Dynamic Proportional Share Scheduling in
Hadoop

Thomas Sandholm and Kevin Lai

Social Computing Lab, Hewlett-Packard Labs, Palo Alto, CA 94304, USA

{thomas.e.sandholm,kevin.lai}@hp.com

Abstract. We present the Dynamic Priority (DP) parallel task sched-
uler for Hadoop. It allows users to control their allocated capacity by
adjusting their spending over time. This simple mechanism allows the
scheduler to make more efficient decisions about which jobs and users to
prioritize and gives users the tool to optimize and customize their alloca-
tions to fit the importance and requirements of their jobs. Additionally,
it gives users the incentive to scale back their jobs when demand is high,
since the cost of running on a slot is then also more expensive. We en-
vision our scheduler to be used by deadline or budget optimizing agents
on behalf of users. We describe the design and implementation of the DP
scheduler and experimental results. We show that our scheduler enforces
service levels more accurately and also scales to more users with distinct
service levels than existing schedulers.

Keywords: MapReduce, Dynamic Priority, Task Scheduling.

1 Introduction

Large compute clusters have become increasingly easier to program because of
simplified parallel programming models such as MapReduce. At the same time,
the costs for deploying and operating such clusters are significant enough that
users have a strong incentive to share them. However, MapReduce was initially
designed for small teams where resource contention can be resolved using FIFO
scheduling or through social scheduling.

In this paper, we examine different task-scheduling methods for shared Hadoop
(an open source implementation of MapReduce) clusters. As a result of our anal-
ysis of Hadoop scheduling, we have developed the Dynamic Priority (DP) sched-
uler, a novel scheduler that extends the existing FIFO and fair-share schedulers
in Hadoop. This scheduler plug-in allows users to purchase and bid for capacity
or quality of service levels dynamically. The capacity allotted, represented by
Map and Reduce task slots, is proportional to the spending rate a user is willing
to pay for a slot and inversely proportional to the aggregate spending rate of all
existing users. When running a task on the alloted slot, that same spending rate
is deducted from the user’s budget.

This simple mechanism allows the DP scheduler to make more efficient de-
cisions about which jobs and users to prioritize and gives users the ability to

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2010, LNCS 6253, pp. 110 _ 2010.
© Springer-Verlag Berlin Heidelberg 2010

Dynamic Proportional Share Scheduling in Hadoop 111

optimize and customize their allocations to fit the importance and requirements
of their jobs. Additionally, it gives users the incentive to scale back their jobs
when demand is high, since the cost of running on a slot is then also more expen-
sive. We envision the DP scheduler to be used by deadline or budget optimizing
agents on behalf of users. In comparison to existing schedulers, the DP imple-
mentation is simpler because it does not rely on heuristics, while still providing
preemption and being work-conserving.

We present the design and implementation of the DP scheduler and exper-
imental results. We show that our scheduler enforces service levels more accu-
rately and also scales to more users with distinct service levels than existing
schedulers. We also show how the dynamics of budgets and spending rates affect
job completion time. The DP scheduler enables cost-driven scheduling across
Hadoop clusters potentially operated from different sites and administrative
domains.

This paper is organized as follows. In Section 2 we review the current Hadoop
schedulers. We then describe the design and rationale behind our scheduler im-
plementation in Section Bl In Section [l and Section [we present and discuss a
series of experiments used to evaluate our scheduler. Finally, we relate our work
to previous work in Section [B] and conclude in Section [

2 Hadoop MapReduce

Apache Hadoop [I] is an open source version of the MapReduce parallel program-
ming framework [2] and the Google Filesystem [3]. Historically it was developed
for the same reasons Google developed their corresponding protocols, to index
and analyze a huge number of Web pages. Data parallel programming or data-
intensive scalable computing (DISC) [4] have since been deployed in a wide range
of applications (e.g., OLAP, data mining, scientific computing, media process-
ing, log analysis and data warehousing [5]). Hadoop runs on tens of thousands
of nodes in production at Yahoo!, and Google uses their implementation heavily
in a wide range of production services such as Google Earth [0].

The MapReduce model allows programmers to focus on designing the applica-
tion workflow and how data are filtered and aggregated in the different stages of
these workflows. The system takes care of common distributed systems tasks such
as scheduling, input partitioning, failover, replication, and distributed sorting of
intermediate results. The main benefits compared to other parallel programming
models are the inherent data-local scheduling, and the ease of use, leading to
increased developer productivity and application robustness.

In the seminal deployment at Google [2] the MapReduce architecture com-
prises one master and many workers. The input data is split and replicated in
64 MB blocks across the cluster. When a job executes, the input data is par-
titioned among parallel map tasks and assigned to slots on idle worker nodes
by the master while considering data locality. Similarly, the master schedules
reduce tasks on idle worker nodes that read the intermediate output from the
map tasks. Between the map and the reduce phases of the execution the inter-
mediate map data are shuffled across the reduce nodes and a distributed sort

112 T. Sandholm and K. Lai

is performed. This ensures that all data with a given key are guaranteed to be
redirected to the same reduce node, and in the reduce processing phase all keys
are streamed in a sorted order. Re-execution of a failed task is supported where
the master reschedules the task. To address the issue of a small number of tasks
executing substantially slower than average and slowing down the overall job
completion time, duplicate backup tasks are speculatively executed and the task
that completes first is used whereas others are discarded.

