
Hierarchical Scheduling of DAG Structured

Computations on Manycore Processors with
Dynamic Thread Grouping�

Yinglong Xia1, Viktor K. Prasanna1,2 and James Li2

1 Department of Computer Science, University of Southern California,
Los Angeles, CA 90089, U.S.A.

2 Ming Hsieh Department of Electrical Engineering,
University of Southern California, Los Angeles, CA 90089, U.S.A.

{yinglonx,prasanna,jamesyli}@usc.edu

Abstract. Many computational solutions can be expressed as directed
acyclic graphs (DAGs) with weighted nodes. In parallel computing,
scheduling such DAGs onto manycore processors remains a fundamental
challenge, since synchronization across dozens of threads and preserv-
ing precedence constraints can dramatically degrade the performance.
In order to improve scheduling performance on manycore processors, we
propose a hierarchical scheduling method with dynamic thread group-
ing, which schedules DAG structured computations at three different
levels. At the top level, a supermanager separates threads into groups,
each consisting of a manager thread and several worker threads. The su-
permanager dynamically merges and partitions the groups to adapt the
scheduler to the input task dependency graphs. Through group merg-
ing and partitioning, the proposed scheduler can dynamically adjust to
become a centralized scheduler, a distributed scheduler or somewhere in
between, depending on the input graph. At the group level, managers col-
laboratively schedule tasks for their workers. At the within-group level,
workers perform self-scheduling within their respective groups and exe-
cute tasks. We evaluate the proposed scheduler on the Sun UltraSPARC
T2 (Niagara 2) platform that supports up to 64 hardware threads. With
respect to various input task dependency graphs, the proposed scheduler
exhibits superior performance when compared with other various base-
line methods, including typical centralized and distributed schedulers.

Keywords: Manycore processor, hierarchical scheduling, thread
grouping.

1 Introduction

Given a program, we can represent the program as a directed acyclic graph
(DAG) with weighted nodes, in which the nodes represent code segments, and
� This research was partially supported by the National Science Foundation un-

der grant number CNS-0613376. NSF equipment grant CNS-0454407 is gratefully
acknowledged.

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2010, LNCS 6253, pp. 154–174, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Hierarchical Scheduling of DAG Structured Computations 155

edges represent dependencies among the segments. An edge exists from node v
to node ṽ if the output from the code segment performed at v is an input to the
code segment at ṽ. The weight of a node represents the (estimated) execution
time of the corresponding code segment. Such a DAG is called a task dependency
graph, and the computations that can be represented as task dependency graphs
are called DAG structured computations [1,2]. The objective of task scheduling
for DAG structured computations on manycore processors is to minimize the
overall execution time by proper allocation of the tasks to concurrent threads,
while preserving the precedence constraints among the tasks [2,3].

Scheduling DAG structured computations on manycore processors is a fun-
damental challenge in parallel computing nowadays. The trend in architecture
design is to integrate more and more cores onto a single chip to achieve higher
performance. Such architectures are known as manycore processors. Examples of
existing manycore processors include the Sun UltraSPARC T1 (Niagara) and T2
(Niagara 2), which support up to 32 and 64 concurrent threads, respectively [4].
The Nvidia Tesla and Tilera TILE64 are also available. More manycore pro-
cessors are emerging soon, such as the Sun Rainbow Falls, IBM Cyclops64 and
Intel Larrabee [5]. Such processors are more interested in how many tasks from a
DAG can be completed efficiently over a period of time rather than how quickly
an individual task can be completed.

Our contributions in this paper include: (a) We propose a hierarchical schedul-
ing method which schedules DAG structured computations at three different
levels on manycore systems. (b) We propose a dynamic thread grouping tech-
nique to merge or partition the thread groups at run time, so that the pro-
posed scheduler can dynamically adjust to become a centralized scheduler, a
distributed scheduler or somewhere in between, depending on the input graph.
(c) We implement the hierarchical scheduling method on the Sun UltraSPARC
T2 (Niagara 2) platform. (d) We conduct extensive experiments to validate the
proposed method.

The rest of the paper is organized as follows: In Section 2, we review the
background and related work. Section 3 presents the hierarchical scheduling
scheme. We illustrate experimental results in Section 4 and address the future
research in Section 5.

2 Background and Related Work

In this paper, the input to task scheduling is a directed acyclic graph (DAG),
where each node represents a task and each edge corresponds to precedence con-
straints among the tasks. Each task in the DAG is associated with a weight, which
is the estimated execution time of the task. A task can begin execution only if
all of its predecessors have been completed [6]. The task scheduling problem is
to map the tasks to the threads in order to minimize the overall execution time
on parallel computing systems. Task scheduling is in general an NP-complete
problem [7,8]. We consider scheduling an arbitrary DAG with given task weights
and decide the mapping and scheduling of tasks on-the-fly. The goal of such

156 Y. Xia, V.K. Prasanna, and J. Li

dynamic scheduling includes not only the minimization of the overall execution
time, but also the minimization of the scheduling overhead [2].

