Zohra Bellahsene

Angela Bonifati
Erhard Rahm (Eds.)

e

I Schema Matching
and Mapping

@ Springer DCSA

Data-Centric Systems and Applications

For further volumes:

http://www.springer.com/series/5258

Series Editors

M.J. Carey
S. Ceri

Editorial Board

P. Bernstein
U. Dayal

C. Faloutsos
J.C. Freytag
G. Gardarin
W. Jonker

V. Krishnamurthy
M.-A. Neimat
P. Valduriez
G. Weikum
K.-Y. Whang
J. Widom

Zohra Bellahsene « Angela Bonifati
Erhard Rahm
Editors

Schema Matching
and Mapping

@ Springer

Editors

Zohra Bellahsene Angela Bonifati
LIRMM CNRS/Univ. Montpellier 2 Consiglio Nazionale delle
Rue Ada 161 Ricerche (CNR)
34392 Montpellier Via P. Bucci 41/C
France 87036 Rende
bella@lirmm.fr Italy

bonifati @icar.cnr.it
Erhard Rahm
Universitit Leipzig
Inst. Informatik
Augustusplatz 10-11
04109 Leipzig
Germany
rahm @informatik.uni-leipzig.de
ISBN 978-3-642-16517-7 e-ISBN 978-3-642-16518-4

DOI 10.1007/978-3-642-16518-4

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011922131
ACM Computing Classification (1998): H.2, 1.2, F.4

(© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations

are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective

laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

This book provides an overview about the state-of-the-art solutions and the most
recent advances in schema matching and mapping, both recognized as key areas of
metadata management. Tasks involving metadata are indeed pervasive in databases
and information systems and include schema evolution, schema and ontology inte-
gration and matching, XML message mapping, as well as data migration and data
exchange. While research on these complex problems has been performed since sev-
eral decades, we have witnessed significant progress especially in the last decade. In
particular, research addressed the metadata problems in a more abstract and generic
way rather than focusing on specific applications and data models. A cornerstone
of this new line of research is the notion of schema mappings, i.e., expressive
mappings interrelating schemas (or other metadata models such as ontologies).
Furthermore, powerful operators to manipulate schemas and mappings (e.g., match-
ing and merging of schemas or composition of mappings) have been investigated
for solving various kinds of metadata-related tasks. Raising the level of abstrac-
tion for metadata management was a vision first articulated by Phil Bernstein et
al. in A vision for management of complex models, ACM Sigmod Record 2000.
Since then, many steps have been performed towards the various goals of match-
ing and mapping different kinds of design artifacts (i.e., a relational schema, a
web site, or a data mart), thus motivating a flurry of recent research, which we
survey in this book. The book consists of ten comprehensive chapters grouped
within three parts: large-scale and knowledge-driven schema matching, quality-
driven schema mapping and evolution and evaluation and tuning of matching
tasks.

The first part deals with schema matching, i.e., the semi-automatic finding
of semantic correspondences between elements of two schemas or two ontolo-
gies. Schema matching implements a Match operator that is often the first step
to determine schema mappings, e.g., for schema evolution, data integration and
data exchange. The typically high semantic heterogeneity of the schemas makes
schema matching an extremely difficult problem. The separation of Match from
other metadata management tasks such as Merge helped to address the match prob-
lem better than in the past. Numerous powerful prototypes for schema and ontology
matching have been developed in the last decade and automatic match functionality
found already its way into commercial products. The four chapters in the first

vi Preface

part cover the achieved state of the art and point out areas where more work is
needed, in particular support for large-scale match problems and improved user
interaction. Further chapters deal with proposed extensions to enhance the seman-
tic power of match correspondences and to deal with the uncertainty of match
decisions.

The second part of the book also consists of four chapters and focuses on
schema mappings and their use for schema evolution and schema merging. The
first chapter of the second part surveys the existing schema mapping algorithms
and the most recent developments towards realizing efficient, optimized and correct
schema mapping transformations. Two further chapters deal with the use of schema
mappings for schema evolution. One of these introduces the requirements for effec-
tive schema evolution support and provides an overview of proposed evolution
approaches for diverse kinds of schemas and ontologies. The other evolution-related
chapter focuses on the automatic adaptation of mappings after schema changes
by presenting two first-class operators on schema mappings, namely composition
and inversion. The final chapter surveys the state of the art on mapping-based
merging of schemas by discussing the key works in this area and identifying their
commonalities and differences.

The third part of the book consists of two chapters devoted to the evaluation
and tuning of schema matching and mapping systems. The first of these chapters
provides a comprehensive overview of existing evaluation efforts for data trans-
formation tasks, by providing a brand-new perspective under which the various
approaches are being/have been evaluated. Such perspective allows the authors to
identify the pitfalls of current evaluations and brings them to discuss open problems
for future research in this area. The last chapter deals with the complex problem of
tuning schema matching tools to optimize their quality and efficiency with a limited
amount of configuration effort. An overview of proposed tuning efforts including
the use of machine learning techniques is provided.

To the best of our expectations, this book provides:

1. A comprehensive survey of current and past research on schema matching and
mapping.

2. An up-to-date source of reference about schema and ontology evolution and
schema merging.

3. Scholarly written chapters enabling a learning experience to both experts and
non-experts whenever they would like to enhance their knowledge or build it
from the scratch; the chapters have been conceived in such a way to be readable
individually or altogether by following the book table-of-contents.

As such, we hope that the book proves to be a useful reference to researchers as well
as graduate students and advanced professionals. We thank the editors of the DCSA
book series, Mike Carey and Stefano Ceri, for their support of our book project and
all authors for preparing their chapters and revisions within a few months. With-
out them, this project would not have been possible. Further thanks go the referees

Preface vii

of the individual chapters for their insightful comments and to Ralf Gerstner from
Springer-Verlag for his professional assistance during all the stages of the book
production.

September 2010 Zohra Bellasehne
Angela Bonifati
Erhard Rahm

Contents

PartI Large-Scale and Knowledge-Driven Schema Matching

1 Towards Large-Scale Schema and Ontology Matching
Erhard Rahm

2 Interactive Techniques to Support Ontology Matching
Sean M. Falconer and Natalya F. Noy

3 Enhancing the Capabilities of Attribute Correspondences
Avigdor Gal

4 Uncertainty in Data Integration and Dataspace Support
Platformsoo i
Anish Das Sarma, Xin Luna Dong, and Alon Y. Halevy

Part I Quality-Driven Schema Mapping and Evolution

5 Discovery and Correctness of Schema Mapping
Transformations,
Angela Bonifati, Giansalvatore Mecca, Paolo Papotti,
and Yannis Velegrakis

6 Recent Advances in Schema and Ontology Evolution....................
Michael Hartung, James Terwilliger, and Erhard Rahm

7 Schema Mapping Evolution Through Composition
and INnversion........... ...
Ronald Fagin, Phokion G. Kolaitis, Lucian Popa,
and Wang-Chiew Tan

8 Mapping-Based Merging of Schemas,
Rachel Pottinger

ix

X Contents

Part III Evaluating and Tuning of Matching Tasks

9 On Evaluating Schema Matching and Mapping 253
Zohra Bellahsene, Angela Bonifati, Fabien Duchateau,
and Yannis Velegrakis

10 Tuning for Schema Matchingooiiiiiiiiiinn. 293
Zohra Bellahsene and Fabien Duchateau

Contributors

Zohra Bellahsene LIRMM — CNRS/Université Montpellier I, 161 Rue Ada,
34095 Montpellier Cedex 5, France, bella@lirmm.fr

Angela Bonifati ICAR-CNR, Rende, Italy
bonifati @icar.cnr.it

Xin Luna Dong Data Management Department, AT&T Labs — Research, Bld 103,
Rm B281, 180 Park Ave., Florham Park, NJ 07932, USA, lunadong @research.
att.com

Fabien Duchateau CWI, Amsterdam, The Netherlands
fabien@cwi.nl

Ronald Fagin IBM Almaden Research Center, Dept. K53/B2, 650 Harry Road,
San Jose, CA 95120, USA, fagin@almaden.ibm.com

Sean Falconer Stanford University, Stanford, CA 94305-5479, USA
sean.falconer @stanford.edu

Avigdor Gal Faculty of Industrial Engineering and Management, Technion —
Israel Institute of Technology, Technion City, Haifa 32000, Israel, avigal @ie.
technion.ac.il

Alon Halevy Google Inc., 1600 Amphitheatre Blvd, Mountain View, CA 94043,
USA, halevy @google.com

Michael Hartung Department of Computer Science, University of Leipzig,
P.O. Box 100920, 04109 Leipzig, Germany, hartung @informatik.uni-leipzig.de

Phokion Kolaitis IBM Almaden Research Center, 650 Harry Road, San Jose, CA
95120, USA

and

University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064,
USA, kolaitis@cs.ucsc.edu

Giansalvatore Mecca Dipartimento di Matematica e Informatica, Universita
della Basilicata, c.da Macchia Romana, 85100 Potenza, Italy, giansalvatore.
mecca@unibas.it

xi

bella@lirmm.fr
bonifati@icar.cnr.it
lunadong@research.
att.com
fabien@cwi.nl
fagin@almaden.ibm.com
sean.falconer@stanford.edu
avigal@ie.technion.ac.il
avigal@ie.technion.ac.il
halevy@google.com
hartung@informatik.uni-leipzig.de
kolaitis@cs.ucsc.edu
giansalvatore.mecca@unibas.it
giansalvatore.mecca@unibas.it

xii Contributors

Natalya Noy Stanford University, Stanford, CA 94305-5479, USA

and

Medical School Office Building, Room X-215, 251 Campus Drive, Stanford, CA
94305-5479, USA, noy @stanford.edu

Paolo Papotti Dipartimento di Informatica e Automazione, Universita Roma Tre,
Via della Vasca Navale 79, 00146 Rome, Italy, papotti @dia.uniroma3.it

Lucian Popa 8CC/B1, IBM Almaden Research Center, 650 Harry Road,
San Jose, CA 95120, USA, lucian @almaden.ibm.com

Rachel Pottinger Department of Computer Science, University of British
Columbia, 201-2366 Main Mall, Vancouver, BC, Canada V6T 174, rap@cs.ubc.ca

Erhard Rahm Department of Computer Science, University of Leipzig, P.O. Box
100920, 04109 Leipzig, Germany, rahm @informatik.uni-leipzig.de

Anish Das Sarma Yahoo! Research, 2-GA 2231, Santa Clara, CA 95051, USA,
anish@yahoo-inc.com

Wang-Chiew Tan E3-406, IBM Almaden Research Center, 650 Harry Road,
San Jose, CA 95120, USA

and

University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064,
USA, wctan@cs.ucsc.edu

James F.Terwilliger Microsoft Research, Redmond, WA, USA, James.
Terwilliger @microsoft.com

Yannis Velegrakis DISI — University of Trento, Via Sommarive 14, 38123 Trento,
Italy, velgias @disi.unitn.eu

noy@stanford.edu
papotti@dia.uniroma3.it
lucian@almaden.ibm.com
rap@cs.ubc.ca
rahm@informatik.uni-leipzig.de
anish@yahoo-inc.com
wctan@cs.ucsc.edu
James.Terwilliger@microsoft.com
James.Terwilliger@microsoft.com
velgias@disi.unitn.eu

Part I
Large-Scale and Knowledge-Driven
Schema Matching

Schema matching is the task of finding semantic correspondences between ele-
ments of two schemas. It is needed in many metadata-intensive applications, such as
XML message mapping, integration of web data sources, catalogue integration, data
warehouse loading and peer-to-peer data management. The typically high seman-
tic heterogeneity of the schemas make schema matching an extremely difficult
problem.

Currently, such matching tasks are largely performed manually by domain
experts, at best supported by some GUI, and therefore they are time consuming,
tedious and error prone. Approaches for automating the schema and ontology
matching tasks as much as possible are needed to simplify and speed up the
development, maintenance and use of metadata-intensive applications.

In the last decade semi-automatic schema matching and related variants such as
ontology matching have attracted a huge amount of research effort and considerable
progress has been achieved. In particular, powerful schema matching prototypes
have been developed and successfully applied to a large variety of match prob-
lems. These prototypes typically allow the combined execution of multiple match
algorithms to improve overall match quality. Furthermore, initial schema match-
ing capabilities found their way into middleware platforms from IBM, Microsoft
(Biztalk) and SAP (Netweaver). Still, the current solutions are not yet sufficient
but need improvements to deal with large-scale match problems, to improve user
interaction and to enhance the semantic power of mappings.

The introductory part of the book reviews the current state of the art and recent
research efforts in these directions. Chapter 1 written by Erhard Rahm describes
approaches to match large schemas and ontologies. He discusses advanced strategies
and techniques for improving the match quality and the runtime efficiency for such
large-scale match tasks.

Chapter 2 by Sean Falconer and Natasha Noy deals with recent approaches for
improving the crucial user interaction for schema matching. They present visualiza-
tion techniques for assisting users with mapping generation and discuss wiki-based
techniques for collaborative schema matching.

Chapter 3 by Avi Gal focuses on the generation of enhanced match results that
are not limited to simple 1:1 attribute correspondences. In particular, he considers
semantically refined correspondences by taking the context of schema elements and
ontological relationships into account.

Das Sarma, Dong and Halevy discuss in Chap. 4 recent work on supporting prob-
abilistic mappings to deal with the inherent uncertainty of data integration. They
focus on dataspace-oriented environments for which probabilistic mappings and
probabilistic mediated schemas can help minimize the amount of upfront modelling
effort for data integration.

Chapter 1
Towards Large-Scale Schema and Ontology
Matching

Erhard Rahm

Abstract The purely manual specification of semantic correspondences between
schemas is almost infeasible for very large schemas or when many different schemas
have to be matched. Hence, solving such large-scale match tasks asks for auto-
matic or semiautomatic schema matching approaches. Large-scale matching needs
especially to be supported for XML schemas and different kinds of ontologies
due to their increasing use and size, e.g., in e-business and web and life sci-
ence applications. Unfortunately, correctly and efficiently matching large schemas
and ontologies are very challenging, and most previous match systems have only
addressed small match tasks. We provide an overview about recently proposed
approaches to achieve high match quality or/and high efficiency for large-scale
matching. In addition to describing some recent matchers utilizing instance and
usage data, we cover approaches on early pruning of the search space, divide and
conquer strategies, parallel matching, tuning matcher combinations, the reuse of
previous match results, and holistic schema matching. We also provide a brief
comparison of selected match tools.

1 Introduction

Schema matching aims at identifying semantic correspondences between metadata
structures or models, such as database schemas, XML message formats, and ontolo-
gies. Solving such match problems is a key task in numerous application fields,
particularly to support data exchange, schema evolution, and virtually all kinds of
data integration. Unfortunately, the typically high degree of semantic heterogeneity
reflected in different schemas makes schema matching an inherently complex task.
Hence, most current systems still require the manual specification of semantic corre-
spondences, e.g., with the help of a GUI. While such an approach is appropriate for

E. Rahm
University of Leipzig, Ritterstrale 26, 04109 Leipzig, Germany
e-mail: rahm @informatik.uni-leipzig.de

Z. Bellahsene et al. (eds.), Schema Matching and Mapping, Data-Centric Systems 3
and Applications, DOI 10.1007/978-3-642-16518-4_1,
(© Springer-Verlag Berlin Heidelberg 2011

rahm@informatik.uni-leipzig.de

4 E. Rahm

matching a few small schemas, it is enormously time-consuming and error-prone
for dealing with large schemas encompassing thousands of elements or to match
many schemas. Therefore, automatic or semiautomatic approaches to find semantic
correspondences with minimal manual effort are especially needed for large-scale
matching. Typical use cases of large-scale matching include:

— Matching large XML schemas, e.g., e-business standards and message formats
(Rahm et al. 2004; Smith et al. 2009)

— Matching large life science ontologies describing and categorizing biomedical
objects or facts such as genes, the anatomy of different species, diseases, etc.
(Kirsten et al. 2007; Zhang et al. 2007)

— Matching large web directories or product catalogs (Avesani et al. 2005; Nandi
and Bernstein 2009)

— Matching many web forms of deep web data sources to create a mediated search
interface, e.g., for travel reservation or shopping of certain products (He and
Chang 2006; Su et al. 2000).

Schema matching (including its ontology matching variant) has been a very active
research area, especially in the last decade, and numerous techniques and prototypes
for automatic matching have been developed (Rahm and Bernstein 2001; Euzenat
and Shvaiko 2007). Schema matching has also been used as a first step to solve data
exchange, schema evolution, or data integration problems, e.g., to transform corre-
spondences into an executable mapping for migrating data from a source to a target
schema (Fagin et al. 2009). Most match approaches focus on 2-way or pairwise
schema matching where two related input schemas are matched with each other.
Some algorithms have also been proposed for n-way or holistic schema matching
(He and Chang 2006), to determine the semantic overlap in many schemas, e.g.,
to build a mediated schema. The result of pairwise schema matching is usually an
equivalence mapping containing the identified semantic correspondences, i.e., pairs
of semantically equivalent schema elements. Some ontology matching approaches
also try to determine different kinds of correspondences, such as is-a relationships
between ontologies (Spiliopoulos et al. 2010). Due to the typically high semantic
heterogeneity of schemas, algorithms can only determine approximate mappings.
The automatically determined mappings may thus require the inspection and adap-
tation by a human domain expert (deletion of wrong correspondences, addition of
missed correspondences) to obtain the correct mapping.

Despite the advances made, current match systems still struggle to deal with
large-scale match tasks as those mentioned above. In particular, achieving both good
effectiveness and good efficiency are two major challenges for large-scale schema
matching. Effectiveness (high match quality) requires the correct and complete iden-
tification of semantic correspondences, and the larger the search space, the more
difficult it is to achieve. For pairwise schema matching, the search space increases at
least quadratically with the number of elements. Furthermore, the semantic hetero-
geneity is typically high for large-scale match tasks, e.g., the schemas may largely
differ in their size and scope, making it difficult to find all correspondences. Fur-
thermore, elements often have several equivalent elements in the other schema that

1 Towards Large-Scale Schema and Ontology Matching 5

are more difficult to identify than 1:1 correspondences that are more likely for small
match tasks. Some large-scale problems in the ontology alignment evaluation ini-
tiative (OAEI) contest on ontology matching are still not satisfactorily solved after
several years. For example, the best F-measure' result for the catalog test to match
web directories (71%) was achieved in 2007; in 2009, the best participating sys-
tem achieved merely 63%; the average F-measure was around 50% (Euzenat et al.
2009).

Efficiency is another challenge for large-scale matching. Current match systems
often require the schemas and intermediate match results to fit in main memory,
thereby limiting their applicability for large-scale match tasks. Furthermore, eval-
uating large search spaces is time consuming, especially if multiple matchers need
to be evaluated and combined. For some OAEI match tasks and systems, execution
times in the order of several hours or even days are observed (Euzenat et al. 2009).
For interactive use of schema matching systems, such execution times are clearly
unacceptable.

In this book chapter, we provide an overview of recent approaches to improve
effectiveness and efficiency for large-scale schema and ontology matching. We only
briefly discuss further challenges such as support for sophisticated user interaction
or the evaluation of match quality, but these are treated in more detail in other chap-
ters of this book (Falconer and Noy 2011; Bellahsene et al. 2011). For example,
advanced GUIs should be supported to visualize large schemas and mappings, to
specify automatic match strategies (selection of matchers, parameter tuning), to
incrementally start automatic schema matching and adapt match results, etc.

In the next section, we introduce the kinds of matchers used in current match
systems as well as a general workflow to combine the results of multiple match-
ers for improved match quality. We also discuss performance optimizations for
single matchers and present recently proposed approaches for instance-based and
usage-based matching. In Sect. 3, we present several match strategies that we con-
sider as especially promising for large-scale matching: early pruning of the search
space, partition-based matching, parallel matching, self-tuning match workflows,
and reuse-based matching. We also discuss briefly approaches for n-way (holistic)
schema matching. Section 4 contains a short discussion of match support in com-
mercial systems and a comparison of selected research prototypes that have been
applied to large match problems.

2 Matchers and Match Workflows

The developed systems for schema and ontology matching typically support several
match algorithms (or matchers) and combine their results for improved match qual-
ity. There exists a large spectrum of possible matchers and different implementations

I E-Measure combines Recall and Precision, two standard measures to evaluate the effectiveness
of schema matching approaches (Do et al. 2003).

6 E. Rahm

as surveyed in (Rahm and Bernstein 2001; Euzenat and Shvaiko 2007), particularly
metadata-based and instance-based matchers. Metadata-based matchers are most
common and exploit characteristics of schema or ontology elements such as their
names, comments, data types, as well as structural properties. Instance-based match-
ers determine the similarity between schema elements from the similarity of their
instances; this class of matchers has recently been studied primarily for matching
large ontologies and will be discussed in more detail below.

Further matching techniques exploit different kinds of auxiliary (background)
information to improve or complement metadata- and instance-based matchers.
For example, name matching for both schema elements and instance values can
be enhanced by general thesauri such as Wordnet or, for improved precision,
domain-specific synonym lists and thesauri (e.g., UMLS as a biomedical reference).
Furthermore, search engines can be used to determine the similarity between names,
e.g., by using the relative search result cardinality for different pairs of names as a
similarity indicator (Gligorov et al. 2007). At the end of this section, we will briefly
discuss a further kind of match technique, the recently proposed consideration of
usage information for matching.

Efficiently matching large schemas and ontologies implies that every matcher
should impose minimal CPU and memory requirements. For improving linguis-
tic matching, many techniques for efficiently computing string similarities can
be exploited, e.g., for tokenization and indexing (Koudas et al. 2004). Structural
matching can be optimized by precollecting the predecessors and children of every
element, e.g., in database tables, instead of repeatedly traversing large graph struc-
tures (Algergawy et al. 2009). Such an approach can also avoid the need of keeping
a graph representation of the schemas in memory that can become a bottleneck with
large schemas. The results of matchers are often stored within similarity matrices
containing a similarity value for every combination of schema elements. With large
schemas, these matrices may require millions of entries and thus several hundreds
of MB memory. To avoid a memory bottleneck, a more space-efficient storage of
matcher results becomes necessary, e.g., by using hash tables (Bernstein et al. 2004).
In Sect. 3, we will discuss further performance techniques such as parallel matcher
execution.

In the following, we first describe a general workflow-like approach to apply
multiple matchers and to combine their results. We then discuss approaches for
instance-based ontology matching and usage-based matching.

2.1 Match Workflows

Figure 1.1a shows a general workflow for automatic, pairwise schema matching as
being used in many current match systems. The schemas are first imported into an
internal processing format. Further preprocessing may be applied such as analysis
of schema features or indexing name tokens to prepare for a faster computation of
name similarities. The main part is a subworkflow to execute several matchers each

1 Towards Large-Scale Schema and Ontology Matching 7

Input
schemas
St Match
> Pre- aener Combination of Selection of Result
= rocessing Execution matcher results [~ correspondences [i
% Lt (sub-workflow) P Mapping
S2

General workflow for pairwise schema matching

b

o

‘H‘
Sequential matchers Parallel (independent) Mixed strategy
matchers

Principal matcher sub-workflows

Fig. 1.1 General match workflows

of which determines a preliminary set of correspondences. After the execution of the
matcher subworkflow, there are typically several postprocessing steps, particularly
the combination of the individual matcher results and finally the selection of the
correspondences from the combined result.

As indicated in Fig. 1.1b, the individual matchers may either be executed sequen-
tially, independently (in parallel), or in some mixed fashion. In the sequential
approach, the matchers are not executed independently, but the results of initial
matchers are used as input by subsequent matchers. A common strategy, e.g., used
in Cupid (Madhavan et al. 2001), is to first execute a linguistic matcher to compare
the names of schema elements and then use the obtained similarities as input for
structure-based matching. In the parallel matcher strategy, individual matchers are
autonomous and can be independently executed from other matchers. This supports
a high flexibility to select matchers for execution and combination. Furthermore,
these matchers may also physically be executed in parallel, e.g., on multicore or
multiserver hardware. On the other hand, the autonomy of individual matchers may
introduce redundant computations, e.g., of name similarities to be used for structural
matching. The mixed strategy combines sequential and parallel matcher execution
and is thus most complex.

There are different methods to combine match results of individual matchers,
e.g., by performing a union or intersection of the correspondences or by aggregating
individual similarity values, e.g., by calculating a weighted average of the individual
similarities. Similarly, there are different methods to finally select the correspon-
dences. Typically, correspondences need to exceed some predetermined threshold
but may also have to meet additional constraints for improved precision. So it is
reasonable for 1:1 mappings to enforce the so-called stable marriages, i.e., a corre-
spondence ¢l —cl1’ is only accepted if c1’ is the most similar element for ¢/ and
vice versa. Some ontology matching systems such as ASMOV enforce additional
constraints regarding is-a relationships (see Sect. 4.2).

8 E. Rahm

For interactive schema matching, the user may interact with the system and the
match workflow in different ways (not shown in Fig. 1.1), preferably via a user-
friendly GUI. She typically has to specify the workflow configuration, e.g., which
matchers should be executed and which strategy/parameters should be applied for
the final combination and selection steps. The final results are typically only sug-
gested correspondences that the user can confirm or correct. The match workflow
itself could be executed on the whole input schemas or incrementally for selected
schema parts or even individual elements (Bernstein et al. 2006). The latter approach
is a simple but reasonable way to better deal with large schemas as it reduces the
performance requirements compared to matching the whole schemas. Furthermore,
the determined correspondences can better be visualized avoiding that the user is
overwhelmed with huge mappings. Shi et al. (2009) propose an interesting variation
for interactive matching where the system asks the user for feedback on specific
correspondences that are hard to determine automatically and that are valuable as
input for further matcher executions.

2.2 Instance-Based and Usage-Based Matching

2.2.1 Instance-Based Ontology Matching

Instance-based ontology matching determines the similarity between ontology con-
cepts from the similarity of instances associated to the concepts. For example,
two categories of a product catalog can be considered as equivalent if their prod-
ucts are largely the same or at least highly similar. One can argue that instances
can characterize the semantics of schema elements or ontology concepts very well
and potentially better than a concept name or comment. Therefore, instance-based
matching holds the promise of identifying high-quality correspondences. On the
other hand, obtaining sufficient and suitable instance data for all ontologies and all
ontology concepts to be matched is a major problem, especially for large ontologies.
Hence, we consider instance-based approaches primarily as a complementary, albeit
significant, match approach to be used in addition to metadata-based matchers.

As indicated in Fig. 1.2, two main cases for instance-based ontology match-
ing can be distinguished depending on whether or not the existence of common
instances is assumed. The existence of the same instances for different ontologies
(e.g., the same web pages categorized in different web directories, the same prod-
ucts offered in different product catalogs, or the same set of proteins described in
different life science ontologies) simplifies the determination of similar concept. In
this case, two concepts may be considered as equivalent when their instances over-
lap significantly. Different set similarity measures can be used to measure such an
instance overlap, e.g., based on Dice, Jaccard, or cosine similarity. The instance
overlap approach has been used to match large life science ontologies (Kirsten et al.
2007) and product catalogs (Thor et al. 2007).

1 Towards Large-Scale Schema and Ontology Matching 9

a b
? /(>\ ? A(>\
01 02 01 02
ontology
associations
?

Common 01 02

instances instances instances
Common instances
(separate from ontologies) Ontology-specific instances

Fig. 1.2 Two cases for instance-based ontology matching

The more broadly applicable case is when only similar but potentially different
instances are used to determine correspondences (Fig. 1.2b). In this case, determin-
ing concept similarity requires determining the similarity between sets of instances,
which is a variation of the well-studied problem of object matching or entity res-
olution (Elmagarmid et al. 2007; Koepcke and Rahm 2010). One approach for
addressing this task is to combine all instances of a concept into a virtual document.
Matching is then implemented by comparing such virtual documents with each other
based on some document similarity measure, e.g., TF/IDF. This approach is sup-
ported in several match prototypes including Rimom and Coma++ (see Sect. 4.2).
Massmann and Rahm (2008) evaluate instance-based matching for web directories
utilizing a virtual document approach for website names and descriptions as well as
an instance overlap approach for website URLs. The approaches achieve an aver-
age F-measure of about 60% (79% in combination with metadata-based matching)
for different match tasks; the largest directory had more than 3,000 categories. The
OAEI contest also includes a web directory match task, however, without provid-
ing instance data, thereby limiting the achievable match quality (as mentioned in
the introduction, the participating systems could not improve on this task in recent
years; the best F-measure in 2009 was 63%).

An alternate approach for instance-based matching using machine learning has
been implemented in the GLUE and SAMBO systems (Doan et al. 2003; Lambrix
et al. 2008). The SAMBO approach focuses on matching life science ontologies
based on the similarity of publications (Pubmed abstracts) referring to the ontol-
ogy concepts. Both GLUE and SAMBO perform a training phase per ontology
to learn concept classifiers for the available instances. These classifiers are then
mutually applied to the instances from the other ontology to determine the concepts
an instance is predicted to belong to. The instance-concept associations are aggre-
gated, e.g., by a Jaccard-based set similarity measure, to derive concept similarities
and concept correspondences. The approaches do not require shared instances but
only similar ones for classification. Furthermore, they can utilize many existing

10 E. Rahm

instances in applications such as matching product catalogs or web directories. On
the other hand, the classification problem becomes inherently more difficult to solve
for increasing numbers of concepts. The GLUE evaluation in Doan et al. (2003)
was restricted to comparatively small match tasks with ontology sizes between 31
and 331 concepts. The SAMBO approach was evaluated for even smaller (sub-)
ontologies (10—112 concepts). Effectiveness and efficiency of the machine learn-
ing approaches to large-scale match tasks with thousands of concepts is thus an
open issue.

2.2.2 Usage-Based Matching

Two recent works propose the use of query logs to aid in schema matching. In
Elmeleegy et al. (2008), SQL query logs are analyzed to find attributes with similar
usage characteristics (e.g., within join conditions or aggregations) and occurrence
frequencies as possible match candidates for relational database schemas. The
Hamster approach (Nandi and Bernstein 2009) uses the click log for keyword
queries of an entity search engine to determine the search terms, leading to instances
of specific categories of a taxonomy (e.g., product catalog or web directory). Cate-
gories of different taxonomies sharing similar search queries are then considered as
match candidates. Different search terms referring to the same categories are also
potential synonyms that can be utilized not only for matching but also for other
purposes such as the improvement of user queries.

A main problem of usage-based matching is the difficulty to obtain suitable usage
data, which is likely more severe than the availability of instance data. For example,
the click logs for the Hamster approach are only available to the providers of search
engines. Furthermore, matching support can primarily be obtained for categories or
schema elements receiving many queries.

3 Techniques for Large-Scale Matching

In this section, we provide an overview about recent approaches for large-scale pair-
wise matching that go beyond specific matchers but address entire match strategies.
In particular, we discuss approaches in four areas that we consider as especially
promising and important:

— Reduction of search space for matching (early pruning of dissimilar element
pairs, partition-based matching)

— Parallel matching

— Self-tuning match workflows

— Reuse of previous match results

We also discuss proposed approaches for holistically matching n schemas.

1 Towards Large-Scale Schema and Ontology Matching 11

3.1 Reduction of Search Space

The standard approach for pairwise schema matching is to compare every element
of the first schema with every element with the second schema to determine match-
ing schema elements, i.e., evaluation of the cross join. Such an approach has at least
a quadratic complexity with respect to schema size and does not scale well. There
are not only efficiency problems for large schemas but the large search space makes
it also very difficult to correctly identify matching element pairs. Hence, it is impor-
tant for large match tasks to reduce the search space in order to improve at least
efficiency and, potentially, match quality.

To reduce the search space for matching, we can adopt similar approaches as in
the area of entity resolution (or object matching), where the number of objects and
thus the search space is typically much larger than for schema matching. The initial
step to reduce the search space for entity matching has been called blocking, and
there exist numerous approaches for this task, e.g., based on clustering on selected
object attributes (Elmagarmid et al. 2007).

For schema and ontology matching, two main types of approaches have been
considered to reduce the search space that we discuss in the following:

e FEarly pruning of dissimilar element pairs
e Partition-based matching

3.1.1 Early Pruning of Dissimilar Element Pairs

The idea is to limit the evaluation of the cartesian product to at most a few initial
steps in the match workflow, e.g., one matcher, and to eliminate all element pairs
with very low similarity from further processing since they are very unlikely to
match. This idea is especially suitable for workflows with sequential matchers where
the first matcher can evaluate the cartesian product, but all highly dissimilar element
pairs are excluded in the evaluation of subsequent matchers and the combination of
match results.

Quick ontology matching (QOM) was one of the first approaches to implement
this idea (Ehrig and Staab 2004). It iteratively applies a sequence of matchers and
can restrict the search space for every matcher. The considered approaches to restrict
the search space include focusing on elements with similar names (labels) or similar
structural properties. The authors showed that the runtime complexity of QOM can
be reduced to (O(n - log(n)) instead of O(n?) for ontologies of size n.

Peukert et al. (2010a) propose the use of filter operators within match work-
flows to prune dissimilar element pairs (whose similarity is below some minimal
threshold) from intermediate match results. The threshold is either statically pre-
determined or dynamically derived from the similarity threshold used in the match
workflow to finally select match correspondences. Peukert et al. (2010a) also pro-
pose a rule-based approach to rewrite match workflows for improved efficiency,
particularly to place filter operators within sequences of matchers.

12 E. Rahm

3.1.2 Partition-Based Matching

Partition-based matching is a divide-and-conquer strategy to first partition the input
schemas/ontologies and then perform a partition-wise matching. The idea is to per-
form partitioning in such a way that every partition of the first schema has to be
matched with only a subset of the partitions (ideally, only with one partition) of
the second schema. This results in a significant reduction of the search space and
thus improved efficiency. Furthermore, matching the smaller partitions reduces the
memory requirements compared to matching the full schemas. To further improve
performance, the partition-based match tasks may be performed in parallel.

There are many possible ways to perform partitioning, and finding the most effec-
tive approaches is still an open research problem. COMA++ was one of the first
systems to support partition-based schema matching by a so-called fragment match-
ing (Aumueller et al. 2005; Do and Rahm 2007). Fragment matching works in two
phases. In the first phase, the fragments of a specified type (e.g., user-specified frag-
ments or subschemas such as relational tables or message formats in large XML
schemas) are determined and compared with each other to identify the most similar
fragments from the other schema worth to be fully matched later. The search for
similar fragments is some kind of light-weight matching, e.g., based on the sim-
ilarity of the fragment roots. In the second phase, each pair of similar fragments
is independently matched to identify correspondences between their elements. The
fragment-based match results are finally merged to obtain the complete output map-
ping. In the evaluation for large XML schemas in (Do and Rahm 2007), fragment
matching not only improved execution times significantly but also led to a slight
improvement of match quality.

The ontology matching system Falcon-AO also supports partition-based match-
ing to reduce the search space (Hu et al. 2008). The approach is similar to fragment
matching but uses a structural clustering to initially partition the ontologies into rel-
atively small, disjoint blocks. Matching is then restricted to the most similar blocks
from the two ontologies. To determine the block similarity, Falcon-AO utilizes the
so-called anchors. Anchors are highly similar element pairs that are determined
before partitioning by a combined name/comment matcher. Figure 1.3 illustrates
the idea to limit matching to pairs of similar partitions sharing at least one anchor.
In the shown example, only partitions of the same color are matched with each other
(e.g., Bsy with Br,), while partitions without shared anchor (Br3) are excluded from
matching. An extension of the Falcon approach has been proposed for the Taxomap
system (Hamdi et al. 2009). They first partition only one of the ontologies like in
Falcon and then try to partition the second ontology accordingly. In particular, it is
tried to achieve that the anchors per partition can be localized in few partitions of
the other ontology to reduce the number of pairs to be matched.

The taxonomy matching system AnchorFlood implements a dynamic partition-
based matching that avoids the a-priori partitioning of the ontologies (Hanif and
Aono 2009). It also utilizes anchors (similar concept pairs) but takes them as a start-
ing point to incrementally match elements in their structural neighborhood until no
further matches are found or all elements are processed. Thus the partitions (called

1 Towards Large-Scale Schema and Ontology Matching 13

Osource Anchors oTarget
Bs1 /01\ BS2 \ _---T C1
o ‘C\ _,—"'—’ /\
~ 4 Ny -~
\\\\\ Cg CG ————————— C —————————
/ Cs I 2 "Gy
C; GCg /\ C11\‘G12\ / /\
| - Cy Cs Ce
013_____\09 C1o‘~~~\\ /\ | l
B N - L C
s3 T--t ¢, Csg ° Cio
Bry
Brs Br

Fig. 1.3 Partition-based matching in Falcon-AO and Taxomap (from Hamdi et al. (2009))

segments) are located around the anchors, and their size depends on the continued
success of finding match partners for the considered elements.

Zhong et al. (2009) focus on the case when a small ontology is matched with a
much larger one, e.g., one that is obtained from merging several others. They deter-
mine the subontology (partition) from the larger ontology that is most similar to the
smaller ontology and consider only this subontology for matching to improve effi-
ciency. Finding the subontology is performed in two steps. First, a name matcher is
applied on the Cartesian product of elements to determine the most similar ontology
elements from the large ontology. Then, the subontology is determined by evaluating
the subgraphs around the similar elements found in the first step.

3.2 Parallel Matching

A relatively straight-forward approach to reduce the execution time of large-scale
matching is to run match processes in parallel on several processors. As discussed
in Gross et al. (2010), two main kinds of parallel matching are applicable: inter-
and intra-matcher parallelization. Inter-matcher parallelization enables the paral-
lel execution of independently executable (parallel) matchers in match workflows.
This kind of parallelism is easy to support and can utilize multiple cores of a single
computing node or multiple nodes. However, inter-matcher parallelization is limited
by the number of independent matchers and not applicable for sequential matchers.
Furthermore, matchers of different complexity may have largely different execu-
tion times limiting the achievable speedup (the slowest matcher determines overall
execution time). Moreover, the memory requirements for matching are not reduced
since matchers evaluate the complete ontologies.

14 E. Rahm

Intra-matcher parallelization is more versatile and deals with internal paralleliza-
tion of matchers, typically based on a partitioning of the schemas or ontologies to
be matched. Partitioning leads to many smaller match tasks that can be executed
in parallel with reduced memory requirements per task. By choosing appropri-
ate partition sizes, the approach becomes very flexible and scalable. Furthermore,
intra-matcher parallelism can be applied for sequential as well as independently
executable matchers, i.e., it can also be combined with inter-matcher parallelism.

The partition-based matching discussed in Sect.3.1 inherently supports intra-
matcher parallelization as well as a reduction of the search space by limiting
matching to pairs of similar partitions. However, intra-matcher parallelization could
also be applied without reduced search space by matching all partition pairs, i.e., to
evaluate the Cartesian product in parallel. As discussed in Gross et al. (2010), such
a simple, generic parallelization is applicable for virtually all element-level match-
ers (e.g., name matching) but can also be adapted for structural matching. In this
case, one can also choose a very simple, size-based partitioning (same number of
elements per partition) supporting good load balancing.

3.3 Self-Tuning Match Workflows

The match workflows in most current systems need to be manually defined and con-
figured. This affects the choice of matchers to be applied and specification of the
methods to combine matcher results and to finally select match correspondences.
Obviously, these decisions have a significant impact on both effectiveness and effi-
ciency and are thus especially critical for large-scale match tasks. Unfortunately,
the huge number of possible configurations makes it very difficult even for expert
users to define suitable match workflows. Hence, the adoption of semi-automatic
tuning approaches becomes increasingly necessary and should especially consider
the challenges of matching large schemas.

The companion book chapter (Bellahsene and Duchateau 2011) provides an
overview of recent approaches including tuning frameworks such as Apfel and
eTuner (Ehrig et al. 2005; Lee et al. 2007). Most previous approaches for automatic
tuning apply supervised machine learning methods. They use previously solved
match tasks as training to find effective choices for matcher selection and parame-
ter settings such as similarity thresholds and weights to aggregate similarity values,
e.g., Duchateau et al. (2009). A key problem of such approaches is the difficulty of
collecting sufficient training data that may itself incur a substantial effort. A further
problem is that even within a domain, the successful configurations for one match
problem do not guarantee sufficient match quality for different problems, especially
for matching large schemas. Therefore, one would need methods to preselect suit-
able and sufficient training correspondences for a given match task, which is an open
challenge.

Tan and Lambrix (2007) propose an alternative approach that recommends a
promising match strategy for a given match problem. They first select a limited

1 Towards Large-Scale Schema and Ontology Matching 15

number of pairs of small segments from the schemas to be matched (e.g., subgraphs
with identically named root concepts) and determine the perfect match result for
these segments. These results are used to comparatively evaluate the effectiveness
and efficiency of a predetermined number of match strategies from which the best
performing one is recommended for the complete match task. The approach thus
requires manual “training” for matching the preselected segment pairs; this effort
pays off if it helps to avoid a larger amount of manual postprocessing. On the other
hand, the number of reasonable match strategies can be very high (many combina-
tions of available matchers, many possible similarity thresholds, etc.), so that likely
only a small subset of them can be evaluated (in the evaluation merely 30 strategies
are considered).

Several match systems first analyze the schemas to be matched and determine
their linguistic and structural similarity. These similarity characteristics are then
used to select matchers or to weigh the influence of different matchers in the com-
bination of matcher results (Pirrd and Talia 2010). The Rimom system (Li et al.
2009) uses such similarity factors for dynamically selecting matchers for a spe-
cific match task. For example, they use string measures for name matching only if
the input schemas have highly similar names; otherwise, they rely on thesauri such
as Wordnet. Similarly, they apply structural matching only if the input schemas
are deeply structured and structurally similar. Falcon-AO uses the linguistic and
structural similarities to combine matcher results, particularly to optimize individ-
ual similarity (cutoff) thresholds (Hu et al. 2008). For example, if the linguistic
similarity is high, Falcon-AO uses lower thresholds for linguistic matchers so that
more of their correspondences are considered.

A versatile approach to combine the results of individual matchers is to determine
a weighted average of the individual matcher similarities per correspondence and to
accept a correspondence if the combined similarity exceeds some threshold. Several
approaches try to tune matcher combination by applying task-specific weights and
combination methods, e.g., by favoring higher similarity values (Ehrig and Staab
2004; Mao et al. 2008; Mork et al. 2008). For example, the approach of Mao et al.
(2008), used in the PRIOR+ match prototype, combines similarity values according
to the matchers’ so-called harmony value that is defined as the ratio of element pairs
for which a matcher achieved the top similarity values. The comparative analysis
in Peukert et al. (2010b) showed that such combination approaches can be effective
in some cases but that they are mostly less effective and less robust than generic
approaches such as taking the average matcher similarity.

Optimizing complete match workflows is so far an open challenge, especially
since most match systems prescribe workflows of a fixed structure, e.g., regarding
which matchers can be executed sequentially or in parallel. As discussed in Sect. 3.1,
(Peukert et al. 2010a) propose a first approach for tuning match workflows focusing
on reducing the search space for improved efficiency.

16 E. Rahm

3.4 Reuse of Previous Match Results

A promising approach to improve both the effectiveness and efficiency of schema
matching is the reuse of previous match results to solve a new but similar match task
(Rahm and Bernstein 2001). An ideal situation for such a reuse is the need to adapt
a mapping between two schemas after one of them evolves to a new schema version.
By reusing the previous match mapping for the unchanged schema parts, a signifi-
cant amount of match effort can likely be saved. The reuse of previously determined
correspondences and match results may also be applicable in other cases, especially
when different schemas share certain elements or substructures, such as standard-
ized address information. Exploiting the reuse potential requires a comprehensive
infrastructure, particularly a repository to maintain previously determined corre-
spondences and match results. Furthermore, methods are necessary to determine
the schema elements and fragments for which match reuse is applicable. Reuse can
be exploited at three mapping granularities: for individual element correspondences,
for mappings between common schema fragments, and for complete mappings and
schemas.

Coma and its successor Coma-++ support the reuse of complete match map-
pings (Do and Rahm 2002). They apply a so-called MatchCompose operator for a
join-like combination of two or more match mappings to indirectly match schemas.
For example, a mapping between schemas S/ and $3 can be obtained by combin-
ing preexisting S7-S2 and S2—S3 mappings involving another schema S2. For two
schemas to be matched, the reuse matcher of Coma searches the repository for all
applicable mapping paths connecting the two schemas and combines the composi-
tion results just like other matcher results. The reuse matcher can also be combined
with regular matchers. Furthermore, the compose approach allows the adaptation
of an old mapping after one of the schema evolves. Figure 1.4 shows a Coma++
screenshot for such a reuse scenario where the target schema (shown on the right)
has been slightly changed. The mapping between the source schema and the old tar-
get schema (shown in the middle) can be reused by composing it with the mapping
between the old and the new target schema. The latter mapping has to be newly
determined, but this is easy when the two schema versions are highly similar as in
the example. The evaluations in (Do and Rahm 2002) and (Do 2006) showed the
high effectiveness and efficiency of the reuse approach even when only completely
automatically determined match results are composed.

The corpus-based match approach of Madhavan et al. (2005) uses a domain-
specific corpus of schemas and match mappings and focuses on the reuse of
element correspondences. They augment schema elements with matching elements
from the corpus and assume that two schema elements match if they match with
the same corpus element(s). They use a machine learning approach to find matches
between schema and corpus elements. In particular, for each corpus element c, a
model based on several matchers is learned to decide whether schema elements s
match c. The approach thus requires a substantial effort for learning the models and
applying the models to determine the matches, especially for a large corpus and
large schemas.

1 Towards Large-Scale Schema and Ontology Matching

@H by
_ Workspace

Mapping1
)

r= =Pl I8
T e R 55 ¥ Oxganizacior +
eeteres + areing + steing
L | name © steing came @ strin
Excol 1 = /_z'.vl : 2ing : atzing
Marls_Ver? (1] ionNo ¢ sering ATRegistrationllo © string
| UEL 1 Stpingr——————————te—————yp| { BLTIBQ
+ string reet 1 steing
= iy €‘=Lﬂ¢'__‘—-—____‘__“_‘__.rluh-(: ateing
- L |~ state : stoimp———s T vy : suning
Mappings | ———postaiCode © strin state : sTring
Mapping! =i [——cousery : Tm...;—-__a.___“__“‘__‘-—""‘___‘_“———wmume 3 string
—mr]l"f(hr——\—___‘______‘_n_«_n coumtsy ©ostzing
comments @ ““"’_'__"‘—-—-_______c”“"n
| ‘B—ccnuct?eraﬂr—-—-___________““—_cmu & string
ordecDace @ dam antactPersan
I=j{ kunmf_———-"-—_—_.:_‘__*_"—*___'—“iﬁipl“ + dace
L& totalksoms : Eloar———— Amount
. roundinghaount | EloaT= 2 nt
Mapping curgencyCode | steing— Mapping Eloat

Excel €» Noris “*= ———— Noris <> Noris_Ver2 “™

| |+ QMg | | Search %

(Select a node fo display its corespondences

Fig. 1.4 Coma++ reuse scenario after the evolution of the target schema

There are several other attempts to provide repositories of schemas and mappings
for matching or information integration, in general. For example, the OpenlI project
is developing an infrastructure for information integration that includes a repository
of schemas and mappings to permit their reuse (Seligman et al. 2010). While the
OpenllI schema matcher, Harmony, does not yet exploit this reuse potential, there
are several other tools to explore and visualize the schemas and mappings. In par-
ticular, the Schemr search tool determines a ranked list of schemas in the repository
that are similar to a given schema fragment or list or keywords (Chen et al. 2009).
For this purpose, Schemr uses an index on schema element names to first find repos-
itory schemas that are linguistically similar to the search input. In a second step, the
candidate schemas are matched with the input schema to obtain refined schema sim-
ilarities used for ranking. The search tool could thus be useful to determine relevant
schemas for reuse.

A new project at the IBM Almaden research center investigates the repository-
based reuse of schema fragments and mappings, particularly for enhancing schema
matching (Alexe et al. 2009). The repository stores conceptual schema fragments
called unified famous objects (UFOs) such as address or employee structures that
are in use or relevant for different applications and schemas. By maintaining map-
pings between similar UFOs in the repository, these mappings may be reused when
matching schemas that contain the respective UFOs. Successfully implementing
such an idea is promising but also highly complex and apparently not yet finished.
First, the repository has to be built and populated; a first design is sketched in
Gubanov et al. (2009). For schema matching, the schemas to be matched have to
be analyzed whether they include schema fragments from the repository for which
mappings exist. Finally, the fragment mappings need to be properly assembled (and

18 E. Rahm

combined with the results of other matchers) in order to obtain a complete schema
mapping. Saha et al. (2010) focuses on the second step and describes an approach
called schema covering to partition the input schemas such that the partitions can
be matched to schema fragments in the repository. They first apply a filter step
to determine relevant repository fragments with some similarity with the schemas
to be matched. Then for each of the remaining repository fragments, the maximal
subgraphs in the schemas are determined that can be covered by the fragment.
To speed-up the similarity computations, filtering and subgraph identification uti-
lize a predetermined index of the schema element names and their positions in the
repository schemas and the schemas to be matched.

SAP also works on an ambitious project called Warp10 to exploit the reuse of
XML schemas and mappings for business integration including improved schema
matching (SAP 2010). As indicated in Fig. 1.5, the key idea is to maintain a
central repository maintaining a global schema (called consolidated data model)
that includes semantically consolidated versions of individual schemas or schema
fragments. Consolidation is based on the UN/CEFACT core component technical
specification (CCTS) rules for uniformly naming and structuring concepts. The
global schema is initially populated by standard business schemas and data types
(e.g., from SAP) and can be semiautomatically and collaboratively extended by
integrating specific schemas. The correct integration of such schemas is likely a
complex merge operation needing the control by domain experts. Once mappings
between schemas and the global schema are established, they can be reused for
quickly solving new integration tasks, particularly for matching between schemas
(to match schemas S7 with S2, one has to compose their mappings with the global
schema G, S1-G and G-S2). Unfortunately, the details about how the global schema
is maintained are not yet published.

_ . : .
SAP Invoice CountryA| Invoice EDIFACT
| Legacyinvoice22 | m Invoice Customer A

= =

Ui corne 1~ e |

E[[EE[

== iires
[T Lo

s |

Fig. 1.5 Mappings between schemas and the consolidated data model in Warpl0 (from SAP
(2010))

1 Towards Large-Scale Schema and Ontology Matching 19

3.5 Holistic Schema Matching

While most of the previous match work focuses on pairwise matching, there has also
been some work on the generalized problem of matching n schemas. Typically, the
goal is to integrate or merge the n schemas such that all matching elements of the
n schemas are represented only once in the integrated (mediated) schema. N-way
matching can be implemented by a series of 2-way match steps, and some systems
such as Porsche follow such an approach and incrementally merge schemas (Saleem
et al. 2008). The alternative is a holistic matching that clusters all matching schema
elements at once.

The holistic approach has primarily been considered for the use case of match-
ing and integrating web forms for querying deep web sources (He et al. 2004; He
and Chang 2006; Su et al. 2006). While there are typically many web forms to inte-
grate in a domain, the respective schemas are mostly small and simple, e.g., a list of
attributes. Hence, the main task is to group together all similar attributes. Matching
is primarily performed on the attribute names (labels) but may also use additional
information such as comments or sample values. A main observation utilized in
holistic schema matching is the correlation of attribute names, particularly that sim-
ilar names between different schemas are likely matches but similar names within
the same schema are usually mismatches. For example, the attribute’s first name and
last name do not match if they co-occur in the same source.

The dual correlation mining (DCM) approach of He and Chang (2006) utilizes
these positive and negative attribute correlations for matching. It also utilizes neg-
ative correlations to derive complex relationships, e.g., that attribute name matches
the combination of both first name and last name. The HSM approach of Su et al.
(2006) extends the DCM scheme for improved accuracy and efficiency. HSM also
utilizes that the vocabulary of web forms in a domain tends to be relatively small
and that terms are usually unambiguous in a domain (e.g., fitle in a book domain).
A main idea is to first identify such shared attributes (and their synonyms) in the
input schemas and exclude such attributes from matching the remaining attributes
for improved efficiency and accuracy.

Das Sarma et al. (2008) propose to determine a so-called probabilistic mediated
schema from n input schemas, which is in effect a ranked list of several mediated
schemas. The approach observes the inherent uncertainty of match decisions but
avoids any manual intervention by considering not only one but several reasonable
mappings. The resulting set of mediated schemas was shown to provide queries with
potentially more complete results than with a single mediated schema. The proposed
approach only considers the more frequently occurring attributes for determining
the different mediated schemas, i.e., sets of disjoint attribute clusters. Clustering is
based on the pairwise similarity between any of the remaining attributes exceeding
a certain threshold as well as the co-occurrence of attributes in the same source. The
similarity between attributes can also be considered as uncertain by some error mar-
gin, which leads to different possibilities to cluster such attributes within different
mediated schemas. The probabilistic mapping approach is further described in the
companion book chapter (Das Sarma et al. 2011).

20 E. Rahm

We finally note that some of the partition-based and reuse-based match appro-
aches discussed above dealt with multiple subschemas, so they also implement some
form of n-way schema matching. An important building block in such advanced
match strategies is to search a collection of n (sub) schemas for the schema that is
most similar to a given schema. There are many other applications for the schema
search problem, e.g., finding similar peer schemas in P2P data integration or the
discovery of suitable web services (Dong et al. 2004; Algergawy et al. 2010).

4 Selected Match Systems

To further illustrate the state of the art, we discuss in this section the schema
matching capabilities in commercial tools as well as in selected research proto-
types. For better comparability, we restrict ourselves on systems for pairwise schema
matching.

4.1 Commercial Match Tools

In commercial tools, schema matching is typically a first step for generating exe-
cutable mappings (e.g., for data transformation) between schemas, particularly
XML schemas or relational database schemas. Systems such as IBM Infosphere
Data Architect, Microsoft Biztalk server, SAP Netweaver Process Integration, or
Altova MapForce provide a GUI-based mapping editor but still require a largely
manual specification of the match correspondences. In recent years, support for
automatic matching has improved and all mentioned systems can present users
equally named schema elements (typically within preselected schema fragments) as
match candidates. The Infosphere mapping editor also supports approximate name
matching and the use of external thesauri for linguistic matching. The mapping tool
of Microsoft Biztalk server 2010 has significantly improved for better matching
large schemas (www.microsoft.com/biztalk). It supports an enhanced user interface
to better visualize complex mappings similar as described in Bernstein et al. (2006).
Furthermore, it supports approximate name matching by a new search functionality
called “indicative matching.”

The increasing support in commercial tools underlines the high practical impor-
tance of automatic schema matching. However, the tools need much further improv-
ement to reduce the manual mapping effort especially for large match tasks. For
example, commercial tools do neither support structural matching nor any of the
advanced techniques discussed in Sect. 3.

www.microsoft.com/biztalk

1 Towards Large-Scale Schema and Ontology Matching 21

4.2 Research Prototypes

As already discussed in the previous sections, in research, more advanced appro-
aches for semiautomatic schema and ontology matching have been developed. In
fact, hundreds of prototypes and algorithms for schema and ontology matching
have been developed in the last decade, many of which are surveyed in Euzenat
and Shvaiko (2007). To illustrate the state of the art in current tools, we briefly
compare a few recent prototypes that have successfully been applied to large-scale
match problems, particularly within the OAEI benchmark competition (http://oaei.
ontologymatching.org). Table 1.1 provides a rough comparison between six match
prototypes. All of them are capable of matching (OWL) ontologies, and two systems
(Coma++-, Harmony) can also match relational and XML schemas. The shown
years of introduction are estimates based on the oldest publication found per system.

The table indicates that all systems include linguistic and structural matchers.
Linguistic matching can always be performed either on element names and com-
ments; furthermore, external dictionaries such as synonym lists or thesauri can be
utilized. Most systems (except Falcon and Harmony) also support instance-based
matching. A comprehensive GUI for interactive matching is provided by Coma++-,
AgreementMaker, and Harmony; for the other systems, no specific details on this
issue could be found. The individual matchers may either be executed indepen-
dently or sequentially within a predetermined, fixed match workflow (not mentioned
in Table 1.1). Partitioning of large schemas is currently supported by two of the
considered systems (Coma++, Falcon), a self-tuning by dynamically selecting
the matchers to execute only by Rimom. Coma-++ is the only system supporting
the reuse of previous mappings for matching. All systems except Harmony have

Table 1.1 Comparison of match prototypes (AM AgreementMaker)

COMA++ Falcon Rimom Asmov AM Harmony

Year of introduction 2002/2005 2006 2006 2007 2007 2008
Input

relational schemas Vi - - J

XML schemas 4 - - W) J

ontologies VA v i i v Vv
Compreh. GUI Vi W) ? ? v J
Matchers

Linguistic Va A Vi i v Vv

structure 4 Vi Va Vi i Vv

Instance «/ - «/ «/ «/ -
Use of ext.dictionaries 4 ? Vi Vi i Vv
Schema partitioning 4 Vv - - - -
Parallel matching - - - - _ _
Dyn. matcher selection ~ — - Vi - - _
Mapping reuse Vi - - - - -
OAEI participation Vi Vv Vi i v -

http://oaei.
ontologymatching.org

22 E. Rahm

successfully participated in OAEI ontology matching contests; some systems even
implemented specific extensions to better solve certain contest tasks. Not shown in
the table is that most systems focus on 1:1 correspondences, although the elements
of a schema may participate in several such correspondences (the fact that element
Name in one schema matches to the combination of Firstname and Lastname in the
second schema can thus not directly be determined). Parallel matching (Sect. 3.2) is
also not yet supported in the tools.

In the following, we provide some specific details for the considered prototypes.

4.2.1 Coma++

Coma++ (Aumueller et al. 2005; Do and Rahm 2007) and its predecessor Coma
(Do and Rahm 2002) are generic prototypes for schema and ontology matching
developed at the University of Leipzig, Germany. They were among the first sys-
tems to successfully support the multimatcher architecture and match workflows
as introduced in Sect. 2. Initially, the focus was on a metadata-based matching;
instance-based matching was added in 2006. Coma-++ supports the partitioning
and reuse approaches discussed in the previous section.

Coma++ is available for free for research purposes, and hundreds of insti-
tutes worldwide have used and evaluated the prototype. Surprisingly, the default
match workflow of Coma++ (combining four metadata-based matchers) proved
to be competitive in many diverse areas, particularly for matching XML schemas
(Algergawy et al. 2009), web directories (Avesani et al. 2005), or even meta-models
derived from UML (Kappel et al. 2007). Coma++ successfully participated in the
ontology matching contest OAEI 2006.

4.2.2 Falcon

Falcon-AO is an ontology matching prototype developed at the Southeast University
in Nanjing, China (Hu et al. 2008). As discussed in Sect. 3.1, it supports a partition-
ing approach to reduce the search space and uses coefficients of the linguistic and
structural schema similarity to control the combination of matcher results. Instance-
based matching is not yet provided. In the OAEI contests from 2005-2007, it was
among the best performing systems.

4.2.3 Rimom

Rimom is an ontology matching prototype developed at Tsinghua University in
Beijing, China (Li et al. 2009). It was one of the first systems implementing a
dynamic selection of matchers, as discussed in Sect. 3.3. The schema elements and
their instances are first linguistically matched; structural matching is only applied
if the schemas exhibit sufficient structural similarity. There are several methods for

1 Towards Large-Scale Schema and Ontology Matching 23

linguistic matching including one that uses a virtual document per element consist-
ing of the name, comments, and instance values of the element. Rimom is among
the best performing prototypes in the OAEI contests until 2009.

4.2.4 Asmov

Automated semantic matching of ontologies with verification (ASMOV) proto-
type (Jean-Mary et al. 2009) is among the best performing systems at the recent
OAEI match contests. Its most distinctive feature is an extensive postprocess-
ing of the combined matcher results to eliminate potential inconsistencies among
the set of candidate correspondences. Five different kinds of inconsistencies are
checked including the avoidance of the so-called crisscross correspondences, e.g.,
to prevent that for a correspondence between classes ¢/ and cl’, there is another
correspondence mapping — a child of ¢/ to a parent of ¢/’

4.2.5 AgreementMaker

This ontology matching prototype is developed at the University of Illinois at
Chicago (Cruz et al. 2009). It provides a sophisticated GUI so that the user can
control the iterative execution of matchers. AgreementMaker was among the best
performing systems in the OAEI 2009 contest.

4.2.6 Harmony

Harmony is the match component within the Open Information Integration project on
developing a publicly available infrastructure for information integration (Seligman
et al. 2010). It provides many of the known features of previous match prototypes
as well as a GUI. Instance-based matching is not yet supported. The combination of
matcher results uses a nonlinear combination of similarity values to favor matchers
with higher similarity values (Mork et al. 2008) as briefly discussed in Sect.3.3.
According to Smith et al. (2009), Harmony is able to match larger schemas with
about 1,000 elements each. However, so far, no detailed evaluation of Harmony’s
effectiveness and efficiency has been published.

5 Conclusions

We have provided an overview of selected approaches and current implementations
for large-scale schema and ontology matching. Commercial systems increasingly
support automatic matching but still have to improve much to better handle large
schemas. The current research prototypes share many similarities, particularly a

24 E. Rahm

multimatcher architecture with support for combining linguistic, structural, and
instance-based matching. We discussed first approaches in several areas that seem
promising for large-scale matching, particularly partition-based matching, paral-
lel matching, self-tuning of match workflows, and reuse of previously determined
match mappings. Such techniques are not yet common in current match systems,
and more research is needed in all these areas.

Research on holistic (n-way) schema matching mostly focused on very simple
schemas such as web forms. More research is therefore needed for n-way matching
(clustering) of more complex schemas. An important variation of this problem is
searching the most similar schemas for a given schema. Within advanced match
strategies for large schemas, such search approaches are also needed for finding
relevant subschemas.

Fully automatic schema matching is possible and may provide sufficient match
quality for simple schemas such as web forms. This is especially the case for the
idea of probabilistic mediated schemas considering several alternatives for cluster-
ing attributes. For large schemas and ontologies, on the other hand, user interaction
remains necessary to configure match workflows, perform incremental matching on
selected schema portions, and to provide feedback on the correctness of match can-
didates. Integrating the various match techniques within a usable and effective data
integration infrastructure is challenging and also requires much more work.

References

Alexe B, Gubanov M, Hernandez MA, Ho H, Huang JW, Katsis Y, Popa L, Saha B, Stanoi I (2009)
Simplifying information integration: Object-based flow-of-mappings framework for integra-
tion. In: Proceedings of BIRTEO8 (business intelligence for the real-time enterprise) workshop.
Lecture Notes in Business Information Processing, vol 27. Springer, Heidelberg, pp 108-121

Algergawy A, Schallehn E, Saake G (2009) Improving XML schema matching performance using
Priifer sequences. Data Knowl Eng 68(8):728-747

Algergawy A et al. (2010) Combining schema and level-based matching for web service discovery.
In: Proceedings of 10th international conference on web engineering (ICWE). Lecture Notes
in Computer Science, vol 6189. Springer, Heidelberg, pp 114-128

Aumueller D, Do HH, Massmann S, Rahm E (2005) Schema and ontology matching with
COMA++. In: Proceedings of ACM SIGMOD conference, demo paper. ACM, NY, pp 906—
908

Avesani P, Giunchiglia F, Yatskevich M (2005) A large scale taxonomy mapping evaluation. In:
Proceedings of international conference on semantic web (ICSW). LNCS, vol 3729. Springer,
Heidelberg, pp 67-81

Bellahsene Z, Duchateau F (2011) Tuning for schema matching. In: Bellahsene Z, Bonifati A,
Rahm E (eds) Schema matching and mapping, Data-Centric Systems and Applications Series.
Springer, Heidelberg

Bellahsene Z, Bonifati A, Duchateau F, Velegrakis Y (2011) On evaluating schema matching and
mapping. In: Bellahsene Z, Bonifati A, Rahm E (eds) Schema matching and mapping, Data-
Centric Systems and Applications Series. Springer, Heidelberg

Bernstein PA, Melnik S, Petropoulos M, Quix C (2004) Industrial-strength schema matching. ACM
SIGMOD Rec 33(4):38-43

1 Towards Large-Scale Schema and Ontology Matching 25

Bernstein PA, Melnik S, Churchill JE (2006) Incremental schema matching. In: Proceedings of
VLDB, demo paper. VLDB Endowment, pp 1167-1170

Chen K, Madhavan J, Halevy AY (2009) Exploring schema repositories with Schemr. In:
Proceedings of ACM SIGMOD Conference, demo paper. ACM, NY, pp 1095-1098

Cruz IF, Antonelli FP, Stroe C (2009) AgreementMaker: Efficient matching for large real-world
schemas and ontologies. In: PVLDB, vol 2(2), demo paper. VLDB Endowment, pp 1586-1589

Das Sarma A, Dong X, Halevy AY (2008) Bootstrapping pay-as-you-go data integration systems.
In: Proceedings of ACM SIGMOD conference. ACM, NY, pp 861-874

Das Sarma A, Dong X, Halevy AY (2011) Uncertainty in data integration and dataspace support
platforms. In: Bellahsene Z, Bonifati A, Rahm E (eds) Schema matching and mapping, Data-
Centric Systems and Applications Series. Springer, Heidelberg

Do HH (2006) Schema Matching and Mapping-based Data Integration. Dissertation, Dept of
Computer Science, Univ. of Leipzig

Do HH, Rahm E (2002) COMA - A System for Flexible Combination of Schema Matching
Approaches. Proceedings VLDB Conf., pp 610-621

Do HH, Rahm E (2007) Matching large schemas: Approaches and evaluation. Inf Syst 32(6):
857-885

Do HH, Melnik S, Rahm E (2003) Comparison of schema matching evaluations. In: web, web-
services, and database systems, LNCS, vol 2593. Springer, Heidelberg

Doan A, Madhavan J, Dhamankar R, Domingos P, Halevy AY (2003) Learning to match ontologies
on the semantic web. VLDB J 12(4):303-319

Dong X, Halevy AY, Madhavan J, Nemes E, Zhang J (2004) Similarity search for web services. In:
Proceedings of VLDB conference. VLDB Endowment, pp 372-383

Duchateau F, Coletta R, Bellahsene Z, Miller RJ (2009) (Not) yet another matcher. In: Proceedings
of CIKM, poster paper. ACM, NY, pp 1537-1540

Ehrig M, Staab S (2004) Quick ontology matching. In: Proceedings of international conference
semantic web (ICSW). LNCS, vol 3298. Springer, Heidelberg, pp 683-697

Ehrig M, Staab S, Sure Y (2005) Bootstrapping ontology alignment methods with APFEL. In:
Proceedings of international conference on semantic web (ICSW). LNCS, vol 3729. Springer,
Heidelberg, pp 1148-1149

Elmagarmid AK, Ipeirotis PG, Verykios VS (2007) Duplicate record detection: A survey. IEEE
Trans Knowl Data Eng 19(1):1-16

Elmeleegy H, Ouzzani M, Elmagarmid AK (2008): Usage-based schema matching. In: Proceed-
ings of ICDE conference. IEEE Computer Society, Washington, DC, pp 20-29

Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Heidelberg

Euzenat J et al. (2009) Results of the ontology alignment evaluation initiative 2009. In: Proceedings
of the 4th international workshop on Ontology Matching (OM-2009)

Fagin R, Haas LM, Herndndez MA, Miller RJ, Popa L, Velegrakis Y (2009) Clio: Schema mapping
creation and data exchange. In: Conceptual modeling: Foundations and applications. LNCS, vol
5600. Springer, Heidelberg

Falconer SM, Noy NF (2011) Interactive techniques to support ontology mapping. In:
Bellahsene Z, Bonifati A, Rahm E (eds) Schema matching and mapping. Data-Centric Systems
and Applications Series. Springer, Heidelberg

Gligorov R, ten Kate W, Aleksovski Z, van Harmelen F (2007) Using Google distance to weight
approximate ontology matches. In: Proceedings WWW Conf., pp 767-776

Gross A, Hartung M, Kirsten T, Rahm E (2010) On matching large life science ontologies in
parallel. In: Proceedings of 7th international conference on data integration in the life sciences
(DILS). LNCS, vol 6254. Springer, Heidelberg

Gubanov M et al (2009) IBM UFO repository: Object-oriented data integration. PVLDB, demo
paper. VLDB Endowment, pp 1598-1601

Hamdi F, Safar B, Reynaud C, Zargayouna H (2009) Alignment-based partitioning of large-scale
ontologies. In: Advances in knowledge discovery and management. Studies in Computational
Intelligence Series. Springer, Heidelberg

26 E. Rahm

Hanif MS, Aono M (2009) An efficient and scalable algorithm for segmented alignment of
ontologies of arbitrary size.] Web Sem 7(4):344-356

He B, Chang KC (2006) Automatic complex schema matching across Web query interfaces: A
correlation mining approach. ACM Trans. Database Syst 31(1):346-395

He H, Meng W, Yu CT, Wu Z (2004) Automatic integration of Web search interfaces with WISE-
Integrator. VLDB J 13(3):256-273

Hu W, Qu Y, Cheng G (2008) Matching large ontologies: A divide-and-conquer-approach. Data
Knowl Eng 67(1):140-160

Jean-Mary YR, Shironoshita EP, Kabuka MR (2009) Ontology matching with semantic verifica-
tion. J Web Sem 7(3):235-251

Kappel G et al. (2007) Matching metamodels with semantic systems — An experience report. In:
Proceedings of BTW workshop on model management, pp 1-15

Kirsten T, Thor A, Rahm E (2007) Instance-based matching of large life science ontologies.
In: Proceedings of data integration in the life sciences (DILS). LNCS, vol 4544. Springer,
Heidelberg, pp 172-187

Koepcke H, Rahm E (2010) Frameworks for entity matching: A comparison. Data Knowl Eng
69(2):197-210

Koudas N, Marathe A, Srivastava D (2004) Flexible string matching against large databases in
practice. In: Proceedings of VLDB conference. VLDB Endowment, pp 1078—-1086

Lambrix P, Tan H, Xu W (2008) Literature-based alignment of ontologies. In: Proceedings of the
3rd International Workshop on Ontology Matching (OM-2008)

Lee Y, Sayyadian M, Doan A, Rosenthal A (2007) eTuner: Tuning schema matching software
using synthetic scenarios. VLDB J 16(1):97-122

LiJ, Tang J, Li Y, Luo Q (2009) RiIMOM: A dynamic multistrategy ontology alignment framework.
IEEE Trans Knowl Data Eng 21(8):1218-1232

Madhavan J, Bernstein P A, Rahm E (2001) Generic Schema Matching with Cupid. In: Proceedings
VLDB Conf., pp 49-58

Madhavan J, Bernstein PA, Doan A, Halevy AY (2005) Corpus-based schema matching. In:
Proceedings of ICDE conference. IEEE Computer Society, Washington, DC, pp 57-68

Mao M, Peng Y, Spring M (2008) A harmony based adaptive ontology mapping approach. In:
Proceedings of international conference on semantic web and web services (SWWS), pp 336—
342

Massmann S, Rahm E (2008) Evaluating instance-based matching of web directories. In: Proceed-
ings of 11th international Workshop on the Web and Databases (WebDB 2008)

Mork P, Seligman L, Rosenthal A, Korb J, Wolf C (2008) The harmony integration workbench.
J Data Sem 11:65-93

Nandi A, Bernstein PA (2009) HAMSTER: Using search clicklogs for schema and taxonomy
matching. PVLDB, vol 2(1), pp 181-192

Peukert E, Berthold H, Rahm E (2010a) Rewrite techniques for performance optimization of
schema matching processes. In: Proceedings of 13th international conference on extending
database technology (EDBT). ACM, NY, pp 453-464

Peukert E, Massmann S, Konig K (2010b) Comparing similarity combination methods for schema
matching. In: Proceedings of 40th annual conference of the German computer society (GI-
Jahrestagung). Lecture Notes in Informatics 175, pp 692-701

Pirro G, Talia D (2010) UFOme: An ontology mapping system with strategy prediction capabilities.
Data Knowl Eng 69(5):444-471

Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J
10(4):334-350

Rahm E, Do, HH, Massmann S (2004) Matching large XML schemas. SIGMOD Rec 33(4):26-31

Saha B, Stanoi I, Clarkson KL (2010) Schema covering: A step towards enabling reuse in
information integration. In: Proceedings of ICDE conference, pp 285-296

Saleem K, Bellahsene Z, Hunt E (2008) PORSCHE: Performance oriented SCHEma mediation.
Inf Syst 33(7-8):637-657

1 Towards Large-Scale Schema and Ontology Matching 27

SAP (2010) Warp10 community-based integration. https://cw.sdn.sap.com/cw/docs/DOC-120470
(white paper), https://cw.sdn.sap.com/cw/community/esc/cdg135. Accessed April 2010

Seligman L, Mork P, Halevy AY et al (2010) Openll: An open source information integration
toolkit. In: Proceedings of ACM SIGMOD conference. ACM, NY, pp 1057-1060

Shi F, Li J et al (2009) Actively learning ontology matching via user interaction. In: Proceedings
of international conference on semantic web (ICSW). Springer, Heidelberg, pp 585-600

Smith K, Morse M, Mork P et al (2009) The role of schema matching in large enterprises. In:
Proceedings of CIDR

Spiliopoulos V, Vouros GA, Karkaletsis V (2010) On the discovery of subsumption relations for
the alignment of ontologies. J] Web Sem 8(1):69—-88

Su W, Wang J, Lochovsky FH (2006) Holistic schema matching for web query interfaces. In:
Proceedings of international conference on extending database technology (EDBT). Springer,
Heidelberg, pp 77-94

Tan H, Lambrix P (2007) A method for recommending ontology alignment strategies. In: Pro-
ceedings of international conference on semantic web (ICSW). LNCS, vol 4825. Springer,
Heidelberg

Thor A, Kirsten T, Rahm E (2007) Instance-based matching of hierarchical ontologies. In: Proceed-
ings of 12th BTW conference (Database systems for business, technology and web). Lecture
Notes in Informatics 103, pp 436448

Zhang S, Mork P, Bodenreider O, Bernstein PA (2007) Comparing two approaches for aligning
representations of anatomy. Artif Intell Med 39(3):227-236

Zhong Q, Li H et al. (2009) A gauss function based approach for unbalanced ontology matching.
In: Proceedings of ACM SIGMOD conference. ACM, NY, pp 669-680

https://cw.sdn.sap.com/cw/docs/DOC-120470
https://cw.sdn.sap.com/cw/community/esc/cdg135

Chapter 2
Interactive Techniques to Support Ontology
Matching

Sean M. Falconer and Natalya F. Noy

Abstract There are many automatic approaches for generating matches between
ontologies and schemas. However, these techniques are far from perfect and when
the use case requires an accurate matching, humans must be involved in the process.
Yet, involving the users in creating matchings presents its own problems. Users have
trouble understanding the relationships between large ontologies and schemas and
their concepts, remembering what they have looked at and executed, understanding
output from the automatic algorithm, remembering why they performed an oper-
ation, reversing their decisions, and gathering evidence to support their decisions.
Recently, researchers have been investigating these issues and developing tools to
help users overcome these difficulties. In this chapter, we present some of the lat-
est work related to human-guided ontology matching. Specifically, we discuss the
cognitive difficulties users face with creating ontology matchings, the latest visual
tools for assisting users with matching tasks, Web 2.0 approaches, common themes,
challenges, and the next steps.

1 Introduction

As ontologies become more commonplace and their number grows, so does their
diversity and heterogeneity. As a result, research on ontology matching has become
a prominent topic in the Semantic Web and ontology communities. There are rig-
orous evaluations that compare the effectiveness of different algorithms [Euzénat et
al., 2009], and researchers have proposed a standard matching language [Euzénat,
2006]. As the results of the evaluations show, ontology matching is far from being
a fully automated task. In most cases where high precision is required, manual
intervention will be necessary to verify or fine-tune the matchings produced by the
automatic algorithms.

S.M. Falconer () and N.F. Noy
Stanford University, Stanford, CA 94305, USA
e-mail: sean.falconer @stanford.edu,noy @stanford.edu

Z. Bellahsene et al. (eds.), Schema Matching and Mapping, Data-Centric Systems 29
and Applications, DOI 10.1007/978-3-642-16518-4_2,
(© Springer-Verlag Berlin Heidelberg 2011

sean.falconer@stanford.edu, noy@stanford.edu

30 S.M. Falconer and N.F. Noy

In many areas of science, researchers are investigating how best to pair human
input with automated procedures. For example, in the area of intelligent robot
design, some researchers believe that the future of the field lies not in the devel-
opment of fully automated robots, but in the development of partially automated
ones [Coradeschi and Saffiotti, 2006]. Some tasks, such as classification and pattern
recognition, are very difficult and robots need help from humans in performing these
tasks. At the same time, robots can help humans with tedious and repetitive tasks.
Similarly, in ontology matching, humans have access to vast amounts of background
knowledge, which they can use to help make inductive judgments about potential
correspondences.

In general, potential matching correspondences produced by a matching tool
must be examined by a domain or ontology expert. The expert must determine
the correspondences that are correct, remove false positives, and create additional
correspondences missed by the automated procedure. This process is both time con-
suming and cognitively demanding. It requires understanding of both ontologies that
are being mapped and how they relate to each other. Furthermore, both the ontolo-
gies and the number of candidate matching correspondences that the tools produce
can be very large. Researchers have largely focused on improving the performance
of the algorithms themselves. However, recently there has been a growing trend
toward a more human-centered approach to ontology matching.

Examining and supporting the symbiosis between tool and user has been gaining
more prominence and more tools that support a semiautomatic process are becom-
ing available. Shvaiko et al. discuss ten challenges for ontology matching, three of
which directly relate to the user: user involvement, explanation of matching results,
and social and collaborative ontology matching [Shvaiko and Euzénat, 2008]. One
approach researchers have been exploring to help support user involvement is infor-
mation visualization techniques, such as those used by AlViz [Lanzenberger and
Sampson, 2006] and COGZ [Falconer and Storey, 2007b]. The International Work-
shop on Ontology Alignment and Visualization' was created as a platform for
researchers to share and explore new visual techniques to support the matching
process. Another growing trend is the use of Web 2.0 approaches to help support
the social and collaborative matching process. Researchers are exploring the util-
ity of crowdsourcing to help facilitate the process of generating many matching
correspondences [Noy et al., 2008, Zhdanova, 2005].

These new trends in ontology matching research offer an exciting and interesting
alternative to completely manual or completely automated processes. The research
emphasis is shifting. New research is investigating how to gain a better understand-
ing of the cognitive demands placed on the user during a matching procedure, how
communities of users can work together to create more comprehensive and precise
matchings, and how to make the most effective use of automation. Research on
these topic areas is still in its infancy, but the future of the field lies in a joint effort
between human and machine.

Uhttp://www.ifs.tuwien.ac.at/?mlanzenberger/OnAV 10/.

http://www.ifs.tuwien.ac.at/?mlanzenberger/OnAV10/

2 Interactive Techniques to Support Ontology Matching 31

In this chapter, we explore research and tools that support the visual and inter-
active ontology matching process. We begin by discussing the cognitive difficulties
with creating an ontology matching (Sect. 2). In Sects. 3—5, we discuss interactive
tools for ontology matching, schema matching, and Web 2.0 approaches. In Sect. 6,
we present several user-oriented evaluations and experiments that researchers in this
area have carried out. We discuss common themes in Sect. 7, challenges and future
directions for this field in Sect. 8. We conclude the chapter in Sect. 9.

2 Why is Ontology Matching Difficult?

Reconciling different ontologies and finding correspondences between their con-
cepts is likely to be a problem for the foreseeable future. In fact, every self-
assessment of database research has listed interoperability of heterogeneous data
as one of the main research problems [Bernstein and Melnik, 2007]. Despite years
of research on this topic, ontology and schema matching is far from being a fully
automated task. In general, a user must interact with an ontology-matching tool
to examine candidate matchings produced by the tool and to indicate which ones
are correct, which ones are not, and to create additional correspondences that the
tool has missed. However, this validation process is a difficult cognitive task. It
requires tremendous patience and an expert understanding of the ontology domain,
terminology, and semantics.

Obtaining this understanding is very difficult. Languages are known to be locally
ambiguous, meaning that a sentence may contain an ambiguous portion that is no
longer ambiguous once the whole sentence is considered [PPP, 2006]. Humans use
detailed knowledge about the world to infer unspoken meaning [NLP, 2002]. How-
ever, an ontology often lacks sufficient information to infer the intended meaning.
The concepts are largely characterized by a term or a small set of terms, which may
be ambiguous.

The underlying data format that is used for specifying the ontology also intro-
duces potential problems. The language used (e.g., OWL, RDF, XSD) constrains
the expressiveness of the data representation. For example, many formats lack
information relating to units of measure or intended usage [Bernstein and Melnik,
2007].

Ontologies are also developed for different purposes and by users with potentially
opposing world views or different requirements. As a result, two ontologies may
describe the same concept with different levels of granularity or the same concept
with different intended application or meaning. All of these issues make discovering
and defining matchings a very challenging problem for both man and machine.

As a consequence, to create accurate matchings in a reasonable amount of time,
users and tools must be paired together. This process, usually referred to as semi-
automatic ontology matching, typically follows an iterative process that is similar
to the one that we describe in Fig.2.1. Recently, this approach has received greater
attention and an increasingly larger number of semiautomatic tools are becoming

32 S.M. Falconer and N.F. Noy

Select Alignment Potential
ontologies algorithm mappings

Verified
mappings

Mapping
complete

Fig. 2.1 Example of semiautomatic matching process. A user is involved in iteration with the tool.
As the user evaluates potential matching correspondences, their decisions are used by the tool to
make other suggestions about correspondences. This iteration continues until the user determines
the matching is complete

available (more discussion in Sect. 3). Beyond tool design, some researchers have
started to carry out behavioral studies in an attempt to identify the cognitive
difficulties with validating matching correspondences.

Falconer and Storey have used results from several studies to propose a “cog-
nitive support framework” [Falconer and Storey, 2007b, Falconer, 2009] that helps
guide the design of ontology matching tools. They also used their experiments to
uncover several themes that describe human and tool limitations: human memory
limitations, decision-making difficulty, problems searching and filtering for infor-
mation, issues with navigating the ontologies, understanding the progress of the
task, and trusting the results from the automated procedure [Falconer and Storey,
2007a].

In another study, Yamauchi demonstrated that humans tend to bias their induc-
tive judgments based on class-inclusion labels [Yamauchi, 2007]. In this work,
Yamauchi carried out several studies examining how human subjects classify prop-
erties and class-labels for randomly generated cartoon images. Using the results
from these experiments, he drew several interesting conclusions directly relating to
ontology construction and matching. For example, because people tend to overuse
class-labels for comparison, even when other information is available, the impact
between the similarity of concept labels between two ontological concepts may bias
the decision made by user of an ontology matching tool.

Research exploring the cognitive challenges of resolving data heterogeneity is
still very new. Such research provides theoretical foundations for the design and
evaluation of ontology matching tools. In the next three sections, we provide a short
survey of different tools and approaches for ontology and schema matching.

2 Interactive Techniques to Support Ontology Matching 33

3 Existing Tools

Researchers have developed a number of tools that enable users to find matching
correspondences between ontologies. For example, Euzenat et al. discuss more than
20 different algorithms and tools [Euzénat et al., 2004b]. In this section, we focus
our discussion on semiautomatic tools that follow an iterative process that is similar
to the one shown in Fig. 2.1. The user selects the ontologies to be mapped, an algo-
rithm runs to compute an initial set of correspondences, the user interacts with the
tool to validate the matching correspondences, and the tool uses this information to
provide other possible matches. Some of the projects that we discuss in this chapter
are no longer under active development; and some of the projects are still in the
early research prototype phase and are not available for public use. However, each
system provides an interesting example of the variety of approaches available for
supporting semiautomatic ontology matching.

COMA++ [Do, 2006] automatically generates matchings between source and
target schemas (XML or OWL), and draws lines between potentially matching
terms (see Fig.2.2). Users can define their own term matches by interacting with
the schema trees. Hovering over a potential correspondence displays a confidence
level about the match as a numerical value between zero and one. COMA-++

Mapping1 3
e Excel (XDR) 3 Noris (XDR))
Workspace | R ! -
%aﬂ ;B x o Header shipmancDate : date
e - o Icems customerOrderRef : string
i E& &| & Footer _—___.__________,__-—-—-""f‘l:wulc:!o
e] T Invfl.ce':o ¥ Oruae\fnuon
Excel (2) - ¥ Contact referencelio : scring
lzl contactiame : atring name : string
companyliae : string registrationo : string
e-mail : string VATRegistrationle : string
telephone ti\atring url : string
¥ Address T Addreas
streetl @ string™— : string
T ' streetl : atring == g 3 string
!] strestd ¢ oatring—— - : atring
= streetd : at:i—:'/ . postalCede @ string
o city @ stoing / country @ ostring
i " =
pos! E
. Change to Advanced
¢ DeliverTollf
4 ¢ ceontacy| ® Context (COMA default strategy) g
- 5 z
o cond Context Matcher COMA_OPT N
ey comp > ;
MA_OPT_ Il © Nodes i
xcel, Nori: Source Node Inl
Node Matcher NAMETYPE |-
J Reuse (use existing mapping paths)
| ——
| Search | ||l | RestoreDefaults || Ssave Save & Execute || Cancel l |
(Select a node fo display its comesp es =

Fig. 2.2 Screenshot of COMA++ interface

34 S.M. Falconer and N.F. Noy

& Metadataicmu_owl_01-nsunig) OWLClasses = B8 Properties | # Individuals | = Forms | Prompt
Source shots | Source instances ¥ Suggestions | User-defined mappings | Simple mapping I Target instances
Source classes S A X4 Target classes Target siots
7= ¥ || |type filver vext 2 Lot
= || Name Argl Arg2 Pasams
map @ Fecearch cmu_owlDl-r e Research wmd_oml01-r
map P cmu_owl_0l-nsi e d_owl_01-nst
map @ Organisation cm_owl_ (g n umd_omi_{
map @ Mast « cmu_owl,8

map Th cmuy_owl_01=nse

umd_owl_01-n
st umd_owl_01-
md_owl_01-nsu.
wrnd_cwl_01-ns

umd_ow_01 H
n umd_ond_01-n

map & Postdos emu_owl_00-n:
map @ e emu_owl_01
map @7 emu_owl_01
map F ty emu_owl_01-a
map @ Publication emu_owl_018
map @ Fublication cmu_owl_ 01

md_owi_01-n
umd_owl_01-nit
umd_onl 01=nie

map wcton cmu_owd_01=
map @ Article cmu_owi_0l-nsu

mao_ & FhdThess cmu owl 01-

frames have identical names

¥ YT

) o Create Mapping

Fig. 2.3 Screenshot of PROMPT plugin while matching two university ontologies

contains several different matching algorithms in its library and the library is exten-
sible. It also assumes interaction with a user: as a user approves of certain matches,
COMA ++ uses this information to make further suggestions.

PrROMPT [Noy and Musen, 2003] (see Fig.2.3) is a plugin for the popular
ontology editor Protégé.? The plugin supports tasks for managing multiple ontolo-
gies including ontology differencing, extraction, merging, and matching. PROMPT
begins the matching procedure by allowing the user to specify a source and tar-
get ontology. It then computes an initial set of candidate correspondences based
largely on lexical similarity between the ontologies. The user then works with this
list of correspondences to verify the recommendations or to create correspondences
that the algorithm missed. Once a user has verified a correspondence, PROMPT’s
algorithm uses this information to perform structural analysis based on the graph
structure of the ontologies. This analysis usually results in further correspondence
suggestions. This process is repeated until the user determines that the matching is
complete. PROMPT saves verified correspondences as instances in a matching ontol-
ogy [Crubézy and Musen, 2003]. The matching ontology provides a framework for
expressing transformation rules for ontology matchings. The transformation rule
support depends on the matching plugin and ontology used. In the default matching
plugin, the matching ontology simply describes the source and target correspon-
dence components and metadata, such as the date, who created the correspondence,
and a user-defined comment.

Like COMA++, PROMPT is extensible via its own plugin framework [Falconer
et al., 2006]. However, while COMA++ supported extensibility only at the

2 http://protege.stanford.edu.

http://protege.stanford.edu

2 Interactive Techniques to Support Ontology Matching 35

Visualization
support for
comparing

concepts

A |
. Algorithm for Presentation Fine-tuning
initial of candidate (and saving (
comparison mappings 5

of mappings |

Execution
of mappings

Iterative
comparison
algorithm

Fig. 2.4 Configurable steps in the PROMPT framework. Developers can replace any component in
the figure with their own implementation

algorithm level, PROMPT supports a much more comprehensive set of extensions. It
decomposes the matching process into several steps: an algorithm for comparison,
the presentation of matching correspondences, fine-tuning and saving of correspon-
dences, and execution of a matching (see Fig.2.4). These steps represent plugin
extension points in PROMPT: a new plugin can replace or augment any of these
steps.

COGZ is an interactive visual plugin for PROMPT. Figure 2.5 presents the main
COGZ interface. Like COMA++, COGZ uses a visual metaphor for the represen-
tation of matching correspondences. Candidate correspondences are represented by
dotted, red arcs, while validated correspondences are represented by solid, black
arcs. The tool supports incremental search and filtering of both source and target
ontologies and generated correspondences. For example, as a user types in a search
term for the source ontology, after each keystroke, the tree representation of the
ontology is filtered to show only terms and hierarchy that matches the search cri-
teria. Other filtering is available that allow a user to focus on certain parts of the
hierarchy or help hide unwanted information from the display.

COGZ uses highlight propagation to assist users with understanding and navigat-
ing matching correspondences. When a user selects an ontology term, all matchings
except those relevant to the selected term are semitransparent, while the relevant
matchings are highlighted. To support navigation of large ontologies, a fish-eye
zoom is available. The fish-eye zoom creates a distortion effect on the source and
target trees such that selected terms are shown in a normal font size while other
terms are shown progressively smaller depending on their relevance to the selected
values (see Fig. 2.6).

Similar to PROMPT, AlViz [Lanzenberger and Sampson, 2006] is a plugin for
Protégé, however the tool is primarily in an early research phase. AlViz was devel-
oped specifically for visualizing ontology alignments. It applies multiple-views

36 S.M. Falconer and N.F. Noy

] o & HEE 4 « mefégé

* w0 -nsunia. J . Properties | 4 Indhviduals | S Forms | Frompr | @ jambabera
| — - @i:= F1 D% o] o] [N .
e filertest 4 5:.9; filer 161

[a v s ® Preprimt -

1 B Director © ;

® Fromotion
v ® Fauny €
8 3 ¥ @ Fublication €
¥ @ Research
® Adventisgmern
® Posides ©

@ Anicle ™

& Bk ©

® Dictionary

8 Ednerial

® Maewal

9 Periodical

9 Proceedings €

Industrial_Mission
® Month
@ Office

® Reguiution
@ specificasion

® Technicalfieport
» ® Organiswion © 7 o
Person € » ® Thei
| & [» UnafficalPubication
» @ Project - 9 refs_c 4
¥ @ Publication € - 8 reh_
o Articie™ T o Review
2 —- Phonecal
LA P ——— | I B
» Frocedings € =
® Sprech
y TechRepart
® Conference
» @ Thesis € W
) Besearch Delwesables
& ® Locution ©
= Research_Croun —
ey b @ PhyscaObj |
- p S - e =
av
vy fiter test
Hame Argl Arg2 Farams
== ATCh W02 -Rsumig 3 wmid_owl_01 -nsuniq -
e T e w01 -nsunia d_ w0 -nsuniq
m “rous emu_owl_01 -niumig i w01 i
mw conus_ow_03-nsunia + o owd_03 =rsunig
miw ® Crpasation cmu_ow_01 -nsuniq ® Orgunization umd_ow 01 -nsuniq -

of Create Mapping

Fig. 2.5 The COGZ perspective in PROMPT. (A) and (B) show the source and target ontologies.
Concepts with “C” icons represent terms with candidate correspondences that were discovered
automatically, while concepts with “M” icons (e.g., Article) are terms that have been validated and
mapped. (C) shows a visual representation of correspondences. (D) shows the main toolbar. Each
ontology has a set of buttons for applying filters, moving through the correspondences, and repre-
senting the overall progress. Finally, (E) shows three tabs. The first tab displays all the candidate or
suggested correspondences found automatically. The second tab displays only the correspondences
validated by the user. The final tab displays a side by side visual comparison between the concepts
selected in the source and target ontologies

through a cluster graph visualization along with synchronized navigation within
standard tree controls (see Fig.2.7). The tool attempts to facilitate user under-
standing of the ontology matching results [Lanzenberger and Sampson, 2006] by
providing an overview of the ontologies in the form of clusters. The clusters rep-
resent an abstraction of the original ontology graph; moreover, clusters are colored
based on their potential concept similarity with the other ontology.

OWL Lite Alignment (OLA) is a tool for automated matching construction as
well as an environment for manipulating matching correspondences [Euzénat et al.,
2004a]. The tool supports parsing and visualization of ontologies, automated com-
puting of similarities between ontology entities, manual construction, visualization,
and comparison of matching correspondences (see Fig.2.8). OLA supports only
OWL Lite ontologies and uses the Alignment API specified in Euzénat [2006] to
describe a matching. The matching algorithm finds correspondences by analyzing

2 Interactive Techniques to Support Ontology Matching 37

ey ogr_ontciogheviemsd_owd_01-nausipee. WL 1 ROF file)

™ o P e

IRRF R

Fig. 2.6 Example of COGZ fisheye distortion effect

the structural similarity between the ontologies using graph-based similarity tech-
niques. This information is combined with label similarity measures (e.g., Euclidean
distance, Hamming distance, substring distance) to produce a list of matching
correspondences.

Muse is a matching design wizard that uses data examples to help guide a user
through the matching design process [Alexe et al., 2008]. Like AlViz, Muse is still
in the early research phase and is not available for public download. The Muse tool
takes a different approach to user support by attempting to compile a small set of
yes/no questions that a designer can answer. The answers allow Muse to infer the
desired semantics of a potential matching correspondence. Muse also constructs
examples based on ontology instance data to help a user disambiguate a potential
correspondence with multiple interpretations.

The NeOn toolkit [Le Duc et al., 2008], developed as an Eclipse plugin,’ is an
environment for managing ontologies within the NeOn project.* NeOn supports run
time and design time ontology matching support and can be extended via plugins.
The toolkit includes a matching editor called OntoMap, which allows a user to create
and edit matchings (see Fig.2.9). Similar to the previously mentioned tools, NeOn
supports OWL ontologies; however it also supports RDF and F-Logic. The toolkit
can convert a variety of sources (e.g., databases, file systems, UML diagrams) into
an ontology to be used for matching.