2.1 Scheduling

In Hadoop all scheduling and allocation decisions are made on a task and node
slot level for both the map and reduce phases. L.e., not all tasks of a job may be
scheduled at once. The reason for not scheduling on a resource (node) level but
on a slot level, is to allow different nodes of different capacity to offer varying
numbers of slots and to increase the benefits of statistical multiplexing. The
assumption is that even very complex jobs can be broken down into primitive
tasks that may run in parallel on a commodity compute unit. The schedulers
assume that each task in the same job takes roughly the same amount of time
to complete given a slot. If this is not the case some heuristics may be applied
like speculative scheduling.

All tasks are by default scheduled using a FIFO queue. Experience from large
deployments at Yahoo! shows that this leads to inefficient allocations and the
need for “social scheduling”. The next generation scheduler in Hadoop, Hadoop
on Demand (HOD), addressed this issue by setting up private MapReduce clus-
ters on demand, managed by the Torque batch scheduling system. This approach
failed in practice because it violated the data locality design of the original
MapReduce scheduler, and it became too high of a maintenance burden to sup-
port and configure an additional scheduling syste. Creating small sub-clusters
for processing individual users’ tasks, as in the HOD case, violates locality be-
cause the processing nodes only cover a subset of the data nodes, and thus more
data transfers are needed to stage in and out data to and from the compute
nodes.

To address some of these shortcomings, Hadoop recently added a scheduling
plug-in framework with two additional schedulers that extend rather than replace
the original FIFO scheduler. The additional schedulers implement alternative
fair-share capacity algorithms where separate queues are maintained for separate
pools (groups) of users, and each are given some service guarantee over time. The
inter-queue priorities are set manually by the MapReduce cluster administrator.
This reduces the need for social scheduling of individual jobs but there is still
a manual or social process needed to determine the initial fair distribution of
priorities across pools, and once this has been set all users and groups are limited
by the task importance implied by the priority of their pool. There is no way
for users to optimize the usage of their granted allocation across jobs of different
importance, during different job stages, or to respond to run-time anomalies such

! https://cwiki.apache.org/jira/browse/HADODOP-3421

https://cwiki.apache.org/jira/browse/HADOOP-3421

Dynamic Proportional Share Scheduling in Hadoop 113

as failures or slow nodes. The potential allocation inefficiency arising from this
static setup is the main target for our work.

Previously we studied scheduling of entire virtual-machine-hosted Hadoop
clusters in [7]. The general problem addressed there was how to scale up and
down a set of virtual machines running Hadoop workers to complete jobs more
cost-effectively and faster, based on knowledge of job workflow resource require-
ments. This approach works well if each user works with a separate data set.
However, in case of groups of people sharing large data sets, it becomes too much
of an overhead to load the data into multiple virtual clusters, and if file system
clusters are shared you face the same problem as with HOD of reduced data lo-
cality. Furthermore, Hadoop is very IO intensive both for file system access and
Map/Reduce scheduling, so virtualization incurs a high overhead. To address
these problems we, in this work, focus on the approach of allocating slots in the
Hadoop scheduler for different queues dynamically. This approach works both
in a virtual and physical cluster, and it incurs less overhead when sharing the
cluster among a large number of users. Next we describe our scheduler design
and implementation in more detail.

3 Design

The primary design goal of our Hadoop task scheduler is to allow capacity distri-
bution across concurrent users to change dynamically based on user preferences.
Traditional priority systems that try to guess user priority are too inaccurate [g],
and unregulated user priorities assume trusted small groups of users. Our sched-
uler automates capacity allocation and redistribution in a regulated task slot
resource market.

3.1 Mechanism

The core of our design is a proportional share resource allocation mechanism
that allows users to purchase or be granted a queue priority budget. This budget
may be used to set spending rates denoting the willingness to pay a certain
amount of the budget per Hadoop map or reduce task slot per time unit. The
time unit is configurable, and referred to as allocation interval. It is typically set
to somewhere between 10 seconds and 1 minute. In each allocation interval the
scheduler:

— aggregates all spending rates s from all current users to calculate the Hadoop
cluster price, p,

— for all users, allocates (s;/p) X ¢ task slots (both mappers and reducers) to
user i, where s;, is the spending rate of user ¢, and c is the aggregate slot
capacity of the cluster,

— for all users, deducts s; X u; from budget b where u;, is the number of slots
used by user i

Users consuming more resources will deplete their budget faster given the same
spending rate. However, they are guaranteed to not pay more than the spending

114 T. Sandholm and K. Lai

rate per allocated slot. Thus a user’s bid represents her willingness to pay a
certain rate per slot.

It may appear that this model is biased towards users with small jobs who
would be able to outbid users with bigger jobs. However, in the Hadoop MapRe-
duce task model users with big jobs can effortlessly scale down their jobs to run
fewer concurrent tasks and thereby consume the same amount of resources per
time unit as small jobs but instead run longer. Our model thus sets the right
incentives for users to scale back resource consumption as much as their job
deadlines or SLAs allow.