The scheduling problem has been extensively studied for several decades
[1,9,2,10]. Early algorithms optimized scheduling with respect to the specific
structure of task dependency graphs [11], such as a tree or a fork-join graph. In
general, however, programs come in a variety of structures [2]. Karamcheti and
Chien studied hierarchical load balancing framework for multithreaded compu-
tations for employing various scheduling policies for a system [12]. Recent re-
search on scheduling DAGs includes [13] where the authors studied the problem
of scheduling more than one DAG simultaneously onto a set of heterogeneous
resources, and [1] where Ahmad proposed a game theory based scheduler on
multicore processors for minimizing energy consumption. Dongarra et al. pro-
posed dynamic schedulers optimized for some linear algebra problems on general-
purpose multicore processors [10]. Scheduling techniques have been proposed by
several emerging programming systems such as Cilk [14], Intel Threading Build-
ing Blocks (TBB) [15], OpenMP [16], Charm++ [17] and MPI micro-tasking [18],
etc. All these systems rely on a set of extensions to common imperative program-
ming languages, and involve a compilation stage and runtime libraries. These
systems are not optimized specifically for scheduling DAGs on manycore proces-
sors. For example, Dongarra et al. showed that Cilk is not efficient for schedul-
ing workloads in dense linear algebra problems on multicore platforms [19]. In
contrast with these systems, we focus on scheduling for DAGs on manycore
processors.

To design an efficient scheduler we must take into account the architectural
characteristics of processors. Almost all the existing manycore processors have
relatively simple cores, compared with general-purpose multicore processors,
e.g., AMD Opteron and Intel Xeon. For example, the pipeline of the Ultra-
SPARC T2 does not support out of order (OoO) execution and therefore results
in a longer delay. However, the fast context switch of such processors over-
laps such delays with the execution of another thread. For this reason, the Ul-
traSPARC generally shows higher throughput when enough parallel tasks are
available [4].

Directly utilizing traditional scheduling methods such as centralized or dis-
tributed scheduling can degrade the performance of DAG structured compu-
tations on manycore processors. Centralized scheduling has a single thread to
allocate tasks, which may not be able to serve the rest of the threads in time.
This leads to starvation of some threads, especially when the tasks can be com-
pleted quickly. On the other hand, distributed scheduling requires many threads
to schedule tasks. This limits the resources for task execution. In addition, many
schedulers accessing shared variables can result in costly synchronization over-
head. Therefore, an efficient scheduling method on manycore processors must
be able to adapt itself to input task dependency graphs. To the best of our
knowledge, no scheduling algorithm for DAG structured computations has been
proposed specifically on manycore processors such as the UltraSPARC T2.

Hierarchical Scheduling of DAG Structured Computations 157

3 Hierarchical Scheduling

3.1 Organization

The input graph is represented by a list called the global task list (GL). Fig-
ure 1(a) shows a portion of the task dependency graph. Figure 1(b) shows the
corresponding part of the GL. As shown in Figure 1(c), each element in the GL
consists of task ID, dependency degree, task weight, successors and the task meta
data (e.g. application specific parameters). The task ID is the unique identity of
a task. The dependency degree of a task is initially set as the number of incoming
edges of the task. During the scheduling process, we decrease the dependency
degree of a task once a predecessor of the task is processed. The task weight is
the estimated execution time of the task. We keep the task IDs of the successors
along with each task to preserve the precedence constraints of the task depen-
dency graph. When we process a task Ti, we can locate its successors directly
using the successor IDs, instead of traversing the entire list. In each element, we
have task meta data, such as the task type and pointers to the data buffer of the
task, etc. The GL is shared by all the threads.

Fig. 1. (a) A portion of a task dependency graph. (b) The corresponding representation
of the global task list (GL). (c) The data of element Ti in the GL.

We illustrate the components of the hierarchical scheduler in Figure 2. The
boxes with rounded corners represent thread groups. Each group consists of a
manager thread and several worker threads. The manager in Group0 is also the
supermanager. The components inside of a box are private to the group; while
the components out of the boxes are shared by all groups.

The global ready list (GRL) in Figure 2 stores the IDs of tasks with dependency
degree equal to 0. These tasks are ready to be executed. During the scheduling
process, a task is put into this list by a manager thread once the dependency
degree of the task becomes to 0.

The local ready list (LRL) in each group stores the IDs of tasks allocated to
the group by the manager of the group. The workers in the group fetch tasks
from LRL for execution. Each LRL is associated with a workload indicator (WI)
to record the overall workload of the tasks currently in the LRL. Once a task is
inserted into (or fetched from) the LRL, the indicator is updated.

158 Y. Xia, V.K. Prasanna, and J. Li

Fig. 2. Components of the hierarchical scheduler

The local completed task list (LCL) in each group stores the IDs of tasks
completed by a worker thread in the group. The list is read by the manager
thread in the group for decreasing the dependency degree of the successors of
the tasks in the list.

The arrows in Figure 2 illustrate how each thread accesses a component (read
or write). As we can see, GL and GRL are shared by all the managers for both
read and write. For each group, the LRL is write-only for the manager and read-
only for the workers; while LCL is write-only for the workers and read-only for
the manager. WI is local to the manager in the respective group only.

3.2 Dynamic Thread Grouping

The scheduler organization shown in Figure 2 supports dynamic thread grouping,
which means that the number of threads in a group can be adjusted at runtime.
We adjust groups by either merging two groups or partitioning a group. The
proposed organization ensures efficient group merging and partitioning.