3 http://www.eclipse.org.
4 http://www.neon-project.org.

http://www.eclipse.org
http://www.neon-project.org

38 S.M. Falconer and N.F. Noy

File Ecit Project OWL Code Window Az Tools Hélp

} € of T S e 2w B EE s . merégé
OWLClasses mm Properfies = Forms ;’iv’mi;m;lnﬁ 7; u;n;a; Foam 77;1\\: =
8] = = = » £ £ = e 2 v K v ShowLabels (v Show Teoltios Undo Pedo Load Save
Table view = Troe view Conepts | Data Propedes | Object Popertes. | Instnoes
& tourismd & fourisma 1] -

owd Thing = %

v @01 Rool o
> @p1Dng o
» @ plimmaterieles =

) 0 9
= B p1Racumiches_Konzep! o

v @ p1 Stuation O
v @ piEreignis

v B p1 Fregeitangebol ‘«9‘
» B ptAusieg QO'
(3 a1 Spot
» @ o1 Wanderung o

» I p1:Uniaub
‘] i p § d E
& tourismB
owl Thing - @ tourismi I8 A -
v @ piRoat

» @ p1:Ding
» @ plimmatenelies
P — = D e O
v @ piSitustion 0 -]
v @ pi Ereigris 7
» @ P Buchung & %oo [+]
» B 01 Freizeitangebot F o Q
» 1) p1Geschichte %
> @01 Reise (®)] q;%ﬂ
R JURUET
» B 01 Veranstaltung o [®]

4 [n' oo

Fig. 2.7 Screenshot of AlViz plugin while matching two tourism ontologies [Lanzenberger and
Sampson, 2006]

These are just a few of the visual and interactive tools available for ontology
matching. In the next section, we discuss similar tools that have been developed to
support the related problem of schema matching.

4 Schema Matching

Typically in schema matching the goal is to map entities from relational database
schemas, XML schemas, Web catalogs, or directories rather than entities of an
ontology. While the process of schema matching is very similar to the process of
ontology matching, there are some significant differences. For example, there are
fundamental differences in terms of the representational semantics of a database
schema versus an ontology. An ontology is a representation of the concepts for a
domain of discourse, which is often developed independent from an application.
A database or XML schema is usually modeled to represent data with a particu-
lar application in mind. Moreover, ontologies are often constructed and published

2 Interactive Techniques to Support Ontology Matching 39

=loix|
Cinwves | esncts | Pations | Vinsmtraton | aigpesent | Algrent Vaustaston | Aigreerts Comparion | Algresert Producten
B | T ————— L |
s
e IR
— = - @
jar==rTa)
g
1 : ﬂ-‘-xf-w g
,,,{. ,...“,,.‘,
e -
4l | 2]

Fig. 2.8 Screenshot of OLA visualization of an OWL ontology

publicly with sharing in mind. In contrast, schemas are often internal to a particular
application and are not available for others to consume or re-use. In terms of match-
ing, the focus in ontology matching is usually to create semantic links between two
independent ontologies that can later be used for various applications. With data-
specific schemas, data translation or integration is often the focus. Thus, a lot of
schema-matching tools support sophisticated methods for constructing transforma-
tion rules to translate data from a source schema to a target. Finally, while ontology
matching has primarily been confined to research laboratories, there is a number of
commercial tools available for schema matching. Microsoft, IBM, and Oracle are
just a few of the companies that have commercial tools available.

Many of these tools have been developed through successful collaborations
between researchers and industry. Clio, one of the first and most sophisticated
schema matching tools, was a research prototype developed through a collaboration
at IBM’s Almaden Research Center and the University of Toronto [Miller et al.,
2001]. Clio can automatically generate a view to reformulate queries from one
schema to another or transform data from one representation to another to facilitate
data exchange.

Like the previously discussed ontology matching tools, Clio proposes a semi-
automatic approach and supports a visual matching representation similar to
COMA++, CoGZ, and OntoMapper (see Fig.2.10). Users can draw arrows

40 S.M. Falconer and N.F. Noy

[OTr—— =
[Srmoppingt 159915213125
Sources: [ars T comain | mocle [Trpe
Seurcel FE__thles__pub_id_ 01453508 tiles Tkkp: oo, pubs. de" @™ Relskion
Torgeti pame Domsin Type
[has_Pubicher [Bock [kation
Transformation:
al J _]
Propertics | A% Hopping View £ S&|RTTH
= 2% TRz e pubs. de” =i 0 TTREpf v, NewOrkel ong
® authors C] = (@ Bock
4 @ publishers o—Q @, 156N
1 (8 tileauthor &, Tile
= thies ——Q- @, has_futhor
@, thies_sdvance Q. @, has_Publsher
QL titles_notes D has_Topic
@, titles_price (3 Cook_Boak
2, titles_pub_id #-(Scieritific_Book
@y tles_pubdate 5B Trovel_Guide
@, tbee_royaky = (@ Pereon
Q) tiies_title 2 Name
1 tithes_title_id D is_expest_in_Topic
@ thies_type #- (@ Author
QL tdos_ytd_salos (@ Profossor
@, FK_thles_ e id_ 014905C8 Q—Q [C] = @ Publsher
o Name
D is_expert_in_Topic
® Topic

Fig. 2.9 Screenshot of NeOn toolkit matching editor [NEOS8, 2008]

between the source and target schema elements and these arrows are interpreted as
matchings and translated into a query. The heart of Clio is its incremental matching
engine, which uses information about the matching that is input from a user to infer
and re-rank correspondences. The Clio project has been in development since 1999,
and a product version is now available as part of the Rational Data Architect.’

MapForce is part of Altova’s XML suite of tools.® Similar to Clio, users can
draw matching correspondences between the source and target schemas and these
are used to automatically generate queries to support data integration. For XML
and database matchings, the matching can be saved as XSLT, XQuery, or generated
as programming language code (e.g., Java). MapForce supports a feature to “auto
connect matching children.” When a parent element is manually connected, children
with the same name are automatically mapped.

Similar to MapForce, the Stylus Studio contains an XML matching tool that sup-
ports visual matching between XML, relational databases, and web service data.”
Users can drag and drop lines between source and target elements and matching

3 http://www-01.ibm.com/software/data/optim/data-architect/.
6 http://www.altova.com/mapforce.html.
7 http://www.stylusstudio.com/xm]_to_xml_mapper.html.

http://www-01.ibm.com/software/data/optim/data-architect/
http://www.altova.com/mapforce.html
http://www.stylusstudio.com/xml_to_xml_mapper.html

2 Interactive Techniques to Support Ontology Matching 41

IS [EIE!
69 arce] Tt g croma v |, |

il statisticsDB: Record
Sat *
= B cityStatistics: Record
e]
= Set -
\ﬁ;ﬂ organization: Record
\° B od g

f cname (uiog)

Set
= HEH funding: Record
| — e gid (uring)

B proj (ing—sg

. = EH project: Record
B name (ring

Evmm,‘\
|

£

Fig. 2.10 Screenshot of the Schema Viewer from http://www.almaden.ibm.com/cs/projects/
criollo/(2009)

correspondences can be interpreted as XSLT or XQuery code. This tool also only
supports manual creation of matching correspondences.

Finally, like the Clio project, Microsoft’s BizTalk mapper® has had both a
research and commercial focus. BizTalk mapper provides similar functionality
as MapForce and the matching tools in the Stylus Studio, however, work from
Microsoft’s Research has been incorporated to allow the matching tool to work more
effectively for large schemas.

Robertson et al. discuss visual enhancements that were made to BizTalk mapper
as well as a user evaluation [Robertson et al., 2005]. The tool uses the same visual
metaphor for matching as many of the previously mentioned tools (see Fig.2.11)
and many of the visual enhancements are similar to features of the COGZ tool.

One of the problems with such a visual metaphor is that the interface can quickly
become unmanageable as the number of matchings increases. To help alleviate this
issue, Robertson et al. made several small enhancements to the interface that led
to great impact in terms of usability. First, like COGZ, highlight propagation was
incorporated to make it easier to follow the correspondences for a particular schema
entity. This feature simply highlights all the relevant correspondences for a selected
entity, while all other correspondences are made semitransparent. Moreover, auto-
scrolling was incorporated so that when a user selects a source entity, the target

8 http://www.microsoft.com/biztalk/en/us/product-documentation.aspx.

http://www.almaden.ibm.com/cs/projects/criollo/(2009)
http://www.almaden.ibm.com/cs/projects/criollo/(2009)
http://www.microsoft.com/biztalk/en/us/product-documentation.aspx

42 S.M. Falconer and N.F. Noy

& BizTalk Mapper

Flie Edt View Opbors
=2
Options = | (L5 Response BTS Mubiplexsd 8 35 Al Links | || Fid | /@ CommonLineResponse. xsd Options =
4 CoSignerZysarsAtiddress -~ CoSignet §2 =8
4 IntesestRateOpton Numbes [&
*i RepaymentOptiorCode Indes & &
= CobgresIFaegrPhonePref Persoridentiers 4! +
4 CoSigre:F orexgriPhonePrefin Buth & =
& StudeniMonthipH ousmngP ayment : — MName §2 &
4 StudenionthiyCredtP ayment i T ! g = Contacts §¥ #
) StuderiMorihiutoP syment - ; Chizership & &
5 StudentMonthiy€ dLoanPayment e Imenigration §
= StdeniMorthiOthePayment . s Resdency 4 &
&) CoSignesiMonthipHousingP syment . Employmertinformation §2 &
15 CoSigresIMonthiyCreditPayenent . - FrancialData §2 =
= T e <Sequence> [=
] CoSignerMonthiy€ dLoanPayment - IncomeData §2
5 CoSigrediMonthiyOthedPsyment o PaymentDats §* =
4 CoSpres2donthisHousingP syment 3 HousngMonthiyPayment [
4] CofgreMorthiCredeP mment CreditCardMonthlyPagment [
3 CoSignerMonthipusoP syment ¥ —— AutorncbileMonthlyP apment. [
% CoSigres2Monthiy€ dloanPayment L EducationaslLoanMonthlyPayment [
4 CoSigresMMonthiythesF syment OthesMonithlyP ayment [
5 CoSignerCrectiuthCode e ! DebiData &7 & a
3 CoSignedXredatushCode o CreditAuthoezstionindicator [A
3 CoSignerE Signindeatos . CradiUndaDifesentNamelndicator [f
& CoSigneeE Sigrindicatos L. HomeDwrerdndicator [
) Fille ~ gt e YearsAthddess []
< m— e=—=—, . | | == =S B
[L Fnd | i @1Ps/ | J[Fnd |

Fig. 2.11 Screenshot of the BizTalk mapper [Bernstein et al., 2006]

schema tree is automatically scrolled to display the area of the target most likely
to have a correspondence of interest. As with the COGZ tool, features were intro-
duced to help users deal with a large number of entities in the schema. Instead
of zooming or distortion effects, tree coalescing is used to automatically collapse
and hide entities deemed to be nonrelevant to the current selected and highlighted
elements. Finally, search enhancements were incorporated to support incremental
search. Unlike COGZ’s incremental search that filters to display results, BizTalk
mapper uses scrollbar highlighting. The scrollbar highlighting is used to mark areas
of the tree that have search hits.

Besides visualization research, the BizTalk mapper developers have incorpo-
rated research for workflow enhancements [Bernstein et al., 2006]. In this research,
Bernstein et al. argued that presenting all schema matching correspondences to a
user at once is too overwhelming and in fact annoys the user as they become frus-
trated sifting through all the false positives. Alternatively, the authors suggest that
an incremental approach is necessary, where a user can select an entity of interest
and then be presented with just the candidate correspondences for that entity. The
correspondences are ranked based on their match likelihood, and the user can easily
navigate between the candidates. Once a decision is reached and committed by the
user, this information can be incorporated into further incremental suggestions.

Each of these tools uses similar visual interaction techniques as the ontology
matching tools that we discussed in Sect. 3. However, there is more focus on data
translation rule construction than with the ontology-related tools. In the next section,
we discuss a different interaction approach, one based on creating matchings by
harnessing the power of a community of users.

2 Interactive Techniques to Support Ontology Matching 43

5 Web 2.0 Approaches

Besides interactive desktop tools, researchers have started to explore how to use
communities of users to develop ontology matchings collaboratively and to share
them. Crowdsourcing — outsourcing of a task to a community of motivated individ-
uals — has had huge success in projects such as Wikipedia and social bookmarking
sites such as Digg. Similar wisdom of the crowd approaches are beginning to gain
traction in the matching community.

Zhdanova and Shvaiko developed an online application to support and collect
community-driven matchings [Zhdanova, 2005]. The web application allowed users
to upload ontologies and to use online tools to perform an automatic matching
between the ontologies. Once the users generated the matching, they could save and
share it with other members of the community. Realizing that matchings can often
be subjective, the authors designed their application to collect information about the
users of the community in terms of their expertise, experience levels with particular
ontologies, and their goals for a particular matching. Other members of the com-
munity could therefore make informed decisions about whether or not to rely on an
uploaded matching. The application also stored information about the relationship
between users of the community.

Similarly, the OntoMediate Project, as part of their research initiative, has been
exploring to what extent collaborative online environments can help to facilitate
the specification of ontology matchings [Correndo et al., 2008b]. The prototype
system supports the matching of local ontologies to already uploaded ontologies
and matchings. Furthermore, the automated procedures make use of the existing
matchings to improve the quality of suggested matchings. The tools exploit social
interaction to help improve matching quality. Users of the community that work
with similar data can socially interact with each other to help validate matchings,
spot errors, provide feedback, and propose alternatives [Correndo et al., 2008a].

McCann et al. have also been exploring Web 2.0 approaches. They have proposed
an interesting approach to engage the user community [Robert McCann et al., 2008].
In their research, they have been investigating how to gather feedback from users in
the form of simple questions in which the answers are used to improve the accuracy
of the underlying algorithms. The goal is to pose questions to users that will have a
significant impact on the tool’s accuracy, as well as be questions that are easy for a
human to answer but difficult for a machine. For example, an automated procedure
may guess that a particular attribute is of type date, but may not be completely confi-
dent about the choice. User-expertise can be exploited in this circumstance to clarify
whether the particular attribute is a date or not, leading to significant improvement
in the algorithm choices.

In BioPortal,” an online tool for accessing and sharing biomedical ontologies,
researchers have been exploring the impact of supporting matchings as a form of
ontology metadata. Users can upload matchings that are generated offline as well as

% http://bioportal.bioontology.org/.

http://bioportal.bioontology.org/

44 S.M. Falconer and N.F. Noy

create matchings interactively through the web application. The online community
can comment on the matchings, discuss and refine them. There is currently more
than 30,000 such matchings available [Noy et al., 2008].

One important aspect of BioPortal’s matching support is that both the ontologies
and the matchings are available via web services. This is an important distinction
from the early work of Zhdanova and Shvaiko. By making the consumption of
these resources readily available to anyone that wishes to make use of this infor-
mation, it greatly lowers the barrier of entry for applications that need matchings.
The consuming applications do not need to be concerned with updates to the ontolo-
gies or matchings, as those are handled by BioPortal and immediately available via
the services. The services also potentially help promote feedback and improvement
about the matchings in BioPortal as it is in consuming application’s best interest to
improve the matchings. However, without the services, if the matchings were simply
downloaded, consumers could make local changes without contributing those back
to the community.

There is great potential with a community web-based approach for collecting and
sharing matchings. However, this area of study is still very new. To the best of our
knowledge, researchers have not yet performed any evaluation to determine whether
users can be motivated to contribute to such projects and whether such an approach
is feasible. In the next section, we survey existing user-based evaluations and exper-
iments that have been carried out in the ontology matching community. These
experiments have mostly been focused on the differences between two tools or how
users interpret the automatic suggestions computed by the underlying algorithms.

6 Experiments and Evaluation

As our survey of tools in this chapter demonstrates, the development of semi-
automatic tools for ontology matching has been gaining momentum. However,
evaluation of such tool is still very much in its infancy. There has been only a hand-
ful of user-based evaluations carried out in this area. All of these experiments have
involved the PROMPT system.

The first experiment was led by the authors of the PROMPT tool. The experiment
concentrated on evaluating the correspondence suggestions provided by the tool by
having several users merge two ontologies. The researchers recorded the number
of steps, suggestions followed, suggestions that were not followed, and what the
resulting ontologies looked like. Precision and recall were used to evaluate the qual-
ity of the suggestions: precision was the fraction of the tool’s suggestions that the
users followed and recall was the fraction of the operations performed by the users
that were suggested by the tool. The experiment only involved four users, which
was too small to draw any meaningful conclusions. The authors stated that, “[w]hat
we really need is a larger-scale experiment that compares tools with similar sets of
pragmatic criteria [Noy and Musen, 2002, p. 12].”

2 Interactive Techniques to Support Ontology Matching 45

Lambrix and Edberg [Lambrix and Edberg, 2003] performed a user evaluation of
the matching tools PROMPT and Chimaera [McGuinness et al., 2000] for the spe-
cific use case of merging ontologies in bioinformatics. The user experiment involved
eight users, four with computer science backgrounds and four with biology back-
grounds. The participants were given a number of tasks to perform, a user manual
on paper, and the software’s help system for support. They were also instructed to
“think aloud” and an evaluator took notes during the experiment. Afterward, the
users were asked to complete a questionnaire about their experience. The tools were
evaluated with the same precision and recall measurements as used in the previously
described PROMPT experiment [Noy and Musen, 2002], while the user interfaces
were evaluated using the REAL (Relevance, Efficiency, Attitude, and Learnability)
[Lowgren, 1994] approach. Under both criteria, PROMPT outperformed Chimaera,
however, the participants found learning how to merge ontologies in either tool
was equally difficult. The participants found it particularly difficult to perform
non-automated procedures in PROMPT, such as creating user-defined merges.

The third experiment evaluated PROMPT and the alternative user-interface
COGZ. The experiment focused on evaluating the cognitive support provided
by the tools in terms of their effectiveness, efficiency, and satisfaction [Falconer,
2009]. Researchers assigned eighteen matching and comprehension tasks to partic-
ipants that they had to perform using each tool (nine per tool). The evaluators then
measured the time that it took a participant to complete the task and accuracy with
which they performed the task. They measured the participant satisfaction via exit
interviews and the System Usability Scale [Brooke, 1996].

This last experiment was significantly more comprehensive than the previous
studies. Researchers used quantitative analysis to analyze the differences in par-
ticipant performance across the tasks. They used qualitative approaches to help
explain the differences in participant task performance. Furthermore, the design
of the experiment was guided by an underlying theory that the authors previously
proposed [Falconer and Storey, 2007b].

7 Discussion

In this section, we return to the ontology tools discussed in our survey. We pro-
vide a brief summary of these tools in terms of their visual paradigms, plugins, and
algorithm support (see Table 2.1).

Table 2.1 provides a high-level comparison between the surveyed tools. However,
more details of comparison and evaluation are needed. In the next section, we dis-
cuss this need more deeply as well as other challenges facing the area of interactive
techniques for ontology matching.

46

Table 2.1 Tool comparison

S.M. Falconer and N.F. Noy

Tool

Visual and interaction paradigm

COMA-++ Line-based representation of matchings.

PrROMPT

CoGgZ

AlViz

OLA

Muse

OntoMap

Tree-based representation of ontologies.
Strength of correspondence (number
between zero and one). Line color
indicates similarity strength

List representation of matchings.
Tree-based representation of ontologies.
Interaction is synchronized with the
source and target ontology trees.
Strength of correspondence (description
of the “reason for suggestion™)

Line-based representation of matchings.
Tree-based representation of ontologies.
Interaction is synchronized between
search, ontology browsing, and
correspondence browsing. Strength of
correspondence (description of the
“reason for suggestion”)

Tree-based representation of ontologies.
Small world graphs representation of
matchings. Interaction synchronized
with Protégé class browser. Color is
used to represent the types of
correspondences (e.g., equal, similar,

broader than). The cluster display can be

filtered by selecting particular entities in
the source

Graph-based visualization of ontologies.
The source and target ontologies can be
compared side by side. Interaction
synchronized between the two ontology
displays

Interaction based on wizards that help a
user disambiguate matching
correspondences

Drag and drop, line-based representation
for matchings. Filters for data
transformation can be created
interactively based on a particular
matching correspondence

Pluggable Algorithm support
Plugin support A variety of automatic
for matchers
matching
algorithms
Extensive Default algorithm is
plugin lexical based.
architecture Verification of a
correspondence is
used to infer new
suggestions
No pluggable FOAM algorithm
architecture
No pluggable A custom algorithm
architecture that combines
similarity metrics
based on lexical
similarity,
neighbor node
similarity, and
descriptive features
No pluggable A custom algorithm
architecture that incorporates
user feedback and
automatically
generates questions
and examples for
the user
No pluggable Does not support
architecture automatic
generation of
matchings

2 Interactive Techniques to Support Ontology Matching 47

8 Challenges and Next Steps

As our survey in this chapter demonstrates, workers are developing more and more
interactive approaches for supporting semiautomatic ontology matching. Many
desktop tools for both ontology and schema matching make use of a similar visual
representation of matchings — the line-based metaphor for representing a corre-
spondence. This approach is attractive because it is easy to understand what the
visualization is attempting to convey. However, previous studies have indicated large
variation in the usability of such an approach [Falconer and Storey, 2007a, Falconer,
2009]. It appears that visual support for matching is not as simple as copying this
particular interface style. It is a combination of features and support techniques that
assist with a user’s workflow that is ultimately needed to help matching users make
efficient and effective matching decisions.

Most of the tools in this research area have not been based on theoretical find-
ings from behavioral user studies. They have instead often evolved from a need
for some level of interaction with the underlying algorithm. However, without tool
evaluations or underlying theories, it is impossible to pinpoint the exact features
that lead to a more usable tool. Researchers must address this lack of evaluation and
theoretical foundations.

In 2005, a group of researchers started the Ontology Alignment Evaluation Ini-
tiative (OAEI)'” to help provide a standard platform for developers to compare and
evaluate their ontology matching approaches. OAEI provides benchmark match-
ing datasets that enable developers of different matching systems to compare their
results. At the moment, OAEI evaluates only automatic approaches. We must extend
this evaluation framework to compare and contrast interactive tools as well.

Such evaluation will require the development of a standardized comparison
framework and evaluation protocols. Comparing interactive tools is more chal-
lenging than comparing automatic tools for several reasons: First, the evaluation
of interactive tools is more expensive because it requires participation of domain
experts in creating the matchings. Second, participation of humans in the evaluation
introduces the inevitable bias and differences in the level of expertise and interests
of those users who perform the matchings. Familiarity with some tools might bias
users toward particular approaches and paradigms. Third, as our survey shows, the
tools vary significantly in the types of input that they take and the types of analysis
that they perform during the interactive stages. To compare the tools, we must not
only characterize these differences but also develop protocols that would allow us
to evaluate unique aspects of the tools, while keeping the comparison meaningful.
There will need to be common interfaces that would enable evaluators to provide
similar initial conditions for the tools, such as the initial set of matchings and to
compare the results, such as the matchings produced by the users.

This evaluation would also face some of the same challenges that OAEI faces.
For example, there are many strong tools from both industry and research, yet many
are not publicly available, making even informal comparisons challenging.

10 http://oaei.ontologymatching.org.

http://oaei.ontologymatching.org

48 S.M. Falconer and N.F. Noy

One of the contributions of OAEI was the development of a framework that iden-
tified various features of the tools, and enabled researchers to understand which
tools works best under which circumstances. We hope that a similar framework
can be developed for interactive tools, where there is an even greater variability
in capabilities and workflows supported by the tools. Some interaction and visual
paradigms only work well for small-scale ontologies, however, depending on a par-
ticular use case, these approaches may be appropriate. It would be useful to evaluate
this criteria and make such information publicly available.

The criteria for evaluation of matching tools needs to be specified. This should
include usability features, technical details about what ontologies are supported, as
well as criteria for evaluating the scalability of the approach.

Besides desktop tools, researchers are exploring web applications that make use
of crowdsourcing techniques. This paradigm introduces new directions in interac-
tion, such as social interactions between users, interactions to upload and share
ontologies, and services for consuming the matchings. This is a growing research
direction and it will take time to determine how to motivate users to contribute to
such projects. Also, evaluation will be important to help determine the quality of
matchings that are contributed in this way, compared to more closed settings.

Such an approach is very attractive given the success of many existing crowd-
sourcing applications. This technique is one possible approach for helping deal with
the scalability issue of generating a matching. It is a difficult and time-consuming
process for a single individual to create the entire matching between two large
ontologies. Crowdsourcing potentially alleviates some of this burden by allowing
any Web user to contribute.

Researchers who work on the tools for interactive ontology matching, must focus
more attention on the issues of scalability of the tools. As the sizes of the ontologies
grows (e.g., some biomedical ontologies have tens of thousands of classes), so do
the computational demands on the tools: they must be able to work with ontologies
that may not load into memory or may take huge computational resources to pro-
cess. Scalability of visualization techniques is another issue that must be addressed
by the tools. As the ontologies become larger, some of the visualization paradigms
that worked very well for small ontologies, with all the classes fitting on a single
computer screen, simply may not work for ontologies where only a small fraction
of the classes will fit on the screen. Both incremental matching [Bernstein et al.,
2006] and ontology modularization [Stuckenschmidt et al., 2009] are approaches
that potentially address this problem. They have the potential to help reduce cog-
nitive overload during the matching process by restricting the focus of the user to
particular areas of the ontology.

Finally, we still must explore new questions in interactive ontology matching,
such as how to match the expertise of the user with particular areas of the ontol-
ogy, where the best location to begin a matching process is, and how to best locate
candidate-heavy areas of two ontologies.

2 Interactive Techniques to Support Ontology Matching 49

9 Conclusion

There are many exciting questions to address in the growing research field of inter-
active techniques for matching. Industry and research has been attempting to address
problems of data heterogeneity for many years, yet this problem is ever more preva-
lent. When precision is necessary, we must rely on human reasoning and domain
expertise to help contribute to the matching process. Yet, it is important that we
assist users with the process by designing tools that give them access to the infor-
mation they require to make good decisions, by not hindering the process with
overwhelming information, and by automating parts of the procedure when pos-
sible. From a research perspective, it is important that we address the lack of tool
evaluation by carrying out more user-based evaluations. Heuristic evaluation proce-
dures could also be useful for comparing feature sets of matching tools. There also
needs to be more effort to make such findings and tools publicly available to help
with evaluation.

We need evaluation to help distinguish what features and approaches are useful
for particular use cases. We need theories to help explain these differences. Tools
encode a workflow process and this process must align with the user’s own internal
process. By aligning these processes, we will be able to assist rather than hinder the
user. We must incorporate a “human in the loop,” where the human is an essential
component in the matching process. Helping to establish and harness this symbi-
otic relationship between human processes and the tool’s automated process will
allow people to work more efficiently and effectively, and afford them the time to
concentrate on difficult tasks that are not easily automated.

References

Alexe et al. (2008) Muse: Mapping understanding and design by example. In: international
conference on data engineering, Cancun, 7-12 April 2008, pp 10-19

Bernstein PA, Melnik S (2007) Model management 2.0: Manipulating richer mappings. In: ACM
special interest group on management of data (SIGMOD), Beijing, China, September 2007.
ACM, NY, pp 1-12

Bernstein et al. (2006) Incremental schema matching. In: VLDB ’06: Proceedings of the 32nd
international conference on very large databases, Seoul, Korea, September 2006. VLDB
Endowment, pp 1167-1170

Brooke J (1996) Usability evaluation in industry. In: Jordan PW, Thomas B, Weerdmeester BA,
McClelland IL (eds) SUS: A quick and dirty usability scale. Taylor & Francis, London, pp
184-194

Coradeschi S, Saffiotti A (2006) Symbiotic robotic systems: Humans, robots, and smart
environments. IEEE Intell Syst 21(3):82-84. doi:http://doi.ieeecomputersociety.org/10.1109/
MIS.2006.59

Correndo et al. (2008a) Collaborative support for community data sharing. In: 2nd workshop on
collective intelligence in semantic web and social networks, Sydney, Australia, 12 December
2008

Correndo et al. (2008b) A community based approach for managing ontology alignments. In:
Ontology matching workshop, Karlsruhe, Germany, 26-30 October 2008

50 S.M. Falconer and N.F. Noy

Crubézy M, Musen MA (2003) Ontologies in support of problem solving. In: Staab S, Studer R
(eds) Handbook on ontologies. Springer, Heidelberg, pp 321-342

Do HH (2006) Schema matching and mapping-based data integration. PhD thesis, Department of
Computer Science, Universitit Leipzig

Euzénat J (2006) An API for ontology alignment (version 2.1). http://gforge.inria.fr/docman/view.
php/117/251/align.pdf

Euzénat et al. (2004a) Ontology alignment with OLA. In: Proceedings of the 3rd evaluation of
ontologies for the web (EON) workshop. CEUR-WS, pp 59-68

Euzénat et al. (2004b) State of the art on ontology alignment. deliverable d2.2.3. Tech. Rep. IST
Knowledge Web NoE

Euzénat et al. (2009) Results of the ontology alignment evaluation initiative 2009. In: Proceedings
of the 4th international workshop on Ontology Matching (OM-2009)

Falconer SM (2009) Cognitive support for semi-automatic ontology mapping. PhD thesis, Univer-
sity of Victoria

Falconer SM, Noy NF, Storey MA (2006) Towards understanding the needs of cognitive sup-
port for ontology mapping. In: International workshop on ontology matching at ISWC-2006,
Athens, GA

Falconer SM, Storey MA (2007a) Cognitive support for human-guided mapping systems. Tech.
Rep. DCS-318-1IR, University of Victoria, Victoria, BC, Canada

Falconer SM, Storey MA (2007b) A cognitive support framework for ontology mapping. In: Pro-
ceedings of international semantic web conference, Busan, Korea, November 2007. Springer,
Heidelberg, pp 114-127

Lambrix P, Edberg A (2003) Evaluation of ontology merging tools in bioinformatics. In:
Proceedings pacific symposium on biocomputing, pp 589-600

Lanzenberger M, Sampson J (2006) Alviz — a tool for visual ontology alignment. In: Proceedings of
the conference on information visualization (IV), London, July 2006. IEEE Computer Society,
Washington, DC, pp 430-440. doi:http://dx.doi.org/10.1109/1V.2006.18

Le Duc et al. (2008) Matching ontologies for context: The neon alignment plug-in. Tech. Rep.
Deliverable 3.3.2, IST NeOn IP, NeOn. ftp:/ftp.inrialpes.fr/pub/exmo/reports/neon-332.pdf

Lowgren J (1994) Human-computer interaction. What every system developer should know.
Chartwell-Bratt, England

McGuinness et al. (2000) The chimaera ontology environment. In: Proceedings of the 17th national
conference on artificial intelligence and 12th conference on innovative applications of artificial
intelligence, Austin, TX, 30 July-3 August 2000. AAAI CA, pp 1123-1124

Miller et al. (2001) The clio project: Managing heterogeneity. SIGMOD Record 30(1):78-83

NEOS8 (2008) Neon wiki. http://www.neon-toolkit.org/wiki/index.php

NLP (2002) An introduction to NLP. http://www.cs.bham.ac.uk/ pxc/nlpa/2002/AI-HO-
IntroNLP.html, http://www.cs.bham.ac.uk/~pxc/nlpa/2002/Al-HO-IntroNLP.html

Noy NF, Musen MA (2002) Evaluating ontology-mapping tools: Requirements and experience. In:
Proceedings of OntoWeb-SIG3 workshop, Siguenza, Spain, October 2002, pp 1-14

Noy NF, Musen MA (2003) The PROMPT suite: Interactive tools for ontology merging and
mapping. Int] Hum Comput Stud 59(6):983-1024

Noy et al. (2008) Collecting community-based mappings in an ontology repository. Tech. Rep.
BMIR-2008-1310, Stanford Center For Biomedical Informatics Research

PPP (2006) Performance, Parsing and Pragmatics. http://www.phon.ucl.ac.uk/home/marco/
Principles of Linguistics Handout2006-2007.htm

Robert McCann et al. (2008) Matching schemas in online communities: A web 2.0 approach.
In: Proceedings of the 2008 IEEE 24th international conference on data engineering. IEEE
Computer Society, Washington, DC, pp 110-119

Robertson et al. (2005) Visualization of mappings between schemas. In: CHI ’05: Proceedings of
the SIGCHI conference on human factors in computing systems, Portland, OR, April 2005.
ACM, NY, pp 431-439. doi:http://doi.acm.org/10.1145/1054972.1055032

Shvaiko P, Euzénat J (2008) Ten challenges for ontology matching. In: ODBASE, Monterrey,
Mexico, November 2008. Springer, Heidelberg, pp 1164-1182

http://gforge.inria.fr/docman/view.php/117/251/align.pdf
http://gforge.inria.fr/docman/view.php/117/251/align.pdf
ftp://ftp.inrialpes.fr/pub/exmo/reports/neon-332.pdf
http://www.neon-toolkit.org/wiki/index.php
http://www.cs.bham.ac.uk/~pxc/nlpa/2002/AI-HO-IntroNLP.html

2 Interactive Techniques to Support Ontology Matching 51

Stuckenschmidt et al. (2009) Modular ontologies — Concepts, theories, and techniques for
knowledge modularization. Springer, Heidelberg

Yamauchi T (2007) The semantic web and human inference: A lesson from cognitive science.
In: Proceedings of ISWC/ASWC, Busan, Korea, 13 November 2007. Springer, Heidelberg,
pp 609-622

Zhdanova AV (2005) Towards a community-driven ontology matching. In: K-CAP ’05,
Banff, AB, Canada, October 2005. ACM, NY, pp 221-222. doi:http://doi.acm.org/10.1145/
1088622.1088678

http://www.almaden.ibm.com/cs/projects/criollo/ (2009). Website on Clio and schema man-
agement

http://www.almaden.ibm.com/cs/projects/criollo/

Chapter 3
Enhancing the Capabilities of Attribute
Correspondences

Avigdor Gal

Abstract In the process of schema matching, attribute correspondence is the asso-
ciation of attributes in different schemas. Increased importance of attribute corre-
spondences led to new research attempts that were devoted to improve attribute
correspondences by extending their capabilities. In this chapter, we describe recent
advances in the schema matching literature that attempt to enhance the capabil-
ities of attribute correspondences. We discuss contextual schema matching as a
method for introducing conditional correspondences, based on context. The use
of semantic matching is proposed to extend attribute correspondences to results in
an ontological relationship. Finally, probabilistic schema matching generates mul-
tiple possible models, modeling uncertainty about which one is correct by using
probability theory.

1 Introduction

In the process of schema matching, attribute correspondence is the association of
attributes in different schemas. Creating attribute correspondences is considered
a basic step in schema matching. Attribute correspondences serve the community
well. For example, they are useful as input to a manual refinement, especially if not
limited to 1 : 1 constraint matching. Also, in ontology matching, attribute correspon-
dences are used to express the relatedness of product categories or bioinformatics
concepts. Finally, attribute correspondences can be used for recommending schema
matchings for restricting query search space or as input for ontology merging.
Given two schemas, a matcher first evaluates the level of confidence in the corre-
spondence of any pair of attributes. Then, decisions are made as to which attribute
correspondences should be retained as part of a schema matching outcome. In recent
years, new applications have emerged, putting more and more emphasis on the

A. Gal
Technion — Israel Institute of Technology, Haifa 32000, Israel
e-mail: avigal @ie.technion.ac.il

Z. Bellahsene et al. (eds.), Schema Matching and Mapping, Data-Centric Systems 53
and Applications, DOI 10.1007/978-3-642-16518-4_3,
(© Springer-Verlag Berlin Heidelberg 2011

avigal@ie.technion.ac.il

54 A. Gal

attribute correspondence selection process. Such applications involve data exchange
in data spaces and integration in the Semantic Web. Matching requires more automa-
tion, as the time frame for reaching matching decisions shrinks. Also, the role of
the human designer is changing, as data is being scraped from sources to which
no human designer is available for evaluating the matching correctness. Finally,
the sheer amount of data integration decisions that need to be taken require the
development of methods for nonexperts.

As a result of this setting change, several research attempts were devoted to
improve attribute correspondences by extending their capabilities, as illustrated in
Fig.3.1. In this chapter, we describe recent advances in the schema matching lit-
erature that attempt to enhance the capabilities of attribute correspondences. We
discuss contextual schema matching (Sect. 3) that can express that attribute corre-
spondences hold under certain instance conditions. For example, a code attribute in
one schema may refer to an ISBN attribute in another schema only if the sold item is
a book. Semantic matching is introduced in Sect. 4, extending attribute correspon-
dences to support ontological constructs. Traditionally, attribute correspondences
are limited to the ontological construct known as synonym. However, correspon-
dences may be of various types. For example, a pair of attributes may correspond
through a hyperonym relationship, where one attribute represents a more general
concept than another. As a concrete example, consider two databases for selling
electronic products. The correspondence between an attribute digitalCamera and
an attribute PhotoAndCamera is that of subsumption and not equivalence. Finally,
probabilistic schema matching (Sect. 5) extends attribute correspondences to con-
currently assume the validity of attribute correspondences, which were considered
conflicting in the past. For example, a 1 : 1 matching constraint may hold valid, yet
under the probabilistic approach an attribute may (probabilistically) be associated

Attribute Attribute
A B

Contextual
Attribute
Correspondence Semantic
Attribute
Correspondence

R.CreditCardinfo.type

Attribute | = ‘RoomsRUs’ ["attribute
A B

Probabilistic
Attribute
Correspondence

Attribute
B1

Attribute
B!

Attribute
A

Attribute hyperonym Attribute
A B

Fig. 3.1 Extensions to attribute correspondences

Attribute
B3

3 Enhancing the Capabilities of Attribute Correspondences 55

with more than one attribute from another schema. We conclude with a discussion of
how to combine these three directions into a new, more powerful model of attribute
correspondences.

2 A Model for Attribute Correspondences

In this section, we present a simple model of attribute correspondences as a basis
for the proposed extensions. The model is based on Marie and Gal [2008]. We shall
accompany the description with a specific simplified case study that will assist us
in demonstrating the three extensions to the basic attribute correspondence model.
The case study is about the design of a hotel reservation portal. The portal merges
various hotel information databases, adding a mashup applications that assists in
positioning hotels on a geographical map.

We consider three relational databases, and we now provide a partial description
of the databases, as illustrated in Table 3.1. Database R contains three relations,
CardInfo, Hotellnfo, and reservation information in the relation Reservations.
Database S stores data of a hotel chain RoomsRUs that separates information
of a store credit card from information of major credit cards. Therefore, S con-
tains the following two relations, Cardinformation and HotelCardInformation.
It also contains reservation information in the relation ReserveDetails. Finally, a
database T contains urban information with two relations, Citylnfo and Subway.
CityInfo provides information about neighborhoods in cities and their approximate
GPS positioning whereas Subway provides similar information for subway stations.

In what follows, we use a path representation. An attribute A of a given relation R
in a given database D is referred to as D.R.A. For example, R.CardInfo.cardNum.

Table 3.1 Sample database schema description

Database R

CardInfo type cardNum lastName firstName securityCode
expiryMonth expiryYear

Hotellnfo hoteIName neighborhood city

Reservations lastName firstName arrivalDate numberOfDays

Database S

CardInformation type cardNum securityCode expiryMonth expiryYear

HotelCardInformation clientNum expiryMonth expiryYear

ReserveDetails clientNum name checkinDay checkOutDay

Database T

Citylnfo city neighborhood GPSPosition

Subway city station GPSPosition

56 A. Gal

2.1 Model

Let schema S = {A1, Aa,...,A,} be a finite set of attributes. Attributes can be
both simple and compound, compound attributes should not necessarily be disjoint,
etc. For example, an attribute in a schema of a hotel reservation Web site may be
lastName and firstName. A compound attribute may be creditCardInfo combin-
ing four other attributes, type, cardNum, securityCode, and expiry (which could
also be a compound attribute, representing month and year of expiration). We define
an attribute to be categorical if its domain contains a closed set of categories, e.g., a
type attribute.

This model captures the essence of schema matching, namely matching of
attributes, and therefore a richer representation of data models is not needed. There-
fore, if we aim at matching simple attributes (such as lastName and firstName) we
need not represent their composition into a compound attribute called name. If the
goal of our schema matching process is to match XML paths (see, e.g., Vinson et al.
2007), then XML paths are the elements we define as attributes in our schemata.

For any schemata pair S and S’, let S = S x S’ be the set of all possible artribute
correspondences between S and S’. S is a set of attribute pairs (e.g., (arrivalDate,
checkinDay)). Let M (S, S’) be an n x n’ similarity matrix over S, where M; ;
represents a degree of similarity between the i th attribute of S and the jth attribute
of S’. The majority of works in the schema matching literature define M; ; to be a
real number in [0, 1]. M (S, S’) is a binary similarity matrix if forall 1 <i < n and
1 <j<n, M, e{0,1}. Thatis, a binary similarity matrix accepts only 0 and 1
as possible values.

Similarity matrices are generated by schema matchers. Schema matchers are
instantiations of the schema matching process [Euzenat and Shvaiko, 2007, Gal
and Shvaiko, 2009]. They differ mainly in the measures of similarity they employ,
yielding different similarity matrices. These measures can be arbitrarily complex,
and may use various techniques for, e.g., name matching and structure matching
(such as XML hierarchical representation). Schema matchers use the application
semantics in many different ways. Some matchers (e.g., He and Chang 2003, Su
et al. 2006) assume similar attributes are more likely to have similar names. Other
matchers (e.g., Gal et al. 2005b, Madhavan et al. 2001) assume similar attributes
share similar domains. Others yet (e.g., Berlin and Motro 2001, Doan et al. 2001)
take instance similarity as an indication to attribute similarity.

Example 1. To illustrate our model and for completeness sake, we now present a
few examples of schema matchers, representative of many other, similar matchers.
Detailed description of these matchers can be found in Gal et al. [2005b] and Marie
and Gal [2007]:

Term: Term matching compares attribute names to identify syntactically similar
attributes. To achieve better performance, names are preprocessed using sev-
eral techniques originating in IR research. Term matching is based on either
complete words or string comparison. As an example, consider the attributes
CreditCardinfo and HotelCardInformation. The maximum common substring

3 Enhancing the Capabilities of Attribute Correspondences 57

length(Cardinfo) 8

length(HotelCardInfomation) — 20

is CardInfo, and the similarity of the two terms is
40%.

Value: Value matching utilizes domain constraints (e.g., drop lists, check boxes,
and radio buttons). It becomes valuable when comparing two attributes that
do not exactly match through their names. For example, consider attributes
arrivalDate and checkInDay. These two attributes have associated value
sets {(Select), 1,2,...,31} and {(Day), 1,2, ...,31} respectively, and thus their
content-based 31m11ar1ty is 3 = 94%, Wthh improves significantly over their

3

term similarity (% = 18%).

Let the power-set ¥ = 2 be the set of all possible schema matchings between
the schema pair and let I : ¥ — {0, 1} be a Boolean function that captures the
application-specific constraints on schema matchings, for example, cardinality con-
straints and inter-attribute correspondence constraints (see Miller et al. [2000] and
Popa et al. [2002] for constraint enforcing mechanisms). Given a constraint spec-
ification I', the set of all valid schema mappings in X' is given by X = {0 €
Y | I'(0) = 1}. We define I" here as a general constraint model, where I' (o) = 1
means that the mapping o can be accepted by a designer.

To conclude this section, we introduce schema mappings. Let S and 7' be rela-
tional schemas. A relation mapping M is a triple (S, 7, m), where S is a relation in
S, T is arelation in 7', and m is a set of attribute correspondences between S and 7.
A schema mapping M is a set of one-to-one relation mappings between relations in
S and in T, where every relation in either S or T appears at most once.

2.2 Monotonicity: Tying Expert Opinion
with Automatic Matching

The evaluation of schema matchings is performed with respect to an exact match-
ing, based on expert opinions. The most common evaluation metrics are precision,
recall, and their derivations such as F-measure and overall. Depending of the match-
ing task at hand, one may wish to measure a matching using a combined metric
of precision and recall, such as F-mesaure, or optimize to one metric, possibly
constraining the other to some minimal threshold.

The monotonicity measure, first presented in Gal et al. [2005a], aims at identify-
ing a general principle that can differentiate good from bad matchers. It is based not
only on the evaluation metric itself, but rather observes the ability of a matcher to
assign an increasingly better performance to more accurate schema matchings. The
monotonicity principle serves as a basis for improvements to attribute correspon-
dences and we therefore demonstrate it here. As a metric of choice we use precision.
We note that a similar analysis can be done using precision with bounded recall,
recall, F-Measure, and any other measure a designer deems suitable for assessing
matcher performance.

58 A. Gal

The monotonicity principle refers to the performance of complete schema match-
ings from which the performance of individual attribute correspondences can be
derived. Assume that out of the n x n’ attribute matchings, there are ¢ < n x n’ cor-
rect attribute matchings, with respect to the exact matching. Also, let # < ¢ be the
number of matchings, out of the correct matchings, that were chosen by the match-
ing algorithm and ' < n x n’ — ¢ be the number of incorrect attribute matchings.
Then, precision is computed to be # and recall is computed as % Clearly, higher
values of both precision and recall are desired. From now on, we shall focus on the
precision measure, where p(o) denotes the precision of a schema matching o.

We first create equivalence schema matching classes on 25. Two matchings o’
and ¢” belong to a class p if p(c’) = p(¢”) = p, where p € [0, 1]. For each
two matchings o’ and o, such that p(0’) < p(c”), we can compute their schema
matching level of certainty, £2(0”) and §2(c”). We say that a matching algorithm is
monotonic if for any two such matchings p(o’) < p(6”) — 2(0’) < 2(¢”). Intu-
itively, a matching algorithm is monotonic if it ranks all possible schema matchings
according to their precision level.

A monotonic matching algorithm easily identifies the exact matching. Let * be
the exact matching, then p(0*) = 1. For any other matching o’, p(o’) < p(c*).
Therefore, if p(c’) < p(0*), then from monotonicity §2(0”) < §2(c™*). All one has
to do then is to devise a method for finding a matching o* that maximizes £2.'

Figure 3.2 provides an illustration of the monotonicity principle using a matching
of a simplified version of two Web forms. Both schemata have nine attributes, all of
which are matched under the exact matching. Given a set of matchings, each value

T " |
—
|
l ‘ ,_/"/ |
2.5\ 4 |
EC 3| F o N
\ < - Y 1
L : = - . ,’/;
e it § e v .S\U
088 0 7} i o ,x;:x\c,‘s’
68 0"'5&‘)
98 T~ . g
Tegs . 94 g o~ o
S;On 33 02 i B

Fig. 3.2 Illustration of the monotonicity principle

"Tn Gal et al. [2005a], where the monotonicity principle was originally introduced, it was shown

that while such a method works well for fuzzy aggregators (e.g., weighted average) it does not
work for t-norms such as min.

3 Enhancing the Capabilities of Attribute Correspondences 59

on the x-axis represents a class of schema matchings with a different precision. The
z-axis represents the similarity measure. Finally, the y-axis stands for the number of
schema matchings from a given precision class and with a given similarity measure.

Two main insights are available from Fig. 3.2. First, the similarity measures of
matchings within each schema matching class form a “bell” shape, centered around
a specific similarity measure. Such a behavior indicates a certain level of robust-
ness of a schema matcher, assigning close similarity measures to matchings within
each class. Second, the “tails” of the bell shapes overlap. Therefore, a schema
matching from a class of a lower precision may receive a higher similarity mea-
sure than a matching from a class of a higher precision. This, of course, contradicts
the monotonicity definition. However, the first observation serves as a motivation
for a definition of a statistical monotonicity, first introduced in Gal et al. [2005a], as
follows:

Let ¥ = {01,032, ...,0m} be aset of matchings over schemata Sy and S, with ny
and n, attributes, respectively, and define n = max(ny,ny). Let X1, X5, ..., Xy41
be subsets of X such that forall 1 <i <n + 1,0 € X; iff % < p(o) < ,’7
We define M; to be a random variable, representing the similarity measure of a
randomly chosen matching from X;. X' is statistically monotonic if the following
inequality holds forany 1 <i < j <n 4 I:

2(M;) < 2(M)),

where (M) stands for the expected value of M.

Intuitively, a schema matching algorithm is statistically monotonic with respect
to given two schemata if the expected certainty level increases with precision.
Statistical monotonicity can assist us in explaining certain phenomena in schema
matching (e.g., why schema matcher ensembles work well [Gal and Sagi, 2010])
and also to serve as a guideline in finding better ways to use schema matching
algorithms.

3 Contextual Attribute Correspondences

Attribute correspondences may hold under certain instance conditions. With con-
textual attribute correspondences, selection conditions are associated with attribute
correspondences. Therefore, a contextual attribute correspondence is a triplet of
the form (4;, Aj,c), where A; and A; are attributes and ¢ is a condition whose
structure is defined in Sect. 3.1.

Example 2. With contextual attribute correspondences, we could state that R.Card-
Info.cardNum is the same as S.HotelCardInfo.clientNum if R.Cardinfo.type
is assigned with the value RoomsRUs. For all other type values, R.Card-
Info.cardNum is the same as S.CardInfo.cardNum. These contextual attribute
correspondences are given as follows.

60 A. Gal

(R.CardInfo.cardNum, S.HotelCardInfo.clientNum, R.Cardinfo.type = ‘RoomsRUs’)
(R.CardInfo.cardNum, S.CardInfo.cardNum, R.CardInfo.type # ‘RoomsRUs’)

Contextual attribute correspondences are useful in overcoming various aspects
of structural heterogeneity. A typical example of such heterogeneity involves
designer’s decision regarding the interpretation of subtypes. In the example above,
database R was designed to include all credit card subtypes in a single relation,
with type as a differentiating value. Database S refines this decision by allocating a
separate relation to one of the subtypes.

In Bohannon et al. [2006], a selection condition is defined as a logical condi-
tion, with the added benefit of serving as a basis for the schema mapping process
[Barbosa et al., 2005, Bohannon et al., 2005, Fagin, 2006, Fagin et al., 2007].

At the basis of contextual attribute correspondences is the use of instance values
as a differentiator between possible correspondences. Therefore, the ability of iden-
tifying contextual attribute correspondences depends on the ability of a matcher to
take into account instance values. For example, the Term matching technique, given
earlier as an example, will not change its estimation of the amount of similarity of
two attributes based on context. Instance values are used in many of the methods
that apply machine learning techniques to schema matching. Autoplex [Berlin and
Motro, 2001], LSD [Doan et al., 2001], and iMAP [Dhamankar et al., 2004] use a
naive Bayes classifier to learn attribute correspondence probabilities using instance
training set. Also, sSPLMap [Nottelmann and Straccia, 2007] use naive Bayes, kNN,
and KL-distance as content-based classifiers.

3.1 Modeling Contextual Attribute Correspondences

Contextual attribute correspondences are specified in terms of a condition on the
value assignments of attributes. A k-context of an attribute correspondence is a
condition that involves k database attributes. For k = 0, a contextual attribute corre-
spondence becomes a common attribute correspondence. For k = 1, the condition is
simple, of the form a = v, where a is an attribute and v is a constant in a’s domain.
For example, R.CardInfo.type="RoomsRUSs’. Disjunctive, conjunctive, and gen-
eral k-contexts generalize simple conditions in the usual way. For example, simple
disjunctive k-context for k = 1 is a condition of the form a € {vy, va,..., vt}
Contextual attribute correspondences can be modeled with similarity matrices.
An entry in the similarity matrix M; ; is extended to be a tuple (v,c), where
v € [0,1] is a similarity value and ¢ is a context as defined above. This model-
ing allows a smooth extension of contextual attribute correspondences to matcher
ensembles [Domshlak et al., 2007, He and Chang, 2005], in which matchers are
combined to improve the quality of the outcome of the matching process. For exam-
ple, Do et al. [2002] and Domshlak et al. [2007] proposed several ways to combine
similarity matrices, generated by different matchers, into a single matrix. Such com-
bination, which was based solely on aggregating similarity scores, can be extended

3 Enhancing the Capabilities of Attribute Correspondences 61

to also handle condition algebra as proposed in Bohannon et al. [2006]. For example,
assume that matcher A matches

(R.CardInfo.cardNum, S.HotelCardInformation.clientNum, R.Cardinfo.type = ‘RoomsRUs’)
with a certainty of 0.8 and matcher B matches
(R.CardInfo.cardNum, S.HotelCardInformation.clientNum, Null)
with a certainty of 0.5. If we use max as the aggregation function, then the entry
(R.CardInfo.cardNum, S.HotelCardInformation.clientNum)

in the combined similarity matrix will contain the tuple (0.8, R.CardInfo.type =
‘RoomsRUs’).

Both context conditions and the constraint function /" serve in constraining the
possible space of correct matchings. Traditionally, I" was assumed to be given by
the designer (e.g., a 1 : 1 matching constraint or a user feedback after an iteration
of the matching process). Context, on the other hand, is learned from the domain.
However, there is no dichotomy here. One can assume that certain context condi-
tions are given by the designer while some matching constraints are learned from
the application. A decision on whether a constraint should be specified in the simi-
larity matrix or as part of the constraint function can be based on the following two
observations:

1. The similarity matrix captures information that is inherently uncertain while I
is defined to be deterministic. Therefore, a context provided by a designer can
be considered deterministic and become part of I" while learned contexts can be
embedded at the matrix level.

2. The similarity matrix inherently captures attribute correspondence information
while I can handle schema level constraints. For example, using only the
similarity matrix, one can assume that the contextual attribute correspondence

(R.CardInfo.cardNum, S.HotelCardInformation.clientNum, R.CardInfo.type = ‘RoomsRUs’)
can coexist with the attribute correspondence

(R.CardInfo.cardNum, S.CardInformation.cardNum)
simply because both entries have a nonzero similarity measure. It is only at the
constraint function level I" that such coexistence can be explicitly forbidden.

Therefore, schema level contextual constraint should be modeled using I" while
attribute level constraints are modeled as part of the similarity matrix.

62 A. Gal

3.2 Finding Contextual Attribute Correspondences

A few challenges arise when designing an algorithm for finding contextual attribute
correspondences. First, one may risk overfitting the correspondences to the train-
ing data. For example, it is possible that one could find a contextual attribute
correspondence stating

(R.CardInfo.expiryMonth, S.HotelCardInformation.expiryMonth, R.CardInfo.securityCode > 333) ,

which is clearly inappropriate, since the security code is associated with the card
number and not with its expiry. A naive classifier may fall into this trap simply by
some bias in the training dataset that assigns more cards with higher values of the
securityCode attribute.

A second challenge involves situations in which the contextual attribute corre-
spondences are not specializations of (noncontextual) attribute correspondences and
therefore, cannot be identified as refinements of the outcome of existing matchers.
As an example, consider our case study application. R.Hotellnfo.neighborhood
provides neighborhood information for medium-size cities. However, for bigger
cities, it prefers a more accurate positioning of the hotel, using subway station
names as the neighborhood information. Therefore, a possible contextual attribute
correspondence may be

(R.Hotellnfo.neighborhood, T.Subway.station, R.Hotellnfo.city = ‘Moscow’).

However, this is not a refinement of an attribute correspondence (R.Hotellnfo.
neighborhood, T.Subway.station).

An approach for discovering contextual matches was introduced in Bohannon
et al. [2006]. Let M; ; be the score of matching attributes S.A4; with S.A4;. Given
a condition ¢, a matcher can use the subset of the instance problem that satisfies ¢
to provide a new score M . The difference M;"; — M; j is the improvement of the
contextual attribute correspondence Given the set of conditions C, we can create
a contextual attribute correspondence using the condition ¢* that maximizes the
improvement measure. Using an improvement threshold can solve the overfitting
challenge. However, thresholds are always tricky. A threshold that is set too low
introduces false positives while a threshold that is too high may introduce false
negatives. Using machine learning techniques to tune thresholds has proven to be
effective in schema matching [Lee et al., 2007]. However, as was shown in Gal
[2006], it is impossible to set thresholds that will avoid this false negative/false
positive trade-off.

It has been proposed in Bohannon et al. [2006] that k-contexts with k > 1
will yield more trustworthy contextual attribute correspondences. The algorithm
first determines an initial list of 1-context conditions. Then, it creates and evalu-
ates disjunctive conditions that are generated from the original 1-context conditions.
The generation of conditions is carried out using view selection. Views are chosen

3 Enhancing the Capabilities of Attribute Correspondences 63

as promising whenever the data values of some non-categorical attributes are well
classified by a categorical attribute. Example 2 provides such a case, where values of
R.CardInfo.cardNum have many identical values in S.HotelCardInfo.clientNum
whenever the categorical attribute R.CardInfo.type is assigned with the value
RoomsRUs.

To avoid false positives, the measure M l-f j —M,; ; is tested for significance against
a naive classifier, which chooses the most common value of a categorical attribute.
The number of correct classifications between instances of matched attributes, given
a categorical value v, is distributed binomially, with an estimated parameter

_ Il
Ny

the ratio is the percentage of occurrences of the value v in the training set. The
expected score of such a correspondence is

H = nsp

(with n being the size of the test set) and its standard deviation is
o = Vap(i=p)
A threshold for the significance of a correspondence is commonly set to be
(=)
o

(the complementary value of the probability of the null hypothesis), with ¢ being
the actual score of the contextual correspondence.

3.3 Identifying Candidate Attributes

A major performance concern is the determination of candidate attributes for
contextual attribute correspondences. The approach above is based on context iden-
tification using categorical attributes. Clearly, with more categorical attributes, an
exhaustive search of all categorical values becomes more expensive. However, even
with a small set of categorical values, the attribute candidates for correspondences
depends on the number of attributes in the target database.

To improve the run-time of an algorithm for identifying candidate attributes, we
propose the use of an algorithm for finding top-K attribute correspondences. Such
algorithms were proposed in the literature [Bernstein et al., 2006, Domshlak et al.,
2007, Gal et al., 2005a, Gal, 2006], offering a ranked set of attribute correspon-
dences and schema matchings. Empirical results showed the top-K list to be a
quality set of candidates for schema matching. Therefore, by taking the top-K

64 A. Gal

matchings, one can generate a quality, restricted set of candidate attributes against
which the algorithm for finding contextual candidate attributes can be tested.

3.4 Discussion

Contextual correspondences improve on noncontextual correspondences in two
main aspects. First, it allows the specification of alternative correspondences for
the same attribute, under different conditions. Second, its refined definition of a cor-
respondence allows it to connect attributes via correspondences in cases where a
common correspondence is too “weak” to be considered valid.

The way contextual correspondences are defined, they are deterministic, not
allowing a probabilistic interpretation of a correspondence. Therefore, contextual
correspondences are meant to resolve an issue of uncertainty by finding a more
refined, yet deterministic, correspondence. It is worth noting, however, that an intro-
duction of stochastic analysis already exists in the form of statistical significance,
which can be extended to handle probabilistic mappings as well.

4 Semantic Attribute Correspondences

Traditionally, attribute correspondences are limited to the ontological construct
known as synonym. The model of semantic matching, introduced in the realm of
the semantic Web [Euzenat and Shvaiko, 2007], extends attribute correspondences
in that pairwise matching results in an ontological relationship (e.g., equivalence
and subsumption) between attributes. Therefore, a semantic attribute correspon-
dence is a triplet of the form (a;,a;,r), where a; and a; are attributes and r is
an ontological relationship. The S-Match system [Giunchiglia et al., 2005] defines
four types of such relationships, equivalence (=), subsumption (E), disjointness
(L), and unknown (i d k). The latter was referred to as intersection (M) in Magnani
et al. [2005]. We shall use S-Match to illustrate the semantic extension to attribute
correspondences.

S-Match separates labels from concepts. A label (referred to as concept at label
in Magnani et al. [2005]) represents its meaning in the real world while a concept is
a composite term that considers the label within its path in the semantic graph (e.g.,
ontology, classification tree). To illustrate the difference, consider the case study
and Fig. 3.3. The relational model schema can be interpreted as a semantic graph, in
which a relation name is linked with its attribute through a part-of relationship and a
primary key is related to its foreign key through a special, foreign-key, relationship.
We note here that in Giunchiglia et al. [2005] the type of the semantic link is ignored
when computing semantic attribute correspondences. In our case study example,
the label city appears multiple times and is considered to have the same real world
meaning(s). However, the concept city is different when part of Hotellnfo or part of
Subway.

3 Enhancing the Capabilities of Attribute Correspondences 65

R
\
CreditCardInfo Hotellnfo
> type —> hotelName
—>1 cardNumber > neighborhood
—>| securityCode —> city
—> expiryMontho

o expiryYear

Fig. 3.3 A partial example of a semantic relationship graph

4.1 Finding Semantic Attribute Correspondence

S-Match takes two trees as input and provides for any pair of nodes from the two
trees the strongest semantic relation that holds between concepts. A lattice of rela-
tionship strength is introduced in Giunchiglia et al. [2005], where for example,
equivalence is considered stronger than subsumption. This is performed in four
stages, the first two can be performed once for each schema, while the last two
are performed whenever two schemas are matched.

The first step identifies the concept of a node. It starts with the node label, which
is tokenized and lemmatized. Then, using a thesaurus, such as Wordnet,? all senses
of the processed label (termed synsets in Wordnet) are retrieved. Finally, after some
filtering, a formal statement that defines the node concept is built using disjunctions
to separate senses and multiple word labels. For example, consider the relation name
Hotellnfo. Assume that we can separate this label into Hotel and Info, using capi-
talization as a hint. Using Wordnet, Hotel has senses such as resort (hyponym) and
building (hypernym). Info is recognized as a synonym for information with senses
such as fact (hyponym), and message (hypernym), creating the following concept:

hotel v resort v building v info v information v fact v message v ...

In the second step, a node is recognized within its path in the graph. Its concept
is extended to be a conjunction of all the node concepts leading from the root to

2 http://wordnet.princeton.edu/.

http://wordnet.princeton.edu/

66 A. Gal

the node. Therefore, the concept of the node Hotellnfo.city is the conjunction of the
concept Hotellnfo and the concept city.

The third step involves the creation of a semantic relationship matrix for each
pair of atomic concepts, based on node information only. This can be done either
by using common string matching techniques or by using a thesaurus such as Word-
net. For the latter, equivalence is determined if there is at least one sense that is
defined as a synonym. Subsumption is determined if a sense in one concept is a
hypernym or holonym of a sense in the other concept. Disjointness is defined if two
senses of the two concepts are different hyponyms of the same synonym set or if
they are antonyms. For example, assume the use of string matching and Wordnet.
Hotellnfo and HotelCardInformation will be (mistakenly) considered to be equiv-
alent, both because of the identical Hotel label and because Info and Information
are synonyms.

The fourth step takes all pairs of nodes and computes a semantic relationship
matrix based on the positioning of nodes within their own ontologies. Semantic
relations are translated into propositional connectives, with equivalence being trans-
lated into equivalence, subsumption into implication, and disjointness into negation.
Then, the following formula is checked for satisfiability:

C — rel(C;, Cy).

C; and C; are the concepts of nodes i and j in the two schemas, as generated in the
first step and C is the conjunction of all the relations that hold between concepts of
labels mentioned in C; and C; (this includes all nodes on the path to nodes i and).
This is done by using a SAT solver to test unsatisfiability. It is worth noting that
the unsatisfiability problem is known to be CO-NP, yet modern SAT solvers have
shown very good performance in solving such problems. To reason about relations
between concepts of nodes, a set of premises (axioms) is built as a conjunction of the
concepts of labels computed in the third step. For example, R.CardInfo.type will
be defined to be subsumed by S.CardInformation while an equivalence semantic
relationship is defined between R.CardInfo.type and S.CardInformation.type.

4.2 Discussion

A few other methods for finding semantic attribute correspondences were suggested
in the literature. For example, Chimaera [McGuinness et al., 2000] finds equiv-
alences, subsumptions, and disjointness among attributes (ontology terms in this
case). As another example, FCA-Merge [Stumme and Maedche, 2001] identifies
subsumptions using a natural language document corpus.

Semantic attribute correspondences can be modeled using the similarity matrix
model (see Sect.2). Each ontological relationship is modeled as a separate matrix
(one matrix for equivalence, one for subsumption, etc.). These matrices represent
the confidence level in an ontological relationships, as generated in the first two

3 Enhancing the Capabilities of Attribute Correspondences 67

steps of the S-Match algorithm. Steps 3 and 4 of S-Match generate a set of binary
matrices, where 1 represents relationship existence and 0 represents no relationship,
using some thresholds. During this process, and as part of a constraint enforcer, if
the same entry in two matrices is computed to be 1, a lattice of relationships strength
determines which values are to remain 1 and which will be lowered to 0. As a final
step, any entry for which a 0 value is recorded in all matrices, is assigned 1 for the idk
matrix. We observe that such modeling may be of much practical value, especially if
semantic matching is combined with quantity-based methods (e.g., based on string
matching) to create matcher ensembles.

5 Probabilistic Attribute Correspondences

There are many scenarios where a precise schema mapping may not be available.
For instance, a comparison search “bot” that tracks comparative prices from dif-
ferent web sites has — in real time — to determine which attributes at a particular
location correspond to which attributes in a database at another URL. In many cases,
users querying two databases belonging to different organizations may not know
what is the right schema mapping. The common model of attribute correspondences
assumes a unique and deterministic possible correspondence to each attribute and
thus incapable of modeling multiple possibilities.

Probabilistic attribute correspondences extend attribute correspondences by gen-
erating multiple possible models, modeling uncertainty about which one is correct
by using probability theory. Such probabilities can then be combined to represent
possible schema mappings, based on which query processing can be performed.

Example 3. For illustration purposes, consider the case study from Sect. 2. We now
describe a scenario, which we dub semantic shift, according to which a relation in a
database, which was intended for one semantic use, changes its semantic role in the
organization database over the years. For example, the relation HotelCardInforma-
tion was initially designed to hold information of RoomsRUSs credit cards. Over the
years, the hotel chain has outsourced the management of its credit cards to an exter-
nal company, and as a result, the differentiation between hotel credit cards and other
credit cards became vague, and new credit cards may be inserted in some arbitrary
way to the two relations CardInformation and HotelCardIinformation.

Probabilistic attribute correspondences can state that R.CardInfo.cardNum
matches S.CardInformation.cardNum with a probability of 0.7 and S.HotelCard-
Information.clientNum with a probability of 0.3.

This robust model allows the provision, in the case of aggregate queries, not only
a ranking of the results, but also the expected value of the aggregate query outcome
and the distribution of possible aggregate values.

The model of probabilistic attribute correspondences is based on the model
of probabilistic schema mapping [Dong et al., 2007], extending the concept of

68 A. Gal

schema mapping with probabilities. Let S and T be relational schemas A prob-
abilistic mapping pM is a triple (S, T,m), where S € S, T € T, and m is a set
{(my, Pr(my)),...,(my, Pr(mp))}, such that

e Fori € [1,[], m; is a one-to-one relation mapping between S and 7', and for
everyi,j € [L,I],i # j = m; #m;.
e Pr(m;) €[0,1] and Zle Pr(m;) = 1.

A schema probabilistic mapping PM is a set of probabilistic mappings between
relations in S and in 7', where every relation in either S or 7 appears in at most one
probabilistic mapping.

A probabilistic attribute correspondence (A;, A;, p) is any attribute correspon-
dence in a probabilistic schema mapping.

The intuitive interpretation of a probabilistic schema mapping is that there is
uncertainty about which of the mappings is the right one. Such uncertainty was jus-
tified [Miller et al., 2000] by the fact that “the syntactic representation of schemas
and data do not completely convey the semantics of different databases,” i.e., the
description of a concept in a schema can be semantically misleading. As proposed in
Dong et al. [2007], there are two ways in which this uncertainty can be interpreted:
either a single mapping should be applied to the entire set of tuples in the source
relation, or a choice of a mapping should be made for each of these tuples. The
former is referred to as the by-table semantics, and the latter as the by-tuple seman-
tics. The by-tuple semantics represents a situation in which data is gathered from
multiple sources, each with a potentially different interpretation of a schema. An
example that can illustrate the by-tfuple semantics is presented in Sect. 3.2. There,
R.Hotellnfo.neighborhood provides neighborhood information for medium-size
cities and subway stations for bigger cities. Here, the semantics is clearly by-tuple
and not by-table.

5.1 Finding Probabilistic Attribute Correspondences

Uncertainty in schema matching gives rise to alternative matchings. It was argued
(e.g., Gal et al. 2005a, HeB8 and Kushmerick 2003) that under certain conditions
(e.g., monotonicity [Gal et al., 2005a], see Sect.2.2), top-K matchings, the K
matchings with the highest similarity measures, are the preferred choice of alterna-
tive matchings. Intuitively speaking, a schema matcher is monotonic if its ranking of
all possible matchings is “similar” to that of some oracle, ranking matchings accord-
ing to the Num of correct attribute correspondences in a matching. Therefore, if the
top-K matchings contain many correct attribute correspondences while matchings
with lower similarities do not contain as many correct attribute correspondences, the
matcher performs monotonically.

As already mentioned earlier, algorithms for identifying top-K correspon-
dences and matchings were proposed in the literature (see Bernstein et al. 2006,

3 Enhancing the Capabilities of Attribute Correspondences 69

Domshlak et al. 2007, Gal et al. 2005a, Gal 2006), offering a ranked set of attribute
correspondences and schema matchings.

We argue that the probability that can be assigned to an attribute correspondence
depends on two main factors. First, it depends on the amount of similarity that the
matcher(s) of choice assign with this attribute correspondences. This is a natural
assumption that lies at the basis of all matching techniques. Second, such probabil-
ity also depends on the ability of the two attributes to be matched together given
the constraints of the matching task (modeled using the I function, see Sect.2). To
illustrate this point, consider Example 3. R.CardInfo.cardNum can match well with
both S.Cardinformation.cardNum and S.HotelCardInformation.clientNum.
However, if the application enforces 1 : 1 matching, then despite the high similarity
that is assigned with both matches, they will have to “share” the same probability
space when matched with R.CardInfo.cardNum.

We use the work of Domshlak et al. [2007] to demonstrate a method for com-
puting probabilistic attribute correspondences. A generic computational framework,
Schema Meta-Matching was introduced in Domshlak et al. [2007]. This frame-
work computes the top-K matchings using a “consensus” ranking of matchers in
an ensemble. The similarity of attribute correspondences is provided by members
of a schema matching ensemble and combined to generate a consensus ranking. For
example, an ensemble may include a string-matching matcher (e.g., Term) and a
domain-based matcher (e.g., Value).

Each member in an ensemble uses a local aggregation function (such as average)
to generate a schema matching similarity measure from the similarity measures of
the attribute correspondences. Local similarity measures can then be aggregated
using a global similarity measure (e.g., max) to become the ensemble similarity
measure.

A Meta-Matching algorithm is used to generate the Top-K schema matchings
according to this similarity measure. The work in Domshlak et al. [2007] supports
four algorithms for top- K schema matching alternative generation. The Threshold
algorithm, originally proposed in the context of database middleware [Fagin et al.,
2003], is applied almost as is, yet may require time exponential in the size of the
matched schemata. For a certain wide class of problems, the Matrix-Direct algo-
rithm, a simple variation of the COMA algorithm [Do and Rahm, 2002], was intro-
duced. The time complexity of the Matrix-Direct algorithm is polynomial in the size
of the matched schemata and the required K. Subsequently, the Matrix-Direct-with-
Bounding algorithm was introduced, which draws upon both the Matrix-Direct and
the Threshold algorithms, addressing matching scenarios where the Matrix-Direct
algorithm is inapplicable. It was shown in Domshlak et al. [2007] that the Thresh-
old and Matrix-Direct-with-Bounding algorithms are (complexity-wise) mutually
undominated — that is, there exist problem instances in which one algorithm per-
forms dramatically better than the other. To enjoy the best of both worlds and even
to improve upon them, the CrossThreshold algorithm was introduced, a hybrid
version of these two algorithms, based on their in-parallel, mutually enhancing
execution.

70 A. Gal

Given a user defined K or a threshold on the minimum certainty, the system can
produce alternative matchings and assign a probability estimate of correctness to
each of them. The probability is based on the similarity measure, as assigned by an
ensemble of matchers. To justify this method, we use the monotonicity principle, as
discussed before.

Equipped with the monotonicity principle, one can generate a probability space
over a set of K matchings, as follows. Let (41, U2, ..., i) be the similarity mea-
sures of the top-K matchings (01, 03, ...,0%) and ;; > 0. The probability assigned
with matching i is computed to be:

Hi
k
Zj:l K

pi is well defined (since @y > 0). Each p; is assigned with a value in [0, 1] and
le-zl pi = 1. Therefore, (p1, pa. ..., px) forms a probability space over the set
of top-K matchings. For completeness, we argue that an appropriate interpretation
of this probability space is to consider it to be the conditional probability, given that
the exact matching is known to be within the top- K matchings.

We can create the probability that is assigned with an attribute correspondence
(Ai, Aj) by summing all probabilities of schema matchings in which (A4;, A4;)
appears. That is, for a probabilistic attribute correspondence (A4;, A, p) we com-

pute p to be:
p= > m
011(4;,4)€0;

pi =

It is worth noting that methods for assigning attributes to alternative schema
mappings were also suggested by other researchers, such as Magnani et al. [2005].

6 Conclusions

This chapter introduces three recent advances to the state-of-the-art, extending
the abilities of attribute correspondences. Contextual attribute correspondences
associate selection conditions with attribute correspondences. Semantic matching
extends attribute correspondences to be specified in terms of ontological relation-
ship. Finally, probabilistic attribute correspondences extend attribute correspon-
dences by generating multiple possible models, modeling uncertainty about which
one is correct by using probability theory.

These three extensions are individually powerful in extending the expressive
power of attribute correspondences. However, combining them together can gen-
erate an even more powerful model. For example, combining all the three, one
can declare that attribute A subsumes attribute B if the condition C = c¢ holds
true. If C # c, then there is a 70% chance that attribute A is actually subsumed
by attribute B and 30% chance that they are disjoint. Therefore, we conclude by
identifying the challenges and benefits of putting these extensions together.

3 Enhancing the Capabilities of Attribute Correspondences 71

The first observation is that top-K schema matchings play a pivotal role in iden-
tifying attribute correspondences. We have shown that top-K matchings can serve
in identifying both good candidates for contextual attribute correspondences and
probabilistic attribute correspondences. In this research direction, there are still
many open questions, first of which is the ability to identify top-K matchings in
polynomial time.

A model was proposed in Magnani et al. [2005] for combining semantic and
probabilistic attribute correspondences using constructs of uncertain semantic rela-
tionships in an ER model. An uncertain semantic relationship is a distribution of
beliefs over the set of all possible semantic relationships, using belief functions
[Shafer, 1976]. The set of possible semantic relations serve as the frame of discern-
ment (marked @), based on which two functions are defined, namely belief and
plausability. Both functions assign a value to a subset of the frame of discernment,
starting from the basic probability mass that is assigned with each element in the
frame of discernment. Belief of a set A € @ sums the probability mass of all subsets
B C A. Plausability of a set A is the sum of all subsets that intersect with A, i.e., all
B suchthat AN B # @.

Combining semantic and probabilistic attribute correspondences (as proposed in
Magnani et al. [2005], for example) can be easily captured by the matrix abstrac-
tion. In Sect. 4.2, we have outlined the way semantic attribute correspondences can
be captured using similarity matrices. When using the model proposed in Magnani
et al. [2005], the aggregator can be Dempster’s combination rule [Shafer, 1976].
Consider now that entries in each such matrix are in [0, 1], reflecting probability
(or plausability) of this semantic attribute correspondence to hold. This will open
a new challenge of querying a database that uses probabilistic semantic attribute
correspondences. First, the notion of querying using semantic attribute correspon-
dences should be examined carefully. Then analysis, similar to the analysis done
in Dong et al. [2007] and Gal et al. [2009], where possible worlds semantics was
carefully defined for probabilistic schema mapping, can be extended to the case of
probabilistic semantic attribute correspondences. It is worth noting that the analysis
in Magnani et al. [2005] described a de-facto set of possible worlds, each world
represented by a different ER schema.

Contextual and by-tuple probabilistic attribute correspondences seem to be com-
plementary. A by-tuple probabilistic attribute correspondence represents a situation
in which there is uncertainty as to whether a given tuple should be interpreted
using one correspondence or the other. Contextual attribute correspondences models
exactly such knowledge. Therefore, By-tuple probabilistic attribute correspondence
is needed whenever no information regarding the contextual attribute correspon-
dence is available. Whenever contextual attribute correspondence is gathered auto-
matically, using statistical methods as described in Sect. 3.2, another layer of uncer-
tainty is added to the modeling. Therefore, contextual attribute correspondences
should also be extended to provide probabilistic alternative versions.

Acknowledgments I thank Wenfei Fan, Pavel Shvaiko, Luna Dong, and Tomer Sagi for useful
comments. The views and conclusions contained in this chapter are those of the author.

72 A. Gal

References

Barbosa D, Freire J, Mendelzon A (2005) Designing information-preserving mapping schemes
for xml. In: Proceedings of the international conference on very large data bases (VLDB),
Trondheim, Norway, August 2005. VLDB Endowment, pp 109-120

Berlin J, Motro A (2001) Autoplex: Automated discovery of content for virtual databases.
In: Batini C, Giunchiglia F, Giorgini P, Mecella M (eds) Cooperative information systems,
9th international conference, CooplS 2001, Trento, Italy, 5-7 September 2001. Proceedings,
Lecture Notes in Computer Science, vol 2172. Springer, Heidelberg, pp 108-122

Bernstein P, Melnik S, Churchill J (2006) Incremental schema matching. In: Proceedings of the
international conference on very large data bases (VLDB), Seoul, Korea, September 2006.
VLDB Endowment, pp 1167-1170

Bohannon P, Fan W, Flaster M, Narayan P (2005) Information preserving xml schema embedding.
In: Proceedings of the international conference on very large data bases (VLDB), Trondheim,
Norway, August 2005. VLDB Endowment, pp 85-96

Bohannon P, Elnahrawy E, Fan W, Flaster M (2006) Putting context into schema matching. In:
Proceedings of the international conference on very large data bases (VLDB), Seoul, Korea,
September 2006. VLDB Endowment, pp 307-318

Dhamankar R, Lee Y, Doan A, Halevy A, Domingos P (2004) iMAP: Discovering complex
mappings between database schemas. In: Proceedings of the ACM-SIGMOD conference on
management of data (SIGMOD), Paris, France, June 2004. ACM, NY, pp 383-394

Do H, Rahm E (2002) COMA - a system for flexible combination of schema matching approaches.
In: Proceedings of the international conference on very large data bases (VLDB), Hong Kong,
China, August 2002. VLDB Endowment, pp 610-621

Do H, Melnik S, Rahm E (2002) Comparison of schema matching evaluations. In: Proceedings of
the 2nd international workshop on web databases, German Informatics Society, 2002. citeseer.
nj.nec.com/do02comparison.html

Doan A, Domingos P, Halevy A (2001) Reconciling schemas of disparate data sources: A machine-
learning approach. In: Aref WG (ed) Proceedings of the ACM-SIGMOD conference on
management of data (SIGMOD), Santa Barbara, CA, June 2001. ACM, CA, pp 509-520

Domshlak C, Gal A, Roitman H (2007) Rank aggregation for automatic schema matching. IEEE
Trans Knowl Data Eng (TKDE) 19(4):538-553

Dong X, Halevy A, Yu C (2007) Data integration with uncertainty. In: Proceedings of the interna-
tional conference on very large data bases (VLDB), Vienna, Austria, September 2007. VLDB
Endowment, pp 687-698

Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Heidelberg

Fagin R (2006) Inverting schema mappings. In: Proceedings of the ACM SIGACT-SIGMOD-
SIGART symposium on principles of database systems (PODS), Chicago, IL, June 2006. ACM,
NY, pp 50-59

Fagin R, Lotem A, Naor M (2003) Optimal aggregation algorithms for middleware.] Comput Syst
Sci 66:614-656

Fagin R, Kolaitis P, Popa L, Tan W (2007) Quasi-inverses of schema mappings. In: Proceedings of
the ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems (PODS),
Beijing, China, June 2007. ACM, NY, pp 123-132

Gal A (2006) Managing uncertainty in schema matching with top-k schema mappings. J Data
Semant 6:90-114

Gal A, Sagi T (2010) Tuning the ensemble selection process of schema matchers. Inform Syst
35(8):845-859

Gal A, Shvaiko P (2009) Advances in ontology matching. In: Dillon TS, Chang E, Meersman R,
Sycara K (eds) Web services and applied semantic web. Springer, Heidelberg, pp 176-198

Gal A, Anaby-Tavor A, Trombetta A, Montesi D (2005a) A framework for modeling and evaluating
automatic semantic reconciliation. VLDB J 14(1):50-67

citeseer.nj.nec.com/do02comparison.html
citeseer.nj.nec.com/do02comparison.html

3 Enhancing the Capabilities of Attribute Correspondences 73

Gal A, Modica G, Jamil H, Eyal A (2005b) Automatic ontology matching using application
semantics. Al Mag 26(1):21-32

Gal A, Martinez M, Simari G, Subrahmanian V (2009) Aggregate query answering under uncer-
tain schema mappings. In: Proceedings of the IEEE CS international conference on data
engineering, Shanghai, China, March 2009. IEEE Computer Society, Washington, DC, pp
940-951

Giunchiglia F, Shvaiko P, Yatskevich M (2005) Semantic schema matching. In: Proceedings of the
10th international conference on cooperative information systems (CooplS 2005), pp 347-365

He B, Chang KC (2005) Making holistic schema matching robust: An ensemble approach. In:
Proceedings of the 11th ACM SIGKDD international conference on knowledge discovery and
data mining, Chicago, IL, 21-24 August 2005. ACM, NY, pp 429-438

He B, Chang KCC (2003) Statistical schema matching across Web query interfaces. In: Proceed-
ings of the ACM-SIGMOD conference on management of data (SIGMOD), San Diego, CA,
June 2003. ACM, NY, pp 217-228

HeB A, Kushmerick N (2003) Learning to attach semantic metadata to web services. In: Proceed-
ings of the 2nd semantic web conference, Sanibel Island, FL, 2003. Springer, Heidelberg, pp
258-273

Lee Y, Sayyadian M, Doan A, Rosenthal A (2007) eTuner: Tuning schema matching software
using synthetic scenarios. VLDB J 16(1):97-122

Madhavan J, Bernstein P, Rahm E (2001) Generic schema matching with cupid. In: Proceedings of
the international conference on very large data bases (VLDB), Rome, Italy, September 2001.
Morgan Kaufmann, CA, pp 49-58

Magnani M, Rizopoulos N, McBrien P, Montesi D (2005) Schema integration based on uncertain
semantic mappings. In: Delcambre LML, Kop C, Mayr HC, Mylopoulos J, Pastor O (eds) ER.
LNCS, vol 3716. Springer, Heidelberg, pp 31-46

Marie A, Gal A (2007) On the stable marriage of maximumweight royal couples. In: Proceedings
of AAAI workshop on information integration on the web (IIWeb’07), Vancouver, BC, Canada

Marie A, Gal A (2008) Boosting schema matchers. In: Proceedings of the 13th international con-
ference on cooperative information systems (CooplIS 2008), Monterrey, Mexico, November
2008. Springer, Heidelberg, pp 283-300

McGuinness D, Fikes R, Rice J, Wilder S (2000) An environment for merging and testing large
ontologies. In: Proceedings of the 7th international conference on principles of knowledge rep-
resentation and reasoning (KR2000), Breckenridge, CO, April 2000. Morgan Kaufmann, CA,
pp 483-493

Miller R, Haas L, Herndndez M (2000) Schema mapping as query discovery. In: Abbadi AE,
Brodie M, Chakravarthy S, Dayal U, Kamel N, Schlageter G, Whang KY (eds) Proceedings
of the international conference on very large data bases (VLDB), September 2000. Morgan
Kaufmann, CA, pp 77-88

Nottelmann H, Straccia U (2007) Information retrieval and machine learning for probabilistic
schema matching. Inform Process Manag 43(3):552-576

Popa L, Velegrakis Y, Miller R, Herndndez M, Fagin R (2002) Translating web data. In: Pro-
ceedings of the international conference on very large data bases (VLDB), Hong Kong, China,
August 2002. VLDB Endowment, pp 598-609

Shafer G (ed) (1976) A mathematical theory of evidence. Princeton University Press, NJ

Stumme G, Maedche A (2001) Ontology merging for federated ontologies in the semantic web.
In: Proceedings of the international workshop for foundations of models for information
integration (FMII-2001), Viterbo, Italy, pp 413—418

Su W, Wang J, Lochovsky F (2006) Aholistic schema matching for web query interfaces. In:
Advances in database technology — EDBT 2006, 10th international conference on extending
database technology, Munich, Germany, 26-31 March 2006. Proceedings, pp 77-94

Vinson A, Heuser C, da Silva A, de Moura E (2007) An approach to xml path matching. In: WIDM
’07: Proceedings of the 9th annual ACM international workshop on Web information and data
management. ACM, NY, pp 17-24. doi:http://doi.acm.org/10.1145/1316902.1316906

http://doi.acm.org/10.1145/1316902.1316906

Chapter 4
Uncertainty in Data Integration and Dataspace
Support Platforms

Anish Das Sarma, Xin Luna Dong, and Alon Y. Halevy

Abstract Data integration has been an important area of research for several years.
However, such systems suffer from one of the main drawbacks of database systems:
the need to invest significant modeling effort upfront. Dataspace support platforms
(DSSP) envision a system that offers useful services on its data without any setup
effort and that improves with time in a pay-as-you-go fashion. We argue that to
support DSSPs, the system needs to model uncertainty at its core. We describe the
concepts of probabilistic mediated schemas and probabilistic mappings as enabling
concepts for DSSPs.

1 Introduction

Data integration and exchange systems offer a uniform interface to a multitude of
data sources and the ability to share data across multiple systems. These systems
have recently enjoyed significant research and commercial success (Halevy et al.
2005, 2006b). Current data integration systems are essentially a natural extension
of traditional database systems in that queries are specified in a structured form
and data are modeled in one of the traditional data models (relational, XML). In
addition, the data integration system has exact knowledge of how the data in the
sources map to the schema are used by the data integration system.

A.D. Sarma ()
Yahoo! Research, 2-GA 2231, Santa Clara, CA 95051, USA
e-mail: anish@yahoo-inc.com

X.L. Dong
AT&T Labs — Research, 180 Park Ave., Florham Park, NJ 07932, USA
e-mail: lunadong @research.att.com

A.Y. Halevy
Google Inc., 1600 Amphitheatre Blvd, Mountain View, CA 94043, USA
e-mail: halevy @google.com

Z. Bellahsene et al. (eds.), Schema Matching and Mapping, Data-Centric Systems 75
and Applications, DOI 10.1007/978-3-642-16518-4_4,
(© Springer-Verlag Berlin Heidelberg 2011

anish@yahoo-inc.com
lunadong@research.att.com
halevy@google.com

76 A.D. Sarma et al.

In this chapter, we argue that as the scope of data integration applications broad-
ens, such systems need to be able to model uncertainty at their core. Uncertainty can
arise for multiple reasons in data integration. First, the semantic mappings between
the data sources and the mediated schema may be approximate. For example, in
an application like Google Base (GoogleBase 2005) that enables anyone to upload
structured data, or when mapping millions of sources on the deep Web (Madhavan
et al. 2007), we cannot imagine specifying exact mappings. In some domains (e.g.,
bioinformatics), we do not necessarily know what the exact mapping is. Second,
data are often extracted from unstructured sources using information extraction
techniques. Since these techniques are approximate, the data obtained from the
sources may be uncertain. Third, if the intended users of the application are not
necessarily familiar with schemata, or if the domain of the system is too broad to
offer form-based query interfaces (such as Web forms), we need to support key-
word queries. Hence, another source of uncertainty is the transformation between
keyword queries and a set of candidate structured queries. Finally, if the scope of
the domain is very broad, there can even be uncertainty about the concepts in the
mediated schema.

Another reason for data integration systems to model uncertainty is to support
pay-as-you-go integration. Dataspace Support Platforms (Halevy et al. 2006a) envi-
sion data integration systems where sources are added with no effort and the system
is constantly evolving in a pay-as-you-go fashion to improve the quality of semantic
mappings and query answering. This means that as the system evolves, there will
be uncertainty about the semantic mappings to its sources, its mediated schema, and
even the semantics of the queries posed to it.

This chapter describes some of the formal foundations for data integration with
uncertainty. We define probabilistic schema mappings and probabilistic mediated
schemas and show how to answer queries in their presence. With these foundations,
we show that it is possible to completely automatically bootstrap a pay-as-you-go
integration system.

This chapter is largely based on previous papers (Dong et al. 2007; Sarma et al.
2008). The proofs of the theorems we state and the experimental results validating
some of our claims can be found there in. We also place several other works on
uncertainty in data integration in the context of the system we envision. In the next
section, we describe an architecture for data integration system that incorporates
uncertainty.

2 Overview of the System

This section describes the requirements from a data integration system that supports
uncertainty and the overall architecture of the system.

4 Uncertainty in Data Integration and Dataspace Support Platforms 77

2.1 Uncertainty in Data Integration

A data integration system needs to handle uncertainty at four levels.

Uncertain mediated schema: The mediated schema is the set of schema terms in
which queries are posed. They do not necessarily cover all the attributes appearing
in any of the sources, but rather the aspects of the domain that the application builder
wishes to expose to the users. Uncertainty in the mediated schema can arise for sev-
eral reasons. First, as we describe in Sect. 4, if the mediated schema is automatically
inferred from the data sources in a pay-as-you-go integration system, there will be
some uncertainty about the results. Second, when domains get broad, there will be
some uncertainty about how to model the domain. For example, if we model all
the topics in Computer Science, there will be some uncertainty about the degree of
overlap between different topics.

Uncertain schema mappings: Data integration systems rely on schema mappings
for specifying the semantic relationships between the data in the sources and the
terms used in the mediated schema. However, schema mappings can be inaccu-
rate. In many applications, it is impossible to create and maintain precise mappings
between data sources. This can be because the users are not skilled enough to pro-
vide precise mappings, such as in personal information management (Dong and
Halevy 2005), since people do not understand the domain well and thus do not even
know what correct mappings are, such as in bioinformatics, or since the scale of the
data prevents generating and maintaining precise mappings, such as in integrating
data of the Web scale (Madhavan et al. 2007). Hence, in practice, schema mappings
are often generated by semiautomatic tools and not necessarily verified by domain
experts.

Uncertain data: By nature, data integration systems need to handle uncertain data.
One reason for uncertainty is that data are often extracted from unstructured or
semistructured sources by automatic methods (e.g., HTML pages, emails, blogs).
A second reason is that data may come from sources that are unreliable or not up to
date. For example, in enterprise settings, it is common for informational data such as
gender, racial, and income level to be dirty or missing, even when the transactional
data are precise.

Uncertain queries: In some data integration applications, especially on the Web,
queries will be posed as keywords rather than as structured queries against a well-
defined schema. The system needs to translate these queries into some structured
form so that they can be reformulated with respect to the data sources. At this
step, the system may generate multiple candidate structured queries and have some
uncertainty about which is the real intent of the user.

78 A.D. Sarma et al.

2.2 System Architecture

Given the previously discussed requirements, we describe the architecture of a data
integration system we envision that manages uncertainty at its core. We describe the
system by contrasting it to a traditional data integration system.

The first and most fundamental characteristic of this system is that it is based on
a probabilistic data model. This means that we attach probabilities to the following:

e Tuples that we process in the system
e Schema mappings
e Mediated schemas
e Possible interpretations of keyword queries posed to the system

In contrast, a traditional data integration system includes a single mediated schema
and a single (and supposed to be correct) schema mapping between the mediated
schema and each source. The data in the sources are also assumed to be correct.

Traditional data integration systems assume that the query is posed in a structured
fashion (i.e., can be translated to some subset of SQL). Here, we assume that queries
can be posed as keywords (to accommodate a much broader class of users and appli-
cations). Hence, whereas traditional data integration systems begin by reformulating
a query onto the schemas of the data sources, a data integration system with uncer-
tainty needs to first reformulate a keyword query into a set of candidate structured
queries. We refer to this step as keyword reformulation. Note that keyword refor-
mulation is different from techniques for keyword search on structured data (e.g.,
Agrawal et al. 2002; Hristidis and Papakonstantinou 2002) in that (a) it does not
assume access to all the data in the sources or that the sources support keyword
search and (b) it tries to distinguish different structural elements in the query to
pose more precise queries to the sources (e.g., realizing that in the keyword query
“Chicago weather,” “weather” is an attribute label and “Chicago” is an instance
name). That being said, keyword reformulation should benefit from techniques that
support answering keyword search on structured data.

The query answering model is different. Instead of necessarily finding all
answers to a given query, our goal is typically to find the top-k answers and
rank these answers most effectively.

The final difference from traditional data integration systems is that our query
processing will need to be more adaptive than usual. Instead of generating a query
answering plan and executing it, the steps we take in query processing will depend
on results of previous steps. We note that adaptive query processing has been dis-
cussed quite a bit in data integration (Alon Levy 2000), where the need for adaptivity
arises from the fact that data sources did not answer as quickly as expected or that
we did not have accurate statistics about their contents to properly order our opera-
tions. In our work, however, the goal for adaptivity is to get the answers with high
probabilities faster.

The architecture of the system is shown in Fig. 4.1. The system contains a number
of data sources and a mediated schema (we omit probabilistic mediated schemas
from this figure). When the user poses a query Q, which can be either a structured

4 Uncertainty in Data Integration and Dataspace Support Platforms 79

‘o

Keyword .
Reformulation Mediated Schema

Y
Query
Reformulation

Y Q11,..-Q1ns--,Qk1---Qkn

Query
Pocessor

Qx1,---Qkn

Do

D3

Fig. 4.1 Architecture of a data-integration system that handles uncertainty

query on the mediated schema or a keyword query, the system returns a set of answer
tuples, each with a probability. If Q is a keyword query, the system first performs
keyword reformulation to translate it into a set of candidate structured queries on
the mediated schema. Otherwise, the candidate query is Q itself.

2.3 Source of Probabilities

A critical issue in any system that manages uncertainty is whether we have a reliable
source of probabilities. Whereas obtaining reliable probabilities for such a system is
one of the most interesting areas for future research, there is quite a bit to build
on. For keyword reformulation, it is possible to train and test reformulators on
large numbers of queries such that each reformulation result is given a probability
based on its performance statistics. For information extraction, current techniques
are often based on statistical machine learning methods and can be extended to com-
pute probabilities of each extraction result. Finally, in the case of schema matching,
it is standard practice for schema matchers to also associate numbers with the can-
didates they propose (e.g., Berlin and Motro 2002; Dhamankar et al. 2004; Do and
Rahm 2002; Doan et al. 2002; He and Chang 2003; Kang and Naughton 2003; Rahm
and Bernstein 2001; Wang et al. 2004). The issue here is that the numbers are meant
only as a ranking mechanism rather than true probabilities. However, as schema
matching techniques start looking at a larger number of schemas, one can imagine
ascribing probabilities (or estimations thereof) to their measures.

