby and SADI
Semantic Web Service frameworks. We will then describe the functionality of their
respective plug-ins to Taverna, and discuss how the nature of their support for Web Ser-
vice discovery differs. Finally, we compare these functionalities with other workflow-
like clients we (and others) have created for the BioMoby and SADI systems, discuss the
limitations to manual workflow synthesis, and contrast these with the opportunities we
have found for fully automated workflow synthesis using the semantics of SADI.

2 BioMoby Semantic Web Services

BioMoby was initiated in 2001 from within the model organism database community.
It aimed to standardize methodologies to facilitate interoperable information exchange

 Semantically-Guided Workflow Construction in Taverna 303

and access to analytical resources by creating a community-built and community-
curated ontology of bioinformatics data-types and analytical operations.

The key to BioMoby’s interoperable behaviours was its invention of a ‘boutique’
syntax in the form of an ontology-based XML schema – an instance of any ontological
node had a specific and predictable XML representation that could be automatically
determined by traversing the ontology. Thus machines could receive information of
an unknown type, and determine not only its XML structure, but also the “meaning”
of every sub-structure, by referring to the BioMoby data-type ontology. All BioMoby-
compliant Web Services consumed and produced data in this boutique XML schema,
thus services consuming ontologically-compatible data-types were, by definition,
interoperable (at least syntactically, and to a large degree semantically).

Service discovery in Moby is accomplished through querying a centralized registry
(“Moby Central”) where Services are indexed by ontology-based input data-type,
ontology-based output data-type, a controlled vocabulary of service functionality
types, and by service provider identification. It is important to emphasize that Moby
Central, like traditional Web Services registries, indexes the input and output data-
types as “globs” of data - effectively, a reference to an XML schema - and therefore
does not explicitly expose the finer sub-structure of the data1. This observation is
critical to understanding the contrast between BioMoby and the SADI framework
described in section 3.

Despite being key to interoperability, the BioMoby data-type ontology was its pri-
mary weakness. Not only was the XML representation of the ontology project-
specific, the ontology itself took the form of a large centralized resource that,
while being openly community-editable, still required community agreement and
consensus buy-in to ensure interoperability. In practice, this buy-in was only tenta-
tive, and many providers created duplicate data-types with different names and in
some cases duplicated entire sub-branches of the ontology to be specific to their
needs/terminologies/projects. Thus, as new standards for representing and publishing
ontologies became available from the W3C, we undertook to invent a new semantic
web service framework – SADI (Semantic Automated Discovery and Integration) –
guided by the successes and failures of the BioMoby project.

3 SADI Semantic Web Services

SADI is a set of guidelines for Semantic Web Service provision that aim to maximize
interoperability between Web Services while minimizing the complexity of service
provision by the resource providers. While SADI does not invent any new technolo-
gies or standards, project-relevant codebases in Java and Perl have been developed to
support Web Services compliant with these guidelines and best-practices.

Like the BioMoby project, SADI embeds semantics into its data-structures in an at-
tempt to make the purpose and functionality of a Web Service more computable.
Where BioMoby used a boutique XML serialization of an ontology in order to repre-
sent semantically-grounded messages, SADI utilizes the W3C standards of Resource

1

 In principle, such sub-structures could be determined by exploring the data-type ontology;
however in practice no client application ever did this.

304 D. Withers et al.

Description Framework (RDF) and Web Ontology Language (OWL) and their respec-
tive XML serializations. Service input and output are defined as OWL-DL classes,
and OWL Individuals of these classes (in RDF) are consumed and produced during
service invocation.

The key novelty of the SADI project lies in one very simple best-practice guideline
– that is, that the identity of the input RDF node, and the identity of the output RDF
node, must be identical. As a consequence of this, every service becomes an annota-
tion service, where the input node is “decorated” with labeled RDF relationships to
new data nodes derived from the execution of the service. As an extension to this,
since input and output Classes are defined in OWL-DL (where property and value
restrictions are used to describe the features of input and output class membership), it
therefore becomes possible to determine what features are added to an input node sim-
ply by examining the difference between the input and output OWL Class definitions,
since these are, by definition, the same “entity” (URI). These features are indexed in a
registry and used for Service discovery. Note that this is subtly, but critically, different
from the BioMoby registry index – where BioMoby indexes only the data-type “glob”,
in SADI, the properties added to the input by the service are indexed in the registry,
since these are part of the output data-type definition. Thus, in SADI, we can support
much finer-grained searches of the data that is output from participating services.

Service discovery in SADI is based on searches for services that consume a par-
ticular set of data properties, and produce one or more new properties of-interest
based on those properties. Note again that searching is rarely, if ever, done for a
particular output based on its Class, but rather for sets of specific data properties in
relation to the input data. This approach was designed to mimic the linguistics of
scientific query, where researchers frequently ask questions about the relationship
between two pieces of data (e.g. “what is the coding sequence of the BRCA1 gene?”).
While in BioMoby one could search for a service that consumed the data-type “gene
name” and produced the data-type “nucleotide sequence”, there would be ambiguity
about what the exact relationship between that gene and that sequence was (e.g. is it
the gene sequence, the coding sequence, the promoter sequence, or a contig that con-
tained that gene, etc.). Conversely, in SADI, one might search for services that pro-
vide the “hasCodingSequence” property on gene names, thus leaving little ambiguity
about what the service does.

4 The Taverna BioMoby and SADI Plugins

BioMoby and SADI are both products, in part, of the Genome Canada Bioinformatics
Platform, where Web Service Workflows are the means by which we provide bioin-
formatics support to Platform end-users. The Platform has chosen the Taverna client
application as one of its primary end-user tools due to its powerful, yet straightfor-
ward interface. In total, >1500 BioMoby Services, and an increasing number of SADI
services (currently near 100) are available. However, as discussed earlier, the large
number of Web Services available in the Taverna interface makes workflow construc-
tion a challenge for even expert end-users. As such, we have undertaken to create
plug-ins to Taverna that make it easier for our biologist end-users to work with
BioMoby and SADI Services, both at the level of Service discovery and the level of
correct “wiring” of Services into workflows.

 Semantically-Guided Workflow Construction in Taverna 305

4.1 The BioMoby Plugin to Taverna

The BioMoby plugin is described in detail elsewhere [13], but we will recap the sali-
ent features here. When searching for a Service there are two common scenarios:
either the user has a particular data-type that they want to submit to a Service for
analysis, or the user has already created a fragment of a workflow and now wish to
pipeline the output from that workflow into a new Service. In BioMoby, both of these
cases are identical in that both a standalone piece of data, and a Service output, are
strictly typed by the BioMoby data-type ontology. Thus the registry query executed
by the Taverna plugin is for services that consume data-type “X” as their input. This
search can be enhanced by asking the registry to search for services that consume
“X”, or an ontological parent-type of “X”, as their input (or conversely, which ser-
vices produce “X” as their output when constructing workflows in the reverse direc-
tion) as shown in Figure 1. The resulting matches can be ordered by service name (a
human-readable and often semi-informative string), by service type (a controlled
vocabulary describing kinds of bioinformatics operations), or by service provider (by
their unique provider URI string) as shown in Figure 2. In addition, a discovered
service can be further examined to determine what BioMoby data-type it will output if
invoked.

A

B

Fig. 1. The BioMoby Web Service search interface. As shown in A, a Web Service (getGen-
BankFASTA) can be examined to show the BioMoby datatypes consumed and produced by its
input and output ports. In this case, the input port consumes the BioMoby data-type “Object”
(which is used to pass database identifiers) and its output port produces the BioMoby datatype
“FASTA”. The words in brackets following the data-type names are human readable annota-
tions of the data-type added by the service provider to help explain the purpose of each input
and output parameter. This data-type information can be used, by right-clicking on the data-
type, to discover BioMoby services capable of consuming (as shown in B) or producing, that
datatype. This allows workflow construction to be achieved either in the forward or reverse
direction.

306 D. Withers et al.

Fig. 2. The results of searching for services that consume FASTA (see figure 1B). In this view,
the results are sorted by service provider; the provider “antirrhinum.net” is expanded to reveal
the service – getDragonBlastText – that matches those criterion. In addition, the data-type
output from that service, NCBI_Blast_Text, is provided in the expanded view to assist the user
in determining if this service is likely to be appropriate for their needs.

Fig. 3. A BioMoby workflow that extracts the gene names, protein names, and protein sequences
that participate in a given biochemical pathway in the KEGG database. Orange nodes are Bio-
Moby services; white nodes are parsers specific to BioMoby data types to enable extraction of
data from BioMoby’s “boutique” XML schema; blue pentagons are output data buckets. In each
node, the top layer describes the input ‘ports’ by their data-type name (e.g. “Object” – a Bio-
Moby datatype for record identifiers), the middle layer is the service name, and the lower layer
describes the output ‘ports’ by their data type name (e.g. “SwissProt_Text”). For both input and
output ports, the human readable parameter name of the port is in brackets (e.g. “keggId”).

 Semantically-Guided Workflow Construction in Taverna 307

When the desired Service is selected, the Taverna plugin automatically connects it
to the workflow; this connection is guaranteed to be correct since the strict data- typ-
ing of BioMoby, and the ontological regulation of its data structures, ensures that data
can be passed verbatim from one service to another so long as the data-types are onto-
logically related.

A typical workflow resulting from this iterative discover/connect process is shown
in Figure 3. Notice that the widgets representing each service show the transformative
nature of that service – i.e., the data-type that goes in, and the data-type that comes
out, are displayed on the widget. The annotations of those data-types - effectively, a
human-readable single-word name given to the input or output – are also displayed,
but may or may not be informative.

4.2 The SADI Plugin to Taverna

Superficially, the SADI plugin to Taverna has a near-identical functionality to that of
the BioMoby plugin. Generally speaking, the starting point of service discovery is the
same – either a specific data-type, or an existing workflow fragment. The search
against the SADI registry is, therefore, for services that consume a particular type of
data, as shown in Figure 4. What differs from BioMoby, however, is how that data-
type is described. In a SADI search, the information sent to the registry query is an
OWL Class-name, rather than a (relatively) opaque BioMoby data-type name.

As such, the search API that accesses the SADI registry can use the property re-
strictions within that OWL Class definition to search for SADI services that consume
sub-features of the output data. Thus, the SADI search is more semantically rich than
a BioMoby search, since arbitrary sub-sets of data properties will discover services
capable of consuming those subsets, rather than strictly matching based on a hierar-
chical data-type ontology.

This subtle distinction is perhaps best described with an example. Some service
Foo attaches the properties of “protein identifier”, “molecular weight”, and “Gene
Ontology annotation” to its input. Foo can then be used to discover a downstream
service Bar that consumes only “molecular weight” as its input, or combinations of

Fig. 4. The search interface of the SADI plugin. Search can now be conducted by right-clicking
on the service widget itself in the workflow display, which is likely to be more intuitive for the
biologist end-user who expects that workflow diagram to be interactive [4]. Search is simply a
matter of clicking the “Find services” option of the pop-up menu.

308 D. Withers et al.

Fig. 5. The results of searching for services that consume KEGG_Record (see figure 4). All
valid services are displayed, together with some metadata about the service (service name, and
human-readable description of service functionality), and the properties that the service will
attach to its input data. Note the subtle distinction that, unlike the BioMoby plug-in, it is the
name of the property, rather than its data-type, which is displayed to the end-user.

“protein identifiers” and “Gene Ontology annotations” as its input. The matching is
accomplished by a DL reasoner, which compares the properties in-hand to the input
OWL property restrictions of each service in the registry. Once discovered, Foo and
Bar can be connected accurately, both syntactically and semantically, without human
intervention.

A SADI workflow is shown in Figure 6 that is functionally identical to the Bio-
Moby workflow shown in Figure 3. The salient features to note in this diagram are:
(1) The output ports describe the properties being generated by the service, and the
data-types of those properties. This makes the service functionality extremely trans-
parent, for example, the upper green box would read “A KEGG pathway has a path-
way gene that is represented as a KEGG Record”; (2) There is visual confirmation to
the end-user that their workflow is “correct” because the naming of record identifier
data-types in OWL is typically more human-readable than the equivalent BioMoby
data-type ontology term. For example, the KEGG_Record OWL class would have
simply been “Object” in the BioMoby data-typing ontology (with an additional attrib-
ute “namespace=KEGG_Record”; however this attribute/value pair is not amenable to
logical reasoning in any strict sense). Thus by visual inspection the user can see that
the KEGG_Record from the first service is being fed as input to the KEGG_Record
slot of the subsequent service. We have not yet tested the effectiveness of these
small interface changes on end-user utility; however we suspect that we will see an
improvement.

 Semantically-Guided Workflow Construction in Taverna 309

Fig. 6. A SADI workflow that extracts the gene names, protein names, and protein sequences
that participate in a given biochemical pathway in the KEGG database. Square blue nodes are
data inputs, green nodes are SADI Services; blue pentagons are data buckets. For each SADI
service, the top layer is the input data-type (the OWL Class Name), the middle layer is the
service name, and the bottom layer is the list of properties and value restrictions provided by
that service. For example, the getUniProtByKeggGene Service consumes individuals of class
KEGG_Record and attaches the “encodes” property which will have a value that is of type
UniProt_Record.

5 Semantic Service Discovery in Workflow Construction

Most workflow composition systems support some form of assisted service discovery.
Kepler allows the use of ontologies to describe the input and output of workflow
components [14], and similarly Galaxy [15] supports both semantic service matching
(using Lumina [16]), as well as ontologically-grounded lifting and lowering XML
Schema, in a manner that mirrors the SAWSDL standard from the W3C [17]. The
semantics of the service operation are also searchable in these systems through OWL-
S/WSDL-S-like standards, where the pre-state, post-state, and functional operations
of a service are semantically described.

BioMoby and SADI took more simplistic, but mutually distinct approaches to de-
scribing the semantics of a Web Service. In BioMoby, the semantics of the input and
output messages are embedded in the message itself through its boutique XML seri-
alization of the BioMoby data type ontology. The semantics of a BioMoby service
operation are described in a simplistic hierarchy of bioinformatics service types akin
to the ontological hierarchy created by the myGrid project [18] for their FETA Se-
mantic Web Service annotation system [19]. In SADI the semantics of the input and
output messages, and the semantics of the service operation itself, are both embedded
in the message. This is because the SADI Semantic Web Service framework requires
that service input and output RDF graphs have the same subject URI. Thus, the OWL

310 D. Withers et al.

classes that describe the input and output data-types also, implicitly, describe the
difference between those data-types. This becomes an important descriptor of the
functionality of the service during search, since it explicitly describes how the input
and output data relate to one another. SADI does not rely on a centralized ontology to
define these relationships, but rather allows the service provider to chose, or publish,
any ontological predicate that semantically describes this relationship. The embed-
ding of semantics directly in the message in both cases has significant consequences
on how services are discovered.

For the BioMoby and SADI Taverna plug-ins, semantically-guided discovery of
services differs in two primary ways:

1. As just described, SADI searches lack a distinct searchable feature regarding
service functionality. While nothing about the SADI framework precludes the
addition of detailed annotations of SADI service operations, we have not yet
found a need for this; the semantic relationship between input and output is
highly descriptive of what the functionality of the service must be, and has been
sufficient to resolve our use-cases to date, including that of the Taverna plug-in.
Moreover, while it is unlikely that this simplistic annotation will ever support
fully automated workflow synthesis, there is evidence that such automation is
not needed, or even wanted, by our target end-users [10]. Thus the simplifica-
tion of use we gain is not, so far, detrimentally offset by a lack of support for
full automation. Further, several studies [4; 6] have shown that, for our target
end-users, the concept of “data-typing” is extremely foreign (described as “in-
comprehensible” by Gordon and Sensen) and we are hopeful that indexing ser-
vices based on data-type relationships, rather than (or in addition to) data-types,
will facilitate their use of the discovery tools.

2. Second, service discovery with the SADI plug-in allows richer semantic match-
ing because DL reasoners can match subsets of properties within complex data
objects with services capable of consuming those sub-properties. Planned user-
studies which mirror those of Gordon and Sensen will determine if this addi-
tional semantic discovery-power simplifies, or complicates, the process of ra-
tional workflow construction by our target audience.

6 Other BioMoby/SADI Web Service Composition Systems

Limiting the discussion only to BioMoby and SADI Semantic Web Services, a wide
array of client applications support semi- or fully-automated workflow synthesis with
one or both of these frameworks. In addition to Taverna, BioMoby workflow clients
include other standalone clients such as Seahawk [20], jORCA [21], and Remora
[22]; web-based clients such as Gbrowse Moby[23], MOWserv [24], and Mobyle
[25]; “aggregators” such as Jabba [26] and DataBiNS [27] where pre-determined
Service workflows are called to create Web-page content; and finally automated
workflow construction systems such as Magellenes [28], where the user specifies
their starting and ending data-type, and the system determines paths through the ana-
lytical service-space that will derive that output from that input. The newer SADI
Semantic Web Service system has fewer clients so far, but both web based and stand-
alone tools are already available. These include SHARE [29] and the Taverna plug-in
described here.

 Semantically-Guided Workflow Construction in Taverna 311

Of particular interest in the context of this manuscript is the SHARE client, be-
cause of its novel approach to automated workflow synthesis. SHARE automates
workflow composition using the property constraints within OWL-DL Class defini-
tions as a guide. While in Magellenes the user is presented with a selection of reason-
able pre-constructed workflows, SHARE can (often) precisely determine the path by
which a complex data-type can be synthesized simply by examining the property and
property-value constraints within the data-type’s definition. This is possible specifi-
cally because the SADI framework, unlike BioMoby, utilizes both data-type and rela-
tionship information in its service annotation.

While the required usability studies on the new Taverna plug-in have not yet been
undertaken, we have observed notable added service-discovery power in other SADI
client applications using a similar property-based searching paradigm. Moreover, there
is mounting evidence that our target end-users find it difficult to comprehend and work
with data-types. As such, we feel confident that these same end-users will find this new
paradigm of working with the properties of data, rather than with explicit data-types to
be a much more natural way of approaching workflow construction.

Acknowledgments. The BioMoby project was funded in part by Genome Canada and
Genome Prairie through the Genome Canada Bioinformatics Platform. The SADI
project was funded by the Heart and Stroke Foundation of BC and Yukon, Microsoft
Research, and the CIHR. Development of the BioMoby and SADI plugins to Taverna
have been funded in part by Genome Canada and Genome Prairie, by expertise
donated from the myGrid project, and by CANARIE through its funding of the
C-BRASS Project. Core laboratory funding is derived from an award from NSERC.

References

1. Goderis, A., Li, P., Goble, C.: Workflow Discovery: Requirements from E-science and a
Graph-based Solution. International Journal of Web Services Research 5(4) (2008)

2. Goble, C., DeRoure, D.C.: myExperiment: social networking for workflow-using e-
scientists. In: Proceedings of the 2nd Workshop on Workflows in Support of Large-Scale
Science, pp. 1–2 (2007)

3. Wroe, C., Goble, C., Goderis, A., Lord, P., Miles, S., Papay, J., Alper, P., Moreau, L.: Re-
cycling workflows and services through discovery and reuse. Concurrency Computat:
Pract. Exper. 19(2), 1–7 (2006)

4. Gordon, P.M.K., Sensen, C.: A Pilot Study into the Usability of a Scientific Workflow
Construction Tool. Technical Report #2007-874-26. Department of Computer Science,
The University of Calgary (2007)

5. Goderis, A., Sattler, U., Lord, P., Goble, C.: Seven Bottlenecks to Workflow Reuse and
Repurposing. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 323–337. Springer, Heidelberg (2005)

6. Gordon, P.M.K., Barker, K., Sensen, C.W.: Helping Molecular Biologists Effectively
Build Workflows, Without Programming. In: Lambrix, P., Kemp, G. (eds.) Proceedings of
7th International Conference on Data Integration in the Life Sciences (DILS 2010), Goth-
enburg, Sweden, August 25-27, pp . 74–89 (2010)

7. Oinn, T., Greenwood, M., Addis, M., Alpdemir, N., Ferris, J., Glover, K., Goble, C.,
Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M., Senger, M., Stevens, R.,
Wipat, A., Wroe, C.: Taverna: lessons in creating a workflow environment for the life sci-
ences. Concurrency Computat: Pract. Exper. 18(10), 1067–1100 (2006)

312 D. Withers et al.

8. Reichm, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., Miserov, J.P.: GenePattern 2.0.
Nat. Genet. 38(5), 500–501 (2006)

9. Stevens, R., Baker, P., Bechhofer, S., Ng, G., Jacoby, A., Paton, N.W., Goble, C.A., Brass,
A.: Tambis: transparent access to multiple bioinformatics information sources. Bioinfor-
matics 16(2), 184–185 (2000)

10. Lord, P., Bechhofer, S., Wilkinson, M.D., Schiltz, G., Gessler, D., Hull, D., Goble, C.,
Stein, L.: Applying semantic web services to Bioinformatics: Experiences gained, lessons
learnt. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, pp. 350–364. Springer, Heidelberg (2004)

11. The BioMoby Consortium. Interoperability with Moby 1.0 - It’s better than sharing your
toothbrush! Briefings in Bioinformatics 9(3), 220–231 (2008)

12. Wilkinson, M.D. Vandervalk, B. McCarthy, L.: SADI Semantic Web Services - cause you
can’t always GET what you want! In: IEEE Asia-Pacific Services Computing Conference,
APSCC 2009, pp. 13–18 (2009)

13. Kawas, E., Senger, M., Wilkinson, M.D.: BioMoby extensions to the Taverna workflow
management and enactment software. BMC Bioinformatics 7(523) (2006)

14. Pignotti, E., Edwards, P., Preece, A., Gotts, N., Polhill, G.: Enhancing Workflow with a Se-
mantic Description of Scientific Intent. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Kou-
barakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 644–658. Springer, Heidelberg (2008)

15. Taylor, J., Schenck, I., Blankenberg, D., Nekrutenko, A.: Using galaxy to perform large-scale
interactive data analyses. Curr. Protoc. Bioinformatics, ch. 10:Unit 10.5 (September 2007)

16. http://lsdis.cs.uga.edu/projects/meteor-s/downloads/Lumina/
files/thesis.pdf (Downloaded May 15, 2010)

17. http://www.w3.org/2002/ws/sawsdl/ (Downloaded May 15, 2010)
18. Wolstencroft, K., Alper, P., Hull, D., Wroe, C., Lord, P.W., Stevens, R.D., Goble, C.A.:

The myGrid ontology: bioinformatics service discovery. International Journal of Bioin-
formatics Research and Applications 3(3), 303–325 (2007)

19. Lord, P., Alper, P., Wroe, C., Goble, C.: Feta: A light-weight architecture for user oriented
semantic service discovery. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS,
vol. 3532, pp. 17–31. Springer, Heidelberg (2005)

20. Gordon, P.M.K., Sensen, C.: Seahawk: moving beyond HTML in Web-based bioinformat-
ics analysis. BMC Bioinformatics 8(208) (2007)

21. Martín-Requena, V., Ríos, J., García, M., Ramírez, S., Trelles, O.: jORCA: easily integrat-
ing bioinformatics Web Services. Bioinformatics 26(4), 553–559 (2010)

22. Carrere, S., Gouzy, J.: REMORA: a pilot in the ocean of BioMoby web-services. Bioin-
formatics 22(7), 900–901 (2006)

23. Wilkinson, M.: Gbrowse Moby: A Web-based browser for BioMOBY Services. Source
Code for Biology and Medicine 1(4) (2006)

24. Navas, I., Rojano, M., Ramirez, S., Pérez, A.J., Aldana, J.F., Trelles, O.: Intelligent client
for integrating bioinformatics services. Bioinformatics 22, 106–111 (2006)

25. Néron, B., Ménager, H., Maufrais, C., Joly, N., Maupetit, J., Letort, S., Carrere, S., Tuff-
ery, P., Letondal, C.: Mobyle: a new full web bioinformatics framework. Bioinformat-
ics 25(22), 3005–3011 (2006)

26. http://bioinfo.mpiz-koeln.mpg.de/jabba/help.html (Downloaded May
15, 2010)

27. Song, Y.C., Kawas, E., Good, B.M., Wilkinson, M.D., Tebbutt, S.: DataBiNS: a BioMoby-
based data-mining workflow for biological pathways and non-synonymous SNPs. Bioin-
formatics 23(6), 780–782 (2007)

28. Ríos, J., Karlsson, J., Trelles, O.: Magallanes: a web services discovery and automatic
workflow composition tool. BMC Bioinformatics 10(334) (2009)

29. Vandervalk, B.P., McCarthy, E.L., Wilkinson, M.D.: SHARE: A Semantic Web Query
Engine for Bioinformatics. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009.
LNCS, vol. 5926, pp. 367–369. Springer, Heidelberg (2009)

Workflow Construction for Service-Oriented
Knowledge Discovery

Vid Podpečan1, Monika Žakova2, and Nada Lavrač1,3

1 Jožef Stefan Institute, Ljubljana, Slovenia
2 Czech Technical University, Prague, Czech Republic

3 University of Nova Gorica, Nova Gorica, Slovenia

Abstract. The paper proposes a Service-oriented Knowledge Discovery
(SoKD) framework and a prototype implementation named Orange4WS.
To provide the proposed framework with semantics, we are using the
Knowledge Discovery Ontology which defines relationships among the
ingredients of knowledge discovery scenarios. It enables to reason which
algorithms can be used to produce the results required by a specified
knowledge discovery task, and to query the results of the knowledge dis-
covery tasks. In addition, the ontology can also be used for automatic
annotation of manually created workflows facilitating their reuse. Thus,
the proposed framework provides an approach to third generation data
mining: integration of distributed, heterogeneous data and knowledge
resources and software into a coherent and effective knowledge discov-
ery process. The abilities of the prototype implementation have been
demonstrated on a text mining use case featuring publicly available data
repositories, specialized algorithms, and third-party data analysis tools.

1 Introduction

Fast-growing volumes of complex and geographically dispersed information and
knowledge sources publicly available on the web present huge opportunities (and
challenges) for knowledge discovery systems. A principled fusion and mining
of such relevant data requires the interplay of diverse specialized algorithms
resulting in highly intricate workflows.

If such workflows are built on top of a service-oriented architecture, the pro-
cessing of workflow ingredients (e.g. data mining algorithms) can be distributed
between the user’s computer and a remote computer system. Moreover, if data
mining algorithms are implemented as web services, they are self-contained, plat-
form independent, and do not need the entire environment (e.g., Weka). Obvi-
ously, this greatly expands the range of potential users as, e.g., Weka algorithms
could - via a service-oriented approach - become integrated into any software
solution capable of making use of web services. Finally, if the services are main-
tained and updated regularly, all of their users will always have access to the
latest implementations without any effort.

While the mutual relations of specialized algorithms used in the workflows and
principles of their applicability may be mastered by computer scientists, their

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 313–327, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

314 V. Podpečan, M. Žakova, and N. Lavrač

command cannot be expected from the end user, e.g. a life scientist. A formal cap-
ture of this knowledge is thus needed, e.g. in the form of ontologies of relevant ser-
vices and knowledge/data types, to serve as a basis for intelligent computational
support of knowledge discovery workflow composition. A formal capture of knowl-
edge discovery tasks can then be used to improve repeatability of experiments and
to enable reasoning on the results to facilitate reuse of workflows and results.

An intelligent Service-oriented Knowledge Discovery (SoKD) approach, pro-
posed in this paper, aims at developing a third generation knowledge discovery
framework [11] and its implementation that is intended to address the challenges
discussed above. A practical implementation of the proposed third-generation
knowledge discovery platform is based on extending an existing data mining plat-
form Orange [6]. We named it Orange4WS. The third-generation data mining
paradigm shift implies the need for a substantially different knowledge discov-
ery platform, aimed at supporting human experts in scientific discovery tasks.
In comparison with the current publicly available data mining platforms (e. g.
Weka [32], KNIME [5], Orange [6]), our platform should provide an intelligent
tool which makes use of a knowledge discovery ontology, supported by planning
and ontological reasoning, based on top of a rich collection of data processing
and mining components as well as data and information sources provided by
local processing components and web services.

The paper is structured as follows. Section 2 presents some of the related
work, Section 3 present our work in upgrading an existing data mining tool
in order to be suitable for the SoKD methodology. Sections 4 and 5 upgrade
the implemented solution by introducing ontologies, annotations and planning.
Section 6 demonstrates some of the abilites of the platform on a text mining use
case. Section 7 concludes with a summary and plans for further work.

2 Related Work

In this section we examine previous work related to the key ingredients of our
framework: knowledge discovery domain formalization for workflow construction
and reuse, workflow editing and execution environment and service oriented
architecture for knowledge discovery.

There exist several systems using a formal representation of data mining (DM)
operators for automatic workflow composition and ranking including IDEA [4],
NExT [3] and KDDVM [8]. However all these systems focus only on propositional
data mining and produce only linear or tree workflows, whereas we focus on
complex relational data mining and text mining and our workflows are directed
acyclic graphs.

Other efforts to provide a systematic formalization of the DM tasks include
projects MiningMart [21] and DataMiningGrid [27] and system described in [18].
The first two focus on mining propositional patterns from data stored in a rela-
tional database. None of the systems provide means for automatic workflow cre-
ation. In parallel to our work, the OntoDM [22] ontology is being developed. A
principled top-down approach was adopted to the development of OntoDM

Workflow Construction for Service-Oriented Knowledge Discovery 315

aiming at its maximal generality. Given the complexity of the domain subject to be
modeled, the ontology is currently not sufficiently refined for purposes of workflow
construction. Also, unlike our ontology, OntoDM is not compatible with OWL-S.

Also relevant are solutions to the problem of web service composition in the
framework of planning. The work of [17] relies on computing a causal link matrix
for all the available services. However we work with a more general, non-linear
notion of a plan. Work reported in [26], [20] and [19] translate an OWL de-
scription to a planning formalism based on PDDL. While the work presented
in [20] and [19] use classical STRIPS planning, in [26], Hierarchical Task Net-
work (HTN) planning is employed. HTN is not applicable in our framework not
constrained to tree-based task decomposition. The approach presented in [19]
and [20] uses a reasoner in the pre-processing phase; we make a step beyond
by integrating a reasoning engine directly with the planner. Planning directly
in description logics is addressed in [13]. Currently the algorithm can only deal
with DL-Lite descriptions with reasonable efficiency.

Construction of analytic workflows has attracted a lot of development in recent
years. The most well-known systems include Triana [29], a workflow environment
for P2P and Grid containing a system for integrating various types of middleware
toolkits, and Taverna [7] environment for workflow development and execution.
Although systems such as Magallanes [23] offer limited support for automatic
workflow construction by using a data type hierarchy and breadth-first search to
produce a given target data type as output, they are not able to use a knowledge
discovery ontology, and are not general enough to support arbitrary data mining
tasks. Also, their abilities for automatic workflow construction are limited to the
bioinformatics domain.

There has been some work on workflows for distributed data mining using a
service-oriented architecture, e.g., [12] and [1]. However most of the systems focus
on demonstrating the feasibility of service-oriented approach for distributed data
mining with regard to parallelization and distributed data sources. Nevertheless,
none of these approaches enables automated DM workflow construction.

Also relevant for our work is Weka4WS [28], which is a framework that ex-
tends the Weka toolkit to support distributed data mining on Grid. Weka4WS user
interface supports the execution of both local and remote data mining tasks. How-
ever, only native Weka components and extensions are available and the frame-
work does not support arbitrary web services, which can be found on the internet.

3 Orange4WS Platform

This section briefly describes the structure and design of the presented SoKD soft-
ware platform. We explain and comment our decisions about technologies and soft-
ware tools that were used. The main part of the section is a description of the design
of Orange4WS and the accompanying toolkit for producing new web services.

3.1 Design and Implementation

The proposed software solution, named Orange4WS, is built on top of two open-
source scientific community driven projects: the Orange data mining framework

316 V. Podpečan, M. Žakova, and N. Lavrač

[6], which provides a range of preprocessing, modeling and data exploration
techniques, and the Python Web Services project1, which provides libraries for
the development of web services using the Python programming language2 by
implementing various protocols including SOAP, WSDL, etc.

The Orange framework features visual programming, achieved by graphical
composition of processing components into workflows, which are essentially vi-
sual representations of complex procedures. Orange provides Orange Canvas
where such componens (called Orange Widgets) can be connected, adjusted,
and executed. Orange4WS extends this model by introducing web services and
knowledge discovery ontology (this is discussed in Section 4).

In contrast with other freely available workflow environments such as Weka,
Taverna, Triana, KNIME, RapidMiner, etc. the Orange (Orange4WS) framework
offers a rather unique combination of features. These features are:

– a large collection of data mining and machine learning algorithms, efficiently
implemented in C++

– three-layer architecture: C++, Python, Orange and Orange4WS widgets
– a collection of very powerful yet easy to use data visualization widgets
– simplicity of Orange’s workflows.

Built on top of Orange, Orange4WS consists of two layers: the supporting
layer, which deals with technical details of web services (information extrac-
tion, execution, error reporting, data transfer and transformation, code gener-
ator) and the upper layer, which uses low-level functionalities to enable web
services as building blocks (widgets) of the Orange Canvas. The structure of
Orange4WS is summarized in Figure 1a. The invocation of web services, data
transformation, message passing, error handling, etc. are hidden and can be
summarized from the user’s perspective as a normal widget operation: (1) re-
ceiving data, (2) widget internal processing, and (3) outputting processed data.
Thus, the user is completely isolated from all web-service related technical de-
tails which greatly simplifies the creation, understanding, and execution of
workflows.

If a workflow is constructed manually, the Orange Signal manager, which lives
inside the Orange Canvas, enables or disables the connectivity of Orange and Or-
ange4WS widgets with respect to their input/output types (automated workflow
construction is discussed in Section 5). In order to construct an Orange4WS work-
flow, the user only needs to instantiate all required widgets by clicking on their
icons, position them in the right order according to his/her objective, and connect
them with the help of signal manager, which prevents invalid connections accord-
ing to the type information. In comparison with the popular Taverna workbench
[15], Orange4WS workflows are simpler to construct and much easier to under-
stand because of the higher level of abstraction when using web services. Also,
Orange4WS workflows are better suited for data mining and knowledge discovery
1 http://pywebsvcs.sourceforge.net/
2 Use of the pythonic branch of the WSO2 web service framework (based on Apache

Axis2/C) and Suds SOAP client for Python is planned in the future.

Workflow Construction for Service-Oriented Knowledge Discovery 317

(a) (b)

Fig. 1. The strucure of the Orange4WS platform built on top of the Orange data
mining toolkit (a) and a detailed overview of the integrated framework for annotations
and planning (b) which is described in more details in Section 5

in general since they can be used in combination with a wide range of machine
learning algorithms, data mining algorithms, and visualization methods, already
available in Orange.

3.2 Production of New Web Services

A separate part of our service-oriented knowledge discovery platform is a package
of tools which ease the production of new services. These tools closely follow
the general “WSDL first” design principle [10] which promotes clearly designed,
interoperable and reusable services by separating the design of interfaces from
the actual logic. Essentially, our tools extend the Python language framework
by using the Python Web Services package, enchanced with multiprocessing
capabilities, security, logging and other related functionalities. Most notably,
our web service production tools are able to circumvent the well known global
interpreter lock (GIL) of the Python interpreter by employing the multiprocessing
module which enables full utilization of today’s multiprocessor computers. Using
these tools, any code can easily be transformed into a SOAP web service and
used as an ingredient for Orange4WS workflow composition (or in any other
workflow environment capable of using web services).

4 Knowledge Discovery Ontology

To provide the proposed knowledge discovery platform with semantics, we are
using the Knowledge Discovery Ontology (KD ontology, for short) [31]. The
ontology defines relationships among the ingredients of knowledge discovery

318 V. Podpečan, M. Žakova, and N. Lavrač

Fig. 2. Part of the top level structure of the KD ontology with subclass relations shown
through arrows

scenarios, both declarative (various knowledge representations) and algorithmic.
We are using the ontology to enable the workflow planner to reason about which
algorithms can be used to produce the results required by a specified knowledge
discovery task and to query the results of the knowledge discovery tasks. In
addition, the ontology can also be used for automatic annotation of manually
created workflows facilitating their reuse.

An illustrative part of the top level structure of the ontology is shown in
Figure 2. The three core concepts are: knowledge, capturing the declarative el-
ements in knowledge discovery, algorithms, which serve to transform knowledge
into (another form of) knowledge, and knowledge discovery task, which describes
a task the user wants to perform mainly by specifying available data and knowl-
edge sources and desired outputs. The ontology is implemented in the semantic
web language OWL-DL3. The core part of the KD ontology currently contains
around 150 concepts and is available online4. The structure of workflows is de-
scribed using OWL-S5. For the purposes of this work we have extended the
ontology with concepts describing the ingredients of text mining tasks.

In the following subsections we describe the concepts of knowledge and algo-
rithm in more detail and provide information on the annotation of algorithms
available locally in the Orange4WS toolkit and in the LATINO library.

4.1 Knowledge

Any declarative ingredient of the knowledge discovery process such as datasets,
constraints, background knowledge, rules, etc. are instances of the Knowledge
class. In data mining, many knowledge types can be regarded as sets of more
elementary pieces of knowledge [9], e.g., first-order logic theories consist of for-
mulas. This structure is accounted for through the property contains, so e.g. a
first-order theory contains a set of first-order formulas.

3 http://www.w3.org/TR/owl-semantics/
4 http://krizik.felk.cvut.cz/ontologies/2008/kd.owl
5 http://www.w3.org/Submission/OWL-S/

Workflow Construction for Service-Oriented Knowledge Discovery 319

4.2 Algorithms

The notion of an algorithm involves all executable routines used in a knowledge
discovery process, ranging from inductive algorithms to knowledge format trans-
formations. Any algorithm turns a knowledge instance into another knowledge
instance, e.g. inductive algorithms will typically produce a Generalization in-
stance out of a Dataset instance. The concept of algorithm is central to the work
presented in this paper. The Algorithm class is a base class for all algorithms,
like Apriori (algorithm for association rule induction implemented in Orange)
and GenerateBows (algorithm implemented in LATINO for constructing bag of
words representation from a collection of documents, described in the exam-
ple below). For this work we have refined the hierarchy of fully defined classes,
like DecisionTreeAlgorithm or DataPreprocessingAlgorithm for fine-grained
categorization of data mining algorithms according to their functionality. The
hierarchy of algorithms allows for the formulation of additional constraints on
the workflows, e.g., there should be at most two preprocessing algorithms on each
branch of the workflow. Each algorithm configuration is defined by its input and
output knowledge specifications and by its parameters.

4.3 Annotating Algorithms

The KD ontology was used to annotate most of the algorithms available in
the Orange toolkit. More than 60 algorithms have been annotated so far. We
have also annotated the components of LATINO using the mapping described
in [16]. As an example we present a definition of the GenerateBows algorithm
which can be applied to a collection of documents and produces a bag of words
representation of these documents. The settings are quite complex, therefore
they are provided as a single input object. The definition in the description logic
notation using the extended ABox syntax [2] is shown in Figure 3.

The annotated algorithms also served as case studies to validate and extend
the KD ontology, therefore developing a procedure for semi-automatic annota-
tion is a subject for future work.

{GenerateBows} � NamedAlgorithm

� ∃ output · {GenerateBows-O-Bows}
� ∃ input · {GenerateBows-I-Docs}
� ∃ input · {GenerateBows-I-Settings}

{GenerateBows-I-Docs-Range} ≡ isRangeOf · {GenerateBows-I-Docs}
≡ DocumentCollection

{GenerateBows-O-Bows-Range} ≡ isRangeOf · {GenerateBows-O-Bows}
≡ BowSpace

Fig. 3. A definition of the GenerateBows method in the description logic notation using
the extended ABox syntax

320 V. Podpečan, M. Žakova, and N. Lavrač

5 Automated Workflow Construction

The focus of this section is on automatic construction of abstract workflows
of data mining algorithms. We treat the automatic workflow construction as
a planning task, in which algorithms represent operators and their input and
output knowledge types represent preconditions and effects. However, since the
information about the algorithms, knowledge types and the specification of the
knowledge discovery task is encoded through an ontology, we implemented a
planning algorithm capable of directly querying the KD ontology using a rea-
soner. The Pellet6 reasoner was used. The main motivation for using Pellet was
its ability to deal with literals, availability in Protégé7, which we used for ontol-
ogy development, and processing of SPARQL-DL [25] queries.

In the next sections we present an enhanced version of the algorithm described
in [31], which exploits the algorithm hierarchy for planning at multiple abstrac-
tion levels. Furthermore, a post-processing step using the ontology was added
for a more user-friendly presentation of KD workflows, in case the task is weakly
constrained and thus a relatively large number of workflows is generated.

5.1 Exploiting Algorithm Hierarchy

The planning algorithm used to generate abstract workflows automatically is
based on the Fast-Forward (FF) planning system [14]. We have implemented
the basic architecture of the FF planning system consisting of the enforced hill
climbing algorithm and the relaxed GRAPHPLAN. Since the planning problem
in workflow construction contains no goal ordering, no mechanisms for exploiting
goal ordering were implemented.

Fig. 4. An example of workflows for discovering association rules in Orange

The planner obtains neighboring states during enforced hill-climbing by match-
ing preconditions of available algorithms with currently satisfied conditions.
Each matching is conducted during the planning time via posing an appropriate
SPARQL-DL query to the KD ontology. We have enhanced the algorithm in two

6 http://clarkparsia.com/pellet/
7 http://protege.stanford.edu/

Workflow Construction for Service-Oriented Knowledge Discovery 321

ways: a hierarchy of algorithms based on defined classes and input/output spec-
ifications computed and in searching for neighboring states the planner exploits
the algorithm hierarchy.

A hierarchy of algorithms is inferred before the actual planning. It needs
to be recomputed only when a new algorithm is added to the ontology. The
hierarchy of algorithms is based on the inputs and outputs of the algorithms
and on the defined algorithm classes such as PreprocessingAlgorithm. It holds
that Aj � Ai if for every input of Iik Ai there is an input Ijl of algorithm Aj

such that range of Iik � Ijl. An algorithm Ai ≡ Aj , if Aj � Ai and Ai �
Aj . The subsumption relation on algorithms is used to construct a forest of
algorithms with roots given by the explicitly defined top-level algorithm classes
e.g. DataPreprocessingAlgorithm.

task - instance of KnowledgeDiscoveryTask
maxSteps - max length of the workflow
constr - additional constraints
generateWorkflows(task, maxSteps, constr):

classify KD ontology;
algs := {instances of NamedAlgorithm};
algforest := inferAlgorithmHierarchy(algs);
workflows := runPlanner(task, algforest, maxSteps);
atomicW := expandWorkflows(workflows, algforest);
filteredW := filterWorkflows(atomicW, constr);

Fig. 5. A skeleton of the procedure for workflow composition using the KD ontology

The planning algorithm was adapted so that in the search for the next possible
algorithm it traverses the forest structure instead of only a list of algorithms and
considers a set of equivalent algorithms as a single algorithm. Currently, only
constraints on repetition of some kind of algorithms (defined by a class or set of
classes in the KD ontology) in a linear part of the workflow are built into the
planner. The additional constraints on workflows are used only for filtering of
the generated workflows during post-processing (procedure filterWorkflows).
Workflows for all the members of an equivalence set are generated using the
procedure expandWorfklows. The information about algorithms subsumption
is also used in presenting of workflows to the user. An overview of the whole
procedure for workflow generation is shown in Figure 5.

The generated workflows are presented to the user using an interactive visual-
ization, which enables the user to browse the workflows from the most abstract
level to specific combination of algorithm instances. The workflows with the
smallest number of steps are presented first. An example of a set of workflows
generated for discovering association rules in Orange4WS is in Figure 4.

5.2 A Framework for Workflow Execution in Orange4WS

An overview of the framework is shown in Figure 1b. The module Orange2Onto,
which acts as an interface between Orange4WS and ontology representation does

322 V. Podpečan, M. Žakova, and N. Lavrač

not work directly with internal representation of Orange4WS, but it works with
the OWS format used in the standard Orange distribution to store workflows in
the XML format.

In order to capture formally the mapping between the internal Orange4WS
representation and the representation of algorithms using the KD ontology, the
Orange-Map (OM) ontology was developed defining templates for mapping of
algorithms, data and parameters. The OM ontology is then used for converting
the automatically generated workflows into the Orange representation. In order
to facilitate the creation of the mapping for new algorithms, the mapping can
be specified using an XML file. The corresponding instances in the ontology are
then generated automatically.

Annotations of Orange4WS workflows containing algorithms not annotated
using the KD ontology can also be created automatically. The missing informa-
tion about input/output types of the algorithms is then either deduced from the
links with annotated algorithms or considered to be some Knowledge expressed
as string. The annotations of such workflows can therefore be used for some
querying and repeating of experiments, however the generated annotation of the
unknown algorithm is not suitable for planning.

The procedures for converting Orange4WS representation to OWL and vice
versa are implemented in Python using JPype8 to call the Jena9 ontology API
implemented in Java.

6 A Text Mining Use Case

This use case is built upon text mining web services, available from the LATINO10

text mining library, which provides a range of data mining and machine learning
algorithms with the emphasis on text mining, link analysis, and data visualiza-
tion. Recently, its functionalities have become available as web services to ease
the use of the library and consequently broaden its user community.

The goal of this use case is to produce a graph of terms, which could po-
tentially give insight into relations between biological, medical and chemical
terms, relevant to the subject of the query. Additionaly, the Pathfinder algo-
rithm was applied to reduce the complexity of the term graph. The presented
use case requires five LATINO services in combination with the PubMed search
service, local Orange graph visualization tool, and the Pathfinder service. There-
fore, the use case demonstrates the need for a service-oriented platform able to
combine publicly available data repositories (PubMed), specialized algorithms
(Pathfinder), third-party data analysis tools (LATINO) and powerful local visu-
alization components (Orange graph visualizer).

The LATINO algorithms, used to build the workflow, were annotated manu-
ally using their WSDL description to enable the planner to automatically build

8 http://jpype.sourceforge.net/
9 http://jena.sourceforge.net/

10 http://sourceforge.net/projects/latino

Workflow Construction for Service-Oriented Knowledge Discovery 323

Fig. 6. An example of an automatically generated workflow for the task of visualizing
the query graph

workflows using these annotated components. However, the number of alterna-
tive workflows which can be produced, is currently quite small due to use of
complex knowledge types and specialized algorithms (for example, there is cur-
rently only one procedure for obtaing sparse vectors from text). An automatically
discovered workflow is presented in Figure 6.

The Pathfinder algoritm [24] is an example of a network prunning algorithm
which was developed as a tool in cognitive science to determine the most im-
portant links in a network. The prunning idea of the algorithm is based on the
triangle inequality which is extended to all paths in a network: the direct dis-
tance between two nodes must be less than or equal to the sum of all weights
of every path between these two nodes. The Pathfider algorithm thus ellimi-
nates all links which violate the extended triangle inequality. More specifically,
to calculate the distance between two nodes along in a path in the graph the
Pathfinder algorithm uses the generalized distance (Minkowski distance) of order
p which is defined as (

∑n
i=1 |xi − yi|p)

1
p . For example, p = 1 gives Manhattan

distance, p = 2 gives Euclidean distance while p = ∞ gives max(x, y). The

Fig. 7. The implementation of a workflow for visualization and prunning of a term
graph in Orange4WS. Components numbered 3, 4, 5, 6, 7, 8 and 13 are web services,
components 1, 2, 9, 11, 12 and 14 are Orange4WS supporting widgets, components 10
and 15 are native Orange graph visualizers.

324 V. Podpečan, M. Žakova, and N. Lavrač

(a) (b)

Fig. 8. The results of the execution of the workflow from Figure 7. Figure 8a shows
the term graph obtained by querying PubMed using the term “migraine+magnesium”.
Figure 8b shows the pathfinder network obtained by applying the Pathfinder algorithm
on the term graph. Because of the space limitations names of vertices and weights of
edges are not shown. Widths of edges represent their weights, respectively.

second parameter of the algorithm (q) controls the maximal length of all exam-
ined paths.

An implementation of the Pathfinder algorithm and its much more efficient
variant for sparse graphs [30] was transformed into a SOAP web service to enable
its use in a service-oriented workflow environment. A concrete realization of the
workflow in the Orange4WS environment is shown in Figure 7.

PubMed is queried with a query string and maximal number of documents
(components 1, 2, and 3). It returns a collection of IDs of relevant documents.
Then, obtained IDs are used to collect titles, abstracts and keyword of these
documents (component 4). Afterwards, bag-of-words (BoW) sparse vectors are
created from the collection of words (component 6). To simplify setting the pa-
rameters for unexperienced users there is a service providing a suitable set of
default values which can be used as an input to the web service which constructs
BoW vectors (component 5). Then, BoW vectors are transposed and a term net-
work is created (we omit the details how this graph is produced as it is out of the
scope of this paper. More details are available in [30]). Component 8 produces
a network in the widely used Pajek’s .net format11, which is finally loaded into
Orange’s native graph structure and visualized with the Net explorer widget
(component 10). The lower branch of the workflow sends the term graph into
the Pathfider algorithm web service which simplifies the graph by removing
edges violating the extended triangle inequality. For example, the query string

11 http://pajek.imfm.si/doku.php

Workflow Construction for Service-Oriented Knowledge Discovery 325

“migraine+magnesium” with the limit of 30 documents produced a graph shown
in Figure 8a. The simplified graph, obtained by applying the Pathfinder algo-
rithm is shown in Figure 8b.

7 Conclusions

This paper proposes a third-generation knowledge discovery framework and its
implementation named Orange4WS. Based on a data mining toolkit (Orange)
that supports execution of workflows of processing components, our new plat-
form upgrades its capabilities by transparent integration of web services. As
web services are an extremely versatile and powerful concept which is becoming
more and more popular, we believe their use in knowledge discovery will increase
rapidly.

We have added semantic capabilities to the framework by proposing a method-
ology for integrating semantic annotation and planning into a data mining plat-
form by means of an ontology describing a mapping between KD representation
and native representation of the data mining platform. This methodology was pri-
marily targeted on Orange, however it could be modified to other data mining
platform. We have developed a planner, which exploits the hierarchy of algorithms
annotated using the KD ontology. The construction of algorithm hierarchy is time
consuming, but it needs to be recomputed only when a new algorithm is added to
the ontology. Moreover, the hierarchy can also be exploited in the presentation of
the workflows to the user. The presented implementation and methodology were
demonstrated on a text mining use case which demostrates some of the abilities
of our platform and versatility of web services by means of integration of different
knowledge discovery systems and algorithm implementations.

In future work we will explore adding means for semantic web service discovery
and semi-automatic annotation. The planner will also be a subject of future
improvements as we plan to incorporate the ability of satisfying user-defined
constraints and preferences.

References

1. Ali, A., Rana, O., Taylor, I.: Web services composition for distributed data mining.
In: Proc. of the 2005 IEEE Int. Conf. on Parallel Processing Workshops. IEEE, Los
Alamitos (2005)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook, Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

3. Bernstein, A., Deanzer, M.: The NExT system: Towards true dynamic adaptions of
semantic web service compositions (system description). In: Franconi, E., Kifer, M.,
May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 739–748. Springer, Heidelberg
(2007)

4. Bernstein, A., Provost, F., Hill, S.: Toward intelligent assistance for a data mining
process: An ontology-based approach for cost-sensitive classification. IEEE Trans.
on Knowledge and Data Engineering 17(5), 503–518 (2005)

326 V. Podpečan, M. Žakova, and N. Lavrač

5. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl,
P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz information miner.
In: Studies in Classification, Data Analysis, and Knowledge Organization (GfKL
2007). Springer, Heidelberg (2007)

6. Demšar, J., Zupan, B., Leban, G.: Orange: From experimental machine learning
to interactive data mining. White Paper (2004)

7. DeRoure, D., Goble, C., Stevens, R.: The design and realisation of the myExperi-
ment virtual research environment for social sharing of workflows. Future Genera-
tion Computer Systems 25, 561–567 (2008)

8. Diamantini, C., Potena, D., Storti, E.: KDDONTO: An ontology for discovery
and composition of KDD algorithms. In: SoKD: ECML/PKDD 2009 Workshop on
Third Generation Data Mining: Towards Service-oriented Knowledge Discovery,
pp. 13–24 (2009)

9. Džeroski, S.: Towards a general framework for data mining. In: Džeroski, S., Struyf,
J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259–300. Springer, Heidelberg (2007)

10. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice-Hall, Englewood Cliffs (2006)

11. Finin, T., Gama, J., Grossman, R., Lambert, D., Liu, H., Liu, K., Nasraoui, O.,
Singh, L., Srivastava, J., Wang, W.: National science foundation symposium on
next generation of data mining and cyber-enabled discovery for innovation (NGDM
2007): Final report (2007)

12. Guedes, D., Meira, W.J., Ferreira, R.: Anteater: A service-oriented architecture for
high-performance data mining. IEEE Internet Computing 10(4), 36–43 (2006)

13. Hoffmann, J.: Towards efficient belief update for planning-based web service com-
position. In: Proc. of ECAI 2008, pp. 558–562 (2008)

14. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

15. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.:
Taverna: a tool for building and running workflows of services. Nucleic Acids Re-
search 34, 729–732 (2006)

16. Kalyanpur, A., Jiménez Pastor, D., Battle, S., Padget, J.A.: Automatic mapping
of OWL ontologies into Java. In: Proc. of SEKE 2004, pp. 98–103 (2004)

17. Lécué, F., Delteil, A., Léger, A.: Applying abduction in semantic web service com-
position. In: Proc. of the ICWS 2007, pp. 94–101 (2007)

18. Li, Y., Lu, Z.: Ontology-based universal knowledge grid: Enabling knowledge dis-
covery and integration on the grid. In: Proc. of the 2004 IEEE Int. Conf. on Services
Computing (2004)

19. Liu, Z., Ranganathan, A., Riabov, A.: A planning approach for message-oriented
semantic web service composition. In: Proc. of the Nat. Conf. on AI, vol. 5(2), pp.
1389–1394 (2007)

20. Klusch, M., Gerber, A., Schmidt, M.: Semantic web service composition planning
with OWLS-XPlan. In: Procs of 1st Intl. AAAI Fall Symposium on Agents and
the Semantic Web (2005)

21. Morik, K., Scholz, M.: Web services composition for distributed data mining. In:
Proc. of the International Conference on Machine Learning, pp. 47–65 (2004)

22. Panov, P., Džeroski, S., Soldatova, L.N.: OntoDM: An ontology of data mining. In:
Proceedings of the IEEE ICDM Workshops 2008, pp. 752–760 (2008)

23. Rios, J., Karlsson, J., Trelles, O.: Magallanes: a web services discovery and auto-
matic workflow composition tool. BMC Bioinformatics 10(1) (2009)

24. Schvaneveldt, R.W., Dearholt, D.W., Durso, F.T.: Graph theoretic foundations of
pathfinder networks. Computers and Mathematics with Applications (1988)

Workflow Construction for Service-Oriented Knowledge Discovery 327

25. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL query for OWL-DL. In: Proc. of the
OWLED 2007 Workshop on OWL: Experiences and Directions (2007)

26. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using SHOP2. Journal of Web Semantics 1(4), 377–396 (2004)

27. Stankovski, V., Swain, M., Kravtsov, V., Niessen, T., Wegener, D., Kindermann,
J., Dubitzky, W.: Grid-enabling data mining applications with DataMiningGrid:
An architectural perspective. Future Generation Computer Systems 24(4), 259–279
(2008)

28. Talia, D., Trunfio, P., Verta, O.: Weka4WS: A WSRF-enabled Weka toolkit for dis-
tributed data mining on grids. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho,
R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 309–320. Springer,
Heidelberg (2005)

29. Taylor, I., Shields, M., Wang, I., Harrison, A.: The Triana workflow environment:
Architecture and applications. In: Taylor, I., Deelman, E., Gannon, D., Shields, M.
(eds.) Workflows for e-Science, pp. 320–339. Springer, Heidelberg (2007)

30. Vavpetič, A., Batagelj, V., Podpečan, V.: An implementation of the pathfinder
algorithm for sparse networks and its application on text networks. In: Proceedings
of the 12th international multiconference Information Society (IS 2009), pp. 236–
239 (2009)

31. Žáková, M., Křemen, P., Železný, Lavrač, N.: Automatic knowledge discovery work-
flow composition through ontology-based planning. IEEE Trans. Automation Sci-
ence and Engineering (2010)

32. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
nique, 2nd edn. Morgan Kaufmann, San Francisco (2005)

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 328–339, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Workflow Composition and Enactment Using jORCA

Johan Karlsson1,2, Victoria Martín-Requena1, Javier Ríos1, and Oswaldo Trelles1

1 Computer Architecture Department; University of Malaga; Campus de Teatinos, 29071
Málaga, Spain

2 Fundación IMABIS, Málaga, Spain
{tjkarlsson,vickymr,jriosp,ortrelles}@uma.es

Abstract. Support for automated service discovering and workflow composi-
tion is increasingly important as the number of Web Services and data types in
bioinformatics and biomedicine grows. jORCA is a desktop client able to
discover and invoke Web Services published in different types of service meta-
data repositories. In this paper, we report that jORCA is now able to discover,
compose, edit, store, export and enact workflows. As proof of concept, we pre-
sent a case study which re-creates a published workflow to demonstrate new
functionality in jORCA, starting from service discovery, workflow generation
and refinement; to enactment, monitoring and visualization of results. The sys-
tem has been exhaustively tested and documented and is freely available at
http://www.bitlab-es.com/jorca.

1 Introduction

Bioinformatics is strongly based on the Web since it can be used to deploy bioinfor-
matics tools and provide universal access to distributed resources. This is important
since many applications in bioinformatics require access to constantly updated data-
bases and have large computational requirements, something not possible to maintain
in small laboratories. However, a weakness of using Web tools –in the general sense
of applications available in the Web- is that they can differ in their descriptions, invo-
cation protocols and data formats, which represents a barrier to service interoperabil-
ity. Moreover, the proliferation of bioinformatics services makes it difficult to locate
the appropriate service or set of services for data processing. Thus, discovery, compo-
sition (workflow generation) and invocation of services become complicated tasks. In
this scenario, Web Services appears as a potential solution since they are “designed to
support interoperable machine-to-machine interaction over a network” [20].

Several clients have been developed to assist in the utilization of WS. Most of
these clients are oriented to specific data models, service metadata and protocols.
Gbrowse [22], MOWServ [31], Dashboard [1], Seahawk [7] are well-known clients
but they are limited to work with BioMOBY [21] Web Services. BioCatalogue [6],
the European registry for biological Web Services, stores metadata for SOAP (for
example BioMOBY and SoapLab) and REST-style services. In the workflow compo-
sition and enactment area, Remora [3] and BioWEP [18] are also specific for
BioMOBY services. The current reference software in bioinformatics for workflow
composition and enactment is Taverna [14] but this application has a steep learning

 Workflow Composition and Enactment Using jORCA 329

rate [8]. A full comparison by requisites of jORCA and these clients can be found in
the Supplementary material in [12] and jORCA’s web page documents.

To facilitate seamless integration of WS, we developed jORCA [12] which is a
desktop client based on a uniform representation of different web resources enabling
service invocation and advanced control over invocations. In the same line, to facili-
tate bioinformatics tools exploitation, we developed Magallanes [17]; a versatile,
platform-independent Java library of algorithms to discover appropriate WS associ-
ated to specific data types, enabling the development of clients for service discovery.
A second, important, feature of Magallanes is its ability to connect compatible WS
into pipelines (simple workflows). Pipelines are chains of processing elements (WS),
arranged so that the output of each element is the input of the next. Executing pipe-
lines consist in executing services sequentially. Support for manual and automatic
execution of pipelines should be provided to help carrying out complex tasks that
involves executing a set of tools. Magallanes is completely integrated with jORCA.

In this document, we describe the extension of jORCA with additional functional-
ity, including:

• Workflow enactment, including monitoring of enactments in progress
• Extended support for workflow composition by means of drag and drop from the

history of web-service invocations.

A case study is also presented and elaborated in Supplementary Material to illustrate
how to reproduce a previously published workflow [11] for clustering of co-regulated
genes to obtain a hierarchical multiple sequence alignment that displays the most
relevant common features of those genes at sequence level. The case study will dem-
onstrate workflow functionality in jORCA, starting with the discovery of services and
datatypes which are used as input to service composition (workflow generation). The
generated service composition contains several alternative paths of which the user can
select the more suitable. The completed workflow is enacted within jORCA which is
also used to visualize results.

This paper is organized as follows: in this first section, we introduce the area of
web-services in bioinformatics and jORCA. In Section 2, we describe the overall
architecture of jORCA and describe the field of workflow composition and the ap-
proach of jORCA. In Section 3, we describe how jORCA can compose the workflow
from [11]. This workflow was originally manually composed and we show how the
new functionality simplifies greatly the task of workflow composition. Section 4
contains a brief comparison with other approaches for composition of BioMOBY
services and a discussion of other issues. Finally, Section 5 concludes the paper.

2 System and Methods

jORCA architecture is described in [12]. jORCA combines different software compo-
nents specialized for specific tasks (see Fig. 1). The lower layer of jORCA uses the
framework from [16] to represent services metadata uniformly from the point of view
of jORCA. Software components (accesses) are used to map the different service
models into a single virtual representation and specific workers handle the specific

330 J. Karlsson et al.

service invocations (specified by their protocols). New functionality can be added to
jORCA with plugins, which can request an area in the central pane of the graphical
user interface with full access to service and datatype information. Finally, the top
layer deals with the graphical user interface.

Fig. 1. jORCA architecture. The Modular API [16] offers a uniform view of different reposito-
ries. Access modules are used to map different repositories and specific workers manage the
different invocation protocols. A plug-in interface allows jORCA to extend its functionality.

Discovery Methods

The number of registered Web Services in repositories or described by individual
WSDL files make service discovery a challenging tasks (see Table 1 for examples).
In general, a discovery process aims to segregate a set of services or data types that
satisfy a given number of requirements from a larger pool of available resources (ser-
vices). We address this problem in Magallanes, which has been fully integrated with
jORCA. Apart from the traditional discovering methods, mostly based on syntactic
text-search engines and filtering mechanisms (also covered by Magallanes using
keywords which are matched against service descriptions retrieved from the different
repositories), Magallanes can perform inexact searches based on a scoring system and
provides ‘did you mean…?’ suggestions to manage approximated matches.

Extending jORCA with Workflow Functionality

Automatic workflow generation, also called automatic service composition, aims to
automate (to various degrees) the task of connecting services. In general, the problem
addressed in this area is; given two sets of data types (representing inputs and outputs
respectively), find the optimal set of inter-connected services where the input data
types of the initial service(s) are of the specified input data types and the output data

 Workflow Composition and Enactment Using jORCA 331

types of the last services are of the specified output data types. Two services can be
inter-connected if the output of one is compatible with the input of the other.

Usually the optimum set is determined by degree of semantic closeness and non-
functional metadata (QoS). For example, workflow generation algorithms typically
favor services whose input/output data types are semantically close (similar) to the
requested data type. Examples of non-functional metadata include level of availabil-
ity, error rates, cost (expected CPU time or data transfer time).

If the number of services and or data types is low, the process of building
workflows can even be manual, provided that the services have sufficient textual
descriptions. However, when the number of services reach a certain level, support in
connecting services becomes essential.

Such support can be either semi-automatic, interactively giving advice regarding
suitable services for each step in the workflow construction or fully automatic where
the human workflow builder only provides input and output data descriptions and the
algorithm directly generates complete workflows.

Generic approaches to service composition consider all possible solutions and local
approaches consider only sub-sets of the possible solutions. A novel approach to ser-
vice composition using the BioMOBY-S framework is described in [4]. Several im-
provements intended to limit the search space are described and included in the
algorithm. In BioMOBY-S, several ontologies are used in service descriptions. In
particular, data type ontology is shared between all services. In the ontology, data
types are related to other data types; in particular, a data type can extend definitions of
other data types or be composed of other data types (i.e. complex data types). These
relations can be recursive, meaning that composite data types can extend other data
types (super classes) and contain other complex data types (components). The service
composition algorithm in [4] considers not only direct compatibility and polymor-
phism (compatibility by inheritance), but also includes services where the in-
put/output has “contains”-relations directly or indirectly (recursively) with the
required data type. For example, this means that compatibility is evaluated not only
for the data type itself but also for all other data types that the data type is composed
of. Results are further ranked by their popularity as measured by requests to the
central registry and distance between data types in the ontology.

In simplest terms, the automatic WF-builder in jORCA (through Magallanes) pro-
ceeds to identify all the services that produce a target data type as output. All the data
types used as input for such services are used as a target in the next step. If there are
several options, jORCA will display these options and let the user select the appropri-
ate option. When there are many options, the graph can be difficult to explore. In this
case, the default view is the compact mode where branches of alternative services are
shown as stacks. The default service selected from each stack is based on the feed-
back values (previous user selections). If required, the users can click over the stack
to select among the suitable alternatives. Please observe that the initial and last
datatypes can also be discovered by jORCA through the Magallanes integration. In
the current version, only the tools from the same repository can be used to create
simple workflows.

jORCA logs all the user activity locally and allows users to re-launch any task pre-
viously invoked, including chains of tasks as a manually configured workflow. A
natural next step in the development of jORCA was the ability to create personalized

332 J. Karlsson et al.

pipelines from a set of selected (pre-invoked) operations (found in the log). Once the
pipelines have been defined, jORCA is able to enact the full pipeline of services pro-
viding updated service invocation status. Finally, by embedding Magallanes in
jORCA we close the circle, by discovery, composing, storing, enacting and monitor-
ing pipelines that can also be exported to a Taverna compatible workflow (as SCUFL)
or saved in jORCA’s list of favorites for easy re-enactment.

Table 1. Current repositories integrated by jORCA showing the number of registered services.
The high number of Web Services makes the task of discovering the right service for a specific
type of data difficult.

Institution URL Repository #Services

Calgary University http://www.ucalgary.ca Moby Canadá 1563

International Rice Research
Institute

http://cropwiki.irri.org IRRI Philippines 1805

Instituto Nacional de
Bioinformática

http://www.inab.org INB stable 150

Advancing Clinico
Genomic Trials on Cancer

http://www.eu-acgt.org ACGT Stable 192

DNA Data Bank of Japan http://www.ddbj.nig.ac
.jp

WABI 21

European Bioinformatics
Institute

http://www.ebi.ac.uk EBI 34

3 Results

In Section 2, we describe the new functionality of jORCA with regards to service
composition and enactment of resulting workflows. In order to better illustrate the
new functionality, we will here describe a typical user exercise. Note that a more
detailed description of the exercise is available as Supplementary Material at
jORCA’s web page, together with comprehensive material for training.

 In the exercise, we will reproduce the workflow proposed in [11] which starts with
clustering of co-regulated genes and produces a hierarchical multiple sequence align-
ment based on similarity of promoter configurations. To conduct this exercise the user
must use Magallanes plugin to compose services (i.e. create a pipeline) between
FASTA_NA_Multi data-type (set of co-regulated genes in FASTA Format) to Ne-
wick_Text (tree that represents the desired multiple sequence alignment), jORCA will
then display the different minimal pipelines between both data-types. It is possible
that several options are discovered. In this case the user should select the best option.
Once finished, the pipeline can be exported (as a Taverna compatible workflow) or
directly enacted within jORCA.

Specification of Parameters and Workflow Enactment

When the user decides to enact a pipeline, jORCA requests the required parameters.
By default, only parameters required by the first service in the pipeline and suggested

 Workflow Composition and Enactment Using jORCA 333

names of the outputs are displayed by jORCA. All other services use the default pa-
rameters (if any). All the drag and drop and data-conversion features from jORCA are
also available for pipeline enactment. Secondary (non-mandatory) parameters are
initially hidden to avoid complex interfaces (see Figure 2), but the user can configure
these secondary parameters, for instance distance parameter of the SOTA Clustering
algorithm used in the example or whatever other parameter for intermediate tools.
Colour codes are used by jORCA to warn the user about mandatory inputs that must
be filled. It is also common that a tool output could match with more than one input of
the next tool in the execution chain. In this situation, the software requests guidance
from the user.

Once enacted, jORCA takes the advantage of its tool tracking to display the pro-
gress status by colouring the different tools in the graph (see Figure 2). jORCA also
allows saving the results of intermediate tools in the user file system which are then
possible to browse or visualize through jORCA.

 Once the enactment has finished, the user can visualize the full results (or inter-
mediate results). In the example a Newick tree viewer [9, 25] is used to illustrate this
feature. Step by step enactment of this example is available at jORCA’s web page.

Fig. 2. jORCA pipeline execution main view. On the left, the pipeline execution status graph
(Tools will be displayed in green for successfully invoked, yellow running and red failed), on
the right, the parameter window with the different parameters of the intermediate services
hidden (they can be displayed by clicking the arrow buttons). By default, only the parameters of
the first tool and the outputs of the pipeline are displayed. Detailed parameter configuration is
displayed for SOTA Clustering. On the top, the options to add the pipeline to the list of favor-
ites and to export the pipeline to Taverna are shown.

4 Discussion

In comparison with the approach of this paper, many studies describe relatively small
service catalogues, limiting their practical utility. Approaches using DAML-S, OWL-S

334 J. Karlsson et al.

or SAWSDL (see for example [2, 24]) shows the potential utility of well-defined se-
mantic descriptions using established formats for sharing semantic information on the
Internet. Service developer participation in the semantic descriptions of services is
essential but getting such active participation is difficult in practice. This conclusion is
supported by [23] who expresses concerns about the feasibility of large-scale auto-
mated workflow composition. Authors claim that, in the domain of bioinformatics,
researchers are reluctant to give up control over their experimental setups. In particular,
shim services (used to transform data between different data formats and data types)
are expected to be the most suitable services to be annotated semantically.

The issue of participation from service providers in annotation of services with se-
mantics is complex although, in particular, end-user participation in annotation is
essential. There have been some attempts at improving service annotations through
community activities (“jamborees”). These events improve the quality of the annota-
tions but initiatives should be made by the bioinformatics organizations themselves to
arrange such events much more often.

The strategy in [4] is to simplify interactive service composition of BioMOBY ser-
vices, displaying in each step of the workflow construction process only those
services that are compatible and more likely to be useful by ranking the services ac-
cording to several aspects such as semantic similarity of data type inputs or non-
functional measurements such as number of retrievals of service definitions from
MobyCentral. jORCA performs automatic service composition, generating the entire
workflow from start to finish (with the limitation that a single repository can be used
at once). After the workflow has been generated, the user can select alternative paths.
This strategy is less interactive than [4] but jORCA was not intended to be a complete
workflow editor. Instead, focus in jORCA has been placed on service, data type and
workflow discovery. Service and data type discovery allows clients to find the re-
quired data types and services using text searches in descriptions. Workflow discov-
ery is supported both in the obvious way, by treating workflows as services but also
by generating interesting workflows on-the-fly, allowing users to “discover” poten-
tially interesting workflows and then export to a fully-fledged workflow editor such
as Taverna.

The issue of locating data types as input for workflow generation approaches is not
addressed in [4]. This problem becomes serious considering the massive number of
available data types in BioMOBY (currently over 800 data types). jORCA lets the
user select a data type from the results of the initial discovery process as source or
target for the workflow generation algorithm.

The BioMOBY extension to the Taverna workflow software is reported in [10].
Naturally, the scope and the intended use of that extension is different from jOrca and
it is therefore not easy to compare. While jOrca supports the workflow format of
Taverna for workflow representation and storage and will be able in future versions to
enact Taverna workflows, it is not otherwise tied or integrated with the main Taverna
application. The following extensions to Taverna with regards to BioMOBY are
reported in [10]:

• Object constructors/deconstructors
• Secondary parameters
• Semantically-aided workflow design
• Enhanced support for collection inputs and outputs

 Workflow Composition and Enactment Using jORCA 335

Additionally, jORCA also has the following functionality.

• Multiple repositories (not only those with BioMOBY services) can be added and
used in the tool invocation and workflow creation.

• Advanced discovery methods (Magallanes plugin) which can be used to find the
correct tool, find the initial and final data-types, create workflows and easily enact
them.

• A user can execute a set of tools, and once he/she has found the correct invocation
pipeline he/she can create a personalized workflow thanks to the drag and drop
functionality.

jORCA attempts to provide a simple approach to web service usage and attempts to
avoid creating a complex workflow composition tool. All jORCA features for usabil-
ity can be used to create, execute and compose workflows.

In summary, the BioMOBY extension to Taverna is tightly integrated with Taverna
and is intended directly to facilitate construction of BioMOBY workflows. jORCA is
a stand-alone application intended to facilitate, in general, the use of (individual)
services and now also workflows. Naturally, the workflow editing functionality pro-
vided through Taverna and the BioMOBY extension is much more advanced. In this
sense, jOrca and the BioMOBY extension of Taverna complement each other: basic
workflows (pipelines) can be created with jORCA and then exported to Taverna
where advanced editing is possible thanks to the BioMOBY extension. It is also
worthwhile to note that while the examples in this paper have been for BioMOBY
services and Taverna workflows, jORCA is not limited to those technologies.

Combining Different Service Standards in a Workflow

BioMOBY services adhere to a predictable standard for data representation through
the use of shared datatype ontology. Therefore, it is possible to deduce the (syntactic)
and to some extent, semantic compatibility between the services (provided that
the services use sensible datatypes which represent the semantics of the inputs and
outputs).

The automatic workflow composition is only possible in such cases. However, a
more “manual” approach of service composition is conceivable. If the user mixes
BioMOBY and non-BioMOBY services (such as a more traditional WSDL-described
service), the question of datatype mapping becomes important.

Due to the Modular API, which jORCA is based on, it is possible to create specific
formatters and loaders. The Modular API supports an underlying data representation
model (in these examples, this is directly mapped to the BioMOBY data representa-
tion ontology. If it is necessary to combine services with different protocols (for ex-
ample BioMOBY and traditional WSDL-described SOAP services), the formatter and
an intelligent heuristic can translate data between the models, acting as a kind of data
broker. This works for simple datatypes (String, Integer etc) but for more complex
datatypes it would be necessary to programmatically create a loader. The loader is
able to do more complex transformations to add additional information as prescribed
by an individual data model (for example, sequences in BioMOBY contain not only
the sequence itself but also the length: this can be calculated on-the-fly by a loader).
Naturally, this is not an end-user task since developing those formatters and loaders

336 J. Karlsson et al.

require some programming ability. However, several standard formatters and loaders
are available out-of-the-box and more can be added and configured by the software
developer. The approach is limited as there are very many different datatypes in bio-
informatics but, at least, works well for some basic datatypes. Advanced object crea-
tion methods have been added to jORCA as reported in [12], integrating BioData-SF
library and plug-ins, intelligent wizards that use heuristics have been integrated to
facilitate Web Service composition and object creation. Inter-protocol workflow crea-
tion has not been implemented yet, but this feature is considered for future releases.
An example of manual inter-protocol Web Service combination can be found in
jORCA’s web page (Guided exercise “Using Web Services - different protocols and
repositories”). Nevertheless, BioMOBY services are easy to combine and, for end-
users, we recommend to create workflows with only BioMOBY services.

Service Metadata Repository

Our approach is able to directly work over several existing sets of bioinformatics
web-services by the development of specific access components. Currently, compo-
nents exist to connect Magallanes to BioMOBY service registries and a registry for
grid-services (ACGT project [19]). In this paper, we have focused on using the Bio-
MOBY service registry, which has an active developer community and almost 1600
available bioinformatics web-services (beginning of 2009).

This has the advantage that Magallanes is able to work with a complete catalogue
of bioinformatics services, both for service discovery and for workflow generation. In
particular, the BioMOBY approach with a shared data type ontology results in ser-
vices that are, in principle, easy to connect since they do not require intermediate data
formatting to be compatible.

However, the disadvantage of using the BioMOBY registry (MobyCentral) as a
source for service metadata is that, while the number of services is high, metadata is
supplied directly by the service providers without any quality control. For example,
MobyCentral has almost 800 data types (January 2009). This could mean problems in
service integration when services that really consume similar data are not considered
as compatible with a given data because the services were incorrectly annotated with
different data types.

The conclusion is that data type ontologies must be large enough to express the re-
quired data types but should also be controlled to ensure that service providers do not
unnecessarily define new data types when a suitable data type already exists. This is
essential to enable meaningful service composition. The approach to data type ontol-
ogy curation adopted by the Spanish National Institute for Bioinformatics (INB) is to
maintain a data type ontology which is compatible with the ontology from BioMOBY
but dedicate special effort to promoting service compatibility. New services and data
types are suggested by service providers but are not added to the official INB service
catalogue without prior approval from an ontology committee. A development cata-
logue where new data types and services can be registered without restriction is avail-
able for testing. This approach is less scalable than the end-user oriented approach in
MobyCentral but can result in a good trade-off between openness (scalability) and
control.

 Workflow Composition and Enactment Using jORCA 337

Regarding the scalability of our approach, jORCA uses the Java regular expres-
sions package to perform searches. In order to improve the efficiency, Magallanes
optimizes and compiles the pattern before start to search. As a result, the search time
increases linearly with the search space and with the number of keywords if it is an
'OR' search.

5 Conclusions

The profusion and dispersion of bioinformatics tools make routine tasks of data proc-
essing complicated. Users are involved in the tedious and error-prone task of copying
and pasting intermediate results, or adjusting data from a particular output for further
processing with another tool. Under this scenario, workflows are becoming the new
paradigm for repetitive and complex data processing in bioinformatics.

In previous communications, we reported two different applications (jORCA and
Magallanes) to facilitate the discovering, interconnection and exploitation of bioin-
formatics tools. In this work, we present an extended version of jORCA that inte-
grates discovery, composition, storage/exporting, enactment and monitoring of Web
Services pipelines. Following the original philosophy of the applications, with usabil-
ity high on the top of priorities for jORCA, the new features take into account the user
comfort and the existing look and feel of jORCA.

The strength of software integration is demonstrated (details in the Complementary
Material) by reproducing the elaboration and enactment of a published workflow,
spending few minutes to complete the task, including monitoring of enactment and
visualization of results.

In the agenda for enhancing the workflow management side of jORCA, we are
planning functionality to suspend and resume workflow enactment, complex (multiple
branches) workflow enactment and more complete workflow edition (for example,
that allows calling to local procedures or programs).

Our work has so far focused in using the ontologies maintained by INB and Bio-
MOBY. However, it would be interesting to consider other ontologies such as EDAM
[5] (used in the Embrace Registry [15]) or the service ontology from MyGrid [23]
(the latter is very similar to the BioMOBY ontology). jORCA is based on an extendi-
ble framework (see section 2) and a new access module could be written for those
ontologies. It is worthwhile to note that this would not involve large (if any) modifica-
tions to the main application (jORCA).

Another limitation of this work is that as full workflow composition hasn’t been
implemented. This will be a future extension of these new features, creating work-
flows with several branches.

jORCA is available under the Creative Commons Attribution - No derivative
works 2.5 license and the source code (entirely implemented in Java) is available
upon request. Download the latest version, documentation, guided exercises and vid-
eos from jORCA’s web. In that page you can also get informed of the new features
through jORCA’s mailing list.

338 J. Karlsson et al.

Acknowledgements

This work has been partially financed by the National Institute for Bioinformatics
(www.inab.org) a platform of Genoma-España; the EU project "Advancing Clinico-
Genomic Trials on Cancer" (EU-contract no.026996) and the RIRAAF Spanish net-
work on allergies (RD07/0064/0017).

Author would like to thank the BITLAB research group for their invaluable help in
software benchmarking. A special thanks to Maximiliano García and Antonio Muñoz
for the rigorous and continuous user feedback.

References

1. BioMoby Dashboard, http://biomoby.open-bio.org/CVS_CONTENT/moby-
live/Java/docs/Dashboard.html (accessed 2010-07-08)

2. Cardoso, J., Sheth, A.: Semantic e-workflow composition. Journal of Intelligent Informa-
tion Systems 21(3), 191–225 (2003)

3. Carrere, S., Gouzy, J.: Remora: a pilot in the ocean of BioMOBY web-services. Bioinfor-
matics 22, 900–901 (2006)

4. DiBernardo, M., Pottinger, R., Wilkinson, M.: Semi-automatic web service composition
for the life sciences using the BioMoby semantic web framework. Journal of Biomedical
Informatics 41, 837–847 (2008)

5. EDAM ontology, http://edamontology.sourceforge.net/ (accessed 2010-
08-04)

6. Goble, C., et al.: BioCatalogue: A Curated Web Service Registry for the Life Science
Community; Communication Data Integration in Life Sciences (DILS) 2009 - ENFIN Col-
located Workshop, Manchester, UK (2009)

7. Gordon, P.M.K., Sensen, C.W.: Seahawk: Moving Beyond HTML in Web-based Bioin-
formatics Analysis. BMC Bioinformatics 8, 208 (2007)

8. Gordon, P., Sensen, C.: A Pilot Study into the Usability of a Scientific Workflow Con-
struction Tool (2007), http://hdl.handle.net/1880/46486

9. Han, M.V., Zmasek, C.M.: phyloXML: XML for evolutionary biology and comparative
genomics. BMC Bioinformatics 10, 356 (2009)

10. Kawas, E., et al.: BioMoby extensions to the Taverna workflow management and enact-
ment software. BMC Bioinformatics 7, 523 (2006)

11. Kerhornou, A., Guigó, R.: BioMoby Web Services to support clustering of co-regulated
genes based on similarity of promoter configurations. Bioinformatics 23(14), 1831–1833
(2007)

12. Martín-Requena, V., Ríos, J., García, M., Ramírez, S., Trelles, O.: jORCA: easily inte grat-
ing bioinformatics Web Services. Bioinformatics 26(4), 553–559 (2010)

13. Navas-Delgado, I., et al.: Intelligent client for integrating bioinformatics services. Bioin-
formatics 22, 106–111 (2006)

14. Oinn, T., et al.: Taverna: a tool for the composition and enactment of bioinformatics work-
flows. Bioinformatics 20, 3045–3054 (2004)

15. Pettifer, S., et al.: An active registry for bioinformatics web services. Bioinformatics 25,
2090–2091 (2009)

16. Ramirez, S., et al.: A flexible framework for the design of knowledge-discovery clients. In:
International Conference on Telecommunications and Multimedia (2008)

 Workflow Composition and Enactment Using jORCA 339

17. Ríos, J., Karlsson, J., Trelles, O.: Magallanes: a Web Services discovery and automatic
workflow composition tool. BMC Bioinformatics 10, 334 (2009)

18. Romano, P., et al.: Biowep: a workflow enactment portal for bioinformatics applications.
BMC Bioinformatics 8(suppl. 1), s19 (2007)

19. Tsiknakis, M., et al.: Building a European biomedical grid on cancer: the ACGT Integrated
Project. Studies in health technology and informatics 120, 247 (2006)

20. Web services architecture working group, http://www.w3.org/2002/ws/arch/
(September 2006)

21. Wilkinson, M.D., et al.: Interoperability with Moby 1.0–it’s better than sharing your
toothbrush! Briefing in Bioinformatics 9(3), 220–231 (2008)

22. Wilkinson, M.D.: Gbrowse moby: a web-based browser for BioMOBY services. Source
Code for Biology and Medicine 1, 4 (2006)

23. Wolstencroft, K., et al.: The myGrid ontology: bioinformatics service discovery. Int. J.
Bioinformatics Research and Applications 3(3), 303–325 (2007)

24. Wu, Z., et al.: Automatic composition of semantic web services using process mediation.
In: Proceedings of the 9th Intl. Conf. on Enterprise Information Systems ICES (2007)

25. Zmasek, C.M., Eddy, S.R.: ATV: display and manipulation of annotated phylogenetic
trees. Bioinformatics 17, 383–384 (2001)

Supplementary Material

The full description of the use case from the Results section is available at
http://www.bitlab-es.com/jorca.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 340–354, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Linked Data Approach to Sharing Workflows and
Workflow Results

Marco Roos1,2, Sean Bechhofer3, Jun Zhao4, Paolo Missier3, David R. Newman5,
David De Roure6, and M. Scott Marshall2,7

1 BioSemantics Group, Department of Human and Clinical Genetics, Leiden University Medical
Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands

2 Informatics Institute, Faculty of Science, University of Amsterdam, P.O. Box 94323, 1090 GH
Amsterdam, The Netherlands

m.roos@lumc.nl
3 School of Computer Science, The University of Manchester, Manchester, UK

{paolo.missier,sean.bechhofer}@manchester.ac.uk
4 Jun Zhao, Department of Zoology, University of Oxford,

South Parks Road, Oxford, OX1 3PS
jun.zhao@zoo.ox.ac.uk

5 School of Electronics and Computer Science, University of Southampton, Highfield Campus,
University Road, Southampton SO17 1BJ, UK

drn05r@ecs.soton.ac.uk
6 Oxford e-Research Centre, University of Oxford, 7 Keble Road, Oxford OX1 3QG, UK

david.deroure@oerc.ox.ac.uk
7 Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre,

P.O. Box 9600, 2300 RC Leiden, The Netherlands
mscottmarshall@gmail.com

Abstract. A bioinformatics analysis pipeline is often highly elaborate, due to
the inherent complexity of biological systems and the variety and size of data-
sets. A digital equivalent of the ‘Materials and Methods’ section in wet labora-
tory publications would be highly beneficial to bioinformatics, for evaluating
evidence and examining data across related experiments, while introducing the
potential to find associated resources and integrate them as data and services.
We present initial steps towards preserving bioinformatics ‘materials and meth-
ods’ by exploiting the workflow paradigm for capturing the design of a data
analysis pipeline, and RDF to link the workflow, its component services, run-
time provenance, and a personalized biological interpretation of the results. An
example shows the reproduction of the unique graph of an analysis procedure,
its results, provenance, and personal interpretation of a text mining experiment.
It links data from Taverna, myExperiment.org, BioCatalogue.org, and Con-
ceptWiki.org. The approach is relatively ‘light-weight’ and unobtrusive to bio-
informatics users.

Keywords: Linked Data, Semantic Web, Digital preservation, Workflow,
Provenance, Concept Web.

 A Linked Data Approach to Sharing Workflows and Workflow Results 341

1 Introduction

A commonly used approach to the study of biological systems in the omics era is to
integrate information from multiple resources, often in the context of interpreting our
own data from an in-house omics experiment (e.g. genome-wide gene expression).
The bioinformatics analysis pipeline is therefore usually complex, while the amount
of relevant knowledge that could theoretically be considered for a new hypothesis is
daunting. With over 19 million biomedical publications in PubMed alone and over a
thousand public databases, information overload is a general problem in biology.
Although these numbers are impressive, the abundance of information only translates
into knowledge gain if we can locate and leverage the knowledge contained in the
many distributed resources, including derived data and knowledge extracted by work-
flows or other computational means. Many have responded to the challenge by aggre-
gating valuable or otherwise thematic data in data warehouses and making the
integrated data available on the Web in the form of a knowledge base. However, in all
cases, the challenge remains to create a system for the description and subsequent
computational discovery of distributed knowledge resources so that they can be
incorporated into additional experiments and hypothesis testing.

Not surprisingly, sharing a bioinformatics experiment and its results can be chal-
lenging, whether for reuse of its results and its methodology or for peer evaluation. In
a networked environment, sharing involves a search process in order to select from a
potentially vast number of varied offerings. For wet laboratory experiments, this is
supported in particular by the ‘Materials and Methods’ section of a publication, which
describes how the results were obtained. It describes the protocol that was followed,
often referring to protocols in earlier publications or in journals and books dedicated
to protocols. It describes the specimens and equipment used in enough detail to repro-
duce the experiment. In many cases, strict nomenclature is imposed by publishers to
name, for example, genes and organisms. This makes it easier for peers to understand
the experiment, thereby facilitating its review and reuse of its protocol. The Materials
and Methods section is considered one of the pillars of experimental biology and
probably the most critically assessed part of scientific discourse. A digital version of
the Materials and Methods for a bioinformatics experiment would increase its reus-
ability, as well as the rigor by which it can be evaluated. However, a digital equiva-
lent of the ‘Materials and Methods’ section does not yet exist in bioinformatics. In
this paper, we show how a workflow system and web-based information repositories
can be used to create the digital equivalent of the Materials and Methods section when
we adopt a Semantic Linked Data approach. In the remainder of this paper, we de-
scribe the user requirements and their technical counterparts, before describing the
components that provide the basis of our approach, supported by a proof of principle
in section 3.

1.1 Motivating Scenario

To motivate our approach with a scenario we introduce Alice. Alice is interested in
performing a bioinformatics experiment to discover proteins that interact with trans-
membrane proteins, particularly those that can be related somehow to neurodegenera-
tive diseases in which protein aggregates (amyloids) play a significant role (e.g.

342 M. Roos et al.

Huntington’s Disease and Alzheimer’s Disease). Alice would like to reinvent as little
as possible, thus reuse any previously developed analysis pipeline that she can trust to
be of the appropriate relevance and quality. Consequently, the typical experiment
cycle may contain these four steps:

(i) Retrieve: Alice needs to find a previously published analysis pipeline that will
suit her needs, and retrieve all the relevant resources (data and methods) for her
own analysis.

(ii) Review: she will want to review the analysis pipeline before she uses it and
study the evidence that led to the interpretation of the data that it previously
produced. In theory, the aggregation of metadata associated with the previous
experiment should suffice to completely understand the process from input to
output to biological interpretation.

(iii) Repeat, Reuse, Repurpose: first, Alice would like to repeat a previous analysis
to evaluate the process step by step as part of reviewing and validating it. Sec-
ondly, Alice would like to be able to run (parts of) an analysis pipeline again for
her own purposes, much like bench biologists design new experiments from
previously published protocols.

(iv) Conserve: when Alice has performed her own analysis, she would like to con-
serve her design and the association of the analysis with her results, her interpre-
tation, and her initial hypothesis. A bench biologist would keep this type of
information in a laboratory journal as the basis for a publication. Alice would
like to keep notes on (intermediate) results, the steps that she performed at a par-
ticular time, the protocols she used, and any additional information that she may
need to support her interpretation of the data. Obviously, the quality of this step
determines how effectively Alice’s colleague, Bob, would be able to evaluate
and reuse Alice’s work.

In the next session, we discuss bottlenecks and requirements for performing these
steps effectively for bioinformatics experiments.

1.2 Bottlenecks for Evaluating a Bioinformatics Experiment

We identify the following bottlenecks for biologists who wish to be able to evaluate
and reuse a bioinformatics experiment:

1. Retrieve. Currently, search engines such as Google and NCBI’s PubMed are the
most common tools to find related work, including methods and (references to)
data. This may serve some purposes well enough, but is limited by how precisely
we can formulate a search query. In the scenario above Alice will find that it is dif-
ficult to find a protein interaction discovery method in the literature using these
tools. Most titles refer to a biological finding rather than the method that was
used. She will find that data can often be retrieved on request from the authors or
via a public database, but the original analysis pipeline is often not readily avail-
able, nor its component parts. Alice will often find it frustrating that her desired
method cannot be used independently from the monolithic application in which it
is embedded. In this paper, we refer to workflows in myExperiment and Web Ser-
vices in BioCatalogue to address these issues. Other partial solutions have been
developed for bioinformatics, such as BioConductor, popular for developing and

 A Linked Data Approach to Sharing Workflows and Workflow Results 343

sharing statistical analysis methods in the R language [1], or BioMoby, a project
that pioneered the use of semantically annotated web services [2].

2. Review. While Alice may read the authors’ description of a bioinformatics ex-
periment in a publication, she will often find it hard to evaluate its steps. She will
not be able to obtain an evidence graph from input to output to biological interpre-
tation, i.e. no data provenance that links between the analysis pipeline and its
results is available. The feature-rich (web) application mentioned above is not suf-
ficient to evaluate the underlying computational pipeline. Moreover, additional in-
formation that Alice would like to use for her evaluation can be hard to access. For
instance, she may want to find which parts in a pipeline were based on other
pipelines, which scientists corroborate previous results, or which diseases are asso-
ciated with the proteins in the result set. There is currently no standardized
interface in bioinformatics that makes it possible to query across data, methods and
interpretations. In this paper we demonstrate the use of Linked Data and RDF (See
Section 1.3), but these are not yet commonly applied in this context.

3. Repeat, Reuse, Repurpose. It is often difficult to repeat a Bioinformatics experi-
ment. As mentioned, component parts may not be available for a new application
and even when a client application is available to rerun the full pipeline, the under-
lying databases may have been updated or computational methods improved. This
cannot be completely controlled when applications are built on 3rd party resources,
but Alice would be helped greatly if she was notified of changes such that she can
take these into account when rerunning a method. Workflows built from Web Ser-
vices seem address part of these bottlenecks.

4. Conservation. In the laboratory, the most generally accepted method for conserva-
tion of methods, data, and interpretation is still traditionally through publications
and lab journals. Many publishers offer the option of supplying additional digital
information, but the quality of this ‘supplementary information’ varies and it is not
usually computationally accessible due to a lack of standardization, nor does it
provide a way to link the analysis pipeline, its results, and associated metadata. For
example, although it is common practice to upload raw data from microarray stud-
ies to ArrayExpress and GEO, the lists of differentially expressed genes commonly
referred to by articles are not disclosed with the raw data. However, it is precisely
these lists that are the subject of discussion in any associated articles. Alice will
find that she has no direct way to associate her notes (her annotations) with her
analysis design and its results.

New Web2.0-inspired applications provide alternative ways to digitally conserve
analysis designs (myExperiment; [3]), their component parts (BioCatalogue; [4]), and
the concepts used in biological hypotheses and personal notes (ConceptWiki1; [5]2).
In this paper, we describe how we use RDF to link some of these resources together to
create a comprehensive digital resource that describes the ‘materials and methods’ of
a bioinformatics experiment, and we discuss how this addresses Alice’s bottlenecks.
First, we identify these additional user requirements:

1 http://ConceptWiki.org
2 Originally based on WikiProfessional technology: http://wikiprofessional.org

344 M. Roos et al.

1. Comprehensive. Alice would be helped in reviewing a previous analysis if she
would be able to query a comprehensive ‘warehouse’ of information about the
methods and the data associated with an experiment. For instance, she may want to
look at alternative gene names, related diseases, or author names and affiliations.

2. Light Weight. While Alice would like to query a comprehensive ‘warehouse’ to
perform an extensive review, she would not want to spend substantial effort to
build this warehouse herself. Moreover, she would not want to do so for her own
analysis that Bob will review.

3. Transparent. The technology for digital conservation relies on semantic annota-
tion of the components of an experiment and its results. However, this should not
interfere with the design of the bioinformatics analysis. In fact, Alice should feel
supported by it, for instance by implementing it as a tool that helps her keep a labo-
ratory journal. The activities that result in a digital version of materials and meth-
ods should ideally be part of her routine research activity.

4. Personal. In general, reusing a community consensus model to annotate the results
of an analysis will help Alice and Bob to interpret her results. However, Alice’s
work is cutting-edge, so she has a personal view of her bioinformatics experiment
that is reflected in her hypothesis and data interpretation. Therefore, Alice requires
the ability to use the most appropriate model for her annotations, and the ability to
extend an existing model with concepts that she is missing.

5. Shared terminology, Identity and Reference. In biological discourse, various
‘nomenclatures’ (e.g. for species or gene names) are used to resolve ambiguity.
Also for a bioinformatics analysis we depend on unambiguous and unique identifi-
ers for the objects in our digital materials and methods. In this paper, we use the
Concept Web, a new part of the Semantic Web that aims to be a world-wide re-
source of disambiguated (biological) concepts, machine readable through RDF and
identified by universally unique identifiers.

1.3 Semantic Web, RDF and Linked Data

The Semantic Web as described by W3C3 is about providing common formats for
integration and combination of data drawn from diverse sources. The Semantic Web
aims to lift us from a web of pages or resources with data intended solely for human
consumption to a “web of data”, with this data explicitly exposed, rather than locked
away inside particular applications.

The Resource Description Framework (RDF4) is seen as a key technology in the
publication of the web of data, including data from the Life Sciences [6, 7]. RDF
provides a common triple-based data model for publication of data. It is indeed in-
creasingly used to expose data sets and resources as RDF graphs. SPARQL5 provides
a language for querying graph patterns within RDF graphs, and also defines a proto-
col that describes how queries can be conveyed to a SPARQL “endpoint”, a service
that processes SPARQL queries. SPARQL thus enables the query of RDF data sets
and provides a common infrastructure on which to build applications.

3 http://www.w3.org/2001/sw/
4 http://www.w3.org/RDF/
5 http://www.w3.org/TR/rdf-sparql-query/

 A Linked Data Approach to Sharing Workflows and Workflow Results 345

An approach that is steadily growing in popularity is that of Linked Data [8, 9].
Linked Data is a set of guidelines or best practices that have been introduced in order
to facilitate the exposure and connection of different data sets. The Linked Data ap-
proach relies heavily on RDF and the use of URIs to identify objects or concepts that
are being described. Linked Data advocates the following principles:

1. Use URIs to identify objects/concepts, in particular use HTTP URIs which are
then dereferencable.

2. Provide useful information when those URIs are dereferenced, ideally using
standard formats and representations (e.g. RDF)

3. Provide links to other URIs, so that applications can discover more.

The adoption of these guidelines for the publication of data enables the integration of
data sets from a wide range of domains, with significant efforts in the life sciences.
Key issues facing the Linked Data approach include the provision of common, shared
identifiers for the objects that are being described -- the use of common URIs drives
the “linking” in Linked Data. Ensuring that applications and datasets use common
identifiers is thus crucial in facilitating this linking. Initiatives such as Shared Names6,
Okkam7 and the Concept Web8 (as discussed later) are aiming to provide URIs for
publicly available records. Authoritative resources such as UniProt, PubMed and
EntrezGene are also being exposed as RDF via SPARQL endpoints by projects in-
cluding Linked Life Data9 or Bio2RDF10.

In the context of our scenario, there are additional objects that can be identified and
linked together, as discussed below. These include the workflows that are used to
process the data, the services that are used within those workflows, the researchers
who conduct the research and the outputs (papers, presentations etc) that those re-
searchers produce. Exposing all of these resources as Linked Data will provide a rich,
connected space facilitating discovery, analysis and reuse of digital materials and
methods.

2 Resources for Digital Materials and Methods

Here we describe how the Linked Data principles are used to aggregate the resources
that Alice could use for (i) retrieving a previously constructed pipeline for protein
discovery, its component parts, and associated documentation (myExperiment, Bio-
Catalogue), (ii) reviewing the analysis and its results (Taverna workflow provenance
with domain specific extensions), (iii) repeating the analysis for her own purposes,
and (iv) classifying the results: protein interactions found by a text mining workflow
(Taverna+AIDA plugin). Only a limited number of additional links are necessary to
create a new aggregation that represents the digital materials and methods of Alice’s
experiment. We demonstrate this with an example in section 3.

6 http://sharedname.org/
7 http://www.okkam.org/
8 http://www.conceptweballiance.org/
9 http://linkedlifedata.com/
10 http://bio2rdf.org/

346 M. Roos et al.

2.1 RDF: The Model for Linked Data and Comprehensive, Yet Light-Weight
Coverage of Experiment-Related Data

Our framework of choice for digitally conserving a computational analysis encom-
passing hypothesis, provenance, workflow(s), services, data, and interpretation is
based on RDF (section 1.3). Many applications have started exposing their data on the
web via RDF, making their resources part of the Linked Open Data cloud. This can be
done either by a SPARQL endpoint or by providing RDF as a machine readable alter-
native to the data presented on a web page. This includes the resources that we have
identified as useful sources for our digital Materials and Methods: Taverna, myEx-
periment, BioCatalogue, and the Concept Web. With a minimal number of links be-
tween these sources, Alice is provided with a comprehensive amount of metadata
about an experiment.

2.2 myExperiment and BioCatalogue: Repositories for Digital Protocols and
Their Components

While the workflow paradigm provides a useful way to formalise an analysis pipeline,
myExperiment.org provides a repository to share and publish these artefacts on the
Web [10]. Additional documentation (tags, comments) can be provided by the owner
of a workflow or users of myExperiment. This facilitates their discovery and reuse. In
turn, BioCatalogue provides a registry for the components of a workflow, in particular
Web Services [4]. Similar to myExperiment, BioCatalogue enables registered users to
provide documentation and tag contents, again facilitating their discovery. Both re-
sources provide a REST API and URLs for every object that they contain. Cone-
quently, myExperiment and BioCatalogue are sources of identifiers for use in bioin-
formatics publications. Versioning and attribution features ensure that specific adapta-
tions of a workflow can be referenced. Attribution allows Bob to link to Alice’s work-
flow and acknowledge her. When Alice also attributes a workflow, then these links
implicitly create a chain of references to the origins of a workflow. Finally, we men-
tion myExperiment ‘packs': aggregations of (references for) resources both inside and
outside of myExperiment. This makes myExperiment a provider of persistent and
structured supplemental information. How can we use myExperiment and BioCata-
logue to link to Alice’s experimental results and create the digital version of her Ma-
terials and Methods? MyExperiment also exposes its content as RDF [11]. The moti-
vation is to make the content of myExperiment part of Linked Data, allow it to be
linked to other resources and be queried via a SPARQL endpoint. This will allow
Alice to retrieve information from the Web of Data starting from a myExperiment
pack. The semantic model that was used for myExperiment supports its core features.
It represents the social model behind myExperiment and the model that facilitates the
management and sharing of workflows and associated components for other users.
This ‘e-Research’ model is extensible such that it can be linked to additional domain
specific models. The most straightforward part of the myExperiment semantic model
is the representation of the myExperiment mySQL schema in OWL DL. The Simple
Network Access Rights Management (SNARM11) ontology was used to capture the
sharing model of myExperiment. For representing the social content of myExperiment

11 http://rdf.myexperiment.org/ontologies/snarm/

 A Linked Data Approach to Sharing Workflows and Workflow Results 347

several ontologies were reused: Dublin Core12, Friend of a Friend13, Semantically
Inter-linked Online Communities (SIOC14), and the Open Archives Initiative’s Object
Reuse and Exchange ontologies/schemata (OAI/ORE15). These shared ontologies
facilitate co-reference resolution, which is one of the major tasks on the Semantic
Web. It makes it easier to understand the purpose of the classes and relations and
facilitates access to semantic data outside of myExperiment. The users of the user
interface are never confronted with the full extent of these ontologies. Exposing the
content of myExperiment as Linked Data on the web allows Alice to define SPARQL
queries for typical Materials and Methods questions such as ‘Who did what and
when?’, or ‘Whose work was this workflow based on?’. Moreover, the relatively
straightforward action for Alice to upload and publish her workflow on myExperi-
ment provides Bob, a potential new user, additional metadata to investigate. At the
time of writing BioCatalogue does not yet expose its content as RDF. For our exam-
ple in section 3 we used myExperiment RDF as a template to create a mock version of
BioCatalogue RDF.

2.3 Workflow and Provenance

Workflows are the most common type of object that Alice finds on myExperiment for
reusing in her own work. Workflows are formal and executable models of computa-
tional protocols for data analysis experiments. Alice can review the design of a
workflow, similar to how she would evaluate a protocol from a laboratory manual.
However, the best way to review an experiment before using it for one’s own pur-
poses is to evaluate the results that it produced step by step and the personal annota-
tions that the first user of the workflow provided while he/she was running it. In
comparison, if Alice was to reuse a wet laboratory protocol by bench biologist Chris,
then his laboratory notes made while he was performing the protocol would be the
most valuable. First, they contain what was actually done in relation to the results at a
particular point in time. Secondly, it contains Chris’ personal annotations on how the
results should be interpreted. Therefore, capturing a detailed trace, the provenance, of
each workflow execution (a “run”) linked with personal annotations represents a step
forward in the direction of recording materials and methods in machine processable
form. The Taverna workflow system persistently stores the provenance of workflow
runs (for example, the execution of Alice’s experiment) and makes it available to
scientists for evaluation. At any later time Bob can query and analyse Alice’s results.
Taverna adopts a semantic data model to represent provenance. The model is speci-
fied as an OWL ontology, called Janus. Provenance traces are RDF graphs [12]. The
concepts in Janus describe workflow tasks as well as the data that they consume and
produce, while the provenance graph captures the actual tasks and the data transfor-
mations that they produced during a workflow run.

The choice of a semantic model is designed to facilitate the semantic annotation
of provenance graphs with domain-specific concepts, such as those found on the
Concept Wiki. When provenance is first recorded, the provenance graphs are

12 http://dublincore.org/
13 http://www.foaf-project.org/
14 http://sioc-project.org/
15 http://www.openarchives.org/ore/

348 M. Roos et al.

“domain-agnostic” and semantics-free, but their grounding in RDF and OWL makes
it easy to add annotations whenever they become available, and to integrate with the
broader Web of Linked Open Data [13]. Such integration involves mapping data ele-
ments in the provenance graph to data that is published elsewhere in the Web of Data,
making it possible for queries to seamlessly include conditions on properties of the
data that were not explicitly represented in the original graph. Henceforth, without
bloating the original provenance produced by the workflow enactor, a comprehensive
graph can be obtained via meaningful relations on the Semantic Web.

Janus achieves the required linking by reusing a number of shared ontologies found
on the web. Formally, Janus is an extension of Provenir [14], which itself extends
concepts from the Basic Formal Ontology (BFO16). Provenir is an upper-level refer-
ence model for capturing provenance, including concepts such as data, process and
agent, and several relations such as for partonomy, precedence, and causality. Janus
extends Provenir to include terms from the Life Sciences domain. For example, four
ontologies were chosen for case studies in genomics from the almost 200 publicly
shared models that are available via the National Centre for Biomedical Ontologies
(NCBO; [15]): BioPAX17, the National Cancer Institute Thesaurus18, the Foundational
Model of Anatomy19, and the Sequence Ontology20. Doing so following Linked Data
conventions allow Alice and Bob to ask useful biological questions about interacting
biological molecules from KEGG, Reactome, and BioCyc databases [16]. As such,
provenance becomes the core of a comprehensive digital resource of materials and
methods for biologists to evaluate and reuse.

2.4 Concept Web: Repository for Uniquely Identified Concepts, Their Relations
and their Evidence

A new approach to providing common identifiers for important terms in scientific
discourse is proposed by the Concept Web Alliance [17]. Inspired by the success of
Wikipedia, it ‘calls upon a million minds’ to create and curate a universal resource of
disambiguated concepts and basic relations between them [5]. In line with a wiki
approach, scientists can register new concepts and improve the information associated
with them. Initial content is supplied by terminology resources such as UMLS, Uni-
Prot, and the ontologies that can be obtained from NCBO’s bioportal [15]. Relations
can be aggregated to form so-called ‘nano-publications’ [17]. ‘Malaria’ and ‘mos-
quito’ are example concepts, while ‘Malaria is caused by mosquitos as discovered by
Charles Laveran in 1880’ could be a nano-publication including a trace to evidence.
Each concept, relation, and nano-publication will have its own universally unique
identifier that is persistent and immutable over time. Therefore, Alice and her peers
can use Concept Web identifiers as stable references to their data instead of, for
instance, gene names, which can change. Because the Concept Web is also part of
the Semantic Web and exposes its content as RDF, it is a unique source of identifiers
for use on the Web of Data. In our proof of principle, we will use concepts from the

16 http://www.ifomis.org/bfo
17 http://www.biopax.org/
18 http://ncit.nci.nih.gov/
19 http://sig.biostr.washington.edu/projects/fm/
20 http://www.sequenceontology.org/

 A Linked Data Approach to Sharing Workflows and Workflow Results 349

Concept Web as our point of reference for all digital objects except those from myEx-
periment and BioCatalogue. These resources already claim that their URLs are persis-
tent and universally unique.

3 Proof of Principle

3.1 Linking Experimental Results and Evidence (Taverna Provenance),
Personal Interpretation (AIDA Plugin), Digital Protocol (myExperiment)
and Its Components (BioCatalogue), in Terms of Biological Concepts
(ConceptWiki)

Here we show how we obtain a snapshot out of the digital, machine readable Materi-
als and Methods as a result of Alice running her workflow. Bob would like to use this
information to review how Alice obtained these results, and study some additional
information about these results. Our example is derived from the workflow that Alice
was using for protein discovery. We have used a number of resources that Bob would
need to satisfy his information needs. When resources follow the Linked Data princi-
ples we require only a minimal number of relations to embed Alice’s workflow results
in a large network of references. Therefore, this solution is light-weight, but still
comprehensive. The following Linked Data resources were used:

1. Taverna provenance: exposed as RDF using Janus (section 2.1)
2. myExperiment: a provisional RDF document for the protein discovery work-

flow was obtained from the myExperiment development server (section 2.2)
3. BioCatalogue: we created a mock RDF document using myExperiment RDF

data as example. A RDF interface similar to that of myExperiment is planned
(Jiten Bhagat, personal communication)

4. ConceptWiki: provisional RDF documents were obtained from the Con-
ceptWiki development server. We created new concepts via the ConceptWiki
interface to obtain universally unique identifiers for the creator of the work-
flow and services. Ideally, myExperiment and BioCatalogue would use these
as identifiers as well.

5. UniProt: the RDF document for our example protein was obtained from the
RDF interface of the main UniProt web site.

To link these resources, we used properties from the following ontologies:

1. A Workflow ontology previously created for structuring data from a work-
flow [18]

2. A mapping ontology for mapping between a (text mining) process and bio-
logical results [18]

3. The Semantic Web Applications in Neuromedicine (SWAN; [19]) ontology
version 1.221

4. The Relation Ontology (RO) from the OBO Foundry [20]
5. The Dublin Core (DC) meta-thesaurus.

21 http://swan.mindinformatics.org/ontology.html

350 M. Roos et al.

Fig. 1. Top: graphic representation of an evidence query. The smiley symbols indicate which
elements could be in the output for human consumption. Bottom: graphic representation
of the result of the evidence query. ‘<uuid>’ indicates a universally unique identifier that
is provided by any of the resources. J: Janus Provenance Ontology; M: mapping ontology
to relate the (text mining) process to biological concepts; CW: Concept Web (the Concept
Wiki is the human GUI); S: SWAN ‘Semantic Web Applications in Neuromedicine’
ontology; W: Workflow ontology; RO: OBO Relations ontology; ME: myExperiment;
DC: Dublin Core; BC: BioCatalogue. See the appendix for the SPARQL representation and
its results.

The following links were made (see appendix for the commented RDF):
Between Taverna provenance and reference resources:

• a workflow run is a run of a workflow on myExperiment
• an executed processor is a run of a service on BioCatalogue
• a workflow result is the result of a service run
• a workflow result refers to a concept on the Concept Web

 A Linked Data Approach to Sharing Workflows and Workflow Results 351

Between BioCatalogue, myExperiment, Concept Web, and UniProt

• a service in BioCatalogue is an element of a workflow on myExperiment
• a workflow is created by a user who is identified on the Concept Web
• a service in BioCatalogue has a creator who is identified on the Concept Web
• a Concept Web entry cites a UniProt entry and vice versa

Missing links

• a processor_exec participates in a workflow run

When the results of the Protein Discovery workflow are linked to the resources that
were used to create them, and to the resources that refer to and describe her results,
Bob can obtain a comprehensive view to review for instance how she obtained her
results, who were the people responsible for the methods and the workflow, and the
‘linked in’ identifiers that Bob could use to further interpret Alice’s results. Bob can
obtain this information by querying the RDF graph. We demonstrate this by a ‘mate-
rials and methods’ query (figure 1). First we created a SPARQL endpoint by upload-
ing the RDF documents described above to our Sesame RDF repository. For our proof
of concept we focussed on one of the workflow results, the protein 'Amyloid beta A4
protein' (UniProt identifier: P0859222). The graph pattern in figure 1 shows how evi-
dence for a workflow result was queried (see the appendix for the full SPARQL
query). Bob would be able to study this evidence, and continue querying for new
information. For instance, Bob could write a query that retrieves all literature citations
contained in a UniProt RDF document that was ultimately linked to Alice’s workflow
result as created by Taverna’s provenance engine.

4 Discussion and Conclusion

How do the components that we have presented alleviate the bottlenecks that Alice
and Bob face in their research? What are the potentially new bottlenecks that we have
not solved?

Retrieve. Alice and Bob are supported in their retrieval task in two ways. First,
myExperiment.org, BioCatalogue, and the ConceptWiki index their content such that
it can be searched through keyword searches. ‘Materials and Methods’ aggregates
stored as myExperiment packs (e.g. packs 8223 and 5824) can thus be found via a fa-
miliar search interface. Secondly, when data is exposed as RDF, the Semantic Web
query language SPARQL can be used to retrieve precise graphs from the Web of
Data. Semantic search can be further facilitated for Alice and Bob if we can hide the
SPARQL syntax and the complexity of federated queries through a familiar keyword-
based search interface that incorporates auto-completion and browsing of related
concepts. As a query language, SPARQL is meant for use by developers so a suffi-
ciently user friendly interface would supply common search patterns, built on a set of
SPARQL queries.

22 http://www.uniprot.org/uniprot/P08592
23 http://www.myexperiment.org/packs/82
24 http://www.myexperiment.org/packs/58

352 M. Roos et al.

Review. The review process is supported, because by using RDF to expose data and to
link data it is now possible for Bob to query the complete evidence graph from hy-
pothesis to input to experiment to output to interpretation. In section 3, we demon-
strated this principle by retrieving the service that produced one of the proteins in our
result set and the creator of that service. Bob can further explore the meaning of Al-
ice’s results by exploring any additional links contained in our RDF resources. For
instance, we can retrieve extra information from UniProt.

Repeat, reuse, repurpose. Workflows are particularly useful to repeat, reuse, or repur-
pose a bioinformatics analysis pipeline. A workflow created with a workflow system
like Taverna can be reused in new designs. Semantic annotation as facilitated by the
AIDA plugin, which gives extra information about the intent of the workflow, which
in turn makes it easier to reuse. The particularly tricky bottleneck by changes in ser-
vices or their underlying data can be partially addressed by a forthcoming feature of
BioCatalogue that will indicate when a service has changed its interface or its behav-
ior. It also indicates whether the service is up and running.

Conserve. Embedding data and models in semantic models exposed as RDF/Linked
Data provides Alice and Bob with an alternative way to publish and share informa-
tion. Using identifiers from the Concept Web further lowers the threshold to link
information across the web, and to study those links. When myExperiment packs can
be accessed via RDF as Research Objects with a consistent interface across the world
we have successfully created to new paradigm for scientific publications.

