Chapter 6
Recent Advances in Schema and Ontology
Evolution

Michael Hartung, James Terwilliger, and Erhard Rahm

Abstract Schema evolution is the increasingly important ability to adapt deployed
schemas to changing requirements. Effective support for schema evolution is chal-
lenging since schema changes may have to be propagated, correctly and efficiently,
to instance data and dependent schemas, mappings, or applications. We introduce
the major requirements for effective schema and ontology evolution, including sup-
port for a rich set of change operations, simplicity of change specification, evolution
transparency (e.g., by providing and maintaining views or schema versions), auto-
mated generation of evolution mappings, and predictable instance migration that
minimizes data loss and manual intervention. We then give an overview about the
current state of the art and recent research results for the evolution of relational
schemas, XML schemas, and ontologies. For numerous approaches, we outline how
and to what degree they meet the introduced requirements.

1 Introduction

Schema evolution is the ability to change deployed schemas, i.e., metadata struc-
tures formally describing complex artifacts such as databases, messages, application
programs, or workflows. Typical schemas thus include relational database schemas,
conceptual ER or UML models, ontologies, XML schemas, software interfaces, and
workflow specifications. Obviously, the need for schema evolution occurs very often
in order to deal with new or changed requirements, to correct deficiencies in the
current schemas, to cope with new insights in a domain, or to migrate to a new
platform.

M. Hartung (<)) and E. Rahm
University of Leipzig, Ritterstrae 26, 04109 Leipzig, Germany
e-mail: hartung @informatik.uni-leipzig.de, rahm @informatik.uni-leipzig.de

J. Terwilliger
Microsoft Research, Redmond, WA, USA
e-mail: James.Terwilliger @ microsoft.com

Z. Bellahsene et al. (eds.), Schema Matching and Mapping, Data-Centric Systems 149
and Applications, DOI 10.1007/978-3-642-16518-4_6,
(© Springer-Verlag Berlin Heidelberg 2011

hartung@informatik.uni-leipzig.de
rahm@informatik.uni-leipzig.de
James.Terwilliger@microsoft.com

150 M. Hartung et al.

Effective support for schema evolution is challenging since schema changes may
have to be propagated, correctly and efficiently, to instance data, views, applica-
tions, and other dependent system components. Ideally, dealing with these changes
should require little manual work and system unavailability. For instance, changes
to a database schema S should be propagated to instance data and views defined on
S with minimal human intervention. On the other hand, without sufficient support
schema evolution is difficult and time-consuming to perform and may break run-
ning applications. Therefore, necessary schema changes may be performed too late
or not at all resulting in systems that do not adequately meet requirements.

Schema evolution has been an active research area for a long time and it is
increasingly supported in commercial systems. The need for powerful schema evo-
lution has been increasing. One reason is that the widespread use of XML, web
services, and ontologies has led to new schema types and usage scenarios of
schemas for which schema evolution must be supported. The main goals of this
survey chapter are as follows:

¢ To introduce requirements for schema evolution support.

e To provide an overview about the current state of the art and recent research
results on schema evolution in three areas: relational database schemas, XML
schemas, and ontologies. For each kind of schema, we outline how and to what
degree the introduced requirements are served by existing approaches.

While we cover more than 20 recent implementations and proposals, there are many
more approaches that can be evaluated in a similar way than we do in this chapter.
We refer the reader to the online bibliography on schema evolution under http://
se-pubs.dbs.uni-leipzig.de (Rahm and Bernstein 2006) for additional related work.
Book chapter 7 (Fagin et al. 2011) complements our paper by focusing on recent
work on mapping composition and inversion that support the evolution of schema
mappings.

In Sect. 2, we introduce the main requirements for effective schema and ontology
evolution. Sections 3 and 4 deal with the evolution of relational database schemas
and of XML schemas, respectively. In Sect. 5, we outline proposed approaches for
ontology evolution and conclude in Sect. 6.

2 Schema Evolution Requirements

Changes to schemas and ontologies affect the instances described by these metadata
structures as well as other dependent system components. Figure 6.1 illustrates some
of these dependencies for the evolution of database schemas that are always tightly
connected with the instances of the database. So when the schema S of a database
with instances D, described by S, is changed to schema S’ the instances must be
adapted accordingly, e.g., to reflect changed data types or added and deleted struc-
tures in S’. We assume that schema changes from S to S’ are described by a so-called
evolution mapping (e.g., a set of incremental changes or a higher-level abstraction).

http://se-pubs.dbs.uni-leipzig.de
http://se-pubs.dbs.uni-leipzig.de

6 Recent Advances in Schema and Ontology Evolution 151

derived
schema (view)

view mapping v v
Evolution
Schema S mapping 3 s’
Instance
mapping *
Instances D > D’

Fig. 6.1 Schema evolution scenario

Similarly, instance changes/migration can be specified by an instance mapping, e.g.,
a sequence of SQL operations. A main requirement for database schema evolu-
tion is thus to propagate the schema changes to the instances, i.e., to derive and
execute an instance mapping correctly and efficiently implementing the changes
specified in the evolution mapping. Changes to schema S can also affect all other
usages of S, in particular the applications using S or other schemas and views related
to S. Schema changes may thus have to be propagated to dependent schemas and
mappings. To avoid the costly adaptation of applications they should be isolated
from schema changes as much as possible, e.g., by the provision of stable schema
versions or views. For example, applications using view V remain unaffected by
the change from S to S’ if the view schema V can be preserved, e.g., by adapt-
ing view mapping v to v’ (Fig.6.1). There are similar evolution requirements for
XML schemas and ontologies, although they are less tightly connected to instance
data and have different usage forms than database schemas as we will see (e.g.,
XML schemas describing web service interfaces; ontologies may only provide a
controlled vocabulary).

In the following sections, we discuss in detail general and more specific desider-
ata and requirements for effective schema and ontology evolution. These require-
ments are then used in the subsequent sections to review and compare existing and
proposed evolution approaches.

We see the following general desiderata for a powerful schema evolution support:

— Completeness: There should be support for a rich set of schema changes and their
correct and efficient propagation to instance data and dependent schemas.

— Minimal user intervention: To the degree possible, ensure that the schema evolu-
tion description is the only input to the system and that other artifacts co-evolve
automatically.

— Transparency: Schema evolution should result into minimal or no degradation
of availability or performance of the changed system. Furthermore, applications
and other schema consumers should largely be isolated from the changes, e.g.,
by support for backward compatibility, versioning, or views.

152 M. Hartung et al.

The general desiderata are hard to meet and imply support for a series of more
specific, interrelated features:

— Rich set of simple and complex changes: Simple changes refer to the addi-
tion, modification, or deletion of individual schema constructs (e.g., tables and
attributes of relational databases), while complex changes refer to multiple such
constructs (e.g., merging or partitioning tables) and may be equivalent to multi-
ple simple changes. There are two main ways to specify such changes and both
should ideally be supported. The straightforward approach is to explicitly specify
schema modification statements to incrementally update a schema. Alternatively,
one can provide the evolved schema, thereby providing an implicit specification
of the changes compared to the old schema. This approach is attractive since it
is easy to use and since the updated schema version may contain several changes
to apply together.

— Backward compatibility: For transparency reasons, schema changes should min-
imally impact schema consumers and applications. We therefore require support
for backward compatibility meaning that applications/queries of schema S should
continue to work with the changed schema S'. This requires that schema changes
do not result in an information loss but preserve or extent the so-called informa-
tion capacity of schemas (Miller et al. 1994). Changes that are potentially lossy
(e.g., deletes) should therefore be either avoided or limited to safe cases, i.e., to
schema elements that have not yet been used. As we see, the view concept and
schema versioning in combination with schema mappings are main approaches
to support backward compatibility.

— Mapping support: To automatically propagate schema changes to instances and
dependent or related schemas, it is necessary to describe the evolution itself as
well as schema dependencies (such as view mappings) by high-level, declara-
tive schema mappings. In the simplest case, the evolution mapping between the
original schema S and the evolved schema S’ consists of the set of incremental
changes specified by the schema developer. In case the changes are specified by
providing the evolved schema S, the evolution mapping between S and S’ still
needs to be determined. Ideally, this mapping is (semi-)automatically determined
by a so-called Diff{erence) computation that can be based on schema matching
(Rahm and Bernstein 2001; Rahm 2011) but also has to take into account the
(added/deleted) schema elements that exist in only one of the two schemas.

There are different possibilities to represent evolution mappings and other schema
mappings. A high flexibility and expressive power is achieved by using different
kinds of logical and algebraic mapping expressions that have been the focus of a
substantial amount of theoretical research (Cate and Kolaitis 2010). The mapping
representation should at least be expressive enough to enable the semi-automatic
generation of corresponding instance (data migration) mappings. Further mapping
desiderata include the ability to support high-level operations such as composition
and inversion of mappings (Bernstein 2003) that support the evolution (adaptation)
of mappings after schema changes. In the example of Fig. 6.1, such operations can

6 Recent Advances in Schema and Ontology Evolution 153

be used to derive the changed view mapping v’ by composing the inverse of the
evolution mapping with the view mapping v.

— Automatic instance migration: Instances of a changed schema or ontology should
automatically be migrated to comply with the specified changes. This may be
achieved by executing an instance-level mapping (e.g., in SQL or XQuery)
derived from the evolution mapping. Database schema evolution also requires
the adaptation of affected index structures and storage options (e.g., clustering
or partitioning), which should be performed without reducing the availability of
the database (online reorganization). There are different options to perform such
instance and storage structure updates: either in place or on a copy of the orig-
inal data. The copy approach is conceptually simpler and keeping the original
data simplifies undoing an erroneous evolution. On the other hand, copying is
inherently slow for a large amount of data most of which are likely unaffected
by the schema change. Furthermore, data migration can be performed eagerly
(expensive, but fast availability of changes) or lazily. Instance migration should
be undoable if anything goes wrong, which can be achieved by running it under
transactional control.

— Propagation of schema changes to related mappings and schemas: Schemas are
frequently related to other schemas (by mappings) so that schema changes may
have to be propagated to these related schemas. This should be performed in
a largely automatic manner supporting a maximum of backward compatibil-
ity. Important use cases of this general requirement include the maintenance of
views, integrated (global) schemas, and conceptual schemas. As discussed view
schemas may be kept stable for information-preserving changes by adapting the
view mapping according to a schema change; deleted or added schema compo-
nents on the other hand may also require the adaptation of views. Data integration
architectures typically rely on mappings between source schemas and a global
target (mediator or warehouse) schema and possibly between source schemas and
a shared ontology. Again, some schema changes (e.g., renames) may be covered
by only adapting the mappings, while other changes such as the provision of new
information in a source schema may have to be propagated to the global schema.
Finally, interrelating database schemas with their conceptual abstractions, e.g., in
UML or the entity/relationship (ER) model, require evolution support. Changes
in the UML or ER model should thus be consistently propagated to the database
schema and vice versa (reverse engineering).

— Versioning support: Supporting different explicit versions for schemas and onto-
logies and possibly for their associated instances supports evolution transparency.
This is because schema changes are reflected in new versions leaving former
versions that are in use in a stable state. Different versioning approaches are fea-
sible, e.g., whether only a sequence of versions is supported or whether one can
derive different versions in parallel and merge them later on. For full evolution
transparency, it is desirable to not only support backward compatibility (appli-
cations/queries of the old schema version S can also use S’) but also forward
compatibility between schema versions S and S’, i.e., applications of S’ can also
use S.

154 M. Hartung et al.

— Powerful schema evolution infrastructure: The comprehensive support for sch-
ema evolution discussed before requires a set of powerful and easily usable tools,
in particular to determine the impact of intended changes, to specify incremen-
tal changes, to determine Diff evolution mappings, and to perform the specified
changes on the schemas, instances, mappings, and related schemas.

3 Relational Schema Evolution Approaches

By far, the most predominantly used model for storing data is the relational model.
One foundation of relations is a coupling between instances and schema, where
all instances follow a strict regular pattern; the homogeneous nature of relational
instances is a foundational premise of nearly every advantage that relational systems
provide, including query optimization and efficient physical design. As a conse-
quence, whenever the logical scheme for a table changes, all instances must follow
suit. Similarly, whenever the set of constraints on a database changes, the set of
instances must be validated against the new set of constraints, and if any violations
are found, either the validations must be resolved in some way or, more commonly,
the schema change is rejected.