80 A.D. Sarma et al.

2.4 Outline of the Chapter

We begin by discussing probabilistic schema mappings in Sect. 3. We also discuss
how to answer queries in their presence and how to answer top-k queries. In Sect. 4,
we discuss probabilistic mediated schemas. We begin by motivating them and show-
ing that in some cases they add expressive power to the resulting system. Then,
we describe an algorithm for generating probabilistic mediated schemas from a
collection of data sources.

3 Uncertainty in Mappings

The key to resolving heterogeneity at the schema level is to specify schema map-
pings between data sources. These mappings describe the relationship between the
contents of the different sources and are used to reformulate a query posed over
one source (or a mediated schema) into queries over the sources that are deemed
relevant. However, in many applications, we are not able to provide all the schema
mappings upfront. In this section, we describe how we use probabilistic schema
mappings (p-mappings, defined in Definition 3 in Chap. 3) to capture uncertainty on
mappings between schemas.

We start by presenting a running example for this section that also motivates
p-mappings (Sect.3.1). Then, Sect.3.2 formally defines its semantics in query
answering. After that, Sect.3.3 describes algorithms for query answering with
respect to probabilistic mappings and discusses the complexity. Next, Sect.3.4
shows how to leverage previous work on schema matching to automatically cre-
ate probabilistic mappings. In the end, Sect. 3.5 briefly describes various extensions
to the basic definition, and Sect. 3.6 describes other types of approximate schema
mappings that have been proposed in the literature.

3.1 Motivating Probabilistic Mappings

Example 1. Consider a data source S, which describes a person by her email
address, current address, and permanent address, and the mediated schema 7', which
describes a person by her name, email, mailing address, home address, and office
address:

S=(pname, email-addr, current-addr, permanent-addr)
T=(name, email, mailing-addr, home-addr, office-addr)

A semiautomatic schema-mapping tool may generate three possible mappings
between S and T, assigning each a probability. Whereas the three mappings
all map pname to name, they map other attributes in the source and the tar-
get differently. Figure 4.2a describes the three mappings using sets of attribute
correspondences. For example, mapping m; maps pname to name, email-addr

4 Uncertainty in Data Integration and Dataspace Support Platforms 81

to email, current-addr to mailing-addr, and permanent-addr to home-addr.
Because of the uncertainty about which mapping is correct, we consider all of these
mappings in query answering.

Suppose the system receives a query Q composed on the mediated schema and
asking for people’s mailing addresses:

Q: SELECT mailing-addr FROM T
Using the possible mappings, we can reformulate Q into different queries:

Ql: SELECT current-addr FROM S
Q2: SELECT permanent-addr FROM S
Q03: SELECT email-addr FROM S

If the user requires all possible answers, the system generates a single aggrega-
tion query based on Q1, O, and Q3 to compute the probability of each returned
tuple and sends the query to the data source. Suppose the data source contains a
table Dg as shown in Fig.4.2b, the system will retrieve four answer tuples, each
with a probability, as shown in Fig. 4.2c.

If the user requires only the top-1 answer (i.e., the answer tuple with the highest
probability), the system decides at runtime which reformulated queries to execute.
For example, after executing Q1 and Q, at the source, the system can already

conclude that (“Sunnyvale”) is the top-1 answer and can skip query Q3. O

Possible Mapping Prob

_ {(pname, name), (email-addr, email), 05
= (current-addr, mailing-addr), (permanent-addr, home-addr)}|

_ {(pname, name), (email-addr, email), 04
(permanent-addr, mailing-addr), (current-addr, home-addr)} |

_ {(pname, name), (email-addr, mailing-addr), 01
3= (current-addr, home-addr)} ’

(a)

pname [email-addr| current-addr |permanent-addr
Alice | alice@ |Mountain View| Sunnyvale
Bob bob@ Sunnyvale Sunnyvale

()

Tuple (mailing-addr) |Prob

(’Sunnyvale’) 0.9

(’Mountain View’) | 0.5

(Calice@) 0.1
(’bob@) 0.1
(©

Fig. 4.2 The running example: (a) a probabilistic schema mapping between S and T'; (b) a source
instance Dg; (c) the answers of Q over Dg with respect to the probabilistic mapping

82 A.D. Sarma et al.

3.2 Definition and Semantics

3.2.1 Schema Mappings and p-Mappings

We begin by reviewing nonprobabilistic schema mappings. The goal of a schema
mapping is to specify the semantic relationships between a source schema and a
target schema. We refer to the source schema as S, and a relation in S as S =
(S1,...,5m). Similarly, we refer to the target schema as T, and a relation in T as
T ={t1,...,tn).

We consider a limited form of schema mappings that are also referred to as
schema matching in the literature. Specifically, a schema matching contains a set of
attribute correspondences. An attribute correspondence is of the form ¢;; = (s;, ¢;),
where s; is a source attribute in the schema S and ¢; is a target attribute in the
schema T'. Intuitively, ¢;; specifies that there is a relationship between s; and ¢;.
In practice, a correspondence also involves a function that transforms the value of
s; to the value of ¢;. For example, the correspondence (c-degree, temperature)
can be specified as temperature=c-degree x1.8 + 32, describing a transforma-
tion from Celsius to Fahrenheit. These functions are irrelevant to our discussion,
and therefore, we omit them. This class of mappings are quite common in practice
and already expose many of the novel issues involved in probabilistic mappings. In
Sect. 3.5, we will briefly discuss extensions to a broader class of mappings.

Formally, relation mappings and schema mappings are defined as follows.

Definition 1 (Schema Mapping). Let S and 7 be relational schemas. A relation
mapping M is a triple (S, T, m), where S is a relation in S, T is arelationin T, and
m is a set of attribute correspondences between S and 7.

When each source and target attribute occurs in at most one correspondence in
m, we call M a one-to-one relation mapping.

A schema mapping M is a set of one-to-one relation mappings between relations
in § and in T, where every relation in either S or T appears at most once. O

A pair of instances D and Dr satisfies a relation mapping m if for every source
tuple t; € Dg, there exists a target tuple #; € D;, such that for every attribute
correspondence (s,?) € m, the value of attribute s in #; is the same as the value of
attribute ¢ in ;.

Example 2. Consider the mappings in Example 1. The source database in Fig. 4.2b
(repeated in Fig. 4.3a) and the target database in Fig. 4.3b satisfy m;. O

Intuitively, a probabilistic schema mapping describes a probability distribution
of a set of possible schema mappings between a source schema and a target schema.
For completeness, we repeat its definition as follows (also see Definition 3 in
Chap. 3).

Definition 2 (Probabilistic Mapping). Let S and T be relational schemas. A prob-
abilistic mapping (p-mapping), pM , is a triple (S, T, m), where S € S, T € T, and
m is a set {(my, Pr(my)), ..., (my, Pr(m;))}, such that

4 Uncertainty in Data Integration and Dataspace Support Platforms 83

pname [email-addr| current-addr |permanent-addr

Alice | alice@ |Mountain View| Sunnyvale
Bob bob@ Sunnyvale Sunnyvale
(a)
name| email | mailing-addr |home-addr |office-addr
Alice|alice@ |Mountain View | Sunnyvale | office
Bob | bob@ | Sunnyvale |Sunnyvale| office
()
name| email |mailing-addr| home-addr |office-addr
Alice|alice@| Sunnyvale |Mountain View| office

Bob | email bob@ Sunnyvale office
(©
Tuple (mailing-addr) |Prob Tuple (mailing-addr) |Prob
(’Sunnyvale’) 0.9 (’Sunnyvale’) 0.94
(’Mountain View’) | 0.5 (’Mountain View’) | 0.5
(alice@’) 0.1 (alice@’) 0.1
('bob@’) 0.1 (’bob@”) 0.1

(d) (e

Fig. 4.3 Example 3: (a) a source instance Dg; (b) a target instance that is by-table consistent
with Dg and m; (c¢) a target instance that is by-tuple consistent with Dg and < mj, m3 >; (d)

Q" (Ds): (€) Q" (Ds)

e Fori € [1,I], m; is a one-to-one mapping between S and 7, and for every
i.jelllil,i #j=m #mj.
e Pr(m;) €[0,1] and ZlePr(m,-) =1.

_ A schema p-mapping, pM, is a set of p-mappings between relations in S and in
T, where every relation in either S or 7" appears in at most one p-mapping. O

We refer to a nonprobabilistic mapping as an ordinary mapping. A schema
p-mapping may contain both p-mappings and ordinary mappings. Example 1 shows
a p-mapping (see Fig. 4.2a) that contains three possible mappings.

3.2.2 Semantics of Probabilistic Mappings

Intuitively, a probabilistic schema mapping models the uncertainty about which of
the mappings in pM is the correct one. When a schema matching system produces
a set of candidate matches, there are two ways to interpret the uncertainty: (1) a
single mapping in pM is the correct one, and it applies to all the data in S, or (2)
several mappings are partially correct, and each is suitable for a subset of tuples
in S, though it is not known which mapping is the right one for a specific tuple.
Figure 4.3b illustrates the first interpretation and applies mapping m . For the same
example, the second interpretation is equally valid: some people may choose to use
their current address as mailing address, while others use their permanent address

84 A.D. Sarma et al.

as mailing address; thus, for different tuples, we may apply different mappings so
that the correct mapping depends on the particular tuple.

We define query answering under both interpretations. The first interpretation
is referred to as the by-table semantics, and the second one is referred to as the
by-tuple semantics of probabilistic mappings. Note that one cannot argue for one
interpretation over the other; the needs of the application should dictate the appro-
priate semantics. Furthermore, the complexity results for query answering, which
will show advantages to by-table semantics, should not be taken as an argument in
the favor of by-table semantics.

We next define query answering with respect to p-mappings in detail, and the
definitions for schema p-mappings are the obvious extensions. Recall that given a
query and an ordinary mapping, we can compute certain answers to the query with
respect to the mapping. Query answering with respect to p-mappings is defined as a
natural extension of certain answers, which we next review.

A mapping defines a relationship between instances of .S and instances of T that
are consistent with the mapping.

Definition 3 (Consistent Target Instance). Let M = (S,T,m) be a relation
mapping and Dg be an instance of S.

An instance D of T is said to be consistent with Ds and M, if for each tuple
ts € Dy there exists a tuple #; € D, such that for every attribute correspondence
(as, a;) € m the value of ay in 4 is the same as the value of a; in ;. O

For arelation mapping M and a source instance D g, there can be an infinite num-
ber of target instances that are consistent with Dg and M. We denote by Tarps (D)
the set of all such target instances. The set of answers to a query Q is the intersection
of the answers on all instances in Tarps (Dy).

Definition 4 (Certain Answer). Let M = (S, T, m) be a relation mapping. Let Q
be a query over T and let D be an instance of S.

A tuple ¢ is said to be a certain answer of Q with respect to Ds and M , if for
every instance Dt € Tary(D5s), t € Q(Dr). O

By-table semantics: We now generalize these notions to the probabilistic setting,
beginning with the by-table semantics. Intuitively, a p-mapping pM describes a set
of possible worlds, each with a possible mapping m € pM . In by-table semantics,
a source table can fall in one of the possible worlds, that is, the possible mapping
associated with that possible world applies to the whole source table. Following this
intuition, we define target instances that are consistent with the source instance.

Definition 5 (By-table Consistent Instance). Let pM = (S,7,m) be a
p-mapping and D be an instance of S.

An instance Dt of T is said to be by-table consistent with Ds and pM , if there
exists a mapping m € m such that Dgs and Dt satisfy m. O

4 Uncertainty in Data Integration and Dataspace Support Platforms 85

Given a source instance Dg and a possible mapping m € m, there can be an
infinite number of target instances that are consistent with D g and m. We denote by
Tar, (Dys) the set of all such instances.

In the probabilistic context, we assign a probability to every answer. Intuitively,
we consider the certain answers with respect to each possible mapping in isolation.
The probability of an answer ¢ is the sum of the probabilities of the mappings for
which ¢ is deemed to be a certain answer. We define by-table answers as follows:

Definition 6 (By-table Answer). Let pM = (S, T,m) be a p-mapping. Let Q be
a query over T and let Dg be an instance of S

Let ¢ be a tuple. Let m(¢) be the subset of m, such that for each m € m(¢) and
for each Dt € Tary,(Ds),t € Q(Dr).

Let p = Zmen-l(,) Pr(m).If p > 0, then we say (¢, p) is a by-table answer of Q
with respectto Ds and pM . O

By-tuple semantics: If we follow the possible-world notions, in by-tuple semantics,
different tuples in a source table can fall in different possible worlds, that is, different
possible mappings associated with those possible worlds can apply to the different
source tuples.

Formally, the key difference in the definition of by-tuple semantics from that
of by-table semantics is that a consistent target instance is defined by a mapping
sequence that assigns a (possibly different) mapping in m to each source tuple in
Dg. (Without losing generality, to compare between such sequences, we assign
some order to the tuples in the instance.)

Definition 7 (By-tuple Consistent Instance). Let pM = (S,7,m) be a
p-mapping and let Dg be an instance of S with d tuples.

An instance Dt of T is said to be by-tuple consistent with Ds and pM , if there
is a sequence (m', ..., m?) such that d is the number of tuples in Dg and for every

1<i<d,

e m! €m, and

e For the ith tuple of Dg, #;, there exists a target tuple ti’ € Dy such that for each
attribute correspondence (as,a;) € m', the value of as in ¢; is the same as the
value of a; int] . O

Given a mapping sequence seq = (m',...,m?), we denote by Tarseq(Dys) the

set of all target instances that are consistent with Dg and seq. Note that if Dt is
by-table consistent with Dg and m, then Dt is also by-tuple consistent with Dg
and a mapping sequence in which each mapping is m.

We can think of every sequence of mappings seq = (m',...,m?) as a separate
event whose probability is Pr(seq) = I1 l-‘lzlPr(mi). (Section 3.5 relaxes this inde-
pendence assumption and introduces conditional mappings.) If there are / mappings
in pM, then there are /¢ sequences of length d, and their probabilities add up to
1. We denote by seq; (pM) the set of mapping sequences of length d generated
from pM .

86 A.D. Sarma et al.

Definition 8 (By-tuple Answer). Let pM = (S, T, m) be a p-mapping. Let O be
a query over T and Dg be an instance of S with d tuples.

Let ¢ be a tuple. Let seq(¢) be the subset of seq; (pM), such that for each seq €
seq(t) and for each Dt € Tary,(Ds),t € Q(Dr).

Letp = qué@(t) Pr(seq).If p > 0, we call (¢, p) a by-tuple answer of Q with
respectto Ds and pM . O

The set of by-table answers for Q with respect to D is denoted by 0?#?/¢(Dyg)
and the set of by-tuple answers for Q with respect to Dy is denoted by Q“P'¢(Dy).

Example 3. Consider the p-mapping pM , the source instance Dg, and the query 0
in the motivating example.

In by-table semantics, Fig.4.3b shows a target instance that is consistent with
Dg (repeated in Fig.4.3a) and possible mapping m;. Figure 4.3d shows the by-
table answers of Q with respect to Ds and pM. As an example, for tuple ¢t =
(“Sunnyvale”), we have m(t) = {m1, my}, so the possible tuple (“Sunnyvale,” 0.9)
is an answer.

In by-tuple semantics, Fig. 4.3c shows a target instance that is by-tuple consistent
with Dg and the mapping sequence < my,m3 >. Figure 4.3e shows the by-tuple
answers of Q with respect to Dg and pM . Note that the probability of tuple t =
(“‘Sunnyvale”) in the by-table answers is different from that in the by-tuple answers.
We describe how to compute the probabilities in detail in the next section. O

3.3 Query Answering

This section studies query answering in the presence of probabilistic mappings. We
start with describing algorithms for returning all answer tuples with probabilities,
and discussing the complexity of query answering in terms of the size of the data
(data complexity) and the size of the p-mapping (mapping complexity). We then
consider returning the top-k query answers, which are the k answer tuples with the
top probabilities, and answering aggregate queries.

3.3.1 By-table Query Answering

In the case of by-table semantics, answering queries is conceptually simple. Given
a p-mapping pM = (S,7T,m) and an SPJ query Q, we can compute the cer-
tain answers of Q under each of the mappings m € m. We attach the probability
P r(m) to every certain answer under m. If a tuple is an answer to Q under multiple
mappings in m, then we add up the probabilities of the different mappings.

Algorithm BYTABLE takes as input an SPJ query Q that mentions the relations
T, ..., T; in the FROM clause. Assume that we have the p-mapping p M; associated
with the table 7;. The algorithm proceeds as follows.

4 Uncertainty in Data Integration and Dataspace Support Platforms 87

Step 1: We generate the possible reformulations of Q (a reformulation query com-
putes all certain answers when executed on the source data) by considering every

combination of the form (m!, ..., m'), where m' is one of the possible mappings
in pM;. Denote the set of reformulations by Q1,..., Q}. The probability of a
reformulation Q" = (m',...,m')is IT'_, Pr(m").

Step 2: For each reformulation Q’, retrieve each of the unique answers from the
sources. For each answer obtained by Q| U ... U Oy, its probability is computed
by summing the probabilities of the Q’’s in which it is returned.

Importantly, note that it is possible to express both steps as an SQL query with
grouping and aggregation. Therefore, if the underlying sources support SQL, we
can leverage their optimizations to compute the answers.

With our restricted form of schema mapping, the algorithm takes time poly-
nomial in the size of the data and the mappings. We, thus, have the following
complexity result.

Theorem 1. Let pM be a schema p-mapping and let Q be an SPJ query.
Answering Q with respect to pM in by-table semantics is in PTIME in the size
of the data and the mapping. O

3.3.2 By-tuple Query Answering

To extend the by-table query-answering strategy to by-tuple semantics, we would
need to compute the certain answers for every mapping sequence generated by pM .
However, the number of such mapping sequences is exponential in the size of the
input data. The following example shows that for certain queries, this exponential
time complexity is inevitable.

Example 4. Suppose that in addition to the tables in Example 1, we also have
U(city) in the source and V(hightech) in the target. The p-mapping for V' contains
two possible mappings: ({(city, hightech)}, 0.8) and (@, 0.2).

Consider the following query Q, which decides if there are any people living in
a high-tech city.

Q: SELECT ‘true’
FROM T, V
WHERE T.mailing-addr = V.hightech

An incorrect way of answering the query is to first execute the following two
subqueries Q1 and Q, and then join the answers of O and Q», and summing up
the probabilities.

Ql: SELECT mailing-addr FROM T
Q2: SELECT hightech FROM V

Now, consider the source instance D, where Dg is shown in Fig.4.2a, and Dy
has two tuples (“Mountain View”) and (“Sunnyvale™). Figure 4.4a,b show Q1% (D)

88 A.D. Sarma et al.

Tuple (mailing-addr)| Pr
(’Sunnyvale’) 0.94 Tuple (mailing-addr) | Pr
(’Mountain View’) | 0.5 (’Sunnyvale’) 0.8
(alice@’) 0.1 (’Mountain View’) 0.8
("bob@’) 0.1 (b)
(@

Fig. 4.4 Example 4: (a) Qlluple (D) and (b) leuple(D)

and Q;"”IE(D). If we join the results of O and Q», we obtain for the true tuple the
following probability: 0.94 x 0.8 + 0.5 % 0.8 = 1.152. However, this is incorrect. By
enumerating all consistent target tables, we in fact compute 0.864 as the probability.
The reason for this error is that on some target instance that is by-tuple consistent
with the source instance, the answers to both O and @, contain tuple (“Sunny-
vale”) and tuple (“Mountain View”). Thus, generating the tuple (“Sunnyvale”) as an
answer for both Q1 and Q, and generating the tuple (“Mountain View”) for both
queries are not independent events, and so simply adding up their probabilities leads
to incorrect results.

Indeed, it is not clear if there exists a better algorithm to answer Q than by
enumerating all by-tuple consistent target instances and then answering Q on each
of them. O

In fact, it is proved that in general, answering SPJ queries in by-tuple semantics
with respect to schema p-mappings is hard.

Theorem 2. Let Q be an SPJ query and let pM be a schema p-mapping. The
problem of finding the probability for a by-tuple answer to Q with respect to pM
is #P-complete with respect to data complexity and is in PTIME with respect to
mapping complexity. O

Recall that #P is the complexity class of some hard counting problems (that is,
e.g., counting the number of variable assignments that satisfy a Boolean formula). It
is believed that a #P-complete problem cannot be solved in polynomial time, unless
P =NP.

Although by-tuple query answering in general is hard, there are two restricted but
common classes of queries for which by-tuple query answering takes polynomial
time. The first class of queries are those that include only a single subgoal being
the target of a p-mapping; here, we refer to an occurrence of a table in the FROM
clause of a query as a subgoal of the query. Relations in the other subgoals are either
involved in ordinary mappings or do not require a mapping. Hence, if we only have
uncertainty with respect to one part of the domain, our queries will typically fall
in this class. The second class of queries can include multiple subgoals involved in
p-mappings but return the join attributes for such subgoals. We next illustrate these
two classes of queries and query answering for them using two examples.

4 Uncertainty in Data Integration and Dataspace Support Platforms 89

Example 5. Consider rewriting Q in the motivating example, repeated as follows:
Q: SELECT mailing-addr FROM T
To answer the query, we first rewrite Q into query Q' by adding the id column:
Q’: SELECT id, mailing-addr FROM T

We then invoke BYTABLE and generate the following SQL query to compute
by-table answers for Q’:

Qa: SELECT id, mailing-addr, SUM(pr)
FROM (
SELECT DISTINCT id, current-addr
AS mailing-addr, 0.5 AS pr
FROM S
UNION ALL
SELECT DISTINCT id, permanent-addr
AS mailing-addr, 0.4 AS pr
FROM S
UNION ALL
SELECT DISTINCT id, email-addr
AS mailing-addr, 0.1 AS pr
FROM S)
GROUP BY id, mailing-addr

Finally, we generate the results using the following query.

Qu: SELECT mailing-addr, NOR(pr) AS pr
FROM Qa
GROUP BY mailing-addr

where for a set of probabilities pry,..., pry, NOR computes 1 — IT"_, (1 — pr;).
O

Example 6. Consider the schema p-mapping in Example 4. If we revise Q slightly
by returning the join attribute, shown as follows, we can answer the query in
polynomial time.

Q’: SELECT V.hightech
FROM T, V
WHERE T.mailing-addr = V.hightech

We answer the query by dividing it into two subqueries, Q1 and Q», as shown in
Example 4. We can compute Q with query Q, (shown in Example 5) and compute
Q> similarly with a query Q. We compute by-tuple answers of Q” as follows:

SELECT Qu’ .hightech, Qu.pr*Qu’.pr
FROM Qu, Qu’
WHERE Qu.mailing-addr = Qu’'.hightect

90 A.D. Sarma et al.

3.3.3 Top-k Query Answering

The main challenge in designing the algorithm for returning top-k query answers is
to only perform the necessary reformulations at every step and halt when the top-k
answers are found. We focus on top-k query answering for by-table semantics, and
the algorithm can be modified for by-tuple semantics.

Recall that in by-table query answering, the probability of an answer is the sum of
the probabilities of the reformulated queries that generate the answer. Our goal is to
reduce the number of reformulated queries we execute. The algorithm we describe
next proceeds in a greedy fashion: it executes queries in descending order of prob-
abilities. For each tuple ¢, it maintains the upper bound pu,«(#) and lower bound
Pmin (?) of its probability. This process halts when it finds k tuples whose ppi, values
are higher than p,.x of the rest of the tuples.

ToPKBYTABLE takes as input an SPJ query Q, a schema p-mapping pM, an
instance Dg of the source schema, and an integer k, and outputs the top-k answers
in Q*9b!¢(Dy). The algorithm proceeds in three steps.

Step 1: Rewrite Q according to pM into a set of queries Q1, ..., Oy, each with a
probability assigned in a similar way as stated in Algorithm BYTABLE.

Step 2: Execute 01, ..., Q, in descending order of their probabilities. Maintain the
following measures:

e The highest probability, PMax, for the tuples that have not been generated yet.
We initialize PMax to 1; after executing query Q; and updating the list of
answers (see third bullet), we decrease PMax by Pr(Q;);

e The threshold ¢/ determining which answers are potentially in the top-k. We
initialize th to 0; after executing Q; and updating the answer list, we set th to
the kth largest py;, for tuples in the answer list;

e Alist L of answers whose pyax is no less than ¢4, and bounds ppi, and pyax for
each answer in L. After executing query Q;, we update the list as follows: (1)
foreacht € Landt € Q;(Dg), we increase pmin(¢) by Pr(Q;); (2) for each
t € Lbutt € Q;(Dg), we decrease pma(t) by Pr(Q;); (3)if PMax > th, for
eacht ¢ Lbutt € Q;(Dg), insert f to L, set pmin to Pr(Q;), and set pmax(t)
to PMax.

e Alist T of k tuples with top pmi, values.

Step 3: When th > PMax and foreach t & T, th > ppnax(t), halt and return 7.

Example 7. Consider Example 1 where we seek for top-1 answer. We answer the
reformulated queries in order of Q1, Q», Q3. After answering Q1, for tuple (“Sun-
nyvale”) we have pyin = 0.5 and pn.x = 1, and for tuple (“Mountain View”) we
have the same bounds. In addition, PMax = 0.5and th = 0.5.

In the second round, we answer Q. Then, for tuple (“Sunnyvale”), we have
Pmin = 0.9 and pn.,x = 1, and for tuple (“Mountain View”), we have pni, = 0.5
and ppax = 0.6. Now PMax = 0.1 andth = 0.9.

Because th > PMax and th is above the py.x for the (“Mountain View”) tuple,
we can halt and return (“Sunnyvale”) as the top-1 answer. O

4 Uncertainty in Data Integration and Dataspace Support Platforms 91

3.3.4 Answering Aggregate Queries

Finally, we discuss queries with aggregate operators: COUNT, SUM, AVG,
MAX, and MIN based on results from Gal et al. (2009). We consider three common
extensions to semantics with aggregates and probabilistic information: the range
semantics returns the range of the aggregate (i.e., the minimum and the maximum
value); the expected-value semantics returns the expected value of the aggregate,
and the distribution semantics returns all possible values with their probabilities.
Note that the answer under the former two semantics can be derived from that under
the last semantics; in other words, the distribution semantics is the richest one. We
next formally define the three semantics.

Definition 9 (Semantics of Aggregate Query). Let pM = (S,7,m) be a p-
mapping, O be an aggregate query over T, and Dg be an instance of S. Let V
be the set of result values of evaluating Q on Dg w.r.t. pM under by-table (resp.
by-tuple) semantics and Pr(v) be the probability of value v € V.

1. Range semantics: The result is the interval [min(V), max(V)].

2. Expected-value semantics: The resultis) 7 Pr(v) - v.

3. Distribution semantics: The result is a random variable X, s.t. for each distinct
valuev € V, Pr(X =v) = Pr(v). O

According to the definition, there are six combinations of semantics for aggre-
gate queries w.r.t. a p-mapping. Since results under the range or expected-value
semantics can be derived from the results under the distribution semantics in poly-
nomial time, the complexity of query answering w.r.t. to the former two semantics is
no higher than that w.r.t. to the distribution semantics; in fact, in some cases, query
answering w.r.t. to the former two semantics can be computed more efficiently with-
out obtaining the distribution. Table 4.1 summarizes the complexity results for each
aggregate operator, and we now explain them briefly.

e In by-table query answering, we can enumerate all answers and compute their
probabilities in polynomial time; thus, query answering is in PTIME for all
semantics.

¢ In by-tuple query answering, we can enumerate all answers (without computing
their probabilities) in polynomial time; thus, query answering under the range
semantics (where we do not need to know the probabilities of each answer) is in
PTIME.

Table 4.1 Complexity of answering aggregate queries under different semantics

Semantics Operator Range Expected-value Distribution

By-table COUNT, SUM, AVG, MIN, MAX PTIME PTIME PTIME

By-tuple COUNT PTIME PTIME PTIME
SUM PTIME PTIME ?

AVG, MIN, MAX PTIME ? ?

92 A.D. Sarma et al.

e We can prove that under the expected-value semantics, the answer for the SUM
operator under by-table and by-tuple semantics is the same; thus, query answer-
ing for SUM under the by-tuple and expected-value semantics is in PTIME.

e For the COUNT operator, even query answering under the by-tuple semantics is
PTIME for the distribution semantics and thus also for other semantics. We next
illustrate this using an example.

e For the rest of the combinations, we conjecture that query answering cannot
be finished in polynomial time and the complexity of query answering remains
open.

Example 8. Continue with the running example (Fig. 4.2) and consider the follow-
ing query.

Qc: SELECT COUNT (%) FROM S
WHERE mailing-addr = ’‘Sunnyvale’

Table 4.2 shows how the probability of each answer value changes after we pro-
cess each source tuple under the by-tuple semantics. After processing the first tuple,
the probability of COUNT = 01is 0.54-0.1 = 0.6 (m1,m3) and that of COUNT = 1
is 0.4 (my). After processing the second tuple, the probability of COUNT = 0
is the probability that COUNT = 0 after the first tuple times the probability of
applying m3 to the second tuple, so 0.6 x 0.1 = 0.06. That of COUNT = 1 is
0.6 % (0.540.4) +0.4 % 0.1 = 0.58, that is, either COUNT = 0 after we process the
first tuple and we apply m or m to the second tuple, or COUNT = 1 after the first
tuple and we apply m3 to the third tuple. Similarly, the probability of COUNT = 2
is 0.4 % (0.5 4+ 0.4) = 0.36. O

3.4 Creating p-Mappings

We now address the problem of generating a p-mapping between a source schema
and a target schema. We begin by assuming that we have a set of weighted corre-
spondences between the source attributes and the target attributes. These weighted
correspondences are created by a set of schema matching modules. However, as we
explain shortly, there can be multiple p-mappings that are consistent with a given
set of weighted correspondences, and the question is which of them to choose. We
describe an approach to creating p-mappings that is based on choosing the mapping
that maximizes the entropy of the probability assignment.

Table 4.2 Trace of query answering in Example 8
TupleID COUNT =0 COUNT =1 COUNT =2
1 0.6 0.4 -
2 0.06 0.58 0.36

4 Uncertainty in Data Integration and Dataspace Support Platforms 93

3.4.1 Computing Weighted Correspondences

A weighted correspondence between a pair of attributes specifies the degree of
semantic similarity between them. Let S(sq,...,S,) be a source schema and
T(t1,....tn) be a target schema. We denote by C; ;,i € [1,m],j € [1,n], the
weighted correspondence between s; and ¢; and by w; ; the weight of C; ;. The
first step is to compute a weighted correspondence between every pair of attributes,
which can be done by applying existing schema-matching techniques.

Although weighted correspondences tell us the degree of similarity between pairs
of attributes, they do not tell us which target attribute a source attribute should map
to. For example, a target attribute mailing-address can be both similar to the source
attribute current-addr and to permanent-addr, so it makes sense to map either of
them to mailing-address in a schema mapping. In fact, given a set of weighted
correspondences, there could be a set of p-mappings that are consistent with it. We
can define the one-to-many relationship between sets of weighted correspondences
and p-mappings by specifying when a p-mapping is consistent with a set of weighted
correspondences.

Definition 10 (Consistent p-mapping). A p-mapping pM is consistent with a
weighted correspondence C; ; between a pair of source and target attributes if the
sum of the probabilities of all mappings m € pM containing correspondence (i, j)
equals w; ;; that is,

Wi = Z Pr(m).

mepM,(i,j)em

A p-mapping is consistent with a set of weighted correspondences C if it is
consistent with each weighted correspondence C € C. O

However, not every set of weighted correspondences admits a consistent p-mapping.
The following theorem shows under which conditions a consistent p-mapping exists,
and it establishes a normalization factor for weighted correspondences that will
guarantee the existence of a consistent p-mapping.

Theorem 3. Let C be a set of weighted correspondences between a source schema
S(s1,...,5n) and a target schema T (t1, ..., t,).

o There exists a consistent p-mapping with respect to C if and only if (1) for every
i €[1,m], Z'}-:l wi,j < land (2)forevery j € [1,n], > i wi; < 1.
o Let
n m
M = max{max,-{z wi,j},maxj{z wi it}
j=1 i=1
Then, for eachi € [1,m], Z?:l V;"/I—/’ < landforeach j € [1,n], Y7L “LI<]1.

Based on Theorem 3, we normalize the weighted correspondences we generated
as described previously by dividing them by M’, that is,

’ Wi, j
W. . = .
L,J M’

94 A.D. Sarma et al.

3.4.2 Generating p-Mappings

To motivate our approach to generate p-mappings, consider the following example.
Consider a source schema (A4, B) and a target schema (A’, B’). Assume that we
have computed the following weighted correspondences between source and target
attributes: wy, 4 = 0.6 and wp g = 0.5 (the rest are 0).

As we explained above, there are an infinite number of p-mappings that are con-
sistent with this set of weighted correspondences and below we list two of them:
pMi:

ml: (A,A"), (B,B’"): 0.3 m2: (A,A’): 0.3 m3:
(B,B’"): 0.2 md: empty: 0.2

pMzI

ml: (A,A"), (B,B"): 0.5
m2: (A,A"): 0.1
m3: empty: 0.4

In a sense, pM; seems better than pM, because it assumes that the similarity
between A and A’ is independent of the similarity between B and B’.

In the general case, among the many p-mappings that are consistent with a set
of weighted correspondences C, we choose the one with the maximum entropy, that
is, the p-mappings whose probability distribution obtains the maximum value of
Zle —pi * log p;. In the above example, pM; obtains the maximum entropy.

The intuition behind maximum entropy is that when we need to select among
multiple possible distributions on a set of exclusive events, we choose the one that
does not favor any of the events over the others. Hence, we choose the distribution
that does not introduce new information that we did not have a priori. The prin-
ciple of maximum entropy is widely used in other areas such as natural language
processing.

To create the p-mapping, we proceed in two steps. First, we enumerate all pos-
sible one-to-one schema mappings between S and M that contain a subset of
correspondences in C. Second, we assign probabilities on each of the mappings
in a way that maximizes the entropy of our result p-mapping.

Enumerating all possible schema mappings given C is trivial: for each subset
of correspondences, if it corresponds to a one-to-one mapping, we consider the
mapping as a possible mapping.

Given the possible mappings my, ..., m;, we assign probabilities pq,..., p; to
my,...,m; by solving the following constraint optimization problem (OPT):

maximize Zi:l —pr *log px subject to:
1. Yk € [1,1],0 < pg < 1,

2. Z.i:.l pr = 1,and
3. Vit Y kel i, jyemy Pk = Wij-

4 Uncertainty in Data Integration and Dataspace Support Platforms 95

We can apply existing technology in solving the OPT optimization problem.
Although finding maximum-entropy solutions in general is costly, the experiments
described in Sarma et al. (2008) show that the execution time is reasonable for a
one-time process.

3.5 Broader Classes of Mappings

In this section, we describe several practical extensions to the basic mapping lan-
guage. The query answering techniques and complexity results we have described
carry over to these techniques.

GLAV mappings: The common formalism for schema mappings, GLAV (a.k.a.
tuple-generating dependencies), is based on expressions of the form

m: Vx(p(x) = Y (x,y)).

In the expression, ¢ is the body of a conjunctive query over S, and v is the body of a
conjunctive query over T'. A pair of instances D g and Dr satisfies a GLAV mapping
m if for every assignment of X in D g that satisfies ¢ there exists an assignment of y
in Dt that satisfies .

We define general p-mappings to be triples of the form pGM = (S, T,gm),
where gm is a set {(gm;, Pr(gm;)) | i € [1,n]}, such that for each i € [1,n], gm;
is a general GLAV mapping. The definition of by-table semantics for such mappings
is a simple generalization of Definition 6, and query answering can be conducted in
PTIME. Extending by-tuple semantics to arbitrary GLAV mappings is much trickier
than by-table semantics and would involve considering mapping sequences whose
length is the product of the number of tuples in each source table, and the results are
much less intuitive.

Theorem 4. Let pGM be a general p-mapping between a source schema S and a
target schema T. Let Dg be an instance of S. Let Q be an SPJ query with only
equality conditions over T. The problem of computing Q*?P'¢(Dyg) with respect to
pGM is in PTIME in the size of the data and the mapping. O

Complex mappings: Complex mappings map a set of attributes in the source to a
set of attributes in the target. For example, we can map the attribute address to the
concatenation of street, city, and state.

Formally, a set correspondence between S and T is a relationship between a
subset of attributes in S and a subset of attributes in 7". Here, the function associated
with the relationship specifies a single value for each of the target attributes given a
value for each of the source attributes. Again, the actual functions are irrelevant to
our discussion. A complex mapping is a triple (S, T, cm), where cm is a set of set
correspondences, such that each attribute in S or 7 is involved in at most one set
correspondence. A complex p-mapping is of the form pCM = {(cm;, Pr(cm;)) |
i €[1,n]}, where Y_7_, Pr(cm;) = 1.

96 A.D. Sarma et al.

Theorem 5. Let pCM be a complex schema p-mapping between schemas S and
T. Let Dg be an instance of S. Let Q be an SPJ query over T. The data com-
plexity and mapping complexity of computing Q"'¢(Dyg) with respect to pCM are
PTIME. The data complexity of computing Q"*¢(Dg) with respect to pCM is #P-
complete. The mapping complexity of computing Q™"(Dg) with respect to pCM
is in PTIME. O

Union mapping: Union mappings specify relationships such as both attribute home-
address and attribute office-address can be mapped to address. Formally, a
union mapping is a triple (S, T, m), where m is a set of mappings between S and 7.
Given a source relation Dg and a target relation D7, we say Ds and Dr are con-
sistent with respect to the union mapping if for each source tuple t and m € m there
exists a target tuple 7/, such that ¢ and ¢’ satisfy m. A union p-mapping is of the form
pUM = {(m;, Pr(m;)) | i € [1,n]}, where Y /', Pr(m;) = 1.
Both by-table and by-tuple semantics apply to probabilistic union mappings.

Theorem 6. Let pUM be a union schema p-mapping between a source schema S
and a target schema T. Let Ds be an instance of S. Let Q bea _conjunctive query
over T. The problem of computing Q*'?%'¢(Dys) with respect to pUM is in PTIME
in the size of the data and the mapping; the problem of computing Q"“P'¢ (D) with
respect to pUM is in PTIME in the size of the mapping and #P-complete in the size
of the data. O

Conditional mappings: In practice, our uncertainty is often conditioned. For exam-
ple, we may want to state that daytime-phone maps to work-phone with prob-
ability 60% if age < 65, and maps to home-phone with probability 90% if

age > 65.
We define a conditional p-mapping asasetcpM = {(pM,Cy), ..., (pM,,Cy,)},
where pMy, ..., pM, are p-mappings, and Cy, ..., C, are pairwise disjoint con-

ditions. Intuitively, for each i € [1,n], pM; describes the probability distribution
of possible mappings when condition C; holds. Conditional mappings make more
sense for by-tuple semantics. The following theorem shows that the complexity
results carry over to such mappings.

Theorem 7. Let cpM be a conditional schema p-mapping between S and T. Let
Ds be an instance of S. Let Q be an SPJ query over T. The problem of computing
Q'rle(Dg) with respect to cpM is in PTIME in the size of the mapping and #P-
complete in the size of the data. O

3.6 Other Types of Approximate Schema Mappings

There have been various models proposed to capture uncertainty on mappings
between attributes. Gal et al. (2005b) proposes keeping the top-K mappings
between two schemas, each with a probability (between O and 1) of being true.

4 Uncertainty in Data Integration and Dataspace Support Platforms 97

Gal et al. (2005a) proposes assigning a probability for matching of every pair of
source and target attributes. This notion corresponds to weighted correspondences
described in Sect. 3.4.

Magnani and Montesi (2007) have empirically shown that top-k schema map-
pings can be used to increase the recall of a data integration process, and Gal
(2007) described how to generate top-k schema matchings by combining the match-
ing results generated by various matchers. The probabilistic schema mappings we
described above are different as they contain all possible schema mappings that con-
form to the schema-matching results and assigns probabilities to these mappings to
reflect the likelihood that each mapping is Nottelmann and Straccia (2007) pro-
posed generating probabilistic schema matchings that capture the uncertainty on
each matching step. The probabilistic schema mappings we create not only cap-
ture our uncertainty on results of the matching step but also take into consideration
various combinations of attribute correspondences and describe a distribution of
possible schema mappings where the probabilities of all mappings sum up to 1.

There have also been work studying how to use probabilistic models to capture
uncertainty on mappings of schema object classes, such as DatabasePapers and
AlPapers. Query answering can take such uncertainty into consideration in com-
puting the coverage percentage of the returned answers and in ordering information
sources to maximize the likelihood of obtaining answers early. Specifically, consider
two object classes A and B. The goal of the probabilistic models is to capture the
uncertainty on whether A maps to B. One method (Florescu et al. 1997) uses prob-
ability P(B|A), which is the probability that an instance of A is also an instance of
B. Another method (Magnani and Montesi 2007) uses a tuple < A4, B,R, P >,
where R is a set of mutually exclusive relationships between A and B, and P
is a probability distribution over R. The possible relationships considered in this
model include equivalent =, subset-subsumption C, superset-subsumption D, over-
lapping N, disjointness N, and incompatibility . In the relational model, an object
class is often represented using a relational table; thus, these probabilistic models
focus on mapping between tables rather than attributes in the tables.

4 Uncertainty in Mediated Schema

The mediated schema is the set of schema terms (e.g., relations, attribute names) in
which queries are posed. They do not necessarily cover all the attributes appearing
in any of the sources, but rather the aspects of the domain that are important for the
integration application. When domains are broad and there are multiple perspec-
tives on them (e.g., a domain in science that is constantly evolving), there will be
uncertainty about which is the correct mediated schema and about the meaning of
its terms. Also, when the mediated schema is created automatically by inspecting
the sources in a pay-as-you-go system, there will be uncertainty about the mediated
schema.

98 A.D. Sarma et al.

In this section, we first motivate the need for probabilistic mediated schemas
(p-med-schemas) with an example (Sect.4.1). In Sect.4.2, we formally define
p-med-schemas and relate them with p-mappings in terms of expressive power and
semantics of query answering. Then, in Sect. 4.3, we describe an algorithm for creat-
ing a p-med-schema from a set of data sources. Finally, Sect. 4.4 gives an algorithm
for consolidating a p-med-schema into a single schema that is visible to the user in
a pay-as-you-go system.

4.1 P-med-Schema Motivating Example

Let us begin with an example motivating p-med-schemas. Consider a setting in
which we are trying to automatically infer a mediated schema from a set of data
sources, where each of the sources is a single relational table. In this context, the
mediated schema can be thought of as a “clustering” of source attributes, with sim-
ilar attributes being grouped into the same cluster. The quality of query answers
critically depends on the quality of this clustering. Because of the heterogeneity of
the data sources being integrated, one is typically unsure of the semantics of the
source attributes and in turn of the clustering.

Example 9. Consider two source schemas both describing people:

S1 (name, hPhone, hAddr, oPhone, oAddr)
S2 (name, phone, address)

In S2, the attribute phone can either be a home phone number or be an office
phone number. Similarly, address can either be a home address or be an office
address.

Suppose we cluster the attributes of S1 and S2. There are multiple ways to cluster
the attributes, and they correspond to different mediated schemas. Below we list a
few of them:

M1 ({name}, {phone, hPhone, oPhone}, {address, hAddr, oAddr})
M2({name}, {phone, hPhone}, {oPhone}, {address, 0Addr}, {hAddr})
M3({name}, {phone, hPhone}, {oPhone}, {address, hAddr}, {oAddr})
M4({name}, {phone, oPhone}, {hPhone}, {address, oAddr}, {hAddr})
M5({name}, {phone}, {hPhone}, {oPhone}, {address}, {hAddr}, {oAddr})

None of the listed mediated schemas is perfect. Schema M; groups multiple
attributes from S1. M, seems inconsistent because phone is grouped with hPhone
while address is grouped with oAddress. Schemas M3, My, and M5 are partially
correct, but none of them captures the fact that phone and address can be either
home phone and home address, or office phone and office address.

Even if we introduce probabilistic schema mappings, none of the listed mediated
schemas will return ideal answers. For example, using M; prohibits returning cor-
rect answers for queries that contain both hPhone and oPhone because they are

4 Uncertainty in Data Integration and Dataspace Support Platforms 99

taken to be the same attribute. As another example, consider a query that contains
phone and address. Using M3 or M, as the mediated schema will unnecessar-
ily favor home address and phone over office address and phone or vice versa. A
system with M, will incorrectly favor answers that return a person’s home address
together with office phone number. A system with M5 will also return a person’s
home address together with office phone and does not distinguish such answers
from answers with correct correlations.

A probabilistic mediated schema will avoid this problem. Consider a probabilis-
tic mediated schema M that includes M3 and My, each with probability 0.5. For
each of them and each source schema, we generate a probabilistic mapping (Sect. 3).
For example, the set of probabilistic mappings pM for S; is shown in Fig. 4.5a, b.

Now consider an instance of S; with a tuple

("Alice’, '123-4567', '123, A Ave.’,
"765-4321", '456, B Ave.')
and a query
Possible Mapping Probability
{(name, name), (hPhone, hPPhone), (oPhone, oPhone), 0.64
(hAddr, hAAddr), (oAddr, oAddr)} ’
{(name, name), (hPhone, hPPhone), (oPhone, oPhone), 0.16
(0Addr, hAAddr), (hAddr, oAddr)} ’
{(name, name), (oPhone, hPPhone), (hPhone, oPhone), 0.16
(hAddr, hAAddr), (oAddr, oAddr)} ’
{(name, name), (oPhone, hPPhone), (hPhone, oPhone), 0.04
(0Addr, hAAddr), (hAddr, oAddr)} ’
€))
Possible Mapping Probability
{(name, name), (oPhone, oPPhone), (hPhone, hPhone), 0.64
(0Addr, 0AAddr), (hAddr, hAddr)} ’
{(name, name), (0Phone, oPPhone), (hPhone, hPhone), 0.16
(hAddr, 0AAddr), (0Addr, hAddr)} ’
{(name, name), (hPhone, oPPhone), (oPhone, hPhone), 0.16
(0oAddr, 0AAddr), (hAddr, hAddr)} ’
{(name, name), (hPhone, oPPhone), (oPhone, hPhone), 0.04
(hAddr, 0AAddr), (0Addr, hAddr)} ’

(b)
Answer Probability
(CAlice’, ’123-4567°, °123, A Ave.’)| 0.34
(CAlice’, "765-4321°, 456, B Ave.’)| 0.34
(CAlice’, "765-4321°, °123, A Ave.)| 0.16
(CAlice’, "123-4567, °456, B Ave.”)| 0.16
©

Fig. 4.5 The motivating example: (a) p-mapping for S| and M3, (b) p-mapping for S; and My,
and (¢) query answers w.r.t. M and pM. Here we denote {phone, hPhone} by hPPhone, {phone,
oPhone} by oPPhone, {address, hAddr} by hAAddr, and {address, oAddr} by oAAddr

100 A.D. Sarma et al.

SELECT name, phone, address
FROM People

The answer generated by our system with respect to M and pM is shown in Fig. 4.5c.
(As we describe in detail in the following sections, we allow users to compose
queries using any attribute in the source.) Compared with using one of M, to M5
as a mediated schema, our method generates better query results in that (1) it treats
answers with home address and home phone and answers with office address and
office phone equally, and (2) it favors answers with the correct correlation between
address and phone number. O

4.2 Probabilistic Mediated Schema

Consider a set of source schemas {S1,..., S,}. We denote the attributes in schema
Si,i € [1,n], by attr(S;), and the set of all source attributes as <7, that is, &/ =
attr(Sy) U --- U attr(S,). We denote a mediated schema for the set of sources
{S1,...,Su} by M = {A4,..., A}, where each of the A;’s is called a mediated
attribute. The mediated attributes are sets of attributes from the sources, i.e., 4; C
of;foreachi,j e[l,m]i #j = AiNA; =

Note that whereas in a traditional mediated schema an attribute has a name, we
do not deal with naming of an attribute in our mediated schema and allow users
to use any source attribute in their queries. (In practice, we can use the most fre-
quent source attribute to represent a mediated attribute when exposing the mediated
schema to users.) If a query contains an attribute a € A;,i € [l,m], then when
answering the query, we replace a everywhere with A4;.

A probabilistic mediated schema consists of a set of mediated schemas, each
with a probability indicating the likelihood that the schema correctly describes
the domain of the sources. We formally define probabilistic mediated schemas as
follows.

Definition 11 (Probabilistic Mediated Schema). Let {S;,...,S,} be a set of
schemas. A probabilistic mediated schema (p-med-schema) for {S1,...,S,} is a

set
M = {(MlvPr(Ml))7"'7(Ml’Pr(Ml))}7

where

e For each i € [1,l], M; is a mediated schema for Sy,...,Sy,, and for each
i,jel[l,l],i # j, M; and M; correspond to different clusterings of the source
attributes;

e Pr(M;)e(0,1],and X'_, Pr(M;) = 1. O

Semantics of queries: Next, we define the semantics of query answering with respect

to a p-med-schema and a set of p-mappings for each mediated schema in the

p-med-schema. Answering queries with respect to p-mappings returns a set of

4 Uncertainty in Data Integration and Dataspace Support Platforms 101

answer tuples, each with a probability indicating the likelihood that the tuple occurs
as an answer. We consider by-table semantics here. Given a query Q, we compute
answers by first answering Q with respect to each possible mapping and then for
each answer tuple ¢ by summing up the probabilities of the mappings with respect
to which 7 is generated.

We now extend this notion for query answering that takes p-med-schema into
consideration. Intuitively, we compute query answers by first answering the query
with respect to each possible mediated schema and then for each answer tuple by
taking the sum of its probabilities weighted by the probabilities of the mediated
schemas.

Definition 12 (Query Answer). Let S be a source schema and M = {(My, Pr
(My)),...,(M;, Pr(My))} be a p-med-schema. Let pM ={pM (M), ..., pM
(Mj)} be a set of p-mappings where p M (M;) is the p-mapping between S and M;.
Let D be an instance of S and Q be a query.

Let? be atuple. Let Pr(¢|M;),i € [1,1], be the probability of ¢ in the answer of
Q with respect to M; and pM(M;). Let p = Z‘I-lzlPr(t|M,-) * Pr(M;). If p > 0,
then we say (¢, p) is a by-table answer with respect to M and pM.

We denote all by-table answers by Qv pm(D). |

We say that query answers A; and A, are equal (denoted A; = A,) if A; and
A contain exactly the same set of tuples with the same probability assignments.

Expressive power: A natural question to ask at this point is whether probabilistic
mediated schemas provide any added expressive power compared to deterministic
ones. Theorem 8 shows that if we consider one-fo-many schema mappings, where
one source attribute can be mapped to multiple mediated attributes, then any combi-
nation of a p-med-schema and p-mappings can be equivalently represented using a
deterministic mediated schema with p-mappings, but may not be represented using a
p-med-schema with deterministic schema mappings. Note that we can easily extend
the definition of query answers to one-to-many mappings, as one mediated attribute
can correspond to no more than one source attribute.

Theorem 8 (Subsumption). The following two claims hold.

1. Given a source schema S, a p-med-schema M, and a set of p-mappings pM
between S and possible mediated schemas in M, there exists a deterministic
mediated schema T and a p-mapping pM between S and T, such that ¥ D, Q :
QM,pM(D) = QT,pM(D)'

2. There exists a source schema S, a mediated schema T, a p-mapping pM between
S and T, and an instance D of S, such that for any p-med-schema M and any
set m of deterministic mappings between S and possible mediated schemas in
M, there exists a query Q such that Qmm(D) # Or,pm (D). O

In contrast, Theorem 9 shows that if we restrict our attention to one-to-one map-
pings, then a probabilistic mediated schema does add expressive power.

102 A.D. Sarma et al.

Theorem 9. There exists a source schema S, a p-med-schema M, a set of one-
to-one p-mappings pM between S and possible mediated schemas in M, and an
instance D of S, such that for any deterministic mediated schema T and any
one-to-one p-mapping pM between S and T, there exists a query Q such that

QMapM(D) ?é QT,pM(D)- O

Constructing one-to-many p-mappings in practice is much harder than construct-
ing one-to-one p-mappings. And when we are restricted to one-to-one p-mappings,
p-med-schemas grant us more expressive power while keeping the process of
mapping generation feasible.

4.3 P-med-Schema Creation

We now show how to create a probabilistic mediated schema M. Given source tables
S1,...,8u, we first construct the multiple schemas My,..., M, in M, and then
assign each of them a probability.

We exploit two pieces of information available in the source tables: (1) pairwise
similarity of source attributes, and (2) statistical co-occurrence properties of source
attributes. The former is used for creating multiple mediated schemas and the latter
for assigning probabilities on each of the mediated schemas.

The first piece of information tells us when two attributes are likely to be similar
and is generated by a collection of schema matching modules. This information is
typically given by some pairwise attribute similarity measure, say s. The similar-
ity s(a;,a;) between two source attributes ¢; and a; depicts how closely the two
attributes represent the same real-world concept.

The second piece of information tells us when two attributes are likely to be
different. Consider for example, source table schemas

S1: (name,address,email-address)
S2: (name, home-address)

Pairwise string similarity would indicate that attribute address can be similar to
both email-address and home-address. However, since the first source table con-
tains address and email-address together, they cannot refer to the same concept.
Hence, the first table suggests address is different from email-address, making it
more likely that address refers to home-address.

Creating multiple mediated schemas: The creation of the multiple mediated schemas
constituting the p-med-schema can be divided conceptually into three steps. First,
we remove infrequent attributes from the set of all source attributes, that is, attribute
names that do not appear in a large fraction of source tables. This step ensures that
our mediated schema contains only information that is relevant and central to the
domain. In the second step, we construct a weighted graph whose nodes are the
attributes that survived the filter of the first step. An edge in the graph is labeled

4 Uncertainty in Data Integration and Dataspace Support Platforms 103

with the pairwise similarity between the two nodes it connects. Finally, several pos-
sible clusterings of nodes in the resulting weighted graph give the various mediated
schemas.

Algorithm 1 describes the various steps in detail. The input is the set of source
schemas creating S, ..., S, and a pairwise similarity function s, and the output is
the multiple mediated schemas in M. Steps 1-3 of the algorithm find the attributes
that occur frequently in the sources. Steps 4 and 5 construct the graph of these high-
frequency attributes. We allow an error € on the threshold t for edge weights. We,
thus, have two kinds of edges: certain edges, having weight at least T + €, and
uncertain edges, having weight between t — ¢ and t + €.

Steps 6-8 describe the process of obtaining multiple mediated schemas. Specif-
ically, a mediated schema in M is created for every subset of the uncertain edges.
For every subset, we consider the graph resulting from omitting that subset from
the graph. The mediated schema includes a mediated attribute for each connected
component in the resulting graph. Since, in the worst case, the number of resulting
graphs is exponential in the number of uncertain edges, the parameter € needs to be
chosen carefully. In addition, Step 6 removes uncertain edges that when omitted will
not lead to different mediated schemas. Specifically, we remove edges that connect
two nodes already connected by certain edges. Also, we consider only one among
a set of uncertain edges that connect a particular node with a set of nodes that are
connected by certain edges.

Probability assignment: The next step is to compute probabilities for possible medi-
ated schemas that we have generated. As a basis for the probability assignment,
we first define when a mediated schema is consistent with a source schema. The
probability of a mediated schema in M will be the proportion of the number of
sources with which it is consistent.

0: Input: Source schemas Sy, ..., S,.
Output: A set of possible mediated schemas.
1: Compute &/ = {ai,...,an}, the set of all source attributes;
2: for each (j € [1,m])
Compute frequency f(a;) m
3: Set o7 ={a;|j €[1,m], f(a;) = 0};1/0 is a threshold
4: Construct a weighted graph G(V, E), where (1) V = &/, and (2) for each a;,a; €
/,s(aj,ay) = v — €, there is an edge (a,, ax) with weight s(a;, ax);
5: Mark all edges with weight less than t + € as uncertain;
6: for each (uncertain edge e = (a;,a;) € E)

Remove e from E if (1) a; and a, are connected by a path with only certain edges, or (2),
there exists as € V, such that a, and a3 are connected by a path with only certain edges and|
there is an uncertain edge (a1, a3);

7: for each (subset of uncertain edges)

Omit the edges in the subset and compute a mediated schema where each connected|

component in the graph corresponds to an attribute in the schema;
8: return distinct mediated schemas.
Algorithm 1: Generate all possible mediated schemas

_ lielinlla;esi
- 9

104 A.D. Sarma et al.

0: Input: Possible mediated schemas My, ..., M; and source schemas S, ..., S,.
Output: Pr(M,),..., Pr(M;).
1: for each (i €[1,1])
Count the number of source schemas that are consistent with M;, denoted as ¢;;

2: for each (i € [1,1]) Set Pr(M;) = Z,”" .
i=1Ci

Algorithm 2: Assign probabilities to possible mediated schemas

0: Input: Mediated schemas M|, ..., M;.

Output: A consolidated single mediated schema 7.
: SetT =M,.
s for (i = 2,...,1) modify T as follows:
for each (attribute A’ in M;)

for each (attribute A in T')

Divide Ainto AN A’ and A — A’;

: return 7.

QU W

Algorithm 3: Consolidate a p-med-schema

Definition 13 (Consistency). Let M be a mediated schema for sources Sy, ..., Sy.
We say M is consistent with a source schema S;,i € [1,n], if there is no pair of
attributes in S; that appears in the same cluster in M.

Intuitively, a mediated schema is consistent with a source only if it does not
group distinct attributes in the source (and hence distinct real-world concepts) into
a single cluster. Algorithm 2 shows how to use the notion of consistency to assign
probabilities on the p-med-schema.

4.4 Consolidation

To complete the fully automatic setup of the data integration system, we consider
the problem of consolidating a probabilistic mediated schema into a single mediated
schema and creating p-mappings to the consolidated schema. We require that the
answers to queries over the consolidated schema be equivalent to the ones over the
probabilistic mediated schema.

The main reason to consolidate the probabilistic mediated schema into a single
one is that the user expects to see a single schema. In addition, consolidating to a
single schema has the advantage of more efficient query answering: queries now
need to be rewritten and answered based on only one mediated schema. We note
that in some contexts, it may be more appropriate to show the application builder
a set of mediated schemas and let her select one of them (possibly improving on it
later on).

Consolidating a p-med-schema: Consider a p-med-schema M ={(My,
Pr(My)),....,(M;, Pr(M))}. We consolidate M into a single mediated schema
T. Intuitively, our algorithm (see Algorithm 3)generates the “coarsest refinement”
of the possible mediated schemas in M such that every cluster in any of the M;’s

4 Uncertainty in Data Integration and Dataspace Support Platforms 105

0: Input: Source S with p-mappings pM,, ..., pM, for My, ..., M;.
QOutput: Single p-mapping pM between S and T'.

: For eachi € [1,/], modify p-mapping pM;: Do the following for every possible mapping m
in pM;:

—

e For every correspondence (a, A) € m between source attribute ¢ and mediated attribute]
A in M;, proceed as follows. (1) Find the set of all mediated attributes B in T such thag
B C A. Call this set B. (2) Replace (a, A) in m with the set of all (a, B)’s, where B € B|

Call the resulting p-mapping pM/.
2: For each i € [1,/], modify probabilities in pM/: Multiply the probability of every schema|
mapping in pM/ by Pr(M;), which is the probability of M; in the p-med-schema. (Note that
after this step the sum of probabilities of all mappings in pM/ is not 1.)
3: Consolidate pM/’s: Initialize pM to be an empty p-mapping (i.e., with no mappings). For]
eachi € [1,1], add pM/ to pM as follows:

e For each schema mapping m in pM/ with probability p: if m is in pM, with probability]
p’, modify the probability of m in pM to (p + p’); if m is not in pM , then add m to pM
with probability p.

4: Return the resulting consolidated p-mapping, pM ; the probabilities of all mappings in pM
add to 1.

Algorithm 4: Consolidating p-mappings

is equal to the union of a set of clusters in 7'. Hence, any two attributes a; and a;
will be together in a cluster in 7 if and only if they are together in every mediated
schema of M. The algorithm initializes T to M; and then modifies each cluster of
T based on clusters from M, to M;.

Example 10. Consider a p-med-schema M = {M;, M}, where M; contains
three attributes {a;,as,as}, {as}, and {as,ae¢}, and M, contains two attributes
{az,as,as} and {ay,as,ac}. The target schema T would then contain four
attributes: {a1}, {az,as}, {as}, and {as, ae}. O

Note that in practice the consolidated mediated schema is the same as the mediated
schema that corresponds to the weighted graph with only certain edges. Here, we
show the general algorithm for consolidation, which can be applied even if we do
not know the specific pairwise similarities between attributes.

Consolidating p-mappings: Next, we consider consolidating p-mappings specified
w.r.t. My, ..., Mj to a p-mapping w.r.t. the consolidated mediated schema 7. Con-
sider a source S with p-mappings pMy, ..., pM; for My, ..., M;, respectively. We
generate a single p-mapping pM between S and T in three steps. First, we modify
each p-mapping pM;,i € [1,[], between S and M; to a p-mapping pM/ between S
and 7. Second, we modify the probabilities in each pM/. Third, we consolidate all
possible mappings in pM;’s to obtain pM . The details are specified in Algorithm 4,
as follows.

Note that the second part of Step 1 can map one source attribute to multiple
mediated attributes; thus, the mappings in the result pM are one-to-many mappings
and so typically different from the p-mapping generated directly on the consoli-
dated schema. The following theorem shows that the consolidated mediated schema

106 A.D. Sarma et al.

and the consolidated p-mapping are equivalent to the original p-med-schema and
p-mappings.

Theorem 10 (Merge Equivalence). For all queries Q, the answers obtained

by posing Q over a p-med-schema M = {My,..., M;} with p-mappings
pMy, ..., pM; is equal to the answers obtained by posing Q over the consolidated
mediated schema T with consolidated p-mapping pM. O

4.5 Other Approaches

He and Chang (2003) considered the problem of generating a mediated schema for
a set of Web sources. Their approach was to create a mediated schema that is sta-
tistically maximally consistent with the source schemas. To do so, they assume that
the source schemas are created by a generative model applied to some mediated
schema, which can be thought of as a probabilistic mediated schema. (Some other
works, e.g., (He et al. 2004; He and Chang 2006), have considered correlations
for schema matching as well.) The probabilistic mediated schema we described in
this chapter has several advantages in capturing heterogeneity and uncertainty in the
domain. We can express a wider class of attribute clusterings, and in particular clus-
terings that capture attribute correlations. Moreover, we are able to combine attribute
matching and co-occurrence properties for the creation of the probabilistic medi-
ated schema, allowing for instance two attributes from one source to have a nonzero
probability of being grouped together in the mediated schema. Also, the approach
for p-med-schema creation described in this chapter is independent of a specific
schema-matching technique, whereas the approach in He and Chang (2003) is tuned
for constructing generative models and hence must rely on statistical properties of
source schemas.

Magnani et al. (2005), proposed generating a set of alternative mediated schemas
based on probabilistic relationships between relations (such as an Instructor rela-
tion intersects with a Teacher relation but is disjoint with a Student relation)
obtained by sampling the overlapping of data instances. Here, we focus on match-
ing attributes within relations. In addition, our approach allows exploring various
types of evidence to improve matching, and we assign probabilities to the mediated
schemas we generate.

Chiticariu et al. (2008), studied the generation of multiple mediated schemas for
an existing set of data sources. They consider multitable data sources, not considered
in this chapter, but explore interactive techniques that aid humans in arriving at the
mediated schemas.

There has been quite a bit of work on automatically creating mediated schemas
that focused on the theoretical analysis of the semantics of merging schemas and
the choices that need to be made in the process (Batini et al. 1986; Buneman et al.
1992; Hull 1984; Kalinichenko 1990; Miller et al. 1993; Pottinger and Bernstein
2002). The goal of these works was to make as many decisions automatically as
possible, but where some ambiguity arises, refer to input from a designer.

4 Uncertainty in Data Integration and Dataspace Support Platforms 107

4.6 Conclusions

This chapter introduced the notion of a probabilistic mediated schema, and provided
algorithms for constructing them automatically by analyzing the source schemas.
This allows for automatically establishing a fairly advanced starting point for data
integration systems. We believe that the foundation of modeling uncertainty laid out
here will also help pinpoint where human feedback can be most effective in improv-
ing the semantic integration in the system. In the future, we shall consider such
improvement of data integration over time, as well as extensions of our techniques
to deal with multiple-table sources.

References

Agrawal S, Chaudhuri S, Das G (2002) DBXplorer: A system for keyword-based search over
relational databases. In: ICDE, February 2002. IEEE Computer Society, Washington, DC, p 5

Batini C, Lenzerini M, Navathe SB (1986) A comparative analysis of methodologies for database
schema integration. ACM Comput Surv 18(4):323-364

Berlin J, Motro A (2002) Database schema matching using machine learning with feature selec-
tion. In: Proceedings of the 14th international conference on advanced information systems
engineering (CAiSE02), May 2002. Springer, London, pp 452-466

Buneman P, Davidson S, Kosky A (1992) Theoretical aspects of schema merging. In: Proceedings
of EDBT, March 1992. Springer, London, pp 152-167

Chiticariu L, Kolaitis PG, Popa L (2008) Interactive generation of integrated schemas. In:
Proceedings of ACM SIGMOD, Vancouver, Canada, June 2008. ACM, NY, pp 833-846

Dhamankar R, Lee Y, Doan A, Halevy AY, Domingos P (2004) iMAP: Discovering complex
semantic matches between database schemas. In: Proceedings of ACM SIGMOD, Paris,
France, June 2004. ACM, NY, pp 383-394

Do H, Rahm E (2002) COMA - a system for flexible combination of schema matching approaches.
In: Proceedings of VLDB, Hong Kong, China, August 2002. VLDB Endowment, pp 610-621

Doan A, Madhavan J, Domingos P, Halevy AY (2002) Learning to map between ontologies on
the Semantic Web. In: Proceedings of the international WWW conference, Honolulu, HI, May
2002. ACM, NY, pp 662-673

Dong X, Halevy AY (2005) A platform for personal information management and integration. In:
Proceedings of Conference on Innovative Data Research (CIDR), Asilomar, CA

Dong X, Halevy AY, Yu C (2007) Data integration with uncertainty. In: Proceedings of VLDB,
Vienna, Austria, September 2007. VLDB Endowment, pp 687-698

Florescu D, Koller D, Levy AY (1997) Using probabilistic information in data integration. In:
Proceedings of VLDB, August 1997. Morgan Kaufmann, CA, pp 216-225

Gal A (2007) Why is schema matching tough and what can we do about it? SIGMOD Rec
35(4):2-5

Gal A, Anaby-Tavor A, Trombetta A, Montesi D (2005a) A framework for modeling and evaluating
automatic semantic reconciliation. VLDB J 14(1):50-67

Gal A, Modica G, Jamil H, Eyal A (2005b) Automatic ontology matching using application
semantics. Al Mag 26(1):21-31

Gal A, Martinez M, Simari G, Subrahmanian V (2009) Aggregate query answering under uncertain
schema mappings. In: Proceedings of ICDE, Shanghai, China, March 2009. IEEE Computer
Society, Washington, DC, pp 940-951

GoogleBase (2005) GoogleBase. http://base.google.com/

108 A.D. Sarma et al.

Halevy AY, Ashish N, Bitton D, Carey MJ, Draper D, Pollock J, Rosenthal A, Sikka V (2005)
Enterprise information integration: Successes, challenges and controversies. In: SIGMOD,
Baltimore, MD, June 2005. ACM, NY, pp 778-787

Halevy AY, Franklin MJ, Maier D (2006a) Principles of dataspace systems. In: PODS, Chicago,
IL, June 2006. ACM, NY, pp 1-9

Halevy AY, Rajaraman A, Ordille JJ (2006b) Data integration: The teenage years. In: VLDB, Seoul,
Korea, September 2006. VLDB Endowment, pp 9-16

He B, Chang KC (2003) Statistical schema matching across web query interfaces. In: Proceedings
of ACM SIGMOD, San Diego, CA, June 2003. ACM, NY, pp 217-228

He B, Chang KCC (2006) Automatic complex schema matching across web query interfaces: A
correlation mining approach. TODS 31(1):346-395

He B, Chang KCC, Han J (2004) Discovering complex matchings across web query interfaces: a
correlation mining approach. In: KDD

Hristidis V, Papakonstantinou Y (2002) DISCOVER: Keyword search in relational databases. In:
Proceedings of VLDB, Seattle, WA, August 2004. ACM, NY, pp 148-157

Hull R (1984) Relative information capacity of simple relational database schemata. In: Proceed-
ings of ACM PODS, Waterloo, ON, April 1984. ACM, NY, pp 97-109

Kalinichenko LA (1990) Methods and tools for equivalent data model mapping construction. In:
Proceedings of EDBT, Venice, Italy, March 1990. Springer, NY, pp 92-119

Kang J, Naughton J (2003) On schema matching with opaque column names and data values. In:
Proceedings of ACM SIGMOD, San Diego, CA, June 2003. ACM, NY, pp 205-216

Levy A (ed) (2000) Special issue on adaptive query processing. IEEE Data Eng Bull 23(2), IEEE
Computer Society, Washington, DC

Madhavan J, Cohen S, Dong X, Halevy A, Jeffery S, Ko D, Yu C (2007) Web-scale data integration:
You can afford to pay as you go. In: Proceedings of CIDR, pp 342-350

Magnani M, Montesi D (2007) Uncertainty in data integration: current approaches and open
problems. In: VLDB workshop on management of uncertain data, pp 18-32

Magnani M, Rizopoulos N, Brien P, Montesi D (2005) Schema integration based on uncer-
tain semantic mappings. Lecture Notes in Computer Science, vol 3716. Springer, Heidelberg,
pp 3146

Miller RJ, Ioannidis Y, Ramakrishnan R (1993) The use of information capacity in schema inte-
gration and translation. In: Proceedings of VLDB, August 1993. Morgan Kaufmann, CA,
pp 120-133

Nottelmann H, Straccia U (2007) Information retrieval and machine learning for probabilistic
schema matching. Inform Process Manag 43(3):552-576

Pottinger R, Bernstein P (2002) Creating a mediated schema based on initial correspondences.
IEEE Data Eng Bull 25:26-31

Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J
10(4):334-350

Sarma AD, Dong L, Halevy A (2008) Bootstrapping pay-as-you-go data integration systems. In:
Proceedings of ACM SIGMOD, Vancouver, Canada, June 2008. ACM, NY, pp 861-874

Wang J, Wen J, Lochovsky FH, Ma W (2004) Instance-based schema matching for Web databases
by domain-specific query probing. In: Proceedings of VLDB, Toronto, Canada, August 2004.
VLDB Endowment, pp 408419

Part 11
Quality-Driven Schema Mapping
and Evolution

A fundamental problem in information integration is to derive precisely the rela-
tionships between elements and structures in heterogeneous schemas. Such process
is called schema mapping and may utilize the results output by schema matching
tools, or simply rely on the correspondences manually provided by the user. In both
cases, the correspondences are not by themselves guarantee of good quality and
adequacy to the intended semantics. Although there exist several schema mapping
tools and techniques, only recently our community is looking at the problem of
verification and optimization of the transformations output using those tools and
techniques. This part surveys the existing schema mapping algorithms and the most
recent developments towards realizing efficient, optimized and correct schema map-
ping transformations. Along these lines, it also deals with the problem of adapting
such mappings when schemas change and evolve, and discusses the impact that
schema evolution has on the mapping operators and their composition and inver-
sion. Besides the semantics and the algorithmic issues of schema evolution, this part
also analyzes the problems of change specification, evolution transparency, auto-
mated generation of evolving mappings, and migration of a predictable instance
that minimizes data loss and manual intervention.

Finally, schemas and other related structures often need to be merged. This hap-
pens for many reasons such as view integration, data integration or data warehouse
creation. This part compares and contrast different approaches for schema merging
and schema integration, and mapping creation thereof.

Chapter 5 by Angela Bonifati, Giansalvatore Mecca, Paolo Papotti and Yannis
Velegrakis surveys the state of the art of schema mapping approaches. It discusses
the advances towards the efficiency of the mapping transformations, their correct-
ness, minimality and optimality. It also underlines the importance of utilizing such
mappings in all data transformation stages beyond the specific tool boundaries.

Chapters 6 and 7 deal with mapping-based support for schema evolution.
Chapter 6 by Michael Hartung, James Terwilliger and Erhard Rahm introduces
the schema evolution problem and the requirements for its effective treatment
such as support for a rich set of changes, evolution transparency by providing
schema versions and views, and the automated generation of evolution mappings.

Furthermore, it describes how and to what degree recently proposed approaches
meet the requirements for a variety of schemas, in particular relational and XML
schemas.

Chapter 7 by Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang-Chiew
Tan complements the previous chapter by focusing on the problem of mapping
adaptation when schemas evolve. In particular, they survey the recent work on
fundamental operators on schema mapping, such as inversion and composition,
while discussing the most important developments of their semantics, algorithms
and implementation.

Chapter 8 by Rachel Pottinger focuses on the problem of schema merging, map-
ping creation and schema integration, by surveying their key developments. In
particular, generic approaches are considered, along with view integration and data
integration techniques that have been important milestones in our field.

Chapter 5
Discovery and Correctness of Schema Mapping
Transformations

Angela Bonifati, Giansalvatore Mecca, Paolo Papotti, and Yannis Velegrakis

Abstract Schema mapping is becoming pervasive in all data transformation,
exchange, and integration tasks. It brings to the surface the problem of differences
and mismatches between heterogeneous formats and models, respectively, used in
source and target databases to be mapped one to another. In this chapter, we start
by describing the problem of schema mapping, its background, and technical impli-
cations. Then, we outline the early schema mapping systems, along with the new
generation of schema mapping tools. Moving from the former to the latter entailed
a dramatic change in the performance of mapping generation algorithms. Finally,
we conclude the chapter by revisiting the query answering techniques allowed
by the mappings, and by discussing useful applications and future and current
developments of schema mapping tools.

1 Introduction

Currently there are many kinds of scenarios in which heterogeneous systems need
to exchange, transform, and integrate data. These include “Extract, Transform
and Load” (ETL) applications, object-relational mapping systems, “Enterprise

A. Bonifati (<)
ICAR-CNR, Italy
e-mail: bonifati @icar.cnr.it

G. Mecca
Universita of Basilicata, Potenza, Italy
e-mail: giansalvatore.mecca@unibas.it

P. Papotti
Universita Roma Tre, Rome, Italy
e-mail: papotti @dia.uniroma3.it

Y. Velegrakis
Universita di Trento, Trento, Italy
e-mail: velgias@disi.unitn.eu

Z. Bellahsene et al. (eds.), Schema Matching and Mapping, Data-Centric Systems 111
and Applications, DOI 10.1007/978-3-642-16518-4_5,
(© Springer-Verlag Berlin Heidelberg 2011

bonifati@icar.cnr.it
giansalvatore.mecca@unibas.it
papotti@dia.uniroma3.it
velgias@disi.unitn.eu

112 A. Bonifati et al.

a b

NYSE

name [symbol Company
Google [GOOG id |name [symbol
Yahoo! [YHOO ——» [N1_|Google |GOOG
Public-Company Public-Grant 1_[Apple |NULL
name |city company |investigator amount gg XZZZZ! XBSS
Apple Cup Apple Mike B. 25,000

Adobe |SJ Adobe Anne C. 50,000 Grant
NSF-Grantee NSF-Grant amount|company
id [name |symbol | [company [amount 25,000 |11
23_|Yahoo! [YHOO | [23 18,000 ;g'ggg ;2

25 |Adobe [ADBE 25 50,000 2

Source Tables Target Tables

Fig. 5.1 Mapping company information

Information Integration™ (EII) systems, and “Enterprise Application Integration”
(EAI) frameworks.

A common feature of all of these applications is that data is organized according
to different descriptions, typically based on a variety of data models and formats. To
give one example, consider the scenario in Fig.5.1.

The inputs to the problem are three data sources about companies, potentially
organized according to rather different formats and models: (1) a list of companies
from the New York Stock Exchange, (NYSE); (2) a public database concerning com-
panies and grants (Public-Companies, Public-Grants); (3) and database of grants
from the National Scientific Foundation (NSF-Grantee, NSF-Grant). Notice that,
for the purpose of this section, we shall assume that source data are relational
tables. However, as it will be clear in the following, they might easily be organized
according to more complex data models, for example as nested XML documents.

The expected output is an instance of a target database with the following
schema: two tables, Company and Grant, a key constraint on the Company.name
attribute, and a foreign-key constraint from Grant.company to Company.id. Assum-
ing the source data are those in Fig. 5.1a, it is natural to expect that the target instance
obtained by the translation process is the one in Fig. 5.1b. In fact, informally speak-
ing, such instance has a number of desirable properties: (1) it is a legal instance for
the target database; (2) it is “complete,” in the sense that it contains all of the infor-
mation that is in the source tables; (3) at the same time, it is “non-redundant,” i.e.,
no piece of information is reported twice.

It can be seen from this example that computing an output solution requires the
definition of some form of mapping from the source repository to the target repos-
itory. Generally speaking, mappings, also called schema mappings, are expressions
that specify how an instance of the source repository should be translated into an
instance of the target repository. To be useful in practical applications, they should
have an executable implementation — for example, under the form of SQL queries
for relational data, or XQuery scripts for XML.

5 Discovery and Correctness of Schema Mapping Transformations 113

There are many ways in which such a transformation can be implemented. Often,
this is done in a rather procedural fashion, and developers are forced to write quite
a lot of code to glue together the various sources. To give an example, in an ETL
application a developer would be forced to manually construct a script made of
potentially large number of simpler data-transformation steps. In other cases, such
as commercial EII systems, transformation steps are often expressed using program-
ming language (such as Java). This procedural style of specifying the mapping has
made the problem of exchanging data across different repositories quite a burden,
as discussed in Haas (2007).

To alleviate developers from this burden, we can identify two key requirements
that a mapping system should have:

o A first key requirement is represented by ease of use and productivity. Developers
should not be required to manually specify all of the details about the map-
ping; on the contrary, users would like to specify only a high-level, abstract and
declarative representation of the mapping; then, based on this input, the mapping
system should be able to generate the actual mappings, by working out the miss-
ing details. To support this process, mapping systems usually provide a graphical
user interface using which developers may specify the mapping as a set of value
correspondences, i.e., correspondences among schema elements. In our example,
the input provided to the mapping system would be that shown in Fig. 5.2;

e A second essential requirement is concerned with the generation of the target
instances, i.e., with the quality and efficiency in the generation of solutions.

In this respect, database researchers have identified two main problems: (1) the
first one is that of schema mapping generation, largely inspired by the seminal Clio
papers (Miller et al. 2000; Popa et al. 2002); this is the problem of generating a set
of mappings based on the correspondences provided as input by the user; (2) the

Source
NYSE [0.4] Target
name Company [0..1]
symbol i €T ;
Public-Company [0.] name :
--» name symbol (key) !
: city |
i Public-Grant [0..1] Grant [0..4] 5
: amount amount :
: investigator company -----
e company
NSF-Grantee [0..4]
id
name
symbol
NSF-Grant [0..*]
amount
company

Fig. 5.2 An abstract specification of the mapping as a set of correspondences (dashed arrows
denote foreign-key constraints)

114 A. Bonifati et al.

second one is that of solving the actual data exchange problem; originally formal-
ized in Fagin et al. (2005a), this consists in assigning a clear semantics to a given
set of mappings, to turn them into executable queries on the source, and updates on
the target that generate the desired target instance.

Another important application of schema mappings is query answering (Abite-
boul and Duschka 1998). In particular, given a fixed data exchange scenario, target
query answering aims at computing the set of answers to a query posed on the target
schema. In our example, this amounts to take a query initially expressed on the target
tables in Fig. 5.1b, and to reformulate it according to the source tables in Fig. 5.1a.

In recent years, research on schema mappings, data exchange, and query answer-
ing have provided quite a lot of building blocks toward this goal. Interestingly,
the majority of bulk theoretical ideas for solving the data exchange problem were
introduced several years after the first mapping generation techniques had been
developed. The main motivation was that of providing a clear theoretical founda-
tion for schema mappings, i.e., a solid formalism that systems could use to reason
about mappings and their properties, to optimize them, and to guarantee that data
are exchanged in an optimal way.

In the following sections, we provide an overview of these contributions. More
specifically:

e Section 2 provides an overview of data exchange theory, and more specifically
of the notions of dependencies, mapping scenario, and solution;

e Section 3 introduces the seminal ideas about schema mapping generation, and
the early algorithms developed in the framework of the Clio project (Miller et al.
2000; Popa et al. 2002);

e Section 4 describes the recent advancements in terms of schema mapping rewrit-
ing techniques that were introduced to improve the quality of solutions;

e Section 5 provides an overview of the complexity results and algorithms devel-
oped for query answering over schema mappings;

e Section 6 discusses a number of other interesting developments and applications
of schema mapping techniques;

e Finally, Sect.7 concludes the chapter by discussing the open problems in this
area.

2 Preliminaries

To provide a common formalism to be used across the chapter, we first introduce
the data model we adopt as a reference. Data exchange was originally formalized for
the relation model, so we focus on this data model. Nested sources will be discussed
separately in the following sections.

In all of the data exchange theory, databases are considered as collections of
relations on two distinct and disjoint domains: a set of constants, CONST, a set of
labeled nulls, NULLS. Labeled nulls are used during the generation of solutions to
“invent” new values in the target that do not appear in the source database. One way

5 Discovery and Correctness of Schema Mapping Transformations 115

to generate labeled nulls through Skolem functions (Hull and Yoshikawa 1990). A
Skolem function is an injective function and can be used to produce unique identi-
fiers. It takes one or more arguments and it has the property of producing a unique
value for each different set of arguments.

This said, we can formalize the relational model as follows. We fix a set of labels
{Ao, A1 ...}, and a set of relation symbols {Ro, R1, . ..}. With each relation symbol

R, we associate a relation schema R(Ay, ..., Ar). A schemaS = {Ry,...,R,}isa
collection of relation schemas. An instance of a relation schema R(A4q, ..., Ax)isa
finite set of tuples of the form R(A; : vy, ..., A : vg), where, for each i, v; is either

a constant or a labeled null. An instance of a schema S is a collection of instances,
one for each relation schema in S. In the following, we will interchangeably use
the positional and nonpositional notation for tuples and facts; also, with an abuse
of notation, we will often blur the distinction between a relation symbol and the
corresponding instance.

Dependencies and mapping scenarios: Data exchange systems rely on embedded
dependencies (Beeri and Vardi 1984) to specify mappings. These dependencies are
logical formulas of two forms: tuple-generating dependencies (tgds) or equality-
generating dependencies (egds); each of them has a precise role in the mapping.
Informally speaking (the formal definition are reported below):

o Source-to-target tgds (s-t tgds), 1.e., tgds that use source relations in the premise,
and target relations in the conclusion, are used to specify which tuples should be
present in the target based on the tuples that appear in the source; they represent
the core of the mapping, since they state how to “move” data from the source to
the target;

o Target tgds, i.e., tgds the only use target symbols; these are typically used to
specify foreign-key constraints on the target;

o Target egds, in turn, are typically used to encode key constraints on the target
database.

In our example, the desired mapping can be expressed using the following depen-
dencies:

SOURCE-TO-TARGET TGDS
my.Vs,n: NYSE(s,n) — 31: Company(I,n,s)
my. ¥n,c,a, pi: Public-Company(n, c) A Public-Grant(a, pi,n) —
a1, S: Company(I,n, S) A Grant(a, I)
m3. Vi,n,s: NSF-Grantee(i,n,s) — Company(i,n,s)
my. Va, c: NSF-Grant(a, c) — Grant(a, c)
TARGET TGDS
t1. Ya,c: Grant(a,c) — AN, S: Company(c, N, S)
TARGET EGDS
e1. Vo, n',i,i’,s: Company(i,n,s) A Company(i’,n’,s) — (i =i’y A(n =n')

Intuitively, each of the s-t tgds specifies how to map the organization of a portion
of the source tables to that of a portion of the target tables. In particular, mapping

116 A. Bonifati et al.

m copies company names and symbols in the NYSE source table to the Company
table in the target. In doing this, the mapping requires that some value — represented
by the I existentially quantified variable — is assigned to the id attribute of the Com-
pany table. The Public source contains two relations with companies names and
grants that are assigned to them; these information are copied to the target tables by
mapping m,; in this case, a value — again denoted by the / existentially quantified
variable — must be “invented” to correlate a tuple in Grant with the corresponding
tuple in Company. Finally, mappings m3 and m4 copy data in the NSF source tables
to the corresponding target tables; note that in this case we do not need to invent any
values.

The target tgd encode the foreign key on the target. The target egd simply states
that symbol is key for Company.

To formalize, given two schemas, S and T, an embedded dependency (Beeri and
Vardi 1984) is a first-order formula of the form Vx(¢(x) — Iy(¥(X,V))), where
X and y are vectors of variables, ¢(X) is a conjunction of atomic formulas such
that all variables in X appear in it, and (X, y) is a conjunction of atomic formulas.
¢(x) and ¥ (X, y) may contain equations of the form v; = v;, where v; and v; are
variables.

An embedded dependency is a tuple-generating dependency if ¢ (¥) and (X,)
only contain relational atoms. It is an equality generating dependency (egd) if
¥(X,y) contains only equations. A tgd is called a s-t tgds if ¢(X) is a formula
over S and v (x,y) over T. It is a target tgd if both ¢ (x) and ¥ (x,y) are formulas
over T.

A mapping scenario (also called a data exchange scenario or a schema mapping)
is a quadruple .#Z = (S, T, X5, X¢), where S is a source schema, T is a target
schema, X, is a set of s-t tgds, and X, is a set of target dependencies that may
contain tgds and egds. If the set of target dependencies X; is empty, we will use the
notation (S, T, Xs;).

Solutions. We can now introduce the notion of a solution for a mapping scenario. To
do this, given two disjoint schemas, S and T, we shall denote by (S, T) the schema
{S1...84,T1... Ty }. If [is an instance of S and J is an instance of T, then the pair
(I, J) is an instance of (S, T).

A target instance J is a solution of .# and a source instance / (denoted J €
Sol(A, 1)) iff (I,J) = X5 U X4, ie., I and J together satisfy the dependencies.

Given a mapping scenario .# = (S, T, X, X;), with s-t and target dependen-
cies, we find it useful to define a notion of a pre-solution for .Z and a source instance
I as a solution over [for scenario .#s; = (S, T, Xs;), obtained from .# by remov-
ing target constraints. In essence, a pre-solution is a solution for the s-t tgds only,
and it does not necessarily enforce the target constraints.

Figure 5.3 shows several solutions for our example scenario on the source
instance in Fig.5.1. In particular, solution (a) is a pre-solution, since it satisfies
the s-t tgds but it does not comply with the key constraints and therefore it does
not satisfy the egds. Solution (b) is a solution for both the s-t tgds and the egds.
We want, however, to note that a given scenario may have multiple solutions on a
given source instance. This is a consequence of the fact that each tgd only states an

5 Discovery and Correctness of Schema Mapping Transformations 117

a b c d
Company Company Company Company
id [name [symbol id |[name [symbol id |[name [symbol id |name [symbol
N1 _[Google |GOOG N1_|Google |GOOG N1_[Google [GOOG N1 _[Google |GOOG
N2 |Yahoo [YHOO 11__[Apple |S1 11 |Apple [NULL 11 |Apple [NULL
11__[Apple |S1 12 |Adobe [S2 23 |Yahoo! [YHOO 23 [Yahoo! [YHOO
12 |Adobe |S2 23 |Yahoo! |YHOO 25 |Adobe |ADBE 25 [Adobe [ADBE
23 |Yahoo! |YHOO 25 |Adobe |ADBE
Grant Grant
25 |Adobe |ADBE Grant
amount|company amount|company
Grant gsmgggt |C1°mPa"Y 25,000 |11 25,000 |11
amount|company 501000 > 18,000 |23 18,000 |I12
25000 |11 2 50,000 |25 50,000 (25
: 18,000 (23 80,000 |N1
S0 |12 50,000 |25 c i | soluti '
18,000 |23 : ore universal solution
50,000 |25 Non-universal solution

Canonical universal solution
Canonical pre-solution

Fig. 5.3 Several solutions for the companies scenario

inclusion constraint, but it does not fully determine the content of the target. To give
an example, besides solution (b) in Fig. 5.3, the two target instances (c) and (d) are
also solutions for the same source instance.

By looking at these solutions, we notice two things: (1) solution (c) is more
compact than solution (b); it can be seen that the grayed tuples in solution (b) are
somehow “redundant,” since they do not add any information to that contained in
solution (c); (2) solution (d) contains a tuple (the one with a gray background) with
a ground value (80,000) that does not belong to the source instance. In essence, the
space of solutions is quite various: on one side, solutions may have different sizes;
intuitively, we prefer those of smaller size; on the other side, some of them may
contain some “arbitrary” values that do not really follow from the content of the
source instance and from the constraints in X U Y.

It is natural to state a couple of quality requirements for solutions to a mapping
scenario:

e First, we would like to restrict our attention to those solutions — which we call
universal — that only contain information that follows from I/ and X, U 3;

e Among universal solutions, we would like to select the ones of the smallest size —
called the core universal solutions.

To formalize these two notions, we introduce the notion of a homomorphism among
solutions. Given two instances J, J' over a schema T, a homomorphismh : J — J’
is a mapping of the values of dom(J) to the values in dom(J") such that it maps each
constant to itself, i.e., for each ¢ € const()(J), h(c) = c, and it maps each tuple in
Jtoatuplein J/,i.e., foreacht = R(A; : v1,..., Ag : vg) in J it is the case that
h(t) = R(Ay : h(vy),..., Ax : h(vr)) belongs to J'. h is called an endomorphism
if J/ C J;if J' C J itis called a proper endomorphism.

In essence, a homomorphism is a constant-preserving mapping that can be used
to turn one instance into a subset of another. Whenever a homomorphism /4 turns

118 A. Bonifati et al.

a tuple ¢ of J into a tuple ¢’ of J’, we may be certain that ¢’ contains at least “as
much information as” ¢. Similarly, if # maps J into J’, then J’ contains at least as
much information as J. If, on the contrary, there exists a tuple # in J that contains a
constant (like 80,000 in our example) that does not appear in J', i.e., if J contains
some “extra” information that is not in J’, then there cannot be any homomorphism
of ¢ into a tuple of J' and therefore no homomorphism of J itself into J'.

This allows us to formalize the notion of a universal solution. A solution J for .#
and source instance I is universal (Fagin et al. 2005a) (denoted J € USol(.#, I))
iff for every other solution K for .# and I there is an homomorphism from J to K.
In the following, we shall only consider universal solutions.

Among these, we prefer those of minimal size. Given a scenario .#, and an
instance I, a core universal solution (Fagin et al. 2005b) J € USol(.#, I'), denoted
C € Core(#, 1), is a subinstance C C J such that there is a homomorphism from
J to C, but there is no homomorphism from J to a proper subinstance of C. Cores
of universal solutions are themselves universal solutions (Fagin et al. 2005b), and
they are all isomorphic to each other. It is therefore possible to speak of the core
solution as the “optimal” solution, in the sense that it is the universal solution of
minimal size (Fagin et al. 2005b).

The chase. A natural question is how it is possible to derive universal solutions
for a mapping scenario and a source instance. It turns out that this can be done by
resorting to the classical chase procedure (Fagin et al. 2005a).

The chase works differently for tgds and egds. Given a vector of variables v, an
assignment for v is a mapping a : v — CONST U NULLS that associates with each
universal variable a constant in CONST. Given a formula ¢ (X) with free variables X,
and an instance I, we write I |= ¢(a(X)), whenever [satisfies the formula ¢ (a (X)),
that is whenever / contains all the atoms in ¢ (a(¥)).

Given instances I, J, during the naive chase (ten Cate et al. 2009)' a tgd ¢(¥) —
Iy (Y (x,y)) is fired for all assignments a such that I = ¢(a(X)); to fire the tgd, a
is extended to y by injectively assigning to each y; € y a fresh null, and then adding
the facts in ¥ (a(x), a(y)) to J. Consider tgd m, in our example:

my. Vn,c,a, pi,n: Public-Company(n, c) A Public-Grant(a, pi,n) —
a1, S: Company(I,n, S) A Grant(a, I).

On source tuples Public-Company(Adobe, SJ), Public-Grant(Adobe., Anne C.,
50,000) it will generate two target tuples, Company(Ni, Adobe, N;), and
Grant(50,000, N1), where Ny, N, are fresh nulls.

A solution generated by the (naive) chase is called a canonical solution. 1t is
possible to prove (Fagin et al. 2005a) that each canonical solution is a universal solu-
tion. Chasing the s-t tgds in our example scenario generates the canonical, universal

!'We refer to naive chase rather than to the standard chase used in Fagin et al. (2005a), since
the naive chase is much simpler and rather straightforward to implement in SQL. Such chase is
sometimes calles oblivious chase, e.g., in Marnette (2009).

5 Discovery and Correctness of Schema Mapping Transformations 119

pre-solution in Fig. 5.3a. In Fagin et al. (2005a), the notion of a weakly-acyclic set of
tgds was introduced to guarantee that the chase terminates and generates a universal
solution.

After a canonical pre-solution has been generated by chasing the s-t tgds, to
generate an actual universal solution it is necessary to chase the target dependencies.
Notice that the chase of target tgds can be defined exactly in the same way, with the
variant that it only works for assignments such that J = ¢ (a(X)). However, in this
example, there is no need to chase the target tgd: the pre-solution is also a solution
for tgd #;. In fact, the target tgd states that, whenever a tuple is inserted into the
Grant table, a corresponding tuple must exist in the the Company table, and this is
the case in our pre-solution. Generating tgds that have this property is one of the
main intuitions behind the Clio algorithms Miller et al. (2000); Popa et al. (2002),
which will be discussed in more detail in Sect. 3.

To chase an egd ¢(X) — (x; = x;) over an instance J, for each assignment a
such that J = ¢(a(x)), if A(x;) # h(x;), the chase tries to equate the two values.
We distinguish two cases: (1) both /(x;) and /(x;) are constants; in this case, the
chase procedure fails, since it attempts to identify two different constants; (2) at least
one of h(x;), h(x;) is a null — say &(x;) — in this case chasing the egd generates a
new instance J’ obtained from J by replacing all occurrences of i1(x;) by h(x ;). To
give an example, consider egd e;:

e1.Vn,n',i,i’,s: Company(i,n,s) A Company(i’,n’,s) — (i =i’y A (n = n’).

On the two tuples generated by chasing the tgds, Company (23, Yahoo!, YHOO),
Company (N,, Yahoo!, YHOO), chasing the egd equates N, to the constant 23,
based on the same value for the symbol attribute, YHOO. Chasing the egds returns
the canonical universal solution in Fig.5.3b. Notice how the canonical universal
solution is not the core universal solution, which in turn is represented in Fig. 5.3c.