Figure 3(a) illustrates the merging of Groupi and Groupj, i < j. The two
groups are merged by converting all threads of Groupj into the workers of Groupi

and merging WIs, LCLs and LRLs accordingly. Converting threads of Groupj

into the workers of Groupi is straightforward: Managerj stops allocating tasks to
Groupj, but performs self-scheduling as a worker thread. Then, all the threads in
Groupj access tasks from the merged LRL and LCL. To combine WIi and WIj ,
we add the value of WIj to WIi. Although WIj is not used after merging, we still
keep it updated for the sake of possible future group partitioning. Merging the
lists i.e. LCLs and LRLs is efficient. Note that both LCL and LRL are circular
lists, each having a head and a tail pointer to indicate the first and last tasks
stored in the list, respectively. Figure 3(b) illustrates the approach to merge two
circular lists. We need to update two links only, i.e. the bold arrows shown in
Figure 3(b). None of the tasks stored in the lists are moved or duplicated. The

Hierarchical Scheduling of DAG Structured Computations 159

head and tail of the merged list are Headi and Tailj, respectively. Note that
two merged groups can be further merged into a larger group.

We summarize the procedure in Algorithm 1. Since the queues and weight
indicators are shared by several threads, locks must be used to avoid concurrent
write. For example, we lock LRLi and LRLj immediately before Line 1 and
unlock them after Line 3. Algorithm 2 does not explicitly assign the threads in
Groupi and Groupj to Groupk, since this algorithm is executed only by the su-
permanager. Each thread dynamically updates its group information and decides
if it should be a manager or worker (see Algorithm 2).

Fig. 3. (a) Merge Groupi and Groupj . (b) Merge circular lists Listi and Listj . The
head (tail) points to the first (last) tasks stored in the list. The blank elements have
no task stored yet.

Algorithm 1. Group merge
Input: Groupi and Groupj .
Output: Groupk = Groupi + Groupj

{Merge LRLi and LRLj}
1: Let LRLj .Head.Predecessor points to LRLi.T ail.Successor
2: Let LRLi.T ail.Successor points to LRLj .Head
3: LRLk.Head = LRLi.Head, LRLk.T ail = LRLj .T ail

{Merge LCLi and LCLj}
4: Let LCLj .Head.Predecessor points to LCLi.T ail.Successor
5: Let LCLi.T ail.Successor points to LCLj .Head
6: LCLk.Head = LCLi.Head, LCLk.T ail = LCLj .T ail

{Merge WIi and WIj}
7: WIk = WIi + WIj

Groupi and Groupj can be restored from the merged group by partitioning. As
a reverse process of group merging, group partitioning is also straightforward and
efficient. Due to space limitations, we do not elaborate it here. Group merging

160 Y. Xia, V.K. Prasanna, and J. Li

and partitioning can be used for groups with an arbitrary number of threads.
We assume the number of threads per group is a power of two hereinafter for
the sake of simplicity.

3.3 Hierarchical Scheduling

Using the proposed data organization, we schedule a given DAG structured
computation at three levels. The top level is called the meta-level, where we
have a supermanager to control group merging/partitioning. At this level, we
are not scheduling tasks directly, but reconfiguring the scheduler according to
the characteristics of the input tasks. Such a process is called meta-scheduling.
The supermanager is hosted along with the manager of Group0 by Thread0.
Note that Manager0 can never become a worker as discussed in Section 3.2.

The mediate level is called the group level, where the manager in each group
collaborates with each other and allocates tasks for the workers in the group.
The purpose of collaborating between managers is to improve the load balance
across the groups. Specifically, the managers ensure that the workload in the
local ready lists is roughly equal for all groups. A manager is hosted by the first
thread in a group.

The bottom level is called the within-group level, where the workers in each
group perform self-scheduling. That is, once a worker finishes a task execution
and updates LCL in its group, it fetches a new task, if any, from LRL imme-
diately. Self-scheduling keeps all workers busy, unless the LRL is empty. Each
worker is hosted by a separate thread.

Fig. 4. The hierarchical relationship between the supermanager, managers and workers,
and the corresponding scheduling schemes

The hierarchical scheduler behaves between centralized and distributed sched-
ulers, so that it can adapt to the input task graph. Note that each group consists
of a manager thread and several worker threads. When all the groups are merged
into a single group, the proposed method becomes a centralized scheduler; when
multiple groups exist, the proposed method behaves as a distributed scheduler.

3.4 Scheduling Algorithm and Analysis

We propose a sample implementation of the hierarchical scheduler presented in
Section 3.3. Based on the organization shown in Section 3.1, we use the following

Hierarchical Scheduling of DAG Structured Computations 161

notations to describe the implementation: Assume there are P threads, each
bound to a core. The threads are divided into groups consisting of a manager
and several workers. GL and GRL denote the global task list and global ready
list, respectively. LRLi and LCLi denote the local ready list and local completed
task list of Groupi, 0 ≤ i < P . dT and wT represent the dependency degree and
the weight of task T , respectively. WIi is the workload indicator of Threadi.
Parameters δM , δ+ and δ− are given thresholds. The boxes show the statements
that access variables shared by all groups.

Algorithm 2 illustrates the framework of the hierarchical scheduler. In Lines 1-
3, thread groups are initialized, each with a manager and a worker, along with
a set of ready-to-execute tasks stored in LRLj, where the overall task weight is
recorded in WIj . A boolean flag fexit in Line 3 notifies if the threads can exit
the scheduling iteration (Lines 5-15). rank controls the size of groups: Increasing
rank leads to merging of two adjacent groups; while decreasing rank leads to
partitioning of current groups. rank = 1 corresponds to the minimum group size
i.e. two threads per group. Thus, we have 1 ≤ rank ≤ log P . The group size Q
is therefore given by:

Q =
P

2log P−rank
= 2rank (1)

Line 4 in Algorithm 2 starts all the threads in parallel. The threads perform
various scheduling schemes according to their thread IDs. The first thread in
each group is a manager (Line 8). In addition, the first thread in Group0 i.e.
Thread 0 performs as the supermanager (Line 10). The rest of the threads are
workers (Line 13). Given thread ID i, the corresponding group is �i/Q�.