An additional complication is the usually tight coupling between applications and
relational databases or at least between the data access tier and the database. Because
the SQL query language is statically typed, application queries and business logic
applied to query results are tightly coupled to the database schema. Consequently,
after a database schema is upgraded to a new version, multiple applications may
still attempt access to that database concurrently. The primary built-in support pro-
vided by SQL for such schema changes is external schemas, known more commonly
as views. When a new version of an application has different data requirements,
one has several options. First, one can create views to support the new applica-
tion version leaving existing structures intact for older versions. Or, one can adapt
the existing schema for the new application and maintain existing views to pro-
vide backward compatibility for existing applications. In both cases, the views may
be virtual, in which case they are subject to the stringent rules governing updatable
views, or they may be materialized, in which case the application versions are essen-
tially communicating with different database versions. However, the different views
have no semantic relationship and no intrinsic notion of schema version, and thus
no clean interoperability.

For the rest of this section, we first consider the current state of the art in
relational database systems regarding their support for schema evolution. We exam-
ine their language, tool, and scenario support. We then consider recent research
revelations in support for relational schema evolution. Finally, we use Table 6.1
to summarize the schema evolution support of the considered approaches w.r.t.
requirements introduced in Sect. 2.

155

6 Recent Advances in Schema and Ontology Evolution

(ponuiuo))

Tepouwr renydoouod
uo paseq sagueyd
[eIUQWRIOUT

Jo9s (1)

[eyuawaIou] (7)

(030 ‘eInquye
‘drysuonerar

‘ad£y Kinua
doap/Aytpout/ppe)
sagueyo orduig (1)

uonnNIAXd
1dd prepuess
puokaq duoN (1)

[eyuduwaIou] (7)
sarorjod
uorneSedoxd
)M pajejouur
JUSUIRIE]S 9JBAID)
(1aa 108)

soSueyo opdwig (1)

premyoeq
pue pIemioj
yloq ‘s3urddewr

108 pue
o130] [euwtio (1)

[eyuawaIou] (7)

(Suruonnred
/SurSiow 9[qe)
sagueyd xo[dwod
pue drdurrs (1)

(1aa
T0S) seSueyo
[eIUUIRIOUT

Joes (1)

[eyuawIou] (7)

(1aa

T0OS) seSueyo
srdurts A[uQ (1)

(1aa
T10OS) se3ueyd
[eIUSWIAIOUT

Jo19s (1)

[eyuduwaIou] (7)

(1aa
10S) sesueyd
ordurrs K[uQ (1)

sagueyd
[BIUQWIAIOUT

JO 195 10 9[q®)
9[Surs mau pue p[o
uaam)aq Surddewr
uwnfo) (1)

(uonmuyaparx
J[qel) BWAYOS MU
J0 [eyuawRIoU] (7)

(1aa

10S) sesueyd
orduuts KjuQ (1)

uonejuasardoy (1)
Surddewr uonnjoag

(ewoyos

MU ‘[BIUSWIIOUT)

uoneoywads (7)

(xordwoo ‘orduurs)
ssaquyory (1)

saguey)
uonnjoAd AuaLIndu0d
UQALIp-[opow s300[qo aseqejep uni o) suoneoridde
Suimoqe juopuadop ueamjaq Jo suolsioa a[dnnw W)SAS wA)SAS w)SAS
‘ooeprout Surfepowr seantwiid uonnjoad Suimoqe oSenSue] oseqejep [eUOTIE[OI 9Seqeiep [EBUOIR[AI 9SeqEIEp [BUONB[al SIom
remdoouo) Jo uonededorqd Jurddew uonnjoag [eIoIOWWIO)) [eIoIOWWIO)) [ero1OWIWIO) O snoojsuonduosaq
(8000) e
zongupuioq (900) (010T 8000)
Jneurey pue YOIy Te 10 sojeuejaisedeq (8007) 'T¢ 10 ounn) IOAIOS
VHAIW/NIVIN-9d SNHVIVOAH ASIYd ‘PUY ®ued cdd N4l TOS JOSOIIA 9[9'IO

uonN[OAd BUIAYOS [BUOTIE[AI 0] SWIAISAS JO SONSLIdORIRYD) 9 AR,

M. Hartung et al.

-0

MOIOM

peo|
-ULIOJSURI}-}ORIIX

souanb pue smara
se yons s303[qo
juopuadop 9jepdn
A[reonewoine

01 uayM

puE MOY QUIULIAP

sa1o1[od (7)

uonn[oAd
AssO[JO asneoaq
pI[eAUl satzonb
J1 uonesynou
‘orqrssod uaym

Sunumar A1onQ) ()

N eliph
- =0 =) yuspuadaq (7)
o1qel
syuapuadop sjuopuadop paSueyd uo puadop

$302[qo 19730 ou
J1 9yeI3Iw saoue)sul

ou)1 s399[qo 10§
uoIIB[SURI) 90UR)SUT

ou yjIm s309(qo I0¥
UOTIB[SUBI) 90UBISUT

' Aq eIep Q0uR)SUl onewoine “Iqq onewoIne “Iqq ‘feuorjoesuen)

Jo uoneysuery, (1) —(1) —(1) [euonoesuer], (1) [euonoesuel], (1) -uoN (1) saouejsuy (1)
uonededoid grepdn

(1aa 10s

ur passaidxa Jip)

SUOTSIOA BWAYDS
om} 10J Ajifeuonouny uonendwod
0 —0) 0 0 - uostredwio) (7) dd1d (0

(8000) Te 10
zongugwo((9002) (0T0T “8007)
jneureq pue YOI ‘[10 sojeurjoiseded (8007) ‘[e 12 ounn) JOAIRS
VAAIN/NIVIN-9d SNAVIVOAH NS ‘oYY eiued <dd W4l TOS JOSOIIA 9[oel0

156

(penunuo)) T°9 Alqe],

157

6 Recent Advances in Schema and Ontology Evolution

Sewayos Jurkjrpowr
J[IYMm suorjoe

Iosn ormded 03 pasn
S[00} paseq-1ND

uorneIouag

MIIA pue SunLImaI
A1onb Sunensuowap
10§ [00) PISBq-QoA\

J[qrssod Areunioy
uaym ‘Aypiqredwod
pIemoeq pue
premioj yjoq 1oddns
0] SMIIA S3JLISUAD)

SIOLID
uonnjoAd sjorpaid
‘so3ueyd S9[punq
— JOJenSTUTWpE
orpnys eyep wndp

uoneISIW JouL)sur
Suunp JuruoIsIoA
[euzayur AJuQ

saseqejep paSesoed
J10J uoneIs I
Qouejsur aoe[d-ur
pue JJIp Bwoyos
yoddns syoed Dy
*So3URYD JOUIISIP
woij sydiros a3ueyd

$918I10 SINSS

uoneISIW JouL)sur
Suumnp JuruoIsIoA
[euzaur A[UQ

s10119 s3o1pard
‘saSueyo so[punq
‘sewrayos saredwod
— yoed juowaSeurur
a3ueyd oorI0
so[qe}

ym Junoerur

10 039 ‘10331
ym ‘s3oalqo
ju9sisroduou

Jo suorsioa 9[dnnuw
y1oddns suonipg

1NO/2mponnseryuy

y10ddns Suruorsiop

158 M. Hartung et al.

3.1 Commercial Relational Systems

Relational database systems, both open-source and proprietary, rely on the DDL
statements from SQL (CREATE, DROP, and ALTER) to perform schema evolution,
though the exact dialect may vary from system to system (Tiirker 2000). So, to add
an integer-valued column C to a table T, one uses the following syntax:

| ALTER TABLE T ADD COLUMN C int; |

Other changes are differently specified in commercial DBMS. For instance, renam-
ing a table in Oracle is performed using the following syntax:

| ALTER TABLE foo RENAME TO bar; |

SQL Server uses a stored procedure for that particular change:

| sp_-rename ‘foo’, ‘bar’, ‘TABLE’; |

Schema evolution primitives in the SQL language and in commercial DBMS are
atomic in nature. Unless there is a proprietary extension to the language, each state-
ment describes a simple change to a schema. For instance, individual tables may be
added or dropped, individual columns may be added or dropped from a table, and
individual constraints may be added or dropped. Additionally, individual properties
of a single object may be changed; so, one can rename a column, table, or constraint;
one can change individual properties of columns, such as their maximum length or
precision; and one can change the data type of a column under the condition that the
conversion of data from the old type to the new type can be done implicitly.

However, one cannot specify more complex, compound tasks such as horizontal
or vertical splitting or merging of tables in commercial DBMS. Such actions may be
accomplished as a sequence of atomic actions — a horizontal split, for instance, may
be represented as creating each of the destination tables, copying rows to their new
tables, and then dropping the old table. Using this piecemeal approach is always
possible; however, it loses the original intent that treats the partition action as a sin-
gle action with its own properties and semantics, including knowing that horizontal
merge is its inverse.

The approach that has been taken by and large by commercial vendors is to
include at most a few small features in the DBMS itself and then provide robust
tooling that operates above the database. One feature that is fairly common across
systems is transactional DDL; CREATE, ALTER, and DROP statements can be
bundled inside transactions and undone via a rollback. A consequence of this fea-
ture is that multiple versions of schemas at a time may be maintained for each table
and potentially for rows within the table for concurrent access. Even though multiple
versions of schema may exist internally within the engine, there is still only a single
version available to the application. PostgreSQL, SQL Server, and DB2 all support
this feature; in Oracle, DDL statements implicitly mark a transaction boundary and
run independently.

Commercial systems automatically perform update propagation for the simple
changes they support. Simple actions, such as column addition, deletion, or type

6 Recent Advances in Schema and Ontology Evolution 159

changes, can frequently be performed while also migrating existing instance data
(provided new columns are allowed to be null). Furthermore, online reorganization
is increasingly supported to avoid server downtime for update propagation. So, for
instance, DB2 offers a feature where renaming or adjusting the type of a column
does not require any downtime to complete, and existing applications can still access
data in the table mid-evolution (IBM 2009b). The transactional DDL and internal
versioning features also promote high server uptime, as alterations may be made
lazily after the transaction has completed while allowing running applications access
to existing data.

On the other hand, there is little support to propagate schema changes to depen-
dent schema objects, such as views, foreign keys, and indexes. When one alters a
table, either the dependent objects must themselves be manually altered in some
way, or the alteration must be aborted. The latter approach takes the majority of the
time. For instance, SQL Server aborts any attempt to alter a column if it is part of
any index, unless the alteration is within strict limits — namely, the alteration is a
widening of a text or binary column. Dropped columns simply cannot participate in
any index. DB2 has similar restrictions; Oracle invalidates dependent objects like
views so that they must be revalidated on next use and fails to execute them if they
do not compile against the new schema version.

Commercial DBMS do not support abstract schema mappings but only SQL for
specifying view mappings and evolution mappings. There is no support for multiple
explicit schema and database versions. Once the DDL statements of an evolution
step have been executed, the previous version of the evolved objects is gone. There
is no support for applications that were developed against previous versions of the
database.

For the rest of this subsection, we will focus on vendor-specific features that go
above and beyond the standard DDL capabilities for schema evolution.

Oracle provides a tool called Change Management Pack that allows some high-
level schema change operations. One can compare two database schemas, batch
changes to existing database objects, and determine statically if there will be any
possible impacts or errors that may need to be mitigated such as insufficient priv-
ileges. The tool then creates scripts comprising SQL DDL statements from the
schema difference. This capability is similar to those offered by other commercially
available schema difference engines (e.g., Altova DiffDog (Altova 2010)), but does
not offer the same level of automatic matching capabilities that can be found in
schema-matching research tools.

Since the release of version 9i, Oracle also provides a schema evolution feature
called redefinition (Oracle Database 10g Release 2 2005). Redefinition is performed
on single tables and allows the DBA to specify and execute multiple schema or
semantic modifications on a table. Changes such as column addition or deletion,
changing partitioning options, or bulk data transformation can be accomplished
while the table is still available to applications until the final steps of the update
propagation.

Redefinition is a multistep process. It involves creating an interim table with the
shape and properties that the table is to have post-redefinition and then interlinking

160 M. Hartung et al.

the interim table with the original table by a column mapping specified as a SQL
query. The DBA can periodically synchronize data between the two tables according
to the query before finally finishing the redefinition. At the end of the redefinition
process, the interim table takes the place of the original table. Only the final step
requires the table to go offline.

Finally, Oracle supports a feature called editions (Oracle Edition-Based Redefi-
nition 2009). An edition is a logical grouping of database objects such as views and
triggers that are provided to applications for accessing a database. Using editions,
database objects are partitioned into two sets — those that can be editioned and those
that cannot. Any object that has a persistent extent, in particular tables and indexes,
cannot be editioned. So, an edition is a collection of primarily views and triggers
that provide an encapsulated version of the database.