4.1 Research Objects for Publication

The myExperiment ‘pack’ provides a mechanism for bundling together a collection of
resources. The pack is relatively simple in terms of structure, however, essentially
providing a “zip file” containing resources, or references to resources. The pack itself
can then be annotated with appropriate metadata and shared through myExperiment.
As discussed above, the relationships between the resources involved in an experi-
ment (data, methods, results, provenance) is much richer than a simple collection.
Packs can thus be seen as a first approximation to a ‘Research Object’ (RO), a
mechanism for publishing reproducible research that is shared on the Web [21]. An
RO provides a container for the aggregation of resources, along with information
about the relationships between those resources. For Alice, an RO contains all the
artefacts that Alice would consider a complete ‘experiment’, while for her peer Bob it
contains everything he needs to reproduce the experiment. As discussed in [21], ROs
then provide support for reusability, allowing replay of experiments, repetition of
experiments and repurposing of experiments, building on the methods and materials
employed. As future work, ROs that have been described with ontological annotations
could strengthen the validation and review part of our scenario and provide a self-
contained set of procedures and accompanying resources.

Acknowledgements

We thank Katy Wolstencroft and Andrew Gibson for suggestions and critically
reading the manuscript, and the teams of the myGrid project, myExperiment,

 A Linked Data Approach to Sharing Workflows and Workflow Results 353

BioCatalogue, the Concept Web Alliance and the Netherlands BioInformatics Centre
(NBIC) for their support.

References

1. Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,
Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R.,
Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney,
L., Yang, J.Y.H., Zhang, J.: Bioconductor: open software development for computational
biology and bioinformatics. Genome Biology 5, R80 (2004)

2. Wilkinson, M.D., Links, M.: BioMOBY: an open source biological web services proposal.
Briefings in Bioinformatics 3, 331–341 (2002)

3. Goble, C.A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman, D.,
Borkum, M., Bechhofer, S., Roos, M., Li, P., De Roure, D.: myExperiment: a repository
and social network for the sharing of bioinformatics workflows. Nucleic Acids Research
(2010)

4. Bhagat, J., Tanoh, F., Nzuobontane, E., Laurent, T., Orlowski, J., Roos, M., Wolstencroft,
K., Aleksejevs, S., Stevens, R., Pettifer, S., Lopez, R., Goble, C.A.: BioCatalogue: a uni-
versal catalogue of web services for the life sciences. Nucleic Acids Research (2010)

5. Mons, B., Ashburner, M., Chichester, C., van Mulligen, E., Weeber, M., den Dunnen, J.,
van Ommen, G.J., Musen, M., Cockerill, M., Hermjakob, H., Mons, A., Packer, A.,
Pacheco, R., Lewis, S., Berkeley, A., Melton, W., Barris, N., Wales, J., Meijssen, G.,
Moeller, E., Roes, P.J., Borner, K., Bairoch, A.: Calling on a million minds for community
annotation in WikiProteins. Genome biology 9, R89 (2008)

6. Neumann, E., Miller, E., Wilbanks, J.: What the semantic web could do for the life sci-
ences. Drug Discovery Today: BIOSILICO 2, 228–236 (2004)

7. Marshall, M., Post, L., Roos, M., Breit, T.: Using Semantic Web Tools to Integrate Ex-
perimental Measurement Data on Our Own Terms. In: On the Move to Meaningful Inter-
net Systems 2006: OTM 2006 Workshops, pp. 688–679 (2006),
http://dx.doi.org/10.1007/11915034_92

8. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data. International Journal on Semantic Web
and Information Systems 5 (2009)

9. Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked data on the web (LDOW 2008).
In: Proceeding of the 17th international conference on World Wide Web - WWW 2008,
Beijing, China, p. 1265 (2008)

10. De Roure, D., Goble, C., Bhagat, J., Cruickshank, D., Goderis, A., Michaelides, D., New-
man, D.: myExperiment: Defining the Social Virtual Research Environment (2008)

11. Newman, D., Bechhofer, S., Roure, D.C.D.: MyExperiment: An Ontology for e-Research.
In: Proceedings of the Workshop on Semantic Web Applications in Scientific Discourse
(SWASD 2009), Washington DC, USA (2009)

12. Missier, P., Sahoo, S., Zhao, J., Goble, C.A., Sheth, A.: Janus: from workflows to semantic
provenance and linked open data. In: Proceedings of The Third International Provenance
and Annotation Workshop, Troy, NY, U.S.A (2010)

13. Zhao, J., Miles, A., Klyne, G., Shotton, D.: Linked data and provenance in biological data
webs. Briefings in Bioinformatics 10, 139–152 (2009)

14. Sahoo, S., Sheth, A.: Provenir ontology: Towards a Framework for eScience Provenance
Management. In: Microsoft eScience Workshop, Pittsburgh, PA, USA (2009)

354 M. Roos et al.

15. Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jonquet, C., Rubin,
D.L., Storey, M., Chute, C.G., Musen, M.A.: BioPortal: ontologies and integrated data re-
sources at the click of a mouse. Nucleic Acids Research 37, W170–W173 (2009)

16. Luciano, J.S., Stevens, R.D.: e-Science and biological pathway semantics. BMC Bioin-
formatics 8(suppl 3), S3 (2007)

17. Mons, B., Velterop, J.: Nano-Publication in the e-science era. In: Proceedings of the
Workshop on Semantic Web Applications in Scientific Discourse (SWASD 2009), CEUR-
WS, Washington DC, USA, p. 14 (2009)

18. Roos, M., Marshall, M.S., Gibson, A.P., Schuemie, M., Meij, E., Katrenko, S., van Hage,
W.R., Krommydas, K., Adriaans, P.W.: Structuring and extracting knowledge for the sup-
port of hypothesis generation in molecular biology. BMC bioinformatics 10(suppl. 10), S9
(2009).

19. Clark, T., Kinoshita, J.: Alzforum and SWAN: the present and future of scientific web
communities. Briefings in bioinformatics 8, 163–171 (2007)

20. Smith, B., Ceusters, W., Klagges, B., Köhler, J., Kumar, A., Lomax, J., Mungall, C., Neu-
haus, F., Rector, A.L., Rosse, C.: Relations in biomedical ontologies. Genome Biology 6,
R46 (2005)

21. Bechhofer, S., De Roure, D., Gamble, M., Goble, C., Buchan, I.: Research Objects: To-
wards Exchange and Reuse of Digital Knowledge. In: The Future of the Web for Collabo-
rative Science (FWCS 2010), Workshop at WWW 2010, Raleigh NC (2010),
http://precedings.nature.com/documents/4626/version/1

Towards More Adaptive Voice Applications

Jörg Ott

Aalto University
School of Science and Technology

Department of Communications and Networking
jo@comnet.tkk.fi

Abstract. With the Internet designed to provide best-effort packet transmission,
applications are expected to adapt dynamically to the operating conditions ob-
served in the network. For this purpose, congestion control mechanisms have
been devised for various transport and (partly) application protocols, and appli-
cation programs may present, e.g., data rate information to the user. While these
mechanisms work well for elastic applications (such as file transfer), the per-
ceived performance of real-time applications may degrade quickly if a minimum
required quality of service cannot be achieved. We argue that the current inter-
pretation of adaptation specifically of real-time applications is too narrow and
present a framework for expanding the scope of end-to-end adaptation, using
the case study of voice communications. Our approach is general in nature, but
should especially support communication in mobile environments.

1 Introduction

The Internet Protocol inherently offers a best-effort datagram delivery service, allowing
for arbitrary delay, reordering, loss, and duplication of packets. While reordering and
duplication occur but are not (yet) commonplace, delays and losses are inherent prop-
erties used in the operation of many Internet protocols, as they serve as a measure for
congestion. Transport and application protocols (should) monitor these values and are
supposed to dynamically adapt their behavior to the changing network conditions.

While transport protocols may be designed to adapt as needed (see section 2), two
related assumptions are implied for the applications involved: A1) They are capable
of adapting across a wide range of transmission characteristics. In practice, however,
the only truly adaptive applications appear to be file transfer, be it as a simple client-
server system or a more sophisticated peer-to-peer sharing application, and other ones
operating in the background without being time critical. Instead, most applications have
a limited operational range of network characteristics acceptable to the user, leading to:
A2) The best effort service achieved will be sufficient for the application needs. If it is
not, users will notice and react and typically stop using the applications. This applies to
(semi-)interactive TCP-based applications (such as web access, HTTP streaming, and
SSH) and even more so to UDP-based real-time applications such as VoIP.

We use the term elastic applications for those that are capable of adapting as de-
scribed above (at least within very broad limits), and inelastic applications to denote
those that are limited to a narrower range of operating conditions: due to their very

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 355–366, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

356 J. Ott

nature (e.g., real-time monitoring) or because of (present) user expectations (e.g., con-
versational voice).

In this paper, we broaden the scope of application adaptivity in two ways using voice
communication as a case study: a) We capture a broader range across which to adapt,
specifically extending to high delays and temporary disconnections so that networking
conditions are less critical for a voice conversation. b) To support this broader range,
we include more of the application semantics into the considerations of the adaptation
process: In our specific case, we embrace asynchronous voice messaging and semi-
synchronous (two-way alternate) walkie-talkie-style communications and make these
become an integral part of a voice conversation as we will discuss below.

Our goal is to conceptually capture those cases in which the above assumption A2)
no longer holds and to devise exemplary mechanisms to fulfill assumption A1) nev-
ertheless. After a short review of related work on adaptive communication (focusing
on congestion control) in section 2, we describe mobile communication environments
as one case in which assumptions A1) easily fails in section 3. We present the case
study for voice communications in section 4, using two examples of our prior work ad-
dressing how to maintain A2), from which we then develop a more general adaptation
mechanism. We conclude with a brief discussion in section 5.

2 Background and Related Work

At the transport layer, the notion of congestion control has been introduced to TCP
[Jac88] (with countless variants developed since) to share network resources fairly (at
the flow level), a concept incorporated in recent protocols such as SCTP [Ste07] and
DCCP [KHF06a, KHF06b]. Transport protocols also perform timeout adaptation (e.g.,
TCP’s RTO) to cope with varying delays across different networks, which may span
more than six orders of magnitude between a local Ethernet link and a loaded GPRS
network. Path MTU discovery [MD90] is used to determine an appropriate packet size
(e.g., TCP’s segment size) in order to avoid fragmentation, although today often 1460
bytes are assumed to be safe.

All these mechanisms are hidden inside the transport layer and thus invisible to the
applications (figure 1 (left)). The underlying assumption is that applications using such
transport protocols are sufficiently elastic, i.e., can deal well with changing transmis-
sion rates and delays. This abstraction was criticized in the past (e.g., [MBL+04]), as
TCP would retransmit potentially outdated information and an application is not able
to determine the detailed status of the send buffer. The channel concept of SCTP and
its unreliable mode, developments such as Structured Streams [For07], and more direct
resource control [MBL+04] would allow for some more flexibility. Irrespective of these
limitations, several applications use TCP to carry real-time data (e.g., skype uses TCP
as a fallback) to simplify/enable NAT traversal, with some adaptation realized on top
[GKLW02, BBRS08].

Inelastic applications, in contrast, have often avoided TCP and realized the neces-
sary protocol mechanisms on top of UDP, leaving full control to the application as
shown in figure 1 (right). This applies to performing semantic fragmentation of appli-
cation data units and their mapping onto packets [CT90] as is common for real-time

Towards More Adaptive Voice Applications 357

Link

IP

TCP

 RTT estimation

 RTO calculation

 MTU discovery

 Congestion control

 Flow control

Application

 Timeouts

 Throughput measurements

 …

Link

IP

UDP

Application

RTP
 Reception stats

 Adaptation signaling

(Adaptive) Codec

 Application Layer Framing

 Error & maybe rate control

 Codec choice, signaling

Fig. 1. Extreme cases for adaptivity in today’s protocol stacks

media transmissions using RTP [SCFJ03, HP99]. Real-time applications are also sup-
posed to adapt to network congestion and packet losses by means of rate adaptation and
error repair and concealment techniques. Rate adaptation can be performed, e.g., by
switching codecs [BVG96], changing codec parameters as for multi-rate codecs such
as AMR [SWB01], and by adjusting packet sizes. Error control may involve interleav-
ing [PHH98], dynamically applying FEC [PKH+97, Li07, BFPT99] or retransmissions
[RLM+06, KH04, ÁHI08]. Several of the above mechanisms may also be combined
(e.g., [MPLJ03]).

The necessary feedback loops for observing network conditions to allow a sender
to dynamically adapt its transmission behavior may be based upon RTCP reporting
[SCFJ03, OWS+06, Gar07]. Such feedback loops may also use information of transport
protocols such as DCCP [Per07, BENB07] (or SCTP), in which case the solutions are
in-between the two extremes shown in figure 1.

Overall, the key consideration for adaptivity in interactive real-time communications
remains the perceivably acceptable delay when trading off delay, loss, and data rate in
rate control, interleaving, FEC, and retransmission schemes. According to ITU-T G.114
[Int], the one-way delay for interactive voice communication should not exceed 150 ms,
150–400 ms are potentially tolerable, and delays above 400 ms are not acceptable. This
limits the range of network conditions across which these applications can operate if
the notion of interactive voice shall be preserved.

3 The (Mobile) Internet Today: When Best Effort Is Not Enough

With wireless and mobile Internet becoming increasingly dominant, the connectiv-
ity characteristics for mobile users deserve explicit consideration in protocol design
[Ott06]. It is well known that wireless and mobile connectivity characteristics may dif-
fer significantly from what is observed in the fixed Internet. Specifically, wireless links
are susceptible to attenuation, interference, etc. as well as varying load due to shared

358 J. Ott

channels and may yield highly variable delays (jitter) due to link layer retransmissions
and queuing. Worse, the physical layer phenomena and also coverage gaps may lead to
temporary loss of connectivity: from fractions of a second to minutes or hours.

In effect, loss, delay, and throughput of wireless links may vary more heavily and
more abruptly than in fixed networks, making adaptation more demanding. While con-
gestion in fixed networks often builds up gradually and thus makes rate, loss, and delay
estimation somewhat predictable (unless routing changes), sudden interference, han-
dovers to networks with (much) lower performance, or coverage gaps may impact (and
possibly stall) communication instantaneously; similarly, conditions may improve sud-
denly and capacity becoming available again may not be fully exploited.1 To cope with
short disconnections (specifically during handovers), network operators often perform
significant queuing for their mobile data networks; however, this leads to delay being
accumulated, negatively impacting TCP and interactive application protocols. On the
other hand, if no or little queuing takes place, more losses occur. Longer disconnec-
tions will lead to packet losses in either case. Overall, the outcome from an application
perspective is delay [Ott08].

Interactive voice applications suffer from high delays and jitter as discussed above.
Jitter requires playout buffering and thus may incur additional delays (if adapted too
conservatively); when delays exceed the predictions for playout buffering so that pack-
ets miss their playout deadline, these packets are discarded, increasing loss.

In contrast, VoIP can adapt quite well to the available bit rate. Since a range of codecs
exists nowadays (some of them support variable data rates), audio communication can
be adapted between some 4 kbit/s (Speex, AMR-NB) and 64 kbit/s (G.711), providing
a flexible operating range to cope with congestion. If the short-term average data rate
drops below the lower bound, transmitting speech is no longer possible in real-time and
additional delay is introduced—or packet losses occur. However, delay and round-trip
time (RTT) impact the reactivity of the rate adaptation mechanisms and late adaptation
may increase queuing delays and/or cause losses.

Occasional packet losses (due to congestion or bit errors) are tolerable for voice
applications and can be handled by receiver-side error concealment techniques. More
substantial loss rates or loss bursts lead to unintelligible speech and therefore require
applying error control mechanisms, all of which increase the overall delay. As it was
found for skype users that delay has a less significant impact on perceived speech quality
than losses [CHHL06], some flexibility for packet repair exists beyond the guidelines
of G.114 [Int], so that loss bursts and short-term outages might be concealed.2

Nevertheless, as losses, delays or the frequency of disconnections grow, interactive
voice becomes essentially unusable. At some point, rate and error control mechanisms

1 From an endpoint’s perspective it is close to irrelevant whether communication is inhibited by
congestion or due to mobility (and it may be impossible to find out); hence, a protocol instance
at an endpoint should not (need to) care.

2 It is worthwhile noting that ITU-T recommendation G.114 is from 1993, a time before the
widespread acceptance of mobile telephony (with quite different reliability characteristics)
and VoIP. User expectations are probably changing with the use of different communication
infrastructures and users may be willing to trade off, e.g., the earlier notion of quality for
additional value (mobility, reachability, presence and messaging integration) or lower cost.

Towards More Adaptive Voice Applications 359

may no longer be capable of adapting to the environment and the user has to choose
between less interactivity and reduced intelligibility.

This example shows that wireless and mobile communication may yield a best ef-
fort service that is insufficient for specific applications if the network characteristics are
(temporarily) outside the operational range supported by the respective application (in
our case conversational voice). In the above example, the voice communication appli-
cation is limited in its capability to adapt to a broader range of operational conditions
because of the fairly strict interactivity requirements: the specific application semantics
define what interactive voice means to meet the user expectations.3 Rather than trying
to make all networks match the application needs (e.g., using elaborate QoS mecha-
nisms), we suggest to revisit the application semantics and investigate whether those
can be broadened to allow expanding the application’s operational range.4

For voice communication, this could mean reconsidering the notion of interactivity:
if we are willing to tolerate higher one-way delays well beyond 150–400 ms, we may
be able to employ better error control mechanisms and improve intelligibility of speech.
And we may be able to deal with (short) connectivity disruptions by temporarily buffer-
ing speech and relaying it when connectivity becomes available again. Both would shift
voice communications towards less synchronous interactions if the environmental con-
ditions so require. In the following section, we will discuss two distinct extensions to
conversational voice applications that explore the aforementioned ideas. We then de-
velop them further towards a concept of a more adaptive voice application that has a
broader notion of interactive voice.

4 Case Study: Adaptive Voice Communication

Users of mobile phones are well aware of varying network conditions and the resulting
effects ranging from short-term outages to call disconnections. And users of VoIP over
wireless networks (such as WLANs) often experience (short) periods of unintelligible
speech due to losses. In either case, the voice applications are not capable of adapting to
the network conditions and error handling is up to the user: from “manual synchroniza-
tion” by repeating sentences to re-dialing a lost call [OX07]. We have investigated two
different classes of mobile voice communication applications to deal with insufficient
connectivity:

1. Disconnection-Tolerant SIP

We have investigated switching between plain SIP voice calls and voice messag-
ing for IP networks, integrating automatic redial functionality [OX07]. In this ap-
proach, two endpoints constantly monitor the networking conditions by observing

3 For other applications, this holds even if the underlying transport (and session) protocols are
capable of tolerating a broader operational range (see, e.g., the countless extensions on TCP
performance enhancements and disconnection tolerance as discussed in [OSC+09]) and if the
user would be willing to tolerate a lower degree of interactivity, simply because application
operations may time out when disconnections last sufficiently long.

4 Recall that, due to the very nature of wireless communications, QoS cannot always be guaran-
teed, so that the mechanisms discussed here should also be suitable for well-managed wireless
networks.

360 J. Ott

RTP and RTCP reports from their respective peer to detect gaps in connectivity.
These gaps are classified into short (up to several seconds of lost speech, but the
call continues), medium (up to one minute, call disconnected), and large (more
than one minute, call disconnected and could not be re-established). In addition,
each endpoint records the last few seconds of transmitted speech in a local ring
buffer for later auto-recovery.

Short outages are recovered by automatically repeating the last (likely incom-
pletely received) talk spurt(s) to the peer (which performs duplicate filtering to
avoid too much replay) so that the re-synchronization (“What did you say?”) is
not entirely up to the users. Medium gaps are repaired by automated re-dialing
and answering paired with playback so that the parties can continue talking. Long
disconnections are addressed by redirecting the last bits of the conversation to the
peer’s voice mail so that at least the last statements can be completed and stored for
later retrieval.

These mechanisms address those cases in which the interactive conversation is
already disturbed by the environment and provide a means to simplify recovery.

2. DT-Talkie: Asynchronous Voice Messaging

We have developed an asynchronous voice messaging application running on top
of delay-tolerant networks (DTNs) [Fal03] that allows peer-to-peer voice conversa-
tions for two or more parties, somewhat similar to Push-to-Talk services (PTT), but
without reliance on network or server infrastructure and without the need for a real-
time path [ITK+09, Isl09]. Its use of DTN concepts makes DT-Talkie applicable to
ad-hoc network environments as well as disconnection-prone mobile connectivity.

The DT-Talkie captures and stores voice statements locally and groups these
statements into voice messages. The messages are sent asynchronously to the re-
spective peer, directly or indirectly via intermediate nodes, with each message be-
ing transmitted reliably hop-by-hop using the underlying DTN protocol stack. After
(complete) reception, the receiver renders the message from local memory; timing
is maintained within but not across statements. Capturing to and rendering from
local memory ensure smooth recording and playback, the use of a hop-by-hop-
reliable transport ensures that no message parts get lost. Together, this decouples
the fidelity of voice communication (perfect intelligibility) from the underlying net-
work conditions, at the expense of increasing delay.

This application goes well beyond disconnection-tolerant SIP in assuming non-
connectivity in the first place. Well-connected nodes experience roughly similar
quality as Push-to-talk-over-Cellular (PoC) services, whereas poorly connected
ones are able to communicate better than before.

We can generalize these ideas further and synthesize both approaches if we assume a
more flexible communication substrate allowing for the exchange of small to arbitrarily
large packets (or: messages)5, thus creating a continuum of voice-based interactions as
shown in figure 2. At the top of the figure, we indicate today’s disjoint voice applications

5 This functionality may be realized at the network layer, as in some DTNs or in a future Internet
[Ott08], or at the transport or application layer as an overlay on top of IP.

Towards More Adaptive Voice Applications 361

from real-time interactive voice on one end of the spectrum to voice mail on the other.
These disjoint applications represent different ways of interactions between users with
different degrees of interactivity and delay tolerance. They could be integrated as differ-
ent modes of operation into a single encompassing voice application as described below.

Fig. 2. Adaptivity of voice applications: Different application classes (top) exhibit different de-
grees of delay tolerance (shown on the axis)—which is related to their packet sizes (shown using
the order notation O(...). The larger the packets are, the more important gets reliable delivery.)

As noted above, a key metric for communications is delay, since packet loss may
be reduced when allowing for more delay, disconnections can be overcome by waiting
sufficiently long, and the data rate of audio codecs appears sufficiently adaptive for most
scenarios; if less instant capacity is available, reverting to non-real-time transmission
will help, at the expense of increased delay. The mode of operation with the lowest delay
are interactive real-time voice conversations, in which we assume minimal mouth-to-
ear-delay (typically < 150ms) for acceptable interactivity. Longer delays are tolerable
if we move towards less synchronous interactions, as known from one-way alternate
communications via walkie-talkies or Push-to-Talk; yet some degree of interactivity is
preserved. Depending on the network conditions, information exchange may be based
upon real-time packet streaming (as in Push-to-talk over Cellular) or reliable exchange
of messages (as in our DT-Talkie). Finally, voice messaging offers a rather asynchronous
style of interaction, more comparable to email.

If we exploit all these different modes of operation and move smoothly between
them (subject to the consent of the user), we can make VoIP applications more elas-
tic and expand their operational range. This is conceptually depicted in figure 3. The
traditional adaptation for (in this case SIP-based) VoIP systems is shown at the top:
The user has some high-level control to specify preferences (usually via quite flexible
default settings to ensure interoperability) towards the VoIP application. It couples the
media exchange and the signaling functions (call setup and teardown, etc.) and performs
the real-time capturing and rendering functions. Based upon the user preferences, the
codec and transport layers (their mechanisms are often also referred to as source and
channel coding, respectively) perform codec-specific and generic error and rate control.
Assuming, e.g., RTCP to monitor RTT, jitter, loss rate, and (implicitly) connectivity, the

362 J. Ott

Link

IP

UDP

SIP-based VoIP Application

RTP
 Reception stats

 Adaptation signaling

(Adaptive) Codec

 Application Layer Framing

 Error & rate control

Codec and packet size choice, playout buffering, audio i/o, UI

TCP

SIP

Registration

Call Signaling

…

SIP-based VoIP Application

RTP
 Reception stats

 Adaptation signaling

(Adaptive) Codec

 Application Layer Framing

 Error & maybe rate control

 Codec choice

SIP

 Registration

 Call Signaling

SIP-based VoIP Application

Function 1

(VoIP)

Function 2

(push-to-talk)

Function 3

(voice mail)

Link

IP

UDP TCP

S
ig

n
a

lin
g

S
ig

n
a

lin
g

S
ig

n
a

lin
g

Fig. 3. Vertical only (top) and integrated horizontal (bottom) voice adaptivity

endpoints can adapt their bit rate by choosing different audio codecs and their packet
rate (and header overhead) by varying packet sizes.

The entire adaptation is vertical, i.e., constrained to the media protocol stack, and
after the initial call setup not further intertwined with call signaling. Similar vertical
adaptation mechanisms exist for other types of voice interaction as shown in the figure at
the bottom: however, no cross-function adaptation is foreseen in today’s applications.6

The above vertical adaptation mechanisms can be leveraged when broadening the
scope of interactive voice communications and smoothly extending it to cover push-to-
talk- and voice-message-style communications as well. This is conceptually shown in
figure 3 at the bottom, denoted as horizontal adaptation. Depending on the observed
network conditions, an adaptive application may move between different modes of

6 Of course, a call setup request may be directed to a voice mailbox; but this happens at the call
setup time, before the conversation starts, and is thus not related to adaptation.

Towards More Adaptive Voice Applications 363

operations. Ideally, there are no fixed boundaries as in today’s applications, but rather a
smooth transition would be foreseen.

As shown in figure 2, starting out with a regular voice call, packets are kept small
to achieve a high degree of interactivity, with the above vertical adaptation mechanisms
applied. When network conditions worsen, voice application data units (ADUs) can be
increased further. With increasing ADU sizes, however, delay increases and communi-
cation loses interactivity. While using regular sampling intervals (e.g., 10–100ms) for
smaller packets, an application may decide to identify talk-spurts and send (groups of)
talk-spurts in ADUs to keep such related information together: words of a sentence and
a sequence of sentences of a statement. This ensures that related pieces of each talk-
spurt are either delivered in their entirety and can be played back without interruption
or are not delivered at all. This can be expanded further to gather complete statements
of a user (as with walkie-talkies), e.g., by means of local processing using heuristics,
leading further towards asynchronous communication. If connectivity to a peer is lost
entirely (for some time), one or more local statements may be aggregated and turned
into voice mail. Continuous monitoring of networking conditions should also indicate
when the situation is improving, so that the application can move again towards syn-
chronous operation (or resume communication after disconnection).

With increasing ADU size, the impact of a single lost ADU grows: error concealment
will work less well for 100ms of missing speech than for only 20ms and if entire state-
ments get lost, the peer may wonder why nobody is responding. Hence, larger ADUs
suggest using more reliable transport mechanisms—which are “affordable” since the
acceptable delay also increases, thus e.g. allowing for retransmissions.

5 Discussion and Conclusion

The above example presents a conceptual technically-oriented view on adaptive appli-
cations. We have outlined how broader adaptation could be achieved and sketch how
media transmission, monitoring, and to some extent signaling could interact to realize
this idea. But the details require further investigation and specific protocol and system
designs will need rigorous analytical, simulation, and experimental validation. An inter-
esting technical challenge will be multi-party conversations with the parties connected
to each other under different, varying path conditions.

At least equally important, however, is the non-technical dimension. While it may
be feasible to design such an encompassing adaptive voice application, will the idea of
a smooth transition across a very broad operational range be accepted by human users?
This involves at least two aspects: usability and user expectations. Concerning the for-
mer, a suitable (intuitive, unobtrusive) user interface is required. It has to ensure smooth
motion back and forth between more synchronous and more asynchronous styles of in-
teraction, with right level of reactivity. It should offer embedded cues to the user about
the present degree of interaction for a given conversation, and it should allow a user to
easily control the range of adaptation acceptable for a given conversation. As for the
latter, it appears important to steer user expectations: this kind of more adaptive appli-
cation that is a phone at one instant and turns into a walkie-talkie at the next would
probably not appeal someone expecting a phone that always works. Since we have seen

364 J. Ott

in the aforementioned examples of mobile phones and skype that users are able to adapt
expectations (including increased delay tolerance) and behavior, we are optimistic that
also the idea of broader adaptation mechanisms could be embraced.

Finally, while we offered some intuition on how more comprehensive considerations
could help adaptivity of voice communications, similar considerations may be appli-
cable to other real-time and non-real-time applications: For example, media streaming
applications already perform pre-buffering to deal with varying networking conditions,
a concept that has been explored further to deal with temporary disconnections and
could be extended towards broader adaptivity in general, possibly integrating Podcast-
style downloads and real-time streaming. Also, web applications could toggle more
smoothly between online and offline operation [OK06], provided that the application
protocols are adapted accordingly [Ott06].

One interesting follow-up question is whether commonalities can be identified across
different applications for common support in future transport protocols. Another one
warranting further discussion is what the implications on the present (or a future)
networking infrastructure are. We have argued that a future Internet should become
inherently more delay-tolerant [Ott08] but, as we discussed above, there is a feature
interaction between queuing/buffering ADUs inside the network and the end-to-end
control loops of the applications. This may call for limited additional interaction be-
tween endpoints and network elements—e.g., providing hints for ADU processing—
while maintaining the endpoints independent of the network elements.

Acknowledgments

The research leading to these results has received funding from the European Commu-
nity’s Seventh Framework Programme under grant agreement no 216714.

References

[BBRS08] Brosh, E., Baset, S.A., Rubenstein, D., Schulzrinne, H.: The Delay-Friendliness of
TCP. In: Proceedings of ACM SIGMETRICS, pp. 49–60 (2008)

[BENB07] Balan, V., Eggert, L., Niccolini, S., Brunner, M.: An Experimental Evaluation of
Voice Quality over the Datagram Congestion Control Protocol. In: Proceedings of
IEEE INFOCOM (2007)

[BFPT99] Bolot, J.-C., Fosse-Parisis, S., Towsley, D.: Adaptive FEC-based error control for
Internet telephony. In: Proceedings of IEEE INFOCOM, vol. 3, pp. 1453–1460
(1999)

[BVG96] Bolot, J.-C., Vega-Garcı́a, A.: Control Mechanisms for Packet Audio in the Inter-
net. In: Proceedings of IEEE INFOCOM, vol. 1, pp. 232–239 (1996)

[CHHL06] Chen, K.-T., Huang, C.-Y., Huang, P., Lei, C.-L.: Quantifying skype user satisfac-
tion. In: Proceedings of ACM SIGCOMM, pp. 399–410 (2006)

[CT90] Clark, D.D., Tennenhouse, D.L.: Architectural Considerations for a new Genera-
tion of Protocols. In: Proceedings of ACM SIGCOMM, pp. 200–208 (1990)

[Fal03] Fall, K.: A Delay-Tolerant Network Architecture for Challenged Internets. In: Pro-
ceedings of ACM SIGCOMM, pp. 27–34 (2003)

[For07] Ford, B.: Structured Streams: a New Transport Abstraction. In: Proceedings of
ACM SIGCOMM, pp. 361–372 (2007)

Towards More Adaptive Voice Applications 365

[Gar07] Garai, L.: RTP with TCP Friendly Rate Control. Internet Draft draft-ietf-avt-tfrc-
profile-09.txt (July 2007) (work in progress)

[GKLW02] Goel, A., Krasic, C., Li, K., Walpole, J.: Supporting Low Latency TCP-Based Me-
dia Streams. In: Proceedings of IEEE IWQoS, pp. 193–203 (2002)

[HP99] Handley, M., Perkins, C.: Guidelines for Writers of RTP Payload Format Specifi-
cations, RFC 2736 (December 1999)

[Int] International Telecommunication Union, Telecommunication Sector (ITU-T).
Transmission Systems and Media, General Recommendation on the Transmission
Quality for an Entire International Telephone Connection; One-Way Transmission
Time. Recommendation G.114 (March 1993)

[Isl09] Tarikul Islam, M.: Voice Communications in Mobile Delay-tolerant Networks.
Master’s thesis, Helsinki University of Technology (TKK), Finland (2009)

[ITK+09] Tarikul Islam, M., Turkulainen, A., Kärkkäinen, T., Pitkänen, M., Ott, J.: Practical
Voice Communications in Challenged Networks. In: Proceedings of the Extreme-
Com workshop (2009)

[Jac88] Jacobson, V.: Congestion Avoidance and Control. In: Proceedings of ACM SIG-
COMM, pp. 314–329 (1988)

[KH04] Kropfberger, M., Hellwagner, H.: Evaluation of RTP Immediate Feedback and Re-
transmission Extensions. In: Proceedings of the IEEE International Conference on
Multimedia and Expo (ICME), vol. 3, pp. 1751–1754 (2004)

[KHF06a] Kohler, E., Handley, M., Floyd, S.: Datagram Congestion Control Protocol
(DCCP). RFC 4340 (March 2006)

[KHF06b] Kohler, E., Handley, M., Floyd, S.: Designing DCCP: congestion control without
reliability. In: Proceedings of ACM SIGCOMM, pp. 27–38 (2006)

[Li07] Li, A.: RTP Payload Format for Generic Forward Error Correction. RFC 5109
(December 2007)

[MBL+04] Mogul, J., Brakmo, L., Lowell, D.E., Subhraveti, D., Moore, J.: Unveiling the
Transport. ACM SIGCOMM Computer Communication Review 34(1), 99–105
(2004)

[MD90] Mogul, J., Deering, S.: Path MTU discovery, RFC 1191 (November 1990)
[MPLJ03] Matta, J., Pépin, C., Lashkari, K., Jain, R.: A Source and Channel Rate Adaptation

Algorithm for AMR in VoIP Using the Emodel. In: Proceedings of ACM NOSS-
DAV, pp. 92–99 (2003)

[OK06] Ott, J., Kutscher, D.: Bundling the Web: HTTP over DTN. In: Proceedings of
WNEPT (2006)

[OSC+09] Ott, J., Seifert, N., Carroll, C., Wallbridge, N., Bergmann, O., Kutscher, D.: The
CHIANTI Architecture for Robust Mobile Internet Access. In: Proceedings of the
10th IEEE International Symposium on a World of Wireless, Mobile and Multi-
media Networks (WoWMoM), Industry Track (2009)

[Ott06] Ott, J.: Application Protocol Design Considerations for a Mobile Internet. In: Pro-
ceedings of the 1st ACM MobiArch Workshop, pp. 75–80 (2006)

[Ott08] Ott, J.: Delay Tolerance and the Future Internet. In: Proceedings of the 11th Inter-
national Symposium on Wireless Personal Multimedia Communications (2008)

[OWS+06] Ott, J., Wenger, S., Sato, N., Burmeister, C., Rey, J.: Extended RTP Profile for
Real-time Transport Control Protocol (RTCP)-based Feedback (RTP/AVPF). RFC
4585 (July 2006)

[OX07] Ott, J., Xiaojun, L.: Disconnection Tolerance for SIP-based Real-time Media Ses-
sions. In: Proceedings of the International Conference on Mobile Ubiquitous Mul-
timedia (MUM), pp. 14–23 (2007)

[Per07] Perkins, C.: RTP and the Datagram Congestion Control Protocol. Internet Draft
draft-ietf-dccp-rtp-07.txt (June 2007) (work in progress)

366 J. Ott

[PHH98] Perkins, C., Hodson, O., Hardman, V.: A survey of packet loss recovery techniques
for streaming audio. IEEE Network, 40–48 (September/October 1998)

[PKH+97] Perkins, C., Kouvelas, I., Hodson, O., Hardman, V., Handley, M., Bolot, J.C., Vega-
Garcia, A., Fosse-Parisis, S.: RTP Payload for Redundant Audio Data. RFC 2198
(September 1997)

[RLM+06] Rey, J., Leon, D., Miyazaki, A., Varsa, V., Hakenberg, R.: RTP Retransmission
Payload Format. RFC 4588 (July 2006)

[SCFJ03] Schulzrine, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A Transport Protocol
for Real-Time Applications, RFC 3550 (July 2003)

[Ste07] Stewart, R.: Stream Control Transmission Protocol. RFC 4960 (September 2007)
[SWB01] Seo, J.W., Woo, S.J., Bae, K.S.: A study on the application of an AMR speech

codec to VoIP. In: Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), vol. 3, pp. 1373–1376 (2001)

[ÁHI08] Huszák, Á., Imre, S.: DCCP-based Multiple Retransmission Technique for Mul-
timedia Streaming. In: Proceedings of the 6th ACM International Conference on
Advances in Mobile Computing and Multimedia (MoMM), pp. 21–28 (2008)

Telco Service Delivery Platforms in the Last
Decade - A R&D Perspective

Sandford Bessler

FTW Telecommunications Research Centre Vienna

bessler@ftw.at

Abstract. This overview discusses the technological and architectural

evolution of the telco service delivery platforms in the last decade. We

argue that not only the telco business model but also the system environ-

ment contributed to the decrease in revenues from added value services

and continues to be threatened by the success of the OEMs and their

AppStore model. Finally, we review a number of areas in which network

operators continue to play a crucial role in the service value chain.

Keywords: service delivery platforms, Telco, IMS architecture, enablers,

OSA Parlay, AppStore, business model, pricing, service creation.

1 Introduction

Twelve years ago Sun Microsystems, in cooperation with innovative network
operators such as BT, announced to open the interfaces of the intelligent network
(IN) for the development of 3rd party services. The initiative, called JAIN, was
the first in a series of technological attempts to generate added value from the
telco capabilities, user data and network information. The prospective advantage
to interwork with different existing variants of the largest (telephony) network at
the time via a standardized API and leverage the value of applications written
once and running everywhere lead to a joint standardization group of ETSI,
3GPP and Parlay that developed the so called Parlay/OSA model. Based on
capabilities such as location, messaging, presence and call control, they developed
CORBA interfaces that were powerful but difficult to use by the mass web
application programmers. Later, about a dozen interfaces called Parlay-X were
defined using the web service technology (WSDL bindings). Parlay ”light” had a
higher abstraction level, had fewer callbacks than the CORBA interfaces, fewer
complex types and therefore it was easier to use.

In 2004, the mobile telco standardisation body 3GPP developed the IP Multi-
media Subsystem (IMS), based on the service initiation protocol (SIP), and tried
to integrate the Parlay service capabilities with the new defined SIP application
servers in a new IMS service architecture (see Figure 1).

At this point, the design, pushed by the huge 3GPP group, began to show
weaknesses: whereas the Parlay capabilities were functionally isolated and di-
vided into call control, presence, messaging, etc.), the SIP signalling mixed all

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 367–374, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

368 S. Bessler

these functionalities in one protocol: call control using the INVITE message,
messaging using MESSAGE and presence using SUBSCRIBE (NOTIFY mes-
sages (see Figure 1).

Concerning the interface to 3rd party applications, the openness achieved in
JAIN and Parlay became in IMS a walled garden again, as the network opera-
tors were reluctant to disclose to every small service provider both a SIP (ISC)
interface and the authentication DIAMETER interface to their main subscriber
database.

The IMS (NGN) design followed the mobile intelligent network (CAMEL)
principle according to which a mobile user can be either in a home or visited
network. This very successful design for simple services such as telephony created
many problems for complex IMS services: for example, a location based service
that is discovered in the visited network (the well known nearest pharmacy
example) is in IMS still controlled by the home network of the user - today, in
the era of global internet services, an unnecessary complexity.

S-CSCFI-CSCF

OSA Gateway
(Service Capability Server)

Invite
(URI = userA@home.com)

scscf@home.com

P-CSCFInvite
(URI = userA@home.com)

OSA API

CAMEL
Server

SIP
Server

ISC

ServiceService Service

IM SSF

Fig. 1. IMS Service architecture. The call state control functions (CSCF) are SIP

routing components.

Unfortunately, the initial use of IMS service delivery platforms, the so called
enablers and their open interfaces to the applications failed to bring the expected
revenues. According to Manuel Vexler from Huawei [3], in the LTE future net-
work, IMS would play an important role in routing voice calls between the IP
and circuit-switched networks.

A thorough analysis of the reasons for this situation goes beyond the scope of
this paper; the remarks below reflect our experience from a R&D perspective:

– Network operators had high expectations from collecting, processing pres-
ence information from several sources (user, network, etc..) and selling it as a
value added service. Presence is a form of context and can be used to redirect

Telco Service Delivery Platforms in the Last Decade - A R&D Perspective 369

a call, adapt a service or just inform another user. On the one hand the rich
presence IETF standard is complex, allowing many presence states (location
type, activity type, even mood of a user), on the other hand it is not exten-
sible to new forms of presence (see [1] for an idea how to avoid that). Within
the IMS infrastructure, presence information has to be conveyed via the SIP
protocol. As a consequence, many web companies, providers of instant mes-
saging and social network applications bypassed the IETF and SIP protocols
and use today XMPP or proprietary dialogues between the terminals and
their web 2.0 platforms.

– Much research effort has been put into the convergence of telecommunication
related services, that are triggered for example by SIP messages, and web
service platforms . The goal is, to achieve flexibility in the service creation
process by using workflow engines and scripting, instead of a static, compiled
code (see [2] for more details). Although the workflow logic decides what
shall happen with a SIP call in real-time, such hybrid applications represent
a small market niche, relevant for professional voice applications.

– A Web 2.0 main innovation is to support user generated content. Extrap-
olating this approach to services, different researchers proposed that users
should create their own services on the fly. An innovative EU FP7 project
called mCiudad started in 2007 with the goal to demonstrate that users (pro-
sumers) can create simple peer to peer services in a matter of minutes, in
and with their mobile terminals. Figure 2 shows the building blocks of the
mCiudad system according to [5]: each mobile terminal can access a central

Fig. 2. mCiudad project: service

370 S. Bessler

warehouse of service components (SWH), assembly and personalize them lo-
cally using a service creation toolkit (SCK). After the creation the service
runs in the service execution environment using a number of local capability
functions. The service creation on the own mobile phone is quite challenging
in several ways: in defining the communication pattern between the peers,
in selecting and matching the right components, in defining the life-cycle of
an assembled service and, finally in providing usability for non-experienced
users. Therefore, at the end of the project it will be worth to revisit the fun-
damental question: shall services be created and tested by normal users or
by software developers ? According to the adopters of the appStore business
model (see next section) that emerged during the runtime of the mCiudad
project, a user shall be able to find an app for almost any function she needs.
The open questions which are currently investigated in mCiudad relate to
intelligent search methods for the desired functionality among a huge base
of applications by using for example semantic techniques.

Summarizing, the state of the art delivery platforms based on IMS/NGN failed
to create the expected revenues. There were not only flaws in the technical
integration of third parties, the time to market and innovation remained below
the competing web companies.

2 The New Service Delivery Platforms

In 2008 Apple has introduced the app-store business model for its iPod and
iPhone products. The apps are downloadable programs that the users buy for
a low price of $0.99 in average. The apps are divided into categories such as:
education, economy, entertainment, games, life-style, music, navigation, news,
social networks and many more. Note the contrast between the diversity of
these application categories and the limited scope of telco oriented applications
that have been developed in research and industrial projects in the last decade.
Call control, presence, are in the best case integrated in Skype or other VoIP
apps, location and navigation use the GPS local API, messaging and email are
ubiquitous.

In order to create the apps, programmers mostly deal with the local objects
in a SDK. The protocol with the backend servers is often based on HTTP, web
service APIs, or proprietary media streaming protocols.

The business model has been adopted by 50 small and large OEMs such as
Google, Nokia, RIM, and major network operators. Crucial for the success of the
model have been the quality control before the admission into the app store and
the agreement to share of up to 70% of the revenues with the app programmers.
Vodafone for instance plans to increase its digital value chain by offering the
developers access to user subscriber location information, to enable geographi-
cally targeted applications that reach the entire Vodafone customer base (30mio.
iPhone users), to open up a ”billing API” - effectively giving application devel-
opers the ability to charge customers directly on their Vodafone bill or prepaid

Telco Service Delivery Platforms in the Last Decade - A R&D Perspective 371

account. The challenge for Vodafone is that their app store will need to support
multiple different devices and technologies.

Besides the mobile phone business, apps started to infiltrate other application
domains: cars, electronic devices, scales, home appliances.

According to [6] the market of mobile apps will grow from 6,5 bio. USD in 2010
to 18 bio USD in 2012. Despite the expected growth, there is a lot of discussion
and debate in the industry on the topic of Mobile Apps versus Mobile Web in
the industry. The critical factors to have an impact of the future of apps are:

1. Penetration of HTML5+ browsers on mobile
2. Difference between the native OS support and browser access to the same

APIs
3. Implementation differences between various browsers

The interesting question is however, whether the Telcos should imitate Apple
and Co. and build own AppStores or concentrate on their core business, namely
to provide high quality delivery for the exploding amount of (mobile) data? In
the next section we present a few directions from past and current research.

3 . . . and the Network Operators?

The Telco 2.0 initiative of STL Partners [7] is trying to draw new strategies for
Telcos by proposing a new, two-sided business model, meaning that the revenues
shall originate both from the customers and from the content providers. Since the
former ”upstream” suppliers, such as content and application providers bypass
the Telcos and sell directly to the customers (over the top), the network operators
must find ways to charge the content/Internet companies for accessing ’their
pipes’. Seven areas for achieving added value are proposed by Telco 2.0: 1)
identity, authentication and security, 2) advertising, 3) e-commerce sales, 4) order
fulfilment offline and 5) online (e-content), 6) billing and 7) customer care.

Although it will be very hard to compete in all these areas, we think that
the 2-sided business model will allow sustainable investment in the broadband
infrastructure and will provide quality, mobility, security, enhanced privacy.

The following service examples focus on efficient management of internal broad-
band resources:

3.1 Application Layer Multicast of Video on Demand Streams

Despite the continuous expansion of backbone and access broadband infrastruc-
ture, an internet wide deployment of video on demand service with full size
movies poses a formidable challenge for network operators. Meanwhile, most ca-
ble and network providers have adopted a closed model that serves the own user
population, is based on a relatively small number of local and popular content
titles, but enables the full control of the content distribution process. On an inter-
net scale, among the P2P approaches for content distribution networks (CDN),
the most successful one uses the BitTorrent technology. Instead of downloading

372 S. Bessler

the same content from the server for each user again and again, it is theoretically
possible to do it once, the further distribution being performed autonomously
by the participating peers. From a network operator perspective however, the
performance level of such a system cannot be managed.

In this scenario we address a video content distribution system for residential
customers similarly to the one used with BitTorrent: large content files (movies)
are downloaded directly to the user disks, whereas the playback occurs locally. In
order to scale up to tens of thousands of movie titles arriving from video servers
world wide, we propose to use multicast. Since IP multicast deployment is diffi-
cult, the solution approach is based on application layer multicast, a technique
operating in an overlay (peer to peer) layer in the network operator domain.
Optimization heuristics periodically schedule the multicast trees and to pack
them in the available bandwidth, improving the efficiency and scalability of the
system.

3.2 A Location Service with Tunable Privacy

Location based services for mobile users were foreseen to have a bright future,
however at least in Europe their spread would raise privacy concerns. The appli-
cation presented in [4] is a simple friend-locator using GPS localization capability
but allowing enhanced privacy protection. The principle is quite simple:

Each mobile user can define location ”zones”, such as home, work, fitness
club, school, etc. Each zone is a circle with a center of known coordinates and
a radius. Using the contact lists, the user can configure the set of zones each of
her contacts may ”see”.

If another user wants to see my location, she has to subscribe to this location,
if allowed by the configuration step above (see Figure 3). The user will then be
notified if I enter or leave that zone. Between the zones I cannot be tracked.

The proposal has several advantages concerning privacy: only the location
”names” are transmitted but not the coordinates, the zones can be made fuzzy
to include for example the whole city, which can still be useful for colleagues
to see if you are abroad, and the disclosure of location is completely under the
control of the target (called also presentity).

The clue is the realization: it needs to run a presence server on the mobile
phone and an efficient notification mechanism. Many email and web notification
(push) protocols exist, the majority are realized by keeping TCP connections

Fig. 3. Privacy enhanced location service with network operator mediation server

Telco Service Delivery Platforms in the Last Decade - A R&D Perspective 373

open, but this solution is not always reliable. Another way to wake up a phone
with an asynchronous notification is to use a SMS/MMS or a SIP message. In
the assumption of SIP availability in the smart phones, the network operator
could provide the SIP based push service and aggregation functionality, as in
the figure below; otherwise, location updates over the air from tens of contacts
of a user would increase traffic and drain the battery.

3.3 Quality of Service and Pricing

The question of the revenue of the network operators from content and services
is closely related to the network neutrality discussion: mobile data usage is grow-
ing rapidly and may cause congestion in the hotspots. The network operators
invest large sums in the infrastructure; therefore they should have a share in
the revenues.For this to happen, the application high data demands require new
pricing models.

Considering the data stream consumed by an end-user, the current situation
is that the three variables: pricing, value and usage are independent, or in best
case the relation between them is a very simple one: flat price or usage threshold
pricing. A better metric for measuring the congestion created by an end-point
data stream along the path is needed. One interesting approach [8] is based on
the explicit congestion notification (ECN) mechanisms, that works by marking
more packets as a queue builds. The share of congestion each end user contributes
(congestion volume allowance) can be then priced according to the following use
policy, for example 1GB/month (marked packets) for 15 Euro. Bob Briscoe from
BT [8] argues that such a system is fair, neutral (no permission needed for QoS)
and application agnostic.

In addition, network providers can offer improved connectivity, mobile cover-
age, better throughput as premium service. They can improve the security and
since they are mostly trusted parties, they can offer enhanced privacy on the
network level.

According to a study by Freedom Dynamics about QoS/QoE in mobile com-
munications, the first ranked expectation of the 555 respondents was a good
internet connection. This shows the crucial role of the network operators, even
those who become a (happy) bit pipe: customers pay for QoE and leave for the
lack of QoS!

In accordance to the future internet discussion, the network operators have
additional options especially in the case of challenged networks where high mo-
bility leads to disruptions in the connectivity. Special enablers help to store the
data in the network and to deal with disruptions (disruption tolerance).

4 Concluding Remarks

The impairments in the architecture of the telco service platforms are probably
one cause of revenue decrease experience by network operators, the main cause

374 S. Bessler

is however the lack of business models matching the tremendous growth of in-
ternet use and the appearance of a service ecosystem that bypasses the network
operators services.

Network operators have lost the first round in the battle for revenues from
applications but have to maintain their crucial role in the value chain by insuring:
quality of the content delivery, optimal resource usage, security, trust, and last
but not least, appropriate pricing for network usage.

Research institutes (such as FTW) accompanied the technology and standard-
ization efforts of the telecommunications industry along the way and investigated
the internet and telco services, the use of enablers and service creation platforms.

Acknowledgements

This work has been funded by the Austrian Government and the city of Vienna
in the COMET program. Many thanks to Manuel Vexler, (Huawei and IMS
Forum) for the useful comments.

References

1. Bessler, S., Zeiss, J.: Using Semantic Policies to Reason over User Availability.

In: The Second International Workshop on Personalized Networks, Pernets 2007,

Philadelphia (2007)

2. Bessler, S., Zeiss, J., Gabner, R., Gross, J.: An Orchestrated Execution Environment

for Hybrid services. In: Proceedings Kommunication in Verteilten Systemen (KiVS)

2007, Bern (February 2007)

3. Manuel Vexler, Voice over LTE: Chances and Challenges, presentation at the IMS

World Forum (2010)

4. Bessler, S.: A System for Locating Mobile Terminals with Tunable Privacy. Journal

of Theoretical and Applied Electronic Commerce Research 2(2), 82–91 (2007) ISSN

0718-1876 Electronic Version

5. Urdiales, D., de las Heras, R., Davies, M., Zhdanova, A.V., Immonen, M., Heinilä, J.,

Narganes, M., Christophe, B., Maknavcius, L., Barnaghi, P.: m:Ciudad - Unleashing

mobile user-provided services. In: WWW 2009, event, Madrid, Spain (April 20-24

(2009)

6. Chetan Sharma, Sizing Up the Global Mobile Apps Market (2010)

7. Telco 2.0 Manifesto, http://www.telco2.net/manifesto/

8. Briscoe, B.: Resolving Internet capacity sharing and neutrality battles, Presentation

at TK Forum (2010),

http://www.ftw.at/presse-events/telekommunikationsforum/talk_briscoe

http://www.telco2.net/manifesto/
http://www.ftw.at/presse-events/telekommunikationsforum/talk_briscoe

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 375–389, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Ontology-Driven Pervasive Service Composition for
Everyday Life

Jiehan Zhou, Ekaterina Gilman, Jukka Riekki, Mika Rautiainen, and Mika Ylianttila

Computer Science and Engineering Laboratory
Dept. of Electrical Engineering, University of Oulu, PL 4500, FI-90014,

Oulu, Finland
firstname.secondname@ee.oulu.fi

Abstract. Incorporating service composition and pervasive computing into
managing user’s everyday activities gives rise to the paradigm of Pervasive
Service Composition for everyday life. This paper presents a novel generic
model for services supporting everyday activities. The resulting service compo-
sition consists of local services within service peers and services are executed
as specified in peer coordination and service collaboration. We suggest a task-
based, pervasive, semantic, and P2P-based approach for service composition for
everyday life. We first address these fundamental characteristics. We give ter-
minologies related to service composition, pervasive computing, ontology, and
Pervasive Service Composition. Secondly, we analyze requirements for describ-
ing everyday activities. To meet the requirements we design an initial ontology
model for capturing user’s everyday activity and accommodating peer coordina-
tion and service collaboration in Pervasive Service Composition. Finally, we
classify existing approaches to Web service composition.

Keywords: pervasive computing, service computing, semantic Web services,
ontology.

1 Introduction

To reach full potential service composition applications in public domains are expected
to have the ability to perform peer-to-peer coordination between the participating ser-
vice peers. This vision requires service composition to accommodate decentralized
service provision and context-aware computing. To meet these requirements, we gen-
eralize the concept of Ontology-Driven Pervasive Service Composition (ODPSC),
which envisions an ontology-centric solution to flexibly facilitate everyday activity
management by forming service peers, consuming individual Web services and inte-
grating Web services within or across service peers in a pervasive computing
environment. Ontology is quite often applied in capturing, managing and developing
business domain knowledge. Ontology-driven Pervasive Service Composition pro-
vides a semantic computing environment for mobile user to manage their complex
everyday activities with the emphasis of pervasive computing, task-based computing,
service composition, and semantic service composition.

376 J. Zhou et al.

Many research and standardization efforts have been made on service computing
and service composition to support commercial activities in business domains, e.g.,
Business Process Execution Language (BPEL[1]) and Choreography Description
Language (CDL[2]), WSDL-S[3], IRS-III[4], and SWSF[5] for electronic commercial
application integrations. Few studies on Web services are reported for supporting
everyday activities in context of pervasive computing. Meanwhile, many literature
reviews and comments show us that those studies on service composition are mixed
up and confused with orchestration and choreography definitions.

On the other hand, research efforts have been made on pervasive computing for
supporting everyday activities. The notion of pervasive computing introduces a vision
of user and environments that provide information and services when and where de-
sired [6]. A variety of terms are in use to describe this paradigm, such as ubiquitous
computing [7], ambient intelligence [8, 9], etc. However, few studies are reported
with incorporating Web services and service composition into pervasive computing.

To integrate service composition and pervasive computing, and distinguish service
composition, this paper addresses the fundamental issues in Ontology-Driven Perva-
sive Service Composition in everyday activity. The remainder of the paper is organ-
ized as follows. Section 2 defines terminologies used in this paper in context of On-
tology-Driven Pervasive Service Composition. Section 3 analyzes technical require-
ments for ODPSC. Section 4 proposes an ontology model for Pervasive Service Com-
position. Section 5 revisits existing standardization activities at syntactic and semantic
levels. Section 6 draws conclusions.

2 Fundamental Issues and Terminologies

This section addresses fundamental issues and defines basic concepts related to ontol-
ogy-driven Pervasive Service Composition. Recent efforts in research and standardi-
zation have somewhat blurred the terms related to service composition.

2.1 Fundamental Issues

Ontology-Driven Pervasive Service Composition (ODPSC) is regarded as an ad-
vanced means of managing complex everyday activities in a pervasive computing
environment. ODPSC can be classified as pervasive, task-based, semantic, and peer-
to-peer (P2P)-based computing. These characteristics are discussed next.

ODPSC is utilized to offer pervasive services for users: right services at the right
time. The nature of pervasive computing requires ODPSC not only to discover and
choose services before composing, but also to discover and regroup service peers
dynamically when the situation changes. On the other hand, ODPSC is expected to
support user’s everyday activities by maintaining Web services and service composi-
tions in a pervasive computing environment. This requires describing the tasks users
want to accomplish and composing services for performing these tasks, that is, task-
based computing is required. Some services involve only one service party while
others involve multiple service parties, namely peers.

ODPSC requires semantics. Service composition involves information exchange –
and not only exchanging technical information describing service input/output and

 Ontology-Driven Pervasive Service Composition for Everyday Life 377

interactions, but also managerial information for service peers and roles. This requires
a shared understanding and interpretation of information, including semantic service
discovery and composition, and service peer discovery and coordination. Moreover,
the operation environment of ODPSC calls for P2P solutions. In traditional business
integrations, centralized and less peer-oriented application integration is common in
service composition. In contrary, computing appliances assisting everyday activities
in pervasive computing environments are loosely coupled and distributed in the envi-
ronment. Hence collaboration and coordination in everyday activity management
requires a P2P-oriented integration, in which the same functional services can be
provided by different peers and a peer can provide many different services. The P2P-
oriented nature determines the roles of requestors, providers, and registry center in a
conventional centralized SOA architecture as service peers. This promotes collabora-
tive and coordinated computing and communication with its advantages of scalability,
fault-tolerance, dynamic networking, and collaboration supporting [10-12].

Fig. 1 illustrates how user’s everyday activities are coordinated and managed
smoothly by applying the ODPSC paradigm. ODPSC facilitates complex activity
management in a multi-peer coordinated, intelligent, and cost-efficient way. It re-
quires development of technologies for addressing the above ODPSC characteristics
of task-based, pervasive, semantic, and P2P-based computing.

Due to mixed use of concepts and notations in the field of service composition,
next section aims to summarize existing term definitions and clarify basic concepts
used in context of Ontology-Driven Pervasive Service Composition.

PervasiveSemantic

Task-based

Complex daily activity
management

Ontology-Driven
Pervasive Service Composition

P2P-based

Fig. 1. The Ontology-Driven Pervasive Service Composition paradigm

2.2 Terms in Business Integration

This section lists terms used in the context of business integration. There is a number
of terms to describe how components can be integrated together to build complex
business processes in industries. Many of the terms in Table 1 have been used in
business integration prior to Web services.

378 J. Zhou et al.

With the introduction of Web services, terms such as Web service architecture,
Abstract and Executable Process, Web composition, Web service Orchestration and
Choreography, etc. have been used to describe business integration (Table 2). Web
Service is an autonomous, standards-based component whose public interfaces are
defined and described using XML (W3C) and that supports interoperable machine-to-
machine interaction over a network using mainly Web-based standards [13][14]. We
use the terms “Web service” and “service” interchangeably in this paper. Semantic
Web [13] provides the environment and enabling infrastructure for Semantic Web
Services that are formally described and semantically enriched Web services.

Web Service architecture stack consists of a series of Web Services specifications,
targeting for integrating interacting applications such as primitive layer for basic level
applications and contemporary layer for advanced level applications. The primitive
layer consists of SOAP, WSDL, and UDDI. SOAP [15] defines the basic messaging
protocol independent of message exchanging environments. Web Services Descrip-
tion Language (WSDL) [16] provides a model for describing Web services such as
Service, Port, Binding, PortType, Operation and Message. UDDI registry [17] allows
publishing the availability of a Web Service and its discovery from service requesters
using sophisticated searching mechanisms.

Table 1. Terms used in business integration

Business activity The activity of providing goods and services involving financial,
commercial and industrial aspects [39].

Workflow Means to handle the routing of work between various resources in an IT
organization; the flow or progress of work done by a company, industry,
department, or person.

Business process
management
system

Used to enable a business to build a top-down process design model,
consisting of various integration activities; systems typically cover the
full lifecycle of a business process, including the modeling, executing,
monitoring, management, and optimization tasks.

Contract An agreement between two or more parties, especially one that is written
and enforceable by law [38].

Global contract Contains a definition of the common ordering conditions and constraints
under which messages are exchanged from a global viewpoint, the
common and complementary observable behavior of all the participants
involved.

Behavior The set of the actions or reactions of a person or animal in response to
external or internal stimuli.

Observable
behavior

Visible and public behavior to involving parties.

Non-observable
behavior

Invisible and private to involving parties.

The contemporary layer consists of Business Process Languages layer and Chore-
ography layer. Business Process Languages layer describes the execution logic of
Web Services based applications by defining their control flows. Choreography layer
describes collaborations of participants by defining their common and complementary
observable behavior, where information exchanges occur, when the jointly agreed

 Ontology-Driven Pervasive Service Composition for Everyday Life 379

ordering rules are satisfied from a global viewpoint. The contemporary layer is being
extended for accommodating other system characteristics such as security (security
layer), reliability (Reliable Messaging layer) and so on. Other terms are as follows:

Table 2. Web Service related terms

Workflow Defines the way work can be done from the beginning to the end,
including sequences of tasks together with rules that must be followed.

Process A set of interrelated activities that constitute a complete task.
Activity A task forming one logical step of a process.

Internal or private
business process

Business behavior acted by internal decision making, not revealed to
business partners. For example, procurement logistic made by the seller.
Such business process is also called as non-observable behavior.

External or public
business process

Business behaviors agreed by involved business parties. For example,
returning policy of goods made between customers and sellers. Such
business process is also called as observable behavior.

Abstract
processes

Serves a descriptive role to describe observable message exchange
behavior of each of the parties involved, without revealing their internal
implementation. Executable processes are fully specified and thus can be
executed. [18]

Web service
composition

Provides the means for business integration by weaving Web services.

Web Services
composition

language

A language for the description of Web Services compositions.

There are two types of Web Services composition languages. One is programming
in the large, which generally refers to the description of the high-level state transition
interactions of a process such as choreography language. Another type is program-
ming in the small, which deals with short-lived programmatic behavior involving
local logic processing such as orchestration language.

Orchestration language specifies an executable process that involves message ex-
changes with other systems, such that the message exchange sequences are controlled
by the orchestration designer. An orchestration language describes how Web services
interact with each other at the message level. For orchestration, the process is always
controlled from the perspective of one of the business parties.

Choreography language specifies a protocol for peer-to-peer interactions, tracks the
sequence of messages that may involve multiple parties and multiple sources, includ-
ing customers, suppliers, and partners. A choreography language describes how Web
services interact with each other at the peer level. A choreography description is the
multi-participant contract that describes a composition from a global perspective;
their decision making and data management are observable for all.

2.3 Terms Related to Ontology-Driven Pervasive Service Composition

Ontology-Driven Pervasive Service Composition provides a pervasive computing
environment for facilitating everyday activities. This paradigm is characterized with
task-based, pervasive, semantic and P2P-based computing.

380 J. Zhou et al.

The quality of human everyday life (e.g. productivity and creativity) could be sig-
nificantly improved by utilizing service composition in pervasive computing envi-
ronments. We term this vision as pervasive composition. The capability of providing
pervasive composition is named pervasive composability. Pervasive composability is
the capability of a system to develop applications by combining existing mobile ser-
vices. We expect this capability to be realized mainly by the support of peer coordina-
tion and service collaboration.

Peer coordination (namely, peer-to-peer collaborations) is achieved by forming a
composition of collaborative peers and building a global contract. Peer coordination
offers a means by which the rules for collaborating peers can be clearly defined and
agreed. Peer coordination is a global activity responsible for seeking appropriate par-
ties to cooperate in a task and achieve a goal.

Service collaboration is a local composition, consisting of services within one ser-
vice peer. This one service peer administrates all services participating in the service
composition. Service collaboration is a local activity responsible for completing a
small task by organizing local resources within one peer.

In the context of this chapter, peer coordination and service collaboration present a
novel view for explaining the roles of choreography and orchestration in service com-
position. Peer coordination specifies a global protocol for peer-to-peer interactions
and tracks the sequence of messages at a peer level. Peer coordination entails chore-
ography and BPEL’s Abstract Process for observable activity description from a
global perspective. Service collaboration specifies a local protocol for describing how
Web services interact with each other at the message level. Service collaboration is
always controlled by one service peer. Service collaboration entails orchestration and
BPEL’s Executable Process for non-observable activity description from a local
perspective. Separating peer coordination from service collaboration provides the
possibility to change service collaboration without affecting the peer coordination,
and vice versa.

User’s everyday behavior (activity) refers to the daily activities of communicating
with peers, requesting, receiving, processing and exchanging information with the
surroundings for fulfilling a goal. Building service compositions that support every-
day activities normally involve goals, task decomposition, peer coordination, and
service collaboration. Everyday activity differs from business activity in the sense that
exchanging information, peer coordination and service collaboration are considered
not from financial, commercial and industrial aspects.

Pervasive computing (i.e. ubiquitous computing) is a post-desktop model of hu-
man-computer interaction in which information processing has been thoroughly inte-
grated into everyday objects and activities [37].

A peer is considered as an organization or party which owns various computing re-
sources. A peer providing services is a service peer. A peer group is a way to combine
peers and to advertise specific services that are available to group members. Peers can
form groups, join groups, and resign from groups.

Pervasive Service Computing is regarded as a Web service-centric solution to support
modern human everyday activities with the emphasis of service composition (building
applications from services) and controlling the execution of these applications. In a heu-
ristic view, Ontology-Driven Pervasive Service Composition supports goal planning, task
decomposition, peer coordination, service collaboration and logic execution.

 Ontology-Driven Pervasive Service Composition for Everyday Life 381

Goal serves as a stimulus that inspires person to do actions and accomplish some-
thing. Activity is motivated by a goal. Task decomposition refers to the whole-part
composition structure of a task model. Each subtask represents an activity that could
be automated by a service.

Syntactic service composition refers to as user-driven application development by
providing the machine-interpretable meta-information that determines what services
can do, which peers perform which services, what functionality services provide and
how to use services, e.g. prerequisites. Syntactic service composition is based on
syntax, in terms of parameters and names matching without providing any additional
meta-information that could be interpreted by the system. Such syntactic information
is not enough in offering pervasive and context-aware services. Semantic service
composition need to be provided for applications to enable automatic peer and service
discovery, composition and invocation with additional elements which can be inter-
preted by the interacting applications so that system is aware of the current situation
and context and is able to intellectually reason about the goals and the situation.

Pervasive Service Composition Language (PSCL) provides and defines the mini-
mal set of concepts and essential constructs necessary to specify peer coordination
and service collaboration for automating everyday activities. PSCL is based on XML
and defined by XML schema.

3 Requirement Analysis

Our previous work examined scenarios created in context of pervasive computing for
envisioning future human everyday life and studied a generic user’s activity model
[40][41]. This section analyzes requirements for Ontology-Driven Pervasive Service
Composition.

3.1 Requirements for Pervasive Service Composition

The generic user’s activity model abstracts key activities of achieving a goal. In the
model, service composition plays an important role in seeking service peers and inte-
grating services. Those two processes are termed in the model as peer coordination and
service collaboration. Pervasive Service Composition aims to accommodate peer coor-
dination and service coordination in a pervasive computing environment [40][41].

3.1.1 Requirements for Peer Coordination
Requirements for peer coordination are initially specified as relationship manage-
ment, interaction management and peer management.

Relationship management establishes what peers do and who can talk with each
other within the context of a given task. Within peer coordination, services represent
different service peers. A service peer has one of the predefined roles. A relationship
is defined for each message exchange between two roles. Interaction management is
crucial for peer coordination, as it provides the actual logic behind a message ex-
change between peers. This imposes rules, constraints, and exceptions that must be
adhered for an interaction to successfully complete. Peer management functionality
manages the formation of a peer group, the number of the involving peers, and the
joining and leaving of the peers.

382 J. Zhou et al.

3.1.2 Requirements for Service Collaboration
Service collaboration describes centrally controlled workflow logic to automate inte-
grating various services within one peer to achieve the completion of a small every-
day task. The workflow logic needs to represent rules, conditions, interactions, and
exceptions. The details of such workflow logic are encapsulated and expressed by a
service collaboration. Service collaboration requires the ability to define how services
within one peer can interact with each other to automate the integration.

3.1.3 Requirements for Service Description
The abstract definition of services in Pervasive Service Composition reuses those
elements specified in WSDL [16]:

− Types: a container for data type definitions using some type system (such as
XSD).

− Message: an abstract, typed definition of the data being communicated.
− Operation: an abstract description of an action supported by the service.
− Port Type: an abstract set of operations supported by one or more endpoints.
− Binding: a concrete protocol and data format specification for a particular port

type.
− Port: a single endpoint defined as a combination of a binding and a network

address.
− Service: a collection of related endpoints.

3.1.4 Requirements for Interaction Description
An interaction is the basic building block for both peer coordination and service col-
laboration. Basically an interaction consists of basic activities, exception handling and
structured activities for information exchange between peers and services. Activities
describe the actions performed within a pervasive service composition.

A basic activity is used to describe the primary actions performed within a perva-
sive service composition. The potential types of basic activities for service collabora-
tion are: Invoke (send a message to a partner service), Receive (wait for an incoming
message), Reply (send a message in reply to a synchronous receive event), Assign
(copy data between variables), Empty (do nothing for modeling the start and end of a
composition), Wait (wait for a certain period or until a certain deadline), Throw (sig-
nal a fault) and Exit (terminate the execution). Peer coordination has similar types of
basic activities, but they are operated between peers is a distributed fashion.

Exception handling defines how exceptional or unusual conditions are handled. We
assume that exception handling is needed frequently in Pervasive Service Composi-
tion. Several types of exceptions are possible, for example, interaction failures (e.g.
the sending of a message does not succeed) and security failures.

Structured activities specify the ordering and conditional relationships between in-
teractions. The potential types of basic activity for both peer coordination and service
collaboration are: sequence (restrict a set of activities to be performed sequentially in
the same order that they are defined), flow (execute concurrently), choice (specify one
of activities to be performed), pick (wait for one message or time event), and while
(repeat while a condition is true).

 Ontology-Driven Pervasive Service Composition for Everyday Life 383

3.1.5 Requirements for Message Description
Applications in Pervasive Service Composition can involve a large amount of data
and information exchange. Such frequent information exchange and data communica-
tion occurs in a heterogeneous distributed computing environment within multiple
peers. Moreover, in peer-to-peer collaboration there is no central control. Therefore
explicit message specification is required for capturing the required information for
peer coordination and service collaboration.

3.1.6 Requirements for Context Description
Pervasive Service Composition occurs in a pervasive computing environment. Com-
posed applications have high requirements for adaptability and flexibility. The
adaptability raises semantic descriptions of not only computing services, but also
computing peers in Pervasive Service Composition.

4 Ontology Model for Pervasive Service Composition

ODPSC (Ontology-Driven Pervasive Service Composition) ontology will be a general
ontology of Pervasive Service Composition, for capturing everyday activities includ-
ing ordinary and business activity. ODPSC ontology will need to be able to address
the key requirements given above for achieving a complete service composition as it
is typically understood by human beings and parsed and processed by computer. The
key concepts needed for ODPSC ontology are depicted in the UML model shown in
Fig. 3. The contexts of peer coordination and service collaboration were not detailed
at the time of writing this paper. These concepts specify the surroundings of peer
coordination and service collaboration such as additional peer and service properties
and computing and communication environments. XML Schema data types can be
used to develop message ontology and WSDL specification can be used to develop
service ontology in ODPSC ontology.

The top concept composition contains two major workflow logic concepts,
peer coordination and service collaboration, that make up a plan. Peer coordination

Fig. 3. Ontology model for Pervasive Service Composition

384 J. Zhou et al.

specifies working peers, their roles and relationships, and their interactions for achiev-
ing the planned goal in a decentralized and pervasive computing environment. Service
collaboration specifies interactions with Web Services within a service peer for an
executable process. Basic and structured activity elements defined in BPEL specifica-
tion can be used to develop service collaboration ontology in ODPSC ontology.

5 Survey of Web service Composition Approaches

This section introduces the existing initiatives of applying ontologies to Web services
and service composition with respects to syntactic and semantic service composition.
Table 4 lists selected initiatives of service composition. It gives information about the
semantic and syntactic ways of service description, how orchestration and choreogra-
phy is understood within the initiatives and whether peer coordination and service
collaboration can be achieved (at least descriptively). An extensive overview of ser-
vice composition methods can be obtained from [19, 20][21].

Table 4. Summary of Web service composition approaches

Service description Facilities Method
Semantic Syntactic Peer

coordination
Service
collaboration

WSMO WSDL,
XML
Schema

Grounding to
WSDL

possible possible

OWL-S OWL Grounding to
WSDL

possible but
with external
facilities
involved

possible

SWSF SWSL Grounding to
WSDL

possible possible

IRS-III OCML,
XML
Schema

Grounding to
WSDL

possible possible

WSDL-S OWL, UML
and any
suitable
external
ontology
language

WSDL-S no real model, external facilities
needed

WS-BPEL WS-BPEL Abstract service
evolved to
overcome with
the interactions
between parties

possible

WS-CDL WS-CDL,
XPath 1.0

possible possible

 Ontology-Driven Pervasive Service Composition for Everyday Life 385

5.1 Syntactic Web Service Composition

This section overviews two syntactic Web service composition approaches, Business
Process Execution Language (BPEL) and Choreography Description Language
(CDL). These both can be viewed as workflow composition methods.

Business Process Execution Language (BPEL), short for Web Services Business
Process Execution Language (WS-BPEL), is a workflow oriented composition ap-
proach and has evolved from earlier initiatives, such as XLANG from Microsoft and
WSFL (Web Services Flow Language) from IBM. The latest version is WS-BPEL 2.0
[22]. BPEL defines models for describing the behavior of both executable and
abstract business processes. An executable process is fully specified and can be exe-
cuted on the orchestration engine. An abstract process is used to describe the observ-
able message exchange behavior of all involved parties and is hence focused more on
the choreography issues. The main elements specified by BPEL are detailed in [22].

Web Service Choreography Description Language (WS-CDL) aims at the compo-
sition of interoperable collaborations between any types of participants regardless of
the supporting platform or programming model [2]. WS-CDL is an XML based speci-
fication for describing such collaboration between participants by defining their ob-
servable behavior from a global point of view (e.g. global constraints and ordering
rules for information exchanging). Each participant can use this global definition to
build and test solutions that conform to it. WS-CDL is not an executable business
process description language or implementation language. The main elements speci-
fied by WS-CDL are detailed in [2].

5.2 Semantic Web Service Composition

This section overviews approaches to semantic Web service composition focusing on
core components and composition principles. The approaches fall into two categories.
The approaches in the first category, including WSDL-S, IRS-III and SWSF, extend
or use industry standards, while the second category contains new ontologies for se-
mantic Web service composition including OWL-S and WSMO. [23] gives an exten-
sive introduction to these approaches.

Web Service Modeling Ontology (WSMO) is derived from Web Service Modeling
Framework [24]. It aims to standardize for semantic Web services a framework that
provides support for formal modeling and service representation together with auto-
mating service related tasks such as discovery, selection, and composition [25, 26].
The four top-level elements of WSMO are detailed in [24] [27] [28] [29] [30] [31].

Semantic Web Service Ontology OWL-S (formerly DAML-S) is OWL-based
ontology that aims to provide a general description of semantic Web services applica-
ble for a wide range of domains to facilitate automatic service discovery, composi-
tion, interoperation and invocation [32]. OWL-S consists of three sub-ontologies
which are associated with the top-level concept Service. These ontologies are Ser-
viceProfile, ServiceModel, and ServiceGrounding [32].

Semantic Web Services Framework (SWSF) [33], proposed by the Semantic
Web Services Language Committee, is one of the latest approaches for semantic Web

386 J. Zhou et al.

services. It has two main components: Semantic Web Service Ontology (SWSO) and
Semantic Web Service Language (SWSL). SWSO [34] is a conceptual model for Web
service description and formalization. Formalization can be provided by one of the
SWSL variants: SWSL-FOL which is based on first-order logic or SWSL-Rules
that relies on logic programming. The corresponding ontologies are called FLOWS,
First-Order Logic Ontology for Web Services, and ROWS, Rule Ontology for Web
Services.

Internet Reasoning Service-III (IRS-III) [4, 35] is a framework for creating and
executing semantic Web services. The semantic broker based approach is applied to
mediate between service requesters and service providers. IRS-III incorporates the
WSMO conceptual model and provides execution environment. Own ontology repre-
sentation language (OCML) is used to describe interoperability and collaboration
from both the client and provider viewpoints. The framework has three main compo-
nents: ISR-III server, publishing platforms and clients that communicate via SOAP.
IRS-III server builds upon a HTTP Server extended with a SOAP handler. The server
contains a semantic Web service library storing the semantic descriptions (written in
OCML) that are associated with the Web services. The library is structured into do-
main ontologies and knowledge models for goals, Web services, and mediators. Web
services are associated with orchestrations and choreographies.

WSDL-S extends the widely used Web Service Description Language (WSDL) by
adding semantics to the functional descriptions of Web services [36]. The main ad-
vantages argued by the developers are that WSDL is used to describe both the seman-
tics and operation level details of semantic Web services and that WSDL-S allows
Web service developers to annotate Web services with their choice of modeling lan-
guages (e.g. UML or OWL). The capabilities and requirements of Web services are
annotated with referring concepts from a semantic model. Mechanisms for annotating
services, their inputs, outputs, preconditions and effects are provided.

6 Conclusions and Future Work

To define Pervasive Service Composition for everyday life, this paper addressed the
fundamental issues of task-based, pervasive, semantic, and P2P-oriented computing in
Pervasive Service Composition. Definitions related to service composition, pervasive
computing, ontology, and Pervasive Service Composition were given. Consequently,
requirements for describing everyday activities were analyzed with respect to peer
coordination, service collaboration, service description, interaction description, mes-
sage description, and context description. To meet those requirements, an initial on-
tology model was designed for capturing everyday activity and accommodating peer
coordination and service collaboration in Pervasive Service Composition. Finally,
existing approaches to Web service composition were classified into syntactic and
semantics approaches.

We identify three major tasks for the future works as follows. The first task will
be to specify a Pervasive Service Composition Language, based on the initial design
of the ontology model and utilizing a formal approach like XML. The second task
will be to develop a platform for peer coordination. This platform implements a set

 Ontology-Driven Pervasive Service Composition for Everyday Life 387

of protocols designed to address the establishment of global contract and observable
processes between peers. The third task will be to develop a platform for service
collaboration.

Acknowledgements

This work was carried out in the Pervasive Service Computing project funded by the
Ubiquitous Computing and Diversity of Communication (MOTIVE) program of the
Academy of Finland and in the ITEA2-CAM4Home project funded by the Finnish
Funding Agency for Technology and Innovation (Tekes).

References

[1] BPEL4WS, Business Process Execution Language for Web Services (2007),
http://xml.coverpages.org/WS-BPEL-CS01.pdf (retrieved by May 30, 2010)

[2] Barros, A., Dumas, M., Oaks, P.: A critical overview of the web services choreography
description language. BPTrends (March 2005),
http://www.bptrends.com/publicationfiles/
03-05%20wp%20ws-cdl%20barros%20et%20al.pdf (retrieved by May 30, 2010)

[3] Miller, J., Verma, K., Rajasekaran, P., Sheth, A., Aggarwal, R., Sivashanmugam, K.:
WSDL-S: A Proposal to W3C WSDL 2.0 Committee (2004),
http://lsdis.cs.uga.edu/projects/wsdl-s/WSDL-S.pdf (retrieved by
May 30, 2010)

[4] Domingue, J., Cabral, L., Galizia, S., Tanasescu, V., Gugliotta, A., Norton, B., Pedrinaci,
C.: IRS-III: A Broker-based Approach to Semantic Web Services. Journal of Web Se-
mantics 6, 109–132 (2008)

[5] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M., Mar-
tin, D., McIlraith, S., McGuinness, D., Su, J., Tabet , S.: Semantic Web Services Frame-
work (SWSF), Overview (September 2005),
http://www.w3.org/Submission/SWSF/ (retrieved by May 30, 2010)

[6] Weiser, M.: The computer for the 21st century. Scientific American 265, 94–104 (1991)
[7] da Costa, C.A.: Toward a General Software Infrastructure for Ubiquitous Computing.

IEEE Pervasive Computing 7, 64–73 (2008)
[8] Issarny, V., Sacchetti, D., Tartanoglu, F., Sailhan, F., Chibout, R., Levy, N., Talamona,

A.: Developing Ambient Intelligence Systems: A Solution based on Web Services.
Autom. Software. Eng. 12 (2005)

[9] IST-Amigo, Amigo: Ambient intelligence for the networked home environment (2006),
http://www.hitech-projects.com/euprojects/amigo/
(retrieved by May 30, 2010)

[10] Ylianttila, M., Harjula, E., Koskela, T., Sauvola, J.: Analytical Model for Mobile P2P
Data Management Systems. In: Proceedings of 5th IEEE on Consumer Communications
and Networking Conference, CCNC 2008, pp. 1186–1190 (2008)

[11] Pakkala, D., Koivukoski, A., Paaso, T., Latvakoski, J.: P2P middleware for extending the
reach, scale and functionality of content delivery networks. In: Proceedings of Second In-
ternational Conference on Internet and Web Applications and Services, p. 5 (2007)

388 J. Zhou et al.

[12] p2psip working group, Peer-to-Peer Session Initiation Protocol Specification (2009-03-
30), http://www.ietf.org/html.charters/p2psip-charter.html (re-
treived by May 30, 2010)

[13] Lee, T.B., Hendler, J., Lassila, O.: The Semantic Web. Sci. Am. (May 2001)
[14] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.:

Web services architecture (February 2004), http://www.w3.org/TR/ws-arch/
(retrieved by May 30, 2010)

[15] W. C. SOAP: SOAP Version 1.2 Part 1: Messaging Framework (2003),
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
(retrieved by May 30, 2010)

[16] W3C-WSDL, WSDL: Web Services Description Language (WSDL) 1.1 (2005),
http://www.w3.org/TR/wsdl

[17] UDDI, UDDI Version 3.0.2 (2004),
http://www.Oasis-Open.org/committees/uddi-spec/doc/spec/v3/
uddi-v3.0.2-20041019.Htm (retrieved by May 30, 2010)

[18] Weerawarana, S., Curbera, F.: Business Process with BPEL4WS: Understanding
BPEL4WS (2002),
http://www-106.ibm.com/developerworks/webservices/library/
ws-bpelcol1/ (retrieved by May 30, 2010)

[19] Cabral, L., Domingue, J., Motta, E., Payne, T., Hakimpour, F.: Approaches to semantic
web services: An overview and comparison. In: Bussler, C.J., Davies, J., Fensel, D.,
Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 225–239. Springer, Heidelberg
(2004)

[20] Rao, J., Su, X.: A survey on automated web service composition methods. In: Cardoso,
J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg
(2005)

[21] Tabatabaei, S.G., Kadir, W.M., Ibrahim, S.: A comparative evaluation of state-of-the-art
approaches for web service composition. In: Proceedings of 2008 the Third international
Conference on Software Engineering Advances, Washington, DC, USA, pp. 488–493
(2008)

[22] Jordan, D., Evdemon, J., Chairs, Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland, Y., Guízar, A., Kartha, N., Kevin Liu, C., Khalaf, R.,
König, D., Marin, M., Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.
(eds.): Web Services Business Process Execution Language Version 2.0, OASIS Stan-
dard (2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
(retrieved by May 30 , 2010)

[23] Roman, D., de Bruijn, J., Mocan, A., Toma, I., Lausen, H., Kopecký, J., Fensel, D.,
Domingue, J., Galizia, S., Cabral, L.: Semantic web services - approaches and perspec-
tives. In: Davies, J., Warren, P., Studer, R. (eds.) Semantic Web Technologies: Trends
and Research in Ontology-Based Systems. John Wiley & Sons, Chichester (2006)

[24] Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF. Electronic
Commerce: Research and Applications 1, 113–137 (2002)

[25] WSMO working group, WSMO (2009), http://www.wsmo.org (retrieved by May
30, 2010)

[26] Roman, D., Scicluna, J. (eds.): Orchestration in WSMO.WSMO Final Draft (2007),
http://www.wsmo.org/2005/d15/v0.1/20070422/ (retrieved by May 30,
2010)

 Ontology-Driven Pervasive Service Composition for Everyday Life 389

[27] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A.,
Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied Ontology 1,
77–106 (2005)

[28] de Bruijn, J.: The Web service modeling language WSML. WSML Final Draft (2005),
http://www.wsmo.org/TR/d16/d16.1/v0.21/ (retrieved by May 30, 2010)

[29] WSMX, Web service execution environment (2009),
http://www.wsmx.org/index.html (retrieved by May 30, 2010)

[30] Roman, D., Scicluna, J., Nitzsche, J. (eds.): Ontology-based Choreography. WSMO Final
Draft (2007), http://www.wsmo.org/TR/d14/v1.0/ (retrieved by May 30, 2010)

[31] Roman, D. (ed.): Choreography in WSMO. WSMO Working Draft (2004),
http://www.wsmo.org/2004/d14/v0.1/20041112/
(retrieved by May 30, 2010)

[32] Martin, D., Burstein, M., Hobbs, J., et al.: OWL-S: Semantic Markup for Web Services
(2004), http://www.w3.org/Submission/OWL-S/ (retrieved by May 30, 2010)

[33] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M., Martin,
D., McIlraith, S., McGuinness, D., Su, J., Tabet, S.: Semantic Web Services Language
(SWSL) (September 2005), http://www.w3.org/Submission/SWSF-SWSL/
(retrieved by May 30, 2010)

[34] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M., Mar-
tin, D., McIlraith, S., McGuinness, D., Su, J., Tabet, S.: Semantic Web Services Ontol-
ogy (SWSO) (September 2005),
http://www.w3.org/Submission/SWSF-SWSO/ (retrieved by May 30, 2010)

[35] Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B., Tanasescu, V., Pedrinaci,
C.: IRS-III: A broker for semantic web services based applications. Journal of Web Se-
mantics 6(2), 109–132 (2008)

[36] Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M., Sheth, A., Verma, K.:
Web service semantics - WSDL-S. Tech. Rep. A joint UGA-IBM Technical Note, ver-
sion 1.0 (April 18, 2005), http://www.w3.org/Submission/WSDL-S/
(retrieved by May 30, 2010)

[37] Ubiquitous_computing, Wikipedia,
http://en.wikipedia.org/wiki/Ubiquitous_computing (retrieved by
May 30, 2010)

[38] Contract, free dictionary, http://www.thefreedictionary.com/contract
(retrieved by May 30, 2010)

[39] business activity,
http://www.thefreedictionary.com/business+activity (retrieved by
May 30, 2010)

[40] Zhou, J., Sun, J., Rautiainen, M., Davidyuk, O., Liu, M., Gilman, E., Su, X., Ylianttila,
M., Riekki, J.: PSC-RM: Reference Model for Pervasive Service Composition. In: IEEE
Proceedings of Frontier of Computer Science and Technology (FCST 2009), Shanghai,
China, December 17-19, pp. 705–709 (2009)

[41] Zhou, J., Riekki, J., Ylianttila, M.: Modeling Service Composition and Exploring its
Characteristics, Modeling pervasive service composition. In: IEEE Proceedings of 3rd
International Workshop on Web Service Composition and Adaptation (WSCA 2009) in
IEEE ICWS 2009, LA, USA, July 6-10, pp. 446–451 (2009)

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 390–398, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Navigating the Web of Things: Visualizing and
Interacting with Web-Enabled Objects

Mathieu Boussard1 and Pierrick Thébault1,2

1 Alcatel-Lucent Bell Labs France, Route de Villejust,
91620 Nozay, France

{mathieu.boussard,Pierrick.Thebault}@alcatel-lucent.com
2 Arts et Métiers Paristech, LAMPA, 2 Bd du Ronceray,

49000 Angers, France
pi.laval@ensam.fr

Abstract. The Web of Things vision aims to turn real-world objects into re-
sources of the Web. The creation of accessible and addressable Virtual Objects,
i.e. services that expose the status and capabilities of connected real-world ob-
jects using REST APIs, allows for new machine-to-machine interactions to be
designed but also for a new user experience to be shaped. Indeed, the change
brought about by the connectivity of objects and their ability to share informa-
tion raises design issues that have to be considered by manufacturers and ser-
vice providers alike. In this paper, we present an approach to the Web of Things
based on both technical and user-centered points of view. We argue that new
user interfaces have to be designed to allow users to visualize and interact with
virtual objects and environments that host them. We illustrate our vision with an
interaction mockup that allows the user to navigate the Web of Things through
three devices (a smart phone, a web tablet and a desktop web browser).

Keywords: Pervasive computing, Internet of Things, Web of Things, user ex-
perience, interaction design, user interfaces, ambient intelligence, browser.

1 Introduction

When the term ‘Ubiquitous computing’ was coined in the early 90’s by Mark Weiser
from Xerox PARC [1], it was a mere vision depicting information services processed
and consumed outside of the personal computer terminal. Years have passed and
consequent research work has been conducted in this field trying to address subsets of
the bigger problem, but it was not before the past few years that conditions to actually
embody this vision in people’s everyday life were seemingly met.

A first phenomenon is the advent of networking as a basic (hardware) feature – it
has become cheap enough in the last few years to embed networking capabilities in
every object, starting with powerful mobile computing devices but also for everyday
objects with limited computation or interface capabilities. In parallel, consequent
research was conducted under the umbrella of the “Internet of Things” on how to
actually network these objects based on a common networking technology: IP. Fi-
nally, the World Wide Web as imposed itself as the main platform to deliver services

Navigating the Web of Things: Visualizing and Interacting with Web-Enabled Objects 391

to end-user, thanks to its simple and open foundations that fostered service creation
by virtually any of its users, in all aspects of people’s lives.

As a result, it has now become possible to embody the ubiquitous computing para-
digm using a Web of Things approach – where web technology allows exposing real-
world objects as resources on the Web. As a consequence, users can interact with
objects via a virtual representation of objects that surround them. In this paper we
discuss how user experience should be considered as crucial in the design and use of
connected objects.

In chapter II, we discuss the overall concepts underlying the Web of Things and
related work. We then present in chapter III general considerations regarding user
experience in environments where objects are exposed as Web resources, before
presenting some early results in chapter IV. We finally conclude and present future
opportunities in chapter V.

2 An approach to the Web of Things

Just as the term “Internet of Things” covers different aspects ranging from object
identification to wireless sensor networking, the expression Web of Things can be
used to describe many different topics. These range from embedding a Web server in
constrained resource devices to exposing real-world (connected) objects using Web
techniques and composing them. In the following, after presenting related work, we
focus on aspects that have a direct impact on user experience in a Web of Things
enabled environment.

2.1 Related Work

Approaches to apply web principles to ubiquitous environments originate from the
early 2000s when the Web gained popularity as a delivery platform. Kindberg et al.
discussed the concept of “Web presence” under the form of a web page for people,
places and things in [2]. A number of solutions using web-related standards and
methods were applied, from distributed computing middleware like JXTA [3] to Web
Services technologies and for example the device-oriented flavor of the protocol suite
DPWS [4]. Using such solutions requires specific skills from the service developer to
create an application that takes full advantage of it, and potentially specific software
to be installed.

The term “Web of Things” was coined recently as an application-oriented reaction
to the network-oriented Internet of Things research, also feeding on the Web 2.0 con-
cept of the Web as a (service-)platform [5]. Initiatives like SenseWeb and Pachube
have focused on a data-oriented exposure of real world objects, where a centralized
Web service proposes a repository for sensor readings, exposing an API for third-
party mashups ([6], [7]). Initiatives providing service-oriented exposure to objects
themselves seem more interesting to us, as they are likely to provide greater scalabil-
ity and interaction possibilities. Such approaches are described in [8] and [9] where
the advantages of using of RESTful principles to expose real-world connected objects
to Web applications are discussed.

392 M. Boussard and P. Thébault

Although a great deal has been achieved, most of this work has been focusing on
machine-to-machine (M2M) aspects, and very little on the representation to users of
possibilities offered by Web-exposed objects. Most work relies on HTML pages to
represent and interact with networked objects. Although as stated in [2] the browser is
the de-facto interface to the Web and has been broadly accepted by end-users, recent
developments on HTML5, Rich Internet Applications, and mobile interfaces have
shown that there is still a lot of room for improvement presentation-wise.

2.2 Virtual Objects

In our approach, we focus on exposing connected real-world objects (RWO) as re-
sources accessible using Web technology – we call such avatars of physical objects
Virtual Objects (VO). Virtual Objects are responsible for exposing the RWO state and
functionalities on the Web; they should be addressable (via a URI), accessible (pre-
senting a REST interface) and provide a description of their nature, status and capa-
bilities towards both other services (for M2M purposes) and users through a visual
representation.

Depending on the nature of the RWO, different realization of the VO and related
hosting schemes have to be considered. If the RWO is Web-enabled, its VO can be
embedded in device. In another schema, a gateway could host a collection of VOs
based on network topology (e.g. of all objects connected to a network access point) or
geographical considerations (e.g. all devices in a building or room). This solution is
interesting in particular for objects that are not Web- or even IP- enabled, comparable
to the work described in [8]. Other deployment schemas can be envisioned, such as
the hosting in a cloud providers’ solution. It is worth noting that deployment schemes
are not only bound by technical choices – one could imagine different business mod-
els where the manufacturer of an object would rather host the related VO on behalf of
their customers, or such hosting service being provided by the user’s Internet Service
Provider, etc.

As Virtual Objects are the finest grain of interaction users could meet in Web of
Things experience, it is important that they provide a representation to users, in a way
that is best suited to the usage situation. This representation should provide the user
with the possibility to interact with services exposed by objects (e.g. turn lamp on/off)
and to monitor user-relevant object state (lamp is on).

2.3 Composing Objects of an Environment and Using Them in Applications

As pointed out in [3], "while the Web is a global-scale information system for which
physical location is transparent, we often want to access resources that are conven-
iently near our physical location". It is therefore reasonable to think that although
searching for virtual objects representing remote real-world objects will have its util-
ity, visualizing objects in-situation (i.e. those present in the current environment of
the user) is crucial. For this, it is necessary to model the concept of environment (as a
grouping of physically regrouped objects, but also of potential compositions between
these objects). In our approach we map the concept of environment on a virtual object
gateway which hosts the VOs of the objects connected to a same network access
point, and as a consequence are located in the same premises.

Navigating the Web of Things: Visualizing and Interacting with Web-Enabled Objects 393

As objects get exposed as services on the Web, they enable new types of composi-
tion or mashups. Guinard et al. [8] propose a first classification using the terms vir-
tual-physical mashups for applications that present a web user interface to objects and
physical-physical mashups for M2M compositions. While the latter are directly con-
strained by the nature and capabilities of the composed objects (e.g. the composition
of a webcam with a display is directly linked to the nature of the two considered ob-
jects), virtual-physical mashups can cover a much broader range of application logic,
only limited by the service developer imagination or needs. It is important to note that
from a user perspective both approaches should be made visible as they participate to
the ambient intelligence of an environment.

3 Towards New User Experience

As the exposition of real-world objects on the Web allows the design of machine-to-
machine interactions, objects can be considered as actuators putting specific physical
or digital mechanisms in action, without any immediate user input. This leads to the
creation of ambient intelligence that is able to control object behaviors. Alternative
interfaces designed for a new means of control of objects allow for a new experience
to be shaped by manufacturers, service providers or end-users in order to assist people
in their daily life. From a user-centered perspective, we propose to discuss, in the
following sections, the issues related to the perception of objects’ connectivity by
users, the representation of interactions between objects and the creation of object
groups.

3.1 Distinguishing Web-Enabled Objects from Non-connected Objects

Users are likely to experience automation of multiple objects working together to
relieve the effort of turning on/off and configuring their devices or appliances. The
communication of two or more objects through the Web is initiated without explicit
permission from users and remains invisible to them. As communication chipsets are
often hidden inside objects, users will not make, in most cases, the difference between
connected and non-connected devices. Norman [10] tells us that user observation of
feedback depends upon the information conveyed by the physical device itself. We
argue that new graphic representations are needed to make the Internet connection
and VOs more tangible and perceptible by users. Many different solutions ranging
from a simple marker to a complete redesign of object’s user interfaces can be pro-
posed. As Arnall [11] introduced a graphic language for touch-based interactions, we
need to explore the visual link between information and real-world object. Regardless
of whether Internet capability of objects is made visible, users are likely to be sur-
prised by the automation of their surrounding, especially if they have not shaped the
objects’ behaviors by themselves. Woods tells us that situations where “automated
systems act in some way outside the expectations of their human supervisor” [12] are
caused by a poor feedback about the activities of automated systems to users. “Auto-
mation surprises” and difficulties to anticipate objects activities can be in some ways
avoided by the integration of a dynamic visual feedback, for example a LED that
indicates to users a possible automation. We argue that a means of controlling the

394 M. Boussard and P. Thébault

Internet connection status is needed in a transitional phase where users can perceive
objects’ intelligence as a form of manipulation. It is crucial that objects’ automation
does not jeopardize the collective use of products or constitute a barrier to the accep-
tance of the Web of Things vision.

3.2 Understanding Objects’ Behaviors

New exchange capabilities of objects allows for the design of behaviors to be shaped
according to their features’ descriptions. Virtual links between two objects can be
drawn by users and considered as a representation of interoperable functions. From a
user perspective, it seems crucial to be able to figure out the complexity of this net-
work. It is therefore needed to specify the link direction, related to the input/output
relationship of devices, to help people understand how objects interact together. If
such associations can, to some extent, be displayed on devices equipped with screens
(e.g. phone, television, radio, etc.), it would be impossible to do so with traditional
appliances (e.g. lamp, heater, shutter, etc.). We argue that consistent and flexible
visualization modes are needed to provide a broader and quick understanding of ob-
ject’s behaviors. If it remains difficult for the user to comprehend how several objects
spread in different rooms or locations are working, it is also harder to perceive the
unification of several objects by a web application hosted on the cloud. Such applica-
tions make possible complex behavior modeling and allow the user to script custom-
ized events triggered by an ambient intelligence. The application therefore operates
the functions of objects even if the input/output characteristics cannot be combined.
This leads to the creation of composite applications using multiple objects that have to
be presented to the user in a comprehensible way.

3.3 Grouping Objects

The capacity to control objects from a remote location or system raises issues related
to privacy and ownership. To avoid misuse, it is needed to ensure that people have the
appropriate rights to access virtual objects and make modifications to their behaviors.
It is however extremely difficult for the system to determine what can be done or not
with objects. Insofar an object can be offered by a user to another, lent to somebody
else or sold for second-hand use, it would require the users to constantly update the
access rights of their objects on dedicated applications. We argue that it is possible to
identify users through the devices used to browse virtual objects and to build a social
network of “things” built on top of existing platforms.

Sterling [13] tells us that next generation of objects called “spimes” will be tracked
through space and time throughout its lifetime. The environment of use is therefore
another parameter that has to be considered even if GPS chipsets do not provide rele-
vant measures to locate an object in indoor environments [14]. Virtual objects can
however be attached to a geographically described environment. As objects are most
likely to be wirelessly connected to residential set top boxes, the latter, or a dedicated
access point, can be considered as a geographical markup and provide a global under-
standing of the environment. This allows the creation of abstract environments bridg-
ing multiple physical places (e.g. a campus of several building in different neighbors)
that users are likely to visit in a specific context.

Navigating the Web of Things: Visualizing and Interacting with Web-Enabled Objects 395

4 Illustration of the Web of Things Experience

In order to illustrate our Web of Things vision, we designed an interaction mockup
that allows users to interact with connected objects (including a lamp, a webcam, a
computer screen and a fixed phone) in a real life-like context. We argue that a new
user experience can be shaped by offering interactions with terminals that makes up
for the lack of dedicated user interfaces on objects. This approach led us to offer the
users three interfaces designed for a smart phone, a touch tablet and a desktop web
browser. We discuss below that each of these applications is best suited for specific
tasks and context (in-situation or off-situation), as described in the following sections
and summarized in Table 1.

Table 1. Characteristics of the three designed interfaces

 Smart phone Touch Tablet Web browser
Browse from One object

An environment

All objects, all
environments

Actions Quick visualization
and authoring

Visualization,
authoring, application
download

Advanced
visualization,
authoring, application
download and coding

Visualization Augmented reality Graph, lists Graph, lists, maps,
search results

Interactions Shorts interactions Short and long
interactions

Long interactions

Posture Stand up Relaxed Desk
Use Personal Semi-personal (with

authentication)
Shared (with
authentication)

4.1 Browsing Virtual Objects In-Situation

As most of objects are generally used in-situation, users are likely to access virtual
objects while being close to the related real-world object. To provide a quick over-
view of the objects’ properties and active links, we rely on mobile phones and web
tablets. Both terminals can be used to deliver a specific experience based on observed
user’s practices.

Mobile. The Internet capabilities of smart phones and the integration of camera, GPS
or RFID reader allow service providers to design new interactions in public space
[15]. Users have learnt that barcodes and matrix codes are encoded information or
links that can be scanned using specific applications in order to access content more
easily. In the same way augmented reality technologies are used to superpose digital
representation on reality [16], we created a mobile phone application that allows the
user to “reveal” the capabilities and behavior of Web-enabled objects (see Figure 1).
This is made possible by directly shooting the camera at objects equipped with visual
markers. The latter therefore bridge the virtual and physical objects and can be con-
sidered as pointer to the corresponding Virtual Object. The aim is not only to provide
a quick understanding of an object’s behavior, but also interactions with the Virtual

396 M. Boussard and P. Thébault

Fig. 1. Snapshots of the three access modalities: mobile, tablet and desktop browser

Object. We argue that users are likely to want to deactivate a link or quickly setup a
new one and need quick access modes and immediate feedback. However, screen
sizes of mobile phones restrict the possibilities and require us to develop short interac-
tions that can be handled while a user is standing up in front of an object.

Tablet. Web or media tablets aim to fill the gap between the desktop computer and
the mobile phone. If the latter is also used as an Internet access terminal in homes,
touch tablets offer more natural interactions with the web and bigger screens [17, 18].
Whereas the mobile phone allows contextualizing the information of an object
through the mechanism described above, we argue that tablets are more appropriate to
give an overview an environment. McClard and Somers [19] tell us that such devices
allow multitasking, relaxed posture of use and play a social role in family. We there-
fore designed an application that can be considered as a “radar” providing an abstract
representation of the user environment and its Web-enabled objects. It allows the
users to browse the Virtual Objects corresponding to objects available in the immedi-
ate space, through multiple modalities (e.g. a graph with icons, lists, search engine,
bookmarks), and explore distant known environments (e.g. grandma’s house, office,
etc.). We argue that users are likely to want to administrate their ecosystem, create
new links and applications and browse existing applications with the tablet. As the
device is meant to be shared with different users, it is needed to ask for authentication
to activate authoring modes.

4.2 Browsing Virtual Objects Off-Situation

If the mobile and tablet interfaces provide a new means of visualization and control
over Web-enabled objects, an online aggregator specifically designed for desktop and
laptop computers is needed for longer and more complex interactions with Virtual
Objects. Personal computers are widely use to organize, maintain or retrieve informa-
tion and can be considered as an essential asset to other device’s management (e.g. a
PC is needed to transfer files from and to a mp3 player, camera or smart phone). We
argue that users are likely to want to browse all their virtual objects through a web
dashboard providing multiple access modalities (e.g. graphs, lists, maps, galleries)
and a robust search engine. As mentioned in part 2, there is an opportunity to build a
new social platform allowing users to navigate through objects, environment and
people. Whereas websites like ThingD [20] and ThingLink [21], Talesofthings [22],

Navigating the Web of Things: Visualizing and Interacting with Web-Enabled Objects 397

Stickybits [23] offer to bookmark and comment a catalog of objects, we propose to
rely on existing social graph (e.g. Twitter, Facebook, FlickR) to add a social dimen-
sion to objects. The desktop application can also offer authoring tools to create object-
based applications and mashups. Specific solutions can finally be designed by manu-
facturers or building administrators to monitor and control physical assets.

5 Conclusion

In this paper we have discussed how exposing real-world objects as resources on the
Web enables to realize the old pervasive computing paradigm. In our approach of this
Web of Things, we use the concept of Virtual Object to represent the real-world ob-
ject as a service to other Web entities, and enable compositions that participate in
ambient intelligence. We argue that to ensure the success of such a vision, user ex-
perience should be carefully designed, in order to make users aware of the possibili-
ties and behaviors in the environment they visit. To illustrate these considerations, we
developed three user interfaces allowing users to interact with connected objects of an
environment, using mobile interfaces for in-situation browsing. Further work includes
actual user testing of both these interfaces and the underlying principles. By mixing
social and location-based approaches, we argue that a suitable user experience can be
shaped to offer users a new means of navigating the Web of Things - keeping in mind
that too much participation from the user or complex representations of their personal
ecosystems will lead to a poor adoption of the vision.

References

1. Weiser, M.: The computer for the 21st century. Scientific American 272, 78–89 (1995)
2. Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal, G., Frid,

M., Krishnan, V., Morris, H.: others: People, places, things: Web presence for the real
world. Mobile Networks and Applications 7, 365–376 (2002)

3. Traversat, B., Abdelaziz, M., Doolin, D., Duigou, M., Hugly, J.C., Pouyoul, E.: Project
JXTA-C: Enabling a web of things. In: Proceedings of the 36th Annual Hawaii Interna-
tional Conference on System Sciences, p. 9 (2003)

4. Chan, S., Conti, D., Kaler, C., Kuehnel, T., Regnier, A., Roe, B., Sather, D., Schlimmer, J.,
Sekine, H., Thelin, J.: others: Devices profile for web services. Microsoft Developers Net-
work Library (May 2005)

5. What Is Web 2.0, http://oreilly.com/web2/archive/what-is-web-20.html
6. Kansal, A., Nath, S., Liu, J., Zhao, F.: Senseweb: An infrastructure for shared sensing.

IEEE multimedia 14, 8 (2007)
7. pachube: connecting environments, patching the planet, http://www.pachube.com/
8. Guinard, D., Trifa, V.: Towards the web of things: Web mashups for embedded devices.

In: Workshop on Mashups, Enterprise Mashups and Lightweight Composition on the Web
(MEM 2009), in Proceedings of WWW (International World Wide Web Conferences),
Madrid, Spain (2009)

9. Wilde, E.: Putting things to REST. School of Information, UC Berkeley, Tech. Rep. UCB
iSchool Report. 15 (2007)

10. Norman, D.A.: The design of everyday things. Basic Books, New York (2002)

398 M. Boussard and P. Thébault

11. Arnall, T.: A graphic language for touch-based interactions. In: Proceedings of Mobile In-
teraction with the Real World MIRW (2006)

12. Woods, D.D.: Decomposing automation: Apparent simplicity, real complexity. In: Auto-
mation and human performance: Theory and applications, pp. 3–17 (1996)

13. Sterling, B., Wild, L.: Shaping things. MIT Press, Cambridge (2005)
14. Chen, G., Kotz, D.: A survey of context-aware mobile computing research, Citeseer (2000)
15. O’Reilly, T., Battelle, J.: Web squared: Web 2.0 five years on. In: Proc. of the 6th Annual

Web 2
16. Azuma, R.T.: others: A survey of augmented reality. Presence-Teleoperators and Virtual

Environments 6, 355–385 (1997)
17. Saffer, D.: Designing Gestural Interfaces. O’Reilly Media, Inc., Sebastopol (2008)
18. Valli, A.: Natural Interaction White Paper
19. McClard, A., Somers, P.: Unleashed: Web tablet integration into the home. In: Proceedings

of the SIGCHI conference on Human factors in computing systems, pp. 1–8 (2000)
20. thingd, http://www.thingd.com/
21. Thinglink, http://www.thinglink.org/weSwitch
22. Tales of Things, http://www.talesofthings.com/
23. stickybits - tag your worldTM, http://www.stickybits.com/

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 399–410, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Shaping Future Service Environments with the Cloud
and Internet of Things: Networking Challenges and

Service Evolution

Gyu Myoung Lee and Noel Crespi

Institut Telecom, Telecom SudParis
9 rue Charles Fourier, 91011, Evry Cedex, France
{gm.lee,noel.crespi}@it-sudparis.eu

Abstract. To address the new paradigm of future services, cloud computing
will be essential for integrating storage and computing functions with the net-
work. As many new types of devices will be connected to networks in the fu-
ture, it is very important to provide ubiquitous networking capabilities for
“connecting to anything” between humans and objects for realize the Internet of
Things (IoT). This paper introduces several challenges for the cloud computing
in telecom perspectives and ubiquitous networking capabilities to support the
IoT. For this, we present the basic concepts and present our vision related to
this topic. In addition, we clearly identify characteristics and additional capa-
bilities to support key technologies to be used for the IoT. For various services
using ubiquitous networking of IoT, we propose the cloud-based IoT which
aims to efficiently support varies services using cloud technology from different
kinds of objects (e.g., devices, machines, etc). We also emphasize the necessity
of virtualization for service evolution using smart environment of the cloud and
the IoT.

Keywords: Cloud computing, Internet of things, ubiquitous networking, future
Internet.

1 Introduction

New paradigms for future mobile and ubiquitous environments imply decisions re-
garding the direction for the evolution of networks as well as investigating technolo-
gies that will allow an efficient support of new services by the future Internet.

Most of network providers already support basic offers such as simple access to
services (e.g., Internet access) based on user devices such as personal computer (PC).
Users also expect to access future Internet value-added services, which enhance qual-
ity of life and of work. Ubiquitous service capabilities as well as network-based utility
monitoring and billing are examples of such value added services. Accordingly, sim-
ple and basic broadband “access” oriented business will shift to future Internet-based
business opportunities.

The following represents key features of evolving future Internet business-driven
services:

400 G.M. Lee and N. Crespi

- Ubiquity: for providing anywhere/anytime service with “connecting to anything”
feature, e.g., seamless mobility between heterogeneous networks using conver-
gence devices;

- Personalization: for personalizing features of application and services;
- Handy access: for easing access to services through various terminals using

easy, simple, intuitive and consistent user interface(s);
- Intelligence: for providing convenient services with automatic recognition and

recommending of user’s interests and preferences;
- Broadband: for delivering multimedia information including data with large

traffic volume due to increase of connected devices and increase of bandwidth
required by services and applications;

- Convergence: for offering services in an integrated way that include fixed,
mobile;

- Quality: for providing customizable quality of services (QoS)/ quality of experi-
ence (QoE) from end-to-end across different provider networks.

Based on network evolutions, future Internet needs to support the architectural princi-
ples of both vertical (from transport to services/applications) and horizontal (one end-
user to other end-user through user to network and network to network interfaces)
perspectives [1]. To cope with new paradigms future services, integrating the network
with the storage and computing functions is most critical to the cloud. The telecom
providers can leverage their natural advantages more by integrating the network with
storage and computing [2].

Looking at the vertical perspective, studies are required in the area of networking
capabilities for the control and operation of various multimedia services over complex
stacks involving different layer technologies. From a horizontal perspective, further
enhancements in the area of user-centric communication capabilities should take into
account complex user situations including various devices connected to home net-
works and various access technologies which support convergence [3]. For so-called
the Internet of Things (IoT) [4], these capabilities are necessary to support ubiquitous
networking and to provide interconnection between humans and objects, i.e., provid-
ing for Any Time, Any Where, Any Service, Any Network and Any Object.

In this paper, we introduce several issues for the cloud computing in telecom per-
spectives and ubiquitous networking capabilities to support the IoT. For this, we pre-
sent the basic concepts and expose our vision related to this topic. In addition, we
clearly identify characteristics and additional capabilities to support key technologies
to be used for the IoT. For various services using ubiquitous networking of IoT, we
propose the cloud-based IoT which aims to efficiently support varies services using
cloud technology from different kinds of objects (e.g., devices, machines). We also
emphasize the necessity of virtualization for service evolution using smart environ-
ment of the cloud and the IoT.

The remainder of the paper is organized as follows. In Section 2, we explain char-
acteristics of cloud computing in telecom perspectives. The Section 3 explains the
concept and visions of ubiquitous networking for IoT. Then, in Section 4, we propose
the cloud-based IoT service environment. In Section 5, we discuss key characteristics,
enhanced capabilities for ubiquitous networking as future networking challenges and
we present service evolution using smart environment of the cloud and the IoT. Fi-
nally in Section 6, we summarize and discuss future work.

 Shaping Future Service Environments with the Cloud and Internet of Things 401

2 Cloud Computing in the Telecom Perspectives

In this section, we introduce the concept and characteristics and deployment models
of cloud computing. In addition, we investigate several benefits of offering cloud
computing services from the telecom perspectives.

The term “cloud” is used as a metaphor for the Internet, based on the cloud
drawing used in the past to represent the telephone network, and later to depict the
Internet in computer network diagram as an abstraction of the underlying
infrastructure it represents. The term “cloud computing” is a used to describe a new
class of network based computing that takes place over the Internet, basically a step
on from utility computing [5].

From national institute of standards and technology (NIST) [6], cloud computing is
a model for enabling convenient, on-demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction. This cloud model promotes availability and is
composed of five essential characteristics, three service models, and four deployment
models as shown in Figure 1.

Fig. 1. The service model, deployment models and essential characteristics of cloud computing
(illustration from [7])

Virtualization, grid computing, web 2.0, service oriented architecture (SOA), web
oriented architecture (WOA), etc., are the technology trends that will, for now, fuel
the cloud computing initiative, but these are ephemerons, and the same concept re-
mains regardless of technology changes.

Telecom service providers consider alternative delivery models to acquire and de-
liver information technology (IT) services demanded by their customers. Service

402 G.M. Lee and N. Crespi

providers regard their networks as a strategic asset capable of driving incremental
revenue and increased profitability in replacement of existing revenue schemes. With
a cloud computing services model, service providers can insert themselves into the
value chain by redefining their roles to expand beyond connectivity and provide Web-
based application delivery services.

