
Chapter 8
Mapping-Based Merging of Schemas

Rachel Pottinger

Abstract Merging schemas or other structured data occur in many different data
models and applications, including merging ontologies, view integration, data inte-
gration, and computer supported collaborative work. This paper describes some of
the key works in merging schemas and discusses some of the commonalities and
differences.

1 Introduction

Schemas, ontologies and other related structures commonly need to be merged
in a number of different applications. This happens for a number of reasons. For
example:

View integration: Different users have their own aspects of a common application
that they are interested in. For example, in creating a database for a university,
the registrar has a different view from a professor, and both have different views
from a student. In view integration, each user group creates its own “view” of
what should be in the schema and then these different views are combined to
create one global schema in which the data is stored.

Data integration: Users may want to query over multiple databases. For exam-
ple, a BioMedical researcher may want to query both HUGO and OMIM for
information on genes, and then use the gene information to query SwissProt for
which proteins those genes encode. Because the researcher does not want to learn
each of the schemas, and yet creating a warehouse of the entire set of databases is
infeasible because of size and access restrictions, the user would like to just query
one schema once and have the system figure out how to translate the queries over
the sources. Such a system is called a data integration system.

R. Pottinger
University of British Columbia, 201-2366 Main Mall, Vancouver, BC, Canada V6T 1Z4
e-mail: rap@cs.ubc.ca

Z. Bellahsene et al. (eds.), Schema Matching and Mapping, Data-Centric Systems
and Applications, DOI 10.1007/978-3-642-16518-4 8,
c� Springer-Verlag Berlin Heidelberg 2011

223

rap@cs.ubc.ca

224 R. Pottinger

Merging ontologies: An ontology describes the concepts in a domain and the rela-
tionships between those concepts [Fikes 1996]. Ontologies are a commonplace in
varied domains such as anatomy and civil engineering. Often a domain has more
than one “standard” ontology for the same general concepts. For example, the
foundational model of anatomy (FMA) [Rosse et al. 1998] is designed to model
anatomy in great detail, whereas the Galen Common Reference Model [Rec-
tor et al. 1994] is designed to model anatomy for clinical applications. Because
these two ontologies serve different communities, they have different concepts
even though the domain is roughly the same. Merging the two ontologies would
allow users to understand how all the concepts are related.

All of these applications have the same problem: given the two or more struc-
tured representations of data – which we often refer to as models [Bernstein et al.
2000] – combine the models to form one unified representation. These applications
may also seek to create the mappings between the unified version and the input
smaller schemas/ontologies. Many different works have looked at these different
problems, both alone and in consort. This paper surveys some of the works in this
area. In particular, Sect. 2 begins by describing a number of theoretical works that
are relevant for multiple merging situations. Section 3 looks at works on view inte-
gration. Section 4 looks at work on data integration. Section 5 looks at work on
merging ontologies. Section 6 looks at generic approaches for merging structured
data representations. Section 7 surveys work on a variation of the problem: the data
to be merged has been modified from a common ancestor and now the changes
must be incorporated together. This variation is common both in file systems and
in computer supportive collaborative work. Section 8 discusses commonalities and
differences. Finally, Sect. 9 concludes.

Throughout this paper, we assume that the relationships between the schemas
have already been created; this is beyond the scope of the paper. Interested readers
in creating mappings are referred to existing surveys [Rahm and Bernstein 2001;
Doan and Halevy 2004].

2 Theoretical Underpinnings

2.1 Information Capacity

The key notion of information capacity [Hull 1984] is that when comparing two
schemas E and G, one can consider how much of the data in E can be accessed
using G and vice versa.

Miller et al. [1993] study which properties of information capacity are required
for both data integration and view integration. The key to understanding the require-
ments is the definitions of equivalence and dominance:

To be information capacity preserving, a mapping I(S1) ! I(S2) must be defined
on every element in S1 and functional in both directions. If so, then S2 dominates
S1, denoted S1 � S2. If S1 � S2 and S2 � S1, then S1 and S2 are equivalent,

8 Mapping-Based Merging of Schemas 225

denoted S2 � S1, and I is an equivalence preserving mapping. Informally, this
means that if S1 dominates S2, then it is possible to retrieve all the information from
S2 by accessing S1; if the two are equivalent, one can get all the information from
S2 by querying S1 and one can get all the information from S1 by querying S2.

Miller et al. show that in data integration, querying the source schemas from
the integrated views requires that the integrated schema dominates the union of
local schemas. In view integration, querying the integrated schema through the user
views requires that the union of user views dominates the integrated schema. This
notion of completeness in creating a merged or mediated schema is common, not
just for information capacity but in other generic merging algorithms such as the
specification by Buneman et al. [1992].

Ontology merging algorithms often use notions of completeness as well. How-
ever, ontology merging algorithms do not use information capacity as a basis for
comparison since ontologies often lack data. Instead, they check to ensure that all
concepts from the input ontologies appear in the merged ontology.

2.2 Instance-Level Constraints and Schema Merging

One natural question when examining work on merging schemas is how to deal
with instance-level constraints such as key constraints and foreign keys. Unfortu-
nately, as shown in Convent [1986] merging schemas is undecidable as soon as
instance-level constraints are considered, even with a very simple representation of
schemas. While Convent [1986] specifically considers relational view integration
where the integrity constraints are keys and foreign keys, it generalizes to other
schema merging areas as well.

Convent [1986] concentrates primarily on what it means to have incompatible
constraints. Informally, this means that if users are trying to integrate views, then
for each user’s view, it should be possible to access those instances from the global
schema – note that this is very similar to the information capacity requirement laid
out in Sect. 2.1 by Miller et al. [1993]. Unfortunately, Convent [1986] shows that
having incompatible constraints is undecidable even in this very basic case. Because
of this early undecidability result, schema merging works typically do not consider
instance-level constraints.

3 View Integration

As mentioned in Sect. 1, view integration is the problem of integrating the views/
requirements that different users have of a schema, and then creating one global
schema. Typically, this global schema is one in which the data is actually stored.
Some systems may also allow the existing user views to persist, and then mappings
may be created from the user views to the global schema where the data is stored.

226 R. Pottinger

This problem has been studied for quite some time, and is the subject of an early
survey [Batini et al. 1986]. Batini et al. [1986] categorizes view integration work as
taking one or more of the following steps:

Preintegration: Deciding which schemas to be integrated, in which order the inte-
gration should occur, and various preferences (e.g., if one of the schemas is
“preferred” over the other).

Comparison of the schemas: Determining the correspondences and detecting the
possible conflicts. In this context, a conflict is when a concept is represented
differently in the input schemas. For example, a simple conflict might be that
there is an attribute “Last Name” in one schema that is represented by an attribute
“LName” in another schema.

Conforming the schemas: resolving the conflicts between the schemas; the
authors note that automatic resolution is not typically possible in schema
conformation.

Merging and restructuring: Now that the schemas are ready to be superimposed,
how should they be combined? Batini et al. [1986] offers the following qualitative
criteria to decide on the “correctness” of the merged schema:

� Completeness and correctness
� Minimality
� Understandability

These criteria are seen again and again in a number of different guises throughout
the schema merging literature. As far as schema merging is concerned, this catego-
rization is the main contribution of Batini, Lenzerini, and Navathe’s paper; the bulk
of the remainder is concentrated on matching. Again, matching (i.e., determining
what concepts in one schema are related to the concepts in another schema) is out-
side the scope of this paper and is surveyed in existing surveys (e.g., Rahm and
Bernstein 2001; Doan and Halevy 2004; Rahm 2011) (see also Chap. 2). Our work
focuses on the “merging and restructuring.”

