
Chapter 9
Split and List

In this chapter we discuss several algorithms based on the following approach. There
is a number of efficient algorithms for many problems in P. To apply these algo-
rithms on hard problems, we (exponentially) enlarge the size of a hard problem and
apply fast polynomial time algorithm on an input of exponential size. The com-
mon way to enlarge the problem is to split the input into parts, and for each part to
enumerate (or list) all possible solutions to subproblems corresponding to the part.
Then we combine solutions of subproblems to solutions of the input of the original
problem by making use of a fast polynomial time algorithm.

9.1 Sort and Search

First let us recall that on a vector space Qm over the rational numbers Q one can
define a lexicographical order denoted by ≺. For vectors x = (x1,x2, . . . ,xm), y =
(y1,y2, . . . ,ym) ∈ Qm, we define that x ≺ y if and only if there is a t ∈ {1,2, . . . ,m}
such that xi = yi for all i < t and xt < yt . For example, (2,4,8,3) ≺ (2,7,2,4). We
also write x� y if x≺ y or x = y.

Before proceeding with the Split & List technique, let us play a bit with the
following “toy” problem. In the 2-TABLE problem, we are given 2 tables T1 and T2
each being an array of size m× k, and a vector s ∈ Qm. Each table consists of k
vectors of Qm in such a way that each vector is a column of the array. The question
is, if the table contains an entry from the first column and an entry from the second
column such that the sum of these two vectors is s?

0 1 4 3 0 1 3 0
1 3 4 3 2 1 6 0
1 5 4 3 3 1 3 0

Fig. 9.1 An instance of the 2-TABLE problem with entries from Q3
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An example of an instance of a 2-TABLE problem is given in Fig. 9.1. For vector

s =

4
4
4

, there are two solutions (

3
3
3

 ,

1
1
1

) and (

4
4
4

 ,

0
0
0

).

A trivial solution to the 2-TABLE problem would be to try all possible pairs of
vectors. Each comparison takes O(m), and the number of pairs of vectors is O(k2),
which would result in running time O(mk2). There is a smarter way to solve this
problem.

Lemma 9.1. The 2-TABLE problem for tables T1 and T2 of size m× k with entries
from Qm can be solved in time O(mk logk).

Proof. The vectors of the first table are sorted increasingly in lexicographic order
and the vectors of the second table are sorted decreasingly in lexicographic order.
Two vectors can be compared in time O(m). Consequently the sorting can be done
in time O(mk logk).

Now given sorted vector sequences a1 � a2 � ·· · � ak and bk � bk−1 � ·· · � b1,
the algorithm finds out whether there are vectors ai and b j such that ai + b j = s.
More precisely algorithm 2-table, described in Fig. 9.2, outputs all such pairs and
its correctness is based on the following observation. If ai + b j ≺ c, then for every
l ≥ i, ai +bl ≺ c, and thus all vectors bl , l ≥ i, can be eliminated from consideration.
Similarly, if c≺ ai +b j, then all vectors al , l ≥ i, are eliminated from consideration.
The algorithm takes O(k) steps and the total running time, including sorting, is
O(mk logk). ut

Algorithm 2-table.
Input: Tables T1 and T2 of size m× k with columns/vectors ai in T1 and b j in T2, and vector c.
Output: All pairs (ai,b j) such that ai +b j = c and ai ∈ T1, b j ∈ T2.

i := 1; j := 1
while i≤ k and j ≤ k do

if ai +b j = c then
return (ai,b j)

if ai +b j ≺ c then
i := i+1

if c≺ ai +b j then
j := j +1

Fig. 9.2 Algorithm 2-table

Let us remark that with a simple modification that outputs all pairs ai + b j = c
and increments counters i and j, the algorithm can enumerate all solutions (ai,bj)
within the same running time.

The solution of surprisingly many hard problems can be reduced to the solution
of the 2-TABLE problem. The main idea of the approach is to partition an input of
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a problem into two subproblems, solve them separately and find the solution to the
original problem by combining the solutions to the subproblems. We consider three
NP-hard problems.