There are several reasons why service providers should capitalize on cloud com-
puting for their business and for their customers [8]:

- Reduced cost
Cloud technology has the potential impact to minimize operational costs by reducing
the hardware and software requirements as well as management costs compared to
current networks and platforms.

- Web-based applications
Web-based services and applications are suitable for the rapidly changing enterprise
workplace. Service providers can increase their revenue and market share and capital-
ize on Web-based application services by communicating and promoting the tangible
business perspectives to their customers.

- Cloud-based managed services
Cloud technology offers service providers an ideal model for developing managed
services because they already have the scalable engine to build mass services. By
assuming an end-to-end position (i.e., application to end user) in the cloud computing
value chain, the service provider can improve and add significant quality of service to
user-to-application experiences.

- Carriers’ data center efficiency and operations
A cloud computing data center model enables rapid innovation, scalability and sup-
port of core enterprise functions, resulting in significant economies of scale. A cloud
computing data center reduces the need for additional hardware, software and facili-
ties, as well as automation of server, network, storage, operating systems and mid-
dleware provisioning, and security issues, all of which are costly and time-consuming
functions.

- Differentiating service providers from the pack
The current economic climate has forced service providers to take a hard look at their
business models and how they differentiate themselves from their competitors. Deliv-
ering cloud-based consumer and business-critical applications with solid service-level
agreements (SLAs) will not only allow service providers to differentiate themselves
but will maximize the value of the network while promoting a new business model.

3 Ubiquitous Networking and Vision for the Internet of Things

For IoT, it is critical to extend current networking capabilities to devices/machines for
ubiquitous access to the network. For this, we explain the concept and features of
ubiquitous networking and also provide vision of the IoT for interdisciplinary fusion
revolution crosses over industries.

 Shaping Future Service Environments with the Cloud and Internet of Things 403

3.1 Ubiquitous Networking for the Internet of Things

In this paper, we focus on “ubiquitous” perspective from the point of view of net-
working aspects of the IoT. In this context, the term “ubiquitous networking” is used
for naming the networking capabilities which are needed to provide various classes of
applications/services which require “Any Services, Any Time, Any Where and Any
Objects” type of operation [9].

Figure 2 makes a distinction between the following users of ubiquitous network-
ing: humans (using attached devices such as PC, mobile phones) and objects (such as
remote monitoring and information devices, contents).

As shown in Figure 2, ubiquitous networking supports three types of
communications:

- Human-to-Human Communication: humans communicate with each other
using attached devices;

- Human-to-Object Communication: humans communicate with a device in
order to get specific information (e.g., IPTV content, file transfer);

- Object-to-Object Communication: an object delivers information (e.g., sensor
related information) to another object with or without involvement of humans.

PC

Human-to-Human
Communication

Internet of
Things:

Human-to-Object
Communication

Object-to-Object
Communication

PDA

Wearable PC

Mobile
Phone

Home Electronics

Vehicle
RFID tag

Sensors
TV

Smart
Card Telematics,

Navigation
Device

Ubiquitous Networking

Data, Resource,
Web/Application
Server, Content

Medical
Device

Camera

Humans
with

Attached
Devices

Objects (Remote
Monitoring and

Information
Devices, Contents)

Home server,
gateway

Internet
1

2

3

31 2

Fig. 2. Ubiquitous networking for IoT – three types of communications

Ubiquitous networking for IoT aims to provide seamless communications between
humans, between objects as well as between humans and objects while they move
from one location to another.

The capabilities required for the support of ubiquitous networking for IoT are built
upon capabilities of current Internet with necessary extensions and/or modifications

404 G.M. Lee and N. Crespi

of capabilities required for the support of ubiquitous networking services and
communications.

Ubiquitous networking in future Internet will support many types of devices con-
nected to the networks. Smart objects such as radio frequency identifier (RFID) tag,
sensors, smart cards, medical devices, navigation devices, vehicles as well as the
existing personal devices such as PC and smartphones are examples of these [5]. We
consider that the end points that are not always humans but may be objects such as
devices/machines, and then expanding to small objects and parts of objects. The ubiq-
uitous networking aims to provide “seamless connection between humans, objects and
both” while they move from one location to another in pervasive computing environ-
ments. Figure 1 shows the extension of the networking domain to support new ubiqui-
tous devices and databases, Web, application servers.

3.2 Interdisciplinary Fusion Revolution Crosses over Industries

This section provides further information regarding the potential directions for net-
work evolution and a vision of ubiquitous networking services, applications and
capabilities.

One of the ultimate objectives of ubiquitous networking is to meet the challenge of
seamless communications of “anything” (e.g., humans and objects). Ubiquitous net-
working will have to encompass the following:

- Ubiquitous connectivity allowing for whenever, whoever, wherever, whatever
types of communications;

- Pervasive reality for effective interface to provide connectable real world
environments;

- Ambient intelligence allowing for innovative communications and providing
increased value creation.

As a result, ubiquitous networking will also enable innovative services involving the
use of technologies such as bio-technologies (BT), nano-technologies (NT) and con-
tent technologies (CT), thus allowing the provision of services that go beyond tradi-
tional telecommunication and IT services. These innovative services will require
extensions in terms of networking capabilities as well as the access of any type of
object.

New businesses using ubiquitous networking require multiple technologies to oper-
ate together such as RFID/sensors, protocols, security, and data processing. In order to
communicate with related technical parties accommodated in new business relation-
ships, one of the most urgent needs consists in the integration and combination of
technologies such as BT, NT or CT. In particular attention needs to be paid to “inter-
disciplinary fusion” technologies which combine BT, NT, CT as well as IT using
ubiquitous networking capabilities. Thus, integrated engineering for new “Interdisci-
plinary Fusion Revolution” will emerge allowing for extension of services to other
industries beyond the IT industry and constituting the vision of ubiquitous networking.

Communication networks have been mainly supporting the evolution of informa-
tion processing and service capabilities within IT industries. However, the capabilities
of networks benefiting from ubiquitous networking should impact other industries

 Shaping Future Service Environments with the Cloud and Internet of Things 405

such as medical industry, education industry, finance industry or transporta-
tion/distribution industry resulting in new requirements for medical or education net-
works and services taking into consideration of IT technologies. There are several
examples of interdisciplinary fusion services using ubiquitous networking: remote
medical services, Intelligent Transport Systems, Supply Chain Management, U-
Building or U-City. Providing “fusion services” in future Internet will require that the
following capabilities be supported: location tracking, sensing, surveillance and man-
agement capabilities.

Businesses using ubiquitous networking will impact on many other industries.
Thus, technologies related to architectural functions and enhanced capabilities for the
support interdisciplinary fusion services using ubiquitous networking capabilities
need to be developed once the basic concept and principles will be ready. Case studies
for each service area are also required for helping future developments of emerging
Internet technologies.

4 The Cloud-Based Internet of Things

In this section, we introduce evolutional steps of Internet services considering the
cloud computing and the IoT. In addition, we propose a new service environment
which combines both the cloud computing and the IoT.

Long time ago, we had used stand alone computers (i.e., 1st phase in Figure 3)
which contain applications and data. At this time, we didn’t need any communication
network. With the help of networks, we started to share data from web sites (i.e., 2nd
phase in Figure 3). However, the emergence of new computing technologies such as

Fig. 3. From stand alone computer to cloud-based IoT

406 G.M. Lee and N. Crespi

cloud computing is changing the current service paradigms. In case of the cloud (i.e.,
3rd phase in Figure 3), hosts such as computers can use resources in cloud which con-
tains data and applications. In the next phase (i.e., 4th phase in Figure 3), cloud com-
puting and IoT will be combined in order to support so many heterogamous objects.
These objects are directly attached to the cloud for storing and retrieving of data.

In this paper, we propose a new service provisioning environment – the cloud-
based IoT which combines the cloud and the IoT as shown in the 4th phase of
Figure 3. The proposed service environment aims to efficiently support various

services using cloud technology from different kinds of objects.
There are many advantages for the proposed the cloud-based IoT. These advan-

tages might come from characteristics of cloud computing depending on specific use
cases of the IoT. For the cloud-based IoT, we can consider the following points:
flexibility of resource allocation, more intelligent applications, energy saving, hetero-
geneity of smart environment, scalability/agility, virtualization, security, etc.

5 Future Networking Challenges and Service Evolution to
Support the Internet of Things

In this section, we provide key characteristics for ubiquitous networking to support
the IoT and enhanced capabilities for ubiquitous networking in the IoT environment.

5.1 Characteristics of Ubiquitous Networking for IoT

Fundamental characteristics of ubiquitous networking for IoT are as follows:

- IP connectivity:
IP connectivity will allow objects involved in ubiquitous networking to communicate
with each other within a network and/or when objects have to be reachable from out-
side their network. Particularly, as many new types of objects will be connected to
networks, IPv6 will play a key role in object-to-object communications using auto-
configuration and also mitigate the foreseeable IPv4 address exhaustion.

- Personalization:
Personalization will allow to meet the user’s needs and to improve the user’s service
experience since delivering appropriate contents and services to the user. User satis-
faction is motivated by the recognition that a user has needs, and meeting them suc-
cessfully is likely to lead to a satisfying client-customer relationship and re-use of the
services offered.

- Intelligence:
Numerous network requirements in terms of data handing and processing capabilities
will emerge from various industries involved in the field of ubiquitous networking
(e.g., the car industry, semi-conductor industry or medical industry). Making these
capabilities available for use by business and assisting this business in terms of effi-
cient and timing decision making is very important. Intelligence which enables
network capabilities to provide user-centric and context-aware service is therefore
essential. Introduction of artificial intelligence techniques in networks will help to
accelerate the synergies and ultimately the “fusion” between the involved industries.

 Shaping Future Service Environments with the Cloud and Internet of Things 407

- Tagging objects:
RFID is one of tag-based solutions for enabling real-time identification and tracking
of objects. Tag-based solutions on ubiquitous environment will allow to get and re-
trieve information of objects from anywhere through the network. As active tags have
networking capabilities, a large number of tags will need network addresses for com-
munications. As IP technology will be used for ubiquitous networking, it is essential
to develop mapping solutions between tag-based objects (e.g., RFIDs) and IP ad-
dresses.

- Smart devices:
Smart devices attached to networks can support multiple functions including camera,
video recorder, phone, TV, music player. Sensor devices which enable detection of
environmental status and sensory information can utilize networking functionalities to
enable interconnection between very small devices, so-called ‘smart dusts’. Specific
environments such as homes, vehicles, buildings will also require adaptive smart
devices.

5.2 Enhanced Capabilities for Ubiquitous Networking in the Internet of Things
Smart Environment

To establish a set of common principles and architectures for the convergence and
ubiquitous environment, enhanced architectural frameworks for IoT are required to
facilitate innovation in the use and application of industry capabilities. To cope with
changes of future Internet environment, we should take appropriate measures to ac-
commodate the increase in the number of devices.

The high-level capabilities for the support of ubiquitous networking in the IoT
smart environment are listed as follows:

- “Connecting to anything” capabilities
The capabilities of “connecting to anything” refer to the support of the different ubiq-
uitous networking communication types as described in Section 3.1 and include the
support of tag-based devices and sensor devices. Identification, naming, and address-
ing capabilities are essential for supporting “connecting to anything” [10].

- Open web-based service environment capabilities
Emerging ubiquitous services/applications will be provided based upon an open web-
based service environment as well as legacy telecommunication and broadcasting
services based. In particular, application programming interface (API) and web with
dynamics and interactivities that do not exist today should be supported. Such a web-
based service environment will allow not only creation of retail community-type ser-
vices but also building of an open service platform environment which third-party
application developers can access and launch their own applications. Using interac-
tive, collaborative and customizable features, the web can provide rich user experi-
ences and new business opportunities for the provision of ubiquitous networking
services and applications.

408 G.M. Lee and N. Crespi

- Context-awareness and seamlessness capabilities
Context-awareness implies the ability to detect changes in the status of objects. Intel-
ligence system associated with this capability can help to provide the best service
which meets the situation using user and environmental status recognition. Seamless-
ness is a capability that can be supported in many different ways: at the network level
using handover and roaming in heterogeneous networks, at the device level with no
service interruption during device changing and recognition, and at the content level
for providing personalized content delivery services, e.g. based on user’s situation,
user’s device, and network conditions.

- Multi-networking capabilities
Transport stratum needs multi-networking capabilities in order to simultaneously
support unicast/multicast, multi-homing, and multi-path, etc. Because of high traffic
volume and number of receivers, ubiquitous networking requires multicast transport
capability for resource efficiency. Multi-homing enables the device to be always best
connected using multiple network interfaces including different fixed/mobile access
technologies. These capabilities can improve network reliability and guarantee con-
tinuous connectivity with desirable QoS through redundancy and fault tolerance.

- End-to-end connectivity over interconnected networks
For ubiquitous networking, it is critical to develop the solution to provide end-to-end
connectivity to all of objects over interconnected heterogeneous networks such as
fixed networks, broadcasting networks, mobile/wireless networks, etc. IPv6 with large
address space can be considered as a good candidate for providing globally unique
addresses to objects. IPv6 offers the advantages of localizing traffic with unique local
addresses, while making some devices globally reachable by also assigning them
globally scoped addresses.

5.3 Service Evolution Using Smart Environment of the Cloud and the IoT

Using smart environments of the cloud and the IoT, various services can be supported
as shown in Figure 4. On top of our proposed cloud-based IoT, several kinds of smart
services should be supported with the help of key functionalities such as service pro-
visioning and management. We can represent it the cloud-based service of things
which uses the cloud and the IoT.

There are two solutions for virtual resources of service provisioning and manage-
ment in a cloud: horizontally with network virtualization and vertically with resource
virtualization. For network virtualization [11], it is essential to develop the technology
that enables the creation of logically isolated network partitions over shared physical
network infrastructures so that multiple heterogeneous virtual networks can
simultaneously coexist over the shared infrastructures. In addition, for resource virtu-
alization, we also need to consider the virtualization of resources which include soft-
ware, equipment, platform, computing, storage, memory, etc.

In conclusion, a novel resource management for service provisioning and man-
agement in a cloud will be a key enabler for realizing smart services of the IoT.

 Shaping Future Service Environments with the Cloud and Internet of Things 409

Humans with Attached Devices
Objects (Remote Monitoring and
Information Devices, Contents)

Internet of Things/
Ubiquitous Networking

Cloud-based Services of Things

Software
(SaaS)

Virtual Resources
(Control, transport, computing & storage, access resources)

Platform
(PaaS)

Infrastructure
(IaaS)

Smart
Environment

Smart
Services

Service
Provisioning

&
Management

(Security, OAM,
Self Management)

Cloud Computing

Fig. 4. A conceptual diagram for the cloud-based Internet of Things

6 Conclusion

This paper has presented characteristics of cloud computing in telecom perspectives
and the issues to support ubiquitous networking for IoT. We have provided the basic
concept and visions of ubiquitous networking and clearly identified key technologies
essential to the ubiquitous networking in the IoT environment. For developing the
relevant technical solutions, we have proposed the cloud-based IoT service environ-
ment which combines both the cloud computing and the IoT. We hope that our pro-
posals will provide some key inputs for realization of IoT.

As future work, we plan to focus on objects-to-objects communications for various
use cases using cloud computing in the IoT environment and business aspects. For
this, it would be helpful if the relevant research efforts for realization of the cloud-
based IoT are accelerated with special consideration of their commercial viability.

References

1. Lee, C.S., Won, R.: Future vision on “Beyond NGN” and next study period of SG13. ITU-
T COM 13 – C 191 – E (April 2007)

2. Gubbins, How telcos could conquer the cloud (April 2009),
http://connectedplanetonline.com

3. Knightson, K.: Question NEW-Q-ARCH – Principles and functional architecture for
NGNs including ubiquitous networking. ITU-T TD 423 Rev1 (WP2/13) (January 2008)

4. ITU-T Internet Reports, Internet of Things (November 2005)

410 G.M. Lee and N. Crespi

5. Cloud computing - wikipedia,
http://en.wikipedia.org/wiki/Cloud_computing

6. Mell, P., Grance, T.: The NIST definition of cloud computing. version 15 (October 2009),
http://csrc.nist.gov

7. Definition of Cloud Computing, incorporating NIST and G-Cloud views,
http://www.katescomment.com/feed/

8. Mota, R.: Five telecom provider benefits of offering cloud computing services,
http://searchtelecom.techtarget.com

9. Lee, G.M., Choi, J.K., Chung, T., Montgomery, D.: Standardization for ubiquitous net-
working in IPv6-based NGN. ITU-T Kaleidoscope Event - Innovations in NGN, pp. 351–
357 (May 2008)

10. Lee, G.M., Choi, J.K., Jo, S.K., Kim, J.Y., Crespi, N.: Naming Architecture for Object to
Object Communications. IETF internet-draft <draft-lee-object-naming-02.txt> (March
2010) (work in progress)

11. Network virtualization – wikipeida,
http://en.wikipedia.org/wiki/Network_virtualization

Relay Placement Problem in Smart Grid
Deployment

Wei-Lun Wang and Quincy Wu

Department of Computer Science and Information Engineering,

National Chi Nan University, Puli, Nantou, Taiwan

Abstract. In this paper, we give an overview of power grid, smart grid,

Advanced Metering Infrastructure (AMI), and the deployment cost anal-

ysis step by step. The importance between Relay Placement Problem

(RPP) and the deployment cost in an AMI system is highlighted. Addi-

tionally, a decision supporting system in a pilot AMI system funded by

National Science Council (NSC) is briefly described where RPP is solved

by an approximation algorithm.

1 Introduction to the Power Grid

The power grid is an interconnected network for delivering electricity from sup-
pliers to consumers. Three processes are involved in the electricity delivery within
the grid. That is,

– Electricity generation
– Electric power transmission
– Electricity distribution

As shown in Fig. 1, the initial step is to generate sufficient electricity in the
generation station. After that, generated electricity is ready to be transmitted
through transmission lines. The electricity of 765 kV, 500kV, 345kV, 230 kV,
and 138kV are sent out. In the final process, the electricity with high voltages
is then distributed to sub–transmission customers with 26 kV and 69 kV, to
primary customers with 13 kV and 4 kV, and to secondary customers like houses
in residential areas with 120V and 240V.

For the traditional electrical grid mentioned above, there are some energy
issues:

– Reliability
– Economy
– Efficiency
– Affordability
– Environmental Impacts

In the reliability aspect, blackout usually takes place in unexpected situations
suddenly. The unstable power supplies could put heavy impact on the economy.
According to the Electric Power Research Institute (EPRI) report in June 2001,

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 411–424, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

412 W.-L. Wang and Q. Wu

Fig. 1. Simple Diagram of Power Grid in North America [10]

“The Cost of Power Disturbances to Industrial & Digital Economy Companies”
estimated that the annual direct cost of power outages and power quality dis-
turbances for all sectors was between $120 billion and $188 billion. In its 2003
report, the Department of Energy (DOE) noted that “it is estimated that power
outages and power quality disturbances cost the economy from $25 to $180 bil-
lion annually.” [2]

There are some technical reasons which could be imputed to slow mechanical
switches that cannot endure heavier load, no automated analysis for situational
awareness, and so forth. Moreover, the electricity outage actually results from the
overburdening since people need more and more electricity in life. However, it can
be easily understood that electricity demand is not always the same during twenty–
four hours in a day. According to the Pareto principle (also known as the 80–20
rule), about 80 percents of the total required electricity are consumed in 20 per-
cents of time in one day. In other words, a large part of electricity is consumed in
specific 4.8 hours. The power plant works hard merely in 0.2 day and relaxes in the
remaining 0.8 day. Because of it, the efficiency of the power grid is extreme low.

Even worse, the cost of electricity goes up as the price of fossil fuel rises.
When people work hard to earn money, factories increase their output. At the
same time, more electricity is needed. Currently most electricity is generated by
burning coals, which will emit a great deal of greenhouse gas (GHG) that traps
heat in the atmosphere. It can be seen that the temperature on Earth’s surface
will go up and up because of producing too much GHG.

Therefore, to improve energy utilization efficiency and further improve our
lives, a better power grid is desired. That is why the smart grid was proposed
for efficiently utilizing the limited resources in generating electricity.

2 Smart Grid

Like the power grid, the smart grid also delivers electricity from suppliers to con-
sumers. However, it uses two–way digital technology to support communication
between consumers and suppliers. It combines power systems, telecommunica-
tions, smart energy devices, information technology, and digital control (Fig. 2).

Relay Placement Problem in Smart Grid Deployment 413

Fig. 2. Smart Grid [11]

There are some characteristics about the smart grid [3]:

– Sensing and Measurement
– Integrated Communication
– Improved Interfaces and Decisions Support
– Advanced Components
– Advanced Control Methods

First of all, through intelligent devices like electricity meters, all suspicious behav-
iors can be detected in real time via sensing and measurement, such as consum-
ing large amount of electricity at night when no electrical equipment is expected
to be powered on. Secondly, it contains an integrated two–way communication
network which allows consumers to monitor all electricity flowing in the system
and even control smart components such as intelligent washing machines. Intel-
ligent machines like these can run at scheduled time. Since the policy of Critical

414 W.-L. Wang and Q. Wu

Peak Pricing (CPP), where higher price for electricity is charged in peak hours
in contrast with off-peak periods, is used for charging electricity, and intelligent
machines can be turned off in peak hours and turned on while the electricity price
is least expensive, this system can surely bring economical benefits to consumers.
Similarly, suppliers can also communicate with consumers to check whether people
agree to turn off some appliances in peak hours; people who agree to do so will be
rewarded with some “credit points.” Besides that, there are many advanced com-
ponents in a smart grid, such as superconductivity transmission lines and storage
facilities. Suppose each consumer has a large–size battery in his/her house, which
can store electricity during off–peak time. Then during peak time, consumers can
get the electricity directly from the battery, or even sell it back to suppliers. This
would significantly reduce the demand of electricity from suppliers during the peak
hours. Finally, advanced control methods would be designed to handle the whole
smart grid system through integrated communications.

Foreseeing the importance of this new technology, many countries includ-
ing Italy, Sweden, Holland, and England are developing nation–wide smart grid
projects. Some other countries are carrying out smaller–scale regional smart
grid plans. In America, President Obama put $3.4 billion into the research and
deployment of smart grids in October, 2009. Fig. 3 shows the location of these

Fig. 3. AMI/AMR Deployment around U.S.A. [12]

Relay Placement Problem in Smart Grid Deployment 415

pilot projects of automatic meter reading (AMR) and advanced metering
infrastructure (AMI).

3 Advanced Metering Infrastructure (AMI)

To build a smart grid system, an advanced metering infrastructure (AMI) is re-
quired to actively measure, collect, and analyze energy consumption data. AMI
has the interface to interact with advanced devices such as electricity meters,
heat meters, gas meters, water meters, and any other intelligent appliances. In
this section, we shall introduce how AMI works and the architecture of its com-
munication networks. A pilot AMI project funded by National Science Council
(NSC) in Taiwan will be demonstrated as a real example.

3.1 How AMI Works

Generally, an AMI system consists of four components (Fig. 4) – the smart meter,
the energy display and controller, the communication network, and the meter
data management application (MDMA).

Fig. 4. An Illustration of AMI

The smart meter is an electricity meter with additional capacity to record en-
ergy usage and receive messages from suppliers. Besides, it can be turned on and
off via remote controllers. Data cumulated by smart meters would be shown on the
smart meter directly (Fig. 5) or on controllers such as the in–home display (IHD)
device (Fig. 6). Consumers could interact with suppliers or check energy usage
data through this device. The success of an AMI system would rely on a reliable
communication network to connect smart meters with the display and controllers,
so that the MDMA can manage collected data to make wise decisions.

416 W.-L. Wang and Q. Wu

Fig. 5. Smart Meter [13]

Fig. 6. In-Home Display [14]

3.2 National Science Council Program in Taiwan

To foster the AMI technology in Taiwan, National Science Council (NSC) funded
some universities to run a pilot project inside the campus. The NSC project
consists of four subprojects:

– Smart Power–saving Outlets
– Small–scale Energy Storage System
– Network and Communication Technology
– Smart Energy Management Application Service Platform

Relay Placement Problem in Smart Grid Deployment 417

Fig. 7. Subprojects in the NSC AMI project in Taiwan

Fig. 7 shows the relationship between four subprojects of an AMI system. In
the 1st subproject, smart outlets will be designed which can intelligently record
the electricity usage and then transmit the data to the management applica-
tion of the 4th subproject, where electricity usage data are stored and analyzed.
According to the received data, the management application can monitor and
control the overall electricity usage and even detect abnormal situations such as
the excessive consumption of electricity on the outlet. Besides, to efficiently uti-
lize the power and balance the electric output of power suppliers, a small–scale
energy storage system for consumers is developed in the 2nd subproject. This al-
lows consumers to charge electricity in the off–peak time. During the peak time,
consumers can get electricity directly from the storage system (usually some
batteries) without demanding electricity from suppliers, and this can reduce the
load of power suppliers in the peak time. As data transmission, the 3rd subpro-
ject is responsible for making a two–way communication between management
application and smart devices, smart outlets, and energy storages. Through the
technology of the two–way communication, consumers can acquire data from
smart devices, and put commands to control them, too.

3.3 Factors That Affect Deployment Cost

No matter how intelligent and wonderful the smart grid is, the cost of deployment
and maintenance will be a key factor which will determine whether this new
technology will be successful and widely adopted. As shown in Fig. 8, facility
hardware and network hardware are the major cost of an AMI deployment,
which are 45% and 20%, respectively.

Many AMI communication networks adopt the ZigBee wireless technology be-
cause of its low power and low cost characteristics. However, as every wireless tech-
nology, ZigBee suffers from the signal decay problem. Therefore, we need a relay
which is the device used to strengthen the received signal and then re–transmit it

418 W.-L. Wang and Q. Wu

Fig. 8. AMI Deployment Cost Analyzing Illustration [15]

to the destination. Because of the limited range for radio communication, usually
many relays must be added to form a connected stable network. Suppose the main
facilities like smart devices, storages, and management applications are fixed, one
factor that can affect the cost of the communication network is the number of re-
lays. If the relays are not wisely deployed, quite a large number of relays must be
deployed to form a connected network, which will significantly increase the cost
of the AMI communication network. In next section, we shall formally define the
Relay Placement Problem and illustrate the algorithms to solve it.

4 Relay Placement Problem (RPP)

The problem of finding positions of minimum number of relays in a smart grid
system is called RPP. The problem definition, evaluation criterion of approx-
imation algorithms, variations of RPP, and related algorithms are explained
below.

4.1 Problem Definition

The definition of RPP is shown as follows: On a Euclidean plane, given a set of
N sensors, which have the effective communication range 1, and a fixed number
R ≥ 1, which is the effective communication range of a relay. RPP is to place a
minimum number of relays so that between every pair of sensors there is at least
a path through relays such that the consecutive vertices of the path are within
distance R if both vertices are relays and within distance 1 otherwise, forming
a connected network. Fig. 9 shows a connected network with smart devices and
relays.

Relay Placement Problem in Smart Grid Deployment 419

Fig. 9. Relay Placement Problem

4.2 The Worst Situation of Deployment

This subsection demonstrates some bad situations when relays are not deployed
wisely. Assume that there are N sensors, and the effective communication rage
of a relay is R. Those N −1 sensors form a standard circle where the distances of
consecutive sensors are D, where 1 < D ≤ 2 . The remaining sensor is placed in
the center of the circle. Therefore, the distance between the central sensor and
each outside sensor is approximately (N−1)D

2π .
To make the whole N sensors connected, relays can be placed between the

central sensor and each of the N −1 outside sensors. Since the distances between
central sensor and other sensors are all (N−1)D

2π , (N − 1) (N−1)D
2πR + 1! relays are

needed to form a connected communication network. (Fig. 10)
However, there is another approach to deploy relays in this case. Suppose we

place a relay in the middle of consecutive outside sensors. Totally N − 1 relays
will be deployed at this step. After that, we connect the central sensor to one
another sensor arbitrarily via (N−1)D

2πR !+1 relays. Through this way, all sensors
become connected by only N + (N−1)D

2πR ! relays, as shown in Fig. 11.

420 W.-L. Wang and Q. Wu

Fig. 10. A Bad Deployment of Relays

Fig. 11. A Wise Deployment of Relays

Relay Placement Problem in Smart Grid Deployment 421

The above two deployment approaches are extremely different. They will
require (N − 1) (N−1)D

2πR + 1! and N + (N−1)D
2πR ! relays, respectively. Assume

N = 1000, D = 2, and R = 4. The required number of relays for the first ap-
proach is approximately 80919; however, the second approach only needs 1080
relays. That is to say, people who adopt the first approach to deploy relays must
spend nearly 75 times higher cost than those who choose the second approach.

4.3 The Evaluation Criterion – Approximation Ratio

Since Minimum Geometric Disk Cover (MGDC) problem is a special case of RPP,
and MGDC is known to be NP–complete [9], RPP is an NP–hard problem. That
is, it is unlikely for us to find a polynomial–time algorithm which returns the
optimal solution. Therefore, many approximation algorithms for solving RPP
were proposed.

It is important to define an evaluation criterion to judge which approximation
algorithms perform better. If an approximation algorithm A guarantees to return
a solution bounded by α multiplies by the optimal solution, then A is said to
be an α–approximation algorithm and has an approximation ratio of α. There-
fore, the approximation algorithm which has the smaller approximation ratio is
desired here since RPP is expected to deploy fewer relays in a communication
network.

4.4 Approximation Algorithms and Variations of RPP

For the simplest RPP problem, forming a connected network is enough. However,
considering higher reliability in the communication network of a smart grid, one
variation of RPP, namely 2–connected RPP, which is to form a 2–connected
network where there exist two disjoint paths between any two sensors, was also
proposed.

Table 1. Approximation Ratio Comparisons

LWJ2006 THS2006 LX2007 EFGMPS CDWX

[4] [5] [6] 2008 [7] 2008 [8]

RPP 6 + ε 8 and 4.5 7 3.11 3 and 2.5

2–Connected (24 + ε) and 6 and 4.5

RPP (6
T

+ 12 + ε)

To the original RPP, [4,5,6,7,8] proposed (6+ε)–approximation, 8–
approximation, 4.5–approximation, 7–approximation, 3.11–approximation, 3–
approximation, and 2.5–approximation algorithms respectively, as shown in Ta-
ble 1. Fig. 12 depicts an example that runs the 8–approximation algorithm in [5]
to deploy relays.

To the 2–connected RPP, [4] proposed a (24 + ε)–approximation and a (6
T +

12+ ε)–approximation algorithm, in which T is the ratio of the number of relays
placed in its RPP to the number of sensors, while [5] proposed a 6–approximation
and a 4.5–approximation algorithm.

422 W.-L. Wang and Q. Wu

Fig. 12. An Example of [5]’s 8–approxiamtion Algorithm

4.5 Decision Supporting System in NSC Program

In our NSC AMI project, a 4.5–approximation algorithm of 2–connected RPP
in [5] is selected to serve the decision supporting system for relay deployment
because of the easy practice and reliability. The steps are described briefly below.

Algorithm 1. A 4.5–Approximation Algorithm for RPP

Step 0. Divide the region into cells with side length 4. For each cell, find all
P–positions for relays (where position Y is called a P–position if there exist two
sensors which are one unit away from Y). Move those P–positions outside the
cell to the nearest border on its cell.

Step 1. Inside each cell, exhaustively search all 1 through 21–subsets of the
P–positions inside (or on) the cell, to find a subset with smallest order which
can cover all sensors in the cell at least twice. For each cell Bi, Let Hi be the
set of relays found for Bi (note that each Hi has at least two relays).

Step 2. Inside each cell Bi, if the relays in Hi are connected but not 2–connected,
add a relay on the horizontal mid–line of Bi, 4 units away from the left–top corner
of Bi. If they are not connected, then add one more relay on the vertical mid–line
of Bi, 4 units away from the left–top corner of Bi.

Step 3. Now, we make the set of the chosen relays to be connected.

Relay Placement Problem in Smart Grid Deployment 423

Step 3.1. Connect each row of the Hi’s.
Let Hi+1 be the set of relays to the right of Hi. If Hi and Hi+1 are not

connected, add a relay, qi, on the horizontal mid–line of Bi, 4 units away from
the left–top corner of Bi, and set Hi = Hi ∪ qi. If they are still not connected,
add a relay, qi+1, on the horizontal mid–line of Bi+1, 4 units away from the
left–top corner of Bi+1, and set Hi+1 = Hi+1 ∪ qi+1 (notice that we only make
them connected here, instead of 2–connected).

Repeat Step 3.1, until every row of Hi’s is connected.

Step 3.2. Connect each column of the Hi’s.
For each Hi, let LEFTBi denote the set of relays in Hi, which are connected

to some relays in the set to the left of Hi, i.e., LEFTBi = {q ∈ Hi|q is connected
to a node in the set to the left of Hi}; let RIGHTBi denote the set of relays
in Hi, which are connected to some relays in the set to the right of Hi, i.e.,
RIGHTBi = {q ∈ Hi|q is connected to a node in the set to the left of Hi}.

If |LEFTBi ∪RIGHTBi| > 1, then H ′
i=Hi. Otherwise, H ′

i = Hi −LEFTBi ∪
RIGHTBi .

Let Hi+x be the set of relays directly under Hi. If H ′
i and H ′

i+x are not
connected, then add a relay, q, on the vertical mid–line of Bi, 4 units away from
the left–top corner of Bi, and set Hi = Hi ∪ {q}. If they are still not connected,
add a relay, q′, on the vertical mid–line of Bi+x, 4 units away from the left–top
corner of Bi+x, and set Hi+x = Hi+x ∪ {q′}.

Repeat Step 3.2, until every column of Hi’s is connected.

Suppose the optimal deployment of a RPP problem requires N relays. Mathe-
matically, it can be shown that the above algorithm can always give a deployment
with at most 4.5N relays. [5]

5 Conclusions and Future Works

The deployment cost of a smart grid system is crucial to its success. This paper
illustrated the Relay Placement Problem, which significantly affects the cost of
an AMI system when ZigBee is adopted in its communication network. To solve
the Relay Placement Problem, we demonstrated a decision supporting system in
our NSC project, which adopted intelligent algorithms to minimize the number
of relays in question. When deploying larger networks, where significant amount
of relays are needed, an efficient RPP algorithm would be very important to
control the deployment cost.

Acknowledgments

This work was supported in part by National Science Council in Taiwan under
grants NSC98-2218-E-029-004 and NSC99-2221-E-260-012.

424 W.-L. Wang and Q. Wu

References

1. Frye, W.: Smart Grid – Transforming the Electricity System to Meet Future De-

mand and Reduce Greenhouse Gas Emissions. Cisco Internet Business Solutions

Group (November 2008)

2. Reitenbach, G.: Smart Grid – On the Money (April 1, 2010),

http://www.powermag.com/smart_grid/Smart-Grid-On-the-Money_2578.html

3. Pullins, S.: Key Technologies for a Modern Grid (October 10 (2006),

http://www.smartgridnews.com/artman/publish/article_172.html

4. Liu, H., Wan, P., Jia, X.: On Optimal Placement of Relay Nodes for Reliable Con-

nectivity in Wireless Sensor Networks. Journal of Combinatorial Optimization 11,

249–260 (2006)

5. Tang, J., Hao, B., Sen, A.: Relay Node Placement in Large Scale Wireless Sensor

Networks. Computer Communications 29, 490–501 (2006)

6. Lloyd, E., Xue, G.: Relay Node Placement in Wireless Sensor Networks. IEEE

Transactions on Computers 56, 134–138 (2007)

7. Efrat, A., Fekete, S., Gaddehosur, P., Mitchell, J., Polishchuk, V., Suomela,

J.: Improved Approximation Algorithms for Relay Placement. In: Halperin, D.,

Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193, pp. 356–367. Springer, Heidelberg

(2008)

8. Chen, X., Du, D., Wang, L., Xu, B.: Relay Sensor Placement in Wireless Sensor-

Network. Wireless Networks 14, 347–355 (2008)

9. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in

theplane are NP-complete. Information Processing Letter 12, 133–137 (1981)

10. http://www.inlanddevelopment.com/electricfacts.html

11. http://www.ngpowereu.com/news/smart-grid-revolution/

12. http://www.treehugger.com/files/2008/11/smart-grids-who-is-onboard.php

13. http://www.reuk.co.uk/Smart-Electricity-Meters.htm

14. http://www.centrica.co.uk/index.asp?pageid=76

15. http://www.topology.com.tw/tri/ (Topology Research Institute)

http://www.powermag.com/smart_grid/Smart-Grid-On-the-Money_2578.html
http://www.smartgridnews.com/artman/publish/article_172.html
http://www.inlanddevelopment.com/electricfacts.html
http://www.ngpowereu.com/news/smart-grid-revolution/
http://www.treehugger.com/files/2008/11/smart-grids-who-is-onboard.php
http://www.reuk.co.uk/Smart-Electricity-Meters.htm
http://www.centrica.co.uk/index.asp?pageid=76
http://www.topology.com.tw/tri/

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 425–434, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Towards a Research Agenda for Enterprise
Crowdsourcing

Maja Vukovic1 and Claudio Bartolini2

1 IBM T.J. Watson Research,19 Skyline Dr, Hawthorne, NY, 10532, USA
maja@us.ibm.com

2 HP Labs, Palo Alto, CA, USA
claudio.bartolini@hp.com

Abstract. Over the past few years the crowdsourcing paradigm has evolved
from its humble beginnings as isolated purpose-built initiatives, such as Wiki-
pedia and Elance and Mechanical Turk to a growth industry employing over 2
million knowledge workers, contributing over half a billion dollars to the digital
economy. Web 2.0 provides the technological foundations upon which the
crowdsourcing paradigm evolves and operates, enabling networked experts to
work collaboratively to complete a specific task. Enterprise crowdsourcing pos-
es interesting challenges for both academic and industrial research along the so-
cial, legal, and technological dimensions.

In this paper we describe the challenges that researchers and practitioners
face when thinking about various aspects of enterprise crowdsourcing. First, to
establish technological foundations, what are the interaction models and proto-
cols between the Enterprise and the crowd. Secondly, how is crowdsourcing
going to face the challenges in quality assurance, enabling Enterprises to opti-
mally leverage the scalable workforce. Thirdly, what are the novel (Web) appli-
cations enabled by Enterprise crowdsourcing.

Keywords: crowdsourcing, business process modeling.

1 Introduction

Crowdsourcing, a successful mechanism to harvest information and expertise from
the masses in domains ranging from gold mining to t-shirt design, is becoming increa-
singly popular, and is attracting global enterprises given a promising, low cost, access
to scalable workforce online. Crowdsourcing takes many different shapes and forms,
from mass data collection to enabling end-user driven customer support.

In order to understand and map out research challenges, we first describe the
crowdsourcing landscape and use it distill a set of technical, legal and social chal-
lenges that need to be overcome for enterprises to successfully adopt crowdsourcing.
This paper builds on the current advances in crowdsourcing research and incorporates
discussions from the First International Workshop on Enterprise Crowdsourcing, held
in conjunction with Tenth International Conference on Web Engineering, in Vienna in
July 2010 [1].

426 M. Vukovic and C. Bartolini

The remainder of this paper is structured as follows. Section 2 provides an over-
view of different applications of enterprise crowdsourcing, while Section 3 discussed
the variants of crowdsourcing process, such as competition and result aggregation.
Section 4 identifies three broad classifications of the crowd, which necessarily require
and drive the design of the suitable crowdsourcing approach (e.g. incentives and go-
vernance processes). Section 5 discusses incentives schema and their affect on the
success of crowdsourcing effort. Section 6 presents the landscape of challenges in
quality assurance when engaging masses online for data collection or problem solv-
ing. Section 7 lays out a set of open questions with respect to (corporate and IT) go-
vernance, as the crowdsourcing is being adopted by enterprises. Section 8 discusses
existing research in social aspects of crowds, such as demographical diversity. Section
9 summarizes state of the art in known business models that are supporting enterprise
crowdsourcing. Section 10 reviews the open questions posed in this paper.

2 Applications of Crowdsourcing in the Enterprise

In this section, we briefly review some of the literature on successful and interesting
applications of crowdsourcing projects for enterprises. This helps us set the stage for
the remainder of the paper, where we will use these examples to illustrate some of the
concepts we introduce. For a more comprehensive account, Vukovic [2] offers a tho-
rough categorization of existing crowdsourcing examples from enterprise domain,
based on the type of activity that is being crowdsourced and the relationship to stages
in product/service lifecycle.

Karnin et al. [3] present an application of crowdsourcing to the processing of
scanned documents within the support services function of an enterprise.

Lopez et al. [4] illustrate two use cases of enterprise crowdsourcing, one that em-
ploys wisdom of crowd approach for knowledge intensive processes, and another that
proposes marketplaces for customer support services. Lopez et al., propose a Peop-
leCloud framework to support crowdsourcing within enterprises, and identify number
of roles and processes that need to be in the place.

Maintaining an up-to-date IT Inventory is a challenging task, as the key experts
transition into new roles within or outside the enterprise. Vukovic et al. [5] deployed
an application of crowdsourcing to the IT Asset Management problem. Using the
wisdom of crowd approach they effectively engaged more than 2500 enterprise ex-
perts to map out business capabilities of a physical IT infrastructure, which is hosting
thousands of applications on hundreds of thousands of servers. This has introduced a
performance improvement of 30x in comparison to the traditional, manual approach
of reaching out to experts. More importantly, beyond the cost savings arising from the
process automation, the value of data collected is significant, as a driver for other IT
optimization processes. In addition, the crowdsourcing process has captured social
networks in the enterprise, and generated communities of experts centered on the IT
asset repository.

Stewart et al. [6] demonstrate another powerful application for enterprises – they
employ participants within a large global enterprise to collect translation data sets, in
order to improve the translation algorithms. Based on their experience in running

 Towards a Research Agenda for Enterprise Crowdsourcing 427

internal enterprise challenges, and observations of participant behavior they propose
an incentive model to cater for a diverse crowd.

GiffGaff and CrowdEngineering [7] are examples of how end-user crowd can be
engaged in customer support scenarios.

Brightidea.com provides a platform for crowd members to share their ideas and
compete with other for material prizes, and eventually turn their ideas into marketable
products. In contrast, InnoCentive.com provides a virtual place for crowd to develop
ideas, designs, prototypes or final products. It attracts research and business
communities.

Prediction markets, such as BRAIN [8], Crowdcast.com, Marketocracy.com, In-
trade.com and Pickspal, employ information aggregation technology to harnesses the
power and truth-telling properties of market mechanisms.

3 Models of Crowdsourcing

A generic exercise in crowdsourcing consists in breaking down a problem or a goal
into lower level, smaller sub-tasks to be executed by a crowd. The outcomes of each
of the sub-tasks have to be aggregated (reconciled, re-composed) in order to provide
an answer to the original problem or satisfy the original goal. Therefore, one first
fundamental dimension to categorize different models of crowdsourcing is the nature
of the step of aggregating intermediate outcomes returned by the crowd members into
the final outcome of the crowdsourcing exercise.

Broadly speaking, there are two mutually exclusive ways of aggregating partial
outcomes into a final outcome. In one, partial outcomes are composed into the final
outcome. That means that the eventual project outcome is a functional composition of
input got from the results of the sub-tasks sourced to the crowd. In this case, most, if
not all, or the results returned from the crowd are necessary to derive the solution
sought. In the other extreme, partial outcomes compete to be selected as the final
solution (or parts thereof). In actuality, often crowdsourcing projects use elements of
both aggregation models, resulting in a hybrid approach.

Wisdom of crowds

The model of crowdsourcing where the wisdom of crowds [9] is exploited to its full
power is the model where outcomes are composed together. The emerging property of
this crowdsourcing model is that the crowd is able to find an answer to the original
question asked that none of its members could have (that is the crowd is “smarter”
than all of its members. Applications of this model include prediction markets
(BRAIN [8], and other listed in the previous section), along with Crowdsourcing
projects where sub-tasks outcomes are aggregated in more straightforward ways (e.g.
GasBuddy.com, WNYC’s Cheapest Gallon of Milk).

Contest/Marketplace

When member’s outcomes compete to determine the final crowdsourcing project
outcome, we have models such as contests, or marketplaces. The most comprehensive
model to date of crowdsourcing context is given in Archak et al. [10]. Carpenter [11]

428 M. Vukovic and C. Bartolini

also analyzes crowdsourcing contests, and categorizes them based on the kind of
decisions that result in selecting the best outcomes: a) crowd sentiment, expert deci-
sion, b) crowd decision, c) expert decision or d) American idol.

In marketplace crowdsourcing, such as Amazon.com Mechanical Turk, the aggre-
gation of results follow the market mechanism set by the marketplace, therefore a
study of the diverse possibilities for aggregation (selection) of partial results can be
undertaken from the economic theoretical disciplines of mechanism analysis and
mechanism design.

Hybrid aggregation models are often used in more complex crowdsourcing projects
as in the case of business process crowdsourcing exemplified by CrowdEngineering
([7]).

There are interesting implications on how to set incentives for wisdom-of-crowds
crowdsourcing projects versus contest/marketplace projects which we will discuss in
section 4 below. Here it will suffice to note that in context/marketplace projects, in-
centives are usually set for participants to do carry out their sub-task in the best possi-
ble way, on the promise that they will get a reward only if their product is chosen
among others. On the other hands, in wisdom-of-crowds projects, participants need to
be incented to carry out their task to the best of their ability, even though the result
that they carry out have no direct bearing on whether they will get a reward or not.
E.g. the incentive for GasBuddy.com participants has to be roughly independent on
whether one particular member happens to stumble upon the cheapest gallon of gas in
town, whereas in logo selection contexts (e.g. Threadless.com), the reward given to
the participant is function of the success of their outcome.

Aggregation mechanisms have also a bearing on quality control, as it is exempli-
fied by Kern’s work [12], discussed further in section 6.

4 Crowd Types

Another important dimension along which we seek to categorize enterprise crowd-
sourcing effort is the affiliation of the crowd with respect to the crowdsourcing enter-
prise. The easiest way to categorize crowd members is based on what kind of contract
they have with the enterprise. Here we define an internal crowd as exclusively com-
posed of employees of the crowdsourcing firm. For the sake of this definition, we will
not make a distinction between actual employees of the crowdsourcing firm and con-
tractors or other kind of part time employees. An external crowd is obviously defined
as exclusively composed of members who are not employees of the crowdsourcing
enterprise. To complete our model, we add the concept of a hybrid crowd, which is
composed of both employees and non-employees, and as we will see in the following
presents some characteristics of either extreme model.

The different types of crowd have implications on the following aspects:

• Incentives
• Intellectual property rights
• Information security

As we look at these aspects one by one, we highlight the differences between relying
on an internal crowd versus and external one. The way in which the two types

 Towards a Research Agenda for Enterprise Crowdsourcing 429

combine into a hybrid crowd will depend on the actual crowdsourcing model used
(see section 2 and 3).

Incentives

Incentives are usually easier to set for an external crowd. Reason for it is that there is
the time and effort that external crowd members put into the crowdsourcing exercise
has to be rewarded somehow. Therefore, the discussion about incentives that we ex-
pand in the next section, applies generically to external crowd. The situation is made
more complicated for internal crowds. Reason for it being that, because the crowd-
sourcing enterprise is already paying for their employees’ time and services, they
might think that they may get away with not offering extra incentives for taking part
in the exercise. For this, most of the non-monetary incentives that we describe in the
next section do apply.

Intellectual property rights

For an internal crowd, intellectual property rights are usually regulated by the em-
ployment contract. For an external crowd, management of intellectual property right
is a concern that is better taken care of upfront: see for example the way that Thread-
less.com deals with intellectual property rights attribution. Threadless.com – the
crowdsourcing enterprise - must also protect itself from the possibility that works
from crowd members that they decide to produce might infringe copyrights owned by
third parties.

Information security

For an internal crowd, usual security policies might apply. For example, in the predic-
tion market example of having a group of employees from various part of the business
bid on revenue levels for the next quarter, the sensitivity of the information is such
that the enterprise will certainly have policies that need to be followed in terms of
sharing sensitive information. The situation is more interesting for external crowds.
Tradeoffs have to be made between sharing information that is potentially sensitive to
the crowdsourcing enterprise with external members, and putting the external mem-
bers themselves in condition to do the best possible job.

5 Incentives

Incentives are a particularly important aspect of crowdsourcing projects, because they
can make all the difference between success and failure. The principal dimension
along which types of incentives can be split is monetary vs. non-monetary.

For some of the models of crowdsourcing, setting monetary incentives simply
amounts to determining the right price to pay for one’s services. In the Amazon.com
Mechanical Turk example, since we are talking about a marketplace for micro tasks,
then the monetary incentive is set as the value of the micro task to the crowdsourcing
enterprise. The situation becomes more interesting when we start considering crowd-
sourcing contests. Now, the price to be paid to the winner of the context can be set in

430 M. Vukovic and C. Bartolini

advance – therefore based on the value of the project outcome to the crowdsourcing
enterprise, or determined based on other factors, such as the perceived quality of the
results (see discussion on quality assurance, in the next section). Again, for other
models of crowdsourcing such as wisdom-of-the-crowd type of models, the monetary
incentive to be paid has direct bearing to the quality of the outcome. An example of
this is a prediction market crowdsourcing project of the kind that BRAIN [8] or
Crowdcast.com’s Social BI enable, which work on a thinner version but under the
same principles of prediction markets such as the Iowa Electronic Markets. Because
in prediction markets, the correct functioning of the market is a necessary pre-
condition to guarantee the quality of the outcome, incentive for participation and for
correct predictions have to be set correctly.

Even though they are not money, oft-used variants of brownie points can be assi-
milated to money, especially when accumulating them results in qualifying for prizes.

Non-monetary kinds of incentives include: establishing reputation (e.g. in particu-
lar academic reputation); alignment of one member’s personal objectives with the
objectives of the crowdsourcing project; non-profit driven motivation such as good-
will or personal fun., opportunity to socialize and be member of a community.

Goodwill and establishing reputation are the engines behind efforts such as Wiki-
pedia and open source software development. Making crowdsourcing projects into
games is also an effective way of guaranteeing participation. See for example [13].

Personal benefit in the exercise is (indirectly) part of the motivation in Wikipedia-
like systems, but more relevantly this is the case in crowdsourcing projects such as the
famous “Cheapest gallon of milk in town” exercise launched by Manhattan’s WNYC
radio station, or the Gas Price Feeds of GasBuddy.com. The motivation in such exer-
cises is similar to that arising from volunteering information to researchers filling in
questionnaires in exchanges for sharing into the results under the promise of being
shared the aggregated results with.

6 Quality Assurance

The pervasive challenge in crowdsourcing is the ability to verify the data correctness
and ensure the quality of contributions. This is a general problem and it spans differ-
ent crowd types and their magnitudes. The quality of contributions is a key factor
when evaluating the value proposition of using crowdsourcing, in particular for busi-
ness objectives that are on the critical path, and the approaches range from automated
selection algorithms to engaging the crowd for reviewing process.

Quality control approaches vary depending on the type of the crowdsourcing task.
Majority of existing research focuses on the quality assurance for micro-tasks, in the
domain of massive data collection, such as natural language annotation, image labe-
ling and data labeling. Common mechanisms to evaluate results of these tasks include
majority voting and aggregation of contributions [14].

Snow et al. [15], applied crowdsourcing to collect annotations for natural language
processing, and compare the contributions of the crowds (such as ten participant con-
tributions) to the expert labelers.

Sheng et al. [16], evaluate repeated acquisition of labels for data points when labe-
ling is imperfect. Their results show that multiple label acquisition can be proven to
be a beneficial strategy for label-quality and cost-regime trade-offs.

 Towards a Research Agenda for Enterprise Crowdsourcing 431

Kittur and Kraut [17] focus on human based approach to quality of contributions to
Wikipedia. They examine how number of editors and the coordination methods they
use influences the article quality, and highlight its significance to effectiveness in
applying crowdsourcing.

Kern et al [12], analyze existing methodologies and propose a novel, matrix-based
model for classifying quality assurance approaches to enterprise crowdsourcing, and
identifying the corresponding mechanism for engaging the crowd for data assurance.
They use four decision criteria to select the quality assurance approach, namely: de-
terminacy of the task result, evaluation of execution and validation effort, required
level of quality and number of equivalent relevant entries.

Chen et al. [18] address an interesting problem of data quality in crowdsourcing,
when applied to the task of user studies, such as users’ evaluating multimedia sys-
tems. Such studies are often impractical and costly. However, while crowdsourcing
promises to be a low-cost solution, the probability of erroneous feedback (esp. when
traded for monetary prizes) increases, given the lack of supervision. Chen et al
propose a transitivity satisfaction rate (TSR) as a quantification of a participant’s
consistency throughout a run of an experiment.

More complex tasks, such as software development on TopCoder.com, rely on
community-based peer reviews to assess the quality of contributions [19]. As the
crowd improves their skills, reaching expert levels, they can also get paid to evaluate
the submissions. In addition, by componentizing the software development opportuni-
ty for malicious code is reduced.

7 Governance and Legal

Corporate governance is the set of processes, customs, policies, laws, and institutions
affecting the way an enterprise is directed, administered or controlled.

How are compliance, taxation and labor laws addressed as crowdsourcing is being
adopted? What should the crowdsourcing guidelines be when engaging internal, ex-
ternal or hybrid crowds? How do all of the above apply to a global enterprise that
coexists in many national/regional jurisdictions? These are some of the questions
global enterprises face when considering crowdsourcing of their business functions.

How do enterprises shape their governance guidelines to accommodate for crowd-
sourcing requirements? Key elements that need to be supported include:

1. Crowd selection process: In certain scenarios, it may be desirable to filter the
crowd beforehand, or even selectively invite known experts to drive the crowd
contributions based on their expertise and certification levels (e.g. De-
signCrowd.com’s clients may their favorite designers from around the world
while keeping the project open to other designers). What level of screening is re-
quired for different crowdsourcing tasks?

2. Intellectual property: To protect both contributors and solution seekers IP rights
and processes need to be specified. For example, InnoCentive.com provides a
mechanism for companies and crowds to sign an agreement protecting confiden-
tial information, as well to specify whether the transfer of IP rights is a require-
ment of the crowdsourcing task.

432 M. Vukovic and C. Bartolini

3. Certificate of Originality, Legal Ownership and Rights of Property: This is of
particular importance to crowdsourcing of software development. How are enti-
ties in countries that don't abide by the existing enterprise laws handled?

4. Review process and administration: What level of peer-review, automated analy-
sis and client driven review is appropriate? What kind of appeals process should
be in place to support the crowd member? TopCoder, for example, provides an
appeal mechanism (explicitly based on fact, rather than matters of opinion), for
competitiors to comment on the reviews, as well as file petitions if there was an
insufficient data provided.

5. Payment systems: Considering the granularity of the task, how can micropay-
ments and diversity of crowd types (e.g. internal, contractors and external crowds
be efficiently handled).

8 Social Factors

How does crowd diversity impact the results? Not only does engaging crowds across
geographies and demographics call for careful incentive design, but also for examina-
tion of key factors that may drive the successful and high quality contributions.

Jeppesen and Lakhani [20] have examined the winning solvers in high value prob-
lems, posted to InnoCentive.com science problem solving contests. They observed
and modeled technical and social marginality as strong predictors of success in com-
petition participation. Authors look at and raise potential factors that impact the prob-
ability of a crowd member participating in the contents, such as: award value, solution
requirements, past problems opened, gender and ethnicity. Similarly, they evaluate to
which extent expertise, gender, scientific profile, time invested and interest affect the
winning probability.

What does it mean that the crowd is diverse? Moreover, the question arises: do dif-
ferent approaches to producing output in crowdsourcing require different levels of
diversity (e.g. competition based versus collaboration based model?).

Oliviera et al [21], provide early insights into challenges of engaging subject mat-
ter experts in an open innovation process, and identify the difference between North
American and European contexts.

Brabham [22] distills a research agenda along the social aspects from the perspec-
tive of the participants, calling for discovery of not only successful crowd members,
but also those who are yet to get there. Brabham further identifies some of the barriers
to truly global crowdsourcing efforts, such as access to problem-specific skills and
technologies.

9 Business Models and Viability

To make crowdsourcing even more appealing, challenge becomes how to deploy it at
the minimum cost to the business, while preserving the brand. Costs comprise from
staffing and support, marketing, infrastructure and payment services.

Boudreau and Lakhani [23] categorize existing crowdsourcing platforms based on
their underlying business model as follows:

 Towards a Research Agenda for Enterprise Crowdsourcing 433

1. Integrator platform: where the company integrates the outside innovations and sells
the final product to customers - e.g. TopCoder.com, InnoCentive.com.

2. Product platform: where the company enables innovators to build on top of the
platform and sell the final products to customers, e.g. GoreTex.

3. Two-sided platform: where the company enables external innovators and customers
to interact freely, e.g. Mechanical Turk.

10 Summary

Crowdsourcing has a potential to significantly transform the business processes, by
incorporating the knowledge and skills of globally distributed experts to drive busi-
ness objectives, at shorter cycles and lower cost.

Many interesting and successful examples exist, such as GoldCorp.com, TopCod-
er.com, Threadless.com, etc. However, to fully adopt this mechanism enterprises, and
benefit from appealing value propositions, in terms of reducing the time-to-value, a
set of challenges remain, in order for enterprises to retain the brand, achieve high
quality contributions, and deploy crowdsourcing at the minimum cost.

In this paper we presented a landscape of existing crowdsourcing applications, tar-
geted to the enterprise domain. We segment crowd into internal, external and hybrid,
based on their affiliation with the crowdsourcing firm; and discuss how they drive the
selection of incentive and governance structures. Finally, we discuss the effect of
engaging socially and technically diverse crowds, and present state of the art in
currently deployed business models.

References

1. Vukovic, M., Bartolini, C.: First International Enterprise Crowdsourcing Workshop. In:
Daniel, F., Facca, F.M. (eds.) Current Trends in Web Engineering – ICWE 2010 Work-
shop Proceedings (2010) (in publication)

2. Vukovic, M.: Crowdsourcing for Enterprises. In: International Workshop on Cloud Ser-
vices, In Conjunction with 7th IEEE International Conference on Web Services (July
2009)

3. Karnin, E., Walach, E., Drory, T.: Crowdsourcing in the Document Processing Practice.
In: Proceedings of First Enterprise Crowdsourcing Workshop in conjunction with ICWE
2010 (2010)

4. Lopez, M., Vukovic, M., Laredo, J.: PeopleCloud Service for Enterprise Crowdsourcing.
In: International Conference on Services Computing, Miami, Florida (July 2010)

5. Vukovic, M., Lopez, M., Laredo, J.: People cloud for globally integrated enterprise. In:
First International Workshop on SOA, Globalization, People, & Work, in conjuction with
Seventh International Conference on Service Oriented Computing (2009)

6. Stewart, O., Lubensky, D., Huerta, J.M.: Crowdsourcing participation inequality: a
SCOUT model for the enterprise domain. In: Proceedings of the ACM SIGKDD Work-
shop on Human Computation, HCOMP 2010, Washington DC, July 25, pp. 30–33.
ACM, New York (2010)

7. La Vecchia, G., Cisternino, A.: Collaborative workforce, business process crowdsourcing
as an alternative of BPO. In: Proceedings of First Enterprise Crowdsourcing Workshop in
conjunction with ICWE 2010 (2010)

434 M. Vukovic and C. Bartolini

8. Chen, K.Y., Fine, L., Huberman, B.: Predicting the Future. Information Systems Fron-
tiers 5(1), 47–61 (2005)

9. Surowiecki, J.: The Wisdom of Crowds. Anchor (2005)
10. Archak, N., Sundararajan, A.: Optimal Design of Crowdsourcing Contest. In: Proceed-

ings Thirtieth International Conference on Information Systems (ICIS 2009), Phoenix
(2009)

11. Carpenter, H.: – Four Models for Competitive Crowdsourcing, Technical Report (2009),
http://spigit.com

12. Kern, R., Thies, H., Bauer, C., Satzger, G.: Quality Assurance for Human-based Elec-
tronic Services: A Decision Matrix for Choosing the Right Approach. In: Proceedings of
First Enterprise Crowdsourcing Workshop in conjunction with ICWE 2010 (2010)

13. von Law, A.: Input-Agreement: A new Mechanism for Collecting Data Using Human
Computation Games. In: Proceedings ACM Conference on Human Factors in Computing
Systems, CHI 2009, pp. 1197–1206 (2009)

14. Sorokin, A., Forsyth, D.: Utility data annotation with Amazon Mechanical Turk. In: Pro-
ceedings of the Conference on Computer Vision and Pattern Recognition Workshops.
IEEE Computer Society, Washington (2008)

15. Snow, R., O’Connor, B., Jurafsky, D., Ng, A.Y.: Cheap and fast, but is it good? Evaluat-
ing non-expert annotations for natural language tasks. In: EMNLP 2008: Proceedings of
the Conference on Empirical Methods in Natural Language Processing. ACL, Strouds-
burg (2008)

16. Sheng, V., Provost, F., Ipeirotis, P.: Get Another Label? Improving Data Quality and Da-
ta Mining Using Multiple, Noisy Labelers. In: Proceedings of the Fourteenth Internation-
al Conference on Knowledge Discovery and Data Mining (KDD) (2008)

17. Kittur, A., Kraut, R.E.: Harnessing the wisdom of crowds in Wikipedia: quality through
coordination. In: Shen, W., Yong, J., Yang, Y., Barthès, J.-P.A., Luo, J. (eds.) CSCWD
2007. LNCS, vol. 5236. Springer, Heidelberg (2008)

18. Chen, K., Chang, C., Wu, C., Chang, Y., Lei, C.: Quadrant of euphoria: a crowdsourcing
platform for QoE assessment. Network Magazine of Global Internetworking (2010)

19. Lakhani, K., Garbin, D., Lonstein, E.: TopCoder (A): Developing Software through
Crowdsourcing. Harvard Business School Case 610-032

20. Jeppesen, L., Lakhani, K.: Marginality and problem solving effectiveness in broadcast
search. Organization Science 20 (forthcoming)

21. Oliviera, F., Ramos, I., Santos, L.: Definition of a Crowdsourcing Innovation service for
the European SMEs. In: Proceedings of First Enterprise Crowdsourcing Workshop in
conjunction with ICWE 2010 (2010)

22. Brabham, D.: Crowdsourcing as a model for problem solving: An introduction and cases.
Convergence: The International Journal of Research into New Media Technolo-
gies 14(1), 75–90 (2008)

23. Lakhani, K., Boudreau, K.: How to Manage Outside Innovation. MIT Sloan Management
Review 50(4)

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 435 – 446.
© Springer-Verlag Berlin Heidelberg 2010

Analyzing Collaboration in Software Development
Processes through Social Networks

Andréa Magalhães Magdaleno1,3, Cláudia Maria Lima Werner1,
and Renata Mendes de Araujo2,3

1 COPPE/UFRJ – Systems Engineering and Computer Science Department
Zip 21945-970 – Rio de Janeiro – RJ – Brazil – P.O. Box 68511

2 Department of Applied Informatics – UNIRIO
3 NP2Tec - Research and Practice Group in Information Technology - UNIRIO

Zip 22290-240 – Rio de Janeiro – RJ – Brazil
{andrea,werner}@cos.ufrj.br, renata.araujo@uniriotec.br

Abstract. Plan-driven, agile or free/open source are software development
models that although effective, cannot fully address all the variability of
projects and organizations alone. In this work, it is argued that two distinct
characteristics of these models – collaboration and discipline – can be the
drivers to tailor software development processes to meet projects and
organizations needs. In particular, this article focuses on the aspect of
collaboration and argues that it can be analyzed through social networks. In this
sense, we studied several tools and identified the requirements necessary to
explore collaboration, through social networks, in software development
processes. These requirements motivated the construction of EvolTrack-
SocialNetwork tool.

Keywords: collaboration, social networks, software processes.

1 Introduction

Software organizations are continually challenged by the need to improve the quality
of software products. In this context, the assumption that the adopted software
development process directly influences the quality of the developed product [1, 2]
has motivated many organizations to adopt maturity models, such as CMMI
(Capability Maturity Model Integration) [3].

This “plan-driven” development model has been used to support the definition of
more predictable and managed software development processes. The success of some
free/open source software (FOSS) projects, like Linux and Mozilla, also caught the
attention of academia, industry and users due to their capability to produce high
quality software, quickly and free [4]. In addition, agile methods are often presented
as an alternative to plan-driven development to cope with changes that occur during a
development project through shorter development cycles and with a higher level of
involvement and participation of the client [5, 6].

Software organizations engage in a wide variety of projects with different
characteristics, where plan-driven, agile and FOSS development models, usually

436 A.M. Magdaleno, C.M.L. Werner, and R.M. de Araujo

perceived as opponents, complement each other, because each one works better or
faces difficulties in some aspects. None of these development models fulfill all
requirements of a specific project or organization. Thus, approaches that balance these
development models are necessary.

Process tailoring is the act of particularizing a general process description to derive
a new process applicable to a specific situation [7]. Pedreira et al. [8] summarize the
negative consequences of inappropriate process tailoring in organizations: the project
budget, the development time, and the product quality directly depend upon the
quality of the software process; a bad software process may involve unnecessary
activities that lead to a waste of time and money, or the omission of those activities
that are necessary, which may affect the product quality; and inappropriate process
tailoring can cause the software process not to comply with the organizational
standard process or with international standards such as CMMI [3].

To avoid these risks, we claim that process tailoring should consider organization,
project and team contexts, using collaboration and discipline as main drivers [9].
Discipline refers to project control and visibility, while collaboration focuses on
people interaction to achieve common goals. These two characteristics are present in
plan-driven, agile and FOSS development models, albeit with variations in emphasis
and form. Both are complementary and essential in any project, but in different
proportions, depending on the project context. Therefore, they need to be balanced.

This paper particularly focuses on the aspect of collaboration and argues that it can
be turned explicit using social networks. In this sense, we studied several social
network tools and identified the requirements necessary to explore collaboration,
through social networks, in software development processes. These requirements
motivated the construction of EvolTrack-SocialNetwork tool.

The remainder of this paper is organized as follows. In Section 2, we present the
main characteristics of each software development model. Section 3 details the
solution focus on balancing collaboration and discipline. Section 4 is dedicated to
social networks. Finally, Section 5 concludes the paper.

2 Software Development Models

A software development model is a set of practices recommended for developing
software. These practices are organized into a software process that corresponds to “a
coherent set of policies, organizational structures, technologies, procedures and
artifacts required to design, develop, deploy and maintain a software product” [2].

Plan-driven, agile and FOSS development models have the same goal: to improve
software development, but they adopt different approaches. While the plan-driven
development seeks for predictability, stability and reliability [3], agile development
tries to quickly add value to business and adapt to market, technology and
environment changes [6]. Furthermore, in FOSS development, the main objective is
to guarantee users’ freedom [10].

Plan-driven development is typically exemplified by maturity models, such as
CMMI [3], and is characterized by its orientation to planning and emphasis on well-
defined processes. The assumptions of agile development, observed in methods such
as XP (Extreme Programming) [11] and Scrum [12], can be summarized by the four

Analyzing Collaboration in Software Development Processes through Social Networks 437

values of the Agile Manifesto [5]. The FOSS development can be understood by the
bazaar metaphor [4], where projects are collaboratively and transparently developed.
In this model, developers work on a voluntary basis, geographically distributed, using
the Internet as a communication channel.

Each one with its peculiarities, successes and challenges, these three development
models have followed separate paths. Due to differences in vocabulary,
misinterpretation and misuse of approaches, they are usually perceived as opponents.
However, all of them had, in the last decade, an enormous impact and their
perspective for future developments is also promising [13, 14]. As each one
represents a universe of development with unique characteristics, research in the area
has discussed how to accommodate each of them in order to define development
processes that are more effective [15-17].

According to the results obtained through a systematic review, several researchers
have investigated the possibility of reconciliation among plan-driven, agile, and FOSS
models [18]. In general, the existing proposals [19, 20] involve the comparison and
combination of the practices suggested by different models, aiming to produce a new
hybrid one. However, the complexity of software development and the variety of
existing methods make the task of comparing them, arduous and inaccurate. This kind
of software development models combination limits the potential for synergy among
them, possibly resulting in an incomplete method, where it is no longer possible to
ensure that the resulting process actually has the desired characteristics.

Boehm and Turner [15] proposal suggests risk analysis of the project
characteristics as a way to select the project adequate method. This proposal has
similarities with our research work, since it considers project characterization.
However, it only focuses on agile and plan-driven, without considering FOSS
development.

This work argues that more than the combination of practices of different models is
necessary. The proposed solution involves software development processes tailoring,
by balancing the main distinctive aspects in plan-driven, agile and FOSS models –
collaboration and discipline.

3 Collaboration and Discipline

Collaboration can be defined as the group working of two or more people to achieve a
common goal. The collaboration is an important factor for software organizations to
achieve their goals of productivity, quality and knowledge sharing. In particular,
software development is a complex process that involves the collaboration of several
people over a period of time to achieve a common goal [1]. Therefore, software
development is a typical example of collaborative work [21, 22].

Moreover, the discipline is related to the planning level adopted in software
process definition and the rigidity of control employed in process execution. Thus,
discipline imposes order and helps to control the work [15].

Both are complementary and essential in any project, but in different proportions,
depending on the project characteristics [9]. For a balanced mix between
collaboration and discipline, it is necessary to understand how these aspects vary and
distinguish the software development models.

438 A.M. Magdaleno, C.M.L. Werner, and R.M. de Araujo

Regarding collaboration, we can consider the different levels of formality in
communication, coordination, awareness and memory [23]. Regarding discipline,
software models vary on emphasis and form of their processes. The plan-driven
model is characterized by an emphasis on well-defined and continuously improved
processes. Both agile and FOSS development use no description or explicit modeling
of the process adopted. Instead, they deal with a set of general principles to guide the
development.

For introducing collaboration and discipline into tailored software development
processes, it is important to define how to plan and monitor the needed or desired
levels of collaboration and discipline. In this sense, some instruments are being
considered, such as the Collaboration Maturity Model (CollabMM) [23], social
networks [24], and measurement [25].

CollabMM [23] aims to organize a set of practices which can enhance
collaboration in business processes. This model describes an evolutionary path in
which processes can progressively achieve higher capability on collaboration,
according to four maturity levels: Ad-hoc, Planned, Aware and Reflexive. Each level
has its own collaboration practices defined according to collaboration support aspects
(communication, coordination, group memory and awareness). CollabMM has
already been used in a real experience to assist organizations in introducing different
levels of collaboration in their business process models [26]. In this work, the role of
CollabMM is to act as a framework that defines the collaboration levels and
summarizes its main characteristics.

Besides CollabMM, we also need a mechanism that helps to explicit and measure
the existing collaboration among people in software development projects. To provide
this understanding, social networks [24] appear as a promising path. A social network
consists of a finite set of actors and the relationships among them. We can find
several works [27, 28] on social network visualization and analysis, which point to
social networks potential to explain how the collaboration occurs within a group.

When we explicit collaboration, its visibility increases, so that members of the
organization can achieve greater understanding and motivate themselves. Thus,
understanding the social networks involved in development projects can help to
understand and monitor the level of collaboration in the project.

Discipline can be measured by regulating the level of control of processes. The
level of discipline is established through a measurement approach. The need of
measuring results comes from the premise that “you can not control what you can not
measure”. Measurement is an important mechanism for visibility into a project and
helps to raise awareness about ongoing processes.

In particular, this paper focuses on the use of social networks as a mechanism that
helps to explicit and measure the existing collaboration among people in software
development projects, as discussed in the next section.

4 Social Networks

A network is a graph and consists of a finite set of nodes and edges. In a social
network, nodes represent actors and edges correspond to possible relationships among

Analyzing Collaboration in Software Development Processes through Social Networks 439

them [29]. The semantics of the relationship depends on the analysis that will be made
in this network. This can be communication, relationship, friendship and so on. In
software development, we intend to use the social network to understand the
collaboration among team members.

Adapting the approach proposed in [30], we can summarize in four steps the
methodology for studying social networks. The first step is to define the purpose of
analysis and provide the semantics of nodes and edges of the network. The next step
is to collect data to build the social network. This collection can be done manually,
using, for instance, questionnaires or facilitated by data mining in the repositories.
Then, these data can be manipulated for viewing or analysis.

Next, in the social networks visualization step, the visual representation of
information is adopted to reduce the cognitive overload of the user and to facilitate
understanding and exploration of data through graphs. The social networks
visualization allows the observation of facts and knowledge extraction.

Finally, the last step is the analysis of social networks, which uses the concepts of
graph theory to describe, understand and explain the interaction and social
organization of a group. This analysis seeks to understand the relationships among
people or groups through its properties. These properties [29] were detailed in a
previous study [31], which also identified those (i.e., degree centrality, betweenness
centrality, closeness centrality and network density) with the greatest potential to
explain collaboration.

Based on the interpretation and combination of social network analysis properties,
Santos et al. [31] suggest a set of collaboration characteristics, organized regarding
CollabMM maturity levels [23]. These first characteristics focused on the aspect of
coordination. The main idea is that social network properties can be associated to the
different collaboration levels suggested by CollabMM.

4.1 Requirements for Social Networks Tools

In a previous study [32], we analyzed 10 social network tools: one shareware
(UCINET1), one open source (Pajek [33]), and 8 academic (Ariadne [34], Augur [35],
MiSoN [36], OssNetwork [37], RaisAware [38], Sargas [39], SVNNAT [40], and
Visone [41]).

This study showed that some of the identified tools already provide an extensive
set of generic algorithms that can be readily used to calculate social network
properties. However, they do not engage in analysis dedicated specifically to the
collaboration. In addition, most visualization tools are not actually available or have
significant limitations [32].

Considering the analysis of contributions and limitations of these tools, the existing
proposals for social networks analysis in software development, and the objectives of
this research work, we gathered a list of 15 requirements that a social network tool
must satisfy [32]. These requirements were classified into three categories: mining
(REQM), visualization (REQV) and analysis (REQA). A few examples of these
requirements are presented in Table 1.

1 UCINet Site: http://www.analytictech.com/ucinet/ucinet.htm

440 A.M. Magdaleno, C.M.L. Werner, and R.M. de Araujo

Table 1. Examples of social network tools requirements

Name Description

REQM3

The system must be able to mine data from different sources of
information for software development projects: a repository of
configuration management, source code, discussion forum, and
e-mail list.

REQV10
The system must provide the visualization of network evolution
over time.

REQA11
The system must calculate the properties of social network
analysis.

The studied social networks tools were analyzed in accordance with this list [32],
as partially presented in Table 2. Fields filled with indicate that the requirement is
fully covered by the tool, while indicate that the requirement is not met by the tool.
The fact that a requirement is not met by a particular tool can only mean that this
specific requirement may be irrelevant for its purpose. Besides, these requirements
not form a complete nor necessarily sufficient list, they serve as a guide for
developing a tool that intends to be comprehensive.

Table 2. Tools x requirements

Requirement

A
ri

ad
ne

A
ug

ur

M
iS

oN

O
ss

N
et

w
or

k

P
aj

ek

R
ai

sA
w

ar
e

Sa
rg

as

SV
N

N
A

T

U
C

IN
E

T

V
is

on
e

REQM3

REQV10

REQA11

After this analysis, we concluded that none of the analyzed social network tools
met all requirements. Thus, there is still room to propose other tools that support in a
more adequate manner the need for collaboration analysis and bring new
contributions, through the implementation of these requirements. This motivated the
creation of a new tool - called EvolTrack-SocialNetwork.

4.2 EvolTrack-SocialNetwork

EvolTrack-SocialNetwork is an extension of EvolTrack tool [42], which was
developed by the Software Reuse Group at COPPE/UFRJ in Brazil. EvolTrack is a
software visualization tool that provides a time based approach to observe the

Analyzing Collaboration in Software Development Processes through Social Networks 441

emerging design at different moments during the development life cycle. Basically, it
periodically extracts project information from a specific data source and then, after
performing some pre-processing and transformation, presents the corresponding
software design for that project period of time.

EvolTrack was chosen as the starting point for building EvolTrack-SocialNetwork,
because it offers an initial infrastructure for data mining, some visualization features
and functionality for analyzing metrics, and has been developed by the same research
group in which this work is being developed.

After this choice, a study to examine EvolTrack feasibility for use in real scenarios
was planned and conducted, using seven FOSS projects [42]. These projects were
chosen because they publish their development artifacts, including source code, freely
over the Internet. Thus, they represent an opportunity for research due to its diversity,
complexity, representativeness, and ease of access.

As a result, this study showed the feasibility of using EvolTrack and highlighted
some scalability limitations in relation to the display of models of very large projects
[42]. This problem was recently solved as part of another ongoing research project
that aimed to expand the capabilities of EvolTrack visualization [43].

After this assessment of the feasibility of using EvolTrack, the design of
EvolTrack-SocialNetwork architecture was started. This architecture is composed by
three main modules: mining, visualization and analysis (Fig. 1). All of these modules
are based on a social network meta-model. Moreover, since we reused EvolTrack
infrastructure, its components are also used.

Fig. 1. EvolTrack-SocialNetwork Architecture Overview

Originally, EvolTrack uses the UML meta-model. Although this meta-model is
suitable for processing the information of technical networks, it does not fully address
the needs of information for socio-technical and social networks. Thus, this meta-
model needs to be extended in EvolTrack-SocialNetwork. The choice of a social
network meta-model should be based on the analysis you want to accomplish with the
social network.

The mining module (Fig. 1a) receives the information extracted by datasources
connectors. EvolTrack already has connectors for configuration management tools

442 A.M. Magdaleno, C.M.L. Werner, and R.M. de Araujo

(like SVN) and development environments (such as Eclipse). In addition, EvolTrack
provides the necessary infrastructure to facilitate the creation of new connectors. In
this case, the datasource connectors that need to be constructed in EvolTrack-
SocialNetwork are: e-mail list and discussion forum.

The visualization module (Fig. 1b) receives the information processed by the
kernel and focuses on offering technical, socio-technical and social networks [34] on
project software development. The first one is already implemented in EvolTrack
because the UML view connector already expresses by the class diagram, exactly
what one wants to represent in the technical network, where the nodes are classes and
edges represent the dependency relationships among them. EvolTrack also offers the
presentation of the temporal evolution of the network.

Finally, the analysis module (Fig. 1c) is concerned about the need to analyze the
properties of social networks [31]. Although the EvolTrack does not calculate these
properties, it is able to display them and follow the evolution of metrics in general [42].

Currently, EvolTrack-SocialNetwork tool is under development and we expect that
it can contribute to provide information that will help both the development team and
project manager to understand, reflect and interfere in the work being done.

4.3 Scenario of Collaboration Information Use

Suppose a situation in which a software development project, called CDSOFT,
involves a geographically distributed team and it aims to create an innovative product.
Due to product novelty, it also has volatile requirements that change frequently.
Because of this requirements instability, the documentation becomes obsolete quickly
and the need for sharing tacit knowledge among team members is intensified. In this
scenario, CDSOFT project would require a high level of collaboration.

Therefore, considering CollabMM maturity levels [23], this project is planned to
accomplish reflexive level. CollabMM defines the reflexive level as the one where
processes are designed to provide self-understanding, identifying the relevance of the
results which had been produced and sharing this knowledge inside the organization.
Processes must be formally concluded and their results communicated. Lessons
learned can be captured; strengths and weaknesses are analyzed; successes and
challenges are shared; ideas for future improvements are collected; and workgroup
results are published and celebrated. Group members are aware of the way in which
the group collaborates during process execution, while process tacit knowledge is
shared, thereby enhancing group memory [23].

The collaboration characteristic of distributed coordination represents this level.
This characteristic can be perceived by the absence of intermediate and central nodes
in the network, because the relationships between the nodes tend to be equally
distributed. The network density is considered high and may reach its maximum,
which also represents the maximum degree of collaboration. Therefore, it is expected
that CDSOFT project has a network similar to the one presented in Fig. 2a.

However, during project execution, one can notice that the actual project social
network is looking like the one in Fig. 2b. In this centralized network, it can be
observed a strong leadership of one single node that is controlling tasks and
information flow. Based on this information, it is possible to use CollabMM to plan
which collaboration practices (such as communication plan and collaboration
awareness) can be included to make this project more collaborative.

Analyzing Collaboration in Software Development Processes through Social Networks 443

Fig. 2. Current and Planned Social Networks

Even in such a simple example, we can notice that this kind of information is
helpful to understand, reflect and interfere in the work being done. The combination
of CollabMM and social networks instruments can provide the project manager with
useful information to make decisions about the future of the project and enhance
collaboration.

5 Conclusion

In this paper, we discussed that social networks, obtained as a result of interactions in
software development, can provide useful information for understanding the
collaboration among development team members. Our aim is to contribute to research
related to the understanding of collaboration in different development models – plan-
driven, agile, and FOSS - arguing that the understanding of collaboration can be a
way to promote balance between these different approaches. Therefore, this
information can be used in process tailoring.

Despite being one of the main tasks to be executed by the project manager, process
tailoring is not simple. It requires pondering many factors and evaluating a large set of
constraints. Due to this complexity, the manager is not usually able to evaluate all
available combinations and chooses a process in an ad-hoc manner, based on his/her own
experience, possibly selecting one that is not the best alternative for the current project.

In order to facilitate process tailoring, it is possible to support the project manager
by automating some of the steps to solve the problem, possibly reducing the effort
required to execute this activity and improving the quality and adequacy of the
obtained process [44, 45]. This decision support environment can help in the selection
of an appropriate process for a software project according to the best balance between
collaboration and discipline. In fact, this possibility is being explored as an
optimization-based problem, which uses collaboration and discipline as utility
functions to maximize or minimize them [44, 45].

Acknowledgments

This work is partially funded by CNPq (under processes nº. 142006/2008-4 and
310776/2009-0) and is part of Programa Institutos Nacionais de Ciência e Tecnologia,
supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq/MCT) (under contract nº. 557.128/2009-9) and by Fundação de Amparo à
Pesquisa do Estado do Rio de Janeiro (FAPERJ) (under contract nº.
E-26/170028/2008).

444 A.M. Magdaleno, C.M.L. Werner, and R.M. de Araujo

References

1. Cugola, G., Ghezzi, C.: Software processes: A retrospective and a path to the future.
Software Process Improvement and Practice (SPIP) Journal 4, 101–123 (1998)

2. Fuggetta, A.: Software process: a roadmap. In: Proceedings of the Conference on The
Future of Software Engineering, pp. 25–34. ACM, Limerick (2000)

3. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI: Guidelines for Process Integration and
Product Improvement. Addison-Wesley, Boston (2006)

4. Raymond, E.S.: The Cathedral & the Bazaar. O’Reilly Media, Sebastopol (2001)
5. Beck, K., et al.: Manifesto for Agile Software Development,

http://agilemanifesto.org/
6. Cockburn, A.: Agile Software Development. Addison-Wesley, Boston (2001)
7. Ginsberg, M., Quinn, L.: Process Tailoring and the Software Capability Maturity Model.

SEI-CMU (1995)
8. Pedreira, O., Piattini, M., Luaces, M.R., Brisaboa, N.R.: A systematic review of software

process tailoring. SIGSOFT Software Engineering Notes 32, 1–6 (2007)
9. Magdaleno, A.M.: Balancing Collaboration and Discipline in Software Development

Processes. In: Doctoral Symposium of International Conference on Software Engineering
(ICSE), pp. 331–332. ACM/IEEE, Cape Town, South Africa (2010)

10. FSF: The Free Software Definition, http://www.gnu.org/philosophy/free-
sw.html

11. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Boston
(1999)

12. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Washington
(2004)

13. Ebert, C.: Open Source Drives Innovation. IEEE Software 24, 105–109 (2007)
14. Theunissen, M., Kourie, D.G., Boake, A.: Corporate-, Agile- and Open Source Software

Development: A Witch’s Brew or An Elixir of Life? In: Meyer, B., Nawrocki, J.R.,
Walter, B. (eds.) CEE-SET 2007. LNCS, vol. 5082, pp. 84–95. Springer, Heidelberg
(2008)

15. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed.
Addison-Wesley, Boston (2003)

16. Glazer, H., Dalton, J., Anderson, D., Konrad, M., Shrum, S.: CMMI or Agile: Why Not
Embrace Both! SEI-CMU (2008)

17. Warsta, J., Abrahamsson, P.: Is Open Source Software Development Essentially an Agile
Method? In: Proceedings of the Workshop on Open Source Software Development,
Portland, OR, USA, pp. 143–147 (2003)

18. Magdaleno, A.M., Werner, C.M.L., Araujo, R.M.D.: Revisão Quasi-Sistemática da
Literatura: Conciliação de processos de desenvolvimento de software. PESC-COPPE, Rio
de Janeiro (2009) (In portuguese)

19. Fritzsche, M., Keil, P.: Agile Methods and CMMI: Compatibility or Conflict? e-
Informatica Software Engineering Journal 1, 9–26 (2007)

20. Paulk, M.: Extreme programming from a CMM perspective. IEEE Software 18, 19–26
(2001)

21. DeMarco, T., Lister, T.: Peopleware: Productive Projects and Teams. Dorset House, New
York (1999)

22. Herbsleb, J.D., Paulish, D.J., Bass, M.: Global software development at siemens:
experience from nine projects. In: Proceedings of the 27th international conference on
Software engineering, pp. 524–533. ACM Press, St. Louis (2005)

Analyzing Collaboration in Software Development Processes through Social Networks 445

23. Magdaleno, A.M., Araujo, R.M.D., Borges, M.R.S.: A Maturity Model to Promote
Collaboration in Business Processes. International Journal of Business Process Integration
and Management (IJBPIM) 4, 111–123 (2009)

24. Barabasi, A.L.: Linked: How Everything Is Connected to Everything Else and What It
Means for Business, Science, and Everyday Life. Plume, Cambridge (2003)

25. McGarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J., Hall, F.: Practical
Software Measurement: Objective Information for Decision Makers. Addison-Wesley
Professional, Reading (2001)

26. Magdaleno, A.M., Cappelli, C., Baiao, F.A., Santoro, F.M., Araujo, R.: Towards
Collaboration Maturity in Business Processes: An Exploratory Study in Oil Production
Processes. Information Systems Management (ISM) 25, 302–318 (2008)

27. Gao, Y., Freeh, V., Madey, G.: Analysis and Modeling of Open Source Software
Community. In: Computational Analysis of Social and Organizational Systems (CASOS),
Pittsburgh, PA, USA, pp. 1–4 (2003)

28. Madey, G., Freeh, V., Tynan, R.: The open source software development phenomenon: An
analysis based on social network theory, Dallas, TX, USA, pp. 1806–1813 (2002)

29. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge (1994)

30. Cross, R., Andrew, P., Cross, R.: The Hidden Power of Social Networks: Understanding
How Work Really Gets Done in Organizations. Harvard Business School Press, Boston
(2004)

31. Santos, T.A.L., Araujo, R.M.D., Magdaleno, A.M.: Identifying Collaboration Patterns in
Software Development Social Networks. Infocomp - Journal of Computer Science -
Special Issue, 51–60 (2010)

32. Magdaleno, A.M., Werner, C.M.L., Araujo, R.M.D.: Estudo de Ferramentas de Mineração,
Visualização e Análise de Redes Sociais. In: PESC-COPPE, Rio de Janeiro, RJ, Brasil
(2010) (in portuguese)

33. Nooy, W.D., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with Pajek.
Cambridge University Press, Cambridge (2005)

34. Trainer, E., Quirk, S., Souza, C.D., Redmiles, D.: Bridging the gap between technical and
social dependencies with Ariadne, pp. 26–30. ACM, San Diego (2005)

35. Souza, C.D., Froehlich, J., Dourish, P.: Seeking the source: software source code as a
social and technical artifact. In: Proceedings of the International ACM SIGGROUP
Conference on Supporting Group Work, pp. 197–206. ACM, Sanibel Island (2005)

36. Aalst, W., Reijers, H.A., Song, M.: Discovering Social Networks from Event Logs. In:
Computer Supported Cooperative Work (CSCW), vol. 14, pp. 549–593 (2005)

37. Balieiro, M.A., Souza Jr., S.D., Pereira, L.P., de Souza, C.D.: OSSNetwork: Um Ambiente
para Estudo de Comunidades de Software Livre usando Redes Sociais. In: Experimental
Software Engineering Latin America Workshop, São Paulo, SP, Brasil, pp. 33–42 (2007)
(in Protuguese)

38. Costa, J.M.R., Feitosa, R.M., de Souza, C.D.: RaisAware: Uma ferramenta de auxílio à
engenharia de software colaborativa baseada em análises de dependências, Vitória, ES,
Brasil, pp. 254–264 (2008) (in Protuguese)

39. Sousa Junior, S.F., Balieiro, M.A., de Souza, C.D.: Análise Multidimensional de Redes
Sociais de Projetos de Software Livre. In: Anais do Simpósio Brasileiro de Sistemas
Colaborativos (SBSC), Vitória, ES, Brasil, pp. 23–33 (2008) (in Protuguese)

40. Schwind, M., Wegmann, C.: SVNNAT: Measuring Collaboration in Software Development
Networks, pp. 97–104. IEEE, Washington (2008)

446 A.M. Magdaleno, C.M.L. Werner, and R.M. de Araujo

41. Brandes, U., Wagner, D.: Visone - Analysis and visualization of social networks. In:
Graph Drawing Software, pp. 321–340. Springer, Heidelberg (2003)

42. Cepeda, R.D.S.V., Magdaleno, A.M., Murta, L.G.P., Werner, C.: EvolTrack: Improving
Design Evolution Awareness in Software Development. Journal of the Brazilian Computer
Society (JBCS) (to appear, 2010)

43. Silva, M.A.: IAVEMS: Infraestrutura de Apoio à Visualização da Evolução de Métricas de
Software (2010) (in Portuguese)

44. Magdaleno, A.M., Barros, M.D.O., Werner, C.M.L., Araujo, R.M.D.: Formulando a
Adaptação de Processos de Desenvolvimento de Software como um Problema de
Otimização, Salvador, BA, Brasil (to appear, 2010) (in Portuguese)

45. Magdaleno, A.M.: An optimization-based approach to software development process
tailoring. PhD Track - International Symposium on Search Based Software Engineering
(SSBSE), Benevento, Italy (to appear, 2010)

A Web-Based Framework for Collaborative
Innovation

Donald Cowan1,4, Paulo Alencar1,4 Fred McGarry3,
Carlos Lucena3,5, and Ingrid Nunes3,5

1 David R. Cheriton School of Computer Science and Computer Systems Group

University of Waterloo, Waterloo, Ontario Canada

{dcowan,palencar}@cs.uwaterloo.ca
2 Centre for Community Mapping, Waterloo, Ontario Canada

mcgarry@comap.ca
3 Department of Informatics and Software Engineering Laboratory

Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil

{lucena,ionunes}@inf.puc-rio.br
4 The Waterloo Innitiative on Web Science

5 Brazilian Institute for Web Science Research

Abstract. Twenty-first century global change in most sectors is chal-

lenging our use and management of resources. For a community to adapt

to this systemic change, while maintaining and even enhancing its econ-

omy and quality of life, the World Economic Forum has recognized the

need for new approaches to enable collaborative innovation (CI) and re-

lated action among both the leadership and concerned members of the

community. Many see the web as an approach to CI and as a new form

of creativity machine that can augment our intelligence.

This paper outlines the concepts of an approach to CI based on asset

mapping and how it has been supported through a web-based technolog-

ical framework that requires both communication and operations on the

asset map. Based on the experience using the framework in designing and

building over 50 systems that incorporate asset-mapping CI, it is clear

that CI takes many forms. We illustrate some of these forms through

specific examples in environment, cultural heritage, socio-economic de-

velopment and planning. We conclude that it is not possible to build

a single set of tools to support CI and that the users need access to

meta-tools and frameworks to implement tailored systems supporting

CI directly rather than relying on people with in-depth knowledge of

the technologies. WIDE is an example of the type of meta-tools that are

needed. Lessons learned from WIDE are being applied in the creation of

WIDE 2.0.

Keywords: collaborative innovation; asset-mapping; web-based

framework; meta-tools.

1 Introduction

Twenty-first century systemic global change in health, water, environment,
energy, business, governance and socio-economic structures is challenging our

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 447–461, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

448 D. Cowan et al.

communities and us as individuals. For a community to be resilient and adapt-
able in the face of these disruptive transformations, while maintaining and even
enhancing our economy and quality of life, new creative approaches are needed to
enable intelligent collaborative innovation (CI) and related action. Such action
must occur among all sectors of society including government, non-governmental
organizations (NGOs), business, community leadership and concerned commu-
nity members.

During the last two decades we have seen the proliferation of web-based in-
formation and communication technology (ICT) tools such as shared databases,
mapping, wikis, blogs, on-line communities and social networks that support
connection and communication among disparate groups and individuals. Can
we harness the power of the web and this new collaboration paradigm to aug-
ment our intelligence as a new form of creativity machine [1] and support CI to
address the problems arising from these systemic changes? Currently the existing
tools do not integrate well and thus limit our ability to innovate collaboratively
over the web. Thus the goal of our research is two-fold:

– to develop operational software systems to support CI in multiple domains
in order to understand

• how CI can be implemented effectively using the web and
• how CI can be made a self-sustaining activity

– and to identify and develop web-based software approaches

• for meta-tools or frameworks that significantly simplify the construction
and evolution of CI systems and

• that can provide for the simple integration of existing tools into CI
frameworks.

As an example, the World Economic Forum (WEF) [2] has recognized the need
for an effective approach to CI in the aftermath of the global economic crisis
as local and international communities are becoming more and more interde-
pendent. The WEF has recommended that communities both geographic and
virtual re-examine their strategies based on new evolving networks and forms
of collaboration. Thus public-private partnerships and smaller-scale region or
city-driven initiatives must move away from one-size fits all arrangements and
re-design and rebuild their structures and processes related to both local and
global community interactions, resource exploitation and governance.

The focus of this paper is to examine experiences with CI within the context
of the new modes of communication that have arisen through the development of
the Internet, Web and tools such as mapping and social networks and to propose
new approaches to meta-tools and frameworks that would bring substantive
improvement to web-based CI. We use examples of web-based systems for CI
in specific fields such as environment, cultural heritage, tourism, socio-economic
development and planning to demonstrate our current thinking.

We observe in the paper that Web-based CI involves both communication and
operations over a dynamic repository of assets and needs not only communication

A Web-Based Framework for Collaborative Innovation 449

tools but tools that support the varied operations on this repository. Such tools
are specific to the CI tasks and therefore must created for each Web-based CI
system. Because the need for the tools is provided by the group involved in
the CI, they need to specify the tools and hopefully generate them from the
specification. If they have to involve technologists such as programmers and GIS
experts then the spontaneity of the collaboration may be impacted negatively.

The Web Informatics Development Environment (WIDE) was designed to
meet the need just delineated. WIDE is a set of technologies, processes and
meta-tools designed and developed by the Computer Systems Group at the Uni-
versity of Waterloo (UWCSG - http://csg.uwaterloo.ca/) to support the creation
of meta-tools or frameworks that can be easily completed by members of the col-
laborating group. Once the dynamic asset repository is established members of
the group can specify the required tools to support specific collaborative ac-
tivity. Over 50 web-based information infrastructures supporting CI in many
forms have been developed by the Centre for Community Mapping (COMAP -
http://comap.ca/) and UWCSG based on the WIDE technologies.

2 Understanding CI

CI refers to a process that involves assembling a team of people to explore and
act upon change in an idea or situation [3]. The span of collaboration is a virtual
community of practice or interest, or a geographic community [4]. The individu-
als that compose the team can represent themselves, different departments in a
single organization or different organizations. A team often works in a mediated
environment where responsibility for actions can be devolved to specific team
members. These responsibilities can be specified through one or more contracts
among individuals and organizations.

CI teams have a collective vision and wish to work together by sharing ideas,
information and work. Team members share directly rather than through a hier-
archy, although each member may represent the views of the hierarchy to which
he/she belongs. Any collaboration must have four essential elements, which are:

1. sound ethical principles and trust;
2. self-organization;
3. universally accessible knowledge; and
4. honest and transparent operation.

Organized CI has been recognized as early as Benjamin Franklin’s “Junto” orga-
nization. However, today most work of this type, relies on modern information
and communications technology (ICT) such as the Internet, e-mail, the Web and
more recently social networks.

What else is needed to make CI effective? CI requires shared knowledge of the
resources or assets that are available within an application domain or context
and then using that understanding to implement actions such as operational
and structural decisions. Thus CI can be viewed as a two-step process where
members of a geographic or virtual community (community of practice):

450 D. Cowan et al.

1. produce an inventory of assets and share this data across one or more com-
munities; and

2. collaborate and act on that asset knowledge to:

(a) recognize additional “undiscovered” assets;
(b) produce value and change; and
(c) create new assets related to the change.

Basically the participants share knowledge and add value to that shared knowl-
edge through a collaborative set of tools that operate under various constraints
such as access, time and mobility.

In many fields, the concept of creating an asset inventory is called “asset
mapping” [5] and the new value and assets produced from the collaboration are
often called emergent properties. Most work in this field to date has focused
on “static” asset mapping and has only begun to investigate the methodology
to keep the asset inventory current or “dynamic” and in taking action over the
growing asset base. Further research is needed into an organized approach to
on-going collaboration, dynamic asset mapping, and value production, although
this lack of a theory of CI should not stop its use. In this paper we outline a
novel asset-mapping driven approach to web-based CI based on our experience
in designing and implementing over 50 such systems.

3 CI, Dynamic Asset Mapping and the Web

There are many facets to CI using ICT and based on a dynamic asset mapping
approach. In this section we analyze this phenomenon and try to understand its
constituents and related properties. Basically the participants share knowledge
and add value to that shared knowledge through a collaborative set of tools that
can be constrained under various properties.

3.1 Constituents of CI and Dynamic Asset Mapping

Shared knowledge. There must be a collection of shared information or knowl-
edge, often called a database, knowledge base, inventory or asset map, to pro-
vide a basis for collaboration that takes advantage of intelligent software agents
to manage redundancy [6]. For example, an environmental group interested in
tracking and eliminating invasive species in a region would likely start with a
database of all such known species in the geographic area and the protocols
associated with their identification and remediation.

The Collaborative Canvas. Information about these assets and input to
and results of the collaboration can be presented through shared collaborative
canvases or interfaces. The shared canvas can provide many different tools such
as a data report, input to databases, e-mail, audio, video, pictures, text, maps
(geomatics), short messages (Twitter tweets), blogs, and wikis to name some
examples. Thus, a member of a collaborative can view the current state of the

A Web-Based Framework for Collaborative Innovation 451

assets by reading a report, viewing a presentation on a map or reading a blog or
wiki. These canvases can allow members to provide new information to the set
of assets through an input form, by allowing a drawing on a map or diagram,
or through commentary in a blog or wiki. For example, a report showing a
list of sightings of invasive species can indicate the prevalence of the species,
while a map showing the geographic location of the sightings provides even more
valuable information since it indicates the geographic extent of the unwanted
species invasion. The map can also be used to allow anyone providing information
about an invasive species sighting to provide its geographic location by placing
an electronic pin in the map. Similarly an active collaborator to a historical
event collaboration could provide a video of a battle re-enactment which has
been attached to a map where the location and extent of the battle could be
specified.

Access control model. Collaboration requires that a group forms around an
idea or situation with the objective of working together. The group is self-limiting
by expertise or interest although it may grow or change in composition as the
collaboration forms and changes, and new expertise is needed or more individuals
become interested. By its nature collaboration is not completely open. Therefore
there must be moderators who manage the group composition and delegate
authority to members of the group related to responsibilities. These moderators
must be given a set of tools not only to enable the collaboration but to admit
participants with responsibilities, so-called transactional access controls. Such
access controls can be role-based [7] or use other confidentially models [8] that
can control participation. Participants could be allowed a subset of operations
on the asset base such as read, write, update, or write/update with history
log. These same participants could also be limited in the collaborative canvas
tools that they can use or the portion of the asset base they can see through
an interface such as a map. For example, experts in invasive species could use a
wiki or blog to discuss issues around protocols for identification and remediation,
whereas laymen could read the content of the wiki or blog, but would not be
able to augment the expert opinion.

Creative Social Networks and On-line Communities. A creative social
network or on-line community can be viewed as a mediated social network or on-
line community with a set of purposes derived from its relationship to members of
a geographic community or community of interest from which the creative social
network is invoked. In other words, a creative social network/on-line community
is built for one or more purposes. In social networks communication and related
assets belong to the individual who created them, while in an on-line commu-
nity the information belong to community to which the individual community
belongs.

Social networks/on-line communities are primarily designed to share without
being concerned about the nature of the content. Both types of networks can
use tools from the collaborative canvas that allow sharing and collaboration
over the asset base with responsibilities usually delegated through role-based

452 D. Cowan et al.

access controls. There can be many different types of tools that are used as
components of the both types of social networks as already described including
maps (geomatics), input forms, reports, text, video, pictures, audio, wikis, blogs,
and asset repositories.

Social networks/on-line communities prompt connection and communication
to enhance opportunities for self-organization within virtual communities of in-
terest, practice and geography that have shared goals, protocols and applica-
tions. Such communities can gel around subject matter in searchable shared
spaces such as forums, wikis and geography (maps) rather than organizational
hierarchies. They can also form around groups where individual members find
and connect with each other through shared background or knowledge based on
user profiles, private messaging, groups, contributed content and Wiki linkage,
notification, expert search and other creative and social networks.

Tags, social bookmarks, and other social networking tools can help bring order
to the avalanche of information that is involved in forming a creative network
and managing the output from the collaboration.

3.2 Properties of Dynamic Asset Mapping CI

Collaboration in Time. Collaboration can occur asynchronously or synchro-
nously (real-time). Asynchronous collaboration is more common because contrib-
utors do not have to agree on a time to meet. The collaborators can contribute
through e-mail, maps, wikis, blogs, Web forms and other similar mechanisms.
The example in a previous paragraph about posting sightings of invasive species
on a map is being performed as an asynchronous independent action. It does not
require the participation of anyone else.

Synchronous or real-time collaboration requires the presence of two or more
parties to the collaboration. For example if a land developer, local government
and concerned citizen’s group are negotiating (collaborating) over the site and
extent of a commercial mall, then they could share a common map for the
discussion. Of course all the collaborators could be in the same room or share
the map and associated communication channels over the Web.

Mobility. Mobility adds a new dimension to collaboration as now the collabo-
ration and the creation of value can happen while participants are on the move.
When locating an invasive species, an individual can locate it on a paper map
which can then be transcribed to a Web-based map when he/she returns to their
desktop or laptop computer. Instead a smartphone with its global-positioning
system (GPS) can be used to record the location on a map where the map might
also be shown on the phone. Thus mobility has the potential to provide more
accuracy and immediacy as the the data can be captured and reported upon in
real-time.

Adding Value. Once the collaboration begins the active collaborators through
working together using the shared assets and collaborative canvas add value
since they create more information and knowledge or assets, which are usually

A Web-Based Framework for Collaborative Innovation 453

added to the asset base. These additions are called emergent properties. Rich
emergent properties often arise when diverse groups form communities of prac-
tice. Returning to the environmental group that is interested in invasive species,
individuals could join the collaboration and pinpoint the location of sightings of
invasive species thereby adding emergent properties to the asset base by giving
an indication of a species’ progress across the landscape.

4 Implementing CI Based on Dynamic Asset Mapping

The UWCSG and COMAP have undertaken joint research in developing tech-
nologies, processes and meta-tools as approaches to building web-based infor-
mation systems to support CI based on dynamic asset mapping. This work has
resulted in the Web Informatics Development Environment (WIDE) technolo-
gies and toolkit of meta-tools, and over 50 web-based systems many of which
support different forms of CI.

Collaboration and CI require communication as described in [9], but CI re-
quires far more. Specifically CI must contain tools that support the construction,
manipulation, analysis and updating of the dynamic asset map by the members
of the collaborating group while integrating communication, since both are es-
sential to CI. Typically these tools support the creation of input forms and
reports that also integrate components from the collaborative canvas as well as
social networks and on-line communities

Presently the creation and integration of such tools requires the intervention
of technologists such as programmers or GIS experts. The addition of this gate-
keeper to the collaboration team can cripple the collaboration by subverting the
spontaneity of the interactions. As mentioned in [9], time is a scarce resource
and any activity that slows down collaboration will likely cause many of the
collaborators to lose interest and move on to other more rewarding projects.

Because of this requirement to integrate known and new web services, an ef-
ficient approach to building and testing such complex technologies with direct
action from collaboration participants is needed. The toolkit based on the WIDE
technologies offers approaches that are simple to use and to change - program-
mers are rarely needed. In the WIDE context, the user specifies the required
web-based system using a a wizard-based approach and then the specification is
used to generate the system. Based on our observations to date this approach
allows the collaboration group to develop web-based information systems about
10 times faster than through more traditional methods. We are continuing to
improve the WIDE technologies to make them easier to specify systems.

Collaboration should be capable of being mediated in that many collabora-
tions require that all the participants be identified. This condition is not meant
to be onerous, but rather to track the origin of ideas and how they evolve. Our
view is that anyone can join a collaboration but they should be known. However,
the amount of identification (including none) can be left to those who establish
the initial collaboration group. In addition we believe the content of the collab-
oration, that is both the communication and the dynamic asset map and the

454 D. Cowan et al.

“publication” of associated results should belong to and be under the control of
the collaboration group. Further the results should not be available for mining
and sale outside the group of collaborators without the group’s specific permis-
sion. Many current tools do not support adequate mediation and ownership of
the results often resides with the supplier(s) of the tool(s).

Participating organizations are provided with the ability to create mediated
social networks, on-line communities and other communication services that sup-
port self-organization among participants by promoting opportunities to share
knowledge with other participants with common interests or goals. By combin-
ing dynamic asset mapping with social network services and online communities,
communities of practice can collectively communicate to discern opportunities
for CI.

The WIDE technologies and toolkit is a set of processes and meta-tools that
have been conceived to solve the problem of allowing the collaboration team to
construct and integrate its own tools for communication and for operation on
the dynamic asset map. The meta-tools in the WIDE include services related
to temporal and spatial (mapping) data, role-based access controls, reporting,
document management, creative social networks and other collaboration tools,
that is WIDE implements tools that support the concepts in the previous section.
The WIDE toolkit is designed to “wrap” and incorporate available tools that
meet the previously mentioned criteria. This research program related to the
WIDE technologies has a number of goals namely to:

1. develop data models and corresponding databases for dynamic asset maps
in different domains;

2. create meta-tools to simplify the production of interfaces, access controls
and creative social networks and online communities;

3. create interface and social network frameworks to asset maps to support
powerful and purposeful collaboration;

4. create interface frameworks to asset maps to assist with collaborative and
dynamic asset map updating;

5. create interface frameworks or “wrappers” that can be used with existing
tools that support best practices so that they can be integrated into the
WIDE approach;

6. create interface frameworks to interrelate information maintained by differ-
ent communities of practice to enable synergistic benefits; and

7. produce meta-tools that can be used and maintained by the collaborators.

Currently COMAP and UWCSG and the users completely engage during the en-
tire specification, design and implementation cycle and use an iterative approach
within the context of the WIDE technologies to create complex web services. The
approach is iterative in that once users operate a version of the system, they
may actually change the specification on the fly, thus affecting further design
and implementation. The goal of the next version of the WIDE technologies is
to provide the approaches and meta-tools to allow the user to specify and gen-
erate the applications that implement the social networks/on-line communities
and all the tools that operate on the dynamic asset map.

A Web-Based Framework for Collaborative Innovation 455

5 CI Examples Based on Dynamic Asset Mapping

Different forms of CI depend on factors such as community scope, degree of
cohesion among community members, and type of knowledge exchanged and
variations on these factors can lead to different types of communities [10]. The
WIDE technologies have been used to support many different forms of CI with
varying sizes of geographic and virtual communities and different degrees of com-
munity coherence based on common goals. The different forms of CI supported
by the WIDE technologies include:

1. Geomatics (mapping);
2. Dynamic asset-mapping for geographic communities;
3. Dynamic asset-mapping for communities of practice;
4. Real-time synchronous web-based geomatics services;
5. Laymen as sensors;
6. General public participation; and
7. Mediated communication and social networks.

Some specific projects and related approaches are described in this section.

5.1 CI Based Geomatics (Mapping)

CI based on geomatics consists of a common mapping canvas where communities
can collaboratively sustain discussions and communications relating to evolving
spatial issues and also use applications based on standard protocols for data
capture, analysis and reporting. CI based on geomatics services were first used
extensively in the Stewardship Tracking System (STS) where the mapping canvas
consists of satellite and highly resolute airphotos with thematic data.

The STS was devised to address the need for conservation planning for reten-
tion of ecosystem functions in the Southern Ontario landscape. The STS is a sys-
tem which enables the tracking of restoration projects (e.g. landscape elements
such as woodlots, streams, wetlands, and prairie) and provides for adaptive man-
agement amongst the conservation community of practice. A project technical
committee comprised of over a dozen non-government and government organi-
zations oversaw the development of the STS as a concurrent iterative design
process, informed by widely dispersed workshops and web-forums.

The STS project is a web-based set of applications and database that ac-
cesses spatial data and information in real-time from distributed sources over
the Internet. The STS was planned to permit the Southern Ontario conserva-
tion community participants to work collaboratively by:

– entering spatial (polygon) and tabular data, photos and documents about
their ecological restoration projects as well as exporting entered data to
external geographic information systems;

– querying an underlying database to meet their needs for tracking specific
restoration projects;

456 D. Cowan et al.

– reporting and summarizing monitoring data about restoration projects by
numerous parameters (e.g., jurisdiction, implementation year, restoration
type, planting stock type); and

– implementing adaptive management of ecological restoration practices based
on an ever-expanding base of knowledge about the factors that contribute
to successful ecological restoration projects.

The STS was operational for all of the Southern Ontario landscape in November
of 2007. It can be seen on an Adobe Captivate Video prepared by the Ministry
of Natural Resources [11].

COMAP and UWCSG, as a result of the STS, built a mapping interface and
database (WIDE image server, with W3C and Open Geospatial Consortium ser-
vices: WMS, WFS, VML, and SVG) and can serve thematic and highly resolute
airphoto data for Southern Ontario. To ensure that all of Ontario is served and
easily searchable STS uses GeoBase satellite data and a Lambert projection.
STS achieved the following technical objectives:

– a common mapping canvas with airphoto, satellite and thematic data to the
extent available in Ontario;

– an ability to enter spatial (polygon) and tabular data about stewardship and
restoration projects;

– a stewardship tracking protocol, data model and web service;
– an ability to export/import spatial data to/from external GIS; and
– an ability to query, report and summarize the database to track success of

specific projects.

The STS is acknowledged to be the leading effort in shared information infras-
tructure for cross-scalar provincial reporting on stewardship in Canada. WIDE
mapping supports the capture of fine-scale information using standard proto-
cols, which can then be used to augment existing GIS data to permit landscape
GIS analyses. WIDE services can increase the value of information management
resources by integrating numerous data sources in geographic space in order to
provide enhanced direction for asset management decisions. These processes can
be manual or automated.

The dynamic asset base, which can be modified and new projects added over
time, consists of

– maps;
– a database of projects;
– attribute data related to ecological restoration projects including geographic

shapes, text, pictures, audio and video; and
– users, funding agencies and their respective roles.

5.2 CI Based on Dynamic Asset-Mapping for Geographic
Communities - Family Service Toronto

Community participants will take the time to organize and share community
perspectives, reporting and analyses using collaborative geomatics to populate

A Web-Based Framework for Collaborative Innovation 457

maps with text, data and media, if the members of the community see value
returning to their community through their active participation. This process
known as “dynamic community asset mapping” is an extension of “community
asset mapping” as initially defined by John McKnight and John Kretzmann [5]
and now widely practiced by communities in North America.

Family Service Toronto (FST), a city-wide social service agency that offers
family counseling and community development services, and COMAP have re-
cently formed a partnership to build a portal to support the FST Building Inclu-
sive Communities Division, Community and Neighbourhood Development Unit
(CND). CND is funded to facilitate a community development planning project
in an area of Toronto that includes established social service agencies, grassroots
groups, businesses, faith groups, residents and other interested parties.

The goal of this Community Development Project is to create and implement a
community planning process, which is fully inclusive and rooted in best practices
of community development and empowerment. The main objective is to increase
the amount of community planning that is done collaboratively, inclusively and
intentionally. FST believes that one of the best tools to assist in this process is
the development of an “open” and accessible web-based asset-mapping process
that puts mapping tools into the hands of the groups who have the least resources
in the community.

The evolution of grassroots groups from (horizontal) community circles to
coherent organizations with capacity to collaborate with (vertically oriented)
external resources is seen, by professional Toronto community developers, as an
evolution to viable community governance. Community asset mapping in the
pursuit of improving assets and capabilities through collaboration, falls short
of viability in situations where governance is weak. In the absence of a coher-
ent system of governance, access by grass-root groups to external resources, by
default, falls under the control of the external organizations (that do not nec-
essarily reflect the involved input of community residents). The objective here
is to develop capable and effective innovative neighbourhood collaboratives to
which resources could be devolved by external agencies.

In order to create a forum for collaboration and dynamic asset mapping, we
are building the newsatlasTM portal with FST as system custodian. We use the
newspaper-map metaphor as a mechanism that would encourage maintenance of
current community information. newsatlasTM will pilot community development
work in four Toronto neighbourhoods in conjunction with service organizations
that participate in FST. The newsatlasTM service architecture will have three
components:

1. a public view with organized news pages, map-layer based search facilities,
calendars, classifieds and a service directory;

2. a secure social network service for participants who develop and publish
newsatlasTM content; and

3. an underlying database that holds content and application services.

newsatlasTM will start as a community asset mapping initiative and be main-
tained as a community news source with departments and sections providing:

458 D. Cowan et al.

local news, entertainment, arts, sports and recreation content, lifestyle and spiri-
tual content with mapping and event calendars. The process is available to com-
munity groups and social service agencies at no charge which levels the playing
field for groups with little or no resources. At the outset we envision a Toronto
wide service with a list of neighbourhood “front” pages, which will mimic a city-
wide newspaper. All content will be searchable city-wide by drawn map area in
combination with powerful search tools that support searches by content, space
and time.