The view integration problem was subsequently studied in many areas, including
ER diagrams [Song et al. 1996; Lee and Ling 2003], XML [Beeri and Milo 1999;
Tufte and Maier 2001; Yang et al. 2003], semi-structured data [Bergamaschi et al.
1999], relational and object-oriented databases [Larson et al. 1989; Shu et al. 1975;
Biskup and Convent 1986; Navathe and Gadgil 1982; Shoval and Zohn 1991], and
others. The remainder of this section details a few of the schema merging algorithms
in the context of view integration.

3.1 Biskup and Convent

Biskup and Convent [1986] define a formal language for view integration and then
proceed to integrate based on that language. This fairly early work provides a list of
details need to be provided to create a view integration system:

8 Mapping-Based Merging of Schemas 227

� The data model.
� A language specifying the constraints of how the schemas are related. In this

case, the authors use a variation on relational algebra. The precise constraints
that are considered are described below.

� A formalization of conflicts. As in Batini, Lenzerini, and Navathe’s work, a con-
flict is when a concept is represented differently in the input schemas (e.g., two
corresponding attributes being called “Last Name” and “Lname”).

� Some explanation of when the global schema will provide all the information
that the users require (i.e., is it complete).

� A formal definition based on the concepts above.

After taking these items as input, the authors produce a global schema that meets
those requirements, along with mappings that relate the global schema to the source
schemas. The mappings between the views and the global schema are essentially
the same as the language used to represent the constraints between the views for
most of the constraints given. However, while the algorithm details what the global
schema should be, and an example shows what the view to global schema mapping
would look like, there is no algorithm given for creating the view to global schema
mapping.

A key facet of their approach is that their constraints can only exist between
single relationships. They also assume that each attribute can be related to a single
other attribute. The set of constraints that they consider is entirely instancebased.
These three restrictions combine to result in a fairly straightforward merge. Despite
these limitations, the paper is a large step forward, largely to the overall framework.
Informally, the constraints that they consider are:

� Identity constraints – the key of one relation is the same as the key of another
relation, and their instances are the same.

� Selection constraints – the key of one relation is the same as the key of another
relation. The instances of the key of one relation can be expressed as a selection
of the instances of the key on the other relation.

� Disjoint constraints – the key of one relation is the same as the key of another
relation. The instances of the keys are disjoint.

� Containment constraint – the key of one relation is the same as the key of another
relation. The instance of one key is a subset of the instances of another relation.
This relationship is like the selection constraint, but not easily quantifiable.

Unsurprisingly, given that one of the authors is also an author of the work on the
undecidability of constraints in Sect. 2.2, they do not consider the case of conflicting
constraints.

The desired result is a global schema, G, that fits two criteria, both based
on Atzeni et al. [1982] notion of “weakly included.” In particular, it must be that:

� G can be queried using only relational algebra and exactly the same view
definitions will be retrieved.

� G is minimal – nothing that exists outside of the initial views is stored in G.

228 R. Pottinger

The first of these is similar to Hull’s notion of maintaining information capac-
ity [Hull 1984]; the second is one of the requirements in Batini et al. [1986].

Based on these requirements, the outcome of the merge is a set of relations, where
each of the relations of the first three types of constraints (i.e., all but containment
constraints) mean that the relations are combined, with all of their attributes present
in the global schema. For containment constraints, the two relations are left separate,
since there can be no way of determining what relational algebra operator to use.

3.2 Casanova and Vidal

Casanova and Vidal [1983] describe a method for performing view integration. In
particular, they break the problem into two parts: combination and optimization.

The combination phase consists of gathering all of the views, as well as deter-
mining the dependencies between schemas. The optimization phase concentrates
on both minimizing the schema and reducing redundancy. They concentrate on the
optimization phase, which is akin to the problem considered in semantic merge.

The kinds of dependencies that they consider are, as in Biskup and Convent
[1986], instance based. They consider the following dependency types:

� Functional dependencies
� An inclusion dependency says that one relation contains a subset of the tuples in

another
� An exclusion dependency says that the instances of a relation are disjoint.
� A union functional dependency essentially allows functional dependencies to be

declared valid across different schemas

The authors show that in general trying to optimize an integration with the above
dependencies is intractable, so they concentrate on a limited subset of schemas.
Essentially, these restrictions limit where the different kinds of dependencies can be
applied, as well as assuming that the schemas are already in Boyce Codd Normal
Form (BCNF).

Their goal is to create an optimization that is minimal in size, and also removes
redundancy. They also want to ensure that any consistent state of the initial schema
can be mapped into a consistent state of the transformed schema and vice versa –
a notion very similar to the idea of completeness. To achieve these goals, their
transformation removes many inclusion dependencies or union functional depen-
dencies (since they may be a source of redundancy), as well as vacuous exclusion
dependencies.

They provide an algorithm that will perform the optimization for the limited
cases. Note that their algorithm creates the unified schema, but does not create the
mapping from the unified schema to the initial views.

There are a number of other schema merging works in the view integration
domain around this period, including Shoval and Zohn [1991] and Navathe and
Gadgil [1982]. Generally, these works build on approximately the same foundation:
define what it means to merge and what it means for there to be a conflict. Most

8 Mapping-Based Merging of Schemas 229

of these works assume that conflict resolution will be fully automatic. Additionally,
most of these works assume that there is no structural conflict (e.g., that a merged
column should belong to two different tables). This kind of more complex conflict
resolution is explored more fully in the next section.

3.3 Spaccapietra and Parent

Spaccapietra and Parent [1994] work in the context of ERCC [Spaccapietra et al.
1992], which extends an early version of entity relationship diagrams [Chen 1976].
In ERCC, there are three basic types of objects: attributes, entities, and relation-
ships. While there are differences between ERCC and Chen’s original ER diagram,
for the purposes of this paper, the primary difference is that ERCC allows complex
attributes (i.e., attributes can have subattributes) (Fig. 8.1).

Spaccapietra and Parent assume that the matching or aligning work has already
been completed by the database administrator or some view integration tool. Their
method for merging the data once these mappings (based on Superviews [Motro
1987]) have been created is fully automatic. However, this is at least partially pos-
sible because the authors do not consider constraints or ordering of any type, thus
avoiding the undecidability result of Sect. 2.2.

Spaccapietra and Parent [1994] concentrates on rules for view integration, and
the merging algorithm that uses them. They have two overriding principles: (1) inte-
gration rules should apply to both objects and the links between them, and (2) if
there is a choice to be made, they choose the least restrictive option. According to
these principles, they have created 6 integration rules that can be combined for their
merging algorithm. The rules, as named by Spaccapietra and Parent, are:

1. Elements integration rule: For any two matching elements that are not of the
same type, the resulting element is an entity type. If the two matching types are

Student

Ugrad Grad

Class

SAT Score

Verbal Math

Enrolled

Office

Name

Fig. 8.1 An example ERCC diagram. The entities are represented by rectangles, the relationships
are represented by diamonds, and attributes are represented by plain text

230 R. Pottinger

not attributes and are of the same type, then the resulting element is of the original
type.

2. Links integration rule: For any pair of elements that are matched to each other,
if the elements are of the same type, then the links between them are of the same
type.

3. Paths integration rule: If there is a direct path between two nonattribute elements
in one model and an equivalent indirect path in the other model, choose the indi-
rect path. The reason for this is that the indirect path contains more information,
and the direct path can always be inferred from the indirect path.

4. Integration of attributes of corresponding elements: For elements that are already
integrated, if each attribute pair in the original diagrams match, add the attributes
to the resulting schema.