To illustrate the use of editions, consider a simple scenario of a database that
handles data about people (Fig. 6.2). In version 1, the database has a table TPerson
with a single column Name. Edition 1 also provides applications with an editioned
view 1 over TPerson that includes the name column. Schema evolution is triggered
by the need to break apart Name into FirstName and LastName. So, version 2 of
the database adds two new columns — FirstName and LastName — to TPerson, but
leaves column Name present. Edition 2 of the database includes a new view 2 that
leaves out Name but includes FirstName and LastName. A background task, run
concurrently with the creation of the edition, copies existing data in Name into the
new columns but leaves existing data intact. Furthermore, Edition 2 includes two
triggers written by the developer to resolve the differences between the two versions.
The forward trigger applies to edition 2 and all future editions and takes the data
from FirstName and LastName on inserts and updates and applies the data to Name.
The reverse trigger applies to all strictly older editions and translates Name data into
FirstName and LastName on insert and update. Note that view 1 is still supported
on the changed schema so that its applications continue to work.

The resulting database presents two different external faces to different appli-
cation versions. Version 1 sees edition 1 with a Name column; and version 2 (and
beyond) sees edition 2 with FirstName and LastName columns. Both versions can

CIPYEEy

\ A /

\ \ \/ /
\ \ \ X /
\ /\ /

\ \ \ / \
TPerson g ’ Table E /
Edition 1, with a view, above Editions 1 and 2 of the view, with changes to
the table TPerson the table and triggers translating between old

and new columns TPerson

Fig. 6.2 Editions in Oracle

6 Recent Advances in Schema and Ontology Evolution 161

create and consume data about a person’s name, and that data are visible to the other
version as well.

While editions solve a significant process problem, it does not solve data seman-
tics problems. For instance, there is no guarantee that the forward and reverse
triggers are in any way inverses of one another and are both essentially opaque
program codes to the database system.

SQL Server ships with a tool called SQL Server Management Studio (SSMS) that
serves as the GUI front end for a database. The tool can present a database diagram
for a given database; the developer can then make changes directly to that diagram,
such as adding foreign keys or dropping columns, and the changes are then propa-
gated to the database when the diagram is saved. SSMS also has a generate change
script feature. While editing a table in a designer, SSMS will track the changes that
the developer has made on the table. SSMS packages those changes into a script
either on demand or whenever the designer is saved or closed.

SQL Server also includes a feature called Data-Tier Applications (Microsoft
SQL Server 2008 R2 Data-Tier Applications 2010). At the core of the feature is a
distributable file called a DAC pack. A DAC pack is essentially a deployable image
of a single version of an application database schema. A typical use case is that a
developer packages an application with the schema of a database within such a DAC
pack. Initially, when a customer installs the DAC pack an empty database is created
with the respective table definitions, views, indexes, etc., from the schema. When
the developer creates a new version of the application with an evolved version of the
database schema, it is again bundled in a DAC (the old schema version is not con-
sidered). When the customer installs the new DAC, the existing database is detected
and evolved (upgraded) to the new schema version. The current SQL server version
does not do any sophisticated schema-matching heuristics, but also does not make
any guesses. If a table has the same name in both the before and after versions, and
has columns that are named the same, the upgrade will attempt to transfer the data
from the old to the new, failing with a rollback if there are errors like incompat-
ible data types. The resulting evolution process is effectively able to add or drop
any objects — tables, columns, indexes, constraints, etc. — but unable to perform any
action that requires user intent to capture semantics, such as object renaming (which
to an automated process appears like a drop followed by an add). What the approach
thus supports are common evolution scenarios of schema element adds and drops for
which instance data can be migrated without either developer or user intervention.

IBM DB?2 includes a tool called Optim Data Studio Administrator, which is a
workbench tool for displaying, creating, and editing database objects with a live
connection to a database (IBM 2009a). The interface has a largely hierarchical lay-
out, with databases at the top of the hierarchy moving down to tables and displayed
column properties. One can use the tool to manually edit schema objects and commit
them to the database. Data Studio Administrator can batch changes together into a
script that can subsequently be deployed independently. The script can be statically
checked to determine whether the operation can be performed without error. For
instance, when changing a column’s data type, the default operation is to unload the
data from the column’s table, make the change to the type, and then reload the data.

162 M. Hartung et al.

If the type changes in such a way that will cause data type conflicts, Data Studio
Administrator will alert the user that an error exists and offer the potential solution
of casting the column’s data on reload.

3.2 Research Approaches

PRISM (Curino et al. 2008) is a tool that is part of a larger project called Panta
Rhei, a joint project between UCLA, UC San Diego, and Politecnico di Milano
investigating schema evolution tools. The PRISM tool is one product of that joint
venture that focuses on relational evolution with two primary goals: allow the user
to specify schema evolution with more semantic clarity and data preservation and
grant multiple versions of the same application concurrent access to the same data.

One contribution of the work on PRISM is a language of schema modifica-
tion operators (SMOs). The SMO language closely resembles the DDL language
in the SQL standard in that it is a textual, declarative language. The two languages
also share some constructs, including “CREATE TABLE” and “ADD COLUMN.”
However, the two languages have two fundamental distinctions.

First, for every statement expressed using the SMO language, there are for-
mal semantics associated with it that describe forward and reverse translation of
schemas. The reverse translation defines, for each statement, the “inverse” action
that effectively undoes the translation. The only SMO statements that lack these
forward and reverse translations are the CREATE TABLE and DROP TABLE oper-
ations; logical formalism for these statements is impossible, since one is effectively
stating that a tuple satisfies a predicate in the before or after state, but that the
predicate itself does not exist in the other state. The work on PRISM describes
“quasi-inverses” of such operations; for instance, if one had copied the table before
dropping it, one could recover the dropped information from other sources. PRISM
offers some support for allowing a user to manually specify such inverses.

Second, SMO and SQL DDL have a different philosophy for what constitutes
an atomic change. SQL DDL has a closure property — one can alter any schema S
into another schema S’ using a sequence of statements in the language. The state-
ments may be lossy to data, but such a sequence will always be possible. The SMO
statements have a different motivation, namely, each statement represents a common
database restructuring action that requires data migration. Rather than set the unit of
change to be individual changes to individual database elements, the unit of change
in PRISM more closely matches high-level refactoring constructs such as vertical
or horizontal partitioning. For instance, consider the following statements:
MERGE TABLE R, S INTO T
PARTITION TABLE T INTO S WITH T.X < 10, T
COPY TABLE R INTO T
These three statements merge two tables, partition a table into two based on a

predicate, and copy a table, respectively. Each statement and its inverse can be rep-
resented as a logical formula in predicate calculus as well as SQL statements that

6 Recent Advances in Schema and Ontology Evolution 163

describe the alteration of schema and movement of data. For instance, the merge
statement above may be represented in SQL as follows:

CREATE TABLE T (the columns from either R or S)
INSERT INTO T
SELECT * FROM R
UNION
SELECT *x FROM S
DROP TABLE R
DROP TABLE S

The second major contribution of PRISM is support for database versioning with
backward and forward compatibility. When starting with version N of a database, if
one uses SMOs to create version N + 1 of the database, PRISM will provide at least
one of the following services to applications whenever the SMOs are deemed to be
invertible or the user provides a manual workaround:

— Automatic query rewriting of queries specified against version N into semanti-
cally equivalent queries against schema N + 1, and vice versa.
— Views that expose version N of the schema using version N + 1 as a base.

The authors examine the entire schema edit history of the database behind Wikipedia
and create a classification of high-level restructuring that covers the vast majority of
changes that have occurred in the history of that data repository.

HECATAEUS (Papastefanatos et al. 2010) focuses on the dependencies between
schema components and artifacts such as views and queries. Recall that commercial
systems have tight restrictions on schema evolution when dependencies exist; one
cannot drop a column from a table if a view has been created that references that
table. Using HECATAEUS, the developer is given fine-grained control over when
to propagate schema changes to an object to the queries, statements, and views that
depend on it.

A central construct in HECATAEUS is an evolution policy (Papastefanatos et al.
2008). Policies may be specified on creation of tables, views, constraints, or queries.
One specifies an evolution policy using a syntactic extension to SQL. For instance,
consider the following table definition:

CREATE TABLE Person (

Id INT PRIMARY KEY,

Name VARCHAR(50),

DateOfBirth DATE,

Address VARCHAR(100),

ON ADD Attribute TO Person THEN Propagate)

This DDL statement constructs a table with a policy that states that any added
attribute should be automatically added as well to any dependent object. For ins-
tance, consider the following view:

CREATE VIEW BobPeople AS

SELECT Id, DateOfBirth, Address FROM Person

WHERE Name = ‘Bob’

164 M. Hartung et al.

If one were to subsequently add a new column “City” to the Person table, the
BobPeople view definition would be automatically updated with an additional
column Person as well.

Policies are specified on the object to be updated, not the dependent objects.
Each policy has three enforcement options: propagate (automatically propagate the
change to all dependents), block (which prevents the change from being propagated
to dependents), or prompt (meaning the user is asked for each change which action
to take). For both propagate and block options, queries are rewritten to either take the
new schema semantics into account or preserve the original semantics. The available
policies depend on the object being created; for instance, tables may have policies
added for adding, dropping, or renaming attributes; drop or rename the relation; or
add, drop, or modify constraint.

DB-MAIN is a conceptual modeling platform that offers services that connect
models and databases. For instance, one can reverse engineer from a database a
conceptual model in an entity—relationship model with inheritance, or one can for-
ward engineer a database to match a given model. The relationship between such
models and databases is generally straightforward — constructs like inheritance that
exist in the model that have no direct analog in the relational space map to certain
patterns like foreign keys in predictable ways (and detectable, in the case of reverse
engineering a model from a database).

Research over the last decade from DB-MAIN includes work on ensuring that
edits to one of those artifacts can be propagated to the other (Hick and Hainaut
2006). So, for instance, changes to a model should propagate to the database in
a way that evolves the database and maintains the data in its instance rather than
dropping the database and regenerating a fresh instance. The changes are made in a
nonversioning fashion in that, like vanilla DDL statements, the changes are intended
to bring the database to its next version and support applications accessing the new
version without any guarantee of backward compatibility.

Because DB-MAIN is a tool, it can maintain the history of operations made
to the graphical representation of a model. Graphical edits include operations like
adding or dropping elements (entity types, relationships, attributes, etc.) as well as
“semantics-preserving” operations like translating an inheritance relationship into
a standard relationship or reifying a many-to-many relationship into an entity type.
Each model transformation is stored in a history buffer and replayed when it is
time to deploy the changes to a database instance. A model transformation is cou-
pled with a designated relational transformation as well as a script for translating
instance data — in essence, a small extract-transform-load workflow. The set of avail-
able translations is specified against the conceptual model rather than the relational
model, so while it is not a relational schema evolution language by definition, it has
the effect of evolving relational schemas and databases by proxy.

MeDEA (Dominguez et al. 2008) is a tool that, like DB-MAIN, exposes rela-
tional databases as conceptual models and then allows edits to the conceptual model
to be propagated back to schema changes on the relational database. A key distinc-
tion between MeDEA and DB-MALIN is that MeDEA has neither a fixed modeling

6 Recent Advances in Schema and Ontology Evolution 165

language nor a fixed mapping to the database. For instance, the conceptual model
for a database may be constructed in UML or an extended ER diagram.

As a result, the relationship between model and database is fluid as well in
MeDEA. Given a particular object in the conceptual model, there may be multi-
ple ways to represent that object as schema in the database. Consequently, when
one adds a new object to an existing model (or an empty one), the developer
has potentially many valid options for persistence. A key concept in MeDEA is
the encapsulation of those evolution choices in rules. For each incremental model
change, the developer chooses an appropriate rule that describes the characteristics
of the database change. For instance, consider adding to an ER model a new entity
type that inherits from an existing entity type. The developer in that situation may
choose as follows:

— To add a new relational table with the primary key of the hierarchy and the new
attributes of the type as column, plus a foreign key to the parent type’s table (the
“table-per-type” mapping strategy).

— To add a new relational table with columns corresponding to all attributes of the
new type including inherited attributes (the “table-per-concrete class” mapping
strategy).

— To add columns to the table of the parent type, along with a discriminator or
a repurposing of an existing discriminator column (the “table-per-hierarchy”
mapping strategy).

Each of these strategies may be represented as a rule that may be applied when
adding a new type.