Subset Sum. In the SUBSET SUM problem, we are given positive integers a1,a2, . . . ,
an, and S. The task is to find a subset I ⊆ {1,2, . . .n} such that

∑
i∈I

ai = S,

or to report that no such subset exists. For example, for a1 = 5, a2 = 5, a3 = 10,
a4 = 60, a5 = 61, and S = 70, the solution is I = {1,2,4}.

Theorem 9.2. The SUBSET SUM problem can be solved in time O(n2n/2).

Proof. We partition {a1,a2, . . . ,an} into two sets X = {a1,a2, . . . ,abn/2c} and Y =
{abn/2c+1, . . . ,an}. For each of these two sets, we compute the set of all possible
subset sums. The total number of computed sums is at most 2n/2+1. Let IX and IY be
the sets of computed sums for X and Y respectively (let us remark that 0 belongs to
both IX and IY ). Then there is a solution to the SUBSET SUM problem if and only if
there is an sX ∈ IX and an sY ∈ IY such that sX + sY = S. To find such sX and sY , we
reduce the problem to an instance of the 2-TABLE problem. We build an instance of
the 2-TABLE. Table T1 is formed by the elements of IX and table T2 is formed by the
elements of IY . Both are arrays of size m× k, where m = 1 and k ≤ 2n/2. Then by
Lemma 9.1, we can find two elements, one from each table, whose sum is S (if they
exist) in time O(2n/2 log2n/2) =O(n2n/2). ut

Exact Satisfiability. In the EXACT SATISFIABILITY problem (XSAT), we are given
a CNF-formula F with n variables and m clauses. The task is to find a satisfying
assignment of F such that each clause contains exactly one true literal. For example,
the CNF formula

(x1∨ x2∨ x3)∧ (x1∨ x2)∧ (x1∨ x3)

is satisfied by the truth assignment x1 = true, x2 = false, and x3 = true, moreover,
for this assignment, each clause is satisfied by exactly one literal.

While there are faster branching algorithms for XSAT, we find this example in-
teresting because its comparison with SAT helps us to better understand which kind
of properties are necessary to reduce a problem to the 2-TABLE problem.

Theorem 9.3. The problem XSAT is solvable in time O∗(2n/2).

Proof. Let F be an input of XSAT. Let its set of clauses be {c1,c2, . . . ,cm} and
let its set of variables be {x1,x2, . . . ,xn}. We split the variables into two sets X =
{x1,x2, . . . ,xbn/2c} and Y = {xbn/2c+1, . . . ,xn}. For every possible truth assignment
f of the variables of X which assigns to each variable either the value true or false,
we form its characteristic vector χ( f ,X) ∈ Qm. The ith coordinate of χ( f ,X) is
equal to the number of literals which evaluate to true in the clause ci. Similarly, for
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every possible truth assignment g of the variables of Y we form its characteristic
vector χ(g,Y ) ∈Qm. The jth coordinate of χ(g,Y ) is equal to the number of literals
which evaluate to true in the clause c j.

Let us note that the input formula F is exactly satisfied if and only if there is an as-
signment f of X and an assignment g of Y such that χ( f ,X)+χ(g,Y ) = (1,1, . . . ,1).
We form two tables: table T1 contains characteristic vectors of X and table T2 con-
tains characteristic vectors of Y . Each table has at most 2dn/2e columns. Thus we can
again apply Lemma 9.1, and solve XSAT in time O∗(2n/2). ut

Why can this approach not be used to solve SAT in time O∗(2n/2)? This is
because by constructing an instance of the 2-TABLE for an instance of SAT the
same way as we did for XSAT, we have to find characteristic vectors such that
(1,1, . . . ,1) � χ( f ,X) + χ(g,Y ). This is a real obstacle, because we cannot use
Lemma 9.1 anymore: the argument “if ai + b j ≺ (1,1, . . . ,1), then for every l ≥ i,
ai +bl ≺ (1,1, . . . ,1)” does not hold anymore. In the worst case (without having any
ingenious idea) we have to try all possible pairs of vectors.