5. Attributes with path integration rule: If there is a direct path between an element
and an attribute in one model and an indirect path between the corresponding
pair in the other model, choose the indirect path.

6. Add rule for elements and links without correspondent: Add all elements that
exist in one model and not in the other.

At a high level, their algorithm first merges the nonattribute elements, then
merges the paths, and finally merges the attributes. The full algorithm is described
in Spaccapietra and Parent [1994].

This work is notable because it marks a departure of focus from the existing
literature: it concentrates on the fact that type information may conflict (rules 1 and
2) as well as the fact that some relationships that exist explicitly in the input schemas
can be represented implicitly in the resulting schema (rules 3 and 5). This use of
implicit relationships is featured prominently in later work, particularly in generic
schema merging (Sect. 6). It is probably not a coincidence that this work, like the
generic work, is not based in the relational model: the more direct representation
of relationships between schema elements allows the authors to deal with complex
relationships without running into the undecidability result in Convent [1986].

3.4 Rosenthal and Reiner

A contemporary work with Spaccapietra and Parent [1994] is The Database Design
and Evaluation Workbench [Rosenthal and Reiner 1994]. The workbench allows
users to manipulate schemas, including combining multiple views into one schema.
Their ER-based system largely focuses on “rearrangements,” which transform the
input but leave the content “equivalent” to the input. The primary transformations
that they considered were:

� Duplicating the attributes of an entity to propagate to related entities, or alter-
nately removing duplication if necessary.

� Simplifying relationships by decomposing them into two simpler relationships.

8 Mapping-Based Merging of Schemas 231

� Inferring constraints from existing constraints, or alternately removing duplicate
constraints.

� Creating keys.

The definition of equivalent, while different in a few details, is very similar to
the notion of information capacity in Sect. 2.1. One scenario that they tackle is that
of view integration. The authors state that their goals are much more pragmatic
than some of the existing work; as previously discussed [Batini et al. 1986; Biskup
and Convent 1986; Casanova and Vidal 1983], take a more theoretical approach. As
such, Rosenthal and Reiner concentrate on a usable tool: they only detect homonyms
and synonyms, and such conflicts are presented to the user for resolution. They then
perform a duplicate removing union between the two schemas. No mappings are
created between the schemas.

These works represent the type of focus on schema merging present in the
more recent view integration literature. After this point, more of the database
research in schema merging came from data integration (Sect. 4) and generic schema
management (Sect. 6).

4 Data Integration

As motivated in the introduction, in data integration, there exists a set of hetero-
geneous, independent sources that contain related data. To have these sources be
queried efficiently, a mediated schema can be created. Because these sources are
independent, heterogeneous, and often change rapidly, it is not possible to then
import all of the data into the mediated schema. Instead, the users query the medi-
ated schema, and then the system translates the queries over the mediated schema
into queries over the sources.

While much of the time this mediated schema is created manually, there exist a
number of works that discuss creating the mediated schema based on the sources.

4.1 Data Warehousing

DWQ is a system for creating a data warehouse from the sources [Calvanese et al.
1999]. Calvanese et al. [2001] focuses on the data integration aspects of DWQ. This
paper describes their system on how to use data integration in data warehousing.
One issue with building a data warehouse is that it often has to be highly tuned for
the specific queries; e.g., one might want to have a star schema (i.e., a base “fact”
table from which various dimensions measuring things such as time and location
radiate) for the data warehouse instead of whatever format just happens to be the
merged result of the sources.

232 R. Pottinger

Their solution is to create a conceptual model, which “corresponds roughly to
the notion of integrated conceptual schema in the traditional approaches to schema
integration.”

They consider that both the data warehouse and the source schema are views
over the conceptual schema (i.e., local-as-view (LAV) [Vijayaraman et al. 1996]).
As mappings they use “adorned queries,” where the adornment is an annotation on
the variables in the query; these are referred to as Reconciliation Correspondences.
In particular, they consider three types of Reconciliation Correspondences: Con-
version, Matching, and Merging Correspondences. Conversion Correspondences
make data level transformations between the same real world objects. For example,
one might use a Conversion Correspondence to translate between income defined
monthly and income defined yearly. Matching Correspondences specify the match-
ing. The Merging Correspondences show how to merge the data based on the
existing Conversion and Matching Correspondences; they consist largely of calls
to the Conversion and Matching Correspondences.

4.2 Pottinger and Bernstein

The authors of Pottinger and Bernstein [2008] take as input a pair of relational
source schemas and a mapping between them, and then create a relational medi-
ated schema and the mappings from the mediated schema to the source. They also
show how this can be extended to a larger set of schemas. The mappings that they
expect between the sources is a set of conjunctive mappings similar to the ones
in Madhavan and Halevy [2003] – i.e., a set of select-project-join queries.

For example, assume that there are two travel websites: TravelOn and GoTravel.
Assume that TravelOn has the relations TravelOnGuide(Name, ID) and TravelOn-
Bio(ID, Bio) for tour guides and their bios, respectively. GoTravel may, in contrast,
have the single relation GoTravel-Guide(Name, Bio) to represent both those
concepts. One possible mapping between these sources is the following:

Guide(Name, Bio) :- TravelOn-Guide(Name, ID), TravelOn-Bio(ID, Bio)
Guide(Name, Bio) :- GoTravel-Guide(Name, Bio).

This mapping holds the standard Datalog semantics: Guides can be found either
by taking the join of TravelOn-Guide and TravelOn-Bio on ID, or by looking at
GoTravel-Guide. Hence, it shows that the two concepts are mapped to each other
since instances of the same concept can be found by either conjunctive query. The
question is: what should be in the mediated schema?

Informally, Pottinger and Bernstein [2008] requires completeness, accessibility
to both all of the input relation (i.e., it preserves information capacity (see Sect. 2.1)),
makes the concepts that are mentioned in the mappings accessible, does not combine
relations unless they are related by the mappings, and finally is minimal.

8 Mapping-Based Merging of Schemas 233

In the case of our guide relation, this means that the mediated schema should
contain the relation Guide(Name, ID, Bio). Additionally, there also needs to be
mappings between the source schemas and the mediated schema. This is done
through two sets of views. First, a set of views define an intermediate schema in
terms of the mediated schema. These are called LAV views after the data inte-
gration architecture, where local sources are defined as views over the mediated
schema [Vijayaraman et al. 1996]. Continuing with our travel example, the LAV
views are:

I-TravelOn-Guide(Name, ID, Bio) :- Guide(Name, ID, Bio)
I-GoTravel-Guide(Name, Bio):- Guide(Name, ID, Bio).

A separate set of views defines the intermediate schema in terms of the sources.
These are called global-as-view (or GAV) mappings after the data integration archi-
tecture, where the global sources are defined as views over the mediated schema
(see [Lenzerini 2002] for a discussion of GAV as well as how it relates to LAV).
Our final set of views for our travel example is thus the GAV views:

I-TravelOnGuide(Name, ID, Bio):- TravelOn-Guide(Name, ID),
TravelOn-Bio(ID, Bio)

I-GoTravel-Guide(Name, Bio) :- GoTravel-Guide(Name, Bio).

An interesting result of this paper is that the mappings that are created between
the mediated schema and the sources are a very limited form of global-local-as-view
(GLAV) mappings [Friedman et al. 1999] (i.e., mappings where either the local or
the global schema can be defined as the head of a view); in particular, the LAV
views each only have one subgoal in them. This is important because the LAV views
require using answering queries using views (see [Halevy 2001] for a survey), and
having only one subgoal in the LAV view means that answering queries is very fast.
This is particularly of note since the local sources will be related to each other in this
fashion – regardless of how the mediated schema is created – so this result shows
what we should expect even if the mediated schema is created in some other fashion.