The newsatlasTM media services will contribute to building viable community
governance. newsatlasTM is intended to bring on-going service sustainability in
terms of content, community participation and social enterprise revenues, all
to address the main project objective: to increase the amount of community
planning that is done collaboratively, inclusively and intentionally.

The asset base just described consists of:

– maps;
– databases of community and neighbourhood assets ranging from service

agencies to gardens to sports facilities to events; and
– the content supported by newsatlasTM .

The asset base is dynamic and supports CI as various community members can
contribute to the databases and the content represented by the newsatlasTM

publications.

5.3 Dynamic Asset-Mapping for Communities of Practice the
Mennonite Heritage Portrait

The Mennonite Heritage Portrait (MHP) [12] is a social network for a community
of practice that contributes digital artifacts and narratives to a rich archival
asset base and web presentation of the Mennonite story [13]. The narratives are
WebDocs with Wiki links to digital artifacts and other content types such as
map location, groups, users, and forum threads. The MHP supports CI through
social network approaches to build a learning network and richer content. The
resulting system allows a community of interest to contribute, discuss, narrate
and authenticate specialized content. To view and use all services, join the MHP
social network [12].

The MHP presents and inter-relates current heritage digital media and doc-
ument collections (such as a photo-negative collection by Peter Entril Snyder a
Canadian painter of Mennonite background), in a comprehensive portrait and
narrative. Collections like the negative collection have been digitized and pre-
sented along with linked narratives to provide context. The MHP connects this
and other extensive collections housed in various locations throughout Waterloo
Region, and provides collaborative tools for:

– development of narratives and learning materials that link to collection
content;

A Web-Based Framework for Collaborative Innovation 459

– content searches that use combinations of simple map, tags, text phrase and
meta-data parameters to reveal, map and list content by themes and quality
of provenance; and

– tools that enable social networks of formal and ad-hoc communities of prac-
tice to contribute, map and link content.

Individual heritage groups and heritage sites often operate in information silos,
focusing on the content for which they are responsible. A number of museums
and collections have begun to digitize their content and make it available on-
line, without reference to material outside their collections. Consequently, many
artifacts, media and documents are being displayed in online isolation, without
attributions or associations to other collections or material on the same subject.
MHP objectives and goals are to:

– present content and narratives previously unavailable online in a coherent,
easy-to-navigate and useful manner;

– connect content from various collections seamlessly and present the content
in new and meaningful ways, within its proper context;

– engage Mennonite youth with their culture and history through a social
network participatory medium;

– support social network services to enable local conversations among practi-
tioners, youth, and the community on cultural heritage topics of common
interest; and

– provide a mechanism for grassroots generated content to be authenticated
and moved into the authoritative collection, i.e. “the canon.”

The MHP provides tools for the development of community narratives with
links to a rich database of digital material. Further development of this system to
include genealogy and built heritage systems will extend its relevance beyond the
immediate community as an attractor for tourism and economic development.

A creative social network service has been created (My Profiles, My Con-
tacts, My Groups, My Messages, My Recommended Content, My Groups with
Forums, managed threads and posts, My Bookmarks, Document development
with content upload, writing, and WIKI linking) for the Mennonite Heritage
Portrait (MHP). This social network, as well as mapping, will be a common
feature of most application services in the collaborative innovation framework.
Mapping searches also serve to connect individuals where site related activity is
of common interest. This platform supports extension of social innovation and
best practices beyond the location or community of original work.

6 Related Work

The asset-mapping CI approach proposed in this paper contrasts with closed
community efforts, which involve limited interaction, and both restricted knowl-
edge of community assets and their value chains [14]. In the context of service
systems, it has been suggested that open service-oriented models could use novel
paradigms based on innovation [15] and asset mapping.

460 D. Cowan et al.

Thinking frameworks have been proposed to help organizations focus their
management attention, and enable users to participate in the innovation process
[16]. In addition, modeling approaches have been defined to describe innovation
networks from a services system perspective and to address inter-organizational
interactions [10]. In comparison, our proposal focuses on a framework that sup-
ports the construction of web-based collaborative innovation systems based on
asset mapping that can address both inter-organizational and general community
interactions and resource exploitation and production.

In summary, the research described in this paper based on our experiences
aims at defining asset-mapping driven approaches to the development of web-
based intelligent collaborative innovation systems that promote explicit knowl-
edge sharing needs among cohesive and global-scope communities.

7 Conclusion

This paper outlines the concepts of collaborative innovation based on asset map-
ping, its importance to the functioning of modern society and how modern web-
based tools could be used to support this activity. Based on the experience gained
in designing and building over 50 systems that incorporate collaborative inno-
vation, some of which are described in some detail in this paper, it is clear that
collaborative innovation takes many forms. Thus, it is not possible to build a
single set of tools to support collaborative innovation. Rather a set of meta-tools
is needed which can be used to build tailored systems to fit specific situations
that arise when web-based collaboration is to occur. The WIDE technologies are
an example of the type of meta-tools that are needed. Lessons learned from the
construction of WIDE are being applied in the creation of WIDE 2.0.

Acknowledgment

The authors would like to thank the Ontario Ministry of Natural Resources
(OMNR), Land Information Ontario, the Ontario Federation of Anglers and
Hunters, GeoConnections, the Oak Ridges Moraine Foundation, Family Ser-
vice Toronto (FST), Canadian Heritage, the Indigenous Cooperative on the
Environment (ICE), the Northern Ontario Mushkegowuk First Nations and
Mushkegowuk Tribal Council, the Mississaugas of the New Credit First Na-
tion for their financial support and cooperation in implementing the projects
described in this paper.

References

1. Vinge, V.: 2020 Computing: The Creativity Machine. Nature 440, 411 (2006)

2. WEF: World Economic Forum Annual Meeting 2008: The Power of Collaborative

Innovation,

http://www.weforum.org/en/events/ArchivedEvents/AnnualMeeting2008/

index.htm

http://www.weforum.org/en/events/ArchivedEvents/AnnualMeeting2008/index.htm
http://www.weforum.org/en/events/ArchivedEvents/AnnualMeeting2008/index.htm

A Web-Based Framework for Collaborative Innovation 461

3. Chesbrough, H., Vanhaverbeke, W., West, J.: Open Innovation: Researching a New

Paradigm. Oxford University Press, Oxford (2006)

4. Wenger, E.: Communities of Practice: Learning, Meaning and Identity. Cambridge

University Press, Cambridge (1998)

5. Kretzmann, J.P.: Building Communities from the Inside Out. ACTA Publications,

Skolkie Illinois (1993)

6. Alencar, P., Oliveira, T., Cowan, D., Mulholland, D.: Towards Monitored Data

Consistency and Business Processing based on Declarative Software Agents. In:

Garcia, A.F., de Lucena, C.J.P., Zambonelli, F., Omicini, A., Castro, J. (eds.)

Software Engineering for Large-Scale Multi-Agent Systems. LNCS, vol. 2603, pp.

267–284. Springer, Heidelberg (2003)

7. Bertino, E., Martino, L., Paci, F., Squicciarini, A.: Security for Web Services and

Service-Oriented Architectures. Springer, Heidelberg (2010)

8. Longstaff, J., Lockyer, M., Nicholas, J.: The Tees Confidentiality Model: An Au-

thorization Model for Identities and Roles. In: Proceedings of the Eighth ACM

Symposium on Access Control Models and Technologies (2003)

9. Masum, H., Tovey, M.: Given Enough Minds . . . Bridging the Ingenuity Gap. Bridg-

ing the Ingenuity Gap. First Monday 11(7) (July 2006),

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/

view/1370/1289

10. Janner, T., Schroth, C., Schmidt, B.: Modelling Service Systems for Collaborative

Innovation in the Enterprise Software Industry: The St. Gallen Media Reference

Model Applied. In: IEEE International Conference on Services Computing, pp.

145–152. IEEE Computer Society, Los Alamitos (2008)

11. STS: STS Video, http://www.comap.ca/STSVid/Prt1Introduction.htm

12. MHP: Mennonite Heritage Portrait, http://www.mennoniteheritageportrait.ca

13. GAMEO: Global Anabaptist Mennonite Encyclopedia Online,

http://www.gameo.org

14. Chesbrough, H.: Open Innovation: The New Imperative for Creating and Profiting

from Technology. Harvard Busienss School, Boston (2003)

15. Maglio, S., Srinivasan, S., Kreulen, J., Spohrer, J.: Service Systems, Service Scien-

tists, SSME, and Innovation. Communications of the ACM 49(7), 81–85 (2006)

16. van der Walt, J.S., Buitendag, A.A., Zaaiman, J.J., van Vuuren, J.J.: Community

Living Lab as a Collaborative Innovation Environment. Issues in Informing Science

and Information Technology 6, 421–436 (2009)

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1370/1289
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1370/1289
http://www.comap.ca/STSVid/Prt1Introduction.htm
http://www.mennoniteheritageportrait.ca
http://www.gameo.org

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 462–472.
© Springer-Verlag Berlin Heidelberg 2010

A Distributed Dynamics for WebGraph
Decontamination

Vanessa C.F. Gonçalves1, Priscila M.V. Lima2,
Nelson Maculan1, and Felipe M.G. França1

1 Systems Engineering and Computer Science Program, COPPE,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

{vcarlaufrj,maculan,felipe}@cos.ufrj.br
2 Department of Mathematics, Instituto de Ciências Exatas,

Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
priscilamvl@ufrrj.br

Abstract. In order to increase the visibility of a target pageT, web spammers
create hyperlink structures called web bubbles, or link farms. As countermeasure,
special mobile agents, called web marshals, are deployed in the detection and
disassembling of link farms. Interestingly, the process of minimizing the
number of web marshals and the number of hops needed to dismantle a web
bubble is analogous to the graph decontamination problem. A novel distributed
algorithm for graph decontamination, which can be used to define the behavior
of web marshals, is introduced in this work. The new algorithm is asynchronous
and topology independent. Moreover, it presents equal or better performance
and needs smaller numbers of web marshals when compared to recent related
works targeting only circulant graphs, a typical structure of link farms.

Keywords: graph decontamination, link farm, distributed algorithms,
scheduling by edge reversal, web bubble, web graph.

1 Introduction

Web spammers create a set of web pages, called web bubble or link farm, having each
of its pages pointing to a target web page T and to a subset of other pages of the link
farm, in order to increase the visibility of page T. A number of methods to hide web
bubble links have been conceived to work cooperatively with other mechanisms
designed to avoid the breakage of these link structures [9][13]. Specialized web
crawlers, called web marshals, are employed in the detection of this type of
“infection” and many of them have been tested in order to improve their efficiency
under such attacks [12][15][17].

A number of methods to dismantle link farms can be found in the literature
[7][8][11][16]. Considering a web graph containing web bubbles inside its structure
as a “contaminated” graph, graph decontamination, a graph search problem, has been
acknowledged in the literature as the “cure”. A web page is contaminated if it
includes links to other web pages, forming of a link farm, and all of such pages
having also a link to the target page T, all of such links inserted by web spammers.

 A Distributed Dynamics for Web Graph Decontamination 463

Among other situations in which the concept of contamination could be identified
with, such as a virus spreading throughout hosts, or an exploration team moving
through a forest, this work limits itself to the problem of increasing the visibility of a
target web page T by means of link farms. In such case, decontamination consists in
breaking the links that maintain a link farm and not allowing that a page becomes
contaminated again. The idea is that, once an unprotected node is exposed to a
contaminated neighbor, it can be contaminated again. In the strictest case, the number
of contaminated neighbors that can contaminate an unguarded node is equal to one
(1). Nevertheless, an acceptable generalization consists in consider that, in the case of
web bubbles, a broken link can be restored just by obtaining a simple majority of
contaminated neighbors [7].

Special mobile agents, called web marshals (WMs)in [7], have been developed in
order to perform the decontamination of web pages. They move, from node to node
(or page to page), tackling the contamination they are designed to deal with. Luccio
and Pagli [7], assuming that circulant graphs are a typical structure used by web
spammers, have proposed a distributed algorithm to be embedded into WMs in order
to destroy link farms. Both synchronous and asynchronous versions were developed
and bounds for the number of WMs and for the number of hops were provided.

This work extends recent results presented in [5] and introduces a new distributed
decontamination algorithm based on the Scheduling by Edge Reversal (SER) graph
dynamics[1][3][4], a distributed algorithm for resource sharing that works in both
asynchronous and synchronous modes. The synchronous version of SER works in the
following way: starting from any acyclic orientation over the edges of any arbitrarily
connected target graph G, only sink nodes, i.e., nodes having all of their adjacent
edges directed to themselves, are allowed to “operate” upon shared resources. After
operating, all sink nodes reverse the orientation of all of their adjacent (incident)
edges, becoming source nodes. As a new acyclic orientation having a new set of sink
nodes is necessarily defined, the dynamics is indefinitely preserved. The
asynchronous version of SER differs only from the synchronous one by allowing
each sink node taking any arbitrary time to become a source node. A large spectrum
of problems had been tackled with SER, such as: (i) design of asynchronous
(clockless) digital circuits [6]; (ii) integrated scheduling of Job Shop and AGVs
(Automated Guided Vehicles) in flexible manufacturing systems [18][19]; (iii)
biologically plausible rhythm generators [20][21], and (iv) design of collision free
MAC protocols [22].

The web graph decontamination based on SER, after an initial acyclic orientation
is set, works as follows: each sink node receives a WM; once decontamination is done
at a sink node, new WMs are sent, via replication, just to immediate neighbor nodes
that will become sinks next, upon edge reversal. The SER-based approach implicitly
associate the amount of concurrency provided by a SER dynamics to the number of
concurrently operating WMs and the total number of decontamination steps
performed, i.e., one hop is counted each time a node receives one (or more) WM copy
(or copies) in order to become a new sink. It will be shown that the SER-based
approach produces the same or better quality solutions found in [7], while still able to
work in arbitrary connected topologies, mostly targeting web graphs [10], and under
more strict contamination rules, what suggests its appropriateness on dealing with
new kinds of web attacks.

464 V.C.F. Gonçalves et al.

2 Related Works

A distributed algorithm to destroy a link farm F with the help of WMs was proposed
by Luccio and Pagli [7]. Equivalent to the mobile agents used in [8][11], which are
passed through the links that form the link farm, once a WM gets into a contaminated
page the link to the target page T is destroyed.

Fig. 1. The structure of a link farm F: increasing the visibility of web page T

Assuming that a link farm F has the structure of a circulant graph (see Figure 1),
their work is strongly based on the properties of this particular graph topology. It is
demonstrated that in a circulant graph Ci,n(L), with L being a list of integers, k = L ,
k + 2 WMs are needed to dismantle F. Figure 2 illustrates circulant graphs having (a)
k = 3 (L being {1, 2, 4}), and (b) k = 2 (L being {1, 2}).

Based on the visibility of each node (distance in hops from this node to any other node
in the graph), another graph decontamination method is proposed in [11]. It is shown that
visibility 2, i.e., when an WM can “see” the node hosting it, its immediate neighbors and
the neighbors of its immediate neighbors, is enough to avoid overuse of WMs. The total
number of employed WMs is one of the main concerns of the present work.

Fig. 2. Examples of circulant graphs: (a) Ci,10(1, 2, 4); (b) Ci,6(1, 2)

 A Distributed Dynamics for Web Graph Decontamination 465

3 Edge Reversal Decontamination

It is possible to start a decontamination dynamics based on the SER behavior from
any acyclic orientation ω of the target web graph G. It is worth noticing that there is
always a node coloring of G associated to ω in the following way: each node receives
color equal to the length of the longest directed path from it to a sink node. This is
called the sink decomposition of ω, where sink nodes receive color λ = 0. By placing
Web Marshals (WMs) into sink nodes, it is easy to see that nodes having color λ = 1
are next to turn into color λ = 0 (sinks) upon edge reversal.

As minimizing the number of WMs is a main concern, it is important to observe
that having sink decompositions of large length increase the probability of dealing
with fewer concurrent sink nodes, i.e., a smaller number of WMs in the web graph.
The next two subsections presents (i) the Alg-Stretcher, a heuristics to enlarge the
length of sink decompositions of already defined acyclic orientations produced by
Alg-Edges [2], a randomized distributed algorithm designed to produce acyclic
orientations over anonymous networks, and; (ii) the Alg-Decontamination algorithm,
the edge reversal based distributed algorithm; applied, in this work, to circulant
graphs used to build link farms. Having in mind the particular properties of circulant
graphs, this work also aims to compare the performance, both in terms of the number
of WMs and the number of steps taken to decontaminate, between the algorithm
proposed by [7] and the SER-based strategy introduced here.

3.1 Alg-Stretcher

Let λ = lmax be the outer layer in the sink decomposition of a target acyclic orientation
ω. Alg-Stretcher works as follows: from layers λ = (lmax -1) to λ = 0 in the sink
decomposition, each node v in a layer λ = lv, 0 ≤ lv < lmax, is tested about being moved
to a new outer layer λ > lv. If an increase in the number of layers of the sink
decomposition of the graph is obtained, the resulting acyclic orientation ω’ is kept by
having all of v’s edges oriented according to the direction of the sink decomposition.
If there is no increase in the sink decomposition, the previous orientation is kept.

Lemma 1. Alg-Stretcher does not induce directed cycles in G.

Proof. Let ω be an acyclic orientation generated by Alg-Edges, for example. By
definition, any sink decomposition of ω has no directed path from an inner layer
(λ < lv) to an outer layer (λ > lv). The Alg-Stretcher procedure reverses only the
orientation of edges incidents to a node v, belonging to layer λ = lv, that were coming
from nodes of outer layers (λ > lv) that became oriented in the opposite direction of
the sink decomposition. Figure 3 illustrates the sink decomposition of ω, from layers
λ = lmax toλ = 0.

In Figure 3 one notes that the node x is part of the path of z and y to sink nodes. If
one tests x to move to an outer layer, one has the orientation ω’ illustrated by Figure
4. Reversing only the edges from outer layers that would be in the opposite direction
of the sink decomposition, one prevents the creation of a cycle in the path to the sink
nodes from the elected node v in the sink decomposition. In the previous orientation
ω, z and y have no directed paths from them to themselves as well as x. So the only

466 V.C.F. Gonçalves et al.

Fig. 3. Sink decomposition ofω , lz > ly > lx

Fig. 4. Sink decomposition ofω', lx > lz> ly

Fig. 5. The creation of a directed cycle

way that one could create a cycle would be a change of only one edge directed from z
or y to x. Figure 5 demonstrate that by not reversing the orientation of the edge {y,x},
a cycle is created. Since all the edges that could create a cycle from such nodes are
reversed, i.e., keeping the sink decomposition direction, the graph acyclicity is
preserved.

Figure 6 depicts experimental results from the application of Alg-Stretcher in acyclic
orientations produced by Alg-Edges. Each point is given by the mean value of 500
runs over connected random graphs having the same density. Compared to other two

 A Distributed Dynamics for Web Graph Decontamination 467

distributed heuristics studied in [2][23], Alg-Edges is the algorithm producing the
largest number of colors and Alg-Stretcher has induced a further expressive increase
in the resulting number of colors.

One expects that the total number of WMs needed for decontamination, to be
placed at sink nodes, will be near minimum. It is also worth noticing that to find an
acyclic orientation associated to (i) the minimum number of colors [1][3][4], and to
(ii) the maximum number of colors [23], are both NP-complete problems.

Fig. 6. Applying Alg-Stretcher over Alg-Edges: numbers of colors vs. graph density

3.2 Alg-Decontamination

Consider that each node of a target directed acyclic graph G can be in the following
three local states:

• Contaminated: the node is harmful;
• Clean: the node is not contaminated;
• Guarded: the node contains a WM.

The following is how Alg-Decontamination works. WMs are placed into sink nodes
(λ = 0); sink nodes are guarded and all other nodes are considered contaminated
(nodes have visibility 1, i.e., a WM can visualize only nodes hosting it and its
immediate neighbors).

Each node checks its own while it stills contaminated. If the node is
contaminated and = 0, then it checks if it has received only one WM. If not, i.e.,
more than one WM has been received, the node chooses just one of them. Then, the
chosen WM cleans the node, destroy the links of the web bubble and to the target
page T, and then makes a decision: (i) terminate, by declaring the node clean, and
move to other node (a node in = 1), or; (ii) keep the execution, i.e., the node is
guarded, and make copies of itself and send to the neighbor(s) that will become

468 V.C.F. Gonçalves et al.

sink(s), i.e., neighbors in = 1. A WM cannot terminate its execution unless the
majority of its neighbors are clean.

Upon sending WM copies, a WM send also a message reversing all incident edges
to all of its immediate neighboring nodes, thus producing a new acyclic orientation on
G. Nodes that were in = 1 get into = 0, receiving one or more WM copies. At this
point, the process repeats itself until all nodes in the graph are clean.

According to Alg-Decontamination, if a node is a sink (= 0) then it has received
at least one WM. When a WM finishes its operation, by reversing all of its directed
edges, such node is no longer a sink (> 0). By proceeding with edge reversal over an
acyclic orientation, the next orientation will be also acyclic. So, all others nodes that
were previously in > 0 will eventually become sinks, guaranteeing the
decontamination of all nodes. Notice that by keeping a WM into a node having any
immediate neighbor with the majority of its neighbors contaminated, we avoid that
an already clean node becomes a contaminated node once again, as shown in [7].

Fig. 7. SER-based decontamination of Ci,6 (1, 2)

Fig. 8. Ci,6 (1, 2) decontamination proposed in [7]

 A Distributed Dynamics for Web Graph Decontamination 469

The SER-based decontamination of a circulant graph Ci,6 (1, 2) is illustrated in
Figure 7. The behavior of the asynchronous algorithm proposed in [7] running over
the same circulant graph Ci,6 (1, 2) is shown in Figure 8. In both Figures 7 and Figure
8, contaminated, guarded and clean nodes are shown in black, gray, and white
colors, respectively.

Theorem 1. Alg-Decontamination decontaminates any connected graph
G = (N, E).

Proof. Consider an arbitrary connected graph G=(N, E) and an acyclic orientation
ω0over all edges in E. A property of SER [1][3][4] is that all nodes in N will
eventually become sink nodes, at least once, in a sequence found inside a finite set of
acyclic orientations {ω0, ω1, ω2, ... , ωn}, where ω0 ≠ ω1 ≠ ...≠ ωn-1 ≠ ωn. Necessarily, a
period of length p, given by the subset of acyclic orientations {ωi, … , ωn}, 0 ≤ i< n,
p = n – i + 1, will be reached. Notice that, in Figure 7, the period is given by the
orientations in {ωi, ωii, ... , ωvi}, and the orientation ωvii is equal to ωi. Also, notice
that all nodes become sinks and a node that is sink in ωi is no longer a sink in ωi+1,
such that a sink in ωi+1 has at least one neighbor that is a sink in ωi[1]. In Alg-
Decontamination, at the first time a node becomes a sink, it receives a copy of aWM
and, since all nodes eventually become sinks, they all end up receiving at least one
WM.

Another concern is the contamination criterium, i.e., how a clean node can get
contaminated, which is defined by the number of contaminated neighbors of a clean
node. In the more strict case, this number is equal to one (1) and the necessary
condition to keep a node clean would be having all of its neighbors either clean or
guarded. In Alg-Decontamination, re-contamination is prevented by local decisions
about keeping WMs inside nodes that not reach the necessary condition that avoids
get contaminated by neighbors.

4 Experimental Results

A quantitative comparison between the asynchronous algorithm proposed in [7] and
Alg-Decontamination, both algorithms were applied over the same set of graph
instances, is provided here. The initial acyclic orientation chosen as starting point for
Alg-Decontamination reproduces the initial scenario used by the algorithm proposed
in [7], in which WMs move only in the links of the main cycle.

Circulant graphs Ci,n(L) with k = 2 (L = {1,2}) and k = 3 (L = {1,2,3}) are
considered. In the case of k = 2, Alg-Decontamination needed three WMs, while the
algorithm proposed in [7] needed four WMs. In the case of k = 3, Alg-
Decontamination needed four WMs, while the proposed in [7] needed five WMs (all
tests made with 10 n 10,000).

It is assumed in [7] that the link hops performed by WMs can be counted as the
time that decontamination takes to terminate. This way, a comparison is made based
on the number of link hops that are needed to decontaminate a graph. The number of

470 V.C.F. Gonçalves et al.

hops needed in [7] is n – c + h, where n is the number of nodes, c = (k + 1)/2 and h
is the number of link hops needed to place the first WMs, given by:

About the number of hops, fork = 2, Alg-Decontamination and the [7] algorithm
both needed the same number of hops, which for Alg-Decontamination is constant
with k, and always takes n – 1 hops in circulant graphs. From k = 3 upwards, Alg-
Decontamination needs less link hops to decontaminate, as illustrated by Table 1.
This happens since Alg-Decontamination doesn’t need to perform the hops taken in
the algorithm in [7] by a verifier WM about the other WMs’ positions.

Table 1. Link hops (k=3)

5 Conclusions

Alg-Decontamination is a new distributed algorithm for the decontamination of web
graphs. Compared to recent related work [7], Alg-Decontamination provided the same
or better figures in terms of the number of web marshals and number of hops taken.
Moreover, while the said related work is dedicated to the class of circulant graphs,
Alg-Decontamination is topology independent. Although a major concern of this work
is about providing a topology independent distributed algorithm, i.e., a SER-Based
decontamination able to deal with any given graph structure, that could not be
demonstrated and exercised in this paper. This suggests that Alg-Decontamination
could be used in new/unseen forms of web spam. A heuristic to obtain acyclic
orientations associated to the maximum number of node colors, i.e., large sink
decompositions, was also produced. Devising a combinatorial optimization approach
to this problem is left for future work.

Acknowledgments. The authors would like to acknowledge the Web Science Brasil
project, CNPq 557.128/2009-9 and FAPERJ E-26/170028/2008 (Programa INC&T -
Projeto: Instituto Brasileiro de Pesquisa em Ciência da Web).

(1) h =
3(k2/4 − k/2) for k even

3(k2/4 − k/2 + 1/4) for k odd

 A Distributed Dynamics for Web Graph Decontamination 471

References

1. Barbosa, V.C., Gafni, E.: Concurrency in Heavily Loaded Neighborhood-Constrained
Systems. ACM Transactions on Programming Languages and Systems 11(4), 562–584
(1989)

2. Arantes Jr., G.M., França, F.M.G., Martinhon, C.A.: Randomized generation of acyclic
orientations upon anonymous distributed systems. Journal of Parallel and Distributed
Computing 69, 239–246 (2009)

3. Barbosa, V.C.: An Introduction to Distributed Algorithms. The MIT Press, Cambridge
(1996)

4. Barbosa, V.C.: An Atlas of Edge-Reversal Dynamics. Chapman & Hall/CRC, London
(2000)

5. Gonçalves, V.C.F., França, F.M.G., Maculan, N., Lima, P.M.V.: SER-Based Web Graph
Decontamination. In: 1st Worskhop INCT WebScience, PUC-RIO (2010)

6. Cassia, R.F., Alves, V.C., Bernard, F.G.-D., França, F.M.G.: Synchronous-to-
asynchronous conversion of cryptographic circuits. Journal of Circuits, Systems, and
Computers 18, 271–282 (2009)

7. Luccio, F., Pagli, L.: Web Marshals Fighting Curly Link Farm. In: Crescenzi, P.,
Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 240–248. Springer,
Heidelberg (2007)

8. Flocchini, P., Nayak, A., Schulz, A.: Cleaning an arbitrary network with mobile agents.
In: Chakraborty, G. (ed.) ICDCIT 2005. LNCS, vol. 3816, pp. 132–142. Springer,
Heidelberg (2005)

9. Gyöngyi, Z., Garcia-Molina, H.: Web Spam Taxonomy. In: Proc. of AIRWeb 2005,
Chiba (2005)

10. Donato, D., Leonardi, S., Millozzi, S., Tsaparas, P.: Mining the inner structure of the
Web graph. In: 8th International Workshop on the Web and Databases (WebDB 2005),
Baltimore, Maryland (2005)

11. Flocchini, P., Nayak, A., Schulz, A.: Decontamination of Arbitrary Networks using a
Team of Mobile Agents with Limited Visibility. In: Proc. of 6th IEEE/ACIS
International Conference on Computer and Information Science, ICIS 2007 (2007)

12. Becchetti, L., Castillo, C., Donato, D., Leonardi, S., BaezaYates, R.: Link-Based
Characterization and Detection of Web Spam. In: Proc. AIRWeb 2006, Seattle (2006)

13. Du, Y., Shi, Y., Zhao, X.: Using Spam Farm to Boost Page Rank (2006) (manuscript
under publication)

14. Lapaugh, A.: Recontamination does not help to search a graph. Journal of the
ACM 40(2), 224–245 (1993)

15. Barrière, L., Flocchini, P., Fraignaud, P., Santoro, N.: Capture of an intruder by mobile
agents. In: Proc. 14th ACM Symposium on Parallel Algorithms and Architectures
(SPAA), Winnipeg, Canada (2002)

16. Luccio, F., Pagli, L., Santoro, N.: Network Decontamination with Local Immunization.
In: Proc. of the 8th APDCM, pp. 110–118 (2006)

17. Borie, R., Tovey, C., Koenig, S.: Algorithms and Complexity Results for Pursuit-Evasion
Problem. In: Proc. of the 21st International Joint Conference on Artificial Intelligence,
pp. 59–66. Morgan Kaufmann Publishers, San Francisco (2008)

18. Lengerke, O., Carvalho, D., Lima, P.M.V., Dutra, M.S., Mora-Camino, F., França,
F.M.G.: Controle distribuído de sistemas job shop usando escalonamento por reversão de
arestas. In: Proc. of the XIV Latin Ibero-American Congress on Operations Research
(CLAIO 2008), Cartagena de Indias (2008) (in Portuguese)

472 V.C.F. Gonçalves et al.

19. Lengerke, O., Dutra, M.S., França, F.M.G., Tavera, M.J.M.: Automated Guided Vehicles
(AGV): Searching a Path in the Flexible Manufacturing Systems. Journal of Konbin 8,
113–124 (2008)

20. Yang, Z., França, F.M.G.: A generalised locomotion CPG architecture based on
oscillatory building blocks. Biological Cybernetics 89(1), 34–42 (2003)

21. Braga, R.R., Yang, Z., França, F.M.G.: Implementing an Artificial Centipede CPG:
Integrating appendicular and axial movements of the scolopendramorph centipede. In:
Proc. of the International Conference on Bio-inspired Systems and Signal Processing
(BIOSIGNALS 2008), vol. 2, pp. 58–62. INSTICC Press (2008)

22. Pinho, A.C., Santos, A.A., Figueiredo, D.R., França, F.M.G.: Two ID-Free Distributed
Distance-2 Edge Coloring Algorithms for WSNs. In: Fratta, L., Schulzrinne, H.,
Takahashi, Y., Spaniol, O. (eds.) IFIP-TC 6. LNCS, vol. 5550, pp. 919–930. Springer,
Heidelberg (2009)

23. Arantes Jr., G. M.: Tracks, Concurrency Optimization, and Probabilistic Initialization on
Systems under Edge Reversal, D.Sc. thesis, COPPE/UFRJ (2006) (in Portuguese)

Increasing Users’ Trust on
Personal Assistance Software Using a

Domain-Neutral High-Level User Model

Ingrid Nunes, Simone D.J. Barbosa, and Carlos J.P. de Lucena

PUC-Rio, Computer Science Department, LES - Rio de Janeiro, Brazil

{ionunes,simone,lucena}@inf.puc-rio.br

Abstract. People delegate tasks only if they trust the one that is going

to execute them, who can be a person or a system. Current approaches

mostly focus on creating methods (elicitation approaches or learning al-

gorithms) that aim at increasing the accuracy of (internal) user models.

However, the existence of a chance of a method giving a wrong answer

decreases users’ trust on software systems, thus preventing the task dele-

gation. We aim at increasing users’ trust on personal assistance software

based on agents by exposing a high-level user model to users, which

brings two main advantages: (i) users are able to understand and verify

how the system is modeling them (transparency); and (ii) it empow-

ers users to control and make adjustments on their agents. This paper

focuses on describing a domain-neutral user metamodel, which allows

instantiating high-level user models with configurations and preferences.

In addition, we present a two-level software architecture that supports

the development of systems with high-level user models and a mechanism

that keeps this model consistent with the underlying implementation.

1 Introduction

As web applications become increasingly interactive, accessible, and pervasive
the web is providing mechanisms that can help users extend their mental and
physical capabilities. The Web now provides access to huge amounts of well-
organized information and supports social interactions well beyond our physi-
cal limitations. Thus there are new challenges in managing both the quantity
of information and the complexity and timeliness of relationships. Multi-agent
Systems (MASs) [1], with roots not only in Artificial Intelligence (AI) but also
in distributed systems and software engineering, can incorporate autonomous
behavior to support web users in meeting many of these new barriers by free-
ing users from repetitive and tedious tasks. In addition, MASs, by providing
autonomous behavior, may be employed by web users to support access to in-
formation and decision-making. The concept of user (or personal) agents was
championed by Maes in 1994. In [2], she introduced the idea that autonomous
agents may be personal assistants who are collaborating with the user in the
same work environment. However, even though significant research effort has
been invested on developing user agents, we are far from their massive adoption.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 473–487, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

474 I. Nunes, S.D.J. Barbosa, and C.J.P. de Lucena

People delegate tasks only if they trust the one that is going to execute them,
who can be a person or a system. For user agents, this claim is supported by the
study presented by Schiaffino & Amandi in [3]. Their study showed that users
fear having a completely automated agent. In addition, they concluded that a
large group of users is willing to adopt user agents only if they know exactly
what the agent is going to do, i.e. if they trust that the agent will perform
a behavior previously approved by them. Current approaches mostly focus on
creating methods (elicitation approaches or learning algorithms) that aim at
increasing the accuracy of (internal) user models. Nevertheless, the risk that a
method gives a wrong answer decreases users’ trust on software systems, thus
preventing the task delegation.

Our research aims at increasing the level of acceptance of user agents (and
task delegation to computer systems) by users. In order to achieve this our
goal is to increase users’ trust on personal assistance software based on two
main properties: (i) transparency; and (ii) power of control. The main idea is to
expose user models (or profiles) in an end-user-readable manner, and therefore
users can understand the system behavior (transparency). In addition, users can
manage their model to control the agents’ behavior (power of control).

In this paper we demonstrate steps in creating a model-driven approach for de-
veloping personal assistance software based on high-level user models and user
agents. We present an approach to empower users with a high-level domain-
specific language that allows them to dynamically program and personalize their
agents. Even though inference models might reach the wrong conclusions about
user preferences and cause agents to take inappropriate actions, they can be
leveraged to create initial versions of the user model, so that users can make
fine-grained modification on it. The steps to be presented are: (i) a high-level
user metamodel to represent user configurations and preferences; and (ii) a soft-
ware architecture to build personal assistance software based on agents that are
adapted driven by instances of the proposed metamodel.

The proposed Domain-specific Model (DSM) (high-level user metamodel) pro-
vides the necessary vocabulary to build an end-user configurations and prefer-
ences language. Existing representation models of user preferences force users to
express their preferences in a particular way. Consequently, these works create
the need for elicitation techniques to interpret answers to questions and indirectly
build the user model. The language that our DSM creates allows users to config-
ure their agents and to express different kinds of preference statements, creating
a vocabulary that allows representing statements close to the ones expressed in
natural language. The proposed DSM is an application-domain-neutral meta-
model that may be instantiated to build different applications.

The paper also describes a software architecture to build personal assistance
software that follows our approach. The architecture is composed of user agents
that are dynamically adapted based on a user model that follows our metamodel.
In this sense, users’ customizations are represented in a high-level user model
and realized at the implementation-level by user agents. As configurations and
preferences may impact in different agents and their components, the user model

Increasing Users’ Trust on Personal Assistance Software 475

becomes a modularized view of users’ customizations, facilitating their manage-
ment, considering that they change over time. However, given that there are
users’ customizations represented in two different levels of abstractions, we also
present an algorithm that keeps both representations consistent.

This paper is organized as follows. Section 2 describes our metamodel. In
Section 3, we describe the software architecture for building personal assistance
software. Section 4 presents an evaluation of our metamodel by showing its
generality when used across different domains. Section 5 presents related work.
Finally, Section 6 concludes this paper.

2 A Domain-Neutral User Metamodel

One of the most challenging tasks in building personal assistance software able to
act on users’ behalf is to capture particularities of the person being represented
(user model) so that the system can present an appropriate behavior. We aim
at exposing the user model to users in order to provide them the power of
controlling their agents and increasing the trust on the system. This user model
must be expressed with very high-level abstractions, otherwise users are not able
to understand them. This section presents our proposal of a domain-neutral high-
level user metamodel to represent users’ customizations.

We acknowledge the relevance of the existence of a reasoning algorithm for
user models. However, our goal is to use the proposed metamodel in a level higher
than the ones processed by algorithms. When users inform their preferences to
applications with restricted user models, e.g. models with boolean preferences,
they have to translate preferences statements expressed in natural language to
the one imposed by the application. Our goal with this high-level model is to
provide users with a larger vocabulary to express their preferences and leave the
task of translating preferences for a particular model to the system, as Figure 1
illustrates. For instance, a user may say: “My preference is not to buy a laptop
of the brand X, but I don’t care if the brand is A, B or C.” Suppose now that the
system uses a reasoning algorithm to process preferences expressed as a partial
order relation. We can represent that preference like this:

preference = {< A, X >, < B, X >, < C, X >}.
Therefore, our metamodel is implementation-independent.

It is important to highlight that our user metamodel distinguishes user con-
figurations from preferences, which we collectively refer to as customizations.
Configurations are direct and determinant interventions that users perform in
a system, such as adding/removing services or enabling optional features. They
can be related to environment restrictions, e.g. a device configuration. They are
represented by optional and alternative features that users choose for customiz-
ing their application. A feature, in turn, is any variable characteristic of the
system. On the other hand, preferences represent information about the users’
values that influence their decision making, and thus can be used as resources in
agent reasoning processes. They typically indicate how user rates certain options

476 I. Nunes, S.D.J. Barbosa, and C.J.P. de Lucena

Fig. 1. High-level User Model

better than others in certain contexts. They are a representation of the cognitive
model of the user in order for agents to behave and make decisions in a way as
close as possible as users would do.

Our user metamodel is instantiated in a stepwise fashion. First, application
developers instantiate part of the metamodel for defining application-specific
abstractions and constraints. This is performed at development time. Second,
at runtime, the user instantiates preferences and configurations in order to cus-
tomize the personal assistant application. Our metamodel, which is an extension
of the UML metamodel1, is depicted in Figure 2 in four different parts. Elements
of the UML metamodel, e.g. Class and Property, are either distinguished with
a gray color in diagrams or are referred to in properties. Next we describe our
metamodel more extensively.

There are three models that must be instantiated at development time: (i)
Ontology model; (ii) Feature model; and (iii) Preferences Definition model. The
Ontology model represents the set of concepts within the domain and the re-
lationships between those concepts. The Feature model (Figure 2(b)), in turn,
allows modeling variable traits within the domain, which are later used for defin-
ing user configurations. This model incorporates the ideas of Software Product
Lines (SPLs) [4] and their feature models [5]. SPL is a new software reuse ap-
proach that aims at systematically deriving families of applications based on a
reusable infrastructure with the intention of achieving both reduced costs and
reduced time-to-market. The goal of the Feature model is to describe variation
points and variants in the system, which can be either optional or alternative, and
can be added and removed dynamically from the application. A FeatureModel
is a tree of Features. A Feature can be mandatory, optional and alternative.
Mandatory features are represented only if they are in a chain with other op-
tional and alternative features, and therefore need to be represented. Otherwise,
they will be present in the system any way. AlternativeFeatures are grouped
into FeatureGroups, which define the minimum and maximum number of al-
ternatives that can be chosen. Finally, constraints may be defined in order to
represent relationships between variations, e.g. a feature requires the presence

1 http://www.omg.org/spec/UML/

Increasing Users’ Trust on Personal Assistance Software 477

(a) Propositional Logic (b) Feature Model

(c) Preferences Definition Metamodel

(d) Preferences Metamodel

Fig. 2. User Metamodel

478 I. Nunes, S.D.J. Barbosa, and C.J.P. de Lucena

of another. These constraints are expressed as PropositionalFormulas, shown
in Figure 2(a).

The goal of our metamodel is to allow users not only to customize their appli-
cations with selected features, as in a SPL, but also to capture users’ preferences
in order for automated customized agents to act appropriately on their behalf.
The Preferences Definition model defines restrictions over preferences that users
can express. Its metamodel is presented in Figure 2(c). The purpose of this model
is to define how users can express their preferences and about which elements
of the Ontology Model. Even though it is desirable that users be able to ex-
press preferences in different ways, it is necessary to have agents that can deal
with them. For instance, if application agents can deal only with quantitative
preference statements, user preferences expressed in a qualitative way will have
no effect on the system behavior if there is no mechanism to translate them to
quantitative statements.

Users can express different types of preference: (i) Order (ORDER) – expresses
an order relation between two elements, allowing users to express “I prefer trains
to airplanes.” A set of instances of the Order preference comprises a partial or-
der; (ii) Reference Value (REFERENCE VALUE) – enables users to indicate one or
more preferred values for an element. It can be interpreted as the user pref-
erence is a value on the order of the provided value; (iii) Minimize/Maximaze
(MIN MAX) – indicates that the user preference is to minimize or maximize a cer-
tain element; (iv) Don’t Care (DONT CARE) – it allows indicating a set of elements
that users do not care about. It is useful for users to express “I don’t care if I
travel with company A, B or C;” (v) Rating – allows users rating an element.
By defining a RatingDomain for an element, users can rate this element with
a value that belongs to the specified domain. This domain can be numeric (ei-
ther continuous or discrete), with specified upper and lower bounds. In addition,
an enumeration can be specified, e.g. LOVE, LIKE, INDIFFERENT, DISLIKE
and HATE. Moreover, different domains can be specified for the same element.
Using Rating preferences, it is possible to assign utility values to elements, or to
express preference statements; and (vi) Constraint (CONSTRAINT) – a particular
preference type that establishes a hard constraint over decisions, as opposed to
the other preference types, used to specify soft constraints. Constraints allows
users to express strong statements, e.g. “I don’t travel with company D.”

Different kinds of preferences may be used by agents in different ways, accord-
ing to the approaches they are using to reason about preferences. If an agent uses
utility functions and the user defines that the storage capacity of a computer
must be maximized and provides a reference value α, the agent may choose a
utility function like f(x) = α

√
x.

For defining the allowed preference types, developers must create instances
of AllowedPreferences, and make the corresponding associations with types
and domains. The specializations of AllowedPreferences characterize differ-
ent element types that can be used in preference statements. There are four
different possibilities: classes (I prefer notebook to desktop), properties (The
notebook weight is an essential characteristic for me) and their values (I don’t

Increasing Users’ Trust on Personal Assistance Software 479

like notebooks whose color is pink), enumeration literals (I prefer red to blue)
and values (Cost is more relevant than quality). Value is a first-class abstrac-
tion that we use to model high-level user preferences. Values are essential when
using a value-focused thinking [6]: “Values are what we care about. As such,
values should be the driving force for our decision making. They should be the
basis for the time and effort we spend thinking about decisions.” A scenario that
illustrates the use of values is in the travel domain. A user may have comfort
(a value) as a preference when choosing a transportation, instead of specifying
fine-grained preferences, such as trains are preferred to airplanes, but traveling
in an airplane first-class is better than by train, and so on. In this case, the user
agent is a domain expert that knows what comfort means.

Based on these three instantiated models and on our Preferences metamodel
(Figure 2(d)), it is possible to build a User Model to model preferences and con-
figurations. It is composed of two parts: (i) Configuration model; and (ii) Prefer-
encesmodel. As discussed above, in the Configurationmodel, users choose optional
and alternative features (variation points) from the Feature model, defining their
configurations, which are instance of the FeatureModelConfiguration. There-
fore, a configuration is a valid set of selected optional and alternative features of a
FeatureModel. On the other hand, in the Preferences model, users define a set of
preferences and a set of constraints. These are more closely related to a cognitive
model of the user. User preferences (or soft constraints) determine what the user
prefers, and indirectly how the system should behave. If the preferred behavior is
not possible, the system may move to other acceptable alternatives.Constraints, in
turn, are restrictions (hard constraints) over elements. As opposed to preferences,
they directly define mandatory or forbidden choices that must be respected by the
system.

Figure 2(d) shows the Constraint element and five different specializations
of Preference that represent the different preference types previously intro-
duced. Constraints are expressed in propositional logic formulae, however using
only ¬, ∧ and ∨ logical operators. Atomic formulae refer to the same types
of elements of preferences and can use comparison operators (=, �=, >, ≥,
<, ≤) between properties and their values. The PreferenceTarget and its
subtypes are used to specify the element that is the target of the preference
statement or formula. In addition, it allows to specify nested properties, such
us Flight.arrivalAirport.location.country. If we have directly associated
preferences to classes, properties, enumerations and values, either we would
have to make specializations of each preference type to each element type or
to change the UML metamodel to make a common superclass of classes, proper-
ties, enumerations and values. Given that we did not want to modify the UML
metamodel, but only to extend it, and the first solution would generate four
specializations for each preference type, we used the PreferenceTarget as an
indirection for elements that are referred in preferences and constraints.

Besides defining preferences and constraints, users can specify conditions, also
expressed in propositional logic formulae (Figure 2(a)), to define contexts in
which preferences and constraints hold. Furthermore, in order to guarantee that

480 I. Nunes, S.D.J. Barbosa, and C.J.P. de Lucena

users produce valid instances of the metamodel, we have defined additional con-
straints over instantiated models, e.g. in a nested property, the child of a property
whose class is X must also be a property of Class X.

3 A Two-Level Software Architecture for Building
Personal Assistance Software

The main contribution of this paper is the user metamodel described previously.
However, we also present a software architecture that provides a structure of
modules and incorporates the idea of a high-level user model. This software ar-
chitecture addresses the domain of personal assistance software. The structure of
this architecture aims at building systems composed of personalized user agents
which are adapted based on user models, which can be instantiated and modified
by end-users.

The goal of the proposed architecture is to accommodate a high-level user
model, but also to allow building high quality personal assistance software by
taking into account good software engineering practices. User customizations
may be seen as a concern in a system that is spread all over the code. How-
ever, at the same time, each customization is associated with different services
(also concerns) provided to users. Therefore, when developing such system one
has to choose the dimension in which the software architecture will be modular-
ized: in terms of services (Figure 3(a)) or modularizing user settings in a single
model (Figure 3(b)). It can be seen that it is not possible in either approach to
modularize concerns in single modules. In addition, without modularizing user
customizations, as in Figure 3(a), they are buried inside the code, thus making
it difficult to understand them as a whole.

Moreover, user preferences play different roles in agent architectures [7,8]. We
illustrate examples of these roles in Table 1. If all this information is contained in
a single user model, we have the problems discussed above and this model would
aggregate information related to different concerns of the system (low cohesion
among user model elements).

Our solution is to provide a virtual separation of concerns [9]. A concern is
anything that is interesting from the point of view of a stakeholder. In our case,
the concern that will be virtually modularized is the user model. The main idea
is to structure the user agent architecture in terms of services by modularizing
its variability as much as possible into agent abstractions. We provide a virtual

Fig. 3. Modularization Approaches

Increasing Users’ Trust on Personal Assistance Software 481

Table 1. User Preferences and their roles into agent architectures

Attitude Example

Goal I want to drink red wine.

Belief I like red wine.

Motivation Red wine is good for the heart.

Plan In order to drink red wine either I go to the supermarket and buy a

bottle (plan A) or I go to my friend’s home who always have wine

there (plan B).

Meta-goal I want to drink red wine, but spending less money as possible (so I

might choose plan B).

modularized view of user customizations, as Figure 3(c) illustrates. Customiza-
tions are not design abstractions, but they are implemented by typical agent
abstractions (goals, plans, etc.), i.e. they play their specific roles in the agent ar-
chitecture. The virtual user model is a complementary view that provides a global
view of user customizations. This model uses a high-level end-user language, and
users are able to configure their agents by means of this model. Using a high-level
user model to drive adaptations on personal assistance software brings the main
following advantages: (i) user customizations are implementation-independent;
(ii) the vocabulary used in the user model becomes a common language for
users specifying configurations and preference; (iii) the user model modularizes
customizations, allowing a modular reasoning about them.

3.1 Detailing our Software Architecture

In this section we detail our proposed architecture, depicted in Figure 4, and de-
scribe the mechanism that makes the high-level user model (henceforth referred
to as user model) work with agent architectures.

The User Agents module consists of agents that provide different services for
users, e.g. scheduling and trip planning. Their architecture supports variability
related to different users, and provides mechanisms to reason about preferences.

Fig. 4. Proposed Architecture

482 I. Nunes, S.D.J. Barbosa, and C.J.P. de Lucena

We propose to adopt an agent-based approach to design and implement user-
customizable systems for several reasons: (i) agent-based architectures are com-
posed of human-inspired components, such as goals, beliefs and motivations,
thus reducing the gap between the user model (problem space) and the solution
space; (ii) plenty of agent-based AI techniques have been proposed to reason
about user preferences, and they can be leveraged to build personalized user
agents; and (iii) agent architectures are very flexible, thus facilitating the imple-
mentation of user customizations. For instance, there is an explicit separation
between what to do (goals) and how to do it (plans).

User Agents use services provided by a distributed environment (the Services
cloud), and their knowledge is based on the Domain Model, composed of entities
shared by user agents and services, application-specific, etc. The Security module
addresses security and privacy issues, because user agents may share information
with other user agents. This module aggregates policies that restrict this commu-
nication, assuring that confidential information is kept safely secured. Users access
services provided by user agents through the Applications Interface module.

The User Model contains user configurations and preferences expressed in
a high-level language. They are present in the user agents architecture but as
design-level abstractions. By means of the Configuration module, users can di-
rectly manipulate the User Model, which gives them the power to control and
dynamically modify user agents, using a high-level language. In addition, changes
in the User Model may be performed or suggested by the Learning module, which
monitors user actions to infer possible changes in the User Model. This module
has a degree of autonomy parameter, so it may automatically change the User
Model, or just suggest changes to it, to be approved by the end users.

The User Model and User Agents are connected by representing user customiza-
tion in two different levels of abstraction. This connection is stored in the form of
trace links, indicating how and where a customization is implemented in a user
agent(s). Adaptations are performed at runtime and are accomplished based on
the trace links between the User Model and the User Agents architecture. The
Synchronizer is the module in charge of adapting User Agents based on changes
in the User Model. It is able to understand these trace links, and it knows which
transformation must be performed in the User Agents based on changes in the
User Model. Therefore, the User Model drives adaptations in the User Agents.

The algorithm we define to be performed by the Synchronizer module is pre-
sented in Algorithm 1. It receives as input a previous and an updated versions of
a user model, as well as a map containing rules that states which set of actions
must be performed when an event (a change) on the user model occurs. The
algorithm first calculates the set of events (changes) between the two versions of
the user model (line 1). Next, for each event, it gets the set of rules that “listen”
to the event (line 2–6). The result is the set of rules that produce actions for the
event set. Then, it is retrieved, from each rule, the set of actions (changes) that
must be performed at the implementation level of the system (lines 7–9), so that
it turns to be consistent with the updated version of the user model. Finally, all
actions are performed (lines 10–11).

Increasing Users’ Trust on Personal Assistance Software 483

Algorithm 1. Adaptation algorithm
Input: UM : previous user model; UM ′: updated user model; rulesMap:

adaptation rules mapped to the events they observe

events = diff(UM , UM ′);1

adaptationRules = ∅;2

foreach Event e ∈ events do3

rules = e.get(rulesMap);4

if rules �= null then5

adaptationRules = adaptationRules∪ rules;6

actions = ∅;7

foreach Rule r ∈ adaptationRules do8

actions = actions∪ r.getAdaptationActions(UM , UM ′, events);9

foreach Action a ∈ actions do10

a.doAction();11

Examples of actions are the addition or removal of agents, beliefs, goals and
plans. Events are the (de)selection of features or addition or removal of a pref-
erence over a certain element. And rules associate events with actions.

4 Instantiating Our User Metamodel for Different
Application Domains

Our metamodel was built using preference statements collected from different
individuals in a user study and from papers related to user preferences. The idea
was to contemplate the different kinds of preference statements in order to max-
imize the users’ expressiveness. The metamodel uses abstractions from the user
preferences domain, therefore the language is built as an end-user language. This
section presents two Preferences models to show that our metamodel is generic
enough to model different kinds of preferences statements in different domains
– flight reservation and computer purchase domains. Given that these are two

Fig. 5. User Preferences model in Flight Domain

484 I. Nunes, S.D.J. Barbosa, and C.J.P. de Lucena

well-known domains, we assume that the reader is familiar with them, and due
to space restrictions, we present only the Preferences models. In addition, we
assume that the Preferences Definition model defines that all preference types
over all elements are allowed.

The first Preference model, which is from the flight domain, indicates where
a user prefers to sit inside an airplane. This model consists of three order prefer-
ences, two of them with conditions, and one minimization preference. Next, we
present the four modeled preference statements in natural language, and Figure 5
shows how they are modeled with our metamodel abstractions.

P1. If the flight is short, i.e. its duration does not exceed 4 hours, I prefer a seat
by the aisle to a seat by the window.
P2. If the flight is long, i.e. its duration is higher than 4 hours, I prefer a seat
by the window to a seat by the aisle.
P3. I always prefer to sit at the first rows of the airplane.
P4. Sitting at the first rows of the airplane is more important to me than the
seat location. The computer domain Preferences model presented in Figure 6

has some elements in gray color. They are not part of the Preferences model,
but from the Domain model, but we included them in Figure 6 to present some
application-specific concepts used in this model. First, four values are defined
in the Computer Domain (mobility, readability, performance and cost). These
values can be rated with “+”, ranging from one to five. These are the natural
language preference statements modeled in Figure 6:

P1. Cost is the most important value (+++++).
P2. I rate performance with ++++.
P3. I rate readability with ++++.
P4. I rate mobility with ++.
P5. I’m expecting to pay around $800 for my laptop.
P6. I want a computer with less than 3Kg.
P7. The lighter the computer is, the better.

Fig. 6. User Preferences model in Computer Domain

Increasing Users’ Trust on Personal Assistance Software 485

It is important to notice that Rating and Order preferences provide different
information. By saying that cost is +++++ and performance is ++++, a user
is informing that cost is more important than performance (order), but perfor-
mance is also important, and should be taken into account.

5 Related Work

Several approaches have been proposed to deal with user preferences. To build
our metamodel, we have conducted extensive research on which kinds of prefer-
ences other proposals represent and additional concepts they define. Typically,
preferences are classified as quantitative or qualitative (e.g. “I love summer”
versus “I like winter more than summer”). Both approaches can be represented
through our metamodel. Quantitative preferences are modeled in the framework
proposed in [10] by means of a preference function that maps records to a score
from 0 to 1. On the other hand, CP-Nets [11] models qualitative preferences. CP-
Nets also allow modeling conditionality, which is considered in our work as well.
The concept of normality is defined in [12], so that users can express preferences
considering normal states of the world, but these preferences may change when
the world changes. The normality abstraction can be modeled using conditions
in our metamodel.

Ayres & Furtado proposed the OWLPref [13], a declarative and domain-
independent preference representation in OWL. This work has the same purpose
of our work in the sense that it generically models user preferences. However,
OWLPref does not precisely define the preferences model, e.g. lacking the def-
inition of associations, it shows only a hierarchical structure of preferences. A
preference metamodel is also proposed in [14]. However, its expressiveness is very
limited. It only allows to define desired values (or intervals) of object properties.

One of the biggest projects in the context of personalized user agents is the
Cognitive Assistant that Learns and Organizes (CALO) project2 [15,16], whose
goal is to support a busy knowledge worker in dealing with the twin problems
of information and task overload. Along the project, the research effort was
mostly concentrated in the PTIME agent, which is an autonomous entity that
works with its user, other PTIME agents, and other users, to schedule meetings
and commitments in its user’s calendar. Users are able to express their prefer-
ences, nevertheless the adopted language is tight to application domain (meeting
scheduling). Despite this limitation, the CALO project substantially advanced
on the development of user agents, also taking into account human-computer
interaction (HCI) issues that are essential for improving the chances of users
adopting personal agents. Therefore, lessons learned from this project [16] can
be leveraged in our work.

6 Conclusion

With the growth of the Internet, interactivity and access to information are sig-
nificantly increasing. At the same time, several of our everyday-tasks are being
2 http://caloproject.sri.com/

486 I. Nunes, S.D.J. Barbosa, and C.J.P. de Lucena

managed by software applications, such as to-do lists and schedules. The com-
bination of these trends converge to the automation of user tasks performed by
agents that act on behalf of users. Agents must have reliable user models that
assure they act appropriately, otherwise they will not be trusted by users.

In order to increase users’ trust on personal assistance software based on au-
tomated agents, we proposed in this paper the idea of exposing high-level user
models to users so that they can verify and understand this model as well as
control it by configuring it and making fine-grained modifications. Our proposal
is a domain-specific metamodel that provides abstractions from the user domain,
including configurations, constraints and preferences. Different abstractions used
by end users in natural language statements are directly represented. Users are
able to tailor personal assistance software systems with optional and alternative
features, and model their preferences. Besides (hard-)constraints, five different
preferences types (soft-constraints) can be represented: order, rating, reference
value, maximization/minimization and don’t care. In addition, we adopt values
as a first-class abstraction to model high-level preferences. Instances of our meta-
model are to be used in combination with our proposed software architecture,
which uses them as a global view of user customizations. Services are provided
by user agents structured with traditional agent-based architectures. The User
Model provides a modularized view of different user-related concepts spread
into agent architectures. We also presented an algorithm to be performed by the
Synchronizer module, which ensures that changes in the User Model demands
appropriate adaptations in user agents.

We are currently working in several directions. First, we made a survey of
preference statements provided by user in order to build a language based on
our metamodel using syntactic sugar. In addition, we are investigating how to
verify the User Model to identify inconsistencies across preferences. Finally, we
are implementing a framework based on our software architecture to provide a
solid infrastructure to build personal assistance software systems.

Acknowledgements

This work has been partially supported by CNPq 557.128/2009-9 and FAPERJ
E-26/170028/2008. It is related to the following topics: Software technologies
for web applications - A Multi-Agent Systems Approach for Developing Auto-
nomic Web Applications - G1. Design techniques to improve the development
of autonomic Web applications. Ingrid Nunes #141278/2009-9, Simone Barbosa
#313031/2009-6, Carlos Lucena #304810/2009-6 also thank CNPq for respec-
tive research grants.

References

1. Weiss, G. (ed.): Multiagent systems: a modern approach to distributed artificial

intelligence. MIT Press, Cambridge (1999)

2. Maes, P.: Agents that reduce work and information overload. Commun. ACM 37(7),

30–40 (1994)

Increasing Users’ Trust on Personal Assistance Software 487

3. Schiaffino, S., Amandi, A.: User - interface agent interaction: personalization issues.

Int. J. Hum. Comput. Stud. 60(1), 129–148 (2004)

4. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:

Foundations, Principles and Techniques. Springer, Heidelberg (2005)

5. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.S.: Feature-oriented domain

analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-021, SEI

(1990)

6. Keeney, R.L.: Value-focused thinking – A Path to Creative Decisionmaking. Har-

vard University Press, London (1944)

7. Doyle, J.: Prospects for preferences. Computational Intelligence 20, 111–136 (2004)

8. Nunes, I., Barbosa, S., Lucena, C.: Modeling user preferences into agent architec-

tures: a survey. Technical Report 25/09, PUC-Rio, Brazil (September 2009)

9. Kästner, C., Apel, S.: Virtual separation of concerns - a second chance for prepro-

cessors. Journal of Object Technology 8(6), 59–78 (2009)

10. Agrawal, R., Wimmers, E.L.: A framework for expressing and combining prefer-

ences. In: 2000 ACM SIGMOD, pp. 297–306 (2000)

11. Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Cp-nets: A tool for representing

and reasoning with conditional ceteris paribus preference statements. Journal of

Artificial Intelligence Research 21, 135–191 (2004)

12. Lang, J., van der Torre, L.: From belief change to preference change. In: ECAI

2008, The Netherlands, pp. 351–355. IOS Press, Amsterdam (2008)

13. Ayres, L., Furtado, V.: Owlpref: Uma representação declarativa de preferências

para web semântica. In: XXVII Congresso da SBC, Brazil, pp. 1411–1419 (2007)

14. Tapucu, D., Can, O., Bursa, O., Unalir, M.O.: Metamodeling approach to prefer-

ence management in the semantic web. In: M-PREF, USA, pp. 116–123 (2008)

15. Berry, P., Peintner, B., Conley, K., Gervasio, M., Uribe, T., Yorke-Smith, N.: De-

ploying a personalized time management agent. In: AAMAS 2006, pp. 1564–1571

(2006)

16. Berry, P.M., Donneau-Golencer, T., Duong, K., Gervasio, M., Peintner, B., Yorke-

Smith, N.: Evaluating user-adaptive systems: Lessons from experiences with a per-

sonalized meeting scheduling assistant. In: IAAI 2009, pp. 40–46 (2009)

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 488–501, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Understanding IT Organizations

Claudio Bartolini1, Karin Breitman2, Simone Diniz Junqueira Barbosa2,
Mathias Salle1, Rita Berardi2, Glaucia Melissa Campos3, and Erik Eidt1

1 Hewlett-Packard
2 Departamento de Informática, PUC-Rio

3 Universidade do Estado do Rio Grande do Norte
Rua Marquês de São Vicente, 225 – Gávea – Rio de Janeiro – RJ – Brasil – 22451-900

{claudio.bartolini,mathias.salle,erik.eidt}@hp.com,
{karin,simone,rita}@inf.puc-rio.br

Abstract. Understanding IT organization is essential for ensuring a successful
transformation phase in IT outsourcing deals. We present a model of IT
organization, a methodology for deriving it – based both on ethnography and
data mining - and a suite of tools for representing and visualizing the model,
and to help design changes to bring the organization from its current (AS-IS)
state to a desired (TO-BE) state, along with tools for comparing models of
organizations based on qualities and characteristics that are expected to have a
bearing on the success of the IT transformation step.

Keywords: network of responsibilities, knowledge elicitation, contextual
design.

1 Introduction

Large IT outsourcing deals often involve a wholesale takeover of large chunks of the
outsourcer’s IT organization by the outsourcing firm. Even before such deals enter
their execution phase, the pursuit organization of the outsourcing firm is faced with
the daunting task of making sense of the AS-IS state of the outsourcer’s IT
organization, including people, processes, systems, applications.

It is true that enterprise directory, policies, process description and other
documents can begin to provide a picture of what the organization is formally
supposed to look like, but the reality of things can be quite different from that picture.

The current state of things is that the learning process that enables IT
transformation is more of an art than a science. That results in slower time to
IT transformation, which in turn directly translates to a financial loss to the IT
outsourcing company.

Our project on Understanding IT Organizations aims at providing a useful,
actionable model of the IT organization that the outsourcing firm can use to spot
opportunities for simplification, decision support and automation. Our contributions
include:

 Understanding IT Organizations 489

1. A simple yet expressive meta-model for IT organizations, able to represent roles,
their responsibilities, and the artifacts that embody the information that roles
exchange between them in carrying out their work

2. A light-weight methodology for deriving a model for the organization at hand,
mining the disparate sources of information available throughout the IT
organization, eliciting information from IT staff through ethnographic studies and
reconciling where possible inconsistencies and conflicts

3. A visual modeling environment that

a. Represents the information currently contained in the model showing an AS-
IS map of the IT organization.

b. Allows a user to author a picture of the desired state of the organization (TO-
BE).

4. A suite of reasoning tools to help the user spot opportunities for simplification,
decision support and automation in the organization. Such tools

a. Assist design of the TO-BE state of the organization
b. Highlight necessary changes to take the organization from the AS-IS state to

the TO-BE state.

5. A library of archetypical models of IT organizations to assist design of TO-BE
states, complete with qualities and characteristics that such designs enables (see
Jahn & Lawson [14]).

6. Tools for comparative analysis of AS-IS IT organization against archetypical
models.

The benefits that our approach can bring to an outsourcing firm embracing it include
being able to drive down cost, increase margin and improve customer satisfaction.

The remainder of this paper is structured as follows. In section 2, we spell out our
architectural principles. In section 3, we describe relevant design context and refer
back to relevant literature in which some of the concepts were first introduced. In
section 4, we derive and describe our meta-model of IT organizations. In section 5,
we present our light-weight methodology to populate instances of IT organization
models. In section 6, we review related work. Finally, in section 7, we discuss
applicability of our meta-model, methodology and tools; we lay out our plans for
future work and conclude.

2 Principles

In this section, we lay out the architectural principles that we follow in our work. The
architectural principles we follow in our work are the following. First, we assume
“multiple versions of the truth”. When dealing with such complex systems as IT
organizations, inconsistency and incompleteness are facts of life. Because the driving
factor for us is to shorten the time to IT transformation, we just assume that there will be
cases where information is incomplete or inconsistent. Our methodology does prescribe
a reconciliation step. However, this is done on a best-effort basis, ensuring a quicker
time to results especially when compared and contrasted with methods such as ARIS
(quote), which assume a “single version of the truth”. In order to realize this principle,
in our architecture we borrow the concept of viewpoints from requirement engineering.

490 C. Bartolini et al.

Second, we “itís not just what is said that matters, but who says it”. We couple
the concept of viewpoint, with thorough analysis of provenance. Provenance is
particularly important given that we are not striving for removing all conflicts, but
rather allowing for some degree of uncertainty where different information sources
disagree (be they people or systems/documents).

Third, “not all sources are equally credible”. We also aim at establishing and
maintaining reputation measures of the various information sources.

Finally, we privilege obtaining broad brush, sketchy pictures of the IT organization.
The principle is to go over a breadth-first, iterative refinement of the IT organization
model so obtained. Again, this is consistent with our aim of faster IT transformation.

3 Relevant Design Concepts

3.1 Contextual Design

Contextual design is a customer-centered design process which uses ethnographic
methods to gather extensive field data and to elaborate models for understanding
users’ needs, tasks, intents, and processes, i.e., for “seeing work”. Their ultimate goal
is to design products and systems that meet both users’ and business needs [2, 12].
The five work models employed in contextual design are [2, p.86]:

• flow model: the communication and coordination necessary to do the work. It
represents the individuals who do the work, their responsibilities or roles, the
groups of people who have common goals or who take action together, the
communication between people to get the work done, the communication topics
and artifacts passed between people, the places people go in and out of while
doing their work, and breakdowns (problems) in communication or coordination;

• sequence model: the detailed work steps necessary to achieve an intent. It
represents the intent that the sequence is designed to achieve, a trigger that causes
the sequence of actions, the steps (actions or thoughts preceding an action), the
order, loops, and branches that connect the steps, and breakdowns in executing
one or more steps;

• artifact model: the physical things created to support the work, along with their
structure, usage, and intent. It represents the information presented by the artifact,
its parts, structure, and presentation aspects, annotations and conceptual
distinctions that reflect different usages of the the artifact, and breakdowns in
using it;

• culture model: to represent constraints on the work caused by policy, culture, or
values. It represents influencers, the kinds (e.g., standards, policy, power, values,
identity, emotions, style, and preferences) and extent of their influence on the
work, and the breakdowns interfering in the work;

• physical model: to show the physical structure of the work environment as it
affects the work. It represents the places in which work occurs, the physical
structures and movement within the space, the hardware, software, artifacts, and
other tools, as well as their layout in the environment, and breakdowns showing
how the physical environment interferes in the work.

 Understanding IT Organizations 491

Fig. 1. A sample flow model

Figure 1 depicts a sample flow model of some secretarial work [2].
The ellipses represent roles or invididuals and their responsibilities; the rectangles

represent artifacts; the arrows represent the flow of information and artifacts between
people; and the lightning bolt represents a breakdown.

One may notice the importance assigned to breakdowns in every model used in
contextual design. They represent mainly the need for an intervention and thus have a
prominent role in supporting decision-making processes within an organization.

Although useful for understanding work, contextual design presents some
important limitations regarding our project. First, it presents one version of the facts
as truthful. It does not allow us to represent different views of the organization
acquired from different information sources. Consequently, it does not explicitly
allow us to represent uncertain data, data with varying degrees of reliability, nor data
in different levels of abstraction. It does not help us to trace a piece of information
back to its source. In addition, it does not make the distinction between responsibility
and accountability (see next section). Finally, it does not provide an underlying model
to bind together the information from the various models, which would help us detect
inconsistencies, conflicts, and also opportunities for analogical reasoning that may
prove useful for learning and reuse of both processes and information.

492 C. Bartolini et al.

3.2 Accountability

Responsibility and accountability are terms that are often used interchangeably, but
they are not. In particular, responsibility is only one of the aspects defining a role, and
it is to be intended as doing the work to achieve a task. Accountability, on the other
hand, is a different concept and is best exemplified by President Truman’s statement
“the buck stops here”. Responsibility can be shared, as more than one role may work
together in order to complete a task, even though that most often signals that co-
ordination is necessary to avoid likely duplication of work, and might indicate that a
further refinement step is necessary to break down the task into sub-task for which
different roles may be responsible. Accountability instead is never shared, and is
therefore a more defining aspect of a role.

 In our work, we borrow from the concept of Responsibility Assignment Matrix, or
RACI model [3]. In its most widely accepted variant the RACI model defines the key
responsibility roles as follows:

Responsible
Those who do the work to achieve the task. There is typically one role with a
participation type of Responsible, although others can be delegated to assist in the
work required (the derived RASCI model also includes a separate identification fro
those who participate in a supporting role, namely supporting).

Accountable
Those who are ultimately accountable for the correct and thorough completion of the
deliverable or task, and the one to whom Responsible is accountable. In other words,
an Accountable must sign off (Approve) on work that Responsible provides. There
must be only one Accountable specified for each task or deliverable.

Consulted
Those whose opinions are sought; and with whom there is two-way communication.

Informed
Those who are kept up-to-date on progress, often only on completion of the task or
deliverable; and with whom there is just one-way communication.

Another requirement for our model is then to allow us to clearly represent the key
responsibility roles defined in the RACi model.

3.3 Trust and Reputation of Information Sources

According to Hertzum [10], the trust in information sources is central to establish
their quality. He argues assessing “the quality of an information source is essentially a
matter of establishing to what extent one is willing to place trust in it”. Hertzum et al.
[11] conducted two studies in which people (individuals, project groups, and
organizations) and documents (electronic and paper documents as well as information
systems) were experienced as different types of sources, which had to be treated
differently.

Contrary to the common belief that engineers follow a principle of least effort by
choosing their information sources on the basis of ease of access rather than quality of

 Understanding IT Organizations 493

contents, Hertzum [10] showed that the engineers prefer sources with a known or
easily determinable trustworthiness as much as information that is easily accessible.
He found that software engineers devote significantly more attention to quality-
related factors than to cost-related factors.

Tseng and Fogg [28] distinguish four types of trust by means of the evidence on
which the trust is founded:

• First-hand experience (e.g. interacting with people over time, we assess their
expertise and trustworthiness).

• Reputation; that is, what third parties have reported (e.g. asking someone for
advice based on having her recommended by a colleague).

• Simple inspection of surface attributes (e.g. assessing people by the way they
dress or the language they use).

• General assumptions and stereotypes (e.g. believing that your friends tell the
truth, whereas car salespeople do not).

Even a person who is overall trustworthy will most likely have different degrees of
knowledge about the diverse subjects she refers to, inasmuch as documental
information sources will provide details about certain subjects and abstract details
about others. Moreover, people may be aware of and willing to disclose their own
lack of knowledge about certain subjects. Therefore, it is important that our model
makes it possible to establish not only an absolute assessment of reliability an
information source, but also an additional assessment relative to the specific subjects
being discussed, and the source’s own confidence on their assertions.

3.4 Provenance and Traceability

Provenance and traceability refer to the origin of information and physical artifacts
and products. There are several works describing provenance and traceability in
diverse contexts (e.g., software engineering, the semantic web, industrial product
chains), and even efforts to produce a standard for describing provenance (cf. the
W3C incubator group at http://www.w3.org/2005/Incubator/prov/wiki/Requirements).

According to Miles and colleagues [21], data provenance research needs to answer
the following questions:

• Which data items generated a particular data product?
• What computations generated these data items?
• Where did the computations occur?

To be able to answer these questions, they enummerate the relations between data
items, which correspond to the refinements or transformations that data undergo in the
context of a workflow.

In understanding organizations, we are concerned with provenance in at least two
different levels: the source of information and artifacts depicting the organization, and
the source of information and artifacts used or generated by the organization. Our
model needs to make the distinction between these two levels.

494 C. Bartolini et al.

3.5 Case-Based Reasoning

Case-based reasoning (CBR) is a reasoning technique based on a base of cases which
contain knowledge about specific prior episodes, in context, and mostly at an
operational level [18, 15]. The goal is to record lessons learned, and to be able to
reuse this knowledge in new circumstances. A case is mainly composed of a
problem/situation description, a solution, and an outcome (the state of the world
resulting from having applied the solution to the described situation) [15]. A case can
represent, among other things: how to achieve one or more goals, the preconditions
for achieving them and how to get to the state where the preconditions hold, which
problems may arise in achieving a goal, and the effects of an action performed in
certain circumstances. New solutions are generated by retrieving similar (and most
relevant) cases from the case base and adapting them to fit new situations.

Figure 2 depicts the case-based reasoning cycle [15]. In the retrieval, we assess the
situation, elaborate a case description, compute possible indexes for the new situation,
search the case base for partially matching cases, and select the best case(s). Having
retrieved the best cases, it is necessary to assess how well they fit into the current
situation and, if necessary, adapt them by insertion, substitution, transformation or
deletion of some elements. The critique and evaluation of the potential solution may
lead to additional adaptation and, when a good solution is reached, it may compose a
new case to be stored in the case base.

Fig. 2. The case-based reasoning cycle [15].

The retrieve, reuse, revise and retain cycle in CBR is an important resource both
for knowledge management and process (re)engineering. One of the major challenges
in CBR is to model information and index the cases in such a way that they can be
easily searched for, compared, and retrieved. A requirement for our metamodel is to
provide enough structure for such indexing and characterization of cases.

 Understanding IT Organizations 495

4 Proposed Metamodel

Our metamodel basically allows us to represent propositions that answers to the 6W
questions (Who, What, When, Where, Why, and hoW - Figure 3).

The metamodel allows us to represent the aforementioned contextual design work
models. The flow model is represented by the product–agent relations; the sequence
model by the agent–task, task–task, and task–event relations; the artifact model
indirectly by means of the relations that go from goal to product, and encapsulating
some details within the artifact element, using the contextual design model for
detailing it when necessary; the culture model by the agent–agent relations, and the
physical model by the location–location and task–system relations.

Fig. 3. Proposed metamodel

In Figure 3, we have identified the relations that represent elements of the RACI
model, to allow us to represent accountability concerns:

• R: <agent, executes, task>
• A: <agent, is accountable for, goal>

who
role actor

agent

relationship
(influence,

hierarchy, …)

why

goal

policy,
standard, ...

how

task

what

plays

accountable for (A)

achieves executes (R)

regulates

applies to

is sent to (I)

is shared with (C)

subgoal of

is related

to

communicative
act

(delegation,...)

communicates
with

about

when
event

generates triggers

generates
uses

consumes

when relation
(subordinate,
predecessor,
alternative...)

where

logical unit physical unit

where relation
(located in,

subordinate to)

is related

location

to

product

information artifact

occurs at

is related

to

system

is performed in

transformation from
tocauses

496 C. Bartolini et al.

• C: <product, is shared with, agent>
• I: <product, is sent to, agent>

From the metamodel, we extract propositions that depict the organization and
relate them both to their information sources and to evaluations of the proposition
(Figure 4). Such evaluations are made by people in the organization or inferred by
reasoning systems, based on the consistency of the propositions acquired from
different information sources and their reputation. This helps us to establish the
provenance of the information about the organization.

Fig. 4. Metamodel of the source and assessment of each proposition

The degrees of trust, confidence, and consistency are real numbers in the interval
[-1,1]. A degree of trust of -1 indicates that a source does not trust another source
entirely. Basically, it represents that source A believes that every proposition acquired
from source B is false. Conversely, a degree of trust of 1 indicates complete trust in a
certain source. The degree of confidence indicates how confident a source is of a
certain proposition: -1 indicates that the source is entirely convinced that the
proposition is false, whereas 1 indicates that the source believes without a doubt that
the proposition is true. The same reasoning applies to the degree of consistency
between propositions: -1 indicates that proposition A is the negation of proposition B,
and 1 indicates that proposition A and B are equivalent.

These assessments allow us to reason about the propositions acquired by the
sources and thus provide a more accurate depiction of the organization. It is important
to highlight a special kind of proposition, one that indicates that another proposition
presents a breakdown in the contextual design sense, that is, a problem found in the
organization that needs to be addressed.

We propose the use of a semi-structured or frame-like representation, which allows
us not only to define propositions in various levels of abstraction, but also to associate
them with the information sources and to easily convert them to a semantic web
representation such as RDF, to use available reasoners for making inferences.

From each proposition, other propositions may be derived following a systematic
question.

 Understanding IT Organizations 497

5 The Knowledge Elicitation Process

Advances in Social Sciences, particularly in the last few decades, provided software
engineers with a plethora of field-tested approaches to aid in the elicitation of
processes, knowledge and system requirements [9, 24, 6, 27] . The generality of some
of the methods, however, prevents them from being taken to their word in the IT
domain. Not only it is complex, with many subtleties and peculiarities, but also
presents several political and legal issues that have to be taken into account. In what
follows we discuss a few knowledge elicitation techniques, pointing out to some
special considerations that must be taken into account for the IT case.

The first problem one faces any new situation may be one of the most challenging
one: to understand what the stakeholders are saying [7]. A common solution is the use
of a glossary. The main idea behind the use of a glossary is that before modeling any
domain, one has to understand the vocabulary used in it. Capturing domain language
and organizing it in the glossary format not only comes at low cost, but also serves to
facilitate the reuse of the knowledge about the domain [6].

The Language Extended Lexicon (LEL) [18] is an example of one such glossary.
The objective of the LEL is to register the vocabulary of a given Universe of
Discourse (UofD). It is based upon the following simple idea: understand the
problem’s language without worrying about deeply understanding the problem. The
main objective of the LEL is to register signs (words or phrases) peculiar to a specific
field of application. The LEL is based on a code system composed of symbols where
each symbol is an entry expressed in terms of notions and behavioral responses. The
notions must try to elicit the meaning of the symbol and its fundamental relations with
other entries. The behavioral response must specify the connotation of the symbol in
the UofD. Each symbol may also be represented by one or more aliases and will be
classified as a subject a verb or an object. The construction of the LEL must be
oriented by the minimum vocabulary and the circularity principles. The circularity
principle prescribes the maximization of the usage of LEL symbols when describing
LEL entries, while the minimal vocabulary principle prescribes the minimization of
the usage of symbols exterior to the LEL when describing LEL entries. Because of the
circularity principle, the LEL has a hypertextual format, which uses links to provide
connections with other terms in the glossary.

The lexicon is build while conducting open-ended interviews with the
stakeholders. During these meetings one tries to get a first idea of the domain, and
begin to capture some initial LEL symbols. It is also important to try to identify
possible documents that can be used to elicit additional symbols. The use of other
types of interview and protocol analysis [9] can be particularly useful in constructing
the lexicon.

5.1 Document Reading

Using existing documents, job descriptions, task descriptions and quality assurance
manuals among other type of documents can be of enormous help understanding
relationships and processes in the IT topology. Among the advantages are the ease of
access to, usually very large, amounts of information, non-intrusiveness, and the fact
that it can be done asynchronously. It can be useful in the elicitation of glossary terms

498 C. Bartolini et al.

(domain language acquisition) and in building sketch process models, to be validaded
with users during interviews or meetings. Document reading, however, is a time
consuming task, that requires expertise in the identification of relevant information
that, most of the time is sparsely scattered.

5.2 Interviews

Interviews are used in a variety of domains, and are often quite successful; see [22]
for a good survey. Essentially there are two kinds of interviews: structured and non-
structured. A structured or patterned interview makes use of a standard set of
questions that are asked of all candidates. Organized in a similar way as a
questionnaire, this kind of interview facilitates the evaluation and comparison of
results. Non-structured interviews, on the other hand, leave room for digressions and
comments. They are very useful in the beginning elicitation stages, when one wants to
get a general feel and overall idea of the processes.

The most challenging part of applying the interview technique is, no doubt,
deciding whom to interview. Projects often fail because they overlook stakeholders,
so identifying the correct people is fundamental to get the right picture of an
organization [1].

5.3 Stakeholder Meetings

Criticism to interviewing and the use questionnaires, which focus on individual input
rather than group consensus, led to the creation of stakeholder meeting techniques.
These techniques make use of customer involvement and group dynamics to
accurately depict the user's view of the business needs. A good example of such
technique is the Joint Applicaton Development (JAD), created in the late 70’s by
Chuck Morris, an IBM manager. A cousin to the focus group technique, JAD
functions as a group interview. In this technique, groups are brought together to
discuss system requirements. This is often done using materials such as story boards,
prototypes, or product mockups, and is commonly used to get the opinions and elicit
the needs of identified stakeholders. JAD meetings have the advantage of allowing
more natural interactions between people than questionnaire interviews, or even open
ended interviews. Besides gathering knowledge about the domain, such meetings are
also very good to solve conflicts among stake holders early in the process. They have
recently become popular in Requirements Engineering, especially for Information
Systems applications, because of their claim to greatly accelerate the development of
requirements [8]. Drawbacks are the high cost (more than monetary, the difficulty of
reconciling the agenda of all stakeholders), and the fact that participants are unable to
articulate tacit knowledge. Our practical experience using JAI also demonstrated that,
because participants may have different status within the organization, there is a
danger that some will not feel free to say what they really think, especially if it is
unpopular [6].

5.4 Ethnography

Ethnography is a data capture method that immerses a researcher within an
organization in an attempt to discover the actual work practices being carried out,

 Understanding IT Organizations 499

providing a detailed, in-depth description of everyday tasks and practice. Its aim is to
focus on the users, and to discover the real world practices that are important to how
they work [26].

A classical ethnographical study requires a great amount of time: data must be
gathered, modeled and processed, in a process that requires full time dedication. In
today’s business environment such dedication is not always possible. In this light the
quick and dirty ethnography was developed [25, 13]. Its aim to allow ethnography of
some form to be carried out even in the most constrained projects. Similarly to the
quick and dirty approach, lightweight ethnography techniques have been gaining
momentum in the requirements engineering, see [27] for a complete Survey.

Goguen et al. suggest that it is often a good idea to start with an ethnographic
study to uncover basic aspects of social order, such as the basic category systems used
by members, the division into social groups, the goals of various social groups,
typical patterns of work, how current technology is used” [9].

6 Related Work

In [14], Jahn and Lawson present alternative models of IT organizations centered on
value-based IT services. They also propose recipes for transforming an IT
organization from its AS-IS state to a desired TO-BE state. This work is definitely
relevant to the modeling aspect of our approach, though our aim is to provide a more
comprehensive and thorough model of the IT organization at least one level of detail
deeper than Jahn and Lawson’s.

In [5], Cross and Parker use social network analysis to draw pictures (sociograms)
of organizations that reflect what the organization looks like in reality rather than
representing an ideal picture of the organization. With respect to our proposed
approach, Cross and Parker’s work concentrates on highlighting the importance of the
picture, but only gives guidelines on how to draw it through studying the
organization. Our proposed approach on the other hand aims at providing a workable,
practical methodology to derive such sociograms from both ethnographic studies and
mining available enterprise data and documents.

The seminal works of Krackhardt et al. [16, 17] offer a variety of models that our
approach proposes to build upon. In [16], Krackhardt and Carley propose a model of
organizations structured around the domains of Individual, Tasks and Resources.
Based on that, they define five primitive relations among these elements: Precedence,
Commitment of Resources, Assignment of personnel to tasks, Network and Skills
(PCANS). They envisage using the PCANS model to uncover patterns of
collaboration and interdependencies within the enterprise. Our model presents aspects
that are similar and compatible to PCANS, but it goes beyond it in that it introduces
roles individuals play, relationships between roles rather than individuals, and makes
explicit the difference between the concepts of accountability and responsibility of
roles. In [17], Krackhardt and Hanson introduce the advice network, the trust network
and the communication network, aspects of which are reflected in our model also. The
main difference between our work and [17] is once again that not only do we propose
to use questionnaires and ethnographic studies to derive the networks, but we will
mine data and documents in the enterprise.

500 C. Bartolini et al.

7 Concluding Remarks

In this paper we have begun to lay out the foundation for comprehensive studies of IT
organizations that promise to be useful in guaranteeing a successful transformation
step in IT outsourcing deals. The model and methodology presented here form the
basis for our approach. We are at the beginning of our journey to support model and
methodology with a suite of tools to realize the approach and make it useful in
practice, ensuring that the outsourcing organization embracing our approach can drive
down cost, increase margin and improve customer satisfaction.

Acknowledgments

The authors thank Hewlett-Packard (Convênio de Cooperação Técnica n.º HP-032/10)
for the support to this work. Simone Barbosa and Karin Breitman also thank CNPq
research grant #313031/2009-6, and the Brazilian Institute for Web Science Research
(CNPq 557.128/2009-9 and FAPERJ E-26/170028/2008).

References

1. Alexander, I., Robertson, S.: Understanding project sociology by modeling stakeholders.
IEEE Software 21(1), 23–27 (2004)

2. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems.
Morgan Kaufmann Publishers, Inc., San Francisco (1998)

3. Brennan, K.: A Guide to the Business Analysis Body of Knowledge (Babok Guide), p.
29. International Institute of Business Analysis (2009) ISBN 0981129218

4. Carroll, J.M., Mack, R.L., Robertson, S.P., Rosson, M.B.: Binding Objects to Scenarios
of Use. International Journal of Human-Computer Studies 41, 243–276 (1994)

5. Cross, R.L., Parker, A.: The Hidden Power of Social Networks: Understanding How
Work Really Gets Done in Organizations. Harvard Business Press, Boston (2004)

6. Cysneiros, L.M.: Requirements Engineering in the Health Care Domain. In: RE 2002, pp.
350–356 (2002)

7. D’Souza, D.F., Will, A.C.: Objects, Components and Frameworks With UML: The
Catalysis Approach. Addison-Wesley, Reading (1999)

8. Andrews, D.C.: JAD: A crucial demension for rapid applications development. Journal of
Systems Management, 23–31 (March 1991)

9. Goguen, J., Linde, C.: Techniques for Requirements Elicitation. In: First International
Symposium on Requirements Engineering, p. 152. IEEE Computer Society Press, Los
Alamitos (1993)

10. Hertzum, M.: The importance of trust in software engineers’ assessment and choice of
information sources. Information and Organization 12, 1–18 (2002)

11. Hertzum, M., Andersen, H.H.K., Andersen, V., Hansen, C.B.: Trust in information
sources: seeking information from people, documents, and virtual agents. Interacting
with Computers 14, 575–599 (2002)

12. Holtzblatt, K., Wendell, J.B., Wood, S.: Rapid Contextual Design: A How-to guide to
key techniques for user-centered design. Morgan Kaufmann Publishers, Inc., San
Francisco (2005)

 Understanding IT Organizations 501

13. Hughes, J., O’Brien, J., Rodden, T., Rouncefield, M., Sommerville, I.: Presenting
ethnography in the requirements process. In: Second IEEE International Symposium on
Requirements Engineering, RE 1995, p. 27 (1995)

14. Jahn, K., Lawson, R.: Transforming IT: A Five-Step Plan for Adopting a Service Centric
IT Model, Barrios (2009)

15. Kolodner, J.L., Leake, D.B.: A Tutorial Introduction to Case-Based Reasoning. In:
Leake, D.B. (ed.) Case-Based Reasoning: Experiences, Lessons, and Future directions.
The MIT Press, AAAI Press, Cambridge, MA (1996)

16. Krackhardt, D., Carley, K.M.: A PCANS Model of Structure in Organizations. In: 1998
International Symposium on Command and Control Research and Technology,
Monterey, CA (1998)

17. Krackhardt, D., Hanson, J.R.: Informal Networks: The Company Behind the Chart.
Harvard Business Review 71(4), 104–111 (1993)

18. Leake, D.B.: CBR in Context: The Present and Future. In: Leake, D.B. (ed.) Case-Based
Reasoning: Experiences, Lessons, and Future directions. The MIT Press, AAAI Press,
Cambridge, MA (1996)

19. Leite, J.C.S.P., Franco, A.P.M.: A Strategy for Conceptual Model Acquisition. In:
Proceedings of the First IEEE International Symposium on Requirements Engineering,
pp. 243–246. IEEE Computer Society Press, SanDiego (1993)

20. Lim, S.L., Quercia, D., Finkelstein, A.: StakeSource: harnessing the power of
crowdsourcing and social networks in stakeholder analysis. In: Proceedings of the 32nd
ACM/IEEE international Conference on Software Engineering, ICSE 2010, Cape Town,
South Africa, May 01 - 08, vol. 2, pp. 239–242. ACM, New York (2010)

21. Miles, S., Groth, P., Deelman, E., Vahi, K., Mehta, G.: Provenance: The Bridge Between
Experiments and Data. In: Computing in Science & Engineering, pp. 38–46 (May/June
2008)

22. Moser, C., Kalton, G.: Survey Methods in Social Investigation. Gower, England (1971)
23. Non-Functional Requirements into data model. In: 4th International Symp. on

Requirements Engineering (June 1999)
24. Randal, D., Hughes, J., Shapiro, D.: Steps toward a partnership: Ethnography and system

design, Draft, Lancaster University (1992)
25. Socio-Technical Systems at University of Saint Andrew: Ethnography,

http://miud.in/92E
26. Sommerville, I.: Notes, http://miud.in/92D
27. Sommerville, I.: Requirements Engineering. John Wiley and Sons, Chichester (1998)
28. Tseng, S., Fogg, B.J.: Credibility and computing technology. Communications of the

ACM 42(5), 39–44 (1999)

On the 2-Categorical View of Proofs

Cecilia Englander and Edward Hermann Haeusler

Departamento de Informatica PUC-Rio

Abstract. The relationship between logic and Category Theory was ini-

tiated by Lambek when viewing deductive systems as free categories with

deductions as morphisms, formulas as objects and the cut-rule as com-

position. MacLane coherence theorems on monoidal categories showed

how equality between morphism in a category resembles equality be-

tween proofs in a system with a kind of cut-elimination theorem. This

raised what is nowadays known as categorical logic. Intuitionistic Nat-

ural Deduction systems are mapped into suitable categories according

to formula-as-objects and proofs-as-morphisms notions of interpretation,

extended to include functors as the categorical counterpart of the logical

connectives. On the Proof-Theoretical side, Prawitz reductionistic con-

jecture plays a main role on dening an identity criteria between logical

derivations. Reductions between proofs are worth knowing and repre-

senting whenever a deeper understanding of equality is present. From

the 1-categorical point of view, morphisms are compared only by means

of equations. This brings asymmetries into the proof-theoretical and cat-

egorical relationship. In the 70s Seely considered a 2-categorical inter-

pretation as a solution to this problem. This article details Seely’s pro-

posal and shows how even under this broader interpretation Prawitz

based identity criteria cannot be completely supported. The article also

considers the recent use of structural reductions, a kind of global re-

duction between proofs, as a help for supporting Prawitz based identity

criteria.

1 Introduction

A reduction in Proof Theory defines a relation between two derivations and
therefore we would have to take into account arrows between morphisms in
order to preserve symmetry. In 2-Category Theory, the set of morphisms with
same source and target is seen also as a category, that is, the morphisms are seen
as objects and, at another level, the morphisms between them as morphisms. To
prevent confusion, the objects are called 0-cells, the morphisms 1-cells and the
morphisms between morphisms 2-cells. We usually represent 1-cells by single
arrows (e.g. f : A → B) and 2-cells by double arrows (e.g. α : f ⇒ g).

In a 2-category, given 1-cells f and g, it can happen that there exist 2-cells α
and β such that α : f ⇒ g and β : g ⇒ f . Therefore, besides reductions, we have
to take expansions into account. Let rex be either a reduction or an expansion
step or a sequence of them. According to Prawitz’s conjecture [5], we say that
two derivations Π and Ψ represent the same derivation if either Π �Ψ or Ψ �Π ,

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 502–518, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the 2-Categorical View of Proofs 503

where � is a rex. Derivations may be reduced and expanded as shown in [5].
We also consider reductions and expansions for derivations with at least one
occurrence of ⊥. Thus, in order to have a better picture of Prawitz identity
criteria in categorical terms we have to represent reductions, derivations and
formulas (types) inside a sole category. Seely [7] uses 2-Category to figure out the
three components involved in analyzing proofs/derivations. Here we follow him
and go a bit further when we consider the implications of having a interpretation
for the ⊥ and the inclusion of global reductions (structural reductions) in this
scenario.

Throughout this article we work with a deduction system where the following
three properties hold: let � be a rex. Then

0) If Π � Π ′ and Π ′ � Π ′′, then Π � Π ′′;

1) If Π(X) � Π ′(X), then for all Σ, Π(Σ) � Π ′(Σ);

2) If Σ � Σ′ then Π(Σ) � Π(Σ′)

where Π(X) means that X is a hypothesis of Π and Π(Σ) means that every
hypothesis of Π that has the shape of the conclusion of Σ is replaced by Σ.
Property (0) means that rex are transitive and properties (1) and (2) means
that we can either reduce a derivation and then apply substitution or apply
substitution and then reduce the resulting derivation.

It is natural to try to represent reductions explicitly as 2-cells instead of having
the isomorphism between arrows (1-cells). More precisely, consider derivations
Πi : β[x : α]1 and Ψi : γ[x : β], i = 1, 2, 3. Consider also the reductions ρ1 and
ρ2 from Π1 to Π2 and from Π2 to Π3 respectively and the reductions τ1 and
τ2 from Ψ1 to Ψ2 and from Ψ2 to Ψ3 respectively. We have then the following
diagram:

α α α
Π1 �ρ1 Π2 �ρ2 Π3

β β β
Ψ1 �τ1 Ψ2 �τ2 Ψ3

γ γ γ

where a derivation Ψ ◦ Π : γ[x : α] is achieved by substituting every occurrence
of β as a premise in Ψi for Πi : β[x : α].

We have several possibilities to reduce the leftmost derivation: we can, for
instance, apply ρ1 followed by ρ2 followed by τ1 followed by τ2 or ρ1 followed by
τ1, followed by ρ2 followed by τ2. Any choice should produce the same result,
namely, the rightmost derivation.

1 For typographical reasons sometimes we use the λ-Calculus notation Π : β[x : α]

instead of

α

Π

β
.

504 C. Englander and E.H. Haeusler

If we represent the formulas of the above diagram by 0-cells, the derivations
by 1-cells and the rex by 2-cells, we come to the 2-categorical diagram

α

Π1

ρ1

Π3

ρ2Π2
β

Ψ1

τ1

Ψ3

τ2Ψ2
γ

By the interchange law of 2-Category Theory, (τ2 · τ1); (ρ2 · ρ1) = (τ2; ρ2) ·
(τ1; ρ1) where “·” represents vertical composition and “;” represents horizontal
composition. Note that this diagram corresponds exactly to the three properties
presented before, meaning that there exists a direct correspondence between 2-
categorical and proof-theoretical composition. According to this approach, we
would say that two 1-cells Π and Ψ are equivalent if there exist a 2-cell from Π
to Ψ .

In this article we assume that the reader is aware of 2-Category terminology
and main definitions. In what follows we only present the 2-categorical definitions
that are used in this article.

2 Some 2-Categorical Notions

2-Functor: Given two categories A and B, a functor F from A to B is a function
that takes to B the categorical structure of A. The 2-functor definition subsumes
the functor definition (with equalities been replaced by natural isomorphisms)
with the addition of preserving the structure of the 2-cells, i. e.:

(i) if A is an A-object, then F (A) is a B-object;
(ii) if f : A → B, then F (f) : F (A) → F (B);
(iii) for every A-object A, F (idA) ∼= idF (A);
(iv) if h = f ◦ g, then F (h) ∼= F (f) ◦ F (g);
(v) if α : f ⇒ g, then F (α) : F (f) ⇒ F (g);
(vi) for every 1-cell f , F (idf) = idF (f);
(vii) if γ = α · β, then F (γ) = F (α) · F (β);
(viii) if γ = α; β, then F (γ) = F (α); F (β).

Let Hom(X, Y) be the set of arrows that go from the 0-cell X to the 0-cell Y
and HomCat(X, Y) the category formed by Hom(X, Y). A 1-categorical prod-
uct is determined by a natural isomorphism between Hom(X, A × B) and
Hom(X, A) ⊗ Hom(X, B), so it is natural to define 2-categorical product as
coming from the natural isomorphism between the categories HomCat(X, A×B)
and HomCat(X, A) ⊗ HomCat(X, B). Hence, a 2-categorical product, or simply
2-product, of two 0-cells A and B is a 0-cell A × B together with two projec-
tion arrows π1 : A × B → A and π2 : A × B → B such that for any f : X → A
and g : X → B, there exist h : X → A × B and isomorphisms π1 ◦ h ∼= f and
π2 ◦ h ∼= g and such that for all k : X → A × B and 2-cells α : π1 ◦ h ⇒ π1 ◦ k
and β : π2 ◦ h ⇒ π2 ◦ k there exist a unique γ : h ⇒ k such that idπ1 ; γ = α and
idπ2 ; γ = β.

On the 2-Categorical View of Proofs 505

Given 2-categories A and B, if F is a 2-functor from A to B and G is a 2-
functor from B to A, then a 0-cell A in A and a 0-cell B in B define the categories
HomCat(FA, B) and HomCat(A, GB).

The word lax preceding a notion means that the given notion is “weakened”:
the isomorphisms in the definition are replaced by simple arrows, e.g., if F is a
2-functor and f and g are arrows, a lax 2-functor would, instead of F (f)◦F (g) ∼=
F (f ◦g), have either F (f ◦g) → F (f)◦F (g) or F (f)◦F (g) → F (f ◦g), weakening
the definition of 2-functor.

Given two 2-categories A and B and lax 2-functors F : A → B and G : B → A,
we say that F is lax right 2-adjoint to G when, for every 0-cell A in A and B
in B, there exist arrows KAB from HomCat(F (A), B) to HomCat(A, G(B)) and
LAB from HomCat(A, G(B)) to HomCat(F (A), B) such that those arrows define
the following natural transformations:

1. LA′B ◦ Hom(f, G(B)) ⇒ Hom(F (f), B) ◦ LAB;
2. LA′B′ ◦ Hom(A′, G(g)) ⇒ Hom(F (A′), g) ◦ LA′B;
3. Hom(f, G(B)) ◦ KAB ⇒ KA′B ◦ Hom(F (f), B);
4. Hom(A′, G(g)) ◦ KA′B ⇒ KA′B′ ◦ Hom(F (A′), g);
5. α : LAB ◦ KAB ⇒ idHomCat(F (A),B);
6. β : idHomCat(A,G(B)) ⇒ KAB ◦ LAB.

where f : A′ → A is a 1-cell in A and g : B → B′ is a 1-cell in B. We also have
that (idKAB ; α) · (β; idKAB) = idKAB and (α; idLAB) · (idLAB ; β) = idLAB hold.

If we had the direction of the arrows 1 to 6 going the other way around and
that (β; idKAB) · (idKAB ; α) = idKAB and (idLAB ; β) · (α; idLAB) = idLAB hold,
then, instead of lax right 2-adjointness, we would have lax left 2-adjointness.
This definition can be better understood with the help of the following diagram:

HomCat(FA,B)
KAB

Hom(F f,B)

HomCat(A, GB)
LAB

Hom(f,GB)

HomCat(FA′, B)
KA′B

Hom(F A′,g)

HomCat(A
′, GB)LA′B

Hom(A′,Gg)

HomCat(FA′, B′)
KA′B′

HomCat(A
′, GB′)LA′B′

Fig. 1. natural transformation’s diagram

3 2-Category and Proof Theory

Seely [7] states that conjunction is lax right 2-adjunction to the diagonal func-
tor, that conjunction is lax left 2-adjunction to the diagonal functor and that
implication is neither of them, but has some of the properties of the two forms
of 2-adjunction. Seely uses the expression lax 2-adjunction instead of lax right
2-adjointness and rax 2-adjunction instead of lax left 2-adjointness.

506 C. Englander and E.H. Haeusler

In order to deal with our 2-categorical approach to proofs we need to in-
troduce a combination of reductions between proofs: given a derivation of the

form
Π1

A

Π2

B

C

, if Π1 �α Π ′
1 and Π2 �β Π ′

2, then α | β is the rex that

takes
Π1

A

Π2

B

C

to
Π′

1

A

Π′
2

B

C

by first reducing Π1 and then Π2. Note that

reducing Π2 and then Π1 should produce the same result.

Proposition 31. For every pair of reductions (α1, α2) and (β1, β2), (α1 | α2) ·
(β1 | β2) = (α1 · β1) | (α2 · β2).

3.1 Conjunction

As categorical product is related to conjunction [3], it is natural to try to achieve
a similar result in 2-Category Theory: given two 0-cells A and B, if we represent
the formula A ∧ B by the product A × B and the deduction rules A ∧ B

A
and

A ∧ B

B
by the projection arrows π1 : A×B → A and π2 : A×B → B respectively,

h would be represented by

C

f

A

C
g

B

A ∧ B

. In order to A ∧ B be a 2-categorical

product, we would have π1 ◦ h and f isomorphic and hence

C

f

A

C
g

B
h

A ∧ B π1
A

�α

�β

C

f

A

. (1)

However, β does not represent any meaningful proof-theoretical relation. Such
a reason is enough to make us realize that conjunction does not have the same
structure of 2-categorical product.

As we have only one of the relations in (1), the one that represents ∧-reduction,
we can try to relate conjunction to lax 2-product. Let k be an arrow from C to
A × B. Then the 2-cells α and β from π1 ◦ h to π1 ◦ k and from π2 ◦ h to π2 ◦ k
respectively can be represented by the two rex

C

h

A ∧ B π1
A

�α

C

k

A ∧ B π1
A

C

h

A ∧ B π2
B

�β

C

k

A ∧ B π2
B

To achieve the wanted relation, we would have to show that there exists only
one γ : h ⇒ k such that idπ1 ; γ = α and idπ2 ; γ = β. As 2-cells are defined up
to isomorphism, this unicity cannot be proved. Another way of 2-categorically
represent rex is as a preorder relation, that is, by representing every rex by
the same 2-cell. Thus the unicity of γ is trivially satisfied and, in this picture,
conjunction can be seen as lax 2-product.

Seely states that conjunction is lax right 2-adjunction to the diagonal functor.
We show the proof of this fact in detail. We separate the definition of lax right
2-adjunction in four parts on an attempt to make the proof easier to read:

On the 2-Categorical View of Proofs 507

first part given the 2-categories PT and PT ×PT , where PT is the 2-category
whose 0-cells are formulas, 1-cells are derivations and 2-cells are reductions,
we show that both Δ : PT → PT × PT and ∧ : PT × PT → PT are lax
2-functors.

Lemma 3.11. Δ : PT → PT × PT such that Δ(A) = (A, A), Δ(f) = (f, f)
and Δ(α) = (α, α) for every formula A, derivation f and reduction α, is a lax
2-functor.

Lemma 3.12. ∧ : PT ×PT → PT such that ∧(A) = A1∧A2, ∧(f) = f1∧f2 =
A1 ∧ A2

A1

f1

A′
1

A1 ∧ A2

A2

f2

A′
2

A′
1 ∧ A′

2

= 〈f1 ◦π1, f2 ◦π2〉, where 〈f, g〉 is the canonical morphism

from A to B × C, with f going from A to B and g going from A to C and
∧(α) = (α1; idπ1) | (α2; idπ2) for every formula A = (A1, A2), derivation f =
(f1, f2), fi : Ai → A′

i and rex α = (α1, α2), is a lax 2-functor.

Proof

(iii) Given a formula A, both idA1∧idA2 and idA1∧A2 are the derivation A1∧A2;
(iv) Given derivations f : A → B and g : B → C, ∧f ◦ ∧greduces to ∧(f ◦ g).
(vi) Given a derivation f : A → B, ∧(idf) = (idf1 ; idπ1) | (idf2 ; idπ2) is the

identity reduction that goes from ∧f to ∧f .
(vii) Given reductions α : f ⇒ g and β : g ⇒ h,∧α · ∧β =

((α1; idπ1) | (α2; idπ2)) · ((β1; idπ1) | (β2; idπ2)) = (Proposition 31)
((α1; idπ1) · (β1; idπ1)) | ((α2; idπ2) · (β2; idπ2)) = (2-comp. property)

((α1 · β1); (idπ1 · idπ1)) | ((α2 · β2); (idπ2 · idπ2)) = (identities comp.)
((α1 · β1); idπ1) | ((α2 · β2); idπ2) = ∧(α · β)

(viii) We only remark that applying ∧α and ∧β followed by ∧-reduction is the
same as applying ∧-reduction followed by ∧α and ∧β.

second part we show that there exists an arrow KAB from HomCat(ΔA, B) to
HomCat(A,∧B) and an arrow LAB fromHomCat(A,∧B) to HomCat(ΔA, B),
for every 0-cell A in PT and B in PT × PT .

Lemma 3.13. There exists a functor KAB from HomCat(ΔA, B) to
HomCat(A,∧B).

Let us define KAB as a function that takes a pair of derivations from
HomCat(ΔA, B) and applies∧-int, i.e., for everyΠ =(Π1, Π2)∈HomCat(ΔA, B),

KAB(Π) =

A

Π1

B1

A

Π2

B2

B1 ∧ B2

∈ HomCat(A,∧B). Given a rex α = (α1, α2) : Π � Π ′

in HomCat(ΔA, B), KAB(α) = α1 | α2.

508 C. Englander and E.H. Haeusler

Let us prove that KAB thus defined is a functor (p. 504):
Proof
(i) Comes from the definition of KAB;
(ii) If Π1 �α1 Π ′

1 and Π2 �α2 Π ′
2, then KAB(Π) �α1|α2 KAB(Π ′)

(iii) Given a derivation Π ,KAB(Π) �idΠ1 |idΠ1
KAB(Π) and thus idKAB(Π) =

KAB(idΠ) : KAB(Π) � KAB(Π)
(iv) Comes from proposition 31.

Lemma 3.14. There exists a functor LAB from HomCat(A,∧B) to
HomCat(ΔA, B).

For every derivation Ψ in HomCat(A,∧B), put LAB(Ψ) as being the pair⎛
⎝ A

Ψ

B1 ∧ B2

B1

,

A

Ψ

B1 ∧ B2

B2

⎞
⎠ and, for every rex α : Ψ�Ψ ′ in HomCat(A,∧B), LAB(α) =

(idπ1 ; α, idπ2 ; α).
Let us prove that LAB thus defined is a functor:

Proof
(i) and (ii) come from the definition of LAB;
(iii) Given a derivation Ψ , LAB(idΨ) = (idπ1 ; idΨ , idπ2 ; idΨ), which is the identity
reduction that goes from LAB(Ψ) to LAB(Ψ).
(iv) Given rex α and β,

LAB(α) · LAB(β) =
(idπ1 ; α, idπ2 ; α) · (idπ1 ; β, idπ2 ; β) =

((idπ1 ; α) · (idπ1 ; β), (idπ2 ; α) · (idπ2 ; β)) = (2-comp. property)
((idπ1 · idπ1); (α · β), (idπ2 · idπ2); (α · β)) = (comp. of identities)

(idπ1 ; (α · β), idπ2 ; (α · β)) = LAB(α · β)

third part we show that the arrows 1 to 6 in the definition define the natural
transformations correspondent to this definition.

Note that we can define a category whose objects are functors and whose arrows
are natural transformations. Therefore, to show that the natural transformations
hold, we only need to show that they correspond to a rex.

Given derivations g = (g1, g2) in A, g1 : B′
1[x : B1] and g2 : B′

2[x : B2], and
f : A[x : A′] in B, we have the following natural transformations (put F = Δ and
G = ∧ in figure 1):

1. LA′B ◦ Hom(f,∧B) ⇒ Hom(Δf, B) ◦ LAB: given a derivation Σ : B1 ∧
B2[x : A], LA′B ◦ Hom(f,∧B)(Σ) = Hom(Δf, B) ◦ LAB(Σ) and this natural
transformation corresponds to the identity reduction.

2. LA′B′ ◦ Hom(A′,∧g) ⇒ Hom(ΔA′, g) ◦ LA′B: given a derivation Σ : B1 ∧
B2[x : A′],

On the 2-Categorical View of Proofs 509

A′

Σ

B1 ∧ B2

Hom(A′
,∧g)

−−−−−−−−−→

A′

Σ

B1 ∧ B2

B1

g1

B′

1

A′

Σ

B1 ∧ B2

B2

g2

B′

2

B′

1
∧B′

2

, LA′B′

−−−−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A′

Σ

B1 ∧ B2

B1

g1

B′

1

A′

Σ

B1 ∧ B2

B2

g2

B′

2

B′

1
∧B′

2

B′

1

,

A′

Σ

B1 ∧ B2

B1

g1

B′

1

A′

Σ

B1 ∧ B2

B2

g2

B′

2

B′

1
∧B′

2

B′

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

A′

Σ

B1 ∧ B2

LA′B
−−−→

⎛
⎝ A′

Σ

B1 ∧ B2

B1

,

A′

Σ

B1 ∧ B2

B2

⎞
⎠Hom(ΔA

′
, g)

−−−−−−−−−→

⎛
⎜⎜⎜⎜⎝

A′

Σ

B1 ∧B2

B1

g1

B′

1

,

A′

Σ

B1 ∧ B2

B2

g2

B′

2

⎞
⎟⎟⎟⎟⎠

We have that LA′B′ ◦ Hom(A′,∧g)(Σ) reduces to Hom(ΔA′, g) ◦ LA′B(Σ) and
this natural transformation corresponds to a pair of ∧-reductions.

3. Hom(f,∧B) ◦ KAB ⇒ KA′B ◦ Hom(Δf, B): given a pair of derivations Σ =
(Σ1 : B1[x : A], Σ2 : B2[x : A]), Hom(f,∧B)◦KAB(Σ) = KA′B◦Hom(Δf, B)(Σ)
and this natural transformation corresponds to the identity reduction.

4.Hom(A′,∧g) ◦ KA′B ⇒ KA′B′ ◦ Hom(ΔA′, g): given a pair of derivations
Σ = (Σ1 : B1[x : A′], Σ2 : B2[x : A′]), we have that Hom(A′,∧g)KA′B(Σ) ∧-
reduces to KA′B′ Hom(ΔA′, g) (Σ) and this natural transformation corresponds
to ∧-red| ∧-red.

5. α : LAB ◦ KAB ⇒ idHomCat(ΔA,B): given a pair of derivations
Σ =(Σ1 : B1[x : A], Σ2 : B2[x : A]), LABKAB(Σ) ∧-reduces to idHomCat(A,∧B)(Σ)
and this natural transformation corresponds to a pair of ∧-reductions.

6. β : idHomCat(A,∧B) ⇒ KAB ◦ LAB: given a derivation Σ : B1 ∧ B2[x : A],
idHomCat(A,∧B) (Σ) ∧-expands to KABLAB(Σ) and this natural transformation
corresponds to ∧-expansion.

fourth part finally, we show that (idKAB ; α)·(β; idKAB) = idKAB and (α; idLAB)·
(idLAB ; β) = idLAB .

As α : LAB ◦ KAB ⇒ idHomCat(ΔA,B) and β : idHomCat(A,∧B) ⇒ KAB ◦ LAB, we
have that:

1. (idKAB ; α) · (β; idKAB) = idKAB

β; idKAB goes from idHomCat(ΔA,B) ◦ KAB = KAB to (KAB ◦ LAB) ◦ KAB

and idKAB ; α goes from KAB ◦ (LAB ◦ KAB) to KAB ◦ idHomCat(ΔA,B) = KAB

therefore their composition goes from KAB to KAB.

2. (α; idLAB) · (idLAB ; β) = idLAB

idLAB ; β goes from LAB ◦ idHomCat(A,∧B) = LAB to LAB ◦ (KAB ◦ LAB) and
α; idLAB goes from (LAB ◦KAB)◦LAB to idHomCat(ΔA,B)◦LAB = LAB therefore
their composition goes from LAB to LAB.

510 C. Englander and E.H. Haeusler

3.2 Disjunction

Prawitz [6] defined the following permutation reduction

Π1

A ∨ B

Π2

C

Π3

C

C Π4

D

�
Π1

A ∨ B

Π2

C Π4

D

Π3

C Π4

D

D

where the lowest occurrence of C is a major premise, there is at least one occur-
rence of C in the sequence that is the conclusion of an introduction rule and Π4

may be empty.
In [3], Mann shows that ∨-reduction comes from the commutativity of the co-

product diagram, but for ∨-expansion, from the uniqueness of the factorization,
he concludes that

A ∨ B

[A]

A ∨ B

[B]

A ∨ B

A ∨ B

Π

C

=
A ∨ B

[A]

A ∨ B

Π

C

[B]

A ∨ B

Π

C

C

.

However, if there is an application of →-int in Π that discharges the major
premise of the ∨-el (i.e., the formula A ∨ B), then there is no derivation of the
form of the right hand side. One way of solving this issue is by considering,
instead of Prawitz’s permutation, the following reduction:

Π1

A ∨ B

[A]

Π2

C

[B]

Π3

C

C

Π4

D

�
Π1

A ∨ B

[A]

Π2

C

Π4

D

[B]

Π3

C

Π4

D

D

where no rule in Π4 discharges any hypothesis of Π1. We are going to call this
reduction MDP. Note that this reduction is more general than the permutation
reduction defined by Prawitz. For instance, the lowest occurrence of C does not
need to be a major premise.

Seely also used this other form of permutation to conclude that disjunction is
lax left 2-adjoint to the diagonal functor. We also present the definition of lax
left 2-adjunction in four parts on an attempt to make the proof easier to read.
The proof is as follows:

first part given the 2-categories PT and PT × PT , we show that ∨ : PT ×
PT → PT is a lax 2-functor (that Δ : PT → PT × PT is a lax 2-functor
is proved in the preceding section).