Based on these ideas, it is possible to introduce the following procedure to solve
a mapping scenario .# given a source instance /:

e First, chase the s-t tgds in X, on I to generate a canonical pre-solution, Jp.;

e Then, chase the target constraints (target tgds and especially egds) on J,. to
generate a canonical universal solution, J;

e Minimize J by looking for endomorphic subsets that are still universal solutions
to generate the core universal solution, Jy

There currently exist chase engines capable of doing this (Savenkov and Pichler
2008), which we will discuss thoroughly in the remainder of this chapter.

Chasing with SOL. As an alternative, the naive chase of a set of tgds on a given
source instance / can be naturally implemented using SQL. Given a tgd ¢(X) —
Iy (¥ (X,y)), to chase it over / we may see ¢(X) as a first-order query Q4 with
free variables X over S. We may execute Q4 (/) using SQL to find all vectors of
constants that satisfy the premise.

We now need to insert the appropriate tuples into the target instance to satisfy
¥(X,y). However, to do this, we need to find a way to properly “invent” some fresh

120 A. Bonifati et al.

nulls for y. To do this, Skolem functions (Hull and Yoshikawa 1990) are typically
used. Given a vector of k universally quantified variables X, a Skolem term? over X
is a term of the form f(X), where f is a function symbol of arity k. Skolem terms
are used to create fresh labeled nulls on the target. Given an assignment of values a
for X, with the Skolem term above we (injectively) associate a labeled null N 7, (x)).

Based on this, to implement the chase by means of SQL statements, as a prelim-
inary step we replace existential variables in the conclusion by means of Skolem
terms. More specifically, for each tgd m : ¢(x) — Iy (¥ (X,V)), we use a different
Skolem function f,,,y; for each variable y; € y, and take as argument all universal
variables that appear in the conclusion.

To give an example of how the process works, consider tgd m, above.

my. Vn,c,a, pi,n: Public-Company(n, c) A Public-Grant(a, pi,n) —
a1, S: Company(I,n, S) A Grant(a, I).

To implement the chase in SQL, the tgd is first rewritten using Skolem terms as
follows:

my. Vn,c,a, pi,n: Public-Company(n, c) A Public-Grant(a, pi,n) —
a1, S: Company(fr(n,a),n, fs(n,a)) A Grant(a, f1(n,a)).

As an example, we show below one of the two SQL statements to which m), is
translated (we omit the second on Grant for space reasons):

INSERT into Company
SELECT append(‘fI(’,c.name, ‘,’, g.amount, ‘)’), c.n,
append (*fS(’,c.name, ‘,’, g.amount, ‘)’)
FROM Public-Company c, Public-Grant g
WHERE c.name = g.company

3 Schema Mappings: The Early Years

The design of mappings had for a long time been a manual task. Transformation
designers had to express their mappings in complex transformation languages and
scripts, and this only after they had obtained a good knowledge and understand-
ing of the semantics of the schemas and of the desired transformation. As schemas
started to become larger and more complex, it was soon realized that the manual
design of the mappings was at the same time laborious, timeconsuming, and error-
prone. While seeking support for mapping designers, mapping tools were created
with the intention of raising the level of abstraction and the automated part of the

2 While Skolem terms are usually nested, for the sake of simplicity here we only consider flat
terms.

5 Discovery and Correctness of Schema Mapping Transformations 121

tasks. This section provides an overview of the developments in mapping gener-
ation since the very first need of data transformations, until the development of
the first schema mapping tools under the form they are widely understood today.
Having defined the data exchange problem, this section describes how a mapping
scenario can be constructed. The presented algorithm, which is the basis of the
Clio (Popa et al. 2002) mapping scenario generation mechanism, has the additional
advantage that generates scenarios in which the mappings respect the target schema
constraints. In that sense, generating the target instance can be done by taking into
consideration only the mappings of the mapping scenario and not the target schema
constraints. This kind of mappings are more expressive that other formalisms such
as simple correspondence lines (Rahm and Bernstein 2001) or morphisms (Melnik
et al. 2005).

3.1 The First Data Translation Systems

Since the beginning of data integration, a major challenge has been the ability to
translate data from one format to another. This problem of data translation has
been studied for many years, in different variants and under different assumptions.
One of the first systems was EXPRESS (Shu et al. 1977), a system developed by
IBM. A series of similar but more advanced tools have followed EXPRESS. The
TXL language (Abu-Hamdeh et al. 1994), initially designed to describe syntactic
software transformations, offered a richer set of operations and soon became pop-
ular in the data management community. It was based on transformation rules that
were fired upon successful parsing of the input data. The problem became more
challenging when data had to be transformed across different data models, a situa-
tion that was typically met in wrapper construction (Tork-Roth and Schwarz 1997).
MDM (Atzeni and Torlone 1997) was a system for this kind of transformations that
was based on patterns (Atzeni and Torlone 1995).

Some later works (Beeri and Milo 1999) proposed a tree-structured data model
for describing schemas, and showed that the model was expressive enough to rep-
resent relational and XML schemas, paving the way for the later introduction of
tree-based transformations. A formal foundation for data translation was created,
alongside a declarative framework for data translation (Abiteboul et al. 1997). Based
on this work, the TranScm system (Milo and Zohar 1998) used a library of transfor-
mation rules and pattern matching techniques to select the most applicable rules
between two schemas, in an effort to automate the whole data translation task.
Other transformation languages developed in parallel emphasized on the type check-
ing (Cluet et al. 1998) task or on integrity constraint satisfaction (Davidson and
Kosky 1997).

122 A. Bonifati et al.

3.2 Correspondences

The first step toward the creation of mappings between two schemas was to under-
stand how the elements of the different schemas relate to each other. This relation-
ship had to be expressed in some high level specification. That specification was
materialized in the form of correspondences.

A correspondence maps atomic elements of a source schema to atomic elements
of the target schema. This specification is independent of logical design choices
such as the grouping of elements into tables (normalization choices), or the nesting
of records or tables (for example, the hierarchical structure of an XML schema). In
other words, one need not specify the logical access paths (join or navigation) that
define the associations between the elements involved. Therefore, even users that
are unfamiliar with the complex structure of the schema can easily specify them.
Correspondences can be represented graphically through simple arrows or lines that
connect the elements of the two schemas.

The efficacy of using element-to-element correspondences is greatly increased
by the fact that they need not be specified by a human user. They could be in fact the
result of an automatic component that matches the elements of the two schemas, and
then the mapping designer simply verifies the correctness of the results. This task
is found in the literature under the name schema matching and has received consid-
erable attention, and has led into a variety of methodologies and techniques (Rahm
and Bernstein 2001).

A correspondence can be formally described as a tgd with one and only one
existentially quantified variable being equal to one of the universally quantified vari-
ables, and one term on each side of the dependency (for the case of the relational
schemas). The correspondence states that every value of the source schema element
represented by the first variable should also exist in the instance values of target
schema element represented by the second.

In certain cases, correspondences that involve more than one source schema
elements may exist, but there should always be one existentially quantified vari-
able whose value is determined as a function of the universally quantified variables
representing the participated source schema elements.

Consider the example of Fig. 5.4a, which is a variation of the example presented
previously. Here, the first source consists of only the three relational tables Public-
Company, Public-Grant, and Contact, while the target consists of only the table
Company. As before, the intra-schema lines represent schema constraints, and in
the particular example are foreign key constraints. The red dotted inter-schema
lines represent the correspondences. Note that the appearance of an attribute with
the same or similar name in both schemas does not necessarily mean that the two
attributes represent the same fact. For instance, consider the attributes symbol and
id. Although in the companies world these terms may be used interchangingly, in
the specific example, the lack of a line among them may be justified by a case in
which the attribute id may represent the fiscal number of the company while the
attribute symbol may be the symbol with which the company appears in the stock
exchange.

5 Discovery and Correctness of Schema Mapping Transformations 123

a b
Source Target Source Target
Public-Company: [0..*] Company: [0..*] Public-Company: [0..*] Company: [0..*]
FELEEY P name —————— P name ;=== name ——————» name
H vi . H vi id
symbol id : symbol i
v2 fid ' Grant: [0..%]
Public-Grant: M amount ! Public-Grant: [0.."] v2 fid
gid v3 scientist gid scientist
amount phone amount fdid ------,]
: instaliment REERR company
teeeeees company A v5 investigator FinancialData: [0..*]
investigator ~ /7 aeeeeeee- manager v3 fdid —
........ manager ! .--.-. assistant -
5 tGl A ' amount
T assistan . | Contacts: [0..*] phone
i i Contacts:fo.y /0 - cid V5
eetep cid phone
phone

Fig. 5.4 Two schema matching examples

The line vy from the attribute name of the Public-Company table to the attribute
name of the Company table represents a correspondence declaring that the latter
has to be populated with values from the former. Its tgd representation is:

vy : Vna, sy Public—Company(na, sy) —
dna2,id, fi,am2, sc, ph2 Company(na2,id, fi,am2, sc, ph2), na2 = na.

It can be seen in the above logical expression that among all the existential variables
of its right-hand side, only the value of the na?2 is determined by a source variable,
i.e., one of the universally quantified.

A situation that demonstrate the case in which an attribute value in the target
schema is created by a combination of attribute values from the source is the one
of amount. Although the attribute amount appears in both schemas, it may be the
case that in the first, amount means the amount of an installment while in the second
amount may mean the total figure. In that case, the value of the latter is composed
by the value of the former multiplied by the number of installments that is stored in
the attribute installments. The tgd of the correspondence is:

v3 . VYgi,am,in, co,re,ma,as Public — Grant(gi,am, in, co, re, ma, as) —

Ana2,id, fi,am?2, sc,ph2 Company(na2,id,fi,am2, sc, ph2), am2 = am % in

Note that even in this case, there is only one target schema variable whose value is
determined by source variable values.

While easy to create, understand, and manipulate, element correspondences are
not expressive enough to describe the full semantics of a transformation. As a con-
sequence, they are inherently ambiguous. There may be many mappings that are
consistent with a set of correspondences, and still, not all of them have the same
semantics. A mapping generation tool needs to be able to identify what the mapping
designer had in mind when he/she provided a given set of correspondences, and

124 A. Bonifati et al.

generate plausible interpretations to produce a precise and faithful representation
of the transformation, i.e., the mappings. For instance, in the schema mapping sce-
nario of Fig. 5.4a, consider only the correspondence v;. One possible mapping that
this correspondence alone describes is that for each Public-Company in the source
instance, there should be in the target instance a Company with the same name.
Based on a similar reasoning for correspondence v,, for every Public-Grant with
identifier gid in the source instance, it is expected that there should be a Company
tuple in the target instance with that grant identifier as attribute fid. By noticing that a
Public-Grant is related to a Public-Company through the foreign key on attribute
company, one can easily realized that a more natural interpretation of these two
correspondences is that every public grant identifier found in a target schema tuple
of table Company should have as an associated company name the name of the
respective public company that the public grant is associated in the source. Yet, it is
not clear, whether public companies with no associated grants should appear in the
target table Company with a null fid attribute, or should not appear at all. Further-
more, note that the target schema relation has an attribute phone that is populated
from the homonym attribute from the source. This value should not be random but
somehow related to the company and the grant. However, note that the Contact
table in which the phone is located is related to the grant information through two
different join paths, i.e., one on the manager and one on the assistant. The informa-
tion provided by the correspondence on the phone is not enough to specify whether
the target should be populated with the phone of the manager or the phone of the
assistant.

The challenging task of interpreting the ambiguous correspondences gave raise
to the schema mapping problem as it has been introduced in Sect. 2.

3.3 Schema Mapping as Query Discovery

One of the first mapping tools to systematically study the schema mapping problem
was Clio (Miller et al. 2000), a tool developed by IBM. The initial algorithm of the
tool considers each target schema relation independently. For each relation R;, it
creates a set 1V Ri of all the correspondences that are on a target schema element that
belongs to the relation R;. Naturally, all these sets are mutually disjoint. For each
such set, a query Q,&; will be constructed to populate the relation R;. The latter
query is constructed as follows. The set Vi of correspondences is further divided
into maximal subsets such that each such maximal subset M kVR’ contains at most
one correspondence for each attribute of the respective target schema relation. For
all the source schema elements used by the correspondences in each such subset,
the possible join paths connecting them are discovered, and combined to form the
union of join queries. These queries are then combined together through an outer
union operator to form the query Q ;.

5 Discovery and Correctness of Schema Mapping Transformations 125

3.4 Schema Mapping as Constraint Discovery

The algorithm for managing the schema mapping problem as query discovery failed
to handle two important cases. The first, was the complex nesting schema situations,
and the second was the management of unspecified attributes, i.e., attributes in the
target schema for which there is no correspondence to specify their value, yet, the
target schema specification either does not permit a null value, or even if it does, its
use will lead to loss of information. Furthermore, it became clear that the schema
information in conjunction will the correspondences could not always lead into a full
specification of the target instance, but only into a constraint relationship between
the source and the target instance. Thus, the notion of a mapping stopped being
the actual transformation script and became this notion of inter-schema constraint,
expressed as a tgd. This is a more natural view of the mapping problem since with
schemas being heterogeneous, it is natural to expect that not all the information
represented in the source can also exist in the target, and vice versa. Since a mapping
describes only the data that is to be exchanged between the schemas, the information
described by the mapping is a subset of the information described by the schemas.

Consider the example of Fig. 5.4b. The situation is more or less the same as the
one on its left, with the small difference that the target schema has all the grant
information grouped and nested within the company in which the grant belongs.
Furthermore, the amount of the grand is not stored within the grand but separately in
the FinancialData structure. Note that the Grant structure has an attribute fdid used
by no correspondence, thus it could have remained null, if the target schema spec-
ification permits it. If not, a random value could have been generated to deal with
this restriction. Unfortunately, either of the two actions would break the relationship
of the funding information with its amount, since the attribute fdid is actually the
foreign key relationship that connects their respective structures.

To discover the intended meaning of the correspondences and generate the map-
pings, it is important to realize how the elements within a schema relate to each
other. This relationship will guide the combination of correspondences into groups
and the creation of the expected mappings. The idea for doing so comes from the
work on the universal relation (Maier et al. 1984). The universal relation provides
a single-relation view of the whole database in a way that the user does not have
to specify different tables and join paths. The construction of the universal relation
is based on the notion of logical access paths, or connections, as they were initially
introduced, and are groups of attributes connected either by being in the same table
or by following foreign key constraints (Maier et al. 1984).

A generalized notion of a connection is that of the association (Popa et al. 2002).
Intuitively, an association represents a set of elements in the same schema alongside
their relationships. An association is represented as a logical query whose head con-
sists of a relation with all the attributes mentioned in the body. For simplicity, the
head of the association is most of the time omitted. As an example, the following
logical query body:

A(x,y,2), Bu,v,w), x =u

126 A. Bonifati et al.

represents an association that consists of the six attributes of the tables A and B, for
which the first is equal to the fourth. Obviously, not all associations are semantically
meaningful. In database systems, there are many ways one can specify seman-
tic relationships between schema elements, but three are the most prevalent, the
schema structure, the schema constraints, and the user specification, which define
three respective kinds of associations.

The structural associations are based on the aggregation of schema elements as it
has been specified by the database designer. For instance, the placement of a number
of attributes in the same tables means that these attributes are related to each other,
most probably by describing different characteristics of the entity that the respective
table represents. In a relational schema, there is one structural association for each
set of attributes in a table. For a nested schema, there is a structural association for
each set element, at any level of nesting. The association is constructed by collecting
all the nonset subelements of the set element alongside all the nonset subelements of
every set element ancestor. Due to the way structural associations are constructed in
nested schemas, they are also known broadly as primary paths. The source schema
of Fig. 5.4a has the following three primary paths: (1) Public—Company(na, sy), (2)
Public-Grant(gi,am,in,co,re,ma,as), and (3) Contact(ci, ph), while the target
schema has only the Company(na2,id, fi,am,sc, ph2).

For the scenario of Fig. 5.4b, the primary paths of the source schema are the same,
while those of the target schema are: (1) Company(na?2,id), (2) Company(na?2,
id, Grant), Grant(f'i, sc, fd), and (3) FinancialData(fd2,am?2, ph2). Note that
the structural association that contains the elements of the set element Grant, those
of the set element Company are also included since the former is nested within the
latter.

Schema formalisms may not always be enough to describe the full semantics of
the data. A data administrator may have some knowledge about sets of attributes
that are associated that is nowhere recorded. Based on this user knowledge, an
association can be constructed. These kinds of associations are known as user
associations (Velegrakis 2005).

Apart from the schema structure, another way database designers can specify
semantic relationships between schema elements is the use of schema constraints.
This lead to the form of association called the logical associations. A logical asso-
ciation is a maximal set of schema elements that are related either through user
specification (user association), or through structural construction (structural asso-
ciation), or through constraints. Since logical associations are based on constraints,
they can be used as an alternative for computing different join paths on the schema.

Logical associations, also known in the literature, as logical relations, are com-
puted by using the chase (Maier et al. 1979), a classical method that has been used
in query optimization (Popa and Tannen 1999), although originally introduced to
test implications of functional dependencies. A chase procedure is a sequence of
chase steps. A chase step is an enhancement of an association using a schema
constraint. In particular, when the left part of the tgd that expresses a referential
constraint is logically implied by the logical representation of the association, then
the latter is enhanced with the terms and the conditions of the right-hand side of

5 Discovery and Correctness of Schema Mapping Transformations 127

the tgd of the constraint. This intuitively means that the association is expanded
to include the referenced attributes of the constraint. The procedure is repeated
until no more schema constraints can be applied, in which case the association
has become maximal. This maximal association is a logical association. Maier
et al. (Maier et al. 1979) have shown that for the relational model, two differ-
ent chase sequences with the same set of dependencies, i.e., constraints, generate
identical results. Popa (Popa 2000) has shown a similar result for the case of the
nested relational model. These two results mean that the the result of the chase of a
user or a structural association with a set of constraints is unique. To illustrate how
the logical relations are computed, consider again the example on Fig.5.4b. Let
A represent the structural association Public—Grant(gi,am,co,in, ma,as). The
tgd expressing the foreign key constraint from the attribute company to name is
Public—Grant(gi,am, co,in,ma,as) — Public—Company(na, sy), na = co. Its
left-hand side is the same as A, thus, the question on whether it is logically implied
by A is yes, which means that a chase step can be applied on A using the specific
constraint. This will enhance A with the contents of the right-hand side of the tgd of
the constraint, bringing the association into the form:

Public—Grant(gi, am, co, in, ma, as), Public—Company(na, sy), na = co

Further chase steps on the association using the foreign key constraints on the
attributes manager and assistant will further expand the association into the form:

Public—Grant(gi, am, co, in, ma, as), Public—Company(na, sy),

Contact(cim, phm), Contact(cia, pha), na = co A cim = ma A cia = as.

Since no other constraint can be further applied to it A, A in its last form is a logical
association.

Associations form the basis for understanding how the correspondences can be
combined together to form groups that will produce semantically meaningful map-
pings. The technique presented here forms the basis of the Clio (Fagin et al. 2009)
mapping tool. Given a set of correspondences, Clio generates a mapping scenario
with nested tgds. Similar technique has also been adapted by other tools, such as
Spicy (Bonifati et al. 2008a) or HePToX (Bonifati et al. 2005). This is done by con-
sidering pairs of source and target logical associations. For each such pair, the set of
correspondences covered by the pair is discovered. A correspondence is said to be
covered by the pair A, B of a source and a target association, if its left and right part
(apart from the equality condition) are logically implied by A and B, respectively.
A mapping is formed by creating a tgd whose left-hand side consists of association
A, and whose right-hand side is the association B enhanced with the conditions
of the covered correspondences. Note that the covering of a correspondence is
based on the notion of homomorphism. If there are multiple homomorphisms, then
there are multiple alternative mappings. Consider, for instance, the source-target
logical association pair Public—Company(na, sy) and Company(na2,id, Grand).

128 A. Bonifati et al.

Only the correspondence vl is covered by this pair. This leads to the mapping m;:

Public—Company(na, sy) — Company(na2,id, Grand),na2 = na, where the last

equation is the one that was on the tgd representation of the correspondence v1.
For the source-target logical association pair A and B, where A is

Public—Grant(gi, am, co, in, ma, as), Public—Company(na, sy),

Contact(cim, phm), Contact(cia, pha), na=co N cim=ma A cia=as
and B is

Company(na2, id, Grand), Grant(fi, sc, sd),
FinancialData(fd2, am2, ph2), fd2=fd,

all the correspondences illustrated in Fig. 5.4 are covered. However, for v5 there are
two ways that it can be covered, which leads to two different mappings. The first is:

Public—Grant(gi, am, co, in, ma, as), Public—Company(na, sy),

Contact(cim, phm), Contact(cia, pha), na=co A cim=ma A cia=as
— Company(na2, id, Grand), Grant(fi, sc, sd),
FinancialData(fd2, am2, ph2), fd2=fd N

na2=na A fi=gi N am2=am A re=sc AN ph2=pha.

The second mapping is exactly the same with the only difference that the last
equality is ph2=phm instead of ph2=pha.

Note that through the right-hand side conditions, the mappings guarantee to gen-
erate data that does not violate the constraints of the target schema, which is why
finding a solution to a Clio generated scenario does not need to take into considera-
tion the target schema constraints, since they have been taken into consideration in
the source-to-target tgd construction.

3.5 Data Exchange and Query Generation

Once the mapping scenario has been constructed, the next step it to find a solution
(see Sect.?2). Clio (Popa et al. 2002) was the first tool to consider mappings in a
nested relational setting, thus offering not only mappings that were nested tgds, but
also an algorithm for generating nested universal solutions.

The algorithm mainly starts by creating a graph of the target schema in which
every node corresponds to a schema element, i.e., a table or an attribute in the case
of a relational schema. Then, the nodes are annotated with source schema elements
from where the values will be derived. These annotations propagate to other nodes
based on the nested relationship and on integrity constraint associations. The value

5 Discovery and Correctness of Schema Mapping Transformations 129

for the unspecified elements is the result if a Skolem function that gets as arguments
the values of all the source schema elements of the source. The annotations that
have been made on the set elements are used to create Skolem functions that drive
the right nesting. More details can be found in Fagin et al. (2009).

At this point, the final queries, or transformation scripts in general, can be
constructed. First, the variable of every unspecified target schema element in the
mapping is replaced by its Skolem function expression. In its simplest brute-force
form, the final query is generated by first executing the query described on the left-
hand side of the mapping tgd expression for every nesting level, i.e., for every set
element of any nesting depth of the target. Then, the Skolem functions that have
been computed for the set elements of the target are used to partition the result set
of these queries and place them nested under the right elements. The full details of
this task can be found in Fagin et al. (2009).

4 Second-Generation Mapping Systems

Inspired by the seminal papers about the first schema mapping system (Miller et al.
2000; Popa et al. 2002), in the following years a rich body of research has pro-
posed algorithms and tools to improve the easiness of use of mapping systems (An
et al. 2007; Raffio et al. 2008; Cabibbo 2009; Mecca et al. 2009b) (see Sect. 7 and
Chap.9) and the quality of the solutions they produce. As experimentally shown
in Fuxman et al. (2006); Mecca et al. (2009a), different solutions for the same sce-
nario may differ significantly in size and for large source instances the amount of
redundancy in the target produced by first generation mapping systems may be very
large, thus impairing the efficiency of the exchange and the query answering pro-
cess. Since the core is the smallest among the solutions that preserve the semantics
of the exchange, it is considered a desirable requirement for a schema mapping
system to generate executable scripts that materialize core solutions for a mapping
scenario.

In this section, we present results related to this latest issue and we show
how novel algorithms for mapping generation and rewriting have progressively
addressed the challenge of producing the best solution for data exchange.

4.1 Problems with Canonical Solutions

To see how translating data with mapping systems from a given source database
may bring to a certain amount of redundancy into the target data, consider again
the mapping scenario in Fig.5.2 and its source instance in Fig.5.1. To simplify
the discussion, in the following we drop the target egd constraints as they are not
handled by most mapping systems during the schema mapping generation. Based on
the schemas and the correspondences in the scenario, a constraint-driven mapping

130 A. Bonifati et al.

system such as Clio would rewrite the target tgd constraints into a set of s-t tgds
(using the logical associations described in Sect. 3), like the ones below.

my.Vs,n: NYSE(s,n) — 31: Company(I,n,s)
my. ¥n,c,a, pi: Public-Company(n, c) A Public-Grant(a, pi,n) —
a1, S: Company(I,n, S) A Grant(a, I)
m3. Yi,n,s: NSF-Grantee(i,n,s) — Company(i,n,s)
my. Ya,c: NSF-Grant(a,c) — AM, S: Company(c, M, S) A Grant(a,c) .

Notice that these expressions are different from those in Sect.2. In fact, the
mapping tool is taking care of the foreign key constraint in m4 and produces the
canonical universal solution in Fig.5.5a. While this instance satisfies the s-t tgds
(and the original target tgd), still it contains many redundant tuples, those with a
gray background.

Consider, for example, the tuple 1y = (N2, Yahoo!, YHOO) in the Company table;
it can be seen that the tuple is redundant since the target contains another tuple t, =
(23, Yahoo!, YHOO) for the same company, which in addition to the company name
also gives information about its id in the target database (i.e., there is an homomor-
phism from #; to #»). A similar argument holds for the tuples (12, Adobe, S2) and
(50,000, 12), where I2 and S2 are the values invented by executing tgd m»,, while
there are tuples with real id and symbol values for the same company and grant. The
core in this example is the solution reported in Fig. 5.5b.

Therefore, a natural requirement for a schema mapping system becomes that of
materializing core solutions. We now review the algorithms that have been proposed
to compute the core solution in a relational data exchange setting.

a b

Company Grant Company Grant

id |name |symbol | |amount|company id |name |symbol | lamount|company
N1 _[Google [GOOG 25,000 |1 N1 |Google |GOOG 25,000 (11
N2 |Yahoo [YHOO 50,000 [I2 11 |Apple |NULL 18,000 |23
11 |Apple |S1 18,000 [23 23 |Yahoo! |YHOO 50,000 [25
12 [Adobe |S2 50,000 |25 25 |Adobe |ADBE

23 |Yahoo! |YHOO

25 |Adobe |ADBE Core universal solution
23 M1 S3

25 |M2 S4

Canonical universal solution

Fig. 5.5 Canonical and core solutions for the mapping scenario

5 Discovery and Correctness of Schema Mapping Transformations 131

4.2 Theoretical Results on Core Computation

The first approach that has been studied to generate the core for a relational data
exchange problem is to generate the canonical solution, and then to apply a post-
processing algorithm for its core identification. It is known that computing the core
of an arbitrary relational instance with variables is NP-complete, as many NP-
complete problems (e.g., computing the core of a graph (Fagin et al. 2005b; Hell
and Nesetfil 1992) or conjunctive query optimization (Chandra and Merlin 1977))
can be reduced to it. In contrast with the case of computing the core of an arbitrary
instance, computing the core of a universal solution in data exchange can be done
in polynomial time.

In Fagin et al. (2005b), an algorithm is presented that computes the core in
polynomial time in a restricted setting, that is, for a data exchange problem whose
source-to-target constraints are tgds and whose target constraints consist of arbitrary
egds only. More specifically, they proved that the core of a universal solution can be
computed in polynomial time in two settings: (1) when the set of target constraints
is empty, (2) when the set of target constraints contains egds only. To address these
goals, two different methods are provided.

A greedy algorithm, given a source instance I, first computes an universal solu-
tion J for 7, if it exists, and then computes its core by successively removing tuples
from J, as long as I and the instance resulting in each step satisfy the s-t tgds
and the target constraints. Although the greedy algorithm is conceptually simple, it
requires the availability of the source instance I for the execution of the algorithm.

The blocks method does not require the availability of the source instance and is
based on the relationships among the labeled nulls of a canonical solution J. The
Gaifman graph of the nulls of J is an undirected graph in which the nodes are the
nulls of J and there exists an edge between two labeled nulls whenever there exists
some tuple in some relation of J in which both labeled nulls occur. A block of
nulls is the set of nulls in a connected component of the Gaifman graph of the nulls.
Given J as the result of applying the s-t tgds to a ground source instance S, the block
method starts from the observation that the Gaifman graph of the labeled nulls of
the result instance J consists of connected components whose size is bounded by a
constant b. The main step of the algorithm relies on the observation that checking
whether there is a homomorphism from any J € K, where K is any set of instances
with such bound b, into any arbitrary other instance Jy is feasible in polynomial
time. The algorithm works also for the case where the target constraints consist of
egds, which, when applied, can merge blocks by equating variables from different
blocks. Thus, after chasing J with egds, the resulting J’ can lost the bounded block-
size property. However, the authors show an algorithm that looks at the nulls in J
and computes its core by successively finding and applying a sequence of small
useful endomorphisms; where useful means that at least one null disappears. More
practically, (1) the algorithm starts computing a canonical universal solution Jo, (2)
then it recursively generates a sequence of intermediate instances such that, given
the intermediate instance J;, there is a useful endomorphism that is the identity
everywhere except for a block from J; to J;+1; (3) when the algorithm stops, the

132 A. Bonifati et al.

instance J; is the core solution. The polynomial-time bound is due to the total num-
ber of endomorphisms that the algorithm explores, which is at most n? for each
block of Jy, where b is the maximum number of existentially quantified variables
over all the s-t tgds and n is the number of tuples in Jy.

Gottlob and Nash (2008) extended previous results by introducing an algorithm
that computes, still in polynomial time, the core solution of a data exchange problem
whose target constraints are (weakly-acyclic) tgds and arbitrary egds. The authors
introduce novel technical intuitions to compute the core of universal solutions and
prove two complexity bounds. Using an exhaustive enumeration algorithm, they get
an upper bound of O(vm|dom(J)|?), where v is the number of variables in the
canonical solution J, m is the size of J, and b is the block size of J. There exist
cases where a better bound can be achieved by relying on hypertree decomposition
techniques. In such cases, the upper bound is O (vm!?/21%2) with special benefits if
the target constraints of the data exchange scenario are LAV tgds.

The main algorithm in Gottlob and Nash (2008) has been revised in Savenkov
and Pichler (2008) (by removing the simulation of egds with full tgds) and in Mar-
nette (2009) (by replacing a key component of the algorithm with a faster one). Also,
an implementation of the core-computation algorithm in Gottlob and Nash (2008)
has been developed (Savenkov and Pichler 2008): the prototype uses a relational
DBMS to chase tgds and egds, and a specialized engine to find endomorphisms and
minimize the universal solution.

The algorithms above provide a very general solution to the problem of com-
puting core solutions for a data exchange setting and made significant steps toward
the goal of integrating core computations into schema mapping systems. However,
experience with these algorithms shows that, although polynomial, they require
very high computing times since they look for all possible endomorphisms among
tuples in the canonical solution (Savenkov and Pichler 2008; Mecca et al. 2009a).
As a consequence, recursive algorithms iterating on intermediate instances hardly
scale to large mapping scenarios: the necessity to study more scalable solutions than
postprocessing approaches motivated the works that follow.

4.3 Generating Core Solutions with SQL Scripts

The fact that s-t tgds produced by first-generation schema mapping systems may
generate redundancy in the target has motivated several practical proposals toward
the goal of removing such redundant data. Unfortunately, some of these works are
applicable only in some cases and do not represent a general solution to the problem.
Only recently, there have been proposals for general rewriting techniques that are
able to obtain core solution with executable scripts. As we discuss next, all the
mapping systems that attempted to reduce the redundancy in the solutions started
from the formalism and the algorithms in Popa et al. (2002).

Early attempts. Nested mappings (Fuxman et al. 20006) are s-t tgds that extend the
language of s-t tgds allowing the arbitrary nesting of mapping formulas within other

5 Discovery and Correctness of Schema Mapping Transformations 133

mapping formulas. As an example, the schema mapping from the example in the
right-hand side of Fig. 5.4 can be defined by means of nested s-t tgds. We omit the
quantifiers for the sake of readability (variables on the right that do not appear on
the left are existentially quantified), while the atomic variables are in lowercase and
the set variables start with uppercase, as follows:

m'y. Public-Company(sn, ss) — [Company(sn,ti, Grant)
A[Public-Grant(sg, sa, sn, sr, sm, sa) A Contact(sm, ph) A Contact(sa, ph2) —
Grant(sg,sr,tf) A FinancialData(t f, sa, ph)]] .

The second mapping is exactly the same with the only difference that the last
variable in atom FinancialData is ph?2 instead of ph.

Intuitively, whenever a tgd m; writes into a target relation Ry and a tgd m, writes
into a relation R, nested into R, it is possible to “correlate” the two mappings
by nesting m, into m;. The correlation among inner and outer mappings can be
observed by the variable sn both in Public-Company and in Public-Grant in the
example above. This rewritten mapping reduces the amount of redundant tuples in
the target, since the same data is not mapped twice in the generated target instance.
The same intuition applies if R, contains a foreign key pointing to relation R;.
Nested mappings are correlated in a rewriting step based on a nestable property for
a given pair of mappings. The property is verified with a syntactical check based
on the structures of the schemas involved in the mappings and the correspondences
between them. Once the property has been verified for all the mappings composing
a scenario, the nesting algorithm constructs a DAG, where a node is a mapping
having edges to other mappings for which it is nestable. The DAG represents all
the possible ways in which mappings can be nested under other mappings. The
algorithm identifies root mappings for the DAG (mappings that are not nestable), for
each root mapping traverses the DAG to identify a tree of mappings, and generates
a nested mapping for each tree rewriting the variables accordingly to the structure.

As nested mappings factor out common subexpressions, there are many bene-
fits in their use: (1) it is possible to produce more efficient translation queries by
reducing the number of passes over the source; (2) the generated data have less
redundancy as the same data are not mapped repeatedly by s-t tgds sharing common
parts.

Another attempt to reduce the redundancy generated by basic mappings has been
proposed by Cabibbo (2009). The work introduced a revision of both the mapping
and the query generation algorithms. In the mapping generation phase, the pres-
ence of nullable attributes is considered to introduce an extended notion of logical
associations, a modified chase procedure to compute them, and novel pruning rules
used together with the subsumption and implication rules from Popa et al. (2002).
The query generation algorithm is also revised to ensure the satisfaction of target
key constraints or to unveil unsatisfiability of such keys. Moreover, when there are
key conflicts between groups of logical mappings with the same target relation, an
algorithm tries to resolve those conflicts by rewriting conflicting logical mappings
in queries with negations. Such interaction between mapping and query generation

134 A. Bonifati et al.

algorithms allows to have similar benefits to those gained by nested mappings in
different relational settings. In particular, those techniques generate target data with
less redundancy, as source data involved in the same target key constraints is copied
by the generated queries only once.

Unfortunately, the approaches above are applicable only in some specific cases:
the above techniques benefits apply only when schemas and correspondences obey
to certain structures or require the presence of key constraints to reduce the redun-
dancy in the output. Therefore, those approaches do not represent a general solution
to the problem of generating neither core nor compact universal solutions.

SQL core-generation algorithms. The following systems introduce core computa-
tion algorithms that, given a set of s-t tgds, enable a more efficient implementation
by means of executable scripts that scale well to large databases. This problem
has been first approached in Chiticariu (2005), where an algorithm is presented
for schema mappings specified by the limited class of s-t tgds with single atomic
formulas (without repetition of existential quantified variables) in the conclusions.

The first complete proposal of an algorithm for rewriting s-t tgds to generate
core solutions was introduced in Mecca et al. (2009a). This work is based on the
exploiting of two key ideas: the notion of homomorphism among formulas and the
use of negation to rewrite tgds.

my. Vs, n: NYSE(s,n) — 31: Company(I,n,s)
my. Vn,c,a, pi: Public-Company(n, c) A Public-Grant(a, pi,n) —
a1, S: Company(I,n, S) A Grant(a, I)
m3. Vi,n,s: NSF-Grantee(i,n,s) — Company(i,n,s)
my. Va,c: NSF-Grant(a, c) — Grant(a,c) .

The first intuition is that it is possible to analyze the set of formulas to recognize
when two tgds may generate redundant tuples in the target. This happens when it
is possible to find a homomorphism between the right-hand sides of the two tgds.
Consider the right-hand sides of the s-t tgds m; and m3 from the Example in Sect. 2
reported here for convenience; with an abuse of notation, we treat the two formu-
las as sets of tuples, with existentially quantified variables that correspond to nulls.
It can be seen that the conclusion Company(I,n, s) of m; can be mapped into the
conclusion Company(i,n, s) of m3 by the following mapping of variables: I — i,
n — n,s — s;in this case, they say that m3 subsumes m. This gives a condition to
intercept possible redundancy that is general (i.e., key constraint on the target is not
required to identify causes of redundancy) and necessary, since the actual generation
of endomorphisms among facts in the target data depends on values coming from
the source. From the complexity viewpoint, checking for the presence of homomor-
phisms among formulas, i.e., conclusions of tgds, is completely different than doing
the same check among instance tuples: since the number of tgds is typically order
of magnitudes smaller than the size of an instance, the check among formulas can
be carried out very quickly.

5 Discovery and Correctness of Schema Mapping Transformations 135

Based on these ideas, the algorithm finds all possible homomorphisms among
s-t tgd conclusions. More specifically, it looks for variable mappings that transform
atoms in the conclusion of one tgd into atoms belonging to the conclusions of other
tgds, with the constraint that universal variables are mapped to universal variables.
There are two homomorphisms of this form in the running example. The first one is
from the right hand side of m; to the rhs of m3, as discussed above. The second one
is from the rhs of m, to the union of the conclusions of m3 and m4 by the following
mapping: I —i,n - n, S — s,a — a, I — c; in this case, the homomorphisms
to be valid imply a condition i = ¢ and they say that ms, my4 cover m,.

A second intuition is that, whenever two tgds m, m’ such that m subsumes m’
are identified, it is possible to prevent the generation of redundant tuples in the
target instance by executing them according to the following strategy: first, gener-
ate the target tuples for m, the “more informative” mapping; then, generate for m’
only those tuples that actually add some new content to the target. In the running
example, the original s-t tgds can be rewritten as follows:

m3. Vi,n,s: NSF-Grantee(i,n,s) — Company(i,n,s)
my. Va, c: NSF-Grant(a, c) — Grant(a,c)
m’2 Vn,c,a, pi,s,i: Public-Company(n, c) A Public-Grant(a, pi,n)A
A—-(NSF-Grantee(i,n,s) A NSF-Grant(a,i)) —
a1, S: Company(I,n, S) A Grant(a, I)
my. Vs,n,i: NYSE(s,n) A =(NSF-Grantee(i,n,s)) — 3I: Company(I,n.,s).

Once the original tgds have been rewritten in this form, which are called core schema
mappings, it is easy to generate an executable transformation under the form of
relational algebra expressions where negations become difference operators. The
algebraic expressions can then be implemented in an executable script, to be run in
any database engine. The authors experimentally show that, in the computation of
the target instance, with executable scripts there is a gain in efficiency of orders of
magnitude with respect to the postprocessing algorithms (Fagin et al. 2005b; Gottlob
and Nash 2008; Savenkov and Pichler 2008).

In ten Cate et al. (2009), the authors independently developed an algorithm to
rewrite a set of s-t tgds as a laconic mapping, that is, a new set of dependencies
from which to generate an SQL script that computes core solutions for the origi-
nal scenario. The algorithm is more general than the one proposed in Mecca et al.
(2009a), since it can be applied to dependencies that make use of arbitrary first-order
formulas in the premises, and not only conjunctive formulas.

The main algorithm to rewrite schema mappings as laconic is composed of four
step. In the first step, it constructs a finite list of potential patterns of tuples in
the core. This step is done by an exhaustive analysis of the target right hand side
of each s-t tgd in the input mapping. The number of patterns is finite, but expo-
nential in the size of the schema mapping in general. In the running example, the
patterns are the right hand sides of the four original mappings. In the second step,
the main algorithm computes for each pattern a precondition: a first-order formula
over the source schema that is able to identify the cases when the core solution

136 A. Bonifati et al.

will contain the current pattern. This crucial task is done by relying on a proce-
dure called certain(), which rewrites the certain answers of a query on the target
as a query on the source. Given a source instance /, a schema mapping M, and
a query g on the target schema, the set of certain answers to q in I with respect
to M, is the intersection of the results from the query ¢(J;) over all the possible
solutions J; to the mapping. The authors introduce a practical version of the algo-
rithm in which certain() relies on a variant of the MiniCon algorithm (Pottinger and
Halevy 2001), which works for conjunctive formulas, and they also announce (ten
Cate and Kolaitis 2009) a more general algorithm to compute certain() on arbitrary
FO queries. In the example, the precondition for the pattern Company(I,n, s) is the
left hand side of mapping m/ above. In the third step, the algorithm generates addi-
tional side-conditions to handle special cases with self-joins in the conclusion, i.e.,
s-t tgds in which the same relation symbols occurs more than once in the right-hand
side. Side-conditions are Boolean combination of formulas with inequalities. In our
example, side-conditions are not generated as there are not self-joins. In the final
step, the algorithm put together the laconic schema mapping with preconditions and
side-conditions in the left-handside and the respective pattern in the right-handside,
thus generating mappings such as m’ above.

In terms of dependencies generated by the algorithm, laconic mappings from the
algorithm in ten Cate et al. (2009) tend to contain a lower number of dependencies
with more complex premises with respect to the core schema mappings from Mecca
et al. (2009a), which typically contain more rules. In fact, laconic mappings rea-
son on patterns at a “global” level, while the rewriting algorithm for core schema
mappings works at a “local” level, i.e., at the tgd level.

5 Query Answering in Mapping Scenarios

An important application of schema mappings arises in all the scenarios in which
queries are formulated against one of the two schemas connected by the mappings
and need to be translated against the other schema. In the early years, the semantics
of query answering in indefinite databases adopted the notion of “certain answers.”
This notion has also been adopted in data exchange (Fagin et al. 2005a), while study-
ing the computational complexity of target query answering, i.e., the problem of
computing certain answers for a target query q.

As already explained in Sect. 4.3, to represent all possible databases, we must
consider the set of all possible target instances J; consistent with .# and the source
instance /. Since there may be several target instances J;, we must consider the
intersection) J; 4(Ji), the intersection being called the set of the certain answers
of q.

In Fagin et al. (2005a), the semantics of query answering has been defined by
considering the universal solutions. Indeed, it is important to ascertain whether
certain answers of a query can be computed by query evaluation on the “good”
target instance that has been chosen for materialization. In Sect. 2, we have already

5 Discovery and Correctness of Schema Mapping Transformations 137

introduced universal solutions for a data exchange scenario. Sufficient conditions
for the existence of a universal solution have been defined for weakly acyclic
tgds (Fagin et al. 2005a). In this special case, polynomial-time algorithms can be
defined to determine whether a solution exists and to produce a particular solution,
the canonical universal solution (as defined in Sect. 2). By analyzing query answer-
ing issues in greater detail, Fagin et al. (2005a) focuses on determining which target
queries can be answered using solely the materialized target instance, and studies
the computational complexity of computing certain answers for target queries.

Given a fixed data exchange scenario .# = (S, T, Xs;, X}), for each target query
q, the problem is to study the computational complexity of the following problem:
given a source instance [, find the certain answers of ¢ with respect to . If ¢
is a union of conjunctive queries, the certain answers of g can be computed on
an arbitrary canonical universal solution. Having this solution homomorphisms to
all solutions, and being computable in polynomial time, it implies that the certain
answers of ¢ as union of conjunctive queries can also be computed in polyno-
mial time. However, if conjunctive queries have inequalities, computing the certain
answers becomes a coNP-complete problem (Abiteboul and Duschka 1998). In par-
ticular, in Fagin et al. (2005a), it is shown that computing the certain answers of
unions of conjunctive queries with at most two equalities per disjunct is a coNP-
complete problem. Beyond the intractability result for the case with two or more
inequalities, Fagin et al. (2005a) show that there is a polynomial time algorithm for
computing certain answers of queries with at most one inequality per disjunct (thus
overcoming the result in Abiteboul and Duschka (1998)).

Fagin et al. (2005a) focus on the relational case, whereas Yu and Popa (2004)
extend the target query answering to the XML data model, by also covering the
presence of target constraints (also called nested equality-generating dependen-
cies (NEGDS). The latter presence further complicates the problem of defining
the correct query answering semantics, since merging rules at the target have to
be taken into account. In Yu and Popa (2004), a nested extension of the relational
chase (Fagin et al. 2005a) is used to accomodate XML target instances. A basic
query rewriting algorithm is presented that consists of four phases, precisely rule
generation, query translation, query optimization, and query assembly. The basic
version ignores the presence of target constraints. Rule generation is done by cre-
ating a rule for each root of the target schema, and by taking the mappings into
consideration. The goal of this phase is to set of mapping rules that fully specify
the target in terms of the sources, and to prepare the target expressions that will
be substituted by source expressions in the next phase. Query translation is done
by translating the target query into a set of decorrelated source queries, by exploit-
ing the set of mappings. Optimization is then performed to eliminate equal Skolem
terms that have been introduced in the previous phase and to guarantee the min-
imization of the rewriting, as one of the cases in Deutsch et al. (1999). Finally,
decorrelated queries get assembled into nested source queries.

The above steps are modified when target constraints are present, since the above
query rewriting becomes incomplete. A resolution step needs to be performed before
query optimization takes place, to exhaustively explore all possible rewritings and

138 A. Bonifati et al.

the application of resolution to them. The computation is a tree, whose branching
factor corresponds to the multiple ways of applying a resolution step to a query. The
resolution step terminates if the set of source constraints obtained by translating the
target constraints is acyclic.

However, the query rewriting algorithm may still be incomplete, as it explicitly
avoids recursion. The validity of the incomplete results is proved experimentally, by
measuring their approximation with respect to the complete set of certain answers.
However, it is still an open problem how to bridge the completeness gap in an
efficient way.

Target query answering is addressed in HePToX (Bonifati et al. 2010) as back-
ward translation, i.e., translation of a query g over the target schema and against the
direction of the mappings. In HePToX, the opposite direction of query translation,
namely the forward translation, is also considered, to highlight the importance of
having bidirectional mappings, which can be traversed either ways. A key compli-
cation in forward translation is that y, the mapping that transforms instances of S
to those of T, may not be invertible (Fagin 2007). In this direction, the semantics
of query answering is still based on certain answers over all possible pre-images /%
for which J = ;(I%). This direction is novel and has not been handled in previous
work.

To handle this translation, the query g posed against S is transformed into a tree
pattern (for simplicity, only one tree pattern is considered, although the query trans-
lation module can handle joins of tree patterns). The tree pattern is matched against
each of the rule bodies in Xs;; this phase is called expansion. The tree pattern, possi-
bly augmented with dummy nodes at the end of the expansion, is translated against
the rules in X;, leading to the translation phase. Several translated tree patterns
may be merged in the stitching phase, and dummy and redundant nodes may be
eliminated in the contraction phase.

6 Developments and Applications

In this chapter, we discuss the recent developments and applications of schema
mapping. Schema mapping is widely known as the “Al-complete” problem of
data management, and, as such, exhibits strong theoretical foundations, as it has
been highlighted in the previous sections. However, the question we ask ourselves
is: what are the real application scenarios in which schema mapping is used? is
schema mapping an everyday life problem? All the scenarios that entail the access
to multiple heterogenous datasets represent natural applications of schema map-
ping (Halevy 2010). For instance, executing a Web search leads to dispatch the
request to several web sites that are differently structured and have possible over-
lapping content. Thus, providing a common semantic layer that lets obtain a uniform
answer from multiple sites, by means of explicit or implicit correspondences, is the
common objective of schema mapping tools. There are several directions on which
researchers have focused their attention, and achieved promising results, namely:

5 Discovery and Correctness of Schema Mapping Transformations 139

(1) extending the expressiveness of schema mappings to cover data-metadata con-
flicts (Bonifati et al. 2010, 2005; Herndndez et al. 2008); (2) extending them to
complex data models, such as XML (Arenas and Libkin 2008; Amano et al. 2009)
and ontologies (Cali et al. 2009b,a); (3) using mappings in large-scale distributed
scenarios (Bonifati et al. 2010, 2005; Ives et al. 2004); (4) normalizing and optimiz-
ing schema mappings (Gottlob et al. 2009; Fagin et al. 2008). We underline that all
the above achievements correspond to the need of addressing problems that arise in
real life applications. Indeed, if we focus on the first direction, we can easily think
of heterogeneus data management scenarios in which instances and schemas con-
tain the same content and need to be bridged (Bonifati et al. 2010, 2005; Hernandez
et al. 2008). As an example, health care environments have typically the informa-
tion about patients, diseases, and therapy. However, such information is structured
quite differently across the various health care databases. Whereas in one database,
the diseases are data instances, it may happen that such values become schema
components in another database. Such conflicts, known as data-metadata conflicts,
may arise in various other situations, such as multimedia databases, data-intensive
web sites, heterogeneous parallel, and distributed databases. We illustrate the impli-
cations of dealing with data-metadata conflicts, and discuss the schema mapping
tools that support data-metadata mappings in Sect. 6.1. Whereas data integration
and exchange tasks have been extensively studied for relational schema mappings,
only recently a similar theory has been developed for XML schema mappings (Jiang
et al. 2007). Such mappings allow navigational queries with joins and tree patterns,
thus enlarging the scope of relational queries (Arenas and Libkin 2008; Amano
et al. 2009). Along the same line, disparate data sources may be expressed by
means of ontological languages, which are more or less expressive fragments of
OWL-2 (OWL-Full 2004). Such languages rely on expressive constructs, in which
sophisticate semantic relationships are better represented and go far beyond the
expressive power of the relational and XML models. Notwithstanding the com-
plexity of handling such languages to express instances, they are becoming more
and more important in data modeling, information integration, and development of
the Semantic Web. In particular, there has been in the latest years a paradigm shift
from decidability issues on ontologies to scalable query answering for suitable frag-
ments, such as Datalogt (Cali et al. 2009a,b). We discuss the issues behind the
treatment of both XML and ontological instances and schema mappings tailored to
such instances in Sect. 6.2. Third, we focus on the mapping scalability issues that
arise in real scenarios exhibiting distributed heterogeneous data. In such cases, not
only the semantic of mappings should be correctly interpreted, but also the effi-
ciency of data exchange and query answering should be guaranteed. Examples of
such distributed architectures are numerous if we think of Internet-scale applica-
tions and novel highly distributed peer-to-peer systems. In Sect. 6.3, we introduce
the systems that so far have addressed this problem, discuss their differences, and
the future work in this area. Fourth, schema mappings expressed as source-to-target
dependencies may be redundant, due to the presence of unnecessary atoms, and
unrelated variables. Recent efforts have aimed at simplifying such dependencies, by
obtaining a normal form (Gottlob et al. 2009) and by identifying various classes of

140 A. Bonifati et al.

equivalences (Fagin et al. 2008). These optimizations are very important in appli-
cations, in which mappings are required to be minimal, for efficiency reasons. We
discuss the recent approaches (Gottlob et al. 2009; Fagin et al. 2008) in Sect. 6.4.

6.1 Bridging Data and Metadata

HePToX (Bonifati et al. 2010, 2005) has been the first system to introduce data-
metadata correspondences that drive the trasformation from the schema components
in the source schema to the instance values in the target schema and vice-versa. Such
novel correspondences enrich the semantics of the transformation, while at the same
time posing new research challenges. HePToX uses a Datalog-based mapping lan-
guage called TreeLog; being an extension of Schemal.og, it is capable of handling
schema and data at par. TreeLog expressions have been inferred from arrows and
boxes between elements in the source schema and instances in the target schema
that rely on an ad-hoc graphical notation. By virtue of a bidirectional semantics for
query answering, correspondences also involving data-metadata conflicts can be tra-
versed by collecting the necessary components to answer the queries. Queries are
expressed in XQuery and the underlying data is expressed in XML to maintain the
connection with TreeLog expressions, which are intrinsically nested.

Recently, MAD (MetadatA-Data) mappings (Herndndez et al. 2008) have been
studied as useful extensions in Clio (Popa et al. 2002), which extend the basic map-
pings expressed as s-t tgds. Contrary to HePToX, such mappings are used for data
exchange. To this purpose, output dynamic schemas are defined, since the result of
data exchange cannot be determined a priori whenever it depends on the instances.
MAD mappings in Clio are also generated from visual specifications, similarly to
HePToX and then translated to executable trasformations. The translation algorithm
is a two-step algorithm in which the first step “shreds” the source data into views that
offer a relational partitioning of the target schema, and the second step restructures
the result of the previous step by also taking into account user-defined grouping in
target schema with nested sets.

To summarize, Clio derives a set of MAD mappings from a set of lines between a
source schema and a target schema. Applying these transformations computes a tar-
get instance that adheres to the target schema and to the correspondences. Similarly,
HePToX derives a set of TreeLog mapping rules from element correspondences (i.e.,
boxes and arrows) between two schemas. TreeLog rules are similar in spirit to s-t
tgds, although TreeLog has a second-order syntax. However, the problems solved by
Clio and HePToX are different. In Clio, the goal is data exchange, while in HePToX
turns to be query reformulation in a highly distributed setting, as we will further
discuss in Sect. 6.3.

5 Discovery and Correctness of Schema Mapping Transformations 141

6.2 Extending Schema Mappings to Complex Data Models

We have recently seen research aiming to study the extensions needed to handle
the XML data model for schema mapping (Arenas and Libkin 2008; Amano et al.
2009), data transformation (Jiang et al. 2007), and query rewriting (Yu and Popa
2004). The latter (Yu and Popa 2004) starts from proposing novel algorithms to
reformulate target queries against the source schemas, based on the mappings and
on the target constraints. Given that the data is at the sources, such queries need
to be efficiently evaluated and this work considers for the first time both relational
and XML schemas. The presence of the target constraints make the problem ways
more complicated by the fact that the data transformed according to the mapping
needs to be “merged” afterward. A further complication bears from the fact that
the target constraints can enable each other in a recursive way and interact with the
mappings as well. A canonical target instance is defined that takes into account the
presence of target constraints and mappings, and the semantics of query answering
is decided upon this target instance. Moreover, a basic query rewriting algorithm
focuses on only mappings first, and extends to XML queries and XML mappings
the relational techniques for query rewriting using views. The target constraints,
namely the NEGDS, covering XML schema key constraints among the others, are
then considered in a query resolution algorithm. Schema mapping for XML data has
been studied in Jiang et al. (2007), as an extension of the Clio system. In particular,
data transformations involving such a complex data model require more complex
transformation primitives than previously relational efforts. For instance, a key chal-
lenge arises with XML-to-XML data transformation if the target data is generated
as a hierarchy with multiple levels of grouping (as in Fig. 5.4b in Sect. 3). In such
a case, a deep union operator must be natively implemented in the transformation
engine (and this is done in Clio), as XML query languages, such as XQuery, XSLT,
and SQL/XML, are not yet suitable for such task of hierarchically merging XML
trees. Reasoning about the full structure of XML documents and developing a the-
ory of expressive XML schema mapping has been only recently tackled (Arenas and
Libkin 2008; Amano et al. 2009). In particular, Arenas and Libkin (2008) focus on
extending the theory of data exchange to XML, and introduced the XML tree pat-
terns as XML schema mappings. Along the same lines, (Amano et al. 2009) present
an analog of source-to-target dependencies for XML schema mappings, discuss
their properties, including their complexity, and present static analysis techniques
for determining the “consistency” between source schemas and target schemas.
The problem of consistency was also dealt with in Arenas and Libkin (2008), and
in Amano et al. (2009) it is extended to consider all forms of navigational axes and
joins for XML query languages.

Recently, database vendors are extending their products to support ontologi-
cal reasoning capabilities. Following this direction, research on schema mapping
and query rewriting (Cali et al. 2009a,b) is focusing on the extension of classical
logical formalisms, such as Datalog, to support query answering over ontologies.
Datalog* enriches Datalog with existential quantifiers in the rule head, and allows
a set of restrictions to guarantee efficient ontology querying. In particular, the

142 A. Bonifati et al.

tractable fragment of Description Logics, namely DL-Lite[15] can be represented
with Datalog* by filling the gap between databases and the Semantic Web. Suitable
fragments of Datalog™ are embodied by: (1) guarded TGDs (GTGDs); (2) linear
TGDs (LTGDs); (3) (1) or (2) with equation-generating dependencies and negative
constraints. A tgd o is guarded iff it contains an atom in its body that has all univer-
sally quantified variables of o. A subset of GTGDs is represented by LTGDs, iff it
contains only a singleton body atom. If we look at the s-t tgds illustrated in Sect. 2,
then my, m3, and m4 are LTGDs (and, thus, guarded) and m; is a nonguarded TGD.
The main result of Cali et al. (2009b) is that query answering with (3) that do not
conflict with the tgds is feasible in polynomial time in the data complexity and thus
is first-order rewritable.

6.3 Distributing Schema Mappings Across Several Sites

We are currently witnessing a substantial interest in distributed database manage-
ment systems, called PDMS that are based on highly decentralized P2P infrastruc-
tures. Such PDMSs might share heterogeneous data and exchange such data in a
seamless fashion.

In Piazza (Ives et al. 2004), each peer stores semantic mappings and storage
descriptions. Semantic mappings are equalities or subsumptions between query
expressions, provided in XQuery. Storage descriptions are equalities or subsump-
tions between a query and one or more relations stored on a peer. In Piazza,
semantic mappings are first used to do query rewriting using the MiniCon algo-
rithm (Pottinger and Halevy 2001). When semantic mappings cannot be applied
further, storage descriptions are used to do query reformulation. The result of this
phase is a reformulation of peer relations into stored relations, which can be either
in GAV or in LAV style. Query routing in Piazza requires a centralized index that
stores all the mappings at a global level.

In HePToX (Bonifati et al. 2005, 2010), the exact mapping rules are derived
automatically from correspondences, which are intuitively displayed in a peer-based
GUL. In contrast to Piazza, HePToX is totally decentralized and its scalability is less
than linear (i.e., logarithmic, as in DHT-based systems). Thus, mappings are locally
stored on each peer and used at need when doing query reformulation.

HePToX query rewriting can be done in both directions, along and against
the mappings, leading to forward and backward query translations. The seman-
tics of HePToX’s forward query translation is similar to answering queries using
views (Levy et al. 1995). However, HePToX can leverage Skolem functions and
the form of the mapping rules to perform forward translation efficiently. Backward
query translation is totally new and was never defined in other systems.

Orchestra (Ives et al. 2008) extends PDMSs for life scientists. It focuses on
provenance, trust, and updates. While it can be extended to XML, it uses the rela-
tional model. Orchestra’s mapping rules translate from tgds to Datalog, rather than
HePToX’s mapping rules which translate from a visual language to TreeLog. Unlike
HePToX, which supports the user in easily creating the mapping between schemas,
Orchestra relies on other systems to create the initial mappings. Moreover, the Q

5 Discovery and Correctness of Schema Mapping Transformations 143

system, which is the query module in Orchestra, focuses on keywords queries rather
than on XQuery queries.

Calvanese et al. (2004) address data interoperability in P2P systems using expres-
sive schema mappings, also following the GAV/LAV paradigm, and show that the
problem is in PTIME only when mapping rules are expressed in epistemic logic.

6.4 Normalizing Schema Mappings

Schema mappings, as high-level specifications describing the relationships between
two database schemas, are subject to optimization. Fagin et al. (2008) lay the foun-
dations of schema mapping optimization, by introducing three kinds of equivalence:
(1) logical equivalence, stating that two schema mappings .# = (S, T, X) and
M = (S, T, X')? are logically equivalent if for every source instance I and target
instance J, we have that (I, J) E X ifand only if (1, J) = X’; (2) data-exchange
equivalence, if for every source instance /, the set of universal solutions for / under
A coincides with the set of universal solutions for I under .#’; (3) conjunctive-
query equivalence, if for every target conjunctive query Q and for every source
instance I, the set of solutions for / under .# is empty if and only if the set of
solutions for I under .#’ is empty, and, whenever they are not empty, the set of
certain answers of @ on [under .# coincides with the set of certain answers
of Q on [under .#’. Equivalences (2) and (3) coincide with equivalence (1)
when ¥ = X, but differ on richer classes of equivalences, such as second-order
tgds and sets of both X; and Y;. The assumption of logical equivalence has also
been done in Gottlob et al. (2009), which focuses on the normalization of schema
mappings with respect to four optimality criteria, precisely cardinality-minimality,
antecedent-minimality, conclusion-minimality, and variable-minimality. Following
these criteria, given a set of st-tgds in X', the total number of st-tgds in this set,
the total number of atoms in the antecedent and conclusion of each st-tgd shall
be minimal, along with the total number of existentially quantified variables in the
conclusion. The presence of egds is not considered in Gottlob et al. (2009) and rep-
resents a natural extension. Other than that, much work remains to be done toward
defining new heuristics for schema mapping optimization, extending the above cri-
teria to larger classes of rules, and considering the impact of all the equivalences
discussed above.

7 Conclusions and Future Work

In this chapter, we have discussed the state of the art of schema mapping algorithms,
along with their most recent developments and applications.

We believe that there are quite a lot of open problems in this area, which we
attempt to briefly discuss below.

3 We do not distinguish here between X, and X, and consider X as a set of generic constraints.

144 A. Bonifati et al.

First of all, within the data exchange theory the core has been studied only for
relational settings, to date there is no formal definition of core solutions for nested
scenarios. We believe such a notion is needed in many practical scenarios.

Postprocessing algorithms (Fagin et al. 2005b; Gottlob and Nash 2008; Savenkov
and Pichler 2008; Marnette 2009) can handle scenarios with arbitrary target con-
straints, while by using the rewriting algorithms in Mecca et al. (2009a); ten Cate
et al. (2009), the best we can achieve is to generate a solution that does not consider
target tgds and edgs. This is especially unsatisfactory for egds, since the obtained
solution violates the required key constraints and it is not even a legal instance for
the target. As shown in Marnette et al. (2010), this may lead to a high level of
redundancy, which can seriously impair both the efficiency of the translation and
the quality of answering queries over the target database.

In fact, handling egds is a complicated task. As conjectured in ten Cate et al.
(2009), it has recently been shown (Marnette et al. 2010) that it is not possible, in
general, to get an universal solution that enforces a set of egds using a first-order
language as SQL. For the class of target egds that correspond to functional depen-
dencies, the most common in practical settings Marnette et al. (2010) introduced
a best-effort rewriting algorithm that takes as input a scenario with s-t tgds and
egds and, whenever this is possible, it rewrites it into a new scenario without egds.
Moreover, this algorithm can be combined with existing mapping rewriting algo-
rithms (Mecca et al. 2009a; ten Cate et al. 2009) to obtain SQL scripts that generate
core solutions. The paper shows that handling target egds efficiently is possible in
many practical cases. This is particularly important in real-world applications of
mappings, where key constraints are often present and play an important role.

Another important open problem concerns the expressibility of the GUI of a
schema mapping tool. Indeed, many GUIs are limited in the set of primitives they
use to specify the mapping scenarios and need to be enriched in several ways. For
instance, it would be useful to be able to duplicate sets in the source and in the target
and, thus, handle tgds that contain duplicate tables. To a further extent, full control
over joins in the two data sources becomes a crucial requirement of schema mapping
GUIs, in addition to those corresponding to foreign key constraints; by using this
feature, users can specify arbitrary join paths, like self-joins themselves.

This richer set of primitives poses some challenges with respect to the mapping
generation and rewriting algorithms as well. In particular, duplications in the target
correspond to different ways of contributing tuples to the same set. As we discussed
above, this makes the generation of core solutions more delicate, since there exist
tgds that write more than one tuple at a time in the same target table, and therefore
redundancy can be generated not only across different tgds, but also by firing a
single tgd (Mecca et al. 2009a; ten Cate et al. 2009).

Second generation mapping systems have certainly enlarged the class of map-
pings scenarios that can be handled using a GUI, but a formal characterization of
the exact class of mappings that can be expressed with them is still missing. For
instance, it is still unclear if every mapping made of conjunctive queries can be
expressed by existing GUISs.

5 Discovery and Correctness of Schema Mapping Transformations 145

Finally, another important problem is the use of mappings in practical user sce-
narios and applications, thus making them the building blocks of general-purpose
data transformation tools. Although previous attempts have been done in this
direction (as explained in Sect. 6), more work is still left to fill this gap.

References

Abiteboul S, Duschka OM (1998) Complexity of answering queries using materialized views. In:
PODS. ACM, NY, pp 254-263

Abiteboul S, Cluet S, Milo T (1997) Correspondence and translation for heterogeneous data. In:
ICDT, Delphi, Greece. Springer, London, pp 351-363

Abu-Hamdeh R, Cordy J, Martin T (1994) Schema translation using structural transformation. In:
CASCON. IBM Press, pp 202-215

Amano S, Libkin L, Murlak F (2009) XML schema mappings. In: PODS. ACM, NY, pp 3342

An Y, Borgida A, Miller R, Mylopoulos J (2007) In: Proceedings of the 23rd International Con-
ference on Data Engineering, ICDE 2007, April 15-20, 2007, The Marmara Hotel, Istanbul,
Turkey

Arenas M, Libkin L (2008) XML data exchange: Consistency and query answering. J ACM
55(2):1-72

Atzeni P, Torlone R (1995) Schema translation between heterogeneous data models in a lattice
framework. In: Data semantics conference. Chapman & Hall, London, pp 345-364

Atzeni P, Torlone R (1997) MDM: A multiple-data model tool for the management of heteroge-
neous database schemes. In: SIGMOD. ACM, NY, pp 528-531

Beeri C, Milo T (1999) Schemas for intergration and translation of structured and semi-structured
data. In: ICDT. Springer, London, pp 296-313

Beeri C, Vardi M (1984) A proof procedure for data dependencies. J] ACM 31(4):718-741

Bonifati A, Chang EQ, Ho T, Lakshmanan L, Pottinger R (2005) HePToX: Marrying XML and
heterogeneity in your P2P databases. In: VLDB. VLDB Endowment, pp 1267-1270

Bonifati A, Mecca G, Pappalardo A, Raunich S, Summa G (2008) Schema mapping verification:
The spicy way. In: EDBT. ACM, NY, pp 85-96

Bonifati A, Chang EQ, Ho T, Lakshmanan L, Pottinger R, Chung Y (2010) Schema mapping and
query translation in heterogeneous P2P XML databases. VLDB J 19(2):231-256

Cabibbo L (2009) On keys, foreign keys and nullable attributes in relational mapping systems. In:
EDBT. ACM, NY, pp 263-274

Cali A, Gottlob G, Lukasiewicz T (2009a) Datalogt: A unified approach to ontologies and
integrity constraints. In: [CDT. ACM, NY, pp 14-30

Cali A, Gottlob G, Lukasiewicz T (2009b) A general datalog-based framework for tractable query
answering over ontologies. In: PODS. ACM, NY, pp 77-86

Calvanese D, De Giacomo G, Lenzerini M, Rosati R (2004) Logical foundations of peer-to-peer
data integration. In: ACM PODS. ACM, NY, pp 241-251

Chandra AK, Merlin PM (1977) Optimal implementation of conjunctive queries in relational data
bases. In: STOC. ACM, NY, pp 77-90

Chiticariu L (2005) Computing the core in data exchange: Algorithmic issues. MS Project Report,
unpublished manuscript

Cluet S, Delobel C, Siméon J, Smaga K (1998) Your mediators need data conversion! In: SIGMOD.
ACM, NY, pp 177-188

Davidson S, Kosky A (1997) IEEE Computer Society. In: Proceedings of the Thirteenth Interna-
tional Conference on Data Engineering, April 7-11, 1997 Birmingham UK

Deutsch A, Popa L, Tannen V (1999) Physical data independence, constraints, and optimization
with universal plans. In: VLDB. Morgan Kaufmann, CA, pp 459-470

146 A. Bonifati et al.

Fagin R (2007) Inverting schema mappings. ACM TODS 32(4)

Fagin R, Kolaitis P, Miller R, Popa L (2005a) Data exchange: Semantics and query answering.
TCS 336(1):89-124

Fagin R, Kolaitis P, Popa L (2005b) Data exchange: Getting to the core. ACM TODS 30(1):
174-210

Fagin R, Kolaitis P, Nash A, Popa L (2008) Towards a theory of schema-mapping optimization. In:
ACM PODS. ACM, NY, pp 3342

Fagin R, Haas LM, Hernandez M, Miller RJ, Popa L, Velegrakis Y (2009) Clio: Schema mapping
creation and data exchange. In: Borgida A, Chaudhri V, Giorgini P, Yu E (eds) Conceptual
modeling: Foundations and applications. Springer, Heidelberg, pp 198-236

Fuxman A, Herndndez MA, Howard CT, Miller RJ, Papotti P, Popa L (2006) Nested mappings:
Schema mapping reloaded. In: VLDB. VLDB Endowment, pp 67-78

Gottlob G, Nash A (2008) Efficient core computation in data exchange. J ACM 55(2):1-49

Gottlob G, Pichler R, Savenkov V (2009) Normalization and optimization of schema mappings.
PVLDB 2(1):1102-1113

Haas LM (2007) Lecture Notes in Computer Science, vol. 4353. In: ICDT, Springer.

Halevy AY (2010) Technical perspective — schema mappings: Rules for mixing data. Commun
CACM 53(1):100

Hell P, Nesetfil J (1992) The core of a graph. Discrete Math 109(1-3):117-126

Herndndez MA, Papotti P, Tan WC (2008) Data exchange with data-metadata translations. PVLDB
1(1):260-273

Hull R, Yoshikawa M (1990) ILOG: Declarative creation and manipulation of object identifiers.
In: VLDB. Morgan Kaufmann, CA, pp 455-468

Ives ZG, Halevy AY, Mork P, Tatarinov I (2004) Piazza: Mediation and integration infrastructure
for semantic web data. J] Web Sem 1(2):155-175

Ives ZG, Green TJ, Karvounarakis G, Taylor NE, Tannen V, Talukdar PP, Jacob M, Pereira F
(2008) The orchestra collaborative data sharing system. SIGMOD Rec 37(3):26-32

Jiang H, Ho H, Popa L, Han W (2007) Mapping-driven XML transformation. In: WWW
conference. ACM, NY, pp 1063-1072

Levy AY, Mendelzon A, Sagiv Y, Srivastava D (1995) Proceedings of the fourteenth ACM
SIGACT-SIGMOD-SIGART symposium on principles of database systems. ACM Press, San
Jose, California, May 22-25, 1995

Maier D, Mendelzon AO, Sagiv Y (1979) Testing implications of data dependencies. ACM TODS
4(4):455-469

Maier D, Ullman JD, Vardi MY (1984) On the foundations of the universal relation model. ACM
TODS 9(2):283-308

Marnette B (2009) Generalized schema mappings: From termination to tractability. In: ACM
PODS. ACM, NY, pp 13-22

Marnette B, Mecca G, Papotti P (2010) Scalable data exchange with functional dependencies.
PVLDB 3(1):106-116

Mecca G, Papotti P, Raunich S (2009a) Core schema mappings. In: SIGMOD. ACM, NY,
pp 655-668

Mecca G, Papotti P, Raunich S, Buoncristiano M (2009b) Concise and expressive mappings with
+SPICcY. PVLDB 2(2):1582-1585

Melnik S, Bernstein P, Halevy A, Rahm E (2005) Supporting executable mappings in model
management. In: SIGMOD. ACM, NY, pp 167-178

Miller RJ, Haas LM, Hernandez MA (2000) Schema mapping as query discovery. In: VLDB.
Morgan Kaufmann, CA, pp 77-99

Milo T, Zohar S (1998) Using schema matching to simplify heterogeneous data translation. In:
VLDB. Morgan Kaufmann, CA, pp 122-133

OWL-Full (2004) OWL web ontology language reference. http://www.w3.org/TR/owl-ref/
#OWLFull

Popa L (2000) Object/relational query optimization with chase and backchase. PhD thesis,
University of Pennsylvania

http://www.w3.org/TR/owl-ref/
#OWLFull

5 Discovery and Correctness of Schema Mapping Transformations 147

Popa L, Tannen V (1999) An equational chase for path-conjunctive queries, constraints, and views.
In: ICDT. Springer, London, pp 39-57

Popa L, Velegrakis Y, Miller RJ, Hernandez MA, Fagin R (2002) Translating web data. In: VLDB.
VLDB Endowment, pp 598-609

Pottinger R, Halevy A (2001) Minicon: A scalable algorithm for answering queries using views.
VLDB J 10(2-3):182-198

Raffio A, Braga D, Ceri S, Papotti P, Hernandez MA (2008) Clip: A visual language for explicit
schema mappings. In: ICDE. IEEE Computer Society, Washington, DC, pp 30-39

Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J
10:334-350

Savenkov V, Pichler R (2008) Towards practical feasibility of core computation in data exchange.
In: LPAR. Springer, Heidelberg, pp 62-78

Shu NC, Housel BC, Taylor RW, Ghosh SP, Lum VY (1977) EXPRESS: A data extraction,
processing and restructuring system. ACM TODS 2(2):134-174

ten Cate B, Kolaitis PG (2009) Structural characterizations of schema-mapping languages. In:
ICDT. ACM, NY, pp 63-72

ten Cate B, Chiticariu L, Kolaitis P, Tan WC (2009) Laconic schema mappings: Computing core
universal solutions by means of SQL queries. PVLDB 2(1):1006-1017

Tork-Roth M, Schwarz PM (1997) Don’t scrap it, wrap it! A wrapper architecture for legacy data
sources. In: VLDB. Morgan Kaufmann, CA, pp 266-275

Velegrakis Y (2005) Managing schema mappings in highly heterogeneous environments. PhD
thesis, University of Toronto

Yu C, Popa L (2004) Constraint-based XML query rewriting for data integration. In: SIGMOD
conference. ACM, NY, pp 371-382

Chapter 6
Recent Advances in Schema and Ontology
Evolution

Michael Hartung, James Terwilliger, and Erhard Rahm

Abstract Schema evolution is the increasingly important ability to adapt deployed
schemas to changing requirements. Effective support for schema evolution is chal-
lenging since schema changes may have to be propagated, correctly and efficiently,
to instance data and dependent schemas, mappings, or applications. We introduce
the major requirements for effective schema and ontology evolution, including sup-
port for a rich set of change operations, simplicity of change specification, evolution
transparency (e.g., by providing and maintaining views or schema versions), auto-
mated generation of evolution mappings, and predictable instance migration that
minimizes data loss and manual intervention. We then give an overview about the
current state of the art and recent research results for the evolution of relational
schemas, XML schemas, and ontologies. For numerous approaches, we outline how
and to what degree they meet the introduced requirements.

1 Introduction

Schema evolution is the ability to change deployed schemas, i.e., metadata struc-
tures formally describing complex artifacts such as databases, messages, application
programs, or workflows. Typical schemas thus include relational database schemas,
conceptual ER or UML models, ontologies, XML schemas, software interfaces, and
workflow specifications. Obviously, the need for schema evolution occurs very often
in order to deal with new or changed requirements, to correct deficiencies in the
current schemas, to cope with new insights in a domain, or to migrate to a new
platform.

M. Hartung (<)) and E. Rahm
University of Leipzig, Ritterstrae 26, 04109 Leipzig, Germany
e-mail: hartung @informatik.uni-leipzig.de, rahm @informatik.uni-leipzig.de

J. Terwilliger
Microsoft Research, Redmond, WA, USA
e-mail: James.Terwilliger @ microsoft.com

Z. Bellahsene et al. (eds.), Schema Matching and Mapping, Data-Centric Systems 149
and Applications, DOI 10.1007/978-3-642-16518-4_6,
(© Springer-Verlag Berlin Heidelberg 2011

hartung@informatik.uni-leipzig.de
rahm@informatik.uni-leipzig.de
James.Terwilliger@microsoft.com

150 M. Hartung et al.

Effective support for schema evolution is challenging since schema changes may
have to be propagated, correctly and efficiently, to instance data, views, applica-
tions, and other dependent system components. Ideally, dealing with these changes
should require little manual work and system unavailability. For instance, changes
to a database schema S should be propagated to instance data and views defined on
S with minimal human intervention. On the other hand, without sufficient support
schema evolution is difficult and time-consuming to perform and may break run-
ning applications. Therefore, necessary schema changes may be performed too late
or not at all resulting in systems that do not adequately meet requirements.

Schema evolution has been an active research area for a long time and it is
increasingly supported in commercial systems. The need for powerful schema evo-
lution has been increasing. One reason is that the widespread use of XML, web
services, and ontologies has led to new schema types and usage scenarios of
schemas for which schema evolution must be supported. The main goals of this
survey chapter are as follows:

¢ To introduce requirements for schema evolution support.

e To provide an overview about the current state of the art and recent research
results on schema evolution in three areas: relational database schemas, XML
schemas, and ontologies. For each kind of schema, we outline how and to what
degree the introduced requirements are served by existing approaches.

While we cover more than 20 recent implementations and proposals, there are many
more approaches that can be evaluated in a similar way than we do in this chapter.
We refer the reader to the online bibliography on schema evolution under http://
se-pubs.dbs.uni-leipzig.de (Rahm and Bernstein 2006) for additional related work.
Book chapter 7 (Fagin et al. 2011) complements our paper by focusing on recent
work on mapping composition and inversion that support the evolution of schema
mappings.

In Sect. 2, we introduce the main requirements for effective schema and ontology
evolution. Sections 3 and 4 deal with the evolution of relational database schemas
and of XML schemas, respectively. In Sect. 5, we outline proposed approaches for
ontology evolution and conclude in Sect. 6.

2 Schema Evolution Requirements

Changes to schemas and ontologies affect the instances described by these metadata
structures as well as other dependent system components. Figure 6.1 illustrates some
of these dependencies for the evolution of database schemas that are always tightly
connected with the instances of the database. So when the schema S of a database
with instances D, described by S, is changed to schema S’ the instances must be
adapted accordingly, e.g., to reflect changed data types or added and deleted struc-
tures in S’. We assume that schema changes from S to S’ are described by a so-called
evolution mapping (e.g., a set of incremental changes or a higher-level abstraction).

http://se-pubs.dbs.uni-leipzig.de
http://se-pubs.dbs.uni-leipzig.de

6 Recent Advances in Schema and Ontology Evolution 151

derived
schema (view)

view mapping v v
Evolution
Schema S mapping 3 S’
Instance
mapping
Instances D > D’

Fig. 6.1 Schema evolution scenario

Similarly, instance changes/migration can be specified by an instance mapping, e.g.,
a sequence of SQL operations. A main requirement for database schema evolu-
tion is thus to propagate the schema changes to the instances, i.e., to derive and
execute an instance mapping correctly and efficiently implementing the changes
specified in the evolution mapping. Changes to schema S can also affect all other
usages of S, in particular the applications using S or other schemas and views related
to S. Schema changes may thus have to be propagated to dependent schemas and
mappings. To avoid the costly adaptation of applications they should be isolated
from schema changes as much as possible, e.g., by the provision of stable schema
versions or views. For example, applications using view V remain unaffected by
the change from S to S’ if the view schema V can be preserved, e.g., by adapt-
ing view mapping v to v’ (Fig.6.1). There are similar evolution requirements for
XML schemas and ontologies, although they are less tightly connected to instance
data and have different usage forms than database schemas as we will see (e.g.,
XML schemas describing web service interfaces; ontologies may only provide a
controlled vocabulary).

In the following sections, we discuss in detail general and more specific desider-
ata and requirements for effective schema and ontology evolution. These require-
ments are then used in the subsequent sections to review and compare existing and
proposed evolution approaches.

We see the following general desiderata for a powerful schema evolution support:

— Completeness: There should be support for a rich set of schema changes and their
correct and efficient propagation to instance data and dependent schemas.

— Minimal user intervention: To the degree possible, ensure that the schema evolu-
tion description is the only input to the system and that other artifacts co-evolve
automatically.

— Transparency: Schema evolution should result into minimal or no degradation
of availability or performance of the changed system. Furthermore, applications
and other schema consumers should largely be isolated from the changes, e.g.,
by support for backward compatibility, versioning, or views.

152 M. Hartung et al.

The general desiderata are hard to meet and imply support for a series of more
specific, interrelated features:

— Rich set of simple and complex changes: Simple changes refer to the addi-
tion, modification, or deletion of individual schema constructs (e.g., tables and
attributes of relational databases), while complex changes refer to multiple such
constructs (e.g., merging or partitioning tables) and may be equivalent to multi-
ple simple changes. There are two main ways to specify such changes and both
should ideally be supported. The straightforward approach is to explicitly specify
schema modification statements to incrementally update a schema. Alternatively,
one can provide the evolved schema, thereby providing an implicit specification
of the changes compared to the old schema. This approach is attractive since it
is easy to use and since the updated schema version may contain several changes
to apply together.

— Backward compatibility: For transparency reasons, schema changes should min-
imally impact schema consumers and applications. We therefore require support
for backward compatibility meaning that applications/queries of schema S should
continue to work with the changed schema S'. This requires that schema changes
do not result in an information loss but preserve or extent the so-called informa-
tion capacity of schemas (Miller et al. 1994). Changes that are potentially lossy
(e.g., deletes) should therefore be either avoided or limited to safe cases, i.e., to
schema elements that have not yet been used. As we see, the view concept and
schema versioning in combination with schema mappings are main approaches
to support backward compatibility.

— Mapping support: To automatically propagate schema changes to instances and
dependent or related schemas, it is necessary to describe the evolution itself as
well as schema dependencies (such as view mappings) by high-level, declara-
tive schema mappings. In the simplest case, the evolution mapping between the
original schema S and the evolved schema S’ consists of the set of incremental
changes specified by the schema developer. In case the changes are specified by
providing the evolved schema S, the evolution mapping between S and S’ still
needs to be determined. Ideally, this mapping is (semi-)automatically determined
by a so-called Diff{erence) computation that can be based on schema matching
(Rahm and Bernstein 2001; Rahm 2011) but also has to take into account the
(added/deleted) schema elements that exist in only one of the two schemas.

There are different possibilities to represent evolution mappings and other schema
mappings. A high flexibility and expressive power is achieved by using different
kinds of logical and algebraic mapping expressions that have been the focus of a
substantial amount of theoretical research (Cate and Kolaitis 2010). The mapping
representation should at least be expressive enough to enable the semi-automatic
generation of corresponding instance (data migration) mappings. Further mapping
desiderata include the ability to support high-level operations such as composition
and inversion of mappings (Bernstein 2003) that support the evolution (adaptation)
of mappings after schema changes. In the example of Fig. 6.1, such operations can

6 Recent Advances in Schema and Ontology Evolution 153

be used to derive the changed view mapping v’ by composing the inverse of the
evolution mapping with the view mapping v.

— Automatic instance migration: Instances of a changed schema or ontology should
automatically be migrated to comply with the specified changes. This may be
achieved by executing an instance-level mapping (e.g., in SQL or XQuery)
derived from the evolution mapping. Database schema evolution also requires
the adaptation of affected index structures and storage options (e.g., clustering
or partitioning), which should be performed without reducing the availability of
the database (online reorganization). There are different options to perform such
instance and storage structure updates: either in place or on a copy of the orig-
inal data. The copy approach is conceptually simpler and keeping the original
data simplifies undoing an erroneous evolution. On the other hand, copying is
inherently slow for a large amount of data most of which are likely unaffected
by the schema change. Furthermore, data migration can be performed eagerly
(expensive, but fast availability of changes) or lazily. Instance migration should
be undoable if anything goes wrong, which can be achieved by running it under
transactional control.

— Propagation of schema changes to related mappings and schemas: Schemas are
frequently related to other schemas (by mappings) so that schema changes may
have to be propagated to these related schemas. This should be performed in
a largely automatic manner supporting a maximum of backward compatibil-
ity. Important use cases of this general requirement include the maintenance of
views, integrated (global) schemas, and conceptual schemas. As discussed view
schemas may be kept stable for information-preserving changes by adapting the
view mapping according to a schema change; deleted or added schema compo-
nents on the other hand may also require the adaptation of views. Data integration
architectures typically rely on mappings between source schemas and a global
target (mediator or warehouse) schema and possibly between source schemas and
a shared ontology. Again, some schema changes (e.g., renames) may be covered
by only adapting the mappings, while other changes such as the provision of new
information in a source schema may have to be propagated to the global schema.
Finally, interrelating database schemas with their conceptual abstractions, e.g., in
UML or the entity/relationship (ER) model, require evolution support. Changes
in the UML or ER model should thus be consistently propagated to the database
schema and vice versa (reverse engineering).

— Versioning support: Supporting different explicit versions for schemas and onto-
logies and possibly for their associated instances supports evolution transparency.
This is because schema changes are reflected in new versions leaving former
versions that are in use in a stable state. Different versioning approaches are fea-
sible, e.g., whether only a sequence of versions is supported or whether one can
derive different versions in parallel and merge them later on. For full evolution
transparency, it is desirable to not only support backward compatibility (appli-
cations/queries of the old schema version S can also use S’) but also forward
compatibility between schema versions S and S’, i.e., applications of S’ can also
use S.

154 M. Hartung et al.

— Powerful schema evolution infrastructure: The comprehensive support for sch-
ema evolution discussed before requires a set of powerful and easily usable tools,
in particular to determine the impact of intended changes, to specify incremen-
tal changes, to determine Diff evolution mappings, and to perform the specified
changes on the schemas, instances, mappings, and related schemas.

3 Relational Schema Evolution Approaches

By far, the most predominantly used model for storing data is the relational model.
One foundation of relations is a coupling between instances and schema, where
all instances follow a strict regular pattern; the homogeneous nature of relational
instances is a foundational premise of nearly every advantage that relational systems
provide, including query optimization and efficient physical design. As a conse-
quence, whenever the logical scheme for a table changes, all instances must follow
suit. Similarly, whenever the set of constraints on a database changes, the set of
instances must be validated against the new set of constraints, and if any violations
are found, either the validations must be resolved in some way or, more commonly,
the schema change is rejected.

An additional complication is the usually tight coupling between applications and
relational databases or at least between the data access tier and the database. Because
the SQL query language is statically typed, application queries and business logic
applied to query results are tightly coupled to the database schema. Consequently,
after a database schema is upgraded to a new version, multiple applications may
still attempt access to that database concurrently. The primary built-in support pro-
vided by SQL for such schema changes is external schemas, known more commonly
as views. When a new version of an application has different data requirements,
one has several options. First, one can create views to support the new applica-
tion version leaving existing structures intact for older versions. Or, one can adapt
the existing schema for the new application and maintain existing views to pro-
vide backward compatibility for existing applications. In both cases, the views may
be virtual, in which case they are subject to the stringent rules governing updatable
views, or they may be materialized, in which case the application versions are essen-
tially communicating with different database versions. However, the different views
have no semantic relationship and no intrinsic notion of schema version, and thus
no clean interoperability.

For the rest of this section, we first consider the current state of the art in
relational database systems regarding their support for schema evolution. We exam-
ine their language, tool, and scenario support. We then consider recent research
revelations in support for relational schema evolution. Finally, we use Table 6.1
to summarize the schema evolution support of the considered approaches w.r.t.
requirements introduced in Sect. 2.

155

6 Recent Advances in Schema and Ontology Evolution

(ponuiuo))

Tepouwr renydoouod
uo paseq sagueyd
[eIUQWRIOUT

Jo9s (1)

[eyuawaIou] (7)

(030 ‘eInquye
‘drysuonerar

‘ad£y Kinua
doap/Aytpout/ppe)
sagueyo orduig (1)

uonnNIAXd
1dd prepuess
puokaq duoN (1)

[eyuduwaIou] (7)
sarorjod
uorneSedoxd
)M pajejouur
JUSUIRIE]S 9JBAID)
(1aa 108)

soSueyo opdwig (1)

premyoeq
pue pIemioj
yloq ‘s3urddewr

108 pue
o130] [euwtio (1)

[eyuawaIou] (7)

(Suruonnred
/SurSiow 9[qe)
sagueyd xo[dwod
pue drdurrs (1)

(1aa
T0S) seSueyo
[eIUUIRIOUT

Joes (1)

[eyuawIou] (7)

(1aa

T0OS) seSueyo
srdurts A[uQ (1)

(1aa
T10OS) se3ueyd
[eIUSWIAIOUT

Jo19s (1)

[eyuduwaIou] (7)

(1aa
10S) sesueyd
ordurrs K[uQ (1)

sagueyd
[BIUQWIAIOUT

JO 195 10 9[q®)
9[Surs mau pue p[o
uaam)aq Surddewr
uwnfo) (1)

(uonmuyaparx
J[qel) BWAYOS MU
J0 [eyuawRIoU] (7)

(1aa

10S) sesueyd
orduuts KjuQ (1)

uonejuasardoy (1)
Surddewr uonnjoag

(ewoyos

MU ‘[BIUSWIIOUT)

uoneoywads (7)

(xordwoo ‘orduurs)
ssaquyory (1)

saguey)
uonnjoAd AuaLIndu0d
UQALIp-[opow s300[qo aseqejep uni o) suoneoridde
Suimoqe juopuadop ueamjaq Jo suolsioa a[dnnw W)SAS wA)SAS w)SAS
‘ooeprout Surfepowr seantwiid uonnjoad Suimoqe oSenSue] oseqejep [eUOTIE[OI 9Seqeiep [EBUOIR[AI 9SeqEIEp [BUONB[al SIom
remdoouo) Jo uonededorqd Jurddew uonnjoag [eIoIOWWIO)) [eIoIOWWIO)) [ero1OWIWIO) O snoojsuonduosaq
(8000) e
zongupwioq (9002) (010T 8000)
Jneurey pue YOI Te 10 sojeuejaisedeq (8007) ¢ 10 ounn) IOAIOS
VHAIW/NIVIN-9d SNHVIVOAH ASIYd ‘PUY ®ued cdd N4l TOS JOSOIIA 9[9'IO

uonN[OAd BUIAYOS [BUOTIE[AI J0J SWIAISAS JO SONSLIdORIRYD) 9 AR,

M. Hartung et al.

-0

MOpIoM

peo[
-WLIOJSURI)-)ORIIXD
' Aq eIep Q0uR)SUl
Jo uoneysuery, (1)

0

souanb pue smara
se yons s303[qo
juopuadop 9jepdn
A[reonewoine

01 uayM

puE MOY QUIULIAP

sa1o1[od (7)

-(D

—0)

uonn[oAd
AssO[JO asneoaq
pI[eAUl satzonb
J1 uonesynou
‘orqrssod uaym

Sunumar A1onQ) ()

-

0

N eliph
- =0 =) yuspuadaq (7)
o1qel
syuapuadop sjuopuadop paSueyd uo puadop

$302[qo 19730 ou
J1 9yeI3Iw saoue)sul

ou)1 s399[qo 10§
uoIIB[SURI) 90UR)SUT

ou yjIm s309(qo I0¥
UOTIB[SUBI) 90UBISUT

(8000) T8
zangupwo(“(9007)
u:nEnE pue v_omE
VHAAIW/NIVIN-9d

(0T0T 8000
‘Te 30 sojeuejojseded

SNAVIVOdH

(8002) 'e 30 ounn)
NS ‘PYY eued

onewone “1qq onewone “Jqq ‘[euornoesuey

[euonoesuer], (1) [euonoesuel], (1) -uoN (1) saouejsuy (1)
uonededoid grepdn

(1ad 10S

ur passaidxa Jip)

SUOTSIOA BUUAYDS
om} 10J Ajifeuonouny uonendwod
-0 -0 uostredwo) (7) 441a (2)

BETNEIN
cdd WdI TOS YOSOIIN deIQ

156

(ponunuo)) T°9 AlqeL,

157

6 Recent Advances in Schema and Ontology Evolution

sewayos Jurkjrpowr
J[IyMm suorjoe

Iosn ormyded 03 pasn
S[00} paseq-INHD

uoreIouag

MITA pue SunLImMaI
A1onb Sumensuowrap
10§ [00) PISBq-QoA

J[qrssod A[reunioy
uaym ‘Aypiqredwod
pIemoeq pue
premioj yjoq 1oddns
0] SMIIA S3JLISUAD)

SIOLID
uonnjoAd sjorpard
‘so3ueyd s9[punq
— JOJenSTUTWpE
orpnys eyep wndp

uoneISIW douL)sur
Suumnp JuruoIsIoA
[euzayur AJuQ

saseqejep paSesoed
J10J uoneI3 I
Qouejsur aoe[d-ur
pue JJIp Bwoyos
yoddns syoed Dy
*so3ueYD JOUIISOp
woij sydiros a3ueyd

$918I10 SINSS

uoneISIW JouL)sur
Suunp JuruoIsIoA
[euayur A[UQ

s10119 sjorpard
‘saSueyo so[punq
‘sewrayos saredwod
— yoed juowaSeurur
a3ueyd oorI0
so[qe}

ym Junoerur

10 039 ‘s10331m)
ym ‘s3oalqo
ju9ysisroduou

Jo suorsioa 9[dnnuw
y1oddns suonipg

1NO/2mponnseryuy

y10ddns Suruorsiop

158 M. Hartung et al.

3.1 Commercial Relational Systems

Relational database systems, both open-source and proprietary, rely on the DDL
statements from SQL (CREATE, DROP, and ALTER) to perform schema evolution,
though the exact dialect may vary from system to system (Tiirker 2000). So, to add
an integer-valued column C to a table T, one uses the following syntax:

| ALTER TABLE T ADD COLUMN C int; |

Other changes are differently specified in commercial DBMS. For instance, renam-
ing a table in Oracle is performed using the following syntax:

| ALTER TABLE foo RENAME TO bar; |

SQL Server uses a stored procedure for that particular change:

| sp_-rename ‘foo’, ‘bar’, ‘TABLE’; |

Schema evolution primitives in the SQL language and in commercial DBMS are
atomic in nature. Unless there is a proprietary extension to the language, each state-
ment describes a simple change to a schema. For instance, individual tables may be
added or dropped, individual columns may be added or dropped from a table, and
individual constraints may be added or dropped. Additionally, individual properties
of a single object may be changed; so, one can rename a column, table, or constraint;
one can change individual properties of columns, such as their maximum length or
precision; and one can change the data type of a column under the condition that the
conversion of data from the old type to the new type can be done implicitly.

However, one cannot specify more complex, compound tasks such as horizontal
or vertical splitting or merging of tables in commercial DBMS. Such actions may be
accomplished as a sequence of atomic actions — a horizontal split, for instance, may
be represented as creating each of the destination tables, copying rows to their new
tables, and then dropping the old table. Using this piecemeal approach is always
possible; however, it loses the original intent that treats the partition action as a sin-
gle action with its own properties and semantics, including knowing that horizontal
merge is its inverse.

The approach that has been taken by and large by commercial vendors is to
include at most a few small features in the DBMS itself and then provide robust
tooling that operates above the database. One feature that is fairly common across
systems is transactional DDL; CREATE, ALTER, and DROP statements can be
bundled inside transactions and undone via a rollback. A consequence of this fea-
ture is that multiple versions of schemas at a time may be maintained for each table
and potentially for rows within the table for concurrent access. Even though multiple
versions of schema may exist internally within the engine, there is still only a single
version available to the application. PostgreSQL, SQL Server, and DB2 all support
this feature; in Oracle, DDL statements implicitly mark a transaction boundary and
run independently.