4.3 BAV

Both-as-view (BAV) [Pidduck et al. 2002; McBrien and Poulovassilis 2003] is a
framework to support schema transformation and integration. Similar to GLAV
mappings [Friedman et al. 1999], BAV allows the definition of views between the
mediated schema and the local sources in both direction – it treats both the global
and the local schemas as sources. A key focus of their work is the transformations
that make this possible – how can the mediated schema be related to the source
schemas. They additionally provide a method to update a mediated schema based
on the integration of new source schemas. To do so, they create a mapping that
directly calls for the addition, deletion, and renaming of attributes and relations in
the mediated schema.

234 R. Pottinger

5 Ontology Merging

An ontology specifies a domain-specific vocabulary of objects and a set of rela-
tionships between the objects in the vocabulary [Fikes 1996] (see also Chap. 2).
In general, an ontology can be viewed as a graph of hierarchical objects that have
specific attributes and constraints on those attributes and objects. The hierarchies
in an ontology can be more than simple is-a generalizations and specializations –
ontologies can also have notions of “containment” or “type of” or “part of.” For the
purposes of this paper, the different kinds of relationships do not matter; the fact
that there are different kinds of relationships is the only part that is relevant. The
objects in an ontology may have various structures; for the purpose of this paper, we
can think of them as either being classes with various attributes or instances. While
constraints may exist on attributes, classes, or instances, in general these constraints
are not treated in the ontology merging literature.

Two sample ontologies are shown in Fig. 8.2. The classes are shown as ovals. The
attributes are represented by text. A solid line represents inheritance. A dashed line
indicates that an attribute is a member of that class. An example constraint might
state that “SAT score” is at most 1,600.

5.1 SMART and Prompt

One representative work on merging ontologies began with an algorithm called
SMART [Noy and Musen 1999a,b] and was later renamed Prompt [Noy and Musen
2000].

SMART tackles the problems of both merging and aligning ontologies. Align-
ment is the problem of taking two related ontologies and establishing links between
them to indicate where they match (much as in the database literature). Merging is

Student

Ugrad Grad

Name

OfficeSAT score

Ontology A

Student

Undergrad Grad

Name

LocationSAT score

Ontology B

Fig. 8.2 Two sample ontologies. The classes are shown as ovals. The attributes are represented by
text. A solid line represents inheritance. A dashed line represents that an attribute is a member of
that class

8 Mapping-Based Merging of Schemas 235

the problem of taking two ontologies and combining them to form a third ontology.
So, for example, alignment of the ontologies in Fig. 8.2 might tell us that element
pairs with the same name are aligned with each other, that “Ugrad” matches with
“Undergrad,” and that “Office” matches with “Location.” Merging the two ontolo-
gies would result in a single ontology with the same structure as both ontologies A
and B since the two are structurally identical, but there would be some resolution of
the naming differences (e.g., a decision would have to be made as to what to call the
node that describes undergraduates).

SMART is used for both merging and alignment. The algorithm is not completely
automatic for either operation; there are stages that must be performed by the user,
even after the initial setup has occurred.

SMART keeps track of its state with two data structures: the Conflicts list and
the ToDo list. The Conflicts list details the inconsistencies in the current state of the
process that must be resolved before the resulting ontology can be in a “logically
consistent state.” The ToDo list keeps track of operations which should be done but
are not required in order for the resulting ontology to be in a logically consistent state
(e.g., if an action results in two attributes in the same classes with a similar name,
SMART might add to the ToDo list a suggestion that one of them be removed). Since
determining the source of a problem may enable the user to optimize the problem’s
resolution, each item in the ToDo and Conflicts list contains a reference back to the
operation that triggered it. More details of SMART and Prompt, particularly on the
matching and alignment aspects, can be found in Falconer and Noy [2011].

An outline of the SMART algorithm for merging is shown below. Note that the
merging process requires also performing an alignment, so steps for both appear in
the algorithm:

1. The user performs setup by loading the ontologies, A and B and specifying some
options such as specifying if there is a preferred ontology.The result, the ontology
C, is initialized to be a new ontology with a new root and A and B as that root’s
children.

2. SMART generates an initial list of suggestions of what should be aligned/merged.
In this stage, SMART relies largely on content or syntactic information. The
names of the objects are examined, but structural information (i.e., the position
of the classes or their participation in specific relations) is not used.

� For each pair of classes a 2 A and b 2 B with identical names SMART either
merges the a and b in C or removes either a or b from C.

� For each pair of classes a 2 A and b 2 B with linguistically similar names a
link is created between them in C. This means that both a and b are still in C,
but SMART suggests that they may need to be merged by adding them to the
ToDo list.

3. The user selects and performs an operation such as merging a class or resolving
an item on the ToDo or Conflict lists.

4. SMART performs any automatic updates that it can and create new suggestions.
It has the ability to:

236 R. Pottinger

a. Execute any changes automatically determined as necessary by SMART.
b. Add any conflicts caused by the user’s actions in step 3 to the Conflicts list.
c. Add to the ToDo list any other suggested operations or make new suggestions

based on linguistic or structural similarity.

5. Steps 3 and 4 are repeated until the ontologies are completely merged or aligned.

5.2 Chimæra

The Ontolingua Server [Farquhar et al. 1996] is designed to make all parts of
dealing with ontologies easier; they have a large collection of tools to allow
users to create, view, manipulate, publish, and share ontologies. One of the tools
is Chimæra[McGuinness et al. 2000], an environment for merging and testing
ontologies.

Their system, like SMART, is designed to help users merge their ontologies. The
difference is that where SMART concentrates on actually merging ontologies (e.g.,
automatically merging two classes with the same name), and Chimæra only points
out the areas where merging is likely to be required. Their goal was to build a tool
that “focuses the attention of the editor on particular portions of the ontology that are
semantically interconnected and in need of repair or further merging.” [McGuinness
et al. 2000]

The authors identify a number of key features that a merging tool must sup-
port [McGuinness et al. 2000]. They propose that a merging tool have support for:

� Searching for names across multiple ontologies,
� Renaming in a systematic fashion,
� Merging multiple terms into a single term,
� Focusing the user’s attention on term merging based on term names,
� Browsing classes and attributes,
� Modifying subsumption relationships in classes and attributes, and
� Recognizing logical inconsistencies introduced by merges and edits.

5.3 FCA Merge

FCA Merge [Nebel 2001] from Stumme and Maedche merges ontologies based on a
lattice approach; they perform a match (in database terms) or an alignment (ontology
terms) automatically. The lattice describes both the structure of the merged docu-
ment and which elements in the ontology match according to the classes’ semantic
content. The created lattice may contain both nodes that are labeled with more than
one class (indicating that merging may be required) and nodes with no correspond-
ing class in the original ontology (suggesting that the user may want to insert a new

8 Mapping-Based Merging of Schemas 237

class). Interestingly, the lattices are found automatically [Bouzeghoub et al. 2000],
but the merging is largely manual. To determine how to merge a node in the lattice,
they distinguish four cases:

� There is one class at the node: In this case, the answer is found automatically;
there are no conflicts and the class at that node is added to the resulting merged
ontology.

� There are two or more classes at the node: In this case, the user is asked what
should be done.

� There are no classes at a nonroot node: Here, the user must decide whether to
add a class or not.

� There are no classes at a root node: In this final case, the user must decide
whether to add a new top level class to the resulting ontology.

As seen from the description, FCA Merge makes no attempt to resolve any
conflicts.