Because we only want to charge each user for the capacity they use and
reallocate the unused capacity to other users, (and we want to make sure users
actually pay for the spending rate they bid) we calculate the capacity allocation
and the price to pay for slots for an allocation interval based on the spending
rates in the interval directly preceding the interval when the slots are consumed.
To avoid blocking new arriving users and having non-running users hold up
resources, we only calculate an allocation for a user if either a job is pending or
running for that user.

To adapt more quickly to user demand fluctuations and avoid head of queue
blocking and starvation issues, we support preemption where task slots that
have been allocated but are no longer paid for may be reclaimed and allocated
to other users. This works well for most applications since Hadoop automatically
puts preempted tasks back in the pending queue to be reallocated when demand,
measured by user spending rates, allows.

The key feature of this mechanism is that it discourages free-riding and gaming
by users. Users who claim a higher priority will have to pay for it, so they have
an incentive to accurately reveal how important priority is to them. In addition,
the variable pricing allows users with a low budget and low time-sensitivity to
run during low demand periods. These users would otherwise not be able to run
at all in a fixed pricing model. Conversely, at high demand periods, users have a
disincentive to run, but resources will nonetheless be available (for a high price)
for users that really need them.

The disadvantage is less capacity predictability and more variation in capacity
allocated to an application. However, the Hadoop MapReduce scheduling frame-
work allows jobs to be split up in finer grained tasks that can run and possibly
fail and recover independently. So the only thing the end users would need to
worry about is to get a good enough average capacity over some time to meet
their deadlines.

This introduces the difficulty of making spending rate decisions to meet the
SLA and deadline requirements. It is outside the scope of this paper and the
target of future work to address this particular issue, but the mechanisms pre-
sented here opens the door for innovation in this area, by allowing much more
fine grained control over resources for competing users in a multi-tenancy hosted
Hadoop cluster.

Figure [Il depicts how our scheduler components fit into the Hadoop architec-
ture. Alice is willing to pay $4 per slot, Bob is willing to pay $1.50, and Sam $2.

Dynamic Proportional Share Scheduling in Hadoop 115

Assuming that 15 slots are available to these three users in the global (logical)
slot table, Alice will be allocated 8 slots, Bob 3 slots and Sam 4 slots. Exactly
how these slots are mapped to physical nodes is not guaranteed. Whenever a
slot becomes available the allocations are recalculated to determine who should
get the new slot according to their granted share. Furthermore, local tasks are
attempted first. If that fails, remote rack tasks are scheduled. There may be op-
portunities to delay scheduling of some jobs to achieve a higher ratio of data local
tasks. However, in the current implementation we enforce the shares strictly in
each time period. This is not overly restricting because Hadoop replicates all the
data in at least three data blocks by default, which ensure many opportunities
for data local scheduling. Packing a user on a single node versus distributing the
job workload across nodes is another application specific trade-off that we may
address in future implementations.

Possible starvation of low-priority (low-spending) tasks can be mitigated by
using the standard approach in Hadoop of limiting the time each task is allowed
to run on a node. Moreover, our new mechanism also allows administrators to set
budgets for different users and let them individually decide whether the current
price of preempting running tasks is within their budget or if they should wait
until the current users run out of their budget. The fact that Hadoop uses task
and slot level scheduling and allocation as opposed to job level scheduling also
avoids many starvation scenarios.

If there is no contention, i.e. there are enough slots available to run all
tasks from all jobs submitted, the cost for excess resources essentially becomes
free because of the work conserving principle of our scheduler. However, the

Global
Slot Table
Workers
Alice JobTracker/ 8 N
Slots.
riority
Queue 1 | Enforcer R;fuut:e

Bob

Quene 2 O O
U 'l

NameNode 4

Sam

Fig. 1. Dynamic Priority Scheduler Architecture. This example shows how a max ca-
pacity of 15 Map slots gets allocated proportionally to three users. For example, Alice
bids $4 and gets 4/(4 + 1.5 + 2) x 15 = 8 slots. The central scheduler comprises a Dy-
namic Priority Allocator and a Priority Enforcer component responsible for accounting
and schedule enforcement respectively.

116 T. Sandholm and K. Lai

guarantees of maintaining these excess resources are reduced. To see why, con-
sider new users deciding whether to submit jobs or not. If they see that the price
is high they may wait to preempt currently running jobs, but if the resources are
essentially given out for free they are likely to lay claim on as many resources
they can immediately.

We note that the Dynamic Priority scheduler can easily be configured to mimic
the behavior of the other schedulers. If no queues or users have any credits left
the scheduler reduces to a FIFO scheduler. If all queues are configured with the
same share (spending rate in our case) and the allocation interval is set to a
very large value, the scheduler reduces to the behavior of the static fair-share
schedulers.

3.2 Implementation

The Dynamic Priority scheduler is implemented as a scheduler plugin for the
Hadoop JobTracker service. This allows DP to be a drop-in replacement of the
default FIFO scheduler. The scheduler is split into two components: one for allo-
cation, Dynamic Priority Allocator, and one for enforcement, Priority Enforcer.