Lemma 3.21. ∨ : PT ×PT → PT such that ∨(A) = A1∨A2, ∨(f) = f1∨f2 =

A′
1 ∨ A′

2

[A′
1]

f1

A1

A1 ∨ A2

[A′
2]

f2

A2

A1 ∨ A2

A1 ∨ A2

= [ι1 ◦ f1, ι2 ◦ f2], where [f, g] is the canonical

On the 2-Categorical View of Proofs 511

morphism from A to B + C, with f going from B to A and g going from C to
A and ∨(α) = id∨A′ | ((idι1 ; α1) | (idι2 ; α2)), for every formula A = (A1, A2),
derivation f = (f1, f2), fi : A′

i → Ai and reduction α = (α1, α2), is a lax 2-
functor.
Proof
(iii) Given a formula A, both idA1∨idA2 and idA1∨A2 are the derivation A1∨A2.
(iv) Given derivations f : A → B and g : B → C, ∨f ◦ ∨g reduces to ∨(f ◦ g).
(vi) Given a derivation f , ∨(idf) = id∨A | ((idι1 ; idf1) | (idι2 ; idf2)) which is

the identity reduction that goes from ∨f to ∨f .
(viii) We only remark that applying ∨α and ∨β followed by ∨-reduction is the

same as applying ∨-reduction followed by ∨α and ∨β.
second part we show that there exists an arrow LAB from HomCat(A, ΔB) to

HomCat(∨A, B) and an arrowKAB fromHomCat(∨A, B) toHomCat(A, ΔB)
for every 0-cell A in PT and B in PT × PT .

Lemma 3.22. There exists a functorKAB : HomCat(∨A, B) → HomCat(A, ΔB)

Let us define KAB as the function that composes every derivation Π ∈

HomCat(∨A, B) with ∨-int, i.e., KAB(Π) =

⎛
⎝ A1

A1 ∨ A2

Π

B

,

A2

A1 ∨ A2

Π

B

⎞
⎠ and for every

α ∈ HomCat(∨A, B), KAB(α) = (α; idι1 , α; idι2).
Proof. (iii) Given a derivation Π , KAB(idΠ) = (idΠ ; idι1, idΠ ; idι2) which is the
identity reduction that goes from KAB(Π) to KAB(Π).
(iv) Given reductions α and β,

KAB(α) · KAB(β) = (α; idι1 , α; idι2) · (β; idι1 , β; idι2)
((α; idι1) · (β; idι1), (α; idι2) · (β; idι2)) = (2-comp. property)

((α · β); (idι1 · idι1), (α · β); (idι2 · idι2)) = (comp. of identities)
((α · β); idι1 , (α · β); idι2) = KAB(α · β)

Lemma 3.23. There exists a functorLAB : HomCat(A, ΔB) → HomCat(∨A, B)

Let us define LAB as the function that takes every Π = (Π1, Π2) ∈

HomCat(A, ΔB) to LAB (Π) =
A1 ∨ A2

[A1]

Π1

B

[A2]

Π2

B

B

and for every α =

(α1, α2) : Π � Π ′, LAB(α) = idA1∨A2 | (α1 | α2).
Proof. (iii) Given a derivation Π , LAB(idΠ) = idA1∨A2 | (idΠ1 | idΠ2) which is
the identity reduction that goes from LAB(Π) to LAB(Π).
(iv) Given reductions α and β,

LAB(α) · LAB(β) =
(idA1∨A2 | (α1 | α2)) · (idA1∨A2 | (β1 | β2)) = (Lemma 31)
(idA1∨A2 · idA1∨A2) | ((α1 | α2) · (β1 | β2)) = (Lemma 31)
(idA1∨A2 · idA1∨A2) | ((α1 · β1) | (α2 · β2)) = (comp. of identities)

idA1∨A2 | ((α1 · β1) | (α2 · β2)) = LAB(α · β)

512 C. Englander and E.H. Haeusler

third part we show that the arrows 1 to 6 in the definition define the natural
transformations that correspond to this definition.

Given derivations f = (f1, f2) in A, f1 : A′
1[x : A1] and f2 : A′

2[x : A2], and
g : B[x : B′] in B, we have the following natural transformations (put F = ∨
and G = Δ in figure 1):

1. Hom(∨f, B) ◦ LAB ⇒ LA′B ◦ Hom(f, ΔB): given a pair of derivations Σ =
(Σ1 : B[x : A1], Σ2 : B[x : A2]),

(
A1

Σ1

B

,
A2

Σ2

B

)
LAB
−−→ A1 ∨ A2

[A1]

Σ1

B

[A2]

Σ2

B

B

Hom(∨f, B)
−−−−−−−−−→ A′

1
∨ A′

2

[A′

1
]

f1

A1

A1 ∨ A2

[A′

2
]

f2

A2

A1 ∨ A2

A1 ∨ A2

[A1]

Σ1

B

[A2]

Σ2

B

B

(
A1

Σ1

B

,
A2

Σ2

B

)
Hom(f,ΔB)
−−−−−−−−−→

⎛
⎜⎜⎝

[A′

1
]

f1

A1

Σ1

B

,

[A′

2
]

f2

A2

Σ2

B

⎞
⎟⎟⎠LA′B

−−−→

A′

1
∨ A′

2

[A′

1
]

f1

A1

Σ1

B

[A′

2
]

f2

A2

Σ2

B

B

and this natural transformation corresponds to the sequence 〈MDP, ∨-reduction〉.
2. Hom(∨A′, g) ◦ LA′B ⇒ LA′B′ ◦ Hom(A′, Δg): given a pair of derivations
Σ = (Σ1 : B[x : A′

1], Σ2 : B[x : A′
2]), Hom(∨A′, g) ◦LA′B(Σ) reduces to LA′B′ ◦

Hom(A′,∧g)(Σ) and this natural transformation corresponds to MDP.

3. KA′B ◦Hom(∨f, B) ⇒ Hom(f, ΔB)◦KAB: given a derivation Σ : B[x : A1∨
A2], Hom(f, ΔB) ◦ KAB(Σ) ∨-reduces to KA′B ◦ Hom(∨f, B) and this natural
transformation corresponds to a pair of ∨-reductions.

4. KA′B′◦Hom(∨A′, g) ⇒ Hom(A′, Δg)◦KA′B: given a derivation Σ : B[x : A′
1∨

A′
2], KA′B′ ◦Hom(∨A′, g)(Σ) = Hom(A′, Δg) ◦KA′B and this natural transfor-

mation corresponds to the identity reduction.

5. α : idHomCat(∨A,B) ⇒ LAB ◦ KAB: given a derivation Σ : B[x : A1 ∨ A2],
idHomCat(∨A,B)(Σ) reduces to LABKAB(Σ) and this natural transformation cor-
responds to the sequence 〈∨-expansion, MDP〉
6. β : KAB ◦ LAB ⇒ idHomCat(A,ΔB): given a pair of derivations
Σ = (Σ1 : B[x : A1], Σ2 : B[x : A2]), KABLAB(Σ) reduces to idHomCat(∨A,B)(Σ)
and this natural transformation corresponds to a pair of ∨-reductions.

fourth part finally, we show that (β; idKAB)·(idKAB ; α) = idKAB and (idLAB ; β)·
(α; idLAB) = idLAB hold. The proof of these equalities is similar to the fourth
part of the last section.

On the 2-Categorical View of Proofs 513

3.3 Implication

Implication is neither lax right 2-adjoint nor lax left 2-adjoint to conjunction
but it has some of these two properties and we thought it would be interesting
to show and discuss it here. We show what can be proved and point out the
reasons why it is neither of the 2-adjunction forms. We also separate it in four
parts:

first part given the 2-category PT , we show that → : PT → PT and that
∧ : PT → PT are lax 2-functors.

Lemma 3.31. ∧ : PT → PT such that ∧(A) = A ∧ B, ∧(f) = f ∧ B = 〈f ◦
π1, π2〉 and ∧(α) = 〈α; idπ1 , idπ2〉 for every formula A, derivation f and rex α,
is a lax 2-functor.

Proof. This lemma is a corollary of lemma 3.12

Lemma 3.32 → : PT → PT such that → (B) = X → B, → (f) = X → f =
X → B [X]

B

f

B′

X → B′

= ̂f ◦ eval〈→ B, X〉, where ĝ is the canonical morphism from

C to BA such that g goes from C × A to B and → (α) = idr; (α; ids), where
r : B → (X → B) and s : (X → B, X) → B, for every formula B, derivation
f : B → B′ and rex α : f ⇒ f ′, is a lax 2-functor.

(iii) Given a formula A, both → (idA) and id→(A) are the derivation X → A;
(iv) Given derivations f : A → B and g : B → C, → (f)◦ → (g)reduces to

→ (f ◦ g).
(vi) Given a derivation f , → (idf) = idr; idf ; ids which is the identity reduction

that goes from → (f) to → (f).
(vii) Given reductions α : f ⇒ g and β : g ⇒ h,

→ (α)· → (β) =
(idr; (α; ids)) · (idr; (β; ids)) = (2-comp. property)
(idr · idr); ((α; ids) · (β; ids)) = (2-comp. property)
(idr · idr); ((α · β); (ids · ids)) = (comp. of identities)

idr; ((α · β); ids) = → (α · β)

(viii) We only remark that applying → α and → β followed by →-reduction is
the same as applying →-reduction followed by → α and → β.

second part we show that there exists an arrow KBC from HomCat(C ∧X, B)
to HomCat(C, X → B) and an arrow LBC from HomCat(C, X → B) to
HomCat(C ∧ X, B).

Lemma 3.33. There exists a functor KBC : HomCat(C ∧ X, B) →
HomCat(C, X → B).

514 C. Englander and E.H. Haeusler

Define KBC(Π) =

C [X]

C ∧ X

Π

B

X → B

for every Π in HomCat(C ∧ X, B) and

KBC(α) = idr; α; idp, where p : (C, X) → C ∧ X , for every α ∈ HomCat(C ∧
X, B). (iii) Given a derivation Π , KBC(id(Π) = idr; idΠ ; idp which is the iden-
tity reduction that goes from KBC(Π) to KBC(Π);
(iv) Given reductions α and β,

KBC(α) · KBC(β) =
(idr; (α; idp)) · (idr; (β; idp)) = (2-comp. property)
(idr · idr); ((α; idp) · (β; idp)) = (2-comp. property)
(idr · idr); ((α · β); (idp · idp)) = (comp. of identities)

idr; ((α · β); idp) = KBC(α · β)

Lemma 3.34. There exists a functor LBC : HomCat(C, X → B) → HomCat(C∧
X, B).

Put LBC(Ψ) =

C ∧ X

C

Ψ

X → B

C ∧ X

X

B

for every Ψ ∈ HomCat(C, X → B) and

LBC(α) = (α; idπ1) | idπ2 for every α : Π ⇒ Π ′ ∈ HomCat(C, X → B). (iii)
Given a derivation Π , LBC(idΠ) = (idΠ ; idπ1) | idπ2 which is the identity re-
duction that goes from LBC(Π) to LBC(Π);
(iv) Given reductions α and β,

LBC(α) · LBC(β) =
((α; idπ1) | idπ2) · ((β; idπ1) | idπ2) = (Lemma 31)
((α; idπ1) · (β; idπ1)) | (idπ2 · idπ2) = (2-comp. property)
((α · β); (idπ1 · idπ1)) | (idπ2 · idπ2) = (comp. of identities)

((α · β); idπ1) | idπ2 = LBC(α · β)

third part we show that the arrows 1 to 6 in the definition define natural trans-
formations that correspond either to the lax right 2-adjunction definition or
to the lax left 2-adjunction definition, i.e., we show that the natural trans-
formations correspond to the items 1, 2 and 3 are in accordance to the lax
left 2-adjunction definition, the item 4 is in accordance to the lax right 2-
adjunction definition and that 5 and 6 is neither of the 2-adjunction forms.

Given derivations g : B′[x : B] and f : C′[x : C] in PT , we have the following
natural transformations (sometimes we have F =→ and G = ∧ and sometimes
we have F = ∧ and G =→ in figure 1):

1. Hom(∧(f), B) ◦ LCB ⇒ LC′B ◦ Hom(f,→ (B)) in accordance to lax left
2-adjunction: given a derivation Σ : A → B[x : C],

On the 2-Categorical View of Proofs 515

C

Σ

A → B

LCB−−−→

C ∧ A

C

Σ

A → B

C ∧ A

A

B

Hom(∧(f), B)−−−−−−−−−−→

C′ ∧ A

C′

f

C

C′ ∧ A

A

C ∧ A

C

Σ

A → B

C′ ∧ A

C′

f

C

C′ ∧ A

A

C ∧ A

A

B

C

Σ

A → B

Hom(f, → (B))−−−−−−−−−−−→

C′

f

C

Σ

A → B

LC′B−−−→

C′ ∧ A

C′

f

C

Σ

A → B

C′ ∧ A

A

B

As Hom(∧(f), B)◦LCB(Σ) ∧-reduces to LC′B◦Hom(f,→ (B))(Σ), this natural
transformation corresponds to ∧-red| ∧-red.

2. Hom(∧(C′), g) ◦ LC′B ⇒ LC′B′ ◦ Hom(C′,→ (g)) in accordance to lax left
2-adjunction: given a derivation Σ : A → B[x : C′], Hom(∧(C′), g) ◦ LC′B(Σ)
→-reduces to LC′B′ ◦ Hom(C′,→ (g))(Σ) and this natural transformation cor-
responds to →-reduction.

3. KC′B ◦ Hom(∧(f), B) ⇒ Hom(f,→ B) ◦ KCB in accordance to lax left
2-adjunction: given a derivation Σ : B[x : C ∧ A], Hom(f,→ B) ◦ KCB(Σ) ∧-
reduces to Hom(f,→ B)◦KCB(Σ) and this natural transformation corresponds
to (∧-red| ∧-red); idΣ ; idr.

4. Hom(C′,→ (g)) ◦ KC′B ⇒ KC′B′ ◦ Hom(∧(C′), g) in accordance to the defi-
nition of lax right 2-adjunction: given a derivation Σ : B[x : C′∧A], Hom(C′,→
(g)) ◦KC′B(Σ) →-reduces to KC′B′ ◦Hom(∧(C′), g)(Σ) and this natural trans-
formation corresponds to →-reduction.

5. Neither idHomCat(C∧A,B) ⇒ LCB ◦KCB nor LCB ◦KCB ⇒ idHomCat(C∧A,B):
given a derivation Σ : B[x : C∧A], and there is neither a rex from idHomCat(C∧A,B)

to LCB ◦ KCB nor from LCB ◦ KCB to idHomCat(C∧A,B).
If we use α-reduction, that is, the reduction that corresponds to

A ∧ B

A

A ∧ B

B

A ∧ B
�A ∧ B, then there exists a rex from LCB ◦ KCB(Σ) to

idHomCat(C∧A,B)(Σ), which is the →-red followed by this λ-calculus reduction
and then LCB◦KCB ⇒ idHomCat(C∧A,B) is in accordance to lax left 2-adjunction.

6. Neither KCB ◦LCB ⇒ idHomCat(C,A→B) nor idHomCat(C,A→B) ⇒ KCB ◦LCB:
given a derivation Σ : A → B[x : C], there is neither a rex from idHomCat(C,A→B)

to KCB ◦ LCB nor from KCB ◦ LCB to idHomCat(C,A→B).

If we use η-reduction that is, the reduction that corresponds to
A → B A

B

A → B
�A → B, then there exists a rex from KCB ◦ LCB(Σ) to idHomCat(C,A→B)(Σ),

516 C. Englander and E.H. Haeusler

which is the ∧-red followed by this λ-calculus reduction and then KCB ◦LCB ⇒
idHomCat(C∧A,B) is in accordance to lax right 2-adjunction.

fourth part we show that neither of the equalities of the definitions of lax
left and lax right 2-adjunction hold, i.e., we show that neither (β; idKCB) ·
(idKCB ; α) = idKCB , (idLCB ; β)·(α; idLCB) = idLCB , (idKCB ; α)·(β; idKCB) =
idKCB nor (α; idLCB) · (idLCB ; β) = idLCB hold.

Considering α and η-reduction, we would have the natural transformation α as
in the definition of lax right 2-adjunction, i.e., α : LCB◦KCB ⇒ idHomCat(C∧A,B),
and β as in the definition of lax left 2-adjunction, i.e., β : KCB ◦ LCB ⇒
idHomCat(C,A→B). Even though, we would not have neither of the equalities:

1. β; idKCB goes from (KCB ◦ LCB) ◦ KCB to idHomCat(C,A→B) ◦ KCB = KCB

and idKCB ; α goes from KCB ◦ (LCB ◦KCB) to KCB ◦ idHomCat(C∧A,B) = KCB,
therefore there is not a composition of β; idKCB with idKCB ; α.

2. α; idLCB goes from (LCB ◦ KCB) ◦ LCB to idHomCat(C∧A,B) ◦ LCB = LCB

and idLCB ; β goes from LCB ◦ (KCB ◦ LCB) to LCB ◦ idHomCat(C,A→B) = LCB,
therefore there is not a composition of α; idLCB with idLCB ; β.

4 On the Interpretation for ⊥

We note here how cumbersome is the categorical interpretation of the ⊥. Joyal
[2] (p.116) has observed that in a cartesian closed category C with initial object
⊥ and an object A, there exists only one arrow from A to ⊥. Such a result is not

supported by proof theoretical means. For example, the derivation

A

f

⊥

A
g

⊥
⊥ ∧ ⊥

π⊥

reduces to
A

f

⊥
if π is the rule A ∧ B

A
and to

A
g

⊥
if π is the rule A ∧ B

B
and,

as there is no rex between f and g, we come to no conclusion about a relation
between f and g.

The constant ⊥ cannot be seen as a 2-initial object for, given derivations Π
and Ψ from ⊥ to a formula A, it is not the case that there always exists a rex

from Π to Ψ that is an isomorphism because, for example, the derivation
⊥

⊥ ∧ A

⊥

reduces to ⊥ but ⊥ does not expands to
⊥

⊥ ∧ A

⊥
.

For a similar reason, ⊥ cannot be seen as a lax 2-initial object. For example,

there is no rex between
⊥

⊥ ∧ A

⊥
and

⊥
A

⊥
A → ⊥

⊥
. Note that both these

derivations reduce to ⊥ and therefore, they are 1-categorically represented by
the same arrow, viz., the identity arrow from ⊥ to ⊥.

On the 2-Categorical View of Proofs 517

A possible proof-theoretical solution is to consider structural reductions (global
reductions) in our 2-categorical approach. According to Prawitz’s definition, both
the derivations

C ∧ ¬C

⊥
1

A

D ∧ (A → B)

A → B

B

A ∧ (B → A)

B → A

A ∧ (A → B)

A → B

A ∧ (B → A)

A

B

A

(�)

are normal. However, these derivations are redundant: on the derivation on the
left side, as any formula can be deduced from ⊥, the conclusion of the derivation
could have been deduced in (1) and on the one on the right side there is already
a derivation of the conclusion as sub-deduction.

Thus, to these kinds of derivations we need, instead of local reductions that
deal with introduction and elimination of logical operators, structural reductions,
which work on a global level, i.e., as the name indicates it, on the structure of
the derivation.

Π1

⊥
A

Π2

A → B

B

�P−H

Π1

⊥
B

Γ

Π1

A

Π2

A

�E

Γ ′

Π1

A

The reduction on the left is a structural reduction defined in [4] in order to
prove that all derivations from a formula A to ⊥ are equivalent, providing a
proof-theoretical argument to Joyal’s observation. Therefore, we believe that
the inclusion of this reduction approximates semantically Category Theory to
Proof Theory.

In [1], Ekman defines the reduction on the right side, where Γ and Γ ′ are
sets of premises and Γ ′ ⊆ Γ . With this new definition, the derivation (�) can be
reduced to A ∧ (B → A)

A
.

Ekman’s reduction cannot be seen 2-categorically. When we begin examining
the 2-categorical commutativity, the property (1) in section 1 does not hold, e.g.,

A

[A]

Π

B

A → B

B

�E

A

Π

B

but

A

Π′

C

A

[A]

Π

B

A → B

B

�E\

A

Π′

C

A

Π

B

meaning that there is not a correspondence between 2-categorical and proof-
theoretical composition. In other words this means that there exists 1-cells
f, g : A → B with a 2-cell α : f ⇒ g and 1-cells f ′, g′ : A → A with a 2-cell
β : f ′ ⇒ g′ such that there is no 2-cell γ = α; β from f ◦ f ′ to g ◦ g′.

5 Conclusion

We adopted the 2-Categorical view of proofs in order to categorically focus
on Prawitz identity criteria on derivations. In fact, the main proof-theoretical

518 C. Englander and E.H. Haeusler

meanings on derivations are adequately lifted to this 2-Categorical framework.
We detailed the lax-adjunctions that provide meaning to the intuitionistic logical
constants as predicted by Seely. Unfortunately, implication is not a 2-Categorical
adjunction, unless HomCat(X, Y) is taken as a preorder category. The ⊥ is not
a 2-Categorical notion either. Even considering (unusual) structural reductions,
we cannot mend this situation. We would like to point out that the conclusions
drawn by this article might be compared to what we do know about Prawitz
conjecture in terms of derivations and formulas as they are taken in the usual
mathematical and logical discourse.

References

1. Ekman, J.: Normal Proofs in Set Theory. PhD thesis, University of Goteborg (1994)

2. Lambek, J., Scott, P.J.: Introduction to Higher Order Categorial Logic, 1st edn.,

Cambridge. Cambridge Studies in Advanced Mathematics, vol. 7 (1986)

3. Mann, C.R.: Connections between Proof Theory and Category Theory. PhD thesis,

Oxford (1973)

4. Pereira, L.C., Haeusler, H.: Structured reductions and the identity problem. In:

Unilog (2007)

5. Prawitz, D.: Ideas and results in proof theory. In: Fenstad, J. (ed.) Proc. 2nd Scan-

dinavian Logic Symposium, pp. 237–309. North-Holland, Amsterdam (1971)

6. Prawitz, D.: Natural Deduction, A Proof-Theoretical Study. Dover, New York (1965)

7. Seely, R.A.G.: Weak adjointness in proof theory. In: Applications of sheaves (Proc.

Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham,

Durham, 1977). Lecture Notes in Math., vol. 753, pp. 697–701. Springer, Berlin

(1979)

WOMM: A Weak Operational Memory Model

Arnab De1, Abhik Roychoudhury2, and Deepak D’Souza1

1 Department of Computer Science and Automation,

Indian Institute of Science, Bangalore, India

{arnabde,deepakd}@csa.iisc.ernet.in
2 School of Computing, National University of Singapore, Singapore

abhik@comp.nus.edu.sg

Abstract. Memory models of shared memory concurrent programs de-

fine the values a read of a shared memory location is allowed to see. Such

memory models are typically weaker than the intuitive sequential con-

sistency semantics to allow efficient execution. In this paper, we present

WOMM (abbreviation for Weak Operational Memory Model) that for-

mally unifies two sources of weak behavior in hardware memory models:

reordering of instructions and weakly consistent memory. We show that a

large number of optimizations are allowed by WOMM. We also show that

WOMM is weaker than a number of hardware memory models. Conse-

quently, if a program behaves correctly under WOMM, it will be correct

with respect to those hardware memory models. Hence, WOMM can be

used as a formally specified abstraction of the hardware memory models.

Moreover, unlike most weak memory models, WOMM is described using

operational semantics, making it easy to integrate into a model checker

for concurrent programs. We further show that WOMM has an impor-

tant property - it has sequential consistency semantics for datarace-free

programs.

1 Introduction

With the push towards multicore platforms in the coming years, the impor-
tance of concurrent programming is steadily growing. Increasingly, it is felt that
computer architects will be moving towards processors with many cores and
concurrent/parallel programming will become much more mainstream.

In general, programmers tend to find parallel/concurrent programming harder
than sequential programming, owing to the many possible executions of a pro-
gram for any given input. Shared-memory concurrent programming languages
describe the semantics of concurrency via a Memory Model — it describes which
writes can be visible to a program read operation. Programmers intuitively con-
sider the memory model of a concurrent program as Sequential Consistency (SC)
[1], where each process proceeds in program order and the operations from each
process are interleaved and a read sees the last write to the same memory loca-
tion in that interleaving. Although the SC semantics is easy for the programmers
to understand, it does not allow many compiler and hardware optimizations.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 519–534, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

520 A. De, A. Roychoudhury, and D. D’Souza

As a simple example, one may consider the program fragment in Figure 1.
Throughout the paper, we use x, y, . . . to denote shared memory locations and
r1, r2, . . . to denote local variables/ registers.

Initially, x == y == 0

Proc 1: Proc 2:

x = 1; r1 = y;

y = 1; r2 = x;

r1 == 1, r2 == 0 not allowed by the SC

Fig. 1. Not allowed by SC - I

Initially, x == 0

Proc 1: Proc 2: Proc 3:

x = 1; r1 = x; r3 = x;

x = 2; x = 3; x = 4;

r2 = x; r4 = x;
r1 == r4 == 1, r2 == r3 == 2 not

allowed by SC

Fig. 2. Not allowed by SC - II

In this example, we would normally assume r1 ≤ r2 at the end of the program.
In other words, SC does not allow r1 == 1 ∧ r2 == 0 since y is set after x
in Proc 1. However, Proc 1 may reorder the writes at runtime (as evidenced
by hardware multiprocessor memory models such as Sparc Partial Store Order
(PSO) [2]), thereby making the result r1 == 1 ∧ r2 == 0 possible at the end
of the program.

Similarly, the behavior demonstrated in the example from Figure 2 cannot be
produced by an SC execution. Nevertheless, the interconnection network may
cause Proc 3 to see the writes from Proc 1 out of order, but Proc 2 may see
them in the program order, causing this behavior.

To accommodate such optimizations, weaker or more relaxed memory models
have been proposed. Such memory models typically allow more behaviors than
the SC. Such intricacies in the memory model makes understanding concurrent
program behavior particularly difficult.

Conventionally hardware multiprocessor memory models — such as Total Store
Order (TSO), Partial Store Order (PSO) and Relaxed Memory Order (RMO)
of Sun Sparc [3,2] have been specified using a reordering table, denoting whether
two instructions accessing two different memory locations can be reordered at
runtime. Similarly, the official memory models for IA-32 and AMD-64 architec-
tures are defined as a set of informal rules [4,5]. Recently, a rigorous, axiomatic
memory model [6] has been proposed for x86 multiprocessors that matches the
informal documentations. These memory models differ from each other in subtle
but complex ways. Moreover, the specifications are either informal or axiomati-
cally defined, making them difficult to follow. As a result, a compiler writer or a
low-level programmer may not get an abstract view of the underlying hardware
memory models.

We have observed that weak behavior in multiprocessors is mostly caused by
two features. A processor can reorder instructions accessing different memory
locations (as in Figure 1) or writes to the same memory location may be visible to
different processors in different orders (as in Figure 2). In this paper, we present
formal semantics of a Weak Operational Memory Model, referred as WOMM,
that combines these two features. We use a language that contains some of

WOMM: A Weak Operational Memory Model 521

the essential features of multiprocessor programs. We use a simple operational
semantics to specify our memory model, making it easy to follow for the compiler
writers and low-level programmers. The operational style of our specification
allows easy integration to program analysis tools such as model checkers. We
demonstrate that a number of optimizations are allowed by WOMM. We show
that WOMM is weaker than the Location Consistency (LC) [7] memory model,
which, in turn, makes it weaker than a number of memory models such as TSO,
PSO, RMO etc. Consequently, any execution allowed by these hardware memory
models will be allowed by WOMM. As a result, if a compiler assumes WOMM as
the underlying hardware memory model, the compilation will be correct for all
these hardware memory models. Finally, we show that WOMM has an important
property — it guarantees sequential consistency for datarace-free programs.

2 Program Model

We consider a simple and abstract program model for the sake of presentation.
A multiprocessor system consists of a finite number of processors, each with an
unique id. All the processors have a finite number of local registers. Memory is
shared among all the processors.

The program consists of one executable per processor. Each executable has a
finite number of static instructions, with designated first and last instructions.
In the rest of the paper, we identify the executables by the processors they run
on. Instructions can be categorized into following types. We use the following
conventions: r, r1, . . . represent registers, [r] a shared memory location whose
address is equal to the contents of r, exp a local expression and L a program
label.

Read (Rd) (r1 = [r2]): Reads the content of the memory location [r2] to
the register r1.

Write (Wr) ([r1] = r2): Writes the value of the register r2 to the memory
location [r1].

Local computation (Loc) (r = exp): Assigns the value of the expression
exp , which does not have any memory access, to the register r.

Conditional goto (Cond) (if r goto L): If the register r has a non-zero
value, program counter is set to the L, otherwise to the next program lo-
cation.

Unconditional goto (Jmp) (goto L): Sets program counter to the L.
Acquire (Acq) (acquire [r]): Acquires the memory location [r]. Once a

processor executes acquire on a memory location, no other processor can
acquire that location till the former processor releases it. Moreover, it works
as a one-way barrier — instructions after an acquire cannot be reordered
before it at runtime.

Release (Rel) (release [r]): Releases the memory location [r] enabling other
processors to acquire it. It also works as a one-way barrier — instructions be-
fore a release cannot be reordered after it at runtime.

522 A. De, A. Roychoudhury, and D. D’Souza

A synchronization instruction is either an acquire or a release instruction. Note
that a large number of synchronization primitives found in real hardwares can
be closely modeled with these two types of instructions. The acquire and re-
lease instructions are close to the load-acquire/ store-release instructions of the
Itanium architecture [8]. A two-way memory barrier instruction can be mod-
eled by an acquire instruction immediately followed by a release instruction on
the same memory location, where there is one memory location per processor
designated for this purpose. An atomic operation involving access to a single
memory location (such as test-and-set and compare-and-exchange) can be mod-
eled as acquire instruction on that memory location, followed by instructions
implementing the atomic instruction, followed by a release instruction on the
same memory location (assuming that memory location is not accessed in any
other way).

In the rest of the paper, short names of the instructions in the above list
represent the set of all possible instructions of the corresponding type and the
representative form given along is used to represent an arbitrary instruction of
that type. The word instruction may refer to a static instruction or a dynamic,
runtime instance of a static instruction. depending on the context. We also use
the term action to refer to dynamic instructions.

3 Operational Semantics

In this section we formally describe the operational semantics of WOMM, a
weak abstract memory model for shared memory multiprocessors. Informally,
instructions are issued in program order and put into an instruction queue. An
instruction can commit any time after all the instructions it depends on commit.
Each memory location, instead of containing a single value, contains the set of
all accesses to that location along with some causal order among them. A read
can return any value from this list under certain consistency restrictions.

3.1 Structure of States

Given a program P , a program state Ω consists of a global state Θ and one local
state Φp for each processor p.

A global state Θ consists of the following components:

– A map Π from memory locations to memory states. Informally, a memory
state in our semantics contains all the accesses to that memory location
along with the causal orders among them. Formal description of a memory
state is given below.

– A map L from memory locations to lock states. A lock state may contain
either a processor id, denoting the location is acquired by the processor with
id, or 0, denoting the location is free.

A memory state is a partially ordered multiset (pomset), denoted by (S,�),
where S is the multiset and � is the partial order. A multiset S is a collection

WOMM: A Weak Operational Memory Model 523

of pomset items. Being a multiset, it allows duplication of elements. Each item
is added by some instruction. The pomset items can be of following types. Here
val denotes a value, pid denotes a the processor id performing the corresponding
write/ release/ acquire action and loc denotes a memory location.

1. A write item (WI) which is a 〈val, pid〉 pair.
2. A read item (DI) which is simply 〈pid〉.
3. A release item (RI) which is a 〈loc, pid〉 pair.
4. An acquire item (AI) which is again a 〈loc, pid〉 pair.

The relation � is a partial order, i.e. a reflexive, antisymmetric and transitive
binary relation on S. The corresponding irreflexive relation is denoted by ≺.
Whenever this relation is updated (e.g. in Figure 3 and Figure 6), we assume
that the new relation is reflexively and transitively closed to maintain the partial
order property.

As the same local register name can be used in different unrelated instructions
in a processor, it may create false dependencies among those instructions. For
example, if two consecutive instructions assign to the same local register, there
may not be any actual data flow between them, but they still cannot be reordered
näıvely as a future read of that register may get affected by the reordering.
To avoid such false dependency and facilitate reordering of instructions, local
registers are renamed at runtime. A single local register can be associated with
different dynamic registers at different points of the execution and each dynamic
register can have different values. We assume that there are infinite number of
dynamic registers available.

A local state Φp consists of the following components:

– A map μp that maps static register names to their current dynamic names.
– A map σp that maps dynamic registers and the program counter to the

values they contain. The domain of values includes a special value undef.
– An instruction queue Qp, which contains dynamic instructions (actions) that

have been issued but not yet committed (see Section 3.2). Actions are ordered
by the order of their issue in the queue. Registers are renamed with dynamic
names for the actions residing in the queue (see Section 3.4).

– A map δp that maps an issued action to the pomset item corresponding
to the action if the instruction is a read or a write or a synchronization
instruction.

Initial State: In the initial state, all the maps in the local states of the processors
and the instruction queue are empty (i.e. returns undef for any input) except the
program counter which points to the first instructions of every executable. All
memory locations are free. All memory states contain a special write element,
containing an arbitrary initial value of the location, denoted by WI 〈val ,(〉.

3.2 Execution

An execution of a program is a total order of operations where each operation
is an issue or a commit of an action. An operation can occur if all its premises

524 A. De, A. Roychoudhury, and D. D’Souza

are met and causes some state transition. The premises and effects of operations
are described in Section 3.4 and Section 3.5. The total order among operations
in an execution is referred as the occurs-before relation (denoted by ob→).

If i is an action, issue(i) and commit(i) denote the corresponding issue and
commit operations. Similarly, if op is an operation, inst(op) denotes the corre-
sponding dynamic instruction. The state transition from Ω to Ω′ caused by an
operation op from processor p is denoted by 〈p : op, Ω〉 → Ω′.

Execution of a program starts with issue of the first instruction from the any
arbitrary processor. For each processor, the execution starts with the issue of
the first instruction from that processor. A processor finishes execution when the
last instruction, along with all previously issued instructions, of that processor is
committed. The program finishes execution when all processors finish execution.

A trace is a sequence of operations, denoted as 〈op1, op2, ...〉. As occurs-before
is a total order, any execution in WOMM can be expressed as a trace in a natural
way. An execution represented as a trace is referred to as a trace execution.

3.3 Complete Execution and Observable State

We call an execution complete if all issued instructions are committed. Note that
a complete execution might not be a finished execution.

The ultimate goal of our semantics is to define, given a closed program, the
set of observable states reachable from an initial state, via a complete execution.
An observable state is the value of the local registers and program counters of
each processor. If p is a processor and r is register of p, the value of r is given
by σp(μp(r)).

Note that an implementation obeying WOMM need not execute the instruc-
tions from different processors in a total order, but the observable state after
executing a set of instructions by the implementation must be reachable via a
complete trace execution of exactly the same set of instructions.

3.4 Semantics of Issue

Issues of instructions must be done in program order. As a consequence, the issue
operations update the program counters. For the sake of simplicity, we do not
show this requirement and effect in the formal rules. Issue of any instruction by
a processor p also has the following effects:

– Renames the registers. If a register r is read in the instruction, it is renamed
to μp(r). If it is assigned to, it is renamed with a new dynamic name and μp

is updated to reflect that and σp(μp(r)) is set to undef. It is important to
follow the order as the same static register can be both read and assigned in
a single instruction. This operation is denoted as Rename.

– Appends the renamed instruction to the instruction queue Qp.

If there is an uncommitted Cond instruction issued from a processor, the next
instruction to be issued is undefined. Hence an instruction can be issued by a

WOMM: A Weak Operational Memory Model 525

processor only if there is no Cond instruction in the corresponding instruction
queue. Similarly, if the value of a dynamic register is undef, a read or write
instruction dereferencing that register cannot be issued.

If the instruction is a read/write instruction, then the corresponding read/
write item is added to the pomset corresponding to the memory location in-
volved in that instruction. The write items do not have the value defined.If
the instruction is a synchronization instruction, then the corresponding release/
acquire item is added to all the pomsets. To mark that the synchronization in-
struction has not committed, the memory location in the corresponding release/
acquire item is kept undefined. The newly added items are ordered after the
existing items from the same processor. The operation of adding an item I to
a pomset P during issue is denoted by IssueUpdate and is formally defined in
Figure 3, where Pid maps an item to the corresponding processor. The map δp

is updated accordingly.

IssueUpdate ≡ λI.λP.(S′,�′)
where

P = (S,�)

S′ = S ∪ {I}
�′ = � ∪ {(e, I) | e ∈ S

∧(Pid(e) = Pid(I) ∨ Pid(e) = �)}

Fig. 3. Issue Update

Figure 4 shows the formal
rules for issue by an arbi-
trary processor p. Issue-Rd,
Issue-Wr, Issue-Acq, Issue-Rel
and Issue-Gen are the rules
for issue of read, write, ac-
quire, release and other types
of instructions, respectively.
Ω[C1; . . . ; Cn] denotes a state
which is equal to Ω except the

changes C1, . . . , Cn, in that order. Any change Ci can have two forms: M |M ′

denotes the state component M is modified to M ′ and if M is a map, M{x → v}
denotes that M(x) is updated with the value v. In the quantifiers, x ranges over
the set of memory locations. If l is the address of a memory location, [l] denotes
the corresponding memory location. The list append operation is denoted by
“.”.

3.5 Semantics of Commit

Actions in the queue can be committed out-of-order, as long as it follows the
following ordering restrictions:

– Synchronization actions must be committed in program order.
– Any action must be committed after any local acquire action issued before

it.
– Any action must be committed before any local release action issued after

it.
– Any read action can commit only if there is no local uncommitted write to

the same memory location issued before it.
– Any action reading a register can be committed only if the value of all

registers read in the action are not undef.

526 A. De, A. Roychoudhury, and D. D’Souza

(Issue-Rd)

inst ≡ r1 = [r2] Cond ∩ Qp = ∅ I = DI 〈p〉
l = σp(μp(r2)) �= undef P = IssueUpdate(I, Π([l]))

〈p : issue(inst), Ω〉 → Ω[Qp|Qp.Rename(inst); Π{[l] → P}; δp{inst → I}]
(Issue-Wr)

inst ≡ [r1] = r2 Cond ∩ Qp = ∅ I = WI 〈∗, p〉
l = σp(μp(r2)) �= undef P = IssueUpdate(I, Π([l]))

〈p : issue(inst), Ω〉 → Ω[Qp|Qp.Rename(inst); Π{[l] → P}; δp{inst → I}]
(Issue-Acq)

inst ≡ acquire[r] Cond ∩ Qp = ∅ I = AI 〈∗, p〉
Π ′ = ∀x : Π{x → IssueUpdate(I, Π(x))}

〈p : issue(inst), Ω〉 → Ω[Qp|Qp.Rename(inst); Π |Π ′; δp{inst → I}]
(Issue-Rel)

inst ≡ release[r] Cond ∩ Qp = ∅ I = RI 〈∗, p〉
Π ′ = ∀x : Π{x → IssueUpdate(I, Π(x))}

〈p : issue(inst), Ω〉 → Ω[Qp|Qp.Rename(inst); Π |Π ′; δp{inst → I}]
(Issue-Gen)

inst /∈ Rd ∪ Wr ∪ Sync Cond ∩ Qp = ∅
〈t : issue(inst), Ω〉 → Ω[Qp|Qp.Rename(inst)]

Fig. 4. Rules for Issue of an Instruction

– An acquire action can commit only if the corresponding memory location is
not acquired or acquired by the same processor. A release action can commit
if the memory location is already acquired by the same processor.

Informally, the effects of a commit on the program state are as follows. Here p
refers to the processor performing the operation and inst refers to the dynamic
instruction corresponding to the operation. Note that the registers mentioned
here are the dynamic ones, already renamed during issue.

Read (r1 = [r2]): Updates σp(r1) with the value read. The value read can
be any value from the set of write items returned by the function Consis-
tentRead, defined in Figure 5, where x is the memory location read, I is
the corresponding read item (given by δp(inst)) and Val returns the value
associated with a write item. This function returns the set of complete write
items such that there is no intervening write item between any returned
write item and the read item in the pomset order and any returned write
item is not ordered after the read item. Note that the relation � is closed
transitively after each update (see Section 3.1). The read cannot commit if
the returned set is empty.

WOMM: A Weak Operational Memory Model 527

ConsistentRead ≡
λx.λI.{e | Π(x) = (S,�)

∧ e ∈ S ∧ e ∈ WI
∧ �e′ ∈ WI : e ≺ e′ ≺ I
∧ ¬(I ≺ e)
∧ Val(e) �= ∗}

Fig. 5. Consistent Read

CommitUpdate ≡
λI.λP.(S′,�′) where

P = (S,�)

S′ = S
�′ = � ∪ {(e, I) | e ∈ S

∧e ∈ RI
∧MemLoc(e) = MemLoc(I)}

Fig. 6. Commit Update

Write ([r1] = r2): Completes the corresponding write item (given by δp(inst))
with the value of the local register (given by σp(r2)).

Local computation (r = exp): Evaluates the local expression on RHS using
the values given by σp and updates σp(r). The evaluation of the expression is
denoted by Evaluate function. If any of the local registers on RHS has value
undef, Evaluate returns undef. Otherwise it follows the natural semantics
of expression evaluation.

Acquire (acquire [r]): Completes the corresponding acquire item (given by
δp(inst)) with [σp(r)].1 Also modifies the lock state of the memory location
[σp(r)].

Release (release [r]): Completes the corresponding release item (given by
δp(inst)) with [σp(r)]. Also modifies the lock state of the memory location
[σp(r)].

Commit of any acquire action also updates the partial order of memory states.
It makes the corresponding acquire item ordered after all previously committed
release items on the same memory location. This operation, referred as Com-
mitUpdate, is defined in Figure 6, where I is the acquire item, P is the pomset
and MemLoc maps an acquire/release item to the memory location associated
with it.

Cond and Jmp actions do not change the state, except removing themselves
from the instruction queue.

Figures 7 show formal rules for committing an action. Note that the registers
in these instructions are already renamed to dynamic names. We do not show
the obvious requirement that the committing instruction must be present in
the instruction queue and after it is committed, it is removed from the queue.
Pre(q, i) denotes the set of actions in instruction queue q which were issued
before the action i and Post(q, i) denotes the set of actions in instruction queue
q issued after i, where i ∈ q. Wr(x) denotes the set of write actions to the
memory location x. We follow all the conventions defined in Section 3.4.

1 Note that the update of pomset item by commit of a synchronization instruction

affects all pomsets as the synchronization item is added to all the pomsets during

issue.

528 A. De, A. Roychoudhury, and D. D’Souza

(Commit-Rd)

inst ≡ r1 = [r2] l = σp(r2) WI 〈v, p′〉 ∈ ConsistentRead ([l], δp(inst)))
Pre(Qp, inst) ∩ Acq = ∅ Pre(Qp, inst) ∩ Wr([l]) = ∅

〈p: commit(inst), Ω〉 → Ω[σp{r1 → v}]
(Commit-Wr)

inst ≡ [r1] = r2 l = σp(r1) v = σp(r2) �= undef Pre(Qp, inst) ∩ Acq = ∅
〈p: commit(inst), Ω〉 → Ω[δp{[l] → WI 〈v, p〉}]

(Commit-Loc)

inst ≡ r = exp v = Evaluate(σp, exp) �= undef Pre(Qp, inst) ∩ Acq = ∅
〈p: commit(inst), Ω〉 → Ω[σp{r → v}]

(Commit-Acq)

inst ≡ acquire [r] l = σp(r) (L([l]) = 〈0〉 or L([l]) = 〈p〉)
L′ = L{[l] → 〈p〉}

δ′p = δp{inst → AI〈[l], p〉}
Π ′ = ∀x : Π{x → CommitUpdate(δ′p(inst), Π(x))}

Pre(Qp, inst) ∩ Sync = ∅
〈p: commit(inst), Ω〉 → Ω[L|L′; δp|δ′p; Π |Π ′]

(Commit-Rel)

inst ≡ release [r] l = σp(r) L([l]) = 〈p〉
L′ = L{[l] → 〈0〉}

δ′p = δp{inst → RI〈[l], p〉}
Pre(Qp, inst) = ∅

〈p: commit(inst), Ω〉 → Ω[L|L′; δp|δ′p]

Fig. 7. Rules for Committing an Instruction

3.6 Abstract Execution

Although the trace execution semantics (Section 3.2) helps in generating and
traversing executions of a program, it is sometimes useful to view the executions
as abstract executions, in the style of [9], where the actions are related by few
causal orders. In this section we show how a complete WOMM trace execution
can be naturally translated to an abstract execution.

More specifically, an abstract execution is a tuple 〈P, A,
po→,

so→, W, V,
sw→,

hb→〉,
where P is the program, A is the set of actions executed,

po→ is the program
order, so→ is the synchronization order, W is the write seen function, V is the
value written function, sw→ is the synchronizes-with relation and hb→ is the happens-
before relation. We define each component of the tuple in context of a complete
WOMM execution as below:
– P is the closed program.
– A is the set of actions issued and committed. Note that in a complete exe-

cution, all issued actions are committed.

WOMM: A Weak Operational Memory Model 529

– Given two actions i and i′, i
po→ i′ iff issue(i) ob→ issue(i′) and Pid(i) =

Pid(i′).
– Given two synchronization actions i and i′, i

so→ i′ iff commit(i) ob→ commit(i′).
– W (r) = w, if the read action r reads the value written by the write action

w.
– V (w) = v, if the write action w writes the value v.
– A release action i synchronizes-with an acquire action i′ if MemLoc(i) =

MemLoc(i′) and i
so→ i′.

– Happens-before relation is the transitive closure of synchronizes-with and
program order relations.

It should be noted that there can be multiple complete trace executions corre-
sponding to a single abstract execution. All such executions lead to the same
final observable state.

4 Relaxed Behaviors Allowed by WOMM

Initially, x == y == 0

Proc 1: Proc 2:

r1 = x; r2 = y;

y = 1; x = 1;

r1 == r2 == 1 is allowed by WOMM

Fig. 8. Behavior Allowed by WOMM

A large class of hardware optimiza-
tions can be described as reordering
of locally independent actions, sim-
ply referred as independent actions.
In the code fragment from Figure 8,
the processors can reorder the writes
before the reads as they access dif-
ferent memory locations, resulting in

the behavior described. WOMM allows this behavior in the trace exe-
cution 〈issue(r1 = x), issue(r2 = y), issue(y = 1), issue(x = 1), commit(y = 1),
commit(x = 1), commit(r1 = x), commit(r2 = y)〉. Note that the semantics al-
low this trace. Before the commit of read of x in Proc 1, the pomset of x contains
three items — two write items WI 〈0,(〉, WI 〈1, 2〉 and a read item DI 〈1〉. The re-
lations in the pomset are as follows: {WI 〈0,(〉 ≺ WI 〈1, 2〉,WI 〈0,(〉 ≺ DI 〈1〉}.
From the definition of ConsistentRead (Figure 5), the read can see the value
1. Similarly, the read of y can also see the value 1, thus making this behavior
possible. The behavior in Figure 1 is also allowed by WOMM in a similar way.

We present the formal definition of independent actions as follows.

Definition 1 (Independent Actions). Let s1 and s2 be two actions from the
same processor p in an execution such that s1

po→ s2. They are independent if all
of the following are true:

1. s1 and s2 are not conflicting accesses.
2. There is no data flow from s1 to s2 through a register.
3. s1 is not an acquire.
4. s2 is not a release.
5. Both s1 and s2 are not synchronization instructions.
6. s1 is not a conditional branch.

The following theorem states that a processor can reorder independent instruc-
tions at runtime under WOMM semantics.

530 A. De, A. Roychoudhury, and D. D’Souza

Theorem 1. Let at any point of an execution E, s be an action issued by a
processor p but not yet committed. The action s can commit immediately if all
the uncommitted actions by processor p are independent with s.

Proof. Proof of this theorem follows directly from the definition of independent
actions and the semantics of commit (Figure 7). ��
The memory subsystems and the communication networks of relaxed multipro-
cessor platforms often do not guarantee strict ordering of “events”. In the exam-
ple of Figure 2, the writes by Proc 1 are seen in different orders by the reads of
Proc 2 and Proc 3. WOMM allows this behavior by committing the writes from
Proc 1 before any reads. As Proc 1 is not synchronized with Proc 2 or Proc 3,
the reads can see any of the writes from Proc 1. Note that this behavior cannot
be produced by simply reordering independent actions.

In Section 5 we show that WOMM is weaker than the traditional hardware
memory models such as TSO, PSO, RMO etc. This implies that WOMM allows
all runtime optimizations allowed by those models.

5 Relationship with Other Memory Models

In this section, we show that WOMM is strictly weaker than the Location Con-
sistency (LC) memory model [7]. As the LC is weaker than many common hard-
ware memory models (such as TSO, PSO [2], Release Consistency [10]), this in
turn, makes WOMM weaker than those traditional memory models. Hence, any
runtime optimizations allowed by the these hardware memory models are also
allowed by WOMM.

Theorem 2. WOMM is strictly weaker than the Location Consistency memory
model.

Proof. As the LC semantics do not allow explicit reordering of instructions,
an LC execution [7] can be viewed as a trace execution, where an issue of an
instruction is immediately followed by the commit of the same and the ordering
of those instructions is consistent with the program and synchronization order.
The write and the synchronization instructions update the pomset the same way
as WOMM’s IssueUpdate (Figure 3) and CommitUpdate (Figure 6) functions. A
read instruction in LC gets its value from the pomset, restricted by the following
constraints — the write item is either not ordered before the read, or there is no
other intervening write item in the pomset relation. As the instructions are not
reordered and the execution respects all uniprocessor control dependencies, it is
not possible for a read to see a write item which is ordered after the read. Hence
the constraints imposed on read by the LC are equivalent to the ConsistentRead
function. Hence it is easy to see that this trace is allowed by the WOMM. As a
result, given a program, any observable state reachable under the LC semantics
is also reachable under WOMM.

The example in Figure 8 shows that WOMM is strictly weaker than the LC.
In the LC, as at least one read must commit before the writes with value 1, both

WOMM: A Weak Operational Memory Model 531

r1 and r2 cannot be 1 simultaneously. But this is possible in WOMM as the
writes with value 1 can commit first followed by the reads and both the reads
can see the value 1. ��

6 The DRF Guarantee

Designers of memory models face two conflicting goals — on one hand, the
semantics should be strong enough so that it is easy for the programmers to
understand it (e.g. the SC); on the other hand, it should be weak enough to
allow different optimizations. A compromise between these two goals is reached
via the DRF guarantee.

Definition 2 (Datarace-Free Program). In an execution, a pair of instruc-
tions accessing the same shared-memory location are called conflicting accesses if
at least one of them is a write. A (closed) program is called datarace-free (DRF)
or correctly synchronized if all pairs of conflicting accesses in any sequentially
consistent execution of that program are ordered by happens-before.

Definition 3 (DRF Guarantee). Relaxed memory models with the DRF guar-
antee ensure that any execution of a datarace-free program under the relaxed
memory model is equivalent to some sequentially consistent execution of that
program.

This property is highly desirable for weak memory models as it ensures that pro-
grammers need not worry about the weak memory models as long as they write
only correctly synchronized programs. In this section, we prove that WOMM
gives the DRF guarantee. To show that WOMM has this property, we first state
the following lemma in context of an abstract execution allowed by WOMM.

Lemma 1. In a WOMM execution of a correctly synchronized program, if each
read sees a write that happens-before the read, then the execution has sequentially
consistent behavior.

This lemma is proved in [9] for the Java Memory Model. The same proof can be
used in the context of an abstract WOMM execution.

The following lemma states a connection between the relation of pomset items
at any state of a WOMM trace execution and the happens-before relation of the
abstract execution equivalent to the trace.

Lemma 2. Consider a WOMM trace execution E. Let I and I ′ be two complete
pomset items, corresponding to the instructions i and i′ respectively, belonging
to the same memory location at any state Ω during E. Let EA be the abstract
execution equivalent to E. I ≺ I ′ in Ω iff i

hb→ i′ in EA.

This lemma is proved in Appendix A.
Now we prove the following theorem stating that WOMM provides the DRF

guarantee.

532 A. De, A. Roychoudhury, and D. D’Souza

Theorem 3. Any abstract execution of a correctly synchronized program allowed
by WOMM is equivalent to a sequentially consistent execution.

Proof. Let EA be an abstract execution of a correctly synchronized program
P allowed by WOMM and E be a trace execution of P equivalent to EA. By
Lemma 1, if EA is not equivalent to any SC execution of P , there must be at
least one read that sees a write that does not happen-before it. Using Lemma 2,
when such a read commits in E, the corresponding read item ID will not be
related to the write item IW it sees. Let r be the first such read, which sees a
unrelated write w, to commit in E. Using Lemma 2, all reads committed before
r see writes that happen-before them.

We construct a complete trace execution E′ from E the following way. Let A′

be the set of last committed instructions from each processor (in ob order) when r
is committed in E. We then include in A′ all instructions of E that precede those
instructions in program order. Some of such instructions may not be committed
when r is committed in E. In E′, those instructions are committed in program
order such that each read sees a write that happens-before it (that is, the cor-
responding read item is ordered after the seen write item in the pomset). Note
that none of these incomplete instructions can be an acquire instruction, accord-
ing to the semantics of commit. Hence, instructions from different processors can
be committed in any order consistent with program order, without affecting the
happens-before relations. At last, the read r is modified such that it also sees a
write that happens-before it. Note that, this completion does not affect the al-
ready committed instructions, neither does it introduce any new sw edge.

Let us consider the execution E′
A corresponding to the complete execution

E′. In E′
A, each read sees a write that happens-before it. Hence, by Lemma 1, it

must be equivalent to an SC execution, but there is a write w and a read r to the
same memory location which are not related by happens-before. This contradicts
the fact that the program is correctly synchronized. Thus, there cannot exist any
read in EA which sees a write that does not happen-before the read. Hence, by
Lemma 1, the execution EA is equivalent to an SC execution. ��

7 Related Work

Most of the early works in relaxed memory models for hardware multiprocessors
has been summarized in [3]. Shen et al [11] shows that breaking an instruction
into finer-grained operations and using an abstract semantic cache can lead to
weak memory models. The notion of abstract shared memory state used in the
Location Consistency memory model [7] is very similar to our memory model.
A recent work [6] developed rigorous axiomatic semantics of multiprocessor ma-
chine code for x86 architectures.

Some recent works have stressed the need for precise, concrete, operational style
specification of memory models [12,13]. Boudol et al [14] shows how operational
specificationofmemorymodels help inproving theDRFguarantee for suchmodels.

Verifying concurrent programs under relaxed memory models requires precise
specification of the memory model. Burckhardt et al [15] exhaustively check

WOMM: A Weak Operational Memory Model 533

all executions of a concurrent program under a relaxed memory model that
allows certain reordering and buffering. In our earlier works, we formalized the
memory model for C# [16] and proposed an operational approximation of the
Java Memory Model [17] and developed memory model sensitive model checkers
to find bugs in concurrent C# and Java programs.

8 Conclusion and Future Work

In this paper, we have presented a weak operational multiprocessor memory
model. Our work is useful for understanding such models at an abstract level. The
compiler writers and low-level programmers can follow this semantics without
going into the details for each hardware memory model separately. We have
shown that our proposed semantics is weak enough to allow many hardware
optimizations. We formally compared it with the Location Consistency model.
The operational style of our specification enables traversal and enumeration of
executions of a given program that are allowed by the model, helping in easy
integration into model checkers.

In future, we plan to extend our memory model to also allow speculative
execution of instructions. We also plan to integrate the current model to state
space exploration tools (such as software model checkers) for memory model
sensitive program reasoning.

References

1. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-

tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

2. Weaver, D.L., Germond, T.: The SPARC Architecture Manual: Version 9. Prentice

Hall, Englewood Cliffs (1994)

3. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.

IEEE Computer 29(12), 66–76 (1996)

4. Intel: Intel
R© 64 and ia-32 architectures software developer’s manual volume 3a:

System Programming Guide,

http://www.intel.com/Assets/PDF/manual/253668.pdf

5. AMD: Amd64 architecture programmer’s manual (2007)

6. Sarkar, S., Sewell, P., Nardelli, F.Z., Owens, S., Ridge, T., Braibant, T., Myreen,

M.O., Alglave, J.: The semantics of x86-cc multiprocessor machine code. In: POPL

2009: Proceedings of the 36th annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pp. 379–391. ACM, New York (2009)

7. Gao, G.R., Sarkar, V.: Location consistency — a new memory model and cache

consistency protocol. IEEE Trans. Comput. 49(8), 798–813 (2000)

8. Intel: A formal specification of intel
R© itanium

R© processor family memory or-

dering (October 2002),

http://www.intel.com/design/itanium/downloads/251429.htm

9. Manson, J., Pugh, W., Adve, S.V.: The java memory model. In: POPL 2005:

Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pp. 378–391. ACM, New York (2005)

http://www.intel.com/Assets/PDF/manual/253668.pdf
http://www.intel.com/design/itanium/downloads/251429.htm

534 A. De, A. Roychoudhury, and D. D’Souza

10. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.:

Memory consistency and event ordering in scalable shared-memory multiproces-

sors. In: Proceedings of the Annual International Symposium on Computer Archi-

tecture, pp. 15–26 (May 1990)

11. Shen, X., Arvind, Rudolph, L.: Commit-reconcile & fences (crf): a new memory

model for architects and compiler writers. SIGARCH Comput. Archit. News 27(2),

150–161 (1999)

12. Nardelli, F.Z., Sewell, P., Sevcik, J., Sarkar, S., Owens, S., Maranget, L., Batty, M.,

Alglave, J.: Relaxed memory models must be rigorous. In: Exploiting Concurrency

Efficiently and Correctly Workshop (2009)

13. Mador-Haim, S., Alur, R., Martin, M.M.: Specifying relaxed memory models for

state exploration tools. In: Exploiting Concurrency Efficiently and Correctly Work-

shop (2009)

14. Boudol, G., Petri, G.: Relaxed memory models: an operational approach. In: POPL

2009: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Smposium on

Principles of Programming Languages, pp. 392–403. ACM, New York (2009)

15. Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence: checking consistency of

concurrent data types on relaxed memory models. In: PLDI 2007: Proceedings

of the 2007 ACM SIGPLAN Conference on Programming Language Design and

Implementation, pp. 12–21. ACM, New York (2007)

16. Huynh, T.Q., Roychoudhury, A.: Memory model sensitive bytecode verification.

Form. Methods Syst. Des. 31(3), 281–305 (2007)

17. De, A., Roychoudhury, A., D’Souza, D.: Java memory model aware software vali-

dation. In: PASTE 2008: Proceedings of the 8th ACM SIGPLAN-SIGSOFT Work-

shop on Program Analysis for Software Tools and Engineering, pp. 8–14. ACM,

New York (2008)

A Proof of Lemma 2

Proof. If I ≺ I ′ at some state Ω in E, then, from the definition of IssueUpdate
(Figure 3) and CommitUpdate (Figure 6), either i and i′ are from the same pro-
cessor and issue(i) ob→ issue(i′), or there is a sequence of synchronization instruc-
tions s1, s

′
1, . . . , sn, s′n such that each sj and s′j are release and acquire instruc-

tions on the same memory location respectively, s′j and sj+1 are from the same

processor, issue(i) ob→ issue(s1)
ob→ commit(s1)

ob→ commit(s′1) . . . commit(s′n) ob→
commit(i′) and issue(s′n) ob→ issue(i′) (i might be same as s1 and s′n might be
same as i′). From Section 3.6, it implies that in EA, i

po→ s1
sw→ s′1 . . . s′n

po→ i′.
From the definition of happens-before relation, i

hb→ i′.
Conversely, if i

hb→ i′, either i
po→ i′, or there are instructions i1, i

′
1, . . . , in, i′n

such that i
po→ i1

sw→ i′1
po→ i2 . . . in

sw→ i′n
po→ i′, where each ij is a release and i′j

is an acquire action. In the first case, clearly I ≺ I ′. In the second case, from
the semantics of commit, when i′ commits, all these instruction must already be
committed. From IssueUpdate and CommitUpdate, the pomset items of each of
these instructions are ordered after the pomset item of the previous instruction.
Hence, I ≺ I ′. ��

A Memory Model for Static Analysis of C
Programs

Zhongxing Xu1, Ted Kremenek2, and Jian Zhang1

1 State Key Laboratory of Computer Science

Institute of Software

Chinese Academy of Sciences

xzx@ios.ac.cn,

zj@ios.ac.cn
2 Apple Inc.

kremenek@apple.com

Abstract. Automatic bug finding with static analysis requires precise

tracking of different memory object values. This paper describes a mem-

ory modeling method for static analysis of C programs. It is particularly

suitable for precise path-sensitive analyses, e.g., symbolic execution. It

can handle almost all kinds of C expressions, including arbitrary levels

of pointer dereferences, pointer arithmetic, composite array and struct

data types, arbitrary type casts, dynamic memory allocation, etc. It maps

aliased lvalue expressions to the identical object without extra alias anal-

ysis. The model has been implemented in the Clang static analyzer and

enhanced the analyzer a lot by enabling it to have precise value tracking

ability.

1 Introduction

Recently there has been a large number of works on bug finding with symbolic
execution technique. In these works, tracking values of different memory objects
along a single path is a common requirement. Some works get the run-time ad-
dresses of memory objects by actually compiling and running the program [1][3].
These are dynamic techniques. Programs being checked must be instrumented
and linked with an auxiliary library and run. Other works solve the memory ob-
ject identifying problem through various static ways. The simplest approach is
to only track simple variables with names, and ignore multi-level pointers, array
elements, and struct fields. This would surely sacrifice much analysis power.

This paper proposes a memory modeling method that is particularly suitable
for symbolic execution of C programs. It enables the symbolic execution to iden-
tify and track each memory object precisely. We give algorithms that enable
the mapping from C l-value expressions to memory objects during the analysis.
Thus no separate alias analysis is required.

Memory model is the way that the analysis tool models the storage of the
underlying machine on which the code runs. It is the basis of language semantics
simulation and a key component of static code analysis tools.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 535–548, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

536 Z. Xu, T. Kremenek, and J. Zhang

Memory model determines how accurately the tool can simulate the language
semantics and thus affects the ability of the tool to detect bugs. Surprisingly,
few papers addressed the memory modeling issue in the static analysis field.

Unlike other high level programming languages, the C programming language
assumes a rather low level memory model and provides extensive kinds of mem-
ory operations, such as multi-level pointers, arbitrary pointer arithmetic, built-in
array and struct data types. Pointers in C can point to arbitrary locations of
the memory, and can be cast freely between different types. All these make it
difficult to simulate the C semantics accurately.

In Section 2 and 3, we introduce two basic memory models which are com-
monly used but have some limitations. In Section 4 we describe our novel memory
model, which can precisely map each l-value expressions to the corresponding
memory object. In Section 5 we describe how to simulate the C language seman-
tics with the new memory model. We give some examples and implementation
in Section 6 and 7. We compare with related works in Section 8 and conclude in
Section 9.

2 Name Binding Model

The name-binding model is the most basic storage model present in the semantics
textbooks. In this model, the computer memory is seen as name-value pairs.
When an assignment expression is evaluated, we bind the name of the variable
on the left-hand-side to the value of the expression on the right-hand-side. While
this model is very common, it is not powerful enough to be used for simulating
the C semantics. Consider the following example:

int x, y;
int *p = &x;
x = 3;
*p = 4;
y = x;

The C language has pointers. In this example, p is a pointer variable that points
to the variable x. The presence of pointers brings the aliasing problem. The
aliasing problem is that two or more names can represent the same storage
location. In this example, *p and x are aliases.

The name-binding model cannot deal with the aliasing problem. When we
modify the value of a name, we should also modify the value of all names aliased
to it accordingly. But in no way can we know the aliases of a name in the name-
binding model.

3 Array Simulation Model

One of the deficiencies of the name-binding model is that it lacks the concept
of memory locations. The pointers in C, however, are invented to manipulate
memory locations.

A Memory Model for Static Analysis of C Programs 537

Zhang proposed an array model for the memory [11]. The motivation of the
array model is simple: intuitively the memory can be seen as a large array. If we
allocate all variables on an array, all operations on variables can be transformed
into operations on corresponding array elements, and most importantly, the array
element indices can be taken as the memory locations for the variables.

The example in Section 2 can be transformed using the array memory model:

Assume mem[] is the memory simulation array.
Memory allocation:
x: mem[1], y: mem[2], p: mem[3]

mem[3] = 1; // p = &x; mem[3] is ’p’,
// 1 is x’s simulation location.

mem[1] = 3; // x = 3;
mem[mem[3]] = 4; // dereference ’*’ means

// we have to nest mem[]’s
mem[2] = mem[1]; // y = x;

The array model is somewhat more powerful than the name-binding model. It
can solve some problems in program analysis [10]. But its disadvantages are also
obvious.

The array model requires that every variable has a fixed position. This can
be achieved as long as we know the exact size of every memory object. Once we
have a memory object of unknown size, such as a variable-length array or a heap
object of unknown size, the array model is unusable.

A slight improvement for the array model is that instead of using a single large
array, we use multiple arrays. Each memory object has a corresponding array
for it. But composite memory objects are difficult to represent in this model. For
example, for object struct array struct s { int d } sa[2];, if we use a single
array to represent it, it still has the same weakness as the single array model. If
we use multiple arrays to represent it, we will lose the hierarchy relation among
memory objects.

4 Region Based Ternary Model

Formal semantics models program state with two mappings [8]: a variable envi-
ronment that associates a location with each variable and a store that associates
a value with each location. Formally, we define a variable environment Env as
a mapping of

Env = V ar → Loc

where Loc is a set of locations. A store is the mapping of

Store = Loc → V alue

The name-binding model in Section 2 lacks the concept of locations. The array
model in Section 3 does have the concept of locations. It uses concrete integers

538 Z. Xu, T. Kremenek, and J. Zhang

to represent locations. This concretization of location limits the applicability of
the array model.

In this section we develop a new representation of locations: regions. A region
is an abstract chunk of memory corresponding to an lvalue expression in the C
programming language.

According to the C standard [5], an lvalue is an expression with an object
type. That is, an lvalue expression has an associated memory object. We use an
abstract region to represent this memory object.

Thus in our region based memory model, every lvalue expression should have a
corresponding region. Furthermore, lvalue expressions indicating the same mem-
ory object should have the same region corresponding to them. Next we describe
the way to get the region associated with an lvalue expression.

4.1 Region Hierarchy

We define several kinds of regions. For explicitly declared variables, we have
VarRegion identified by the variable declarations. Every variable has a unique
VarRegion associated with it.

If the variable is of array or struct type, it has subobjects called element
or field. To represent this hierarchy between memory objects, we introduce the
concept of subregions. A region can be the subregion of another region. There
is a super region pointer pointing to the super region of a subregion.

For array elements, we have ElementRegion with its super region pointer
pointing to its array region. Likewise, for struct fields, we have FieldRegion
with its super region pointer pointing to its struct region. ElementRegions are
identified by their array regions and the indices. FieldRegions are identified by
their struct regions and the field declaration.

In C, there are three kinds of storage classes: local (stack), global (static),
dynamically allocated (heap). We also have a MemSpaceRegion for this concept.
There are three MemSpaceRegions for stack, heap, and static storage respec-
tively. All local variables have the stack MemSpaceRegion as their super region.
All global variables have the static MemSpaceRegion as their super region. All
dynamically allocated objects (mostly by malloc()) have the heap MemSpaceRe-
gion as their super region.

In static analysis, we sometimes would have symbolic values. For example,
we assume function arguments and global variables holds symbolic values at the
entry of the function. If the symbolic variable is a pointer, it may point to some
unknown memory block. For this case, we have SymbolicRegion for representing
the memory block pointed to by the symbolic pointer. SymbolicRegions are
identified by the symbolic pointer values that point to them.

4.2 Region Properties

Besides storage classes, memory objects have extents, or sizes. Some objects’
extents are explicit. For example, a char variable has the extent of one byte.
But dynamically allocated objects can have various extents. We record this

A Memory Model for Static Analysis of C Programs 539

information with a region-extent mapping from the object’s associated region
to its extent. The extents can be in various forms: concrete integer value or
symbolic unknown value.

Memory state is modeled by the bindings of the regions. There are two kinds
of bindings: direct binding and default binding. After an assignment expression,
like x = 3;, we set the direct binding of region of x to 3. Default binding is
usually set on super regions. If a subregion has no binding, then it could use
its super region’s default binding as its value. For example, after function call
bzero(buf), we can set the default binding of the region pointed to by buf to 0.
Without default binding, we have to set each element of that region to 0, which
is prohibitively expensive for large arrays.

4.3 Region Views

The C programming language permits arbitrary conversions between types of
pointers. This poses great difficulty to static analysis tools.

Consider the following code snippet:

void *p = malloc(10);
char *buf1 = (char *) p;
buf1[0] = ’a’;

int *buf2 = (int *) p;
buf2[0] = 0;

char c = buf1[0];

This is a contrived example. But the code pattern is fairly common in system
programs. Programmers often allocate a generic block of memory, then cast it
to different types for different uses. How do we deal with such (ab)uses of the C
type system?

The essence of this problem is that in C we can have typeless generic chunk of
memory. In the code example above the dynamically allocated memory pointed
to by p is such a chunk of memory. The later casts from it to char* and int* can
be interpreted as installing “views” to it. When it is operated by pointer buf1,
it is viewed as a memory block of type char. When it is operated by pointer
buf2, it is viewed as a memory block of type int.

We set up a region view mapping from a region to its various views: some
anonymous typed region. Casting a generic block of memory to some type is
equivalent to adding a new view to the block of memory. We create an anonymous
typed region to represent the view. Later when the generic memory block is cast
to another type, a new anonymous typed region is created to represent this new
view. The idea is illustrated in Figure 1.

A region can have multiple views simultaneously. But only one view can be
in effect at a time. When the region is operated on by one view region of it, the
information associated with its other view regions must be invalidated.

540 Z. Xu, T. Kremenek, and J. Zhang

Fig. 1. Anonymous typed region illustration. Region region p is the generic memory

block pointed to by p. Region region buf1 is the same memory block with type char.

Region region buf2 is the same memory block with type int. Regions buf1[0] and buf2[0]

are the ElementRegions on regions region buf1 and region buf2.

Returning to the example, after expression buf1[0] = ’a’;, buf1[0] has
value ’a’. But after expression buf2[0] = 0, we not only set the value of
buf2[0] to 0, but also removes the binding for buf1[0]. When c is assigned
buf1[0], we can spot that buf1[0] is an undefined value.

5 Simulation of C Semantics

With the region based memory model, we can simulate the C semantics precisely.
We still use the semantics model in Section 4. But we extend it as follows.

The program state is modeled by two mappings: Environment and Store. We
define Environment as a mapping from expressions to values:

Env : Expr → SV al

where Expr is an element of C expressions. SVal is some kind of abstract values,
which we will describe in Section 5.1. The Store is defined as a mapping from
Regions to values:

Store : Region → SV al

where Region is the abstract representation of memory objects.

5.1 Abstract Values

We divide the values occurring in the symbolic simulation into two classes: lo-
cations loc and non-locations non-loc. A loc can be a region or unknown. loc
represents an abstract memory location. Pointers in C all have loc values. The
rests are non-location values non-loc. A non-loc can be a concrete integer, a
symbolic integer, etc.

5.2 l-Value and r-Value

The C programming language standard [5] classifies expressions into lvalue and
rvalue. Expressions referring to objects are lvalue expressions. The rests are

A Memory Model for Static Analysis of C Programs 541

rvalue expressions. To evaluate expressions, we have to distinguish between an
expression’s l-value and r-value. We define an expression’s l-value to be the
memory location of its associated memory object. An expression’s r-value is the
value associated with the memory object if the expression is an lvalue expression
or the semantic value if the expression is not an lvalue expression.

Note that lvalue expressions have both l-value and r-value. Non-lvalue expres-
sions only have r-value, i.e., their semantic value. l-value can only be locs, while
r-value can be both locs and non-locs. For example, *p’s r-value is a loc.

5.3 Evaluation Rules

In this section we give some rules of evaluation of C expressions. We define
some notations: l-value(e) returns expression e’s l-value, which is a loc. r-value(e)
returns expression e’s r-value, which is a loc or non-loc. VarRegion(v) return the
unique region associated with variable declaration v. ElementRegion(r, i) returns
the unique region associated with the i’th element of array region r. Similarly,
FieldRegion(r, f) returns the unique region associated with the f field of struct
r. Store(loc) returns the value associated with location loc.

Evaluation rules for main kinds of expressions of C are specified in Table 1.

Table 1. Evaluation rules for C expressions

l-value r-value

constant n N/A n

variable x VarRegion(x) Store(l-value(x))

array a VarRegion(a) N/A

a[e] ElementRegion(l-value(a), Store(l-value(a[e]))

r-value(e))

s.d FieldRegion(l-value(s), d) Store(l-value(s.d))

p->d FieldRegion(r-value(p), d) Store(l-value(p->d))

&expr N/A l-value(expr)

*expr r-value(expr) Store(r-value(expr))

alloca(n) N/A AllocaRegion(n)

malloc(n) N/A MallocRegion(n)

The region-base memory model supports almost all kinds of C expression se-
mantics: arbitrary level pointer, composite struct and array data types, dynamic
memory allocation, and symbolic pointer.

For pointer arithmetic, we assume that it only happens to element regions.
We get the index of the element region, apply the offset to it, and get an element
region with the new index.

For dynamically allocated memory, we create a MallocRegion with the size
and an execution counter to differentiate memory chunks allocated in the same
statement.

542 Z. Xu, T. Kremenek, and J. Zhang

Let us look at an example showing how the evaluation rules are applied.
Consider code snippet:

struct s1 {
int d;

};

struct s2 {
struct s1 *p;

};

void foo(void) {
struct s1 data;
struct s2 *sp;
int a[2];

sp = malloc(sizeof(struct s2));
sp->p = &data;
sp->p->d = 3;
a[1] = data.d;

}

After we have processed the three variable declarations in function foo, we
have program state shown as follows:

Expression Region Value
data region 1 N/A
data.d region 2 undefined
sp region 3 undefined
a region 4 N/A
a[0] region 5 undefined
a[1] region 6 undefined

When processing the malloc statement, we will have a new region in the
program state. The updated program state is shown as follows, where MallocReg
represents the memory region allocated by malloc().

Expression Region Value
data region 1 N/A
data.d region 2 undefined
sp region 3 region 7
a region 4 N/A
a[0] region 5 undefined
a[1] region 6 undefined
MallocReg0 region 7 N/A
MallocReg0.p region 8 undefined

A Memory Model for Static Analysis of C Programs 543

Next we process statement sp->p = &data;. Evaluating expression &data re-
quires the l-value of data, which is region 1. Then we get the r-value of sp, which
is region 7. getFieldRegion(region7,p) returns region 8. The updated program
state is shown as follows:

Expression Region Value
data region 1 N/A
data.d region 2 undefined
sp region 3 region 7
a region 4 N/A
a[0] region 5 undefined
a[1] region 6 undefined
MallocReg0 region 7 N/A
MallocReg0.p region 8 region 1

Next we process statement sp->p->d = 3; Similarly we get the r-value of
sp->p, which is region1, and the l-value of sp->p->d, which is region2. The
updated program state is shown as follows:

Expression Region Value
data region 1 N/A
data.d region 2 3
sp region 3 region 7
a region 4 N/A
a[0] region 5 undefined
a[1] region 6 undefined
MallocReg0 region 7 N/A
MallocReg0.p region 8 region 1

Then we process statement a[1] = data.d; The l-value of data.d is region2,
then we get its r-value 3. The l-value of a[1] is region 6. The updated program
state is shown as follows:

Expression Regions Values
data region 1 N/A
data.d region 2 3
sp region 3 region 7
a region 4 N/A
a[0] region 5 undefined
a[1] region 6 3
MallocReg0 region 7 N/A
MallocReg0.p region 8 region 1

From the above example we can see that all memory objects are represented
unambiguously, and their corresponding regions are computed on the fly with
little overhead. The region hierarchy is shown in Figure 2.

544 Z. Xu, T. Kremenek, and J. Zhang

Fig. 2. The final memory region hierarchy. The arrow points to the super region.

6 An Example

In this section we use an example to show the power of the region-base memory
model. Consider the following code snippet.

struct s { int data[2]; }
void f(struct s buf) {
1 int i = 3, *q = NULL;
2 struct s* p;

3 if (buf.data[1] == 1)
4 q = &i;

5 p = &buf;

6 if (p->data[1] == 1)
7 p->data[0] = *q;

8 return;
}

In this code, if we do not track the value of the struct field buf.data[1], we
would have a path leading to the NULL pointer dereference of q at line 7:
1,2,3,5,6,7,8.

With the region memory model, we can precisely know that buf.data[1] and
p->data[1] refer to the identical memory object. Thus the path condition along
the previous path cannot be satisfied: buf.data[1] cannot be simultaneously
equal and unequal to 1.

The region hierarchy and storage mapping is shown in Figure 3. When
buf.data[1] is evaluated, we get the region associated with buf, buf.data,
buf.data[1] respectively. Then the value of buf.data[1] is retrieved, which
is a symbolic value $1. When p->data[1] is evaluated, we first get p’s rvalue,
which is the memory region of buf. Then along the same way, we get the value
for buf.data[1], which is the symbolic value $1.

A Memory Model for Static Analysis of C Programs 545

Fig. 3. The region hierarchy and storage mapping. Squares represent memory regions.

$1 is the symbolic value of buf.data[1]

The for path 1,2,3,5,6,7,8, we get path condition:

$1! = 1 ∧ $1 == 1,

which cannot be satisfied. There will be no false alarm for the NULL pointer
dereference of q at line 7.

7 Implementation

The region based memory model is fully implemented in the Clang analyzer [2].
Clang is a new C, C++ and Objective C front-end for the LLVM [7] compiler.
The static analyzer is an official part of Clang that find bugs in C and Objective-
C programs. The second author of this paper is the original architect of the static
analyzer core [6]. The analyzer has very good modularity. It is designed in such
a way that main components can be swapped in and out. Basically it has the
following components:

– The core engine, driving the analysis through the program in some order.
– State manager, managing the simulated program states.
– Constraint manager, recording and solving path conditions collected along

a program path.
– Store manager, modeling the program storage.

The region based memory model is implemented as the region store manager
in the tool. It adds the full field sensitivity to the analysis.

An implementation feature that is worth mentioning is the lazy binding tech-
nique we employed. It can be best illustrated by an example. Consider code
snippet:

for (...) {
...
if (...) {

L: int buf[8096];
}

}

546 Z. Xu, T. Kremenek, and J. Zhang

As we are using the region based memory model, theoretically we have a
separate region for each of the array elements on line L. Since buf is a local
array, we have to initialize all of its elements to have value undefined. Because
we could have multiple paths leading to the definition of buf, we have to initialize
its 8096 elements multiple times. This proved very time consuming. Moreover,
few of the elements are actually used during later analysis.

To solve this problem, we switched to an implementation that employed lazy
initialization. We do not initialize any variables. Instead, we compute their initial
value the first time it is used according to their storage classes. This optimization
reduced the analysis cost dramatically.

8 Related Work

Hampapuram et al. used a region-based memory model in their work [4]. Our
model is different than theirs in various ways. The main feature of our model is
the region hierarchy, which plays an important role in tracking and distinguishing
memory objects and reasoning about their relations.

Saturn [9] is a general framework for building precise and scalable static er-
ror detection systems. It models program operations with Boolean satisfiability
(SAT) techniques down to the bit level. Pointers in Saturn are modeled with
Guarded Location Sets (GLS). The GLS method essentially gives each location
an explicit name and records the set of locations a pointer could reference at
a particular program point. This memory representation is not as rich as our
region-based memory model, which treats memory objects as first-class values
with properties such as extents and relationships to other memory regions (e.g.,
region views to capture type-casting relationships). One consequence of these
differences is that Saturn’s strictly name-based memory model does not amend
itself well to reasoning about pointer arithmetic nor array operations, both of
which are handled naturally and precisely in our region-based model (i.e., by
reasoning about the indices of ElementRegions).

Other bug finding tools like EXE [1] and DART [3] circumvent the memory
modeling problem by actually compiling and running the program being checked.
They use the run-time addresses of memory objects to distinguish them.

The closest related work to ours in the traditional program analysis field is
alias analysis. We both try to solve the similar problem: the correspondence be-
tween expressions and memory objects. The requirements, however, are
different.

Alias analysis for compiler optimization aims for a conservative result. It usu-
ally computes “may” aliases. We aim to get more precise alias relation. Due to
the path sensitive character of our application, we do have more precise program
state information that enables us to get more precise alias information.

On the usage aspect, alias analysis is often used as a separate analysis pass
on the program. Then its results are stored for later use. Our memory model
is used in combination with the whole symbolic analysis of the program. The
corresponding memory regions are computed on the fly during the symbolic
analysis. There is no separate “region analysis” pass for our analysis model.

A Memory Model for Static Analysis of C Programs 547

9 Conclusion

We designed a region-based memory model for path-sensitive symbolic program
analysis. In summary, the memory model has the following features which make
it more powerful and suitable for symbolic execution:

– It can handle almost all kinds C expressions, including arbitrary levels of
pointer dereferences, pointer arithmetic, composite array and struct data
types, arbitrary type casts, dynamic memory allocation, etc.

– It maps aliased lvalue expressions to the identical object without extra alias
analysis.

– It can represent various properties of memory objects: known and unknown
extent, storage class, hierarchy relation, concrete and symbolic values, etc.

The memory model has been implemented in the Clang analyzer [2]. Our
preliminary experimentation showed that it is effective for adding field sensitivity
to our static analysis tool.

Acknowledgments

This work was supported in part by the National Natural Science Foundation
of China (Grant No. 60633010, 60903049) and the High-Tech (863) program of
China (Grant No. 2009AA01Z148).

References

1. Cadar, C., Twohey, P., Ganesh, V., Engler, D.: EXE: A system for automatically

generating inputs of death using symbolic execution. Technical report, Computer

System Laboratory, Stanford University (2006)

2. Clang static analyzer, http://clang-analyzer.llvm.org/

3. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.

In: Proceedings of the 2005 ACM SIGPLAN conference on Programming language

design and implementation, pp. 213–223 (2005)

4. Hampapuram, H., Yang, Y., Das, M.: Symbolic path simulation in path-sensitive

dataflow analysis. In: Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop

on Program analysis for software tools and engineering, pp. 52–58 (2005)

5. WG14 ISO/IEC 9899:201x, editor. Programming Languages - C. ISO (1999),

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1336.pdf

6. Kremenek, T.: Finding bugs with the clang static analyzer,

http://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf

7. The LLVM compiler infrastructure, http://llvm.org/

8. Nielson, H.R., Nielson, F.: Semantics with applications: a formal introduction. John

Wiley & Sons Inc., Chichester (1992)

http://clang-analyzer.llvm.org/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1336.pdf
http://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf
http://llvm.org/

548 Z. Xu, T. Kremenek, and J. Zhang

9. Xie, Y., Aiken, A.: Saturn: A scalable framework for error detection using Boolean

satisfiability. ACM Transactions on Programming Languages and Systems 29(3)

(2007)

10. Xu, Z., Zhang, J.: A test data generation tool for unit testing of C programs.

In: Proceedings of the International Conference on Quality Software, pp. 107–116

(2006)

11. Zhang, J.: Symbolic execution of program paths involving pointers and structure

variables. In: Proceedings of the Fourth International Conference on Quality Soft-

ware, pp. 87–92 (2004)

Analysing Message Sequence Graph
Specifications

Joy Chakraborty1, Deepak D’Souza2, and K. Narayan Kumar3

1 Motorola India Private Limited

C.V. Raman Nagar

Bangalore 560093, India

j.chakraborty@motorola.com
2 Computer Science and Automation

Indian Institute of Science

Bangalore 560012

India

deepakd@csa.iisc.ernet.in
3 Chennai Mathematical Institute

H1 SIPCOT IT Park

Siruseri 603103, India

kumar@cmi.ac.in

Abstract. We give a detailed construction of a finite-state transition

system for a com-connected Message Sequence Graph. Though this re-

sult is well-known in the literature and forms the basis for the solution

to several analysis and verification problems concerning MSG specifica-

tions, the constructions given in the literature are either not amenable

to implementation, or imprecise, or simply incorrect. In contrast we

give a detailed construction along with a proof of its correctness. Our

transition system is amenable to implementation, and can also be used

for a bounded analysis of general (not necessarily com-connected) MSG

specifications.

1 Introduction

Message Sequence Chart (MSC) based specifications are a popular model of
early system design, whose use is particularly widespread in the telecom and
software industry. A message sequence chart describes a finite sequence, or more
accurately a partially ordered sequence, of message exchanges between agents
in the system. These are typically “scenarios” that a system user and developer
alike can use to communicate and validate system requirements. Messages may
be exchanged “synchronously” as in a handshake protocol, or “asynchronously”
with separate send and receive events and a message channel to buffer undeliv-
ered messages. Message Sequence Graphs (MSG’s), also sometimes referred to
as “high-level” MSC’s, are an activity diagram-like notation that is often used
to describe infinite collections of system behaviour. They are finite graphs whose
vertices are labeled by MSC’s, each of which represents a single logical unit of

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 549–563, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

550 J. Chakraborty, D. D’Souza, and K.N. Kumar

interaction. The behaviours specified by an MSG are obtained by taking a path
in the MSG beginning at the initial node, and collecting the behaviours given
by the “concatenation” of the MSC’s associated with the nodes along the path.

Given that MSC-based specifications provide an early encapsulation of system
design, from an analysis and verification point of view there are some natural
problems that one would like to address. Several of these have been considered
in the literature, including detecting race conditions (differences in the “visual”
ordering and “execution” ordering), timing conflicts, and confluence or “com-
pletability.” We would like to focus on the following two problems:

1. The model-checking problem [2]: Here we are given a system description in
terms of an MSG, and a property in the form of a finite-state automaton de-
scribing say undesirable behaviours. We would like to check that the system
does not exhibit any of the undesirable behaviours.

2. Detecting implied scenarios [13,1]: Given a description of system behaviour
in terms of an MSG, there is a natural, distributed, system model induced
by the MSG. This system model is “minimal” in that any distributed im-
plementation of the system that exhibits all the behaviours specified by the
given MSG, must necessarily exhibit all the behaviours in this model. How-
ever, the minimal system model may exhibit behaviours that are outside the
ones specified by the MSG: these behaviours are called implied scenarios.
We are interested in identifying such behaviours so that the system designer
can be alerted (for example to the fact that the exact behaviour specified by
the MSG is not realizable by a distributed implementation).

Message Sequence Chart based specifications have received a fair amount of at-
tention from the Computer Science theory community (see [5,6] for surveys). In
particular the analysis problems mentioned above have been addressed in the fol-
lowing works. Alur and Yannakakis [2] show that the model-checking problem for
asynchronous MSG’s is undecidable in general. They propose a condition on the
MSG, called “com-connectedness” (essentially that all processes that take part
in any loop of the MSG must communicate directly or indirectly with each other
in the loop), which is sufficient to ensure that the model-checking problem is de-
cidable. The main task is to show that in such a case the language of behaviours
defined by the MSG is regular, i.e. acceptable by a finite-state transition system.
However the details of the construction are not spelt out precisely, and there
is no proof of correctness given. Independently in [8], Muscholl and Peled also
give a construction of a finite-state automaton for a com-connected MSG (called
“loop-connected” there), in order to give decision procedures for the problems of
confluence and race conditions they consider. While their construction is fairly
detailed, there is no accompanying proof of correctness. Furthermore both con-
structions in [2,8] are not amenable to an “on-the-fly” analysis as they generate
behaviours that are not part of the MSG’s behaviour (these behaviours would
not reach a final state in the constructed automaton). Muscholl and Peled also
point to the formal language theoretic result of Clerbout and Latteux [4] which
shows that the “trace-closure” of the Kleene of a regular expression R is regular
provided that the dependency graph of words in R is strongly-connected, from

Analysing Message Sequence Graph Specifications 551

which the result follows. Once again this construction is not conducive to imple-
menation as it is done in terms of regular grammars and is aimed at a general
class of semi-commutative grammar systems.

The software engineering community have parallely developed several tools
and methodologies for analysing MSC-based specifications. However some of
these works are based on an incorrect understanding of the result concerning
regularity of com-connected MSG’s. We point out some of these cases, without
detracting from the several other contributions made in these papers.

– In [13], Uchitel, Kramer, and Magee claim to solve the problem of detecting
implied scenarios for general (not necessarily com-connected) MSG’s with
synchronous messaging. This is done without explicitly building a transition
system for the given MSG. No complete proofs are given in the paper or
the cited technical report. This claim is incorrect as the problem is in fact
undecidable (i.e for general synchronous MSG’s) [3].

– In [7] Muccini gives a technique for detecting implied scenarios based on
identifying “augmented” behaviours in the components of the system model
for a given general synchronous MSG. The technique is validated on a few
examples, but the paper gives no proofs and admits that the “correctness
and completeness are still under analysis.”

– The thesis of Uchitel [11] gives the construction of a finite-state transition
system, called there the “trace model,” for a given com-connected syn-
chronous MSG. This construction is implemented in a tool called LTSA-
MSC [10], and used as a basis for analysis in [14]. However, as we show
in Sec. 6, the trace-model constructed is incomplete: it does not accept all
behaviours specified by the MSG. As a result the tool also incorrectly flags
certain behaviours of the induced system model as implied scenarios.

Our aim in this paper is to give a precise and complete description of a finite-state
transition system accepting exactly the behaviours specified by a given com-
connected MSG G. We give a precise description of a “reduced” transition system
called T ′

G in Sec. 4 which is guaranteed to be finite-state when the given MSG is
com-connected. We give a detailed proof of correctness of our construction. Once
we have such a transition system, the analysis problems we mentioned earlier
can be solved easily for com-connected MSG’s with synchronous messages.

It is also worth pointing out that the transition system T ′
G we describe is sound

and complete for general MSG’s (i.e. not necessarily com-connected) as well –
though of course, it may not be finite-state in this case. Our construction also
handles both synchronous and asynchronous messaging in the MSG’s. Further, it
has no ε-transitions (i.e. hidden or silent transitions), and has a bounded number
of transitions applicable in any state. Thus, this transition system can be used to
perform a bounded analysis or model-checking to check properties like “there are
no property violations by behaviours of length ≤ 15” in the given MSG model.

We thus hope that the construction we give will be a basis on which the
software engineering community can build more accurate tools for analysing
MSC-based specifications. Due to lack of space, we give only sketches of some
of the proofs. The complete proofs are available in the technical report [3].

552 J. Chakraborty, D. D’Souza, and K.N. Kumar

2 Message Sequence Charts

We begin with some preliminary notions. For a finite alphabet A, we denote the
set of finite words over A by A∗. The empty word is denoted ε. For words u and
v over A, we denote the concatenation of u followed by v by u · v or simply uv.
We write u � v to denote the fact that u is a prefix of v.

A transition system is a tuple T = (Q, A, q0,→), Q is a set of states, A is
the set of labels or alphabet of the transition system, q0 is the initial state,
→⊆ Q × A × Q is the labeled transition relation. A run of T from q1 to q2

on a word w ∈ A∗ is denoted by q1
w−→* q2 and defined in the standard way.

The language generated by T , denoted L(T), is defined to be {w ∈ A∗ | q0
w−→

* q for some q ∈ Q}. For a state q ∈ Q, we denote the language generated by T
starting at q by Lq(T) and define it to be {w ∈ A∗ | q

w−→* r for some r ∈ Q}.
A message sequence chart (MSC) is a tuple M = 〈P, E, C, λ, B, {<p}p∈P 〉

where:

– P is a finite set of processes, E is a finite set of events, and C is a finite set
of message labels.

The set of actions of M is defined to be ΣM = P × {!, ?} × P × C where
(p, !, q, m) signifies process p sending message m to q, while action (p, ?, q, m)
signifies p receiving message m from q. All actions of the form (p, !, q, m) are
called send actions, while actions of the form (p, ?, q, m) are called receive
actions.

For a process p ∈ P , the set Σp = {a ∈ ΣM | a = (p, !, q, m) or a =
(p, ?, q, m)} where q ∈ P and m ∈ C, is the set of all actions in which p
participates.

– λ : E → ΣM is the labeling function which maps events to actions. For a
process p ∈ P , the set Ep = {e | λ(e) ∈ Σp} are the events in which p
participates.

E is further partitioned into send events S = {e |λ(e) = (p, !, q, m), p, q ∈
P, m ∈ C} and receive events R = {e |λ(e) = (p, ?, q, m), p, q ∈ P, m ∈ C}
respectively.

– B : S → R is a bijective map which maps each send event to its corre-
sponding receive event. We require that if λ(e) = (p, !, q, m) then λ(B(e)) =
(q, ?, p, m). We refer to B as the “matching receive” map.

– For each p ∈ P , <p is a strict total order on Ep. In addition, the matching
receive map B induces a strict partial order <B on E, which says that a
receive event has to be preceded by the corresponding send event, defined
by e <B e′ iff B(e) = e′.

We define <M as the transitive closure, and ≤M as the reflexive transitive
closure, of (

⋃
p∈P <p)∪ <B respectively. It is required that the relation ≤M

must be a partial-order.

A linearization of the events in an MSC M as defined above is a sequence of
events w = e1e2 · · · en ∈ E∗ containing all the events of E without repetitions,
and respecting the partial order ≤M in the sense that for no i < j ≤ n do we
have ej ≤M ei. We denote the set of linearizations of M by lin(M). We define the

Analysing Message Sequence Graph Specifications 553

event language of M , written Le(M), to be the set of all prefixes of linearizations
of M . Thus, Le(M) = {x | x � y, y ∈ lin(M)}.

Following [2], we define a cut in an MSC M to be a subset c of the events
E of M which is closed with respect to the partial order ≤M : i.e. if e ∈ c and
e′ ≤M e, then e′ ∈ c. Each prefix of a linearization of an MSC corresponds to a
sequence of “incremental” cuts as described below:

Lemma 1. Let M be an MSC with event set E. Then w ∈ E∗ is a prefix of
some linearization of M if and only if there exists a sequence of cuts 〈cx〉x�w in
M such that cε = ∅, and for each x · e � w, we have cx·e − cx = {e}. �

We now define the notion of a message sequence graph. A Message Sequence
Graph (MSG) is a vertex-labeled graph G of the form 〈V, v0, Δ,M, μ〉, where V
is the set of vertices of the MSG, v0 ∈ V is the initial vertex, Δ ⊆ (V × V) is
the set of directed arcs, M is the set of MSC’s associated with the MSG, and
μ : V → M maps each vertex of G to one of the MSCs in M. We assume that
the MSC’s in M are all over a common set of processes and labels, and also that
the events across the MSC’s in M are distinct. The set of events of G is denoted
EG, and is defined to be

⋃
v∈V Eμ(v). We denote the set of events where process

p participates by EG
p , defined in a similar way as for a single MSC. The set of

action labels for G is defined to be ΣG =
⋃

v∈V Σμ(v). Fig. 1 shows an example
MSG.

A path in G is a sequence of vertices v1, . . . , vk (k ≥ 0) of G such that
(vi, vi+1) ∈ Δ for each i ∈ {1, . . . , k − 1}. An initial path in G is a path be-
ginning at v0. We will use the convention that α, β, etc. denote paths in G, and
u, v etc. denote vertices in G.

Let π be a non-empty path in an MSG G over a common set of processes P and
labels C. For each vertex v in G, let each MSC μ(v) be 〈Pv, Ev, C, λv, Bv, {<v

p

}p∈P 〉. We define the (weak) concatenation of the MSCs in the path π to be the
MSC Mπ = 〈P, Eπ , C, λπ , Bπ, {<π

p}p∈P 〉 where:

– Eπ =
⋃

ρv�π(Ev × {ρv}).
– For each ρv � π, we define λπ(e, ρv) = λv(e).
– For each ρv � π, and for all send events e ∈ Ev, we define Bπ(e, ρv) =

(Bv(e), ρv).
– For each p ∈ P , <π

p is given as follows: Let ρv � π and ρ′v′ � π and e ∈ Ev

and e′ ∈ Ev′ . Then (e, ρv) <π
p (e′, ρ′v′) iff e and e′ are p-events and either

ρv ≺ ρ′v′ or ρv = ρ′v′ and e <v
p e′.

The set of linearizations of G, denoted by lin(G), is defined to be

{e1 · · · en | π initial path in G, (e1, ρ1) · · · (en, ρn) ∈ lin(Mπ)}.

The event language of G, denoted Le(G), is defined to be {u | u � v and v ∈
lin(G)}. The action language of G is denoted La(G), and defined to be

{λv1(e1) · · ·λvn(en) | e1 · · · en ∈ Le(G), each ei ∈ Evi}.

554 J. Chakraborty, D. D’Souza, and K.N. Kumar

e4 e3

e1 e2

e6 e5

v0

v1 v2

Fig. 1. An example MSG G1

Finally, for an MSC M = 〈P, E, C, λ, B, {<p}p∈P 〉, the communication graph
of M is the directed graph on the set of processes P of M , where we have an edge
(p, q) iff process p sends a message to process q in M (i.e. there exists an event
e ∈ Ep and an event e′ in Eq, with B(e) = e′). The MSC M is said to be com-
connected [2] if the communication graph of M contains at most one non-trivial
strongly connected component and isolated nodes corresponding to processes
not reacting in M . We say an MSG G is com-connected if for every loop, i.e. a
path of the form uαu, in G, the communication graph of Muα is com-connected.
We illustrate this using the MSG G1 in Fig. 1. The communication graph for
the loop v0v1v0 is com-connected, whereas the loop v0v2v0 is not com-connected.
Thus the MSG G1 is not com-connected.

Our aim in this paper is to provide a constructive proof of the following claim:

Theorem 1 ([2,8]). Let G be a com-connected MSG. Then Le(G) is regular
(i.e. it can be generated by a finite-state transition system).

We will prove this claim in Sec. 5. In Sec 3 we first show that for a general (not
necessarily com-connected) MSG G we can associate a (possibly infinite state)
transition system TG which generates precisely the language Le(G). In Sec 4
we give a couple of rules by which we can reduce the state space of TG, while
preserving its language, to obtain a transition system T ′

G. Finally in Sec. 5 we
show that when the given MSG is com-connected, this reduced transition system
T ′

G will indeed have a finite number of states.

3 Transition System for an MSG

In this section we show how we can associate a transition system TG with a given
general MSG G, which generates exactly the same event language as G. This
transition system will, in general, have an infinite number of states. For the rest
of this section we fix an MSG G = 〈V, v0, Δ,M, μ〉.

Analysing Message Sequence Graph Specifications 555

We begin with some preliminary notions. We define a configuration of G to
be a pair of the form (π, c) where π is a path in G and c is a cut in Mπ.
Configurations will play the role of states in TG. We can view a configuration
(π, c) as a snapshot of the events each process has completed in its process line
in the MSC Mπ. Each process p can be viewed to be positioned at last event it
has performed.

Next we introduce some notation regarding insertion and deletion in paths
and cuts in G. For a path π = αβ in G, by π + α/γ we denote the sequence of
nodes αγβ in G. We note that π + α/γ may not be a path in G. Similarly, if
π = αβγ is a path in G, then we define π − α/β to mean the sequence of nodes
αγ in G.

Let (π, c) be a configuration of G, and let π = αβ. Then we define the set of
events corresponding to c in π + α/γ, denoted c + α/γ, to be

{(e, ρ) ∈ c | ρ � α} ∪ {(e, αγρ) | (e, αρ) ∈ c and ρ �= ε}.
Once again, it is not necessary that c + α/γ is a cut in Mαγβ.

Similarly, if (π, c) is a configuration of G, and π = αβγ, we define the set of
events corresponding to c in π − α/β, denoted c − α/β to be

{(e, ρ) ∈ c | ρ � α} ∪ {(e, αρ) | (e, αβρ) ∈ c, ρ �= ε}.
Let (π, c) be a configuration of G, with π = αβγ. We say that β is completely
traversed in c if all the events in β are included in c, and all processes which
react in β have their maximal event in c located in γ. Formally, we represent
this as a predicate Ex (π, α, β, c) which is true iff the conditions below are true:

– Eαβ − Eα ⊆ c, and
– For each p ∈ P , if (e, αρv) ∈ c with e ∈ Ep and ρv � β, then there exists

e′ ∈ Ep and ρ′v′ � γ such that (e′, αβρ′v′) ∈ c.

Similarly, we say β is completely unexecuted in c if none of the events in β are
included in c: i.e. (Eαβ − Eα) ∩ c = ∅.

Consider a configuration (π, c) of G. We now want to define a way of cutting
out loops in π which are completely unexecuted in c. We say that α1u1β1u1 · · ·
αnunβnunγ with n ≥ 0 is an unexecuted loop decomposition of π wrt c, if the
following holds: π = α1u1β1u1 · · ·αnunβnunγ; each αiui has no completely un-
executed loops; each βiui is completely unexecuted; and γ does not have any
completely unexecuted loops. It is not difficult to see that if we remove an un-
executed loop from a configuration, we get another valid configuration. The
unexecuted loop-free configuration of (π, c) corresponding to the decomposition
α1u1β1u1 · · ·αnunβnunγ is obtained by cutting out each of the βiui’s, and is
defined to be:

(α1u1 · · ·αnunγ, (· · · (c − α1u1/β1u1) · · ·) − α1u1 · · ·αnun/βnun).

There can be several unexecuted loop decompositions for a given configura-
tion, and hence also several unexecuted loop-free configurations. We denote by
*(π, c)+ue the set of all unexecuted loop-free configurations of (π, c).

556 J. Chakraborty, D. D’Souza, and K.N. Kumar

We also define a (unique) left-most maximal unexecuted loop decomposition of
a configuration (π, c). We define this to be α1u1β1u1 · · ·αnunβnunγ with n ≥ 0
where:

– π = α1u1β1u1 · · ·αnunβnunγ
– Each βiui is the left-most unexecuted loop in the segment αiuiβiui · · ·βnunγ.

That is, for each τ1vτ2 such that τ1vτ2 = αi, there is no τ3v � uiβiui · · ·αnun

βnunγ such that τ2τ3v is completely unexecuted.
– Each βiui is maximal: That is, no prefix τui of

αi+1ui+1βi+1ui+1 · · ·αnunβnunγ is completely unexecuted.
– γ does not have any completely unexecuted loops.

Each αiui marks the beginning of the i-th maximal loop which is completely
unexecuted in c, starting from the left of π. It is easy to see that this decom-
position is unique. We define the (unique) left-most maximal unexecuted loop
configuration induced by (π, c), denoted *(π, c)+lue , to be:

(α1u1 · · ·αnunγ, (· · · (c − α1u1/β1u1) · · ·) − α1u1 · · ·αnun/βnun).

We are now in a position to describe a transition system corresponding to the
given MSG G. We define TG = (Q, EG, q0,→) where: Q is the set of configura-
tions of G; EG is the set of events of G as defined in the last section; the initial
state is q0 = (ε, ∅); and the transition relation → is given by the following rules:

(T1) (π, c) e→ (π, c′) provided c′ = c ∪ {(e, ρ)} for some ρ � π and (e, ρ) �∈ c.
(T2) (π, c) e→ (πρv, c′) provided c′ = c ∪ {(e, πρv)} and ρv is loop-free. Also, if

π = ε then ρv has to be an initial path in G.
(T3) (π1uπ3, c)

e→ *(π1uπ2uπ3, c
′)+lue provided there exists a non-empty and

loop-free α and a loop-free β such that π2u = αβ and c+π1u/π2u is a cut
in Mπ1uπ2uπ3 and c′ is (c + π1u/π2u) ∪ {(e, π1uα)}.

We illustrate these transition rules in Fig. 2. We note that all configurations (π, c)
of TG reachable from the initial state, satisfy that properties that they always
have a process in the last node of π, and also that they are always unexecuted
loop free.

T2 T3T1

T2

e1 e2

e6

e1 e2

e5

e1 e2

e6 e5

e1 e2

e4 e3

e1 e2

e5 e3e2

(ε, ∅)

e1

Fig. 2. Initial transitions in TG for MSG G1.

Analysing Message Sequence Graph Specifications 557

We now sketch a proof of the correctness of our construction of TG, by showing
that it accepts exactly the language Le(G). We first show that TG is “complete”
in the sense that it accepts all event sequences in Le(G). Let w ∈ Le(G) with w =
e1e2 · · · en. Then we know by Lemma 1 that there is a sequence of incremental
cuts c0, c1, · · · , cn in Mπ for some initial path π in G, such that c0 = ∅ and for
each i ∈ {0, . . . , n − 1}, ci+1 − ci = {(ei+1, ρi+1)} for some ρi+1 � π. For each
i ∈ {0, . . . , n}, let θi be max{ρj | j ≤ i}. We claim that w has a run

(π0, d0)
e1→ (π1, d1)

e2→ · · · en→ (πn, dn)

in TG, where π0 = ε, d0 = ∅, and for all j ∈ {0, . . . , n}, (πj , dj) ∈ *(θj , cj)+ue .
We do this by showing, using induction on i, that for each i ∈ {0, . . . , n} we

can produce a run

(π0, d0)
e1→ (π1, d1)

e2→ · · · ei→ (πi, di)

in TG such that (π0, d0) = (ε, ∅), and for each j ∈ {1, . . . , i}, (πj , dj) ∈ *(θj , cj)+ue .
The proof is fairly routine and the complete details can be found in [3].

We now argue the “soundness” of TG, by showing that if w ∈ L(TG) then w ∈
Le(G). Let w ∈ L(TG) with w = e1e2 · · · en such that (π0, c0)

e1→ (π1, c1) · · · en→
(πn, cn) is a run in TG. We note that each πi must be an initial path in G. We
claim that w will produce a sequence of incremental cuts c′0, c

′
1, . . . , c

′
n in Mπn

where c′0 = ∅, c′n = cn, and for each i ∈ {0, . . . , n− 1}, c′i+1 − c′i = {(ei+1, ρi+1)}
for some ρi+1 � πn. We prove this by induction on length of w, and again the
details can be found in [3].

4 Reducing TG

In this section our aim is to show that the state-space of the transition system
TG can be reduced, by observing that we can remove fully traversed prefixes
and loops from configurations without affecting the language generated by the
transition system. To do this it will be convenient to make use of the notion of
bisimilarity and some simple results concerning it.

Let T = (Q, A, q0,→) be a transition system and let R be a bisimulation
relation on T . We represent the reflexive transitive closure of R as R∗ and
clearly, it is also a bisimilar relation.

The lemma below shows how we can reduce the state space of a transition
system using a bisimulation relation on it.

Lemma 2. Let T = (Q, A, q0,→) be a transition system, and let R be bisim-
ulation relation on T . Consider a transition system T ′ = (Q′, A, q0,⇒) where
Q′ ⊆ Q, and ⇒ satisfies the following conditions for any q′ ∈ Q:

– whenever q′ a→ r in T , there exists a state r′ ∈ Q′ such that q′ a⇒ r′ in T ′,
and (r, r′) ∈ R.

– whenever q′ a⇒ r′ in T ′, there exists r ∈ Q such that q′ a→ r in T and
(r, r′) ∈ R.

Then L(T) = L(T ′). �

558 J. Chakraborty, D. D’Souza, and K.N. Kumar

We return now to our transition system TG corresponding to the given MSG
G. Consider the relation �1 on the states of TG defined below, which relates a
configuration with the one obtained from it by deleting a fully traversed prefix.
We define �1 as follows: (αβ, c) �1 (β, c′) provided

– α is non-empty,
– Ex (αβ, ε, α, c) holds, and
– c′ = c − ε/α.

The relation �2 relates configurations of TG based on deleting completely tra-
versed loops. We have (αuβuγ, c) �2 (αuγ, c′) provided

– Ex (αuβuγ, α, uβ, c) holds, and
– c′ = c − α/uβ.

Lemma 3. The relations �1 and �2 are bimulation relations on the transition
system TG. �

We will now reduce the state space of TG using the bisimulation relations defined
above.

For a configuration (π, c) of G, we define its maximal reducible decomposition
to be αα1u1β1u1 · · · αnunβnunγ with n ≥ 0, where

– π = αα1u1β1u1 · · ·αnunβnunγ.
– α is the maximal prefix of π which is completely traversed.
– Each uiβi is the leftmost completely traversed loop in the segment

αiuiβiui · · ·αnunβnunγ.
– Each uiβi is maximal.
– γ does not have any completely traversed loop.

The maximal reducible decomposition of (π, c) can be seen to be unique.
Let αα1u1β1u1 · · ·αnunβnunγ be the maximal reducible decomposition of

(π, c). Then we define the reduced form of (π, c), denoted *(π, c)+, to be the
configuration

(α1u1 · · ·αnunγ,
(· · · ((c − ε/α) − α1u1β1) − · · ·) − α1u1 · · ·αnun/unβn).

Clearly, the reduced form of a configuration does not contain any completely
traversed prefix or loops.

We now define the reduced transition system corresponding to the MSG G,
denoted T ′

G, as follows: T ′
G = (Q′, EG, q0,⇒) where

– Q′ = {*(π, c)+ | (π, c) a configuration of G}.
– EG is the set of events of G.
– q0 = (ε, ∅).
– Let q′, r′ ∈ Q′. Then, q′ e⇒ r′ iff there exists r ∈ Q such that q′ e→ r in TG,

and r′ = *r+.
We note that the reduced form of the initial configuration (ε, ∅) is itself.

Analysing Message Sequence Graph Specifications 559

We now want to argue that T ′
G generates the same language as TG. We have

already shown that �1 and �2 are bisimulation relations on TG. Hence so is
the relation (�1 ∪ �2)∗. Further, for any configuration (π, c), it is clear that
((π, c), *(π, c)+) ∈ (�1 ∪ �2)∗. Finally, it is immediate to check that T ′

G satisfies
the conditions of Lemma 2 with respect to TG and the bisimulation relation
R = (�1 ∪ �2)∗. Hence by Lemma 2 we can conclude that L(T ′

G) = L(TG).
We summarise the result of this section in the following theorem:

Theorem 2. For any MSG G, the reduced transition system T ′
G generates pre-

cisely the language Le(G).

We note that though T ′
G has fewer states than TG in general, it may still have

an infinite number of states. Consider the MSG G2 in Fig. 3. The configurations
of the form (vn

0 , {(e1, v0), (e1, v
2
0), · · · , (e1, v

n
0)}) where n > 0 do not have any

unexecuted loops or completely traversed loops. So, for each n, these are distinct
states in T ′

G2
, and thus T ′

G2
has an infinite number of states. In the next section

we show that this is not possible for a com-connected MSG.

e1 e2
m

v0

Fig. 3. MSG G2 with an infinite-state T ′
G2

5 Regularity of Com-Connected MSG’s

In this section our aim is to supply a proof of Theorem 1. We begin with an
observation from [2].

Lemma 4 ([2]). Let G be a com-connected MSG. Consider a configuration of
the form (αuβuγ, c). Then, either uβ is completely unexecuted, or uβ is com-
pletely traversed, or there is a process whose last executed event and next unex-
ecuted event are both in uβ.

Proof. Let us assume the contrary. Then among the processes that take part in
an event in the nodes in uβ, there must be processes p and q such that none of
the p events in uβ are executed, and all of the q events in uβ are executed. As
G is com-connected, we must have a path in the communication graph of Muβ

from p to q. Let this path be p = r0 → r1 → · · · → rn = q with n ≥ 1. Then,
since q has completed all its events in uβ, it must have also received a message
from rn−1. Thus rn−1 has taken part in uβ, since it must have sent the message
received by q. Now either rn−1 has another event to take part in uβ, and we
are done; or, it has completed all its events in uβ and in particular has received
a message from rn−2. We repeat this argument till we either find a process ri

560 J. Chakraborty, D. D’Souza, and K.N. Kumar

which has participated in uβ and has an unexecuted event in uβ, or reach a
contradiction that process p has participated in an event in uβ. This completes
the proof of the lemma. ��
Let us now consider the reduced transition system T ′

G for a com-connected MSG
G. The states in T ′

G are all in reduced form, and hence have no completely
unexecuted loops or completely traversed loops. It follows that in any loop in a
state (π, c) of T ′

G, there must be at least one process positioned in a node in that
loop. Thus no node can occur more than k+1 times in π, where k is the number
of processes. In fact, because of the property of the reachable configurations of
TG that there is always a process positioned in the last node of the path, the
bound of k + 1 can be reduced to k. This bounds the length of π by mk, where
m is the number of nodes in G. We also get an upper bound of mmk(mnk)k on
the number of states in T ′

G, where n is the maximum number of events in any
MSC associated with a node in G.

This completes the proof of Theorem 1.

6 Synchronous MSG’s

In this section we consider MSC’s with synchronous (or “handshake”) messages.
These synchronous MSC’s are defined in a similar manner to the (asynchronous)
MSC’s of Sec. 2, except that sends and receives are no longer distinct events, but
are represented as a single message exchange event. We call MSG’s whose nodes
are labelled by synchronous MSC’s synchronous MSG’s. The language of event
sequences generated by a synchronous MSG is defined in a similar manner to
that of (asynchronous) MSG’s in Sec. 2. Finally, we say a synchronous MSG G
is com-connected iff for every loop uβu in G, the communication graph of Muβ

has at most one non-trivial connected component. Fig. 4 shows a com-connected
synchronous MSG G4.

The construction of the transition systems TG and T ′
G for an asynchronous

MSG G, is based purely on the partial order induced by a path in the MSG.
Hence it readily applies to synchronous MSG’s as well. Further, the proof of

e4

e1

e2e3

e5

v1 v3v2

a b c d
v0

m1

m3 m2 m4

m5

Fig. 4. MSG G4 with synchronous messages

Analysing Message Sequence Graph Specifications 561

correctness of TG and T ′
G also makes use of certain properties of this partial

order, and these properties are easily seen to be satisfied by synchronous MSG’s
as well. Hence we can conclude:

Theorem 3. Let G be a synchronous MSG, and let TG and T ′
G be the transi-

tion systems defined in Sec. 3 and 4 respectively. Then both transition systems
generate exactly the language Le(G).