5.4 Ontology Merging Analysis

Each of the three systems, SMART, Chimæra, and FCA Merge, takes a very differ-
ent approach to merging ontologies. Unlike database research (i.e., view integration
and data integration), all three systems view the problem of merge to intrinsically
require user intervention. SMART takes the most automatic approach of the three by
merging some concepts from different ontologies without requiring any user inter-
vention, but even this is limited: the user still must guide the system whenever the
names of the classes that match are too different. Even if the names are linguisti-
cally similar, there is little that SMART can do automatically other than point the
user at any potential conflicts unless the choice is clear from the preferred ontology.
Chimæra provides very little automatic support; it focuses the user’s attention on
possibly related classes but has no conflict resolution support. FCA Merge provides
amazing support for automatically matching the classes in the ontologies including
doing some very sophisticated linguistic checks, but provides very little support for
automatically merging classes in the ontology if any sort of conflict exists.

Together, these solutions define an overall compendium of interesting and useful
features for ontology merging. SMART provides the notion of a preferred ontol-
ogy that can help the system to work automatically. They also suggest the process
of maintaining a list for the user of both where the user must perform an action
and where the user should perform an action with the Conflict and ToDo lists. The
Chimæra system offers good guidelines on what interactions must be available to
merge ontologies. Finally, FCA Merge introduces the notion of additional nodes
that are not present in either original ontology but may make the structure of the
resulting ontology more sensible.

238 R. Pottinger

6 Generic Schema Merging

6.1 Buneman, Davidson, and Kosky

Buneman et al. [1992] delve into some of the theory of schema merging. In particu-
lar, they start once again with the assumption that elements are matched by name –
i.e., they have avoided the matching problem entirely. The goal is to think of this
from a lattice perspective (much like the one later used by FCA Merge) and describe
two different theoretical perspectives: either the least upper bound (i.e., take every-
thing that is available in either schema, which is rather like taking the union) or the
greatest lower bound (i.e., take everything that is available in both schemas, which
is rather like taking the intersection).

They, like most works here, focus on the least upper bound. Once having decided
that the least upper bound is the correct semantics, the question is what kind of
conflicts should be resolved. They use a very basic meta-model to allow them to con-
centrate on some very fundamental conflicts. In particular, their meta-model allows
for elements which have only names as attributes. Their meta-model allows for two
types of edges: is-a and has-a. They represent the fact that an element r Has-a ele-
ment x of type y by an arrow from r to y with the label x. They do not consider
constraints on the instances. Given these limited types of edges, they can focus on
what would happen if two elements are combined resulting in the merged element
having two types. For example, Fig. 8.3a says that element R has a Q of type P
and S. Naturally, this does not make sense. Hence, their solution is to say that there
should be a new type, and that both of the original types inherit from this type, as
shown in Fig. 8.3b.

This kind of work shows the fundamental issues that have to be explored to merge
schemas regardless of application or data model.

6.2 Model Management

Pottinger and Bernstein [2003] and Rondo [Melnik et al. 2003] both describe
merge operators for Model Management [Bernstein et al. 2000]. The goal of Model

P R SQQ

a
P R S

Q

T

b

Fig. 8.3 Buneman et al. [1992] show that one conflict that occurs during the merging of schemas
is that if there are two elements in the resulting merge that have different types (a), then a new type
can be created which inherits from both original types (b)

8 Mapping-Based Merging of Schemas 239

Management is to allow structured representations of data – referred to as models –
to be manipulated in bulk by using a set of generic and reusable operators. Because
these works concentrate on the schema level rather than the data level, they do not
consider instance level constraints.

Rondo [Melnik et al. 2003] is a Model Management system prototype. As such,
it fully explores all Model Management operators (e.g., Merge, Match, Compose,
Diff) and includes a Merge definition based entirely on equality mappings. Two ele-
ments can be declared to be equal, and each 1–1 mapping relationship can specify a
preference for one element over another. Like Buneman et al. [1992], Rondo essen-
tially creates the duplicate-free union of the elements and relationships involved. As
with the view integration work in Sect. 3, both works consider schema-level con-
flicts, where elements in one schema are represented differently from elements in
another schema (e.g., “Last Name” and “Lname”). Some conflicts require removing
elements or relationships from the merged model (e.g., if an SQL column belongs
to two tables in a merge result, it must be deleted from one of them). As in Pottinger
and Bernstein [2003], Rondo’s Merge resolves such meta-model conflicts later in a
separate operator.

Pottinger and Bernstein [2003] concentrates on fully describing a Merge operator
for Model Management. One if its contributions is defining three types of conflicts
that have to be resolved in combining two schemas:

� Representation conflicts: Representation conflicts occur when there are two
representations of the same real world concept. For example, the elements rep-
resenting the concept of “name” may have different names. This corresponds to
“comparison of the schemas” in Batini et al. [1986], and is resolved outside of
Merge (since it may occur in other operators as well).

� Meta-model conflicts: Meta-model conflicts occur when the resulting Merge vio-
lates the constraints of a specific model, but not the constraints mandatory for
all models. This is just like how in Rondo [Melnik et al. 2003] an SQL column
can belong to only one table: there is nothing inherent in having structured data
that says that a child must belong to only one parent. Similarly to Rondo, these
conflicts must be resolved elsewhere.

� Fundamental conflicts: Fundamental conflicts are conflicts that occur during a
Merge and must be resolved for the resulting model to be valid in any model. This
notion of what must be true for any model is called the “meta-meta model” – for
example, a relational schema is a model, the relational model is the meta-model,
and the meta-meta model restricts what must be true in any meta-model.

Unlike many existing works, the Merge in Pottinger and Bernstein [2003] (here-
after Vanilla Merge after its meta-meta model, which is named Vanilla) allows
complex mappings between elements in the model and many different types of rela-
tionships between elements; in particular, the mapping is also a first-class model.
The mapping resolves conflicts by first taking values from the mapping, then from
the (optional) preferred model, then from any model. For example, Fig. 8.4 shows
two models (Model A and Model B) and a mapping (MapAB) between them. This
example extends an example in Pottinger and Bernstein [2003]. Figure 8.5 shows the

240 R. Pottinger

Actor

First
Name

ActID
Last

Name
Bio

Actor

Actor
ID

Actor
Name

Bio

Model A Model BMapA_B

m1

m3 m4

m5 m6

All
Bios

m7
Name =
“Official”

m8
Name=

“Unofficial”

Fig. 8.4 An example mapping for the merge in Pottinger and Bernstein [2003]

ActorID AllBios ActorName

LastNameFirstName

Actor

UnofficialOfficial

Fig. 8.5 The result of performing the merge in Pottinger and Bernstein [2003] on the models and
mappings in Fig. 8.4

result of performing the merge in Fig. 8.4. The diamond-headed intra-model edges
indicate a containment relationship. The double arrowed inter-model relationships
indicate equality between elements. Looking carefully at MapAB reveals that there
is an element All Bios, which is not mapped to by any element, but contains the
Bios from models A and B, both of which have been renamed.

This complex mapping allows users to generically yet accurately represent the
way that the elements are related to each other. As with other mappings, creating
this style of mapping is beyond the scope of this paper; [Wang and Pottinger 2008]
studies how to create these mappings.

Vanilla Merge defines what the output should be based on the principles laid
out in many other papers referenced here, including the least upper bound notion
from Buneman et al. [1992].

While Vanilla Merge defines that there may be other fundamental conflicts, the
fundamental conflicts in the Vanilla meta-meta conflict are the one type conflict
(an adjustment of the conflict discussed in Buneman et al. [1992] for the Vanilla
meta-meta-model) and acyclicity.