The Dynamic Priority Allocator implements dynamic slot allocation, budget-
ing and accounting, and provides a remote secure API to manage and monitor
budgets and spending rates.

The Priority Enforcer component is responsible for enforcing the shares of
resources calculated by the allocation component. It is responsible for picking
pending tasks from jobs to be scheduled when mapper and reducer slots open up
in Hadoop TaskTrackers. It thus implements the same functionality as the FIFO
and fair-share schedulers. However, these schedulers were not designed to handle
a large number of queues with constantly varying capacities that are determined
on demand from user input. They do not enforce shares at the granularity and
precision that our mechanism requires and do not support preemption to the
extent that we require.

The budgets and spending rates are stored in a storage component that can
be file-based or SQL-based. An XML REST Servlet controls the scheduler. The
monitoring component plugs into the Hadoop JobTracker Web console. The
Web console is depicted in Figure 2l The numbers displayed next to each queue

Table 1. REST XML API to Manage Scheduler Allocations

HTTP Options Description Authz
price Gets current price None
info=queue Gets queue usage info User
infos Gets usage info for all queues Admin
setSpending=spending&queue=queue Set the spending rate for queue User
addBudget=budget&queue=queue Add budget to queue Admin
addQueue=queue Add queue Admin

removeQueue=queue Remove queue Admin

Dynamic Proportional Share Scheduling in Hadoop 117

opencirrus-1270 Hadoop Map/Reduce Administration

Stats: RUNNING
Started: Sun May 24 2226 24 PDT 2009

Version: 0210 33808

Compile: 0314 PST 2009 by hadoopsandhaim
Identifier: 20005

Cluster Summary (Heap Size is 902.69 MB/963 MB)

Huasg Reduces | Total Submissions

68 |54 223

Nodes | Map Task Capacil\r] Reduce Task Capacity | Avg. Tasks/Node | Blacklisted Nodes]
218 54 1000

Scheduling Information Budget Remaining

Queue Name [Scheﬁullng Information //‘
N Spending Rate Bid

100000 ‘// ///

00010 4—---""-‘

I J0BG2E 4 g
04 [Capacity Share (0..1)
o . Running Tasks

0 l" D030B64 198

322)
0095 023 Pending Tasks
0011

queyell 00033850617
1

azz

Fig. 2. MapReduce Administration Monitor

represent from top to bottom: current budget, spending rate, resource share,
slots used, and slots pending. The supported APIs are listed in Table[I] and an
example XML response for authorized requests can be seen in Listing [l

Listing 1. Example XML response for authorized
requests

<Queuelnfo>
<host>myhost</host>
<queue name="queuel'"™>
<budget>99972.0</budget>
<spending>0.11</spending>
<share>0.008979593</share>
<used>1</used>
<pending>43</pending>
</queue>
</Queuelnfo>

3.3 Security and Authentication

The existing Unix user and group based security model of Hadoop is too simple
to support a full-fledged multi-tenancy resource market as described above. More
specifically, relying on each user to pick queues and be trustworthy about their
identity would defeat the accounting and budget enforcement mechanism. As
a result, we implemented a lightweight symmetric key authentication and role-
based authorization protocol modeled after AWS Query Authentication [9], and

118 T. Sandholm and K. Lai

OAuth. The advantage is that it is easy to use from any client and only requires
the capability to construct HMAC/SHAT1 signatures based on shared secret keys.
The existing Hadoop command line clients were also extended to pass the sig-
natures required to submit jobs to queues being paid for in job configuration
parameters.

4 Evaluation

In this section, we describe experiments run to study the scalability and allo-
cation dynamics of our scheduler. There are three sets of experiments. In the
first set, we examine the correlation of spending rates, budgets and performance
metrics. In the second set, we study how accurately and effectively service levels
can be supported. Finally we measure how well the system adapts to changes
in spending rates. Unless otherwise stated all users are given the same budgets
in all experiments. We use the term queue interchangeably with the term user
since all users are given a dedicated queue to submit their jobs on in all of our
experiments. Our scheduler allows queues to be shared across users but it should
be compared to sharing bank accounts or access to a PC account among users,
i.e. sharing security credentials such as passwords, which is generally frowned
upon.

4.1 Setup

We use two testbeds for our evaluation: a 30 node quad-core cluster (referred
to as the big cluster) and a 5 node octo-core cluster (referred to as the small
cluster). The small cluster runs on virtual machines, whereas the big cluster is
installed directly on the hardware. More details of the clusters are shown in
Table

For both setups, we allocate one queue per user and run 2-80 users concur-
rently. All users run the same benchmark application, the Pi estimator from the
Hadoop example code base. The Pi application was set up to be able to con-
sume the entire cluster if run in isolation (i.e. number of job tasks were set to
the number of slots available in the cluster), and thus ran slower when there was
contention. The pi precision target was set to 450000000 for the small cluster and
500000000 for the big cluster to ensure that the application was both CPU and
data intensive. The ability to fine-tune the CPU versus data intensity without
having to provision a large amount of data was the main reason we chose the Pi
application for our experiments. The fact that all Hadoop applications conform
to the same general internal structure (MapReduce) allows us to treat the results
more generally than with a typical parallel workload. To stress the system, all
users are launched concurrently and submit a continuous stream of jobs. In the
initial 2-user experiments we test the FIFO, Fairshare (fair-share scheduler de-
veloped at Facebook), and Capacity (fair-share scheduler developed at Yahoo!)
schedulers and compare them to the Dynamic Priority scheduler that we devel-
oped. The Fairshare and Capacity schedulers were not able to handle the 10-80