Knapsack. In the BINARY KNAPSACK problem, we are given a positive integer
W and n items s1,s2, . . . ,sn, each item has its value ai and its weight wi, which are
positive integers. The task is to find a subset of items of maximum total value subject
to the constraint that the total weight of these items is at most W .

To solve the BINARY KNAPSACK problem in time O∗(2n/2), we reduce its so-
lution to the solution of the following MODIFIED 2-TABLE problem. We are given
two tables T1 and T2 each one an array of size 1× k whose entries are positive inte-
gers, and an integer W . The task is to find one number from the first and one from
the second table whose sum is at most W . An example is given in Fig. 9.3.

10 2 4 12 15 6 11 14

Fig. 9.3 In this example, for W = 14, the solution is the pair of integers (2,11).

The problem MODIFIED 2-TABLE can be solved in timeO(k logk) with an algo-
rithm similar to the one for 2-table.

In the first step, the algorithms sorts the entries of T1 in increasing order and
the ones of T2 in decreasing order. Let x be an entry in T1 and y an entry in T2.
We observe the following. If x + y ≤W , then for all z appearing after y in T2, we
have z < y, and, consequently, x + z ≤ x + y. Therefore, all such pairs (x,z) can be
eliminated from consideration, as they cannot provide a better answer than (x,y).
Similarly, if x+ y > W then for all z appearing after x in T1, z+ y > W , and thus all
pairs (z,y), z ≥ x, can be eliminated from consideration. Thus after sorting, which
requires O(k logk) time, one can find the required pair of numbers in O(k) steps.
This observation is used to prove the following theorem.

Theorem 9.4. The BINARY KNAPSACK problem is solvable in time O∗(2n/2).
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Proof. To solve the BINARY KNAPSACK problem, we split the set of items into two
subsets s1,s2, . . . ,sbn/2c and sbn/2c+1, . . . ,sn, and for each subset I⊆{1,2, . . . ,bn/2c},
we construct a couple xI = (AI ,WI), where

AI = ∑
i∈I

ai, and WI = ∑
i∈I

wi.

Thus we obtain a set X of couples and the cardinality of X is at most 2n/2. Sim-
ilarly we construct the set Y which consists of all couples yJ = (AJ ,WJ), where
J ⊆ {bn/2c+1,bn/2c+1+1, . . . ,n}. Then the problem boils down to finding cou-
ples xI ∈ X and yJ ∈ Y such that AI + AJ is maximum subject to the constraint
WI +WJ ≤W .

To reduce the problem to an instance of the MODIFIED 2-TABLE problem dis-
cussed above, we perform the following preprocessing: a couple (AI ,WI) is removed
from X (or Y ) if there is a couple (AI′ ,WI′), I 6= I′, from the same set such that
AI′ ≥ AI and WI′ ≤ WI . The argument here is that the set of items with couple
(AI′ ,WI′) has higher value and smaller weight, so we prefer (AI′ ,WI′) and can safely
remove (AI ,WI) from X . In the case of (AI ,WI) = (AI′ ,WI′), we break ties arbitrarily.
In other words, we remove couples dominated by some other couple.

This preprocessing is done in time O∗(n2n/2) in the following way for X and
similarly for Y . First the items of the set X (or Y ) are sorted in increasing order
according to their weights. At the second step of the preprocessing we are given a
list of couples sorted by increasing weights

(A1,W1),(A2,W2), · · · ,(Ak,Wk),

where k≤ 2n/2 and for every 1≤ i < j≤ k, Wi ≤Wj. We put A := A1 and move in the
list from 1 to k performing the following operations: if Ai > A, we put A := Ai. Oth-
erwise (Ai ≤ A), we remove (Ai,Wi) from the list. This procedure takes O(k) steps
and as the result of it we have produced a set of couples with no couple dominated
by any other one.