6.3 Providing Choices to Users

Chiticariu et al. [2008] concentrate more on how the user interacts with the system.
In particular, the authors assume that they are trying to merge a set of schemas. They
model these schemas as graphs containing elements related by has-a relationships.

8 Mapping-Based Merging of Schemas 241

Like the model management work, they assume that they are given a set of input
mappings that relate the two schemas. Unlike previous work on graph-based mod-
els, such as the ontology merging work in Sect. 5, the authors assume that if two
elements are marked as being a match, that this is a possible place that they should
be merged in the result. The goal of their system is to help users understand the
space of possibilities that arise when a pair of elements are combined – what is the
impact on the rest of the schema?

Radwan et al. [2009] build upon Chiticariu et al. [2008] by helping to automate
the process of choosing how the schemas should be merged and presenting this
result to the user. They use some of the schema matcher’s internal information to
help chose which possible elements to merge. A key feature of their system is that
like Pottinger and Bernstein [2003] they create more complex edges than simple
equalities. In particular, if two concepts are deemed similar, then they are either (1)
merged, or (2) related through a “has” edge – they make this choice if the similarity
between two elements is quite high in one direction but low in the other.

Both works provide a valuable complement to the more theory-based papers that
make up the bulk of the papers cited here, and also dovetail nicely with some of the
work on user preference in ontology merging systems, e.g., SMART (see Sect. 5.1).

7 Three-Way Merge

A final version of the merge problem is when the user is trying to merge two objects
that are derivatives of a common ancestor. This problem occurs in both computer
supported collaborative work (CSCW) [Munson and Dewan 1994; Berlage and
Genau 1993; Berger et al. 1998] and file merging [Balasubramaniam and Pierce
1998]. In these contexts, there is a common ancestor and the two later models
must be merged together based on the relationship between them and their com-
mon ancestor. With the added information from the common ancestor, the initial
matching is much simpler, but the merging can be much more difficult.

For example, if there is a change that occurs only in one model, then the system
will probably want to give preference to the changed model. This would seem to
make the problem easier, but there are likely to be other constraints (e.g., the other
model is preferred because it was modeled by an expert), which actually make the
problem more difficult. Another example of this is that if both models diverge from
the original, then it may be impossible to guess what the user wants. The presence
of this information means that there are additional semantic constraints that must
be satisfied, but the incompleteness of the information and the possibility of contra-
dicting other information means that these additional constraints must be satisfied
with no guarantee of a clear resolution to any of the constraints.

The work in this area that is the most flexible and automatic is that by Munson
and Dewan [Munson and Dewan 1994]. They propose a system that, depending
on the parameters that are specified, can be either manual, semiautomatic, or fully
automatic. Users who choose a more automatic system are likely to receive a merged

242 R. Pottinger

result that does not correspond to exactly what they want, but they will not have to
manually guide the system. The model that they look at, while applicable to files,
considers the general case of objects by encapsulating the differences in the object
types as described below.

They investigate two different types of merges, consolidation merges and rec-
onciliation merges. In a consolidation merge, the assumption is that the changes
made in both models should be integrated; most changes will not conflict with one
another too much, and that changes from both models should be incorporated into
their system. In a reconciliation merge, the assumption is that the merge is being per-
formed to resolve conflicts. The two different types of merges call for very different
outcomes.

Their system operates using a number of merge matrices. A merge matrix for
two models to be merged, say A and B, has the rows represent edits made to achieve
model A and the columns represent the edits needed to achieve model B. The matrix
entries dictate how to merge the result of each (row, column) pair of edits. For exam-
ple, a merge matrix for an object that is a sequence of elements may look like the
one below (from Munson and Dewan 1994):

Sequence Insert element Delete element Change element No change
Insert element Both Row
Delete element Row User Row
Change element User Merge edits Row
No change Column Column Column

The blank entries represent situations that are either impossible (e.g., deleting an
entry in one model and adding it in another) or where no change is required (e.g.,
if the element stays the same in both models). The entries that specify “row” mean
that the version of the element from the model represented in the row should be
taken, and similarly “column” indicates that the column’s version should be taken.
So, for example, if a sequence were unchanged in model A and deleted in model B,
the action would be dictated by the entry at (no change, delete element), which, in
this case is to delete the sequence since that is the action performed in model B, the
one represented by the column.

The specification of these elements in the merge matrix is what allows for the
algorithm to move on the scale from manual to automatic merging; if there are no
entries that require manual intervention, then the algorithm is fully automatic.

In addition to the algorithm, they also list the characteristics that a merge tool
should have. They state that a merge tool should support:

� Automatic merging,
� Interactive merging,
� Merging of both text files and more structured objects,
� Use of the semantics of the objects to drive the merging (rather than just a

requirement that all objects merge in the same way), and
� Specification of preferred policies by the user.

8 Mapping-Based Merging of Schemas 243

8 Discussion

These diverse areas differ greatly in terms of goal, context, data model and more,
but there are a number of similarities. We now discuss some of the similarities
and differences across these different research areas. Because evaluating the qual-
ity of automatic merging algorithms is an open problem, we do not compare the
approaches based on quality.

8.1 Separation of Match and Merge

Ontology merging, view integration, and CSCW all separate matching and merg-
ing. Ontology merging calls the difference alignment and merging [Noy and Musen
2000], but despite defining them as separate problems, the techniques that they use
still force the system to perform both actions at the same time. The work on view
integration also requires a matching step to occur before the merging process can
begin. However, as it processes the matched elements, it may discover more matches
that can be made to help with the merging process [Spaccapietra and Parent 1994].
CSCW and Model Management make a complete separation between matching and
merging. A question is thus how much less efficient does it become to completely
divorce the merging from the matching. In some cases, interleaving the matching
with the merging (e.g., as in view integration) can cut down on the initial matching
that needs to be done. However, there has been substantial work on schema match-
ing as an independent problem (see [Rahm and Bernstein 2001; Doan and Halevy
2004] for some surveys). This increases the likelihood that future works on merging
schemas will use the results of these matching algorithms as input and thus schema
merging and matching will become more, rather than less, distinct over time.

The work in Radwan et al. [2009] represents a pull in the other direction, as it
exploits information about the potential matches to suggest merge results. It would
be interesting to see how the work in Radwan et al. [2009] can extend the work of
various schema matchers.

8.2 Treating Models Asymmetrically

One idea that occurs repeatedly in all of these works is that the models are treated
asymmetrically, allowing for the algorithms to function more automatically in the
presence of conflicting choices. This may be because one model is more general or
stable than the other and thus assumed to be the “preferred” model [Noy and Musen
1999a]. This allows merging operations to proceed much more automatically by
giving it a clear indicator which element to prefer in the case of a conflict.

244 R. Pottinger

8.3 Data Model Differences

The different problems examined used very different data models (ontologies,
ERCC diagrams, etc), but for the most part the subset of the data models that were
used were very similar. The authors largely ignored the parts of the data models that
contained significant differences, (e.g., constraints in databases or ontologies).

All of the models that were considered were very simple; they essentially con-
tained objects with subelements and these objects needed to be mapped; whether
the subelement was a class or an attribute made very little difference.

The main difference that occurred was that in the merging of the ERCC dia-
grams, the “relationship” elements had no real corresponding member in any of the
other works. However, the relationships were treated in a fashion almost identical to
those as entities, and when there was a choice to be made, the result was to revert to
an entity.

The similarity of the approaches emphasizes the underlying common structure
of the many diverse approaches.