Dynamic Proportional Share Scheduling in Hadoop 119

Table 2. Experiment Cluster Setup

Cluster Used in Graphs Nodes Cores (CPUs) Physical/Virtual OS Disk
big 3-9 30 120(30) Physical CentOS 5 45TB
small 10-11 5 40(40) Virtual CentOS 5 250GB

queue and user workload reliably so they were excluded from the larger experi-
ments. To switch between the schedulers during the experiment we restarted the
JobTracker service resulting in a clean start since no running job information is
persisted in the current version of the JobTracker. The stream of jobs from the
clients is not affected either during a restart since the clients will just resubmit
jobs when a job is done or fails.

4.2 Spending Rates, Budgets and Performance

In the first experiment, we start two concurrent user workloads. We give queuel
an initial budget of 1000 and queue2 10000 credits. The spending rate per
Hadoop slot of queuel is set to twice the rate of queue2. Since queuel will
then be allocated twice as many resources the total spending is expected to be
4 times that of queue2 in any allocation interval.

Figure [3 depicts the budget over time for the two users, and Figure @] shows
the completion time of their jobs over the same time period. Our scheduler is
initially configured to run without preemption and queuel will thus not see an
immediate benefit in completion time.

We also see that the budget of queuel runs out at time 05/15-22:00, at which
point the allocation is given over to queue2, and the performance of queuel
degrades significantly. At time 05/16-14:00 the budgets of queuel and queue2
are reset to 10000 and the scheduler is reconfigured to preempt. We now see
that the queuel completion time is around 3000s for each job in Figure d and
the spending is about 26-27% more than queue2 (25% expected) as seen in
Figure Bl We do not obtain exactly half the job completion time when getting
twice the amount of resources but about 1.8. This is because we only control
the slot capacity not other resources such as HDFS (distributed file system)
IO and network bandwidth. We can also see that the higher spender (queuel)
gets a very stable high performance, oscillating between 3000-3200s completion
times compared to the low priority queue (queue2) which oscillates between
4500-5800s.

Now just looking at FigureM at time 05/18-00:00 we reconfigure the cluster to
use the Capacity scheduler. The differentiation in obtained service level is far less
although the capacity configuration is the same, twice as many slots for queue2.
We attribute this to less aggressive preemption, and less granular control over
allocations in this scheduler compared to ours. We can also see that the min/max
range variation is greater for both queues with the capacity scheduler. Queuel
oscillates between 3000-3600s, and queue2 oscillates between 3600-5500s.

Taking the ratio of minimum performance to maximum performance we get
a differentiation of about 1.5 to be compared to 1.8 for our scheduler. At time

120 T. Sandholm and K. Lai

05/19-00:00 we had a failed attempt to set up the Fairshare scheduler for this
workload. We saw that all schedulers showed signs of a memory bloat with
workload and would eventually run out of memory. This behavior was most
apparent with the Fairshare scheduler which did not manage to complete a
single job. We point out that this bug was not in any of the schedulers but
in the jobtracker framework, so it just surfaces how different schedulers handle
memory in general. So instead at time 05/19-18:00 we reconfigure the cluster
with the standard FIFO scheduler. We can see that this scheduler does not offer
any differentiation as expected, and the average performance level is above the
queuel level and below the queue2 level obtained with the other schedulers.

We note that the capacity scheduler was configured with 60min preemption.
More frequent preemption caused problems with completing the tasks. Neither
the fair-share nor the FIFO schedulers supported preemption in the versions
testedd. However, both Capacity and Fairshare Queue/Pool capacity was config-
ured the exact same way as with our scheduler, with the only difference that it
was not able to change over time. The FIFO scheduler was not configured with
any priorities, since no queue-based priorities could be set.

Budget
10000 T T I T T

9000 4
8000 —
7000 B
6000 ~ 4

5000 - B

4000 - Budget Budgets B
so | depleted replenished |

2000 -

1000 - B
_\ queuet —
queue?
0 ! L ! L 1
05/15 0515 05/16 0516 0516 0516 0517 0517 0517 0517
12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00

Fig. 3. 2-user budget dynamics example. The graph shows how the budget (y-axis)
evolves over time (x-axis as month/day and time). The slopes of the curves represent
the spending rates of the users over time. Queue(user)1 uses twice the spending rate of
queue(user)2. At the center of the graph the budgets of both users are reset to 10000
(time 05/16 14:00).

We stress that it is not simply an implementation artifact that the capacity
and fair-share schedulers perform poorly in these tests. These schedulers were
not designed for dynamic priorities nor for handling a large number of queues
from the outset as our scheduler wasd.