Impact Analysis (Maule et al. 2008) is an approach that attempts to bridge the
loose coupling of application and schema when the database schema changes. The
rough idea is to inform the application developer of potential effects of a schema
change at application design time. A complicating factor is that the SQL that is
actually passed from application to database may not be as simple as a static string;
rather, the application may build such queries or statements dynamically. The work
uses dataflow analysis techniques to estimate what statements are being generated
by the application, as well as the state of the application at the time of execution so
as to understand how the application uses the statement’s results.

The database schema evolution language is assumed to be SQL in this work.
Schema changes are categorized by their potential impact according to existing lit-
erature on database refactoring (Ambler and Sadalage 2006). For instance, dropping
a column will cause statements that refer to that column to throw errors when exe-
cuted, and as such is an error-level impact. Impact analysis attempts to recognize
these situations at design time and register an error rather than rely on the appli-
cation throwing an error at runtime. On the other hand, adding a default value to a
column will trigger a warning-level impact notice for any statement referring to that
column because the semantics of that column’s data has now changed — the default
value may now be used in place of null — but existing queries and statements will
still compile without incident. DB-MAIN and MeDea focus on propagating changes
between relational schemas and conceptual models.

166 M. Hartung et al.

A significant amount of research has recently been dedicated to automatic map-
ping adaptation (Yu and Popa 2005) to support schema evolution and is surveyed in
chapter 7 (Fagin et al. 2011). This work mostly assumed relational or nested rela-
tional schemas and different kinds of logical schema mappings. For these settings,
the definition and implementation of two key operators, composition and inversion
of mapping, have been studied. These operators are among those proposed in the
context of model management, a general framework to manipulate schemas and
mappings using high-level operators to simplify schema management tasks such as
schema evolution (Bernstein 2003; Bernstein and Melnik 2007). A main advantage
of composition and inversion is that they permit the reuse of existing mappings and
their adaptation after a schema evolves. The proposed approaches for mapping adap-
tation still have practical limitations with respect to a uniform mapping language,
mapping functionality, and performance so that more research is needed before their
broader usability.

3.3 Summary

Table 6.1 shows a side-by-side comparison of most of the approaches described in
this section for key requirements of Sect. 2. With the exception of the Panta Rhei
project, all solutions focus on the simple (table) changes of SQL DDL. Oracle is the
only system that also allows the specification of changes by providing a new version
of a table to be changed as well as a column mapping. Commercial GUIs exist that
can support simple diffing and change bundling, but eventually output simple SQL
DDL without version mappings or other versioning support. Oracle’s edition con-
cept makes versioning less painful to emulate, though underlying physical structures
are still not versioned. Overall, commercial DBMS support only simple schema
changes and incur a high manual effort to adapt dependent schemas and to ensure
backward compatibility. PRISM adds value by enabling versioning through inter-
version mappings, forward and backward compatibility, and formal guarantees of
information preservation when applicable. HECATAEUS improves flexibility by
specifying how to update dependent schema objects in a system when underlying
objects evolve.

4 XML Schema Evolution

XML as a data model is vastly different than the relational model. Relations are
highly structured, where schema is an intrinsic component of the model and an
integral component in storage. On the other hand, XML is regarded as a semi-
structured model. Instances of XML need not conform to any schema, and must
only conform to certain well-formed-ness properties, such as each start element
having an end tag, attributes having locally distinct names, etc. Individual elements

6 Recent Advances in Schema and Ontology Evolution 167

may contain structured content, wholly unstructured content, or a combination of
both. In addition, the initial purpose and still dominant usage of XML is as a doc-
ument structure and communication medium and not a storage model, and as such,
notions of schema for XML are not nearly as intrinsic to the model as with relations.
However, a notion of schema for XML is important for application interoperability
to establish common communication protocols.

Given that the very notion of XML schemas is relatively new, the notion of
schema evolution in XML is equally new. While there have been many proposed
schema languages for XML, two have emerged as dominant — Document type
definitions (DTDs) and XML Schema, with XML Schema now being the W3C
recommendation. Each schema language has different capabilities and expressive
power and as such has different ramifications on schema evolution strategies. None
of the proposed XML schema languages, including DTDs and XML Schema, have
an analogous notion of an “ALTER” statement from SQL allowing incremental evo-
lution. Also unlike the relational model, XML does have a candidate language for
referring to schema elements called component designators (W3C 2010); however,
while the language has been used in research for other purposes, it has to date
not been used in the context of schema evolution. Currently, XML schema evolu-
tion frameworks either use a proprietary textual or graphical language to express
incremental schema changes or require the developer to provide the entire new
schema.

The W3C — the official owners of the XML and XML Schema recommenda-
tions — have a document describing a base set of use cases for evolution of XML
Schemas (W3C 2006). The document does not provide any language or frame-
work for mitigating such evolutions, but instead prescribes what the semantics and
behavior should be for certain kinds of incremental schema evolution and how appli-
cations should behave when faced with the potential for data from multiple schema
versions. For instance, Sect. 2.3 lists use cases where the same element in differ-
ent versions of a schema contains different elements. Applications are instructed to
“ignore what they don’t expect” and be able to “add extra elements without breaking
the application.”

All of the use cases emphasize application interoperability above all other con-
cerns, and in addition that each application be allowed to have a local understanding
of schema. Each application should be able to both produce and consume data
according to the local schema. This perspective places the onus on the database or
middle tier to handle inconsistencies, in sharp contrast to the static, structured nature
of the relational model, which generally assumes a single working database schema
with homogeneous instances that must be translated with every schema change.
Thus, commercial and research systems have taken both approaches from the outset;
some systems (e.g., Oracle) assume uniform instances like a relational system, while
other systems (e.g., DB2) allow flexibility and versioning within a single collection
of documents.

A key characteristic of a schema language such as DTDs and XML Schemas
is that it determines what elements may be present in instance documents and in
what order and multiplicity. Proprietary schema alteration languages thus tend to

168 M. Hartung et al.

have analogous primitive statements, e.g., change an element’s multiplicity, reorder
elements, rename an element, insert or remove elements from the sequence, etc.
Researchers have created a taxonomy of possible incremental changes to an XML
schema (Moto et al. 2007) that is useful for evaluating evolution support in existing
systems:

1. Add a new optional or required element to a type.

Delete an element from a type.

Add new top-level constructs like complex types.

Remove top-level constructs.

Change the semantics of an element without changing its syntax — for instance,

if the new version of an application treats the implicit units of a column to be in

metric where previous versions did not.

6. Refactor a schema in a way that does not affect instance validation — for
instance, factoring out common local type definitions into a single global type
definition.

Nk w

7. Nest a collection of elements inside another element.
8. Flatten an element by replacing it by its children.
9. Rename an element or change its namespace.
10. Change an element’s maximum or minimum multiplicity.
11. Modify an element’s type, either by changing it from one named type to another

or adding or changing a restriction or extension.
12. Change an element’s default value.
13. Reorder elements in a type.

For each class of change, Moto et al. (2007) describe under what conditions a change
in that class will preserve forward and backward compatibility. For instance, if in
version 2 of a schema one adds optional element X to a type from version 1, any
application running against version 1 will be able to successfully run against ver-
sion 2 and vice versa so long as version 2 applications do not generate documents
with element X. If element X is required rather than optional, the two versions are no
longer interoperable under this scheme. The same logic can be applied to instances:
an instance of schema version 1 will validate against version 2 if X is optional and
will not if X is required.

For the rest of this section, we will describe the current state of the art in XML
schema evolution as present in commercially available systems and research works.
For each solution, in addition to comparing the solution against the requirements
outlined in Sect. 2, we describe the classes of incremental changes that the solution
supports and in what way it mitigates changes that must be made to either appli-
cations or instances. Table 6.2 shows the characteristics of the main approaches
considered, which are discussed at the end of this section.

169

6 Recent Advances in Schema and Ontology Evolution

(panunuo)y)
BUIAYDS BUIAYOS MU
Terodud) Ndueliph SEY Jo uoneoyroads

Suruuni 0) pappe
QI SUOISIOA

BUIAYOS MAU/P[O

MU se payroads
QIe SUOISIOA

BUWIAYDS JunSIxe
0} SBWAYOS MU

10 a3en3ue|
TIAXJHP Sutsn

(ewOYOS mau
‘TeIuaUIAIOUT)

MaIN (2) [eyuswaIdu] (7) [eyuswaIouy () Jo A1ddng (7) BUIAYOS MAN (7) Jo uonippy (7) [eyuwaIdu] (7) uoneoy1oadg (7)
(reqpoun soSueyo
Ayeurpied-adueyd nquye Ko dnnu
10 odKy-owreuax 1O JUSWIAO pue suonippe)
<39 ‘[opowr ppe <39 ‘[opowt Surop10ax JIngrnIe 1o
remdoouod eep ld JUQWIO[Q ‘OUIeual juowoe reuondo (xordwoo
Aq pauruziep Aq pouruIs)op Y11 saSueyd ue Jo uonippe orduurs)
=1 soguey) (1) saguey) (1) orduurg (1) -1 -1 80 ‘ordurg (1) ssouyory (1)
sadAy aSuey)
BUWIAYDS
Suikrea-own
jsurede depifea
0] saouejsul [opow [emdaduod BWIAYDS 0] SASUBYD Sugyip moddns TNX yim poddns TINX pim j1oddns TINX yhim
Surkrea-own B UI BUIAYDS [PJUSWIAIOUT BWIOYOS TINX JOJ WQ)ISAS [BUONB[AI WISAS [euOne[al WA)SAS [euoneaI SIom JO
MO[TY TINX MOTA paseq-(qLd [00} [eIOIOUILIO)) [erorowIwIo)) [eroIowwo)) [erorowwo) snooj/uondiose
(TAN *XddeD
‘uonnjoAg-X) (1000)
BUWIAYDS soyoeoidde ‘Te 10 ns “(T002) IOAIOS
TINX [etoduag, Ppaseq-[opoN Jowery] INHX S0 Jj1q Aoy da nd1 TOS JOSOIIN S[drIQ

SWA)SAS UOTINJOAD BUIDYDS TIATX JO SONSHIdOBIRYD) 7°9 J[qEL

M. Hartung et al.

soSen3ue|
9epdn
Kreyorrdoxd 1gereqAonsap
Q01]S Jo orepdn 10 [geIeppe
Quin) UdAIS © KondX Juisn se yons uonasur
1 JUWNO0p A} so3ueyd eyep soSueyo ejep Je SISIXD Jey) NatielipN
JO UOTSIOA o) TINX JO soLIes TINX JO soLIes SJUOWINOOP UOTSIOA MU oY) PIO pue mou (eanpaooxd
jsurede aepiea e i podnoo e s pojdnod uLojsuen jsurede depiea jsurede depifea aajoAgAdoo)
SJUOWNOOP st oSueyo st oSueyo 0] [ISX JO ISNW SJUSWNOOP SO SJUSWNOOP IISX
— pasuoN (1) BWAYDS yoey () BWAYDS yoey () uoneIuan (1) —QuoN (1) —uoN (1) ur pagroads (1) sooueysuy (1)
uonededoid
arepdn
(orqrssod [ND
BIA UOT)OAII0D
[enUBW) PIALIOP uonouny JIPTNX
A[reonewoine 10 payroads uonendwod
(0 -0 -0 -1 (7) (0 -0 A[renuey (2) A441d (2)
sa3ueyo sagueyo seoudpuodsoLIod a3en3uef ojepdn
[eIUSWIIOUT [EIUSWIAIOUT JUSWIS[-JUSWI[D TINXIJIP Uo paseq
=D 30398 (D) J0308 (1) Jo3s8 (D =D (1) seSueydpjoleg (1) uonwuesadoy (1)
Surddew
uonnjoAq
(TAN *XAdoD
‘uonnjoag-X) (1000)
BUWIAYOS sayoeoidde ‘e 12 nS “(TO0T) IOAIRS
TAX [eloduay, Paseq-[opOIA Twery WX od JId eAOIY cdda Wdl TOS YosoIy BIEL)

170

(panunuo)) 79 3|qEL,

171

6 Recent Advances in Schema and Ontology Evolution

POUOISIOA
9q 03} pamoi[e
10q dIe SBWYdS
puE sjuaWINOO((

-0

SUOTIO® Iasn
armded ‘saSueyd
Jo uoneIouad

Paseq-[00],

-0

S)[NSaI yojew
1091100 A[[enuew

03 pue JIp

- uuoyred 0) [ND

() -(0)

UOISIOA BUIYDS
[eurSLo 1oy}
jsurede depifea
SHUSWNIOP [V

-0

[oA9]
JUAWNO0P TINX UP
Je SRWAYDS 0M) JJIp
- 01 JSIX SALIRIQI]

() ()

1N D/eIMoNIsEIjUY

11oddns

SuruoIsIop
SeWAYOS
juapuado(g (7)

172 M. Hartung et al.

4.1 Commercial DBMS Systems

All three of the leading commercial database systems at the time of publication —
Oracle, Microsoft SQL Server, and IBM DB2 — provide support for storage of XML
data validated against an XML schema. Both of the major open-source relational
database offerings — PostgreSql and MySql — have support for storing XML, but do
not yet support schema validation in their standard configurations. We now briefly
describe how each of the three major vendors supports XML schemas in general
as well as how each vendor handles changes to those schemas. Furthermore, we
discuss evolution support in the native XML database system Tamino.