Algorithm 3 shows the meta-scheduling method for the supermanager. The
algorithm consists of two parts: updating rank (Lines 1-2) and re-grouping
(Lines 3-11). We use a heuristic to update rank: Note that WIj is the com-
putational workload for Groupj . A large WIj requires more workers for task ex-
ecution. |LCLj| is the number of completed tasks and d is the average number of
successive tasks. For each completed task, the manager reduces the dependency
degree of the successive tasks and moves ready-to-execute tasks to LRLj. Thus,
(|LCLj| · d) represents the workload for the scheduler. A larger (|LCLj | · d) re-
quires more managers for task scheduling. In Line 1, the ratio r tells us if we need
more managers or more workers. If more workers are needed, we increase rank
in Line 2. In this case, groups are merged to provide more workers per manager.
Otherwise, rank decreases. Line 2 also ensures that rank is valid by checking
the boundary values. d, δ+ and δ− are given as inputs. The re-grouping depends
on the value of rank. If rank increases, two groups merge (Line 5); if rank de-
creases, the merged group is partitioned (Line 9). The two operators Merge(·)
and Partition(·) are discussed in Section 3.2. Line 12 flips fexit if no task remains
in GL. This notifies all of the threads to terminate (Line 5 in Algorithm 3).

Algorithm 4 shows an iteration of the group level scheduling for managers.
Each iteration consists of three parts: updating WIi (Lines 1-2 and 15), main-
taining precedence relationship (Lines 3-8) and allocating tasks (Lines 9-14).
Lines 3-8 check the successors of all tasks in LCLi in batch mode to reduce

162 Y. Xia, V.K. Prasanna, and J. Li

Algorithm 2. A Sample Implementation of Hierarchical Scheduler
Input: P threads; Task dependency graph stored in GL; Thresholds δM , δ+ and δ−.
Output: Assign each task to a worker thread

{Initialization}
1: Groupj={Manager : Thread2j , Worker : Thread2j+1}, j = 0, 1, · · · , P/2 − 1
2: Evenly distribute tasks {Ti|Ti ∈ GL and di = 0} across LRLj , WIj =∑

T∈LRLj
wT , ∀j = 0, 1, · · · , P/2 − 1

3: fexit =false, rank = 1

{Scheduling}
4: for Thread i = 0, 1, · · · , P − 1 pardo
5: while fexit =false do
6: Q = 2rank

7: if i%Q = 0 then

{Manager thread}
8: Group level scheduling at Group�i/Q� (Algorithm 4)
9: if i = 0 then

{Supermanager thread}
10: Meta-level scheduling (Algorithm 3)
11: end if
12: else

{Worker thread}
13: Within-group level scheduling at Group �i/Q� (Algorithm 5)
14: end if
15: end while
16: end for
17: if GL = ∅ then fexit =true

synchronization overhead. Let m = 2rank − 1 denote the number of workers per
group. In the batch task allocation part (Lines 9-14), we first fetch m tasks from
GRL. Line 12 is an adaptive step of this algorithm. If the overall workload of
the m tasks is too light (

∑
T∈S′ wT < ΔW) or the current tasks in LRLi is not

enough to keep the workers busy (WIi < δM), more tasks are fetched for the
next iteration. This dynamically adjusts the workload distribution and prevents
possible starvation for any groups. In Line 10, the manager inspects a set of tasks
and selects m tasks with relatively more successors. This is a widely used heuris-
tic for scheduling [2]. Several statements in Algorithm 4 are put into boxes, where
the managers access shared components across the groups. Synchronization cost
of these statements varies as the number of groups changes.

The workers schedule tasks assigned by their manager (Algorithm 5). This
algorithm is a straightforward self-scheduling, where each idle worker fetches a
task from LRLi and then puts the tasks to LCLi after execution. Although
LRLi and LCLi are shared by the manager and worker threads in the same
group, no worker accesses any variables shared between groups.