Further, Lemma 4 can also be seen to apply for synchronous MSG’s, and hence
we have:

Theorem 4. Let G be a com-connected synchronous MSG. Then Le(G) is regular.

The state transition diagram of the transition system T ′
G4

for the MSG G4 of
Fig. 4 can be found in [3].

The MSG of Fig. 4 is useful for pointing out the incompleteness of the tran-
sition system constructed by Uchitel in [11]. He constructs a transition system,
called the “trace model,” which is meant to generate the language of event se-
quences for a given com-connected synchronous MSG. The construction uses a
“coordinator” component which keeps track of the current path in the MSG
traced out by processes, and ensures that other processes follow this path con-
sistently. The transition rules are similar to ours, except that there is no rule for
inserting a path within the current node list. This ommission essentially leads
to the trace model being incomplete.

The trace model generated by the LTSA-MSC tool [10,12] on the MSG G4

as input is shown in Fig. 5. The labels of the trace model basically corresponds

Fig. 5. Transition system generated by LTSA-MSC tool for MSG G4

562 J. Chakraborty, D. D’Souza, and K.N. Kumar

to the events of the MSG. For example, the transition from state 0 to state 2
happens with the synchronous exchange of m1 between process a and b, which
is the event e1 in the MSG G4. The event sequence e1e4e2e3e2e3 is not allowed
by the trace model, while it is clearly a legal behaviour of the MSG G4, being a
prefix of a linearisation of Mπ, where π is the path v0v1v2v1v2v1v3.

7 Detecting Implied Scenarios

We now sketch how our construction of T ′
G can be used to detect “implied

scenarios” in a com-connected synchronous MSG.
A synchronous MSG G induces a natural “minimal” distributed finite-state

system model (called the “architecture model” in [11]). Each process has a com-
ponent obtained by keeping track of which events it can participate in next. The
system model induced by the components, can be viewed as the “synchronised
product” of the components for each process, where a pair of components are re-
quired to simultaneously execute events that are common to their process lines.
The system model, which we denote SG, can be seen to include all the behaviours
in Le(G) for a given synchronous MSG G. The problem is that it may sometimes
generate a strict superset of the behaviours in Le(G), and these behaviours are
what are refered to as “implied scenarios.” Thus an event sequence w ∈ E∗

G is
called an implied scenario if w ∈ L(SG) − Le(G). We refer the reader to [13,11]
for some illustrative examples of implied scenarios.

For a com-connected synchronous MSG G implied scenarios can be easily de-
tected from T ′

G and SG using standard automata-theoretic techniques. The MSG
G4 can be seen to have no implied scenarios [3]. But, since the trace model gen-
erated by the LTSA-MSC tool [10,11,12] is incomplete, it reports e1e4e2e3e2e3

as one of the several implied scenarios for this MSG.

8 Conclusion

In this paper we have given a precise construction of a transition system for a
given MSG specification, which accepts exactly the set of behaviours specified
by the MSG. When the given MSG specification is com-connected, the transition
system we give is guaranteed to be finite-state and can thus be used a basis for
building sound and complete tools for analysing properties of these specifications.
Our transition system is also suitable for analysing MSG specifications in a
bounded fashion, even when the given MSG is not com-connected.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE

Trans. Software Eng. 29(7), 623–633 (2003)

2. Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten,

J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer,

Heidelberg (1999)

Analysing Message Sequence Graph Specifications 563

3. Chakraborty, J., D’Souza, D., Narayan Kumar, K.: Analysing Message Sequence

Graph Specifications, Technical Report IISc-CSA-TR-2009-1, CSA Department,

IISc (2009), http://www.csa.iisc.ernet.in/TR/2009/1/

4. Clerbout, M., Latteux, M.: Semi-commutations. Inf. Comput. 73(1), 59–74 (1987)

5. Genest, B., Muscholl, A., Peled, D.: Message sequence charts. In: Desel, J., Reisig,

W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098,

pp. 537–558. Springer, Heidelberg (2004)

6. Henriksen, J.G., Mukund, M., Kumar, K.N., Sohoni, M.A., Thiagarajan, P.S.: A

theory of regular msc languages. Inf. Comput. 202(1), 1–38 (2005)

7. Muccini, H.: Detecting implied scenarios analyzing non-local branching choices. In:

Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 372–386. Springer, Heidelberg

(2003)

8. Muscholl, A., Peled, D.: Message sequence graphs and decision problems on

mazurkiewicz traces. In: Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS

1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999)

9. Muscholl, A., Petersen, H.: A note on the commutative closure of star-free lan-

guages. Inf. Process. Lett. 57(2), 71–74 (1996)

10. Uchitel, S.: LTSA-MSC tool (2001), http://www.doc.ic.ac.uk/~su2/Synthesis/

11. Uchitel, S.: Incremental Elaboration of Scenario Based Specifications and Behavior

Models Using Implied Scenarios. PhD thesis, Imperial College (2003)

12. Uchitel, S., Chatley, R., Kramer, J., Magee, J.: LTSA-MSC: Tool support for be-

haviour model elaboration using implied scenarios. In: Garavel, H., Hatcliff, J.

(eds.) TACAS 2003. LNCS, vol. 2619, pp. 597–601. Springer, Heidelberg (2003)

13. Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message sequence

chart specifications. In: ESEC / SIGSOFT FSE, pp. 74–82 (2001)

14. Uchitel, S., Kramer, J., Magee, J.: Incremental Elaboration of Scenario-Based Spec-

ifications and Behavior Models Using Implied Scenarios. ACM Transactions on

Software Engineering and Methodology 13(1), 37–85 (2004)

http://www.csa.iisc.ernet.in/TR/2009/1/
http://www.doc.ic.ac.uk/~su2/Synthesis/

Optimize Context-Sensitive Andersen-Style Points-To
Analysis by Method Summarization and

Cycle-Elimination

Li Qian1,2, Zhao Jianhua1,2, and Li Xuandong1,2

1 The State Key Laboratory of Novel Software Technology of China
2 Department of Computer Science and Technology, Nanjing University

210093, Nanjing, P.R. China
qianjie@seg.nju.edu.cn, {zhaojh,lxd}@nju.edu.cn

Abstract. This paper presents an efficient context-sensitive, field-based Andersen-
style points-to analysis algorithm for Java programs. This algorithm first sum-
marizes methods of the program under analysis using directed graphs. Then it
performs local circle elimination on these summary graphs to reduce their sizes.
The main analysis algorithm uses these graphs to construct the main points-to
graph. Topological sort and cycle-elimination is performed on the nodes of both
main points-to graphs and summary graphs to speed up the transitive closure com-
putation on the main points-to graph. A suite of Java program benchmarks are used
to demonstrate the efficiency of our algorithm.

1 Introduction

Points-to analysis determines the set of objects that a reference variable or a reference
object-field may point to. This information is important to many applications in pro-
gram understanding and verification. The precision and performance of these applica-
tions depend heavily on the precision of the points-to analysis algorithm. For example,
using precise points-to information, a program verification tool for detecting race con-
dition can avoid many false warnings. So, precise and efficient points-to analysis is an
important infrastructure for automatic program verification/understanding tools.

Unfortunately, precise pointer analysis is NP-hard [10] [11]. So people usually make
trade-offs between precision and efficiency. The factors that affect points-to analysis
precision directly are [3].

– Flow sensitivity. Flow-sensitive analysis takes the execution order of program state-
ments into account. It usually performs strong updates, i.e. an assignment to a vari-
able u makes u point to the new object, and stops u from pointing to its original
object. A flow-insensitive analysis ignores the execution order and assumes that
u may point to both objects. Thus, flow-sensitive algorithms are more precise but
more expensive than flow-insensitive ones.

– Context sensitivity. Informally speaking, if an analysis distinguishes between dif-
ferent calling-contexts of a method, it is context-sensitive; otherwise, the analysis is
called context-insensitive. In a context-sensitive analysis, a local variable may have
different points-to information in different calling-contexts of the method, while a
context insensitive analysis neglects the information of calling-contexts.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 564–578, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Speed up Anderson-Style Points-To Analysis 565

– Object representation. Objects in program can be treated differently. If all in-
stances of a class are represented by one abstract object, i.e. all of them are treated
as a whole, the analysis is called object-insensitive. If one abstract object is created
for each object creation site respectively, i.e. the objects created by same creation
site are treated as a whole, the analysis is called object-sensitive. If the algorithm
adds context information on creation site, it is called heap-clone.

– Field sensitivity and field-based. Field sensitive analysis represents the fields of
an object distinctly. If the fields in an object are indistinguishable with respect to
what they reference, the analysis is termed field-insensitive. If the fields in an object
are distinguished without context information, the analysis is called field-based.

Andersen’s points-to analysis [1] is an inclusion-based points-to analysis algorithm. It
is considered as the most precise flow-insensitive and context-insensitive points-to anal-
ysis. This algorithm is closely related to computing the transitive closure of a directed
graph. Inclusion constraints between program variables are first generated through a
source code analysis. A directed graph is constructed to represents all such constraints:
nodes are used to represent variables, and directed edges represent the inclusion con-
strains between variables. Then points-to information is gathered by computing the tran-
sitive closure of this graph. The transitive closure of the final graph yields the points-to
solution.

The context-insensitive nature of Andersen’s algorithm is a major reason for the im-
precision of analysis results: though local variables and arguments in a method may
point to different objects when the method is invoked in different calling-contexts, An-
dersen’s algorithm ignores context information, and computes the same points-to infor-
mation for different invocations of a method.

Andersen’s algorithm has a complexity of O(n3), where n is the number of nodes in
the graph, i.e. the number of variables and objects. Reducing the input size n is the key
factor of the algorithm’s scalability. On the other hand, a context-sensitive extension of
the Andersen’s algorithm has to deal with many more nodes, since a local variable may
have many nodes in the graph corresponding to different calling-contexts.

This paper presents a scalable context-sensitive, field-based extension of Ander-
sen’s algorithm for Java programs. The algorithm consists of two phases: the method-
summarization phase and the inter-procedure analysis phase. In the method summariza-
tion phase, this algorithm summarizes each method in the Java program under analysis
using a directed graph; then in the inter-procedure analysis phase, it iteratively uses
these method summaries to compute the main points-to graph. Our algorithm signif-
icantly reduces the node count of the main points-to graph by reducing the sizes to
method summaries before the second phase. We also speed-up the second phase by
sorting the nodes in the main points-to graph. We have implemented this analysis algo-
rithm and evaluated its precision and efficiency by a set of Java benchmark programs.

The rest of this paper is organized as follows. In section 2 we give a brief intro-
duction about the method summarization approach used in our algorithm. In section 3
we describe the main framework of our algorithm. Section 4 introduces a novel ap-
proach to topologically sort the graph nodes and eliminate the cycles in the graph. This
approach both reduces the size of the graph and speeds up the transitive-closure com-
putation. Two optimizations on summary graphs are also presented in this section. The

566 L. Qian, Z. Jianhua, and L. Xuandong

following section presents our experimental evaluation and section 6 compares our work
with related works. A conclusion is given in the final section.

2 Method Summarization

Rather than operates on the source code directly, our algorithm first summarizes each
method in the program under analysis, and then uses these summaries to compute
points-to information. This approach has two advantages. First, the inter-procedure al-
gorithm does not have to parse source code repeatedly, thus improving the analysis
efficiency and the scalability of the analysis. Second, these method summaries can be
pre-treated to reduce the size of the main points-to graph, which will be constructed in
the inter-procedure phase.

2.1 Atomic Statements

To summarize a method, program statements that effect the set of objects pointed to by
variables, called points-to set of these variables, should be analyzed. Such statements
include all assignments performed by the method, all method invocations in the method,
return statements, and actual-parameter/formal-parameter bindings.

Our algorithm first transforms each method into a list of atomic statements. Each
atomic statement has one of the following forms.

– Copy statements: l = r
– Object creation statements: l = new C()
– Field read statements: l = r.f
– Field write statements: l.f = r
– Method invocation statements: l = r0.m(r1, . . . , rk)
– Return statements: return l

Here, l, r, ri are program variables or temporary variables; f is the field (i.e. member
variable) name; C are class names; m is the method name.

The transformation function τ which breaks a program statement into a set of atomic
statements is defined as follow. Here, t, t0, t1, . . . are newly introduced temporary vari-
ables during the transformation process; exp, exp1, . . . are expressions.

– τ(s) = {s} if the program statement is already an atomic one.
– τ(exp1 = exp2.b.f) = τ(t = exp2.b) ∪ τ{exp1 = t.f}
– τ(exp1 = exp2[exp3]) = τ(exp3) ∪ τ(t = exp2) ∪ τ(exp1 = t.farr).
– τ(exp1.f = exp2) = τ(t = exp1) ∪ τ(t.f = exp2)
– τ(exp1[exp2] = exp3) = τ(exp2) ∪ τ(t1 = exp1) ∪ τ(t3 = exp3) ∪ {t1.farr =

t3}.
– τ(v = exp0.m(exp1, . . . , expk)) = τ(t0 = exp0) ∪ τ(t1 = exp1) ∪ . . . ∪ τ(tk =

expk) ∪ {v = t0.m(t1, . . . , tk)}.
– τ(return exp) = τ(t = exp) ∪ {return t}
– τ(exp = new C(exp1, . . . , expk)) = τ(t = exp) ∪ {t = new C()}∪

τ(t.initialM(exp1, . . . , expk)), where initialM corresponds to the construc-
tor of C.

Speed up Anderson-Style Points-To Analysis 567

In our algorithm, all the elements in an array are treated as a single field farr
of the array variable. So an array element reference is treated as a field-write/read opera-
tion to this array variable. The array index expressions in the definitions of
τ(exp1[exp2] = exp3) and τ(exp1 = exp2[exp3]) are further transformed by τ . The
values of these expressions are ignored. The function initialM in the definition of
τ(exp = new C(exp1, . . . , expk)) is chosen from the constructor list of the class C,
with respect to the given argument list. It initializes the fields of the object created by
the statement.

The definitions shown above introduce a lot of temporary variables. These temporary
nodes will be a huge burden in the second phase of our points-to algorithm. However,
many of them can be removed using the approach in section 4.1.

2.2 Method Summary

A summary of a given method describes the digested information of this method. For-
mally speaking, a method summary of m consists of two elements (C, G): C describes
the set of call sites in m, and G is a graph representing the effect of the atomic state-
ments on points-to sets.

– C: a set of call site summaries. A call site summary is a tuple < m, rec, ret, P >,
where m is the signature of this call site, rec is the call receiver, ret is the node to
which the return value is passed to (ret is null if the invocation statement does
not pass the returned value to any variables.) and P is the set of real parameters.

– G is a graph representing the effect of the atomic statement set of this method.
• The node set N of G is a union of two disjoint sets, Nv and No

∗ Nv: a set of nodes representing local variables. Our algorithm also treats
some other values as local variables: formal parameters have correspond-
ing nodes in Nv; a node labeled ‘this’ in Nv represent the variablethis;
a node labeled ‘ret’ in Nv represents the value returned by the method.
The static variables are modeled as the fields of a special abstract object
labeled ‘static’.

∗ No: a set of nodes represent the objects created by the method.
• The edge set E of G has four kinds of edges.

∗ points-to edges, representing points-to relationship between variable nodes
in Nv and object nodes in No;

∗ inclusion edges, which say that the points-to set of one node in Nv includes
that of another nodes in Nv;

∗ field-read edges, corresponding to atomic statements of the form l = r.f ;
∗ field-write edges, corresponding to atomic statements of the form l.f = r.

Information about call sites can be easily derived by analyzing the atomic statement
set of the method. To construct the summary graph G, the algorithm iterates over the
atomic statement set and adds edges into G according to the rules depicted in Fig 1.

The example depicted in Fig 2 illustrates how to construct a summary graph of a
method. The left-side shows a method changeY F () of a class X . First, the state-
ment this.y = nx.y.setF (newf) in line (5) is broken into three atomic statements:

568 L. Qian, Z. Jianhua, and L. Xuandong

Atomic statement Edge added
l = new C() points-to edge from nl to no corresponding to this instance create

l = r inclusion edge from nl to nr

l.f = r field-write edge from nl to nr labeled f

l = r.f field-read edge from nl to nr labeled f

return l inclusion edge from nl to the node labeled ’ret’

Fig. 1. Points-to effect of atomic statements

Fig. 2. Method points-to set representation

this.y = temp1, temp2 = nx.y and temp1 = temp2.setF (newf). The statement
nx = newX(); is broken into nx = newX(); and nx.initX();

There are two call-sites in changeY F (). cs4 = < initX, cs4 : rec,null, ∅ > is a
special call-site derived from the object creation statement in line (4). Notice that initX
has no return value or formal parameters, and nx is treated as the receiver node of this
call site. So only the node cs4 : rec represents the object receiving this invocation is
added into the graph. As to call site cs5 = < setF, cs5 : rec, cs5 : ret, {cs5 : p1} > in
line (5), we add three more nodes into the graph: cs5 : ret represents the value return by
this call-site; cs5 : rec represents the object receiving this invocation; cs : p1 represents
the formal parameter of this call-site.

Other nodes in the graph are nx, y, this, ret, newf , temp1, and temp2, which
represent the local variable nx and y, the value this, the return value of changeY F ,
the formal parameter newf , the temporary variables temp1 and temp2, respectively.

We use the node labeled o4 to denote the objects created by the statement in line (4).
This is the only node in No of this summary graph.

For statement 3, a field-read edge labeled y from node y to node this is added.
A points-to edge from node nx to node o4 is added because of the statement at line
(4). For statement in line (6), a inclusion edge from node ret to node y is added. The
statement in line (5) is broken into three atomic statements as described above. A set
of edges are added: a field-read edge from temp2 to nx labeled y and three inclusion
edges: from temp1 to cs5 : ret, from cs5:rec to temp2, from cs5 : p1 to newf .

Speed up Anderson-Style Points-To Analysis 569

Table 1. The Framework of The Inter-Procedure Analysis

INPUT: Summary graphs of all methods
OUTPUT: The main points-to graph
VARIABLE: worklist

POINTSTOANALYSIS ()

{
Add the initial calling-context ctxt0 into worklist;

/*ctxt0 is a virtual calling-context with only one call-site invoking main()*/
while(worklist is not empty)
{

while(worklist is not empty){
ctxt := a calling-context in worklist;
worklist := worklist - {callsite};
Expanding ctxt as described in subsection 3.3

}
Computing the transitive closure and adding new calling-contexts

to worklist as described in subsection 3.4
}

}

3 The Framework of the Inter-Procedure Analysis

Our algorithm is a context-sensitive, field-based extension of Andersen’s points-to anal-
ysis algorithm. Our algorithm constructs the main points-to graph dynamically. It starts
from the main()method, then iteratively expands calling-contexts using method sum-
mary graphs generated by the method described in Section 2.2, and compute points-to
information of the graph nodes. When no more edges can be added to the main points-to
graph, and no more calling-context is to be expanded, all calling-contexts are expanded
and the transitive closure of this graph is computed. Thus, when our algorithm termi-
nates, the main points-to graph contains the final points-to information. The framework
of this algorithm is shown in Table 1. Before going to the details of this algorithm, we
introduce some concepts first.

3.1 The Representation of Calling-Contexts

A calling-context describes the context under which a method is invoked. In our algo-
rithm, a calling-context is specified by a sequence of call-sites. If the main() method
calls method m1 at the call-site cs1, and m1 calls the method m2 at the call-site cs2,
. . ., and mk−1 calls mk at the call-site csk, the calling-context of this invocation of mk

is cs1 : cs2 : . . . : csk. The invocation is denoted as cs1 : cs2 : . . . : csk : mk. The
node corresponding to a local variable v of mk in this invocation is labeled cs1 : cs2 :
. . . : csk : mk : v.

570 L. Qian, Z. Jianhua, and L. Xuandong

3.2 The Nodes and Edges of the Main Points-to Graph

The node set of the main points-to graph includes four types of nodes:

– The nodes corresponding to objects. In our algorithm, objects are identified by their
creation statements. All the objects created by the same statement are represented
by one node in the main points-to graph.

– The nodes corresponding to reference fields of objects. Our algorithm is field-
based. For each object (i.e. object creation statement) o, and each reference field
f of o, there is a corresponding node no.f in the main points-to graph. These nodes
are treated as variable nodes, i.e. they hold references to objects.

– The nodes corresponding to static variables. For each static variable in the program
under analysis, there is a node in the main points-to graph.

– The nodes corresponding to local variables with calling-context information. A lo-
cal variable in different calling-contexts corresponds to different nodes.

The last three types of nodes are treated as variable nodes, i.e. they hold references to
objects. For each node, our algorithm computes to which object it may point.

The first three types of nodes can be found before the inter-procedure phase begins.
So our algorithm use these nodes as the initial node set of the main points-to graph. The
last type of nodes are added to the graph dynamically. Our algorithm iteratively expands
calling-contexts that are reachable from the main()method. Due to the polymorphism
of Java, many method invocations may be expanded under one calling-context. Every
time a method invocation is expanded, the nodes corresponding to the local variables
(decorated with proper calling-context) in this method are added to the main points-
to graph.

The types of edges in the main points-to graph are identical to those of summary
graphs, i.e. points-to edges, inclusion edges, field-read edges and field-write edges.

3.3 Expanding Calling-Contexts

Our algorithm expands calling-contexts iteratively and adds new nodes to the main
points-to graph. A stack named as worklist is used to record all the calling-contexts
to be expanded. Initially, worklist contains only a virtual calling-context, which in-
vokes the function main() only. The algorithm gets calling-contexts from worklist
and then expands them; computes new points-to information; and then puts new calling-
contexts to be expanded into worklist.

Given a calling-context cs0 : . . . : csk−1 : csk, cs0 : . . . : csk−1 is called its
parent calling-context. Let csk be a call-site in the method m, this calling-context is put to
worklistwhen the invocation of m under its parent context is expanded. So the nodes
csk : rec, csk : ret, and node set {csk : pi} which represents the real parameters of csk

already exist in the main points-to graph when cs0 : . . . : csk−1 : csk is being expanded.
Assuming the calling-context cs1 : cs2 : . . . : csk−1 : csk (cs1...k for brief) is being

expanded, the algorithm would perform the following steps.

1. The algorithm checks the corresponding part of the parent context cs1...k−1 in the
main points-to graph and finds out all the objects that the node cs1...k−1 : csk :

Speed up Anderson-Style Points-To Analysis 571

rec points to. Based on this information, the algorithm enumerates all the possible
methods g1, g2, . . . , gn that could be invoked at the call-site csk under the context
cs1...k−1. Due to the polymorphism mechanism of Java, a call-cite may invoke
different methods according to the class of the receiver. As a result, several methods
may be expanded at one call-cite according to the possible classes of the receiver
node.

2. For each gi (1 ≤ i ≤ n), if the invocation cs1...k : gi is not expanded before, we
put the copy of the summary graph of gi into the main points-to graph.

– All the variable nodes in the summary graph are cloned into the main graph
and renamed. For a node with name n in the summary graph, the new name is
cs1...k : n.

– All the edges in the summary graph are also cloned into the main graph.
– The following inclusion edges are added:

• from cs1...k : gi : this to cs1...k−1 : csk : rec,
• from cs1...k−1 : csk : ret to cs1...k : gi : ret,
• from cs1...k : gi : pj to cs1...k−1 : csk : aj , where pj represents the formal

parameters of gi, and aj is real parameters in parent context cs1...k−1 for
csk.

– For each call-site cs of gi, a calling-context cs1...k : cs is put into worklist.

The algorithm keeps on expanding the calling-contexts till worklist is empty. Then
the algorithm begins to compute the transitive closure of the main points-to graph.

3.4 Computing the Transitive Closure of the Main Points-To Graph

To compute the transitive closure of the main points-to graph, our algorithm iteratively
executes the following two steps till no more edges can be added into the graph.

1. Dealing with field read/write edges in the main points-to graph.
– For a field-read edge from n to n′ labeled f , for each object node no such that

there is a points-to edge from n′ to no, we add an inclusion edge from n to
no.f , where no.f is the node corresponding to the field f of the object o.

– For a field-write edge from n to n′ labeled f , for each object node no such that
there is a points-to edge from n to no, we add an inclusion edge from no.f to
n′.

2. Dealing with the inclusion edges in the main points-to graph.
– For each inclusion edge from n to n′, and for each object node no such that

there is a points-to edge from n′ to no, a points-to edge from n to no is added
if there has’t been such edge before.

– If n is like cnt : cs : rec, i.e. n is a receiver node of the call-site cs under
the calling-context cnt, we should check whether cnt : cs could be expanded
again. Denote g as the signature of cs, and C be the class of the object o, the
context cnt should be expanded again if C :: g() is resolved to a unexpanded
method m under the calling-context cnt : cs, we put the calling-context cnt :
cs into worklist again.

572 L. Qian, Z. Jianhua, and L. Xuandong

It should be noticed that if some calling-contexts are put into worklist during the
closure computation, we should go back to the calling-context expanding phase again.

4 Our Solution of Efficiency

Andersen’s points-to analysis algorithm has a serious scalability problem due to its
time complexity (O(n3)). The CPU time is mainly spent on the iterative process of
computing points-to set of each variables.

As mentioned before, our algorithm is a context-sensitive, field-based extension of
Andersen’s original algorithm. The main points-to graph is constructed dynamically.
Our algorithm has to compute the transitive closure dynamically. Thus, it become even
more crucial to speed up the closure-computing process. To solve the efficiency problem
here, we first make some key properties of the transitive closure computing process
clear:

1. Computing the transitive closure in random order will certainly end up with differ-
ent sums of operations, ranging from linear to O(n3) [7]. Reducing the number of
nodes in the main points-to graph can improve the efficiency of this computation.

2. The most efficient way to compute transitive closure should follow the underlying
topological order of nodes induced by the inclusion-edges in the graph.

3. If a sequence of inclusion edges form a cycle, all the nodes in this cycle should
have the same points-to object set. They should be collapsed into one node, which
greatly accelerate the process of computing transitive closure.

In the rest part of this section, we will describe the optimizations performed on the
method summaries and the main points-to graph.

4.1 Cycle Elimination and Node Collapse in the Main Points-To Graph

Reducing the number of nodes by cycle elimination has been the main approach to
conquer the efficiency problem of Andersen-style algorithms.

As we mentioned above, all the nodes in a cycle of inclusion edges have same points-
to set. They can be collapsed into one node. If we collapse all the cycles in the main
points-to graph, the nodes and the inclusion edges form a directed acyclic graph. We
can perform a topological sort on this acyclic graph such that if there is an inclusion
edge from n to n′, n′ is prior to n. Computing transitive closure in topological order is
much more efficient, because we only need to iterate over the nodes once.

Figure 3 shows the efficacy of the topological sort and cycle-elimination process. The
left side is the original points-to graph with 8 nodes. The initial points-to set of each
node is shown aside the node. If we compute the points-to set of the nodes following the
order 1, 2, 3, 4, 5, 6, 7, 8, the algorithm gets the final results after 3 iterations, 8 nodes
treated in each iteration.

The points-to graph after topological sort and cycle-elimination is shown in the right
side. Node 2 and 6 form a cycle, so they are collapsed into one node. The node 2 is
selected as their representative with a points-to set {ob} . The cycle 3, 5 and 8 are also
collapsed and node 3 is selected as the representative, the initial points-to set is {od}.

Speed up Anderson-Style Points-To Analysis 573

Fig. 3. Node Topo and Cycle Elimination

The nodes are also sorted as 7, 2, 1, 3, 4. If we treat the nodes following this order, only
1 iteration is needed, and 5 nodes are treated.

We design an algorithm which performs cycle elimination and topological sort si-
multaneously. This algorithm travels the graph in a depth-first manner following the
inclusion edges. When it encounters a node which is already in the current path, a cycle
is detected. Then the algorithm collapses the cycle and continues the depth-first explo-
ration. If the algorithm encounters a node of which all the neighbors of inclusion edges
are explored (all the neighbors are either collapsed, or added to the sorted list), it adds
this node to the end of the sorted list.

In our implementation, when k nodes are collapsed into one representative node,
the algorithm marks these nodes as collapsed and set a pointer to the representative
node, then move all the leaving edges into the representative node. So the time used
for collapsing is linear to the nodes be collapsed plus the leaving edges. The time used
for depth-first travel is linear to the number of nodes and edges. Suppose that the graph

574 L. Qian, Z. Jianhua, and L. Xuandong

has n nodes and e edges, and n′ nodes are collapsed during cycle elimination. The time
complexity of this algorithm is O(n + e + n′). Topological sort and cycle elimination
can both improve the efficiency of the transitive-closure computation, and reduce the
number of nodes. So in most cases, the benefit of this algorithm weights over its cost.

The algorithm depicted in Figure 2 is an abstract description of the topological sort
and cycle-elimination algorithm used in our points-to analysis algorithm. Many techni-
cal details, such as merge of edge sets, are omitted for conciseness.

4.2 Optimization in Method Summaries

As described in sub-section 3.3, when a method is being expanded under a calling-
context, all the nodes and the inclusion edges in its summary graph are cloned into the
main points-to graph. If there is a cycle of inclusion edges, this cycle is also cloned into
the main points-to graph. So we can improve our algorithm by eliminate these cycles.
We perform two optimizations on summary graphs.

First, we add some extra inclusion edges to summary graphs. In a method, there are
many local variables appearing in the left-side of an atomic statement only once. Many
of them are temporary variables introduced when program statements are broken down
into atomic statements. If u is such a variable that appears only in atomic statement
u = v, u and v is equivalent, i.e. they should have the same points-to set. We can remove
one of them to reduce the size of the summary graph. However, the basic summarization
algorithm only add one inclusion edge from u to v, so u and v are treated differently. So
for each node n in the summary graph, if n has only one leaving inclusion edge, and the
target node is n′, and has no field-read edge leaving from n, we add another inclusion
edge from n′ to n. Thus n and n′ forms a cycle of inclusion edges, one of them will be
eliminate later.

Second, we perform topological sort and cycle elimination on summary graphs af-
ter method summarization. In a method summary graph, we use four kinds of edges to
describe the relations between the nodes. During the calling-context expanding phase,
method summary graphs are cloned into the main points-to graph. The inclusion edges
in summary graphs are also cloned into the main graph. So the topological orders be-
tween summary graph nodes induced by the inclusion edges in summary graphs are re-
served in the main points-to graph. Furthermore, cycles of inclusion edges in a method
summary graph will still be cycles in the main graph. Thus, after we add some extra
inclusion edges into summary graphs as described above, we perform a topological sort
and cycle-elimination in each summary graph using the same algorithm depicted in
Figure 2.

As size of method summary graphs is much smaller than the main points-to graph,
overhead of optimizations shrinks tremendously. A summary graph may be cloned
many times into the main graph, so the benefit of these optimizations is two folds:

– It reduces the size of summary graphs, thus reduces the size of the main graph.
– The circles in summary graphs are eliminated once for all with a smaller cost.

Speed up Anderson-Style Points-To Analysis 575

Table 2. Node Topo and Cycle Elimination

INPUT: The main points-to graph G;
OUTPUT: The main points-to graph G with all cycles are eliminated;

A topological sort of the nodes in G, stored in sortlist;

TOPOSORTANDCIRCLEELIMINATION (G)

for each node n ∈ G do
mark n as unvisited

sortedlist := 〈〉
while (there are some unvisited nodes in G) do
begin

curnode = a unvisited node in G
trace := 〈curnode〉
while (trace is not empty) do
begin

if (curnode has unvisited successors)
begin

n := a unvisited successor of curnode;
if (n = the ith element of trace)
begin

CIRCLECOLLAPSE(i);
trace := the prefix of trace with length i;

end else begin
append n to the end of trace;
curnode := n;
mark n as visited;

end
end else begin

append curnode to the end of sortedlist;
remove the last element of trace;
curnode := last node of trace;

end
end /*of while (trace is not empty)*/

end /* of while (there are some unvisited nodes in G)*/

CIRCLECOLLAPSE(i)
begin

n := the ith element of trace;
for each node n′ from the ith element of trace to the end do
begin

Set n as the representative of n′;
Combine the leaving edges of n′ to the leaving edge set of n;

end
end

576 L. Qian, Z. Jianhua, and L. Xuandong

5 Experimental Result and Evaluation

The inclusion-based points-to analysis algorithm presented in this paper has been imple-
mented as a plug-in of the Eclipse IDE. We use Java Design Tool (JDT) as the source
code parser, which transforms all the source code under analysis into abstract syntax
trees (ASTs). These ASTs contain the information about the structure of the programs
and types of variables. Algorithm then traverse these ASTs to get the method sum-
maries. The main points-to graph is generated based on these method summaries.

The experiments are performed on a PC with a 2.2GHz Intel duo core CPU and 3.2
GB of memory, running Windows XP and Java VM build 1.5.0. We run all the cases
with a heap size of 512MB.

Table 3 shows the performance data of our analysis on a variety of benchmarks.
These nine benchmarks are from the standard SPECjvm [Standard Performance Evalu-
ation Corporation]2008 benchmark suite.

Table 3. Analysis result on the benchmarks

size time(msec)
Bechmark cls meth LOC summary opt no opt pre meth cons cyc
compress 77 826 10479 3500 31 47 28 29 8
crypto.aes 66 760 9867 3172 94 156 24 154 16

crypto.signverify 66 760 9841 2922 93 125 21 116 12
MPEGaudio 66 757 9708 2891 31 47 25 26 10
scimark.fft 71 803 10581 3219 63 78 46 61 22

scimarkMonteCarlo 70 794 10425 3031 32 47 36 38 9
scimark.lu 70 804 10651 3063 46 63 48 51 46
scimark.sor 71 796 10428 3156 47 78 41 44 21

sparse 70 796 10473 3125 47 63 41 45 18
V alidation 67 770 9910 3047 47 62 36 51 13

The first three columns of the table are the numbers of classes, methods, and LOC
of the benchmarks. Our algorithm analyzes only those methods reachable from the root
set, while those invocations related to Java standard libraries are simply ignored.

The next three columns give the run time of our algorithm: summarization time, main
algorithm time with and without the optimizations described in Section 4. Summariza-
tion time is about 3 seconds. The analysis algorithm speeds up significantly, by a factor
between 1.3 and 1.7, depending on the structure of program. The last three columns
give a general status of our results. These are the facts greatly affecting the result of our
approach, which is amount of methods that need to be pre-treated, amount of contexts
that are generated, and amount of cycles that have been eliminated during our analysis,
respectively. Generally speaking, cycle elimination in summary graph is time consum-
ing. But these operations only needs to be done once per method(if exists). The ratio of
contexts and pre-treat methods is the key factor to buffer this consuming.

Our algorithm spend about 3 seconds to get the summaries of methods, and analyzes
within 0.1 seconds over 10K LOC. It’s faster than other presented algorithms, such

Speed up Anderson-Style Points-To Analysis 577

as [6]. Reporting time of this algorithms ranges from 5 seconds to a dozen seconds.
Though their experiments are performed on an early version of SPECjvm, which is
SPECjvm1.03, results are comparable due to the same scale of code size.

The result here shows that our algorithm can analyze Java code with a reasonable
memory requirement and a relative low time expense.

6 Related Work

The basic idea in our algorithm is mainly assemble with the one proposed by Heintze
and Tardieu [5]. They introduce a new algorithm for computing dynamic transitive
closures. As new inclusion edges are added to the constraint graph from the indirect
constraints, their corresponding new transitive edges are not added to the graph at the
same time. Instead, the constraint graph retains its pre-transitive form, and during the
analysis, indirect constraints are resolved via reachability queries on the graph. A lot of
queries will result in the same transitive edge, which is the main drawback of their work.
They won’t know whether the result of a query is worthy until the end of the query. The
experiment result showed in [5] In our algorithm, we summarize each method and
avoid the redundant operations. This method speedups our algorithm remarkably.

Faehndrich et al. [9] introduce an online cycle detection algorithm which play the
cycle detection at every edge insertion. Pearce propose an more efficient analysis [7].
In order to avoid cycle detection at every edge insertion, the algorithm dynamically
maintains a topological ordering of the constraint graph. Only a newly-inserted edge
that violates the current ordering could possibly create a cycle, so only in this case are
cycle detection and topological re-ordering performed. Later, they improve the algo-
rithm [8], by introducing a periodically sweep, which sweep the entire constraint graph
to detect and collapse any cycles that have formed since the last sweep.

Furthermore, we combine the cycle elimination and node topology together. So be-
sides reduction of node numbers, our method can also reduce the number of iterations
needed for transitive-closure computation.

All the related work above are done for context-insensitive points-to analysis, of
whom, the constraint graph has a fixed size. Situation for context-sensitive points-to
analysis is more complex. Our solution handles this challenge successfully.

We use the pithiness version of points-to set for each method by pre-treating the
method summaries. Many cycles has been eliminated during the pre-treatment. It makes
the final main graph construction with a much smaller input size.

7 Conclusion

We have presented an efficient inclusion-based points-to analysis for Java. Our algo-
rithm handles Java language features such as inheritance, object fields, and aggregate
objects. Our algorithm uses a method summary to briefly describe the constrains of
each method, and pretreat each summary so as to eliminate the cycles in method scope.
This paper presents empirical results which demonstrate that our algorithm is scalable
to large code bases without sacrificing much accuracy.

578 L. Qian, Z. Jianhua, and L. Xuandong

References

1. Andersen, L.O.: Program Analysis and Specialization for the C Programming Language.
PhD thesis, University of Copenhagen, DIKU (1994)

2. Steensgaards, B.: Points-to analysis in almost linear time. In: Proceedings of the ACM Sym-
posium on Principles of Programming Languages (POPL), pp. 32–41. ACM, New York
(1996)

3. Ryder, B.G.: Dimensions of Precision in Reference Analysis of Object-Oriented Program-
ming Languages. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 126–137. Springer,
Heidelberg (2003)

4. Sridharan, M., Gopan, D., Shan, L., Bodik, R.: Demand-driven points-to analysis for Java.
In: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (October 2005)

5. Heintze, N., Tardieu, O.: Ultra-fast aliasing analysis using CLA: A million lines of C code.
In: Proceedings of the Conference on Programming Language Design and Implementation
(PLDI), pp. 146–161 (2001)

6. Whaley, J., Lam, M.: An efficient inclusion-based points-to analysis for strictly-typed lan-
guages. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 180–195.
Springer, Heidelberg (2002)

7. Pearce, D.J., Kelly, P.H.J., Hankin, C.: Online cycle detection and difference propagation
for pointer analysis. In: 3rd International IEEE Workshop on Source Code Analysis and
Manipulation, SCAM (2003)

8. Pearce, D.J., Kelly, P.H.J., Hankin, C.: Efficient Field- Sensitive Pointer Analysis for C. In:
ACM Workshop on Program Analysis for Software Tools and Engineering, PASTE (2004)

9. Faehndrich, M., Foster, J.S., Su, Z., Aiken, A.: Partial online cycle elimination in inclu-
sion constraint graphs. In: PLDI 1098: Proceedings of the ACM SIGPLAN 1998 conference
on Programming language design and implementation, pp. 85–96. ACM Press, New York
(1998)

10. Ramalingam, G.: The Undecidability of Aliasing. ACM Trans. Program. Lang. Syst. 16(5),
1467–1471 (1994)

11. Landi, W.: Undecidability of static analysis. ACM Letters on Programming Languages and
Systems 1(4), 323–337 (1992)

A Formal Analysis of the Web Services
Atomic Transaction Protocol with UPPAAL

Anders P. Ravn, Jǐŕı Srba�, and Saleem Vighio��

Department of Computer Science, Aalborg University,

Selma Lagerlöfs Vej 300, DK-9220 Aalborg East, Denmark

{apr,srba,vighio}@cs.aau.dk

Abstract. We present a formal analysis of the Web Services Atomic

Transaction (WS-AT) protocol. WS-AT is a part of the WS-Coordination

framework and describes an algorithm for reaching agreement on the out-

come of a distributed transaction. The protocol is modelled and verified

using the model checker Uppaal. Our model is based on an already

available formalization using the mathematical language TLA+ where

the protocol was verified using the model checker TLC. We discuss the

key aspects of these two approaches, including the characteristics of the

specification languages, the performances of the tools, and the robustness

of the specifications with respect to extensions.

1 Introduction

Web Services (WS) are distributed applications that interoperate across hetero-
geneous networks and provide services that are hosted and executed on remote
systems. Web services infrastructures employ one or more layers of a web service
protocol stack (see e.g. [8]), containing various standardization initiatives on as-
pects which need to be implemented and described in web services environments.
Many protocols in the stack use the SOAP [15] conventions and are currently at
various adoption stages, ranging from approved standards to proposals.

Several protocols for web services require transactional support in order to
preserve consistency. A classical transaction terminates with two possible out-
comes: committed or aborted. In the committed case, the outcome is made per-
sistent and visible outside the transaction, whereas in the aborted case, all the
actions taken during the transaction are cancelled. Standards for supporting
transactions among web services include the WS-Coordination framework [9]
developed by BEA Systems, IBM and Microsoft. Web Services Atomic Trans-
action (WS-AT) is a part of this framework. This specification defines three
coordination protocols that are used by distributed applications which require
consistent agreements on the outcome of short-lived distributed activities.
� The author is partially supported by the Ministry of Education of The Czech Re-

public, project 1M0545 — Institute for Theoretical Computer Science.
�� The author is supported by Quaid-e-Awam University of Engineering, Science, and

Technology, Nawabshah, Pakistan.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 579–593, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

580 A.P. Ravn, J. Srba, and S. Vighio

Web services protocols are in general nontrivial and their correctness is not
obvious. Therefore we model WS-AT as a network of abstract state machines
communicating via shared variables and, beside some other properties, verify its
correctness using the model checker Uppaal [1]. Verification of communication
protocols is in general not a new topic (see e.g. [3]) but WS-AT was formally
specified only recently, and analysed in [4] using the language TLA+ [5] and its
model checker TLC [7]. The TLA+ formalization of the protocol remained very
useful for the creation of our Uppaal model. In fact, we have transferred the
state transition tables specified in TLA+ into our Uppaal model so that we can
make a fair comparison of the two specification languages.

We compare the TLA+ model with our abstract state machine model with
respect to several criteria. First of all, we consider the performance of the veri-
fication tools TLC and Uppaal. We were able to verify the protocol for up to
five participants but the verification in Uppaal was significantly faster. Then
we discuss the foundations of the two approaches as TLA+ is based on a formal
mathematical language while Uppaal automata rely on imperative program-
ming constructs and transition graphs. We mention the expressiveness of these
formalisms and consider the robustness of the models with respect to a wider
applicability in other protocols with a particular focus on measuring the quality
of service. In conclusion, the two formalization languages complement each other
and we discuss a combination of these approaches for future applications in the
specification and analysis of web services protocols.

The rest of the paper is organized as follows. In Section 2, we give an overview
of the web services atomic transaction protocol. Section 3 discusses the TLA+

modelling approach. A Uppaal model of the protocol is presented in Section 4.
Model properties and verification results are discussed in Section 5. Finally,
Section 6 provides a detailed comparison and discusses ideas for future work.

2 Overview of WS-Atomic Transaction Protocol

WS-Coordination [9] is a specification framework for the description of proto-
cols that coordinate the actions of applications in a distributed environment.
WS-Atomic Transaction [10] (or WS-AT for short) is a part of this framework
that defines an atomic transaction coordination type based on the well-known
ACID (Atomicity, Consistency, Isolation, Durability) principle [2]. WS-AT de-
fines three specific agreement coordination protocols: Completion, Volatile two-
phase commit, and Durable two-phase commit. The goal of the protocols is
to reach an agreement between a protocol initiator and a number of protocol
participants on whether the transaction should be committed or aborted. It is
following the “all or nothing” policy with no compensation mechanism. All com-
munication between the initiator and the participants is established via a trans-
action coordinator. See Figure 1 for the parties involved in the protocol and their
communication.

The completion protocol is a simple communication scheme between the ini-
tiator and the coordinator. It is essentially used by the initiator to ask the

A Formal Analysis of the Web Services Atomic Transaction Protocol 581

Initiator Coordinator

Participant 1

Participant 2

Participant 3

.

.

.

Participant n

Completion Protocol Two-Phase Commit Protocol

volatile or durable

Fig. 1. WS-AT communication scheme

coordinator to try to commit or abort the transaction. The other two protocols
are both based on the two-phase commit (2PC) protocol (see Figure 2) which
coordinates registered participants in reaching their commit or abort decisions.
First, coordinator invites the registered participants to prepare for committing
the transaction, on which a participant can either vote for abort and termi-
nate, or answer that it is either prepared to commit or is read-only (meaning
that the participant’s commit does not require any further action). The sec-
ond phase of the protocol handles the actual commit, provided that the first
phase was successful. In the volatile variant of 2PC protocol, the specification
describes the communication between the coordinator and participants man-
aging volatile resources (like a cache register). The durable variant deals with
the coordinator-participant conversation for participants managing durable re-
sources (like a database register). The WS-AT protocol combines the two pro-
tocols into a new three-phase (i) prepare volatile, (ii) prepare durable and (iii)
commit protocol. Moreover it allows the participants to register for the protocol
at any time before the prepare phase of their respective category is completed;
thus as an example, durable participants can still register while the registration
of volatile participants is already closed.

3 Formalization and Modelling of the Protocol

The WS-AT standard [10] provides a high-level description of the protocol. It is a
collection of protocol behaviours described in English accompanied by diagrams
like the two-phase commit state transition graph presented in Figure 2 and
state tables for the parties involved in the protocol, see part a) in Figure 3.
Unfortunately, there is no generally accepted method for formally specifying WS
protocols and, as documented in [4], the WS-AT description is not sufficiently
precise for a direct formalization. For example, the roles in the protocol are not
sufficiently separated from each other, which causes confusion in the protocol

582 A.P. Ravn, J. Srba, and S. Vighio

Active Preparing Prepared Committing Ended

Aborting

Prepare Prepared Commit Committed

Rollb
ack

Roll
ba

ck

R
o
llb

ac
k

Aborted

ReadOnly or Aborted

ReadOnly or Aborted

Coordinator generated Participant generated

Fig. 2. Two-phase commit state transition graph

description as well as in the state tables. The description is silent also about
what kind of communication between the parties in the protocol is assumed, as
well as what data the coordinator stores about each participant.

Let us take a look at Figure 3 a) describing how the transaction coordina-
tor handles the message Prepared arriving from some participant. The WS-AT
description says that if the coordinator is in the state Preparing and receives
the message Prepared, then it should register the vote and change its state to
Prepared. How this rule should be interpreted when another participant sends
its Prepared message is not explicitly formulated and the WS-AT description
says only that a coordinator with multiple participants can be understood as a
collection of independent coordinator state machines, each with its own state.
Furthermore, the state tables do not describe the details of how and when the
decision about commit or abort is made.

The WS-AT description can be formalized using the TLA+ language as shown
in Figure 3 b) taken from [4]. TLA+ [5] is a formal mathematical language for
specifying high-level descriptions of distributed systems. The language is very
expressive; it uses predicate logic with first order quantification, which allows for
expressing the protocol behaviour in a rather elegant way. There are no built-in
constructs for protocol primitives like message passing, but they can be encoded
using the mathematical formalism, for example as sets in case of the message
passing. The TLA+ expression in Figure 3 b) describes that if there is a message
m of the type Prepared in the set msgs containing all messages sent so far, and
the transaction coordinator is in the state preparingVolatile and the sender of the
message is registered as volatile, or the coordinator is in preparingDurable and the
sender is registered as durable, then the coordinator will note that this particular
participant is now prepared to commit the transaction. In TLA+ it is necessary

A Formal Analysis of the Web Services Atomic Transaction Protocol 583

a) WS-AT:
The coordinator accepts the message Prepared. Upon receipt of this notification, the

coordinator knows the participant is prepared and votes to commit the transaction.

Inbound Events
States

. . . Preparing Prepared . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Prepared . . . Record vote; goto Prepared

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

b) TLA+:
∃m ∈ msgs : m.type = “Prepared”

∧ Case

∨ ∧ tcData.st = “preparingVolatile”
∧ tcData.reg [m.src] = “volatile”

∨ ∧ tcData.st = “preparingDurable”
∧ tcData.reg [m.src] = “durable”

−→
∧ tcData ′ = [tcData Except !.reg[m.src] = “prepared”]

∧ Unchanged msgs
��
.
.
.

c) Uppaal Timed Automata:
An edge in the coordinator automaton with the construct select parId:

Participant, guard guard9(parId) and update action9(parId), where

bool guard9(Participant parId) {
if ((msgSrc[parId][PREPARED] == true) &&

((tcData.st == TC PREPARING VOLATILE && tcData.reg[parId] == TC VOLATILE)

||
(tcData.st == TC PREPARING DURABLE && tcData.reg[parId] == TC DURABLE)))

return true;

return false;

}
void action9(Participant parId) {
tcData.reg[parId] = TC PREPARED;

}

Fig. 3. Specification of a selected WS-AT transition in TLA+ and Uppaal

to explicitly assert that this rule does not change the current set of messages.
This is given by the clause “Unchanged msgs”.

During the formalization of WS-AT in TLA+, the authors in [4] had to make
a few design decisions. First of all, it was agreed that the completion protocol be-
tween the initiator and the coordinator is modelled via internal communication
as one single process. The 2PC protocol is modelled via unreliable asynchronous

584 A.P. Ravn, J. Srba, and S. Vighio

message passing, where the messages can be reordered, lost or duplicated. In-
ternal timing events like “expires times out” in the state tables are modelled
via nondeterminism, which provides a safe over-approximation of the behaviour
but disallows the verification of any time-dependent properties. The full TLA+

model is described in [4] and its correctness has been verified using the TLC
model checker [7] for up to four protocol participants. In [4, 7], it is concluded
that the formalization of the protocol was nontrivial and a discussion with de-
signers involved in the formulation of WS-AT was necessary, because the WS-AT
definition employs informal descriptions being imprecise, ambiguous and often
fail to consider unusual cases.

The authors in [4] support their choice of TLA+ as modelling language by the
argument that there is a place in the specification where one process depends
on the internal state of another process, and that this can be hard to model in
some languages designed expressly for distributed systems.

In the section to follow, we explain an alternative way to model the WS-AT
protocol with a network of state machines as provided by the model checker
Uppaal [12, 1] (see Figure 3 part c) for an example of Uppaal syntax) and
compare the advantages and disadvantages of both approaches. We also explain
how the difficulty with rules that depend on internal states of other processes
can be solved in our approach via the use of global variables and a special form
of process templates.

4 The UPPAAL Model

In this section we provide the details about our Uppaal model of WS-AT proto-
col. Uppaal [12] is a tool for modelling, simulation and verification of networks
of timed automata. The language allows to describe communicating abstract
state machines with handshake synchronization and communication via shared
variables. It provides a powerful C-like syntax for describing guards and updates
on transitions. Uppaal allows also real time clocks. However, this feature is not
used in the present model. We refer the reader to [1] for a thorough introduction
to the Uppaal modelling language.

The protocol model in Uppaal consists of a process that models the initia-
tor together with the transaction coordinator (TC for short) and a participant
template that can be instantiated to as many participant processes as we want
to consider.

4.1 Global Declarations

Global variable declarations of the protocol model contain the set of states for
the initiator, for TC, and for the participants. We also define a set of registration
types and outcomes for TC and the participants. Finally, we model the set of
messages sent between TC and participants as a bit-vector.

The protocol model consists of n participants. A type Participant identifies
a participant using the indices among 0, 1, . . . , n − 1.

A Formal Analysis of the Web Services Atomic Transaction Protocol 585

const int NO OF PARTICIPANTS = n;
typedef int[0,NO OF PARTICIPANTS-1] Participant;

Initiator and TC related declarations. The initiator’s state is stored in the vari-
able iState which may contain one of the following values.

iState ∈ {I ACTIVE, I COMMITTED, I ABORTED, I COMPLETING}
The information about TC is stored in the variable tcData. It is defined as a
variable of the record type DataTC.

typedef struct {StateTC st; RegTC reg[Participant];
ResTC res;} DataTC;

DataTC tcData;

The record type DataTC contains three components.

– A variable st of type StateTC represents all possible control states of TC.

st ∈ {TC ACTIVE, TC PREPARING VOLATILE, TC PREPARING DURABLE,
TC ABORTING, TC COMMITTING, TC ENDED}

– The array reg[Participant] is defined as RegTC type and stores the regis-
tration state (known to the TC) for each participant parId.

reg[parId] ∈ {TC UNREGISTERED, TC VOLATILE, TC DURABLE,
TC PREPARED, TC READ ONLY, TC COMMITTED}

– Finally, a variable res of type ResTC represents the outcome of the protocol.

res ∈ {TC COMMITTED RES, TC ABORTED RES }

Participants’ related declarations. The array pData[Participant] represents
the data maintained by each participant and is declared as DataP record type.

typedef struct {StateP st; RegP reg; ResP res;} DataP;
DataP pData[Participant];

The record type DataP contains three components.

– A variable st of type StateP represents the control states of a participant.

st ∈ {P UNREGISTERED, P PREPARED, P REGISTERING, P ACTIVE,
P PREPARING, P ENDED}

– A variable reg of type RegP records the registration status of a participant.

reg ∈ {P VOLATILE, P DURABLE}
– Finally, res of type ResP represents the outcome of the protocol as recorded

by the given participant.

res ∈ {P READ ONLY, P COMMITTED, P ABORTED }

586 A.P. Ravn, J. Srba, and S. Vighio

Fig. 4. Initiator-Coordinator process

4.2 Messages

Following the TLA+ model, we decided to model the completion protocol be-
tween the initiator and the TC by a direct communication. For the commu-
nication between TC and participants, we adopted the model of asynchronous
message passing where messages can be reordered, duplicated or lost. Unlike in
TLA+, we model messages as two dimensional Boolean arrays. There are two
types of messages, either sent by the TC to a concrete participant or sent by a
participant to the TC.

– The array msgDest[Participant][MsgsTC] stores messages of type MsgsTC
sent from the TC to a participant where MsgsTC = {REGISTER RESPONSE,
PREPARE, COMMIT, ROLLBACK}. Given a participant parId and a message
msg of type MsgsTC, the array element msgDest[parId][msg] has the value
true if and only if the TC has already sent the message msg to the participant
parId.

– The array msgSrc[Participant][MsgsP] represents messages of type MsgsP
sent from a participant to TC where MsgsP = {PREPARED, READ ONLY,
COMMITTED, ABORTED, REGISTER VOLATILE, REGISTER DURABLE}. As be-
fore, if a participant parId has already sent a message msg to the TC, then
msgSrc[parId][msg] has the value true, otherwise it is false.

This representation ensures that duplicate messages are ignored, and that the
arrival order of messages is ignored as well.

4.3 Initiator-Coordinator Process

The model for the Initiator-Coordinator process is shown in Figure 4. The execu-
tion starts in the location START from which the protocol is set to its initial values

A Formal Analysis of the Web Services Atomic Transaction Protocol 587

by the function initial().After this initial phase, the model has just one location
which is urgent (no time elapse is allowed). Each of the transitions in the model has
a guard and an update, both modelled as a function in C-like code. Due to the space
limitation we present here in detail only rule 9, as already displayed in Figure 3 c).
The rule has a select statement parId: Participant which is a convenient Up-

paal abbreviation for a set of transitions where the parId variable is instantiated
to all possible participant identities (as defined by the type Participant).

Referring to Figure 3 c), the boolean function guard9(parId) has a parame-
ter parId. The function checks if the TC has already received a prepared mes-
sage from the selected participant by the test (msgSrc[parId][PREPARED] ==
true). It also checks if the TC is currently in the preparing volatile phase of the
protocol (tcData.st == TC PREPARING VOLATILE) and the registration state
for the participant that the TC has recorded is volatile (tcData.reg[parId] ==
TC VOLATILE). The guard is satisfied also if the current TC’s state is preparing
durable (tcData.st == TC PREPARING DURABLE) and TC’s recorded registra-
tion state of the participant is durable (tcData.reg[parId] == TC DURABLE).
If one of these conditions is satisfied then the guard returns true, otherwise it
returns false.

If the guard guard9(parId) is true then the transition can be executed and
the function action9(parId) is called for the selected participant. The call
of action9(parId) simply sets the TC’s registration state for the participant
parId to prepared (tcData.reg[parId] = TC PREPARED).

The reader may observe that some rules in Figure 4 do not have any se-
lect statements, others select a parId, and a few select the registration type of
messages regMsgType as well. The full Uppaal model is available as [11].

4.4 Participant Process

The template for the participants has a similar shape as the initiator-coordinator
template. The final Uppaal model contains one copy of this template for each
participant in the network. Like the initiator-coordinator process, the participant
process also starts in the location START and performs the initialization first.
The participant model then consists of loop-transitions with guards and updates
(actions) numbered from 14 to 22. Consult [11] for the complete model.

Following the TLA+ specification, we encoded into the rules the behaviour of
each participant. An example of such a rule is a situation when the participant
identified as id receives a rollback message from the TC. As long as the partici-
pant is in one of the four prescribed states (defined in the code to follow), it will
be able to read this message and end the transaction with the aborted outcome
and confirm this by sending a message to the TC.

bool guard22() {
return

(
msgDest[id][ROLLBACK] == true &&

(pData[id].st == P REGISTERING || pData[id].st == P ACTIVE ||
pData[id].st == P PREPARING || pData[id].st == P PREPARED)

)
}

588 A.P. Ravn, J. Srba, and S. Vighio

void action22() {
pData[id].st = P ENDED; pData[id].res = P ABORTED;
msgSrc[id][ABORTED] = true;

}
The other participant rules follow a similar pattern.

5 Model Properties and Verification Results

We discuss now the properties of the Uppaal WS-AT model we described in
the previous section and compare its verification results with those of the TLC
model checker.

5.1 Model Properties

Consistency: The main correctness requirement is that the participants to-
gether with the initiator unanimously agree to commit or abort the transaction.
This property is called consistency in [4], and its formulation in TLA+ can be

Consistency �
∧ (iState = “committed”)

⇒ ∨ ∧ tcData.st = “ended”

∧ tcData.res = “committed”

∧ ∀ p ∈ Participant :

∨ pData[p].st = “unregistered”

∨ ∧ pData[p].st = “ended”

∧ pData[p].res = {“?” , “committed”}
∨ ∧ tcData.st = “committing”

∧ ∀ p ∈ Participant :

∨ pData[p].st = {“unregistered” , “prepared”}
∨ ∧ pData[p].st = “ended”

∧ pData[p].res = {“?” , “committed”}
∧ ∀ p ∈ Participant :

∧ pData[p].st = “ended”

∧ pData[p].res = “committed”

⇒ ∧ iState = “committed”

∧ ∨ ∧ tcData.st = “ended”

∧ tcData.res = “committed”

∧ iState = “committed”

∨ tcData.st = “committing”
∧ ∀ pp ∈ Participant :

∨ pData[pp].st = {“unregistered” , “prepared”}
∨ ∧ pData[pp].st = “ended”

∧ pData[pp].res = {“?” , “committed”}

Fig. 5. Consistency Property in TLA+

A Formal Analysis of the Web Services Atomic Transaction Protocol 589

bool Consistency() {

return InitiatorCommittedOK() && ParticipantCommittedOK();

}

bool InitiatorCommittedOK() {

return iState != I_COMMITTED ||

(tcData.st == TC_ENDED && tcData.res == TC_COMMITTED_RES &&

AllParticipantsCommitted()) ||

(tcData.st == TC_COMMITTING && AllParticipantsCommitting());

}

bool AllParticipantsCommitted() {

for (p=0; p<NO_OF_PARTICIPANTS; p++)

if (!(pData[p].st == P_UNREGISTERED || (pData[p].st == P_ENDED &&

(pData[p].res == P_READ_ONLY || pData[p].res == P_COMMITTED))))

return false;

return true;

}

bool AllParticipantsCommitting() {

for (p=0; p<NO_OF_PARTICIPANTS; p++)

if (!((pData[p].st == P_UNREGISTERED || pData[p].st == P_PREPARED) ||

(pData[p].st == P_ENDED &&

(pData[p].res == P_READ_ONLY || pData[p].res == P_COMMITTED))))

return false;

return true;

}

bool ParticipantCommittedOK() {

for (p=0; p<NO_OF_PARTICIPANTS; p++)

if (pData[p].st == P_ENDED && pData[p].res == P_COMMITTED) {

if (!InitCoorCommittedOrCommiting() || !AllParticipantsCommitting())

return false;

}

return true;

}

bool InitCoorCommittedOrCommiting() {

return iState == I_COMMITTED &&

((tcData.st == TC_ENDED && tcData.res == TC_COMMITTED_RES) ||

tcData.st == TC_COMMITTING);

}

Fig. 6. Consistency property in UPPAAL

seen in Figure 5. Consistency is a safety property, and it is expressed by an
invariant assertion. It states that the protocol is never in an inconsistent con-
figuration where one process thinks that the transaction is committed while
another process claims that it was aborted. There are two separate conjuncts
in the invariant, one asserting what should be true if the initiator reached the
decision to commit, and the other one asserting what is true if a participant has
reached the commit decision.

590 A.P. Ravn, J. Srba, and S. Vighio

We verified the same consistency property given in [4] by reformulating it to
the Uppaal syntax. The Uppaal expression for checking consistency is given
as the function Consistency() in Figure 6. The query is then formulated in
Uppaal’s CTL logic as A� Consistency() which checks whether on all com-
putations every state satisfies the consistency invariant. It is no surprise that
the WS-AT protocol satisfies this property as it is a rather standard protocol
and it was recently verified using the model checker TLC [4], resulting in some
modifications and improvements in the official specification.

Rules Usage: The next question one can ask is whether all rules implemented
in the Uppaal model are actually necessary, in other words if for any given rule
there is some execution where the rule is actually used.

For this purpose we introduce an observer, which is a function added to the
update of every transition in our model which simply records the number of the
rule that was executed.

typedef int[1,22] Rules; bool flag[Rules];
void observer(int x) { flag[x] = true; }

As we numbered all the rules in our models (see e.g. Figure 4) it is now easy to
add the calls observer(1), . . . , observer(22) to the updates of the transitions
representing the rules 1 to 22, respectively. Now in order to verify whether for
example the rule 9 is ever used, we ask Uppaal the query E♦ flag[9]. In this
way we verified (again as expected) that all rules specified in the protocol are
actually used at some execution.

5.2 Performance Results

We measured the time needed for the verification of the consistency property,
which is the most time demanding one as it searches the whole state-space.
The tests were performed on a iMac 27in, 4 GB 1067 MHZ RAM, 3.06 GHz
Intel Core 2 Duo and Leopard Snow operating system. We used Uppaal 4.1.2
and TLA Toolbox version 1.1.0, both with the default settings. The results are
shown below along with the results obtained using the TLC model checker for
the protocol description given in [4]. Execution times are rounded up to seconds
and we also report on the number of explored states.

Performance Results for Checking Consistency
Number of TLC UPPAAL
participants Time States Time States
1 1s 132 1s 143
2 1s 2 082 1s 2 621
3 6s 32 244 2s 50 537
4 1m 49s 504 306 33s 1 014 497
5 40m 37s 8 000 412 14m 36s 21 100 793

A Formal Analysis of the Web Services Atomic Transaction Protocol 591

Tool TLC UPPAAL

specification

language TLA+ timed automata network

with shared variables

necessary user’s

background
mathematical programming

expressiveness of

spec. language

very expressive, infinite

sets, relations, quantifiers,

co-inductive approach

restricted, communicating

state machines, C-like (but

finite) data-structures,

inductive approach

model checker

characteristics

restricted to bounded do-

mains, exhaustive search

verifies the full specification

language (with time)

modelling/veri-

fication speed

fast modelling, slower verifi-

cation

slower modelling, faster ver-

ification

verification of

time/cost features

manual encoding necessary

but no verification support

straightforward modelling

and state-of-the-art verifica-

tion support

parameterized

reasoning

modelling yes,

verification no

modelling yes,

verification no

Fig. 7. Comparison of the model checkers TLC and Uppaal

Comparison of the verification results indicates that Uppaal is more efficient
than the model checker TLC in terms of execution time, even though it actually
explores more states. Beyond five participants, it is almost certain that Uppaal

will run out of RAM (and start swapping) and TLC may take a very long time
(probably days). However, we have not tried to optimize the Uppaal model
in any way yet and we believe that related tools, like for example Uppaal

CoVer [14], may significantly improve its performance.

6 Comparison and Conclusion

We conclude by discussing the key aspects of the two approaches presented for
formalization and verification of WS protocols. A summary table is in Figure 7.

Perhaps the main difference is that TLC can analyse (a subset of) the TLA+

language which is based on mathematical reasoning: first order logic and a sim-
ple set theory. Reading of TLA+ specifications requires training, but the authors
claim that it is about as difficult as learning a new programming language [4].
The Uppaal model of WS-AT may look more familiar to engineers even with-
out any prior training in concurrency theory. The model in fact uses only a
limited set of Uppaal primitives. For example no synchronization between pro-
cesses is employed as all message passing is asynchronous and modelled using
shared variables. The rules of the protocol are encoded in a C-like programming
language.

592 A.P. Ravn, J. Srba, and S. Vighio

Yet, Uppaal requires a lower-level encoding of some protocol fragments like
message passing. Messages in Uppaal are encoded as bit-vectors, while TLA+

offers an elegant and easy to read set notation. This necessarily implies a more
verbose encoding of message passing in Uppaal, but also allows for more control
and a possible optimization of the performance. We have not looked in detail
into the code optimization yet, but it seems that e.g. the Uppaal CoVer tool [14]
may bring a further improvement in the verification performance.

We note that while in TLA+ specification of WS-AT we can count up to 33
rules used in the model, the Uppaal code implements only 22 rules. While still
modelling the protocol at exactly the same level of abstraction, the reason is that
in the TLA+ language one has to explicitly assert what variables an execution of
a rule leaves unchanged. This is due to the co-inductive approach used in TLA+

and user that thinks in imperative programming terms may find it confusing.
As Uppaal uses an inductive approach (what is not described in the rules, is
not allowed), we eliminate the need to consider rules that have no effect on the
protocol behaviour.

Another point we shall discuss is the possibility to extend the approaches with
quantitative analysis. The quality of service has recently become an important
aspect and one may wish to explicitly model for example time and cost attributes
of a protocol. Already the WS-AT specification mentions the time aspects, cit-
ing [10]: “A coordination context may have an Expires attribute. This attribute
specifies the earliest point in time at which a transaction may be terminated
solely due to its length of operation.” Both in TLA+ and Uppaal specifications
the time-outs are currently modelled using a nondeterministic choice, which on
one hand provides a safe over-approximation of the behaviour, but on the other
hand does not allow us to ask time related queries. While time features can be
specified in both formalisms, TLC does not provide any verification support for
it. The analysis of time aspects in Uppaal is straightforward, as Uppaal is a
state-of-the-art tool for continuous time modelling and (automatic) verification.
Moreover, the Uppaal related tool Uppaal Cora [13] for cost-optimal reacha-
bility will allow an easy addition of cost features for analysis and verification of
a variety of quality of service questions. For further discussion on this topic the
reader may consult also [6].

To sum up, it is possible to verify the consistency of the WS-AT for up to
five participants both in TLC and Uppaal. The main problem in the process is
actually the understanding of the WS-AT specification which, in its textual form,
is incomplete and imprecise. The authors in [4] relied during the formalization
phase on two experts that participated in designing the WS-AT protocol. Our
modelling task was easier because TLA+ is a fully formal language and we could
find all the answers about the behaviour of the protocol in their specification.
We can roughly conclude that TLA+ is a more suitable language for higher-level
specification of WS protocols because of it succinctness and flexibility. On the
other hand, any protocol that is described in Uppaal timed automata framework
can be also verified, which is not the case for the TLC model checker. The
experimental results also show that the Uppaal engine is noticeably faster than

A Formal Analysis of the Web Services Atomic Transaction Protocol 593

TLC and hence more suitable for complex protocols. For further applicability in
automatic verification Uppaal provides readily available extensions with time
and cost, features that can be encoded in TLA+ specifications but not necessarily
verifiable in TLC nor any presently available tool.

The formalization of WS-AT shows the need for introducing a standard for
the description of WS protocols. The current practice is insufficient and the
standardized protocols can be ambiguous and incomplete. In our future work,
we plan to investigate a higher-level language that would share some of the ad-
vantages of TLA+ as specification formalism, while being more targeted directly
towards WS protocols, easily understandable by software engineers, and allowing
an automatic translation to verification tools such as Uppaal.

Acknowledgments. We would like to thank Kaustuv Chaudhuri, Leslie Lamport
and Stephan Merz for answering our questions related to TLC.

References

[1] Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Bernardo,

M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,

Heidelberg (2004)

[2] Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, San Francisco (1993)

[3] Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice-Hall,

Inc., Upper Saddle River (1991)

[4] Johnson, J.E., Langworthy, D.E., Lamport, L., Vogt, F.H.: Formal specification

of a web services protocol. Journal of Logic and Algebraic Programming 70(1),

34–52 (2007)

[5] Lamport, L.: Specifying Systems. Addison-Wesley, Reading (2003)

[6] Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul,

W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg

(2005)

[7] Lamport, L., Yu, Y.: TLC — the TLA+ model checker (2003),

http://research.microsoft.com/en-us/um/people/lamport/tla/tlc.html

[8] Mathew, B., Juric, M., Sarang, P.: Business Process Execution Language for Web

Services, 2nd edn. Packt Publishing (2006)

[9] Newcomer, E., Robinson, I. (chairs): Web services coordination (WS-coordination)

version 1.1 (2007),

http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-specos/

wstx-wscoor-1.1-spec-os.html

[10] Newcomer, E., Robinson, I. (chairs): Web services atomic transaction (WS-atomic

transaction) version 1.2 (2009),

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html

[11] Ravn, A.P., Srba, J., Vighio, S.: UPPAAL model of the WS-AT protocol, Available

in the UPPAAL example section at http://www.uppaal.com/

[12] UPPAAL, http://www.uppaal.com

[13] UPPAAL CORA, http://www.cs.aau.dk/~behrmann/cora/

[14] UPPAAL CoVer, http://www.hessel.nu/CoVer/

[15] W3C. SOAP version 1.2 part 0: Primer, 2nd edn, W3C Recommendation (2007)

http://research.microsoft.com/en-us/um/people/lamport/tla/tlc.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-specos/wstx-wscoor-1.1-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-specos/wstx-wscoor-1.1-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html
http://www.uppaal.com/
http://www.uppaal.com
http://www.cs.aau.dk/~behrmann/cora/
http://www.hessel.nu/CoVer/

SPARDL: A Requirement Modeling Language
for Periodic Control System

Zheng Wang1, Jianwen Li1, Yongxin Zhao1, Yanxia Qi2, Geguang Pu1,
Jifeng He1, and Bin Gu2

1 Shanghai Key Laboratory of Trustworthy Computing

East China Normal University, Shanghai, China, 200062

{wangzheng,lijianwen,yxzhao,ggpu,jifeng}@sei.ecnu.edu.cn
2 Beijing Institute of Control Engineering, Beijing, China, 100080

qiyanxia369@sina.com, gubin88@yahoo.com.cn

Abstract. This paper develops a requirement modeling language called

SPARDL for modeling and analyzing periodic control systems. The sys-

tem consists of periodic behaviors together with a mode transition mech-

anism for different behavioral patterns, which is largely applied in the

development of control systems of spacecrafts and automobiles. SPARDL

can specify the features such as periodic driven behaviors, procedure in-

vocations, timed guard, and mode transition, etc. Each mode in SPARDL

can also contain complex activities such as controlling behaviors and

data processing. To understand system behaviors precisely, a structural

operational semantics is proposed for SPARDL. To analyze periodic con-

trol systems in SPARDL, a requirement prototype generation algorithm

is proposed to simulate and test the requirements. Meanwhile, a case

study is presented to illustrate our approach to requirement modeling

and simulation in the development of control systems.

Keywords: Requirement Modeling Language, Control System, Proto-

type Generation.

1 Introduction

Control systems are widely used in many areas including Automation, Aero-
nautics etc. One of the most important characteristics for control systems is
timed sensitive property. For instance, most of control systems are real-time sys-
tems [8,9]. Moreover, one important type of real-time systems is periodic one,
which may deal with a series of periodic tasks during some time interval. When
a guard is satisfied, or an event arrives, the system enters new state for new
periodic tasks until some other guard holds on. The control system of space
shuttle is a representative for periodic systems. Requirement capture and anal-
ysis for periodic system is a tedious job since there are lots of complex states in
the system, and the control and data relations among states may be embedded
iteratively. Requirement engineers will spend plenty of time to understand and
analyze system requirement manually to find whether there is inconsistency or
ambiguity in the requirement.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 594–608, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

SPARDL: A Requirement Modeling Language for Periodic Control System 595

Normally, the periodic control system has the following features:

– Event-driven. Periodic systems have complex states while state transition
is driven by kinds of events. For instance, the space shuttle may enter
the moon-circling state when some time guard triggered by a timer is
satisfied.

– Coherent data. Periodic control systems deal with data collected from envi-
ronment periodically. The data are processed in each state which may affect
other states the system enters. Thus, the data in periodic systems are highly
coherent and we need an approach to analysis or testing of data flow in
system requirement.

– Fixed tasks. For some state in control system, the tasks performed are
fixed in one period. Moreover, some embedded systems require that the
tasks can be finished in one period strictly, which can be ensured by the
estimation of worst execution time for those tasks under fixed hardware
platform.

– Convergent behavior. Periodic control systems may enter some stable state
by adjusting its behaviors continually. For instance, Moon-exploration satel-
lite may enter near-moon-circling state eventually after it is launched from
the earth.

– Hierarchy. Though periodic systems handle kinds of tasks in real time, most
of them have distinct hierarchial structure. For instance, those basic tasks
which deal with different control algorithms are encapsuled as basic mod-
ules while logic control behaviors for the system are composed of basic
modules by connectors. As a result, modeling hierarchy is supposed to be
one of the goals for any requirement modeling language of periodic
systems.

To facilitate the modeling and analysis of periodic control systems, we propose a
requirement modeling language called SPARDL, which aims at providing a for-
mal but intuitive modeling mechanism for periodic control systems. As a mod-
eling language for control systems, a SPARDL model consists of a set of modes
that are trigged by guards periodically. The behavior in each mode includes three
types, mode initialization, frequency procedures and mode transitions. A tran-
sition guard in mode may use temporal conditions, which do not only depend
on current system state, but also on previous one.

SPARDL has its precise semantics for formal analysis. Requirement engineers
would like to check whether there is inconsistency or ambiguity in system re-
quirement. For instance, engineers may be interested in whether unpredicted
paths are in the process of mode transition. To analyze the requirement model,
an interpreter is designed for SPARDL, which is implemented by transform-
ing from SPARDL model to C code. As a result, a requirement prototype can
be generated from SPARDL model automatically. This prototype can simulate
the behaviors of system requirement to facilitate engineers to validate system
requirement, which is essentially a model-based testing approach. To develop
control systems, the system designers specify the whole system behavior by

596 Z. Wang et al.

dynamical and mathematical model. This phase usually consists of modeling
the system behaviors, dividing and conquering functionalities from the view
of systematic engineering. When the system design is finished, the SPARDL
model can be established by system engineers for further implementation. To
analyze SPARDL model, a corresponding requirement prototype is generated
for simulation and validation.

The rest of this paper is organized as follows. We first give an introduction to
SPARDL in Section 2. The semantics of SPARDL is given in Section 3. A simple
SPARDL model is used to illustrate the semantics in this section. In Section 4,
we develop an algorithm to generate a prototype from SPARDL model. And
the generated prototype is implemented in C programming language. The tool
implementation is illustrated in Section 5. We make a discussion in Section 6
and give a conclusion in Section 7.

2 The Requirement Modeling Language

This section describes the requirement modeling language SPARDL. The lan-
guage provides a requirement abstraction for control systems which exhibit pe-
riod and multi-mode features. The features of SPARDL are similar to those in
StateChart [5], where an event can drive the state transition. SPARDL pro-
vides rich control structures for the description of control logic compared to
StateChart, which focuses on the composition of system states. The low-level
elements of this language are similar to those in C language. However, it also
provides the mechanism which can describe the behaviors of control systems.
Compared with the traditional language, periodic behaviors and timed guard
are the main features of SPARDL. Besides that, SPARDL has a two-hierarchy
structure for modeling system behaviors. The first one supports to model a con-
trol system at the abstraction level, while the second one is used to define the
details of each module in the control system.

2.1 Module-Hierarchy Syntax

The syntactic elements in Table 2 support to model the architecture of a control
system at the abstract level, while the elements in Table 1 are used to specify
the system behaviors in detail.

Table 1. Syntactic Elements in the second hierarchy of SPARDL

func =df id stmts
stmts =df stmt

| stmts; stmts
| if b then stmts else stmts
| while b do stmts
| call id

stmt =df x := e
| skip

SPARDL: A Requirement Modeling Language for Periodic Control System 597

– A function func consists of a unique name id and a sequence of statements
stmts.

– stmt ranges over primitive statements:
• x := e is assignment
• skip behaves the same as x := x

– stmts; stmts is sequential composition. It firstly executes the first stmts.
When the first stmts terminates, the second stmts is started to execute.

– if b then stmts else stmts is the conditional construct.
– while b do stmts is the iteration construct.
– call id is the function call site.

2.2 Mode-Hierarchy Syntax

A control system is described as a set of modes, each of which repeats to execute
a fixed sequence of procedures. A mode is a triple. The first element Init is a
modu, and it takes the duty to initialize the mode. The element Procs is a list
of proc. When the system is in this mode, it sequentially performs the Procs
periodically. A proc is a dual tuple. Its first element f is the frequency to execute
the modu and 1

f is strict to be positive integer. For example, when f = 1, the
modu will be executed in every period. When f = 1

4 , the modu will be executed
once in four periods. The second element modu in a proc is a procedure with a
pre-condition. If the pre of a modu is evaluated false in the system execution,,
the modu is just skipped.

When a mode finishes executing modus in its Procs, its transition guards
will be tested to check whether the control system will switch its mode. The
third element Trans in a mode is a set of quadruple tran. A tran describes
the transition from the current mode to another mode. For this purpose, a tran
specifies a transition condition guard, a unique priority to arbitrate which guard
is trigged first when multiple events arrive simultaneously. In general, the third

Table 2. Syntactic Elements in the first hierarchy of SPARDL

Modes =df {mode | mode = (Init, P rocs, T rans)}
Init =df modu

Procs =df proc; Procs|proc
proc =df (f, modu)

modu =df (pre, stmts)
pre =df b

T rans =df {tran | tran = (guard, priority,modu, mode!)}
guard =df b

| after (guard, c)
| duration (guard, c)
| ¬guard
| guard∨ guard
| guard∧ guard
| guard → guard

598 Z. Wang et al.

element modu converts the values of variables used in the current mode to the
ones used by the target mode, or loads those variables with constants. The mode!
denotes the repetition of the target mode, where symbol ! denotes the recursion
of the current state mode.

A guard is either a boolean expression, or a timed guard. There are two kinds
of timed guards in SPARDL: after and duration. A guard after(g, c) holds
in a period p if there is another period p′ such that the guard g can be satisfied
in period p′ and it travels c periods from p′ to p. A guard duration(g, c) holds
in a period p if there is the other period p′ such that it travels c periods from p′

to p and the guard g can be satisfied in each period from p′ to p. In Figure 1,
the two types of timed guards are illustrated with execution traces, where the
dashed arrows are used to denote repetitions in the traces. The state satisfying
g is denoted by filled nodes.

g

duration(g, n)

g g g g

after(g, n)

Fig. 1. Timed Guards

Such timed guards provide a mechanism to represent requirements about
timed properties. For instance, “When the system is in mode M1, it should switch
to mode M2 if the angular speed is less than 0.08 rad in four periods”. This sen-
tence describes a mode transition from mode M1 to mode M2 and the transition
condition can be described by this timed guard: duration(a < 0.08, 4). To select
an element from a tuple t = (a1, a2, . . . , an), the projection function is defined
as πi(t) =df ai, i ∈ {1 . . . n}.

3 Operational Semantics for SPARDL

An operational semantics can be expressed as a set of possible transitions which
models the system behaviors. The transitions for SPARDL are written as the
standard style:

g

C
e−→ C′

where g is the transition condition, e is the event to trigger this transition and
C, C′ are configurations describing the states of an executing mechanism before
and after a transition step. Both g and e are optional.

3.1 Configuration

The configuration for SPARDL is a little complicated for two reasons. First,
SPARDL is used to model periodic behaviors. Second, SPARDL supports timed
guards. Formally, each configuration is defined as a quadruple:

〈mode!, s, k, T r〉

SPARDL: A Requirement Modeling Language for Periodic Control System 599

where:

– The first component mode! is the current mode to be executed.
– The second component s indicates the current state. And s ∈ S, where

S denotes all the possible states of the control system. A state s means a
valuation of the variables in the system.

– The third component k records the count of periods for current mode. If a
mode transition happens, it will be reset to 0.

– The last component Tr is a trace in which there are sets of atomic boolean
expressions. When all the modus in Procs are finished, the set of atomic
boolean expressions, whose value is true in transition conditions used in
π3(mode), is attached to the trace. If a mode transition happens, it will be
reset to 〈〉.

At syntactic level, a modu is defined as a guard and a sequence of statements. If
the guard is evaluated to be false, the statements is just skipped. At semantics
level, a modu is defined as a partial function over S:

modu : S ⇀ S

The notation Tr |= g means that a timed guard g holds at the trace Tr. The
relation |= is recursively defined as below(assuming that g1 and g2 are timed
guards, e is integer expression and b is boolean expression):

Tr |= b ⇔ b ∈ last(Tr)
Tr |= ¬g1 ⇔ ¬(Tr |= g1)
Tr |= g1 → g2 ⇔ Tr |= ¬g1 ∨ g2

Tr |= g1 ∨ g2 ⇔ Tr |= g1 or Tr |= g2

Tr |= g1 ∧ g2 ⇔ Tr |= g1 and Tr |= g2

Tr |= after(g1, e) ⇔ s(e) = c ∧ Tr |= after(g1, c)
Tr |= after(g1, c) ⇔ Tr1 |= after(g1, c − 1)
Tr |= after(g1, 0) ⇔ Tr |= g1

Tr |= duration(g1, e) ⇔ s(e) = c ∧ Tr |= duration(g1, c)
Tr |= duration(g1, c) ⇔ Tr |= g1 ∧ Tr1 |= duration(g1, c − 1)
Tr |= duration(g1, 0) ⇔ Tr |= g1

where c > 0, last(Tr) means the last element in the trace Tr,
Tr1 = Tr[1 . . . |Tr|−1] and |Tr| means the length of Tr, s(e) means to evaluate
the expression e under the state s, which is in the same configuration with the
trace Tr.

3.2 Transition Rules

Periodic Behaviors. SPARDL supports the periodic mechanism for control
system. In a result, modes will be performed repeatedly and any mode should
be performed in particular time points. We assume that there is an operating
system to support the control system whose modes will be executed by the OS.

600 Z. Wang et al.

When a period starts, the OS sends a signal to perform the current mode of the
control system.

〈mode!, s, k, T r〉 e−→ 〈mode; mode!, s, k, T r〉
The event e triggers the current mode to execute. The state of control system
remains unchanged.

Mode Initialization. When a mode is performed, its Init element will be firstly
executed. The guard used in Init is only allowed to be boolean expression.

– If a mode is performed for the first time (the third component in configura-
tion is one, k=1), and the guard of modu is satisfied, the modu is executed.
After execution, the Procs of mode will be executed either.

pre(s) = true ∧ func(s) = s′

〈(Init, Procs, T rans); mode!, s, 1, 〈〉〉 −→ 〈(Procs, T rans); mode!, s′, 1, 〈〉〉
where pre = π1(Init) and func = π2(Init)

– If a mode is performed for the first time, and the guard of modu is not
satisfied, the modu is skipped. And then the Procs of mode will be executed.

pre(s) = false

〈(Init, Procs, T rans); mode!, s, 1, 〈〉〉 −→ 〈(Procs, T rans); mode!, s, 1, 〈〉〉
– If a mode is not performed for the first time, the Init is skipped. And then

the Procs of mode will be executed.

k �= 1
〈(Init, Procs, T rans); mode!, s, k, T r〉 −→ 〈(Procs, T rans); mode!, s, k, T r〉

Modular Execution. In the modular hierarchy, it is an extension of the tradi-
tional imperative language by augmenting subprogram call. For simplification,
we do not mention how to compute the semantics of programs in the modu-
lar hierarchy deliberately and merely identify each program as state pair. Then
we will concentrate ourself on the big-step operational semantics of the mode
hierarchy in the following.

When the Init part of a mode is finished, the procs in Procs is handled
sequentially. The modu in a proc is executed or skipped based on the frequency
1
ω of the proc in each period.

– If the proc should not be executed in this period, or the pre in modu of the
proc is false, then the proc is skipped and the next proc is handled.

k%ω �= 0 ∨ pre(s) = false

〈(proc; Procs, T rans); mode!, s, k, T r〉 −→ 〈(Procs, T rans); mode!, s, k, T r〉
where ω = 1

π2(proc) and pre = π1((π1(proc)))

SPARDL: A Requirement Modeling Language for Periodic Control System 601

– If the proc should not be executed in this period, or the pre in modu of the
proc is false, the element modu of proc is skipped. If the proc is the last one
in Procs, the element Trans of mode will be handled next.

k%ω �= 0 ∨ pre(s) = false

〈(proc, T rans); mode!, s, k, T r〉 −→ 〈Trans; mode!, s, k, T r〉
– If the proc should be executed in this period, and the pre in modu of the

proc is true, the element modu of proc is executed and then the next proc
will be handled.

k%ω = 0 ∧ pre(s) = true ∧ func(s) = s′

〈(proc; Procs, T rans); mode!, s, k, T r〉 −→ 〈(Procs, T rans); mode!, s′, k, T r〉
where func = π2(π1(proc))

– If the proc should be executed in this period, and the pre in modu of the
proc is true, the element modu of proc is executed. If the proc is the last one
in Procs, the element Trans of mode will be handled next.

k%ω = 0 ∧ pre(s) = true ∧ func(s) = s′

〈(proc, T rans); mode!, s, k, T r〉 −→ 〈Trans; mode!, s, k, T r〉

Mode Transition. When the Procs has been executed, the Trans is per-
formed. If a transition condition is satisfied, then the system switches from cur-
rent mode to target mode.

– If every guard of tran is not satisfied, the mode transition does not happen.
And the current mode will be executed once again.

∀tran ∈ Trans • ¬(Tr1 |= guard)
〈Trans; mode!, s, k, T r〉 −→ 〈mode!, s, k + 1, T r1〉

where guard = π1(tran) and Tr1 = Tr
Per(Trans, s)
The function Per associates Trans with the set of atomic propositions

that are satisfied in state s in the transition conditions.
– If a transition condition, which has highest priority, is satisfied, the system

will switch from current mode to its target mode. The periodic count and
timed guard trace are all reset.

For simplicity, we let SU(tran) =df ∀tran′ ∈ Tran•(tran′ �= tran∧Tr′ |=
π1(tran′) ⇒ π2(tran′) < π2(tran)). If SU(tran) is satisfied if no any other
transition condition holds and its priority is higher than tran.

∃tran ∈ Tran • (Tr1 |= guard ∧ SU(tran) ∧ pre(s) = false)
〈trans; modes!, s, k, T r〉 −→ 〈π4(trans), s, 1, 〈〉〉

where guard = π1(tran), Tr1 = Tr
Per(guard), and pre = π1(π3(tran)).
– If pre is true in a transition, tran.modu is executed before the system

switches to the target mode.

∃tran ∈ Tran • (Tr1 |= guard ∧ SU(tran) ∧ pre(s) = true ∧ func(s) = s′)
〈trans; modes!, s, k, T r〉 −→ 〈π4(trans), s′, 1, 〈〉〉

where func = π2(π3(tran)).

602 Z. Wang et al.

3.3 A Case Study

We use a simple SPARDL system from Figure 2 to illustrate its usage. This
system contains three modes, m1, m2 and m3. Mode m1 invokes two procedures
proc11 and proc12, with frequencies of 1 and 1

4 , respectively. And this mode can
transit to mode m2 or mode m3. Similarly, Mode m2 invokes two procedures
proc21 and proc22 once in each period. This mode can transit to mode m1 or
mode m3. Mode m3 invokes procedure proc31 with frequency 1. This mode can
transit to mode m1. The system is launched in mode m1.

We illustrate an execution C0, C0, . . . beginning with the following configura-
tions to explain the semantics of this system in Figure 3.

The execution starts in mode m1. When the system is triggered by a signal,
the modules in mode m1 begin to perform, (C0 → C1). And the module Init1
changes the system state s0 to s1, (C1 → C2). Assume that the state s1 makes
the procedure guard g11 true, then the procedure proc11 changes the system state
s1 to s2, (C2 → C3). The next procedure proc12 is skipped because its frequency
is 1

4 . So the system state s2 keeps unchanged, (C3 → C4). When performing the
mode transition Trans, we assume that the boolean expression failure used
in the timed guard evaluates true and the other boolean expression cmd =
AFTERBURN is false. Then neither transition conditions are satisfied. The
fourth component in the configuration is attached with a new element {failure},
(C4 → C5).

When a signal starts to be sent and the system is triggered in a new period,
then the modules in mode m1 start to perform again, (C5 → C6). Because this
mode is executed for the second time, the initialization is skipped and the system
state s2 keeps unchange during the configuration transition C6 → C7. And then
the procedure proc11 changes the system state s1 to s2, (C2 → C3). The next
procedure proc12 is skipped again, (C8 → C9).

Mode: m11

Init1

Proc11: f=1
g11 11

Proc12:f=1/4
g12 12

Trans1

Mode: m21

Init2

Proc21: f=1
g21 21

Proc22:f=1
g22 22

Trans2

Mode: m31

Init3

Proc31: f=1
g31 31

Trans3

start

cmd=AFTERBURNcmd=CRUISE

duration(failure, 2)
failure

cmd=Z1

Fig. 2. A Case Study of SPARDL

SPARDL: A Requirement Modeling Language for Periodic Control System 603

C0 = (m1!, s0, 1, 〈〉)
C1 = ((Init1, (proc11; proc12), T rans1); m1!, s0, 1, 〈〉)
C2 = (((proc11; proc12), T rans1); m1!, s1, 1, 〈〉)
C3 = ((proc12, T rans1); m1!, s2, 1, 〈〉)
C4 = (Trans1; m1!, s2, 1, 〈〉)
C5 = (m1!, s2, 2, 〈{failure}〉)
C6 = ((Init1, (proc11; proc12), T rans1); m1!, s2, 2, 〈{failure}〉)
C7 = (((proc11; proc12), T rans1); m1!, s2, 2, 〈{failure}〉)
C8 = ((proc12, T rans1); m1!, s3, 2, 〈{failure}〉)
C9 = (Trans1; m1!, s3, 2, 〈{failure}〉)
C10 = (m3!, s4, 1, 〈〉)

. . .

Fig. 3. The Configurations of the SPARDL Model

A mode transition happens in C9 → C10. In the configuration C9, the program
that remains to execute is the mode transition Trans1, the current system state
is s4 and the Tr is 〈{failure}〉. We assume that the boolean expression failure
used in the timed guard evaluates true and the other boolean expression cmd =
AFTERBURN is false. Because Tr � 〈{failure}〉 |= duration(failure, 2), the
transition condition of the first element in Trans is satisfied. Then the system
switches from the current mode m1 to the target mode m3. Before the transition,
a procedure action is executed, which changes the system state s4 to s5. The
fourth component Tr in the configuration is set to be an empty trace.

4 Requirement Prototype Generation

When the requirement model is established, requirement engineers would like
to analyze and validate the requirement to see whether there is inconstancy or
ambiguity in it. One analysis approach is to test or simulate the requirement,
which means that the requirement model should be executable. One difficulty
for making the control system requirement executable is that the control theory
for system behaviors is hardly modeled in the requirement since it is a ma-
ture physical model involving complicated mathematical equations. The control
model is usually provided by control experts in a separate document. Moreover,
the implementation of control model is also provided with a separate software
package. The basic idea of requirement prototype generation tries to combine the
requirement model and control model together to achieve the goal of executable
requirement. Figure 4 shows the process of our approach.

Based on the simulator interactions provided by control experts, simulator
protocol is defined by ourselves. Both physical environment simulators and kine-
matical computation unit are provided by control experts. Then, we compile
the SPARDL model into C code which can be merged the control package from
control community. As a result, the SPARDL model can be executed by the
transformation approach which can help the requirement engineers analyze and
test the requirement easily.

604 Z. Wang et al.

C source code

Physical
Environment

Simulators

Kinematical
Computation

Units

generate
compile

Executable
Prototype

SPARDL
model

generate

simulator
protocol

Fig. 4. Requirement Prototype Generation

The SPARDL model contains some features which are mapped to C non-
trivially. A mode is transformed into a function. A global variable is introduced to
record the current mode. A loop structure is generated to represent the periodic
behaviors. The timed guards are implemented through counting. The generated
C code introduces a variable to count the number of truth evaluation of the
sub-expression in each timed guard. When the count number meets the number
specified in this timed guard, the timed guard is satisfied. For the duration
timed guard, if a false evaluation occurs in a timed guard, the count is reset to
0. When a mode transition happens, all the guard counters are reset 0.

There is a snapshot for generation C code from the SPARDL in Figure 5. A con-
trol system ismostly a closed loop system.Firstly, the systemgets inputsmonitored
by sensors. Then the system makes computation based on the input and its inter-
nal state. The computation may change its internal state and effect the actuators,
which may change the inputs monitored by sensors in the next iteration.

The SPARDL model only focuses on the control and data flow relations but
abstracts the kinematical control and environment feedback. Besides the control
flow, the execution of a SPARDL model depends on both feedback from the sim-
ulation of physical environment and control decision from the computation of
kinematical unit. The prototype generation should also consider how to connect
the code about the SPARDL model itself with the libraries of those components.
We define a protocol to describe the relationship between these read-only/write-
only variables in SPARDL model and interfaces provided by those simulators.
The glue code is generated based on this protocol. So the generated code should
be compiled with libraries of kinematical computation units and physical envi-
ronment simulators together to generate an executable prototype. Those libraries
are implemented by the control experts. In Figure 5, the dashed arrow denotes
the function call from the generated C code to the interfaces provided by the
physical environment simulators and kinematical computation unit.

Once the requirement prototype is generated, we can simulate the requirement
itself. For instance, we can detect whether some mode is unreachable by testing
the requirement. Moreover, the data analysis can also be applied to see what
procedures can affect the current active one. The experimental results in the
next section shows that our approach is effective in practice.

SPARDL: A Requirement Modeling Language for Periodic Control System 605

Mode: m11 Mode: m21

Mode: m31

start
cmd=AFTERBURN

cmd=CRUISE

duration(failure, 2)

failurecmd=Z1

int g_mode;
void mode1()
{

static int cnt12; //count for procedure frequency
static int cntt1; //count for transition condition
...
if (cnt12 % 4 == 0) proc12();
cnt12++;
...
sensor_gyro_detect();
if (failure) cntt1++;
if (cntt1 == 2)
{

cntt1 = 0;
g_mode = 3;

}
}

void mode3() {...}

void mode2() {...}

int main()
{

g_mode = 1; // the initial mode is mode 1

while(1)
{

switch(g_mode)
{

case 1: mode1();break;
case 2: mode2();break;
case 3: mode2();break;

}
}

}Kinematical
Computation

Unit
Physical

Environment
Simulator

Fig. 5. C Program Generation from SPARDL Model

5 Tool Implementation

We implement our approach in a tool prototype. To help communicate with
the requirement engineers, a graphic interface for SPARDL is developed as well.
Thus, engineers can just draw the SPARDL model instead of writing SPARDL
text, which makes the SPARDL approach be easily accepted by industry. This
tool is integrated as an Eclipse plug-in and the snapshot is shown in Figure 6.

The procedure of our SPARDL approach is shown as follows:

1. The control experts provide: (1) corresponding control algorithm implemen-
tation, (2) physical environment simulators.

2. The software engineers build a requirement model of SAPRDL and a simu-
lator protocol from the artifacts delivered by control experts.

3. Based on the model and protocol, a requirement prototype is generated
automatically. And then the software engineers can simulate the prototype
to the test or validate the requirement model.

A real vehicle control case from industry with 10 modes are analyzed by our tool
shown in Figure 6. When the vehicle control system is established in SPARDL
model, we find two unexpected mode transitions and one may-impossible mode
transition. During the simulation, we find that if the control system enters mode
m7, it immediately transits to mode m6, while it is expected to be remained
in mode m7 at least 600 sec. A similar defect is covered in mode m4 after the
system switches from mode m4 to mode m8 too quickly. These three defects
are returned to control experts. The former two are confirmed since software

606 Z. Wang et al.

Fig. 6. A Snapshot of Tool Implementation

engineers miss the requirements that the system should remain in those two
modes for a time. The third defect is a false alarm. When we use the new test
data, the mode transition is taken.

6 Discussion

Our SPARDL model is inspired by the domain-specific language [4] and the ex-
ecutable specification [2] for requirement analysis [6,11]. The DSL Hume [4]
provides a powerful modeling suit, such as higher-order functions, polymor-
phic types, asynchronous communication and exception handling. The same as
SPARDL, Architecture description languages (ADLs) [3] also take a macro-
scopic view for software engineers. Their perspective is shifted from lines of code
to modes, tasks and communication among different components. ADLs supports
to compile scheduling code to glue different tasks implemented in conventional
programming language.

The overall structure of SPARDL model is similar to statechart [5]. In its top
level, the model is presented as a statechart. Each mode is described as a state
and the mode switches are modeled to be state transition. In statechart, there are
two types of state transitions: either a state transition is triggered by an event,
or a state transition may happens when a condition satisfies. In SPARDL model,
the state transitions in the top level are in the second type. The statechart can
be nested while the SPARDL model is also a hierarchy structure. But the sub-
structure of a state in statechart is also a statechart while the sub-structure of a
mode in SPARDL model is a special activity diagram. Such difference is caused
by our motivation. We focus on the mode transition among different modes and

SPARDL: A Requirement Modeling Language for Periodic Control System 607

we interest in the behaviors in each mode. So a statechart-like structure is used
to describe the mode switches and a activity chart-like structure is introduced
to model the behaviors in a mode.

A goal of SPARDL is to provide a concise abstraction for control systems,
which is the same with Giotto [7]. Giotto is also a periodic driven mode based
modeling language. The tasks in a mode are performed in parallel in Giotto,
which is different from SPARDL. Because SPARDL requires the mode transi-
tions happen at the end of modes, while Giotto supports to test mode switch
in a mode many times, depending on the frequency of a mode switch. SPARDL
extends the semantics of guard by introducing timed guard, while Giotto omits
this feature and leaves it to the implementation language. Although both Giotto
and SPARDL generate prototypes from models, their purposes are different. The
prototype generated from SPARDL is used to validate the functional require-
ments and will be abandoned after validation.

SPARDL model aims at both capture and validation of system requirement.
RCAT [12] introduces a requirement capture notation and checks requirements
by converting them into automata. CHARON [1] is a modeling language to
describe hierarchical hybrid models and embedded software. Our purpose to
generate C code from SPARDL is different from CHARON. We aim at validat-
ing requirements instead of generating software implementation automatically.
Ptolemy II [10] is a platform to design, model and simulate real-time, embedded
systems. It is interesting that the semantics of a model is determined by a soft-
ware component in the model instead of the framework, which provides a high
flexibility.

7 Conclusion

In this paper, we propose a requirement modeling language for periodic control
systems. The operational semantics of SPARDL are presented for formal anal-
ysis. SPARDL can describe time-triggered periodic behaviors without resorting
to times based on the notations such as modes and timed guards we designed.
To facilitate the simulation and validation of system requirement, a requirement
prototype generation technique is developed. Moreover, the graphical interfaces
for SPARDL is developed for the easy communication with system engineers.To
facilitate the simulation and validation of system requirement, a requirement
prototype generation technique is developed.

Acknowledgements

Geguang PU is partially supported by 973 Project No.2005CB321904, and the
Fundamental Research Funds for the Central Universities. Hao XIAO is partially
supported by 863 Project No. 2009AA010313. Bin GU is partially supported by
NFSC No. 90818024. Jifeng HE is partially supported by the Open Fund of the
State Key Laboratory of Software Development Environment under Grant No.
SKLSDE-2009KF-2-05, Beijing University of Aeronautics and Astronautics.

608 Z. Wang et al.

References

1. Alur, R., Ivancic, F., Kim, J., Lee, I., Sokolsky, O.: Generating embedded software

from hierarchical hybrid models. SIGPLAN Not. 38(7), 171–182 (2003)

2. Anderson, A.H., Shaw, G.A.: Executable requirements and specifications. J. VLSI

Signal Process. Syst. 15(1/2), 49–61 (1997)

3. Clements, P.C.: A survey of architecture description languages. In: IWSSD 1996:

Proceedings of the 8th International Workshop on Software Specification and De-

sign, p. 16. IEEE Computer Society, Washington (1996)

4. Hammond, K., Michaelson, G.: Hume: a domain-specific language for real-time

embedded systems. In: Pfenning, F., Smaragdakis, Y. (eds.) GPCE 2003. LNCS,

vol. 2830, pp. 37–56. Springer, Heidelberg (2003)

5. Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-

gram. 8(3), 231–274 (1987)

6. Heitmeyer, C.: Using the scr* toolset to specify software requirements. In: WIFT

1998: Proceedings of the Second IEEE Workshop on Industrial Strength Formal

Specification Techniques, p. 12. IEEE Computer Society, Washington (1998)

7. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: a time-triggered language for

embedded programming. Tech. rep., Berkeley, CA, USA (2001)

8. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J.,

Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer,

Heidelberg (2006)

9. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Ap-

plications. Kluwer Academic Publishers, Norwell (1997)

10. Liu, X., Xiong, Y., Lee, E.A.: The ptolemy ii framework for visual languages. In:

HCC 2001: Proceedings of the IEEE 2001 Symposia on Human Centric Comput-

ing Languages and Environments (HCC 2001), p. 50. IEEE Computer Society,

Washington (2001)

11. Sadilek, D.A.: Prototyping domain-specific language semantics. In: OOPSLA Com-

panion 2008: Companion to the 23rd ACM SIGPLAN conference on Object-

oriented programming systems languages and applications, pp. 895–896. ACM,

New York (2008)

12. Smith, M., Havelund, K.: Requirements capture with rcat. In: IEEE International

Conference on Requirements Engineering, pp. 183–192 (2008)

AutoPA: Automatic Prototyping from Requirements�

Xiaoshan Li1, Zhiming Liu2, Martin Schäf2, and Ling Yin2,3

1 Faculty of Science and Technology, University of Macau
2 United Nations University - International Institute for Software Technology, Macao

3 Institute of Software, East China Normal University

Abstract. We present AutoPA, a tool to analyze and validate the consistency
and functional correctness of use case designs. The tool directly generates an ex-
ecutable prototype from the requirements. The requirements are captured from
different views of the application. Each view is constructed as UML diagram
annotated with OCL specifications. Based on a formal semantics, the tool is im-
plemented so that both syntactic and semantic consistency among the provided
views can be guaranteed. Afterwards the requirements are analyzed and trans-
lated into an executable prototype, allowing the user to interactively validate the
functional properties of the requirements model. We illustrate the benefits of the
tool using a real-world sized example.

Keywords: Formal Semantics, Requirements Models, Prototyping, Validation.

1 Introduction

In the use case driven incremental development process specifying a system, e.g. by
using UML [3,1] and the Rational Unified Development Process (RUP) [7,9], starts
with identifying its use cases. Any further step in the process relies on these use cases.
Therefore it is crucial that the use cases are consistent.

We propose the use of a formal semantics for use cases which is based on our earlier
work on formal semantics of UML models of requirements [11,12]. A model of require-
ments of an application is defined as a consistent set of models of different views: use
case diagrams, conceptual class model, use-case sequence diagrams and data function-
ality of the use case operations specified as pre- and post-conditions. We extend the set
of models with use case activity diagrams that specify synchronization of parallel use
cases (cf. Section 3.2).

In this paper, we present AutoPA. A tool to automatically generate an executable
prototype from a requirements model to check the functional properties and semantic
consistency of use cases.

AutoPA provides a rich user interface to design the requirements model of the system
but also can work on input from other case tools. The user generates a set of use cases,
conceptual class diagrams, and use case activity diagrams. Requirements regarding the
data functionality of the system can be provided as OCL specification. The consis-
tency of these views of the system w.r.t. our formal semantics is verified automatically
(see Section 3). As a result, we obtain a model of the requirements which has a

� Supported by the projects GAVES funded by Macau Science and Technology Development
Fund, NSFC 90718014, 973 program 2009CB320702, and STCSM 08510700300.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 609–624, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

610 X. Li et al.

precisely defined semantics. This model is then automatically translated to an exe-
cutable prototype (see Section 4). The user can now use the prototype to interactively
validate the functional requirements of the system.

We illustrate the functioning of AutoPA on a real-world sized example of a library
system (see Section 5) and show how AutoPA can improve the use case identification
process.

2 The Library System

Throughout this paper we illustrate the functioning of AutoPA using a running example.
Consider a Library System. It maintains a catalogue of three kinds publications: Book,
Periodical, and AudioVisual. Periodicals can only be read in the library, while other kind
of items can be borrowed. Publications are organized according to subjects for statistic
analysis, and each publication can have multiple copies. Users need to be registered with
systems, and different policies apply to different types of users, students and teachers. In
this paper, we only consider the functionalities handling loans, returns and reservations
of users. A class diagram for these functionalities is given in Fig. 1 . Invariants specified
in OCL can be attached to specify the business rules.

Fig. 1. Conceptual Class Model of the Library System

3 Modeling of requirements

We follow the use-case driven approach to capture requirements that is proposed in
RUP [7], which is described in [10,4] more systematically. Informally the process of
requirements understanding, capture and analysis is the following:

1. Identify the business processes as use cases, including actors, use cases and re-
lations between use cases. Write the description in terms of interactions between
actors and use cases, and among use cases, and construct the use case diagram.

AutoPA: Automatic Prototyping from Requirements 611

2. Identify interaction events and input output data of the system for defining the use
case operations and form the activity diagrams.

3. Study and formulate the data functionalities of the use case operations and write
their specification in terms of pre- and post-conditions.

4. The previous steps also lead to identification of data types, domain concepts and ob-
jects. Based on this, classes and data types are defined, as well as their associations
and constraints, and they are represented as a class diagram, called the conceptual
class model (see Definition the next subsection).

3.1 UML Models of Requirements

Based on the above discussion, we formalize our definition of a model of the require-
ments.

Definition 1 (Model of requirements). A model of requirements M = (U , C) consists
of a use case model U and a conceptual class model C.

Although in the process of requirements capture, identification of use cases may start
first, their static functionality and dynamic behavior can only be defined after the data
types and classes of objects are defined.

A precise definition of the conceptual class model C is given in our earlier work
[11,12], that we do not repeat here. Informally, the conceptual class model can be rep-
resented by a UML class diagram and a set of OCL specifications. The OCL specifi-
cations specify constraints on objects and their relations, for example “a Copy that is
held for a Reservation must be a Copy of the Publication that the Reservation reserves”.
Such a class model is called conceptual because its classes does not have methods, and
associations do not have direction. Thus, it represents the concepts and their relations
in the application domain.

For simplicity, the association name is used as the role name for an end of the associ-
ation. For example, if p is a Publication instance, p.reserves is the Reservation instance
that reserves p; symmetrically if r is an instance of Reservation r.reserves denotes the
publication that r reserves.

At the level of requirement modeling, a state is the set of existing objects and the rela-
tions between them at a distinct point of time during the execution. Thus, the conceptual
class model defines the possible state space of system, and a state can be represented
as a UML object diagram object diagrams. All the object diagrams have to satisfy the
invariants of the class model specified in OCL. In later stages of design and implemen-
tation, these objects can be refined and implemented by by much more objects. This is
also an indicate of the advantage of the tool for scaling up.

3.2 Use Case Model

The use case model includes a use case diagram representing the static relations among
the use case cases, an activity diagrams for the dynamic behavior of the use cases, and
the specification of the functionality of the use case operations.

Use case diagram. In Fig. 2 we present the use case diagram of the library system.
The use case diagram models, for each actor, the use cases that can be executed. This

612 X. Li et al.

figure shows one of the main advantages of AutoPA. The translation of the requirements
model into an executable prototype gives the user the opportunity to introduce use cases
that can test the functionality of other use cases: we introduce a use case setCurrentDate
with which the Librarian actor can do dailyCheck. With the setCurrentTime operation, a
librarian can set the system time of the prototype as the date when a loan becomes over-
due and run use case checkOverdueLoan. In a real program this use case would usually
implemented by an event listener and thus, it would not appear in the specification. By
adding a semantic meaning to use cases, a user can actively test her use case diagram
by adding other use cases. This leads to a broader and more reliable specification.

Fig. 2. Use Case Model of the Library System

In AutoPA, the use case diagram is used as the vehicle for creating and integrating
(in terms of contexts) the UML models. For the development of AutoPA, we need a
formally defined syntax and semantics of use cases. To this end, we adopt the idea of
rCOS model of components [4] to use a use case controller class to declare a use case1.
This idea is inspired by the Controller Pattern in [10].

A use case defines a number of operations as methods that are to be called by its
actor to perform the use case. Use cases can be related in a way that one use is included
(or used in the UML terminology) in another.

Definition 2 (Use Case Classes). A use case class is of the form

Class UseCase Name includes U1,... Uk {
f: T, ..., f: T;
m(in: T;out: R){pre: P; post: Q};
......
m(in: T;out: R){pre: P; post: Q};}

}

1 In rCOS, a use case is model as a component with a provided interface and a n interface class
is used to ”implement” the interface.

AutoPA: Automatic Prototyping from Requirements 613

where the keyword “includes” has the same semantics as ”extends” in rCOS (or Java),
and the types fields f can be data types or classes defined in the conceptual class model,
and the pre- and post-conditions are written in OCL,

We can also add use case invariants in the use case class when needed.

Actors and activity diagrams. Actors interact with the system following a protocol
in performing a use case. Each interaction event is initiated by the actor by sending an
invoking message to the system. This message causes a state change of the system by
execution of some a program statement and a return message (possibly with outputs) to
the actor.

The actor class defines the association between an actor and a use case. For simplic-
ity in the implementation each use case has its own actor named UseCaseNameUser.
For example, the actor of borrowCopies is named as borrowCopiesUser.

Class UsercaseNameUser{
U: UsecaseName;
activity(){S}

}

An actor is similar to a Java thread and its activity() is the run() of the thread.
The activity method defines the order in which the operations of the use are called
and executed to realize the business policy. In rCOS this order is called the interaction
protocol and defines the dynamic behavior of the use case. The syntax of the body S of
activity() is given by

S ::= m() | A.activity() | S; S | if b then S else S | while b do S | S ‖ S

where m() must be a method of the use case class, and A a name of the actor of a
use case class included in the use case class and its meaning can be understood as
A.activity() in Java.

Fig. 3. For the use case dailyCheck, fork and join in an activity diagram represents concurrency
and synchronization. This use case checks over due loans and over due reservations can start at
the same time, and only after both of them finished, use case checkUserStatus can be called.

614 X. Li et al.

Note that a method in a use case class or the activity method in an actor do not call
methods of the conceptual classes, they are not designed anyway. We use an activity
diagram to represent the behavior of the activity() method of an actor. Fig. 3 shows
the activity diagrams of two use cases, borrowCopies on the left and dailyCheck on the
right. The diagram on the left shows that use case borrowCopies is carried outs in the
following way

1. Input the cardID of the user and locate the corresponding object user in current
system state.

2. If the user can be identified, call use case borrowCopy to lend the copy, otherwise,
end this use case directly.

3. If user borrows more than one copy, repeat process from Step 2 until no further
copy to borrow and then finish this run of the use case.

Definition 3 (Use Case Model). The use case model of an application is the list of
classes for all the use case and actors defined for the application.

Now with the conceptual class model C and a use case model U , the operational seman-
tics of each use case operation comes is a transition relation between system states (i.e.
object diagrams). It can be directly defined by the interpretation of OCL pre- and post-
conditions. The operational semantics of the activity of a use case is then inductively
defined from the body statement of the activity method.

4 Design of AutoPA

The AutoPA GUI is designed for creating UML models is designed, but AutoPA also
allows its users to use a UML CASE tool, such as MagicDraw, to create requirements
models of their applications. These models are saved into XMI files. However, the de-
sign of the AutoPA GUI and models created by MagicDraw must conform to those con-
ditions defined in Section 3. For this, AutoPA defines a meta model, called UML+OCL
meta model. An instance of this meta model generated from the XMI file is stored in
AutoPA and used for syntactic checking.

AutoPA stores the requirements model (e.g., actor and control classes) and the OCL
specification separately to allow further editing of the OCL constraints. During the
prototype generation, the OCL specifications are translated into a sequence of atomic
actions defined below. These actions are needed to avoid potential side effects that
may arise when translating pre- and post-conditions into sequential code. Finally an
executable prototype is created. The prototype implements the provided requirements
model according to our semantics and further provides a graphical user interface allow-
ing the user to trigger different use cases by simply pressing a button.

An architectural overview of AutoPA is shown in Fig. 4. In the following, we de-
scribe the used components in more detail.

XMI Parser and OCL Parser. AutoPA XMI file generates an internal representation
of the model (IRM) from a model of requirements provided by the user (e.g. as XMI

AutoPA: Automatic Prototyping from Requirements 615

Fig. 4. Architecture of AutoPA with Function Components and Data Flows

file). The IRM includes a model file, that records the model elements of the requirements
model (classes, associations, actors/control classes, etc.), and a OCL file that specifies
constraints on the model elements, and the pre- and post-conditions of the use case
operations.

The OCL Parser takes generates an Abstract Syntax Trees (ASTs) of the OCL con-
straint expressions in the IRM. The OCL parser is a reuse of Octopus parser of the OCL
validation tool [16].