Thus after preprocessing done for X and for Y , we have that (AI ,WI) ∈ X and
(AJ ,WJ) ∈ Y have maximum sum AI +AJ subject to WI +WJ ≤W if and only if the
sum WI +WJ is maximum subject to WI +WJ ≤W . What remains is to construct the
table of size 2× 2n/2 and use the algorithm for the MODIFIED 2-TABLE problem.
This step requires time O∗(2n/2). This concludes the proof. ut

A natural idea to improve the running time of all algorithms based on reductions
to the k-TABLE problem, is to partition the original set into k≥ 3 subsets and reduce
to the k-TABLE problem. However, it is not clear how to use this approach to obtain
better overall running times. Consider the following k-TABLE problem: given k ta-
bles T1,T2, . . .Tk such that each table is an array of size m× k with entries from Rm,
the task is for a given vector c, to find a set of vectors (c1,c2, . . . ,ck), ci ∈ Ti, such
that

c1 + c2 + · · ·+ ck = c.
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We can solve the k-TABLE problem in time O(nk−1 + kn logn) by recursively ap-
plying the algorithm for the 2-TABLE problem. Unfortunately we do not know any
faster algorithm for this problem.

Thus if we split an instance of a hard problem, like XSAT, into k subsets, con-
struct 2n/k sets of vectors for each table, and use an algorithm for solving the k-
TABLE problem, we obtain an algorithm of running time O∗(2(k−1)n/k).

However, the idea of reducing to a k-TABLE problem can be useful to reduce
the space required by such algorithms. All algorithms discussed in this section keep
tables of sizes m× 2n/2 and thus the space needed is 2n/2. Schroeppel and Shamir
[202] used the k-TABLE problem to reduce the space requirement of such algorithms
to 2n/4.

9.2 Maximum Cut

In this section we describe an algorithm due to Williams solving the MAXIMUM
CUT problem. The algorithm is based on a fast way of finding triangles in a graph.
This approach is based on fast square matrix multiplication. Let us recall, that the
product of two n×n matrices can be computed in O(nω) time, where ω < 2.376 is
the so-called square matrix multiplication exponent.

Maximum Cut. In the MAXIMUM CUT problem (Max-Cut), we are given an undi-
rected graph G = (V,E). The task is to find a set X ⊆ V maximizing the value of
CUT(X ,V \X), i.e. the number of edges with one endpoint in X and one endpoint
in V \X .

While a naive way of finding a triangle in a graph would be to try all possible
triples of vertices, there is a faster algorithm for doing this job.

Theorem 9.5. A triangle in a graph on n vertices can be found in time O(nω) and
in O(n2) space.

Proof. Let A(G) be the adjacency matrix of G. It is easy to prove that in the kth
power (A(G))k of A(G) the entry (A(G))k[i, i] on the main diagonal of (A(G))k is
equal to the number of walks of length k which start and end in vertex i. Every
walk of length 3 which starts and ends at i must pass through 3 vertices, and thus
is a triangle. We conclude that G contains a triangle if and only if (A(G))3 has a
non-zero entry on its main diagonal. The space required to compute the product of
matrices is proportional to the size of A(G), which is n2. ut

Theorem 9.6. The MAXIMUM CUT problem on n-vertex graphs is solvable in time
O∗(2ωn/3) =O(1.7315n), where ω < 2.376 is the square matrix multiplication ex-
ponent.

Proof. Let us assume that G = (V,E) is a graph on n vertices and that n is divisible
by 3. (If not we can add one or two isolated vertices which do not change the value of
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the maximum cut and add a polynomial factor to the running time of the algorithm.)
Let V0,V1,V2 be an arbitrary partition of V into sets of sizes n/3.

We construct an auxiliary weighted directed graph A(G) as follows. For every
subset X ⊆ Vi, 0 ≤ i ≤ 2, the graph A(G) has a vertex X . Thus A(G) has 3 · 2n/3

vertices. The arcs of A(G) are all possible pairs of the form (X ,Y ), where X ⊆ Vi,
Y ⊆ Vj, and j = i + 1 (mod3). Thus A(G) has 3 · 22n/3 arcs. For every arc (X ,Y )
with X ⊆Vi and Y ⊆Vj, i 6= j, we define its weight

w(X ,Y ) = CUT (X ,Vi \X)+CUT(X ,Vj \Y )+ CUT (Y,Vi \X).