2 Hadoop 0.20-0.21 code base checked out around May 2009
3http://issues.apache.org/jira/browse/HADOOP-4768

http://issues.apache.org/jira/browse/HADOOP-4768

Dynamic Proportional Share Scheduling in Hadoop 121

Job Trace
2000

'queum -
queuez

Capacity 1
.i. Fair 1

7000

preempt

5000

5000

4000

T Lm0

Completion Time (s)

2000 | To T 'T‘ 4
it Queue2 no DPpreempt - -
| budget ‘

L L L L
0515 08M6 086 0BM7 0647 06M8 0518 0519 0510 0520 0620 0521
12:00 0000 12:00 0000 41200 0000 12:00 0000 12:00 0000 1200 00:00

Fig. 4. 2-users service differentiation trace. The graph shows the completion time over
time for jobs submitted by the 2 users in the budget graph in Figure[3l The first half of
the timeline corresponds directly to the timeline in the budget graph. The second half
corresponds to experiments with the capacity, fairshare and FIFO schedulers. The first
drop in completion time for queuel is correlated with the budget running out. The key
result is the clear separation of completion times between queuel and queue2 seen in
the first half compared to the second half of the graph.

4.3 Allocation Fidelity and Overhead

Now we look at how well we can preserve the differentiation of service levels
with more users and queues. Figure [}l shows the completion times obtained for
10 queues when queue n is given a share of n/ Z}il i. We can see that all 10
service levels are enforced successfully. At time 05/21-10:00 we reconfigure the
cluster with the FIFO scheduler. We note that there is a random distribution
of service levels for the first job because there is no preemption. For other jobs
the identical service level is given to all jobs. This experiment showcases that
a dynamic non-stationary workload with users entering and leaving the system
may result in random highly variable service levels even with the FIFO scheduler.

In Figure [0l we show the results of an experiment that ran our scheduler with
preemption and 80 users first, then the FIFO scheduler and finally our scheduler
without preemption. Still we see that the 10 service levels are maintained. We do
not obtain more than 10 service levels with this application (Pi estimator). The
number of service levels obtainable depends both on overhead and bottlenecks in
the specific applications run but also on the overall scale of the cluster and the
slots available. We also note here that the preempting version of our scheduler, in
the left half of the graph, delivers somewhat more stable service level than the
non-preemptive one (after time 05/24-22:00) but the differences are cosmetic.
This experiment again shows that our scheduler shapes the workflow into the
desired service levels quickly.

122 T. Sandholm and K. Lai

60000

Job Trace

50000

40000 |-

30000 -

20000 -

10000 -

T T T T T T
queuel —+—
queueZ
queued ---%-
queues --S--
queues 4
queues
queue? -
queues &
queued -
queueld —— |

0
0520

16:00

05/20 05221 0521 0521 0521 0521 0521 0522 0522 0522 0522
20:00 0000 0400 0800 1200 {600 2000 0000 0400 0800 1200

DP FIFO

Fig. 5. 10-user service differentiation trace. The graph shows completion time for jobs
(y-axis) over time (x-axis). The first half of the graph shows how our scheduler separates
the queues’ performance compared to the second half when the FIFO scheduler was
used. Half of the queues obtain better performance and the other half worse than the

FIFO case.

50000
45000
40000
35000
30000

25000

Corpletion Time (s)

20000

15000

10000

5000

JobTrace

T T
queuel —+—
queuell

queuez -—-#--
queuedd —a—-
queued

queuesH 4
queussn ---a-
queug7i
dueneso -

g——E—————————B———f

S St B 3 4

[PR

L I I I L L% L L I I L

a
05/22 0523 05/23 05/23 05/23 0524 05/24 05/24 05/24 0525 0525 05/25 05/25

18:00 0000 0600 1200 18:00 0000 0500 12:00 18.00 0000 0600 12:00 180

DP w/ preempt FIFO DP w/o preempt

Fig. 6. Sample of 80-user service differentiation trace. The graph shows completion
time (x-axis) over time (y-axis) using the same setup as in the 2-user graph in Figure[5]
but with 80 users. For clarity only a sample of the users are shown. The results are
very similar to the 2-user graph, which shows how our scheduler’s ability to differentiate
service levels scales well in number of queues/users.

Dynamic Proportional Share Scheduling in Hadoop 123

Table 3. Distance to Ideal Line (in seconds) from Average Queue Completion Time
with Approximate 95% Confidence Bounds

Scheduler Queuel Queue2
Capacity 1000 £ 150 600 £ 250
DynPrio 800+£20 300 £ 200

We now study the performance fidelity of the granted allocation more care-
fully. There is obviously some trade-offs in throughput of the system and the
level of preemption enforced since a killed Hadoop task (note not a job) must be
restarted from the beginning. Figure [[shows the fidelity versus overhead for the
two-user experiment. The ideal line depicts the performance expected if queuel
runs its jobs twice as fast as queue2, but the average across the queues is the
same as for the FIFO case (e.g. optimal fidelity and maximum throughput). Our
dynamic priority scheduler running with preemption comes closest to meeting
this ideal, but we can also see that we can improve the throughput and move
closer to the FIFO line if preemption is not turned on. Improved closeness to
ideal here is seen by observing that both the queuel point and the queue2 point
in the graph for the 60s preempt dynprio line are closer to the respective ideal
line points (see also Table [3]).