Commercial systems automatically perform update propagation for the simple
changes they support. Simple actions, such as column addition, deletion, or type

6 Recent Advances in Schema and Ontology Evolution 159

changes, can frequently be performed while also migrating existing instance data
(provided new columns are allowed to be null). Furthermore, online reorganization
is increasingly supported to avoid server downtime for update propagation. So, for
instance, DB2 offers a feature where renaming or adjusting the type of a column
does not require any downtime to complete, and existing applications can still access
data in the table mid-evolution (IBM 2009b). The transactional DDL and internal
versioning features also promote high server uptime, as alterations may be made
lazily after the transaction has completed while allowing running applications access
to existing data.

On the other hand, there is little support to propagate schema changes to depen-
dent schema objects, such as views, foreign keys, and indexes. When one alters a
table, either the dependent objects must themselves be manually altered in some
way, or the alteration must be aborted. The latter approach takes the majority of the
time. For instance, SQL Server aborts any attempt to alter a column if it is part of
any index, unless the alteration is within strict limits — namely, the alteration is a
widening of a text or binary column. Dropped columns simply cannot participate in
any index. DB2 has similar restrictions; Oracle invalidates dependent objects like
views so that they must be revalidated on next use and fails to execute them if they
do not compile against the new schema version.

Commercial DBMS do not support abstract schema mappings but only SQL for
specifying view mappings and evolution mappings. There is no support for multiple
explicit schema and database versions. Once the DDL statements of an evolution
step have been executed, the previous version of the evolved objects is gone. There
is no support for applications that were developed against previous versions of the
database.

For the rest of this subsection, we will focus on vendor-specific features that go
above and beyond the standard DDL capabilities for schema evolution.

Oracle provides a tool called Change Management Pack that allows some high-
level schema change operations. One can compare two database schemas, batch
changes to existing database objects, and determine statically if there will be any
possible impacts or errors that may need to be mitigated such as insufficient priv-
ileges. The tool then creates scripts comprising SQL DDL statements from the
schema difference. This capability is similar to those offered by other commercially
available schema difference engines (e.g., Altova DiffDog (Altova 2010)), but does
not offer the same level of automatic matching capabilities that can be found in
schema-matching research tools.

Since the release of version 9i, Oracle also provides a schema evolution feature
called redefinition (Oracle Database 10g Release 2 2005). Redefinition is performed
on single tables and allows the DBA to specify and execute multiple schema or
semantic modifications on a table. Changes such as column addition or deletion,
changing partitioning options, or bulk data transformation can be accomplished
while the table is still available to applications until the final steps of the update
propagation.

Redefinition is a multistep process. It involves creating an interim table with the
shape and properties that the table is to have post-redefinition and then interlinking

160 M. Hartung et al.

the interim table with the original table by a column mapping specified as a SQL
query. The DBA can periodically synchronize data between the two tables according
to the query before finally finishing the redefinition. At the end of the redefinition
process, the interim table takes the place of the original table. Only the final step
requires the table to go offline.

Finally, Oracle supports a feature called editions (Oracle Edition-Based Redefi-
nition 2009). An edition is a logical grouping of database objects such as views and
triggers that are provided to applications for accessing a database. Using editions,
database objects are partitioned into two sets — those that can be editioned and those
that cannot. Any object that has a persistent extent, in particular tables and indexes,
cannot be editioned. So, an edition is a collection of primarily views and triggers
that provide an encapsulated version of the database.

To illustrate the use of editions, consider a simple scenario of a database that
handles data about people (Fig. 6.2). In version 1, the database has a table TPerson
with a single column Name. Edition 1 also provides applications with an editioned
view 1 over TPerson that includes the name column. Schema evolution is triggered
by the need to break apart Name into FirstName and LastName. So, version 2 of
the database adds two new columns — FirstName and LastName — to TPerson, but
leaves column Name present. Edition 2 of the database includes a new view 2 that
leaves out Name but includes FirstName and LastName. A background task, run
concurrently with the creation of the edition, copies existing data in Name into the
new columns but leaves existing data intact. Furthermore, Edition 2 includes two
triggers written by the developer to resolve the differences between the two versions.
The forward trigger applies to edition 2 and all future editions and takes the data
from FirstName and LastName on inserts and updates and applies the data to Name.
The reverse trigger applies to all strictly older editions and translates Name data into
FirstName and LastName on insert and update. Note that view 1 is still supported
on the changed schema so that its applications continue to work.

The resulting database presents two different external faces to different appli-
cation versions. Version 1 sees edition 1 with a Name column; and version 2 (and
beyond) sees edition 2 with FirstName and LastName columns. Both versions can

CIPYEEy

\ \ /

\ \ \/ /
\ \ \ X /
\ /\ /

\ \ \ / \
TPerson g ’ Table E /
Edition 1, with a view, above Editions 1 and 2 of the view, with changes to
the table TPerson the table and triggers translating between old

and new columns TPerson

Fig. 6.2 Editions in Oracle

6 Recent Advances in Schema and Ontology Evolution 161

create and consume data about a person’s name, and that data are visible to the other
version as well.

While editions solve a significant process problem, it does not solve data seman-
tics problems. For instance, there is no guarantee that the forward and reverse
triggers are in any way inverses of one another and are both essentially opaque
program codes to the database system.

SQL Server ships with a tool called SQL Server Management Studio (SSMS) that
serves as the GUI front end for a database. The tool can present a database diagram
for a given database; the developer can then make changes directly to that diagram,
such as adding foreign keys or dropping columns, and the changes are then propa-
gated to the database when the diagram is saved. SSMS also has a generate change
script feature. While editing a table in a designer, SSMS will track the changes that
the developer has made on the table. SSMS packages those changes into a script
either on demand or whenever the designer is saved or closed.

SQL Server also includes a feature called Data-Tier Applications (Microsoft
SQL Server 2008 R2 Data-Tier Applications 2010). At the core of the feature is a
distributable file called a DAC pack. A DAC pack is essentially a deployable image
of a single version of an application database schema. A typical use case is that a
developer packages an application with the schema of a database within such a DAC
pack. Initially, when a customer installs the DAC pack an empty database is created
with the respective table definitions, views, indexes, etc., from the schema. When
the developer creates a new version of the application with an evolved version of the
database schema, it is again bundled in a DAC (the old schema version is not con-
sidered). When the customer installs the new DAC, the existing database is detected
and evolved (upgraded) to the new schema version. The current SQL server version
does not do any sophisticated schema-matching heuristics, but also does not make
any guesses. If a table has the same name in both the before and after versions, and
has columns that are named the same, the upgrade will attempt to transfer the data
from the old to the new, failing with a rollback if there are errors like incompat-
ible data types. The resulting evolution process is effectively able to add or drop
any objects — tables, columns, indexes, constraints, etc. — but unable to perform any
action that requires user intent to capture semantics, such as object renaming (which
to an automated process appears like a drop followed by an add). What the approach
thus supports are common evolution scenarios of schema element adds and drops for
which instance data can be migrated without either developer or user intervention.

IBM DB?2 includes a tool called Optim Data Studio Administrator, which is a
workbench tool for displaying, creating, and editing database objects with a live
connection to a database (IBM 2009a). The interface has a largely hierarchical lay-
out, with databases at the top of the hierarchy moving down to tables and displayed
column properties. One can use the tool to manually edit schema objects and commit
them to the database. Data Studio Administrator can batch changes together into a
script that can subsequently be deployed independently. The script can be statically
checked to determine whether the operation can be performed without error. For
instance, when changing a column’s data type, the default operation is to unload the
data from the column’s table, make the change to the type, and then reload the data.

162 M. Hartung et al.

If the type changes in such a way that will cause data type conflicts, Data Studio
Administrator will alert the user that an error exists and offer the potential solution
of casting the column’s data on reload.

3.2 Research Approaches

PRISM (Curino et al. 2008) is a tool that is part of a larger project called Panta
Rhei, a joint project between UCLA, UC San Diego, and Politecnico di Milano
investigating schema evolution tools. The PRISM tool is one product of that joint
venture that focuses on relational evolution with two primary goals: allow the user
to specify schema evolution with more semantic clarity and data preservation and
grant multiple versions of the same application concurrent access to the same data.

One contribution of the work on PRISM is a language of schema modifica-
tion operators (SMOs). The SMO language closely resembles the DDL language
in the SQL standard in that it is a textual, declarative language. The two languages
also share some constructs, including “CREATE TABLE” and “ADD COLUMN.”
However, the two languages have two fundamental distinctions.

First, for every statement expressed using the SMO language, there are for-
mal semantics associated with it that describe forward and reverse translation of
schemas. The reverse translation defines, for each statement, the “inverse” action
that effectively undoes the translation. The only SMO statements that lack these
forward and reverse translations are the CREATE TABLE and DROP TABLE oper-
ations; logical formalism for these statements is impossible, since one is effectively
stating that a tuple satisfies a predicate in the before or after state, but that the
predicate itself does not exist in the other state. The work on PRISM describes
“quasi-inverses” of such operations; for instance, if one had copied the table before
dropping it, one could recover the dropped information from other sources. PRISM
offers some support for allowing a user to manually specify such inverses.

Second, SMO and SQL DDL have a different philosophy for what constitutes
an atomic change. SQL DDL has a closure property — one can alter any schema S
into another schema S’ using a sequence of statements in the language. The state-
ments may be lossy to data, but such a sequence will always be possible. The SMO
statements have a different motivation, namely, each statement represents a common
database restructuring action that requires data migration. Rather than set the unit of
change to be individual changes to individual database elements, the unit of change
in PRISM more closely matches high-level refactoring constructs such as vertical
or horizontal partitioning. For instance, consider the following statements:
MERGE TABLE R, S INTO T
PARTITION TABLE T INTO S WITH T.X < 10, T
COPY TABLE R INTO T
These three statements merge two tables, partition a table into two based on a

predicate, and copy a table, respectively. Each statement and its inverse can be rep-
resented as a logical formula in predicate calculus as well as SQL statements that

6 Recent Advances in Schema and Ontology Evolution 163

describe the alteration of schema and movement of data. For instance, the merge
statement above may be represented in SQL as follows:

CREATE TABLE T (the columns from either R or S)
INSERT INTO T
SELECT * FROM R
UNION
SELECT *x FROM S
DROP TABLE R
DROP TABLE S

The second major contribution of PRISM is support for database versioning with
backward and forward compatibility. When starting with version N of a database, if
one uses SMOs to create version N + 1 of the database, PRISM will provide at least
one of the following services to applications whenever the SMOs are deemed to be
invertible or the user provides a manual workaround:

— Automatic query rewriting of queries specified against version N into semanti-
cally equivalent queries against schema N + 1, and vice versa.
— Views that expose version N of the schema using version N + 1 as a base.

The authors examine the entire schema edit history of the database behind Wikipedia
and create a classification of high-level restructuring that covers the vast majority of
changes that have occurred in the history of that data repository.

HECATAEUS (Papastefanatos et al. 2010) focuses on the dependencies between
schema components and artifacts such as views and queries. Recall that commercial
systems have tight restrictions on schema evolution when dependencies exist; one
cannot drop a column from a table if a view has been created that references that
table. Using HECATAEUS, the developer is given fine-grained control over when
to propagate schema changes to an object to the queries, statements, and views that
depend on it.

A central construct in HECATAEUS is an evolution policy (Papastefanatos et al.
2008). Policies may be specified on creation of tables, views, constraints, or queries.
One specifies an evolution policy using a syntactic extension to SQL. For instance,
consider the following table definition:

CREATE TABLE Person (

Id INT PRIMARY KEY,

Name VARCHAR(50),

DateOfBirth DATE,

Address VARCHAR(100),

ON ADD Attribute TO Person THEN Propagate)

This DDL statement constructs a table with a policy that states that any added
attribute should be automatically added as well to any dependent object. For ins-
tance, consider the following view:

CREATE VIEW BobPeople AS

SELECT Id, DateOfBirth, Address FROM Person

WHERE Name = ‘Bob’

164 M. Hartung et al.

If one were to subsequently add a new column “City” to the Person table, the
BobPeople view definition would be automatically updated with an additional
column Person as well.

Policies are specified on the object to be updated, not the dependent objects.
Each policy has three enforcement options: propagate (automatically propagate the
change to all dependents), block (which prevents the change from being propagated
to dependents), or prompt (meaning the user is asked for each change which action
to take). For both propagate and block options, queries are rewritten to either take the
new schema semantics into account or preserve the original semantics. The available
policies depend on the object being created; for instance, tables may have policies
added for adding, dropping, or renaming attributes; drop or rename the relation; or
add, drop, or modify constraint.

DB-MAIN is a conceptual modeling platform that offers services that connect
models and databases. For instance, one can reverse engineer from a database a
conceptual model in an entity—relationship model with inheritance, or one can for-
ward engineer a database to match a given model. The relationship between such
models and databases is generally straightforward — constructs like inheritance that
exist in the model that have no direct analog in the relational space map to certain
patterns like foreign keys in predictable ways (and detectable, in the case of reverse
engineering a model from a database).

Research over the last decade from DB-MAIN includes work on ensuring that
edits to one of those artifacts can be propagated to the other (Hick and Hainaut
2006). So, for instance, changes to a model should propagate to the database in
a way that evolves the database and maintains the data in its instance rather than
dropping the database and regenerating a fresh instance. The changes are made in a
nonversioning fashion in that, like vanilla DDL statements, the changes are intended
to bring the database to its next version and support applications accessing the new
version without any guarantee of backward compatibility.

Because DB-MAIN is a tool, it can maintain the history of operations made
to the graphical representation of a model. Graphical edits include operations like
adding or dropping elements (entity types, relationships, attributes, etc.) as well as
“semantics-preserving” operations like translating an inheritance relationship into
a standard relationship or reifying a many-to-many relationship into an entity type.
Each model transformation is stored in a history buffer and replayed when it is
time to deploy the changes to a database instance. A model transformation is cou-
pled with a designated relational transformation as well as a script for translating
instance data — in essence, a small extract-transform-load workflow. The set of avail-
able translations is specified against the conceptual model rather than the relational
model, so while it is not a relational schema evolution language by definition, it has
the effect of evolving relational schemas and databases by proxy.

MeDEA (Dominguez et al. 2008) is a tool that, like DB-MAIN, exposes rela-
tional databases as conceptual models and then allows edits to the conceptual model
to be propagated back to schema changes on the relational database. A key distinc-
tion between MeDEA and DB-MALIN is that MeDEA has neither a fixed modeling

6 Recent Advances in Schema and Ontology Evolution 165

language nor a fixed mapping to the database. For instance, the conceptual model
for a database may be constructed in UML or an extended ER diagram.

As a result, the relationship between model and database is fluid as well in
MeDEA. Given a particular object in the conceptual model, there may be multi-
ple ways to represent that object as schema in the database. Consequently, when
one adds a new object to an existing model (or an empty one), the developer
has potentially many valid options for persistence. A key concept in MeDEA is
the encapsulation of those evolution choices in rules. For each incremental model
change, the developer chooses an appropriate rule that describes the characteristics
of the database change. For instance, consider adding to an ER model a new entity
type that inherits from an existing entity type. The developer in that situation may
choose as follows:

— To add a new relational table with the primary key of the hierarchy and the new
attributes of the type as column, plus a foreign key to the parent type’s table (the
“table-per-type” mapping strategy).

— To add a new relational table with columns corresponding to all attributes of the
new type including inherited attributes (the “table-per-concrete class” mapping
strategy).

— To add columns to the table of the parent type, along with a discriminator or
a repurposing of an existing discriminator column (the “table-per-hierarchy”
mapping strategy).

Each of these strategies may be represented as a rule that may be applied when
adding a new type.

Impact Analysis (Maule et al. 2008) is an approach that attempts to bridge the
loose coupling of application and schema when the database schema changes. The
rough idea is to inform the application developer of potential effects of a schema
change at application design time. A complicating factor is that the SQL that is
actually passed from application to database may not be as simple as a static string;
rather, the application may build such queries or statements dynamically. The work
uses dataflow analysis techniques to estimate what statements are being generated
by the application, as well as the state of the application at the time of execution so
as to understand how the application uses the statement’s results.

The database schema evolution language is assumed to be SQL in this work.
Schema changes are categorized by their potential impact according to existing lit-
erature on database refactoring (Ambler and Sadalage 2006). For instance, dropping
a column will cause statements that refer to that column to throw errors when exe-
cuted, and as such is an error-level impact. Impact analysis attempts to recognize
these situations at design time and register an error rather than rely on the appli-
cation throwing an error at runtime. On the other hand, adding a default value to a
column will trigger a warning-level impact notice for any statement referring to that
column because the semantics of that column’s data has now changed — the default
value may now be used in place of null — but existing queries and statements will
still compile without incident. DB-MAIN and MeDea focus on propagating changes
between relational schemas and conceptual models.

166 M. Hartung et al.

A significant amount of research has recently been dedicated to automatic map-
ping adaptation (Yu and Popa 2005) to support schema evolution and is surveyed in
chapter 7 (Fagin et al. 2011). This work mostly assumed relational or nested rela-
tional schemas and different kinds of logical schema mappings. For these settings,
the definition and implementation of two key operators, composition and inversion
of mapping, have been studied. These operators are among those proposed in the
context of model management, a general framework to manipulate schemas and
mappings using high-level operators to simplify schema management tasks such as
schema evolution (Bernstein 2003; Bernstein and Melnik 2007). A main advantage
of composition and inversion is that they permit the reuse of existing mappings and
their adaptation after a schema evolves. The proposed approaches for mapping adap-
tation still have practical limitations with respect to a uniform mapping language,
mapping functionality, and performance so that more research is needed before their
broader usability.

3.3 Summary

Table 6.1 shows a side-by-side comparison of most of the approaches described in
this section for key requirements of Sect. 2. With the exception of the Panta Rhei
project, all solutions focus on the simple (table) changes of SQL DDL. Oracle is the
only system that also allows the specification of changes by providing a new version
of a table to be changed as well as a column mapping. Commercial GUIs exist that
can support simple diffing and change bundling, but eventually output simple SQL
DDL without version mappings or other versioning support. Oracle’s edition con-
cept makes versioning less painful to emulate, though underlying physical structures
are still not versioned. Overall, commercial DBMS support only simple schema
changes and incur a high manual effort to adapt dependent schemas and to ensure
backward compatibility. PRISM adds value by enabling versioning through inter-
version mappings, forward and backward compatibility, and formal guarantees of
information preservation when applicable. HECATAEUS improves flexibility by
specifying how to update dependent schema objects in a system when underlying
objects evolve.

4 XML Schema Evolution

XML as a data model is vastly different than the relational model. Relations are
highly structured, where schema is an intrinsic component of the model and an
integral component in storage. On the other hand, XML is regarded as a semi-
structured model. Instances of XML need not conform to any schema, and must
only conform to certain well-formed-ness properties, such as each start element
having an end tag, attributes having locally distinct names, etc. Individual elements

6 Recent Advances in Schema and Ontology Evolution 167

may contain structured content, wholly unstructured content, or a combination of
both. In addition, the initial purpose and still dominant usage of XML is as a doc-
ument structure and communication medium and not a storage model, and as such,
notions of schema for XML are not nearly as intrinsic to the model as with relations.
However, a notion of schema for XML is important for application interoperability
to establish common communication protocols.

Given that the very notion of XML schemas is relatively new, the notion of
schema evolution in XML is equally new. While there have been many proposed
schema languages for XML, two have emerged as dominant — Document type
definitions (DTDs) and XML Schema, with XML Schema now being the W3C
recommendation. Each schema language has different capabilities and expressive
power and as such has different ramifications on schema evolution strategies. None
of the proposed XML schema languages, including DTDs and XML Schema, have
an analogous notion of an “ALTER” statement from SQL allowing incremental evo-
lution. Also unlike the relational model, XML does have a candidate language for
referring to schema elements called component designators (W3C 2010); however,
while the language has been used in research for other purposes, it has to date
not been used in the context of schema evolution. Currently, XML schema evolu-
tion frameworks either use a proprietary textual or graphical language to express
incremental schema changes or require the developer to provide the entire new
schema.

The W3C — the official owners of the XML and XML Schema recommenda-
tions — have a document describing a base set of use cases for evolution of XML
Schemas (W3C 2006). The document does not provide any language or frame-
work for mitigating such evolutions, but instead prescribes what the semantics and
behavior should be for certain kinds of incremental schema evolution and how appli-
cations should behave when faced with the potential for data from multiple schema
versions. For instance, Sect. 2.3 lists use cases where the same element in differ-
ent versions of a schema contains different elements. Applications are instructed to
“ignore what they don’t expect” and be able to “add extra elements without breaking
the application.”

All of the use cases emphasize application interoperability above all other con-
cerns, and in addition that each application be allowed to have a local understanding
of schema. Each application should be able to both produce and consume data
according to the local schema. This perspective places the onus on the database or
middle tier to handle inconsistencies, in sharp contrast to the static, structured nature
of the relational model, which generally assumes a single working database schema
with homogeneous instances that must be translated with every schema change.
Thus, commercial and research systems have taken both approaches from the outset;
some systems (e.g., Oracle) assume uniform instances like a relational system, while
other systems (e.g., DB2) allow flexibility and versioning within a single collection
of documents.

A key characteristic of a schema language such as DTDs and XML Schemas
is that it determines what elements may be present in instance documents and in
what order and multiplicity. Proprietary schema alteration languages thus tend to

168 M. Hartung et al.

have analogous primitive statements, e.g., change an element’s multiplicity, reorder
elements, rename an element, insert or remove elements from the sequence, etc.
Researchers have created a taxonomy of possible incremental changes to an XML
schema (Moto et al. 2007) that is useful for evaluating evolution support in existing
systems:

1. Add a new optional or required element to a type.

Delete an element from a type.

Add new top-level constructs like complex types.

Remove top-level constructs.

Change the semantics of an element without changing its syntax — for instance,

if the new version of an application treats the implicit units of a column to be in

metric where previous versions did not.

6. Refactor a schema in a way that does not affect instance validation — for
instance, factoring out common local type definitions into a single global type
definition.

Nk w

7. Nest a collection of elements inside another element.
8. Flatten an element by replacing it by its children.
9. Rename an element or change its namespace.
10. Change an element’s maximum or minimum multiplicity.
11. Modify an element’s type, either by changing it from one named type to another

or adding or changing a restriction or extension.
12. Change an element’s default value.
13. Reorder elements in a type.

For each class of change, Moto et al. (2007) describe under what conditions a change
in that class will preserve forward and backward compatibility. For instance, if in
version 2 of a schema one adds optional element X to a type from version 1, any
application running against version 1 will be able to successfully run against ver-
sion 2 and vice versa so long as version 2 applications do not generate documents
with element X. If element X is required rather than optional, the two versions are no
longer interoperable under this scheme. The same logic can be applied to instances:
an instance of schema version 1 will validate against version 2 if X is optional and
will not if X is required.

For the rest of this section, we will describe the current state of the art in XML
schema evolution as present in commercially available systems and research works.
For each solution, in addition to comparing the solution against the requirements
outlined in Sect. 2, we describe the classes of incremental changes that the solution
supports and in what way it mitigates changes that must be made to either appli-
cations or instances. Table 6.2 shows the characteristics of the main approaches
considered, which are discussed at the end of this section.

169

6 Recent Advances in Schema and Ontology Evolution

(panunuo)y)
BUIAYDS BUIAYOS MU
Terodud) Ndueliph SEY Jo uoneoyroads

Suruuni 0) pappe
QI SUOISIOA

BUIAYOS MAU/P[O

MU se payroads
QIe SUOISIOA

BUWIAYDS JunSIxe
0} SBWAYOS MU

10 a3en3ue|
TIAXJHP Sutsn

(ewOYOS mau
‘TeIuaUIAIOUT)

MaIN (2) [eyuswaIdu] (7) [eyuswaIouy () Jo A1ddng (7) BUIAYOS MAN (7) Jo uonippy (7) [eyuwaIdu] (7) uoneoy1oadg (7)
(reqpoun soSueyo
Ayeurpied-adueyd nquye Ko dnnu
10 odKy-owreuax 1O JUSWIAO pue suonippe)
<39 ‘[opowr ppe <39 ‘[opowt Surop10ax JIngrnIe 1o
remdoouod eep ld JUQWIO[Q ‘OUIeual juowoe reuondo (xordwoo
Aq pauruziep Aq pouruIs)op Y11 saSueyd ue Jo uonippe orduurs)
=1 soguey) (1) saguey) (1) orduurg (1) -1 -1 80 ‘ordurg (1) ssouyory (1)
sadAy aSuey)
BUWIAYDS
Suikrea-own
jsurede depifea
0] saouejsul [opow [emdaduod BWIAYDS 0] SASUBYD Sugyip moddns TNX yim poddns TINX pim j1oddns TINX yhim
Surkrea-own B UI BUIAYDS [PJUSWIAIOUT BWIOYOS TINX JOJ WQ)ISAS [BUONB[AI WISAS [euOne[al WA)SAS [euoneaI SIom JO
MO[TY TINX MOTA poseq-(qLd [00} [RIOIOUILIO)) [erorowIwIo)) [eroIowwo)) [erorowwo) snooj/uondiose
(TAN *XddeD
‘uonnjoAg-X) (1000)
BUWIAYDS soyoeoidde ‘Te 10 ns (T002) IOAIOS
TINX [etoduag, Ppaseq-[opoN Jowrery] IWHX S0 Jj1q Aoy da nd1 TOS JOSOIIN S[drIQ

SW)SAS UOTINJOAD BUIAYDS TIATX JO SONSLIdORIRYD) 7°9 J[qEL

M. Hartung et al.

soSen3ue|
9epdn
Kreyorrdoxd 1gereqAonsap
Q01]S Jo orepdn 10 [geIeppe
Quin) UdAIS © KondX Juisn se yons uonasur
1 JUWNO0p A} so3ueyd eyep soSueyo ejep Je SISIXD Jey) NatielipN
JO UOTSIOA o) TINX JO soLIes TINX JO soLIes SJUOWINOOP UOTSIOA MU oY) PIO pue mou (eanpaooxd
jsurede aepiea e i podnoo e s pojdnod uLojsuen jsurede depiea jsurede depifea aajoAgAdoo)
SJUOWNOOP st oSueyo st oSueyo 0] [ISX JO ISNW SJUSWNOOP SO SJUSWNOOP IISX
— pasuoN (1) BWAYDS yoey () BWAYDS yoey () uoneIuan (1) —QuoN (1) —uoN (1) ur pagroads (1) sooueysuy (1)
uonededoid
arepdn
(orqrssod [ND
BIA UOT)OAII0D
[enUBW) PIALIOP uonouny JIPTNX
A[reonewoine 10 payroads uonendwod
(0 -0 -0 -1 (7) (0 -0 A[renuey (2) A441d (2)
sa3ueyo sagueyo seoudpuodsoLIod a3en3uef ojepdn
[eIUSWIIOUT [EIUSWIAIOUT JUSWIS[-JUSWI[D TINXIJIP Uo paseq
=D 30398 (D) J0308 (1) Jo3s8 (D =D (1) seSueydpjoleg (1) uonwuesadoy (1)
Surddew
uonnjoAq
(TAN *XAdoD
‘uonnjoag-X) (T000)
BUWIAYOS sayoeoidde ‘e 12 nS “(TO0T) IOAIRS
TAX [eloduay, Paseq-[opOIA wery WHX od JId eAOIY cdda Wdl TOS YosoIy BIEL)

170

(panunuo)) 79 3[qeL,

171

6 Recent Advances in Schema and Ontology Evolution

PAUOISIOA
9q 03} pamoire
10q AIe SBWYIS
pue syuewmnodo

-

SUOTIO® Iasn
armded ‘saSueyd
Jo uoneIouad

Paseq-[00],

-0

S)[NSaI yojewr
1091100 A[[enuewt

03 pue JIp

- uuoyred 0) [ND

() -(0)

UOISIOA BUIYDS
[eurSLo Joy)
jsurede depifea
SHUSWNIOP [V

-0

[oA9]
JUAWNJ0P TINX UP
Je SeWaYDS 0M) JJIp
- 01 1SIXQ SaLIRIQI]

() ()

1N D/eIMONISEIjuY

11oddns

SuruoIsIop
SeWAYoS
juapuado((7)

172 M. Hartung et al.

4.1 Commercial DBMS Systems

All three of the leading commercial database systems at the time of publication —
Oracle, Microsoft SQL Server, and IBM DB2 — provide support for storage of XML
data validated against an XML schema. Both of the major open-source relational
database offerings — PostgreSql and MySql — have support for storing XML, but do
not yet support schema validation in their standard configurations. We now briefly
describe how each of the three major vendors supports XML schemas in general
as well as how each vendor handles changes to those schemas. Furthermore, we
discuss evolution support in the native XML database system Tamino.

Oracle offers two very different ways to evolve an XML schema (Oracle XML
Schema Evolution 2008). The first is a copy-based mechanism that allows a great
deal of flexibility. Data from an XML document collection are copied to a temporary
location, then transformed according to a specification, and finally replaced in its
original location. The second is an in-place evolution that does not require any data
copying but only supports a limited set of possible schema changes.

Oracle has supported XML in tables and columns since version 9i (9.0.1) as
part of XML DB, which comes packaged with Oracle since version 9.2. One can
specify a column to have type XMLType, in which case each row of the table will
have a field that is an XML document, or one can specify a table itself to have
type XMLType, where each row is itself an XML document. In both cases, one can
specify a single schema for the entire collection of documents. For instance, one can
specify an XML column to have a specified given schema as follows:

CREATE TABLE tablewith xml_column
(id NUMBER, xml_document XMLType)
XMLTYPE COLUMN xml_document
ELEMENT "http://tempuri.com/temp.xsd#Globall";

Note that when specifying a schema for an XML column or document, one must
also specify a single global element that must serve as the document root for each
document instance. In the example above, schema temp . xsd has a global element
Globall against which all document roots must validate.

The copy-based version of schema evolution is performed using the DBMS_
XMLSCHEMA . copyEvolve stored procedure. The procedure takes as input three
arrays: a list of schema URLs representing the schemas to evolve, a list of XML
schema documents describing the new state of each schema in the first list, and a
list of transformations expressed in XSLT. Each transformation corresponds to a
schema based on its position in the list; so, the first transformation on the list is
used to translate all instances of the first schema to conform to the first new schema
definition, and so on.

There are a few restrictions on the usage of copyEvolve. For instance, the
list of input schemas must include all dependent schemas of anything in the list,
even if those schemas have not changed. There are also some additional steps
that must be performed whenever global element names change. However, from an
expressiveness perspective, one can use the procedure to migrate any schema to any

6 Recent Advances in Schema and Ontology Evolution 173

other schema. There is no correctness validation that the specified transformations
actually provide correct instance translation, so in the event that translated doc-
uments do not actually conform to the new schema, an error is thrown mid-
translation.

The second in-place method of evolution is performed using a different pro-
cedure called DBMS_XMLSCHEMA . inPlaceEvolve. Because the evolution is
performed in place, the procedure does not have any parameters guiding physical
migration, given that there is none. The in-place evolution procedure has much less
expressive power than the copy version — for this procedure, there is a full reverse-
compatibility restriction in place. It is not just the case that all existing instances of
the old schema must also conform to the new schema without alteration; it must be
the case that all possible instances of the old schema must conform to the new one
as well. Therefore, the restriction can be statically determined from the schemas
and is not a property of the documents currently residing in the database. So, for
instance, schema elements cannot be reordered, and elements that are currently sin-
gletons cannot be changed to collections and vice versa. The restriction guarantees
that the relational representation of the schema does not change, which ensures that
the in-place migration does not impose relational disk layout changes.

The kinds of changes that in-place migration does support include as follows:

— Add a new optional element or attribute (a subset of change class 1 from earlier
in the section).

— Add a new domain value to an enumeration (subset of change class 11).

— Add a new global element, attribute, or type (change class 3).

— Change the type of an element from a simple type to a complex type with simple
content (change class 6).

— Delete a global type, if it does not leave elements orphaned (subset of change
class 4).

— Decrease the minOccurs for an instance, or increase the maxQOccurs (subset of
change class 10).

This list is not comprehensive, but is representative. It is clear from these changes
that any valid instance of the old schema will still be valid after any of these changes.
To specify these incremental changes, Oracle has a proprietary XML difference lan-
guage called diffXML that is not specific to schemas but rather describe a diffgram
between two XML document instances (and XML schemas are, of course, XML
documents themselves). Expressions in difft XML loosely resemble expressions in
XML update facility in that they have primitives that append, delete, or insert nodes
in an XML document. However, diff XML expressions are XML documents rather
than XQuery expressions. For instance, one can change the MaxLength restriction
facet to 28 in a type using the following sequence of nodes:

<xd:delete-node xpath="/schema/complexType
[@name’Foo’]//maxLength/>
<xd:append-node
parent-xpath = "/schema
/complexType[@name='Foo’]//restriction"

174 M. Hartung et al.

node-type = "element">
<xd:content>
<xs:maxLength value = "28"/>
</xd:content>
< /xd:append-node>

Note that the expression language used to navigate an XML schema is vanilla XPath.
The xd namespace is the namespace for the diff XML language, and xd: content
nodes contain fragments of XML schema using the xs namespace.

One can specify a diff XML document manually, or one can generate it from the
XMLDIff function, available both in Oracle’s SQL dialect and Java. As mentioned
earlier, XMLDiff operates on any XML documents, not just XML schemas, so the
in-place evolution is essentially migrating schema by incrementally modifying the
schema documents as instances under a guarantee that there will be no cascading
effects of the migration.

Microsoft SOQL Server, like Oracle, supports storing a collection of homogeneous
XML documents in a relation column (Pal et al. 2006). Whereas instances in an
XML-typed column or table in Oracle must conform to a specific schema with a
specific global element as root, an XML-typed column in SQL Server validates
against any schema in a collection of schemas and allows any global element as root.
One specifies an XML Schema Collection in SQL server using a DDL statement:

CREATE XML SCHEMA COLLECTION [<relational_schema>.]
sgl_identifier AS Expression

Once a schema collection has been created, it can be assigned to be the schema
for any column whose type is XML. Also, once the collection is created, there are
only two operations that can be done on it — drop it or alter it by adding new con-
structs. The ALTER statement is the only form of schema evolution that SQL Server
allows without manually dropping the schema, manually translating instances, and
reestablishing the schema. The ALTER statement has only one form:

ALTER XML SCHEMA COLLECTION [relational_schema.]
sgl_identifier ADD Expression

For both the CREATE and ALTER statements, the expression must be a forest of
valid XML schema documents. The ALTER statement can add schema elements to
namespaces that already exist in the collection or to new namespaces.

The monotonic nature of alterations to a schema collection X means that, for the
most part, documents that conform to collection X will continue to validate against
the collection after alteration (maintaining the same reverse-compatibility restriction
of the in-place evolution in Oracle). The one exception is if the collection contains a
lax validation wildcard or any element whose type is xs:anyType. In such a case, the
addition of new global elements to the schema collection could cause documents
to fail validation. So, if any existing schema elements include such a construct,
revalidation of existing documents will happen any time new global elements are
added, and if the revalidation fails, the action is aborted.

6 Recent Advances in Schema and Ontology Evolution 175

IBM DB?2 takes a different approach to XML schema validation, one that embr-
aces the XML notion of interoperability rather than instance homogeneity (Beyer
et al. 2005). Rather than apply a single schema or schema set against an entire
collection of documents in a table or column, DB2 schema validation occurs on a
per-document basis. XML documents may be validated against a schema at the time
of insertion; however, the schema against which to validate the document is not
determined by the schema associated with the column, since there by definition is
no such schema. Rather, the schema is determined by attributes within the document
to be inserted, or by manually specifying a schema as an argument to the XMLVal-
idate function. Once a document has been validated, the document is adorned with
metadata that verifies that the document was validated as well as information to help
optimize query processing.

Like Oracle’s schema registration service and SQL Server’s schema collections,
DB2 requires one to register XML schemas in the system prior to use:

register xmlSchema ’'foo://tempuri.com/schema.xsd’
from ’‘schema-vl.xsd’ as schemaVl complete

DB2 has no support for schema evolution per se, as different versions of the same
schema appear in the database repository as unconnected documents. One also does
not update document instances from one version of a schema to another, similar to
SQL Server. Researchers from IBM have described how to support schema version-
ing using a complete scenario (Beyer et al. 2005); the scenario involves a relational
table that correlates the currently registered schemas (and thus schema versions)
with the applications currently using them. All of the mitigation of schema version-
ing is handled by the tables and protocols set up in the scenario rather than inside
the engine.

Since the engine does not enforce document homogeneity, it allows documents
from multiple schemas and thus multiple schema versions to coexist in a single
corpus with full fidelity. Rather than automatically evolve instances, the documents
exist in their original form, associated with its original schema.

Native XML databases, unlike relational systems, are built from the ground up
to support XML storage. Relatively few of these systems support XML schemas or
schema evolution. One notable exception is Tamino (Software AG 2006).

Like Oracle, Tamino can store XML data in a fashion that is XML schema
dependent, i.e., the physical structures may be optimized, possibly by mapping to
relations, knowing that the XML data is regularly structured in some way. Also
similarly to Oracle, Tamino allows schemas to evolve under the same restrictions
as Oracle’s in-place migration mechanism. One specifies a new schema version
wholesale — no mapping or incremental changes are possible — providing the entire
schema document, and passing it to the same _de f ine command to define an initial
version.

Where Tamino differs from Oracle is that Tamino allows the stored data to deter-
mine reverse compatibility rather than the schema document versions themselves.
One can pass a parameter to the _define command to attempt to do some static
validation first — determining just from the documents themselves whether it is pos-
sible for reverse compatibility to be guaranteed — but eventually all documents are

176 M. Hartung et al.

validated against the new schema at evolution time and, if any fail validation, the
change is rejected.

4.2 Mapping Tools

Altova (Altova 2010) does specialize in XML-specific tools for document and data
management. Altova provides a tool called DiffDog that can perform XML schema
matching and diffing. The tool takes as input two XML schema instances and per-
forms element-to-element matching. The tool’s result can be manually modified to
accommodate renames that the automatic algorithm does not immediately catch.
From a diff result, the tool generates an XSLT script that translates valid docu-
ments of one schema into valid documents of the other schema. The tool can thus
handle renaming and reordering of elements in a fairly straightforward manner. It
is unclear from documentation whether the tool can handle addition of required
elements or changes in multiplicity; such changes would not be straightforward in
the user interface of the tool. There is also no mechanism to incrementally alter
schemas — schemas are diffed wholesale. A related tool Altova MapForce is used to
generate XSLT mappings between different XML schemas that are not in an evo-
lution relationship but may differ to a larger extent. The initial schema matching is
therefore to be provided by a human user.

Research on schema matching and mapping has also resulted in several tools to
semi-automatically determine executable mappings such as Clio, e.g., for instance
migration after schema evolution (Jiang et al. 2007; Bonifati et al. 2011). The tools
do not provide for incremental evolutions per se, but map between the old and the
evolved schema. None of the existing mapping-based tools provide full support for
all of the features of XML Schema; for instance, Clio supports a significant subset
of XML Schema but not element order, choice particles, or element multiplicity
restrictions other than zero, one, or unbounded.

4.3 Research Approaches

As of the year 2000, the DTD was the predominant method for schematizing XML
documents. As the decade progressed, XML Schema became the dominant schema-
tizing technology for XML. That same trend has been mirrored in research; schema
evolution techniques introduced earlier in the decade focused more on changes to a
DTD, while more recent publications cover the far more expressive XML Schema
recommendation.

XEM (Kramer 2001; Su et al. 2001) — XML Evolution Management — is a frame-
work introduced by Worcester Polytechnic Institute in 2001 describing evolution
management in DTDs. The approach predates schema evolution in any of the com-
mercial systems introduced in the previous section. The work provides a sound and

6 Recent Advances in Schema and Ontology Evolution 177

complete set of change operations. The set is sound in that each evolution prim-
itive is guaranteed to maintain all validity and integrity properties; post-evolution,
all documents will still be well-formed XML and will still validate against the DTD.
The set is complete in that one can start with any DTD and arrive at any other valid
DTD using only changes from the set. The set of schema changes is as follows:

— Create a DTD element type (change class 3).

— Delete a DTD element type (change class 4).

— Insert DTD element or attribute into an existing element type (change class 1).

— Remove an element or attribute from an existing element type (change class 2).

— Change the quantifier on an element in a type (change class 10, limited to the
kinds that DTD is capable of).

— Nest a set of adjacent elements in a type beneath a new element (change class 7).

— Flatten a nested element (change class 8).

Each individual change to a DTD induces a change on all valid documents to main-
tain document validity. For instance, if one adds a new required element or changes
the quantifier on an element so that it becomes required, XEM will automatically
add a default element to all instances that lack the element. Note that this evolu-
tion scheme takes a relational approach to evolution in the sense that all instances
must evolve to match the new schema rather than allowing documents to belong to
multiple versions simultaneously.

DTD-Diff (Leonardi et al. 2007) is an algorithm and tool for detecting changes
between versions of a DTD. The algorithm takes as input two DTD instances and
returns a list of changes from the following categories:

— Adding or deleting element, attribute, or entity declarations (change classes 3
and 4).

— Change the content of an element type by adding, removing, or reordering nodes
(change classes 1, 2, 11, and 13).

— Change element cardinality (change class 10, limited to DTD support).

— Update attribute or entity facets such as changing a default value of an attribute or
updating the replacement text of an entity declaration (change classes 5 and 12).

The set of supported changes explicitly does not include construct renaming, due to
the fully automated nature of the difference engine — one could imagine adding sup-
port for allowing the result of a matching graph as additional input to handle such
renaming, though. The authors claim that applying existing XML document change
detection algorithms to instances of XML Schema (which are themselves XML
documents) does not necessarily yield semantically correct or optimal changes.
Diagram-based evolution (Dominguez et al. 2005) is a way to bypass the absence
of a standard evolution language by allowing the developer to express evolution
intent using a tool. One such effort uses UML diagrams as a front end for an XML
schema; in turn, changes to a diagram translate to changes on the associated schema.
In that framework, a UML diagram is used as a conceptual model for an XML
schema and its corresponding documents. The UML diagrams supported by the

178 M. Hartung et al.

framework do not have the same expressive power as the full XML schema lan-
guage, and so the work focuses on the subset of XML Schema to which the UML
language maps cleanly. Changes to the UML diagrams within a tool then induce
changes to the underlying schema and instances in the form of deployable XSLT
documents.

The set of changes that the UML framework supports is thus heavily influ-
enced by the tooling support. For instance, the change that is described in depth
in Dominguez et al. (2005) is a refactoring operation that translates an attribute in a
UML class into its own class:

Employee:
- Name
Employee: - Address
- Name Attribute *
- Address to Class
- Department 1.1
Department:
- Department

In general, each class corresponds to a type in an XML schema with an element
and a key. Attributes correspond to nested elements, while associations map to key
references. The refactoring operation above therefore results in removing the nested
element from the Employee type, creating a new type and element with a key for
Department, and a key reference between the two types. An XSLT stylesheet is also
generated to migrate data to ensure Department data is not lost.

A similar and more recent approach is CoDEX (Klettke 2007), which uses a
conceptual model that is closely aligned with XML Schema rather than using UML.
Again, incremental changes made to the conceptual model result in changes to the
associated schema and valid documents. The work on CoDEX also describes an
algebra that does preprocessing on incremental changes. As the user edits the model,
a log of actions is recorded, which can subsequently be optimized using reduction
rules. For instance, adding a new element then renaming it is equivalent to simply
adding the element with the new name to begin with.

X-Evolution (Guerrini and Mesiti 2009; Mesiti et al. 2006) is another framework
that defines incremental schema evolution in terms of a tool, in this case a graph rep-
resentation of the schema. Like CoDEX and the UML tools, X-Evolution supports a
set of evolution primitives; the list is too long to mention in-line, but covers change
classes except 7, 8, and 13 from our running list (and the algorithm in X-Evolution
could be altered in a fairly straightforward way to accommodate them). X-Evolution
is also able to handle a kind of change not listed in the change taxonomy at all —
specifically, changing a content particle’s type, say, from ALL to SEQUENCE or
CHOICE. A subset of the list of incremental evolutions is classified as having no
effect on validation, such as the removal of a global type that has no current element
instances. With any such evolution, no document revalidation is necessary — this list
of validation-less changes tracks with the research done in Moto et al. (2007).

6 Recent Advances in Schema and Ontology Evolution 179

A key contribution of the work on X-Evolution is incremental repudiation and
revalidation. Given an incremental change to a schema, X-Evolution runs one of two
algorithms at the user’s request — one that tests valid documents to see if they are still
valid post-validation and one that alters valid documents to make them valid with
respect to the new schema. Both algorithms are incremental, as the documents are
not re-validated en masse. Instead, only the parts of the document that correspond
to the altered part of the document are re-validated (or altered).

Temporal XML Schema (Currim et al. 2009) — also referred to as tXSchema —
is a way to formalize the temporal nature of schema and document versioning. The
framework is assembled by the same research group that helped develop the tem-
poral extensions to SQL. In all other frameworks discussed to date, the relationship
between versions of schemas and documents are informal if they exist at all; two
versions of the same schema version are considered to be two separate schemas,
related to each other only by whatever point-in-time script was used to perform
the migration. tXSchema makes evolution over time a first-class concept, modeling
different versions of the same conventional XML schema in the same document.

tXSchema enforces the standard constraints of an XML schema. Assuming that
a temporal document is valid with respect to a temporal schema, restricting the doc-
ument to a single point in time produces a document that is valid with respect to
its XML schema at that same point in time. Any conventional schema constraint
must be valid at all points in time as well, such as keys, key references, and data
type restrictions. In addition, temporal documents and schemas are still valid XML
documents with additional elements and attributes added to reflect temporal char-
acteristics; tXSchema provides extensions to existing XML tools that perform the
additional temporal validation of documents.

4.4 Summary

Table 6.2 shows a comparison of most of the previously mentioned approaches to
XML evolution relative to the characteristics laid out in Sect. 2. In general, commer-
cial options support evolution where instances may need to be revalidated but need
not be updated. The exception is Oracle, where one can specify XSLT scripts to
migrate instances. There is no commonly supported evolution language to spec-
ify incremental updates, a shortcoming that research approaches circumvent by
inventing proprietary solutions. XEM and model-based solutions attempt to cou-
ple incremental schema changes with incremental data changes, which often results
in empty or default element generation to fill gaps where a document no longer
validates. None of the solutions explicitly support versioning unless they support
multiple versions appearing side by side physically in persistent storage, as IBM and
temporal XSchema do. Altova presents a dedicated diffing tool with noncomplete
capabilities, and model-driven approaches offer a GUI-based method to specify
incremental changes. Mapping tools such as Clio also support diff computation and
instance migration for XML-like schemas. Currently, there is not yet any support
for adapting dependent mappings/schemas for XML schema evolution.

180 M. Hartung et al.

5 Ontology Evolution

Gruber (1993) characterizes an ontology as the explicit specification of a concep-
tualization of domain. While there are different kinds of ontologies, they typically
provide a shared/controlled vocabulary that is used to model a domain of interest
using concepts with properties and relationships between concepts. In the recent
past, such ontologies have been increasingly used in different domains to seman-
tically describe objects and to support data integration applications. For example,
there are a growing number of life science ontologies, e.g., the ontologies managed
in the open biomedical ontologies (OBO) Foundry (Smith et al. 2007). The exist-
ing ontologies are not static but are frequently evolved to incorporate the newest
knowledge of a domain or to adapt to changing application requirements.

There are several differences between ontologies and relational schemas that
influence their evolution:

e Ontologies are conceptually more abstract models than database schemas and
come in different variations ranging from controlled vocabularies and thesauri
over is-a hierarchies/taxonomies and directed a-cyclic graphs (DAG) to frame-
based and formal representations (Lassila and McGuinness 2001). For instance,
ontology languages such as RDF or OWL allow the specification of concept
hierarchies with multiple inheritance, cardinality constraints, inverse or transitive
properties, and disjoint classes. The kind and expressiveness of ontologies deter-
mine the kind of changes that should be supported for ontology evolution. For
instance, Noy and Klein (2004) propose a set of 22 simple and complex ontol-
ogy change operations such as concept creation, reclassification of a concept, or
merge/split of concepts.

e The role of instances differs between ontologies and relational schemas. For
example, many ontologies include instances but do not clearly separate them
from other parts of the ontologies such as concepts and relationships. In other
cases, instances are described by ontologies but are maintained outside the ontol-
ogy within separate data sources. These differences impact update propagation
of ontology changes since the separately maintained instances may not be under
the control of the ontology editors.

e In contrast to database schemas, the development and evolution of ontologies
is often a collaborative and decentralized process. Furthermore, new ontologies
often reuse existing ones, i.e., an ontology engineer uses a common ontology as
the basis for domain-specific extensions. These aspects lead to new synchroniza-
tion requirements for ontology changes. Furthermore, ontologies serving a whole
domain likely introduce many usage dependencies, although ontology providers
usually do not know which applications/users utilize their ontology. Supporting
different ontology versions is a main approach to provide stability for ontology
applications. For example, there are daily new versions for the popular Gene
Ontology.

Despite these differences, it is easy to see that the schema evolution requirements
introduced in Sect. 2 also apply to ontology evolution, in particular support for a rich

6 Recent Advances in Schema and Ontology Evolution 181

set of changes, expressive mappings, update propagation to instances and dependent
schemas/ontologies, versioning, and user-friendly tools.

For the rest of this section, we will describe representative approaches on
ontology evolution and how they meet the introduced requirements. Table 6.3
comparatively shows selected approaches that are discussed at the end of the section.

5.1 Research Approaches

The Protégé system supports different kinds of collaborative ontology evolution
meeting varying functional requirements (Noy et al. 2006). First, ontologies can be
modified synchronously or asynchronously. Synchronous editing is performed on
a centrally stored ontology that can be modified concurrently by several develop-
ers. For asynchronous editing collaborators check out the latest ontology version,
change it offline, and merge their changes into a common version later on. Sec-
ond, ontologies may internally be versioned or not. Ontologies may so periodically
be archived with the possibility to roll back to a former version. Alternatively, all
changes are continuously directed to a single (the most recent) ontology version.
Third, ontology changes may be subject to the approval of designated curators to
resolve potential problems and maintain a high quality. Usually, such a curation is
performed before releasing a new version of an ontology. Finally, ontology changes
may be monitored (logged) or not.

The ontology evolution framework supports a rich set of simple and complex
changes that can be annotated (Noy et al. 2006). These changes are classified within
a change and annotation ontology (CHAO). Annotation includes the type of ontol-
ogy change, the class/property/instance that was changed, the user and date/time
when the change was performed. The two main approaches to specify changes are
supported: specification (and logging) of incremental change operations and the pro-
vision of a new ontology version. In the latter case, the Diff evolution mapping is
semi-automatically determined.

Protégé uses the PROMPTDIFF algorithm (Noy and Musen 2002) to deter-
mine an evolution mapping between two input ontology versions. The two versions
V1 and V2 are compared using an iterative algorithm combining different heuris-
tic matchers (e.g., single unmatched sibling, unmatched inverse slots, or same
type/name) until no more changes are found. The found changes are presented in
a so-called difference table containing a set of tuples that interrelate elements of
V1 with elements of V2. Each tuple specifies a change operation (add, delete, split,
merge, and map) and its parameters.

The different kinds of ontology evolution are implemented in the Protégé ontol-
ogy editor within two plugins: Change-management plugin and the PROMPT
plugin. The Change-management plugin can be used to access a list of changes,
allows users to add annotations, and enables to study the history of concepts, i.e.,
users can examine what modifications happened on a particular concept in the his-
tory. The PROMPT plugin implements the PROMPTDIFF algorithm and provides

M. Hartung et al.

uonendwod JFIp paseq-o[ni
pue SutyoIeN (7)

SUOISIOA OM] Sule[aLIdIul
saguey jo 19S (1)

SUOISIOA

Mau Jo uoneISau] (7)
(" “rds “oS1oun)
x9[dwoo pue ordwig (1)

yoduwt o[qeidepe eIA sjeuLIoy
oy SASD 4@y ‘090
sSurddew pue sarSojojuo
QOUIOS 9JI] 10 SISA[eur
UuonN[OA? dANEIUEN()

uonendwod
J1p paseq-o[ny ()

SUOISIOA OM) Sule[aLIdIUT
sagueyd Jo 39S (1)

SUOISIOA
Mau Jo uoneIdau] (7)

ordurs ()

4ay

sar3ojojuo

paseq-4y 1o} uostredwod
pUE JUSWASeUBT UOTSIOA

=0

sagueyd TeyuawaIOU] (1)

[eyuawaIou] (7)
(" “Adoo “a31our)
x9[dwoo pue opdwis (1)

TMO/Add

uonn[oad £3o0[0juo
JUQISISUOD I0J SSAO0IJ

unyjo3e

JIIALdNON ()
SUOTSIOA

0M] 10J J[qe) OUIJIP

JIo sagueyd [ejuawaIouy (1)

uorsIaA ASojojuo

Mau Jo uoneoyroads

10 [eyuawRIoU] (7)

(" “onowr-s3uryqrs)
x9[dwoo pue ordwig (1)

surdnd yroduwr e1a

SjeuLIo) YNy “TMO/IAY
uonn[oAd

pue juswaSeuew A30[0JU0
JIOJ YIOMAWETJ [qIXaL,]

uonendwod J41d ()

uorjejuasardoy (1)
Surddew uonnjoag
(ewoyos
MU ‘[BIUSWIOUT)
uoneoyweds (7)
(xordwoo
‘arduuts) ssouyory (1)
sad£) a3uey)
SjeuLIoy
A3orojuo payroddng

j10Mm Jo snoojsuondroseq

(6002)
‘e 30 udsIy “(010T 600C
8007) "¢ 10 Sunjey XHUQ

(TO0T) "Te 19 UIS[3] MIAIAOWQO

(T002)
e 32 d1a0uef0I§ NOV

(2002)
uasnjy pue LoN ‘(900T
$007) ‘Te 12 AoN 9891014

182

Sw)sAs uonnjoAd A0[0JUO PAJI[AS JO SONSLIAOBIRYD) €9 B,

183

6 Recent Advances in Schema and Ontology Evolution

S9130[0JUO OUIIIS

911 ur sagueyd a10[dxa

0} uonjeordde paseq-qop
suo1s1oa A30[0juo
renuanbas unsixa syoddng

@

a3ueyo ASoj03u0

£q pojoagJe suonejouUR
Jo uoneidepy (1)

sa13o[03u0
UOTSIOA pue ‘@redwod ‘ssadoe
0) uonjeordde paseq-qop

SAD Uuo
paseq SuTuoISIaA [enjuanbag

-0

=D

2Injdnserjutr
NOV ut Jo)pa paseq-INo

sa13o[0juo judpuadap
uo ssaoo1d uonnjoas
Jjo uoneorjdde 2AISINOY (7)

A3o[01u0 Y YIIm paSeurwr
saoue)sut Jo uoneISIA (1)

urdnid juowoFeuew

a3ueyd pue LJNOYD
yIm J10JIpa A30[0juo0 939101

Juruorsioa [enyuanbag

-2

=D

1N D/eImionnseIyuy

j10ddns Suruorsiop

sewayds Juapuado((7)

soouelsuy (1)
uoneSedoxd ayepdn

184 M. Hartung et al.

facilities to accept/reject performed changes for curators. Besides these two plugins,
the Protégé environment provides functionality for editing in a client—server mode
as well as transaction and undo support.

The KAON prototype (Karlsruhe Ontology and Semantic Web Tool Suite) pro-
viding a graphical user interface for incrementally editing ontologies within a
process of six phases (Stojanovic et al. 2002). For each change, the following
sequential phases are needed: (1) Change Capturing, (2) Change Representation,
(3) Semantics of Change, (4) Change Implementation, (5) Change Propagation, and
(6) Change Validation. The evolution process can be cyclic, i.e., after the last phase,
the process can be re-executed for further ontology changes.

In the first phase (Change Capturing), the ontology engineer decides about the
necessary ontology changes, e.g., to delete a concept. In phase 2 (Change Repre-
sentation), such change requests are translated into a formal change representation.
The approach distinguishes between elementary (simple) as well as composite
(complex) changes that can be expressed by a series of elementary ones. In total,
16 elementary changes (additions/deletions/modifications of concepts, properties,
axioms, and subclass relationships) and 12 composite changes (merging and moving
of concepts, concept duplication/extraction, etc.) are distinguished.

Phase 3 uses the formal change representation to identify potential problems
(inconsistencies) that the intended changes can introduce within the ontology. For
example, the deletion of a concept C impacts its children and instances. Different
evolution strategies can be specified to deal with such situations, e.g., one can delete
the children as well or move the children to be subconcepts of C’s parent concept.
To reduce the manual effort for such decisions, different default evolution strategies
can be specified. Furthermore, the evolution strategies to resolve inconsistencies
may be automatically determined controlled by general goals such as minimizing
the number of ontology changes or keeping the ontologies flat.

The resulting changes are presented to the user for confirmation and are then
implemented in phase 4. All performed changes are logged in a version log; an
explicit versioning does not take place. The following phase 5 (Propagation) is
responsible to propagate the ontology changes to dependent applications or other
ontologies that extend the modified ontology. This approach assumes that the con-
sumers of the ontology are known and that the ontology evolution process can be
recursively applied on the dependent ontologies. The final Validation phase gives
ontology engineers the possibility to review the performed changes with the option
of undoing changes. Moreover, she can initiate further change requests by starting
another evolution cycle.

The OntoView system (Klein et al. 2002) focuses on versioning support for
RDF-based ontologies. The system is inspired by the concurrent versioning sys-
tem (CVS), which is used in collaborative software development. One of its core
functions is to structurally compare ontology versions to determine different types
of changes (representing a Diff evolution mapping). Nonlogical changes denote
changes in the label or comment of a concept. Logical definition changes may affect
the formal semantics of a concept, e.g., modifications on subClassOf, domain/range
of properties, or property restrictions. Further change types include identifier

6 Recent Advances in Schema and Ontology Evolution 185

changes and the addition/deletion of definitions. More complex changes such
as merges or splits of concepts are not supported.

The detection algorithm is inspired by the UNIX diff operation but uses the ontol-
ogy graph structure and RDF triples <subject, predicate, object> as the basis for the
version comparison. Change detection between two graphs is based on [IF-THEN
rules that specify conditions on triples in the old/new ontology and produce resulting
changes if the conditions are fulfilled. The authors argue that they can specify and
detect almost every change type using this mechanism except identifier changes.

Ontology evolution explorer (OnEX) is a web-based system for exploring chan-
ges in numerous life science ontologies (Hartung et al. 2009). It uses existing
ontology versions and identifies the differences between succeeding versions of an
ontology. The differences are represented by evolution mappings consisting of sim-
ple changes (adds, deletes, updates of concepts/relationships, and attributes) that are
identified by comparing the unambiguous accession numbers of elements available
in life science ontologies (Hartung et al. 2008). OnEX can be used to determine
the stability and specific change history of ontologies and selected concepts of
interest. Furthermore, one can determine whether given annotations referring to an
ontology version have been invalidated, e.g., due to deletes. Such annotations can
then be semi-automatically migrated to be consistent with the newest version of the
respective ontology.

OnEX uses a tailored storage model to efficiently store all ontology versions in
its repository by utilizing that succeeding ontology version differ only to a small
degree (Kirsten et al. 2009). Currently, OnEX provides access to about 700 versions
of 16 life science ontologies.

The ontology diff algorithm proposed in Hartung et al. (2010) determines an
evolution mapping between two ontology versions. The evolution mapping consists
of a set of simple as well as complex ontology changes (e.g., merging or splitting of
concepts). The approach is based on an initial matching of the ontology version and
applies so-called Change Operation Generating Rules (COG rules) for deriving the
change operations of the evolution mapping. For instance, the rule for determining
a merge of multiple concepts looks as follows:

ImapC(a, c) A ImapC(b, c) A —=ImapC(a,d) A —=ImapC(b, e)
AN #bANcF#dANcF#e — create[merge({a},c)], create[merge({b},c)]

The rule derives that concepts a and b are merged into concept c if there are two
match correspondences mapC(a,c) and mapC(b,c) and if a and b are not con-
nected to any other concept. The approach could be validated for different kinds
of ontologies.

Change detection using a version log: Plessers and De Troyer (2005) builds
upon the KAON ontology evolution process (Stojanovic et al. 2002). The pro-
posed evolution process consists of five phases: (1) Change Request, (2) Change
Implementation, (3) Change Detection, (4) Change Recovery, and (5) Change Prop-
agation. The main difference is in the Change Detection phase where additional
implicit changes are detected based on the history (log) of previous changes as well

186 M. Hartung et al.

as the so-called version log containing the different versions of ontology concepts
during their lifetime.

Changes are either basic (simple) or composite and defined declaratively using
the change definition language (CDL), which is based on RDF/OWL. Both kinds
of changes are determined by evaluating the old and new ontology versions w.r.t.
rule-based change definitions. For example, the change definition

V pe P, A€ C :addDomain(p, A) < —hasDomain(p, A, vi_1)
A hasDomain(p, A, v;)

specifies that the basic change addDomain(p, A) to add A as the domain of property
p has occurred when this domain has not been in the old version v;_; but in the
changed version v;. Composite changes are more difficult to determine since they
involve several ontology elements that may be subject to changes themselves that
may have to be taken into account. The correct identification of such changes is
important to correctly adapt instances of the ontology. For instance, we may have
two basic changes to move property p from class CI to class C2 followed by a
subclass addition between C/ and C2. Treating these changes independently would
first delete all properties p in instances of CI. However, the following addition of a
subclass relationship between C1 and C2 would require the addition of property p
to the C/ instances. By finding out that the two basic changes realize the composite
change of moving up p in the class hierarchy, the unnecessary deletions of p values
can be avoided.

Detection of high-level changes in RDF/S ontologies: Papavassiliou et al. (2009)
focuses on the detection of high-level changes (diff) between two RDF/S-based
ontology versions. Their framework uses a formal language to define changes and
distinguishes between basic, composite, and heuristic changes. Heuristic changes
refer to changes that are detected by matchers employing heuristic techniques to
determine that classes have been renamed, merged, or split. The proposed algorithm
focuses on the detection of basic and composite changes and utilizes the so-called
low-level delta containing the RDF triples that have been added and deleted between
two versions V1 and V2 of a RDF/S knowledge base. Changes are described by
triples consisting of (1) required added RDF triples, (2) required deleted RDF
triples, and (3) a set of conditions that need to be fulfilled. For instance, the change
Delete_Superclass(x,y), which removes the is-a relationship between x and y, can
be described as follows: (1) no added triple exists, (2) the deletion of a triple (x, sub-
ClassOf, y) exists, and (3) x is a class in V1. The detection algorithm first uses the
low-level delta and the change descriptions to find potential changes between V1
and V2. The second step then iteratively selects changes that meet the conditions
and reduces the set of changes in the low-level delta. The algorithm first identifies
composite changes and then basic ones.

6 Recent Advances in Schema and Ontology Evolution 187

5.2 Summary

Table 6.3 shows a comparison of most systems that are discussed. While the first
two systems Protégé and KAON support complete processes for ontology evolu-
tion, OntoView and OnEX focus on the management of existing ontology versions
developed elsewhere. Supported ontology formats are primarily RDF and OWL;
Protégé and OnEX can integrate further formats (e.g., OBO). With the exception
of OntoView, all systems support both simple and complex changes. The represen-
tation and determination of an evolution mapping between two ontology versions
differs among the systems. Protégé is most flexible for specifying ontology changes
by supporting both incremental changes and the provision of a new ontology ver-
sion; the other systems follow only one of the two possibilities. A Diff computation
is supported by all systems except KAON. The update propagation to instances
and related data is partially supported in KAON and OnEX. KAON uses evolution
strategies to adapt instances managed together with the ontology. OnEX supports the
identification and migration of annotations affected by ontology changes. With the
exception of KAON, all systems support sequential versioning. Graphical user inter-
faces are provided by all systems: Protégé and KAON are editor-like applications,
while OntoView and OnEX are web-based.

6 Conclusions

Effective schema evolution is a long-standing problem that is difficult to address
since schema changes impact existing instances, index and storage structures as well
as applications, and other schema consumers. We introduced the main requirements
for effective schema evolution and provided an overview about the current state of
the art on the evolution of relational schemas, XML schemas, and ontologies. More
than 20 approaches have been analyzed against the introduced requirements and we
used several tables to compare most of these approaches side by side. The introduced
methodology should be similarly applicable to evaluate further schema or ontology
evolution approaches. We summarize some of our observations as follows.

Commercial DBMS currently restrict their support for evolving relational sch-
emas to simple incremental changes and instance migration, while there is not yet
support to semi-automatically propagate changes to dependent schemas, mappings,
and applications. Filling this gap requires support for the determination and pro-
cessing of expressive schema mappings that have been studied in recent research
approaches such as Pantha Rei/Prism and in model management research (Bernstein
and Melnik 2007).

The evolution of XML schemas is easier than for relational schemas since the
schemas can be extended by optional components that do not invalidate exist-
ing instances. Due to the absence of a standard schema modification language,
schema changes are usually specified by providing a new version of the schema.
In research approaches, schema matching and mapping techniques are being used

188 M. Hartung et al.

to semi-automatically derive the evolution mapping between two schema versions
and to derive a corresponding instance-level mapping for instance migration. Sup-
port for propagating changes of XML schemas to dependent schemas or applications
have not yet been studied sufficiently.

Research on ontology evolution considers both the adoption of incremental
changes and the provision of new schema versions to specify several changes at
once. Several approaches have been proposed to semi-automatically determine Diff
evolution mappings by comparing two ontology versions. These mappings are usu-
ally represented by sets of simple or complex changes. While instance migration has
been considered to some extent, the propagation of ontology changes to dependent
ontologies/schemas, or applications have not yet found sufficient attention.

Despite recent progress, we therefore see a need for substantially more research
on schema evolution, also in areas not discussed in this chapter. For example, dis-
tributed architectures with many schemas and mappings need powerful mapping
and evolution support, e.g., to propagate changes of a data source schema to merged
(global) schemas. New challenges are also posed by dynamic settings such as stream
systems where the data to be analyzed may change its schema, e.g., by providing
new or changed attributes. A first approach in this area is Ferndndez-Moctezuma
et al. (2009). They propose certain extensions for schema consumers such as query
operators to deal with changed schemas.

References

Altova DiffDog (2010) http://www.altova.com/diffdog

Ambler SW, Sadalage PJ (2006) Refactoring databases: Evolutionary database design. Addison
Wesley, MA

Bernstein PA (2003) Applying model management to classical meta data problems. In: Proceedings
of Conference on Innovative Database Research (CIDR) 2003. ACM, NY, pp 209-220

Bernstein PA, Melnik S (2007) Model management 2.0: manipulating richer mappings. In:
Proceedings of ACM SIGMOD conference. ACM, NY, pp 1-12

Beyer K, Oezcan F, Saiprasad S, Van der Linden B (2005) DB2/XML: Designing for evolution. In:
Proceedings of ACM SIGMOD conference. ACM, NY, pp 948-952

Bonifati A, Mecca G, Papotti P, Velegrakis Y (2011) Discovery and correctness of schema mapping
transformations. In: Bellahsene Z, Bonifati A, Rahm E (eds) Schema matching and mapping,
Data-Centric Systems and Applications Series. Springer, Heidelberg

Cate BT, Kolaitis PG (2010) Structural characterizations of schema-mapping languages. Comm
ACM 53(1):101-110

Curino CA, Moon HIJ, Zaniolo C (2008) Graceful database schema evolution: The PRISM
workbench. In: Proceedings of VLDB conference. VLDB Endowment. pp 761-772

Currim F, Currim S, Dyreson CE, Joshi S, Snodgrass RT, Thomas SW, Roeder E (2009) tXSchema:
Support for data-and schema-versioned XML documents. TimeCenter Technical Report TR-91,
Aalborg University, Denmark

Dominguez E, Lloret J, Rubio AL, Zapata, MA (2005) Evolving XML schemas and documents
using UML class diagrams. In: Proceedings of DEXA conference. Springer, Heidelberg

Dominguez E, Lloret J, Rubio AL, Zapata MA (2008) MeDEA: A database evolution architecture
with traceability. Data Knowl Eng 65(3):419-441

http://www.altova.com/diffdog

6 Recent Advances in Schema and Ontology Evolution 189

Fagin R, Kolaitis PG, Popa L, Tan W (2011) Schema mapping evolution through composition
and inversion. In: Bellahsene Z, Bonifati A, Rahm E (eds) Schema matching and mapping,
Data-Centric Systems and Applications Series. Springer, Heidelberg

Fernandez-Moctezuma R, Terwilliger JF, Delcambre LML, Maier D (2009) Toward formal seman-
tics for data and schema evolution in data stream management systems. In: Proceedings of ER
workshops. Springer, Heidelberg, pp 85-94

Gruber TR (1993) A translation approach to portable ontology specifications. In: Knowledge
acquisition, vol 5(2). Academic, London, pp 199-220

Guerrini G, Mesiti M (2009) XML schema evolution and versioning: current approaches and
future trends. In: Open and novel Issues in XML database applications. Future directions and
advanced technologies. IDEA Group, pp 66—87

Hartung M, Kirsten T, Rahm E (2008) Analyzing the evolution of life science ontologies and
mappings. In: Proceedings of 5th international workshop data integration in the life sciences
(DILS). LNCS, vol 5109. Springer, Heidelberg

Hartung M, Kirsten T, Gross A, Rahm E (2009) OnEX - Exploring changes in life science
ontologies. BMC Bioinformatics 10:250

Hartung M, Gross A, Rahm E (2010) Rule-based determination of Diff evolution mappings
between ontology versions. Technical report, University of Leipzig

Hick JM, Hainaut JL. (2006) Database application evolution: a transformational approach. Data
Knowl Eng 59(3):534-558

IBM (2009a) Database version control with IBM Optim Database Administrator V2.2. http://www.
ibm.com/developerworks/data/library/techarticle/dm-0704henry/index.html

IBM (2009b) DB2 9.7: Online schema change. http://www.ibm.com/developerworks/data/library/
techarticle/dm-0907db2outages/index.html

Jiang H, Ho H, Popa L, Han WS (2007) Mapping-driven XML transformation. In: Proceedings of
WWW conference. ACM, NY, pp 1063-1072

Kirsten T, Hartung M, Gross A, Rahm E (2009) Efficient management of biomedical ontology ver-
sions. In: Proceedings on the move to meaningful internet systems (OTM) workshops. Springer,
Heidelberg, pp 574-583

Klein M, Fensel D, Kiryakov A, Ognyanov D (2002) Ontology versioning and change detection
on the web. In: Proceedings of 13th international conference on knowledge engineering and
knowledge management. Ontologies and the semantic web. Springer, Heidelberg

Klettke M (2007) Conceptual XML schema evolution — the CoDEX approach for design and
redesign. In: Proceedings of BTW workshops, pp 53-63

Kramer D (2001) XEM: XML evolution management. Master’s Thesis, Worcester Polytechnic
Institute

Lassila O, McGuinness, D (2001) The role of frame-based representation on the semantic web.
Knowledge Systems Laboratory Report KSL-01-02, Stanford University

Leonardi E, Hoaia TT, Bhowmicka SS, Madria S (2007) DTD-Diff: A change detection algorithm
for DTDs. Data Knowl Eng 61(2):384-402

Maule A, Emmerich W, Rosenblum DS (2008) Impact analysis of database schema changes.
In: Proceedings of international conference on software engineering (ICSE). ACM, NY,
pp 451-460

Mesiti M, Celle R, Sorrenti, MA, Guerrini G (2006) X-Evolution: A system for XML schema
evolution and document adaptation. In: Proceedings of EDBT, 2006. Springer, Heidelberg

Microsoft SQL Server 2008 R2 Data-Tier Applications (2010) http://msdn.microsoft.com/en-us/
library/ee240739(SQL.105).aspx

Miller R, Ioannidis YE, Ramakrishnan R (1994) Schema equivalence in heterogeneous systems:
Bridging theory and practice. Inform Syst 19(1):3-31

Moto MM, Malaika S, Lim L (2007) Preserving XML queries during schema evolution. In:
Proceedings of WWW conference. ACM, NY, pp 1341-1342

Noy NF, Klein M (2004) Ontology evolution: Not the same as schema evolution. Knowl Inform
Syst 6(4):428-440

http://www.ibm.com/developerworks/data/library/techarticle/dm-0704henry/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0704henry/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0907db2outages/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0907db2outages/index.html
http://msdn.microsoft.com/en-us/library/ee240739(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ee240739(SQL.105).aspx

190 M. Hartung et al.

Noy NF, Musen MA (2002) PromptDiff: A fixed-point algorithm for comparing ontology versions.
In: Proceedings of the national conference on artificial intelligence. American Association for
Artificial Intelligence, CA, pp 744-750

Noy NFE, Kunnatur S, Klein M, Musen, MA (2004) Tracking changes during ontology evolu-
tion. In: Proceedings of international semantic web conference (ISWC). Springer, Heidelberg,
pp 259-273

Noy NF, Chugh A, Liu W, Musen, MA (2006) A framework for ontology evolution in collaborative
environments. In: Proceedings of international semantic web conference (ISWC). Springer,
Heidelberg, pp 544-558

Oracle Database 10g Release 2 (2005) Online data reorganization & redefinition, white paper.
May 2005

Oracle Edition-Based Redefinition (2009) Whitepaper. Available at http://www.oracle.com/
technology/deploy/availability/pdf/edition_based_redefinition.pdf

Oracle XML Schema Evolution (2008) Chapter 9 of Oracle XML DB, Developer’s Guide, 11g
Release, May 2008

Pal S, Tomic D, Berg B, Xavier J (2006) Managing collections of XML schemas in Microsoft SQL
Server 2005. In: Proceedings of EDBT conference. Springer, Heidelberg, pp 1102-1105

Papastefanatos G, Vassiliadis P, Simitsis A, Aggistalis K, Pechlivani F, Vassiliou Y (2008) Lan-
guage extensions for the automation of database schema evolution. In: Proceedings of the 10th
international conference on enterprise information systems (ICEIS). INSTICC, pp 74-81

Papastefanatos G, Vassiliadis P, Simitsis A, Vassiliou Y (2010) HECATAEUS: Regulating schema
evolution. In: Proceedings of ICDE, pp 1181-1184

Papavassiliou V, Flouris G, Fundulaki I, Kotzinos D, Christophides V (2009) On detecting high-
level changes in RDF/S KBs. In: Proceedings of 8th international semantic web conference
(ISWC). Springer, Heidelberg, pp 473-488

Plessers P, De Troyer O (2005) Ontology change detection using a version log. In: Proceedings of
4th international semantic web conference (ISWC). Springer, Heidelberg, pp 578-592

Rahm E (2011) Towards large-scale schema and ontology matching. In: Bellahsene Z, Bonifati A,
Rahm E (eds) Schema matching and mapping, Data-Centric Systems and Applications Series.
Springer, Heidelberg

Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J
10(4):334-350

Rahm E, Bernstein PA (2006) An online bibliography on schema evolution. SIGMOD Rec
35(4):30-31

Smith B, Ashburner M, Rosse C et al (2007) The OBO Foundry: coordinated evolution of
ontologies to support biomedical data integration. Nat Biotechnol 25(11):1251-1255

Software AG (2006) Tamino XML schema user guide 4.4.1. http://documentation.softwareag.com/
crossvision/ins441_j/print/tsl.pdf

Stojanovic L, Maedche A, Motik B, Stojanovic N (2002) User-driven ontology evolution man-
agement. In: Proceedings of 13th international conference on knowledge engineering and
knowledge management. Springer, London, pp 285-300

Su H, Rundensteiner E, Kramer D, Chen L, Claypool K (2001) XEM: Managing the evolu-
tion of XML documents. In: Proceedings international workshop on research issues in data
engineering (RIDE). IEEE Computer Society, Washington, DC

Tiirker C (2000) Schema evolution in SQL-99 and commercial (object-) relational DBMS.
Database schema evolution and meta-modeling. LNCS, vol 2065. Springer, Heidelberg,
pp 1-32

W3C (2006) XML schema versioning use cases. Framework for discussion of versioning, 2006.
http://www.w3.org/XML/2005/xsd- versioning-use-cases

W3C (2010) XML component designators, 2010 http://www.w3.org/TR/xmlschema-ref/

Yu C, Popa L (2005) Semantic adaptation of schema mappings when schemas evolve. In:
Proceedings VLDB conference. VLDB Endowment, pp 10061017

http://www.oracle.com/technology/deploy/availability/pdf/edition_based_redefinition.pdf
http://www.oracle.com/technology/deploy/availability/pdf/edition_based_redefinition.pdf
http://documentation.softwareag.com/crossvision/ins441_j/print/tsl.pdf
http://documentation.softwareag.com/crossvision/ins441_j/print/tsl.pdf
http://www.w3.org/XML/2005/xsd-versioning-use-cases
http://www.w3.org/TR/xmlschema-ref/

Chapter 7
Schema Mapping Evolution Through
Composition and Inversion

Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang-Chiew Tan

Abstract Mappings between different representations of data are the essential
building blocks for many information integration tasks. A schema mapping is a
high-level specification of the relationship between two schemas, and represents a
useful abstraction that specifies how the data from a source format can be trans-
formed into a target format. The development of schema mappings is laborious and
time consuming, even in the presence of tools that facilitate this development. At
the same time, schema evolution inevitably causes the invalidation of the existing
schema mappings (since their schemas change). Providing tools and methods that
can facilitate the adaptation and reuse of the existing schema mappings in the con-
text of the new schemas is an important research problem.

In this chapter, we show how two fundamental operators on schema mappings,
namely composition and inversion, can be used to address the mapping adaptation
problem in the context of schema evolution. We illustrate the applicability of the
two operators in various concrete schema evolution scenarios, and we survey the
most important developments on the semantics, algorithms, and implementation of
composition and inversion. We also discuss the main research questions that still
remain to be addressed.

1 Introduction

Schemas and schema mappings are two fundamental metadata components that are
at the core of heterogeneous data management. Schemas describe the structure of
the various databases, while schema mappings describe the relationships between

R. Fagin (&) and L. Popa
IBM Almaden Research Center, San Jose, CA, USA
e-mail: fagin@almaden.ibm.com, lucian@almaden.ibm.com

P.G. Kolaitis and W.-C. Tan

IBM Almaden Research Center, San Jose, CA, USA
and

UC Santa Cruz, Santa Cruz, CA 95064, USA
e-mail: kolaitis @cs.ucsc.edu, wctan@cs.ucsc.edu

Z. Bellahsene et al. (eds.), Schema Matching and Mapping, Data-Centric Systems 191
and Applications, DOI 10.1007/978-3-642-16518-4_7,
(© Springer-Verlag Berlin Heidelberg 2011

fagin@almaden.ibm.com,
lucian@almaden.ibm.com
kolaitis@cs.ucsc.edu
wctan@cs.ucsc.edu

192 R. Fagin et al.

them. Schema mappings can be used either to transform data between two differ-
ent schemas (a process typically called data exchange [Fagin et al., 2005a] or data
translation [Shu et al., 1977]) or to support processing of queries formulated over
one schema when the data is physically stored under some other schemas (a pro-
cess typically encountered in data integration [Lenzerini, 2002] and also in schema
evolution [Curino et al., 2008]).

A schema mapping is typically formalized as a triple (S, T, X'), where S is a
source schema, T is a target schema, and X is a set of dependencies (or con-
straints) that specify the relationship between the source schema and the target
schema. Schema mappings are necessarily dependent on the schemas they relate.
Once schemas change (and this inevitably happens over time), the mappings become
invalid. A typical solution is to regenerate the mappings; however, this process
can be expensive in terms of human effort and expertise, especially for complex
schemas. Moreover, there is no guarantee that the regenerated mappings will reflect
the original semantics of the mappings. A better solution is to provide principled
solutions that reuse the original mappings and adapt them to the new schemas, while
still incorporating the original semantics. This general process was first described
in Velegrakis et al. [2003], which called it mapping adaptation and also provided
a solution that applied when schemas evolve in small, incremental changes. In this
paper, we describe a more general formalization of the mapping adaptation prob-
lem, where schema evolution can be specified by an arbitrary schema mapping.
Under this formalization, which is in the spirit of model management [Bernstein,
2003], the new, adapted mapping is obtained from the original mapping through the
use of schema mapping operators.

The two operators on schema mappings that we need to consider are composi-
tion [Bernstein et al., 2008, Fagin et al., 2005b, Madhavan and Halevy, 2003, Nash
et al., 2005] and inversion [Arenas et al., 2008, Fagin, 2007, Fagin et al., 2008b,
2009b]. These operators turn out to be quite fundamental, with many applications in
metadata management [Bernstein, 2003] and for schema evolution. In particular, the
two operators of composition and inversion provide a principled way to solving the
problem of adapting a schema mapping when schemas evolve. We will use Fig. 7.1
to describe, at a high-level, the operators of composition and inversion, and their
application in the context of schema evolution. First, assume that we are given a
schema mapping M (the “original” schema mapping) that describes a relationship
or a transformation from a source schema S to a target schema T. To “reuse” the
original schema mapping M when schemas evolve, we need to handle changes in
either the target schema or the source schema.

Target schema evolution. Assume that the target schema evolves to a new target
schema T’, and that we model this evolution as a schema mapping M’ from T
to T'. Intuitively, M’ is a new data transformation that converts instances of T to
instances of T’. Note that generating such M’ is an instance of the general schema
mapping creation problem and can be done manually or with the help of tools such
as Clio, described elsewhere [Fagin et al., 2009a]. Based on M and M’, we can
then obtain a new mapping from S to T’ by applying the composition operator.
Composition operates, in general, on two consecutive schema mappings M and

7 Schema Mapping Evolution Through Composition and Inversion 193

Schema S Schema T

B a

MT M "

Fig. 7.1 Application of composition and inversion in schema evolution

M, where the target schema of M is the source schema of M’. The result is a
schema mapping M o M’ that has the same effect as applying first M and then M’.
For our schema evolution context, M o M’ combines the original transformation
M with the evolution mapping M’.

Source schema evolution. Assume now that the source schema evolves to a new
source schema S”, and that we model this evolution as a schema mapping M” from
S to S”. Intuitively, M” represents a data transformation that converts instances of
S to instances of S”. We need to obtain a new schema mapping that reflects the
original schema mapping M (or rather M o M’ after target schema evolution) but
uses S” as the source schema. Note that in this case we cannot directly combine
M” with M o M’ via composition, since M” and M o M’ are not consecutive.
To be able to apply composition, we need first to apply the inversion operator and
obtain a schema mapping M7 that “undoes” the effect of M”. Once we obtain a
suitable M, we can then apply the composition operator to produce Mo Mo M’.
The resulting schema mapping, which is now from S” to T’, is an adaptation of the
original schema mapping M that works on the evolved schemas.

While the composition of two schema mappings (under a fairly natural seman-
tics [Fagin et al., 2004, Melnik, 2004]) always exists and it is “only” a matter of
expressing the composition in a suitable language for schema mappings, the situa-
tion is worse for inversion. In general, a schema mapping may lose information and,
as a result, it may not be possible to revert the transformation in a way that recovers
the original data. Hence, an exact inverse [Fagin, 2007] may not exist, and one needs
to look beyond such exact inverses. As a result, there are several notions of “approxi-
mations” of inverses that have recently been developed: quasi-inverses [Fagin et al.,
2008b], maximum recoveries [Arenas et al., 2008], maximum extended recover-
ies [Fagin et al., 2009b]. In this paper, motivated by the applications to schema
evolution, we take a more pragmatic approach for the treatment of the various
notions of inverse and emphasize the operational aspect behind them. In particu-
lar, we focus on two types of inverses, which were first introduced in Fagin et al.
[2009b] and which have a clear operational semantics based on the notion of chase
that makes them attractive from a practical point of view. The first type of such oper-
ational inverses, which are called chase-inverses, can be used to recover the original

194 R. Fagin et al.

data (without loss) via the chase. In general, this recovery is up to homomorphic
equivalence due to the presence of nulls; in the ideal case when the original source
instance is recovered exactly, we call the chase-inverse an exact chase-inverse. The
second type of operational inverses, which we call relaxed chase-inverses,' are
relaxations of chase-inverses that work in situations where there is information loss
and, hence, chase-inverses do not exist. Intuitively, a relaxed chase-inverse recovers
the original source data as well.

In this chapter, we use various concrete examples of schema evolution to
illustrate the main developments and challenges behind composition and inver-
sion and their applications to schema evolution. We note that we are focused
here on composition and inversion; a companion book chapter [Hartung et al.,
2011] will give a separate overview of the schema evolution area in gen-
eral. In our survey, we illustrate the concept of composition, and then discuss
the two flavors of operational inverses mentioned above. At the same time,
we discuss the languages in which such composition and inversion can be
expressed. In the context of the schema evolution scenarios that we consider,
these languages vary in complexity from GAV schema mappings to LAV and
GLAV schema mappings (the latter are also known as source-to-target tuple-
generating dependencies, or s-t tgds [Fagin et al., 2005a]) and then to mappings
specified by second-order (SO) tgds [Fagin et al., 2005b]. During the exposi-
tion, we will proceed from simpler, easier scenarios of schema evolution to
more challenging scenarios, and illustrate how composition and inversion tech-
niques can be put together into a framework that deals with schema evolution
problems.

In a separate section, we examine in detail two systems that implement one or
both of the above schema mapping operators to deal with aspects of schema evo-
lution. The first one is an implementation of mapping composition [Yu and Popa,
2005] that is part of the Clio system is based on the SO tgds introduced in Fagin
etal. [2005b] and is specifically targeted at the problem of mapping adaptation in the
context of schema evolution. The second system is the PRISM workbench [Curino
et al., 2008] for query migration in the presence of schema evolution. This sys-
tem is based on query rewriting under constraints and in particular on the chase
and backchase framework [Deutsch et al., 1999]. However, before it can apply such
query rewriting, the PRISM system needs to implement both mapping composition
and inversion. The notion chosen here for inversion is based on quasi-inverses [Fagin
et al., 2008b].

We end the paper with a discussion of the main open research questions that
still remain to be solved. Perhaps the most important open issue here is to find a
unifying schema-mapping language that is closed under both composition and the
various flavors of inverses, and, additionally, has good algorithmic properties.

! These were introduced in Fagin et al. [2009b] under a different name: universal-faithful inverses.
However, the term relaxed chase-inverses, which we use in this paper, is a more suggestive term
that also reflects the relationship with the chase-inverses.

7 Schema Mapping Evolution Through Composition and Inversion 195

2 Preliminaries

A schema R is a finite sequence (R, ..., Ri) of relation symbols, where each R;
has a fixed arity. An instance I over R is a sequence (R, ..., R,{), where each RiI
is a finite relation of the same arity as R;. We shall often use R; to denote both the
relation symbol and the relation R lI that instantiates it. We assume that we have a
countably infinite set Const of constants and a countably infinite set Var of labeled
nulls that is disjoint from Const. A fact of an instance I (over R) is an expression

Rl-l(vl, ..., Up) (or simply R;(vy,...,Vs)), where R; is a relation symbol of R
and vyq,..., v, are constants or labeled nulls such that (vy,...,v,) € Rl-l . The
expression (v1, ..., Uy) is also sometimes referred to as a tuple of R;. An instance

is often identified with its set of facts.

A ground instance over some schema is an instance such that all values occurring
in its relations are constants. In general, however, instances over a schema may have
individual values from Const U Var; thus, some of the values in the instances may
be nulls representing unknown information. Such (non-ground) instances naturally
arise in data integration, data exchange and also schema evolution. We will see
examples of instances with nulls all throughout this paper.

Next, we define the concepts of homomorphism and homomorphic equivalence,
which we use frequently throughout this paper. Let /; and /> be instances over a
schema R. A function / from ConstU Var to ConstU Var is a homomorphism from
I, to I, if for every ¢ in Const, we have that i(c) = ¢, and for every relation symbol
R in R and every tuple (ai,...,a,) € R', we have that (h(ay)....,h(a,)) €
R™2. We use the notation I; — I to denote that there is a homomorphism from 7
to I,. We say that I is homomorphically equivalent to I, if Iy — I, and I, — I,
and we write this as I; < I,.

Schema mappings: A schema mapping is a triple M = (S, T, X), where S is a
source schema, T is a target schema, and ¥ is a set of constraints (typically, formu-
las in some logic) that describe the relationship between S and T. We say that M
is syntactically specified by, or, expressed by X. Furthermore, M is semantically
identified with the binary relation:

Inst(M) = {(I,J) | I is an S-instance, J is a T-instance, (1, J) E X'}.

We will use the notation (I, J) € M to denote that the ordered pair (/, J) satisfies
the constraints of M; furthermore, we will sometimes define schema mappings by
simply defining the set of ordered pairs (/, J) that constitute M (instead of giving
a set of constraints that specify M). If (I, J) € M, we say that J is a solution of 1
(with respect to M).

In general, the constraints in X~ are formulas in some logical formalism. In
this chapter, we will focus on schema mappings specified by source-to-target
tuple-generating dependencies.

An atom is an expression of the form R(xy,...,x,), where R is a relation sym-
bol and x1, ..., x, are variables that are not necessarily distinct. A source-to-target

196 R. Fagin et al.

tuple-generating dependency (s-t tgd) is a first-order sentence ¢ of the form

Vx(p(x) = Y (x.y)),

where ¢(x) is a conjunction of atoms over S, each variable in x occurs in at least
one atom in ¢(x), and ¥ (X, y) is a conjunction of atoms over T with variables in x
and y. For simplicity, we will often suppress writing the universal quantifiers Vx in
the above formula. Another name for s-t tgds is global-and-local-as-view (GLAV)
constraints (see Lenzerini 2002). They contain GAV and LAV constraints, which we
now define, as important special cases.

A global-as-view (GAV) constraint is an s-t tgd in which the right-hand side is a
single atom with no existentially quantified variables, that is, it is of the form

Vx(p(x) = P(x)),

where P(X) is an atom over the target schema. A local-as-view (LAV) constraint is
an s-t tgd in which the left-hand side is a single atom, that is, it is of the form

Vx(Q(x) = yy(x.y)),

where Q(x) is a atom over the source schema.’

We often write a LAV schema mapping to mean a schema mapping specified
entirely by LAV s-t tgds. A strict LAV schema mapping is a LAV schema mapping
where it is specified entirely by strict LAV s-t tgds. Similarly, a GAV schema map-
ping (respectively, GLAV schema mapping) is a schema mapping specified entirely
by GAV s-t tgds (respectively, GLAV s-t tgds).

Chase. The chase procedure has been used in a number of settings over the years.
Close to our area of interest, the chase procedure has been used in Fagin et al.
[2005a] to give a natural, operational semantics for data exchange. Specifically,
in data exchange, if M is a fixed schema mapping specified by s-t tgds, then the
chase procedure can be used to compute, given a source instance /, a target instance
chasepq(I) for I that has a number of desirable properties. First, chase(I) is a
universal solution [Fagin et al., 2005a] of I with respect to the schema mapping M.
Universal solutions are the most general solutions that one can obtain for a given
source instance I with respect to M in the sense that a universal solution has
homomorphisms into every solution of / with respect to M. Second, chasea(I) is
computed in time bounded by a polynomial in the size of .

There are several variants of the chase procedure. Here, we will consider the
variant of chase described in Fagin et al. [2005a]. The chase on / with a schema
mapping M produces a target instance, denoted as chasenq(I), as follows: For

2 A stricter version of LAV s-t tgds, where no repeated variables in the left-hand side Q(x) are
allowed and all variables in x appear in the right-hand side, is also used in literature. We refer to
this type of LAV s-t tgds as strict LAV s-t tgds.

7 Schema Mapping Evolution Through Composition and Inversion 197

every s-t tgd
Vx(p(x) — Iy (x.y))

in X' and for every tuple a of constants from the active domain of 7, such that I |
@(a), if there does not exist a tuple b of constants or labeled nulls, such that y(a, b)
exists in chasepq (1), then we add to chase (1) all facts in ¥ (a, N), where N is a
tuple of new, distinct labeled nulls interpreting the existential quantified variables y.
We sometimes say that M has been applied to I to produce chasen(I) to mean
that / has been chased with M to produce chase(1).

We end this section by giving two examples of the chase in action. Variations of
the schemas and the mappings used in these examples will appear throughout the
paper. First, let M be a LAV schema mapping specified by:

Takes (n,m, co) — IAs(Student (s,n,m) A Enrolled (s,co0))

Here, we assume that the source schema has a ternary relation symbol Takes and
the target schema has two binary relation symbols, Student and Enrolled. The
mapping takes input tuples of the form (n, m, co) in Takes, where n represents a
student name, m represents a major for the student, and co represents a course that
the student takes. For each such input tuple, the mapping asserts the existence of
two target tuples: a tuple (s,n,m) in Student, and a tuple (s, co) in Enrolled.
These tuples are related by the fact that the same student id s occurs in both.
Let I be the source instance consisting of the following two facts:

Takes (John, CS, CS101),
Takes (Ann, Math, MATH203).

The chase of I with M will then produce a target instance J that consists of the
following four facts:

Student (Ny, John, CS),Enrolled (N, CS101),
Student (N, Ann, Math), Enrolled (N, MATH203).

In the above instance, N; and N, are nulls (representing student ids for John and
Ann, respectively). The chase of I with M; works by exhaustively determining
facts in the source instance that can “trigger” the s-t tgd in M to generate new
target facts. The first fact in I, namely, Takes(John, CS, CS101), triggers the s-t
tgd in M, resulting in the addition of two target facts: Student(Ny, John, CS)
and Enrolled(Ny, CS101). Observe that this chase step instantiates the existen-
tially quantified variable s in the tgd with the null N;, which effectively associates
the newly created Student and Enrolled facts together. Similarly, the sec-
ond source fact also triggers the s-t tgd in M; to generate two target facts:
Student(N,,Ann, Math) and Enrolled(N,, MATH203). After this, no other
source facts could trigger the s-t tgd in M to generate new target facts. Hence,
the chase terminates with the target instance that consists of the above four facts.
As another example, let M, be a GAV schema mapping specified by:

Student (s,n,m) A Enrolled (s,co) — Takes' (s,n,co)

198 R. Fagin et al.

This schema mapping combines information in Student and Enrolled into
the Takes’ relation. Observe that Takes’ contains information about student ids,
name, and courses (as opposed to name, major, and course in Takes). Suppose [
consists of the following facts:

Student (111, John,CS),Enrolled (111, CS101),
Student (111, John, Math), Enrolled (111, MATHIOI).

The chase of I with M will produce the following target instance:

Takes’ (111, John, CS101),
Takes' (111, John, MATHI0]I).