Hierarchical Scheduling of DAG Structured Computations 163

Algorithm 3. Meta-Level Scheduling
for Supermanager

{Update rank}
1: r =

∑P/Q
j=0 (WIj/(|LCLj | · d)),

rankold = rank
2: rank ={

min(rank + 1, log P), r > δ+

max(rank − 1, 1), r < δ−

{regrouping}
3: if rankold < rank then

{Combine Groups}
4: for j = 0 to P/(2 · Q) − 1 do
5: Groupj = Merge(Group2j ,

Group2j+1)
6: end for
7: else if rankold > rank then

{Partition Group}
8: for j = P/Q − 1 downto 0 do
9: (Group2j , Group2j+1) =

Partition(Groupj)
10: end for
11: end if

Algorithm 4. Group Level Scheduling
for the Manager of Groupi

{Update workload indicator}
1: ΔW =

∑
T̃∈LCLi

wT̃

2: WIi = WIi − ΔW

{Update precedence relations}
3: for all T ∈ {successors of T̃ , ∀T̃ ∈

LCLi} do

4: dT = dT − 1
5: if dT = 0 then

6: GRL = GRL ∪ {T}; GL = GL\{T}
7: end if
8: end for

{Batch task allocation}
9: if LRLi is not full then

10: S′ ⇐ fetch m tasks from GRL, if any

11: if
∑

T∈S′ wT < ΔW or WIi < δM

then
12: Fetch more tasks from GRL to S′,

so that
∑

T∈S′ wT ≈ ΔW + δM

13: end if
14: LRLi = LRLi ∪ {S′}
15: WIi = WIi +

∑
T∈S′ wT

16: end if

4 Experiments

4.1 Computing Facilities

The Sun UltraSPARC T2 (Niagara 2) platform was a Sunfire T2000 server with
a Sun UltraSPARC T2 multithreading processor [4]. UltraSPARC T2 has 8 hard-
ware multithreading cores, each running at 1.4 GHz. In addition, each core sup-
ports up to 8 hardware threads with 2 shared pipelines. Thus, there are 64
hardware threads. Each core has its own L1 cache shared by the threads within
a core. The L2 cache size is 4 MB, shared by all hardware threads. The platform
had 32 GB DDR2 memory shared by all the cores. The operating system was
Sun Solaris 11 and we used Sun Studio CC with Level 4 optimization (-xO4) to
compile the code.

4.2 Baseline

To compare the performance of the proposed method, we performed DAG struc-
tured computations using Charm++ [17] Cilk [14] and OpenMP [16]. In addi-
tion, we implemented three typical schedulers called Cent ded, Dist shared and
Steal, respectively. We evaluated the baseline methods along with the proposed
scheduler using the same input task dependency graphs.

164 Y. Xia, V.K. Prasanna, and J. Li

Algorithm 5. Within-Group Level Scheduling for a Worker of Groupi

Input:
Output:
1: Fetch T from LRLi

2: if T �= ∅ then
3: Execute task T
4: LCLi = LCLi ∪ {T}
5: end if

(a) Scheduling DAG structured computations using Charm++ (Charm++):
Charm++ runtime system employs a phase-based dynamic load balancing scheme
facilitated by virtualization, where the computation is monitored for load imbal-
ance and computation objects (tasks) are migrated between phases by message
passing to restore balance. Given a task dependency graph, each task is pack-
aged as an object called chore. Initially, all tasks with dependency degree equal
to 0 are submitted to the runtime system. When a task completes, it reduces the
dependency degree of the successors. Any successors with reduced dependency
degree equal to 0 are submitted to the runtime system for scheduling.

(b) Scheduling DAG structured computations using Cilk (Cilk): This base-
line scheduler performed work stealing based scheduling using the Cilk runtime
system. Unlike the proposed scheduling methods where we bound a thread to a
core of a multicore processor and allocated tasks to the threads, we dynamically
created a thread for each ready-to-execute task and then let the Cilk runtime
system schedule the threads onto cores. Although Cilk can generate a DAG dy-
namically, we used a given task dependency graph stored in a shared global list
for the sake of fair comparison. Once a task completed, the corresponding thread
reduced the dependency degree of the successors of the task and created new
threads for the successors with dependency degree equal to 0. We used spinlocks
for the dependency degrees to prevent concurrent write.

(c) Scheduling DAG structured computation using OpenMP (OpenMP): This
baseline initially inserted all tasks with dependency degree equal to 0 into a
ready queue. Then, using the OpenMP pragma directives, we created threads to
execute these tasks in parallel. During executing the tasks in the ready queue,
we inserted new ready-to-execute tasks into another ready queue for parallel
execution in the next iteration. Note that the number of tasks in the ready
queue can be much greater than the number of cores. We let the OpenMP
runtime system to dynamically schedule tasks to underutilized cores.

(d) Centralized scheduling with dedicated core (Cent ded): This scheduling
method bound each thread to a separate core. One thread was the manager and
the rest were workers. The input DAG was local to the manager. Each worker had
a ready task list shared with the scheduler thread. There was also a completed
task list shared by all the threads. The manager was also in charge of all the
activities related to scheduling and the workers executed assigned tasks only.
Pthread mutex locks were used for the ready task lists and completed task list.

Hierarchical Scheduling of DAG Structured Computations 165

(e) Distributed scheduling with shared ready task list (Dist shared): In this
method, we distributed the scheduling activities across the threads. This method
had a shared global task list and a shared ready task list. Each thread had a local
completed task list. The schedulers integrated into each thread fetched ready-
to-execute tasks from the global task list, and inserted the tasks into the shared
ready task list. If the ready task list was not empty, each thread fetched tasks
from the ready task list for execution. Each thread inserted the IDs of completed
tasks into its completed task list. Then, the scheduler in each thread updated
the dependency degree of the successors of tasks in the completed task list, and
fetched the tasks with dependency degree equal to 0 for allocation. Pthreads
mutex locks were used for the global task list and the ready task list.

(f) Task stealing based scheduling with distributed ready task list (Steal):
Although the above baseline Cilk is also a work stealing scheduler, it used the
Cilk runtime system to schedule the threads, each corresponding to a task. On
the one hand, the Cilk runtime system has various additional optimizations;
on the other hand, scheduling the threads onto cores incurs overhead due to
context switching. Therefore, for the sake of fair comparison, we implemented the
Stealing baseline; we distributed the scheduling activities across the threads,
each having a shared ready task list. The global task list was shared by all the
threads. If the ready task list of a thread was not empty, the thread fetched a task
from it at the top for execution and upon completion updated the dependency
degree of the successors of the task. Tasks with dependency degree equal to 0
were placed into the top of its ready task list by the thread. When a thread
ran out of tasks to execute, it randomly chose a ready list to steal a task from
its bottom, unless all tasks were completed. The data for randomization were
generated offline to reduce possible overhead due to random number generator.
Pthreads spinlocks were used for the ready task lists and global task list.