Oracle offers two very different ways to evolve an XML schema (Oracle XML
Schema Evolution 2008). The first is a copy-based mechanism that allows a great
deal of flexibility. Data from an XML document collection are copied to a temporary
location, then transformed according to a specification, and finally replaced in its
original location. The second is an in-place evolution that does not require any data
copying but only supports a limited set of possible schema changes.

Oracle has supported XML in tables and columns since version 9i (9.0.1) as
part of XML DB, which comes packaged with Oracle since version 9.2. One can
specify a column to have type XMLType, in which case each row of the table will
have a field that is an XML document, or one can specify a table itself to have
type XMLType, where each row is itself an XML document. In both cases, one can
specify a single schema for the entire collection of documents. For instance, one can
specify an XML column to have a specified given schema as follows:

CREATE TABLE tablewith xml_column
(id NUMBER, xml_document XMLType)
XMLTYPE COLUMN xml_document
ELEMENT "http://tempuri.com/temp.xsd#Globall";

Note that when specifying a schema for an XML column or document, one must
also specify a single global element that must serve as the document root for each
document instance. In the example above, schema temp . xsd has a global element
Globall against which all document roots must validate.

The copy-based version of schema evolution is performed using the DBMS_
XMLSCHEMA . copyEvolve stored procedure. The procedure takes as input three
arrays: a list of schema URLs representing the schemas to evolve, a list of XML
schema documents describing the new state of each schema in the first list, and a
list of transformations expressed in XSLT. Each transformation corresponds to a
schema based on its position in the list; so, the first transformation on the list is
used to translate all instances of the first schema to conform to the first new schema
definition, and so on.

There are a few restrictions on the usage of copyEvolve. For instance, the
list of input schemas must include all dependent schemas of anything in the list,
even if those schemas have not changed. There are also some additional steps
that must be performed whenever global element names change. However, from an
expressiveness perspective, one can use the procedure to migrate any schema to any

6 Recent Advances in Schema and Ontology Evolution 173

other schema. There is no correctness validation that the specified transformations
actually provide correct instance translation, so in the event that translated doc-
uments do not actually conform to the new schema, an error is thrown mid-
translation.

The second in-place method of evolution is performed using a different pro-
cedure called DBMS_XMLSCHEMA . inPlaceEvolve. Because the evolution is
performed in place, the procedure does not have any parameters guiding physical
migration, given that there is none. The in-place evolution procedure has much less
expressive power than the copy version — for this procedure, there is a full reverse-
compatibility restriction in place. It is not just the case that all existing instances of
the old schema must also conform to the new schema without alteration; it must be
the case that all possible instances of the old schema must conform to the new one
as well. Therefore, the restriction can be statically determined from the schemas
and is not a property of the documents currently residing in the database. So, for
instance, schema elements cannot be reordered, and elements that are currently sin-
gletons cannot be changed to collections and vice versa. The restriction guarantees
that the relational representation of the schema does not change, which ensures that
the in-place migration does not impose relational disk layout changes.

The kinds of changes that in-place migration does support include as follows:

— Add a new optional element or attribute (a subset of change class 1 from earlier
in the section).

— Add a new domain value to an enumeration (subset of change class 11).

— Add a new global element, attribute, or type (change class 3).

— Change the type of an element from a simple type to a complex type with simple
content (change class 6).

— Delete a global type, if it does not leave elements orphaned (subset of change
class 4).

— Decrease the minOccurs for an instance, or increase the maxQOccurs (subset of
change class 10).

This list is not comprehensive, but is representative. It is clear from these changes
that any valid instance of the old schema will still be valid after any of these changes.
To specify these incremental changes, Oracle has a proprietary XML difference lan-
guage called diffXML that is not specific to schemas but rather describe a diffgram
between two XML document instances (and XML schemas are, of course, XML
documents themselves). Expressions in difft XML loosely resemble expressions in
XML update facility in that they have primitives that append, delete, or insert nodes
in an XML document. However, diff XML expressions are XML documents rather
than XQuery expressions. For instance, one can change the MaxLength restriction
facet to 28 in a type using the following sequence of nodes:

<xd:delete-node xpath="/schema/complexType
[@name’Foo’]//maxLength/>
<xd:append-node
parent-xpath = "/schema
/complexType[@name='Foo’]//restriction"

174 M. Hartung et al.

node-type = "element">
<xd:content>
<xs:maxLength value = "28"/>
</xd:content>
< /xd:append-node>

Note that the expression language used to navigate an XML schema is vanilla XPath.
The xd namespace is the namespace for the diff XML language, and xd: content
nodes contain fragments of XML schema using the xs namespace.

One can specify a diff XML document manually, or one can generate it from the
XMLDIff function, available both in Oracle’s SQL dialect and Java. As mentioned
earlier, XMLDiff operates on any XML documents, not just XML schemas, so the
in-place evolution is essentially migrating schema by incrementally modifying the
schema documents as instances under a guarantee that there will be no cascading
effects of the migration.

Microsoft SOQL Server, like Oracle, supports storing a collection of homogeneous
XML documents in a relation column (Pal et al. 2006). Whereas instances in an
XML-typed column or table in Oracle must conform to a specific schema with a
specific global element as root, an XML-typed column in SQL Server validates
against any schema in a collection of schemas and allows any global element as root.
One specifies an XML Schema Collection in SQL server using a DDL statement:

CREATE XML SCHEMA COLLECTION [<relational_schema>.]
sgl_identifier AS Expression

Once a schema collection has been created, it can be assigned to be the schema
for any column whose type is XML. Also, once the collection is created, there are
only two operations that can be done on it — drop it or alter it by adding new con-
structs. The ALTER statement is the only form of schema evolution that SQL Server
allows without manually dropping the schema, manually translating instances, and
reestablishing the schema. The ALTER statement has only one form:

ALTER XML SCHEMA COLLECTION [relational_schema.]
sgl_identifier ADD Expression

For both the CREATE and ALTER statements, the expression must be a forest of
valid XML schema documents. The ALTER statement can add schema elements to
namespaces that already exist in the collection or to new namespaces.

The monotonic nature of alterations to a schema collection X means that, for the
most part, documents that conform to collection X will continue to validate against
the collection after alteration (maintaining the same reverse-compatibility restriction
of the in-place evolution in Oracle). The one exception is if the collection contains a
lax validation wildcard or any element whose type is xs:anyType. In such a case, the
addition of new global elements to the schema collection could cause documents
to fail validation. So, if any existing schema elements include such a construct,
revalidation of existing documents will happen any time new global elements are
added, and if the revalidation fails, the action is aborted.

6 Recent Advances in Schema and Ontology Evolution 175

IBM DB?2 takes a different approach to XML schema validation, one that embr-
aces the XML notion of interoperability rather than instance homogeneity (Beyer
et al. 2005). Rather than apply a single schema or schema set against an entire
collection of documents in a table or column, DB2 schema validation occurs on a
per-document basis. XML documents may be validated against a schema at the time
of insertion; however, the schema against which to validate the document is not
determined by the schema associated with the column, since there by definition is
no such schema. Rather, the schema is determined by attributes within the document
to be inserted, or by manually specifying a schema as an argument to the XMLVal-
idate function. Once a document has been validated, the document is adorned with
metadata that verifies that the document was validated as well as information to help
optimize query processing.

Like Oracle’s schema registration service and SQL Server’s schema collections,
DB2 requires one to register XML schemas in the system prior to use:

register xmlSchema ’'foo://tempuri.com/schema.xsd’
from ’‘schema-vl.xsd’ as schemaVl complete

DB2 has no support for schema evolution per se, as different versions of the same
schema appear in the database repository as unconnected documents. One also does
not update document instances from one version of a schema to another, similar to
SQL Server. Researchers from IBM have described how to support schema version-
ing using a complete scenario (Beyer et al. 2005); the scenario involves a relational
table that correlates the currently registered schemas (and thus schema versions)
with the applications currently using them. All of the mitigation of schema version-
ing is handled by the tables and protocols set up in the scenario rather than inside
the engine.

Since the engine does not enforce document homogeneity, it allows documents
from multiple schemas and thus multiple schema versions to coexist in a single
corpus with full fidelity. Rather than automatically evolve instances, the documents
exist in their original form, associated with its original schema.

Native XML databases, unlike relational systems, are built from the ground up
to support XML storage. Relatively few of these systems support XML schemas or
schema evolution. One notable exception is Tamino (Software AG 2006).

Like Oracle, Tamino can store XML data in a fashion that is XML schema
dependent, i.e., the physical structures may be optimized, possibly by mapping to
relations, knowing that the XML data is regularly structured in some way. Also
similarly to Oracle, Tamino allows schemas to evolve under the same restrictions
as Oracle’s in-place migration mechanism. One specifies a new schema version
wholesale — no mapping or incremental changes are possible — providing the entire
schema document, and passing it to the same _de f ine command to define an initial
version.

Where Tamino differs from Oracle is that Tamino allows the stored data to deter-
mine reverse compatibility rather than the schema document versions themselves.
One can pass a parameter to the _define command to attempt to do some static
validation first — determining just from the documents themselves whether it is pos-
sible for reverse compatibility to be guaranteed — but eventually all documents are

176 M. Hartung et al.

validated against the new schema at evolution time and, if any fail validation, the
change is rejected.

4.2 Mapping Tools

Altova (Altova 2010) does specialize in XML-specific tools for document and data
management. Altova provides a tool called DiffDog that can perform XML schema
matching and diffing. The tool takes as input two XML schema instances and per-
forms element-to-element matching. The tool’s result can be manually modified to
accommodate renames that the automatic algorithm does not immediately catch.
From a diff result, the tool generates an XSLT script that translates valid docu-
ments of one schema into valid documents of the other schema. The tool can thus
handle renaming and reordering of elements in a fairly straightforward manner. It
is unclear from documentation whether the tool can handle addition of required
elements or changes in multiplicity; such changes would not be straightforward in
the user interface of the tool. There is also no mechanism to incrementally alter
schemas — schemas are diffed wholesale. A related tool Altova MapForce is used to
generate XSLT mappings between different XML schemas that are not in an evo-
lution relationship but may differ to a larger extent. The initial schema matching is
therefore to be provided by a human user.

Research on schema matching and mapping has also resulted in several tools to
semi-automatically determine executable mappings such as Clio, e.g., for instance
migration after schema evolution (Jiang et al. 2007; Bonifati et al. 2011). The tools
do not provide for incremental evolutions per se, but map between the old and the
evolved schema. None of the existing mapping-based tools provide full support for
all of the features of XML Schema; for instance, Clio supports a significant subset
of XML Schema but not element order, choice particles, or element multiplicity
restrictions other than zero, one, or unbounded.

4.3 Research Approaches

As of the year 2000, the DTD was the predominant method for schematizing XML
documents. As the decade progressed, XML Schema became the dominant schema-
tizing technology for XML. That same trend has been mirrored in research; schema
evolution techniques introduced earlier in the decade focused more on changes to a
DTD, while more recent publications cover the far more expressive XML Schema
recommendation.

XEM (Kramer 2001; Su et al. 2001) — XML Evolution Management — is a frame-
work introduced by Worcester Polytechnic Institute in 2001 describing evolution
management in DTDs. The approach predates schema evolution in any of the com-
mercial systems introduced in the previous section. The work provides a sound and

6 Recent Advances in Schema and Ontology Evolution 177

complete set of change operations. The set is sound in that each evolution prim-
itive is guaranteed to maintain all validity and integrity properties; post-evolution,
all documents will still be well-formed XML and will still validate against the DTD.
The set is complete in that one can start with any DTD and arrive at any other valid
DTD using only changes from the set. The set of schema changes is as follows:

— Create a DTD element type (change class 3).

— Delete a DTD element type (change class 4).

— Insert DTD element or attribute into an existing element type (change class 1).

— Remove an element or attribute from an existing element type (change class 2).

— Change the quantifier on an element in a type (change class 10, limited to the
kinds that DTD is capable of).

— Nest a set of adjacent elements in a type beneath a new element (change class 7).