The source facts Student(111,John, CS) and Enrolled(111, CS101) together
trigger the s-t tgd in My to produce Takes' (111, John, CS101). In addition, the
source facts Student (111, John, Math) and Enrolled(111, MATHIOI) trigger
the s-t tgd in M, to produce Takes’(111,John, MATHIOI) in the target. After
this, even though the source facts Student(111, John, CS) and Enrolled (111,
MATH]01) also trigger the s-t tgd in M, this chase step is not taken since the target
fact Takes (111, John, MATH101) already exists in the target instance. It is easy
to observe that no other source facts would trigger the s-t tgd in M, and hence J
is the result of the chase. Also note that, as opposed to the previous example, there
is no need to generate nulls in the target, since M5 has no existentially quantified
variables (i.e., it is a GAV mapping).

3 An Ideal Scenario of Evolution

We start our exposition of the application of composition and inversion to schema
evolution, by considering first a relatively “simple” example of schema evolution.
For this section, we will refer to the schema evolution scenario that is graphically
illustrated in Fig. 7.2.

We first assume the existence of a schema mapping M from a source schema S,
consisting of one relation Takes, to a target schema T, consisting of two relations
Student and Enrolled. The Takes relation contains tuples relating student ids

Schema S” Schema S Schema T Schema T’

Takes” Student
sid .. Takes
major wi..... - sid
...... .. C|d major‘ »
5 M7 |.course-.,

=~ major
e course

~.. Enrolled :

: Course grade
b cid - | “sid
course” Tacourse -+~

Fig. 7.2 Our first scenario of schema evolution

7 Schema Mapping Evolution Through Composition and Inversion 199

with their majors and the courses they take. According to the mapping M, each tuple
of Takes is split into two tuples, one in Student and the otherin Enrolled, that
share the same sid value. Formally, the schema mapping is given by the following
two assertions:

M : Takes (s,m,co) — Student (s, m)

Takes (s,m, co) — Enrolled (s, co)

Note that M is an example of both a GAV mapping and an (strict) LAV mapping.
Also note that in this example we have a variation of the earlier M (in Sect. 2); in
this variation, the sid value in the target is not existentially quantified, but instead
it is copied directly from the source relation Takes.

We next address the issues of schema evolution, starting with the target schema
first.

3.1 Target Evolution: GAV-GLAV Composition

Let us assume that the target schema evolves to a new schema T’ consisting of one
relation Takes’ that combines all the attributes in T (i.e., sid, major, course)
and further includes an extra grade attribute. Moreover, assume that the evolution
mapping from T to T’ is:

M’ : student (s,m) A Enrolled (s,co) — 3G Takes’ (s,m,co, G)

In contrast to the original mapping M, the above M’ is an example of a more
general GLAV mapping: it is neither LAV (since there is more than one atom on the
left-hand side) nor GAV (since there is an existential quantifier on the right-hand
side).

Before we can show how to adapt the mapping M to the new target schema, we
formally state what composition means.

Definition 1. (Composition of Schema Mappings [Fagin et al., 2005b]) Let
Miz = (81, Sz, Y12) and Mjy3 = (S3,S3, X23) be schema mappings such
that the schemas Si, S,, and S3 have no relation symbol in common pairwise. A
schema mapping M3 = (S1, S3, X13) is a composition of M1, and M3 (written
Miz = My o Myz)if Myz = {(I1, I3) | there exists I such that (11, I5) € M,
and (I, I3) € Mj3}.

The important computational problem associated with mapping composition is
the following: Given two schema mappings M, and M35 how do we compute,
and in what language can we express, a set X3 of constraints that specifies the
composition M3 of M, and M53? The answer to the above question very much
depends on the language in which the input schema mappings are specified.

For our running example, to adapt the above mapping M to the new target
schema, we must compose M with the evolution mapping M’. As it turns out,

200 R. Fagin et al.

we are in an “easy” case where we can express the result of this composition as a
GLAV mapping. This is essentially due to the fact that the first mapping is GAV.
(The second mapping M’ is a GLAV mapping.) We shall see that in cases where
M is LAV or GLAV the composition need not be first-order and we need a more
powerful language to express the composition. For the scenario in this section, the
fact that the composition is a GLAV mapping follows from the next theorem.

Theorem 1 (Fagin et al. 2005b). Let My and My be two consecutive schema
mappings. The following hold:

1. If My and My are GAV mappings, then M1 o My can be expressed as a GAV
mapping.

2. If My is a GAV mapping and M is a GLAV mapping then M1 o My can be
expressed as a GLAV mapping.

As a more general result, we obtain the following corollary that applies to a chain
of GAV mappings followed by a GLAV mapping.

Corollary 1. Let My, ..., Mg41, My be consecutive schema mappings. If My,
..., My are GAV mappings and My 1, is a GLAV mapping, then the composition
Mijo...o My o My can be expressed as a GLAV mapping.

Concretely, for our scenario, it can be verified that the following GLAV mapping
is the composition of M and M’:

Mo M’ : Takes (s,m,co) A Takes (s,m’,co’) — 3G Takes’ (s,m,co’, G)

Observe that the self-join on Takes in the above composition is needed. This can
be traced to the fact that students can have multiple majors, in general. At the same
time, the Takes relation need not list all combinations of major and course for
a given sid. However, the evolution mapping M’ requires all such combinations.
The composition M o M’ correctly accounts for all these subtle semantic aspects.

To see a concrete example, consider the following instance of Takes:

Takes (007, Math, MA201)
Takes (007, CS, CS101)

In the above instance, 007 identifies a student (say, Ann) who has a double major (in
Math and CS) and takes two courses. Given the above instance, the composition
M o M’ requires the existence of the following four Takes' facts, to account for
all the combinations between Ann’s majors and the courses that Ann took.

Takes’ (007, Math, MA201, Gy)
Takes’ (007, Math, CS101, G,)
Takes' (007, CS, MA201, G3)
Takes' (007, CS, CS101, G4)

In practice, we would also have an additional target constraint (a functional
dependency) on Takes’ specifying that sid together with course functionally

7 Schema Mapping Evolution Through Composition and Inversion 201

determines grade. This functional dependency would then force the equality of
G4 and G3, and also the equality of G, and G4 in the above instance.

Composition Algorithm. Next, we explain on our example how the composition
algorithm of Fagin et al. [2005b] arrives at the formula that specifies M o M’
We give an intuitive explanation of the algorithm rather than a complete and formal
one. Recall that M is specified by the following GAV s-t tgds

M : Takes (s,m,co) — Student (s, m)

Takes (s,m,co) - Enrolled (s, co)
and that M’ is specified by the following GLAV s-t tgd
M’ : student (s,m) A Enrolled (s,co) — 3G Takes’ (s,m,co, G).

Intuitively, the composition algorithm will replace each relation symbol from T
in M’ by relation symbols from S using the GAV s-t tgds of M. In this case, the
fact Student(s, m) that occurs on the left-hand side of M’ can be replaced by
a Takes fact, according to the first GAV s-t tgd of M. Hence, we arrive at an
intermediate tgd shown below:

Takes (s,m,co’) AEnrolled (s,co) — 3G Takes’ (s,m,co, G).

Observe that a new variable co’ in Takes is used instead of co. This avoids an
otherwise unintended join with Enrolled, which also contains the variable co.
(This is accomplished in the algorithm by a variable renaming step.)

Next, the composition algorithm will replace Enrolled(s, co) with a Takes
fact, based on the second GAV s-t tgd of M. We then obtain the following GLAV
s-t tgd from the source schema S to the new target schema T’. This tgd® specifies
the composition M o M’.

Takes (s,m, co’) A Takes (s,m’, co) — 3G Takes’ (s,m, co,G).

3.2 Source Evolution: The Case of a Lossless Mapping

Let us now assume that the source schema evolves to a new schema S” consist-
ing of the two relations Takes” and Course shown in Fig. 7.2. Thus, in the new
schema, courses are stored in a separate relation and are assigned ids (cid). The
relation Takes” is similar to Takes except that course is replaced by cid. Let
us assume that the source evolution is described by the following LAV mapping:

3 Note that it is logically equivalent to the earlier way we expressed M o M’, and where the roles
of co and co’ were switched.

202 R. Fagin et al.
M" : Takes (s,m, co) — IC (Takes” (s,m,C) A Course (C, co)).

Note first that in the figure the direction of M” is the reverse of the direction of
the original mapping M. Intuitively, the assertions of M” imply a data flow from the
schema S to the schema S”, where facts over S” are required to exist based on facts
over S. To enable the application of the same composition techniques as we used for
target evolution, we first need to invert the mapping M”. After inversion, we can
then combine the result, via composition, with the previously obtained M o M’.

From a practical point of view, the important (and ideal) requirement that we need
from an inverse is to be able to recover the original source instance. Concretely, if we
apply the mapping M” on some source instance I and then we apply the candidate
inverse on the result of M”, we would like to obtain the original source instance 1.
Here, applying a schema mapping M to an instance / means generating the instance
chase a4 (1). The next definition captures the requirements of such an inverse.

Definition 2 (Exact chase-inverse). Let M be a GLAV schema mapping from a
schema S; to a schema S,. We say that M* is an exact chase-inverse of M if M*
is a GLAV schema mapping from S; to S; with the following property: for every
instance I over Sp, we have that I = chaseq* (chasea(1)).

For our example, consider the following candidate inverse of M”":
M Takes” (s,m,c) A Course (¢, co) — Takes (s,m, co)

As it turns out, this candidate inverse satisfies the above requirement of being able
to recover, exactly, the source instance. Indeed, it can be immediately verified that
for every source instance / over S, we have that chase , (+ (chasep (1)) equals 1.
Thus, M7 is an exact chase-inverse of M.

Since M is a GAV mapping, we can now apply Corollary 1 and compose
MT with M o M’ to obtain a schema mapping from S” to T’. The result of this
composition is the following (GLAV) schema mapping:

MPo Mo M : Takes” (s,m,c) A Course (c,co) A
Takes” (s,m’,c’) A Course (¢, co’)
— 3G Takes’ (s,m’,co,G)

3.3 A More General Notion of Chase-Inverses

The schema mapping M used in Sect. 3.2 is an exact chase-inverse in the sense that
it can recover the original source instance / exactly. In general, however, equality
with [is too strong of a requirement, and all we need is a more relaxed form of
equivalence of instances, where intuitively the equivalence is modulo nulls. In this
section, we start with a concrete example to show the need for such relaxation. We

7 Schema Mapping Evolution Through Composition and Inversion 203

then give the general definition of a chase-inverse [Fagin et al., 2009b] and discuss
its properties and its application in the context of schema evolution.

We observe that the schema mapping M” in Sect. 3.2 is similar to the following
general pattern:

P(x,y) > 3 (Q(x.2) A Q'(z.y)).

Here, for simplicity, we focus on schema mappings on binary relations. (In partic-
ular, M" can be forced into this pattern if we ignore the major field in the two
relations Takes and Takes”.) The important point about this type of mappings is
that they always have an exact chase-inverse. Consider now a variation on the above
pattern, where Q' is the same as Q. Thus, let M be the following schema mapping:

M P(x,y) = I (0(x.2) A Oz).

The following schema mapping M* is a natural candidate inverse of M:

M*: Q(x.29) A Q. y) = P(x.y).

Consider now the source instance [= {P(1,2), P(2, 3)}. Then the result of applying
Mto [is

chaseM(I) = {Q(lvnl)v Q(nlvz)’ Q(zan)v Q(n273)}7

where n; and n, are two nulls introduced by the chase (for the existentially
quantified variable z). Furthermore, the result of applying M* to the previous
instance is

chase = (chasep (1)) = {P(1,2), P(2,3), P(n1,n2)}.

Thus, we recovered the two original facts of / but also the additional fact P(n,n,)
(via joining Q(n1,2) and Q(2,n2)). Therefore, M* is not an exact chase-inverse
of M. Nevertheless, since n; and n, are nulls, the extra fact P(ny, n,) does not add
any new information that is not subsumed by the other two facts. Intuitively, the last
instance is equivalent (although not equal) to the original source instance /.

The above type of equivalence between instances with nulls is captured, in
general, by the notion of homomorphic equivalence. Recall that two instances [;
and I, are homomorphically equivalent, with notation I; < [, if there exist
homomorphisms in both directions between /7 and 1.

We are now ready for the main definition in this section.

Definition 3 (Chase-inverse). Let M be a GLAV schema mapping from a schema
S; to a schema S,. We say that M™ is a chase-inverse of M if M* is a GLAV
schema mapping from S, to Sy with the following property: for every instance /
over S1, we have that I < chase yq= (chasep(1)).

204 R. Fagin et al.

Intuitively, the above definition uses homomorphic equivalence as a replacement
for the usual equality between instances. This is consistent with the fact that, in
the presence of nulls, the notion of homomorphism itself becomes a replacement
for the usual containment between instances. Note that when /; and I, are ground,
I, — I, isthesame as I; C I,. However, when /; has nulls, these nulls are allowed
to be homomorphically mapped to other values (constants or nulls) inside /5. This
reflects the fact that nulls represent unknown information.

The existence of a chase-inverse for M implies that M has no information loss,
since we can recover an instance that is the same modulo homomorphic equivalence
as the original source instance. At the same time, a chase-inverse is a relaxation
of the notion of an exact chase-inverse; hence, it may exist even when an exact
chase-inverse does not exist.

Both examples of chase-inverses that we have given, namely M in Sect.3.2
and M™ in this section, are GAV mappings. This is not by accident. As the follow-
ing theorem shows, we do not need the full power of GLAV mappings to express
a chase-inverse: whenever there is a chase-inverse, there is a GAV chase-inverse.
The main benefit of this theorem is that it may keep composition simpler. In par-
ticular, we may still be able to apply Corollary 1 as opposed to the more complex
composition techniques of Sect. 4.

Theorem 2 (Fagin et al. 2010). Let M be a GLAV schema mapping. If M has a
chase-inverse, then M has a GAV chase-inverse.

We remark that other, more general notions of inverses exist that are not based
on the chase. The first notion of an “exact” inverse, capturing the case of no loss of
information, was introduced by Fagin [Fagin, 2007]. An exact inverse M™* of M
is a schema mapping M* satisfying the equation M o M* = Id where Id is the
“identity” GLAV schema mapping that maps each relation in a schema to a copy
of it. Subsequently, extended inverses [Fagin et al., 2009b] were introduced as an
extension of exact inverses that is able to handle instances with nulls (i.e., non-
ground instances). Without giving the exact definition of extended inverses here,
we point out that chase-inverses coincide with the extended inverses that are speci-
fied by GLAV constraints. Thus, from a practical point of view, chase-inverses are
important special cases of extended inverses, with good algorithmic properties.

We conclude this section with a corollary that summarizes the applications of
chase-inverses together with the earlier Corollary 1 to our schema evolution context.

Corollary 2. Let M, M’, and M" be schema mappings as in Fig.7.1 such that
M is a GAV mapping and M’ and M" are GLAV mappings. Assume that M" has
a chase-inverse, and let MT be a GAV chase-inverse of M. Then the mapping
MT o Mo M’ can be expressed as a GLAV mapping.

We note that a chase-inverse may not exist in general, since a schema mapping
may lose information and hence it may not be possible to find a chase-inverse. The
above corollary depends on the fact that the schema mapping M” has a chase-
inverse. In Sect. 5, we shall address the more general case where M” has no chase-
inverse.

7 Schema Mapping Evolution Through Composition and Inversion 205

The other important restriction in the above corollary is that the original schema
mapping M must be GAV and not GLAV. We shall lift this restriction in the next
section.

4 Composition: The Need for Second-Order TGDs

In this section, we discuss a more general schema mapping language as well as a
more general composition result that enables us, in particular, to handle the general
case of composing GLAV mappings. In particular, in our schema evolution context,
we show how to handle the case where M is a GLAV mapping instead of a GAV
mapping. We start by showing first that the composition M o M’ becomes challeng-
ing in such a case. We then illustrate the necessity of SO tgds [Fagin et al., 2005b]
as a more powerful language needed to express such a composition.

For this section, we shall consider a very simple scenario [Fagin et al., 2005b] that
is graphically illustrated in Fig. 7.3. In this scenario, the source schema S consists of
one relation Emp with a single attribute for employee id (eid). The target schema
T consists of one relation Reports that associates each employee with his/her
manager. In the target relation, mgr is itself an employee id (the employee id of the
manager). Assume that we have the following schema mapping that describes the
relationship between a database over S and a database over T:

M : Emp(e) — IM Reports(s, M)

Note that the above mapping is a very simple example of a LAV mapping that is not
a GAV mapping.

Let us assume that the target schema evolves to a new schema T’ consisting of
the two relations Manager and SelfMgr shown in Fig.7.3. Moreover, assume
that the evolution mapping from T to T’ is given by:

M’ : Reports(e,m) — Managexr(e,m)

Reports(e,e) - SelfMgr(e)

Schema S Schema T Schema T’

Manager

Report M’

Emp Feid

M

eid =mgr geiMgr

Fig. 7.3 A target evolution scenario that needs SO tgds

206 R. Fagin et al.

Thus, in the new schema, the relation Manager of T’ is intended to be a copy of
the relation Reports of T, while the relation Sel £Mgr is intended to contain all
employees who are their own managers, that is, employees for which the eid field
equals the mgr field in the relation Reports of T. Note that the evolution mapping
M’ is a GAV mapping.

To express the composition M o M’ for this example, it turns out that we cannot
use GLAV constraints. It is shown in Fagin et al. [2005b] that there is no (finite or
infinite) set of GLAV constraints that specifies M o M’. However, the following SO
tgd specifies the composition M o M’:

A f(Ve(Emp(e) — Manager(e, f(e)))
A Ve(Emp(e) A (e = f(e)) > SelfMgr(e))).

We will formally define SO tgds shortly. For now, we note that SO tgds strictly
include GLAV constraints and make essential use of function symbols. In par-
ticular, the above SO tgd uses a function symbol f and an equality e = f(e).
The use of both equalities and function symbols is, in general, necessary. As it
can be seen, the above SO tgd consists of two inner implications, Ve(Emp(e) —
Manager(e, f(e))) and Ve(Emp(e) A (e = f(e)) — SelfMgr(e)), which share
a universally quantified unary function symbol f. Intuitively, the first part of the SO
tgd states that every employee in Emp has a manager who is given by the value f(e).
The second part of the SO tgd states that if an employee e in Emp has a manager
equal to itself (i.e., ¢ = f(e)), then this employee must appear in the SelfMgr
relation in the target.

Next, we provide the precise definition of an SO tgd and give an informal descrip-
tion of the composition algorithm of Fagin et al. [2005b] that derives SO tgds such
as the above one. The definition of an SO tgd makes use of the concept of a term,
which we define first.

Given a collection x of variables and a collection f of function symbols, a term
(based on x and f) is defined inductively as follows:

1. Every variable in x is a term.
2. If f is a k-ary function symbol in f and 71, ..., #; are terms, then f(t,..., %)
is a term.

Definition 4. (Second-order tuple generating dependencies [Fagin et al., 2005b])
Let S be a source schema and T a target schema. A second-order tuple-generating
dependency (SO tgd) is a formula of the form:

H(Yx1(Pp1 = V1) Ao AR (P = Yn))),

where

1. Each member of f is a function symbol.
2. Each ¢; is a conjunction of

e Atomic formulas of the form S(y1, ..., yx), where S is a k-ary relation symbol
of schema S and yy, ..., yx are variables in X;, not necessarily distinct, and
e Equalities of the form ¢ = ¢/, where ¢ and ¢’ are terms based on x; and f.

7 Schema Mapping Evolution Through Composition and Inversion 207

3. Each ; is a conjunction of atomic formulas 7'(¢1, ..., #;), where T is an [-ary
relation symbol of schema T and ¢4, ..., #; are terms based on x; and f.
4. Each variable in x; appears in some atomic formula of ¢;.

Composition algorithm for SO tgds. We now illustrate the steps of the composition
algorithm using the schema mappings M and M’ in this section. For the complete
details of the algorithm, we refer the reader to Fagin et al. [2005b]. The first step of
the algorithm is to transform M and M’ into schema mappings that are specified
by SO tgds (if they are not already given as SO tgds). Each GLAV constraint can be
transformed into an SO tgd by skolemization, that is, by replacing each existentially
quantified variable by a Skolem term. For our example, we transform M into a
schema mapping specified by the following SO tgd:

A f(Ve(Emp(e) — Reports(e, f(e))))-

Here, f is an existentially quantified function and the term f'(e) replaces the earlier
existentially quantified variable M. The second mapping M’ needs no skolemiza-
tion since there are no existentially quantified variables. The corresponding SO tgd
for M’ is simply one with no existentially quantified functions and consisting of the
conjunction of the two constraints that specify M’.

After this, we initialize two sets, S and S’, to consist of all the implications of
the SO tgds in M and, respectively, M’.

S : Emp(eg) — Reports(eo, f(eo))
S’ : Reports(e,m) — Manager(e,m), Reports(e,e) — SelfMgr(e)

Observe that the existential quantifiers of function symbols as well as the universal
quantifiers in front of the implications are omitted, for convenience. Additionally,
we have renamed the variables in S so that they are disjoint from the variables used
in&’.

Next, for each implication in S’, we consider each relational atom on the left-
hand side of the implication and replace that atom based on all the implications
in S whose right-hand side have an atom with the same relation symbol. For our
example, we will replace Reports(e,m) of the first implication in S’ using the sole
implication in S, whose right-hand side also has a Reports atom. Replacement
proceeds by equating the terms in corresponding positions of Reports (eo, f (eo))
and Reports(e,m), and then adding the left-hand side of the implication in S. In
this case, we obtain the equalities e¢g = e and f(eg) = m and we add the relational
atom Emp(eg). Hence, the first implication of &’ becomes:

x1 : Emp(eg) A (eg =€) A (f(eg) = m) - Manager(e, m).
Similarly, the second implication of S3 becomes:

X2 : Emp(eg) A (eg =€) A (f(eg) = e) = SelfMgr(e).

208 R. Fagin et al.

The implications y; and y» can be simplified by replacing every occurrence of eq
with e (according to the equality eg = ¢). In addition, y; can be further simplified
by replacing m with f(e). We obtain:

x1: Emp(e) — Manager(e, f(e))
x2: Emp(e) A (f(e) = e) — SelfMgr(e).

At this point, the resulting implications describe a relationship between relation
symbols of S and relation symbols of T'. The final SO tgd that describes the com-
position M o M’ is obtained by adding all the needed universal quantifiers in front
of each implication and then by adding in all the existentially quantified functions
(at the beginning of the formula). For our example, we obtain:

Af (Ve y1 AVe y2).

The following theorem states that SO tgds suffice for composition of GLAV map-
pings. Moreover, SO tgds are closed under composition. Thus, we do not need to go
beyond SO tgds for purposes of composition.

Theorem 3 (Fagin et al. 2005b). Ler M and M’ be two consecutive schema
mappings.

1. If M and M’ are GLAYV, then M o M’ can be expressed by an SO tgd.
2. If M and M’ are SO tgds, then M o M’ can be expressed by an SO tgd.

Moreover, it is shown in Fagin et al. [2005b] that SO tgds form a minimal lan-
guage for the composition of GLAV mappings, in the sense that every schema
mapping specified by an SO tgd is the composition of a finite number of GLAV
schema mappings.

The above theorem has an immediate consequence in the context of target
schema evolution. As long as the original schema mapping M is GLAV or given
by an SO tgd, and as long as we represent the target evolution M’ by a similar type
of mapping, the new adapted mapping can be obtained by composition and can be
expressed as an SO tgd.

Additionally, the above theorem also applies in the context of source schema
evolution, provided that the source evolution mapping M” has a chase-inverse. We
summarize the applicability of Theorem 3 to the context of schema evolution as
follows.

Corollary 3. Let M, M’, and M" be schema mappings as in Fig.7.1 such that
M and M’ are SO tgds (or, in particular GLAV mappings) and M" is a GLAV
mapping. If M" has a chase-inverse M7, then the mapping M o M o M can be
expressed as an SO tgd.

The important remaining restriction in the above corollary is that the source
evolution mapping M” must have a chase-inverse and, in particular, that M” is
a lossless mapping. We address next the case where M” is lossy and, hence, a
chase-inverse does not exist.

7 Schema Mapping Evolution Through Composition and Inversion 209

5 The Case of Lossy Mappings

We have seen earlier that chase-inverses, when they exist, can be used to recover the
original source data either exactly, in the case of exact chase-inverses, or modulo
homomorphic equivalence, in general. However, chase-inverses do not always exist.
Intuitively, a schema mapping may drop some of the source information, by either
projecting or filtering the data, and hence it is not possible to recover the same
amount of information. In this section, we look at relaxations of chase-inverses,
which we call relaxed chase-inverses [Fagin et al., 2009b], and which are intended
for situations where there is information loss. Intuitively, a relaxed chase-inverse
recovers the original source data as well as possible.

5.1 Relaxed Chase-Inverses

We consider a variation of the scenario described in Fig.7.2. In this variation, the
evolved source schema S” is changed so that it no longer contains the ma jor field.
The new source evolution scenario is illustrated graphically in Fig. 7.4a. The source
evolution mapping M” is now given as:

M" . Takes(s,m, co) — IC (Takes” (s, C) A Course(C, co)).
The natural “inverse” that one would expect here is the following mapping:
M Takes”(s,c) A Coursel(c, co) — IM Takes(s, M, co).
First of all, it can be verified that M is not a chase-inverse for M”. In particular, if
we start with a source instance / for Takes where the source tuples contain some

constant values for the ma jor field, and then apply the chase with M” and then the
reverse chase with M7, we obtain another source instance U for Takes where the

a b
Schema S” Schema8§ e
M T |
Takes"

sid ~l. Takes v mt Takes (007, CS, CS101)
R = J = chasey(l)
: M”s ETﬂ?sre Takes" (007, c1, CS101) T
Course Course (c1, CS101) U = chasey+(J)
e 'g'c‘)’urse,. ' Takes (007, X, CS101)

Fig. 7.4 (a) A case where M” is a lossy mapping. (b) Recovery of an instance U such that
U <> M7 1

210 R. Fagin et al.

tuples have nulls in the ma j or position. Consequently, the resulting source instance
U cannot be homomorphically equivalent to the original source instance /. To give
a concrete example, consider the source instance / over the schema S that is shown
in Fig. 7.4b. If we apply the chase with M” on I, we obtain the instance J shown in
the same figure. Here, ¢ is a null that is assigned as the course id for CS101. If we
now apply M to J, we obtain another source instance U, where a null X is used
in place of a major.

As it can be seen, the recovered source instance U is not homomorphically equiv-
alent to the original source instance: there is a homomorphism from U to I, but no
homomorphism can map the constant CS in / to the null X in U. Intuitively, there
is information loss in the evolution mapping M, which does not export the major
field. Later on, in Sect. 5.2, we will show that in fact M” has no chase-inverse; thus,
we cannot recover a homomorphically equivalent source instance.

At the same time, it can be argued, intuitively, that the source instance U that is
recovered by M in this example is the “best” source instance that can be recovered,
given the circumstances. We will make this notion precise in the next paragraphs,
leading to the definition of a relaxed chase-inverse. In particular, we will show that
MT is a relaxed chase-inverse.

Data exchange equivalence. First, we observe that the source instance U that is
recovered by M contains all the information that has been present in the original
source instance I and has been exported by M”. Indeed, if we now apply the map-
ping M” on U, we obtain via the chase an instance that is the same as J modulo
null renaming (i.e., the chase may generate a different null ¢, instead of ¢y). Thus,
the following holds:

chasenr(U) <> chasepr (1),

where recall that <> denotes homomorphic equivalence of instances. Intuitively, the
above equivalence says that U is as good as / from the point of view of the data they
export via M”. Thus, intuitively, U and I are also equivalent, although in a weaker
sense. This weaker notion of equivalence is captured by the following definition,
which was first given in Fagin et al. [2008b].

Definition 5. Let M be a GLAV schema mapping from S; to S,. Let I and I’
be two instances over S;. We say that I and I’ are data exchange equivalent
with respect to M if chasea(I) < chasea(1”). We also write in such case that
1 <> M 1.

For our example, we have that U <> [I. At this point, we could take such a
condition (i.e., the recovery of an instance U that is data exchange equivalent to I)
to be the requirement for a relaxation of a chase-inverse. Such relaxation would be
consistent with the earlier notion of chase-inverse and lead into a natural hierarchy
of inverses. More precisely, if M is a GLAV schema mapping, then we could have
three types of chase-based inverses M™, which increasingly relax the equivalence
requirement between I and chase pq+ (chasep(1)):

1. I = chase+(chasep (1)) (exact chase-inverse)
2. I < chase = (chaser (1)) (chase-inverse)
3. I <> pq chase = (chasepq(1)).

7 Schema Mapping Evolution Through Composition and Inversion 211

Somewhat surprisingly, having just the third condition is too loose of a require-
ment for a good notion of a relaxation of a chase-inverse. As we show next, we need
to add an additional requirement of homomorphic containment.

Relaxed chase-inverse: Stronger requirement. We illustrate the need for the extra
condition by using our example. Refer again to the schema mapping M” in Fig. 7.4a
and the natural candidate inverse M introduced earlier. As shown in Fig. 7.4b,
given the source instance I, the mapping M recovers an instance U such that U
and [are data exchange equivalent with respect to M”. However, there can be many
other instances that are data exchange equivalent to / but intuitively are incorrect.
Consider, for example, the following instance:

U’ = {Takes(007,007, CS101)}

Like U, the instance U’ is data exchange equivalent to / with respect to M”. (The
only difference from U is in the major field, which is not used by the chase with
M") Furthermore, such instance U’ would be obtained if we use the following
“inverse” instead of MT:

MJ{ : Takes” (s, ¢) A Course(c, co) — Takes(s, s, co).

Intuitively, the instance U’ and the mapping MI are not what we would expect from
a natural inverse. In the instance U’, the sid value 007 is artificially copied into the
major field, and the resulting Takes fact represents extra information that did
not appear in the original source instance /. We can rule out bad “inverses” such
as MJ{ by requiring any recovered instance to also have a homomorphism into 7.
Intuitively, this is a soundness condition saying that the recovered instance does not
have extra facts that were not present in /. Note that the earlier instance U does
have a homomorphism into /.

Putting it all together, we now formally capture the two desiderata discussed
above (data exchange equivalence and homomorphic containment) into the follow-
ing definition of a relaxed chase-inverse.

Definition 6 (Relaxed chase-inverse). Let M be a GLAV schema mapping from a
schema S; to a schema S,. We say that M* is a relaxed chase-inverse of M if M*
is a GLAV schema mapping from S, to Sy such that, for every instance I/ over Sy,
the following properties hold for the instance U = chase nx (chasea(1)):

@ U<wml (data exchange equivalence w.r.t. M),
b)) U—1I (homomorphic containment).

The notion of relaxed chase-inverse originated in Fagin et al. [2009b], under the
name of universal-faithful inverse. The definition given in Fagin et al. [2009b] had,
however, a third condition called universality, which turned out to be redundant
(and equivalent to homomorphic containment). Thus, the formulation given here for
a relaxed chase-inverse is simpler.

212 R. Fagin et al.

Coming back to our example, it can be verified that the above M7 satisfies the
conditions of being a relaxed chase-inverse of M”, thus reflecting the intuition that
MT is a good “approximation” of an inverse in our scenario.

Since M is a GLAV mapping, we can now apply the composition of M with
Mo M’ to obtain an SO tgd that specifies MT o Mo M’. This SO tgd is the result of
adapting the original schema mapping M to the new schemas S” and T’. We leave
the full details to the reader.

5.2 More on Relaxed Chase-Inverses

It is fairly straightforward to see that every chase-inverse is also a relaxed chase-
inverse. This follows from a well-known property of the chase that implies that
whenever U <> [we also have that U <>, [I. Thus, the notion of relaxed
chase-inverse is a generalization of the notion of chase-inverse; in fact, it is a strict
generalization, since the schema mapping M in Sect. 5.1 is a relaxed chase-inverse
of M” but not a chase-inverse of M”. However, for schema mappings that have a
chase-inverse, the notions of a chase-inverse and of a relaxed chase-inverse coin-
cide, as stated in the following theorem, which can be derived from results in Fagin
et al. [2009b].

Theorem 4. Let M be a GLAV schema mapping from a schema S to a schema
S» that has a chase-inverse. Then the following statements are equivalent for every
GLAV schema mapping M* from S to Sy:

(i) M* is a chase-inverse of M.
(ii) M* is a relaxed chase-inverse of M.

As an immediate application of the preceding theorem, we conclude that the
schema mapping M” in Sect. 5.1 has no chase-inverse, because M is a relaxed
chase-inverse of M” but not a chase-inverse of M”.

In Sect.3.3, we pointed out that chase-inverses coincide with the extended
inverses that are specified by GLAV constraints. For schema mappings that have
no extended inverses, a further relaxation of the concept of an extended inverse
has been considered, namely, the concept of a maximum extended recovery [Fagin
et al., 2009b]. It follows from results established in Fagin et al. [2009b] that relaxed
chase-inverses coincide with the maximum extended recoveries that are specified by
GLAV constraints.

6 Implementations and Systems

In this section, we examine systems that implement composition and inversion and
apply them to the context of schema evolution. We do not attempt to give here a
complete survey of all the existing systems and implementations but rather focus

7 Schema Mapping Evolution Through Composition and Inversion 213

on two systems that are directly related to the concepts described earlier and also
targeted at schema evolution.

The first system that we will discuss is an implementation of mapping composi-
tion that is reported in Yu and Popa [2005] and is targeted at the mapping adaptation
problem in the context of schema evolution. This implementation is part of the Clio
system [Fagin et al., 2009a] and builds on the schema mapping framework of Clio.
In particular, it is focused on schema mappings that are expressed as SO tgds [Fagin
etal., 2005b]. A different implementation of mapping composition that is worth not-
ing, but which we do not discuss in detail in here, is the one reported in Bernstein
et al. [2008]. This system allows a schema mapping to contain not only source-to-
target constraints, but also target constraints, source constraints, and target-to-source
constraints. Furthermore, the focus is on expressing the composition as a first-order
formula (when possible). In this approach, a significant effort is spent on eliminating
second-order features (via deskolemization). As a result, the composition algorithm
is inherently complex and may not always succeed in finding a first-order formula,
even when one exists.

The second system that we will discuss in this section is a more recent one,
reported in Curino et al. [2008], and includes both composition and inversion as part
of a framework for schema evolution. This system is focused on the query migration
(or adaptation) problem in the context of schema evolution.

6.1 Mapping Composition and Evolution in Clio

The system described in Yu and Popa [2005] is part of the larger Clio system [Fagin
et al., 2009a] and is the first reported implementation of mapping composition in the
context of schema evolution. In this system, both source schema evolution and tar-
get schema evolution are described through mappings, which are given in the same
language as the original schema mapping (that is to be adapted). However, differ-
ently from the earlier diagram shown in Fig.7.1, the source evolution is required
to be given as a schema mapping from S” to S, and not from S to S”. (The latter
would, intuitively, be a more natural way to describe an evolution of S into S”.)
The main reason for this requirement is that the system described in Yu and Popa
[2005] preceded the work on mapping inversion. Thus, the only way to apply map-
ping composition techniques was to require that all mappings form a chain, as seen
in Fig. 7.5.

In the system implemented in Yu and Popa [2005], the schema mapping language
that is used to specify the input mappings (i.e., the original mapping M and the
evolution mappings M’ and M") are based on SO tgds [Fagin et al., 2005b]. One
reason for this choice is that, as discussed earlier, GLAV mappings are not closed
under composition, while SO tgds form a more expressive language that includes
GLAV mappings and, moreover, is closed under composition. Another reason is that
SO tgds, independently of mapping composition, include features that are desirable
for any schema mapping language. In particular, the Skolem terms that can be used

214 R. Fagin et al.

M M
—
Schema S Schema T M

K

M MoM’

Fig. 7.5 Using composition (only) in schema evolution

Schema S Schema T Schema T’

Student

,
|’ M Takes’
A major | e, ~ sid
~ name
course .| - Enrolled : .y course
T | sid
‘I~course-1"

Fig. 7.6 Example to illustrate SO tgd-based composition and minimization

in SO tgds enable a much finer control over the creation of new data values (e.g.,
ids) in the process of data exchange. We shall give such example shortly. A related
point is that the language used in Yu and Popa [2005] (and also in the larger Clio
system) is actually a nested relational extension of SO tgds that can handle XML
schemas and can be compiled into XQuery and XSLT. We will not elaborate on the
XML aspect here and refer the interested readers to either Haas et al. [2005] or Yu
and Popa [2005].

Another main ingredient of the system described in Yu and Popa [2005] is the
use of an operational semantics of mapping composition that is based on the chase.
Under this semantics, the composition algorithm needs to find an expression that
is chase-equivalent only, rather than logically equivalent, to the composition of the
two input mappings. (We define shortly what chase-equivalence means.) In turn, the
use of this chase-based semantics of composition enables syntactic minimization
of the outcome of mapping composition. For schema evolution, such minimization
is shown to be essential in making the outcome of mapping adaptation intuitive
(and presentable) from a user point of view. This is especially true for the larger
schemas that arise in practice, where the outcome of mapping composition (under
the general semantics) is complex, contains many self-joins, and it is generally hard
to understand.

To make the above ideas more concrete, consider the following schema evolu-
tion scenario depicted in Fig. 7.6. This scenario is a variation on the earlier schema
evolution scenario described in Fig. 7.2. In the new scenario, we focus on the target

7 Schema Mapping Evolution Through Composition and Inversion 215

schema evolution alone. Furthermore, there are several changes in the schemas as
well as the mappings. We assume that the source schema S consists of one rela-
tion Takes where instead of a student id (sid) we are given a student name
(name). However, the target schema T, consisting of the two relations Student
and Enrolled, still requires a student id that must relate the two relations. The
schema mapping that relates the two schemas is now given as the following SO tgd:

M 3f(Takes(n,m,co) — Student(f(n),n,m)
A Takes(n,m,co) — Enrolled(f(n),co))

In the above SO tgd, f is an existentially quantified Skolem function and, for
each student name n, the Skolem term f(n) represents the associated student id
that is used to populate both Student and Enrolled tuples. The use of such
Skolem terms offer fine control over the creation of target values. By changing the
parameters given to the Skolem function, one can change how the target values are
populated. For example, if we know that a student name does not uniquely identify
a student, but the student name together with the major does, then we can change
f(n) to f(n,m) to reflect such dependency.

Assume now that the target schema evolves to a new schema T’ that consists
of a single relation Takes’ that keeps the association between sid, name, and
course, while dropping the major. The target evolution can be described by the
following mapping:

M’ student(s,n,m) A Enrolled(s, co) — Takes'(s,n, co).

It can be verified that the composition of M and M’ is expressed by the following
SO tgd:

o: 3f(Takes(n,m,co) A Takes(n',m’,co’) A (f(n) = f(n'))
— Takes'(f(n'),n’,co))

This mapping is surprisingly complex, but still correct (i.e., o expresses M o M”).
It accounts for the fact that, given a source instance / over S and a target instance
J over T, two different student names n and n’ occurring in different tuples of 1
may relate to the same sid in J. In other words, the function f that is existentially
quantified by the original mapping M may have the property that f(n) = f(n')
for some distinct names 7 and n’. To account for such possibility, the composition
o includes a self-join on Takes and the test f(n) = f(n').

Minimization of SO tgds under chase-equivalence. If we now take the operational
view behind schema mappings, the above o can be drastically simplified. Under the
operational view, a mapping M does not describe an arbitrary relationship between
instances / and J over two schemas but rather a transformation which, given a
source instance I, generates the target instance J = chasen(I). We refer the
reader to Fagin et al. [2005b] for the definition of the chase with SO tgds. Here,

216 R. Fagin et al.

we point out that an important property of this chase is that it always generates
different values (nulls) for different arguments to the Skolem functions. Hence, for
our example, the equality f(n) = f(n’) can happen only if n = n’. As a result, the
above o reduces to the following SO tgd:

oo : 3f(Takes(n,m,co) — Takes'(f(n),n,co)).

The above SO tgd is much simpler and more intuitive than the earlier o. Just by
looking at the diagram in Fig. 7.6, one would expect the overall adapted mapping
from S to T’ to be as close as possible to an identity schema mapping. The SO tgd o9
accomplishes this desideratum while still incorporating the id generation behavior
via f(n) that is given in the original mapping M.

The reduction algorithm implemented in Yu and Popa [2005] systematically
replaces every equality between two Skolem terms with the same function sym-
bol by the equalities of their arguments, until all equalities that involve such Skolem
terms are eliminated. The algorithm also eliminates every implication where the
left-hand side contains an equality between two Skolem terms that use different
Skolem functions. Intuitively, such equalities cannot be satisfied during the chase;
hence, the implications that contain them can be dropped. Finally, the algorithm uses
conjunctive-query minimization [Chandra and Merlin, 1977] type of techniques to
eliminate any redundant relational atoms in the resulting mappings. For example,
in the above o, once we replace f(n) = f(n') with n = n’, the second Takes
atom becomes Takes(n,m’, co’); it can then be eliminated, since it is subsumed by
the first Takes atom, and neither m’ nor co’ is used in the right-hand side of the
implication.

The main observation behind this reduction algorithm is that its output SO tgd
(e.g., 09) is chase-equivalent to the input SO tgd (e.g., 0).

Definition 7. Let M and M be two schema mappings from S to T that are spec-
ified by SO tgds (or in particular by GLAV mappings). We say that M; and M,
are chase-equivalent if, for every source instance /, we have that chasep, (I) <
chaseq, (1).

Theorem 5 (Yu and Popa 2005). Every SO tgd o is chase-equivalent to its reduced
form oy.

We note that the above oy is not logically equivalent to the input o. In general, the
notion of chase-equivalence is a relaxation of the concept of logical equivalence. A
systematic study of relaxed notions of equivalence of schema mappings appeared
later in Fagin et al. [2008a]. For schema mappings specified by GLAV mappings or,
more generally, by SO tgds, the above notion of chase-equivalence turns out to be
the same as the notion of CQ-equivalence of schema mappings studied in Fagin et al.
[2008a]. There, two schema mappings M and M, are CQ-equivalent if for every
source instance I, the certain answers of a conjunctive query ¢ are the same under
both M; and M. For our example, the CQ-equivalence of oy and o is another
argument of why we can use o instead of .

7 Schema Mapping Evolution Through Composition and Inversion 217

We also note that oy represents a relaxation of the composition M o M’
(since o0y is chase-equivalent but not logically equivalent to o, which expresses
M o M"). Such relaxation of composition appears early in the work of Madhavan
and Halevy [Madhavan and Halevy, 2003].* The concept used there is based, implic-
itly, on CQ-equivalence; however, their results are limited to GLAV mappings,
which, in general, are not powerful enough to express composition (even under the
relaxed form) [Fagin et al., 2005b].

Since schemas can be quite large in practice, mapping composition as well as
mapping reduction can be expensive. Therefore, a great deal of the work in Yu and
Popa [2005] is spent on developing pruning techniques that identify the parts of a
schema mapping that are not affected by the changes in the schemas, and hence do
not need to be involved in the process of composition and reduction. We refer the
interested reader to Yu and Popa [2005] for more details on this.

6.2 The PRISM Workbench: Query Adaptation

The PRISM project, described in Curino et al. [2008], has the overall goal of
automating as much as possible the database administration work that is needed
when schemas evolve. Under this general umbrella, one of the main concrete goals
in PRISM is to support migration (or adaptation) of queries from old (legacy)
schemas to the new evolved schemas. Similar to the Clio-based schema evolution
system in Yu and Popa [2005], PRISM also uses schema mappings (although in a
restricted form) to describe the evolution of schemas. However, differently from the
Clio-based system, the focus in PRISM is not on mapping adaptation but on query
adaptation. More concretely, in the Clio-based system, we are given a schema map-
ping from S to T and the goal is to adapt it when either S or T changes, while
in PRISM we are given a query g over a schema S and the goal is to adapt it
when S changes. Because it is targeted at queries, PRISM makes prominent use
of query rewriting. In particular, it applies the chase and backchase algorithm intro-
duced in Deutsch et al. [1999] for query rewriting under constraints. Additionally,
PRISM also makes use of the schema mapping operations that we described ear-
lier (i.e., composition and inversion) to enable the application of the query rewriting
algorithm and to optimize its application.

We use Fig. 7.7 to illustrate the type of functionality that PRISM aims to achieve.
There, schema S represents an initial (legacy) schema that goes through several
steps of change, forming a schema evolution chain: from S to Sy, then to S,, and
so on. Each of the evolution steps can be described by a mapping. However, these
mappings are not arbitrary and must correspond to a set of predefined schema modi-
fication operations (SMOs) that allow only for certain type of schema modifications.
Examples of such modifications are: copying of a table, renaming of a table or of
a column, taking the union of two tables into one, decomposing a table into two,

“1In fact, that is how Madhavan and Halevy defined composition of schema mappings.

218 R. Fagin et al.

Query rewriting

Fig. 7.7 Schema evolution and query rewriting in PRISM

and others. These operations are chosen carefully so that they represent the most
common forms of schema evolution that arise in practice, but also to allow for invert-
ibility. More precisely, each of the evolution mappings that are allowed in PRISM
is guaranteed to have a quasi-inverse [Fagin et al., 2008b]. Thus, in Fig.7.7, M
is a quasi-inverse of M, and M), is a quasi-inverse of M. The main reason for
why each evolution mapping must have a reverse mapping is that the presence of
mappings in both directions (i.e., from S to Sy, and from S; to S) is essential for the
application of query reformulation algorithms, as we explain next.

More concretely, query reformulation in PRISM can be phrased as follows. We
are given a query g over the original schema S. We assume one step of evolution,
with mapping M from S to S; and reverse mapping M’ from S; to S. The problem
is to find a query ¢; over the schema S; such that g; is equivalent to g, where
equivalence is interpreted over the union S U Sg of the two schemas and where M/
and M} form constraints on the larger schema. In other words, we are looking for
a query ¢ to satisfy ¢(K) = ¢1(K), for every instance K over S U S; such that K
satisfies the union of the constraints in M7 and /\/l/1 In turn, this is an instance of
the general problem of query reformulation under constraints [Deutsch et al., 2006],
which can be solved by the chase and backchase method [Deutsch et al., 1999].
The application of the chase and backchase method in this context consists of, first,
applying the chase on ¢ with the constraints in M, and then on applying the (back)
chase with the reverse constraints in M} to find equivalent rewritings of g.

Before we concretely illustrate on an example the application of the chase and
backchase in the PRISM context, we need to point out that for multiple evolution
steps, the query reformulation problem needs to take into account all the direct and
reverse mappings alongs the chain (e.g., M, M,, M/, and M/, for two evolu-
tion steps). Thus, as the evolution chain becomes longer, the number of constraints
involved in query reformulation becomes larger. To reduce the number of constraints
needed for rewriting, PRISM makes repeated use of composition to replace two
consecutive schema mappings by one schema mapping. Since PRISM restricts map-
pings such as M and M to always be GAV schema mappings, the composition
M o M can also be expressed as a GAV mapping (see our earlier Theorem 1,

7 Schema Mapping Evolution Through Composition and Inversion 219

Schema S Schema S,
Student
Takes
sid
major -
course -
. Enrolled
tsid e
q(s,c) - Takes(s,“CS”,c) [~ course

Fig. 7.8 Example of schema evolution with a query to be rewritten

part 1). The same cannot be done for the reverse schema mappings (e.g., M
and M), which are quasi-inverses of the direct mappings, and require in general
a more complex language that includes disjunction (see Fagin et al. 2008b). The
exact language in which to express composition of such schema mappings (i.e.,
with disjunction) is an open research problem.

To make the above ideas more concrete, consider the following schema evolution
example shown in Fig. 7.8. This example is based on two of our earlier schemas (see
S and T in Fig.7.2). Here, the schema S represents the “old” schema, which then
evolves into a “new” schema S;. The evolution step from S to S; can be described
by one of the SMOs that the PRISM workbench allows. In particular, this evolution
step is an application of the Decompose operator where the table Takes is split
into two tables Student and Enrolled that share the common attribute sid.
The application of the Decompose operator in this case can be represented by
the following GAV mapping (this is the same as the earlier M in Sect. 3):

M : Takes(s,m,co) — Student(s,m)

Takes(s,m, co) — Enrolled(s, co).

Assume now that we have a legacy query ¢ that is formulated in terms of the old
schema. This query, shown in Fig. 7.8, retrieves all pairs of student id and course,
where the major is “CS.” The goal is to adapt, via query rewriting, the query ¢ into
a new query ¢, that is formulated in terms of the new schema Sy and is equivalent
togq.

The first step is to retrieve a quasi-inverse M/ of M. As mentioned earlier, each
evolution step in PRISM is an instance of one of the predetermined SMOs. Thus, a
quasi-inverse always exists and can be chosen by the system or by the user. In this
case, the following is a quasi-inverse of M:

M : student(s,m) A Enrolled(s, co) — Takes(s,m, co).
The next step is to apply the chase and backchase algorithm to find rewritings of ¢

that are equivalent given the union of the constraints in M, and M. The following
query over schema S;j is such an equivalent rewriting and will be returned by the

220 R. Fagin et al.

chase and backchase algorithm.
q1(s,c) : — Student(s,“CS”) A Enrolled(s,c).

The above quasi-inverse M also happens to be a chase-inverse of M. In general,
however, quasi-inverses differ from chase-inverses (or relaxed chase-inverses), and
one may find quasi-inverses with nonintuitive behavior (e.g., a quasi-inverse that
is not a chase-inverse, even when a chase-inverse exists). We note that the PRISM
development preceded the development of chase-inverses or relaxed chase-inverses.

We also remark that the language needed to express quasi-inverses requires dis-
junction. As a result, PRISM uses an extension of the chase and backchase algorithm
that is able to handle disjunctive dependencies; this extension was developed as part
of MARS [Deutsch and Tannen, 2003]. Finally, we note that we may not always
succeed in finding equivalent reformulations, depending on the input query, the evo-
lution mappings and also on the quasi-inverses that are chosen. Hence, PRISM must
still rely on a human DBA to solve exceptions.

7 Other Related Work

We have emphasized in this paper the operational view of schema evolution, where
a schema mapping M is viewed as a transformation, which given an instance /
produces chaseq(I). Under this view, we have emphasized two types of opera-
tional inverses: the chase-inverse (with its exact variation), which corresponds to
the absence of information loss, and the relaxed chase-inverse, which is designed for
the case of information loss. However, there is quite a lot of additional (and related)
work on mapping inversion that studies more general, nonoperational notions of
inverses. These notions can be categorized into three main notions: inverses [Fagin,
2007], quasi-inverses [Fagin et al., 2008b], and maximum recoveries [Arenas et al.,
2008].

Most of the technical development on inverses, quasi-inverses, and maximum
recoveries was originally focused on the case when the source instances were
assumed to contain no nulls, that is, they were assumed to be ground. However,
in practice, such an assumption is not realistic, since an instance with nulls can
easily arise as the result of another schema mapping. This is especially true in
schema evolution scenarios, where we can have chains of mappings describing
the various evolution steps. To uniformly deal with the case where instances can
have nulls, the notions of inverses and of maximum recoveries were extended
in Fagin et al. [2009b] by systematically making use of the notion of homomorphism
between instances with nulls as a replacement for the more standard containment of
instances. In addition to their benefit in dealing with nonground instances, it turns
out that the two extended notions, namely extended inverses and maximum extended
recoveries, have the operational counterpart that we want. More concretely, when M
is a GLAV mapping, we have that: (1) extended inverses that are also expressed as
GLAV mappings coincide with chase-inverses, and (2) maximum extended recover-

7 Schema Mapping Evolution Through Composition and Inversion 221

ies that are also expressed as GLAV mappings coincide with relaxed chase-inverses
(Note that extended inverses and maximum extended recoveries, or any of the
other semantic notions of inverses, need not be expressible as GLAV mappings,
in general). This correspondence between two very general semantic notions, on
the one hand, and two procedural and practical notions of inverses, on the other, is
interesting in itself.

Finally, we note that there are certain limitations to what composition and inver-
sion can achieve in the context of schema evolution. For example, if we refer back
to Fig. 7.1, it is conceivable that the composition M o M’ does not always give the
“complete” mapping from S to T’. Instead, the “complete” mapping from S to T’
may require merging the schema mapping M o M’ with an additional mapping that
relates directly S to T’. Such additional mapping may be defined separately by a user
to account for, say, a schema element that occurs in both S and T but does not occur
in T. The operation of merging two schema mappings appears in the model man-
agement framework [Melnik et al., 2005] under the term Confluence; a more refined
version of merge, together with an algorithm for it, appears in Alexe et al. [2010].

8 Concluding Remarks

In this chapter, we illustrated how the composition operator and the inverse operator
on schema mappings can be applied to schema evolution. The techniques presented
here rely on the existence of chase-inverses or relaxed chase-inverses, which, in
particular, are required to be specified by GLAV constraints. Much more remains
to be done in the study of schema mappings for which no relaxed chase-inverse
exists. In this direction, research issues include: (1) What is the exact language for
expressing maximum extended recoveries? (2) How does this language compose
with SO tgds? (3) What do inverses of SO tgds look like? More broadly, is there a
unifying schema-mapping language that is closed under both composition and the
various flavors of inverses, and, additionally, has good algorithmic properties?

Acknowledgements The authors thank Erhard Rahm for reading an earlier version of this chapter
and providing valuable feedback. The research of Kolaitis and Tan is supported by NSF grant IIS-
0430994 and NSF grant 11S-0905276. Tan is also supported by NSF CAREER award I1S-0347065.

References

Alexe B, Hernandez MA, Popa L, Tan WC (2010) MapMerge: Correlating independent schema
mappings. In: PVLDB, vol 3(1), pp 81-92

Arenas M, Pérez J, Riveros C (2008) The recovery of a schema mapping: Bringing exchanged data
back. In: PODS. ACM, NY, pp 13-22

Bernstein PA (2003) Applying model management to classical meta-data problems. In: Conference
on innovative data systems research (CIDR), Asilomar, CA, pp 209-220

Bernstein PA, Green TJ, Melnik S, Nash A (2008) Implementing mapping composition. VLDB J
17(2):333-353

222 R. Fagin et al.

Chandra AK, Merlin PM (1977) Optimal implementation of conjunctive queries in relational data
bases. In: ACM symposium on theory of computing (STOC). ACM, NY, pp 77-90

Curino C, Moon HIJ, Zaniolo C (2008) Graceful database schema evolution: The PRISM
workbench. PVLDB 1(1):761-772

Deutsch A, Tannen V (2003) MARS: A system for publishing XML from mixed and redundant
storage. In: International conference on very large data bases (VLDB). VLDB Endowment,
pp 201-212

Deutsch A, Popa L, Tannen V (1999) Physical data independence, constraints and optimization
with universal plans. In: International conference on very large data bases (VLDB). Morgan
Kaufmann, CA, pp 459-470

Deutsch A, Popa L, Tannen V (2006) Query reformulation with constraints. SIGMOD Rec
35(1):65-73

Fagin R (2007) Inverting schema mappings. ACM Trans Database Syst (TODS) 32(4), Article
No. 11

Fagin R, Kolaitis PG, Popa L, Tan WC (2004) Composing schema mappings: Second-order depen-
dencies to the rescue. In: ACM symposium on principles of database systems (PODS). ACM,
NY, pp 83-94

Fagin R, Kolaitis PG, Miller RJ, Popa L (2005a) Data exchange: Semantics and query answering.
Theor Comput Sci (TCS) 336(1):89-124

Fagin R, Kolaitis PG, Popa L, Tan WC (2005b) Composing schema mappings: Second-order
dependencies to the rescue. ACM Trans Database Syst (TODS) 30(4):994-1055

Fagin R, Kolaitis PG, Nash A, Popa L (2008a) Towards a theory of schema-mapping optimization.
In: ACM symposium on principles of database systems (PODS). ACM, NY, pp 3342

Fagin R, Kolaitis PG, Popa L, Tan WC (2008b) Quasi-inverses of schema mappings. ACM Trans
Database Syst (TODS) 33(2), Article No. 11

Fagin R, Haas LM, Herndndez MA, Miller RJ, Popa L, Velegrakis Y (2009a) Clio: Schema
mapping creation and data exchange. In: Conceptual modeling: Foundations and applications,
Essays in Honor of John Mylopoulos. Springer, Heidelberg, pp 198-236

Fagin R, Kolaitis PG, Popa L, Tan WC (2009b) Reverse data exchange: Coping with nulls. In:
ACM symposium on principles of database systems (PODS). ACM, NY, pp 23-32

Fagin R, Kolaitis PG, Popa L, Tan WC (2010) Reverse data exchange: Coping with nulls. In: ACM
symposium on principles of database systems (PODS). ACM, NY, pp 23-32

Haas LM, Herndandez MA, Ho H, Popa L, Roth M (2005) Clio grows up: From research prototype
to industrial tool. In: SIGMOD. ACM, NY, pp 805-810

Hartung M, Terwilliger J, Rahm E (2011) Recent advances in schema and ontology evolution. In:
Bellahsene Z, Bonifati A, Rahm E (eds) Schema matching and mapping. Data-Centric Systems
and Applications Series. Springer, Heidelberg

Lenzerini M (2002) Data integration: A theoretical perspective. In: ACM symposium on principles
of database systems (PODS). ACM, NY, pp 233-246

Madhavan J, Halevy AY (2003) Composing mappings among data sources. In: International
conference on very large data bases (VLDB). VLDB Endowment, pp 572-583

Melnik S (2004) Generic model management: Concepts and algorithms. Lecture Notes in
Computer Science, vol 2967. Springer, Heidelberg

Melnik S, Bernstein PA, Halevy A, Rahm E (2005) Applying model management to executable
mappings. In: SIGMOD, ACM, NY, pp 167-178

Nash A, Bernstein PA, Melnik S (2005) Composition of mappings given by embedded depen-
dencies. In: ACM symposium on principles of database systems (PODS). ACM, NY,
pp 172-183

Shu NC, Housel BC, Taylor RW, Ghosh SP, Lum VY (1977) EXPRESS: A data extraction,
processing, amd restructuring system. ACM Trans Database Syst (TODS) 2(2):134-174

Velegrakis Y, Miller RJ, Popa L (2003) Mapping adaptation under evolving schemas. In:
International conference on very large data bases (VLDB). VLDB Endowment, pp 584-595

Yu C, Popa L (2005) Semantic adaptation of schema mappings when schemas evolve. In: VLDB.
VLDB Endowment, pp 1006-1017

Chapter 8
Mapping-Based Merging of Schemas

Rachel Pottinger

Abstract Merging schemas or other structured data occur in many different data
models and applications, including merging ontologies, view integration, data inte-
gration, and computer supported collaborative work. This paper describes some of
the key works in merging schemas and discusses some of the commonalities and
differences.

1 Introduction

Schemas, ontologies and other related structures commonly need to be merged
in a number of different applications. This happens for a number of reasons. For
example:

View integration: Different users have their own aspects of a common application
that they are interested in. For example, in creating a database for a university,
the registrar has a different view from a professor, and both have different views
from a student. In view integration, each user group creates its own “view” of
what should be in the schema and then these different views are combined to
create one global schema in which the data is stored.

Data integration: ~ Users may want to query over multiple databases. For exam-
ple, a BioMedical researcher may want to query both HUGO and OMIM for
information on genes, and then use the gene information to query SwissProt for
which proteins those genes encode. Because the researcher does not want to learn
each of the schemas, and yet creating a warehouse of the entire set of databases is
infeasible because of size and access restrictions, the user would like to just query
one schema once and have the system figure out how to translate the queries over
the sources. Such a system is called a data integration system.

R. Pottinger
University of British Columbia, 201-2366 Main Mall, Vancouver, BC, Canada V6T 174
e-mail: rap@cs.ubc.ca

Z. Bellahsene et al. (eds.), Schema Matching and Mapping, Data-Centric Systems 223
and Applications, DOI 10.1007/978-3-642-16518-4_8,
(© Springer-Verlag Berlin Heidelberg 2011

rap@cs.ubc.ca

224 R. Pottinger

Merging ontologies: ~ An ontology describes the concepts in a domain and the
relationships between those concepts [Fikes, 1996]. Ontologies are a common-
place in varied domains such as anatomy and civil engineering. Often a domain
has more than one “standard” ontology for the same general concepts. For
example, the foundational model of anatomy (FMA) [Rosse et al., 1998] is
designed to model anatomy in great detail, whereas the Galen Common Ref-
erence Model [Rector et al., 1994] is designed to model anatomy for clinical
applications. Because these two ontologies serve different communities, they
have different concepts even though the domain is roughly the same. Merging
the two ontologies would allow users to understand how all the concepts are
related.

All of these applications have the same problem: given the two or more struc-
tured representations of data — which we often refer to as models [Bernstein et al.,
2000] — combine the models to form one unified representation. These applications
may also seek to create the mappings between the unified version and the input
smaller schemas/ontologies. Many different works have looked at these different
problems, both alone and in consort. This paper surveys some of the works in this
area. In particular, Sect.2 begins by describing a number of theoretical works that
are relevant for multiple merging situations. Section 3 looks at works on view inte-
gration. Section 4 looks at work on data integration. Section 5 looks at work on
merging ontologies. Section 6 looks at generic approaches for merging structured
data representations. Section 7 surveys work on a variation of the problem: the data
to be merged has been modified from a common ancestor and now the changes
must be incorporated together. This variation is common both in file systems and
in computer supportive collaborative work. Section 8 discusses commonalities and
differences. Finally, Sect. 9 concludes.

Throughout this paper, we assume that the relationships between the schemas
have already been created; this is beyond the scope of the paper. Interested readers
in creating mappings are referred to existing surveys [Rahm and Bernstein, 2001,
Doan and Halevy, 2004].

2 Theoretical Underpinnings

2.1 Information Capacity

The key notion of information capacity [Hull, 1984] is that when comparing two
schemas E and G, one can consider how much of the data in E can be accessed
using G and vice versa.

Miller et al. [1993] study which properties of information capacity are required
for both data integration and view integration. The key to understanding the require-
ments is the definitions of equivalence and dominance:

To be information capacity preserving, a mapping [(S1) — 1(S2) must be defined
on every element in S1 and functional in both directions. If so, then S2 dominates

8 Mapping-Based Merging of Schemas 225

S1, denoted S1 < S2. If S1 < S2 and S2 < S1, then S1 and S2 are equivalent,
denoted S2 = S1, and | is an equivalence preserving mapping. Informally, this
means that if S1 dominates S2, then it is possible to retrieve all the information from
S2 by accessing S1; if the two are equivalent, one can get all the information from
S2 by querying S1 and one can get all the information from S1 by querying S2.

Miller et al. show that in data integration, querying the source schemas from
the integrated views requires that the integrated schema dominates the union of
local schemas. In view integration, querying the integrated schema through the user
views requires that the union of user views dominates the integrated schema. This
notion of completeness in creating a merged or mediated schema is common, not
just for information capacity but in other generic merging algorithms such as the
specification by Buneman et al. [1992].

Ontology merging algorithms often use notions of completeness as well. How-
ever, ontology merging algorithms do not use information capacity as a basis for
comparison since ontologies often lack data. Instead, they check to ensure that all
concepts from the input ontologies appear in the merged ontology.

2.2 Instance-Level Constraints and Schema Merging

One natural question when examining work on merging schemas is how to deal
with instance-level constraints such as key constraints and foreign keys. Unfortu-
nately, as shown in Convent [1986] merging schemas is undecidable as soon as
instance-level constraints are considered, even with a very simple representation of
schemas. While Convent [1986] specifically considers relational view integration
where the integrity constraints are keys and foreign keys, it generalizes to other
schema merging areas as well.

Convent [1986] concentrates primarily on what it means to have incompatible
constraints. Informally, this means that if users are trying to integrate views, then
for each user’s view, it should be possible to access those instances from the global
schema — note that this is very similar to the information capacity requirement laid
out in Sect.2.1 by Miller et al. [1993]. Unfortunately, Convent [1986] shows that
having incompatible constraints is undecidable even in this very basic case. Because
of this early undecidability result, schema merging works typically do not consider
instance-level constraints.

3 View Integration

As mentioned in Sect. 1, view integration is the problem of integrating the views/
requirements that different users have of a schema, and then creating one global
schema. Typically, this global schema is one in which the data is actually stored.
Some systems may also allow the existing user views to persist, and then mappings

226 R. Pottinger

may be created from the user views to the global schema where the data is stored.
This problem has been studied for quite some time, and is the subject of an early
survey [Batini et al., 1986]. Batini et al. [1986] categorizes view integration work as
taking one or more of the following steps:

Preintegration: Deciding which schemas to be integrated, in which order the inte-
gration should occur, and various preferences (e.g., if one of the schemas is
“preferred” over the other).

Comparison of the schemas: Determining the correspondences and detecting the
possible conflicts. In this context, a conflict is when a concept is represented
differently in the input schemas. For example, a simple conflict might be that
there is an attribute “Last Name” in one schema that is represented by an attribute
“LName” in another schema.

Conforming the schemas: resolving the conflicts between the schemas; the
authors note that automatic resolution is not typically possible in schema
conformation.

Merging and restructuring: Now that the schemas are ready to be superimposed,
how should they be combined? Batini et al. [1986] offers the following qualitative
criteria to decide on the “correctness” of the merged schema:

e Completeness and correctness
e Minimality
e Understandability

These criteria are seen again and again in a number of different guises throughout
the schema merging literature. As far as schema merging is concerned, this catego-
rization is the main contribution of Batini, Lenzerini, and Navathe’s paper; the bulk
of the remainder is concentrated on matching. Again, matching (i.e., determining
what concepts in one schema are related to the concepts in another schema) is out-
side the scope of this paper and is surveyed in existing surveys (e.g., Rahm and
Bernstein 2001, Doan and Halevy 2004, Rahm 2011) (see also Chap. 2). Our work
focuses on the “merging and restructuring.”

The view integration problem was subsequently studied in many areas, including
ER diagrams [Song et al., 1996, Lee and Ling, 2003], XML [Beeri and Milo, 1999,
Tufte and Maier, 2001, Yang et al., 2003], semi-structured data [Bergamaschi et al.,
1999], relational and object-oriented databases [Larson et al., 1989, Shu et al., 1975,
Biskup and Convent, 1986, Navathe and Gadgil, 1982, Shoval and Zohn, 1991], and
others. The remainder of this section details a few of the schema merging algorithms
in the context of view integration.

3.1 Biskup and Convent

Biskup and Convent [1986] define a formal language for view integration and then
proceed to integrate based on that language. This fairly early work provides a list of
details need to be provided to create a view integration system:

8 Mapping-Based Merging of Schemas 227

e The data model.

e A language specifying the constraints of how the schemas are related. In this
case, the authors use a variation on relational algebra. The precise constraints
that are considered are described below.

e A formalization of conflicts. As in Batini, Lenzerini, and Navathe’s work, a con-
flict is when a concept is represented differently in the input schemas (e.g., two
corresponding attributes being called “Last Name” and “Lname”).

e Some explanation of when the global schema will provide all the information
that the users require (i.e., is it complete).

e A formal definition based on the concepts above.

After taking these items as input, the authors produce a global schema that meets
those requirements, along with mappings that relate the global schema to the source
schemas. The mappings between the views and the global schema are essentially
the same as the language used to represent the constraints between the views for
most of the constraints given. However, while the algorithm details what the global
schema should be, and an example shows what the view to global schema mapping
would look like, there is no algorithm given for creating the view to global schema
mapping.

A key facet of their approach is that their constraints can only exist between
single relationships. They also assume that each attribute can be related to a single
other attribute. The set of constraints that they consider is entirely instancebased.
These three restrictions combine to result in a fairly straightforward merge. Despite
these limitations, the paper is a large step forward, largely to the overall framework.
Informally, the constraints that they consider are:

o Identity constraints — the key of one relation is the same as the key of another
relation, and their instances are the same.

e Selection constraints — the key of one relation is the same as the key of another
relation. The instances of the key of one relation can be expressed as a selection
of the instances of the key on the other relation.

¢ Disjoint constraints — the key of one relation is the same as the key of another
relation. The instances of the keys are disjoint.

e Containment constraint — the key of one relation is the same as the key of another
relation. The instance of one key is a subset of the instances of another relation.
This relationship is like the selection constraint, but not easily quantifiable.

Unsurprisingly, given that one of the authors is also an author of the work on the
undecidability of constraints in Sect. 2.2, they do not consider the case of conflicting
constraints.

The desired result is a global schema, G, that fits two criteria, both based
on Atzeni et al. [1982] notion of “weakly included.” In particular, it must be that:

e G can be queried using only relational algebra and exactly the same view
definitions will be retrieved.
e G is minimal — nothing that exists outside of the initial views is stored in G.

228 R. Pottinger

The first of these is similar to Hull’s notion of maintaining information capac-
ity [Hull, 1984]; the second is one of the requirements in Batini et al. [1986].

Based on these requirements, the outcome of the merge is a set of relations, where
each of the relations of the first three types of constraints (i.e., all but containment
constraints) mean that the relations are combined, with all of their attributes present
in the global schema. For containment constraints, the two relations are left separate,
since there can be no way of determining what relational algebra operator to use.

3.2 Casanova and Vidal

Casanova and Vidal [1983] describe a method for performing view integration. In
particular, they break the problem into two parts: combination and optimization.

The combination phase consists of gathering all of the views, as well as deter-
mining the dependencies between schemas. The optimization phase concentrates
on both minimizing the schema and reducing redundancy. They concentrate on the
optimization phase, which is akin to the problem considered in semantic merge.

The kinds of dependencies that they consider are, as in Biskup and Convent
[1986], instance based. They consider the following dependency types:

¢ Functional dependencies

¢ An inclusion dependency says that one relation contains a subset of the tuples in
another

¢ An exclusion dependency says that the instances of a relation are disjoint.

e A union functional dependency essentially allows functional dependencies to be
declared valid across different schemas

The authors show that in general trying to optimize an integration with the above
dependencies is intractable, so they concentrate on a limited subset of schemas.
Essentially, these restrictions limit where the different kinds of dependencies can be
applied, as well as assuming that the schemas are already in Boyce Codd Normal
Form (BCNF).

Their goal is to create an optimization that is minimal in size, and also removes
redundancy. They also want to ensure that any consistent state of the initial schema
can be mapped into a consistent state of the transformed schema and vice versa —
a notion very similar to the idea of completeness. To achieve these goals, their
transformation removes many inclusion dependencies or union functional depen-
dencies (since they may be a source of redundancy), as well as vacuous exclusion
dependencies.

They provide an algorithm that will perform the optimization for the limited
cases. Note that their algorithm creates the unified schema, but does not create the
mapping from the unified schema to the initial views.

There are a number of other schema merging works in the view integration
domain around this period, including Shoval and Zohn [1991] and Navathe and
Gadgil [1982]. Generally, these works build on approximately the same foundation:
define what it means to merge and what it means for there to be a conflict. Most

8 Mapping-Based Merging of Schemas 229

of these works assume that conflict resolution will be fully automatic. Additionally,
most of these works assume that there is no structural conflict (e.g., that a merged
column should belong to two different tables). This kind of more complex conflict
resolution is explored more fully in the next section.

3.3 Spaccapietra and Parent

Spaccapietra and Parent [1994] work in the context of ERC+ [Spaccapietra et al.,
1992], which extends an early version of entity relationship diagrams [Chen, 1976].
In ERC+, there are three basic types of objects: attributes, entities, and relation-
ships. While there are differences between ERC+ and Chen’s original ER diagram,
for the purposes of this paper, the primary difference is that ERC+ allows complex
attributes (i.e., attributes can have subattributes) (Fig. 8.1).

Spaccapietra and Parent assume that the matching or aligning work has already
been completed by the database administrator or some view integration tool. Their
method for merging the data once these mappings (based on Superviews [Motro,
1987]) have been created is fully automatic. However, this is at least partially pos-
sible because the authors do not consider constraints or ordering of any type, thus
avoiding the undecidability result of Sect. 2.2.

Spaccapietra and Parent [1994] concentrates on rules for view integration, and
the merging algorithm that uses them. They have two overriding principles: (1) inte-
gration rules should apply to both objects and the links between them, and (2) if
there is a choice to be made, they choose the least restrictive option. According to
these principles, they have created 6 integration rules that can be combined for their
merging algorithm. The rules, as named by Spaccapietra and Parent, are:

1. Elements integration rule: For any two matching elements that are not of the
same type, the resulting element is an entity type. If the two matching types are

Student Class

AN

Ugrad Grad

Name

SAT Score Office

Verbal Math

Fig. 8.1 Anexample ERC+ diagram. The entities are represented by rectangles, the relationships
are represented by diamonds, and attributes are represented by plain text

230 R. Pottinger

not attributes and are of the same type, then the resulting element is of the original
type.

2. Links integration rule: For any pair of elements that are matched to each other,
if the elements are of the same type, then the links between them are of the same
type.

3. Paths integration rule: If there is a direct path between two nonattribute elements
in one model and an equivalent indirect path in the other model, choose the indi-
rect path. The reason for this is that the indirect path contains more information,
and the direct path can always be inferred from the indirect path.

4. Integration of attributes of corresponding elements: For elements that are already
integrated, if each attribute pair in the original diagrams match, add the attributes
to the resulting schema.

5. Attributes with path integration rule: If there is a direct path between an element
and an attribute in one model and an indirect path between the corresponding
pair in the other model, choose the indirect path.

6. Add rule for elements and links without correspondent: Add all elements that
exist in one model and not in the other.

At a high level, their algorithm first merges the nonattribute elements, then
merges the paths, and finally merges the attributes. The full algorithm is described
in Spaccapietra and Parent [1994].

This work is notable because it marks a departure of focus from the existing
literature: it concentrates on the fact that type information may conflict (rules 1 and
2) as well as the fact that some relationships that exist explicitly in the input schemas
can be represented implicitly in the resulting schema (rules 3 and 5). This use of
implicit relationships is featured prominently in later work, particularly in generic
schema merging (Sect. 6). It is probably not a coincidence that this work, like the
generic work, is not based in the relational model: the more direct representation
of relationships between schema elements allows the authors to deal with complex
relationships without running into the undecidability result in Convent [1986].

3.4 Rosenthal and Reiner

A contemporary work with Spaccapietra and Parent [1994] is The Database Design
and Evaluation Workbench [Rosenthal and Reiner, 1994]. The workbench allows
users to manipulate schemas, including combining multiple views into one schema.
Their ER-based system largely focuses on “rearrangements,” which transform the
input but leave the content “equivalent” to the input. The primary transformations
that they considered were:

e Duplicating the attributes of an entity to propagate to related entities, or alter-
nately removing duplication if necessary.
e Simplifying relationships by decomposing them into two simpler relationships.

8 Mapping-Based Merging of Schemas 231

¢ Inferring constraints from existing constraints, or alternately removing duplicate
constraints.
e Creating keys.

The definition of equivalent, while different in a few details, is very similar to the
notion of information capacity in Sect.2.1. One scenario that they tackle is that of
view integration. The authors state that their goals are much more pragmatic than
some of the existing work; as previously discussed [Batini et al., 1986, Biskup and
Convent, 1986, Casanova and Vidal, 1983], take a more theoretical approach. As
such, Rosenthal and Reiner concentrate on a usable tool: they only detect homonyms
and synonyms, and such conflicts are presented to the user for resolution. They then
perform a duplicate removing union between the two schemas. No mappings are
created between the schemas.

These works represent the type of focus on schema merging present in the
more recent view integration literature. After this point, more of the database
research in schema merging came from data integration (Sect. 4) and generic schema
management (Sect. 6).

4 Data Integration

As motivated in the introduction, in data integration, there exists a set of hetero-
geneous, independent sources that contain related data. To have these sources be
queried efficiently, a mediated schema can be created. Because these sources are
independent, heterogeneous, and often change rapidly, it is not possible to then
import all of the data into the mediated schema. Instead, the users query the medi-
ated schema, and then the system translates the queries over the mediated schema
into queries over the sources.

While much of the time this mediated schema is created manually, there exist a
number of works that discuss creating the mediated schema based on the sources.

4.1 Data Warehousing

DWAQ is a system for creating a data warehouse from the sources [Calvanese et al.,
1999]. Calvanese et al. [2001] focuses on the data integration aspects of DWQ. This
paper describes their system on how to use data integration in data warehousing.
One issue with building a data warehouse is that it often has to be highly tuned for
the specific queries; e.g., one might want to have a star schema (i.e., a base “fact”
table from which various dimensions measuring things such as time and location
radiate) for the data warehouse instead of whatever format just happens to be the
merged result of the sources.

232 R. Pottinger

Their solution is to create a conceptual model, which “corresponds roughly to
the notion of integrated conceptual schema in the traditional approaches to schema
integration.”

They consider that both the data warehouse and the source schema are views
over the conceptual schema (i.e., local-as-view (LAV) [Vijayaraman et al., 1996]).
As mappings they use “adorned queries,” where the adornment is an annotation on
the variables in the query; these are referred to as Reconciliation Correspondences.
In particular, they consider three types of Reconciliation Correspondences: Con-
version, Matching, and Merging Correspondences. Conversion Correspondences
make data level transformations between the same real world objects. For example,
one might use a Conversion Correspondence to translate between income defined
monthly and income defined yearly. Matching Correspondences specify the match-
ing. The Merging Correspondences show how to merge the data based on the
existing Conversion and Matching Correspondences; they consist largely of calls
to the Conversion and Matching Correspondences.

4.2 Pottinger and Bernstein

The authors of Pottinger and Bernstein [2008] take as input a pair of relational
source schemas and a mapping between them, and then create a relational medi-
ated schema and the mappings from the mediated schema to the source. They also
show how this can be extended to a larger set of schemas. The mappings that they
expect between the sources is a set of conjunctive mappings similar to the ones
in Madhavan and Halevy [2003] - i.e., a set of select-project-join queries.

For example, assume that there are two travel websites: TravelOn and GoTravel.
Assume that TravelOn has the relations TravelOnGuide(Name, ID) and TravelOn-
Bio(ID, Bio) for tour guides and their bios, respectively. GoTravel may, in contrast,
have the single relation GoTravel-Guide(Name, Bio) to represent both those
concepts. One possible mapping between these sources is the following:

Guide(Name, Bio) :- TravelOn-Guide(Name, ID), TravelOn-Bio(ID, Bio)
Guide(Name, Bio) :- GoTravel-Guide(Name, Bio).

This mapping holds the standard Datalog semantics: Guides can be found either
by taking the join of TravelOn-Guide and TravelOn-Bio on ID, or by looking at
GoTravel-Guide. Hence, it shows that the two concepts are mapped to each other
since instances of the same concept can be found by either conjunctive query. The
question is: what should be in the mediated schema?

Informally, Pottinger and Bernstein [2008] requires completeness, accessibility
to both all of the input relation (i.e., it preserves information capacity (see Sect. 2.1)),
makes the concepts that are mentioned in the mappings accessible, does not combine
relations unless they are related by the mappings, and finally is minimal.

8 Mapping-Based Merging of Schemas 233

In the case of our guide relation, this means that the mediated schema should
contain the relation Guide(Name, ID, Bio). Additionally, there also needs to be
mappings between the source schemas and the mediated schema. This is done
through two sets of views. First, a set of views define an intermediate schema in
terms of the mediated schema. These are called LAV views after the data inte-
gration architecture, where local sources are defined as views over the mediated
schema [Vijayaraman et al., 1996]. Continuing with our travel example, the LAV
views are:

I-TravelOn-Guide(Name, ID, Bio) :- Guide(Name, ID, Bio)
I-GoTravel-Guide(Name, Bio):- Guide(Name, ID, Bio).

A separate set of views defines the intermediate schema in terms of the sources.
These are called global-as-view (or GAV) mappings after the data integration archi-
tecture, where the global sources are defined as views over the mediated schema
(see [Lenzerini, 2002] for a discussion of GAV as well as how it relates to LAV).
Our final set of views for our travel example is thus the GAV views:

I-TravelOnGuide(Name, ID, Bio):- TravelOn-Guide(Name, ID),
TravelOn-Bio(ID, Bio)
I-GoTravel-Guide(Name, Bio) :- GoTravel-Guide(Name, Bio).

An interesting result of this paper is that the mappings that are created between
the mediated schema and the sources are a very limited form of global-local-as-view
(GLAV) mappings [Friedman et al., 1999] (i.e., mappings where either the local
or the global schema can be defined as the head of a view); in particular, the LAV
views each only have one subgoal in them. This is important because the LAV views
require using answering queries using views (see [Halevy, 2001] for a survey), and
having only one subgoal in the LAV view means that answering queries is very fast.
This is particularly of note since the local sources will be related to each other in this
fashion — regardless of how the mediated schema is created — so this result shows
what we should expect even if the mediated schema is created in some other fashion.

4.3 BAV

Both-as-view (BAV) [Pidduck et al., 2002, McBrien and Poulovassilis, 2003] is
a framework to support schema transformation and integration. Similar to GLAV
mappings [Friedman et al., 1999], BAV allows the definition of views between the
mediated schema and the local sources in both direction — it treats both the global
and the local schemas as sources. A key focus of their work is the transformations
that make this possible — how can the mediated schema be related to the source
schemas. They additionally provide a method to update a mediated schema based
on the integration of new source schemas. To do so, they create a mapping that
directly calls for the addition, deletion, and renaming of attributes and relations in
the mediated schema.

234 R. Pottinger

5 Ontology Merging

An ontology specifies a domain-specific vocabulary of objects and a set of rela-
tionships between the objects in the vocabulary [Fikes, 1996] (see also Chap. 2).
In general, an ontology can be viewed as a graph of hierarchical objects that have
specific attributes and constraints on those attributes and objects. The hierarchies
in an ontology can be more than simple is-a generalizations and specializations —
ontologies can also have notions of “containment” or “type of”” or “part of.” For the
purposes of this paper, the different kinds of relationships do not matter; the fact
that there are different kinds of relationships is the only part that is relevant. The
objects in an ontology may have various structures; for the purpose of this paper, we
can think of them as either being classes with various attributes or instances. While
constraints may exist on attributes, classes, or instances, in general these constraints
are not treated in the ontology merging literature.

Two sample ontologies are shown in Fig. 8.2. The classes are shown as ovals. The
attributes are represented by text. A solid line represents inheritance. A dashed line
indicates that an attribute is a member of that class. An example constraint might
state that “SAT score” is at most 1,600.

5.1 SMART and Prompt

One representative work on merging ontologies began with an algorithm called
SMART [Noy and Musen, 1999a,b] and was later renamed Prompt [Noy and Musen,
2000].

SMART tackles the problems of both merging and aligning ontologies. Align-
ment is the problem of taking two related ontologies and establishing links between
them to indicate where they match (much as in the database literature). Merging is

Ontology A Ontology B

Undergrad
I

| | | |
SAT score Office SAT score Location

Fig. 8.2 Two sample ontologies. The classes are shown as ovals. The attributes are represented by
text. A solid line represents inheritance. A dashed line represents that an attribute is a member of
that class

8 Mapping-Based Merging of Schemas 235

the problem of taking two ontologies and combining them to form a third ontology.
So, for example, alignment of the ontologies in Fig. 8.2 might tell us that element
pairs with the same name are aligned with each other, that “Ugrad” matches with
“Undergrad,” and that “Office” matches with “Location.” Merging the two ontolo-
gies would result in a single ontology with the same structure as both ontologies A
and B since the two are structurally identical, but there would be some resolution of
the naming differences (e.g., a decision would have to be made as to what to call the
node that describes undergraduates).

SMART is used for both merging and alignment. The algorithm is not completely
automatic for either operation; there are stages that must be performed by the user,
even after the initial setup has occurred.

SMART keeps track of its state with two data structures: the Conflicts list and
the ToDo list. The Conflicts list details the inconsistencies in the current state of the
process that must be resolved before the resulting ontology can be in a “logically
consistent state.” The ToDo list keeps track of operations which should be done but
are not required in order for the resulting ontology to be in a logically consistent state
(e.g., if an action results in two attributes in the same classes with a similar name,
SMART might add to the ToDo list a suggestion that one of them be removed). Since
determining the source of a problem may enable the user to optimize the problem’s
resolution, each item in the ToDo and Conflicts list contains a reference back to the
operation that triggered it. More details of SMART and Prompt, particularly on the
matching and alignment aspects, can be found in Falconer and Noy [2011].

An outline of the SMART algorithm for merging is shown below. Note that the
merging process requires also performing an alignment, so steps for both appear in
the algorithm:

1. The user performs setup by loading the ontologies, A and B and specifying some
options such as specifying if there is a preferred ontology.The result, the ontology
C, is initialized to be a new ontology with a new root and A and B as that root’s
children.

2. SMART generates an initial list of suggestions of what should be aligned/merged.
In this stage, SMART relies largely on content or syntactic information. The
names of the objects are examined, but structural information (i.e., the position
of the classes or their participation in specific relations) is not used.

e For each pair of classes a € A and b € B with identical names SMART either
merges the a and b in C or removes either a or b from C.

e For each pair of classes a € A and b € B with linguistically similar names a
link is created between them in C. This means that both a and b are still in C,
but SMART suggests that they may need to be merged by adding them to the
ToDo list.

3. The user selects and performs an operation such as merging a class or resolving
an item on the ToDo or Conflict lists.

4. SMART performs any automatic updates that it can and create new suggestions.
It has the ability to:

236 R. Pottinger

a. Execute any changes automatically determined as necessary by SMART.

b. Add any conflicts caused by the user’s actions in step 3 to the Conflicts list.

¢. Add to the ToDo list any other suggested operations or make new suggestions
based on linguistic or structural similarity.

5. Steps 3 and 4 are repeated until the ontologies are completely merged or aligned.

5.2 Chimcra

The Ontolingua Server [Farquhar et al., 1996] is designed to make all parts of
dealing with ontologies easier; they have a large collection of tools to allow
users to create, view, manipulate, publish, and share ontologies. One of the tools
is Chimara[McGuinness et al., 2000], an environment for merging and testing
ontologies.

Their system, like SMART, is designed to help users merge their ontologies. The
difference is that where SMART concentrates on actually merging ontologies (e.g.,
automatically merging two classes with the same name), and Chimzra only points
out the areas where merging is likely to be required. Their goal was to build a tool
that “focuses the attention of the editor on particular portions of the ontology that are
semantically interconnected and in need of repair or further merging.” [McGuinness
etal., 2000]

The authors identify a number of key features that a merging tool must sup-
port [McGuinness et al., 2000]. They propose that a merging tool have support for:

Searching for names across multiple ontologies,

Renaming in a systematic fashion,

Merging multiple terms into a single term,

Focusing the user’s attention on term merging based on term names,
Browsing classes and attributes,

Modifying subsumption relationships in classes and attributes, and
Recognizing logical inconsistencies introduced by merges and edits.

5.3 FCA Merge

FCA Merge [Nebel, 2001] from Stumme and Maedche merges ontologies based on a
lattice approach; they perform a match (in database terms) or an alignment (ontology
terms) automatically. The lattice describes both the structure of the merged docu-
ment and which elements in the ontology match according to the classes’ semantic
content. The created lattice may contain both nodes that are labeled with more than
one class (indicating that merging may be required) and nodes with no correspond-
ing class in the original ontology (suggesting that the user may want to insert a new

8 Mapping-Based Merging of Schemas 237

class). Interestingly, the lattices are found automatically [Bouzeghoub et al., 2000],
but the merging is largely manual. To determine how to merge a node in the lattice,
they distinguish four cases:

o There is one class at the node: In this case, the answer is found automatically;
there are no conflicts and the class at that node is added to the resulting merged
ontology.

e There are two or more classes at the node: In this case, the user is asked what
should be done.

e There are no classes at a nonroot node: Here, the user must decide whether to
add a class or not.

o There are no classes at a root node: In this final case, the user must decide
whether to add a new top level class to the resulting ontology.

As seen from the description, FCA Merge makes no attempt to resolve any
conflicts.

5.4 Ontology Merging Analysis

Each of the three systems, SMART, Chimara, and FCA Merge, takes a very differ-
ent approach to merging ontologies. Unlike database research (i.e., view integration
and data integration), all three systems view the problem of merge to intrinsically
require user intervention. SMART takes the most automatic approach of the three by
merging some concepts from different ontologies without requiring any user inter-
vention, but even this is limited: the user still must guide the system whenever the
names of the classes that match are too different. Even if the names are linguisti-
cally similar, there is little that SMART can do automatically other than point the
user at any potential conflicts unless the choice is clear from the preferred ontology.
Chimera provides very little automatic support; it focuses the user’s attention on
possibly related classes but has no conflict resolution support. FCA Merge provides
amazing support for automatically matching the classes in the ontologies including
doing some very sophisticated linguistic checks, but provides very little support for
automatically merging classes in the ontology if any sort of conflict exists.

Together, these solutions define an overall compendium of interesting and useful
features for ontology merging. SMART provides the notion of a preferred ontol-
ogy that can help the system to work automatically. They also suggest the process
of maintaining a list for the user of both where the user must perform an action
and where the user should perform an action with the Conflict and ToDo lists. The
Chimera system offers good guidelines on what interactions must be available to
merge ontologies. Finally, FCA Merge introduces the notion of additional nodes
that are not present in either original ontology but may make the structure of the
resulting ontology more sensible.

238 R. Pottinger

6 Generic Schema Merging

6.1 Buneman, Davidson, and Kosky

Buneman et al. [1992] delve into some of the theory of schema merging. In particu-
lar, they start once again with the assumption that elements are matched by name —
i.e., they have avoided the matching problem entirely. The goal is to think of this
from a lattice perspective (much like the one later used by FCA Merge) and describe
two different theoretical perspectives: either the least upper bound (i.e., take every-
thing that is available in either schema, which is rather like taking the union) or the
greatest lower bound (i.e., take everything that is available in both schemas, which
is rather like taking the intersection).

They, like most works here, focus on the least upper bound. Once having decided
that the least upper bound is the correct semantics, the question is what kind of
conflicts should be resolved. They use a very basic meta-model to allow them to con-
centrate on some very fundamental conflicts. In particular, their meta-model allows
for elements which have only names as attributes. Their meta-model allows for two
types of edges: is-a and has-a. They represent the fact that an element r Has-a ele-
ment X of type y by an arrow from r to y with the label Xx. They do not consider
constraints on the instances. Given these limited types of edges, they can focus on
what would happen if two elements are combined resulting in the merged element
having two types. For example, Fig. 8.3a says that element R has a Q of type P
and S. Naturally, this does not make sense. Hence, their solution is to say that there
should be a new type, and that both of the original types inherit from this type, as
shown in Fig. 8.3b.

This kind of work shows the fundamental issues that have to be explored to merge
schemas regardless of application or data model.

6.2 Model Management

Pottinger and Bernstein [2003] and Rondo [Melnik et al., 2003] both describe
merge operators for Model Management [Bernstein et al., 2000]. The goal of Model

® ® ©®
Do @oe(®

Fig. 8.3 Buneman et al. [1992] show that one conflict that occurs during the merging of schemas
is that if there are two elements in the resulting merge that have different types (a), then a new type
can be created which inherits from both original types (b)

a

8 Mapping-Based Merging of Schemas 239

Management is to allow structured representations of data — referred to as models —
to be manipulated in bulk by using a set of generic and reusable operators. Because
these works concentrate on the schema level rather than the data level, they do not
consider instance level constraints.

Rondo [Melnik et al., 2003] is a Model Management system prototype. As such,
it fully explores all Model Management operators (e.g., Merge, Match, Compose,
Diff) and includes a Merge definition based entirely on equality mappings. Two ele-
ments can be declared to be equal, and each 1-1 mapping relationship can specify a
preference for one element over another. Like Buneman et al. [1992], Rondo essen-
tially creates the duplicate-free union of the elements and relationships involved. As
with the view integration work in Sect. 3, both works consider schema-level con-
flicts, where elements in one schema are represented differently from elements in
another schema (e.g., “Last Name” and “Lname”). Some conflicts require removing
elements or relationships from the merged model (e.g., if an SQL column belongs
to two tables in a merge result, it must be deleted from one of them). As in Pottinger
and Bernstein [2003], Rondo’s Merge resolves such meta-model conflicts later in a
separate operator.

Pottinger and Bernstein [2003] concentrates on fully describing a Merge operator
for Model Management. One if its contributions is defining three types of conflicts
that have to be resolved in combining two schemas:

e Representation conflicts: Representation conflicts occur when there are two
representations of the same real world concept. For example, the elements rep-
resenting the concept of “name” may have different names. This corresponds to
“comparison of the schemas” in Batini et al. [1986], and is resolved outside of
Merge (since it may occur in other operators as well).

e Meta-model conflicts: Meta-model conflicts occur when the resulting Merge vio-
lates the constraints of a specific model, but not the constraints mandatory for
all models. This is just like how in Rondo [Melnik et al., 2003] an SQL column
can belong to only one table: there is nothing inherent in having structured data
that says that a child must belong to only one parent. Similarly to Rondo, these
conflicts must be resolved elsewhere.

o Fundamental conflicts: Fundamental conflicts are conflicts that occur during a
Merge and must be resolved for the resulting model to be valid in any model. This
notion of what must be true for any model is called the “meta-meta model” — for
example, a relational schema is a model, the relational model is the meta-model,
and the meta-meta model restricts what must be true in any meta-model.

Unlike many existing works, the Merge in Pottinger and Bernstein [2003] (here-
after Vanilla Merge after its meta-meta model, which is named Vanilla) allows
complex mappings between elements in the model and many different types of rela-
tionships between elements; in particular, the mapping is also a first-class model.
The mapping resolves conflicts by first taking values from the mapping, then from
the (optional) preferred model, then from any model. For example, Fig. 8.4 shows
two models (Model A and Model B) and a mapping (Mapag) between them. This
example extends an example in Pottinger and Bernstein [2003]. Figure 8.5 shows the

240 R. Pottinger

Model A Mapp g Model B

Fig. 8.5 The result of performing the merge in Pottinger and Bernstein [2003] on the models and
mappings in Fig. 8.4

result of performing the merge in Fig. 8.4. The diamond-headed intra-model edges
indicate a containment relationship. The double arrowed inter-model relationships
indicate equality between elements. Looking carefully at Mapap reveals that there
is an element All Bios, which is not mapped to by any element, but contains the
Bios from models A and B, both of which have been renamed.

This complex mapping allows users to generically yet accurately represent the
way that the elements are related to each other. As with other mappings, creating
this style of mapping is beyond the scope of this paper; [Wang and Pottinger, 2008]
studies how to create these mappings.

Vanilla Merge defines what the output should be based on the principles laid
out in many other papers referenced here, including the least upper bound notion
from Buneman et al. [1992].

While Vanilla Merge defines that there may be other fundamental conflicts, the
fundamental conflicts in the Vanilla meta-meta conflict are the one type conflict
(an adjustment of the conflict discussed in Buneman et al. [1992] for the Vanilla
meta-meta-model) and acyclicity.

6.3 Providing Choices to Users

Chiticariu et al. [2008] concentrate more on how the user interacts with the system.
In particular, the authors assume that they are trying to merge a set of schemas. They
model these schemas as graphs containing elements related by has-a relationships.

8 Mapping-Based Merging of Schemas 241

Like the model management work, they assume that they are given a set of input
mappings that relate the two schemas. Unlike previous work on graph-based mod-
els, such as the ontology merging work in Sect. 5, the authors assume that if two
elements are marked as being a match, that this is a possible place that they should
be merged in the result. The goal of their system is to help users understand the
space of possibilities that arise when a pair of elements are combined — what is the
impact on the rest of the schema?