Claim. The following properties are equivalent

(i) There is X ⊆V such that CUT(X ,V \X) = t.
(ii) The auxiliary graph A(G) contains a directed triangle X0,X1,X2, Xi ⊆Vi, 0≤

i≤ 2, such that
t = w(X0,X1)+w(X1,X2)+w(X2,X0).

Proof (Proof of Claim). To prove (i) ⇒ (ii), we put Xi = X ∩Vi, 0 ≤ i ≤ 2. Then
every edge e of G contributes 1 to the sum w(X0,X1) + w(X1,X2) + w(X2,X0) if
e is an edge between X and V \X , and 0 otherwise. To prove (ii) ⇒ (i), we put
X = X0 ∪X1 ∪X2. Then again, every edge is counted in CUT(X ,V \X) as many
times as it is counted in w(X0,X1)+w(X1,X2)+w(X2,X0). ut

To find out whether the condition (ii) of the claim holds, we do the following.
We try all possible values of w(Xi,X j), j = i+1 (mod3). Thus for every triple W =
(w01,w12,w20) such that w = w01 + w12 + w20, we consider the subgraph A(G,W )
of A(G) which contains only the arcs of weight wi j from Xi ⊆ Vi to X j ⊆ Vj. For
every value of t, the number of such triples is at most t3. The subgraph A(G,W ) can
be constructed in time O∗(22n/3) by going through all arcs of A(G). But then there
exists a triple W satisfying (ii) if and only if the underlying undirected graph of
A(G,W ) contains a triangle of weight W . By Theorem 9.5, verifying whether such
a triangle exists can be done in time O∗(2ωn/3). Thus for every value of t, we try all
possible partitions of t, and for each such partition we construct the graph A(G,W )
and check whether it contains a triangle of weight t. The total running time is

O∗(t · t3(2ωn/3 +22n/3)) =O∗(2ωn/3).

Notes

The name Split and List for the technique is due to Ryan Williams, who used it in his
PhD thesis [217]. The algorithms for SUBSET SUM and BINARY KNAPSACK are
due to Horowitz and Sahni [117] and Schroeppel and Shamir [202]. Note that this is
an early paper of Adi Shamir, one of the three inventors of the RSA public-key cryp-
tosystem. The space requirements in these algorithms can be improved to O∗(2n/4)
while keeping the same running time of O∗(2n/2) [202]. Howgrave-Graham and
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Joux improve the algorithm of Schroeppel and Shamir for SUBSET SUM on random
inputs i [118].

Fomin, Golovach, Kratochvil, Kratsch and Liedloff used the Split and List ap-
proach to list different types of (σ ,ρ) dominating sets in graphs [82]. Klinz and
Woeginger used this approach for computing power indices in voting games [131].

Williams [216] provides a variant of Theorem 9.6 for solving a more general
counting version of WEIGHTED 2-CSP (a variant of constraint satisfaction with
constraints of size at most 2). Williams’ PhD thesis [217] contains further general-
izations of this approach.

Theorem 9.5 is due to Itai and Rodeh [121]. A natural question concerning the
proof of Theorem 9.6 is, whether partitioning into more than three parts would be
useful. The real obstacle is the time spent to find a clique of size k in a graph. Despite
many attempts, the following result of Nešetřil & Poljak was not improved for more
than 25 years: The number of cliques of size 3k in an n-vertex graph can be found
in time O(nωk) and space O(n2k) [163]. Eisenbrand and Grandoni [67] succeeded
in improving the result of Nešetřil and Poljak for a (3k + 1)-clique and a (3k + 2)-
clique for small values of k. In particular, they show how to find a cliques of size
4,5, and 7 in time O(n3.334) O(n4.220), and O(n5.714), respectively.

The first algorithm that performs a matrix multiplication faster than the standard
Gaussian elimination procedure implying ω ≤ log2 7 < 2.81 is due to Strassen [210].
The proof that ω < 2.376 is due to Coppersmith and Winograd [51].
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