8.4 Structure vs. Content

Another issue addressed by each system was how much the merge is driven by the
structure vs. the content. Structure refers to the way that the objects relate to one
another (e.g., class x is the parent of class y). Content refers to the data values for
a given object (e.g., the name of the class is “Bob”). In most cases, the authors
concentrated on the structure of models at least as much as the content, but both
were necessary. An interesting point to note is that content is more likely to be
needed in performing a match than in performing a merge, and thus systems that
match and merge at the same time rely more on content than systems that make a
cleaner separation between the two.

Of the ontology merging systems, SMART, on the one hand, concentrates mainly
on resolving conflicts that arise by similar names, but it also looks to make sure that
the children are merged. Chimæra, on the other hand, concentrates on structure over
content. Two of its three modes of exploration rely entirely on structural searching
and leave the content checking to the user. The third, however, relies completely
on content. Both of these systems perform alignment at the same time as merging,
however, so their dependence on content is not surprising.

In the third ontology merging system, FCA Merge, alignment is performed
before the merge, and the merging pays very little attention to the content. In view
integration, the problem is almost entirely structural if one considers paths to be
entirely structural rather than content. The names are ignored almost completely as
one would expect given that matching has already occurred.

8 Mapping-Based Merging of Schemas 245

8.5 Binary Merge vs. N-ary Merge

Many different situations, such as view integration, solve the problem of merging
more than two models at the same time. However, in almost every case this is broken
down into a series of two way merges. Break down of an n-ary merge follows either
a ladder strategy, wherein a new component schema is integrated with an existing
intermediate result at each step, or a balanced binary strategy wherein the models
are divided into pairs at the start and are integrated in a symmetric pattern [Batini
et al. 1986]. Thus even in situations where n-ary merge would be appropriate, the
problem can be, and often is, broken down into a number of binary merges.

8.6 Can Merge be Fully Automatic?

One natural question is whether merge can be fully automatic. Based on these sys-
tems, it would appear that it cannot. Even with the limited problems that the above
systems address, most of them require user intervention or error handling even
though most do not consider either constraints or ordering.

However, with enough parameters set to allow the system to resolve any conflicts
that arise, it is possible to have a largely if not entirely automatic version of merge.
In addition to setting parameters to allow for the merge to be tailored to the above
semantic differences, some of the parameters that should be considered are:

� Is there a preferred model and if so which one?
� If there are two matched objects and one has a more restrictive type than the

other (e.g., an integer vs. a double), which would the user prefer? Both have
their utilities; if there is an application built on top of the databases, it may be an
advantage to require the more restrictive type. However, the less restrictive type
allows more expressiveness.

A fully automatic system would not allow the different semantics and user desires
to be fully taken into account. A system that required too many knobs would be
annoying and frustrating for the user. Thus, any merge system must strike a balance.
The most solution is to allow the setting of a number of parameters but to provide
default settings to make the common case perform correctly.

8.7 User Interaction Requirements

Both the Chimæra ontology merger [McGuinness et al. 2000] and Munson and
Dewan’s work in CSCW [Munson and Dewan 1994] describe interactions that the
user should be able to have with the tool when performing a merge. Combined, they
list a great number of the goals that any merge operator for Model Management

246 R. Pottinger

should provide. The combined list yields that a generic merge operator should
support:

� Renaming in a systematic fashion
� Merging multiple elements into a single element
� Modifying subsumption relationships in objects
� Automatic merging
� Interactive merging
� Merging many different types of objects
� The semantics of the objects to drive the merging rather than just requiring that

all objects merge in the same way
� The users to specify what policies they prefer

Allowing all of these interactions will give the users the control that they need
over the merging process.

9 Conclusions

This paper surveyed what it means to merge complex structures, such as relational
schemas or ontologies, through a variety of applications, including view integration,
data integration, and computer supported collaborative work. The work has a long
history. Advances in other areas such as schema matching are likely to mean that
work on merging continues to be a fruitful and interesting subject for the foreseeable
future.

Acknowledgements Thanks are given to Phil Bernstein and Alon Halevy for their previous work
and discussion with the author on the subject and to Jamila Salari, Steve Wolfman, and the editors
for reading earlier drafts of this paper.

References

Atzeni P, Ausiello G, Batini C, Moscarini M (1982) Inclusion and equivalence between relational
database schemata. Theor Comp Sci 19:267–285

Balasubramaniam S, Pierce BC (1998) What is a file synchronizer? In: ACM/IEEE international
conference on mobile computing and networking (MOBICOM). pp 98–108

Batini C, Lenzerini M, Navathe S (1986) A comparative analysis of methodologies for database
schema integration. ACM Comput Surveys 18(4):323–364

Beeri C, Milo T (1999) Schemas for integration and translation of structured and semi-structured
data. In: International conference on database theory (ICDT). Springer, Heidelberg, pp 296–313

Bergamaschi S, Castano S, Vincini M (1999) Semantic integration of semistructured and structured
data sources. SIGMOD Rec 28(1):54–59

Berger M, Schill A, Vöksen G (1998) Coordination technology for collaborative applications:
Organizations, processes, and agents. Springer, London

Berlage T, Genau A (1993) A framework of shared applications with a replicated architecture. In:
ACM symposium on user interface software and technology. ACM, NY, pp 249–257

Bernstein PA, Halevy AY, Pottinger R (2000) A vision of management of complex models.
SIGMOD Rec 29(4):55–63

8 Mapping-Based Merging of Schemas 247

Biskup J, Convent B (1986) A formal view integration method. In: ACM SIGMOD international
conference on management of data (SIGMOD). ACM, NY, pp 398–407

Bouzeghoub M, Klusch M, Nutt W, Sattler U (eds) (2000) Proceedings of the 7th international
workshop on knowledge representation meets databases (KRDB 2000). CEUR Workshop
Proceedings, vol. 29. CEUR-WS.org, Berlin, Germany, August 21, 2000

Buneman P, Davidson SB, Kosky A (1992) Theoretical aspects of schema merging. In: Interna-
tional conference on extending database technology (EDBT). Springer, London, pp 152–167

Calvanese D, Giacomo GD, Lenzerini M, Nardi D, Rosati R (1999) Data integration and reconcil-
iation in data warehousing: Conceptual modeling and reasoning support. Network Inform Syst
2:413–432

Calvanese D, de Giomo G, Lenzerini M, Nardi D, Rosati R (2001) Data integration in data
warehousing. Int J Cooper Inform Syst 10:237–271

Casanova M, Vidal V (1983) Towards a sound view integration methodology. In: PODS. ACM,
NY, pp 36–47

Chen PP (1976) Entity relation model – toward a unified view of the data. ACM Trans Database
Syst 1(1):9–36

Chiticariu L, Kolaitis P, Popa L (2008) Interactive generation of integrated schemas. In: SIGMOD.
ACM, NY, pp 833–846

Convent B (1986) Unsolvable problems related to the view integration approach. In: ICDT.
Springer, NY, pp 141–156

Doan A, Halevy AY (2004) Semantic integration research in the database community: A brief
survey. AI Mag 25(1):109–112

Falconer SM, Noy N (2011) Interactive techniques to support ontology matching. In: Bellah-
sene Z, Bonifati A, Rahm E (eds) Schema matching and mapping. Data-Centric Systems and
Applications. Springer, Heidelberg

Farquhar A, Fikes R, Rice J (1996) The ontolingua server: A tool for collaborative ontology con-
struction. Technical Report KSL-96-26 KSL-96-26, Stanford University Knowledge Systems
Laboratory

Fikes R (1996) Ontologies: What are they, and where’s the research? In: Principles of knowledge
representation and reasoning (KR), pp 652–653

Friedman M, Levy A, Millstein T (1999) Navigational plans for data integration. In: Proceedings
of the national conference on artificial intelligence (AAAI). American Association for Artificial
Intelligence, CA, pp 67–73