Radwan et al. [2009] build upon Chiticariu et al. [2008] by helping to automate
the process of choosing how the schemas should be merged and presenting this
result to the user. They use some of the schema matcher’s internal information to
help chose which possible elements to merge. A key feature of their system is that
like Pottinger and Bernstein [2003] they create more complex edges than simple
equalities. In particular, if two concepts are deemed similar, then they are either (1)
merged, or (2) related through a “has” edge — they make this choice if the similarity
between two elements is quite high in one direction but low in the other.

Both works provide a valuable complement to the more theory-based papers that
make up the bulk of the papers cited here, and also dovetail nicely with some of the
work on user preference in ontology merging systems, e.g., SMART (see Sect. 5.1).

7 Three-Way Merge

A final version of the merge problem is when the user is trying to merge two objects
that are derivatives of a common ancestor. This problem occurs in both computer
supported collaborative work (CSCW) [Munson and Dewan, 1994, Berlage and
Genau, 1993, Berger et al., 1998] and file merging [Balasubramaniam and Pierce,
1998]. In these contexts, there is a common ancestor and the two later models
must be merged together based on the relationship between them and their com-
mon ancestor. With the added information from the common ancestor, the initial
matching is much simpler, but the merging can be much more difficult.

For example, if there is a change that occurs only in one model, then the system
will probably want to give preference to the changed model. This would seem to
make the problem easier, but there are likely to be other constraints (e.g., the other
model is preferred because it was modeled by an expert), which actually make the
problem more difficult. Another example of this is that if both models diverge from
the original, then it may be impossible to guess what the user wants. The presence
of this information means that there are additional semantic constraints that must
be satisfied, but the incompleteness of the information and the possibility of contra-
dicting other information means that these additional constraints must be satisfied
with no guarantee of a clear resolution to any of the constraints.

The work in this area that is the most flexible and automatic is that by Munson
and Dewan [Munson and Dewan, 1994]. They propose a system that, depending
on the parameters that are specified, can be either manual, semiautomatic, or fully
automatic. Users who choose a more automatic system are likely to receive a merged

242 R. Pottinger

result that does not correspond to exactly what they want, but they will not have to
manually guide the system. The model that they look at, while applicable to files,
considers the general case of objects by encapsulating the differences in the object
types as described below.

They investigate two different types of merges, consolidation merges and rec-
onciliation merges. In a consolidation merge, the assumption is that the changes
made in both models should be integrated; most changes will not conflict with one
another too much, and that changes from both models should be incorporated into
their system. In a reconciliation merge, the assumption is that the merge is being per-
formed to resolve conflicts. The two different types of merges call for very different
outcomes.

Their system operates using a number of merge matrices. A merge matrix for
two models to be merged, say A and B, has the rows represent edits made to achieve
model A and the columns represent the edits needed to achieve model B. The matrix
entries dictate how to merge the result of each (row, column) pair of edits. For exam-
ple, a merge matrix for an object that is a sequence of elements may look like the
one below (from Munson and Dewan 1994):

Sequence Insert element Delete element Change element No change
Insert element Both Row
Delete element Row User Row
Change element User Merge edits Row

No change Column Column Column

The blank entries represent situations that are either impossible (e.g., deleting an
entry in one model and adding it in another) or where no change is required (e.g.,
if the element stays the same in both models). The entries that specify “row” mean
that the version of the element from the model represented in the row should be
taken, and similarly “column” indicates that the column’s version should be taken.
So, for example, if a sequence were unchanged in model A and deleted in model B,
the action would be dictated by the entry at (no change, delete element), which, in
this case is to delete the sequence since that is the action performed in model B, the
one represented by the column.

The specification of these elements in the merge matrix is what allows for the
algorithm to move on the scale from manual to automatic merging; if there are no
entries that require manual intervention, then the algorithm is fully automatic.

In addition to the algorithm, they also list the characteristics that a merge tool
should have. They state that a merge tool should support:

Automatic merging,

Interactive merging,

Merging of both text files and more structured objects,

Use of the semantics of the objects to drive the merging (rather than just a
requirement that all objects merge in the same way), and

e Specification of preferred policies by the user.

8 Mapping-Based Merging of Schemas 243

8 Discussion

These diverse areas differ greatly in terms of goal, context, data model and more,
but there are a number of similarities. We now discuss some of the similarities
and differences across these different research areas. Because evaluating the qual-
ity of automatic merging algorithms is an open problem, we do not compare the
approaches based on quality.

8.1 Separation of Match and Merge

Ontology merging, view integration, and CSCW all separate matching and merg-
ing. Ontology merging calls the difference alignment and merging [Noy and Musen,
2000], but despite defining them as separate problems, the techniques that they use
still force the system to perform both actions at the same time. The work on view
integration also requires a matching step to occur before the merging process can
begin. However, as it processes the matched elements, it may discover more matches
that can be made to help with the merging process [Spaccapietra and Parent, 1994].
CSCW and Model Management make a complete separation between matching and
merging. A question is thus how much less efficient does it become to completely
divorce the merging from the matching. In some cases, interleaving the matching
with the merging (e.g., as in view integration) can cut down on the initial matching
that needs to be done. However, there has been substantial work on schema match-
ing as an independent problem (see [Rahm and Bernstein, 2001, Doan and Halevy,
2004] for some surveys). This increases the likelihood that future works on merging
schemas will use the results of these matching algorithms as input and thus schema
merging and matching will become more, rather than less, distinct over time.

The work in Radwan et al. [2009] represents a pull in the other direction, as it
exploits information about the potential matches to suggest merge results. It would
be interesting to see how the work in Radwan et al. [2009] can extend the work of
various schema matchers.

8.2 Treating Models Asymmetrically

One idea that occurs repeatedly in all of these works is that the models are treated
asymmetrically, allowing for the algorithms to function more automatically in the
presence of conflicting choices. This may be because one model is more general or
stable than the other and thus assumed to be the “preferred” model [Noy and Musen,
1999a]. This allows merging operations to proceed much more automatically by
giving it a clear indicator which element to prefer in the case of a conflict.

244 R. Pottinger

8.3 Data Model Differences

The different problems examined used very different data models (ontologies,
ERC+ diagrams, etc), but for the most part the subset of the data models that were
used were very similar. The authors largely ignored the parts of the data models that
contained significant differences, (e.g., constraints in databases or ontologies).

All of the models that were considered were very simple; they essentially con-
tained objects with subelements and these objects needed to be mapped; whether
the subelement was a class or an attribute made very little difference.

The main difference that occurred was that in the merging of the ERC+ dia-
grams, the “relationship” elements had no real corresponding member in any of the
other works. However, the relationships were treated in a fashion almost identical to
those as entities, and when there was a choice to be made, the result was to revert to
an entity.

The similarity of the approaches emphasizes the underlying common structure
of the many diverse approaches.

8.4 Structure vs. Content

Another issue addressed by each system was how much the merge is driven by the
structure vs. the content. Structure refers to the way that the objects relate to one
another (e.g., class X is the parent of class y). Content refers to the data values for
a given object (e.g., the name of the class is “Bob”). In most cases, the authors
concentrated on the structure of models at least as much as the content, but both
were necessary. An interesting point to note is that content is more likely to be
needed in performing a match than in performing a merge, and thus systems that
match and merge at the same time rely more on content than systems that make a
cleaner separation between the two.

Of the ontology merging systems, SMART, on the one hand, concentrates mainly
on resolving conflicts that arise by similar names, but it also looks to make sure that
the children are merged. Chimera, on the other hand, concentrates on structure over
content. Two of its three modes of exploration rely entirely on structural searching
and leave the content checking to the user. The third, however, relies completely
on content. Both of these systems perform alignment at the same time as merging,
however, so their dependence on content is not surprising.

In the third ontology merging system, FCA Merge, alignment is performed
before the merge, and the merging pays very little attention to the content. In view
integration, the problem is almost entirely structural if one considers paths to be
entirely structural rather than content. The names are ignored almost completely as
one would expect given that matching has already occurred.

8 Mapping-Based Merging of Schemas 245

8.5 Binary Merge vs. N-ary Merge

Many different situations, such as view integration, solve the problem of merging
more than two models at the same time. However, in almost every case this is broken
down into a series of two way merges. Break down of an n-ary merge follows either
a ladder strategy, wherein a new component schema is integrated with an existing
intermediate result at each step, or a balanced binary strategy wherein the models
are divided into pairs at the start and are integrated in a symmetric pattern [Batini
et al., 1986]. Thus even in situations where n-ary merge would be appropriate, the
problem can be, and often is, broken down into a number of binary merges.

8.6 Can Merge be Fully Automatic?

One natural question is whether merge can be fully automatic. Based on these sys-
tems, it would appear that it cannot. Even with the limited problems that the above
systems address, most of them require user intervention or error handling even
though most do not consider either constraints or ordering.

However, with enough parameters set to allow the system to resolve any conflicts
that arise, it is possible to have a largely if not entirely automatic version of merge.
In addition to setting parameters to allow for the merge to be tailored to the above
semantic differences, some of the parameters that should be considered are:

e s there a preferred model and if so which one?

e If there are two matched objects and one has a more restrictive type than the
other (e.g., an integer vs. a double), which would the user prefer? Both have
their utilities; if there is an application built on top of the databases, it may be an
advantage to require the more restrictive type. However, the less restrictive type
allows more expressiveness.

A fully automatic system would not allow the different semantics and user desires
to be fully taken into account. A system that required too many knobs would be
annoying and frustrating for the user. Thus, any merge system must strike a balance.
The most solution is to allow the setting of a number of parameters but to provide
default settings to make the common case perform correctly.

8.7 User Interaction Requirements

Both the Chimara ontology merger [McGuinness et al., 2000] and Munson and
Dewan’s work in CSCW [Munson and Dewan, 1994] describe interactions that the
user should be able to have with the tool when performing a merge. Combined, they
list a great number of the goals that any merge operator for Model Management

246 R. Pottinger

should provide. The combined list yields that a generic merge operator should
support:

Renaming in a systematic fashion

Merging multiple elements into a single element

Modifying subsumption relationships in objects

Automatic merging

Interactive merging

Merging many different types of objects

The semantics of the objects to drive the merging rather than just requiring that
all objects merge in the same way

e The users to specify what policies they prefer

Allowing all of these interactions will give the users the control that they need
over the merging process.

9 Conclusions

This paper surveyed what it means to merge complex structures, such as relational
schemas or ontologies, through a variety of applications, including view integration,
data integration, and computer supported collaborative work. The work has a long
history. Advances in other areas such as schema matching are likely to mean that
work on merging continues to be a fruitful and interesting subject for the foreseeable
future.

Acknowledgements Thanks are given to Phil Bernstein and Alon Halevy for their previous work
and discussion with the author on the subject and to Jamila Salari, Steve Wolfman, and the editors
for reading earlier drafts of this paper.

References

Atzeni P, Ausiello G, Batini C, Moscarini M (1982) Inclusion and equivalence between relational
database schemata. Theor Comp Sci 19:267-285

Balasubramaniam S, Pierce BC (1998) What is a file synchronizer? In: ACM/IEEE international
conference on mobile computing and networking (MOBICOM). pp 98-108

Batini C, Lenzerini M, Navathe S (1986) A comparative analysis of methodologies for database
schema integration. ACM Comput Surveys 18(4):323-364

Beeri C, Milo T (1999) Schemas for integration and translation of structured and semi-structured
data. In: International conference on database theory (ICDT). Springer, Heidelberg, pp 296-313

Bergamaschi S, Castano S, Vincini M (1999) Semantic integration of semistructured and structured
data sources. SIGMOD Rec 28(1):54-59

Berger M, Schill A, Voksen G (1998) Coordination technology for collaborative applications:
Organizations, processes, and agents. Springer, London

Berlage T, Genau A (1993) A framework of shared applications with a replicated architecture. In:
ACM symposium on user interface software and technology. ACM, NY, pp 249-257

Bernstein PA, Halevy AY, Pottinger R (2000) A vision of management of complex models.
SIGMOD Rec 29(4):55-63

8 Mapping-Based Merging of Schemas 247

Biskup J, Convent B (1986) A formal view integration method. In: ACM SIGMOD international
conference on management of data (SIGMOD). ACM, NY, pp 398-407

Bouzeghoub M, Klusch M, Nutt W, Sattler U (eds) (2000) Proceedings of the 7th international
workshop on knowledge representation meets databases (KRDB 2000). CEUR Workshop
Proceedings, vol. 29. CEUR-WS.org, Berlin, Germany, August 21, 2000

Buneman P, Davidson SB, Kosky A (1992) Theoretical aspects of schema merging. In: Interna-
tional conference on extending database technology (EDBT). Springer, London, pp 152-167

Calvanese D, Giacomo GD, Lenzerini M, Nardi D, Rosati R (1999) Data integration and reconcil-
iation in data warehousing: Conceptual modeling and reasoning support. Network Inform Syst
2:413-432

Calvanese D, de Giomo G, Lenzerini M, Nardi D, Rosati R (2001) Data integration in data
warehousing. Int J Cooper Inform Syst 10:237-271

Casanova M, Vidal V (1983) Towards a sound view integration methodology. In: PODS. ACM,
NY, pp 3647

Chen PP (1976) Entity relation model — toward a unified view of the data. ACM Trans Database
Syst 1(1):9-36

Chiticariu L, Kolaitis P, Popa L (2008) Interactive generation of integrated schemas. In: SIGMOD.
ACM, NY, pp 833-846

Convent B (1986) Unsolvable problems related to the view integration approach. In: ICDT.
Springer, NY, pp 141-156

Doan A, Halevy AY (2004) Semantic integration research in the database community: A brief
survey. AI Mag 25(1):109-112

Falconer SM, Noy N (2011) Interactive techniques to support ontology matching. In: Bellah-
sene Z, Bonifati A, Rahm E (eds) Schema matching and mapping. Data-Centric Systems and
Applications. Springer, Heidelberg

Farquhar A, Fikes R, Rice J (1996) The ontolingua server: A tool for collaborative ontology con-
struction. Technical Report KSL-96-26 KSL-96-26, Stanford University Knowledge Systems
Laboratory

Fikes R (1996) Ontologies: What are they, and where’s the research? In: Principles of knowledge
representation and reasoning (KR), pp 652—653

Friedman M, Levy A, Millstein T (1999) Navigational plans for data integration. In: Proceedings
of the national conference on artificial intelligence (AAAI). American Association for Artificial
Intelligence, CA, pp 67-73

Halevy AY (2001) Answering queries using views: A survey. VLDB J 10(4):270-294

Hull R (1984) Relative information capacity of simple relational database schemata. In: Sympo-
sium on principles of database systems (PODS). ACM, NY, pp 97-109

Larson JA, Navathe SB, Elmasri R (1989) A theory of attribute equivalence in databases with
application to schema integration. Trans Software Eng 15(4):449-463

Lee ML, Ling TW (2003) A methodology for structural conflict resolution in the integration of
entity-relationship schemas. Knowl Inform Syst 5(2):225-247

Lenzerini M (2002) Data integration: A theoretical perspective. In: Symposium on principles of
database systems (PODS). ACM, NY, pp 233-246

Madhavan J, Halevy AY (2003) Composing mappings among data sources. In: Very large data
bases conference (VLDB). VLDB Endowment, pp 572-583
McBrien P, Poulovassilis A (2002) Schema evolution in heterogenous database architectures,
a schema transformation approach. In: International conference on advanced information
systems engineering (CAiSE), pp 484-499

McBrien P, Poulovassilis A (2003) Data integration by bi-directional schema transformation rules.
In: International conference on data engineering (ICDE). Springer, London, pp 227-238

McGuinness DL, Fikes R, Rice J, Wilder S (2000) An environment for merging and testing large
ontologies. In: Principles of knowledge representation and reasoning (KR), pp 483—-493

Melnik S, Rahm E, Bernstein PA (2003) Rondo: A programming platform for generic model man-
agement. In: ACM SIGMOD international conference on management of data (SIGMOD).
ACM, NY, pp 193-204

248 R. Pottinger

Miller RJ, Ioannidis YE, Ramakrishnan R (1993) The use of information capacity in schema inte-
gration and translation. In: Very large data bases conference (VLDB). Morgan Kaufmann, CA,
pp 120-133

Motro A (1987) Superviews: Virtual integration of multiple databases. Trans Software Eng SE-
13(7):785-798

Munson JP, Dewan P (1994) A flexible object merging framework. In: Conference on computer
supported cooperative work (CSCW). ACM, NY, pp 231-242

Navathe SB, Gadgil SG (1982) A methodology for view integration in logical database design. In:
VLDB. Morgan Kaufmann, CA, pp 142-164

Nebel B (ed) (2001) Proceedings of the seventeenth international joint conference on artificial
intelligence, IJCAI 2001. Morgan Kaufmann, Seattle, Washington, USA, August 4-10, 2001

Noy NF, Musen MA (1999a) An algorithm for merging and aligning ontologies: automation and
tool support. In: Proceedings of the Workshop on ontology management at sixteenth national
conference on artificial intelligence (AAAI-99), Orlando, FL. Available as SMI technical report
SMI-1999-0799

Noy NF, Musen MA (1999b) SMART: Automated support for ontology merging and alignment.
In: Proceedings of the twelfth workshop on knowledge acquisition, modeling and management,
Banff, Canada. Available as SMI technical report SMI-1999-0813

Noy NF, Musen MA (2000) Proceedings of the seventeenth national conference on artificial
intelligence and twelfth conference on innovative applications of artificial intelligence. AAAI
Press/The MIT Press, Austin, Texas, USA, July 30 — August 3, 2000

Pidduck AB, Mylopoulos J, Woo CC, Ozsu MT (eds) (2002) Advanced information systems
engineering, 14th international conference, CAiSE 2002, Toronto, Canada, May 27-31, 2002,
Proceedings, Lecture Notes in Computer Science, vol. 2348, Springer, Heidelberg

Pottinger R, Bernstein PA (2008) Schema merging and mapping creation for relational sources. In:
EDBT. ACM, NY, pp 73-84

Pottinger RA, Bernstein PA (2003) Merging models based on given correspondences. In: Very
large data bases conference (VLDB). VLDB Endowment, pp 862—873

Radwan A, Popa L, Stanoi IR, Younis A (2009) Top k generation of integrated schemas based on
directed and weighted correspondences. In: SIGMOD. ACM, NY, pp 641-654

Rahm E (2011) Schema matching and mapping. Bellahsene Z, Bonifati A, Rahm E (eds) Towards
large-scale schema and ontology matching. Data-Centric Systems and Applications. Springer,
Heidelberg

Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J
10(4):334-350

Rector AL, Gangemi A, Galeazzi E, Glowinski AJ, Rossi-Mori A (1994) The GALEN CORE
model schemata for anatomy: towards a re-usable application-independent model of med-
ical concepts. In: Twelfth international congress of the European Federation for Medical
Informatics, MIE-94, Lisbon, Portugal, pp. 229-233

Rosenthal A, Reiner D (1994) Tools and transformations — rigorous and otherwise — for practical
database design. ACM Trans Database Syst 19(2):167-211

Rosse C, Shapiro LG, Brinkley JF (1998) The digital anatomist foundational model: principles for
defining and structuring its concept domain. Proc AMIA Symp 1998:820-824

Shoval P, Zohn S (1991) Binary-relationship integration methodology. Data Knowl Eng 6:225-250

Shu NC, Housel BC, Lum VY (1975) Convert: A high level translation definition language for data
conversion. Commun ACM 18(10):557-567

Song WW, Johannesson P, Bubenko J Janis A (1996) Semantic similarity relations in schema
integration. Data Knowl Eng 19(1):65-97

Spaccapietra S, Parent C (1994) View integration: A step forward in solving structural conflicts.
IEEE Trans Data Knowl Data Eng (TKDE) 6(2):258-274

Spaccapietra S, Parent C, Dupont Y (1992) Model independent assertions for integration of
heterogeneous schemas. VLDB J 1(1):81-126

Tufte K, Maier D (2001) Aggregation and accumulation of xml data. IEEE Data Eng Bull 24:34-39

8 Mapping-Based Merging of Schemas 249

Vijayaraman TM, Buchmann AP, Mohan C, Sarda NL (eds) (1996) VLDB’96, Proceedings of 22th
international conference on very large data bases. Morgan Kaufmann, Mumbai, September 3-6,
1996

Wang T, Pottinger R (2008) Semap: A generic mapping construction system. In: EDBT. ACM, NY,
pp 97-108

Yang X, Lee ML, Ling TW (2003) Resolving structural conflicts in the integration of XML
schemas: A semantic approach. In: ER. Springer, Heidelberg, pp 520-533

Part 111
Evaluating and Tuning of Matching Tasks

The increasing demand of matching and mapping tasks in modern integration sce-
narios has led to a plethora of tools for facilitating these tasks. While the plethora
made these tools available to a broader audience, it led to some form of confusion
regarding the exact nature, goals, core functionalities expected features and basic
capabilities of these tools. This great diversity makes comparative performance eval-
uations a difficult task. Thus, the development of comparison standards that will
allow the evaluation of the tools becomes necessary.

These standards are particularly important for mapping and matching system
users since they allow them to evaluate the relative merits of the systems and take
the right business decisions. They are also important for mapping system developers,
since they offer a way of comparing the system against competitors, and motivating
improvements and further development. Finally, they are important to researchers
since they serve as illustrations of the existing system limitations, triggering further
research in the area.

Tuning schema matching tools is another important means to improve the quality
of mappings and performance time. Most matching tools are semi-automatic mean-
ing that to perform well, an expert must tune some (matcher-specific) parameters
(i.e., thresholds, weights, etc.). Often this tuning can be a difficult task as the mean-
ing of these parameters and their effect on matching quality can only be seen through
trial and error. Indeed, studies have shown how important and difficult tuning is, and
that without tuning most matchers perform poorly.

Part III of this book includes two chapters, which are devoted to evaluation and
tuning techniques of schema matching and mapping systems.

Chapter 9 written by Yannis Velegrakis et al. provides a generic overview of the
existing efforts on benchmarking schema matching and mapping tools. It offers a
comprehensive description of the problem, lists the basic comparison criteria and
techniques and provides a description of the main functionalities and characteristics
of existing tools.

Chapter 10 written by Zohra Bellahsene et al. is devoted to tuning aspect
of schema matching tools. After describing the principles of the main tuning
techniques, this chapter covers the latest approaches and tools that have been
designed for tuning purpose and discusses their capabilities in terms of flexibility
and extensibility.

Chapter 9
On Evaluating Schema Matching and Mapping

Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

Abstract The increasing demand of matching and mapping tasks in modern inte-
gration scenarios has led to a plethora of tools for facilitating these tasks. While the
plethora made these tools available to a broader audience, it led to some form of
confusion regarding the exact nature, goals, core functionalities, expected features,
and basic capabilities of these tools. Above all, it made performance measurements
of these systems and their distinction a difficult task. The need for design and
development of comparison standards that will allow the evaluation of these tools
is becoming apparent. These standards are particularly important to mapping and
matching system users, since they allow them to evaluate the relative merits of the
systems and take the right business decisions. They are also important to mapping
system developers, since they offer a way of comparing the system against com-
petitors, and motivating improvements and further development. Finally, they are
important to researchers as they serve as illustrations of the existing system limi-
tations, triggering further research in the area. In this work, we provide a generic
overview of the existing efforts on benchmarking schema matching and mapping
tasks. We offer a comprehensive description of the problem, list the basic compar-
ison criteria and techniques, and provide a description of the main functionalities
and characteristics of existing systems.

Z. Bellahsene
University of Montpellier II, 34000 Montpellier, France
e-mail: bella@lirmm.fr

A. Bonifati ()
ICAR-CNR, Italy

e-mail: bonifati @icar.cnr.it
F. Duchateau

CWI, Amsterdam, The Netherlands
e-mail: fabien@cwi.nl

Y. Velegrakis
University of Trento, Trento, Italy
e-mail: velgias @disi.unitn.eu

Z. Bellahsene et al. (eds.), Schema Matching and Mapping, Data-Centric Systems 253
and Applications, DOI 10.1007/978-3-642-16518-4_9,
(© Springer-Verlag Berlin Heidelberg 2011

bella@lirmm.fr
bonifati@icar.cnr.it
fabien@cwi.nl
velgias@disi.unitn.eu

254 7. Bellahsene et al.

1 Introduction

The Web has become the world’s largest database. Daily, thousands of organiza-
tions and individuals are making their repositories available online. To exploit the
full potential of these sources, modern information systems and Web applications
must be able to retrieve, integrate, and exchange data. Unfortunately, the repositories
and applications are developed by different people, at different times, with varying
requirements in mind. Thus, the underlying data is inherently highly heterogeneous.
To cope with the heterogeneity and achieve interoperability, a fundamental require-
ment is the ability to match and map data across different formats. These two tasks
are found in the literature under the names matching [Rahm and Bernstein, 2001]
and mapping [Miller et al., 2000], respectively. A match is an association between
individual structures in different data sources. Matches are the required components
for every mapping task. The mappings are the products of the latter. A mapping, in
particular, is an expression that describes how the data of some specific format is
related to data of another. The relationship forms the basis for translating the data in
the first format into data in the second.

Mappings can be found in almost every aspect of data management. In infor-
mation integration systems [Lenzerini, 2002], mappings are used to specify the
relationships between every local and the global schema. In schema integration,
mappings specify how an integrated schema is constructed from the individual input
schemas [Batini et al., 1986]. In data exchange [Fagin et al., 2005] and P2P set-
tings [Halevy et al., 2003, Bernstein et al., 2002], mappings are used to describe
how data in one source are to be translated into data conforming to the schema of
another. A similar use is found in schema evolution [Lerner, 2000] where mappings
describe the relationship between the old and new version of an evolved schema.

Mapping generation had been for a long time a manual task, performed mainly
by data professionals with good understanding of the semantics of the different
schemas and with expertise in the transformation language. But as schemas have
started to become larger and more complicated, the process has become laborious,
time-consuming and error-prone. On top of that, the modern mashup technolo-
gies [Wun, 2009] have given to regular Internet users the ability to build their own
integration applications, systems, and services. In this process, these users have
to strive with the complexities of the schemas, the peculiarities of the transfor-
mation language, and the many other technical details of the data transformation
specification. The need for designing and developing tools to support the map-
ping designer in the mapping specification task has been apparent. Those tools
are known as mapping tools, and they offer support in different styles and fla-
vors. Certain tools raise the abstraction level by providing sophisticated graphical
interfaces [Altova, 2008] or high-level mapping languages [Bernstein and Melnik,
2007]. Others offer advanced algorithms performing part of the reasoning the map-
ping designer has to make [Popa et al., 2002, Do and Rahm, 2002, Mecca et al.,
2009, Madhavan et al., 2001], while some offer designer guidance [Alexe et al.,
2008a]. Today, there exists a plethora of such systems, including the Altova Map-
force [Altova, 2008], IBM Rational Data Architect [IBM, 2006], Microsoft BizTalk

9 On Evaluating Schema Matching and Mapping 255

Mapper, which is embedded in Microsoft Visual Studio [Microsoft, 2005], Stylus
Studio[Stylus Studio, 2005], BEA AquaLogic [Carey, 2006], and the research proto-
types Rondo [Do and Rahm, 2002], COMA++ [Aumueller et al., 2005], Harmony
[Mork et al., 2008], S-Match [Giunchiglia et al., 2005], Cupid [Madhavan et al.,
2001], Clio [Popa et al., 2002], Tupelo [Fletcher and Wyss, 2006], Spicy [Bonifati
et al., 2008a], and HePToX [Bonifati et al., 2010].

Despite the availability of the many mapping tools, no generally accepted bench-
mark has been developed for comparing and evaluating them. As it is the case with
other benchmarks, such a development is of major importance for assessing the rel-
ative merits of the tools. This can help customers in making the right investment
decisions and selecting among the many alternatives the tools that better fit their
business needs. A benchmark can also help the mapping tool developers as it offers
them a common metric to compare their own achievements against those of the com-
petitors. Such comparisons can boost competition and drive the development toward
systems of higher quality. A benchmark is also offering the developers a generally
accepted language for talking to customers and describing the advantages of their
tools through well-known features that determine performance, effectiveness, and
usability. Furthermore, the benchmark can highlight limitations of the mapping tools
or unsupported features that may not have been realized by the developers. Finally,
a benchmark is also needed in research community [Bertinoro, 2007]. Apart from a
common platform for comparison, a benchmark allows researchers to evaluate their
achievements not only in terms of performance but also in terms of applicability in
real-world situations.

In this work, we summarize and present in a systematic way existing efforts
toward the characterization and evaluation of mapping tools, and the establishment
of a benchmark. After a quick introduction of the architecture and main functionality
of matching and mapping tools in Sect.2, we describe the challenges of building a
matching/mapping system benchmark in Sect. 3. Section 4 presents existing efforts
in collecting real-world test cases with the intention of using them in evaluating the
matching and mapping systems. Section 5 addresses the issue of creating synthetic
test cases that are targeting the evaluation of specific features of the mapping sys-
tems. Finally, Sects. 6 and 7 present different metrics that have been proposed in
the literature for measuring the efficiency and effectiveness of matching/mapping
systems, respectively.

2 The Matching and Mapping Problem

Matching is the process that takes as input two schemas, referred to as the source
and the farget, and produces a number of matches, aka correspondences, between
the elements of these two schemas [Rahm and Bernstein, 2001]. The term schema
is used with the broader sense and includes database schemas [Madhavan et al.,
2001], ontologies [Giunchiglia et al., 2009], or generic models [Atzeni and Torlone,
1995]. A match is defined as a triple (S, E,e), where S; is a set of elements from

256 7. Bellahsene et al.

the source, E, is an element of the target schema, and e is a matching expression that
specifies a relationship between the element E; and the elements in S. Note that the
expression e does not specify how the elements in Sy relate to each other. Most of
the time, a match is as simple as an equality or a set-inclusion relationship between
an element of the source and an element of the target. There are, however, cases in
which the relationship can be more complex, e.g., a concatenation function, some
arithmetic operation, a relationship over scalars like = or <, a conceptual model
relationship such as the part-of, or some set-oriented relationships, such as overlaps
or contains. Schema matching tools employ a number of different techniques to dis-
cover this kind of relationships. They can range from structural [Madhavan et al.,
2001] and name similarities to semantic closeness [Giunchiglia et al., 2004] and data
value analysis [Doan et al., 2001, 2004]. A schema matching tool accepts as input
the two schemas and generates the set of matches. Since any schema matching pro-
cess is based on semantics, its final output needs to be verified by a human expert.
The matching process can be roughly divided into three phases: the prematch, the
match, and the postmatch phase. During the first phase, the matcher performs some
computations and processes the data. Typically, this involves the training of the
classifiers in the case of machine learning-based matchers, the configuration of the
various parameters like thresholds and weight values used by the matching algo-
rithm, and the specification of auxiliary information, such as domain synonyms and
constraints [Giunchiglia et al., 2009]. During the second phase, the actual discovery
of the matches takes place. At the end, the matcher outputs the matches between
elements of these data sources. During the postmatch phase, the users may check
and modify the displayed matches if needed.

Given a source and a target schema, a mapping is a relationship, i.e., a constraint,
that must hold between their respective instances. For the mappings to be generated,
a fundamental requirement are the matches between the elements of the schemas.
These matches can be either generated automatically through a matching process or
can be manually provided by an expert user. In contrast to matches, which specify
how instance values of individual source and target schema elements relate to each
other, a mapping additionally specifies how the values within the same instance
relate to each other. For example, a match may specify that the dollar price of a
product in the target corresponds to the multiplication of the price of the product
in the source (expressed in some foreign currency) multiplied by the exchange rate.
The mapping is the one that specifies that the exchange rate with which the product
price in the source is multiplied is the exchange rate of the currency in which the
price of the product is expressed. The mapping does so by specifying the right join
path between the price and the exchange rate attributes.

Mappings can be used in many different ways. In the case in which the target
schema is a virtual, i.e., not materialized, database as in virtual information integra-
tion systems, in P2P applications, or in data repositories that publish an interface
schema, the mappings can be used for query answering by driving the translation
of queries on the target schema to queries on the source [Lenzerini, 2002]. Another
major application of mappings is data exchange [Fagin et al., 2003] in which given
a source instance, the mappings are used to drive the materialization of a target

9 On Evaluating Schema Matching and Mapping 257

Data Source Target Expected
Examples Schema Schema Target
Instance

&
User Matcher
Matchings <—— Ver|f|ca222
* User Selection
Mapping Generation

Engine

Mapping
Dependencies

A

Data Transformation
Generator

Transformation

.]
Scripts

Data
Translator

Fig. 9.1 Overview of the matching, mapping, and data exchange tasks

instance. Since mappings are interschema constraints, they may not be enough to
fully specify the target instance. In other words, given a source instance and a set
of mappings between a source and a target schema, there may be multiple target
instances that satisfy the mappings. Finding the best target instance is known in the
literature as the data exchange problem [Fagin et al., 2005]. Once the right target
instance is decided, the mappings can be converted into a transformation script that
translates an instance of the source schema into some target schema representation.
This transformation script is typically expressed in some executable language such
as XQuery, XSLT, or SQL.

A mapping tool is a tool that assists the mapping designer in generating the map-
pings using less effort, in less time and with fewer mistakes. Mapping tools can be
classified into two large categories based on what they consider as a mapping. The
first category is the one that makes a clear distinction between mapping generation,

258 7. Bellahsene et al.

i.e., the generation of the interschema constraints, and the data exchange, i.e., the
generation of the transformation script. Tools in this category include the research
prototypes Clio [Popa et al., 2002] and Spicy++ [Mecca et al., 2009]. Their main
goal is the generation of the mappings in the form of constraints, which can then be
used either for information integration or for data exchange. To facilitate the latter
case, the tools may be equipped with a data exchange module that converts the gen-
erated mappings into some transformation script that can be executed on the source
instance to produce the target. The generated mappings are typically expressed
through some declarative specification in a logic formalism. The most widely used
such formalism is the tuple generating dependency, or tgd in short [Abiteboul et al.,
1995]. The second large class of mapping tools are those that make no distinc-
tion between mapping generation and data exchange. For these tools, the notion
of mapping generation is actually the creation in some native language of the final
transformation script that provides a full specification of the target instance in terms
of a source instance. Characteristic representatives in this category are the com-
mercial tools Altova MapForce [Altova, 2008] and Stylus Studio [Stylus Studio,
2005].

In what follows, we use the term mapping tool to describe a tool in either cate-
gory, and the term mapping to describe the output of such a tool, no matter whether it
is an interschema constraint or a transformation script. In case we want to emphasize
that a mapping is not a transformation script, we use the term mapping dependency.

The design of existing mapping tools is based on the idea of providing the
mapping designer with a graphical representation of the two schemas and a set
of graphical constructs representing high-level transformation abstractions. Using
these graphical constructs, the mapping designer provides a specification of the
desired mappings. The level of abstraction of the graphical objects may vary from
direct correspondences [Popa et al., 2002, Mecca et al., 2009], i.e., matches, to
graphical representations of primitive operations of the transformation script lan-
guage [Altova, 2008, Stylus Studio, 2005]. The high-level graphical constructs
provided by the mapping designer are easy to use, but they are inherently ambigu-
ous. The mapping tool will have to interpret them and make an educated guess of a
transformation that the mapping designer had in mind to create [Velegrakis, 2005].
An a posteriori verification is then necessary to ensure that the generated mappings
are indeed those intended by the designer. Clearly, the simpler the graphical con-
structs are, the easier the task is for the designer, but at the same time, the more the
intelligence required by the tool to interpret these constructs and infer the desired
mappings.

A number of mapping tools are equipped with a matching module, which can
be used by the mapping designer to suggest possible matches. One such tool is
Clio [Popa et al.,, 2002] whose matching component is based on attribute fea-
ture analysis [Naumann et al., 2002]. It generates matches in the form of attribute
correspondences, i.e., interschema lines connecting atomic type schema elements,
annotated with some value transformation functions. Other tools [Bernstein and
Melnik, 2007] have the matching task not as an add-on component, but as a fully
integrated and indistinguishable part of the tool. Spicy [Bonifati et al., 2008a] is

9 On Evaluating Schema Matching and Mapping 259

between these two alternatives. It has a matching module similar to the one in Clio
but is used as an integral part of the tool, allowing it to accept as input only the pair
of source and target schema, if needed.

Since matching and mapping tools try to guess the intentions of the designer
based on the provided input, it is natural to assume that their output is not always
the one anticipated by the designer. As already mentioned, an a posteriori verifi-
cation is necessary. Nevertheless, there is a significant number of tools that allow
the active participation of the designer in the matching/mapping generation phase
to guide the whole process and arrive faster at the desired result. For example, once
some matchings/mappings have been generated, the designer can verify their cor-
rectness. If she feels unsatisfied by the result, she can go back and modify some
intermediate steps, for instance, she can tune the matcher, select a fraction of the
set of the generated matches, enhance the matches by introducing new matches not
automatically generated by the matcher, tune the mapping generation process by
accepting only a fraction of the generated mappings, or even edit directly the map-
pings. User participation is highly active in Tupelo [Fletcher and Wyss, 2006] where
mapping generation is studied as a search problem driven by input data examples.
Domain knowledge, that is usually an input to the matcher, is also used as input to
the mapping discovery module. User feedback can be used to improve the effective-
ness of the discovered semantic functions, i.e., the matches, and of the structural
relationships, i.e., the mapping dependencies, that in turn can be entrusted to a data
mapping module for generating the final transformation query.

Many mapping tools are used as schema integration tools. Schema integration
is the process of merging multiple source schemas into one integrated schema, aka
the global or mediated schema. The integrated schema serves as a uniform inter-
face for querying the data sources. Nowadays, construction of integrated schemas
has become a laborious task mainly due to the number, size, and complexity of the
schemas. On the other hand, decision makers need to understand, combine, and
exploit in a very short time all the information that is available to them before
acting [Smith et al., 2009]. This reality requires the rapid construction of large
prototypes and the flexible evolution of existing integrated schemas from users
with limited technical expertise. Matching and mapping tools facilitate that goal.
A mapping designer may be presented with a number of source schemas and an
empty target. Through a graphical interface, source schema elements can be selected
and “dropped” into the target. When the elements are dropped into the target, the
mappings specifying how the target elements are related to those in the sources
are automatically or semiautomatically generated. This functionality is graphically
depicted in Fig. 9.2. Note that schema integration involves additional tasks; however,
here we concentrate only on the part related to matching and mapping.

A special case of mapping tools are the ETL systems. An ETL system is a tool
designed to perform large-scale extract—transform—load operations. The transfor-
mation performed by an ETL system is typically described by a graph flowchart
in which each node represents a specific primitive transformation and the edges
between the nodes represent flow of data produced as a result of a primitive oper-
ator and fed as input in another. Figure 9.3 illustrates such a data flowchart. The

260 7. Bellahsene et al.

Source Source %

Schema """ Schema User

[Mapping Generation]

Engine
Y l
Mapping
Transformation Target
. Schema
Scripts

Source
Instance

Data
Translator

Target
Instance

Source
Instance

Fig. 9.2 Overview of the schema integration task

SK (enstkey) - Phoneliommat

Customer.
new

Customer.

old

Fig. 9.3 An ETL data flowchart

triangles represent transformation operators, and the cylinders represent data stored
in some media. Although ETL systems are typically not considered mapping tools,
they share many similarities with them. First, their main goal is also to facilitate the
designer in describing a data transformation from one format to another. Second,
they often provide a graphical interface, and they produce as a final output trans-
formation scripts. Finally, there are mapping tools currently in the market [Stylus
Studio, 2005] that operate very close to the ETL model. Their graphical interface
provides a set of primitive transformations that the designer can combine together
to provide a full specification of the transformation that needs to be applied on the

9 On Evaluating Schema Matching and Mapping 261

data. Their output looks like an ETL flowchart. ETL systems require no large intel-
ligent capabilities, since the input provided by the designer is so detailed that only
a limited form of reasoning is necessary. Similar to ETL systems are mashup edi-
tors [Heinzl et al., 2009] that try to facilitate the mashup designer. The operational
goals of mashup editors are similar to those of ETL systems, so we do not consider
them as a separate category.

We use the term matching or mapping scenario to refer to a particular instance
of the matching or mapping problem, respectively. A scenario is represented by
the input provided to the matching or mapping tool. More specifically, a matching
scenario is a pair of source and target schema. A mapping scenario is a pair of source
and target schema alongside a specification of the intented mappings. A solution to
a scenario is a set of matches, respectively mappings, that satisfy the specifications
set by the scenario.

3 Challenges in Matching and Mapping System Evaluation

A fundamental requirement for providing universal evaluation of matching and
mapping tools is the existence of benchmarks. A benchmark for a computer appli-
cation or tool is based on the idea of evaluation scenarios, i.e., a standardized
set of problems or tests serving as a basis for comparison.! An evaluation sce-
nario for a matching/mapping tool is a scenario alongside the expected output
of the tool, i.e., the expected solution. Unfortunately, and unlike benchmarks for
relational database management tools, such as, TPC-H [Transaction Processing Per-
formance Council, 2001], or for XML query engines, such as, XMach [Bohme and
Rahm, 2001], X007 [Bressan et al., 2001], MBench [Runapongsa et al., 2002],
XMark [Schmidt et al., 2002], and XBench [Yao et al., 2004], the design of a bench-
mark for matching/mapping tools is fundamentally different and significantly more
challenging [Okawara et al., 2006], mainly due to the different nature, goals, and
operational principles of the tool.

One of the differences is the fact that given a source and a target schema, there
is not always one “correct” set of matches or mappings. In query engines [Transac-
tion Processing Performance Council, 2001, Bohme and Rahm, 2001], the correct
answer to a given query is uniquely specified by the semantics of the query lan-
guage. In matching/mapping tools, on the other hand, the expected answer depends
not only on the semantics of the schemas, which by nature may be ambiguous, but
also on the transformation that the mapping designer was intending to make. The
situation reminisces the case of Web search engines, where there are many docu-
ments returned as an answer to a given keyword query, others more and others less
related to the query, but which document is actually the correct answer can only be

! Source: Merriam Webster dictionary.

262 7. Bellahsene et al.

decided by the user that posed the keyword query. For that reason, many evaluations
of matching or mapping tools are performed by human experts.

Another difficulty faced during the design of evaluation techniques for mapping
tools is the lack of a clear specification of the input language, i.e., a standardized for-
malism with well-defined semantics. In contrast to benchmarks for relational [Trans-
action Processing Performance Council, 2001] and XML systems [Bohme and
Rahm, 2001] that could leverage from the respective SQL and XQuery standard
query languages, it is still not clear how to describe a scenario. Formally describ-
ing the schemas is not an issue, but describing the intended transformation, i.e., the
input that the designer needs to provide, is. The best way to unambiguously specify
the intended transformation is through a transformation language script, or a map-
ping in some formalism, but there are two main issues with this option. First, there
are no guarantees that the mapping tool will be able to accept the specific formal-
ism as input, or at least that there will be an unambiguous translation of the input
from the formalism into the input language supported by the mapping tool. The
second issue is that such an approach beats the purpose of a mapping tool, which is
intended to shield the mapping designer from the complexity and the peculiarities of
the transformation language. It is actually for that reason that mapping tool devel-
opers have opted for simpler, higher-level specification languages, such as visual
objects, direct lines between schema elements, or the output of the matching pro-
cess in general. Unfortunately, such specification is by nature ambiguous. Consider
one of the already identified [Alexe et al., 2008c] ambiguous situations, described
in Fig.9.4. It is a simple scenario in which the mapping designer needs to copy
the company data from the source into organizations data in the target. To specify
this, the designer draws the two interschema lines illustrated in Fig. 9.4. When these
are fed to a popular commercial mapping tool, the tool generates a transformation
script, which generates the target instance illustrated in Fig. 9.5a when executed on
the instance of Fig. 9.4. A different tool, for the same input, produces a transforma-
tion script that generates the instance illustrated in Fig. 9.5b. A third one produces a
script that generates the instance of Fig. 9.5c, which is most likely the one the map-
ping designer had in mind to create. These differences are not an error from the side
of the tools, rather a consequence of the fact that in the absence of a global agree-
ment on the semantics of the matches, or the input language in general, different
tools may interpret them differently and may require different inputs for generat-
ing the same mappings. In the above example, the tool that generated the instance
in Fig.9.5a could have also produced the instance of Fig. 9.5c, if the designer had
provided one more match from the element Company to the element Organization.
This match (which is between nonleaf elements) is not allowed at all in the tool that
created the instance of Fig. 9.5c. The issue is also highly related to the level of intel-
ligence and reasoning capabilities that the tools are offering. Some tools may require
a minimum input from the user, and through advanced reasoning they may be able to
generate the intended mappings [Bonifati et al., 2008b, Fagin et al., 2009a]. Others
may require the designer to be more explicit when describing the transformation she
has in mind to create [Altova, 2008, Stylus Studio, 2005]. Even by considering only

9 On Evaluating Schema Matching and Mapping 263

<Source>
<Company> Source Target
<Name>;BM</Title> Company LO@aMzmhn
<Location>NY</Address>
</Company> |:
<Company>
<Name>MS</Title>
<Location>WA</Address>
</Company>
</Source>

Name —————p Title
Location ——————p Address

Fig. 9.4 A simple mapping scenario and the source schema instance

<Target> <Target> <Target>
<0rg‘?:iza§§“7rp,tl <Organization> <Organization>
<Title>IBM</Title> . . : .
TitlesMS</Title> <Title>IBM</Title> <Title>IBM</Title>
<Address>Nv</Address> <Address>NY</Address> <Address>NY</Address>
<hddress>WA</Address> </Organization> </Organization>
</Organization> . .
</Target> </Target> <Organization>
<Title>IBM</Title>
<Address>NY</Address>
</Organization>
</Target>
(a) (b) (©)

Fig. 9.5 Three different target instances generated by different tools

matches, there is a large variety of specification options as a recent classification of
mapping tools illustrates [Legler and Naumann, 2007].

The input problem goes even further. Some mapping tools allow the designer to
edit the generated mappings or transformation scripts to correct or enhance them.
In that way, the generated output is restricted only by the expressive power of the
mapping language or of the transformation script. Under such circumstances, a sce-
nario should be extended to include, apart from the two schemas and the intended
mapping specification, the modifications/corrections that the designer does on the
generated output. However, allowing the designer to edit the output makes unfair
any comparison to mapping tools that operate under the principle that the designer
can only use the high-level graphical input language [Altova, 2008].

Another issue of inconsistency across different matching and mapping tools is
the lack of a standardized output. Some matching tools generate only 1-1 identity
function matches, i.e., simple interschema correspondences, while others generate
more complex relationships. Furthermore, some mapping tools generate mappings
as interschema dependencies only, while others produce also the transformation
scripts. The problem is becoming more crucial due to the fact that there is no
unique way of generating a target instance. Two different mapping tools may pro-
duce completely different transformation scripts and yet generate the same target
instance.

Deciding the metrics with which success is measured is another challenging task.
Since a general goal of a mapping tool is to reduce the required programming effort,

264 7. Bellahsene et al.

measuring the effort spent for a matching or a mapping task using a tool can serve as
an indication of the success of the tool. Unfortunately, such metrics are not broadly
accepted, since they highly depend on the user interface. An advanced user interface
will lead to good evaluation results, which means that the evaluation of a mapping
tool is actually a graphical interface evaluation. Furthermore, the fact that there is
no global agreement on the expressive power of the interface poses limits on the
evaluation scenarios that can be run. A mapping tool with a simple interface may
require less designer effort but may also be limited on the kind of mappings or trans-
formations it can generate. This has led a number of researchers and practitioners
into considering as an alternative metric the expressive power of the mappings that
the tool can generate, while others talked about the quality of the mappings them-
selves [Bonifati et al., 2008b] or the quality of the integrated schema, for the case in
which the mapping tool is used for schema integration. The quality of the integrated
schema is important for improving query execution time, successful data exchange,
and accurate concept sharing. Unfortunately, there is no broadly accepted agreement
on how mapping quality is measured; thus, to provide meaningful comparisons, an
evaluation method should consider a number of different metrics for that purpose.

Developing evaluation techniques for mapping tools is also limited by the non
deterministic output of the scenarios. In contrast to query engines, different map-
ping tools may generate different results for the same input, without any of the
results being necessarily wrong. In particular, for a given high-level mapping speci-
fication, there may be different interpretation alternatives, and each tool may choose
one over another. The ability to effectively communicate to the mapping designer
the semantics of the generated output is of major importance to allow the designer to
effectively guide the tool toward the generation of the desired mappings. One way to
do so is to present the designer with the target instance that the generated mappings
can produce. This is not always convenient, practical, or even feasible, especially for
large complicated instances. Presenting the mapping to the designer seems prefer-
able [Velegrakis, 2005], yet it is not always convenient, since the designer may
not be familiar with the language in which the mappings are expressed. An attrac-
tive alternative [Alexe et al., 2008a] is to provide carefully selected representative
samples of the target instance or synthetic examples that effectively illustrate the
transformation modeled by the generated mappings. This option is becoming par-
ticularly appealing nowadays that more and more systems are moving away from
exact query semantics toward supporting keyword [Bergamaschi et al., 2010] and
approximate queries, or queries that embrace uncertainty in the very heart of the
system [loannou et al., 2010].

4 Real-World Evaluation Scenarios

A close look at popular benchmarks can reveal a common design pattern. The
benchmark provides a number of predefined test cases that the tool under eval-
uation is called to successfully execute. The tool is then evaluated based on the

9 On Evaluating Schema Matching and Mapping 265

number of these cases that were indeed implemented successfully. The TPC-H
benchmark [Transaction Processing Performance Council, 2001], for instance, con-
sists of a set of predefined queries on a given database, with each of these queries
testing a specific feature of the query language that the query engine is expected to
support. For each such query, the benchmark provides the expected correct answer
against which the results of the query execution on the under evaluation engine
can be compared. Accordingly, a mapping tool benchmark should provide a set of
evaluation scenarios, i.e., scenarios alongside the expected result.

There has been a number of efforts toward building collections of evaluation
scenarios. There is an unquestionable value to these collections. The ability of a
mapping method or tool to successfully execute the evaluation scenarios is a clear
indication of its practical value. By successful execution, we mean that the tool
is able to generate the expected output as described by the evaluation scenario.
Although these collections are built based on criteria such as popularity, commu-
nity acceptance, or by contributions of interested parties and by the user base, they
often lack systematic categorization of the cases they test. For instance, they may
have multiple evaluation scenarios testing the same feature of the tool, or they may
provide no generalized test patterns. For that reason, this kind of collections are
typically termed as testbeds or standardized tests.

A complete and generic benchmark should go beyond a simple set of test cases.
It should offer a systematic organization of tests that is consistent, complete, and
minimal. Consistent means that the existence of every test case should be justified
by some specific feature upon which the tool or technique is evaluated through the
test case. Complete means that for every important feature of the mapping tool under
evaluation there is a test case. Minimal means that there are no redundant test cases,
i.e., more than one test case for the same feature.

To evaluate a matching tool on a given evaluation scenario, the scenario is pro-
vided to the tool that produces a solution. That generated solution, which in the
case of a matching tool is a set of matches, is then compared against the expected
set of matches that the evaluation scenario contains. If the two sets are the same,
then the tool is said to be successful for this scenario. The evaluation scenarios are
typically designed to check a specific matching situation. Success or failure to a
specific scenario translates into the ability or inability of the matching tool under
evaluation to handle the specific matching situation. This kind of evaluation is the
one for which testbeds are designed for. The Ontology Alignment Evaluation Ini-
tiative [Euzenat et al., 2006], OAEI in short, is a coordinated international initiative
that every year organizes a matching competition for ontologies. Ontologies can be
seen as semantic schemas; thus, ontology matching is considered part of the general
matching problem. The initiative provides the contesters with a set of matching test
scenarios with which the contesters test their tools. Throughout the year, individuals
may also submit to the initiative various scenarios they meet in practice. As a result,
the collected scenarios of the initiative constitute a good representation of the real-
ity. In some recent evaluation of a number of matching tools [Kopcke and Rahm,
2010], the number of real-world test problems that the matching tool could handle
featured as one of the main comparison criteria. The OAEI scenarios may be further

266 7. Bellahsene et al.

enhanced with datasets. In a recent effort [Giunchiglia et al., 2009], an extension
was proposed that contains 4,500 matches between three different Web directories
and has three important features, namely, it is error-free, has a low complexity, and
has a high discriminative capability, a notion that is explained later. Unfortunately,
despite the fact that there is a strong need for comparing matchers using identical
evaluation scenarios,” there has been no broadly accepted agreement until today on
what these evaluation scenarios should be.

The XBenchMatch [Duchateau et al., 2007] is a benchmark for matching tools.
It defines a set of criteria for testing and evaluating matching tools. It may focus
mostly on the assessment of the matching tools in terms of matching quality and
time performance but provides a testbed involving ten datasets that can be used to
quickly benchmark new matching algorithms [Duchateau, 2009]. These matching
scenarios have been classified according to the tasks they reflect, either at the data
level, e.g., the structure or the degree of heterogeneity, or at the matching process
level, e.g., the scale. Although collaborative work can help providing new datasets
with their correct set of matches, the creation of such a large and complete set still
remains a challenge.

It is important to add here that one of the challenges during the creation of test
scenarios is deciding what the correct matches will be. As mentioned in the previ-
ous section, for a given matching scenario, there may be multiple correct answers.
Opting for one of them may not be fair for the others. For this reason, in cases like
OAEI, the test scenarios designers perform a careful selection so that the scenarios
have no multiple alternatives, or in the case that they have, the one that is considered
as the correct answer to the chosen scenario is the one that is most obvious or the
one that the exclusive majority of matching users would have considered as correct.

One of the first benchmarks for mapping tools is the STBenchmark [Alexe et al.,
2008c]. It contains a list of basic test scenarios, each consisting of a source schema,
a target schema, and a transformation query expressed in XQuery. The choice of
describing the mapping specification in XQuery was made to avoid any misinter-
pretation of the mapping that needs to be achieved. This, of course, does not mean
that the mappings that the mapping tool will generate will have to be necessarily in
XQuery, but they have to describe an equivalent mapping. Furthermore, the selec-
tion of XQuery as a mapping specification language causes no major issues to the
mapping tool evaluators, since such users are in general more experienced than reg-
ular mapping designers. They can easily understand the full details of the expected
transformation, and by using the mapping tool interface, they can try to material-
ize it. For mapping tools that accept matches as input, conversion from XQuery to
matches is a straightforward task.

Each STBenchmark mapping scenario is carefully designed to test the ability
of the mapping tool to create transformations of a specific kind. The evaluator
is expected to understand first the desired transformation by studying the trans-
formation script, and then try to implement it through the interface provided by

2 Netrics HD blog, April 2010: http://www.netrics.com/blog/a-data-matching-benchmark.

9 On Evaluating Schema Matching and Mapping 267

Source Target <Target>
Reaction [0...%] Reaction [0...7] for $x0 in / Source / Reaction
entry — > Entry let $id = genID ($x0)
name Name ret<u}'~\r’re]act'on>
> i
comment Comment <Entry> $x0/name/text()
orthology— Orthology <Name> $x0/name/text()
definition CoFactor €— <Comment> $x0/comment/text()
equation <Orthology> $x0/orthology/text()
Chemicalinfo [0...*] <CoFactor> $id </CoFactor>
L </Reaction>
Deflnl@lon for $x0 in /Source/Reaction
Equation let $id = genID($x0)
CoFactor 4 return

<Chemicallnfo>
<Definition> $x0/definition /text()
<Equation> $x0/equation/text()
<CoFactor> $id
</Chemicallnfo>
</Target>

Fig. 9.6 A mapping scenario for vertical partition

the mapping tool that wants to be evaluated. Some of the scenarios provided by
STBenchmark are related to copying structures, constant value generation, horizon-
tal and vertical partitioning, key generation, nesting and unnesting of structures,
different join path selection, aggregation, value combination, and many others.
Figure 9.6 illustrates an example of one of these scenarios. The list of scenarios
has been collected by a study of the related information integration literature and
many practical applications. Definitely, one cannot build an exhaustive set of testing
scenarios. There will always be cases that remain untested. This is the case even
with query engine benchmarks. However, what is important for a benchmark is to
cover the majority of the cases that are met in practice [Alexe et al., 2008b].

An important issue that must be brought here is that general-purpose evalua-
tion tools should contain examples from the domains the tool is intended to be
used [Kopcke and Rahm, 2010]. It is a known fact that certain matching or map-
ping tools perform well on data with certain characteristics. Thus, such tools should
be evaluated using scenarios from that area. General-purpose benchmarks should
provide scenarios from different domains. Each STBenchmark test scenario, for
instance, is accompanied by a source instance with data extracted from the DBLP
bibliographic server,” the BioWarehouse* collection, and other similar real sources.

The approach of using predefined evaluation scenarios is also followed by
Thalia [Hammer et al., 2005], a benchmark for evaluating integration tools. Recall
that in the schema integration task, the input to the tool is a set of source schemas
for which the mapping designer is called to generate the integrated schema and
the mappings that populate it from source data. Thalia provides a rich set of test
data for integration problems exhibiting a wide variety of syntactic and semantic

3 http://www.informatik.uni-trier.de/ ley/db/.
4 biowarehouse.ai.sri.com.

268 7. Bellahsene et al.

heterogeneities. It also provides twelve test queries, each requiring the resolution of
a particular type of heterogeneity.

5 Synthetic Evaluation Scenarios

An importantissue for a benchmark is to have not only fixed evaluation scenarios but
also scenarios representing generic patterns. In a world where the data is becoming
increasingly complicated, it is crucial to stress-test the tools for data and schemas of
different sizes. This means that matching and mapping benchmarks should support
dynamic generation of evaluation scenarios of different sizes with which one can
test how the tool under evaluation scale up.

Unfortunately, such a pluralism may be hard to find in real-world applications,
mainly due to privacy reasons, or because they typically originate from a single
domain that restricts their pluralism and makes them unsuitable for general-purpose
evaluations. Thus, a benchmark should be able to create synthetic test cases in a
systematic way that stress-test the mapping tools and allow the evaluation of their
performance under different situations.

In the case of a matching tool, generation of a synthetic test scenario involves
the creation of a source and a target schema, alongside the expected matches. The
construction of the two schemas should be done in parallel so that for every part of
the source schema, the part of the target schema with which it matches is known.
For the case of a mapping tool, the situation is similar, but instead of the expected
matches, the synthetic test scenario should have the expected transformation. The
construction of the latter should also be orchestrated with the construction of the
two schemas. For mapping tools in schema integration, a test scenario consists of a
set of source schemas, the expected integrated schema, and the specification on how
the expected integrated schema is related to the individual source schemas.

Generation of synthetic scenarios has in general followed two main approaches:
the top-down and the bottom-up approach. The former starts with some large sce-
nario and by removing parts of it generates other smaller scenarios. The latter
constructs each scenario from scratch. Both approaches can be applied in the case
of synthetic scenario generation for matching and mapping tools.

The top-down approach starts with an existing large source and target schema,
and systematically removes components to generate smaller scenarios satisfying
specific properties. The properties depend on the features of the matching or map-
ping task that needs to be evaluated. An example of an ontology matching evaluation
dataset that has been built using the top-down approach is TaxME2 [Giunchiglia
et al., 2009]. In TaxME2, a set of original ontologies are initially constructed out of
the Google, Yahoo, and Looksmart Web directories. In the sequel, matches across
these ontologies are also defined and characterized. For every pair of ontologies,
portions are cut out alongside matches using elements from these portions. The
remaining parts of the two ontologies are used as the source and the target, and
the remaining matches form the expected correct matches. The process is repeated
multiple times, each time using a different portion that leads to the creation of a

9 On Evaluating Schema Matching and Mapping 269

new matching evaluation scenario. The selection of the portions was done in a way
that preserved five main properties: (1) the complexity of the matching operators,
(2) the incrementality, i.e., the ability to reveal weaknesses of the matching tool
under evaluation, (3) the ability to distinguish among the different matching solu-
tions, (4) the quality preservation, meaning that any matching quality measure
calculated on the subset of the schemas did not differ substantially from the measure
calculated on the whole dataset, and (5) the correctness, meaning that any matches
considered were correct.

A top-down approach has also been proposed for data exchange systems
[Okawara et al., 2006] and is the model upon which the THALIA [Hammer et al.,
2005] integration benchmark is based. In particular, Thalia provides a large dataset
and the filters that can select portions of this dataset in terms of values and schemas.

eTuner [Lee et al., 2007] is a tool for automatically tuning matchers that utilizes
the instance data in conjunction with the schema information and can also be used
to create synthetic scenarios in the top-down fashion. It starts with an initial schema,
and splits it into two, each keeping the same structure but half of the instance data.
The correct matches between the schemas generated by the split are known, and the
idea is to apply transformations to one of the two schemas to create a new schema.
The transformations are based on rules at three levels: (1) modifications on the struc-
ture of the schema, (2) changes of the schema element names, and (3) perturbations
of the data. The matchings between schema elements are traced through the whole
process so that they are known at the end and are used for evaluating the matchers.
A limitation of eTuner is that the user needs to create or find a reference ontology.
Furthermore, the set of modifications that can be performed on the data is limited,
making the perturbated data look less similar to natural real-world data.

In the bottom-up approach of synthetic scenario generation, some small scenario
is used as a seed for the construction of more complex scenarios. STBench-
mark [Alexe et al., 2008b] is based on this idea to provide synthetic mapping test
scenarios, i.e., a synthetic source schema, a target schema, an expected mapping
between the source and the target schema, and an instance of the source schema.
The seeds it uses are its basic scenarios that were mentioned in the previous sec-
tion. Given a basic scenario, STBenchmark constructs an expanded version of it.
The expanded version is an image of the original scenario but on a larger scale.
The scale is determined by dimensions specified through configuration parameters
representing characteristics of the schemas and the mappings. For instance, in a
copy basic scenario, the configuration parameters are the average nesting depth of
the schemas and the average number of attributes of each element. In the vertical
partition scenario (ref. Fig.9.6), on the other hand, the configuration parameters
include additionally the length of join paths, the type of the joins, and the number of
attributes involved in each such join. Expanded scenarios can then be concatenated
to produce even larger mapping scenarios. Figure 9.7a illustrates an expanded unnest
basic mapping scenario, and Fig. 9.7b illustrates how a large synthetic scenario is
created by concatenating smaller scenarios. STBenchmark® has also the ability to

3 www.stbenchmark.org.

270 7. Bellahsene et al.

a b
Source Target Source Schema Target Schema
Reference [0...%] Publication [0...*] -
tite —————— > Title Horizontal Horizontal
year ———— > Year Partition | Partition
publishedin — PublishedIn S--_
Author [0...*] Name Copy Copy
name University BTN
Affiliation [W Country \
university J StudName Unnesting Unnesting
country -
Students [0...*] -
sname

Fig. 9.7 Basic scenario expansion and synthetic scenario generation

create synthetic mapping scenarios that involve complex transformations coming
from a combination of transformations that the basic mapping scenarios describe.
For the generation of the instance of the source schema, STBenchmark generates a
ToXGene [Barbosa et al., 2002] configuration template with which one can invoke
ToXGene to produce the data of the source instance.

In the area of schema matching, the ISLab Instance Matching Benchmark
[Ferrara et al., 2008] is also following a bottom-up approach. It uses several algo-
rithms to create different data sets. It initially requires the creation of a reference
ontology for a specific domain. Then, this ontology is populated with instances by
querying Web sites. For example, IMDB enables the population of a movie ontology.
Subsequently, a number of modifications on the data takes place, with three goals
in mind: (1) to introduce variations in the data values, e.g., typographical errors,
(2) to introduce structural heterogeneity, e.g., properties represented by different
structural levels, aggregations, and others, and (3) to introduce local heterogeneity,
which mainly includes semantic variations that requires ontological reasoning to
cope with. Once the modifications have been performed, the benchmark users are
provided with the initial reference ontology and the modified one, against which
they evaluate matching tools.

6 Measuring Efficiency

6.1 Matching/Mapping Generation Time

Since one of the goals of mapping tools is to assist the matching/mapping designer
in performing the time-consuming matching and mapping tasks faster, time plays a
major role in measuring the performance of matching/mapping tools. Nevertheless,
mapping tools like Spicy [Bonifati et al., 2008b], HePToX [Bonifati et al., 2005], or
Clio [Popa et al., 2002], in their evaluation experiments, make only a small reference

9 On Evaluating Schema Matching and Mapping 271

to mapping generation time, and evaluation techniques proposed by Spicy [Bonifati
et al., 2008a] or STBenchmark [Alexe et al., 2008c] do not elaborate extensively on
the issue. This is not an omission on their behalf. It reflects the fact that it is hard to
measure time when human participation, in our specific case for the verification and
guidance of the mapping tool, is part of the process. The time required by humans
to understand the mappings generated by the tool and provide feedback is orders of
magnitude higher than the one the tool requires for computing the mappings.

The situation is slightly different in matching tools where there is limited human
intervention. Although computation time is still a central factor, it is not as impor-
tant as the quality of the generated matches. A recent evaluation on a number of
matching tools [Yatskevich, 2003] has extended previous evaluations [Do et al.,
2003] by adding time measures for matching tasks on real-world matching scenar-
ios. Unfortunately, these metrics have yet to be materialized in an a benchmark. In
a more recent comparison [Kopcke and Rahm, 2010] of state-of-the-art matching
tools, generation time has been one of the main comparison criteria and is also one
of the metrics used by matching evaluation tools like XBenchMatch [Duchateau
et al., 2007] and the ISLab Instance Matching Benchmark [Ferrara et al., 2008].

6.2 Data Translation Performance

It has already been mentioned that one of the popular uses of mappings is to translate
data from one source to another, i.e., the data exchange task. This translation is
done by materializing the target or integrated instance from the data of one or more
source instances according to the mappings. Data sources typically contain a large
number of records. This means that if the mappings are numerous and describe
complex transformations, then the time required to materialize the target instance
may be significant. Based on this observation, it is clear that one of the factors to
characterize the quality of a mapping tool is by the performance of the execution
of the transformations described by the generated mappings. Metrics that can be
used to measure such performance are the overall execution time and the degree of
parallelization.

[Time] The most general-purpose metric is the time required to perform the over-
all transformation time. Although this parameter is not explicitly stated in any
matching or mapping evaluation effort, certain extensive experiments found in the
literature [Alexe et al., 2008c] illustrate its importance. The generation of good
transformation scripts is actually a way to characterize good mapping tools. Note
that to avoid falling into the trap of evaluating the query execution engine instead of
the mapping tool, when measuring the performance of the generated transformation
scripts, all the comparison and evaluation experiments should be performed on the
same transformation engine.

There has been an increasing interest toward efficient methods for generating the
right target instance given a mapping scenario, and more specifically in generating

272 7. Bellahsene et al.

the core. The core [Fagin et al., 2003] is a minimum universal solution [Fagin et al.,
2005]. Core identification has been shown to be a co-NP hard problem [Fagin et al.,
2005] for certain mapping dependencies. Despite these complexity results, there
have been successful developments of efficient techniques that given two schemas
and a set of mapping dependencies between them, in the form of tuple generating
dependencies, produce a set of transformation scripts, e.g., in XSLT or SQL, whose
execution efficiently generates a core target instance [Mecca et al., 2009, ten Cate
et al., 2009].

Time performance is becoming particularly critical in ETL tools that typically
deal with large volumes of data. Recent ETL benchmarks [Simitsis et al., 2009]
consider it as one of the major factors of every ETL tool evaluation. Other simi-
lar factors that are also mentioned in ETL benchmarks are the workflow execution
throughput, the average latency per tuple, and the workflow execution throughput
under failures. The notion of time performance in ETL tools extends beyond the end
of the ETL workflow construction by considering, apart from the data translation
time, the time required to answer business-level queries on the transformed data.

[Parallelization] One way to improve the data transformation time is to increase
parallelization by generating mappings with minimum interdependencies. There are
in general two broad categories of parallel processing: pipelining and partitioning.
In pipelining, different parts of the transformation are executed in parallel in a sys-
tem with more than one processor, and the data generated by one component are
consumed immediately by another component without the need of waiting for the
first component to fully complete its task. Pipelining works well for transformations
that do not involve extremely large amounts of data. If this is not the case, a different
parallelization mechanism called partitioning is preferable. In partitioning, the data
is first divided into different parts, and then, the transformation described by the
mappings is applied on each partition independently of the others [Simitsis et al.,
2009].

6.3 Human Effort

Since the goal of a matching or mapping tool is to alleviate the designer from the
laborious task of matching and mapping specification, it is natural to consider as one
of the evaluation metrics of such a tool the effort required by the mapping designer.

In a schema matching task, the input consists of only the two schemas. Since the
task involves semantics, the designer must go through all the produced matches and
verify their correctness. Consequently, the effort the designer needs to spend during
a matching task can be naively quantified by the number of matches produced by
the matcher and by their complexity.

A matcher may produce not only false positives but also false negatives, which
the matching designer will have to add manually to the result of the matcher, or
will have to tune the tool to generate them. Two metrics have been proposed in the
literature for quantifying this effort. One is the overall, which is also found under

9 On Evaluating Schema Matching and Mapping 273

the name accuracy [Melnik et al., 2002] and is defined by the formula that follows:

1
Overall = Recall x (2~ I#) ©.1)
recision

Recall and precision are metrics that are presented later and evaluate the accuracy of
the generated matches intuitively. The overall metric evaluates the amount of work
an expert must provide to remove irrelevant matches (false positives) and to add
those relevant that were not discovered (false negatives) [Do et al., 2003]. The metric
returns a value between —oo and 1. The greater the overall value is, the less effort
the designer has to provide. It is a general belief [Do et al., 2003] that a precision
below 50% implies that more effort is required from the designer to remove the false
matches and add those missing than to manually do the matching. This is why such
situations have a negative overall value. A limitation of the overall metric is that it
assumes equal effort for removing an irrelevant match and for adding a missing one,
which is rarely the case in the real world.

Another metric to measure the human effort is the human-spared resources
(HSR) [Duchateau, 2009]. It counts the number of designer interactions required
to correct both precision and recall, i.e., to manually obtain a 100% f-measure, a
quality metric that is discussed later. In other words, HSR takes into account not
only the effort to validate or invalidate the discovered matches but also the effort
to discover those missing. HSR is sufficiently generic, can be expresse in the range
of [0, 1] or in time units (e.g., seconds), and does not require any input other than
the one for computing precision, recall, f-measure, or overall. The only limitation is
that it does not take into account the fact that some matching tools may return the
top-K matches instead of all of them.

In the schema mapping process, if the mapping specification is provided by the
designer and is not taken from the output of an automatic matching task, the situation
is different. The designer is required to provide input to the mapping tool through
its interface, not only at the beginning but also throughout the mapping genera-
tion process, since the designer will have to continuously verify the tool-generated
mappings and provide the respective modifications. Thus, the effort of the mapping
designer can be measured by the number of inputs the designer provides to the tool.

This evaluation criterion is essentially an evaluation of the graphical interface of
the tool. It is true that the more intelligence a tool incorporates in interpreting the
mapping designer input, the less input effort is required by the designer. However,
certain interfaces may be so well designed that even if there are many tasks the
mapping designer needs to do, the human effort is kept to the minimum.

STBenchmark introduces a simple usability (SU) model, intended to provide a
first-cut measure on the amount of effort required for a mapping scenario. It is based
on a rough counting of the mouse clicks and keystrokes to quantify effort. This is
important even if the time required for the mapping specification is much smaller in
comparison to the time needed by the generated mappings to become transformation
scripts and be executed. The click log information describing a mapping design for
STBenchmark looks like this: Right mouse click to pull up menu, left mouse click
to select a schema element, typing a function into a box, etc. Since different actions

274 7. Bellahsene et al.

may require more effort than others [MacKenzie et al., 1991], for example, a point-
and-click is much easier than dragging or typing, weights can be assigned to each
type of action to build a cost model for quantifying the total required effort.

One of the limitations of the above model is that it does not distinguish between
clicks leading to the final mapping design and corrective actions, such as, undo or
delete operations. It assumes that the mapping designer is familiar with the mapping
tool and makes no mistakes. Another limitation is that the model does not capture
the time the designer spends on thinking. A mapping tool that requires the designer
think for long time before designing the mapping with only few clicks should not be
considered more efficient than others that require less thinking by the designer but
a few more clicks. A final limitation of this idea is that the model does not consider
features such as presentation layout, visual aids, access to frequently used tasks, etc.

In the area of schema integration, the Thalia benchmark [Hammer et al., 2005]
can be used for objectively evaluating the capabilities of integration technology
by taking into account, besides the correctness of the solution, the amount of pro-
grammatic effort (i.e., the complexity of external functions) needed to resolve any
heterogeneity. For a fair comparison, any measurement of the needed effort must be
done on the implementation of the twelve queries that Thalia provides. However,
Thalia, does not provide any specifications on how this “effort” is to be measured.

7 Measuring Effectiveness

Measuring the effectiveness of a mapping or matching tool means measuring
whether (or how much) the tool can fulfill its expectations for a given task. In the
case of matching, an expert user typically knows what the correct matches are, and
the matching tool is expected to find them. Thus, evaluating its effectiveness boils
down to a comparison between the expected set of matchings and the set of match-
ings that the tool generated. The situation is slightly different for the case of mapping
systems. Since the expected output of a mapping system is a set of mappings that
is used to generate the target (or global) instance, evaluating whether the mapping
system has fulfilled its expectations can be done by checking whether the generated
mappings can produce the expected target instance, or how close to the expected
instance is the one that the generated mappings produce. This comparison can be
done either extensionally, by comparing instances, or intensionally, by comparing
the generated transformation expressions, i.e., the mappings. In this section, we pro-
vide an overview of metrics that have been used in the literature for measuring such
effectiveness.

7.1 Supported Scenarios

One way to evaluate a matching or mapping tool is by counting the percentage of
scenarios it can successfully implement from a provided list of scenarios. A basic
assumption is that there is an oracle providing the ground truth for each of these

9 On Evaluating Schema Matching and Mapping 275

scenarios, i.e., the set of expected matches/mappings. This oracle is typically an
expert user. A match/mapping generated by a tool is characterized as correct if it is
part of the ground truth, or incorrect, otherwise. The successful implementation of
a scenario by a tool is the generation of the expected matches/mappings.

Provided with a rich set of mapping scenarios, one can test different aspects of
a mapping tool. The effectiveness of the tool is the percentage of these scenarios
that the tool could successfully implement. This approach is the one followed by
STBenchmark [Alexe et al., 2008b]. The scenarios the benchmark provides have
been collected from the related scientific literature and real-world applications.

The characterization of the effectiveness of a tool based on the notion of the
successful or unsuccessful implementation of scenarios may not be the optimal
approach especially in the case of systems. Very often, a mapping tool may not
be able to produce exactly the expected mappings, yet it may be able to generate a
pretty good approximation of them, or mappings that produce a target instance very
close to the expected one. Under the above model, such a tool will be unfairly penal-
ized as unsuccessful, even though the final result is very close to the one expected.
For this reason, a metric measuring proximity of the produced results to the expected
is becoming an increasingly popular alternative.

7.2 Quality of the Generated Matchings/Mappings

Four metrics that have been used extensively in the area of matching tool eval-
uation are the precision, recall, f-measure, and the fallout [Euzenat and Shvaiko,
2007]. They are all intended to quantify the proximity of the results generated by
a matching tool to those expected. They are based on the notions of true positives,
false positives, true negatives, and false negatives. Given two schemas S and T,
let .# represent the set of all possible matches that can exist between their respec-
tive elements. Assume that an oracle provides the list of expected matches. These
matches are referred to as relevant, and all the other matches in .Z as irrelevant. The
matching tool provides a list of matches that it considers true. These are the tool rel-
evant matches, while the remaining matches in .# are the fool irrelevant matches.
A match in ./ is characterized as true positive, false positive, true negative, or false
negative, depending on which of the above sets it belongs. The respective definitions
are illustrated in Table 9.1.

The precision, recall, and f-measure [Van-Risbergen, 1979] are well known from
the information retrieval domain. They return a real value between 0 and 1 and
have been used in many matching evaluation efforts [Duchateau et al., 2007, Do
et al., 2002]. Figure 9.8 depicts a matching example. It illustrates two schemas

Table 9.1 Contingency table forming the base of evaluation measures

Relevant matches Irrelevant matches

Tool relevant matches TP (true positive) FP (false positive)
Tool irrelevant matches FN (false negative) TN (true negative)

276 Z. Bellahsene et al.

1
hotelsvalued_com_xsd (XSD) Ei where_to_stay_com_xsd (XSD) | %

searchfor - 2 rch =
¢ Optional 7 ate_In_Month
Hotel Brand Vi ate_In Year
fid / /] |_~Date_Out_Day
¢ Hotel_Location / /] | ~Date_Out_Honth
* City / /a [~Date_Out_Year
OR_*_Zip Postal Code /|~ Hotel Name
Stat / i - Cicy
Country T—S5tate
¢ Reservation Details il -~ *_Country
Check-in_date_mon | Chain
Check-in_date_yea _A—Number_of_Adults
Check-out_date_da ~1°| Number_of_Rooms
Check-out_date_mon }/—-Dut.e_ln_buy
Check-out_date_yea 2
Number_of_Adul :
Children
Rooms_Needed
Check-in_date_da = =
| T E KT [»]
(a) COMA++

Mapping Editor: s1_s2: original-modified

<?7xml version="1.0"7>

- -

<?xml version="1.0"7>

<a: sCHETTE XS, 3= TP/ /WWWw3 org/ 20017 xXMe sthema xmins:a="http: / fwww w3 org/20
<el = 3 Z nt name="search" >
name="fic"f > name="Hotel Name"/ >
m:wib’—— ——<etement name="City’/ >
ele name="* City:"f> | ——=etement name="5tate"/ >
ég[?n-gEname-' = Zi ode”/> | .| ——eeteMment name="" Country’/>

name="Chain"/>

<element name="Number of Adults"/>
< felement > /:lem ent name ="Mumber of Rooms"/ >
name="Reservation Details"> // /é%name ="Date In Day'/>

Aok ———=elegment name="0ate In Month"/ >
name="Date In Year"/ >
name="Date Out Day"/ >
name="Date Out Month"/>
name="Date Out Year"/>

name="Check-in date

< felement>
<faschema>
ame="Children:"f >
<elerfient name="Rooms Needed:"/>
< felement>
name="Optional'>
name="Hotel Brand:"/>
< felement>
< felement >
<faschema>
[F—T— | I3 E K e 0|
== —— =
(b) Similarity Flooding

Fig. 9.8 Correspondences discovered by two schema matchers

9 On Evaluating Schema Matching and Mapping 277

related to hotel reservations and the relevant matches (illustrated by the interschema
lines) generated by two matching tools, COMA-++ [Aumueller et al., 2005] and
Similarity Flooding [Melnik et al., 2002], denoted as SF in short. COMA++ has
discovered 9 matches, while SF has discovered 7. Note that for SF, the matches
between the root elements of the schemas are not considered.

[Precision] The precision calculates the proportion of relevant matches discovered
by the matching tool with respect to all those discovered. Using the notation of
Table 9.1, the precision is defined as

TP

Precision = ——
TP + FP

An 100% precision means that all the matches discovered by the tool are relevant.
In the particular example of Fig. 9.8, both tools achieve a 100% precision:

7
Precisioncoma++ = m = 100% Precisionsg = m = 100%

[Recall] Recall is another broadly used metric. It computes the proportion of
matches discovered by the tool with respect to all the relevant matches. It is defined
by the formula

TP

Recall = ——
TP + FN

A 100% recall means that all relevant matches have been found by the tool. For
the scenario of Fig.9.8, COMA++ has discovered 9 matches but missed 4 rele-
vant matches. These missed matches are the false negatives. SF, on the other hand,
discovered 7 relevant matches out of the 13. These results give the following recall
values:

9
Re‘CClllCOMA++ = m = 69% Recallsp = m = 54%

[F-measure] F-measure is a trade-off between precision and recall. It is defined as
follows:

(B? + 1) x Precision x Recall
(B? x Precision) + Recall

f — measure(B) =

The B parameter regulates the respective influence of precision and recall. It is often
set to 1 to give the same weight to these two evaluation measures. Back to our
running example, using a 8 equal to 1, the f-measure values obtained for COMA++
and SF are, respectively, as follows:

278 7. Bellahsene et al.

2x1x0.69

) _ 2x1x069 .y
f — measurecoma++ 1+ 0.69 ’
and
. 2x1x054 _
— measuresp = ————— =
_ SF 1+0.54 ’

[Fallout] Another metric that is often used in the literature is the fallout [Euzenat
et al., 2006] [Ferrara et al., 2008]. It computes the rate of incorrectly discovered
matches out of the number of those nonexpected ones. Intuitively, it measures the
probability that a irrelevant match is discovered by the tool. The fallout is defined
by the following formula:

FP

Fallout = ——
FP+ TN

In the running example of Fig.9.8, the number of nonexpected, i.e., irrelevant,
matches equals 253 (there exist a total of 266 possible matches including the 13
that are relevant). However, since neither tool discovered any irrelevant match, their
fallout equals to 0%.

0 0
Fallout = ——— =0% Falloutsp = ———— = 0%
alloufcoMa++ 01253 0 alloutsg 01253 o

The matching benchmark XBenchMatch [Duchateau et al., 2007] and the ontol-
ogy alignment API [Euzenat, 2004] are based on the above metrics to evaluate the
effectiveness of matching tools. They assume the availability of the expected set of
matches through an expert user. Based on that set and the matches that the matching
tool produces, the various values of the metrics are computed.

A limitation of the above metrics is that they do not take into consideration any
postmatch user effort, for instance, tasks that the user may need to do to guide the
matching tool in the matching process, or any iterations the user may perform to
verify partially generated results.

Measuring the quality of mappings turns out to be more challenging than mea-
suring the quality of the matches. The reason is that it requires comparisons among
mappings, which is not a straightforward task. Finding whether a generated map-
ping belongs to the set of expected mappings requires a comparison between this
mapping and every other mapping in that set. This comparison boils down to query
equivalence. Apart from the fact that query equivalence is a hard task per se, it
is also the case that a transformation described by a mapping may be also imple-
mented through a combination of more than one different mapping. This means
that it is not enough to compare with individual mappings only, but combinations
of mappings should also be considered. For this reason, direct mapping compari-
son has typically been avoided as evaluation method of mapping tools. Researchers

9 On Evaluating Schema Matching and Mapping 279

have instead opted for a comparison of the results of the mappings, e.g., the target
instances.

Nevertheless, the precision, recall, and the f-measure can be used to evaluate the
large class of tools that do not differentiate among the matching and the mapping
process but consider the whole task as a monolithic procedure. Spicy [Bonifati et al.,
2008a] is an example of such tools, as it pipelines a matching module and a map-
ping generation module and allows the mapping designer to reiterate between the
two processes to improve the quality of the generated mappings. In Spicy, the map-
ping tasks were designed in such a way that the source always contains a mapping
that covers the entire target, meaning that no subset of the target schema remains
unmapped. The set of mapping scenarios in the system are built in such a way that
for a target schema, the correct set of matches that will generate a given predeter-
mined mapping is internally identified. These matches are called the ideal match
M;y. At this point, the mapping generation algorithm can be run, and a single
transformation, Ty, i.€., the mapping that has the best scores in terms of instance
similarity (cfr. next section for details), can be generated. Then, the matches .Z7,,,
on which this mapping is based upon are identified. In the ideal case, these matches
are the same as the ideal match .#};. The quality of the tool can be measured in
terms of precision and recall of ./Z7,,, with respect to .#;,. However, Spicy reports
quality only in terms of precision. The reason is that in all cases, the tool returns a
number of matches that is equal to the size of the target, as mentioned above. As a
consequence, precision and recall are both equal to the number of correct matches
in ./r,,,, over the size of the target, which means that either precision or recall
suffices to characterize the quality of the generated mappings.

The cases in which the source does not contain a mapping that covers the entire
target are more complex and have not so far been addressed. It is believed that the
most general case in which the target schema is not entirely covered by the mapping
entails a new class of mapping tasks in which the target instance is partially filled
with data exchanged with the source and partially filled with its own data.

The problem of characterizing mappings in a quantitative way has also been stud-
ied [Fagin et al., 2009b] through the notion of information loss, which is introduced
to measure how much a schema mapping deviates from an ideal invertible mapping.
An invertible mapping is a mapping that given the generated target instance can be
used to regenerate the original source instance. A first definition of invertibility has
considered only constants in the source instance and constants alongside labeled
nulls in the target (cfr. [Fagin et al., 2011]). Labeled nulls are generated values for
elements in the target that require a value, but the mapping provides no specifica-
tion for that value. In the inversion, these labeled nulls can propagate in the source
instance, resulting into an instance that has less information that the original one. To
capture in a precise way such an information loss, the notion of maximum extended
recovery has been introduced for tgds with disjunction and inequalities [Fagin et al.,
2009b]. This new metric clearly identifies a viable approach to precisely compare
schema mappings, but the full potential of this metric in benchmarking mapping
tools still remains to be explored.

280 7. Bellahsene et al.

Another step toward the design of meaningful and high-quality schema mappings
has been tackled recently [Alexe et al., 2010a] by using a MapMerge operator to
merge multiple small mappings into large ones. The evaluation of such an operator is
done by using a novel similarity metric that is able to capture the extent to which data
associations are preserved by the transformation from a source to a target instance.
The metric depends on the natural associations that exist among data values in the
source instance, discovered by looking at the schema structures and by following
the schema referential integrity constraints. The idea behind the metric is that these
associations must be preserved by the transformation that the mapping describes.

7.3 Quality of the Generated Target Instance

In systems that do not differentiate between the matching and the mapping task,
an alternative to measuring precision, recall, or f-measure would be preferable.
One such approach is to use the final expected result of the mapping process,
which is the actual target instance generated by the transformation described by
the mappings. This kind of evaluation is also useful in cases where one needs to
avoid comparisons between mappings for reasons like those provided earlier. The
expected target instance is typically provided by an expert user. Once the expected
target instance is available, the success of a mapping task can be measured by com-
paring it to the actual target instance produced by the generated mappings. The
approach constitutes an appealing verification and validation method, mainly due to
its simplicity.

The comparison between the actual and the expected target instance can be
done by considering an ad hoc similarity function, such as tree edit distance, or by
employing a general-purpose comparison technique [Bonifati et al., 2008a]. Defin-
ing such a customized comparison technique is a promising direction for future
developments in this area. The Spicy system offers a comparison method based on
circuit theory [Bonifati et al., 2008a], called structural analysis. Figure 9.9 shows an
example of a circuit generated by the tree representation of a schema, as shown on
the left-hand side. The circuit is based on building blocks corresponding to atomic
attributes. More specifically, for each intermediate node » in the schema tree, a
resistance value r(n) is defined. Such a value cannot be based on instances, since
intermediate nodes of the tree represent higher structures, but it is rather based on
the topology of the tree. In particular, r(n) = k x level(n), where k is a constant
multiplicative factor, and level(n) is the level of n in the tree, defined as follows: (1)
leaves have level O (2) an intermediate node with children ng,ny,...n; has level
max (level(ng), level(ny), ... level(ng)) + 1.

The complete circuit is defined by means of a circuit mapping function, circ(t)
over a tree ¢. For a leaf node A, circ(A) is defined by mapping a sampled attribute
to a circuit. Intuitively, circ(A) is assembled by assigning a set of features to a
number of resistors and voltage generators. For a tree ¢ rooted at node n with
children ng,ny,...ng, circ(t) is the circuit obtained by connecting in parallel

9 On Evaluating Schema Matching and Mapping 281

Schema Corresponding circuit
project: tuple r(project) = E
name: string
amount: real
company: string
flat structure circ(name) circ(amount) circ Company)

r(projectDB) =

projectDB: set

r(project) =
project: tuple

name : string T % E
amount: real r(company) =
company: tuple

cname: string !

budget: real

circ(name) circ(amount)

nested structure

circ(cname) circ(budget)

Fig. 9.9 Examples of circuits for flat and nested structures

circ(ng), circ(ny), ... circ(ny) between ground and an intermediate circuit node
Ntop, and then adding a resistor of value 7 () from node 71, to the output. Exam-
ples of such transformation are illustrated in Fig. 9.9. Note that the circuit mapping
function makes the resulting circuits isomorphic to the original trees.

In Spicy, similarly to the opaque schema matching [Kang and Naughton, 2003],
labels are ignored by the circuit mapping function, and values are basically treated
as uninterpreted strings. Furthermore, values correspond to alphanumeric data in
the underlying Spicy data model. The circuit features discussed above reflect this
choice. However, the circuit model is sufficiently flexible to allow the treatment of
special data, like large texts or multimedia, as discussed in other orthogonal usage
of circuits [Palmer and Faloutsos, 2003].

Given two trees 71 and t,, a measure of their similarity can be computed by map-
ping ¢; and #, to the corresponding circuits, circ(t1), circ(t2), as depicted in Fig. 9.9,
solving the two circuits to determine their currents and voltages, and choosing a
number of descriptive features of the corresponding circuits, fg, f1,... fi. A notion
of comparator for each feature f; as a module that computes the index of similar-
ity A; between the two structures with respect to feature f; is defined in Spicy as
follows: A; = abs(fi(circ(t1))— fi(circ(t2)))/ fi (circ(t1)). Finally, the overall sim-
ilarity of the two trees is computed based on the values of Ag, Ay, ... A; [Bonifati
etal., 2008a].

282 7. Bellahsene et al.

The quality of the target instance is also an important factor in the case of ETL
systems. For these systems, the quality is typically determined by the data fresh-
ness, the resiliency to occasional failures, and the easy of maintenance [Simitsis
et al., 2009]. Data freshness means that the effect of any modification in the source
instance is also implemented in the target. Resiliency to failures measures whether
different transformation routes or recovery procedures can guarantee that in case
that a part of the transformation fails, the data that was to be generated can be
generated either through different routes or by repetition of the failed procedure.
Finally, the maintainability is affected, among others, by the simplicity of the
transformation. A simple ETL transformation is more maintainable, whereas in a
complex transformation it is more difficult to keep track of the primitive transfor-
mations that take place. Occasionally, the compliance to business rules is also one
of the considered factors for measuring the quality of an ETL system.

7.4 Data Examples

Generating the expected target instance for evaluating a mapping system may not
always be the most desired method. The size of the target schema may be pro-
hibitively large, and its generation at mapping design time may not be feasible. Even
if its generation is possible, due to its size, even an expert mapping designer may
find hard to understand the full semantics of the generated transformation, since it
is practically impossible to always obtain a full view of the target data. The gen-
erated mappings between a source and the target schema may also be numerous,
ambiguous, and complicated to a degree that the designer is not able to understand
what and how some target data was created from data in the source. To cope with
these issues and help the designer in quickly and fully understanding the seman-
tics of the mapping-system-generated transformations and validate them, carefully
selected representative samples of the target instance can be used. Samples of the
expected target instance can be used to drive the mapping process, while samples
of the generated target instance can be used to communicate to the designer the
semantics of the mappings the system has generated.

The importance of data examples in mapping generation has long ago been
recognized [Yan et al., 2001]. In the specific work, each mapping is considered
a transformation query and is interpreted as an indirectly connected graph G =
(N, E), where the set of nodes N is a subset of the relations of the source schema
and the set of edges E represents conjunctions of join predicates on attributes of the
source relations. Typically, joins are inner joins, but they can also be considered as
outer joins or combinations of inner and outer joins. Given a query graph G, the full
and the possible data associations can be computed. A data association is a relation
that contains the maximum number of attributes whose data are semantically related
through structural or constraint, e.g., foreign key, constructs. A full data association
of G is computed by an inner join query over G, and it involves all nodes in G. Given
an induced, connected subgraphs of G, a data association can be constructed in the
same way, but since it is based on a subgraph of G, the data association is referred

9 On Evaluating Schema Matching and Mapping 283

to as a possible association. Full and possible data associations can be leveraged to
understand what information needs to be included in a mapping.

From a different perspective, one could think of a wizard or a debugging tool
that allows to better understand the semantics of the mappings by illustrating the
flow of tuples from source to target in a schema mapping task. The notion of
routes [Chiticariu and Tan, 2006] captures this idea and is useful in the mapping
debugging process to understand the behavior of mappings. Routes can be created
between original source and target instances or between illustrative data examples.
Ultimately, routes can be used in conjunction with data examples to help the user
dig in the semantics of a mapping.

To understand what a data example represents, assume a mapping generation sit-
uation with a source schema S, a target schema 7', and a set of mappings X. It is
said that a data example (7, J) is satisfied by the set of mappings X', denoted as
(I,J) E X, if I is a fraction of an instance of S, J is a fraction of an instance
of T, and there is a mapping m € X such that m(/) = J. Such a data example is
called a positive data example. If I is a fraction of an instance of S, J is a fraction
of an instance of 7', but (1, J) [~ X, then the data example is called negative. Posi-
tive examples are used to illustrate intended transformed data in the instance, while
negative examples can be used to describe undesired mapping transformations.

In the special case that the data J of a data example (/, J) is a universal solu-
tion (cfr. [Bonifati et al., 2011]), the example is called a universal data example.
Universal data examples are of major importance due to their generality. A recent
study [Alexe et al., 2010b] has highlighted that if the only kind of mappings con-
sidered are source-to-target tgds, a mapping can be characterized by a finite set of
positive and negative data examples if and only if the source and the target schema
contain only unary relation symbols. Nevertheless, the study has also shown that
the universal examples may characterize the entire class of local-as-view [Lenzerini,
2002] source-to-target tgds.

In short, data examples have already found their way into mapping systems as a
way of helping the designer understand and refine the generated mappings [Alexe
et al., 2008a] and in certain cases select a subset of those mappings that the mapping
system produces [Yan et al., 2001]. They can also become an asset in mapping sys-
tem evaluation as indicated by some first efforts toward this direction [Alexe et al.,
2010b]. In particular, the mapping system Clio is employing debugging tools like
Routes [Chiticariu and Tan, 2006] to build a mapping designer evaluation frame-
work that is based on data examples. There are still many challenging research issues
around that topic, for instance, a deeper study of the use of positive, negative, and
universal examples.

7.5 Quality of the Generated Target Schema

When the mapping system is used to create an integrated (or target) schema, a
technique to evaluate the quality of the system is to measure the quality of the gen-
erated integrated schema. This can be done mainly by measuring its relationship

284 7. Bellahsene et al.

to the schema that the designer had in mind to create, i.e., the intended integrated
schema. The relationship can be measured in terms like the amount of information
in the source schema that is also described in the integrated schema, the differ-
ence in the schema structures, etc. Three metrics have been recently proposed: the
completeness, minimality, and structurality.