— Flatten a nested element (change class 8).

Each individual change to a DTD induces a change on all valid documents to main-
tain document validity. For instance, if one adds a new required element or changes
the quantifier on an element so that it becomes required, XEM will automatically
add a default element to all instances that lack the element. Note that this evolu-
tion scheme takes a relational approach to evolution in the sense that all instances
must evolve to match the new schema rather than allowing documents to belong to
multiple versions simultaneously.

DTD-Diff (Leonardi et al. 2007) is an algorithm and tool for detecting changes
between versions of a DTD. The algorithm takes as input two DTD instances and
returns a list of changes from the following categories:

— Adding or deleting element, attribute, or entity declarations (change classes 3
and 4).

— Change the content of an element type by adding, removing, or reordering nodes
(change classes 1, 2, 11, and 13).

— Change element cardinality (change class 10, limited to DTD support).

— Update attribute or entity facets such as changing a default value of an attribute or
updating the replacement text of an entity declaration (change classes 5 and 12).

The set of supported changes explicitly does not include construct renaming, due to
the fully automated nature of the difference engine — one could imagine adding sup-
port for allowing the result of a matching graph as additional input to handle such
renaming, though. The authors claim that applying existing XML document change
detection algorithms to instances of XML Schema (which are themselves XML
documents) does not necessarily yield semantically correct or optimal changes.
Diagram-based evolution (Dominguez et al. 2005) is a way to bypass the absence
of a standard evolution language by allowing the developer to express evolution
intent using a tool. One such effort uses UML diagrams as a front end for an XML
schema; in turn, changes to a diagram translate to changes on the associated schema.
In that framework, a UML diagram is used as a conceptual model for an XML
schema and its corresponding documents. The UML diagrams supported by the

178 M. Hartung et al.

framework do not have the same expressive power as the full XML schema lan-
guage, and so the work focuses on the subset of XML Schema to which the UML
language maps cleanly. Changes to the UML diagrams within a tool then induce
changes to the underlying schema and instances in the form of deployable XSLT
documents.

The set of changes that the UML framework supports is thus heavily influ-
enced by the tooling support. For instance, the change that is described in depth
in Dominguez et al. (2005) is a refactoring operation that translates an attribute in a
UML class into its own class:

Employee:
- Name
Employee: - Address
- Name Attribute *
- Address to Class
- Department 1.1
Department:
- Department

In general, each class corresponds to a type in an XML schema with an element
and a key. Attributes correspond to nested elements, while associations map to key
references. The refactoring operation above therefore results in removing the nested
element from the Employee type, creating a new type and element with a key for
Department, and a key reference between the two types. An XSLT stylesheet is also
generated to migrate data to ensure Department data is not lost.

A similar and more recent approach is CoDEX (Klettke 2007), which uses a
conceptual model that is closely aligned with XML Schema rather than using UML.
Again, incremental changes made to the conceptual model result in changes to the
associated schema and valid documents. The work on CoDEX also describes an
algebra that does preprocessing on incremental changes. As the user edits the model,
a log of actions is recorded, which can subsequently be optimized using reduction
rules. For instance, adding a new element then renaming it is equivalent to simply
adding the element with the new name to begin with.

X-Evolution (Guerrini and Mesiti 2009; Mesiti et al. 2006) is another framework
that defines incremental schema evolution in terms of a tool, in this case a graph rep-
resentation of the schema. Like CoDEX and the UML tools, X-Evolution supports a
set of evolution primitives; the list is too long to mention in-line, but covers change
classes except 7, 8, and 13 from our running list (and the algorithm in X-Evolution
could be altered in a fairly straightforward way to accommodate them). X-Evolution
is also able to handle a kind of change not listed in the change taxonomy at all —
specifically, changing a content particle’s type, say, from ALL to SEQUENCE or
CHOICE. A subset of the list of incremental evolutions is classified as having no
effect on validation, such as the removal of a global type that has no current element
instances. With any such evolution, no document revalidation is necessary — this list
of validation-less changes tracks with the research done in Moto et al. (2007).

6 Recent Advances in Schema and Ontology Evolution 179

A key contribution of the work on X-Evolution is incremental repudiation and
revalidation. Given an incremental change to a schema, X-Evolution runs one of two
algorithms at the user’s request — one that tests valid documents to see if they are still
valid post-validation and one that alters valid documents to make them valid with
respect to the new schema. Both algorithms are incremental, as the documents are
not re-validated en masse. Instead, only the parts of the document that correspond
to the altered part of the document are re-validated (or altered).

Temporal XML Schema (Currim et al. 2009) — also referred to as tXSchema —
is a way to formalize the temporal nature of schema and document versioning. The
framework is assembled by the same research group that helped develop the tem-
poral extensions to SQL. In all other frameworks discussed to date, the relationship
between versions of schemas and documents are informal if they exist at all; two
versions of the same schema version are considered to be two separate schemas,
related to each other only by whatever point-in-time script was used to perform
the migration. tXSchema makes evolution over time a first-class concept, modeling
different versions of the same conventional XML schema in the same document.

tXSchema enforces the standard constraints of an XML schema. Assuming that
a temporal document is valid with respect to a temporal schema, restricting the doc-
ument to a single point in time produces a document that is valid with respect to
its XML schema at that same point in time. Any conventional schema constraint
must be valid at all points in time as well, such as keys, key references, and data
type restrictions. In addition, temporal documents and schemas are still valid XML
documents with additional elements and attributes added to reflect temporal char-
acteristics; tXSchema provides extensions to existing XML tools that perform the
additional temporal validation of documents.

4.4 Summary

Table 6.2 shows a comparison of most of the previously mentioned approaches to
XML evolution relative to the characteristics laid out in Sect. 2. In general, commer-
cial options support evolution where instances may need to be revalidated but need
not be updated. The exception is Oracle, where one can specify XSLT scripts to
migrate instances. There is no commonly supported evolution language to spec-
ify incremental updates, a shortcoming that research approaches circumvent by
inventing proprietary solutions. XEM and model-based solutions attempt to cou-
ple incremental schema changes with incremental data changes, which often results
in empty or default element generation to fill gaps where a document no longer
validates. None of the solutions explicitly support versioning unless they support
multiple versions appearing side by side physically in persistent storage, as IBM and
temporal XSchema do. Altova presents a dedicated diffing tool with noncomplete
capabilities, and model-driven approaches offer a GUI-based method to specify
incremental changes. Mapping tools such as Clio also support diff computation and
instance migration for XML-like schemas. Currently, there is not yet any support
for adapting dependent mappings/schemas for XML schema evolution.

180 M. Hartung et al.

5 Ontology Evolution

Gruber (1993) characterizes an ontology as the explicit specification of a concep-
tualization of domain. While there are different kinds of ontologies, they typically
provide a shared/controlled vocabulary that is used to model a domain of interest
using concepts with properties and relationships between concepts. In the recent
past, such ontologies have been increasingly used in different domains to seman-
tically describe objects and to support data integration applications. For example,
there are a growing number of life science ontologies, e.g., the ontologies managed
in the open biomedical ontologies (OBO) Foundry (Smith et al. 2007). The exist-
ing ontologies are not static but are frequently evolved to incorporate the newest
knowledge of a domain or to adapt to changing application requirements.

There are several differences between ontologies and relational schemas that
influence their evolution:

e Ontologies are conceptually more abstract models than database schemas and
come in different variations ranging from controlled vocabularies and thesauri
over is-a hierarchies/taxonomies and directed a-cyclic graphs (DAG) to frame-
based and formal representations (Lassila and McGuinness 2001). For instance,
ontology languages such as RDF or OWL allow the specification of concept
hierarchies with multiple inheritance, cardinality constraints, inverse or transitive
properties, and disjoint classes. The kind and expressiveness of ontologies deter-
mine the kind of changes that should be supported for ontology evolution. For
instance, Noy and Klein (2004) propose a set of 22 simple and complex ontol-
ogy change operations such as concept creation, reclassification of a concept, or
merge/split of concepts.

e The role of instances differs between ontologies and relational schemas. For
example, many ontologies include instances but do not clearly separate them
from other parts of the ontologies such as concepts and relationships. In other
cases, instances are described by ontologies but are maintained outside the ontol-
ogy within separate data sources. These differences impact update propagation
of ontology changes since the separately maintained instances may not be under
the control of the ontology editors.

e In contrast to database schemas, the development and evolution of ontologies
is often a collaborative and decentralized process. Furthermore, new ontologies
often reuse existing ones, i.e., an ontology engineer uses a common ontology as
the basis for domain-specific extensions. These aspects lead to new synchroniza-
tion requirements for ontology changes. Furthermore, ontologies serving a whole
domain likely introduce many usage dependencies, although ontology providers
usually do not know which applications/users utilize their ontology. Supporting
different ontology versions is a main approach to provide stability for ontology
applications. For example, there are daily new versions for the popular Gene
Ontology.

Despite these differences, it is easy to see that the schema evolution requirements
introduced in Sect. 2 also apply to ontology evolution, in particular support for a rich

6 Recent Advances in Schema and Ontology Evolution 181

set of changes, expressive mappings, update propagation to instances and dependent
schemas/ontologies, versioning, and user-friendly tools.

For the rest of this section, we will describe representative approaches on
ontology evolution and how they meet the introduced requirements. Table 6.3
comparatively shows selected approaches that are discussed at the end of the section.

5.1 Research Approaches

The Protégé system supports different kinds of collaborative ontology evolution
meeting varying functional requirements (Noy et al. 2006). First, ontologies can be
modified synchronously or asynchronously. Synchronous editing is performed on
a centrally stored ontology that can be modified concurrently by several develop-
ers. For asynchronous editing collaborators check out the latest ontology version,
change it offline, and merge their changes into a common version later on. Sec-
ond, ontologies may internally be versioned or not. Ontologies may so periodically
be archived with the possibility to roll back to a former version. Alternatively, all
changes are continuously directed to a single (the most recent) ontology version.
Third, ontology changes may be subject to the approval of designated curators to
resolve potential problems and maintain a high quality. Usually, such a curation is
performed before releasing a new version of an ontology. Finally, ontology changes
may be monitored (logged) or not.

The ontology evolution framework supports a rich set of simple and complex
changes that can be annotated (Noy et al. 2006). These changes are classified within
a change and annotation ontology (CHAO). Annotation includes the type of ontol-
ogy change, the class/property/instance that was changed, the user and date/time
when the change was performed. The two main approaches to specify changes are
supported: specification (and logging) of incremental change operations and the pro-
vision of a new ontology version. In the latter case, the Diff evolution mapping is
semi-automatically determined.

Protégé uses the PROMPTDIFF algorithm (Noy and Musen 2002) to deter-
mine an evolution mapping between two input ontology versions. The two versions
V1 and V2 are compared using an iterative algorithm combining different heuris-
tic matchers (e.g., single unmatched sibling, unmatched inverse slots, or same
type/name) until no more changes are found. The found changes are presented in
a so-called difference table containing a set of tuples that interrelate elements of
V1 with elements of V2. Each tuple specifies a change operation (add, delete, split,
merge, and map) and its parameters.