Halevy AY (2001) Answering queries using views: A survey. VLDB J 10(4):270–294
Hull R (1984) Relative information capacity of simple relational database schemata. In: Sympo-

sium on principles of database systems (PODS). ACM, NY, pp 97–109
Larson JA, Navathe SB, Elmasri R (1989) A theory of attribute equivalence in databases with

application to schema integration. Trans Software Eng 15(4):449–463
Lee ML, Ling TW (2003) A methodology for structural conflict resolution in the integration of

entity-relationship schemas. Knowl Inform Syst 5(2):225–247
Lenzerini M (2002) Data integration: A theoretical perspective. In: Symposium on principles of

database systems (PODS). ACM, NY, pp 233–246
Madhavan J, Halevy AY (2003) Composing mappings among data sources. In: Very large data

bases conference (VLDB). VLDB Endowment, pp 572–583
McBrien P, Poulovassilis A (2002) Schema evolution in heterogenous database architectures,
a schema transformation approach. In: International conference on advanced information
systems engineering (CAiSE), pp 484–499

McBrien P, Poulovassilis A (2003) Data integration by bi-directional schema transformation rules.
In: International conference on data engineering (ICDE). Springer, London, pp 227–238

McGuinness DL, Fikes R, Rice J, Wilder S (2000) An environment for merging and testing large
ontologies. In: Principles of knowledge representation and reasoning (KR), pp 483–493

Melnik S, Rahm E, Bernstein PA (2003) Rondo: A programming platform for generic model man-
agement. In: ACM SIGMOD international conference on management of data (SIGMOD).
ACM, NY, pp 193–204

248 R. Pottinger

Miller RJ, Ioannidis YE, Ramakrishnan R (1993) The use of information capacity in schema inte-
gration and translation. In: Very large data bases conference (VLDB). Morgan Kaufmann, CA,
pp 120–133

Motro A (1987) Superviews: Virtual integration of multiple databases. Trans Software Eng SE-
13(7):785–798

Munson JP, Dewan P (1994) A flexible object merging framework. In: Conference on computer
supported cooperative work (CSCW). ACM, NY, pp 231–242

Navathe SB, Gadgil SG (1982) A methodology for view integration in logical database design. In:
VLDB. Morgan Kaufmann, CA, pp 142–164

Nebel B (ed) (2001) Proceedings of the seventeenth international joint conference on artificial
intelligence, IJCAI 2001. Morgan Kaufmann, Seattle, Washington, USA, August 4–10, 2001

Noy NF, Musen MA (1999a) An algorithm for merging and aligning ontologies: automation and
tool support. In: Proceedings of the Workshop on ontology management at sixteenth national
conference on artificial intelligence (AAAI-99), Orlando, FL. Available as SMI technical report
SMI-1999-0799

Noy NF, Musen MA (1999b) SMART: Automated support for ontology merging and alignment.
In: Proceedings of the twelfth workshop on knowledge acquisition, modeling and management,
Banff, Canada. Available as SMI technical report SMI-1999-0813

Noy NF, Musen MA (2000) Proceedings of the seventeenth national conference on artificial
intelligence and twelfth conference on innovative applications of artificial intelligence. AAAI
Press/The MIT Press, Austin, Texas, USA, July 30 – August 3, 2000

Pidduck AB, Mylopoulos J, Woo CC, Özsu MT (eds) (2002) Advanced information systems
engineering, 14th international conference, CAiSE 2002, Toronto, Canada, May 27–31, 2002,
Proceedings, Lecture Notes in Computer Science, vol. 2348, Springer, Heidelberg

Pottinger R, Bernstein PA (2008) Schema merging and mapping creation for relational sources. In:
EDBT. ACM, NY, pp 73–84

Pottinger RA, Bernstein PA (2003) Merging models based on given correspondences. In: Very
large data bases conference (VLDB). VLDB Endowment, pp 862–873

Radwan A, Popa L, Stanoi IR, Younis A (2009) Top k generation of integrated schemas based on
directed and weighted correspondences. In: SIGMOD. ACM, NY, pp 641–654

Rahm E (2011) Schema matching and mapping. Bellahsene Z, Bonifati A, Rahm E (eds) Towards
large-scale schema and ontology matching. Data-Centric Systems and Applications. Springer,
Heidelberg

Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J
10(4):334–350

Rector AL, Gangemi A, Galeazzi E, Glowinski AJ, Rossi-Mori A (1994) The GALEN CORE
model schemata for anatomy: towards a re-usable application-independent model of med-
ical concepts. In: Twelfth international congress of the European Federation for Medical
Informatics, MIE-94, Lisbon, Portugal, pp. 229–233

Rosenthal A, Reiner D (1994) Tools and transformations – rigorous and otherwise – for practical
database design. ACM Trans Database Syst 19(2):167–211

Rosse C, Shapiro LG, Brinkley JF (1998) The digital anatomist foundational model: principles for
defining and structuring its concept domain. Proc AMIA Symp 1998:820–824

Shoval P, Zohn S (1991) Binary-relationship integration methodology. Data Knowl Eng 6:225–250
Shu NC, Housel BC, Lum VY (1975) Convert: A high level translation definition language for data

conversion. Commun ACM 18(10):557–567
Song WW, Johannesson P, Bubenko J Janis A (1996) Semantic similarity relations in schema

integration. Data Knowl Eng 19(1):65–97
Spaccapietra S, Parent C (1994) View integration: A step forward in solving structural conflicts.

IEEE Trans Data Knowl Data Eng (TKDE) 6(2):258–274
Spaccapietra S, Parent C, Dupont Y (1992) Model independent assertions for integration of

heterogeneous schemas. VLDB J 1(1):81–126
Tufte K, Maier D (2001) Aggregation and accumulation of xml data. IEEE Data Eng Bull 24:34–39

8 Mapping-Based Merging of Schemas 249

Vijayaraman TM, Buchmann AP, Mohan C, Sarda NL (eds) (1996) VLDB’96, Proceedings of 22th
international conference on very large data bases. Morgan Kaufmann, Mumbai, September 3–6,
1996

Wang T, Pottinger R (2008) Semap: A generic mapping construction system. In: EDBT. ACM, NY,
pp 97–108

Yang X, Lee ML, Ling TW (2003) Resolving structural conflicts in the integration of XML
schemas: A semantic approach. In: ER. Springer, Heidelberg, pp 520–533

	Chapter 8 Mapping-Based Merging of Schemas
	1 Introduction
	2 Theoretical Underpinnings
	2.1 Information Capacity
	2.2 Instance-Level Constraints and Schema Merging

	3 View Integration
	3.1 Biskup and Convent
	3.2 Casanova and Vidal
	3.3 Spaccapietra and Parent
	3.4 Rosenthal and Reiner

	4 Data Integration
	4.1 Data Warehousing
	4.2 Pottinger and Bernstein
	4.3 BAV

	5 Ontology Merging
	5.1 SMART and Prompt
	5.2 Chimæra
	5.3 FCA Merge
	5.4 Ontology Merging Analysis

	6 Generic Schema Merging
	6.1 Buneman, Davidson, and Kosky
	6.2 Model Management
	6.3 Providing Choices to Users

	7 Three-Way Merge
	8 Discussion
	8.1 Separation of Match and Merge
	8.2 Treating Models Asymmetrically
	8.3 Data Model Differences
	8.4 Structure vs. Content
	8.5 Binary Merge vs. N-ary Merge
	8.6 Can Merge be Fully Automatic?
	8.7 User Interaction Requirements

	9 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