4.3 Datasets and Data Layout

We experimented with both synthetic and real datasets to evaluate the perfor-
mance of the proposed scheduler. For the synthetic datasets, we varied the task
dependency graphs so that we can evaluate our scheduling method using task de-
pendency graphs with various graph topologies, sizes, task workload, task types
and accuracies in estimating task weights. For the real datasets, we used task
dependency graphs for blocked matrix multiplication (BMM), LU and Cholesky
decomposition. In addition, we also used the task dependency graph for exact
inference, a classic problem in artificial intelligence, where each task consists
of data intensive computations between a set of probabilistic distribution ta-
bles (also known as potential tables) involving both regular and irregular data
accesses [20].

We used the following data layout in the experiments: The task dependency
graph was stored as an array in the memory, where each element represents a
task with a task ID, weight, number of successors, a pointer to the successor
array and a pointer to the task meta data. Thus, each element took 32 Bytes,
regardless of what the task consisted of. The task meta data was the data used

166 Y. Xia, V.K. Prasanna, and J. Li

for task execution. For LU decomposition, the task meta data is a matrix block;
for exact inference, it is a set of potential tables. The lists used by the scheduler,
such as GRL, LRLs and LCLs, were circular lists, each having a head and a tail
pointer. In case any list was full during scheduling, new elements were inserted
on-the-fly.

4.4 Results

We compared the performance of the proposed scheduling method with two
state-of-the-art parallel programming systems i.e. Charm++[17], Cilk [14] and
OpenMP [16]. We used a task dependency graph for which the structure was a
random DAG with 10,000 tasks and there was an average of 8 successors for each
task. Each task was a dense operation, e.g., multiplication of two 30 × 30 ma-
trices. For each scheduling method, we varied the number of available threads,
so that we could observe the achieved scalability. The results are shown in Fig-
ure 5. Similar results were observed for other tasks. Given the number of available
threads, we repeated the experiments five times. The results were consistent; the
standard deviation of the results were almost within 5% of the execution time.
In Figure 5(a), all the methods exhibited scalability, though Charm++ showed
relatively large overhead. A reason for the significant overhead of Charm++ com-
pared with other methods is that Charm++ runtime system employs message
passing based mechanism to migrate tasks for load balancing (see Section 4.2).
This increased the amount of data transferring on the system bus. Note that the
proposed method required at least two threads to form a group. In Figure 5(b)
where more threads were used, our proposed method still showed good scala-
bility; while the performance of the OpenMP and Charm++ degraded significantly.
As the number of threads increased, the Charm+ required frequent message pass-
ing based task migration to balance the workload. This stessed the system bus
and caused the performance degradation. The performance of OpenMP degraded
as the number of threads increase, because it can only schedule the tasks in
the ready queue (see Section 4.2), which limits the parallelism. Cilk showed
scalability close to the proposed method, but the execution time was higher.

We compared the proposed scheduling method with three typical schedulers, a
centralized scheduler, a distributed scheduler and a task-stealing based scheduler
addressed in Section 4.2. We used the same dataset as in the previous experiment,
but the matrix sizes were 50 × 50 (large) and 10 × 10 (small) for Figures 6(a)
and (b), respectively. We normalized the throughput of each experiment for com-
parison. We divided the throughput of each experiment by the throughput of the
proposed method using 8 threads. The results exhibited inconsistencies for the
two baseline methods: Cent ded achieved much better performance than Dist
shared with respect to large tasks, but significantly poorer performance with
respect to small tasks. Such inconsistencies implied that the impact of the input
task dependency graphs on scheduling performance can be significant. An ex-
planation to this observation is that the large tasks required more resources for
task execution, but Dist shared dedicated many threads to scheduling, which
limits the resources for task execution. In addition, many schedulers frequently

Hierarchical Scheduling of DAG Structured Computations 167

(a) Scalability with respect to 1-8 threads

(b) Scalability with respect to 8-64 threads

Fig. 5. Comparison of average execution time with existing parallel programming
systems

accessing shared data led to significant overheads due to coordination. Thus,
the throughput decreased for Dist shared as the number of threads increased.
When scheduling small tasks, the workers completed the assigned tasks quickly,
but the single scheduler of Cent ded could not process the completed tasks and
allocate new tasks to all the workers in time. Therefore, Dist shared achieved
higher throughput than Cent ded in this case. When scheduling large tasks, the
proposed method dynamically merged all the groups and therefore became the
same as Cent ded (Figure 6(a)). When scheduling small tasks, the proposed
scheduler became a distributed scheduler by keeping each core (8 threads) as
a group. Compared with Dist shared, 8 threads per group led to the best
throughput (Figure 6(b)). Steal exhibited increasing throughput with respect
to the number of threads for large tasks. However, the performance tapered off
when more than 48 threads were used. One reason for this observation is that, as
the number of thread increases, the chance of stealing tasks also increases. Since
a thread must access shared variables when stealing tasks, the coordination over-
head increased accordingly. For small tasks, Steal showed limited performance
compared with the proposed method. As the number of threads increases, the

168 Y. Xia, V.K. Prasanna, and J. Li

throughput was adversely affected. The proposed method dynamically changed
the group size and merged all the groups for the large tasks. Thus, the proposed
method becomes Cent ded except for the overhead of grouping. The proposed
scheduler kept each core (8 threads) as a group when scheduling the small tasks.
Thus, the proposed method achieved almost the same performance as Cent ded
in Figure 6(a) and the best performance in Figure 6(b).