The different kinds of ontology evolution are implemented in the Protégé ontol-
ogy editor within two plugins: Change-management plugin and the PROMPT
plugin. The Change-management plugin can be used to access a list of changes,
allows users to add annotations, and enables to study the history of concepts, i.e.,
users can examine what modifications happened on a particular concept in the his-
tory. The PROMPT plugin implements the PROMPTDIFF algorithm and provides

M. Hartung et al.

uonendwod JFIp paseq-o[ni
pue SutyoIeN (7)

SUOISIOA OM] Sule[aLIdIul
saguey jo 19S (1)

SUOISIOA

Mau Jo uoneISau] (7)
(" “rds “oS1oun)
x9[dwoo pue ordwig (1)

yoduwt o[qeidepe eIA sjeuLIoy
oy SASD 4@y ‘090
sSurddew pue sarSojojuo
QOUIOS 9JI] 10 SISA[eur
UuonN[OA? dANEIUEN()

uonendwod
J1p paseq-o[ny ()

SUOISIOA OM) Sule[aLIdIUT
sagueyd Jo 39S (1)

SUOISIOA
Mau Jo uoneIdau] (7)

ordurs ()

4ay

sar3ojojuo

paseq-4y 1o} uostredwod
pUE JUSWASeUBT UOTSIOA

=0

sagueyd TeyuawaIOU] (1)

[eyuawaIou] (7)
(" “Adoo “a31our)
x9[dwoo pue opdwis (1)

TMO/Add

uonn[oad £3o0[0juo
JUQISISUOD I0J SSAO0IJ

unyjo3e

JIIALdNON ()
SUOTSIOA

0M] 10J J[qe) OUIJIP

JIo sagueyd [ejuawaIouy (1)

uorsIaA ASojojuo

Mau Jo uoneoyroads

10 [eyuawRIoU] (7)

(" “onowr-s3uryqrs)
x9[dwoo pue ordwig (1)

surdnd yroduwr e1a

SjeuLIo) YNy “TMO/IAY
uonn[oAd

pue juswaSeuew A30[0JU0
JIOJ YIOMAWETJ [qIXaL,]

uonendwod J41d ()

uorjejuasardoy (1)
Surddew uonnjoag
(ewoyos
MU ‘[BIUSWIOUT)
uoneoyweds (7)
(xordwoo
‘arduuts) ssouyory (1)
sad£) a3uey)
SjeuLIoy
A3orojuo payroddng

j10Mm Jo snoojsuondroseq

(6007)
T2 30 uasIry “(010Z “600T
3002) ‘Te 10 SunyeH XHUQ

(TO0T) "Te 19 UIS[S] MIAIAOWQO

(T002)
[e 32 d1a0uef0I§ NOV

(2002)
uasnjy pue LoN ‘(900T
$007) ‘Te 12 AoN 9891014

182

Sw)sAs uonnjoAd A30[0JUO PAJI[AS JO SONSLIAOBIRYD) €9 AR,

183

6 Recent Advances in Schema and Ontology Evolution

S9130[0JUO OUIIIS

911 ur sadueyd a10[dxa

0} uonjeordde paseq-qop
suo1sIaoA £30[0juo
renuanbas unsrxa syroddng

@

a8ueyo ASoj03u0

£q pojoajJe suonejouUr
Jo uoneidepy (1)

sa130[03u0
uorsIoA pue ‘aredwod ‘ssaooe
0) uonjeordde paseq-qopy

SAD Uuo
paseq SuTUOISIoA [enjuanbag

-0

=D

2Injdonserjur
NOVY ut Jo)pa paseq-INo

sa13o[0juo judpuadap
uo ssaoo1d uonnjoas
Jjo uoneorjdde 9AISINOAY (7)

A30[01U0) YIIm paSeurwr
saoue)sut Jo uoneISIA (1)

urgnid juowoFeuew

a3ueyd pue LJNOYD
)M J10JIpa £30[0ju0 939101d

Suruorsioa [enyuanbag

-0

=D

1N D/eImionnseIyuy

j10ddns Suruorsiop

sewayds Juapuado((7)

soouelsuy (1)
uoneSedoxd ayepdn

184 M. Hartung et al.

facilities to accept/reject performed changes for curators. Besides these two plugins,
the Protégé environment provides functionality for editing in a client—server mode
as well as transaction and undo support.

The KAON prototype (Karlsruhe Ontology and Semantic Web Tool Suite) pro-
viding a graphical user interface for incrementally editing ontologies within a
process of six phases (Stojanovic et al. 2002). For each change, the following
sequential phases are needed: (1) Change Capturing, (2) Change Representation,
(3) Semantics of Change, (4) Change Implementation, (5) Change Propagation, and
(6) Change Validation. The evolution process can be cyclic, i.e., after the last phase,
the process can be re-executed for further ontology changes.

In the first phase (Change Capturing), the ontology engineer decides about the
necessary ontology changes, e.g., to delete a concept. In phase 2 (Change Repre-
sentation), such change requests are translated into a formal change representation.
The approach distinguishes between elementary (simple) as well as composite
(complex) changes that can be expressed by a series of elementary ones. In total,
16 elementary changes (additions/deletions/modifications of concepts, properties,
axioms, and subclass relationships) and 12 composite changes (merging and moving
of concepts, concept duplication/extraction, etc.) are distinguished.

Phase 3 uses the formal change representation to identify potential problems
(inconsistencies) that the intended changes can introduce within the ontology. For
example, the deletion of a concept C impacts its children and instances. Different
evolution strategies can be specified to deal with such situations, e.g., one can delete
the children as well or move the children to be subconcepts of C’s parent concept.
To reduce the manual effort for such decisions, different default evolution strategies
can be specified. Furthermore, the evolution strategies to resolve inconsistencies
may be automatically determined controlled by general goals such as minimizing
the number of ontology changes or keeping the ontologies flat.

The resulting changes are presented to the user for confirmation and are then
implemented in phase 4. All performed changes are logged in a version log; an
explicit versioning does not take place. The following phase 5 (Propagation) is
responsible to propagate the ontology changes to dependent applications or other
ontologies that extend the modified ontology. This approach assumes that the con-
sumers of the ontology are known and that the ontology evolution process can be
recursively applied on the dependent ontologies. The final Validation phase gives
ontology engineers the possibility to review the performed changes with the option
of undoing changes. Moreover, she can initiate further change requests by starting
another evolution cycle.

The OntoView system (Klein et al. 2002) focuses on versioning support for
RDF-based ontologies. The system is inspired by the concurrent versioning sys-
tem (CVS), which is used in collaborative software development. One of its core
functions is to structurally compare ontology versions to determine different types
of changes (representing a Diff evolution mapping). Nonlogical changes denote
changes in the label or comment of a concept. Logical definition changes may affect
the formal semantics of a concept, e.g., modifications on subClassOf, domain/range
of properties, or property restrictions. Further change types include identifier

6 Recent Advances in Schema and Ontology Evolution 185

changes and the addition/deletion of definitions. More complex changes such
as merges or splits of concepts are not supported.

The detection algorithm is inspired by the UNIX diff operation but uses the ontol-
ogy graph structure and RDF triples <subject, predicate, object> as the basis for the
version comparison. Change detection between two graphs is based on [IF-THEN
rules that specify conditions on triples in the old/new ontology and produce resulting
changes if the conditions are fulfilled. The authors argue that they can specify and
detect almost every change type using this mechanism except identifier changes.

Ontology evolution explorer (OnEX) is a web-based system for exploring chan-
ges in numerous life science ontologies (Hartung et al. 2009). It uses existing
ontology versions and identifies the differences between succeeding versions of an
ontology. The differences are represented by evolution mappings consisting of sim-
ple changes (adds, deletes, updates of concepts/relationships, and attributes) that are
identified by comparing the unambiguous accession numbers of elements available
in life science ontologies (Hartung et al. 2008). OnEX can be used to determine
the stability and specific change history of ontologies and selected concepts of
interest. Furthermore, one can determine whether given annotations referring to an
ontology version have been invalidated, e.g., due to deletes. Such annotations can
then be semi-automatically migrated to be consistent with the newest version of the
respective ontology.

OnEX uses a tailored storage model to efficiently store all ontology versions in
its repository by utilizing that succeeding ontology version differ only to a small
degree (Kirsten et al. 2009). Currently, OnEX provides access to about 700 versions
of 16 life science ontologies.

The ontology diff algorithm proposed in Hartung et al. (2010) determines an
evolution mapping between two ontology versions. The evolution mapping consists
of a set of simple as well as complex ontology changes (e.g., merging or splitting of
concepts). The approach is based on an initial matching of the ontology version and
applies so-called Change Operation Generating Rules (COG rules) for deriving the
change operations of the evolution mapping. For instance, the rule for determining
a merge of multiple concepts looks as follows:

ImapC(a, c) A ImapC(b, c) A —=ImapC(a,d) A —=ImapC(b, e)
AN #bANcF#dANcF#e — create[merge({a},c)], create[merge({b},c)]

The rule derives that concepts a and b are merged into concept c if there are two
match correspondences mapC(a,c) and mapC(b,c) and if a and b are not con-
nected to any other concept. The approach could be validated for different kinds
of ontologies.

Change detection using a version log: Plessers and De Troyer (2005) builds
upon the KAON ontology evolution process (Stojanovic et al. 2002). The pro-
posed evolution process consists of five phases: (1) Change Request, (2) Change
Implementation, (3) Change Detection, (4) Change Recovery, and (5) Change Prop-
agation. The main difference is in the Change Detection phase where additional
implicit changes are detected based on the history (log) of previous changes as well

186 M. Hartung et al.

as the so-called version log containing the different versions of ontology concepts
during their lifetime.

Changes are either basic (simple) or composite and defined declaratively using
the change definition language (CDL), which is based on RDF/OWL. Both kinds
of changes are determined by evaluating the old and new ontology versions w.r.t.
rule-based change definitions. For example, the change definition

V pe P, A€ C :addDomain(p, A) < —hasDomain(p, A, vi_1)
A hasDomain(p, A, v;)

specifies that the basic change addDomain(p, A) to add A as the domain of property
p has occurred when this domain has not been in the old version v;_; but in the
changed version v;. Composite changes are more difficult to determine since they
involve several ontology elements that may be subject to changes themselves that
may have to be taken into account. The correct identification of such changes is
important to correctly adapt instances of the ontology. For instance, we may have
two basic changes to move property p from class CI to class C2 followed by a
subclass addition between C/ and C2. Treating these changes independently would
first delete all properties p in instances of CI. However, the following addition of a
subclass relationship between C1 and C2 would require the addition of property p
to the C/ instances. By finding out that the two basic changes realize the composite
change of moving up p in the class hierarchy, the unnecessary deletions of p values
can be avoided.

Detection of high-level changes in RDF/S ontologies: Papavassiliou et al. (2009)
focuses on the detection of high-level changes (diff) between two RDF/S-based
ontology versions. Their framework uses a formal language to define changes and
distinguishes between basic, composite, and heuristic changes. Heuristic changes
refer to changes that are detected by matchers employing heuristic techniques to
determine that classes have been renamed, merged, or split. The proposed algorithm
focuses on the detection of basic and composite changes and utilizes the so-called
low-level delta containing the RDF triples that have been added and deleted between
two versions V1 and V2 of a RDF/S knowledge base. Changes are described by
triples consisting of (1) required added RDF triples, (2) required deleted RDF
triples, and (3) a set of conditions that need to be fulfilled. For instance, the change
Delete_Superclass(x,y), which removes the is-a relationship between x and y, can
be described as follows: (1) no added triple exists, (2) the deletion of a triple (x, sub-
ClassOf, y) exists, and (3) x is a class in V1. The detection algorithm first uses the
low-level delta and the change descriptions to find potential changes between V1
and V2. The second step then iteratively selects changes that meet the conditions
and reduces the set of changes in the low-level delta. The algorithm first identifies
composite changes and then basic ones.

6 Recent Advances in Schema and Ontology Evolution 187

5.2 Summary

Table 6.3 shows a comparison of most systems that are discussed. While the first
two systems Protégé and KAON support complete processes for ontology evolu-
tion, OntoView and OnEX focus on the management of existing ontology versions
developed elsewhere. Supported ontology formats are primarily RDF and OWL;
Protégé and OnEX can integrate further formats (e.g., OBO). With the exception
of OntoView, all systems support both simple and complex changes. The represen-
tation and determination of an evolution mapping between two ontology versions
differs among the systems. Protégé is most flexible for specifying ontology changes
by supporting both incremental changes and the provision of a new ontology ver-
sion; the other systems follow only one of the two possibilities. A Diff computation
is supported by all systems except KAON. The update propagation to instances
and related data is partially supported in KAON and OnEX. KAON uses evolution
strategies to adapt instances managed together with the ontology. OnEX supports the
identification and migration of annotations affected by ontology changes. With the
exception of KAON, all systems support sequential versioning. Graphical user inter-
faces are provided by all systems: Protégé and KAON are editor-like applications,
while OntoView and OnEX are web-based.

6 Conclusions

Effective schema evolution is a long-standing problem that is difficult to address
since schema changes impact existing instances, index and storage structures as well
as applications, and other schema consumers. We introduced the main requirements
for effective schema evolution and provided an overview about the current state of
the art on the evolution of relational schemas, XML schemas, and ontologies. More
than 20 approaches have been analyzed against the introduced requirements and we
used several tables to compare most of these approaches side by side. The introduced
methodology should be similarly applicable to evaluate further schema or ontology
evolution approaches. We summarize some of our observations as follows.

Commercial DBMS currently restrict their support for evolving relational sch-
emas to simple incremental changes and instance migration, while there is not yet
support to semi-automatically propagate changes to dependent schemas, mappings,
and applications. Filling this gap requires support for the determination and pro-
cessing of expressive schema mappings that have been studied in recent research
approaches such as Pantha Rei/Prism and in model management research (Bernstein
and Melnik 2007).

