
Chapter 12
Conclusions, Open Problems and Further
Directions

We conclude with a number of open problems. Some of them are of a fundamental
nature and some of them can serve as starting points for newcomers in the field.

Fundamental questions
Every problem in NP can be solved by enumerating all solution candidates. The

question is whether such trivial enumeration can be avoided for every problem in
NP. In other words, is brute-force search the only approach to solve NP problems
in general? A positive answer to this question implies that P 6= NP. On the other
hand, the assumption P 6= NP does not yield a negative answer. Recent work of
Williams demonstrates that: “... carrying out the seemingly modest program of find-
ing slightly better algorithms for all search problems may be extremely difficult (if
not impossible)” [219].

Most of the exact algorithms are problem dependent—almost every specific
problem requires specific arguments to show that this problem can be solved faster
than brute-force search. In the world of polynomial time algorithms and param-
eterized complexity we possess very powerful tools allowing us to establish effi-
cient criteria to identify large classes of polynomial time solvable or fixed parame-
ter tractable problems. It would be desirable to obtain generic tools allowing us to
identify large classes of NP-complete problems solvable faster than by brute-force
search.

Every algorithmic theory becomes fruitful when accompanied by complexity the-
ory. In the current situation we are only able to distinguish between exponential and
subexponential running times (subject to Exponential Time Hypotheses). A chal-
lenge here is to develop a theory of exponential lower bounds. For example, is it
possible to prove (up to some plausible assumption from complexity like P6=NP,
FPT6=W[1], ETH, etc.) that there is no algorithm solving 3-SAT on n variables in
time 1.000000001n?

More concrete questions
Three fundamental NP-complete problems, namely, SAT, TSP and GRAPH COL-

ORING can be solved within the same running time O∗(2n). Obtaining for any of
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these problems an algorithm of running time O∗((2− ε)n) for any ε > 0 would be
exciting.

Can it be that for every ε > 0 the existence of an O∗((2− ε)n) algorithm for
one of these three problems yields an O((2− δ )n) algorithm for the other two, for
some δ > 0? Recently, Björklund [22] announced a randomized algorithm solving
HAMILTONIAN PATH in time O(1.66n).

Many permutation and partition problems can be solved in time O∗(2n) by dy-
namic programming which requires exponential space. An interesting question is
whether there are O∗(2n) time and polynomial space algorithms for TSP, GRAPH
COLORING, and TREEWIDTH.

Some permutation problems like PATHWIDTH or TREEWIDTH can be solved
in time O∗((2− ε)n) (and exponential space). What can we say about DIRECTED
FEEDBACK ARC SET, CUTWIDTH and HAMILTONIAN CYCLE?

The running time of current branching algorithms for MIS with more and more
detailed analyses seems to converge somewhere near O∗(1.2n). It appears that ob-
taining an algorithm running in time O∗(1.1n) will require completely new ideas.
Similarly the question can be asked whether MDS is solvable in timeO(1.3n). MIN-
IMUM DIRECTED FEEDBACK VERTEX SET requires us to remove the minimum
number of vertices of a directed graph such that the remaining graph is acyclic. The
problem is trivially solvable in time O∗(2n). The trivial algorithm was beaten by
Razgon with an algorithm running in O(1.9977n) time [178]. It seems that improv-
ing even to O∗(1.8n) is a difficult problem.

SUBGRAPH ISOMORPHISM is trivially solvable in timeO∗(2n logn). Is it possible
to solve this problem in time 2O(n)? A similar question can be asked about GRAPH
HOMOMORPHISM. In CHROMATIC INDEX (also known as EDGE COLORING) the
task is to color edges with the minimum number of colors such that no two edges of
the same color are incident. The only non-trivial algorithm we are aware of reduces
the problem to (vertex) graph coloring of the line graph. This takes time O∗(2m). Is
CHROMATIC INDEX solvable in time 2O(n)?

Enumerating the number of certain objects is a fundamental question in combina-
torics. Sometimes such questions can be answered using exact algorithms. Consider
the following general problem: “For a given property π , what is the maximum num-
ber of vertex subsets with property π in a graph on n vertices?” For example, the
theorem of Moon-Moser says that when the property π is “being a maximal clique”,
then this number is 3n/3. But for many other natural properties, we still do not know
precise (even asymptotically) bounds. For example, for minimal dominating sets the
correct value is between 1.5704n and 1.7159n [88], for minimal feedback vertex sets
between 1.5926n and 1.7548n [79]. For minimal feedback vertex sets in tournaments
the old bounds of Moon [160]—1.4757n and 1.7170n—were recently improved by
Gaspers and Mnich to 1.5448n and 1.6740n [102]. For minimal separators we know
that the number is between 1.4423n and 1.6181n [95], for potential maximal cliques
between 1.4423n and 1.7347n [96].
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