(a) Performance with respect to large tasks (50×50
matrix multiplication for each task)

(b) Performance with respect to small tasks (10×10
matrix multiplication for each task)

Fig. 6. Comparison with baseline scheduling methods using task graphs of various task
sizes

We experimentally show the importance of adapting the group size to the task
dependency graphs in Figure 7. In this experiment, we modified the proposed
scheduler by fixing the group size. For each fixed group size, we used the same
dataset in the previous experiment and measured the performance as the num-
ber of threads increases. According to Figure 7, larger group size led to better
performance for large tasks; while for the small tasks, the best performance was
achieved when the group size was 4 or 8. Since the optimized group size var-
ied according to the input task dependency graphs, it is necessary to adapt the
group size to the input task dependency graph.

Hierarchical Scheduling of DAG Structured Computations 169

(a) Performance with respect to large tasks (50×50
matrix multiplication for each task)

(b) Performance with respect to small tasks (10×10
matrix multiplication for each task)

Fig. 7. Performance achieved by the proposed method without dynamically adjusting
the scheduler group size (number of threads per group, thds/grp) with respect to task
graphs of various task sizes

In Figure 8, we illustrated the impact of various properties of task dependency
graphs on the performance of the proposed scheduler. We studied the impact
of the topology of the graph structure, the number of tasks in the graph, the
number of successors and the size of the tasks. We modified these parameters of
the dataset used in the previous experiments. The topologies used in Figure 8(a)
included a random graph (Rand), a 8-dimensional grid graph (8D-grid) and the
task graph of blocked matrix multiplication (BMM). Note that we only used the
topology of the task dependency graph for BMM in this experiment. Each task
in the graph was replaced by a matrix multiplication. We evaluate the full BMM
as a real-life problem in Figure 13. According to the results, for most of the
scenarios, the proposed scheduler achieved almost linear speedup. Note that the
speedup for 10× 10 task size was relatively lower than others. This was because
synchronization in scheduling was relatively large for the task dependency graph
with small task sizes. Note that we used the speedup as the metric in Figure 8.

170 Y. Xia, V.K. Prasanna, and J. Li

(a) Task graph topology (b) Number of tasks in task graph

(c) Number of successors of each task (d) Task size

Fig. 8. Impact of various properties of task dependency graphs on speedup achieved
by the proposed method

By speedup, we mean the serial execution time over the parallel execution time,
when all the parameters of the task dependency graph are given.

In Figure 9, we investigated the impact of task types on scheduling perfor-
mance. The computation intensive tasks (Computation) were matrix multiplica-
tions, for which the complexity was O(N3), assuming the matrix size was N×N .
In our experiments, we had N = 50. The memory access intensive tasks (Mem
Access) summed an array of N2 elements using O(N2) time. For the last task
type (Mixed), we let all the tasks with an even ID perform matrix multiplication
and the rest sum an array. We achieved speedup with respect to all task types.
The speedup for memory access intensive tasks was relatively lower due to the
latency of memory access.

Figure 10 reflects the efficiency of the proposed scheduler. We measured the
execution time of each thread to check if the workload was evenly distributed,
and normalized the execution time of each thread for the sake of comparison.
The underlying graph was a random graph. We also limited the number of avail-
able cores in this experiment to observe the load balance in various scenarios.
Each core had 8 threads. As the number of cores increased, there was a minor
imbalance across the threads. However, the percentage of the imbalanced work
was very small compared with the entire execution time.

For real applications, it is generally difficult to estimate the task weights accu-
rately. To study the impact of the error in estimated task weight, we intentionally

Hierarchical Scheduling of DAG Structured Computations 171

Fig. 9. Performance of the proposed method with respect to computation intensive
tasks, memory access intensive tasks and the mix

Fig. 10. Load balance achieved by the proposed method with respect to various number
of available cores

added noise to the estimated task weight in our experiments. We included noise
that added 5%, 10% and 15% of the real task execution time. The noise was
drawn from uniform distribution using the POSIX math library. According to
the results in Figure 11, the impact was not significant.

In Figure 12, we investigated the overhead of the proposed scheduler. Using
the same dataset used in the previous experiment, we first performed hierarchical
scheduling and recorded to which thread a task was allocated. According to such
allocation information, we performed static scheduling to eliminate the overhead
due to the proposed dynamic scheduler. We illustrate the execution time in
Figure 12. Unlike the previous experiments, we show the results with respect to
execution time to compare both the scalability and the scheduling overhead for a
given number of threads. As we can see, the overhead due to dynamic scheduling
was very small.

The above experiments were conducted using synthetic datasets, so that we
could control the parameters and then study the impact of various factors to
the scheduling performance. We achieved consistent results for real application
datasets too. In Figure 13, we constructed the task dependency graph according

172 Y. Xia, V.K. Prasanna, and J. Li

Fig. 11. Impact of the error in estimated task weight on speedup achieved by the
proposed method

Fig. 12. Overhead of the proposed scheduling method

Fig. 13. Performance of the proposed scheduler for real applications

to blocked matrix multiplication (BMM), LU decomposition and Cholesky de-
composition [10]. For the BMM, we used a matrix of size 600 × 600 with block
size 50×50. The total number of tasks was 3312. For both the LU and Cholesky
decomposition, the matrix size was 1000× 1000 and block size was 50× 50. The
total number of tasks was 2870. In Figure 14, we applied the proposed scheduler
for parallel exact inference [20]. The task dependency graph for this problem

Hierarchical Scheduling of DAG Structured Computations 173

Fig. 14. Performance of the proposed scheduler for exact inference

had 1023 nodes and each node had a potential table of 4096 entries. We man-
ually partitioned the potential tables at different sizes and therefore had three
datasets. The sizes of the partitioned potential table were 4096, 1024 and 256 for
large, mediate and small tasks, respectively. The proposed scheduler worked well
for all the real applications. Note that we used the metric speedup instead of
absolute execution time or throughput. This is because the absolute performance
requires optimization of both the tasks and the scheduler. We only focused on
scheduler design in this paper, therefore we used the metric of speedup.