Model Transformer. takes the IRM file and the ASTs as its input and generates an
instance of UML+OCL model. It then transforms each pair of pre- and post-conditions
of each use case operation into a sequence of atomic actions to implement the state
check and change specified by the pre- and post-conditions. For this, AutoPA defines
the atomic actions FindObject, FindObjects, FindLink, FindLinks, CheckAttribute, Cre-
ateObject, RemoveObject, CreateLink, RemoveLink, and Update. Each of them is spec-
ified as a pair pre- and post-conditions in OCL and implemented in Java. The first five
actions do not change the system state while the other five do. The semantics of these
atomic actions are simple and clear from their names. These operations are sufficient to
checking conditions and updating a state (the object heap).

In the use case model, the user does not have to write the code for the activity meth-
ods. Instead, Model Transformer parses each activity diagram and generates a tree of
ActivityNodes, from which the Java code of of the activity methods are generated.

Code Generator and Prototype Template. Before generating code, AutoPA first
check the well-formedness conditions of models. For this, we define and implement
a meta model for the syntax of UML elements with OCL constraints for the models
defined in Section 2. After the model passes the well-formedness checking, Code Gen-
erator takes the output of Model Transformer and generates the Java code of the proto-
type. The code include the implementation the conceptual classes, associations relations
between these classes, inheritance relations, the use classes, actor classes, and the state-
ments of the use case operations and the activity methods of actor classes.

616 X. Li et al.

Prototype Template. is the framework for the prototype GUI and static class decla-
ration. Based on the framework, the Code Generator can generate the prototype java
classes from the conceptual class diagram and use case diagram. Finally, the Code
Generator generates the prototype GUI that extends the GUI classes of the Prototype
Template.

4.1 Implementation of OCL Expressions

OCL is a description language, i.e. pre- and post-conditions are side-effect free. They
specify a relation between states (i.e. a next state relation), there is no indication of the
orders and combinations of atomic actions for the implementation of the next state re-
lation. We have identified and implemented the patterns between OCL expressions and
combinations of atomic actions. For example, Fig. 5 shows the AST of the following
OCL expression.

Publication → includes(pub) and Copy → excludes(copy)

By traversing this tree, the Model Transformer decomposes the OCL expression into
a number of sub-expressions according to the logic structure of expression. Each such
sub-expression is an AST fragment that can match one of the atomic action (also spec-
ified in OCL). AutoPA defines the rules for matching AST fragments with atomic ac-
tions, using AST fragment templates. For example, the atomic action FindObject (Ob-
jId,Classifier) checks whether a given instance object with identifier ObjId of class
Classifier exists in the current system state. If it does not exist, the corresponding pre-
condition is false, and the prototype should go to the exception handling. The template
T1 in Fig. 6 and rule R1 shows a case for generating a FindObject action.

R1 �

T(fg) = T1,OP1 ∈ {asSet, asBag, asSequence},
OP2 ∈ {includes, notEmpty, one}

FindObject(V,C)

If T(fg) = T1 and the contents of the fragment parameters satisfy the premises of rule
R1, the atomic action corresponding to the fragment fg is FindObject(ObjId,Classifier).

Fig. 5. Abstract syntax tree of the OCL expression Publication → includes(pub) and Copy →
excludes(copy)

AutoPA: Automatic Prototyping from Requirements 617

Fig. 6. A template AST template

Execution order of the atomic actions. The OCL expression of a post-condition spec-
ifies the change of a state. AutoPA generates the corresponding atomic actions of a
post-condition in a correct order. For example, if an expression specifies the removal of
an object and the removal of a link to the object, the action for the removal of an object
cannot be executed before the actions for removing the link to the object.

AutoPA implements a sorting algorithm when generating the sequence of atomic ac-
tions for a pair of pre- and post-conditions. We assign the highest priority to atomic
actions FindObject and FindObjects, and then in a decreasing order for FindLink, Find-
Links, CheckAttribute, CreatObject, CreateLink, UpdateAttribute, RemoveLink and Re-
moveObject. For the use case borrowCopy of the library system, AutoPA generates the
following sequence of atomic actions from its specification (that we omit due to page
limit).

1. FindObject(u, User)
2. FindObject(c, Copy)
3. CheckAttr(u,User, "status","=","normal")
4. CheckAttr(c, Copy, "status","=","available")
5. if FindObject(u, Staff)

then CheckAttr(u, User, "borrowNO", "<", 30)
else CheckAttr(u, User, "borrowNO", "<", 10)

6. CreateObject(ln)
7. Publication pub=FindLink("copyOf", c).getOtherRole()
8. CreateObject(lr: LoanRecord)
9. UpdateAttr(c, Copy, "status","=","loan")

10. !FindLink("borrows", ln, c)
11. CreateLink("borrows", ln, c)
12. !FindLink("takes", ln, u)
13. CreateLink("takes", ln, u)
14. !FindLink("recordedBy", lr, ln)
15. CreateLink("recordedBy", lr, ln)
16. !FindLink("lends", lr, c)
17. CreateLink("lends", lr, c)
18. !FindLink("records", lr, u)
19. CreateLink("records", lr, u)
20. UpdateAttr(lr, LoanRecord,"borrowDate",CalendarNow)
21. UpdateAttr(u, User, "borrowNO", u.borrowNO@pre+1)
22. result = true

618 X. Li et al.

23. if Findobject(pub, AudioVisual)
then UpdateAttr(ln, Loan, "dueDate",CalendarNow+10)
else if FindObject(u, Staff)
then UpdateAttr(ln, Loan, "dueDate",CalendarNow+60)
else UpdateAttr(ln, Loan, "dueDate",CalendarNow+30)

AutoPA can generate checks for system invariants, which are specified as OCL expres-
sions. System invariants should hold on all system stable states, i.e. In any state before
or after a use case operation. Multiplicities in a class diagram are special kinds of in-
variants. Code for an invariant is generated in the same as for a precondition, it is is
in general an iteration statement that checks all objects and links of the current system
state.

When generating code from post-conditions, the functionality of AutoPA is limited
to post-conditions that are formulated from the primitive assignable expressions of the
form e1 = e2, where e1 is a navigation path x.a1.ak and e2 can be evaluated on the
current state, i.e the pre-state in term of OCL. To generate code from expressions like
x + y = x@pre + 10 and x + 3y = y@pre − 5 an equation solver or SAT solver is
needed. For the same reason, AutoPA does not handle nondeterministic post-conditions
such as x > y@pre + x@pre.

Fig. 7. Specifying a complex use case

5 Prototype of the Library System

We build the requirements model of the library system by drawing diagrams and OCL
specifications. The XMI files of this model is then uploaded to AutoPA to generate its
executable prototype in Java. We validate the requirements of library system by run-
ning the Java prototype, This section demonstrates the results of the generated library
prototype system.

We use UML CASE tool MagicDraw to build the requirements model, which in-
cludes conceptual class diagram, use case diagram (Fig. 1and 2) and the activity dia-
grams for complex use case (the left of Fig. 7), and the associated OCL specifications
which are attached to use case operations and classes. Finally, the requirements model
can be saved the model into an XMI file shown the right of Fig. 7.

AutoPA: Automatic Prototyping from Requirements 619

5.1 Generating a prototype

We run AutoPA to generate an executable prototype from the XMI file produced from
the UML model of requirements in the following steps

1. Run AutoPA and create a new project, see the left of Fig. 8.
2. Import the XMI file produced above, see the right Fig. 8. AutoPA parses it and

checks its syntax, and it then reports the result of the syntactic checking as shown
in Fig.9. If the syntactic checking of the XMI file succeeds, AutoPA generates an
IRM which can be edited in AutoPA, as shown in Fig. 10.

3. Then we generate the prototype from the IRM file imported, as shown Fig. 11.

Fig. 8. Create a new project in AutoPA and Import XMI file

Fig. 9. Results of syntactic check of the XMI file

Fig. 10. Editing IRM in AutoPA

620 X. Li et al.

Fig. 11. Prototype generation

5.2 Execution of Generated Prototype

For this case study, the prototype generated by AutoPA contains 156 .java files with a total
of 34,522 lines of code. We execute the generated prototype to validate the requirements
of the Library system. The interface of the prototype is shown in Fig. 12. Once we select
an actor on the left area of the window, the use cases associated with it appears on the
right side. For example, in Fig. 12, the actor ”Librarian” is selected, and the use cases,
”registerUser”, ”addFaculty” ect., are shown on the right area of the window.

Fig. 12. Interface of generated Library prototype

Fig. 13. Interface of use case borrowCopy

AutoPA: Automatic Prototyping from Requirements 621

We can click a use case on the right side and execute it step by step. We run borrow-
Copy use case to illustrate the execution process. Use case borrowCopy is specified by
a pair of pre- and post-conditions. First, we input the parameters it requires, as shown
in Fig. 13, and then execute it by clicking the sequence of atomic actions shown in
Fig. 14. A ”Green” button means the execution of the atomic action has been finished, a
”Yellow” button means the atomic action is to be executed next, a ”Red” buttons show
the atomic action has not been executed yet. The results of the execution of each atomic
action are shown in the OutPut area.

Fig. 14. Prototyping execution of borrowCopy

Checking invariants. We can also check multiplicities and invariants on current sys-
tem state. A screen short of the checking is shown in Fig. 15.

Fig. 15. Screen snaps of checking invariants and its result

622 X. Li et al.

Fig. 16. Methods for checking invariant INV Copy On Available

An invariant related of a use case is checked after the execution of each atomic action,
as shown on the left side of Fig. 14. The methods of checking an invariant are generated
as shown in Fig.16. In the example, the method INV Copy On Available is generated
for checking the invariant Copy On Available specifying the assertion that a copy is
available only if the publication of the copy is not reserved or each reservation of it has
a copy held for it but this copy not held for a reservation. This is a complex invariant on
class Copy, Reservation, Publication and the associations between them. It is specified
as follows and implementation of the checking is shown in Fig. 16.

context Copy
inv Copy On Available:self.status=CopyStatus::available
implies(self.borrows → isEmpty() and
(self.copyOf.reserves → isEmpty() or
self.copyOf.reserves → forAll(r|r.heldOn → notEmpty()))

6 Conclusion and Discussion

We have presented the formal definition of models of requirements, and the design and
implementation of the prototyping tool AutoPA. With the graphical user interface or an
existing UML CASE tool, the structural aspects of the models of different views can
be prepared, and the use case activities separately by drawing. The model constraints
and the pre- and post-conditions of use case operations specified in OCL are prepared
in text. The key algorithm of the tool is to translate use case operation in OCL specifi-
cation into a sequence of atomic actions. The prototype is used for validation functional
properties, as well as for syntactic consistency checking.

AutoPA: Automatic Prototyping from Requirements 623

Comparing with other prototype tools, a distinct feature of AutoPA is prototyping
from a model of requirements directly, rather than from a design model, such as design
sequence diagrams, a design state diagram, or a model of live sequence charts [15,6].
The tool USE [2] mainly focuses on validating UML models with OCL constraints by
testing the given system states (object diagrams) [5]. As discussed in Section 3 and 4,
this function is also supported by AutoPA, as constraints on states can be checked in
addition to automatic generate of an executable prototype.

Further development of AutoPA includes the OCL MessageExp expressions for pro-
totyping real-time interactive systems. We also plan to develop visual animation func-
tionality for demonstrating the dynamic behavior of state changes using the graph-based
operational semantics in [8]. Another application could be to use AutoPA for test case
generation. This can be realized either by deriving input values from the OCL specifi-
cation or by introducing special use cases that describe how other use case are tested.

Our experiments with the library system show that AutoPA is a useful tool to support
software design by contracts [13,14,4]. AutoPA contributes to the landscape of CASE
tools in two ways. 1) By checking the semantic consistency of the use case model we
can improve the quality, especially for complex diagrams. 2) The generated prototype
allows to validate the functional properties of the system in an interactive way, i.e. the
user can experiment with the system.

Acknowledgements. We would like to thank our colleagues Cristiano Bertolini and
Volker Stloz for their comments.

References

1. Unified modeling language version 2.0 (2005), http://www.uml.org/
2. Use. a uml-based specification environment (2008),

http://www.db.informatik.uni-bremen.de/projects/USE/
3. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modelling Language User Guide.

Addison-Wesley, Reading (1999)
4. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification in component-

based model-driven design. Sci. Comput. Program. 74(4), 168–196 (2009)
5. Gogolla, M., Büttner, F., Richters, M.: Use: A uml-based specification environment for vali-

dating uml and ocl. Sci. Comput. Program. 69(1-3), 27–34 (2007)
6. Harel, D., Marelly, R.: Come, Let’s Play, Scenario-Based Programming Using LSCs and the

Play-Engine. Springer, Heidelberg (2003)
7. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.

Addison-Wesley, Reading (1999)
8. Ke, W., Liu, Z., Wang, S., Zhao, L.: A graph-based operational semantics of oo programs. In:

Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 347–366. Springer,
Heidelberg (2009)

9. Kruchten, P.: The Rational Unified Process – An Introduction, 2nd edn. Addison-Wesley,
Reading (2000)

10. Larman, C.: Applying UML and Patterns. Prentice-Hall International, Englewood Cliffs
(2001)

11. Li, X., Liu, Z., He, J.: Formal and use-case driven requirement analysis in uml. In: COMP-
SAC, pp. 215–224. IEEE Computer Society, Los Alamitos (2001)

http://www.uml.org/
http://www.db.informatik.uni-bremen.de/projects/USE/

624 X. Li et al.

12. Liu, Z., He, J., Li, X., Chen, Y.: A relational model for formal object-oriented requirement
analysis in uml. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885, pp.
641–664. Springer, Heidelberg (2003)

13. Meyer, B.: Object-oriented Software Construction, 2nd edn. Prentice-Hall, Englewood Cliffs
(1997)

14. Mitcheel, R., McKim, J.: Design by Conctract by Example. Addison-Wesley, Reading (2002)
15. Plosch, R.: Contracts, Scenarios and Prototypes: An Integrated Approach to High Quality

Software. Springer, Heidelberg (2004)
16. Warmer, J.B., Kleppe, A.G.: The object constraint language: getting your models ready for

MDA. Addison-Wesley, Reading (2003)

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 625–639, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Systematic Model-Based Safety Assessment Via
Probabilistic Model Checking

Adriano Gomes1, Alexandre Mota1, Augusto Sampaio1,
Felipe Ferri2, and Julio Buzzi2,*

1 Centro de Informática, Universidade Federal de Pernambuco
P.O. Box 7458 – Zip 50740-540, Recife, Brazil
{ajog,acm,acas}@cin.ufpe.br

2 Embraer - Av. Brigadeiro Faria Lima, 2170 – Zip 12227-901, São José dos Campos, Brazil
felipe.ferri@embraer.com.br, julio.buzzi@anac.gov.br

Abstract. Safety assessment is a well-established process for assuring the safe-
ty and reliability of critical (aeronautical) systems. It uses probabilistic (quantit-
ative) analysis to provide precise measures about the safety requirements of a
system. Traditionally, quantitative safety assessment uses fault-tree analysis,
but certification authorities also allow the use of Markov models. In this paper
we propose a strategy for quantitative safety assessment based on the Prism
model-checker. Prism models are extracted systematically from a high-level
model via the application of translation rules. We illustrate our strategy with a
representative system design from the airborne industry.

Keywords: Quantitative Safety Assessment, Probabilistic Model-Checking,
Prism, Markov Analysis, Aircraft Systems.

1 Introduction

Traditionally, quantitative safety assessment of aircraft systems is based on Fault Tree
Analysis (FTA) [3]. This method is frequently used in industrial applications and it is
also indicated by certification authorities. The main reason for its practical acceptance
is that FTA is conceptually simple and easy to understand [2]. However, certification
authorities also accept the use of Markov Analysis [16] to assure safety requirements
on the system design.

Both FTA and Markov models use system failure logic information derived from
well-known analysis techniques such as Failure Mode and Effect Analysis (FMEA)
and Failure Hazard Analysis (FHA) [2]. Based on this information, the analysis me-
thods evaluate the probabilities of the undesired failure conditions to check whether a
safety requirement is satisfied or not. Each technique executes this analysis using
different mathematical representations; FTA uses static event-based trees and Markov
analysis uses stochastic processes. Markov models are more powerful than fault-trees

* Julio Buzzi was an Embraer engineer when this paper was developed. Currently he is a

member of the National Civil Aviation Agency - Brazil (ANAC).

626 A. Gomes et al.

[2] but they are more complex to be handled, and thus, scarcely adopted in industry.
In practice, they are created in a non-systematic ad hoc fashion [6, 23]. Despite sever-
al automatic model-based approaches for FTA have been proposed [11, 13, 14, 15]
using high-level tools like Simulink [9], the treatment of quantitative parameters us-
ing FTA still depends on some human intervention. This can introduce errors in the
analysis. Moreover, they are not cost-effective, because the probability of each failure
condition (top event) must be evaluated singly (just one failure condition at a time),
requiring more effort to undertake the analysis of the whole system [1, 17].

In this paper we address these problems proposing a strategy for quantitative safety
assessment based on the Prism model-checker [7]. This strategy aims at hiding the
interaction with Prism, as well as its Markov-based internal representation (seman-
tics), as much as possible from engineers by providing rules that translate a Simulink
diagram, annotated with failure conditions and logic [5, 10], into a Prism model and
CSL formulas [8]. We can then check safety requirements, in such a way that we are
able to report to the user only those requirements that are not satisfied.

The main contributions of this paper are:

─ A (hidden) Markov-based quantitative model-based safety assessment process;
─ Translation rules that systematically transform Simulink diagrams (tabular

structures), into Prism models augmented with CSL formulas that can automati-
cally verify the quantitative requirements of the system;

─ The use of a single model from which it is possible to check any failure
condition of a system.

The work presented in [4] defines a methodology that integrates a functional (qualita-
tive) analysis with a non-functional (quantitative) analysis over the system design. In
this paper we detail the non-functional analysis strategy, with focus on the automatic
model generation and analysis from Simulink diagrams.

The following section presents an overview of (model-based) quantitative safety
assessment. In Section 3 we describe our strategy for safety assessment and the rules
for the Prism model generation. In Section 4 we show the application of our strategy
to a simple aircraft subsystem. Section 5 considers related work and Section 6 shows
our conclusions and future work.

2 Overview of Quantitative Safety Assessment

The safety assessment process involves complex phases and activities [1, 2], which
aim to minimize the occurrence likelihood of potential hazards. During this process,
hazard analysis is performed in parallel with system design. As a result, qualitative
and quantitative safety requirements are introduced in the top-level and subsystem
design. They comprehend the high-level airplane goals as well as system safety goals
that must be considered in the proposed system architectures.

Certification authorities accept FTA, Markov analysis or dependence diagrams as
alternatives to perform quantitative safety assessment. The basic information used as
input to these techniques are failure conditions and failure rates. Failure conditions are

 Systematic Model-Based Safety Assessment via Probabilistic Model Checking 627

events of the system (hazards) whose occurrence may lead to a critical situation.
They are identified during the FHA analysis, which considers the severity of each
failure condition occurrence over the aircraft functions to define the related safety
requirement, using an argument (maximum tolerable probability). For example, FHA
determines that the probability of occurrence of a catastrophic failure condition must
not be greater than 10-9 per flight hour. Failure rate is an attribute used to model
the likelihood of each basic failure mode (primary and independent failure) of
the system. FMEA is a bottom-up method for assessing the failure modes of a
system and determining the effects of the relations among these failures. It supplies
the failure rates considered in the system. Essentially, a quantitative analysis aims
to make reliability predictions for the system. For the certification of an aircraft,
it must calculate the average probability of such failure conditions per flight
hour, assuming the appropriate exposure time of failures and shows if the results are
tolerable.

In the safety-critical systems domain there is an increasing trend towards model-
based safety assessment [11, 13]. It proposes to extend the existing model-based de-
velopment activities (simulation, verification, testing and code generation), which are
based on a high-level model of the system (expressed in a notation such as Simulink
or Statemate), to incorporate safety analyses. These new alternatives are interesting
because they are simple, compositional and do not depend on the engineer's skills to
be applied. In addition, they can use formal methods, for instance theorem provers,
model-checkers and static-checkers [13, 15], to automate, even if partially, the analy-
sis. Moreover, formal methods are one of the alternative methods proposed in DO-
178B [12] for the airborne software certification.

Most model-based strategies for safety assessment are mainly based on FHA and
FMEA [11] (and in particular on its newer variant, IF-FMEA --- Interface-Focused
FMEA [5, 10]). IF-FMEA is of particular interest because it uses a hierarchical tabu-
lar structure (see Fig. 1) very useful to capture the transformation and propagation of
failures in a system, allowing that complex systems be modeled in a compositional
way. Considering the identified failure conditions, and their tolerable rates, during the
FHA analysis they are also included in a tabular structure [2, 5], which can be easily
incorporated into a design tool like Simulink, using annotations.

Fig. 1. IF-FMEA of a hypothetical component system

628 A. Gomes et al.

The table shown in Fig. 1 records four pieces of failure based information and a
descriptive field: (i) the possible failure modes of a component; (ii) the dependency of
such failure modes with respect to the identified failures via their input ports; (iii)
what happens upon a certain failure mode occurrence and (iv) a failure rate.

2.1 Overview of Prism towards Safety Analysis

Prism [7, 8] is a formal probabilistic analysis tool that enables the analysis of Markov
models specified in discrete time (DTMC), continuous time (CTMC), and Markov
decision processes (MDP). Modules and variables are the basic components of the
language and the system is built from the parallel composition of a set of modules.
Modules can interact with each other (synchronization) and contain a number of va-
riables that reflect their possible states. The behavior of a module is determined by a
list of guarded commands. Each command (initiated by a [], possibly with a label
inside) is formed of a guard (boolean expression before the symbol ->) followed by a
rate or probability (where 1 means 100%) based transition (where dashed decorated
state variables are assigned values, standing for a state update). The transitions
represent which state changes are possible and how often they occur.

Fig. 2 illustrates a Prism specification of two modules. Its Markov representation is
shown at the right-hand side of this figure. The first line of this specification states
that we are considering a continuous time Markov chain that is composed of a set of
discrete states, where each of them is the representation of the state (operational, de-
graded and faulty) of each failure mode (local variables) of a component. This chain
of events requires the use of exponential probability distributions for modeling failure
mode rates and repairs (this is why we use the CTMC model).

Fig. 2. System representation using Prism

The first module, PowerSource1, specifies an abstract failure behavior of a power
source. The variable ps1_lowpower represents its single failure mode. The first transi-
tion captures one of the possible changes in the failure mode: from an operational
state it can fail with a rate of 5e-4 (failure/hour). The next two commands represent
repair transitions. These commands are synchronized (the labels inside [and] state
the synchronization points) with the module Monitor. They work similarly to the first
transition of this module, except that they need to synchronize with the corresponding

 Systematic Model-Based Safety Assessment via Probabilistic Model Checking 629

labels of the module Monitor, allowing them to be triggered. The module Monitor also
uses a single variable: m_switchFailure. Its first command states a failure transition
command whereas the second represents the capability of its single failure mode be-
ing repaired with a rate of 1/50 (repair/hour). The last two commands represent repair
transitions corresponding to the repair transitions of the PowerSource1.

To analyze the failure behavior of this system, we can use, depending on the pur-
pose, a steady-state or transient analysis [16]. Transient analysis represents the instan-
taneous failure rate over a single period T whereas the steady-state analysis approx-
imates the long-term average failure rate over multiple time intervals T. The choice
over these types of analyses depends on how system repairs are handled. Transient
analysis can be performed in either closed-loop (models with repairs) or open-loop
models (models without repairs), whereas the steady-state analysis can be performed
only on closed-loop models.

Fig. 2 shows that our proposed model considers repair transitions as if they oc-
curred at constant rates, thus it is a typical closed-loop model and both analyses can
be performed. We calculate the average rate of a failure condition applying the
steady-state analysis. Particularly, the steady-state analysis provides adequate accura-
cy on their results for certification purposes, since as well as the model shown in Fig.
2, most critical systems are modeled in such a way that they can deal with latency. In
this scenario, several components affecting the system functionality must be moni-
tored, maintained at regular intervals and repaired if they are faulty. Although the
transient analysis is “exact”, it applies strictly to just a single interval T, as if this was
the entire life of the system, whereas most critical systems have maintenance cycles,
where are periodically restored to the full-up condition. Hence, the analysis more
representative for this scenario is when the period T usually represents a repetitive
repair interval rather than a life limit [16].

To perform all this quantitative safety analysis Prism uses the CSL language [8].
The operators S (steady-state) and P (transient) of Prism are used to reason about the
tolerable probabilities of all system failure conditions. For example, with the formula:

S <= 10-9 [“Failure Condition”] . (1)

we can check if, in the long run, the probability that a certain “Failure Condition”
can occur is less than or equal to 10-9. Note that the evaluation of such an expression
yields "yes" or "no", based on the corresponding quantitative analysis (the value is
implicit). We can also check the exact probability itself by using another CSL formula

P = ? [true U<=3600 “Failure Condition”]. (2)

This yields the instantaneous probability of occurrence of a certain “Failure Condi-
tion” within 3600 time units.

3 Proposed Strategy

In this section we present our strategy to perform quantitative safety assessment using
the Prism model-checker [7]. Fig. 3 presents an overview of our strategy. It starts by
collecting the system description, which contains the system block diagrams and a

630 A. Gomes et al.

failure logic model. With this information, we apply our translation rules to create a
Prism specification and the associated CSL formulas to analyze the safety require-
ments of this specification. Then, the Prism model-checker is invoked to check all
formulas and only when one of them is not satisfied, this is reported to the user.

Fig. 3. Overview of the proposed strategy

3.1.1 Input Data Model
Although the annotations that we use in the Simulink diagram are similar to the tabu-
lar structures presented during the safety analysis, our rules are stated in terms of the
abstract syntax presented in Fig. 4. These data structures are an abstract representation
of all the information introduced previously (see Section 2).

Fig. 4. Abstract syntax based on tabular annotations

We start by considering a system (System) as a structure that contains a name
(System_Name) and a list of subsystems (Seq(Subsystem)). Each subsystem can be
another system or a module, because components can also be systems. A module
(Module) represents the lower level component that has a name, a list of ports
(Seq(Ports)), a list of deviations (Seq(Deviation)), a list of malfunctions
(Seq(Malfunction)), the maintenance strategy info and the inspection time. All

 Systematic Model-Based Safety Assessment via Probabilistic Model Checking 631

these elements are associated with the tabular structures used to store all system in-
formation about its architecture, hierarchy, failure conditions, failure modes, repairs
and the characteristics of monitoring and propagation of component failures. Port is
a structure that contains a Port_ID (representing the identifiers of input/output ports)
and an AssociatedPort (which stores the connected port of another component).

Annotation is a boolean expression that represents the failure logic of deviations.
Its definition considers And/Or operators and their terminal terms can be malfunction
names or deviations from any port. Criticality represents a real number () used
to quantify the tolerable probability associated with a failure condition (expressed via
a deviation). Finally, InspectionTime and Rate are also real numbers used to
represent the rate of occurrence of a malfunction and of a repair, respectively.

3.2 Translation Rules

Our strategy applies a set of translation rules that are based on the abstract syntax of
Fig. 4. To ease the overall understanding of their applicability we also provide the
typical sequence of their application in Fig. 5.

Fig. 5. Translation Strategy Overview

The strategy always starts by applying Rule 1, which states that we are dealing
with a CTMC Markov model and applies other rules to create the several Prism mod-
ules from the system components (Rules 2-4). The body of a module is effectively
created by Rule 5. After that, basic declaration instructions (Rules 6-8), commands
(Rules 9-11) and repair transitions (12-22) are created. To complete the translation

632 A. Gomes et al.

strategy, formula expressions are created (Rules 23-28) using a set of rules that de-
composes all logic expressions (Rules 29-35). Some rules are omitted because they
are very similar to others presented. For instance, Rules 6 and 7 are missing because
they are similar to Rules 2 and 3.

3.2.1 Compound Systems and Subsystems
Our rules are inductively defined on the structure of a Prism system. We start with
Rule 1 that takes as argument a pair where the first element has the name of a system
(SName) and the second element a list of its subsystems (SubSys).

Rule 1 |{ (SName, SubSys) }|system ⇒ ctmc |{ SubSys }|subsystem

Following Rule 1, the resulting Prism code is basically the directive ctmc (instructing
Prism to perform a CTMC interpretation), and a call to the function subsystem. This
function is defined by Rules 2 (base case) and 3 (recursive case).

Rule 2 |{ <S> }|subsystem ⇒ |{ S }|module

Rule 3 |{ S: tail }|subsystem ⇒ |{ S }|module |{ tail }|subsystem

Rules 2 and 3 do not produce Prism code. They access each component of this system
and call the function module recursively for each component (Rules 4 and 5).

3.2.2 Module
As modules can be subsystems as well, we translate modules by using two rules: Rule
4 (which calls function subsystem) and Rule 5 (which starts the creation of a Prism
module).

Rule 4 |{ (SName, SubSys) }|module ⇒ |{ SubSys }|subsystem

Rule 5 takes as input a tuple containing the module elements: name, type, set of ports,
set of deviation logics, malfunctions, maintenance strategy and inspection time. The
module name (MName) is used to name the Prism module (between the keywords
module and endmodule). Inside the module, the function declars is called to create the
declaration part, and the next two functions the behavioral part. Finally, the function
formulas is called to create the set of Prism formulas outside the module.

Rule 5 |{ (MName,Type,Ports,Deviations,Malfuncs,MStrategy,IT) }|module ⇒
module MName
 |{ MName, Malfuncs }|declars
 |{ MName, Ports, Malfuncs }|failureCommands
 |{ MName, Ports, Malfuncs, MStrategy, IT }|repairCommands
endmodule
|{ MName, Ports, Deviations, true }|formulas

3.2.3 Declarations
Malfunctions are representations of possible failures within a component. To capture
this feature in Prism, for each component malfunction, local boolean variables initia-
lised with false are defined.

 Systematic Model-Based Safety Assessment via Probabilistic Model Checking 633

Rule 8 |{ MName, (MfName, Rate, Annot) }|declar ⇒
 MName . MfName: bool init false;

Rule 8 uses each component malfunction to generate the declaration of its respective
local variable inside the module block. Module Name (MName) and Malfunction
Name (MfName) are used to create the local variable name.

3.2.4 Failure Transition Commands
Rule 11 translates each malfunction into a Prism command. It always assumes the
guard as a logical conjunction between the negation of a malfunction (this comes
from Rule 8) and the negation of the fully failed system situation (a term defined by a
Prism formula). If such a guard is valid then, with a rate given by Rate, this malfunc-
tion is activated.

Rule 11 |{ MName, Ports,(MfName, Rate, Annot) }|command ⇒
 [] (!(MName .MfName) & !(SysFailure)) -> Rate: (MName .MfName’=true);

3.2.5 Repair Transition Commands
Rules 12 through 17 translate the maintenance strategy (defined for each component)
into Prism repair commands. This is performed according to the classification of each
basic component of the system with respect to the treatment of the type of monitoring
of its faults. Rule 12 considers two types: Self-monitored and Unmonitored (note
the provided clause), whereas Rules 13 and 14 tackle the other cases: Monitored
and Monitor, respectively.

In Rule 12, if the corresponding guard is valid, then, with a rate (1/Inspection
Time), all component malfunctions are deactivated. Function orLogic takes a logical
disjunction between all malfunctions (this comes from Rule 8) and function Update
deactivates all malfunctions (set the value false to each malfunction).

Rule 12 |{ MName,Ports,Malfuncs,(MSType,AssocPort),IT}| repairCommands ⇒
 [] ((|{ MName, Malfuncs }|orLogic) & !(SysFailure)) -> (1/IT):
 |{ MName, Malfuncs }|update ;
 [SystemFailure] (SysFailure) -> (1): |{ MName,Malfuncs }|update ;

provided MSType = Self-Monitored or MSType = Unmonitored

Rule 13 |{ MName,Ports,Malfuncs,(MSType,AssocPort),IT }|repairCommands ⇒
 |{ Malfuncs, AssocPort, IT }| monitoredRCommand
 [SystemFailure] (SysFailure) -> (1): |{ MName, Malfuncs}|update ;

provided MSType = Monitored and AssocPort ≠ empty

However, if the component is Monitored, its repair commands must be synchronized
with the Monitor component (function monitoredRCommmand).

If a component is a Monitor, instead of the synchronized repair commands cor-
responding to the monitored component (function sincronizedRCommand), another
repair command is created to represent the single repair of this component.

634 A. Gomes et al.

Rule 14 |{ MName,Ports,Malfuncs,(MSType,AssocPort),IT }|repairCommands ⇒
 [] ((|{ MName, Malfuncs }|orLogic) & !(SysFailure)) -> (1/IT):
 |{ MName,Malfuncs}|update ; |{ MName,Malfuncs,Ports,IT}| sincronizedRCommand
 [SystemFailure] (SysFailure) -> (1): |{ MName, Malfuncs }|update ;

provided MSType = Monitor

Rules 15 and 18 are used to define the synchronized repair commands between the
monitored (Rule 15) and the monitoring component (Rule 18).

Rule 15 |{ Malfuncs, (MName, PortID), IT }| monitoredRCommand ⇒
 [MName . PortID . DependentRepair] ((|{ MName, Malfuncs }|orLogic) &
 !(SysFailure)) -> (1/IT): |{ MName, Malfuncs }|update ;
 [MName . PortID . Repair] (|{ MName, Malfuncs }|orLogic) -> (1):
 |{ Malfuncs }|update ;

Rule 18 |{ MName,Malfuncs,(Port_ID,AssocPort),IT }| sincronizedRCommand ⇒
 [MName . PortID . Repair] ((|{ MName,Malfuncs }|OrLogic) &
 !(SysFailure)) -> (1/IT): |{ MName,Malfuncs }|update ;
 [MName . PortID . DependentRepair] ((|{ MName,Malfuncs }| orLogic)
 -> (1): |{ MName,Malfuncs }|update ;

3.2.6 Formulas
The final elements we address are Prism formulas. They correspond to the failure
logic expressions annotated in Simulink diagrams. Rule 28 creates such formulas
compounding a name for the formula based on the deviation name (DName), followed
by the module name (MName) and the identifier of the port (PortID). The formula's
body is a boolean expression resulting from function fExpression.

Rule 28 |{ MName, Ports,(DName, PortID, Annot) }|formula ⇒
 formula DName . MName . PortID = |{ Ports, Annot }|fExpression

The entire set of rules can be found in [19]. Using these translation rules, we generate
a valid formal failure model retaining the semantics of diagrams and the system hie-
rarchical model.

3.3 Modeling Considerations

Our solution still does not consider bidirectional data flows (such as the propagation
of failure as short-circuit).Yet, such features can be added by considering new transla-
tion rules. Our strategy is sound with respect to the following assumptions:

─ Component failures are detected in flight only and repaired during ground main-
tenance or before the next flight (description level), but the failures and repairs
occur at constant rates (model level).

─ The system is assumed with perfect failure coverage and can to reconfigure to a
degradable mode within no time.

In terms of completeness, our rules are complete in the sense that they can translate
any Simulink diagram annotated with failure logic in the IF-FMEA style [5]. Besides,
this approach is not limited to just using the Simulink diagram as input. Actually, the

 Systematic Model-Based Safety Assessment via Probabilistic Model Checking 635

necessary input data, which contains information from the qualitative model and the
respective failure logic and propagation, is obtained from the tabular structures, which
are user defined. Simulink diagrams work implicitly with these structures [4, 10].

Our strategy follows a systematic process that has proved viable and of little im-
pact in practice, since the tabular structures are generated by traditional methods and
analyses used by the aircraft industry during the qualitative safety assessment (FHA,
FMEA, IF-FMEA, CCA). So, adding a plug-in to some usual design tool, it is possi-
ble to automate our systematic approach.

The primary limitation of a stochastic model-checking is the size of the reachable
state space, though recent breakthroughs allow very large (> 107 reachable states)
state spaces to be explored in reasonable time.

4 Case Study

Our case study is the Actuator Control System (ACS) (see Fig. 6). Its function is to
control the displacement of an electrical actuator. Although it is a simple example, it
is representative in the aeronautics context in the sense that it has dependent and in-
dependent failures, a hierarchical architecture, latency, evident, repeated and devel-
oped events [1, 2]. Considering the Simulink diagram of Fig. 6, annotated with the
corresponding failure logic, we can generate the formal specification (see [19] for the
complete failure logic of the system), which is depicted in Fig. 7.

Fig. 6. Actuator Control System

The first two modules of the generated Prism model have already been explained
in Fig. 2. The module PowerSource2 is very similar to PowerSource1, and is omitted.
The module Sensor contains two local variables that represent its failure modes. For
each failure mode we have a command to represent its failure transition. We use a
single repair transition to update both failure modes to operational states. The module
Actuator contains several local variables and each failure transition is defined consi-
dering its corresponding failure rate. Its repair transition considers the repair rate
defined for this component. At the end, formulas are defined to capture failure propa-
gation via module outputs. The remaining modules (Reference and Controller) are
similar and were omitted for conciseness.

636 A. Gomes et al.

Fig. 7. Fragment of Prism specification

The next step is using the Prism model-checker to check whether any critical fail-
ure condition probability violates the permitted limit. Considering the tabular infor-
mation of the ACS, our strategy creates probabilistic temporal formulas to check the
following failure conditions:

─ Omission of speed at Actuator output port shall be less than 3.10-3 per flight;

─ Commission of speed at Actuator output port shall be less than 3. 10-3 per flight;

─ Wrong position signal at Actuator output port shall be less than 3.10-3 per flight.

We verify each failure condition using the formula shown in (1), for instance:

S <= 10-3 [("OmissionSpeed_Actuator_Out1")]

After checking this formula, where the exact value of the average probability obtained
via steady-state analysis for this situation is 2.54e-3, Prism returns false, indicating
that this failure condition was violated. As we have said previously, this strategy can
be performed in a hidden way by instructing the Prism model-checker to check each
formula automatically using Simulink plug-ins, for example, in such a way that only
when a formula is violated this result can be sent back to engineers. Thus the com-
plete quantitative safety analysis can be hidden from the engineers.

 Systematic Model-Based Safety Assessment via Probabilistic Model Checking 637

So, from such reports, control engineers must adjust the system design by inserting
more fault-tolerance features to avoid such failure violations. When all safety re-
quirements are satisfied, the current system design (including its failure and repair
rates) is acceptable. To show this analysis to certification authorities, the Markov
model can be extracted from Prism by using tools like SHARPE or HARP [20].

Furthermore, one can also investigate scenarios of different phases and mainten-
ance strategies using graphs of the instantaneous probabilities during a certain time
interval. For instance, Fig. 8 is the result of evaluating the following formula defined
in (2), setting the T parameter from 0 to 100 hours.

P =? [true U<=T ("WrongPosition_Actuador_Out1")]

Fig. 8. Instantaneous probability during a period of time

5 Related Work

A large amount of work has been done for quantitative safety assessment which is
based mainly on a previous qualitative analysis. An example of an effort in this direc-
tion is the use of FTA to compute the failure conditions probability such as the HA-
ZOP [14] which evolves a design developed in Simulink; another relevant effort is the
ISAAC project where SCADE is used for modeling and safety analysis [13, 11]. It is
also worth mentioning FSAP/NuSMV-SA [15], a fault injection approach developed
in the ESACS project. Due the limitations of FTA methods, as discussed in Section 1,
more recently approaches considering dynamic reliability have been proposed, based
on timed-probabilistic models. We highlight two recent approaches.

In the COMPASS project [22], the model-based probabilistic safety assessment is
based on the SLIM (System-Level Integrated Modeling) design language. The ap-
proach allows the extension of nominal model of the system adding probabilistic fault
behavior, providing a precise characterization of them based on a formal semantics.
The analysis is based on a set of verification tools (NuSMV, FSAP, RAT, Sigref, and
MRMC) which allows verifying safety/dependability aspects and quantitative analys-
es (probabilistic analysis of dynamic FTA). The completeness and consistency of this
approach qualify it as a promising solution, but the formal modeling language adopted
is exposed to the user, demanding that engineers be familiar with this notation. Thus,
the impact for the adoption of this solution might be significant; our approach follows
the hidden formal methods view.

The work reported in [18] (which proposes pFMEA or Probabilistic FMEA) also
uses the Prism model-checker to support quantitative analysis. The approach inte-

638 A. Gomes et al.

grates the failure behavior into the system model described in CTMC via failure injec-
tion. In one sense, pFMEA performs a more detailed analysis than ours because it
considers faulty as well as normal behaviors of a system. However, this approach
does not generate the model systematically, so there is no notion of soundness con-
cerning the model generation, and is more likely to generate state explosion, since it
does not present techniques to enable reduction of the Markov model generated.

6 Conclusion

In this paper we propose a systematic strategy to perform quantitative safety assess-
ment of critical systems. Our approach generates a Prism specification from a Simu-
link diagram, annotated with failure logic. The strategy also creates CSL formulas
that check whether all safety requirements are satisfied.

Prism specifications are interesting because they allow the creation and analysis of
Markov chains in a more user-friendly and concise way. They also ease the explora-
tion of aspects such as latent and evident failure, monitoring and repair schedule,
which are essential to aeronautical systems, for example.

Moreover, if we consider that the traditional fault-tree model is constructed to as-
sess the cause and probability of a single undesirable failure condition, the effort and
number of trees generated to perform the analysis of each failure condition are ex-
tremely large, making the process expensive [2, 10]. With Markov chains, for in-
stance, those created via Prism, it is possible to represent all failure conditions of a
system with a single model. Also, checking the CSL formulas is less expensive than
creating fault-trees. Furthermore, engineers can use the Prism specification (Markov
chains) to investigate dynamic aspects of a system: experiments to check existing
failure scenarios and Phased Mission can be performed by simply changing the values
of local variables of the model [2, 8]. However, the current implementation of Prism
also imposes some limitations. We cannot generate counter-examples when some
property is violated. Fortunately, recent researches are already identifying counter-
examples of stationary models, allowing a better traceability of the basic failures and
facilitating the cycle of checking and validating the system design [21]. Unfortunate-
ly, this solution is not available in Prism yet.

As future work we intend to mechanize the translation strategy and incorporate it
as a plug-in in the Matlab/Simulink software. Another improvement to this work is to
consider dynamic behavior for failure recovery, capturing the dynamic information in
the same way as the static information. In another direction, we intend to prove its
soundness and completeness, showing that our strategy creates a Prism specification
whose Markov model is equivalent to a Markov semantics given to Simulink dia-
grams annotated with failure logic and that it can handle any Simulink diagram.

Acknowledgments. This work was partially supported by the National Institute of
Software Engineering (INES3), funded by CNPq and FACEPE, grants 573964/2008-4
and APQ-1037-1.03/08, by CNPq grant 482462/2009-4 and by the Brazilian Space
Agency (UniEspaço 2009).

3 http://www.ines.org.br

 Systematic Model-Based Safety Assessment via Probabilistic Model Checking 639

References

1. Serra, P.R.: Safety Assessment of aircraft systems, 2nd edn (2008)
2. ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process on

Civil Airborne Systems, SAE Inc. (November 1996)
3. Stamatelatos, M., et al.: Fault Tree Handbook with Aerospace Applications. NASA Of-

fice of Safety and Mission Assurance, Washington (August 2002)
4. Mota, A., Gomes, A., Jesus, J., Ferri, F., Watanabe, E.: Evolving a Safe System Design

Iteratively. Accepted for publication in Proceedings of SAFECOMP (2010)
5. Papadopoulos, Y., McDermid, J., Sasse, R., Heiner, G.: Analysis and synthesis of the be-

haviour of complex programmable electronic systems in conditions of failure. Reliability
Engineering & System Safety 71(3), 229–247 (2001)

6. Alexander, R.D., Kelly, T.P.: Escaping the non-quantitative trap. In: 27th International
System Safety Conference, pp. 69–95 (2009)

7. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Model Checking for
Performance and Reliability Analysis. ACM SIGMETRICS Performance Evaluation Re-
view 36(4), 40–45 (2009)

8. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative analysis with the Probabilistic Mod-
el Checker PRISM. Electronic Notes in Theoretical Computer Science 153(2), 5–31 (2005)

9. The MathWorks Inc. Simulink User’s Guide (2008)
10. McDermid, J.A., Lisagor, O., Pumfrey, D.J.: Towards a Practicable Process for Auto-

mated Safety Analysis. In: 24th Int. System Safety Conference, pp. 596–607 (2006)
11. Joshi, A., Heimdahl, M.P.: Model-Based Safety Analysis of Simulink Models Using

SCADE Design Verifier. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP
2005. LNCS, vol. 3688, pp. 122–135. Springer, Heidelberg (2005)

12. Software considerations in airborne systems and equipment certification. DO-178B,
RTCA Inc., Washington D.C. (December 1992)

13. Kerlund, O.A., et al.: ISAAC, A framework for integrated safety analysis of functional,
geometrical and human aspects. In: ERTS (2006)

14. Papadopoulos, Y., Maruhn, M.: Model-based synthesis of fault trees from Matlab-
Simulink models. In: Inter. Conference on Dependable Systems and Networks (2001)

15. Bozzano, M., Villafiorita, A.: Improving system reliability via model checking: The
FSAP/NuSMV-SA safety analysis platform. In: Anderson, S., Felici, M., Littlewood, B.
(eds.) SAFECOMP 2003. LNCS, vol. 2788, pp. 49–62. Springer, Heidelberg (2003)

16. Haverkort, B.R.: Markovian models for performance and dependability evaluation. In:
Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000.
LNCS, vol. 2090, pp. 38–83. Springer, Heidelberg (2001)

17. Saglimbene, M. S.: Reliability analysis techniques: How they relate to aircraft certifica-
tion. In: Reliability and Maintainability Symposium, pp. 218–222 (2009)

18. Grunske, L., Colvin, R., Winter, K.: pFMEA: Probabilistic Model-Checking Support for
FMEA. In: 4th Int. Conference on the QEST (2007)

19. Gomes, A.: Technical Report, http://www.cin.ufpe.br/~ajog/tr.pdf
20. Siewiorek, D., Swarz, R.: Reliable Computer System: Design and Evaluation, 3rd edn (1998)
21. Aljazzar, H., et al.: Safety Analysis of an Airbag System Using Probabilistic FMEA and

Probabilistic Counterexamples. In: QEST, pp. 299–308 (2009)
22. Bozzano, M., et al.: The COMPASS Approach: Correctness, Modelling and Performabil-

ity of Aerospace Systems. In: Proceedings of the 28th Int. Conference on Computer Safe-
ty, Reliability and Security, September 15-18 (2009)

23. Alejandro, D., et al.: An integrated methodology for the dynamic performance and relia-
bility evaluation of fault-tolerant systems. Reliability Engineering & System Safe-
ty 93(11), 1628–1649 (2008)

Learning Techniques for Software Verification
and Validation – Special Track at ISoLA 2010

Dimitra Giannakopoulou and Corina S. Păsăreanu

Carnegie Mellon University/NASA Ames Research Center,

Moffett Field, CA 94035, USA

{dimitra.giannakopoulou,corina.s.pasareanu}@nasa.gov

Learning techniques are used increasingly to improve software verification and
validation activities. For example, automata learning techniques have been used
for extracting behavioral models of software systems. Such models can serve as
formal documentation of the software and they can be further verified using au-
tomated tools or used for model-based test case generation. Automata learning
techniques have also been used for automating compositional verification and
for building abstractions of software behavior in the context of symbolic or pa-
rameterized model checking. Furthermore, various machine-learning techniques
have been used in fine-tuning heuristics used in constraint solving, in coming up
with new abstraction techniques in the context of bounded model checking or
shape analysis, in inferring invariants of parameterized systems, or in classifying
data in black box testing.

This Special Track aims at bringing together researchers and practitioners
working on the integration of learning techniques in verification and validation
activities for software systems. It particularly emphasizes the use of learning
in practice, where it is important to take into account constraints such as per-
formance, scalability, or even limited system availability. The Special Track is
part of the 2010 ISoLA International Symposium on Leveraging Applications of
Formal Methods, Verification, and Validation.

The Special Track’s topics of interest include learning techniques in the con-
text of:

– Synthesis of Behavioral Models for Software Components
– Automated Compositional Verification
– Requirements Elicitation and Analysis
– Abstraction Refinement and Shape Analysis
– Symbolic and Parameterized Verification
– Decision Procedures and Constraint Solving
– Black-box and White-box Testing
– Improving practical applications in avionics, telecommunications, etc.

This year, the Special Track included five presentations, all related to automata
learning. Some of the presentations concentrated more on the presentation and
evaluation of learning techniques, while others targeted specific application do-
mains such as protocols, and demonstrated the use of learning in the context
of such applications. The Track also featured an invited talk related to RERS,

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 640–642, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Learning Techniques for Software Verification and Validation 641

a new initiative aiming at the establishment of a community of researchers and
practitioners interested in the practical application of automata learning technol-
ogy. The first RERS meeting was co-located with ISOLA 2010, thus making this
year’s ISOLA a particularly fertile ground for the discussion of learning-related
research ideas.

More specifically, the first presentation, “Learning NFAs”, by Martin Leuker,
discusses NL*, a learning algorithm for inferring non-deterministic finite-state
automata using membership and equivalence queries. The algorithm learns resid-
ual finite-state automata (RFSA) in a way similar to Angluins popular L* algo-
rithm, which, however, learns deterministic finite state automata (DFA). Unlike
DFAs and NFAs (non-deterministic finite state automata) which characterize
the whole class of regular languages, RFSAs are a sub-class of NFAs. RFSAs
share important properties with DFAs that make them amenable to learning
techniques, i.e. for every regular language, there is a unique minimal canoni-
cal RFSA accepting it. Furthermore, RFSAs can be exponentially more suc-
cinct than DFAs. They are, therefore, the preferable choice for many learning
applications.

The second presentation, “Comparing Learning Algorithms in Automated
Assume-Guarantee Reasoning”, by Yu-Fang Chen, Edmund M. Clarke, Azadeh
Farzan, Fei He, Ming-Hsien Tsai, Yih-Kuen Tsay, Bow-Yaw Wang, and Lei Zhu,
is concerned with comparing two learning algorithms for generating contextual
assumptions in automated assume-guarantee reasoning. The two algorithms are:
CDNF – which implicitly represents contextual assumptions by a conjunction of
DNF formulae, and OBDD —which uses ordered binary decision diagrams as its
representation. The performance of assume-guarantee reasoning using the two
algorithms is compared with monolithic interpolation-based model checking in
parameterized hardware test cases.

The third presentation, “Inferring Compact Models of Communication Pro-
tocol Entities”, by Therese Berg, Bengt Jonsson, Siavash Soleimanifard, uses
regular inference (aka automata learning) to generate protocol models. While
most existing techniques generate flat automata models, the approach presented
by the authors is able to generate models enriched with control locations and
state variables that describe the dynamic behavior of protocols in a more suit-
able way. The authors discuss how they applied parts of their approach to an
executable state machine specification of the Mobile Arts Advanced Mobile Lo-
cation Center (A-MLC) protocol and evaluated the results by comparing them
to the original specification.

The fourth presentation, “Inference and Abstraction of the Biometric Pass-
port”, by Fides Aarts, Julien Schmaltz, Frits Vaandrager, addresses the problem
of learning models for model-based testing. To make the approach practical,
the authors propose an abstraction technique to reduce the alphabet and the
large data sets that are used for learning. Informal documentation and require-
ments are used to extract apriori knowledge about the teacher and to use this
knowledge to define equivalence classes for obtaining a reduced alphabet. The
approach is demonstrated by learning a model of the new biometric passport;

642 D. Giannakopoulou and C.S. Păsăreanu

the learned model is of comparable size and complexity to a previous model that
was developed manually for testing a passport implementation.

Finally, the fifth presentation, “From Zulu to RERS”, by Falk Howar, Bern-
hard Steffen, Maik Merten, summarizes the authors experience with the ZULU
challenge on active learning without equivalence queries. This challenge was
motivated by the lack of realism of the equivalence queries that are present in
many theoretical learning frameworks: indeed, in essentially all practical applica-
tions, equivalence queries need to be approximated by the so-called membership
queries, which can be implemented using testing. The authors present a winning
solution to the challenge and also discuss how their approach can be general-
ized to a framework for the systematic investigation of domain-specific, scalable
learning solutions for applications of practical relevance. In particular, they dis-
cuss the RERS initiative, which provides a community platform together with a
learning framework that allows users to interactively compose complex learning
solutions on the basis of libraries for various learning components, system con-
nectors, and other auxiliary functionality. This framework will be the backbone
for an extended challenge on learning in 2011.

Comparing Learning Algorithms in Automated
Assume-Guarantee Reasoning�

Yu-Fang Chen1, Edmund M. Clarke2, Azadeh Farzan3, Fei He4,
Ming-Hsien Tsai5, Yih-Kuen Tsay5, Bow-Yaw Wang1,4,6, and Lei Zhu4

1 Academia Sinica, Taiwan
2 Carnegie Mellon University, USA

3 University of Toronto, Canada
4 Tsinghua University, China

5 National Taiwan University, Taiwan
6 INRIA, France

Abstract. We compare two learning algorithms for generating contex-

tual assumptions in automated assume-guarantee reasoning. The CDNF

algorithm implicitly represents contextual assumptions by a conjunc-

tion of DNF formulae, while the OBDD learning algorithm uses ordered

binary decision diagrams as its representation. Using these learning al-

gorithms, the performance of assume-guarantee reasoning is compared

with monolithic interpolation-based Model Checking in parametrized

hardware test cases.

1 Introduction

Suppose one would like to verify whether the composition of M0 and M1 satisfies
a property π. Consider the following assume-guarantee reasoning rule:

M0‖A |= π M1 � A

M0‖M1 |= π

The rule states that it suffices to find a contextual assumption A such that the
composition of M0 and A satisfies the property, and that M1 is simulated by A.

� This research was sponsored by the GSRC under contract no. 1041377 (Prince-

ton University), National Science Foundation under contracts no. CCF0429120,

no. CNS0926181, no. CCF0541245, and no. CNS0931985, Semiconductor Research

Corporation under contract no. 2005TJ1366, General Motors under contract no. GM-

CMUCRLNV301, Air Force (Vanderbilt University) under contract no. 18727S3,

the Office of Naval Research under award no. N000141010188, the National Science

Council of Taiwan projects no. NSC97-2221-E-001-003-MY3, no. NSC97-2221-E-001-

006-MY3, no. NSC97-2221-E-002-074-MY3, and no. NSC99-2218-E-001-002-MY3,

Natural Sciences and Engineering Research Council of Canada NSERC Discovery

Award, Chinese National 973 Plan under grant no. 2010CB328003, the NSF of China

under grants no. 60635020, 60903030 and 90718039, the FORMES Project within

LIAMA Consortium, and the French ANR project SIVES ANR-08-BLAN-0326-01.

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 643–657, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

644 Y.-F. Chen et al.

If verifying M0‖A |= π requires less resources than verifying M0‖M1 |= π, the
scalability of verification can be improved by finding such contextual assump-
tions. Indeed, complete information about M1 may not be necessary for verifying
the property π. Oftentimes, simple contextual assumptions are sufficient to es-
tablish properties of interest. Assume-guarantee reasoning offers the flexibility
to simplify the verification problem with respect to properties. It is considered
as a viable technique to alleviate the state explosion problem.

To effectively apply assume-guarantee reasoning, it is essential to construct a
contextual assumption that fulfills the premises and admits efficient verification.
By applying the L∗ learning algorithm for finite automata [1] and devising a me-
chanical teacher to answer queries, the learning-based technique in [11] success-
fully infers contextual assumptions without human intervention. The scalability
of automated assume-guarantee reasoning is further improved in [7]. Adopting
an implicit representation and applying instead the CDNF learning algorithm
for Boolean functions [3], the new technique is able to take advantages of the
succinct representation and infer contextual assumptions of larger sizes. Pre-
liminary experimental results show that automated assume-guarantee reasoning
through implicit reasoning can outperform the monolithic interpolation-based
Model Checking algorithm in some parametrized test cases [7].

Because of their potential applications in practice, several learning algorithms
for Boolean functions have been developed [3,12,19]. In this paper, we investigate
two of these learning algorithms in the context of automated assume-guarantee
reasoning through implicit learning. We compare the performance of the CDNF
algorithm [3] and a learning algorithm for ordered binary decision diagrams
(OBDD’s) [2,12] in automated assume-guarantee reasoning. Both learning algo-
rithms use the same learning model proposed in [1]. The CDNF algorithm is
based on the monotone theory and represents an arbitrary Boolean function as
a conjunction of DNF formulae [3]. It learns any Boolean function with a poly-
nomial number of queries in the number of variables, and the minimal CNF size
and the minimal DNF size of the target function.

The OBDD learning algorithm, on the other hand, is based on the L∗ algo-
rithm [12]. For a fixed variable ordering, a valuation on n Boolean variables can
be represented by a string in {0, 1}n. A set of valuations hence corresponds to a
finite language. Since any finite language is regular, the L∗ algorithm can infer
the minimal deterministic finite automaton recognizing the satisfying valuations
of any Boolean function. The minimal deterministic finite automaton in turn
can be transformed to an OBDD. It is shown that any OBDD is learnable with
a polynomial number of queries in the size of the target OBDD.

The two learning algorithms have very different characteristics. Subsequently,
their practical costs in the context of assume-guarantee reasoning are not at all
clear. To investigate this issue, we assess the effectiveness of both learning algo-
rithms by an extensive set of parametrized test cases. Using two different learn-
ing algorithms to infer contextual assumptions, we compare the performance
of automated assume-guarantee through implicit learning against the mono-
lithic interpolation-based Model Checking algorithm in [18]. Five parametrized

Comparing Learning Algorithms 645

hardware test cases are taken: the MSI cache coherence protocol [4], the PCI
bus protocol [5], a simple bus control protocol [10], the Gigamax cache coher-
ence protocol [9], and synchronous bus arbiters [17]. Each test case has over 15
experiments of different sizes. Three different algorithms are compared in each
experiment. Our extensive experiments hopefully can give insights to research
directions.

In [15], the CDNF algorithm is used to generate propositional loop invariants
in sequential programs. The same learning algorithm is used in [7] to infer contex-
tual assumptions for assume-guarantee reasoning. Applying algorithmic learning
to generate contextual assumptions was first proposed in [11]. Following that
work, many optimizations have been proposed (see, for example, [20,6,21,13,8]).
These optimizations explicitly generate deterministic finite automata as con-
textual assumptions. In contrast, the work [7] implicitly infers nondeterministic
finite automata as contextual assumptions and improves the scalability.

This paper is organized as follows. After preliminaries (Section 2), the learning
model and automated assume-guarantee reasoning through implicit learning are
reviewed in Section 3 and 4 respectively. They are followed by brief descriptions
of the learning algorithms (Section 5). Section 6 gives the experimental results.
We conclude in Section 7.

2 Preliminaries

B = {F, T} is the Boolean domain. Let x be a set of Boolean variables and |x|
the size of x. A Boolean function θ(x) over x is a function from B|x| to B. We
also define x′ to be the set of Boolean variables {x′ : x ∈ x}.

A valuation ν : x → B over x is a function from Boolean variables to truth
values. Let φ(x) be a Boolean function over x and ν a valuation over x. If y ⊆ x
is a set of Boolean variables, ν↓y is the restriction of ν on y. That is, ν↓y: y → B
and ν↓y (y) = ν(y) for all y ∈ y. We write φ[ν] for the result of evaluating φ
by replacing each x ∈ x with ν(x). Moreover, let ψ(x,x′) be a Boolean function
over x and x′. If ν and ν′ are valuations over x, we write ψ[ν, ν′] for the result of
evaluating ψ by replacing each x ∈ x with ν(x) and each x′ ∈ x′ with ν′(x). For
example, assume ν(x) = F and ν′(x) = T. If φ(x) = ¬x, φ[ν] = T and φ[ν′] = F.
If ψ(x, x′) = ¬x ∧ x′, ψ[ν, ν′] = T and ψ[ν′, ν] = F.

A transition system M = (x, ι(x), τ(x,x′)) consists of its state variables x,
its initial predicate ι(x), and its transition relation τ(x,x′). A trace of M α =
ν0ν1 · · · νt is a finite sequence of valuations where νi is a valuation over x, such
that ι[ν0] = T and τ [νi, νi+1] = T for 0 ≤ i < t. Define Trace(M) = {α :
α is a trace of M}. If α = ν0ν1 · · · νt is a finite sequence of valuations over x
and y ⊆ x, α↓y= ν0↓y ν1↓y · · · νt↓y is the restriction of α on y.

Let M = (x, ιM (x), τM (x,x′)) be a transition system. A state predicate π(x)
is a Boolean function over x. We say M satisfies π (denoted by M |= π) if for any
α = ν0ν1 · · · νt ∈ Trace(M), we have π[νi] = T for 0 ≤ i ≤ t. Given a transition
system M and a state predicate π, the invariant checking problem is to decide
whether M satisfies π. Model Checking is an automatic technique to solve the

646 Y.-F. Chen et al.

invariant checking problem. When deciding whether M |= π, a Model Checking
algorithm returns a witness if M does not satisfy π. A witness to M �|= π is a
trace ν0ν1 · · · νt of M such that π(νi) = T for 0 ≤ i < t but π(νt) = F.

Let N = (x, ιN (x), τN (x,x′)) be a transition system. We say M is simulated
by N or N simulates M (denoted by M � N) if ∀x.ιM (x) =⇒ ιN (x) and
∀xx′.τM (x,x′) =⇒ τN (x,x′) hold. In words, M is simulated by N if the initial
condition of M is stronger than that of N and every transition allowed in M is
also allowed in N . Clearly, if M � N , then Trace(M) ⊆ Trace(N).

Let xi be sets of Boolean variables for i = 0, 1 (xi’s are not necessarily dis-
joint). Consider Mi = (xi, ιi(xi), τi(xi,x′

i)) for i = 0, 1. The composition of M0

and M1 is the transition system M0‖M1 = (x0 ∪ x1, ι0(x0)∧ ι1(x1), τ0(x0,x′
0)∧

τ1(x1,x′
1)). Note that for any finite sequence of valuations α over x0 ∪ x1,

α ∈ Trace(M0‖M1) if and only if α↓x0∈ Trace(M0) and α↓x1∈ Trace(M1).

An assume-guarantee reasoning rule is of the form Θ0 · · ·Θm

Δ
where Θ0, . . . ,

Θm are its premises and Δ its conclusion. An assume-guarantee reasoning rule
is sound if its conclusion holds when its premises are fulfilled. A rule is invertible
if its premises can be fulfilled when its conclusion holds. We use the following
assume-guarantee reasoning rule throughout the paper:

Lemma 1. Let Mi = (xi, ιi(xi), τi(xi,x′
i)) be transition systems for i = 0, 1,

and π a state predicate over x0 ∪x1. The following rule is sound and invertible:

M0‖A |= π M1 � A

M0‖M1 |= π
(1)

where A = (x1, ιA(x1), τA(x1,x′
1)) is a transition system.

Let Mi = (xi, ιi(xi), τi(xi,x′
i)) be transition systems for i = 0, 1 and π a state

predicate over x0∪x1, a transition system A = (x1, ιA(x1), τA(x1,x′
1)) such that

M0‖A |= π and M1 � A is called a contextual assumption of M0.

3 The Learning Model

Before reviewing the learning-based approach to inferring contextual assump-
tions, we briefly describe the learning model used in [1,3,7]. For any unknown
target Boolean function λ(x) over a fixed set of Boolean variables x, an exact
learning algorithm for Boolean functions computes a representation of λ(x) by
interacting with a teacher. The teacher knows the Boolean function λ(x) and
answers two types of queries made by the learning algorithm:

– Membership query MEM (ν) for the target λ(x), where ν is a valuation over
x. If λ[ν] = T, the teacher answers YES ; and NO , otherwise.

– Equivalence query EQ(θ) for the target λ(x), where θ(x) is a Boolean func-
tion over x. If the conjecture θ(x) is equivalent to the target Boolean function
λ(x), the teacher answers YES . Otherwise, the teacher provides a valuation
ν over x where θ[ν] �= λ[ν]. The valuation ν serves as a counterexample to
the equivalence query EQ(θ).

Comparing Learning Algorithms 647

Assume λ(x, y) = (x ∧ ¬y) ∨ (¬x ∧ y) is the target Boolean function over x and
y. If the learning algorithm makes the query MEM (ν0) where ν0(x) = ν0(y) = F
(denoted by ν0(xy) = FF), the teacher answers NO for λ(F, F) = F. For a
different valuation ν1(xy) = TF, the teacher answers YES . Similarly, consider the
equivalence query EQ(x∨y). The teacher should provide the valuation ν2(xy) =
TT as a counterexample, since T∨T = T �= F = λ(T, T). For another equivalence
query EQ((x ∨ ¬y) ∧ (¬x ∨ y)), the teacher answers YES .

4 Learning a Contextual Assumption

In automated assume-guarantee reasoning through learning, one applies an exact
learning algorithm to infer a contextual assumption that fulfills both premises
of the assume-guarantee reasoning rule (1). In order to do so, a mechanical
teacher is designed to answer queries from the learning algorithm. Assume A =
(x1, ιA(x1), τA(x1,x′

1)) is a contextual assumption satisfying both premises. The
teacher is required to resolve four types of queries:

– the membership query MEM (μ) for the target ιA(x1);
– the membership query MEM (μ, μ′) for the target τA(x1,x′

1);
– the equivalence query EQ(ι) for the target ιA(x1); and
– the equivalence query EQ(τ) for the target τA(x1,x′

1).

If A was known, it would be straightforward to design such a mechanical teacher.
All queries can easily be resolved by evaluating or comparing the initial predicate
or the transition relation of the purported contextual assumption. However, such
a contextual assumption is yet to be inferred and current unknown to us. We
thus look for a replacement in the design of the mechanical teacher.

In [7], the mechanical teacher simply uses M1 in place of the unknown con-
textual assumption. Clearly, inferring M1 as the contextual assumption in the
assume-guarantee reasoning rule (1) is not beneficial: the first premise is pre-
cisely the conclusion when the contextual assumption A is M1. However, several
conjectures will be proposed while the learning algorithm is inferring M1. If one
of them satisfies both premises, it can serve as a contextual assumption and con-
clude the verification. Since contextual assumptions are not unique, one expects
that another contextual assumption will be generated before M1 is inferred.

EQ(ι)

YES ,NO

MEM (μ)

YES , ceι

YES ,NO

EQ(τ)

YES , ceτ

equivalence

resolution

IsEquivalent(ι, τ)

membership

resolution

IsMember ιA(μ)

membership

resolution

IsMember τA
(μ, μ′)

MEM (μ, μ′)

Learner ιA Learner τA

Fig. 1. Structure of Contextual Assumption Generator

648 Y.-F. Chen et al.

We adopt the architecture of the mechanical teacher proposed in [7]. Re-
call that a contextual assumption A = (x1, ιA(x1), τA(x1,x′

1)) consists of two
Boolean formulae. We hence deploy two instances of the learning algorithm
(Figure 1): one infers the initial predicate ιA(x1); the other infers the tran-
sition relation τA(x1,x′

1). In the figure, the instances of the learning algorithm
are shown on the sides. The instance Learner ιA is intended to compute the initial
predicate ιA(x1); the instance LearnerτA is to compute the transition relation
τA(x1,x′

1). The mechanical teacher is denoted by the dashed box in the middle.
The teacher consists of three query resolution algorithms. The algorithms

IsMember ιA(μ) and IsMember τA(μ, μ′) resolve membership queries for the ini-
tial predicate and the transition relation respectively (Algorithm 1). Since the
mechanical teacher uses M1 as the target, membership queries are resolved by
evaluating the initial predicate or the transition relation of M1 respectively.

Input: MEM (μ) : a membership query for the target ιA(x1)

Output: YES or NO
/* ι1(x1) is the initial predicate of M1 */

if ι1[μ] = T then return YES else return NO ;

(a) IsMember ιA(μ)

Input: MEM (μ, μ′) : a membership query for the target τA(x1,x
′
1)

Output: YES or NO
/* τ1(x1,x

′
1) is the transition relation of M1 */

if τ1[μ, μ′] = T then return YES else return NO;

(b) IsMemberτA(μ, μ′)

Algorithm 1. Membership Query Resolution Algorithms

The algorithm IsEquivalent(ι, τ) resolves both types of equivalence queries
(Algorithm 2). The equivalence query resolution algorithm waits until the equiv-
alence query EQ(ι) from Learner ιA and the equivalence query EQ(τ) from
LearnerτA are available. It then checks the premise M1 � C in the assume-
guarantee reasoning rule (1) with C = (x1, ι(x1), τ(x1,x′

1)). If M1 �� C, a coun-
terexample is returned to either Learner ιA or LearnerτA to refine the current
conjecture. For instance, assume ∀x1.ι1(x1) ⇒ ι(x1) is false. There is a valuation
μ such that ι1[μ] = T and ι[μ] = F. The equivalence query resolution algorithm
returns μ to Learner ιA as the counterexample to the equivalence query EQ(ι).
It then waits for another equivalence query EQ(ι′) from Learner ιA , and restarts
with the new conjectured transition system C′ = (x1, ι

′(x1), τ(x1,x′
1)).

Assume the equivalence query resolution algorithm has verified M1 � C. It
then checks if the other premise M0‖C |= π is fulfilled. If so, we have found
a contextual assumption that establishes the property. Otherwise, there is a
trace α witnessing M0‖C �|= π. The equivalence query resolution algorithm then
invokes IsWitness(α) to analyze the trace α.

Comparing Learning Algorithms 649

Input: EQ(ι) : an equivalence query for the target ιA(x1); EQ(τ) : an

equivalence query for the target τA(x1,x
′
1)

Output: YES , a counterexample to EQ(ι), or a counterexample to EQ(τ)

let C be the transition system (x1, ι(x1), τ (x1,x
′
1));

if ι1(x1) ∧ ¬ι(x1) is satisfied by μ then
answer EQ(ι) with the counterexample μ;

receive another equivalence query EQ(ι′);
call IsEquivalent(ι′, τ);

if τ1(x1,x
′
1) ∧ ¬τ (x1,x

′
1) is satisfied by μμ′ then

answer EQ(τ) with the counterexample μμ′;
receive another equivalence query EQ(τ ′);
call IsEquivalent(ι, τ ′);

if M0‖C |= π then
answer EQ(ι) with YES ;

answer EQ(τ) with YES ;

report “M0‖M1 |= π”;

else
let α be a witness to M0‖C �|= π;

call IsWitness(α);

end

Algorithm 2. IsEquivalent(ι, τ)

The witness analysis algorithm IsWitness(α) checks if the restriction α↓x1 is
also a trace of M1 (Algorithm 3). If so, α is in fact a witness to M0‖M1 �|= π.
Otherwise, the restriction α↓x1 must deviate from the initial predicate or the
transition relation of M1. The witness analysis algorithm therefore returns the
deviation as a counterexample to either EQ(ι) or EQ(τ). It then waits for a new
equivalence query and restarts the equivalence query resolution algorithm.

The correctness of the algorithm is established by the following properties [7].

Lemma 2 (soundness). Let Mi = (xi, ιi(xi), τi(xi,x′
i)) be transition systems

for i = 0, 1, and π(x) a state predicate over x = x0 ∪ x1.

1. Let ι(x1) and τ(x1,x′
1) be Boolean functions over x1 and x1∪x′

1 respectively.
If IsEquivalent(ι, τ) reports “M0‖M1 |= π,” then M0‖M1 |= π;

2. Let ι(x1) and τ(x1,x′
1) be Boolean functions over x1 and x1∪x′

1 respectively.
If IsEquivalent(ι, τ) reports “M0‖M1 �|= π is witnessed by α,” then α is a
witness to M0‖M1 �|= π.

Lemma 3 (completeness). Let Mi = (xi, ιi(xi), τi(xi,x′
i)) be transition sys-

tems for i = 0, 1, and π(x) a state predicate over x = x0 ∪ x1.

1. If M0‖M1 |= π, then IsEquivalent(ι, τ) reports “M0‖M1 |= π” for some
Boolean functions ι(x1) and τ(x1,x′

1) over x1 and x1 ∪ x′
1 respectively.

2. If α is a witness to M0‖M1 �|= π, then IsEquivalent(ι, τ) reports “M0‖M1 �|=
π is witnessed by α” for some Boolean functions ι(x1) and τ(x1,x′

1) over x1

and x1 ∪ x′
1 respectively.

650 Y.-F. Chen et al.

Input: α is a witness to M0‖C �|= π
Output: a counterexample to EQ(ι), or a counterexample to EQ(τ)

let α↓x1= μ0μ1 · · ·μt;

if ι1[μ
0] = F then

answer EQ(ι) with the counterexample μ0;

receive another equivalence query EQ(ι′);
call IsEquivalent(ι′, τ);

for i := 1 to t do
if τ1[μ

i−1, μi] = F then
answer EQ(τ) with the counterexample μi−1μi;

receive another equivalence query EQ(τ ′);
call IsEquivalent(ι, τ ′);

end
report “M0‖M1 �|= π is witnessed by α”;

Algorithm 3. IsWitness(α)

Lemma 4 (termination). Let Mi = (xi, ιi(xi), τi(xi,x′
i)) be transition sys-

tems for i = 0, 1, and π(x) a state predicate over x = x0∪x1. Suppose the learn-
ing algorithm infers an unknown target Boolean formula f with t(|f |) queries.
The mechanical teacher reports “M0‖M1 |= π” or “M0‖M1 �|= π is witnessed by
α” with at most t(|ι1|) + t(|τ1|) queries.

5 Exact Learning Algorithms for Boolean Functions

Thanks to the interface defined in the learning model, the mechanical teacher
presented in Section 4 is independent of the underlying learning algorithm. As
long as a learning algorithm uses the same learning model, it can be instantiated
as Learner ιA and LearnerτA to infer contextual assumptions. There are in fact
several learning algorithms for Boolean functions [3,12,19]. Here, we are most
interested in the CDNF algorithm [3] and the OBDD learning algorithm [12].

5.1 The CDNF Algorithm

The CDNF algorithm is an exact learning algorithm for Boolean functions [3]. It
represents any unknown target Boolean function in the conjunctive-disjunctive
normal form.1 The CDNF algorithm works iteratively. In each iteration, it first
uses membership queries to construct a conjecture in CDNF. After a conjecture
is built, the CDNF algorithm poses an equivalence query to check if it has
inferred the unknown target. If not, the current conjecture is refined by the
counterexample. Depending on whether the conjecture need be weakened or
strengthened, the learning algorithm either modifies DNF formulae of the current
conjecture, or adds a DNF formula to the conjecture respectively.

Initially, the CDNF algorithm starts with the degenerated conjecture T, and
makes the equivalence query EQ(T). If T is not the target, the CDNF algorithm
1 A Boolean formula is in the conjunctive-disjunctive normal form (CDNF) if it is a

conjunction of DNF formulae.

Comparing Learning Algorithms 651

adds the first conjunct and therefore strengthens the initial conjecture. More
generally, let us say that a counterexample of an equivalence query is positive if
the target evaluates to T under the counterexample; it is negative if the target
evaluates to F. When the CDNF algorithm obtains a positive counterexample,
it weakens conjuncts of the current conjecture by adding a conjunctive clause to
DNF formulae in the conjecture. When the CDNF algorithm obtains a negative
counterexample, it strengthens the current conjecture by adding a DNF formula
to the conjecture. The first equivalence query simply initiates the iterations by
strengthening the degenerated conjunction.

Let λ(x) be a Boolean function over x, |λ(x)|DNF and |λ(x)|CNF denote the
sizes of λ(x) in minimal disjunctive and conjunctive normal forms respectively.
Under the learning model in Section 3, the CDNF algorithm computes a rep-
resentation for any target Boolean function λ(x) with a polynomial number of
queries in |λ(x)|DNF , |λ(x)|CNF , and |x| [3].

5.2 A Learning Algorithm for Ordered Binary Decision Diagrams

Fix a variable ordering on Boolean variables x. A valuation over x can be rep-
resented by a string in {0, 1}|x|. For any Boolean function λ(x), its satisfying
valuations hence correspond to a finite language. Moreover, an OBDD for λ(x)
can be seen as a recognizer for the finite language of satisfying valuations. Ob-
serve that the structure of the OBDD for λ(x) is in fact similar to the minimal
deterministic finite automaton for the language of satisfying valuations [16]. Sub-
sequently, one may infer an unknown OBDD by the L∗ algorithm. This idea has
been explored in an exact learning algorithm for OBDD [12]. Under the learning
model in Section 3, the OBDD learning algorithm computes any target OBDD
d with a polynomial number of queries in the size of d. By Shannon’s expansion,
we obtain another exact learning algorithm for Boolean functions.

The OBDD learning algorithm behaves very differently from the CDNF al-
gorithm. As described above, the CDNF algorithm starts with the equivalence
query EQ(T). On the other hand, the OBDD learning algorithm almost always
starts with the equivalence query EQ(F). Starting from the empty valuation,
the L∗ algorithm builds its first conjecture by making membership queries on
extensions of the empty valuation. If all valuations of length less than two are
rejected, the L∗ algorithm will build the minimal finite automaton recognizing
the empty language as its conjecture. Recall that any satisfying valuation for
Boolean functions over n variables must have length n, and that the empty
set of satisfying valuations corresponds to the Boolean function F. The OBDD
learning algorithm subsequently always starts with the equivalence query EQ(F)
when there is more than one Boolean variable.

In our settings, starting with the equivalence query EQ(F) may impede the
performance. After Learner ιA and LearnerτA make their first equivalence queries
EQ(F), the equivalence query resolution algorithm has the transition system
C⊥ = (x1, F, F). Since M1 �� C⊥, it will ask the learning algorithm to weaken
both conjectures. In fact, the OBDD learning algorithm sometimes weakens too
conservatively and infers M1 as the contextual assumption.

652 Y.-F. Chen et al.

Input: MEM (μ) : a membership query for the target λ(x)

Output: YES or NO
if teacher’s answer to MEM (μ) is YES then return NO else return YES

(a) Inverted Membership Query

Input: EQ(θ) : a membership query for the target λ(x)

Output: YES or a counterexample to EQ(θ)
return teacher’s answer to EQ(¬θ)

(b) Inverted Equivalence Query

Algorithm 4. Inverted Queries

One simple way to avoid this problem is to invert queries from the OBDD
learning algorithm (Algorithm 4). The main idea is to let the learning algorithm
infer the negation of the target Boolean function. When the OBDD learning
algorithm makes a membership query, we return NO if the teacher answers
YES . Otherwise, we return YES . When the OBDD learning algorithm makes
an equivalence query, we ask the teacher if the negation of the conjecture is the
target. If not, we forward teacher’s counterexample to the learning algorithm.
With this simple translation, the first equivalence query EQ(F) from the OBDD
learning algorithm is converted to the equivalence query EQ(T) as desired.

6 Experiments

We have implemented a prototype of the mechanical teacher in OCaml. Our
implementation uses the OCaml thread library. Each instance of the learning
algorithm is executed in a separate thread, and the equivalence query resolution
algorithm is executed in a third thread. MiniSat 2 (version 070721) is used to
evaluate Boolean functions in Algorithm 1, and check the simulation relation in
Algorithm 2. For monolithic Model Checking, we implement the interpolation-
based algorithm in [18]. Interpolants are computed by instrumenting MiniSat 2.
The interpolation-based Model Checking algorithm is also used in the equiva-
lence query resolution algorithm (Algorithm 2).

We report the following five test cases: the MSI cache coherence protocol [5],
the PCI bus protocol [4], a simple bus control protocol [10], the Gigamax cache
coherence protocol [9], and synchronous bus arbiters [17] . Each test case has
experiments parametrized by the number of nodes. Let M1, . . . , Mn be nodes
and π a state predicate. We verify M1‖ · · · ‖Mn |= π in an experiment with n
nodes. An experiment with n nodes is divided into different partitions in n trials.
We apply the following assume-guarantee reasoning rule in the i-th trial:

Comparing Learning Algorithms 653

(M1‖ · · · ‖Mi−1‖Mi+1‖ · · ·Mn)‖A |= π Mi � A

(M1‖ · · · ‖Mi−1‖Mi+1‖ · · ·Mn)‖Mi |= π

In each trial, we use the CDNF algorithm and the OBDD learning algorithm to
generate a contextual assumption A to verify M1‖ · · · ‖Mn |= π. We choose the
best result among the n trials and compare it with monolithic Model Checking.
All experimental results are collected on a server with 8 Intel Xeon 2.0GHz
processors. Each experiment is carried out on a dedicated core with 4GB memory.

MSI Cache Coherence Protocol. In the MSI cache coherence protocol, a memory
is shared among n nodes [5]. Each node has a cache. A bus connects the memory
and caches of the nodes. When a node accesses a memory cell, it reads the cell
from the bus and keeps a copy in its cache. Several copies of the same memory
cell can be kept in different nodes. The MSI protocol ensures data coherence by
keeping each cache in one of the three states: Modified, Shared, and Invalid [14].
Two properties are verified in the experiments with 4 to 20 nodes (Figure 2). The
property master1 specifies that at most one node can be the bus master. The
other property m0s1m1 states that if the data at a memory location is modified
by a node, it cannot be shared or modified by another node at the same time.

nodes 4 5 6 7 8 9 10 11 12

monolithic 3s 5s 9s 13s 15s 33s 44s 1m41s 1m48s

cdnf 0s 0s 2s 1s 3s 6s 4s 7s 7s

bdd 0s 0s 2s 2s 3s 6s 5s 7s 8s

nodes 13 14 15 16 17 18 19 20 avg

monolithic 54s 1m30s 1m51s 50s 3m54s 5m38s 5m32s 5m16s 1m49s

cdnf 11s 18s 7s 16s 48s 28s 12s 1m12s 14s

bdd 11s 18s 8s 16s 56s 28s 14s 1m10s 15s

(a) Results for the Property master1

nodes 4 5 6 7 8 9 10 11 12

monolithic 55s 5m54s 46s 4m21s 22m19s 2m7s 2m37s 2m29s 9m49s

cdnf 2m14s 48s 54s 1m38s 1m18s 1m17s 2m43s 2m35s 2m43s

bdd 2m10s 22s 44s 1m35s 1m14s 1m14s 2m41s 46s 2m38s

nodes 13 14 15 16 17 18 19 20 avg

monolithic 6m15s 2m44s 11m35s 4m7s 18m55s 9m33s 10m12s 9m31s 7m18s

cdnf 2m17s 2m9s 3m4s 2m44s 2m51s 2m35s 3m45s 4m36s 2m22s

bdd 2m14s 2m8s 3m2s 2m29s 2m50s 2m32s 3m26s 4m13s 2m8s

(b) Results for the Property m0s1m1

Fig. 2. Experimental Results for the MSI Protocol

In both figures, we show the verification time of the monolithic interpolation-
based Model Checking (monolithic), the verification time of assume-guarantee
reasoning using the CDNF algorithm (cdnf), and those using the OBDD learning
algorithm (bdd). We also identify the best algorithm in each experiment.

654 Y.-F. Chen et al.

For both properties, assume-guarantee reasoning outperforms monolithic
Model Checking consistently. Between the two learning algorithms used in
assume-guarantee reasoning, their performances are almost indistinguishable for
the property master1. The OBDD learning algorithm wins the CDNF algorithm
in all experiments in the property m0s1m1. In the experiment with 11 nodes, the
contextual assumption generated by the OBDD learning algorithm concludes the
verification in less a minutes. The CDNF algorithm, on the other hand, takes
more than two and a half minutes to verify the same property. It is in fact slower
than monolithic Model Checking in this experiment.

PCI. This example models the PCI bus protocol with two levels of arbiters con-
trolling data transmission [4]. For 2n PCI devices, we create a first-level arbiter
and n second-level arbiters. The first-level arbiter connects all second-level ar-
biters. Each second-level arbiter connects two devices. When a device wants to
start a transaction, it first requests the permission from its second-level arbiter.
The second-level arbiter then selects a request between its devices. The first-
level arbiter in turn grants the permission to the selected request from one of
the second-level arbiters. We check that the first two nodes do not consider the
bus to be idle at the same time. Figure 3 gives the experimental results. Assume-
guarantee reasoning significantly outperforms monolithic Model Checking in this
case. The difference between both learning algorithms is however negligible ex-
cept for the experiment with 17 nodes. The CDNF algorithm proves the property
in 37 seconds and wins the OBDD learning algorithm by 8 seconds. Monolithic
Model Checking is unable to conclude the verification in two and a half minutes.

nodes 4 5 6 7 8 9 10 11 12

monolithic 15s 15s 25s 34s 46s 49s 1m2s 1m20s 1m17s

cdnf 6s 10s 11s 14s 16s 17s 22s 24s 28s

bdd 6s 10s 11s 14s 16s 17s 22s 27s 24s

nodes 13 14 15 16 17 18 19 20 avg

monolithic 1m25s 1m40s 1m48s 1m54s 2m45s 2m24s 2m34s 3m17s 1m26s

cdnf 30s 33s 27s 30s 37s 40s 54s 50s 26s

bdd 31s 34s 28s 29s 45s 41s 55s 50s 27s

Fig. 3. Experimental Results for PCI

Bus Control Protocol. In this bus control protocol, several nodes are attached
to the bus [10]. Each node is assigned to a unique priority. A counter is used to
decide the ownership of the bus. The node with priority p can send data when
the counter has value p. If a node sends data, the counter is reset. Otherwise,
the counter is incremented by one. We check that the first node cannot send
data on the bus together with any other node at the same time. Figure 4 gives
the results for the experiments with 34 to 50 nodes. Assume-guarantee reasoning
clearly outperforms monolithic Model Checking. The CDNF algorithm and the
OBDD learning algorithm win 10 and 5 of the experiments respectively. They
are tied at the first place for the remaining 2 experiments.

Comparing Learning Algorithms 655

nodes 34 35 36 37 38 39 40 41 42

monolithic 32s 33s 32s 33s 49s 2m25s 41s 40s 1m28s

cdnf 21s 18s 21s 22s 21s 25s 34s 28s 32s

bdd 21s 22s 25s 24s 25s 26s 28s 31s 25s

nodes 43 44 45 46 47 48 49 50 avg

monolithic 52s 52s 1m0s 54s 54s 1m12s 47s 15m42s 2m33s

cdnf 34s 31s 33s 38s 38s 39s 50s 28s 43s

bdd 31s 36s 33s 43s 26s 40s 42s 42s 44s

Fig. 4. Experimental Results for the Bus Control Protocol

nodes 21 22 23 24 25 26 27 28 29

monolithic (sec) 4.827 5.471 5.885 6.236 7.030 8.020 8.380 9.562 10.329

cdnf (sec) 4.656 5.150 5.517 6.099 6.789 7.064 8.213 8.958 9.838

bdd (sec) 4.857 5.328 5.741 6.339 6.696 7.693 8.085 8.814 10.086

nodes 30 31 32 33 34 35 36 37 avg

monolithic (sec) 11.503 12.107 13.175 14.145 14.890 15.791 17.009 18.518 14.524

cdnf (sec) 10.803 11.579 12.904 13.977 14.689 15.658 16.962 17.966 14.065

bdd (sec) 11.399 11.946 13.010 14.003 15.267 16.091 17.256 18.284 14.324

Fig. 5. Experimental Results for the Gigamax Cache Coherence Protocol

Gigamax. In the Gigamax cache coherence protocol, several processors and a
memory is attached to a bus [9]. Each processor has a local cache. A local cache
can be in the Invalid, Shared, or the Owned state. Among the memory and
processors, at most one can be the bus master and issues commands on the
bus. When a processor is the bus master and issues a ReadOwned command, its
local cache state becomes Owned. A processor can write to the bus if its local
cache state is Owned. For this test case, we consider the experiments with 21 to
37 nodes and verify that the memory is written by at most one processor. The
results are shown in Figure 5. The CDNF algorithm outperforms the other two
in 14 experiments whereas the OBDD learning algorithm wins the remaining 3
experiments with a small margin. The OBDD learning algorithm performs just
slightly better than monolithic Model Checking on average.

Synchronous Bus Arbiters. The synchronous bus arbiter is a bus arbitration pro-
tocol for synchronous circuits [17]. In this protocol, n nodes are connected in a
ring. A token is passed around the nodes. A node can request and acknowledge
the token from the node next to it. The node having the token has the exclu-
sive right to access the bus. For this test case, we check that there is at most
one node can access to the bus. Figure 6 shows the results. Assume-guarantee
reasoning and monolithic Model Checking perform almost identically on smaller
experiments. For experiments with more than 12 nodes, assume-guarantee rea-
soning is slightly better. Monolithic Model Checking however is able to finish
the experiment with 20 nodes by 40 seconds. Subsequently, monolithic Model
Checking is comparable to assume-guarantee reasoning on average.

656 Y.-F. Chen et al.

nodes 4 5 6 7 8 9 10 11 12

monolithic 0s 1s 3s 5s 10s 18s 33s 54s 1m38s

cdnf 0s 1s 3s 5s 10s 18s 32s 54s 1m24s

bdd 0s 1s 3s 5s 10s 18s 33s 55s 1m30s

nodes 13 14 15 16 17 18 19 20 avg

monolithic 2m11s 3m33s 5m9s 7m18s 10m11s 14m0s 19m13s 25m17s 5m20s

cdnf 2m13s 3m20s 4m54s 7m8s 10m10s 13m52s 19m5s 25m57s 5m18s

bdd 2m16s 3m27s 5m3s 7m21s 10m10s 13m50s 19m11s 26m4s 5m21s

Fig. 6. Experimental Results for Synchronous Bus Arbiters

7 Conclusion

Using two exact learning algorithms for Boolean functions, the performance of
assume-guarantee reasoning is compared against the monolithic interpolation-
based Model Checking algorithm in this paper. Our experiments show that au-
tomated assume-guarantee reasoning through implicit learning can outperform
monolithic Model Checking in some parametrized hardware test cases. For the
OBDD learning algorithm, we demonstrate a simple technique to invert queries
from the learning algorithms. The technique improves the performance of the
OBDD learning algorithm in assume-guarantee reasoning.

In three of the five test cases, assume-guarantee reasoning significantly im-
proves the average verification time. The compositional technique slightly out-
performs monolithic Model Checking in the remaining two test cases. Between
the two learning algorithms, the difference however is marginal except the prop-
erty m0s1m1 in the MSI protocol. The OBDD learning algorithm clearly domi-
nates the CDNF algorithm in this case. On the other hand, the CDNF algorithm
performs slightly better than the OBDD learning algorithm in all other cases.

The simple modification of the OBDD learning algorithm shows that learn-
ing algorithms may not be trivially applied in the learning-based approach to
assume-guarantee reasoning. Further optimizations are needed in this applica-
tion domain. Particularly, the performances of the CDNF algorithm and the
OBDD learning algorithm are sensitive to variable orderings. More research on
this regard may further improve the scalability of assume-guarantee reasoning.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information

and Computation 75(2), 87–106 (1987)

2. Bryant, R.: Graph-based algorithms for Boolean-function manipulation. IEEE

Transaction on Computers C-35(8) (1986)

3. Bshouty, N.H.: Exact learning boolean function via the monotone theory. Informa-

tion and Computation 123(1), 146–153 (1995)

4. Campos, S.V.A., Clarke, E.M., Marrero, W.R., Minea, M.: Verifying the perfor-

mance of the PCI local bus using symbolic techniques. In: ICCD, pp. 72–78 (1995)

Comparing Learning Algorithms 657

5. Cantin, J.F., Lipasti, M.H., Smith, J.E.: Dynamic verification of cache coherence

protocols. In: Workshop on Memory Performance Issues (2001)

6. Chaki, S., Strichman, O.: Optimized L∗-based assume-guarantee reasoning. In:

Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 276–291.

Springer, Heidelberg (2007)

7. Chen, Y.F., Clarke, E.M., Farzan, A., Tsai, M.H., Tsay, Y.K., Wang, B.Y.: Auto-

mated assume-guarantee reasoning through implicit learning. In: Touili, T., Cook,

B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174. Springer, Heidelberg (2010)

8. Chen, Y.F., Farzan, A., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Learning minimal

separating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A.

(eds.) TACAS. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)

9. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new Symbolic

Model Verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,

pp. 495–499. Springer, Heidelberg (1999)

10. Clarke, E.M., Kröning, D.: SMV example: Bus protocol, PowerPoint file (2002)

11. Cobleigh, J.M., Giannakopoulou, D.: Păsăreanu, C.S.: Learning assumptions for

compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,

vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

12. Gavaldà, R., Guijarro, D.: Learning ordered binary decision diagrams. In: Zeug-

mann, T., Shinohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS, vol. 997, pp. 228–

238. Springer, Heidelberg (1995)

13. Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compo-

sitional verification. Formal Methods in System Design 32(3), 285–301 (2008)

14. Handy, J.: The Cache Memory Book. Academic Press, London (1998)

15. Jung, Y., Kong, S., Wang, B.Y., Yi, K.: Deriving invariants in propositional logic

by algorithmic learning, decision procedure, and predicate abstraction. In: Barthe,

G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 180–196. Springer,

Heidelberg (2010)

16. Kimura, S., Clarke, E.M.: A parallel algorithm for constructing binary decision

diagrams. In: ICCD, pp. 220–223 (1990)

17. McMillan, K.L.: The SMV system, symbolic model checking - an approach. Tech-

nical Report CMU-CS-92-131, Carnegie Mellon University (1992)

18. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,

Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg

(2003)

19. Nakamura, A.: An efficient query learning algorithm for ordered binary decision

diagrams. Information and Computation 201(2), 178–198 (2005)

20. Nam, W., Madhusudan, P., Alur, R.: Automatic symbolic compositional verifica-

tion by learning assumptions. Formal Methods in System Design 32(3), 207–234

(2008)

21. Sinha, N., Clarke, E.M.: SAT-based compositional verification using lazy learn-

ing. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 39–54.

Springer, Heidelberg (2007)

Inferring Compact Models of Communication
Protocol Entities

Therese Bohlin1, Bengt Jonsson1, and Siavash Soleimanifard2

1 Dept. of Information Technology, Uppsala University, Sweden

{thereseb,bengt}@it.uu.se
2 Royal Institute of Technology, Stockholm, Sweden

siavashs@csc.kth.se

Abstract. Our overall goal is to support model-based approaches to ver-

ification and validation of communication protocols by techniques that

automatically generate models of communication protocol entities from

observations of their external behavior, using techniques based on regular

inference (aka automata learning). In this paper, we address the problem

that existing regular inference techniques produce “flat” state machines,

whereas practically useful protocol models structure the internal state in

terms of control locations and state variables, and describes dynamic be-

havior in a suitable (abstract) programming notation. We present a tech-

nique for introducing structure of an unstructured finite-state machine

by introducing state variables and program-like descriptions of dynamic

behavior, given a certain amount of user guidance. Our technique groups

states with “similar control behavior” into control locations, and obtain

program-like descriptions by means of decision tree generation. We have

applied parts of our approach to an executable state machine specifi-

cation of the Mobile Arts Advanced Mobile Location Center (A-MLC)

protocol and evaluated the results by comparing them to the original

specification.

1 Introduction

Model-based techniques for verification, testing, and validation of commmunica-
tion protocols, including model checking and model-based testing [8], have wit-
nessed drastic advances in the last decades. They require access to a formal model
that specifies the behavior of protocol entities, which ideally should be developed
during specification and design. However, the construction of models typically re-
quires significant manual effort, implying that in many cases no such model is
available, or becomes outdated as the system evolves over time. It is therefore
important to develop automated techniques that support the task of producing
models, e.g., models that reflect the behavior of an existing protocol implementa-
tion. Such techniques would be highly useful for producing models of standardized
protocols, for introducing model based testing techniques to replace manual test-
ing of an existing product, for regression testing, etc. A potential approach is to
use program analysis to construct models from source code (e.g., [4,16]). However,

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 658–672, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Inferring Compact Models of Communication Protocol Entities 659

many system components, such as library modules, or third-party components, of-
ten do not allow analysis of source code. We will therefore focus on techniques for
constructing models from observations of their external behavior.

The construction of models from observations of component behavior can be
performed using regular inference (aka automata learning) techniques [2,12,18,27].
This class of techniques has recently started to get attention in the testing and
verification community, e.g., for regression testing of telecommunication sys-
tems [15,17], for integration testing [19,19,14], and for combining conformance
testing and model checking [23,13]. In regular inference, a finite-state machine
(or a regular language) is constructed from the answers to a set of membership
queries, each of which observes the component’s output in response to a certain
input string. Given “enough” membership queries, the constructed automaton
will be a correct model of the observed component.

Our overall goal is to construct models of entities in communication protocols,
which can be readily understood and maintained by protocol designers and test
engineers. Manually constructed models of protocol behavior facilitate under-
standing by describing messages as consisting of a message type with a number
of parameters, by representing the internal states of the entity in terms of con-
trol locations and state variables, and by describing the reaction to incoming
messages by a change of location and variable transformation in some suitable
language. This style of modeling is supported by several formalisms, such as
UML state diagrams [11].

A serious obstacle to constructing structured models from observations is that
existing regular inference techniques produce “flat” state machines, in which nei-
ther states nor transitions have any structure. In this paper, we therefore present
techniques for restructuring the representation of an unstructured finite-state
machine, in order to make it readily understandable by humans. Since there
are many ways to restructure state-machine descriptions, and since most likely
there is no unique optimal restructuring, our techniques use some heuristically
motivated general principles for forming state variables and control locations,
which if needed can be changed by a user. Based on such principles, our trans-
formation first equips the “flat” state machine with state variables. Thereafter
it groups states with similar control behavior into control locations. Finally,
the “flat” description of the reaction to received messages is transformed into a
compact description in the chosen coding language; we have chosen the intuitive
formalism of decision trees, which can be generated by well-developed tools.

We evaluate our techniques by applying them to the Mobile Arts Advanced
Mobile Location Center (A-MLC) protocol, which is a commercially available
middleware protocol that allows mobile network operators to provide presence
information from the GSM/UMTS network. We have access to an executable
specification of A-MLC, which is structured for human readability by developers
and testers of the protocol. This makes it a suitable object for evaluation, since
we can both observe its reaction to a large number of input sequences, as well
as compare the results of our restructuring to the structure of the executable
specification. We present the results of our comparison.

660 T. Bohlin, B. Jonsson, and S. Soleimanifard

Related Work. Regular inference techniques have been used for verification and
test generation, e.g., to create models of environment constraints with respect
to which a component should be verified [10], for regression testing to create a
specification and a test suite [15,17], to perform model checking without access
to source code or formal models [13,23], for program analysis [1], and for formal
specification and verification [10]. Groz, Li, and Shahbaz extend regular inference
to Mealy machines with a finite subset of input and output symbols from the
possible infinite set of symbols [19,28,14]. Mariani and Pezzé use inference in
integration testing of commercial off the shelf components [20]. They infer two
separate models: one for the finite-state control, and the others being a relation
on the parameters in each interaction. They use different inference techniques for
each type of model. In previous work [5], we presented an optimization of regular
inference to cope with models where the domains of the parameters are booleans.
We have also presented an approach using regular inference, in which systems
have input parameters from a potentially infinite domain and parameters may
be stored in state variables for later use [6].

Organization of Paper. In next section, we review Mealy machines and Symbolic
Mealy Machines. In Section 3 we describe the employed inference algorithm for
Mealy machines by Niese [22], we present our transformation from “flat” to
symbolic Mealy machines. Our implementation is described in Section 4, and in
Section 5 we describe its application so the A-MLC protocol, which is evaluated
in Section 6. Section 7 contains conclusions and proposed future work.

2 Mealy Machines

Basic Definitions. We will use Mealy machines to model communication pro-
tocol entities. A Mealy machine is a tuple M = 〈ΣI , ΣO, Q, q0, δ, λ〉 where ΣI

is a nonempty set of input symbols, ΣO is a nonempty set of output symbols, Q
is a nonempty set of states, q0 ∈ Q is the initial state, δ : Q × ΣI → Q is the
transition function, and λ : Q × ΣI → ΣO is the output function. The sets of
states and symbols can be finite or infinite: if they are all finite we say that the
Mealy machine is finite. Elements of Σ∗

I are called input strings, and elements
of Σ∗

O are called output strings. We extend the transition and output functions
to input strings in the standard way, by defining:

δ(q, ε) = q λ(q, ε) = ε
δ(q, ua) = δ(δ(q, u), a) λ(q, ua) = λ(q, u)λ(δ(q, u), a)

where u ∈ Σ∗
I . We define λM(u) = λ(q0, u) for u ∈ Σ∗

I . Two Mealy machines M
and M′ with the same set of input symbols are equivalent if λM(u) = λM′(u)
for all input strings u.

Intuitively, a Mealy machine behaves as follows. At any point in time, the
machine is in some state q ∈ Q. When supplied with an input symbol a ∈ ΣI ,
it responds by producing an output symbol λ(q, a) and transforms itself to a

Inferring Compact Models of Communication Protocol Entities 661

new state δ(q, a). We use the notation q
a/b−→ q′ to denote that δ(q, a) = q′ and

λ(q, a) = b; in this case q
a/b−→ q′ is called a transition of M.

The Mealy machines that we consider are deterministic, meaning that for
each state q and input symbol a exactly one next state δ(q, a) and output string
λ(q, a) is possible.

Symbolic Representation. In order to conveniently model entities of com-
munication protocols, we should be able to describe messages as consisting of
a message type with a number of parameters, describe states as consisting of a
control location and values of a set of state variables, and describe the reaction
to incoming messages in a suitable programming language-like syntax. We there-
fore introduce a symbolic representation of Mealy machines, similar to Extended
Finite State Machines [24].

So, assume a set of action types. Each action type α has a certain arity, which
is a tuple of domains (a domain is a set of allowed data values) Dα,1, . . . ,Dα,n

(where n depends on α). For a set I of action types, let ΣI be the set of terms
of form α(d1, . . . , dn), where di ∈ Dα,i is a data value in the appropriate domain
for each i with 1 ≤ i ≤ n. We write d for d1, . . . , dn. Also assume a set of state
variables. Each state variable has a domain of possible values, and a unique
initial value. We use v to range over state variables, and v to range over values.
We write v for v1, . . . , vk and v for v1, . . . , vk

To provide a structured representation of the transition and output functions,
we use a simple formalism with constructs for selection, output, and assignment.
We will use a finite set of formal parameters, ranged over by p1, p2, . . ., which
will serve as local variables to which values of parameters in input symbols are
bound. We write p for p1, . . . , pn. Let an expression, ranged over by e, be either
a formal parameter, a state variable or a data value. Define the set of action
expression, ranged over by ae, by the grammar

oe ::= output β(d1, . . . , dm); nextloc l
| case e of d1 : oe1 · · · dk : oek

ae ::= oe ; v1, . . . , vk := e1, . . . , ek

Here, v1, . . . , vk := e1, . . . , ek simultaneously assigns the values of the expressions
ei to the variables vi. In a case expression, the values d1, . . . , dk must be different,
and cover the possible results of evaluating the expression e. Sometimes we use
if e then ae1 else ae2 instead of case e of true : ae1 false : ae2.

Intuitively, an action expression first traverses a decision tree. Depending on
the values of state variables and input parameter, eventually an output symbol
is generated, and the next control location is determined. Before actually chang-
ing control location, the state variables are updated in a multiple assignment
statement.

Definition 1. A Symbolic Mealy machine (SMM) is a tuple SM = 〈I, O, L, l0,
v, ϕ〉, where I and O are disjoint finite sets of action types (input action types
and output action types), where L is a finite set of locations, where l0 ∈ L is the

662 T. Bohlin, B. Jonsson, and S. Soleimanifard

initial location, where v is a finite tuple v1, . . . , vk of state variables, and where
ϕ maps each location l ∈ L and input action type α ∈ I to an action expression.

We write in location l when α(p1, . . . , pm) ae end to denote that
ϕ(l, α) is the action expression ae.

The meaning of a SMM SM = 〈I, O, L, l0, v,−→〉 is defined by its denotation,
which is the Mealy machine MSM = 〈ΣI , ΣO, Q, q0, δ, λ〉, where ΣI is obtained
from I as described earlier, and similarly for ΣO, where Q is the set of pairs
〈l, v〉 consisting of a location l ∈ L and tuple v of values of the state variables v,
where q0 is the pair 〈l0, v0

1, . . . , v
0
k〉 in which v0

1, . . . , v
0
k are the initial values of

v1, . . . , vk.
The reaction to input symbols is described by the mapping ϕ, as follows.

For each location l ∈ L and input symbol α(d), the action expression ϕ(l, α)
will follow exactly one branch of the nested case expression leading to an ex-
pression of form output β(d

′
) ; nextloc l′; thereafter follows a multiple

assignment of form v1, . . . , vk := e1, . . . , ek. This implies that for the transi-
tion and output functions we have δ(〈l, v1, . . . , vk〉, α(d)) = 〈l′, v′1, . . . , v′k〉, and
λ(〈l, v1, . . . , vk〉, α(d)) = β(d

′
), for all tuples v′1, . . . , v

′
k of values of v1, . . . , vk,

where v′1, . . . , v
′
k is the result of performing the multiple assignment statement.

In Figure 1, we show a possible action expression, from an idealized version of
the receiver in the alternating bit protocol, in which we have action types Data
and Ack, each of which has a bit (either 0 or 1) as a parameter.

in location rec when Data(sn)

case (sn) of 0 : case v of 0 : output Ack(0); nextloc rec;

1 : output Ack(1); nextloc rec;

1 : case v of 1 : output Ack(1); nextloc rec;

0 : output Ack(0); nextloc rec;

v := sn

end

Fig. 1. Example syntax defining part of reciever in alternating bit protocol

3 Inference of Symbolic Mealy Machines

In this section, we present our approach for inferring an SMM model for the
behavior of an entity in a communication protocol, by observing its responses
to selected input strings. We will hereafter refer to the given protocol entity as
the System Under Test (SUT). We assume that the behavior of a SUT can be
modeled as an SMM, and that its input and output action types as well as their
arities, are known.

The problem of inferring a model of the SUT naturally decomposed into two
subproblems. First we infer a “flat” Mealy machine M which models the behav-
ior of SUT. Thereafter, we generate an SMM SM such that MSM is equivalent
to M. For the first subproblem we use an adaptation of the L∗ algorithm [2] to

Inferring Compact Models of Communication Protocol Entities 663

Mealy machines, due to Niese [22]. For the second subproblem, we have devel-
oped a technique for transforming a Mealy machine into an SMM by introducing
state variables, control locations, and action expressions. Each subproblem is de-
scribed in more detail in the following subsections.

3.1 Inference of Mealy Machines

To infer a Mealy machine that models the behavior of SUT, we use an adapta-
tion of the L∗ algorithm due to Niese [22]. It is assumed that the L∗ algorithm
initially knows the static interface of SM, i.e., the sets I and O of input and out-
put actions together with their arities. It may then ask a sequence of membership
queries; each one supplying a chosen input string u ∈ (ΣI)∗ and observing the
response λSM(u). After a “sufficient” number of membership queries the Learner
can build a “stable” hypothesis H from the obtained information. The hypoth-
esis H should of course agree with SM on the performed membership queries
(i.e., λSM(u) = λH(u) whenever u was supplied in a membership query), but
must make suitable generalizations for other input strings. In order to increase
confidence in the hypothesis H, one can subject SM to thorough conformance
testing or longer-term monitoring in order to search for input strings on which
SM disagrees with H. In the setting of L∗, this is idealized as an equivalence
query, which asks whether H is equivalent to SM, and which is replied with
either yes, or with no and a counterexample, which is an input string u ∈ Σ∗

I

such that λSM(u) �= λH(u). In a black-box setting, where source code is not
available, there is in general no perfect implementation of equivalence queries.
In the case that there is a known upper bound on the number of states of M,
(typically large) conformance test suites (as described in, e.g., [9,29]) can con-
clusively settle equivalence queries. In practice, equivalence queries are often
approximated by large random test suites and/or by monitoring the SUT under
a long period of time. The algorithm is guaranteed to terminate after at most
n such equivalence queries, where n is the number of states of M, having posed
in total O(|ΣI |n2 + n logm) membership queries, where m is the length of the
longest counterexample returned in some equivalence query [27].

3.2 Generating Symbolic Representation of Mealy Machines

In this subsection, we describe our transformation from a Mealy machine M into
an equivalent SMM SM (i.e., such that MSM is equivalent to M), which can
more easily be understood by human designers or testers. The transformation
(1) represents the states of M in terms of control locations and state variables,
and (2) represents the transition and output function of M in terms of action
expressions. We first describe how we introduce a symbolic representation of
states, and thereafter how we generate action expressions.

Transforming the Representation of States. In the symbolic representa-
tion, states are formed as a combination of control locations that capture “high
level control” aspects of behavior, and of state variables that record information
in received parameters of input symbols that may influence future behavior. For

664 T. Bohlin, B. Jonsson, and S. Soleimanifard

a given “flat” Mealy machine, there are several ways to accomplish this, among
which there is most likely no “best” one. Our transformation makes default
choices in the following way.

– Sequences of transitions that contain the same sequence of input and out-
put action types should lead to the same control location. For example, by
applying this criterion, the Mealy machine described in Figure 1 would be
transformed into an SMM in which only one control location could be reached
from the initial location, since there is only one combination of input and
output action types (namely Data/Ack).

– For each input action type α with arity Dα,1, . . . ,Dα,n there are state vari-
ables vα,1, . . . , vα,n which record the values of the parameters in the most
recently received input symbol of form α(d1, . . . , dn). The transformation
chooses default initial values for these variables. With this principle, the Al-
ternating bit protocol in Figure 1 would have a state variable vData.sn, which
is assigned the parameter value sn in action expressions triggered by the
action type Data.

In our implementation, these default choices can be replaced by other criteria
for forming state variables and control locations. To keep the presentation in
this section simple, they are briefly described in Section 4.

Using the above principles, our transformation generates a symbolic repre-
sentation of states as follows. Let an extended state be defined as a pair 〈q, v〉,
where q ∈ Q is a state of M and v is a tuple of values of the state variables v.
Thus, for each state q of M, there are many extended states of form 〈q, v〉, cor-
responding to the many different combinations of values v that may be received
along different execution paths. Let an extended transition be a transition of form

〈q, v〉 α(d)/β(d
′
)−→ 〈q′, v′〉 between extended states, which exists whenever M has

a transition q
α(d)/β(d

′
)−→ q′ and v′ is obtained from v and α(d) by appropriately

updating state variables.
We must now form control locations as sets of extended states with “same

control behavior”, using a technique similar to the subset construction for nonde-
terministic finite automata. Such an algorithm is described in Algorithm 1. The
algorithm maintains two sets of locations; Locs accumulates the set of formed
locations, whereas TempLocs is a set of locations whose successor locations re-
main to be constructed, and a set Edges of generated edges. Algorithm 1 starts
by forming the initial location l0 ∈ L, containing the extended state formed
from the initial state q0 and initial values v0 of variables. The algorithm then
iteratively picks some location l from TempLocs; for each pair α, β of input and
output action types it constructs a new location containing the targets of all

transitions 〈q, v〉 α(d)/β(d
′
)−→ 〈q′, v′〉 with the same source location, input, and out-

put action types, and adds it to TempLocs, and also adds l
α/β−→ l′ to Edges. The

process of forming locations continues iteratively until all locations in TempLocs
have been used for forming successor locations. The process is guaranteed to
terminate since the set of extended states is finite.

Inferring Compact Models of Communication Protocol Entities 665

Algorithm 1. MAKELOCATIONS

1: Locs := ∅;
2: Edges := ∅;
3: TempLocs := {〈q0, v0〉};
4: while TempLocs �= ∅ do
5: choose l ∈ TempLocs;
6: for all pairs α, β do

7: l′ := {〈q′, v′〉 : ∃〈q, v〉 ∈ l ,∃d, d
′
. 〈q, v〉 α(d)/β(d

′
)−→ 〈q′, v′〉};

8: if (l′ �= ∅ and l′ �∈ (Locs ∪ TempLocs)) then
9: TempLocs := TempLocs ∪ l′;

10: Edges := Edges ∪ l
α/β−→ l′;

11: end if
12: end for
13: TempLocs := TempLocs \ l;
14: Locs := Locs ∪ l;
15: end while

During Algorithm 1, we additionally merge locations which are “similar”,
in the sense that they share an extended state, since presumably their future
behavior is rather similar. Such new formed locations are added to TempLocs to
properly generate their successors. However, we must not merge locations if as
a result they will contain two extended states 〈q, v〉 and 〈q′, v〉 with the same
variable values but different control state, since action expressions (which can
only test values of variables) will not be able to distinguish the difference in
future behavior between q and q′.

Generating Action Expressions. It remains to generate an action expression
for each location l and input action type α, which distinguishes between the dif-
ferent behaviors of different extended states in the location. Our transformation
generates action expressions as decision tree structures of case expressions, each
of which tests some input parameters in p1, . . . , pn or state variable in v, reach-
ing appropriate leaves of form output β(d

′
) ; nextloc l′ . By thereafter

adding the appropriate assignment statement, a complete action expression has
been generated.

The decision tree structure of the case expressions in the action expression
of location l and input action type α should be constructed so that whenever it
is presented with values d of input parameters p and values v of state variables
v, such that

〈q, v〉 α(d)/β(d
′
)−→ 〈q′, v′〉

is an extended transition from some 〈q, v〉 ∈ l to some 〈q′, v′〉 ∈ l′ with l
α/β−→

l′ ∈ Edges, then the decision tree should reach the output symbol β(d
′
) and

location l′. There are well-developed algorithms to generate decision trees from
a set of such constraints, among the most well-known being ID3 [25,21]. The ID3

666 T. Bohlin, B. Jonsson, and S. Soleimanifard

algorithm generates a minimal decision tree from a given set of examples (in our
case generated from extended transitions as above). The generated decision tree
structures are typically much more compact than the set of “flat” Mealy machine
transitions that they cover, in particular if the input alphabet is large.

4 Implementation

Based on the techniques described in Section 3.2, we have developed an imple-
mentation, which gets a description of a “flat” Mealy machine, possibly together
with user-supplied criteria for forming state variables and control locations to
override the default ones, and generates a Symbolic Mealy machine. Several
non-default criteria for making control locations and/or decision trees have been
considered and implemented. In addition to the criterion used in Algorithm 1,
our implementation also accepts the criterion that sucessor locations of extended

transitions 〈q, v〉 α(d)/β(d
′
)−→ 〈q′, v′〉 with the same output action type β should be

in the same location, as well as the criterion that extended transitions with the
same output symbol β(d

′
) should be in the same location. For these criteria,

Algorithm 1 and the generation of action expressions are changed accordingly.
Users can try alternative criteria to see which resulting structure better suits
their purpose.