Fidelity va Overhead
5000

dynpr\u(mén-preemp\) —
dyr_’vprinso(ﬁnﬁ preempt)
DP Preempt copanty Bannreeri)

ideal -

5000 [

4000 |-

i
|

3000 |

—_—
—

Avg Completion Time (s)

2000

Il Capacity

0 ! !
queued quele?

Fig. 7. 2-user fidelity to granted shares and throughput loss. This graph compares the
overhead of differentiating service levels to using FIFO scheduling. The fairshare sched-
uler was not included in the results due to reliability issues. However, it behaves sim-
ilarly to the capacity share scheduler. The ideal line represents the performance that
should have been observed for the two queues if adhering to the configured capacities
while obtaining the same throughput as with the FIFO scheduler. When comparing
the slopes of the dynprio preempt line and the capacity scheduler line with the ideal
line we see that the slope of the dynprio line is a closer match (one of the goals of our
scheduler).

124 T. Sandholm and K. Lai

One could argue that the capacity scheduler achieves the least degradation
across both users while still achieving some differentiation and should therefore
be preferred. This may be the case in fair-share scheduled systems where users
do not pay for their usage. But in a cloud computing scenario where queuel
actually paid twice as much as queue2 it may no longer hold true. We focus
more on differentiating service-levels that are as close as possible to the ca-
pacity you pay for as opposed to achieving some overall fair outcome in our
scheduler.

Figure [§ shows the corresponding graph for the 10 user experiment. We can
see that the extremes (highest and lowest service levels) are far away from the
ideal line whereas service levels 3 through 9 mimic the ideal scenario well. We
also show an ideal adjusted line that has the same service level as the dynamic
priority scheduler for the maximum service level but the same degradation in
service levels as the ideal line. We can see that only service levels 1 and 2 fall
outside of the ideal and ideal adjusted lines, which indicates that our scheduler
is a bit biased against users with low spending rates. The same behavior can be
seen in the 80-user experiment depicted in Figure[dl Here we note that the users
are heavily discretized in groups of about 10-15. This is most likely due to the
MapReduce workload chosen which only uses 10 reducers, and thus limits the
reduce phase throughput to 10 service levels.

Job Throughput
60000 T

pnc‘u —
fifo
ideal -----
ideal adjusted &
50000

40000

O
o
£
£
c
S
3 30000 g
=
g 2]
[S]
=3 =]
< 20000 . 7
ST 5]
Jaa O
TTRT— B
T —
: e
10000 - Ko 4
o s s s s s s s s
1 2 3 4 5 6 7 8 9 10

Fig. 8. 10-user fidelity to granted shares and throughput loss. This graph compares the
overhead of differentiating service levels to using FIFO scheduling for the experiment
with 10 users (user 1-10 denoted on x-axis). The ideal adjusted line corresponds to the
ideal (no overhead and perfect differentiation) line with the same minimal completion
time as observed in the experiments. Only users 1 and 2 (with the lowest slot capacity)
deviate significantly from the ideal lines.

Dynamic Proportional Share Scheduling in Hadoop 125

Fidelity vs Overhead
60000 T T

T T

dynprio (non-preempt) —+—

dynprio (5min preempt) -

fifo - %---

| ideal &

50000 ‘\‘ ideal adjusted p
|

40000

30000

Avg Completion Time (s)

20000

10000 [

Fig. 9. 80-user fidelity to granted shares and throughput loss. This graph compares the
overhead of differentiating service levels to using FIFO scheduling for the experiment
with 80 users (user 1-80 denoted on x-axis). As in the 10-user graph the top 80 percent
of the users (with highest spending rates and capacity) obtain completion times within
the ideal lines (right side of graph).

Job Trace
1400 T T
queuel —+—
queue2 -
queued ---k---
1200 F queued = |
queueb
queueb
queueg e
queue8 &
1000 queued -
queugl0 —v—
i

800

600

Completion Time (s)

400 -

200 - b

0
11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15
Finish Time

Fig. 10. Dynamic priority adjustment with 10 users, with 60s preemption. The graph
shows the completion times of jobs for queues/users who increased their spending rates
for their x’th job, where x is the queue number. All boosted jobs obtained a significant
decrease in completion time, showing the agility and dynamic nature of our scheduler.