5 Conclusion

We proposed a hierarchical scheduling scheme for manycore processors. In our
method, we divided the threads into groups, each having a manager to perform
scheduling at the group level and several workers to perform self-scheduling for
the tasks assigned by the manager. A supermanager was used to dynamically ad-
just the group size, so that the scheduler could adapt to the input task depen-
dency graph. We analyzed the proposed method and demonstrated its advantages
for manycore architectures. The experimental results on the Sun UltraSPARC T2
processors were encouraging, compared with typical baseline schedulers and exist-
ing parallel programming systems. In the future, we plan to study data layout for
high throughput processors to efficiently use the data cache of the UltraSPARC
processors, since the L2 cache is no more than 4 MB, shared by up to 64 hardware
threads. We would also like to explore the heuristics for assigning tasks of vari-
ous types to a core. For example, interleaving the computationally intensive tasks
with memory access intensive tasks may improve the overall performance.

References

1. Ahmad, I., Ranka, S., Khan, S.: Using game theory for scheduling tasks on multi-
core processors for simultaneous optimization of performance and energy. In: Intl.
Sym. on Parallel Dist. Proc., pp. 1–6 (2008)

2. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys 31(4), 406–471 (1999)

174 Y. Xia, V.K. Prasanna, and J. Li

3. Zhu, W., Thulasiraman, P., Thulasiram, R.K., Gao, G.R.: Exploring financial ap-
plications on many-core-on-a-chip architecture: A first experiment. In: Frontiers of
High Performance Computing and Networking, pp. 221–230 (2006)

4. Sheahan, D.: Developing and tuning applications on UltraSPARC T1 chip multi-
threading systems. Technical report (2007)

5. Tan, G., Sreedhar, V.C., Gao, G.R.: Analysis and performance results of computing
betwenness centrality on ibm cyclops64. Journal of Supercomputing (2009)

6. Ahmad, I., Kwok, Y.K., Wu, M.Y.: Analysis, evaluation, and comparison of algo-
rithms for scheduling task graphs on parallel processors. In: Proceedings of the 1996
International Symposium on Parallel Architectures, Algorithms and Networks, pp.
207–213 (1996)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

8. Papadimitriou, C., Yannakakis, M.: Towards an architecture-independent analysis
of parallel algorithms. In: Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing, pp. 510–513 (1988)

9. Benoit, A., Hakem, M., Robert, Y.: Contention awareness and fault-tolerant
scheduling for precedence constrained tasks in heterogeneous systems. Parallel
Computing 35(2), 83–108 (2009)

10. Song, F., YarKhan, A., Dongarra, J.: Dynamic task scheduling for linear algebra
algorithms on distributed-memory multicore systems. In: International Conference
for Hight Performance Computing, Networking Storage and Analysis (2009)

11. Coffman, E.G.: Computer and Job-Shop Scheduling Theory. John Wiley and Sons,
New York (1976)

12. Karamcheti, V., Chien, A.: A hierarchical load-balancing framework for dynamic
multithreaded computations. In: Proceedings of the ACM/IEEE Conference on
Supercomputing, pp. 1–17 (1998)

13. Zhao, H., Sakellariou, R.: Scheduling multiple DAGs onto heterogeneous sys-
tems. In: IEEE International Symposium on Parallel and Distributed Processing
(IPDPS), pp. 1–12 (2006)

14. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An efficient multithreaded runtime system. Technical report, Cambridge
(1996)

15. Intel Threading Building Blocks, http://www.threadingbuldingblocks.org/
16. OpenMP Application Programming Interface, http://www.openmp.org/
17. Charm++ programming system, http://charm.cs.uiuc.edu/research/charm/
18. Ohara, M., Inoue, H., Sohda, Y., Komatsu, H., Nakatani, T.: Mpi microtask for

programming the cell broadband enginetm processor. IBM Systems Journal 45(1),
85–102 (2006)

19. Kurzak, J., Dongarra, J.: Fully dynamic scheduler for numerical computing on
multicore processors. Technical report (2009)

20. Xia, Y., Feng, X., Prasanna, V.K.: Parallel evidence propagation on multicore pro-
cessors. In: The 10th International Conference on Parallel Computing Technologies,
pp. 377–391 (2009)

21. Bader, D.: High-performance algorithm engineering for large-scale graph problems
and computational biology. In: 4th International Workshop on Efficient and Ex-
perimental Algorithms, pp. 16–21 (2005)

http://www.threadingbuldingblocks.org/
http://www.openmp.org/
http://charm.cs.uiuc.edu/research/charm/

	Hierarchical Scheduling of DAG Structured Computations on Manycore Processors with Dynamic Thread Grouping
	Introduction
	Background and Related Work
	Hierarchical Scheduling
	Organization
	Dynamic Thread Grouping
	Hierarchical Scheduling
	Scheduling Algorithm and Analysis

	Experiments
	Computing Facilities
	Baseline
	Datasets and Data Layout
	Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