In our tool we use an implementation of ID3 provided by Weka (Waikato Envi-
ronment for Knowledge Analysis) a data mining tool developed at the University
of Waikato, New Zealand, and distributed under the Gnu Public Licence. It in-
cludes a wide variety of state-of-the-art algorithms of data mining and machine
learning which are implemented in Java [30].

5 Experiments

In this section, we describe the application of our implemented technique to
generating a model of the Mobile Arts Advanced Mobile Location Center (A-
MLC) protocol. We have chosen A-MLC because we have access to an executable
specification, which has been created to be understood by developers and testers.
This makes A-MLC suitable for our experimentation since we can both execute
large numbers of membership queries and can compare our resulting model with
the provided one.

The A-MLC protocol is a middle-ware product that allows Mobile Network
Operators to provide presence information from the GSM/UMTS network, in-
cluding details about the location, present status, and capabilities of mobile
devices. It is commercially available and has been deployed at several telecom
operators within Europe.

The implementation of A-MLC was made mainly in Erlang [3] It consists
of approximately 130,000 lines of Erlang code and 5,500 lines of C code. The
originators of the A-MLC protocol have written a functional specification of
the protocol in order to generate high-quality test suites [7]. The specification

Inferring Compact Models of Communication Protocol Entities 667

essentially has the form of a Symbolic Mealy machine, and captures all traffic
sequences through A-MLC. Low level protocols, as well as operation and main-
tenance interfaces, are not part of the specification. The specification models
the behavior resulting from an individual client request, since the interaction
between concurrent requests is minimal.

We have used an executable version of this specification, implemented using
the Erlang behavior module gen fsm (Generic Finite State Machine Behavior),
as the SUT. The specification consists of 13 control states, 23 state variables,
and 10 input action types with different arities.

For the inference experiment, we defined small domains for the values of pa-
rameters in input symbols, in order to be able to carry out enough membership
queries to complete the inference process. For most parameters, these domains
were already small in the original specification (typically 2 − 4 values), and for
others, we could choose a representive sample that would allow coverage of the
entire specification. In one case, however, this reduction made a part of the model
unreachable (as described in Section 6): for input parameter status of atir ac-
tion type which can assume values not reachable, reachable and undefined,
we only used the value not reachable. In all, this resulted in an input alphabet
of 1560 input symbols.

To construct a Mealy machine model of the executable specification of the
A-MLC protocol by regular inference, we used the LearnLib tool [26], devel-
oped at the University of Dortmund, which has an efficient implementation of
the L∗ algorithm. This tool provides several different realizations of equivalence
queries, including conformance tests suite generated by the Vasilevsky-Chow
algorithm[9,29]), and random test suites of user-controlled size. We finally ap-
plied our implementation of the transformation in 3.2 to transform the flat Mealy
machine generated by LearnLib into a symbolic one.

6 Results

Applying LearnLib to the executable specification resulted in a Mealy machine
with 44 states. It took about 43 hours to complete the inference, during which
LearnLib asked about 175 million membership queries. As equivalence oracle,
LearnLib used a test suite of 1000 randomly generated tests of length 10.

The generated “flat” Mealy machine exhibits 59 different sequences of output
symbols on its transitions, formed from 11 distinct sequences of output action
types. A part of the Mealy machine is shown in Figure 2. In the figure, states
q0 till q8 can be seen with some of their transitions, which we have labeled by
pairs of input-output action types. E.g., the dashed transition from state q7 to
state q1, has srir as input action type and write cache and slia as output
action types. Later in this section, in Table 3a, we correlate the states of this
figure with control locations of the executable specification.

Most of the transitions of the Mealy machine output the error symbol (rep-
resenting that the corresponding input symbol is “illegal”). Before generating a
symbolic representation using our tool, we removed these, since we are interested

668 T. Bohlin, B. Jonsson, and S. Soleimanifard

q1

q0

slir/slia slir/slia,ati

q2

slir/ati

q3

slir/psi

q4

slir/sri q5

slir/sri

q6

slir/sri

q7

slir/sri

atir/sri

psir/slia

srir/slia

srir/sliaq8

srir/fsmTimer

srir/sliasrir/write_cache,slia srir/write_cache,

Fig. 2. The inferred Mealy machine, states q0 − q8

Location Control State

[q0] IDLE
[q1] DONE
[q2] LAST POS
[q3] LAST POS
[q4-q7] ACCESS NETPARAM
[q8] FORCE UPDATE
[q9] TIMER TRIGGERED
[q11-q15] NOT YET UPDATED,

WAIT FSM RESP
[q16] MAYBE UPDATED
[q17] WAIT POS RESP
[q10,q18-q41] UPDATED
[q42] TERMINATE MMS

LAST NETPARAM

(a) Correspondence between loca-
tions in our symbolic representation
and in the executable specification

[q1]

[q0]

slir/slia

[q2]

slir/ati

[q3]

slir/psi

[q4-q7]

slir/sri

atir/sri

psir/slia

[q8]

sri/fsmTimer

f

[q10, q18-q41]

fsmr/timerStop,ati

[q9]

fsmTimer/ati

atir/sliaatir/write_cache,slia [q42]

atir/write_cache,slia,fsmr

[q11-q15]

atir/ok

[q17]

fsmr/abort,write_cache,slia

[q16]

fsmr/ok

fsmr/write_cache,slia

fsmr/ati

atir/ok

atir/ati

fsmr/ok

(b) The compacted structure

Fig. 3.

in being equivalent with respect to the legal input strings. The structure of con-
trol locations and edges generated by our transformation is shown in Figure 3b,
We used the same criterion for forming control locations as used in Algorithm 1.
In Figure 3b, boxes represent locations. Each location is labeled with the set of
states of that “flat” Mealy machine that occured in forming this location.

6.1 Evaluation

To evaluate our transformation we compare

– coverage: the number of the control locations and edges in the executable
specification that are captured in our symbolic representation,

Inferring Compact Models of Communication Protocol Entities 669

– similarity: of the locations in our symbolic representation and of those in the
executable specification,

– readability: of the action expressions of our symbolic representation, as com-
pared with those in the executable specification.

Coverage. Out of the 13 control locations of the executable specification, 12 have
been reached in our symbolic representation. The control location
LAST NETPARAM could not be reached, since we had reduced the range of
parameter status, as described in Section 5.

The executable specification has 60 edges. The described reduction of the
parameter range of status causes 20 of these to become unreachable. Of the
remaining 40, our model captured 26. The missing 14 edges are all missing for
the reason that LearnLib incorrectly merged two particular states in the flat
Mealy machine. Let us explain how. The state q5 in Figure 2 is reached by
(among others) slir messages with both the values psi and ati of one particu-
lar parameter. The effect of these parameter values is not externally observable
immediately in the behavior of the SUT, but shows up only two transitions
later. However, the L∗ algorithm sees that the message following the slir mes-
sage with parameter value psi triggers the same output as the message fol-
lowing the slir message with parameter value ati. L∗ then assumes that all
the replies to all following messages does not depend on whether the param-
eter value psi or ati was supplied with the slir message. It then continues
to explore continued behavior of the SUT only for longer input strings that
start with the ati value. This problem can be avoided by having more powerful
test suites in equivalence oracles. Our equivalence test used only 1000 randomly
chosen input strings of length 10; we conjecture that longer input strings and a
larger equivalence test would discover the differences between the two parameter
values.

Similarity. Table 3a shows how the locations of our symbolic represen-
tation correspond to those of the executable specification. The locations
NOT YET UPDATED and WAIT FSM RESP are not distinguished in our sym-
bolic representation, since they are reached by the same sequence of input-output
action types. Also, locations [q2] and [q3] correspond to location LAST POS,
which can be reached by two different pairs of input-output action types.

1 in location IDLE
2 when S l i r (m s i s , l o c t , n e t p , e p s i , f r c , l r a)
3 i f (e p s i)
4 i f (f r c)or ((! f r c)and ((l r a)and(l o c t = l a s t)))
5 case (n e t p) of
6 fa l s e : output P s i (n e t p) ; nextloc LAST POS ;
7 true : output S r i (m s i s) ; nextloc ACCESS NETPARAM;
8 endcase
9 e lse i f ((! f r c)and (! l r a)){output S l i a (n e t p , m s i s) ; nextloc DONE;}

10 e lse {output E r r M s g ; nextloc ErrLoc ;}
11 . . .
12 M S I S : = m s i s ; L O C T : = l o c t ; N E T P : = n e t p ; F R C : = f r c ; L R A : = l r a ;
13 end

Fig. 4. Small extract of executable specification

670 T. Bohlin, B. Jonsson, and S. Soleimanifard

1 in location IDLE
2 when S l i r (m s i s , l o c t , n e t p , e p s i , f r c , l r a)
3 i f (e p s i)
4 case n e t p of
5 f a l s e :
6 i f (! f r c)
7 i f (! l r a) {output S l i a (n e t p , m s i s) ; nextloc DONE;}
8 el se i f (l r a) {output P s i (n e t p) ; nextloc LAST POS;}
9 e lse i f (f r c) {output P s i (n e t p , m s i s) ; nextloc LAST POS;}

10 true :
11 i f (! f r c) {
12 i f (! l r a) {output S l i a (n e t p , m s i s) ; nextloc DONE;}
13 el se i f (l r a) {output S r i (m s i s) ; nextloc ACCESS NETPARAM;}
14 e lse i f (f r c) {output S r i (m s i s) ; nextloc ACCESS NETPARAM;}
15 endcase
16 . . .
17 M S I S : = m s i s ; L O C T : = l o c t ; N E T P : = n e t p ; F R C : = f r c ; L R A : = l r a ;
18 end

Fig. 5. Small extract of action expression related to specification part in Figure 4

Readability. Since we cannot compare the two models in their entirety, we have
chosen to compare two typical action expressions, representing the same be-
havior. Figure 5 shows a part of our generated action expression from the ini-
tial location when a message of form Slir with formal parameters (msis, loct,
maxage, netp, epsi) is received, and Figure 4 shows the corresponding part of
the executable specification. In the figures, the values of input parameters are
assigned to state variables, shown by upper-case letters, in line 17 of Figure 5 and
line 12 of Figure 4. To simplify the comparison between the action expression
and executable specification we have replaced the parameter values of output
symbols by the names of parameters received with the input symbol. For this
we carefully matched the values of the parameters in output symbols with the
input action type’s parameter names and found the corresponding parameter
name for each parameter value.

We see that the action expression is more compact in the executable speci-
fication. One reason is that it uses complex boolean expressions (e.g., Figure 4
line 4), whereas our representation only uses a simple decision tree structure
which tests one parameter or variable at a time. This makes the executable
specification smaller than our representation, but sometimes more difficult to
understand.

Another difference is that our representation does not explicitly return an
error message on illegal input. This allows our action expressions to sometimes
omit distinctions. In this example, the parameter loct is tested in Figure 4 line 4
but not in Figure 5.

7 Conclusions and Future Work

We have presented an technique for using regular inference to infer symbolic
models of communication protocol entities, aiming to make them compact and
readable. We first apply existing regular inference techniques to construct a “flat”
Mealy machine model of the protocol, which is thereafter folded into a Symbolic
Mealy machine. We have applied our approach to an executable specification of
the A-MLC protocol developed by Mobile Arts. We used LearnLib to generate a

Inferring Compact Models of Communication Protocol Entities 671

flat Mealy machine, which was then transformed into a symbolic representation
by our implementation. We evaluated the result by comparing it to the original
executable specification.

The two models had many similarities, but differed in some respects. Our
model did not cover all the locations and transitions of the SUT, due to an
incorrect merging of two states by the L∗ algorithm, which caused a part of the
behavior to be unexplored. We conjecture that this problem would go away if
we would have used a larger test suite for checking the generated model; at the
time of the experiment our time and space resources did not allow this. Our
structure of locations was surprisingly similar to that of the manually generated
executable specification. Our action expressions has a rather simple form, and
thus they become longer than corresponding hand-generated ones. This suggests
to look at more advanced ways to generate action expressions in a richer syntax,
and to employ code transformations that reduce redundancies.

Acknowledgments. We are grateful to Harald Raffelt, Bernhard Steffen and
Falk Howar for generous support when using the LearnLib tool, and for helpful
discussions.

References

1. Ammons, G., Bodik, R., Larus, J.: Mining specifications. In: Proc. 29th ACM

Symp. on Principles of Programming Languages, pp. 4–16 (2002)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information

and Computation 75(2), 87–106 (1987)

3. Armstrong, J.: Programming ERLANG: software for a concurrent world. In: The

Pragmatic Programmers (2007)

4. Ball, T., Rajamani, S.: The SLAM project: Debugging system software via static

analysis. In: Proc. 29th ACM Symp. on Principles of Programming Languages, pp.

1–3 (2002)

5. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines with param-

eters. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 107–121.

Springer, Heidelberg (2006)

6. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines using do-

mains with equality tests. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS,

vol. 4961, pp. 317–331. Springer, Heidelberg (2008)

7. Blom, J., Jonsson, B.: Automated test generation for industrial erlang applications.

In: Proc. 2003 ACM SIGPLAN workshop on Erlang, Uppsala, Sweden, pp. 8–14

(August 2003)

8. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-

Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

9. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.

on Software Engineering 4(3), 178–187 (1978)

10. Cobleigh, J., Giannakopoulou, D., Pasareanu, C.: Learning assumptions for com-

positional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,

vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

11. Fowler, M.: UML Distilled – A Bried Guide to the Standard Object Modeling

Language, 3rd edn. Addison-Wesley, Reading (2008)

672 T. Bohlin, B. Jonsson, and S. Soleimanifard

12. Gold, E.M.: Language identification in the limit. Information and Control 10(5),

447–474 (1967)

13. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P.,

Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg

(2002)

14. Groz, R., Li, K., Petrenko, A., Shahbaz, M.: Modular system verification by in-

ference, testing and reachability analysis. In: Suzuki, K., Higashino, T., Ulrich,

A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 216–233.

Springer, Heidelberg (2008)

15. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated

regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,

vol. 2306, pp. 80–95. Springer, Heidelberg (2002)

16. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc. 29th

ACM Symp. on Principles of Programming Languages, pp. 58–70 (2002)

17. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-

ing. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–

327. Springer, Heidelberg (2003)

18. Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory.

MIT Press, Cambridge (1994)

19. Li, K., Groz, R., Shahbaz, M.: Integration testing of distributed components based

on learning parameterized I/O models. In. In: Najm, E., Pradat-Peyre, J.-F.,

Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 436–450. Springer,

Heidelberg (2006)

20. Mariani, L., Pezzè, M.: Dynamic detection of COTS components incompatibility.

IEEE Software 24(5), 76–85 (2007)

21. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

22. Niese, O.: An integrated approach to testing complex systems. PhD thesis, Dort-

mund University (2003)

23. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: FORTE/PSTV

1999, Beijing, China, pp. 225–240. Kluwer, Dordrecht (1999)

24. Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing.

IEEE Trans. on Software Engineering 30(1), 29–42 (2004)

25. Quinlan, J.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

26. Raffelt, H., Steffen, B., Berg, T.: Learnlib: a library for automata learning and

experimentation. In: FMICS 2005, New York, NY, USA, pp. 62–71 (2005)

27. Rivest, R., Schapire, R.: Inference of finite automata using homing sequences. In-

formation and Computation 103, 299–347 (1993)

28. Shahbaz, M., Li, K., Groz, R.: Learning and integration of parameterized compo-

nents through testing. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W.

(eds.) TestCom/FATES 2007. LNCS, vol. 4581, pp. 319–334. Springer, Heidelberg

(2007)

29. Vasilevski, M.P.: Failure diagnosis of automata. Cybernetic 9(4), 653–665 (1973)

30. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques with Java Implementations. Morgan Kaufmann, San Francisco (1999)

Inference and Abstraction of the Biometric
Passport�

Fides Aarts1, Julien Schmaltz1,2, and Frits Vaandrager1

1 Institute for Computing and Information Sciences, Radboud University Nijmegen

{f.aarts,f.vaandrager}@cs.ru.nl
2 School of Computer Science, Open University of The Netherlands

julien.schmaltz@ou.nl

Abstract. Model-based testing is a promising software testing tech-

nique for the automation of test generation and test execution. One

obstacle to its adoption is the difficulty of developing models. Learning

techniques provide tools to automatically derive automata-based mod-

els. Automation is obtained at the cost of time and unreadability of the

models. We propose an abstraction technique to reduce the alphabet

and large data sets. Our idea is to extract a priori knowledge about the

teacher and use this knowledge to define equivalence classes. The latter

are then used to define a new and reduced alphabet. The a priori knowl-

edge can be obtained from informal documentation or requirements. We

formally prove soundness of our approach. We demonstrate the practi-

cal feasibility of our technique by learning a model of the new biometric

passport. Our automatically learned model is of comparable size and

complexity of a previous model manually developed in the context of

testing a passport implementation. Our model can be learned within one

hour and slightly refines the previous model.

1 Introduction

Learning techniques, e.g., regular inference (also known as automata learn-
ing) [4], can be used to automatically create a model from an existing imple-
mentation. The regular inference algorithms provide sequences of inputs, called
membership queries, to a system and observe the responses. In addition, equiva-
lence queries check whether the procedure is completed. The practical applica-
tion of learning techniques faces two issues: (1) the time to learn a model grows
very fast with the size of the input alphabet and (2) automatically learned mod-
els are hard to read. Recently, a new abstraction technique has been proposed
to reduce the size of the input alphabet and learn readable models [1,2].

Model-based testing (MBT) is a promising software testing approach provid-
ing full automation of test-cases generation and test-cases execution. Test-cases
are automatically derived from a specification model of the System Under Test

� Supported by the European Community’s 7th Framework Programme No. 214755

(QUASIMODO).

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 673–686, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

674 F. Aarts, J. Schmaltz, and F. Vaandrager

(SUT). The MBT paradigm requires the existence of a formal model. Developing
models is a complex, time-consuming, and error-prone task. Moreover, software
systems evolve rapidly and models have to be updated or even new models have
to be constructed. This cost of developing and maintaining models is a major
obstacle to the wide adoption of MBT. Learning techniques could here play a
role. In contrast to models, prototypes and partial implementations are always
available during the development of software. One could learn a model from a
reference implementation and use this model to test whether new implementa-
tions are still conforming to this reference model. Learning techniques could be
used to derive the model at the first place.

In this paper, we apply the abstraction technique of Aarts et al. [1,2] to learn
a model of the new generation of biometric passports [10,6]. The main idea of
the abstraction technique is to extract a bit of a priori knowledge from docu-
mentation or interviews and use it to divide concrete parameter values into a
small number of equivalence classes. This speeds up the learning process and
reduces model size. In contrast to a previous application of this technique [1,2]
we validate our automatically derived model against a previous hand-made spec-
ification of the passport [13]. This specification was used to validate the Dutch
implementation of the biometric passport using the ioco-theory for MBT [16].
We implemented our abstraction as a mapping module and connected it to the
LearnLib library for regular inference [15]. After translating our automatically
derived Mealy machine to a Labelled Transition System (LTS), we used the tool
JTorX [5] to show that this learned model is ioco-conforming to the hand-made
specification. Our model can be learned within one hour and is of compara-
ble complexity and readability as the hand-made one. It took several hours to
develop the latter.

Our main contribution is to demonstrate and validate the applicability of our
abstraction technique for learning automata to a practical and realistic case-
study. The main result is that the model learned is comparable in size and
correct w.r.t. to a previously hand-made specification. The time needed for a
computer to learn the model from an existing implementation is much less than
the time needed by a human to develop it.

The rest of the paper is organized as follows. In the next section, we give
an overview of our approach. In Section 3, we review the Mealy machine model,
regular inference, and our abstraction technique. Section 4 gives a short overview
of the biometric passport; the experiments and according results are reported in
Section 5. Finally, Section 6 contains conclusions and directions for future work.

2 Overview

Our approach works as follows. The goal is to learn a model of a SUT - the bio-
metric passport. For the learning process we use three components: a Learner
(LearnLib), a Teacher (SUT), and an intermediate layer called Abstraction map-
ping that reduces the alphabet of the SUT, see Learning box in Figure 1. The
abstraction mapping is created using a priori knowledge extracted from informal

Inference and Abstraction of the Biometric Passport 675

Fig. 1. Overview

specifications, observing the behavior of the SUT, interviews with experts, etc.
Eventually, the learning algorithm generates a Mealy machine model of the SUT.
If a reference model is available, we can validate the learned implementation to
check whether it is correct with respect to the specification. In our approach, we
use the testing relation ioco [16,17], which is implemented in the JTorX tool [5].
The Mealy machine model has to be transformed to an Input-Output Transition
System (IOTS) to allow comparison with the specification represented as a LTS,
see Validation box in Figure 1. We use an abstracted version of the specification
to conform to the alphabet defined in the IOTS. The abstract LTS is based on
a formal model created by Mostowski et al. [13] to adopt model-based testing.
Their model was fed to the testing tool TorXakis (based on TorX [18]) that
automatically generates and executes test cases on-the-fly. By comparing the
responses of the SUT to those specified in the model, a verdict can be made, see
MBT box in Figure 1.

3 Inference and Abstraction of Mealy Machines

In this section, we present basic principles of Mealy machines, how to infer them
and to what extent abstraction techniques can be useful within learning.

676 F. Aarts, J. Schmaltz, and F. Vaandrager

3.1 Mealy Machines

A (nondeterministic) Mealy machine (MM) is a tuple M = 〈I, O, Q, q0,→〉,
where

– I, O and Q are finite, nonempty sets of input symbols, output symbols, and
states, respectively,

– q0 ∈ Q is the initial state, and
– →⊆ Q × I × O × Q is the transition relation.

We write q
i/o→ q′ if (q, i, o, q′) ∈→, and q

i/o→ if there exists a q′ such that q
i/o→ q′.

Mealy machines are assumed to be input enabled : for each state q and input i,

there exists an output o such that q
i/o→. The transition relation is extended to

sequences by defining
u/s⇒ to be the least relation that satisfies, for q, q′, q′′ ∈ Q,

u ∈ I∗, s ∈ O∗, i ∈ I, and o ∈ O.

q
ε/ε⇒ q

q
u/s⇒ q′ ∧ q′

i/o→ q′′ ⇒ q
u i/s o⇒ q′′

A Mealy machine is deterministic if for each state q and input i there is exactly

one output o and exactly one state q′ such that q
i/o→ q′.

An intuitive interpretation of a Mealy machine is as follows. At any point in
time, the machine is in some state q ∈ Q. It is possible to give inputs to the
machine by supplying an input symbol i ∈ I. The machine then (nondetermin-

istically) selects a transition q
i/o→ q′, produces output symbol o, and transforms

itself to the new state q′.
For q ∈ Q and u ∈ I∗, define obsM(q, u) to be the set of output sequences that

may be produced when offering input sequence u to M, that is, obsM(q, u) =

{s ∈ O∗ | ∃q : q
u/s⇒ q}. Two states q, q′ ∈ Q are observation equivalent, notation

q ≈ q′, if obsM(q, u) = obsM(q′, u), for all input strings u ∈ I∗. We write
obsM(u) as a shorthand for obsM(q0, u). Two Mealy machines M1 and M2

with the same sets of inputs I are observation equivalent, notation M1 ≈ M2, if
obsM1(u) = obsM2(u), for all input strings u ∈ I∗. We say that M is behavior
deterministic if obsM(u) is a singleton set for each input sequence u. It is easy
to see that a deterministic Mealy machine is also behavior deterministic.

Let M1 and M2 be two Mealy machines with the same sets of input symbols.
A bisimulation between M1 and M2 is a relation S ⊆ Q1 × Q2 satisfying:

q1 S q2 ∧ q1
i/o→1 q′1 ⇒ ∃q′2 : q2

i/o→2 q′2 ∧ q′1 S q′2,

q1 S q2 ∧ q2
i/o→2 q′2 ⇒ ∃q′1 : q1

i/o→2 q′1 ∧ q′1 S q′2.

We say that Mealy machines M1 and M2 are bisimilar, notation M1 . M2, if
there exists a bisimulation relation between them that contains the pair (q0

1 , q
0
2).

Since the union of bisimulations is again a bisimulation, there exists a largest
bisimulation. We write q1 . q2 if the pair (q1, q2) ∈ Q1 × Q2 is contained in the
largest bisimulation. The following lemma is well-known and easy to prove.

Inference and Abstraction of the Biometric Passport 677

Lemma 1. Let M1 and M2 be Mealy machines with the same sets of inputs I
and let M2 be deterministic. Then, for q1 ∈ Q1 and q2 ∈ Q2, q1 . q2 iff q1 ≈ q2.

3.2 Inference of Mealy Machines

In this section, we present the setting for inference of Mealy machines. For this
purpose we make use of an extension to Angluin’s L∗ algorithm [4] due to Niese
[14]. There is a Teacher , who knows a behavior deterministic Mealy machine
M, and a Learner, who initially has no knowledge about M, except for its sets
I and O of input and output symbols. The Learner can ask two types of queries
to the Teacher :

– A membership query consists in asking what the response is to an input
string u ∈ I∗. The Teacher answers with an output string s ∈ O∗.1

– An equivalence query consists in asking whether a hypothesized machine H
is correct, i.e., whether H is observation equivalent to M. The Teacher will
answer yes if H is correct or else supply a counterexample, which is a string
u ∈ I∗ such that u produces a different output string for both automata,
i.e., obsM(u) �= obsH(u)

The typical behavior of a Learner is to start by asking a sequence of membership
queries until a “stable” hypothesis H can be built from the answers. After that an
equivalence query is made to find out whether H is equivalent to M. If the result
is successful, the Learner has succeeded. Otherwise the returned counterexample
is used to perform subsequent membership queries until converging to a new
hypothesized automaton, which is supplied in an equivalence query, etc.

3.3 Inference Using Abstraction

Existing implementations of inference algorithms only proved effective when ap-
plied to machines with small alphabets (sets of input and output symbols).
Practical systems, however, typically do not have small alphabets. An example
are communication protocols that interact with each other via messages consist-
ing of an action type and a number of parameters, each of which can potentially
take on a large number of values. As a result, the number of input and output
symbols may be astronomical. In previous work, we developed a technique for
using regular inference to infer models of large-state Mealy machines [1,2]. The
main idea is to transform the interface of the SUT by an abstraction mapping.
We have adapted ideas from predicate abstraction [12,8], which has been suc-
cessful for extending finite-state model checking to larger and even infinite state
spaces.

Assume that we are given the task of inferring a (possibly large) Mealy ma-
chine M that describes the behavior of a SUT. In order to make the learning
1 Actually, the term membership query does not conform to this setting, because we do

not check whether a certain string belongs to the language or not. In fact, the term

output query would be more appropriate. However, because it is commonly used, we

decided to keep the term membership query in the continuation of this paper.

678 F. Aarts, J. Schmaltz, and F. Vaandrager

task feasible, we place a transducer in between the Learner and the SUT, which
transforms large (parameter) domains of input and output strings of machine
M into small ones. The combined behavior of the SUT and the transducer can
be described by a Mealy machine MA, which has smaller alphabets and (hope-
fully) also a smaller state space. This makes the task for the Learner simpler.
All membership and equivalence queries generated by the Learner are trans-
lated by the transducer into realistic messages with possibly large (parameter)
domains to accomplish the communication with the SUT, see the Learning part
in Figure 1. Answers to queries are handled the opposite way around. To create
an abstraction mapping for the transducer, we need to define when and how a
concrete symbol is mapped to an abstract symbol. In general, this may require a
set V of state variables to remember previous values and expressions that define
when to update them. When not enough a priori knowledge about the behavior
of M is available in the informal specification, an initial observation phase or
interviews may be needed to create the abstraction mapping. Once we have in-
ferred a Mealy machine equivalent to MA, we have learned quite a bit about the
behavior of the SUT, that is, about M. In fact, in some cases (and this includes
the biometric passport) we can even infer M from MA if we are willing to make
certain structural assumptions (e.g. symmetries) about the behavior of the SUT.

Example. Consider a parameter Id that is used for a session establishment. We
know that the SUT establishes a connection for the first generated Id value. All
other newly generated values are treated in the same way, i.e. they are rejected.
Accordingly, we can divide the values into two equivalence classes FIRST and
NEW. The learning algorithm generates one of these two abstract values, which
are translated to a concrete value by the abstraction mapping. Moreover, we
store the concrete value in a state variable firstId or newId. These variables
can be used to map a concrete output value to an abstract one. Assume that
according to the specification, the SUT should return the Id received in the
previous input message. By comparing the generated concrete output value to
the value in the state variable, we can assign the output symbol one of the
abstract values: EQUAL or NOT EQUAL.

4 Biometric Passport

The biometric passport is an electronic passport provided with a computer chip
and antenna to authenticate the identity of travelers. The data stored on the
passport are highly confidential, e.g. they might contain fingerprints or an iris
scan of its owner, and are protected via several mechanisms to avoid and detect
attacks. Examples of used protocols are Basic Access Control (BAC), Active
Authentication (AA), and Extended Access Control (EAC) [6]. Official standards
are documented in the International Civil Aviation Organisation’s (ICAO) Doc
9303 [10].

Inference and Abstraction of the Biometric Passport 679

Fig. 2. Simplified model of the biometric passport

In this paper, we take a look at the interaction of the following messages:

– Reset resets the system.
– GetChallenge followed by CompleteBAC forms a BAC, which establishes

secure messaging with the passport by encrypting transmitted information.
– FailBAC constitutes an invalid BAC.
– ReadFile(int file) tries to access highly sensitive data specified in a certain

file, which is represented as an integer value in the range from 256 up to
(and including) 511.

– AA prevents cloning of passport chips.
– CA followed by TA forms an EAC, which uses mutual authentication and

stronger encryption than BAC to control access to highly confidential data.
– FailEAC constitutes a valid CA and an invalid TA.

For each of these messages a value OK or NOK may be returned by the SUT.
A global overview of the valid behavior is depicted in Figure 2, where a BAC
consists of a GetChallenge followed by a CompleteBAC and an EAC constitutes
a CA followed by a TA. The files 257 and 258 should be readable after a BAC.
File 257 contains Machine Readable Zone (MRZ) data, i.e. name, date of birth,
nationality, document number, etc. whereas file 258 contains a facial image. File
259 comprises biometric data like fingerprints or an iris scan, which are only
readable after a BAC followed by an EAC. All other files should not be readable
at any point in time.

5 Experiments

We have implemented and applied our approach to infer a model of the biometric
passport described in Section 4. In this section, we first describe our experimental
setup, thereafter its application and a validation of our technique.

We used an authentic biometric passport as SUT. The data on the chip could
be accessed via a smart card reader; JMRTD1 served as API. We connected
the SUT to an abstraction mapping, which performed a translation as described
in Section 5.1. As Learner, we used the LearnLib library [15], developed at the
Technical University Dortmund. This tool provides a Java implementation of the
L* algorithm adapted by Niese. Because LearnLib views the SUT as a black box,
equivalence queries can only be approximated by a large number of membership
queries. In our experiments we used the W-Method by Chow [7] for equivalence
approximation.

680 F. Aarts, J. Schmaltz, and F. Vaandrager

5.1 Abstraction Mapping

As described in Section 4, only the ReadFile message has a parameter called file,
which can take on integer values in the range from 256 up to (and including) 511.
Actually, each of these numbers has to be considered separately in the inference
process, which would require a lot of time and memory space. By taking a closer
look at the informal specification of the passport, we discovered that different
files should be treated in the same way by the SUT. As one can see in Figure
2, files 257 and 258 should be readable after a BAC, 259 after a BAC followed
by an EAC and the rest of the files should never be readable. Using this a
priori knowledge about the passport, we can divide the values into three disjoint
equivalence classes, which are:

– ValidAfterBAC refers to the files that can be read after a BAC, i.e. 257 and
258.

– ValidAfterEAC refers to the files that only can be read after a BAC followed
by an EAC, i.e. 259.

– NotValid refers to the files that can never be read, i.e. all files except for 257,
258 and 259.

In the abstraction mapping an abstract value is translated to a concrete one by
randomly choosing an element within the corresponding equivalence class. If the
numbers are partitioned incorrectly, then there are two values in the same class
that will produce a different response. This non-deterministic behavior will be
detected by LearnLib, which will give an error message.

5.2 Results

The inference performed by LearnLib needed about one thousand membership
queries and one equivalence query, and resulted in a model HA with five states
and 55 transitions. Without our abstraction mapping, the Mealy machine would
have had 1320 transitions, but also five states. The total learning time took less
than one hour2. This is significantly shorter than deriving the model manually
from the informal specs, which took about 5 hours. All results are summarized
in Table 1. For presentation purposes, we have depicted the model as follows: (1)
we removed self-transitions with NOK as output. Because the model is input-
enabled all missing entries refer to this kind of transition. (2) Transitions with
same source location, output symbol and next location (but with different input
symbols) are merged by concatenating the input symbols, separated by a bar (|).
The resulting transition diagram has five locations and 19 transitions as shown
in Figure 3.

The implementation of the biometric passport does not respond to a Reset
input. For all other outputs the reaction time is dependent on the input symbol.
If the waiting time for an output is too short, then an output symbol may be

2 The experiments have been carried out on a PC with an Intel Pentium M 1.86GHz

processor and 1GB of RAM.

Inference and Abstraction of the Biometric Passport 681

Table 1. Learning statistics

Membership queries 1078a

Total input symbols used in membership queries 4158

Average membership query length 3,867

Equivalence queries 1

Total learning time < 60 minutes

a This number does not include membership queries used for equivalence approxima-

tion.

Fig. 3. Learned model HA of the biometric passport

returned after a timeout has been assumed. In contrast, if the waiting time is too
long, then the passport application crashes after certain inputs. As a solution,
we changed the API of the SUT, so that it returns an OK symbol for each Reset
input. By always returning an output symbol, we do not have to struggle with
appropriate waiting times per input symbol. Instead, we wait until an output is
received.

According to the passport specification, the implementation should be de-
terministic. However, surprisingly, the passport application sometimes exhibits
non-deterministic behavior. LearnLib is restricted to infer behavior determin-
istic Mealy machines and cannot cope with non-deterministic behavior. Ana-
lyzing the external behavior of the system revealed that after a GetChallenge,

682 F. Aarts, J. Schmaltz, and F. Vaandrager

CompleteBAC, CA, TA input sequence mostly an OK is returned, but in some
rare cases it can also be a NOK. Together with Mostowski et al. we tried to
examine the internal behavior of the application to understand where the non-
determinism originates from. During their work this problem has also been en-
countered, but it has never been reported. Because a TA call includes numerous
complex and long calculations, a problem can arise at several places. Moreover,
external circumstances may influence the produced results like connection to or
temperature of the smart card reader. In the end, we could not clearly determine
the fault location and had to accept that the inference can fail once in a while.

5.3 The Behavior of the SUT

We assume that the behavior of the digital passport can be modeled in terms of
a behavior deterministic Mealy machine M. Clearly, due to the abstraction that
we applied, the learned model HA is not equivalent to M: even the alphabets
are different. Let MA be the Mealy machine obtained from M by renaming
each action ReadFile(file) in accordance with the abstraction mapping defined
in Section 5.1. We assume that also MA is behavior deterministic. Since the SUT
and the transducer together behave like MA, the learned model HA should be
equivalent to MA. LearnLib implements several algorithms that can be used to
“approximate” equivalence queries, that is, to establish that the hypothesized
machine HA is observation equivalent to the model MA of the teacher. We have
used the well-known W-method of [7] (see also [11]). This method assumes a
known upper bound on the number of states n of MA. Depending on n the W-
method provides a test sequence of input symbols u with the property that MA

and HA are observation equivalent iff they produce the same output in response
to u. But assuming that we have established equivalence of MA and HA, what
have we learned about M?

We reverse the abstraction mapping and construct a “concrete” model H of
the passport as follows. We replace each ValidAfterBAC transition in HA by two
transitions with the same source and target but with labels ReadFile(257) and
ReadFile(258), respectively. Similarly, we replace each transition with label Val-
idAfterEAC by an identical transition with label ReadFile(259). Finally, we re-
place each transition with label NotValid by 253 identical transitions with labels
ReadFile(256), ReadFile(260), ReadFile(261), . . ., ReadFile(511), respectively.

The following theorem states that if M treats equivalent input symbols in
an equivalent way, observation equivalence of MA and HA implies observation
equivalence of M and H. So provided we are willing to make a structural as-
sumption about the behavior of the biometric passport, our abstraction does not
lead to any loss of information.

Theorem 1. Call two input actions i1, i2 of Mealy machine M equivalent, no-
tation i1 ≡ i2, if they are mapped to the same abstract action. Suppose that in
M equivalent inputs induce identical outputs and equivalent successor states:

i1 ≡ i2 ∧ q
i1/o1→ q1 ∧ q

i2/o2→ q2 ⇒ o1 = o2 ∧ q1 ≈ q2.

Then MA ≈ HA implies M ≈ H.

Inference and Abstraction of the Biometric Passport 683

Proof. Suppose MA ≈ HA. We must show that M ≈ H. Since HA is deter-
ministic, Lemma 1 implies that MA . HA. Let S be the maximal bisimulation
between MA and HA. It suffices to prove that S is a bisimulation between M
and H, since by Lemma 1 this implies M ≈ H.

Since S relates the initial states of MA and HA, it also relates the initial
states of M and H.

Suppose that (q, r) ∈ S and q
i/o→M q′. Suppose that the abstraction function

maps i to j. Then q
j/o→MA q′. Since S is a bisimulation between MA and HA,

there exists a state r′ such that r
j/o→HA r′ and (q′, r′) ∈ S. By construction of

H, r
i/o→H r′.

Now suppose that (q, r) ∈ S and r
i/o→H r′. Suppose the abstraction function

maps i to j. Then, by construction of H, r
j/o→HA r′. Since S is a bisimulation

between MA and HA, there exists a state q′ such that q
j/o→MA q′ and (q′, r′) ∈ S.

Therefore, by construction of MA, there exists a concrete input label k such that

the abstraction maps k to j and q
k/o→M q′. Since M is input enabled, there exists

an output label p and a state q′′ such that q
i/p→M q′′. Oberve that i ≡ k. Hence,

by the assumption of the theorem, o = p and q′ ≈M q′′. By construction of MA,
this implies q′ ≈MA q′′ By Lemma 1, applied to MA and HA, using the fact
that (q′, r′) ∈ S, we obtain (q′′, r′) ∈ S.

5.4 Validation

To validate the learned model of the biometric passport, we compared it to a
reference model taken from Mostowski et al. [13]. The specification is a LTS made
in Haskell3 and has to be transformed to a different format to allow comparison
with the inferred Mealy machine described in the DOT4 language.

For the comparison, we used JTorX [5], a tool to test whether the ioco test-
ing relation holds between a given specification and a given implementation.
Intuitively, an implementation i ∈ IOT S(LI , LU) is input-output conforming
to specification s ∈ LT S(LI , LU) if any experiment derived from s and executed
on i leads to an output from i that is foreseen by s. For a formal definition, we
refer to [17]. We have supplied JTorX with the specification and implementa-
tion as LTS - represented in Aldebaran5 format. The learned Mealy machine has
been transformed to a LTS by splitting each transition into two with the input
symbol on the first transition and the output on the second one connected by an
additional state. As a result, the input-enabledness of the Mealy machine gets
lost. To convert the learned LTS to an IOTS, JTorX adds self-loop transitions
to the according states. Furthermore, we removed the output OK for a Reset
input, because it is unknown by the specification, see Section 5.2.

3 http://www.haskell.org
4 http://www.graphviz.org
5 http://www.inrialpes.fr/vasy/cadp/man/aldebaran.html

684 F. Aarts, J. Schmaltz, and F. Vaandrager

Fig. 4. Specification fragment of the biometric passport

According to JTorX, the implementation is ioco conforming to the specifica-
tion, but not vice versa. This is not surprising as the learned model is input-
enabled while the specification is not. For example, the specification does not
specify a CompleteBAC input in the initial state while the learned implemen-
tation does, see Figure 4 for a fragment of the specification. We only show
the inputs in the initial state with according outputs, because the entire model
contains too many states and transitions. As one can see, the automaton corre-
sponds to a Mealy machine. Except for the Reset input, each input is followed
by an output. If we would transform the specification to a Mealy machine, it
would not be input-enabled. Because LearnLib infers an input-enabled Mealy
machine of the implementation, it contains more behavior than described by the
specification, which is allowed by the ioco testing relation.

6 Conclusions and Future Work

Using regular inference and abstraction, we have managed to infer a model of
the biometric passport that describes how the passport responds to certain input
sequences. Although quite a number of papers have been written on regular infer-
ence of state machines, the number of real applications to reactive systems is still
limited. The case study that we describe here is a small but real application. The
new biometric passport is going to be used by millions of people, and it is vital
that the confidential information stored on this passport is well-protected. Our
model, which slightly refines the earlier model of [13], may serve as a reference
model for testing different implementations of the biometric passport.

Inference and Abstraction of the Biometric Passport 685

The data abstraction that we applied when learning the passport may seem
rather obvious (and indeed is much simpler than the abstractions applied in
[1,2]), but is nevertheless crucial for the successful application of our learning
framework. In order to prevent brute force attacks, the biometric passport only
allows for about one input message per second. Without abstraction, the time
needed to apply the framework (and in particular the approximation of equiv-
alence queries via e.g. the W-method) would become prohibitively large. We
have proven that under some reasonable assumptions about the behavior of the
biometric passport, our abstraction does not lead to any loss of information.

The earlier model of [13] has been created manually in about 5 hours, whereas
our model has been produced automatically in less than one hour. Our ambition
is to further develop the learning framework, so that also for other applications
it becomes feasible to mechanize and speed-up the time-consuming and error
prone process of constructing reference models.

Due to the problems with the non-deterministic behavior of the passport,
an obvious topic for future research is to extend our approach to inference of
non-deterministic systems. Such an extension will be essential, when doing more
real-world case studies like this one.

If inferring an input-enabled Mealy machine is too time-consuming and we are
only interested in parts of the implementation, we may extend our abstraction
mappings with an interface automaton (IA) as suggested by [3]. An interface
automaton [9] is a labelled transition system with input and outputs, where
certain input actions may be illegal in certain states. When an input symbol
or sequence generated by the learning algorithm is not allowed by the specified
IA, this part of the implementation will not be inferred. By adding restrictions,
we can focus on those parts of the implementation that are described by the
specification.

Acknowledgement. We are grateful to Falk Howar from the TU Dortmund for
his generous LearnLib support, and Wojciech Mostowski for providing assistance
with JMRTD.

References

1. Aarts, F.: Inference and Abstraction of Communication Protocols. Master’s thesis,

Radboud University Nijmegen and Uppsala University (2009)

2. Aarts, F., Jonsson, B., Uijen, J.: Generating Models of Infinite-State Communica-

tion Protocols using Regular Inference with Abstraction. In: Proceedings ICTSS

2010, 22nd IFIP International Conference on Testing Software and Systems (2010)

3. Aarts, F., Vaandrager, F.: Learning I/O Automata. In: Proceedings CONCUR

2010, 21th International Conference on Concurrency Theory, pp. 71–85 (2010)

4. Angluin, D.: Learning regular sets from queries and counterexamples. Information

and Computation 75(2), 87–106 (1987)

5. Belinfante, A.: JTorX: A tool for on-line model-driven test derivation and exe-

cution. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.

266–270. Springer, Heidelberg (2010)

686 F. Aarts, J. Schmaltz, and F. Vaandrager

6. BSI. Advanced security mechanisms for machine readable travel documents - ex-

tended access control (eac) - version 1.11. Technical Report TR-03110, German

Federal Office for Information Security (BSI), Bonn, Germany (2008)

7. Chow, T.S.: Testing software design modeled by Infinite-state machines. IEEE

Trans.on Software Engineering 4(3), 178–187 (1978); Special collection based on

COMPSAC

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample- guided

abstraction refinement for symbolic model checking. Journal of the ACM 50(5),

752–794 (2003)

9. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Gruhn, V. (ed.) Proceed-

ings of the Joint 8th European Software Engineering Conference and 9th ACM

SIGSOFT Symposium on the Foundation of Software Engineering (ESEC/FSE-

2001). Software Engineering Notes, vol. 26, pp. 109–120. ACM Press, New York

(September 2001)

10. ICAO. Doc 9303 - machine readable travel documents - part 1-2. Technical report,

International Civil Aviation Organization, 6th edn. (2006)

11. Lee, D., Yannakakis, M.: Principles and methods of testing Finite state machines

a survey. Proc. IEEE 84(8), 1090–1126 (1996)

12. Loiseaux, C., Graf, S., Sifakis, J., Boujjani, A., Bensalem, S.: Property preserving

abstractions for the verifIcation of concurrent systems. Formal Methods in System

Design 6(1), 11–44 (1995)

13. Mostowski, W., Poll, E., Schmaltz, J., Tretmans, J., Wichers Schreur, R.: Model-

based testing of electronic passports. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008.

LNCS, vol. 5596, pp. 207–209. Springer, Heidelberg (2009)

14. Niese, O.: An integrated approach to testing complex systems. Technical report,

Dortmund University, Doctoral thesis (2003)

15. Raffelt, H., Steffen, B., Berg, T.: Learnlib: a library for automata learning and

experimentation. In: FMICS 2005: Proceedings of the 10th International Workshop

on Formal Methods for Industrial Critical Systems, pp. 62–71. ACM Press, New

York (2005)

16. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft-

ware - Concepts and Tools 17(3), 103–120 (1996)

17. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,

R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.

Springer, Heidelberg (2008)

18. Tretmans, J., Brinksma, H.: TorX: Automated model-based testing. In: Hartman,

A., Dussa-Ziegler, K. (eds.) First European Conference on Model-Driven Software

Engineering, pp. 31–43 (December 2003)

From ZULU to RERS
Lessons Learned in the ZULU Challenge�

Falk Howar, Bernhard Steffen, and Maik Merten

University of Dortmund, Chair of Programming Systems,

Otto-Hahn-Str. 14, 44227 Dortmund, Germany,

Tel.: ++49-231-755-7759; Fax: ++49-231-755-5802

{falk.howar,steffen,maik.merten}@cs.tu-dortmund.de

Abstract. This paper summarizes our experience with the ZULU chal-

lenge on active learning without equivalence queries, presents our win-

ning solution, investigates the character of ZULU’s rating approach, and

discusses how this approach can be taken further to establish a frame-

work for the systematic investigation of domain-specific, scalable learning

solutions for practically relevant application. In particular, it discusses

the RERS initiative, which provides a community platform together with

a learning framework that allows users to interactively compose complex

learning solutions on the basis of libraries for various learning compo-

nents, system connectors, and other auxiliary functionality. This frame-

work will be the backbone for an extended challenge on learning in 2011.

1 Motivation

In the last decade, active automata learning, an originally merely theoretical
enterprise, got attention as a method for dealing with black-box or third party
systems. Applications ranged from the support of formal verification, e.g. for
assume guarantee reasoning [10,22], to usage of learned models as the basis
for regression testing. In the meantime there exist a number of approaches ex-
ploiting active learning for validation [23,28,14,15,5,1,6]. This success may seem
surprising, because automata learning, in practice, is inherently neither correct
nor complete, and there are only few examples of learned systems of significant
size. Hardly any have more than 1,000 states, and to our knowledge the largest
learned realistic system is a router with about 22,000 states [24]. On the other
hand, there does not seem to be a good alternative for dealing with black-box
systems.

This situation calls for a concerted action to improve the state of the art of
practical learning. A first attempt in this direction was the ZULU challenge.
ZULU asked for learning solutions that function without the use of so-called
equivalence queries, which classically could be used to automatically derive a
counterexample distinguishing a learned hypothesis model from the target sys-
tem until equivalence has been established. The reason for excluding equivalence

� This work is supported by the European FP 7 project CONNECT (IST 231167).

T. Margaria and B. Steffen (Eds.): ISoLA 2010, Part I, LNCS 6415, pp. 687–704, 2010.
Springer-Verlag Berlin Heidelberg 2010

688 F. Howar, B. Steffen, and M. Merten

queries, which guaranteed the correctness and completeness of the theoretical
framework, was their lack of realism: in essentially all practical applications,
equivalence queries need to be approximated by the so-called membership queries,
which often can be implemented via testing. ZULU therefore took exactly this ap-
proach and allowed membership queries only, and, indeed, only a comparatively
small number of them. Also this latter limitation was motivated by a practi-
cal perspective: typically, the approximations of equivalence queries consume an
enormous amount of membership queries, and this was considered unrealistic as
well.

This paper summarizes our experience with the ZULU challenge on active
learning without equivalence queries, presents our winning solution, and

– investigates the character of ZULU’s rating approach, which ranks solutions
according to their prediction quality for language containment based on a
ZULU-generated test suite, and

– discusses how this approach can be taken further to establish a framework
for the systematic investigation of domain-specific, scalable learning solutions
for practically relevant application.

In particular, we discuss the RERS initiative [8], which provides a community
platform together with a learning framework that allows users to interactively
compose complex learning solutions on the basis of libraries for various learning
components, system connectors, and other auxiliary functionality.

With RERS we want to establish a community of researchers and practi-
tioners interested in the practical application of automata learning technology.
RERS stands for Regular Extrapolation of Reactive Systems. We chose the term
Regular Extrapolation to indicate that in practice we will not be able to fully
infer the behavior of the target system, which often will not be regular anyway.
Rather we are able to construct in some sense optimal regular images/views of
these behaviors. We are convinced that a concerted effort for improving these
techniques will lead to industrial scale learning solutions in near future.

Outline: After recapitulating briefly the central idea of active learning in Sec-
tion 2, we will discuss the ZULU challenge, our approach to it, the outcome, and
further observations in Section 3. Subsequently, we will give a short introduction
to the RERS initiative in Section 4, and conclude in Section 5.

2 Active Learning

Active learning (or query learning) attempts to construct a deterministic finite
representation, e.g., a deterministic finite automaton (DFA), that matches the
behavior (language) of a given target system on the basis of observations of the
target system and perhaps some further information on its internal structure.
It poses membership queries that test whether certain strings/words (potential
runs) are contained in the target system’s language (its set of runs), and equiva-
lence queries that compare intermediately constructed hypothesis automata for

From ZULU to RERS 689

equivalence with the target system. As long as the equivalence queries fail, they
produce counterexamples revealing some of the remaining differences between
hypothesis and target system. These counterexamples are then taken as the ba-
sis for further refinement of the hypothesis. Learning terminates successfully as
soon as an equivalence query signals success.

Angluin’s algorithm L∗, in its basic form, starts with a hypothesis automaton
with only one state and refines this automaton on the basis of query results. In
scenarios like for ZULU, which (like most practical settings) do not provide an
equivalence oracle for reliably answering equivalence queries (see below), three
main steps are iterated:

1. refining the hypothesis by means of membership queries,
2. checking for equivalence on the basis of membership queries e.g., following

ideas from conformance testing (e.g., [9,13]), and
3. analyzing counterexamples as a means to initiate the next refinement step.

The procedure terminates (for finite state target systems) with a state-minimal
deterministic (hypothesis) automaton equivalent to the target system. This is
the consequence of the following dual characterizations of states, resembling the
idea of Nerode’s congruence [21,20]:

from below: by a set, S ⊂ Σ∗, of access sequences. This characterization of state
is too fine, as different words s1,s2 ∈ S may lead to the same state in the target
system. L∗ constructs such a set S, containing access sequences to all states
of the target automaton. In addition, it maintains a second set, SA, which
together with S covers all transitions of the hypothesis automaton. During
learning, the following invariant is repetitively established: SA = (S ·Σ)\ S.
L∗ initializes S with {ε}, the set containing only the access sequence to the
initial state, and, accordingly, SA with Σ, covering all transitions leaving in
the initial state.

from above: by ordered set(s), D ⊂ Σ∗, of distinguishing sequences or futures.
These sets can be regarded as a projection of Nerode’s residual languages.
Starting with the singleton set {ε}, L∗ successively extends D until it suffices
to identify all states of the smallest deterministic automaton.

The sets S, SA, and D are successively refined during the learning process until
a model is reached, which is state-minimal and equivalent (at least up to the
distinctive power of the given approximation of the equivalence oracle) to the
target system. Algorithmic details and correctness arguments can be found in
[2,17,26,20,19,27].

3 The ZULU Competition

ZULU [11] is a competition in active learning from membership queries: contes-
tants had to develop active learning algorithms (following the general approach
due to Dana Angluin [2]). Essential to ZULU have been two main ideas:

690 F. Howar, B. Steffen, and M. Merten

No equivalence queries: Equivalence queries (in the theoretical formulation
of active learning) compare a learned hypothesis model with the target sys-
tem for language equivalence and, in case of failure, return a counterexample
exposing a difference. Their realization is rather simple in simulation scenar-
ios: if the target system is a model, equivalence can be tested explicitly.
In practice, however, the system under test will typically be some kind of
black-box and equivalence queries will have to be simulated using member-
ship queries [16]. One goal of the ZULU competition was to intensify research
in this practical direction.

Limited membership queries: Equivalence queries can be simulated using
model-based testing methods [7] (The close relation between learning and
conformance testing is discussed in [4]). If, e.g., an upper bound is known
on the number of states the target system can have, the W-method [9] or
the Wp-method [13] can be applied. Both methods have an exponential
complexity (in the size of the target system and measured in the number
of membership queries needed).

By allowing only a (very) limited number of membership queries for every
problem, the ZULU competition forced the contestants to change the objec-
tive from ‘trying to prove equivalence’, e.g., by using conformance testing
techniques, to ‘finding counterexamples fast’.

These two ideas led to the following concrete competition scenario. The contes-
tants had to compete in producing models of finite state acceptors by means of
membership queries, which the ZULU platform would answer. For every task,
the number of granted membership queries was determined by the ZULU system
as the number of membership queries needed by some basic Angluin-style refer-
ence implementation to achieve a prediction quality of over 70%. Solutions were
ranked according to their quality of prediction relative to a ZULU-generated
suite of 1800 test words (the same suite as used to determine the number of
allowed membership queries).

During the competition, all contestants had to compete in 12 categories: 9
‘regular’ categories ranging over finite state acceptors with (a) growing numbers
of states and (b) growing alphabets, as well as 3 ‘extra’ categories, in which the
number of granted membership queries was reduced further. The overall winner
was determined as the contestant with the best average ranking. A detailed
description of the technical details can be found on the ZULU web page [12].

The background of our team at the TU Dortmund is the development of realistic
reliable systems [24,25]. Accordingly, we are working on techniques to make
active learning applicable to industrial size systems. Of course this also requires
to (1) saving membership queries and (2) finding counterexamples fast, but for
man-made systems. It turned out that dealing with randomly generated systems
changes the situation quite a bit. Our solutions therefore arose in a two step
fashion:

1. a generically optimized basis, not exploiting any knowledge about the struc-
ture or origin of the considered target systems. The main strategy here was

From ZULU to RERS 691

to follow an evolutionary approach to hypothesis construction which explic-
itly exploits that the series of hypotheses are successive refinements. This
helps organizing the membership and equivalence queries.

2. a subsequent customization for exploiting the fact that we are dealing with
randomly generated systems. Here we were able to exchange our traditionally
breadth-first-oriented approximations of an equivalence oracle, which exploit
ideas from conformance testing, by a very fast counterexample finder. Also
this customization benefits from the evolutionary character of the hypothesis
construction.

The careful experimental investigation of the above options and its variants
profited from our learning framework, the LearnLib [25], which we recently con-
siderably extended. In particular, it enabled us to build a highly configurable
learning algorithm, which can mimic most of the known algorithms, as well as
all our variations in a simple fashion. In addition, the experimentation facilities
of LearnLib, comprising, e.g.,remote execution, monitoring, and statistics, saved
us a lot of time. We are planning to provide contestants of the RERS challenge
[8] with all these facilities in order to allow contestants a jump start.

3.1 A Configurable Inference Framework

The main algorithmic pattern we used for the ZULU competition can best
be described as generalized Observation Pack [3]: a pack is a set of compo-
nents (which usually form the observation table). In the original discussion
an observation pack is introduced only as a unifying formalism for the algo-
rithms of [2,17]. We used a combination of discrimination trees [17] and reduced

Observation Table

ou t er r

ok
in,in ok

err

C1(_)

_

ou t

in ,out

in

ok

ok

ok

ou t

er r

er r

er r

C2(in)

in

in,in,out

in

ok

ok

ou t

ok

ok

in,in

ok

ok

C3(in,in)

in,in

in,in,in

in

ok

err

ou t

ok

ok

in,in

err

er r

Fig. 1. Extended Observation Packs

692 F. Howar, B. Steffen, and M. Merten

observation tables [26] to actually implement an observation pack. Fig. 1 illus-
trates the resulting data structure for a Mealy machine example (a three element
buffer).

The observation table is split into independent components (essentially small
observation tables in their own), each representing one state of the current
hypothesis model, and being defined by one access sequence from the set S (see
upper left corner). The second row of each component corresponds to the usual
characterizing row for this access sequence in terms of some distinguishing fu-
tures taken from D, which label the columns. Additional rows stand for words of
SA which happen to possess the same characterization in terms of the considered
distinguishing futures, and therefore represent the same state in the hypothesis
model. Please note that the description above does not hold for the third com-
ponent which still needs to be split according to its difference with respect to
the distinguishing future in (see below).

The left part of Fig. 1 shows the corresponding discrimination tree. Its nodes
are labeled with elements of D, and its edges with the corresponding outcome
of a membership query (here ok and err - one could also have chosen accept,
non-accept). In the considered situation the discrimination tree simply reflects
the fact that the first component can be separated from the other two due to the
outcome concerning the distinguishing future out, whereas the second and third
component can be separated from each other due to the outcome concerning the
distinguishing future in,in. As indicated already, the third component could be
split further due to the outcome concerning the distinguishing future in. Such a
situation can only arise in the Mealy case, where the set of distinguishing futures
is initialized with the full alphabet. In this concrete case, the alphabet symbol
in is contained in the initial set of distinguishing futures but not yet in the
discrimination tree.

In order to enter a new access string s into the discrimination tree, one starts
with the root of the discrimination tree and successively poses the membership
queries s · f , where f is the distinguishing future of the currently considered node,
and continues the path according to the corresponding output. If a corresponding
continuation is missing, the discrimination tree is extended by establishing a
new component for the considered access string. Finally, splitting a component
requires the introduction of a new node in the discrimination tree, like e.g. for
the distinguishing future in to split the third component.

This realization allows us to easily switch between different strategies for han-
dling counterexamples (e.g., [26,19,27]), as well as to use non-uniform observa-
tion tables, i.e., observation tables where for different access sequences different
distinguishing futures may be considered.

To enable working with non-uniform observation tables, we extended the strat-
egy for analyzing counterexamples from [26]. In its original form, this strategy
produces a new distinguishing future d by means of a binary search over the
counterexamples. During the search prefixes of the counterexamples are replaced
by access sequences to the according states in the hypothesis model, in order to
maintain as much of the hypothesis model as possible. Taking this idea a bit

From ZULU to RERS 693

further allows us to guarantee that the access sequence s for a new component is
always taken from SA. This automatically maintains the structure of the span-
ning tree, and it guarantees that only the component containing s is refined by
the new distinguishing future d. The result of this refinement is a new node in
the discrimination tree and two components (following the approach from [17]).

For ZULU, we configured two versions of our learning algorithm, both us-
ing this new strategy for analyzing counterexamples. The registered algorithms
differed as follows.

Initial set of distinguishing futures: In one configuration, the initial set of
distinguishing futures was initialized as {ε} (as in the literature). In the other
configuration, we used {ε}∪Σ in order to simulate the effect of changing from
DFA to Mealy models. Please note that considering the empty word also for
the Mealy configuration is a technical trick to better deal with the DFA-like
systems considered here.

Observation Table: We used uniform and non-uniform observation tables. In
a non-uniform table, the sets of distinguishing futures are managed indepen-
dently for each component (cf. [3]).

Both decisions emphasize the same trade-off. Using the complete alphabet in
the initial set and using a uniform observation table can be understood as a
heuristic for finding counterexamples (in form of unclosure) in the table and
thus reducing the number of equivalence queries. Using a non-uniform table and
only proven distinguishing futures leads to using less membership queries but
more equivalence queries.

3.2 Continuous Equivalence Queries

Essentially, active learning algorithms proceed in rounds triggered by negative
outcomes of equivalence queries for successively improved hypotheses: returned
counterexamples are analyzed and exploited to initialize the next round of refine-
ment. Classically, each of these rounds were considered independent, and in fact,
equivalence queries were simply provided with the current hypothesis model,
which itself was independently constructed for each round. No knowledge about
the algorithmic history was exploited. This is not too surprising for two reasons:

– Classically, equivalence queries were considered as atomic, with no need for a
dedicated optimization, a point of view also supported by experimental set-
tings, where the target systems are given as automata, which can efficiently
be compared with the hypothesis automata.

– However, there is also a more technical argument. The hypothesis automata,
which are refined during the learning process, are defined solely by the state
characterization from above (their characterizing set), which is not fully re-
flected in the hypotheses. Thus the knowledge of the hypotheses alone is
insufficient to establish the required notion of refinement.

694 F. Howar, B. Steffen, and M. Merten

Fig. 2. Evolving Hypothesis

In the meantime it is widely accepted that membership query-based approxi-
mations are key to practical application. The ZULU challenge itself is a very
strong indication of this new perspective. Moreover, there are ways to strongly
link the characterizations from below and above in a way that allow some kind
of incremental hypothesis construction by means of a global, continuous equiva-
lence querying process. Key to this approach are Rivest’s and Schapire’s reduced
observation tables together with their way of analyzing counterexamples [26]).
In their setting, the prefix-closed set S can be understood as a successively pro-
duced spanning tree of the target automaton, whose set of nodes is extended
by elements from the SA-set. Thus there is always a unique representation of
the states of the hypothesis automaton in terms of the monotonically increas-
ing, prefix-closed set S. This invariant is maintained by the specific treatment of
counterexamples:

Each counterexample is minimized by means of binary search to a word/string
sa of SA, followed by a distinguishing future d that forces sa to end up
in a new state.

This form of counterexample allows maintaining the above invariant by mov-
ing the corresponding s from SA to S, add d to the set of futures D, and to
continue with the usual procedure establishing closedness. Besides avoiding the
construction of hypotheses from scratch, this procedure leads to a sequence of in-
crementally refined hypotheses, which allows for organizing the equivalence tests
from a global perspective, sensitive to all the tests which have been performed
in earlier iterations.

Fig. 2 shows how an evolving hypothesis is refined during one round of the
learning process. The hypothesis in the left of the figure corresponds to the ex-
tended observation packs from Fig. 1. All transitions are labeled by annotations,
indicating whether they belong to the spanning-tree or not. This information is
vital, as it indicates proven knowledge. Adding a new state to the hypothesis
leaves most of the original hypothesis and its annotations unaffected. In the ex-
ample of Fig. 2 only the former loop at the third state is modified and two new
transitions are introduced.

From ZULU to RERS 695

Fig. 3. Continuous Equivalence Query

Beyond being a possible target for counterexample reduction (after some or-
acle provided an arbitrarily structured counterexample), the counterexample
pattern

c = sa · d, with sa ∈ SA and d ∈ Σ+.

turned out to be ideal for realizing membership oracle-based equivalence oracles,
or better, for implementing a method for revealing counterexamples fast along
the lines shown in Fig. 3. Counterexample candidates sa are are tested for some
heuristically chosen futures d until either a counterexample is found or some ter-
mination criterion is met. The effectiveness of the search heuristics for selecting
counter example candidates and finding distinguishing futures d may strongly
depend on side knowledge. For the ZULU challenge, we exploited our knowledge
that the languages were randomly generated as follows:

Select transitions & Book keeping: For the E.H.Blocking algorithm, tran-
sitions from the SA-set were chosen randomly. Once used, a transition was ex-
cluded from subsequent tests. When no transitions were left to choose from,
all transitions were re-enabled. The E.H.Weighted algorithm uses weights on
all transitions, which are increased each time a transition is selected, and
chooses transitions with a probability inversely proportional to its weight.

Generate futures: The futures were generated randomly with increasing length.
The length was initialized as some ratio of the number of states of the hy-
pothesis automaton, and was increased after a certain number of unsuccessful
tests. The exact adjustment of the future length was developed in a exper-
imentally to fit the properties of the problems in the ZULU challenge. This
strategy of guessing comparatively long futures d turned out to be rather ef-
fective. It reduced the number of required membership queries to an average
of 2-4, which radically outperformed our initial breath-first trials. Of course,

696 F. Howar, B. Steffen, and M. Merten

this is very much due to the profile of the ZULU examples, and indeed,
this choice of futures was the only truly domain-dependent optimization we
developed.

We did not use an explicit termination criterion. A query terminated as soon as
the number of queries granted by ZULU was exhausted.

3.3 Results

For the actual competition, we registered six candidate algorithms, split in two
groups of three:

– the first group used a non-uniform observation table with a DFA-style initial
set of distinguishing futures, and

– the second group used a uniform observation table with a (modified) Mealy-
style initial set of distinguishing futures.

Both groups were equipped with the same three equivalence checking algorithms:
(1) E.H.Blocking, (2) E.H.Weighted, and (3) plain random walks. As the ran-
dom walks algorithm simply tested randomly generated words, the option for
continuous equivalence queries did not apply. Table 1 shows the configuration of
the algorithms, their average scores during the training phase and the eventual
rankings from the competition.

Apparently, group 1 is far superior: about 10 points, and this in a setting
where there are only 0.45 points between the first and the sixth place. In order
understand these results better, we investigated Problem 49763507 in more de-
tail. In particular we wanted to understand how the ZULU ranking mechanism,
which is based on predictions rates for randomly generated test suites, reflects
the quality of Angluin-style implementations of automata learning.

Table 1. Algorithms: Configuration and Ranking

Algorithm Dist. Set Equivalence Query Training Rank

Init. Uniform Continuous Strategy (Avg.)

E.H.Blocking yes block transitions 89.38 1

E.H.Weighted {ε} no yes weight transitions 89.26 2

Random no random walks 88.93 6

run random no random walks 80.17 14

run blocking1 {ε}∪Σ yes yes block transitions 79.89 15

run weighted1 yes weight transitions 79.65 16

3.4 Discussion of the ZULU Rating Approach

In order to better understand the progress of the learning algorithms, let us
consider some profile data of the training problem 49763507 in more detail, for
which the ZULU environment allowed 8101 membership queries. Table 2 classifies

From ZULU to RERS 697

Table 2. Detailed Training Example: Problem 49763507

Algorithm New Membership Queries Rounds States Score

Close Obs. Analyze CEs Search CEs

E.H.Blocking 6,744 358 999 259 352 94.11

E.H.Weighted 6,717 349 1,035 262 351 94.61

Random 6,586 519 996 228 332 93.28

run random 8,080 14 7 5 312 74.89

run blocking1 8,074 11 16 6 319 73.06

run weighted1 8,077 9 15 6 319 74.39

the consumption of these 8101 queries according to their usage during (1) the
closure of the Observation Table, (2) the analysis of counterexamples, and (3) the
search for counterexamples. Moreover, it shows the number of learning rounds
performed, the detected states, and the eventual scores.

These results are quite drastic:

1. The difference between the two groups discussed in the previous section is
even more impressive here. It is obvious that the first group profited from
the extremely efficient search for counterexamples, which required in aver-
age only about 3 membership queries. In fact, the algorithms in the first
group executed 50 times as many approximative equivalence queries as the
algorithms of the second group.

2. The impact of the continuous equivalence queries, which make only a differ-
ence of 1,8% in the ZULU ranking (E.H.Blocking vs Random), make about
6% in the number of detected states, which is a lot, when considering the
typical behavior of Angluin-style learning. Just consider the only 3% differ-
ence in the number of detected states between the Random options of the
first group and the second group. In the ZULU rating they make a difference
of 19%.

3. Despite the extremely different distribution of the allowed 8101 membership
queries, the average number of membership queries required to obtain a new
state seem quite similar. They range between 23 and 26. One should keep in
mind, however, that the difficulty to find a new state strongly increases in
the course of the algorithm. Thus having detected 8% more states is much.

4. The ZULU ranking seems to increase with the number of states. This
interpretation is, however, wrong, as can be seen in Fig. 4 (for ZULU prob-
lem 85173129), where in the beginning, the quality of prediction drops from
60 to almost only 40 per cent! For the already discussed example (49763507)
this effect is not as strong, but still the non-monotone developing of ratings
throughout the learning process can be observed in Fig. 5. As we will dis-
cuss later, this effect, which shows here up already for randomly generated
systems (in fact, we observed it in almost all Problems we treated as part of
the ZULU challenge), gets worse when systems are man-made.

698 F. Howar, B. Steffen, and M. Merten

Fig. 4. ZULU Rating for all hypotheses in a learning attempt, Problem 85173129

5. There is a part of the learning process, where small improvements make a
big difference in the ZULU ranking (e.g. for the two random versions, 13
more states made a difference of 19% in the ZULU score). This is the part
after the chaotic behavior at the beginning and before the final phase, where
progress gets exponentially harder.

The ZULU organizers also observed that the top teams had quite similar scores.
Looking at Table 2 this is not too surprising, as much progress is needed at the
end to achieve even marginal improvements for the ZULU rating (20 more in this
stage very hard to detect states for 1,8% in the ZULU rating: see E.H.Blocking
vs. Random of the first group). It was therefore decided to further reduce the
number of allowed membership queries. This certainly diversified the results.
However, it also increased the risk of algorithms being punished by the quality
drop described under item 4 above.

We consider the ZULU competition as milestone for advancing the state of
the art for practical learning. Still, we see a high potential for improvement.
The following section describes RERS [8], a new initiative trying to push in this
direction.

From ZULU to RERS 699

Fig. 5. ZULU Rating for all hypotheses in a learning attempt, Problem 49763507

4 RERS - Regular Inference of Reactive Systems

As the discussion of the results from the ZULU competition shows, an adequate
quantification of a hypothesis’ quality may depend on the domain of applica-
tion: the test suite-based ZULU rating primarily addresses prediction quality
concerning language membership. Perhaps surprisingly, this measure does not
necessarily reflect the performance of Angluin-style implementations of learning
algorithms. As we have seen, the prediction quality may quite significantly drop
in the course of learning. The RERS initiative [8] aims at developing fair evalu-
ation measurements tailored to specific application contexts. The discussion in
the previous section already suggests discovered states as a good orientation for
algorithmic progress. In fact, in our experience, discovered states are also a good
measurement in the context of system testing [14,15]: The more system struc-
ture (in terms of states) is revealed, the better are the results of test generation
algorithms.

Developing domain-specific notions of quality is, however, only one dimension
of RERS, although a very important one, as it sets the standards for other
dimensions, like:

– Establishing scenarios for realistic case studies,
– Developing methods making automata learning scalable,

700 F. Howar, B. Steffen, and M. Merten

– Providing technology to support the system interaction required for learning,
– Generalizing the notion of learning to capture new kinds of system behavior.

RERS does not only attempt to promote research in this direction, but intends
to establish a framework in which progress in these dimensions can be measured,
solutions can be compared, and experiences can be exchanged. Organizing chal-
lenges with branches capturing the currently most essential features is meant to
be one of RERS prominent roles.

For next year we plan a challenge focusing on automata learning as a key
technology for dealing with black-box systems, i.e., systems that can be observed,
but for which no or little knowledge about the internal structure or even their
intent is available. By this we intend to reveal the state of the art concerning (at
least) the following kinds of scenarios, specifically for both, randomly generated
systems (frequently used for evaluation, see e.g., the ZULU challenge), and man-
made systems, the predominant case in practice:

1. Black-box systems with equivalence queries are not relevant in practice, but
ideal for learning. Usually only approximations of equivalence queries can be
generated.

2. For fast black-box systems (e.g. simulated ones) the number of membership
queries is not as important as in other scenarios. While seemingly of only
little practical use, some use cases, e.g., learning behavior of APIs, can come
close.

3. In scenarios with black-box systems with high-cost membership queries (e.g.,
systems that are slow to respond or generate actual cost per query) it makes
much sense to limit the amount of generated queries and to investigate ways
how to decrease effective costs.

4. Scenarios where data values have to be considered are common and motivate
the introduction of means to abstract from infinite value domains. While
manually generated and fixed abstractions may be sufficient in many cases
it may be necessary to refine such an abstraction during the learning process,
if possible in an automated fashion according to system output.

5. Variants of non-deterministic or probabilistic systems. Such systems typically
require more enhanced membership queries, which cannot be realized via
normal system testing and therefore pose new implementation requirements
(see e.g. [18]).

Central will be here the investigation of the practical limitations and the poten-
tial of active automata learning, which is characterized by its specific means of
observation, i.e., its proactive way of posing membership queries and equivalence
queries. ZULU has addressed the problem that equivalence queries are typically
not realistic and need to be approximated via membership queries. However,
also membership queries do not come for free but must be realized e.g. via test-
ing in practice. The following subsections discuss important practical challenges
according to the various characteristics of application scenarios, and illustrate
that ‘black does not equal black’ in real-life black-box scenarios:

From ZULU to RERS 701

Interacting with real systems. The interaction with a realistic target sys-
tem comes with two problems: A merely technical problem of establishing
an adequate interface that allows one to apply test cases for realizing mem-
bership queries, and a conceptual problem of bridging the gap between the
abstract learned model and the concrete runtime scenario.

The first problem is rather simple for systems designed for connectivity
(e.g., Web-services or code libraries) which have a native concept of being in-
voked from the outside and come with documentation on how to accomplish
this. Establishing connectivity may be arbitrarily complicated, however, for,
e.g., some embedded systems which work within well-concealed environments
and are only accessible via some proprietary GUI.
The second problem is conceptually more challenging. It concerns establish-
ing an adequate abstraction level in terms of a communication alphabet,
which on one hand leads to a useful model structure, but on the other hand
also allows for an automatic back and forth translation between the abstract
model level and the concrete target system level.

Membership queries. Whereas small learning experiments typically require
only a few hundred membership queries, learning realistic systems may eas-
ily require several orders of magnitude more. This directly shows that the
speed of the target system when processing membership queries, or as in
most practical settings the corresponding test cases, is of the utmost im-
portance. In contrast to simulation environments, which typically process
several thousand of queries per second, real systems may well need many
seconds or sometime even minutes per test case. In such a case, rather than
parallelization, minimizing the number of required test cases is the key to
success.

Reset. Active learning requires membership queries to be independent. Whereas
this is no problem for simulated system, it may be quite problematic in
practice. Solutions range here from reset mechanisms via homing sequences
[26] or snapshots of the system state to the generation of independent fresh
system scenarios. Indeed, in certain situations, executing each membership
query with a separate independent user scenario may be the best one can
do. Besides the overhead of establishing these scenarios, this also requires an
adequate aggregation of the query results. E.g., the different user password
combinations of the various used scenarios must be abstractly identified.

Parameters and value domains. Active learning classically is based on ab-
stract communication alphabets. Parameters and interpreted values are only
treated to an extend expressible within the abstract alphabet. In practice,
this typically is not sufficient, not even for systems as simple as communica-
tion protocols, where, e.g., increasing sequence numbers must be handled, or
where authentication requires matching user/password combinations. Due
to the complexity of this problem, we do not expect any comprehensive so-
lutions here. We rather think that domain- and problem-specific approaches
must be developed in order to produce dedicated solutions.

Within RERS we want to provide the means for contestants to comparatively
easily enter this exciting field of research, and to contribute to next year’s RERS

702 F. Howar, B. Steffen, and M. Merten

challenge. Accordingly, the LearnLib (comprising libraries of algorithms, system
connectors, algorithmic patterns, abstraction function etc.) will be made publicly
available. This will allow contestants to start from an existing basis and extend
it with new functionality.

5 Conclusion

We have summarized our experience with the ZULU challenge on active learn-
ing, presented our winning solution, investigated the character of ZULU’s rating
approach, and discussed how this approach can be taken further to establish a
framework for the systematic investigation of domain-specific, scalable learning
solutions for practically relevant application. In particular, we have discussed the
RERS initiative, which provides a community platform together with a learning
framework that allows users to interactively compose complex learning solutions
on the basis of libraries for various learning components, system connectors,
and other auxiliary functionality. This framework will be the backbone for an
extended challenge on learning in 2011.

There are multiple dimensions to RERS, like the design of problems spe-
cific model structures, the development of flexible abstraction technologies, and
the adequate treatment of parameters and values treatment. These need to be
related to learning-specific technologies for e.g. treating counterexamples, re-
alizing equivalence queries, or exploiting domain-specific knowledge about the
target systems, and, a potential show stopper in practice, to adequate testing
technology enabling the required kind of querying.

We therefore envisage to establish targeted sub-communities specialized and
interested in specific scenarios. One such scenario could be the ‘classical’ learning
scenario as addressed e.g. by the ZULU challenge, but there are many more, each
of them with a particular learning profile. Examples range from the learning of
I/O automata or Mealy machines for complex reactive systems or protocols, over
the construction of (abstract) behavioral models of software components e.g. as
a means to automate assume guarantee reasoning, to the detection of business
processes by real life observation.

We hope that RERS will develop as a platform for synergetic cooperation,
that the organized challenges will help to identify the strength and weaknesses
of the various solutions and their mutual interplay, and that the possibility for
easy experimentation, e.g. using the LearnLib, will make automata learning a
convenient tool in many application contexts.

References

1. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric

passport. In: ISoLA 2010, Part I. LNCS, vol. 6415, pp. 681–694. Springer, Heidel-

berg (2010)

2. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-

tion and Computation 75(2), 87–106 (1987)

From ZULU to RERS 703

3. Balcázar, J.L., Dı́az, J., Gavaldà, R.: Algorithms for Learning Finite Automata

from Queries: A Unified View. In: Advances in Algorithms, Languages, and Com-

plexity, pp. 53–72 (1997)

4. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the

Correspondence Between Conformance Testing and Regular Inference. In: Cerioli,

M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)

5. Bohlin, T., Jonsson, B., Soleimanifard, S.: Inferring compact models of commu-

nication protocol entities. In: ISoLA 2010, Part I. LNCS, vol. 6415, pp. 666–680.

Springer, Heidelberg (2010)

6. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M.: Smyle: A Tool for Synthesizing

Distributed Models from Scenarios by Learning. In: van Breugel, F., Chechik, M.

(eds.) CONCUR 2008. LNCS, vol. 5201, pp. 162–166. Springer, Heidelberg (2008)

7. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A.: Model-Based

Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

8. TU Dortmund Chair of Programming Systems, Department of Computer Science.

RERS - A Challenge In Active Learning,

http://leo.cs.tu-dortmund.de:8100/ (version from 20.06.2010)

9. Chow, T.S.: Testing Software Design Modeled by Finite-State Machines. IEEE

Trans. on Software Engineering 4(3), 178–187 (1978)

10. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for

compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,

vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

11. Combe, D., de la Higuera, C., Zulu, Jean-Christophe, J.: an Interactive Learning

Competition. In: Proceedings of FSMNLP 2009 (to appear, 2010)

12. Combe, D., de la Higuera, C., Janodet, J.-C., Ponge, M.: Zulu - Active learning from

queries competition, http://labh-curien.univ-st-etienne.fr/zulu/index.php

(version from 01.08.2010)

13. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test Se-

lection Based on Finite State Models. IEEE Trans. on Software Engineering 17(6),

591–603 (1991)

14. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated

regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,

vol. 2306, pp. 80–95. Springer, Heidelberg (2002)

15. Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G., Ide, H.-D.: Efficient

regression testing of CTI-systems: Testing a complex call-center solution. Annual

review of communication, Int. Engineering Consortium (IEC) 55, 1033–1040 (2001)

16. Hungar, H., Niese, O., Steffen, B.: Domain-specific optimization in automata learn-

ing. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 315–327.

Springer, Heidelberg (2003)

17. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.

MIT Press, Cambridge (1994)

18. Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Assume-Guarantee Verifica-

tion for Probabilistic Systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.

LNCS, vol. 6015, pp. 23–37. Springer, Heidelberg (2010)

19. Maler, O., Pnueli, A.: On the Learnability of Infinitary Regular Sets. Information

and Computation 118(2), 316–326 (1995)

20. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model genera-

tion for legacy reactive systems. In: HLDVT 2004: Proceedings of the Ninth IEEE

International on High-Level Design Validation and Test Workshop, Washington,

DC, USA, pp. 95–100. IEEE Computer Society, Los Alamitos (2004)

704 F. Howar, B. Steffen, and M. Merten

21. Nerode, A.: Linear Automaton Transformations. Proceedings of the American

Mathematical Society 9(4), 541–544 (1958)

22. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer, H.:

Learning to divide and conquer: applying the L* algorithm to automate assume-

guarantee reasoning. Formal Methods in System Design 32(3), 175–205 (2008)

23. Peled, D., Vardi, M.Y., Yannakakis, M.: Black Box Checking. In: Wu, J., Chanson,

S.T., Gao, Q. (eds.) Proc. FORTE 1999, pp. 225–240. Kluwer Academic, Dordrecht

(1999)

24. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata

learning. Int. J. Softw. Tools Technol. Transf. 11(4), 307–324 (2009)

25. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-

olating behavioral models. Int. J. Softw. Tools Technol. Transf. 11(5), 393–407

(2009)

26. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.

Inf. Comput. 103(2), 299–347 (1993)

27. Shahbaz, M., Groz, R.: Inferring Mealy Machines. In: Cavalcanti, A., Dams, D.R.

(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009)

28. Shahbaz, M., Li, K., Groz, R.: Learning Parameterized State Machine Model for

Integration Testing. In: Proc. 31th Annual Int. Computer Software and Applica-

tions Conf., Washington, DC, USA, vol. 2, pp. 755–760. IEEE Computer Society,

Los Alamitos (2007)

Author Index

Aarts, Fides I-673

Abdulla, Parosh Aziz I-60

Ait Ameur, Yamine I-58

Alencar, Paulo I-447

Andova, S. II-143

Autili, Marco II-278

Azim, Akramul II-327

Baier, Christel II-97

Ballabriga, Clément II-479

Barany, Gergö II-434

Barbosa, Simone Diniz Junqueira I-473,

I-488

Bartolini, Claudio I-425, I-488

Basten, Twan I-90

Bechhofer, Sean I-340

Bennaceur, Amel II-206

Berardi, Rita I-488

Bertolino, Antonia II-251

Bessler, Sandford I-367

Birken, Klaus II-424

Bisti, Luca I-152

Blair, Gordon II-206

Blechmann, Tobias II-97

Bohlin, Therese I-658

Bonenfant, Armelle II-479

Boniol, Frédéric I-58, I-167, I-243

Bouillard, Anne I-121

Boussard, Mathieu I-390

Boyer, Marc I-121, I-122, I-137

Breitman, Karin I-488

Bünte, Sven II-487

Buzzi, Julio I-625

Calejo, Miguel I-276

Cámara, Javier II-112

Campos, Glaucia Melissa I-488

Canal, Carlos II-112

Carvalho, André II-191

Carvalho, Joel II-191

Cassé, Hugues II-479

Cassel, Sofia II-221

Čaušević, Aida II-82

Cederberg, Jonathan I-60

Chakraborty, Joy I-549

Chakraborty, Samarjit I-121, I-198

Chauvel, Franck II-206

Chen, Yu-Fang I-643

Chilton, Chris II-278

Clarke, Edmund M. I-643

Clarke, Jim II-32

Coste, Nicolas II-128

Cottenceau, Bertrand I-184

Cowan, Donald I-447

Crespi, Noel I-399

da Cruz, Daniela I-106

Dalman, Tolga I-261

de Araujo, Renata Mendes I-435

De, Arnab I-519

de Bruin, Jeroen S. I-285

de Michiel, Marianne II-479

De Roure, David I-340

de Smet, Sebastian I-90

de Vink, E.P. II-143

Di Giandomenico, Felicita II-263

Dissaux, Pierre I-4

Droste, Peter I-261

D’Souza, Deepak I-519, I-549

Eidt, Erik I-488

Eltges, Christian II-483

Englander, Cecilia I-502

Ermedahl, Andreas II-449

Ermont, Jérôme I-167, I-243

Farzan, Azadeh I-643

Ferri, Felipe I-625

Fischmeister, Sebastian II-327

Fraboul, Christian I-228

França, Felipe M.G. I-462

Gang, Huang II-206

Garavel, Hubert II-128

Geilen, Marc I-90

Georgantas, Nikolaos II-206

Giannakopoulou, Dimitra I-640

Gilman, Ekaterina I-375

Gliwa, Peter II-449

Gomes, Adriano I-625

706 Author Index

Gonçalves, Vanessa C.F. I-462

Grace, Paul II-206

Groenewegen, L.P.J. II-143

Gu, Bin I-594

Haberl, Wolfgang I-18

Haeusler, Edward Hermann I-502

Hafner, Michael II-26

Hähnle, Reiner II-3, II-20

Hardouin, Laurent I-184

Haverkort, Boudewijn R. II-127

He, Fei I-643

He, Jifeng I-594

Hendriks, Martijn I-90

Henriques, Pedro Rangel I-106

Herhut, Stephan I-47

Hermanns, Holger II-128

Herrmannsdoerfer, Markus I-18

Holzer, Andreas I-33

Houben, Fred I-90

Hougaard, Poul II-175

Howar, Falk I-687, II-206, II-221

Howker, Keith II-32

Huber, Benedikt II-464

Huhn, Michaela II-296

Hünig, Daniel II-424

Igna, Georgeta I-90, II-412

Inverardi, Paola II-206, II-236,

II-251, II-278

Issarny, Valérie II-206, II-236,

II-251

Izquierdo, Ebroul II-13

Januzaj, Visar I-1, I-33

Jee, Eunkyoung II-343

Jianhua, Zhao I-564

Johansson, Richard II-30

Jonsson, Bengt I-658, II-221

Kaati, Lisa I-60

Karlsson, Johan I-328

Katoen, Joost-Pieter II-127

Kawas, Edward I-301

Kempf, Kilian II-397

Kirner, Raimund I-47, II-487

Klein, Joachim II-97

Klüppelholz, Sascha II-97

Knoop, Jens II-449, II-491

Kok, Joost N. I-258, I-285

Kollmann, Steffen II-397

Kremenek, Ted I-535

Kugele, Stefan I-1, I-18, I-33

Kuliamin, Victor II-382

Kwiatkowska, Marta II-263, II-278

Lamprecht, Anna-Lena I-258

Lanese, Ivan II-66

Langerak, Rom II-160

Langer, Boris I-1

Lang, Frédéric II-128

Larsen, Kim G. II-127, II-175

Lauer, Michaël I-167, I-243

Lavrač, Nada I-313

Lawford, Mark II-293

Le Corronc, Euriell I-184

Lee, Gyu Myoung I-399

Lee, Insup II-343

Legrand, Jérôme I-4

Leister, Wolfgang II-97

Lenzini, Luciano I-152

Li, Jianwen I-594

Li, Xiaoshan I-609

Li, Xiaoting I-228

Lima, Priscila M.V. I-462

Lisper, Björn II-449

Liu, Zhiming I-609

Lori, Alessandro I-138, I-214

Lucena, Carlos J.P. de I-447, I-473

Maculan, Nelson I-462

Magdaleno, Andréa Magalhães I-435

Maibaum, Tom II-293

Marshall, M. Scott I-340

Mart́ın, José Antonio II-112

Martin, Steven I-121

Martinovic, Ivan I-169

Mart́ın-Requena, Victoria I-328

Martinucci, Marco II-263

Masci, Paolo II-263

Massacci, Fabio II-9

Mateescu, Radu II-128

Mayer, Philip II-51

McCarthy, Luke I-301

McGarry, Fred I-447

Merten, Maik I-687, II-221

Méry, Dominique I-58, II-312

Mikučionis, Marius II-175

Mingozzi, Enzo I-152

Missier, Paolo I-340

Author Index 707

Montesi, Fabrizio II-66

Moschitti, Alessandro II-1, II-15

Mota, Alexandre I-625

Narayan Kumar, K. I-549

Navet, Nicolas I-122

Newman, David R. I-340

Nielsen, Brian II-175

Nöh, Katharina I-261

Nunes, Ingrid I-447, I-473

Ogata, Kazuhiro I-75

Olive, Xavier I-122

Ott, Jörg I-355

Ouranos, Iakovos I-75

Pagetti, Claire I-167, I-243

Pakulin, Nikolay II-371

Palm, Steen Ulrik II-175

Paolucci, Massimo II-206

Pathak, Animesh II-206

Pedersen, Jan Storbank II-175

Pettersson, Paul II-82

Petukhov, Alexander II-382

Piatrik, Tomas II-13

Pimentel, Ernesto II-112

Pinto, Jorge Sousa II-191

Plantec, Alain I-4

Podpečan, Vid I-313

Poizat, Pascal II-35

Pollex, Victor II-397

Prantl, Adrian II-434

Pu, Geguang I-594

Păsăreanu, Corina S. I-640

Puffitsch, Wolfgang II-464

Qi, Yanxia I-594

Qian, Li I-564

Qu, Hongyang II-263

Rasmussen, Jacob Illum II-175

Rautiainen, Mika I-375

Ravn, Anders P. I-579

Reckers, Frans I-90

Riekki, Jukka I-375

Ŕıos, Javier I-328

Roos, Marco I-340

Roychoudhury, Abhik I-519

Rustemeyer, Thomas II-424

Sabetta, Antonino II-251

Salaün, Gwen II-112

Salle, Mathias I-488

Sampaio, Augusto I-625

Scandariato, Riccardo II-9

Schaefer, Ina II-23

Schäf, Martin I-609

Schallhart, Christian I-1

Scharbarg, Jean-Luc I-121, I-228

Schätz, Bernhard I-3

Schmaltz, Julien I-673

Schmitt, Jens B. I-169

Schneider, Jörn II-483

Schoeberl, Martin II-464

Scholz, Sven-Bodo I-47

Schreiner, Dietmar II-449

Seceleanu, Cristina II-82

Serwe, Wendelin II-128

Silakov, Denis II-357

Singh, Neeraj Kumar II-312

Singhoff, Frank I-4

Skou, Arne II-175

Slomka, Frank II-397

Smachev, Andrey II-357

Soares, Carlos I-276

Sokolsky, Oleg II-343

Soleimanifard, Siavash I-658

Somers, Lou I-90

Sousa, Simão Melo de II-191

Sousa Pinto, Jorge I-106

Souville, Bertrand II-206

Spalazzese, Romina II-206, II-236,

II-251

Srba, Jǐŕı I-579

Stea, Giovanni I-121, I-152, I-214

Stefaneas, Petros I-75

Steffen, Bernhard I-687, II-206, II-221

Stoimenov, Nikolay I-198

Tautschnig, Michael I-18, I-33

Teeselink, Egbert I-90

Thébault, Pierrick I-390

Theelen, Bart D. II-160

Thiele, Lothar I-198

Thierry, Eric I-121, I-122

Tivoli, Massimo II-278

Trelles, Oswaldo I-328

Tretmans, Jan II-160

Tribastone, Mirco II-51

Trčka, Nikola I-90

708 Author Index

Tsai, Ming-Hsien I-643

Tsay, Yih-Kuen I-643

Tugaenko, Anastasia II-371

Vaandrager, Frits I-90, I-673, II-412

Vaglini, Gigliola I-214

van Benthum, Emiel I-90

van de Pol, Jaco II-160

Vandervalk, Benjamin I-301

Veith, Helmut I-1

Verriet, Jacques I-90

Vighio, Saleem I-579

Voeten, J.P.M. II-160

Voorhoeve, Marc I-90

Vukovic, Maja I-425

Wang, Bow-Yaw I-643

Wang, Hao I-169

Wang, Wei-Lun I-411

Wang, Zheng I-594

Wassyng, Alan II-293

Wechs, Martin I-18

Weitzel, Michael I-261

Werner, Cláudia Maria Lima I-435

Wiechert, Wolfgang I-261

Wiels, Virginie I-58

Wilkinson, Mark D. I-258, I-301

Wirsing, Martin II-51

Withers, David I-301

Wittmann, Ralph II-424

Wu, Quincy I-411

Xing, Jiansheng II-160

Xu, Zhongxing I-535

Xuandong, Li I-564

Yang, Yang I-90

Yan, Yuhong II-35

Yin, Ling I-609

Ylianttila, Mika I-375

Žakova, Monika I-313

Zechner, Axel II-296

Zhang, Jian I-535

Zhang, Qianni II-13

Zhao, Jun I-340

Zhao, Yongxin I-594

Zhou, Jiehan I-375

Zhu, Lei I-643

Zimmermann, Wolf II-491

Zolda, Michael II-487

	Title
	Preface
	Organization
	Table of Contents – Part I
	New Challenges in the Development of Critical Embedded Systems – An “aeromotive” Perspective
	New Challenges in the Development of Critical Embedded Systems—An “aeromotive” Perspective
	Certification of Embedded Software – Impact of ISODIS 26262 in the Automotive Domain
	Enforcing Applicability of Real-Time Scheduling Theory Feasibility Tests with the Use of Design-Patterns
	Introduction
	The Design-Pattern Approach
	Example of the Synchronous Data Flows Design-Pattern
	Specification of the Synchronous Data Flows Design-Pattern
	Feasibility Tests Assigned to the Synchronous Data Flows Design-Pattern
	Example of an AADL Model Compliant with the Synchronous Data Flows Design-Pattern

	A Decision Tool to Check the Compliance of an AADL Model with the Design-Patterns
	Prototyping within Platypus
	Design-Pattern Modeling Framework
	Toward an Implementation within Cheddar

	Related Works
	Conclusion
	References

	Seamless Model-Driven Development Put into Practice
	Introduction
	Requirements for Seamless Model-Driven Development
	Realization of Seamless Model-Driven Development
	COLA – The Component Language
	Model Analysis and System Synthesis
	Tool Integration

	Case Study
	Related Work
	Conclusion
	References

	Timely Time Estimates
	Introduction
	Framework
	Code Instrumentation
	Test Input Generation and Test Harness
	Time Cost Repository and Hardware Benchmarking
	Benchmark Selection
	Time Estimation

	Experiments
	Related Work
	Conclusion
	References

	Compiler-Support for Robust Multi-core Computing
	Introduction
	Robustness in Embedded Computing
	Compiler Support for Robustness
	Robustness in a Functional Setting
	SAC - Data-Parallel Functional Programming
	Support for Robustness with SAC

	Discussion
	References

	Formal Languages and Methods for Designing and Verifying Complex Embedded Systems
	Thematic Track: Formal Languages and Methods for Designing and Verifying Complex Embedded Systems
	Analyzing the Security in the GSM Radio Network Using Attack Jungles
	Introduction
	Related Work
	Outline

	The Attack Jungle Formalism
	Algorithm
	Analyzing an Attack Jungle
	Case Study: The GSM Network
	The GSM System
	Creating the GSM Attack Jungle
	Analyzing the GSM Attack Jungle

	Conclusion
	References

	Formal Modeling and Verification of Sensor Network Encryption Protocol in the OTS/CafeOBJ Method
	Introduction
	The OTS/CafeOBJ Method
	Introduction to CafeOBJ
	Observational Transition Systems

	The SPINS Protocol Suite
	The Sensor Network Encryption Protocol
	The Node-to-Node Key Agreement Protocol

	Formal Modeling and Verification of SNEP
	Modeling
	Verification

	Formal Analysis of Node-to-Node Key Agreement Protocol
	Lessons Learned
	Related Work
	Conclusions and Future Work
	References

	Model-Driven Design-Space Exploration for Embedded Systems: The Octopus Toolset
	Introduction
	Related Work
	Motivating Example
	The Octopus Architecture and Current Realization
	DSEIR
	Model Transformations
	Transforming DSEIR Models to Coloured Petri Nets
	Transforming DSEIR Models to Timed Automata

	Case Studies
	The Running Example
	Modeling Printer Data Paths

	Conclusions
	References

	Contract-Based Slicing
	Introduction
	Foundations: Verification Conditions and Specification-Based Slicing
	Specification-Based Slicing
	Open / Closed Contract-Based Slicing
	Contract-Based Slicing: General Case
	A Contract-Based Slicing Algorithm
	An Illustrative Example
	Conclusion
	References

	Worst-Case Traversal Time (WCTT)
	Special Track on Worst Case Traversal Time (WCTT)
	The PEGASE Project: Precise and Scalable Temporal Analysis for Aerospace Communication Systems with Network Calculus
	Introduction
	Industrial Context
	Wide-Scale Communicating Systems
	Shared Resources: Homogeneous vs. Heterogeneous Flows
	Mono-Segment vs. Multi-hop (Homogeneous or Heterogeneous)
	Use of Formal Methods in the Development Process

	Related Works
	Main Approaches to Timing Verification
	Why Network Calculus Fits Embedded Systems
	Network Calculus: An Overview of the State of the Art
	Objectives and Novelty of the PEGASE Project

	Case-Studies : AFDX, SpaceWire and NoC
	AFDX
	SpaceWire
	Network on Chip

	Some Theoretical Improvements
	Model Hierarchy
	Strict Priority Residual Services
	Tight Results under Blind Policy
	Complexity Problem

	Tool Support
	Requirements on the Tool
	Design Considerations
	Implementation
	Tool Validation

	Conclusion
	References

	NC-Maude: A Rewriting Tool to Play with Network Calculus
	Introduction
	Network Calculus
	WhAT: Why Another Tool?
	DISCO
	COINC
	CyNC
	RTC
	DEBORAH
	PEGASE
	NC-Maude Objectives

	Why Rewriting?
	NC-Maude
	An Example of Interaction
	NC-Maude Code Description
	Extending NC-Maude
	Licence

	Conclusion
	References
	Example of Distance Between Theory and Implementation

	DEBORAH: A Tool for Worst-Case Analysis of FIFO Tandems
	Introduction
	Network Calculus Background
	System Model
	The LUDB Methodology
	DEBORAH
	Nested Tandems
	Non-nested Tandems
	Lower Bounds
	Using DEBORAH

	Conclusions
	References

	A Self-adversarial Approach to Delay Analysis under Arbitrary Scheduling
	Introduction
	Motivation
	Related Work
	Contributions

	Preliminaries on Network Calculus
	Conventional Network Calculus and Non-FIFO Systems
	Using Service Curves (SC) for Non-FIFO Systems
	Using Strict Service Curves (S2C) for Non-FIFO Systems

	The Self-adversarial Approach
	The Self-adversarial Method
	Self-adversarial vs. Additive Bounding Method

	Numerical Experiments
	Comparison of Self-adversarial and Additive Bounding
	FIFO vs. Non-FIFO Delay Bounds

	Conclusion and Discussion
	References

	Flow Control with (Min,+) Algebra
	Introduction
	An Algebraic Approach of Network Calculus
	(Min,+) Algebra
	Other Algebraic Preliminaries
	Operations of Network Calculus

	Network Calculus Modelling
	Input and Output Flows, Arrival and Service Curves
	Performance Characteristics: Delay and Backlog
	Functions Associated to Delay and Backlog

	Flow Control
	Arrival Curve Computation
	Window Flow Control

	Application: Window Flow Control with a Given Delay
	Configuration
	Computation of the Arrival Curve \ˆ{α}*
	Computation of the Window Size \ˆ {w}

	Conclusion
	References

	An Interface Algebra for Estimating Worst-Case Traversal Times in Component Networks
	Introduction
	Timing Analysis of Component Networks
	Processing Element
	Playout Buffer
	Earliest Deadline First Component
	Worst-Case Traversal Times of Component Networks

	Interface Algebra
	Processing Element
	Playout Buffer
	Earliest Deadline First Component
	Worst-Case Traversal Time Interface

	Illustrative Example
	Concluding Remarks
	References
	Appendix: Min-Max Algebra

	Towards Resource-Optimal Routing Plans for Real-Time Traffic
	Introduction
	System Model
	Scheduling and Latency
	Path Computation Algorithms

	Optimal Resource Allocation
	Numerical Results
	Conclusions and Future Work
	References

	Partially Synchronizing Periodic Flows with Offsets Improves Worst-Case End-to-End Delay Analysis of Switched Ethernet
	Introduction
	End-to-End Delay Analysis
	Network and Traffic Model
	Influence of Partial Synchronization

	Worst-Case Delay Analysis with Partial Synchronization
	Basic Network Calculus Approach for ETE Delay Analysis
	Arrival Curves with Partial Synchronization of Flows

	Evaluation of the Proposed Approach
	Example of an Offset Assignment
	Obtained Results

	Conclusion and Future Work
	References

	Analyzing End-to-End Functional Delays on an IMA Platform
	Introduction
	Context
	Objective: Evaluation of Functional Delays
	Contribution

	A Simplified Navigation and Guidance System
	Formal modeling
	The Model
	Behavioral Description with Timed Automata

	Analysis and Verification
	Model-Checking Verification
	A Mixed Verification Technique
	Offset-Based Trajectory Approach

	Conclusion and Perspectives
	References

	Tools in Scientific Workflow Composition
	Tools in Scientific Workflow Composition
	References

	Workflows for Metabolic Flux Analysis: Data Integration and Human Interaction
	Introduction
	Metabolic Flux Analysis with Labeling Experiments
	Scientific Workflow Applications in the 13C-MFA Domain
	Aims of this Contribution

	Ingredients for 13C-MFA
	Model Editing and Visualization with Omix
	High-Performance Simulation Toolbox: 13CFLUX2
	Scientific Workflows for 13C-MFA

	Metabolic Reaction Network Modeling Workflow
	Graphical Network Modeling with Omix
	Network Model Configuration
	Simulation and Evaluation
	Visualization

	Implementation Details
	Omix Plug-In Interface
	Web Service Implementation of the Parameter Fitting Program

	Conclusions
	References

	Intelligent Document Routing as a First Steptowards Workflow Automation: A Case Study Implemented in SQL
	Introduction
	Business and Data Understanding
	Preprocessing and Exploratory Data Analysis
	Modeling and Results
	Implementation
	Conclusions and Future Work
	References

	Combining Subgroup Discovery and Permutation Testing to Reduce Reduncancy
	Introduction
	Related Work
	Ontologies
	Annotations and Mappings
	Related Algorithms

	The Fantom Service
	Ontologies
	Mapping
	Scoring
	Output
	Rule Generation
	Rule Pruning

	Exact Testing for Pruning and Optimization
	Exact Testing: Single-Class Pruning Optimization
	Exact Testing: Multi-class Threshold Optimization

	Experimental Results
	Exact Testing: Single-Class Pruning
	Exact Testing: Multi-class Threshold Optimization

	Conclusions and Future Work
	References

	Semantically-Guided Workflow Construction in Taverna: The SADI and BioMoby Plug-Ins
	Introduction
	BioMoby Semantic Web Services
	SADI Semantic Web Services
	The Taverna BioMoby and SADI Plugins
	The BioMoby Plugin to Taverna
	The SADI Plugin to Taverna

	Semantic Service Discovery in Workflow Construction
	Other BioMoby/SADI Web Service Composition Systems
	References

	Workflow Construction for Service-Oriented Knowledge Discovery
	Introduction
	Related Work
	Orange4WS Platform
	Design and Implementation
	Production of New Web Services

	Knowledge Discovery Ontology
	Knowledge
	Algorithms
	Annotating Algorithms

	Automated Workflow Construction
	Exploiting Algorithm Hierarchy
	A Framework for Workflow Execution in Orange4WS

	A Text Mining Use Case
	Conclusions
	References

	Workflow Composition and Enactment Using jORCA
	Introduction
	System and Methods
	Results
	Discussion
	Conclusions
	References

	A Linked Data Approach to Sharing Workflows and Workflow Results
	Introduction
	Motivating Scenario
	Bottlenecks for Evaluating a Bioinformatics Experiment
	Semantic Web, RDF and Linked Data

	Resources for Digital Materials and Methods
	RDF: The Model for Linked Data and Comprehensive, Yet Light-Weight Coverage of Experiment-Related Data
	myExperiment and BioCatalogue: Repositories for Digital Protocols and Their Components
	Workflow and Provenance
	Concept Web: Repository for Uniquely Identified Concepts, Their Relations and their Evidence

	Proof of Principle
	Linking Experimental Results and Evidence (Taverna Provenance),Personal Interpretation (AIDA Plugin), Digital Protocol (myExperiment) and Its Components (BioCatalogue), in Terms of Biological Concepts (ConceptWiki)

	Discussion and Conclusion
	Research Objects for Publication

	References

	Emerging Services and Technologies for a Converging Telecommunications / Web World in Smart Environments of the Internet of Things
	Towards More Adaptive Voice Applications
	Introduction
	Background and Related Work
	The (Mobile) Internet Today: When Best Effort Is Not Enough
	Case Study: Adaptive Voice Communication
	Discussion and Conclusion
	References

	Telco Service Delivery Platforms in the Last Decade - A R&D Perspective
	Introduction
	The New Service Delivery Platforms
	…and the Network Operators?
	Application Layer Multicast of Video on Demand Streams
	A Location Service with Tunable Privacy
	Quality of Service and Pricing

	Concluding Remarks
	References

	Ontology-Driven Pervasive Service Composition for Everyday Life
	Introduction
	Fundamental Issues and Terminologies
	Fundamental Issues
	Terms in Business Integration
	Terms Related to Ontology-Driven Pervasive Service Composition

	Requirement Analysis
	Requirements for Pervasive Service Composition

	Ontology Model for Pervasive Service Composition
	Survey of Web service Composition Approaches
	Syntactic Web Service Composition
	Semantic Web Service Composition

	Conclusions and Future Work
	References

	Navigating the Web of Things: Visualizing and Interacting with Web-Enabled Objects
	Introduction
	An approach to the Web of Things
	Related Work
	Virtual Objects
	Composing Objects of an Environment and Using Them in Applications

	Towards New User Experience
	Distinguishing Web-Enabled Objects from Non-connected Objects
	Understanding Objects’ Behaviors
	Grouping Objects

	Illustration of the Web of Things Experience
	Browsing Virtual Objects In-Situation
	Browsing Virtual Objects Off-Situation

	Conclusion
	References

	Shaping Future Service Environments with the Cloud and Internet of Things: Networking Challenges and Service Evolution
	Introduction
	Cloud Computing in the Telecom Perspectives
	Ubiquitous Networking and Vision for the Internet of Things
	Ubiquitous Networking for the Internet of Things
	Interdisciplinary Fusion Revolution Crosses over Industries

	The Cloud-Based Internet of Things
	Future Networking Challenges and Service Evolution to Support the Internet of Things
	Characteristics of Ubiquitous Networking for IoT
	Enhanced Capabilities for Ubiquitous Networking in the Internet of Things Smart Environment
	Service Evolution Using Smart Environment of the Cloud and the IoT

	Conclusion
	References

	Relay Placement Problem in Smart Grid Deployment
	Introduction to the Power Grid
	Smart Grid
	Advanced Metering Infrastructure (AMI)
	How AMI Works
	National Science Council Program in Taiwan
	Factors That Affect Deployment Cost

	Relay Placement Problem (RPP)
	Problem Definition
	The Worst Situation of Deployment
	The Evaluation Criterion – Approximation Ratio
	Approximation Algorithms and Variations of RPP
	Decision Supporting System in NSC Program

	Conclusions and Future Works
	References

	Web Science
	Towards a Research Agenda for Enterprise Crowdsourcing
	Introduction
	Applications of Crowdsourcing in the Enterprise
	Models of Crowdsourcing
	Crowd Types
	Incentives
	Quality Assurance
	Governance and Legal
	Social Factors
	Business Models and Viability
	Summary
	References

	Analyzing Collaboration in Software Development Processes through Social Networks
	Introduction
	Software Development Models
	Collaboration and Discipline
	Social Networks
	Requirements for Social Networks Tools
	EvolTrack-SocialNetwork
	Scenario of Collaboration Information Use

	Conclusion
	References

	A Web-Based Framework for Collaborative Innovation
	Introduction
	Understanding CI
	CI, Dynamic Asset Mapping and the Web
	Constituents of CI and Dynamic Asset Mapping
	Properties of Dynamic Asset Mapping CI

	Implementing CI Based on Dynamic Asset Mapping
	CI Examples Based on Dynamic Asset Mapping
	CI Based Geomatics (Mapping)
	CI Based on Dynamic Asset-Mapping for Geographic Communities - Family Service Toronto
	Dynamic Asset-Mapping for Communities of Practice the Mennonite Heritage Portrait

	Related Work
	Conclusion
	References

	A Distributed Dynamics for WebGraph Decontamination
	Introduction
	Related Works
	Edge Reversal Decontamination
	Alg-Stretcher
	Alg-Decontamination

	Experimental Results
	Conclusions
	References

	Increasing Users’ Trust on Personal Assistance Software Using a Domain-Neutral High-Level User Model
	Introduction
	A Domain-Neutral User Metamodel
	A Two-Level Software Architecture for Building Personal Assistance Software
	Detailing our Software Architecture

	Instantiating Our User Metamodel for Different Application Domains
	Related Work
	Conclusion
	References

	Understanding IT Organizations
	Introduction
	Principles
	Relevant Design Concepts
	Contextual Design
	Accountability
	Trust and Reputation of Information Sources
	Provenance and Traceability
	Case-Based Reasoning

	Proposed Metamodel
	The Knowledge Elicitation Process
	Document Reading
	Interviews
	Stakeholder Meetings
	Ethnography

	Related Work
	Concluding Remarks
	References

	On the 2-Categorical View of Proofs
	Introduction
	Some 2-Categorical Notions
	2-Category and Proof Theory
	Conjunction
	Disjunction
	Implication

	On the Interpretation for
	Conclusion
	References

	Model Transformation and Analysis for Industrial Scale Validation
	WOMM: A Weak Operational Memory Model
	Introduction
	Program Model
	Operational Semantics
	Structure of States
	Execution
	Complete Execution and Observable State
	Semantics of Issue
	Semantics of Commit
	Abstract Execution

	Relaxed Behaviors Allowed by WOMM
	Relationship with Other Memory Models
	The DRF Guarantee
	Related Work
	Conclusion and Future Work
	References
	Proof of Lemma 2

	A Memory Model for Static Analysis of C Programs
	Introduction
	Name Binding Model
	Array Simulation Model
	Region Based Ternary Model
	Region Hierarchy
	Region Properties
	Region Views

	Simulation of C Semantics
	Abstract Values
	l-Value and r-Value
	Evaluation Rules

	An Example
	Implementation
	Related Work
	Conclusion
	References

	Analysing Message Sequence Graph Specifications
	Introduction
	Message Sequence Charts
	Transition System for an MSG
	Reducing TG
	Regularity of Com-Connected MSG's
	Synchronous MSG's
	Detecting Implied Scenarios
	Conclusion
	References

	Optimize Context-Sensitive Andersen-Style Points-ToAnalysis by Method Summarization and Cycle-Elimination
	Introduction
	Method Summarization
	Atomic Statements
	Method Summary

	The Framework of the Inter-Procedure Analysis
	The Representation of Calling-Contexts
	The Nodes and Edges of the Main Points-to Graph
	Expanding Calling-Contexts
	Computing the Transitive Closure of the Main Points-To Graph

	Our Solution of Efficiency
	Cycle Elimination and Node Collapse in the Main Points-To Graph
	Optimization in Method Summaries

	Experimental Result and Evaluation
	Related Work
	Conclusion
	References

	A Formal Analysis of the Web Services Atomic Transaction Protocol with UPPAAL
	Introduction
	Overview of WS-Atomic Transaction Protocol
	Formalization and Modelling of the Protocol
	The UPPAAL Model
	Global Declarations
	Messages
	Initiator-Coordinator Process
	Participant Process

	Model Properties and Verification Results
	Model Properties
	Performance Results

	Comparison and Conclusion
	References

	SPARDL: A Requirement Modeling Language for Periodic Control System
	Introduction
	The Requirement Modeling Language
	Module-Hierarchy Syntax
	Mode-Hierarchy Syntax

	Operational Semantics for SPARDL
	Configuration
	Transition Rules
	A Case Study

	Requirement Prototype Generation
	Tool Implementation
	Discussion
	Conclusion
	References

	AutoPA: Automatic Prototyping from Requirements
	Introduction
	The Library System
	Modeling of requirements
	UML Models of Requirements
	Use Case Model

	Design of AutoPA
	Implementation of OCL Expressions

	Prototype of the Library System
	Generating a prototype
	Execution of Generated Prototype

	Conclusion and Discussion
	References

	Systematic Model-Based Safety Assessment Via Probabilistic Model Checking
	Introduction
	Overview of Quantitative Safety Assessment
	Overview of Prism towards Safety Analysis

	Proposed Strategy
	Input Data Model
	Translation Rules
	Modeling Considerations

	Case Study
	Related Work
	Conclusion
	References

	Learning Techniques for Software Verification and Validation
	Learning Techniques for Software Verification and Validation – Special Track at ISoLA 2010
	Comparing Learning Algorithms in Automated Assume-Guarantee Reasoning
	Introduction
	Preliminaries
	The Learning Model
	Learning a Contextual Assumption
	Exact Learning Algorithms for Boolean Functions
	The CDNF Algorithm
	A Learning Algorithm for Ordered Binary Decision Diagrams

	Experiments
	Conclusion
	References

	Inferring Compact Models of Communication Protocol Entities
	Introduction
	Mealy Machines
	Inference of Symbolic Mealy Machines
	Inference of Mealy Machines
	Generating Symbolic Representation of Mealy Machines

	Implementation
	Experiments
	Results
	Evaluation

	Conclusions and Future Work
	References

	Inference and Abstraction of the Biometric Passport
	Introduction
	Overview
	Inference and Abstraction of Mealy Machines
	Mealy Machines
	Inference of Mealy Machines
	Inference Using Abstraction

	Biometric Passport
	Experiments
	Abstraction Mapping
	Results
	The Behavior of the SUT
	Validation

	Conclusions and Future Work
	References

	From ZULU to RERS Lessons Learned in the ZULU Challenge
	Motivation
	Active Learning
	The ZULU Competition
	A Configurable Inference Framework
	Continuous Equivalence Queries
	Results
	Discussion of the ZULU Rating Approach

	RERS - Regular Inference of Reactive Systems
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