The evolution of XML schemas is easier than for relational schemas since the
schemas can be extended by optional components that do not invalidate exist-
ing instances. Due to the absence of a standard schema modification language,
schema changes are usually specified by providing a new version of the schema.
In research approaches, schema matching and mapping techniques are being used

188 M. Hartung et al.

to semi-automatically derive the evolution mapping between two schema versions
and to derive a corresponding instance-level mapping for instance migration. Sup-
port for propagating changes of XML schemas to dependent schemas or applications
have not yet been studied sufficiently.

Research on ontology evolution considers both the adoption of incremental
changes and the provision of new schema versions to specify several changes at
once. Several approaches have been proposed to semi-automatically determine Diff
evolution mappings by comparing two ontology versions. These mappings are usu-
ally represented by sets of simple or complex changes. While instance migration has
been considered to some extent, the propagation of ontology changes to dependent
ontologies/schemas, or applications have not yet found sufficient attention.

Despite recent progress, we therefore see a need for substantially more research
on schema evolution, also in areas not discussed in this chapter. For example, dis-
tributed architectures with many schemas and mappings need powerful mapping
and evolution support, e.g., to propagate changes of a data source schema to merged
(global) schemas. New challenges are also posed by dynamic settings such as stream
systems where the data to be analyzed may change its schema, e.g., by providing
new or changed attributes. A first approach in this area is Ferndndez-Moctezuma
et al. (2009). They propose certain extensions for schema consumers such as query
operators to deal with changed schemas.

References

Altova DiffDog (2010) http://www.altova.com/diffdog

Ambler SW, Sadalage PJ (2006) Refactoring databases: Evolutionary database design. Addison
Wesley, MA

Bernstein PA (2003) Applying model management to classical meta data problems. In: Proceedings
of Conference on Innovative Database Research (CIDR) 2003. ACM, NY, pp 209-220

Bernstein PA, Melnik S (2007) Model management 2.0: manipulating richer mappings. In:
Proceedings of ACM SIGMOD conference. ACM, NY, pp 1-12

Beyer K, Oezcan F, Saiprasad S, Van der Linden B (2005) DB2/XML: Designing for evolution. In:
Proceedings of ACM SIGMOD conference. ACM, NY, pp 948-952

Bonifati A, Mecca G, Papotti P, Velegrakis Y (2011) Discovery and correctness of schema mapping
transformations. In: Bellahsene Z, Bonifati A, Rahm E (eds) Schema matching and mapping,
Data-Centric Systems and Applications Series. Springer, Heidelberg

Cate BT, Kolaitis PG (2010) Structural characterizations of schema-mapping languages. Comm
ACM 53(1):101-110

Curino CA, Moon HIJ, Zaniolo C (2008) Graceful database schema evolution: The PRISM
workbench. In: Proceedings of VLDB conference. VLDB Endowment. pp 761-772

Currim F, Currim S, Dyreson CE, Joshi S, Snodgrass RT, Thomas SW, Roeder E (2009) tXSchema:
Support for data-and schema-versioned XML documents. TimeCenter Technical Report TR-91,
Aalborg University, Denmark

Dominguez E, Lloret J, Rubio AL, Zapata, MA (2005) Evolving XML schemas and documents
using UML class diagrams. In: Proceedings of DEXA conference. Springer, Heidelberg

Dominguez E, Lloret J, Rubio AL, Zapata MA (2008) MeDEA: A database evolution architecture
with traceability. Data Knowl Eng 65(3):419-441

http://www.altova.com/diffdog

6 Recent Advances in Schema and Ontology Evolution 189

Fagin R, Kolaitis PG, Popa L, Tan W (2011) Schema mapping evolution through composition
and inversion. In: Bellahsene Z, Bonifati A, Rahm E (eds) Schema matching and mapping,
Data-Centric Systems and Applications Series. Springer, Heidelberg

Fernandez-Moctezuma R, Terwilliger JF, Delcambre LML, Maier D (2009) Toward formal seman-
tics for data and schema evolution in data stream management systems. In: Proceedings of ER
workshops. Springer, Heidelberg, pp 85-94

Gruber TR (1993) A translation approach to portable ontology specifications. In: Knowledge
acquisition, vol 5(2). Academic, London, pp 199-220

Guerrini G, Mesiti M (2009) XML schema evolution and versioning: current approaches and
future trends. In: Open and novel Issues in XML database applications. Future directions and
advanced technologies. IDEA Group, pp 66—87

Hartung M, Kirsten T, Rahm E (2008) Analyzing the evolution of life science ontologies and
mappings. In: Proceedings of 5Sth international workshop data integration in the life sciences
(DILS). LNCS, vol 5109. Springer, Heidelberg

Hartung M, Kirsten T, Gross A, Rahm E (2009) OnEX - Exploring changes in life science
ontologies. BMC Bioinformatics 10:250

Hartung M, Gross A, Rahm E (2010) Rule-based determination of Diff evolution mappings
between ontology versions. Technical report, University of Leipzig

Hick JM, Hainaut JL. (2006) Database application evolution: a transformational approach. Data
Knowl Eng 59(3):534-558

IBM (2009a) Database version control with IBM Optim Database Administrator V2.2. http://www.
ibm.com/developerworks/data/library/techarticle/dm-0704henry/index.html

IBM (2009b) DB2 9.7: Online schema change. http://www.ibm.com/developerworks/data/library/
techarticle/dm-0907db2outages/index.html

Jiang H, Ho H, Popa L, Han WS (2007) Mapping-driven XML transformation. In: Proceedings of
WWW conference. ACM, NY, pp 1063-1072

Kirsten T, Hartung M, Gross A, Rahm E (2009) Efficient management of biomedical ontology ver-
sions. In: Proceedings on the move to meaningful internet systems (OTM) workshops. Springer,
Heidelberg, pp 574-583

Klein M, Fensel D, Kiryakov A, Ognyanov D (2002) Ontology versioning and change detection
on the web. In: Proceedings of 13th international conference on knowledge engineering and
knowledge management. Ontologies and the semantic web. Springer, Heidelberg

Klettke M (2007) Conceptual XML schema evolution — the CoDEX approach for design and
redesign. In: Proceedings of BTW workshops, pp 53-63

Kramer D (2001) XEM: XML evolution management. Master’s Thesis, Worcester Polytechnic
Institute

Lassila O, McGuinness, D (2001) The role of frame-based representation on the semantic web.
Knowledge Systems Laboratory Report KSL-01-02, Stanford University

Leonardi E, Hoaia TT, Bhowmicka SS, Madria S (2007) DTD-Diff: A change detection algorithm
for DTDs. Data Knowl Eng 61(2):384-402

Maule A, Emmerich W, Rosenblum DS (2008) Impact analysis of database schema changes.
In: Proceedings of international conference on software engineering (ICSE). ACM, NY,
pp 451-460

Mesiti M, Celle R, Sorrenti, MA, Guerrini G (2006) X-Evolution: A system for XML schema
evolution and document adaptation. In: Proceedings of EDBT, 2006. Springer, Heidelberg

Microsoft SQL Server 2008 R2 Data-Tier Applications (2010) http://msdn.microsoft.com/en-us/
library/ee240739(SQL.105).aspx

Miller R, Ioannidis YE, Ramakrishnan R (1994) Schema equivalence in heterogeneous systems:
Bridging theory and practice. Inform Syst 19(1):3-31

Moto MM, Malaika S, Lim L (2007) Preserving XML queries during schema evolution. In:
Proceedings of WWW conference. ACM, NY, pp 1341-1342

Noy NF, Klein M (2004) Ontology evolution: Not the same as schema evolution. Knowl Inform
Syst 6(4):428-440

http://www.ibm.com/developerworks/data/library/techarticle/dm-0704henry/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0704henry/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0907db2outages/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0907db2outages/index.html
http://msdn.microsoft.com/en-us/library/ee240739(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ee240739(SQL.105).aspx

190 M. Hartung et al.

Noy NF, Musen MA (2002) PromptDiff: A fixed-point algorithm for comparing ontology versions.
In: Proceedings of the national conference on artificial intelligence. American Association for
Artificial Intelligence, CA, pp 744-750

Noy NFE, Kunnatur S, Klein M, Musen, MA (2004) Tracking changes during ontology evolu-
tion. In: Proceedings of international semantic web conference (ISWC). Springer, Heidelberg,
pp 259-273

Noy NF, Chugh A, Liu W, Musen, MA (2006) A framework for ontology evolution in collaborative
environments. In: Proceedings of international semantic web conference (ISWC). Springer,
Heidelberg, pp 544-558

Oracle Database 10g Release 2 (2005) Online data reorganization & redefinition, white paper.
May 2005

Oracle Edition-Based Redefinition (2009) Whitepaper. Available at http://www.oracle.com/
technology/deploy/availability/pdf/edition_based_redefinition.pdf

Oracle XML Schema Evolution (2008) Chapter 9 of Oracle XML DB, Developer’s Guide, 11g
Release, May 2008

Pal S, Tomic D, Berg B, Xavier J (2006) Managing collections of XML schemas in Microsoft SQL
Server 2005. In: Proceedings of EDBT conference. Springer, Heidelberg, pp 1102-1105

Papastefanatos G, Vassiliadis P, Simitsis A, Aggistalis K, Pechlivani F, Vassiliou Y (2008) Lan-
guage extensions for the automation of database schema evolution. In: Proceedings of the 10th
international conference on enterprise information systems (ICEIS). INSTICC, pp 74-81

Papastefanatos G, Vassiliadis P, Simitsis A, Vassiliou Y (2010) HECATAEUS: Regulating schema
evolution. In: Proceedings of ICDE, pp 1181-1184

Papavassiliou V, Flouris G, Fundulaki I, Kotzinos D, Christophides V (2009) On detecting high-
level changes in RDF/S KBs. In: Proceedings of 8th international semantic web conference
(ISWC). Springer, Heidelberg, pp 473-488

Plessers P, De Troyer O (2005) Ontology change detection using a version log. In: Proceedings of
4th international semantic web conference (ISWC). Springer, Heidelberg, pp 578-592

Rahm E (2011) Towards large-scale schema and ontology matching. In: Bellahsene Z, Bonifati A,
Rahm E (eds) Schema matching and mapping, Data-Centric Systems and Applications Series.
Springer, Heidelberg

Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J
10(4):334-350

Rahm E, Bernstein PA (2006) An online bibliography on schema evolution. SIGMOD Rec
35(4):30-31

Smith B, Ashburner M, Rosse C et al (2007) The OBO Foundry: coordinated evolution of
ontologies to support biomedical data integration. Nat Biotechnol 25(11):1251-1255

Software AG (2006) Tamino XML schema user guide 4.4.1. http://documentation.softwareag.com/
crossvision/ins441_j/print/tsl.pdf

Stojanovic L, Maedche A, Motik B, Stojanovic N (2002) User-driven ontology evolution man-
agement. In: Proceedings of 13th international conference on knowledge engineering and
knowledge management. Springer, London, pp 285-300

Su H, Rundensteiner E, Kramer D, Chen L, Claypool K (2001) XEM: Managing the evolu-
tion of XML documents. In: Proceedings international workshop on research issues in data
engineering (RIDE). IEEE Computer Society, Washington, DC

Tiirker C (2000) Schema evolution in SQL-99 and commercial (object-) relational DBMS.
Database schema evolution and meta-modeling. LNCS, vol 2065. Springer, Heidelberg,
pp 1-32

W3C (2006) XML schema versioning use cases. Framework for discussion of versioning, 2006.
http://www.w3.org/XML/2005/xsd- versioning-use-cases

W3C (2010) XML component designators, 2010 http://www.w3.org/TR/xmlschema-ref/

Yu C, Popa L (2005) Semantic adaptation of schema mappings when schemas evolve. In:
Proceedings VLDB conference. VLDB Endowment, pp 10061017

http://www.oracle.com/technology/deploy/availability/pdf/edition_based_redefinition.pdf
http://www.oracle.com/technology/deploy/availability/pdf/edition_based_redefinition.pdf
http://documentation.softwareag.com/crossvision/ins441_j/print/tsl.pdf
http://documentation.softwareag.com/crossvision/ins441_j/print/tsl.pdf
http://www.w3.org/XML/2005/xsd-versioning-use-cases
http://www.w3.org/TR/xmlschema-ref/

	Chapter 6 Recent Advances in Schema and Ontology Evolution

	1 Introduction
	2 Schema Evolution Requirements
	3 Relational Schema Evolution Approaches
	3.1 Commercial Relational Systems
	3.2 Research Approaches
	3.3 Summary

	4 XML Schema Evolution
	4.1 Commercial DBMS Systems
	4.2 Mapping Tools
	4.3 Research Approaches
	4.4 Summary

	5 Ontology Evolution
	5.1 Research Approaches
	5.2 Summary

	6 Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