Completeness. Let Si,,, represent the target schema generated by the mapping tool
and Si;, the intended target schema that models the integration. The notation | S| is
used to refer to the number of elements in a schema S. The completeness [Batista
and Salgado, 2007] is a metric in the range of 0 to 1, which intuitively measures
how many of the concepts that can be modeled by the source schema(s) can also be
modeled by the target schema, i.e., the integration. More formally,

|Srool N Sint|

Completeness =
| S int |

Minimality. The minimality [Batista and Salgado, 2007] is another metric also in the
range of 0 to 1, which indicates the redundancy that may appear in the integrated
schema. The higher the minimality, the lower the redundancy. Minimality is defined
by the following expression, which basically calculates the percentage of extra ele-
ments in the integrated schema produced by the mapping tool with respect to the
intended instance. In particular:

|Sfool| - |Stool N Sint|
|Sinl|

Minimality = 1 —

Structurality. The structurality has been introduced [Duchateau, 2009] to intuitively
measure the qualities of the structure an object possesses.® In the case of schemas,
this notion is translated to the set of ancestors of a schema structure. In other words,
the structurality measures whether the elements of the generated and the intended
schema contain the same set of ancestors. To compute structurality, the schemas
are viewed as trees. Let Sj,, and S, denote the intended and the generated target
schema, respectively. Assume also that in the tree representation of a schema S,
Ps(e) is the set of elements in the path from the root to the element e, exclusively.
The structurality of an element e is defined as follows:

. alPs, (e) N Ps,, (e)| — (| Ps,, (e)] — | Ps,, (e) N Ps,, (e)])

Structurality(e) = max | 0,
a| Ps,, (e)]

Intuitively, the formula checks that an element shares most ancestors both in

the generated and intended integrated schemas. Besides, it takes into account the

insertion of incorrect ancestors in the generated integrated schema. Note that the

6 http://en.wiktionary.org/wiki/structurality.

9 On Evaluating Schema Matching and Mapping 285

structurality of an element e of the intended schema that does not appear in the
schema generated by the tool is zero. The parameter « is a constant factor that
allows higher importance to be given to ancestors that have been created in the
generated schema, as opposed to those that have not. Since the number of ancestors
Pg., may be large, an element structurality may become negative, which explains
the existence of the max function in the above formula. A negative value would be
difficult to interpret by end users, as this is the case for the overall measure when
dealing with matching quality.

The structurality of a schema S, generated by the mapping tool is the average
of the structuralities of the individual elements in the intended schema, i.e.,

> ces;,, Structurality(e)
| Sinl|

Structurality of Sgen =

The completeness, minimality, and structurality metrics can be combined into a
weighted sum to provide an overall metric for the proximity of the generated schema
and the intended scheme, i.e.,

Proximity = wy *x Completeness + wy * Minimality + w3 * Structurability

withw; +wy + w3z = 1.

To illustrate the above metrics, consider the abstract schema shown on the left-
hand side of Fig.9.10, and assume that it is the schema generated by the mapping
tool. The schema that was intended to be created is the one on the right-hand side
of the same figure. The number of common schema elements between these two
schemas are 6, thus, Completeness = g and Minimality = 1—% = % Assuming an
« factor with value 2, the structuralities of the elements of the intended schema are
illustrated in Table 9.2. According to these values, the structurality of the generated

. . . 14+1+140+ 1+ ..
schema with respect to the intended schema is LHFIH0Tats — 0.625. Giving
equal weight to completeness, minimality, and structurality, the overall proximity of
the generated schema to the intended is as follows: w = 0.73.

A A
—B B
Lc
—D
D
t c
E
X o
z
(generated) (intended)

Fig. 9.10 An abstract example of a schema generated by a mapping tool (/eft) and the intended

286 7. Bellahsene et al.

Table 9.2 Element structuralities for the intended schema of Fig.9.10

Element Py P,y Element structurality

A A max (0, 2071 =
D A A max (0, 2070 =
E AD AD max(0, 2% =
G AD ? max (0, ZXOZX(S 0)) 0
C AB AD max (0, 2><12><(§ 1)) %
F AD A max (0, 22071y = 1

There has been an interesting set of experimental results [Duchateau, 2009] on
computing the above metrics using a number of different datasets with the two
popular matching systems: COMA++ [Aumueller et al., 2005] and Similarity
Flooding [Melnik et al., 2002]. The former system builds integrated schemas using
an ASClII-tree format (then converted into XSD using a script [Duchateau et al.,
2007]), while the latter system directly generates an XSD integrated schema. The
matches discovered by the tools before building the integrated schema have not been
checked. The experiments include a dataset extracted from the XCBL’ and OAGI®
collections, a dataset on university courses provided by the Thalia benchmark [Ham-
mer et al., 2005], a Biology dataset from Uniprot’ and GeneCards,'” a currency and
sms dataset,!! and a university department dataset [Duchateau et al., 2008]. These
datasets present various features that reflect real-world scenarios. For instance, the
biology dataset contains a specific vocabulary that is not usually found in common
dictionaries. The dataset about university courses describes a case in which many
schemas have to be integrated. A part of the experimental results obtained from that
effort is illustrated in Fig. 9.11. It has been noticed that the tools can obtain a high
completeness in most cases, mainly because the tools promote precision during the
matching phase. On the contrary, the minimality is more difficult to achieve, since
it depends on the recall. Finally, structurality is mostly preserved because the tools
try to keep the same structure that they find in the source schemas.

8 Conclusion

We have presented a retrospective on key contributions in the area of evaluating
matching and mapping tools. Schema matching and mapping is a relatively new
area that has received considerable attention in the last few years. Since these

7 www.xcbl.org.

8 www.oagi.org.

9 http://www.ebi.uniprot.org/support/docs/uniprot.xsd.
10 http://www.geneontology.org/GO.downloads.ontology.shtml.

T www.seekda.com.

9 On Evaluating Schema Matching and Mapping 287

100%

100%

&5 Completeness
Minimality

H B Completeness|
n :

@
3
®

80%

Scbema-"""
Protimity

=)
<3
B3

60%

IS
S
2

40%

Value in %
Value in %

20% [=eree 20%

0% -

0%

COMA +++ SF

Currency Dataset
100% T

100%
B Completeness
M Minimality
Structuralty

5 Completeness
Minimality

E Structurality

80% L . : 5 ks Schiema- | 80% [~ Schérria-

60% =

@
3
2

Value in %

40% [~oemee

Value in %
S
3
®

20% 20% ferrrmrrenres

0%

0%

S

SMS Dataset University Courses Dataset

Fig. 9.11 Experimental results for the evaluation of the target schema quality

notions may not have yet matured in the minds of researchers and of the commercial
developers and users, and to avoid confusions, we have first attempted to provide a
complete description of the architectural components, tasks, and goals of matching
and mapping tools. Then, we have motivated the importance of evaluation methods
and benchmarks for researchers, developers, businesses, and users.

Schema matching is a topic that has been extensively studied. There is already a
long list of research prototypes and tools. Since the matching task involves seman-
tics, evaluating the correctness of the output of a matching tool is a task requiring
human intervention. The major issue in all these matching cases is deciding what is
the correct answer, i.e., the intended matches. This is a challenging task since, due to
the semantic heterogeneity, different perspectives may give different answers. Eval-
uation techniques for matching tasks have focused on the development of metrics
that will allow a common evaluation base and effective communication of the eval-
uation results. We have provided a description of these metrics and have highlighted
features and limitations.

Schema mapping seems to be a problem for which there is still some confusion
as to what constitutes a mapping tool, what is its input, in what form, and what is its
output. Different research prototypes and commercial tools have followed different
approaches, something that makes their direct comparison and evaluation difficult.
We have attempted to provide a definition of what a mapping tool is and the param-
eters one should consider when evaluating such tools. We have highlighted the lack
of evaluation standards and have provided a complete picture of what an evalua-
tion standard (or benchmark) should contain, alongside existing efforts toward the
creation of such a standard.

288 7. Bellahsene et al.

Mapping tools have been mainly designed for data exchange. Nevertheless, they
have been extensively used in integration systems for constructing an integrated
global schema. Based on this dimension, we have also provided a number of metrics
for measuring the success of the schema integration task performed by mapping
tools.

Acknowledgements We are grateful to B. Alexe, L. Chiticariu, A. Kementsietsidis, E. Rahm, and
P. Shvaiko for their valuable comments and suggestions.

References

Abiteboul S, Hull R, Vianu V (1995) Foundations of databases. Addison-Wesley, MA

Alexe B, Chiticariu L, Miller RJ, Tan WC (2008a) Muse: Mapping understanding and deSign by
example. In: ICDE. IEEE Computer Society, Washington, DC, pp 10-19

Alexe B, Tan WC, Velegrakis Y (2008b) Comparing and evaluating mapping systems with
STBenchmark. Proc VLDB 1(2):1468-1471

Alexe B, Tan WC, Velegrakis Y (2008c) STBenchmark: Towards a benchmark for mapping
systems. Proc VLDB 1(1):230-244

Alexe B, Hernandez M, Popa L, Tan WC (2010a) MapMerge: Correlating independent schema
mappings. Proceedings of VLDB, vol 3(1). VLDB Endowment, pp 81-92

Alexe B, Kolaitis PG, Tan W (2010b) Characterizing schema mappings via data examples. In:
PODS. ACM, NY, pp 261-272

Altova (2008) MapForce. http://www.altova.com

Atzeni P, Torlone R (1995) Schema translation between heterogeneous data models in a lattice
framework. In: Data semantics conference. Chapman & Hall, London, pp 345-364

Aumueller D, Do HH, Massmann S, Rahm E (2005) Schema and ontology matching with
COMA++. In: SIGMOD. ACM, NY, pp 906-908

Barbosa D, Mendelzon AO, Keenleyside J, Lyons KA (2002) ToXgene: A template-based data
generator for XML. In: SIGMOD. ACM, NY, p 616

Batini C, Lenzerini M, Navathe SB (1986) A comparative analysis of methodologies for database
schema integration. ACM Comp Surv 18(4):323-364

Batista M, Salgado A (2007) Information Quality Measurement in Data Integration Schemas. In:
Workshop on Quality in Databases, pp 61-72

Bergamaschi S, Domnori E, Guerra F, Orsini M, Lado RT, Velegrakis Y (2010) Keymantic: Seman-
tic keyword based searching in data integration systems. Proceedings of VLDB, vol 3(2), pp
1637-1640

Bernstein PA, Melnik S (2007) Model management 2.0: Manipulating richer mappings. In:
SIGMOD. ACM, NY, pp 1-12

Bernstein PA, Giunchiglia F, Kementsietsidis A, Mylopoulos J, Serafini L, Zaihrayeu I (2002) Data
management for peer-to-peer computing: A vision. In: WebDB, pp 89-94

Bertinoro (ed) (2007) Bertinoro workshop on information integration, www.dis.uniromal.it/
“lenzerin/INFINT2007

Bohme T, Rahm E (2001) XMach-1: A benchmark for XML data management. In: BTW. Springer,
London, pp 264-273

Bonifati A, Chang EQ, Ho T, Lakshmanan LV, Pottinger R (2005) HePToX: Marrying XML and
heterogeneity in your P2P databases. In: VLDB. VLDB Endowment, pp 1267-1270

Bonifati A, Mecca G, Pappalardo A, Raunich S, Summa G (2008a) Schema mapping verification:
The spicy way. In: EDBT. ACM, NY, pp 85-96

Bonifati A, Mecca G, Pappalardo A, Raunich S, Summa G (2008b) The spicy system: Towards a
notion of mapping quality. In: SIGMOD. ACM, NY, pp 1289-1294

9 On Evaluating Schema Matching and Mapping 289

Bonifati A, Chang EQ, Ho T, Lakshmanan LVS, Pottinger R, Chung Y (2010) Schema mapping
and query translation in heterogeneous P2P XML databases. VLDB J 19(2): 231-256

Bonifati A, Mecca G, Papotti P, Velegrakis Y (2011) Discovery and correctness of schema mapping
transformations. In: Bellahsene Z, Bonifati A, Rahm E (eds) Schema matching and mapping.
Data-Centric Systems and Applications Series. Springer, Heidelberg

Bressan S, Dobbie G, Lacroix Z, Lee M, Li YG, Nambiar U, Wadhwa B (2001) X007: Applying
007 benchmark to XML query processing tool. In: CIKM. ACM, NY, pp 167-174

Carey MJ (2006) Data delivery in a service-oriented world: The BEA aqual.ogic data services
platform. In: SIGMOD. ACM, NY, pp 695-705

ten Cate B, Chiticariu L, Kolaitis P, Tan WC (2009) Laconic schema mappings: Computing core
universal solutions by means of SQL queries. Proc VLDB 2(1):1006-1017

Chiticariu L, Tan WC (2006) Debugging schema mappings with routes. In: VLDB. VLDB
Endowment, pp 79-90

Do HH, Rahm E (2002) COMA - A system for flexible combination of schema matching
approaches. In: VLDB. VLDB Endowment, pp 610-621

Do HH, Melnik S, Rahm E (2002) Comparison of schema matching evaluations. In: Web, web-
services, and database systems. ACM, NY, pp 221-237

Do HH, Melnik S, Rahm E (2003) Comparison of schema matching evaluations. In: Revised papers
from the NODe 2002 web and database-related workshops on web, web-services, and database
systems. Springer, London, pp 221-237

Doan A, Domingos P, Halevy AY (2001) Reconciling schemas of disparate data sources: A
machine-learning approach. In: SIGMOD. ACM, NY, pp 509-520

Doan A, Madhavan J, Domingos P, Halevy AY (2004) Ontology matching: A machine learning
approach. In: Handbook on ontologies. Springer, Heidelberg, pp 385-404

Duchateau F (2009) Towards a generic approach for schema matcher selection: Leveraging user
pre- and post-match effort for improving quality and time performance. PhD thesis, Universite
Montpellier II - Sciences et Techniques du Languedoc

Duchateau F, Bellahsene Z, Hunt E (2007) XBenchMatch: A benchmark for XML schema
matching tools. In: VLDB. VLDB Endowment, pp 1318-1321

Duchateau F, Bellahsene Z, Roche M (2008) Improving quality and performance of schema
matching in large scale. Ingenierie des Systemes d’Information 13(5):59-82

Euzenat J (2004) An API for ontology alignment. In: ISWC, pp 698-712

Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Heidelberg

Euzenat J, Mochol M, Shvaiko P, Stuckenschmidt H, Svab O, Svatek V, van Hage WR, Yatskevich
M (2006) Results of the ontology alignment evaluation initiative. In: Proceedings of the 1st
International Workshop on Ontology Matching (OM-2006)

Fagin R, Kolaitis PG, Popa L (2003) Data exchange: Getting to the core. In: PODS. ACM, NY,
pp 90-101

Fagin R, Kolaitis PG, Miller RJ, Popa L (2005) Data exchange: Semantics and query answering.
Theor Comp Sci 336(1):89-124

Fagin R, Haas LM, Hernandez M, Miller RJ, Popa L, Velegrakis Y (2009a) Clio: Schema mapping
creation and data exchange. In: Borgida A, Chaudhri V, Giorgini P, Yu E Conceptual modeling:
Foundations and applications. Springer, Heidelberg, pp 198-236

Fagin R, Kolaitis PG, Popa L, Tan WC (2009b) Reverse data exchange: Coping with nulls. In:
PODS. ACM, NY, pp 23-32

Fagin R, Kolaitis P, Popa L, Tan W (2011) Schema mapping evolution through composition and
inversion. In: Bellahsene Z, Bonifati A, Rahm E (eds) Schema matching and mapping. Data-
Centric Systems and Applications Series. Springer, Heidelberg

Ferrara A, Lorusso D, Montanelli S, Varese G (2008) Towards a benchmark for instance matching.
In: Proceedings of the 3rd International Workshop on Ontology Matching (OM-2008)

Fletcher GHL, Wyss CM (2006) Data mapping as search. In: EDBT. Springer, Heidelberg,
pp 95-111

Giunchiglia F, Shvaiko P, Yatskevich M (2004) S-Match: An algorithm and an implementation of
semantic matching. In: ESWS. Springer, Heidelberg, pp 61-75

290 7. Bellahsene et al.

Giunchiglia F, Shvaiko P, Yatskevich M (2005) S-Match: An algorithm and an implementation of
semantic matching. In: Dagstuhl seminar proceedings semantic interoperability and integration
2005

Giunchiglia F, Yatskevich M, Avesani P, Shvaiko P (2009) A large dataset for the evaluation of
ontology matching. Knowl Eng Rev 24(2):137-157

Halevy AY, Ives ZG, Suciu D, Tatarinov I (2003) Schema mediation in peer data management
systems. In: Proceedings of international conference on data engineering (ICDE), pp 505-516

Hammer J, Stonebraker M, Topsakal O (2005) THALIA: Test harness for the assessment of legacy
information integration approaches. In: ICDE, pp 485-486

Heinzl S, Seiler D, Unterberger M, Nonenmacher A, Freisleben B (2009) MIRO: A mashup editor
leveraging web, grid and cloud services. In: iiWAS. ACM, NY, pp 17-24

IBM (2006) Rational data architect. www.ibm.com/software/data/integration/rda

Ioannou E, Nejdl W, Niederée C, Velegrakis Y (2010) On-the-fly entity-aware query processing in
the presence of linkage. Proceedings of VLDB, vol 3(1). VLDB Endowment, pp 429438

Kang J, Naughton JF (2003) On schema matching with opaque column names and data values. In:
SIGMOD. ACM, NY, pp 205-216

Kopcke H, Rahm E (2010) Frameworks for entity matching: A comparison. DKE 69(2):197-210

Lee Y, Sayyadian M, Doan A, Rosenthal A (2007) eTuner: Tuning schema matching software
using synthetic scenarios. VLDB J 16(1):97-122

Legler F, Naumann F (2007) A classification of schema mappings and analysis of mapping tools.
In: Proceedings BTW Conf., Aachen, pp 449-464

Lenzerini M (2002) Data integration: A theoretical perspective. In: PODS. ACM, NY, pp 233-246

Lerner BS (2000) A model for compound type changes encountered in schema evolution. TPCTC
25(1):83-127

MacKenzie IS, Sellen A, Buxton W (1991) A comparison of input devices in elemental pointing
and dragging tasks. In: CHI. ACM, NY, pp 161-166

Madhavan J, Bernstein PA, Rahm E (2001) Generic schema matching with cupid. In: VLDB.
Morgan Kaufmann, CA, pp 49-58

Mecca G, Papotti P, Raunich S (2009) Core schema mappings. In: SIGMOD. ACM, NY,
pp 655-668

Melnik S, Garcia-Molina H, Rahm E (2002) Similarity flooding: A versatile graph matching algo-
rithm and its application to schema matching. In: ICDE. IEEE Computer Society, Washington,
DC, pp 117-128

Microsoft (2005) Visual studio. Msdn2.microsoft.com/en-us/ie/bb188238.aspx

Miller RJ, Haas LM, Hernandez MA (2000) Schema mapping as query discovery. In: VLDB.
Morgan Kaufmann, CA, pp 77-88

Mork P, Seligman L, Rosenthal A, Korb J, Wolf C (2008) The harmony integration workbench.
JODS 11:65-93

Naumann F, Ho CT, Tian X, Haas LM, Megiddo N (2002) Attribute classification using feature
analysis. In: ICDE. IEEE Computer Society, Washington, DC, p 271

Okawara T, Morishima A, Sugimoto S (2006) An approach to the benchmark development for data
exchange tools. In: Databases and applications. ACTA Press, CA, pp 19-25

Palmer C, Faloutsos C (2003) Electricity based external similarity of categorical attributes. In:
Proceedings of PAKDD. Springer, Heidelberg, pp 486—-500

Popa L, Velegrakis Y, Miller RJ, Hernandez MA, Fagin R (2002) Translating web data. In: VLDB.
VLDB Endowment, pp 598-609

Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J
10(4):334-350

Runapongsa K, Patel JM, Jagadish HV, Al-Khalifa S (2002) The Michigan benchmark:
A microbenchmark for XML query processing systems. In: EEXTT. Springer, London,
pp 160-161

Schmidt AR, Waas F, Kersten ML, Carey MJ, Manolescu I, Busse R (2002) XMark: A benchmark
for XML data management. In: VLDB. VLDB Endowment, pp 974-985

www.ibm.com/software/data/integration/rda

9 On Evaluating Schema Matching and Mapping 291

Simitsis A, Vassiliadis P, Dayal U, Karagiannis A, Tziovara V (2009) Benchmarking ETL
workflows. In: TPCTC. Springer, Heidelberg, pp 199-220

Smith K, Morse M, Mork P, Li M, Rosenthal A, Allen D, Seligman L (2009) The role of schema
matching in large enterprises. In: CIDR

Stylus Studio (2005) XML Enterprise Suite. www.stylusstudio.com

Transaction Processing Performance Council (2001) TPC-H Benchmark. Tpc.org

Van-Risbergen C (1979) Information retrieval, 2nd edn. Butterworths, London

Velegrakis Y (2005) Managing schema mappings in highly heterogeneous environments. PhD
thesis, University of Toronro

Wun A (2009) Mashups. In: Encyclopedia of database systems. Springer, Heidelberg, pp 1696—
1697

Yan L, Miller RJ, Haas LM, Fagin R (2001) Data-driven understanding and refinement of schema
mappings. In: Proceedings of SGMOD conf. ACM, NY, pp 485-496

Yao B, Ozsu T, Khandelwal N (2004) XBench benchmark and performance testing of XML
DBMSs. In: Proceedings of international conference on data engineering (ICDE). IEEE
Computer Society, Washington, DC, pp 621-633

Yatskevich M (2003) Preliminary evaluation of schema matching systems. Tech. Rep. DIT-03-028,
University of Trento

Chapter 10
Tuning for Schema Matching

Zohra Bellahsene and Fabien Duchateau

Abstract Schema matching has long been heading towards complete automation.
However, the difficulty arising from heterogeneity in the data sources, domain speci-
ficity or structure complexity has led to a plethora of semi-automatic matching tools.
Besides, letting users the possibility to tune a tool also provides more flexibility,
for instance to increase the matching quality. In the recent years, much work has
been carried out to support users in the tuning process, specifically at higher levels.
Indeed, tuning occurs at every step of the matching process. At the lowest level,
similarity measures include internal parameters which directly impact computed
similarity values. Furthermore, a common filter to present mappings to users are
the thresholds applied to these values. At a mid-level, users can adopt one or more
strategies according to the matching tool that they use. These strategies aim at com-
bining similarity measures in an efficient way. Several tools support the users in
this task, mainly by providing state-of-the-art graphical user interfaces. Automat-
ically tuning a matching tool at this level is also possible, but this is limited to a
few matching tools. The highest level deals with the choice of the matching tool.
Due to the proliferation of these approaches, the first issue for the user is to find the
one which would best satisfies his/her criteria. Although benchmarking available
matching tools with datasets can be useful, we show that several approaches have
been recently designed to solve this problem.

Z. Bellahsene (<)
University of Montpellier II, 34000 Montpellier, France
e-mail: bella@lirmm.fr

F. Duchateau
CWI, Amsterdam, The Netherlands
e-mail: fabien@cwi.nl

Z. Bellahsene et al. (eds.), Schema Matching and Mapping, Data-Centric Systems 293
and Applications, DOI 10.1007/978-3-642-16518-4_10,
(© Springer-Verlag Berlin Heidelberg 2011

bella@lirmm.fr
fabien@cwi.nl

294 Z. Bellahsene and F. Duchateau

1 Introduction

The gap between manual schema matching and semi-automatic schema matching
has been filled in early, especially because of the need to handle large schemas
and to accelerate the matching process [Carmel et al., 2007]. The next step towards
automatic schema matching is mainly motivated by the lack of human experts, for
instance in dynamic environments. In all cases, tuning is mainly required to improve
quality results and/or time performance. We illustrate this statement with Fig. 10.1,
on which four schema matchers (YAM, COMA, Similarity Flooding and YAM with
tuning) have been run on the same scenario. Only one of them has been tuned and
this plot compares the number of user interactions to obtain a 100% F-measure man-
ually. In brief, a user interaction is a user (in)validation for a given pair of schema
elements [Bellahsene et al., 2011]. When a tool discovers many relevant correspon-
dences, the user has less interactions to correct and find the missing ones. The plot
clearly shows that the tuned matcher improves quality and consequently reduces
post-match effort.

Tuning, either automatic or manual, is performed during the pre-match phase of
the schema matching process. The main motivation for tuning a schema matcher
deals with the difficulty to know in advance, even for a human expert, the best con-
figuration of the parameters for a given set of schemas. The heterogeneity, structure
and domain specificity encompassed in every set of schemas to be matched make it
more difficult for a schema matcher to achieve acceptable results in all cases. Thus,
tuning enables schema matchers to provide flexibility and customization to cope
with the different features of each set of schemas.

100
90
80|
70

601

50}

40}

30f"

20§ YAM —— ||
10 YAM-tuned --x--
COMA++ --%--

f-measure

SF &
0 500 1000 1500 2000 2500
number of interactions

Fig. 10.1 A tuned matcher mainly improves matching quality

10 Tuning for Schema Matching 295

However, tuning the parameters to fulfil this goal is not an easy task for the user.
Indeed, it has recently been pointed out that the main issue is how to select the most
suitable similarity measures to execute for a given domain and how to adjust the
multiple parameters [Lee et al., 2007]. Due to the numerous possible configurations
of the parameters, it is not possible to try them all. Besides, they require specific
knowledge from the users. Let us imagine that a user has to choose one similarity
measure for matching his/her schemas and to assign a threshold to this measure.
Selecting the appropriate similarity measure first implies that the user is a domain
expert. Further, assigning the threshold means that the user has some background
knowledge about the chosen measure, e.g., its value distribution.

One of the ten challenges for ontology matching focuses on the tuning issue
[Shvaiko and Euzenat, 2008]. Authors claim that this tuning is splitted in three cate-
gories: (1) matcher selection, (2) matcher tuning and (3) combination strategy of the
similarity measures. In the first category, we distinguish manual selection from auto-
matic selection. In the former, evaluation of different matchers and benchmarking
tools facilitate the choice of a matcher for a given task [Yatskevich, 2003, Do et al.,
2002, Duchateau et al., 2007, Ferrara et al., 2008]. On the contrary, there exist a
few tools that automatically select and build a schema matcher according to various
parameters (YAM [Duchateau et al., 2009a,b]). The second category is mainly dedi-
cated to tools such as eTuner [Lee et al., 2007], which automatically tunes a schema
matcher with its best configuration for a given set of schemas. Any schema matcher
which provides the possibility to change manually the value of one or more of its
parameters also falls in this catagory. The last category gathers the matchers which
provide a manual combination of similarity measures (e.g., COMA++ [Aumueller
et al., 2005], BMatch [Duchateau et al., 2008b]) and those which automatically
combines these measures (SMB [Anan and Avigdor, 2008] and MatchPlanner from
Duchateau [2009]). Note that in the rest of this chapter, we consider that the combi-
nation strategy is one parameter that can be tuned. In other words, the third category
is merged into the second one.

The rest of the chapter is a survey about most popular parameters in schema
matching and the tuning systems. We have gathered these parameters according to
the entities against which they are applied: input data, similarity measures, combi-
nation of similarity measures and finally the matcher. This means that a tool may be
described at different levels, according to the parameters that they enable to tune.
Thus, the chapter is organized as follows: Section 2 covers the main notions about
tuning. We then present the different parameters that one might face when using
a matcher. These parameters have been sorted in four categories: in Sect.3, we
present the parameters related to input data and user preferences. Then, we describe
in Sect. 4 low-level parameters involved in the schema matching process, namely
those dealing with the similarity measures. One level higher, we find parameters
which aim at combining the similarity measures. They are presented in Sect. 5. The
highest level is the matcher selection and the involved parameters are discussed in
Sect. 6. Finally, we conclude and we outline perspectives in Sect. 7.

296 Z. Bellahsene and F. Duchateau

2 Preliminaries

For many systems, tuning is an important step to obtain expected results or to opti-
mize either matching quality or execution time. In the schema matching context,
this statement is easily checkable due to the large amount and the diversity of avail-
able parameters provided by schema matchers. We now formalize the problem of
tuning a schema matcher. As depicted by Fig. 10.2, the schema matching process
requires as inputs at least two schemas, and optional parameters which can be given
avalue. These values belong to a specific domain. We mainly distinguish three types
of domains:

e A finite (multi-)valued set, e.g., a list of synonyms <(author, writer), .. ., (book,
volume)>

e An unordered discrete domain, e.g., mapping cardinality can be /:1, I:n, n:1, or
n:m

e An ordered continuous domain, e.g., a threshold for a similarity measure in the
range [0, 1]

Similarly to Lee et al. [2007], we call knob a parameter with an associated value.
However, we do not restrict knobs to have values from a finite valued set. Here are
examples of knobs: (mapping cardinality, 1:1) and (threshold, igrams, 0.15).

More formally, we define S =< s;, $2, ..., s, > the set of input schemas
that the user wants to match. The parameters are represented by the set P =< pj,
P25 .-, Pk >. The value domains are gathered in a set D =< dj, da, ..., dy >
where each d; € D is a set < value;;, value;,, ..., value;; >. Finally,
K =< ki, ka, ..., k; > stands for the set of knobs or the configuration of a
schema matcher. With these definitions, we propose a Match function which uses
any schema matcher with a configuration k to match a set of schemas s. The output
of the Match function with the configuration k is a set of correspondences m.

Match(s, k) = my,

schema-1

schema-n \ SCHEMA
——>(Set of Matches
_ param-1 = value-1 { MATCHER

(param-k.=value-k >

Fig. 10.2 Inputs and outputs of the schema matching process

10 Tuning for Schema Matching 297

As described in Bellahsene et al. [2011], it is possible to measure the quality of
this set of correspondences, e.g., precision, recall and F-measure. We note Fmes the
F-measure applied to a set of correspondences ny.

Fmes(my) := [0, 1]

Thus, an optimal tuning k in this context consists of finding a configuration
function ¢ applied to parameters and domains so that the output of the schema
matcher my is optimal given the input schemas. In other words, the configuration
of the knobs would be perfectly tuned to achieve the best matching quality. That is,
changing the value of any knob would decrease the matching quality.

Given that {(s, p, d) = k and Match(s, k) = my,
Az =1C(s, p, d) and Match(s, z) = m, with Fmes(m_) > Fmes(my,).

Likely, the measure of satisfaction over the ouput deals with quality (F-measure).
But it is also possible to tune a schema matcher to optimize time performance, for
instance with decision trees [Duchateau et al., 2008a].

In the next sections, we discuss the different parameters that one may face with
when using a schema matcher, based on these definitions.

3 Input and Data Parameters

In this section, we gather the data and input parameters that one may have to con-
figure when using a schema matcher. We do not consider that the input schemas
belong to the tuning parameters. Indeed, a set of input schemas is compulsory to
run the matcher. Thus, this section is dedicated to parameters that may side along
with the input schemas (e.g., expert correspondences, data instances) or parameters
related to techniques used by the matcher (e.g., machine learning, external resources
used by a similarity measure). Indeed, most of these parameters directly affect the
quality or the time performance. Deciding whether to provide any of them, as well
as the choice of the parameters’ values, is inherent to the tuning phase. The section is
organized according to the type of parameters. First, data parameters include expert
feedback. Such a reliable knowledge aims at improving the matching quality by
reusing entities that have been checked by a domain expert. This feedback, as well
as data instances, is often combined with machine learning techniques to exploit
them. These machine learning techniques hold various parameters to be efficient
and/or flexible, and we study them in the second part. The third category gathers
external resources, which mainly consist of providing an ontology or dictionary.
Finally, due to the complexity of the matching process and the design of numerous
matchers, there exist very specific parameters that one may only face by using a
given tool.

298 Z. Bellahsene and F. Duchateau

3.1 Expert feedback

Expert feedback mainly consists of correct mappings between the schemas to be
matched. These mappings can be seen as a bootstrap for the schema matcher, i.e.,
knowledge is taken as input by machine learning algorithms to classify schema
instances. It may be a compulsory parameter such as in LSD/Glue [Doan et al.,
2001, 2003] and APFEL [Ehrig et al., 2005].

Conversely, providing mappings is an extra option to improve matching quality
with tools such as YAM. As explained in Duchateau et al. [2009a,b], each schema
is built with a given “design methodology” (e.g., naming labels using underscores
between tokens, using labels from an ontology). Consequently, by providing correct
mappings, the system is able to infer, during the learning process, which simi-
larity measures are the most efficient between elements of the mappings. Since a
schema designer mainly keeps the same “design methodology” to build the whole
(sub)schema, the similarity measures which have been detected as efficient with the
correct mappings may also be efficient to discover new mappings.

Other tools have been designed to store correspondences and reuse them later
[Madhavan et al., 2005]. This is called a reuse strategy in matchers such as
COMA++ [Aumueller et al., 2005] or Quickmig [Drumm et al., 2007]. Actu-
ally, these tools are able to derive new correspondences when different successive
matching processes involve the same schema. This feature is specifically useful
when one of the schemas has been modified.

3.2 Machine Learning Parameters

Many schema matchers (partly) rely on machine learning techniques to discover cor-
respondences between schemas. We distinguish two use cases of machine learning
techniques: (1) as a similarity measure or (2) as a “matcher” to combine measures.

3.2.1 Parameters at the Similarity Measure Level

In most cases, these learning techniques are applied against schema instances as part
of a similarity measure. We can cite many works, which have at least one such mea-
sure [Drumm et al., 2007, Li and Clifton, 2000, Berlin and Motro, 2002, Hernandez
et al., 2002, Doan et al., 2003, Dhamankar et al., 2004].

The most common machine learning parameter deals with the training data. First,
a suitable set of training data is a crucial issue common for all machine learn-
ing approaches. Second, users also have to cope with the number of training data.
Matching tools are either provided with a knowledge base, thus enabling the stor-
age and reuse of these data or the tools do not require too many training data to be

10 Tuning for Schema Matching 299

Table 10.1 Impact of the number of training data on the matching quality with Apfel’s
decision tree

Dataset Number of training data Precision Recall F-measure
Russia 20 83% 48% 60%
50 82% 47% 60%
150 72% 59% 65%
Biblio 20 01% 28% 01%
50 46% 25% 32%
150 63% 38% 47%

efficient, since this woud not be realistic. For example, if a user needs to match 100
data sources, (s)he can manually find the mappings for a few data sources and LSD
discovers the others for the remaining sources [Doan et al., 2001]. Due to the avail-
ability of training data and the classifier used, tuning this parameter is complicated.
To illustrate this, we have partly reproduced a table from Ehrig et al. [2005], shown
as Table 10.1. We have limited this excerpt to two matching datasets (Russia and
biblio) and to one Apfel’s classifier (the decision tree). It depicts how the number
of training data has a significant impact on the matching quality (in terms of preci-
sion, recall and F-measure). For instance, we notice that providing 20 training data
in the Russia dataset enables the best precision (83%). This precision value tends to
decrease with more training data. On the contrary, using 20 training data with the
biblio dataset is clearly not sufficient.

Not only the number of training data may be crucial, but their validity also. For
instance, APFEL [Ehrig et al., 2005] uses both positive and negative examples for
training its classifiers. In this context, it is easier to provide sufficient training data to
the system: authors explain that an initial matcher performs a matching over sample
data and let users rate the discovered correspondences. The rated list of correspon-
dences is then given as input to APFEL. From this list, the tools determines heuristic
weights and threshold levels using various machine learning techniques, namely
decision trees, neural networks, and support vector machines.

Another work aims at classifying candidate correspondences (either as relevant
or not) by analysing their features [Naumann et al., 2002]. The features represent
boolean properties over data instance, such as presence of delimiters. Thus, selecting
an appropriate feature set is a first parameter to deal with. The choice of a classifier
is also important, and authors propose, by default, the Naive Bayes classifier for
categorical data and quantile-based classifier for numerical data.

Similarity measures based on machine learning may not always stand for the
most effective. The ASID matcher [Bozovic and Vassalos, 2008] considers its Naive
Bayes classifier (against schema instances) as a less credible similarity measure,
which is applied after user (in)validation of initial results provided by more reliable
measures (Jaro and TF/IDF). We think that this credibility of machine learning-
based similarity measures heavily depends on the quality of their training data.

300 Z. Bellahsene and F. Duchateau

3.2.2 Parameters at the Matcher Level

The second category of matchers use machine learning techniques to combine sim-
ilarity measures. However, they share almost the same parameters than the first
category.

SMB [Anan and Avigdor, 2008] is based on the Boosting algorithm. In addition
to training data, this approach also needs two parameters. The former is a hypothesis
space, which is in this case a pair of similarity measures chosen among a pool. It
appears that the similarity measures that perform well when used alone are mainly
not included in the hypothesis space when combined with another one. The latter is
an error measure, which aims at both stopping the algorithm (when the computed
error value reaches a threshold, 0.5 by default) and selecting at each iteration the
similarity measure which produced less errors. The authors have noticed that this
error value is quickly reached, and therefore have added a pre-processing step to
remove all pairs of schema elements that have been classified as irrelevant by all
classifiers.

In YAM [Duchateau et al., 2009a,b], the number of training data, extracted from
a knowledge base, is either provided by users or chosen according to empirical eval-
uation results. This tool can also be trained with similar schemas. This means that
users may already have schemas that have been matched and could be reused to
improve the results. Similarly, authors indicate that the schemas belong to either
the same domain (e.g., biology, business) or share some features (e.g., degree of
heterogeneity, nested structure).

3.3 External Resources

External resources have long been useful to bring reliable knowledge into the
schema matching process. In addition to the availability and security issues, user
should check the adequacy of the resource content for the given matching task
and its integration within the matcher. Different types of resources are accepted
by schema matchers. The simplest one is a list of similar labels, also called list of
synonyms. COMA++ [Aumueller et al., 2005] and Porsche [Saleem et al., 2008]
let users fill in these resources. List of abbreviations are very common to extend
the labels of ambiguous schema elements, such as in COMA++ [Aumueller et al.,
2005].

Another type of external resources is the domain ontology, used by Quickmig
[Drumm et al., 2007] for instance. Similarly, Porsche [Saleem and Bellahsene, 2009]
is enhanced by data mining techniques applied to many domain ontologies to extract
mini-taxonomies, that are finally used to discover complex mappings.

The Wordnet dictionary [Wordnet, 2007] is also used in different fashions:
it facilitates the discovery of various relationships (e.g., synonyms, antonyms)
in approaches such as YAM [Duchateau et al., 2009a,b] and S-MATCH/S-
MATCH++ [Giunchiglia et al., 2004, Avesani et al., 2005]. A dictionary can
also become the core of the system against which all schema elements are matched,
as performed by AUTOPLEX/AUTOMATCH [Berlin and Motro, 2001, 2002].

10 Tuning for Schema Matching 301

3.4 Other Input Parameters

Due to their diversity and their internal algorithms, schema matchers may have very
specific parameters and/or user preferences. Here, we propose to detail some of
them.

In Drumm et al. [2007], the Quickmig approach requires users to fill in a ques-
tionnaire. It then uses the answers to reduce the size of input schemas based on user
domain knowledge. This parameter is useful when only a subpart of schemas needs
to be matched or when dealing with large schemas.

Although most schema matchers implicitly promote precision, YAM [Duchateau
et al., 2009a,b] is the first tool that enables users to tune a preference towards
precision or recall. This choice affects the machine learning process by avoid-
ing the discovery of irrelevant mappings or by preventing the missing of relevant
ones. As explained by the authors, promoting precision (respectively recall) often
has a negative impact on recall (respectively precision). Figure 10.3 depicts the
evolution of precision, recall and F-measure averaged for 150 datasets when the
weight applied to false negatives increases (thus promoting recall). It appears that
F-measure slightly increases by 7% while recall value improves up to 20% to the
detriment of precision. Approaches that use a threshold to select correspondences
also have a means of promoting recall by lowering the value of this threshold.

In Anchor-PROMPT [Noy and Musen, 2001], authors have chosen to compare
paths of schema elements. As a consequence, specific parameters are used, such
as the maximum length of a path, the number of elements involved in an equiva-
lence group, etc. End-users may have to understand the basics of Anchor-PROMPT
algorithm to be able to tune its parameters correctly.

100 T T T
N0 1
80 1

60 e 1

+x

50t :
40t 1
30+ :

value in percent

20 1

10 H precision ——+-- |
recall

0 f-measure_---x--- .

1 2 3 y .

weight of false positives

Fig. 10.3 Impact on the matching quality when promoting recall with YAM

302 Z. Bellahsene and F. Duchateau

To the best of our knowledge, AgreementMaker [Cruz et al., 2007, 2009] is the
only tool that enables users to select a type of cardinality to be discovered. Given
two input schemas, mapping cardinality is either /:1, I:n,n:1 or n:m.In a 1:1 con-
figuration, the matcher is limited to discover mappings between one element of the
first schema and one element in the other schema. Only a few matchers empha-
size the complex mappings such as n:m, in which any number of elements in both
schemas can be involved in a mapping.

3.5 Conclusion

In this section, we have mainly presented user inputs, i.e., optional preferences and
parameters applied to data. To sum up, the quality can be improved by using exter-
nal resources and expert feedback. Several tools are based on machine learning
techniques either as a similarity measure (mostly at the instance level) or as a means
of combining the results of similarity measures. In both cases, training data is a
crucial issue. Finally, many tools propose preferences or options which add more
flexibility or may improve the matching quality. The next section focuses on the
parameters at the similarity measure level.

4 Similarity Measures Parameters

Similarity measures are the basic components of schema matchers. They can be used
as individual algorithms or combined with an aggregation function. Consequently,
they may have internal parameters. In most cases, schema matchers do not enable
users to tune such low-level parameters. Another parameter applied to similarity
measures is the threhold. It filters the pair of schema elements in different categories
(e.g., is a correspondence, or should apply another type of similarity measure) based
on the output of the similarity measures. The last part of this section is dedicated to
parameters specific to one or several matchers.

4.1 Internal Parameters

Similarity measures takes as input two schema elements, and it outputs a similarity
between them. This similarity value may be a numerical value (e.g., a distance, a
real in the range [0, 1]) or a relationship (e.g., equivalence, generalization). Similar
to black-box algorithms, similarity measures can have internal parameters which
impact the output. Due to the numerous available similarity measures, we do not
intend to describe all of them with their parameters. Thus, we focus on two simple
examples to illlustrate various types of such internal parameters.

10 Tuning for Schema Matching 303

The first example is the Levenhstein distance [Levenshtein, 1966] between two
character strings. It computes the minimal number of operations costs needed to
transform one source string into the target string, where an operation is an insertion,
deletion or substitution of a single character. Each operation may have a different
cost. For instance, a substitution can have a cost equal to 2, while insertions and
deletions may cost 1. Users can tune these costs according to their needs.

Between the two string dept and department, one requires six character inser-
tions to transform dept into department. If an insertion costs 1, then the Levenhstein
distance between both strings is 6.

The second similarity measure that we study is Jaro Winkler [Winkler, 1999].
This measure is also terminological and it compares two character strings. It extends
Jaro measure by taking into account the order of the characters of both strings. Fur-
thermore, it promotes higher similarity values between strings which share similar
prefixes. Consequently, it includes two parameters. The first one is the length of the
prefix substring while the second represents a constant scaling factor for how much
the score is adjusted upwards for having common prefixes.

For further reading, we advise you to check the following list of resources
[Cohen et al., 2003, Euzenat et al., 2004]. Several packages also describe similarity
measures and their parameters, for instance SecondStringl or SimMetrics.?

4.2 Thresholds

Most similarity measures are normalized to return a value in the range [0, 1]. Among
all candidate pairs of schema elements, selecting the ones to propose as mappings
can be performed with a threshold. That is, all candidate pairs whose similarity value
(from one measure or resulting from a combination of several measures) is above
a given threshold become mappings. Many tools [Avesani et al., 2005, Madhavan
et al., 2001, Duchateau et al., 2008b, Drumm et al., 2007] have a threshold for
selecting mappings. In most cases, a default value for the threshold is provided with
the tool, e.g., 0.6 for the string-matching threshold in S-Match [Giunchiglia et al.,
2007]. COMA++ [Aumueller et al., 2005] includes a threshold often combined
with a top-K strategy (i.e., the best K correspondences are returned) and a MaxDelta
strategy (i.e., the best correspondence is returned with the closest ones, whose score
only differs by a Delta tolerance value). Conversely, APFEL [Ehrig et al., 2005] is
a machine learning-based tools which features an automatic threshold tuning.

As the value distribution is very different from a similarity measure to another,
a schema matcher can have one specific threshold for each similarity measure.
This is the case with MatchPlanner [Duchateau et al., 2008a]. The extended ver-
sion of this matcher enables the automatic learning of these thresholds, thanks to

! SecondString (May 2010): http://sourceforge.net/projects/secondstring/.
2 SimMetrics (May 2010): http://www.dcs.shef.ac.uk/~sam/stringmetrics.html.

http://sourceforge.net/projects/secondstring/
http://www.dcs.shef.ac.uk/~sam/stringmetrics.html

304 Z. Bellahsene and F. Duchateau

machine learning techniques [Duchateau, 2009]. Similarly, Anchor-PROMPT [Noy
and Musen, 2001] automatically computes the threshold values by averaging all
similarity scores obtained on different runs with various parameter configurations.

In a broader way, authors of [Melnik et al., 2002] discuss the notion of fil-
ters to select the mappings. These filters include not only the thresholds, but also
constraints between elements (types and cardinality) and a selection function.

Note that the threshold may be a parameter applied to a global similarity value,
i.e., different similarity values are aggregated into a global one (given a strategy,
see Sect.5) and the threshold represents the decision-maker for accepting the pair
of schema elements as a correspondence or not.

4.3 Various

Contrary to most aggregation-based approaches, Similarity Flooding/Rondo
[Melnik et al., 2002, 2003] uses a graph propagation mechanism to refine simi-
larities between schema elements. Thus, it holds specific parameters. The first one
is fixpoint formula, which enables the computation of updated similarities and the
end of execution of the propagation. Different fixpoint formulas have been tested
and evaluated in Melnik et al. [2002]. In addition, several filters are proposed
to select among all candidate pairs the ones that Rondo displays as mappings.
Constraints (on cardinality and types) or thresholds are examples of filters.

For a given schema element, we do not know in advance to how many elements
it should be matched [Avigdor, 2005]. However, approaches such as COMA++
[Aumueller et al., 2005] or iMAP [Dhamankar et al., 2004] can display the top-K
correspondences (for future interactive mode), thus enabling users to disambiguate
complex correspondences. Other works have been specifically designed to discover
complex mappings, such as Porsche [Saleem and Bellahsene, 2009].

4.4 Conclusion

This section describes the parameters related to similarity measures. Although they
have a significant impact, parameters inside the similarity measures are often set
to default values. Schema matching tools let users tune the thresholds, which is a
traditional decision maker for deciding what happens to a pair of schema elements.
Finally, we have detailed specific parameters that users have to understand before
optimizing the matchers. In the next section, we reach one level up by studying the
parameters related to the combination of similarity measures.

10 Tuning for Schema Matching 305

5 Parameters for Combining Similarity Measures

At a higher level, schema matchers have to combine the results computed by diff-
erent similarity measures. This enables an increase of the matching quality in
most cases. However, the method for combining these results is crucial to derive
high-quality mappings. The matcher first normalizes all similarity values. Different
strategies are adopted to fulfil this goal. The first part of this section describes these
different strategies. Several tools have been designed to enhance the interactivity
with users for selecting the best strategy. These tools are presented in the second
part of this section. Finally, we focus on a specific strategy which is widely used
by matchers: the linear regression. It mainly encompasses weights to reflect each
similarity measure’s influence when combining them.

5.1 Strategy for Combining Similarity Measures

As many schema matchers use different similarity measures (based on string-
matching, semantic, linguistics, structure, etc.), they need to adopt a strategy for
combining these measures. In most cases, schema matchers combine the results
computed by similarity measures, after a normalization step of the values (e.g., in
the range [0, 1]).

One of the simplest method to combine similarity values is the average function,
used by tools such as ASID [Bozovic and Vassalos, 2008] or BMatch [Duchateau
et al., 2008b]. Aggregating the similarity values using weights reflects the impact of
each measure in the matching process. In other words, it is possible to promote mea-
sures that are based on reliable resources (e.g., dictionaries, ontologies) by assigning
them a high weight (see Sect. 5.2 for more details).

More complex strategies are found within COMA++ [Aumueller et al., 2005] in
which similarity measures, types of nodes along with context, and fragments (parts)
of the schema can be tuned. These strategies are then applied to the matrix built by
COMA++ to deduce the correspondences that are displayed to the user. The three
main combination steps are aggregation (e.g., weighted, max or the default average),
direction (e.g., unidirectional or stable marriage), and selection (e.g., threshold,
maxN) [Do and Rahm, 2002]. A strategy is built by choosing a value for each of
these three steps. Figure 10.4 depicts an overview of COMA++ graphical interface
for selecting a strategy. We also notice that a strategy may be performed on specific
elements of the schemas (nodes, leaves, etc.).

MatchPlanner is a schema matcher based on decision trees to combine similarity
measures. Although it has been extended by machine learning techniques to gen-
erate these decision trees [Duchateau, 2009], users can provide their own decision
trees to the system [Duchateau et al., 2008a]. There is no weight on the measures,
but their order and position in the decision tree are crucial. Manually designing such
decision trees is interesting when one wants to promote time performance or use a
specific similarity measure.

306 Z. Bellahsene and F. Duchateau

R Source Target Matcher Mapping Help |

—— — — ‘ Horts
[&g ’!) g’, _, % N :_"‘f-runchuamdu”"" oon 10|
S ==l eotalValue : nulbek \ A \'\ 9 Amounc
| Schemas | (MapgNGS 1 (OpGTations | ® InvoiceTo— LY VATAmount : £loat
e f e gy | i 9 Contact —_— Vo I|| amountInclVAT : float
%@ m,ﬁ 3 VATRate : float
——————————885 | (onlipurc Sirategy aAmountExcIVAT : float
!W'm:m_tn shipsentDate : date
Xchicore 1| TcustomecOrderRet : string
XcbiOrder T§-InvoiceTo
M’m :d @ Ocganizacion
s O e M
Xcbi35_lnvoice :
[registrationNo : string
;xcms,orm L g - VATRegistrationNo : string
;Xl:lﬂl'l_ % pe -ﬂr. = url : string
Xcbi35_ProductCatalon | (Contigurs this Srategy =» see above) \ o -Address
(Apertum It rome oot e ing | | o S Tstreet : string
FW"“ | EOwou]| - | focet | Atige— | ity @ string
[Excel E e-mail : string - ._‘““--suu : steing
telephone : string "o T—postalCode : string
?:gun =] ? Addeess— T——country ¢ string
[« —— [| steeetl 1 Steing— o #-periverTo
Name Moris city @ string—y N ® Organization
Imported Thu Mar 03 13 3851 CET 2005 | stacefrovince @ strimg— - referencelio : string
Provider Noris odr poatalCode : string—._> . T—name : string M
unl NORTS_PurchaseCrder Countty ! string-— o registrationNo ¢ string -
Content__ 08 4 a : Tl
[canfigure Strategy

Fig. 10.4 COMA-++ user interface for selecting combination strategy

In SMB [Anan and Avigdor, 2008], the output of a weak similarity measure
(called first-line matcher) is combined with a decision maker (or second-line
matcher) to discover correspondences. The combination strategy depends on the
decision maker, which can be Maximum Weighted Bipartite Graph algorithm, Stable
Marriage, etc.

In YAM [Duchateau et al., 2009a,b], the combination of similarity measures is
performed by a machine learning classifier. Authors consider that any classifier is
a matcher since it classifies pairs of schema elements as relevant or not. Thus, the
combination of the similarity measures depends on the type of classifier (decision
tree, Bayes network, neural network, etc.).

To sum up, many tools have designed their own strategies to combine similarity
measures. However, most of them are based on weighted functions that the users
may have to tune.

5.2 Weights in Formulas

Previously, we have detailed different types of strategies. One of the most com-
mon strategy in the matching community is the linear regression to aggregate values
computed by similarity measures. In that case, the weights given to each measure is
important according to the domain and the schemas to be matched. For instance, if a
domain ontology is available, one may decide to give a high weight to the measures,
which are able to use this ontology. However, tuning these weights manually still
requires user expertise.

10 Tuning for Schema Matching 307

A simple example of aggregation function is demonstrated with BMatch
[Duchateau et al., 2008b] or Cupid [Madhavan et al., 2001]. Their authors aggre-
gate the results of terminological measure with the ones computed by a structural
measure by varying the weights applied to each measure (% and %, % and %, etc.).

In most tools, default values are given to these weights. They are mainly the
results of intensive experiments. For example, the default weights of COMA++s
name and data type similarity measures are 0.7 and 0.3, respectively [Do and Rahm,
2002]. As explained in Glue [Doan et al., 2003] or APFEL [Ehrig et al., 2005], it
is possible to tune the weights of an aggregation function automatically, thanks to
machine learning techniques.

To help tuning the weights in aggregating functions, we discuss the iMAP
approach [Dhamankar et al., 2004]. This matcher mainly provides a new set of
machine learning-based measures for discovering specific types of complex map-
pings (e.g., name is a concatenation of firstname and lastname). It also includes an
explanation module to clarify why a given correspondence has been discovered to
the detriment of another candidate. For instance, this module is able to describe that
a string-matching classifier has a strong influence for a discovered correspondence.
Thus, user can use this feedback to decrease the weight of this classifier.

5.3 Supporting Users to Revise Strategies

Although most matchers simply provide a graphical user interface to visualize the
results, recent works have pointed out a need for selecting the best strategy. For
instance, including some mechanisms to easily update the weights of a function so
that users can directly analyse impacts of these changes.

Here, we describe recent works that aim at supporting users during the tasks of
selecting appropriate similarity measures and combining them. To combine them
efficiently, weights have to be efficiently tuned. To support users during these tasks,
two tools have been designed: AgreementMaker and Harmony. Whatever the tech-
nique they use (interactions with users or strategy filters), they enable a revision of
the current strategy by adding, removing or modifying parameters and similarity
measures involved in the combination. We further describe each of these tools in the
rest of this part.

5.3.1 AgreementMaker

The originality of AgreementMaker [Cruz et al., 2007, 2009] is the capability of
matching methods combination. Moreover, it provides facilities for tuning manually
the quality of matches. Indeed, one of the interesting features of AgreementMaker is
a comprehensive user interface supporting both advanced visualization techniques
and a control panel that drives the matching methods. This interface, depicted by
Fig. 10.5, provides the user facilities to evaluate the matching process, thus enabling
the user to be directly involved in the loop and evaluation strategies.

308 Z. Bellahsene and F. Duchateau

Agreement Maker
File View Ontology Matching Help
| ot howest Crtetegy Local Targed ology g
o100 {3z) n
b ML Claties Hosrmwrarchy | b DL Clasias biararareny |
—{zsaress |
e)
=
.
{— -—
1
Chapter | WL Froperties Herararchy
(iProcerson | FelsaRurce
Matchings Controd Panel
Matcher selection. | (Testh All Zero Similarities B (Wiewdetails) (Matcht) Threshold [50% B8] Source relations | 1 B0 Target relations | ANY 18
e hemiinds Thirihold b heismens | T-Relans
User Manual Masching 1% ey ANy
Parametrc Yaring Matcher M s 1 ANy
LT) AnY

User Marwial Matching % oy ANy

Fig. 10.5 AgreementMaker user interface for testing and comparing combination strategies

AgreementMaker provides a combination strategy based on the linear interpola-
tion of the similarity values. The weights can be either user assigned or evaluated
through automatically determined quality measures. The system allows for serial
and parallel composition where, respectively, the output of one or more methods
can be used as input to another one, or several methods can be used on the same
input and then combined.

5.3.2 Harmony

Harmony schema matcher [Mork et al., 2008, Smith et al., 2009] combines mul-
tiple matcher algorithms by using a vote merger. The vote merging principle is
a weighted average of the match scores provided by each match voter. A match
voter provides a confidence score for each pair of schema elements to be matched.
Then, Similarity Flooding strategy [Melnik et al., 2002] is applied to adjust the
confidence scores based on structural information. Thus, positive confidence scores
propagate up the graph. An interesting feature of Harmony lies in its graphical user
interface for viewing and modifiying the discovered schema correspondences. This
allows to assist the users to focus their attention on different ways. This assistance
is done through a filter, which is a predicate that is evaluated against each candidate
correspondence. Harmony supports two kinds of filters. The first kind named link
filters depends on the characteristics of a candidate correspondence. For example,
applying the confidence filter will have an effect to graphically display those corre-
spondences, whose match score falls within the specific range of values. The second
one named node filters is related to a schema element characteristics. This kind of

10 Tuning for Schema Matching 309

filters includes a depth and a sub-tree filter. For example, in Entity Relationship
schemas, entities appear at level 1, whereas attributes are at level 2. In this case, by
using the depth filter with value /, the user may focus on matching entities, while
the sub-tree filter is useful in tree based model such as XML schemas.

5.4 Discovering the Best Configuration

The previous section gathers tools that support users to manually find the best
strategy, i.e., the best method for combining similarity measures and its optional
parameters such as weights. This last part is dedicated to the tools that automatically
discover the best strategy: eTuner and YAM.

5.4.1 eTuner

eTuner [Lee et al., 2007] is not a schema matching tool, but it aims at automatically
tuning them. It proceeds as follows: from a given schema, it derives many schemas
which are semantically equivalent. The mappings between the initial schema and its
derivations are stored. Then, a given matching tool (e.g., COMA++ or Similarity
Flooding) is applied against the schemas and the results is compared with the stored
set of mappings. This process is repeated until an optimal parameters configuration
of the matching tool is found, i.e., the mappings discovered by the matching tool
are mostly similar to those stored. eTuner strongly relies on the capabilities of the
matching tool that it tunes. In most experiments, eTuner is able to improve matching
quality by 1 to 15% compared to the tools with their default configuration.

542 YAM

Similar to MatchPlanner, YAM [Duchateau et al., 2009a,b] takes some user inputs
and it uses them to produce a schema matcher. Although MatchPlanner is limited
to combine the similarity measures with a decision tree, YAM is able to combine
them, thanks to any machine learning classifier. All low-level parameters such as
weights and thresholds are therefore automatically tuned during the learning pro-
cess. The combination of similarity measures only depends on the type of classifier
selected by YAM. For instance, Fig. 10.6a, b depict two techniques for combining
similarity measures. The first one is based on a decision tree while the second one
uses NNge. With the decision tree, each pair of schema elements is matched with
similarity measures from the root until a leaf node is reached, indicating whether
the pair is a correspondence (7') or not (F). The value of the previously computed
similarity measure is used to decide which edge (and consequently which similarity
measure) should be executed next. Combining with a decision tree enables a sparing
of resources since all similarity measures may not be computed for a given pair of

310 Z. Bellahsene and F. Duchateau

Jaccard=0.0 ~ 0.0<=Suffix<=1.0

~ ...~ 2<=SmithWaterman<=6

IRRELEVANT]

| Context | |Labe| Size Suml

Jaccard=0.0 ~ 2<=AffineGap<=10
~ ...~ 0.4<=MongeElkan<=0.53

... “.. .' () RELEVANT
o, ® ¢ e o
©°0¢% o X °
[JRL L I o
CY) o’ &

3 O RO

With a Decision Tree With Nearest Neigbour Generalized Examples

Fig. 10.6 YAM: Examples of combination of similarity measures

schema elements. On the contrary, NNge classifier builds groups of nearest neigh-
bour pairs of schema elements and then finds the best rule, expressed by boolean
logic, for each group. YAM currently includes 20 classifiers from the Weka library
[Garner, 1995]. According to [Duchateau, 2009], experiments show that the tuned
matchers produced by YAM are able to improve F-measure by 20% over traditional
approaches. Datasets mainly include average schemas from various domains, but
also two datasets involving large schemas. Similar to most machine learning-based
approaches, authors have noticed the fact that the results may vary according to
training data, hence the need to perform different runs during experiments.

5.5 Conclusion

In this section, we have described the different strategies to combine similarity mea-
sures and to tune them, mainly their weights. Fortunately, there exist several tools to
help users revising or selecting the strategies. Visual tools support users for manu-
ally configuring these strategies, mainly thanks to state-of-the-art GUI. Finally, we
have explored automatic approaches that are able to discover and tune the best strat-
egy. In the following section, we are still heading one level higher. Indeed, the first
choice of a user deals with the matching tool.

6 Matcher Selection

The selection of a schema matcher is obviously not a parameter: it does not fit with
the definitions provided in Sect. 2. But this is likely meta-tuning since one first needs
to choose a schema matcher before tuning its parameters and using it. Furthermore,

10 Tuning for Schema Matching 311

some recent challenges directly refer to this issue [Shvaiko and Euzenat, 2008].
The selection of a schema matcher may be guided by the results that it obtains
using some benchmarking tools. In addition, a few recent works have been proposed
to automatize this matcher selection. We describe each of them in the rest of this
section.

6.1 AHP

Authors of Malgorzata et al. [2006] have proposed to select a relevant and suit-
able matcher for ontology matching. They have used Analytic Hierarchical Process
(AHP) to fulfil this goal. They first define characteristics of the matching process
divided into six categories (inputs, approach, usage, output, documentation and
costs). Users then fill in a requirements questionnaire to set priorities for each
defined characteristic. Finally, AHP is applied with these priorities and it outputs
the most suitable matcher according to user requirements. This approach has two
drawbacks: (1) there is no experiment demonstrating its effectiveness and (2) cur-
rently there does not exist a listing of all characteristics for all matching tools. Thus,
the user would have to manually fill in these characteristics.

6.2 RiMOM

RiMOM [Li et al., 2009] is a multiple strategy dynamic ontology matching system.
Different matching strategies are applied to a specific type of ontology information.
Based on the features of the ontologies to be matched, RIMOM selects the best
strategy (or strategy combination) to apply. When loading the ontologies, the tool
also compute three feature factors. The underlining idea is that if two ontologies
share similar feature factors, then the strategies that use these factors should be
given a high weight when computing similarity values. For instance, if the label
meaningful factor is low, then the Wordnet-based strategy will not be used. Each
strategy produces a set of correspondences, and all sets are finally aggregated using a
linear interpolation method. A last strategy dealing with ontology structure is finally
performed to confirm discovered correspondences and to deduce new ones. Contrary
to other approaches, RIMOM does not rely on machine learning techniques. It is
quite similar to the AHP work by selecting an appropriate matcher based on input’s
features. RIMOM participated to the 2009 OAEI campaign [Zhang et al., 2009].
Results show that the tool performed well in different tracks (anatomy, benchmark,
instance matching). For instance, it achieves F-measures above 75% for all datasets
in the instance matching track.

312 Z. Bellahsene and F. Duchateau

6.3 YAM

Yet another matcher (YAM) [Duchateau et al., 2009a,b] enables the generation of
a la carte schema matchers according to user requirements. It uses a knowledge
base that includes a (possibly large) set of similarity measures and machine learn-
ing classifiers. All classifiers are trained with scenarios from this knowledge base
(and optionally provided by the users). Their individual results (precision, recall and
F-measure), are computed and according to the adopted strategy, the classifier that
achieves the best quality is selected as schema matcher. The strategy mainly depends
on user inputs. For instance, if (s)he wants to promote recall, then the classifier with
the best recall value is returned. If the user has provided expert mappings, then YAM
selects as the schema matcher the classifier that obtains the best F-measure on this
set of expert mappings.

6.4 SMB

In Anan and Avigdor [2008], the authors propose a machine learning approach,
SMB. It uses the Boosting algorithm to classify the similarity measures, divided
into first-line and second-line matchers. The Boosting algorithm consists in iterating
weak classifiers over the training set while re-adjusting the importance of elements
in this training set. Thus, SMB automatically selects a pair of similarity measures
as a matcher by focusing on harder training data. An advantage of this algorithm is
the important weight given to misclassified pairs during the training. Although this
approach makes use of several similarity measures, it mainly combines a similarity
measure (first-line matcher) with a decision maker (second-line matcher). Empiri-
cal results show that the selection of the pair does not depend on their individual
performance.

6.5 STEM

In a broader way, the STEM framework [Kopcke and Rahm, 2008] identifies the
most interesting training data set which is then used to combine matching strate-
gies and tune several parameters such as thresholds. First, training data is generated,
either manually (i.e., an expert labels the entity pairs) or automatically (at random,
using static-active selection or active learning). Then, similarity values are com-
puted using pairs in the training data set to build a similarity matrix between each
pair and each similarity measure. Finally, the matching strategy is deduced from
this matrix, thanks to supervised learned algorithm. The output is a tuned matching
strategy (how to combine similarity measures and tune their parameters). The frame-
work enables a comparative study of various similarity measures (e.g., Trigrams,
Jaccard) combined with different strategies (e.g., decision tree, linear regression)
whose parameters are either manually or automatically tuned.

10 Tuning for Schema Matching 313

6.6 Conclusion

This last section underlines the fact that selecting an appropriate schema matching
tool is the first issue to be considered. A few works have been proposed in this
domain, which is recognized as one of the ten matching challenges for the next
decade [Shvaiko and Euzenat, 2008]. If we exclude the AHP approach, for which
no experiment is provided, the remaining tools are all based on machine learning
techniques. This is an interesting feature since more datasets with correct corre-
spondences are becoming available. However, discovering the features of a dataset
to determine the most appropriate tool could be a challenging task.

7 Conclusion

In this chapter, we have provided an overview about what has been done for tuning
schema matchers. At first, schema matchers enabled users to configure some of
their low-level parameters (e.g., thresholds). They mainly allow to filter or select
the output (the set of mappings). The next step deals with parameters for combining
similarity measures. They add more flexibility and the set of discovered mappings
depends on the configuration of these parameters. More recently, some works went
up one level further by selecting the appropriate matcher for a given matching task.
These tools lessen the burden of the user by automatically tuning most of the low-
level parameters.

In the meanwhile, much effort has also been spent to integrate user preferences
or input data parameters. Most of them are based on machine learning techniques so
that schema instances or expert feedback can be used in the process. The integration
of such parameters is often an extra means for improving matching quality. User
preferences such as the promotion of precision or recall let users choose how they
intend to manage post-match effort. These options are also interesting in contexts,
where high dynamicity leads to a quick evolution of data sources, thus implying
that a high precision is preferred. On the contrary, recall can be promoted when data
sources are going to be fully integrated and manually checked.

Although a default configuration should still be proposed with a matcher, we
believe that we are heading towards a specific configuration of a schema matcher
for a given matching task. Namely, various properties of the matching scenario can
be computed by the tool. The latter can then deduce, based on previous experiments
or properties values, the best configuration. Visual tools have a strong impact on the
manual post-match effort. By displaying the results of different matching strategies,
one has sufficient information to check and (in)validate the mappings. Combined
with user preferences, these tools would clearly reduce manual post-match effort. To
the best of our knowledge, there are currently no works which study the impact of
the tuning (during pre-match effort) over matching quality (and post-match effort).
A balanced effort between parameters that would bring significant impact on the
matching quality given a matching task might be further investigated.

314 Z. Bellahsene and F. Duchateau

Acknowledgements We thank our reviewers for their comments and corrections on this chapter.
We are also grateful to colleagues who have accepted the publication of pictures from their tools.

References

Anan M, Avigdor G (2008) Boosting schema matchers. In: OTM *08: Proceedings of the OTM
2008 confederated international conferences, CooplS, DOA, GADA, IS, and ODBASE 2008.
Part I on on the move to meaningful internet systems. Springer, Heidelberg, pp 283-300.
doi:http://dx.doi.org/10.1007/978-3-540-88871-0_20

Aumueller D, Do HH, Massmann S, Rahm E (2005) Schema and ontology matching with
COMA++. In: ACM SIGMOD. ACM, NY, pp 906-908

Avesani P, Giunchiglia F, Yatskevich M (2005) A large scale taxonomy mapping evaluation. In:
ISWC 2005, Galway, pp 67-81

Avigdor G (2005) On the cardinality of schema matching. In: OTM workshops, pp 947-956

Berlin J, Motro A (2001) Automated discovery of contents for virtual databases. In: CooplS.
Springer, Heidelberg, pp 108-122

Berlin J, Motro A (2002) Database schema matching using machine learning with feature selection.
In: CAISE. Springer, London, pp 452466

Bellahsene Z, Bonifati A, Duchateau F, Velegrakis Y (2011) On evaluating schema matching and
mapping. In: Bellahsene Z, Bonifati A, Rahm E (eds) Schema matching and mapping. Data-694
Centric Systems and Applications Series. Springer, Heidelberg

Bozovic N, Vassalos V (2008) Two-phase schema matching in real world relational databases. In:
ICDE Workshops, pp 290-296

Carmel D, Avigdor G, Haggai R (2007) Rank aggregation for automatic schema matching. IEEE
Trans Knowl Data Eng 19(4):538-553. doi:http://dx.doi.org/10.1109/TKDE.2007.1010

Cohen W, Ravikumar P, Fienberg S (2003) A comparison of string distance metrics
for name-matching tasks. In: Proceedings of the IJCAI-2003. http://citeseer.ist.psu.edu/
cohenO3comparison.html

Cruz IF, Sunna W, Makar N, Bathala S (2007) A visual tool for ontology alignment to enable
geospatial interoperability. J Vis Lang Comput 18(3):230-254

Cruz IF, Antonelli FP, Stroe C (2009) Agreementmaker: Efficient matching for large real-world
schemas and ontologies. Proc VLDB Endow 2(2):1586-1589

Dhamankar R, Lee Y, Doan A, Halevy A, Domingos P (2004) iMAP: Discovering complex
semantic matches between database schemas. In: ACM SIGMOD. ACM, NY, pp 383-394

Do HH, Rahm E (2002) COMA - A system for flexible combination of schema matching
approaches. In: VLDB. VLDB Endowment, pp 610-621

Do HH, Melnik S, Rahm E (2002) Comparison of schema matching evaluations. In: Web, web-
services, and database systems workshop. Springer, London, pp 221-237

Doan A, Domingos P, Halevy AY (2001) Reconciling schemas of disparate data sources — A
machine learning approach. In: ACM SIGMOD. ACM, NY, pp 509-520

Doan A, Madhavan J, Dhamankar R, Domingos P, Halevy AY (2003) Learning to match ontologies
on the semantic web. VLDB J 12(4):303-319

Drumm C, Schmitt M, Do HH, Rahm E (2007) Quickmig: Automatic schema matching for
data migration projects. In: CIKM. ACM, NY, pp 107-116. doi:http://doi.acm.org/10.1145/
1321440.1321458

Duchateau F (2009) Towards a generic approach for schema matcher selection: Leveraging user
pre- and post-match effort for improving quality and time performance. PhD thesis, Uni-
versité Montpellier II — Sciences et Techniques du Languedoc. http://tel.archives-ouvertes.fr/
tel-00436547/en/

Duchateau F, Bellahsene Z, Hunt E (2007) Xbenchmatch: A benchmark for xml schema matching
tools. In: VLDB. VLDB Endowment, pp 1318-1321

http://dx.doi.org/10.1007/978-3-540-88871-0_20
http://dx.doi.org/10.1109/TKDE.2007.1010
http://citeseer.ist.psu.edu/cohen03comparison.html
http://citeseer.ist.psu.edu/cohen03comparison.html
http://doi.acm.org/10.1145/1321440.1321458
http://doi.acm.org/10.1145/1321440.1321458
http://tel.archives-ouvertes.fr/tel-00436547/en/
http://tel.archives-ouvertes.fr/tel-00436547/en/

10 Tuning for Schema Matching 315

Duchateau F, Bellahsene Z, Coletta R (2008a) A flexible approach for planning schema matching
algorithms. In: OTM Conferences (1), Springer, Heidelberg, pp 249-264

Duchateau F, Bellahsene Z, Roche M (2008b) Improving quality and performance of schema
matching in large scale. Ingénierie des Systemes d’Information 13(5):59-82

Duchateau F, Coletta R, Bellahsene Z, Miller RJ (2009a) (not) yet another matcher. In: CIKM
ACM, Hong Kong, pp 1537-1540

Duchateau F, Coletta R, Bellahsene Z, Miller RJ (2009b) Yam: A schema matcher factory. In:
CIKM ACM, Hong Kong, pp 2079-2080

Ehrig M, Staab S, Sure Y (2005) Bootstrapping ontology alignment methods with APFEL. In:
ISWC, ACM, NY, pp 1148-1149

Euzenat J, et al (2004) State of the art on ontology matching. Tech. Rep. KWEB/2004/D2.2.3/v1.2,
Knowledge Web

Ferrara A, Lorusso D, Montanelli S, Varese G (2008) Towards a benchmark for instance match-
ing. In: Shvaiko P, Euzenat J, Giunchiglia F, Stuckenschmidt H (eds) OM. CEUR-WS.org,
CEUR workshop proceedings, vol 431. http://dblp.uni-trier.de/db/conf/semweb/om2008.html#
FerraraLMV08

Garner SR (1995) Weka: The waikato environment for knowledge analysis. In: Proceedings of the
New Zealand computer science research students conference, pp 57-64

Giunchiglia F, Shvaiko P, Yatskevich M (2004) S-Match: An algorithm and an implementation of
semantic matching. In: European semantic web symposium. ACM, NY, pp 61-75

Giunchiglia F, Shvaiko P, Yatskevich M (2007) Semantic matching: Algorithms and an implemen-
tation. Tech. rep., DISI, University of Trento. http://eprints.biblio.unitn.it/archive/00001148/

Hernandez MA, Miller RJ, Haas LM (2002) Clio: A semi-automatic tool for schema mapping
(software demonstration). In. ACM SIGMOD, Madison

Kopcke H, Rahm E (2008) Training selection for tuning entity matching. In: QDB/MUD, VLDB,
Auckland, pp 3-12

Lee Y, Sayyadian M, Doan A, Rosenthal A (2007) etuner: Tuning schema matching software using
synthetic scenarios. VLDB J 16(1):97-122

Levenshtein V (1966) Binary codes capable of correcting deletions, insertions and reversals. Sov
Phys Dokl 10:707

LiJ, Tang J, Li Y, Luo Q (2009) Rimom: A dynamic multistrategy ontology alignment framework.
IEEE Trans Knowl Data Eng 21(8):1218-1232. DOI http://dx.doi.org/10.1109/TKDE.2008.
202

Li WS, Clifton C (2000) Semint: a tool for identifying attribute correspondences in heterogeneous
databases using neural networks. Data Knowl Eng 33(1):49-84. DOI http://dx.doi.org/10.1016/
S50169-023X(99)00044-0

Madhavan J, Bernstein PA, Rahm E (2001) Generic schema matching with cupid. In: VLDB.
Morgan Kaufmann, CA, pp 49-58

Madhavan J, Bernstein PA, Doan A, Halevy AY (2005) Corpus-based schema matching. In:
International conference on data engineering. IEEE Computer Society, Washington, DC, pp
57-68

Malgorzata M, Anja J, Jérome E (2006) Applying an analytic method for matching approach
selection. In: Shvaiko P, Euzenat J, Noy NF, Stuckenschmidt H, Benjamins VR, Uschold M
(eds) Ontology matching. CEUR-WS.org, CEUR workshop proceedings, vol 225. http://dblp.
uni-trier.de/db/conf/semweb/om2006.html#MocholJEO6

Melnik S, Garcia-Molina H, Rahm E (2002) Similarity flooding: A versatile graph matching algo-
rithm and its application to schema matching. In: ICDE. IEEE Computer Society, Washington,
DC, pp 117-128

Melnik S, Rahm E, Bernstein PA (2003) Developing metadata-intensive applications with rondo.
J Web Semant 1:47-74

Mork P, Seligman L, Rosenthal A, Korb J, Wolf C (2008) The harmony integration workbench.
J Data Semant 11:65-93

Naumann F, Ho CT, Tian X, Haas LM, Megiddo N (2002) Attribute classification using feature
analysis. In: ICDE. IEEE Computer Society, Washington, p 271

http://dblp.uni-trier.de/db/conf/semweb/om2008.html#FerraraLMV08
http://dblp.uni-trier.de/db/conf/semweb/om2008.html#FerraraLMV08
http://eprints.biblio.unitn.it/archive/00001148/
http://dblp.
uni-trier.de/db/conf/semweb/om2006.html#MocholJE06

316 Z. Bellahsene and F. Duchateau

Noy N, Musen M (2001) Anchor-PROMPT: Using non-local context for semantic matching. In:
Proceedings of IICAI 2001 workshop on ontology and information sharing, Seattle, pp 63-70

Saleem K, Bellahsene Z (2009) Complex schema match discovery and validation through
collaboration. In: OTM Conferences (1). Springer, Heidelberg, pp 406413

Saleem K, Bellahsene Z, Hunt E (2008) Porsche: Performance oriented schema mediation. Inf Syst
33(7-8):637-657

Shvaiko P, Euzenat J (2008) Ten challenges for ontology matching. In: OTM Conferences (2).
Springer, Heidelberg, pp 1164—1182

Smith K, Morse M, Mork P, Li M, Rosenthal A, Allen D, Seligman L (2009) The role of schema
matching in large enterprises. In: CIDR, Asilomar

Winkler W (1999) The state of record linkage and current research problems. In: Statistics of
Income Division, Internal Revenue Service Publication R99/04

Wordnet (2007) http://wordnet.princeton.edu

Yatskevich M (2003) Preliminary evaluation of schema matching systems. Tech. Rep. DIT-03-028,
Informatica e Telecomunicazioni, University of Trento

Zhang X, Zhong Q, Shi F, Li J, Tang J (2009) Rimom results for OAEI 2009. http://oaei.
ontologymatching.org/2009/results/

http://wordnet.princeton.edu
http://oaei.ontologymatching.org/2009/results/
http://oaei.ontologymatching.org/2009/results/

Index

Accuracy, 273 COMA++, 9, 12, 16, 17, 21, 22, 33, 35,
AgreementMaker, 21, 23, 302, 307 46, 255, 276, 271, 286, 298, 300,
AHP, 311 303-305, 307

Alignment API, 36, 278 Combining similarity measures, 15, 305
AlViz, 30, 35, 46 Completeness, 284

AnchorFlood, 12 Composition, 152, 166, 192, 199-201
Anchor-PROMPT, 301 Conditional mapping, 96

APFEL, 298, 299, 303, 307 Configuration, 294, 297

Approximate Schema Mappings, 96 Constants, 114, 195

ASID, 299, 305 Constraint Discovery, 125

ASMOV, 7,21, 23 Contextual correspondences, 59—-64
Atoms, 116, 142, 195, 196, 199, 207, 216 Contextual schema matching, 54

Attribute correspondences, 53-73 Core computation, 131
AUTOPLEX/AUTOMATCH, 300 Core universal solution, 118

Correct mappings, 4, 77, 84, 298
Correspondences, 113, 122, 255

I Crowdsourcing, 43
Backward compatibility, 152 Cupid, 7, 255, 307

Benchmarks, 255, 261, 262, 265-268
BioPortal, 44

BizTalk mapper, 41, 42

BMatch, 305, 307

Both-as-view (BAV), 233

Data exchange equivalent, 210

Data exchange problem, 114

Data integration, 40, 74-107, 121, 139, 231
Data migration, 153

Data translation performance, 271

Certain answers, 136, 216 Data warehousing, 231
Chase, 118, 196-198 Dataspace, 74-107
Chase-equivalent, 216 DB2, 155, 158, 159, 161, 169, 175
Chase inverse, 203 DB-MAIN, 155, 164

exact, 202 DB-MeDEA, 155

relaxed, 209-212 DCM, 19
Chimaera, 66, 236, 237 DIFF, 152, 156, 170, 181, 182, 185-188
Clio, 39, 124, 127, 130, 140, 176, 213, 258, DiffDog, 169, 176

270 DTD-Diff, 177

CoDEX, 169, 178 DWQ, 231

Cognitive support framework, 32

CogZ, 30, 35, 45, 46

Collaborative ontology matching, 30 Equality-generating dependencies, 115
COMA, 16, 22, 69 ETL system, 259, 272

Z. Bellahsene et al. (eds.), Schema Matching and Mapping, Data-Centric Systems
and Applications, DOI 10.1007/978-3-642-16518-4, 317
(© Springer-Verlag Berlin Heidelberg 2011

318 Index

eTuner, 269, 309 KAON, 182, 184, 187
Evaluation, 5, 44, 49, 251, 253, 255, 261, 262,
264-266, 268, 269, 271-273, 275,

277, 278, 280, 283, 287 Labeled nulls, 114, 195
Evolution mapping, 150, 152, 181, 184, 185, Large-scale matching, 4-24
187, 191-222, 254-291 Local-as-view (LAV), 132, 232
Exact chase inverse, 202 constraint, 196
Expert feedback, 298 schema mapping, 196

schema mapping, strict, 196
s-t tgd, strict, 196

F-measure, 5, 275, 277, 279 LSD, 299

Falcon-AO, 12, 15, 21, 22 LSD/Glue, 298

Fallout, 275, 278

FCA Merge, 66, 236, 237

Forward compatibility, 153 Machine learning parameters, 298

Functional dependencies, 228 MapForce, 40
MapMerge operator, 280

Mapping adaptation, 166
Global-as-view (GAV), 142, 196 Mapping composition, 152
. Mapping inversion, 152
constraint, 196 .
. Mapping system, 111, 129, 251
schema mapping, 196
. Match workflow, 68
Global-local-as-view (GLAV), 233 .
. Matcher selection, 15, 310
constraint, 196 . K
. Matching effectiveness, 4, 274
schema mapping, 95, 196 . .
GLUE. 9. 307 Matching efficiency, 5, 270
Goo le; B’ase 76 Matching quality, 5, 9, 43, 251, 266, 269, 285,
Grougnd insta;lce 195 293,294, 296-299, 301, 313
> MatchPlanner, 303, 305
MeDEA, 164
Merging, 221, 223-249
ontologies, 223
schemas, 223
Meta-matching, 69
Meta-tuning, 310

Hamster, 10

Harmony, 21, 23, 255, 308
HECATAEUS, 155, 163
HePToX, 127, 138, 140, 142, 270

Holistic schema matching, 4, 19 Microsoft Biztalk, 20
Homomorphic equivalence, 195 MiniCon algorithm, 136
Homomorphism, 117, 195 Minimality, 284
HSM, 19 Model management, 166, 187, 192, 238
Human effort, 272 Monotonicity, 57-59

Muse, 37, 46

MySql, 172

IBM Infosphere Data Architect, 20
iMAP, 304, 307

Information capacity, 152, 224, 231 NeOn toolkit, 37
Information loss, 279 Nested equality-generating dependencies, 137
Instance, 112, 195 Nested mappings, 132

mapping, 151 Nulls, labeled, 195

migration, 153
Instance-based ontology matching, 8

Instance-level constraints, 225 OnEX, 182, 185, 187

Interactive ontology matching, 31 Ontolingua server, 236

Interactive techniques, 29-51 Ontology, 180-186

Inversion, 192 Ontology alignment evaluation initiative

ISLab, 270 (OAEI), 5, 9, 21, 47, 265

Index

Ontology changes, 180

Ontology evolution, 180-186
Ontology matching, 3—24, 29-51
Ontology merging, 233

Ontology modularization, 48
Ontology versions, 180, 181
OntoMap, 46

OntoMediate Project, 43

OntoView, 182, 184, 187

Oracle, 155, 158-160, 169, 172-174, 179
Overall metric, 273

OWL Lite Alignment (OLA), 36, 46

P2P infrastructures, 142

Parallel matching, 13, 22

Parameters, 296, 297

Partition-based matching, 12

Pay-as-you-go, 76

Performance, 251, 253, 255, 266, 268,
270-272

Porsche, 19, 300, 304

Post-match, 294

PostgreSql, 172

Precision, 275, 277, 279

PRIOR+, 15

PRISM, 155, 162, 187, 217

Probabilistic attribute correspondences, 67-70

Probabilistic mapping, 19, 68, 74-107

Probabilistic mediated schema, 74—-107

Probabilistic schema matching, 54

Prompt, 34, 35, 44-46, 234

PromptDiff, 181

Protégé, 34, 181, 182, 187

Proximity, 285

Quality, 273, 275, 278, 280, 297, 299, 312
Query answering, 86-92, 136

Query discovery, 124

Quickmig, 298, 300, 301

Quick ontology matching (QOM), 11

Recall, 275, 277, 279

Relational schema evolution, 154—-166
Relaxed chase inverse, 209-212
Reuse of previous match results, 16
RiMOM, 9, 15, 21, 311

Rondo, 238, 239, 255, 304

Routes, 283

SAMBO, 9

319

SAP Netweaver Process Integration, 20
Schema evolution, 149-190

Schema mapping, 111, 120, 195, 254, 256
Schema mapping evolution, 191-222

Schema mapping generation, 111, 113, 114,
129, 133, 254, 258, 259, 271, 279,
282,283

Schema matching, 3-24, 3842, 53-73, 254,
293, 295, 297, 299, 301, 303, 305,
307, 309, 311, 313, 315

Second-order (SO) tgd, 206

Self-tuning, 14

Semantic attribute correspondences, 64—67

Semantic matching, 53, 54, 70

Similarity flooding, 276, 277, 286, 294

Similarity matrix, 56

Similarity measures, 302

Smart, 234, 237

S-Match, 67, 255, 300, 303

SMB, 300, 306, 312

SO tgd, 206

Spicy, 127, 258, 271, 279

Spicy++, 258

SQL server, 155, 158, 159, 161, 169, 174

STBenchmark, 266, 267, 269, 271, 273, 275

STEM, 312

Stream systems, 188

Strict LAV schema mapping, 196

Strict LAV s-t tgd, 196

Structurality, 284

s-t tgd, 196

Stylus Studio, 40

Tamino, 175

TaxME2, 268

Testbeds, 265

THALIA, 269, 274

Three-Way merge, 241

Threshold parameters, 303

Top-K correspondences, 63, 68

Top-K schema matching, 71

Training data, 298

Tuning, 293, 295, 297, 299, 301, 303, 305,
307, 309, 311, 313, 315

Tupelo, 255, 259

Tuple generating dependency (tgd), 115, 196,
206, 258

Uncertain mappings, 80-97
Uncertainty, 64, 67, 68
Uncertainty in data integration, 77
Universal solutions, 118, 128, 143

320 Index

Update propagation, 153, 156, 159, 170, 180, XBenchMatch, 266, 271, 278

183, 187 XEM, 169, 176, 179
Usage-based matching, 10 X-Evolution, 169, 178179
User interaction, 245, 307 XML, 112, 137, 141

User involvement, 30 XML schema evolution, 166179

XML schemas, 4, 12, 18, 22, 38, 121, 141, 167

Versioning, 153, 157, 171, 183
View integration, 225

Warp10, 18 Yet another matcher (YAM), 298, 300, 301,
Weights, 306 306, 309, 312

	Schema Matching
and Mapping
	Preface
	Contents
	Contributors
	Part I Large-Scale and Knowledge-Driven Schema Matching
	Chapter 1 Towards Large-Scale Schema and Ontology Matching

	1 Introduction
	2 Matchers and Match Workflows
	2.1 Match Workflows
	2.2 Instance-Based and Usage-Based Matching
	2.2.1 Instance-Based Ontology Matching
	2.2.2 Usage-Based Matching

	3 Techniques for Large-Scale Matching
	3.1 Reduction of Search Space
	3.1.1 Early Pruning of Dissimilar Element Pairs
	3.1.2 Partition-Based Matching

	3.2 Parallel Matching
	3.3 Self-Tuning Match Workflows
	3.4 Reuse of Previous Match Results
	3.5 Holistic Schema Matching

	4 Selected Match Systems
	4.1 Commercial Match Tools
	4.2 Research Prototypes
	4.2.1 Coma++
	4.2.2 Falcon
	4.2.3 Rimom
	4.2.4 Asmov
	4.2.5 AgreementMaker
	4.2.6 Harmony

	5 Conclusions
	References

	Chapter 2 Interactive Techniques to Support Ontology Matching

	1 Introduction
	2 Why is Ontology Matching Difficult?
	3 Existing Tools
	4 Schema Matching
	5 Web 2.0 Approaches
	6 Experiments and Evaluation
	7 Discussion
	8 Challenges and Next Steps
	9 Conclusion
	References

	Chapter 3 Enhancing the Capabilities of Attribute Correspondences

	1 Introduction
	2 A Model for Attribute Correspondences
	2.1 Model
	2.2 Monotonicity: Tying Expert Opinion with Automatic Matching

	3 Contextual Attribute Correspondences
	3.1 Modeling Contextual Attribute Correspondences
	3.2 Finding Contextual Attribute Correspondences
	3.3 Identifying Candidate Attributes
	3.4 Discussion

	4 Semantic Attribute Correspondences
	4.1 Finding Semantic Attribute Correspondence
	4.2 Discussion

	5 Probabilistic Attribute Correspondences
	5.1 Finding Probabilistic Attribute Correspondences

	6 Conclusions
	References

	Chapter 4 Uncertainty in Data Integration and Dataspace Support Platforms

	1 Introduction
	2 Overview of the System
	2.1 Uncertainty in Data Integration
	2.2 System Architecture
	2.3 Source of Probabilities
	2.4 Outline of the Chapter

	3 Uncertainty in Mappings
	3.1 Motivating Probabilistic Mappings
	3.2 Definition and Semantics
	3.2.1 Schema Mappings and p-Mappings
	3.2.2 Semantics of Probabilistic Mappings

	3.3 Query Answering
	3.3.1 By-table Query Answering
	3.3.2 By-tuple Query Answering
	3.3.3 Top-k Query Answering
	3.3.4 Answering Aggregate Queries

	3.4 Creating p-Mappings
	3.4.1 Computing Weighted Correspondences
	3.4.2 Generating p-Mappings

	3.5 Broader Classes of Mappings
	3.6 Other Types of Approximate Schema Mappings

	4 Uncertainty in Mediated Schema
	4.1 P-med-Schema Motivating Example
	4.2 Probabilistic Mediated Schema
	4.3 P-med-Schema Creation
	4.4 Consolidation
	4.5 Other Approaches
	4.6 Conclusions

	References

	Part II Quality-Driven Schema Mapping and Evolution
	Chapter 5 Discovery and Correctness of Schema Mapping Transformations

	1 Introduction
	2 Preliminaries
	3 Schema Mappings: The Early Years
	3.1 The First Data Translation Systems
	3.2 Correspondences
	3.3 Schema Mapping as Query Discovery
	3.4 Schema Mapping as Constraint Discovery
	3.5 Data Exchange and Query Generation

	4 Second-Generation Mapping Systems
	4.1 Problems with Canonical Solutions
	4.2 Theoretical Results on Core Computation
	4.3 Generating Core Solutions with SQL Scripts

	5 Query Answering in Mapping Scenarios
	6 Developments and Applications
	6.1 Bridging Data and Metadata
	6.2 Extending Schema Mappings to Complex Data Models
	6.3 Distributing Schema Mappings Across Several Sites
	6.4 Normalizing Schema Mappings

	7 Conclusions and Future Work
	References

	Chapter 6 Recent Advances in Schema and Ontology Evolution

	1 Introduction
	2 Schema Evolution Requirements
	3 Relational Schema Evolution Approaches
	3.1 Commercial Relational Systems
	3.2 Research Approaches
	3.3 Summary

	4 XML Schema Evolution
	4.1 Commercial DBMS Systems
	4.2 Mapping Tools
	4.3 Research Approaches
	4.4 Summary

	5 Ontology Evolution
	5.1 Research Approaches
	5.2 Summary

	6 Conclusions
	References

	Chapter 7 Schema Mapping Evolution Through Composition and Inversion

	1 Introduction
	2 Preliminaries
	3 An Ideal Scenario of Evolution
	3.1 Target Evolution: GAV–GLAV Composition
	3.2 Source Evolution: The Case of a Lossless Mapping
	3.3 A More General Notion of Chase-Inverses

	4 Composition: The Need for Second-Order TGDs
	5 The Case of Lossy Mappings
	5.1 Relaxed Chase-Inverses
	5.2 More on Relaxed Chase-Inverses

	6 Implementations and Systems
	6.1 Mapping Composition and Evolution in Clio
	6.2 The PRISM Workbench: Query Adaptation

	7 Other Related Work
	8 Concluding Remarks
	References

	Chapter 8 Mapping-Based Merging of Schemas

	1 Introduction
	2 Theoretical Underpinnings
	2.1 Information Capacity
	2.2 Instance-Level Constraints and Schema Merging

	3 View Integration
	3.1 Biskup and Convent
	3.2 Casanova and Vidal
	3.3 Spaccapietra and Parent
	3.4 Rosenthal and Reiner

	4 Data Integration
	4.1 Data Warehousing
	4.2 Pottinger and Bernstein
	4.3 BAV

	5 Ontology Merging
	5.1 SMART and Prompt
	5.2 Chimæra
	5.3 FCA Merge
	5.4 Ontology Merging Analysis

	6 Generic Schema Merging
	6.1 Buneman, Davidson, and Kosky
	6.2 Model Management
	6.3 Providing Choices to Users

	7 Three-Way Merge
	8 Discussion
	8.1 Separation of Match and Merge
	8.2 Treating Models Asymmetrically
	8.3 Data Model Differences
	8.4 Structure vs. Content
	8.5 Binary Merge vs. N-ary Merge
	8.6 Can Merge be Fully Automatic?
	8.7 User Interaction Requirements

	9 Conclusions
	References

	Part III Evaluating and Tuning of Matching Tasks
	Chapter 9 On Evaluating Schema Matching and Mapping

	1 Introduction
	2 The Matching and Mapping Problem
	3 Challenges in Matching and Mapping System Evaluation
	4 Real-World Evaluation Scenarios
	5 Synthetic Evaluation Scenarios
	6 Measuring Efficiency
	6.1 Matching/Mapping Generation Time
	6.2 Data Translation Performance
	6.3 Human Effort

	7 Measuring Effectiveness
	7.1 Supported Scenarios
	7.2 Quality of the Generated Matchings/Mappings
	7.3 Quality of the Generated Target Instance
	7.4 Data Examples
	7.5 Quality of the Generated Target Schema

	8 Conclusion
	References

	Chapter 10 Tuning for Schema Matching

	1 Introduction
	2 Preliminaries
	3 Input and Data Parameters
	3.1 Expert feedback
	3.2 Machine Learning Parameters
	3.2.1 Parameters at the Similarity Measure Level
	3.2.2 Parameters at the Matcher Level

	3.3 External Resources
	3.4 Other Input Parameters
	3.5 Conclusion

	4 Similarity Measures Parameters
	4.1 Internal Parameters
	4.2 Thresholds
	4.3 Various
	4.4 Conclusion

	5 Parameters for Combining Similarity Measures
	5.1 Strategy for Combining Similarity Measures
	5.2 Weights in Formulas
	5.3 Supporting Users to Revise Strategies
	5.3.1 AgreementMaker
	5.3.2 Harmony

	5.4 Discovering the Best Configuration
	5.4.1 eTuner
	5.4.2 YAM

	5.5 Conclusion

	6 Matcher Selection
	6.1 AHP
	6.2 RiMOM
	6.3 YAM
	6.4 SMB
	6.5 STEM
	6.6 Conclusion

	7 Conclusion
	References

	Index