4.4 Adaptability of Service Levels

We run the final experiments on our small cluster and investigate how well we
can dynamically adjust the service levels. 10 users all run 10 Pi estimator jobs
in sequence and concurrent with all the other users. User n is given a 4x boost

126 T. Sandholm and K. Lai

Job Trace
1400 T

1200 |

1000 -

600

Completion Time (s)

400 -

200 -

0
18:15 18:30 18:45 19:00 19:15 19:30 19:45 20:00 20:15 20:30 20:45

Finish Time

Fig. 11. Dynamic priority adjustment with 10 users, without preemption. The graph
shows the completion times of jobs for queues/users who increased their spending rates
for their x'th job, where x is the queue number when no preemption was used. The
graph looks almost identical to the preemption graph with only slight deviations for
the boosted jobs from user 1 and user 10.

in spending rate for job n. In Figure [[(] we can see that a 3x performance boost
is obtained consistently for all users and jobs regardless of when during the job
sequence the boost kicks in. The valleys hover around completion times of 300s,
whereas the average of non-valley jobs lies around 900s. Figure[ITlshows the same
experiment but with preemption turned off. We can then see that the service
levels of the first jobs are random but all other jobs follow the same pattern as in
the preemption case. This shows that we are able to converge quickly to a stable
state even without preemption. The overhead of preemption, calculated based
on the difference in average job completion time between the two experiments
was less than 2.6%.

5 Discussion

Some issues merit additional discussion: preemption, dynamic adjustment, and
currency management.

Whether preemption should be offered or not depends on the types of
workloads expected. For CPU bound, embarrassingly parallel applications that
benefit from holding a slot for a longer duration of time, preemption may be
necessary to avoid starvation effects. On the contrary, for data bound applica-
tions that stream small amounts of input at a time into Map and Reduce tasks
that complete within a couple of minutes, preemption may not add much value.
We saw that using preemption incurred a small (2.6%) overhead in throughput,
but allowed the system to adhere to service levels more quickly and accurately.

Dynamic Proportional Share Scheduling in Hadoop 127

Note that preemption in the Hadoop context is somewhat different from the
traditional CPU/scheduling type of preemption. Hadoop preemptions do not
suspend and then resume the task but rather kills the task and forces it to start
over again. It thus causes a throughput penalty. Care must hence be taken to
kill the jobs that will degrade the throughput the least while still ensuring that
starvation and unfairness effects are minimized.

One feature of the Dynamic Priority scheduler (DP) is that it allows users to
change the priority of jobs during a run. However, it does not require it. Users
who prefer not to monitor their jobs can let them run as initially configured. The
opportunity to change priorities is most useful to handle unexpected situations
like server failures, increases in load by other users, and the inability of users to
predict their own job runtimes. In the latter case, DP allows users to adjust their
spending rates so that the actual running time of their jobs fits their deadlines.

Since the DP introduces a currency into the system, it requires the system
administrator to manage the overall economy of the system. The basic goal is
to keep a stable exchange rate between currency and computational work. Users
need to be able to expect that 1 credit will generally get 1 server hour (for
example). Of course, prices will fluctuate, but the average should remain stable.
Admins can do this by setting a total income rate per hour for the system which
is equal to the number of servers. The admin then distributes this income among
the users. For example, a cluster of 200 servers would have an income of 4800
credits per day which can be allocated for users. This total is fixed, regardless
of the number of users, so the admin should reserve some amount for new users.
As the admin adds new servers, the total can increase.

If prices start increasing significantly, this indicates that the system is under-
provisioned with respect to its load. The admin should consider adding more
servers and/or moving some users to another system. Conversely, if prices col-
lapse, then the system is over-provisioned and the admin can add users and/or
remove Sservers.

The admin must be careful with the inevitable demands to increase the income
rate for some users. If some users actually have more important jobs than other
users, then the admin should increase the income rate of the important users
while decreasing the rate for other users such that the total income rate is the
same. Otherwise, the system will enter an inflationary spiral that is difficult to
break out of.

6 Related Work

Parallel job scheduling is a well-investigated field both in theory and in practice
with applications beyond computational resource management [10]. Theoretical
studies commonly assume embarrassingly-parallel jobs which has lead to much of
the innovation in the field to be driven by simulations and experiments [I1]. The
most commonly deployed scheduling regime is First-Come-First-Served (FCFS)
or variations thereof. FCFS suffers from head of queue blocking and starvation
issues. Two popular variations to address these issues are backfilling [12] and

128 T. Sandholm and K. Lai

gang scheduling [I3] [I4]. Many heuristics and variations have been proposed to
improve throughput, e.g. Shortest-Job-First (SJF), or fairness, e.g. Fair-Share
Scheduling. Many of these classical scheduling algorithms focus on improving
systems metrics such as utilization and average response time. Some of these
systems may however be very inefficient in terms of serving the most important
task at the best time from an end-user point of view. The reason for this is that
priorities are either assigned by the system, or are only valid across jobs for the
same user, as exemplified by the Maui scheduler [15].

Proportional share and Lottery scheduling were proposed in [8] to give users
more direct and dynamic control over capacity allocations for different types of
tasks over time. In previous work this technique has been applied to both cluster
node [I6] and VM resource scheduling [17]. To our knowledge our work is the
first applying the proportional share mechanism to MapReduce slot scheduling
for computational clusters.

Our scheduling approach is closely related to and inspired by economic sched-
ulers, whereby you bid for resources on a market and receive allocations based on
various auction mechanisms [ISTI20T72112212324]. We do not preclude nor re-
quire that our scheduler budgets are tied to a real currency. Furthermore, we do
not assume that there are competing users who should be given different shares
of the resources. Giving all users the same budget initially but allowing them to
spend this budget at different rates is a valid use case of our scheduler. Many game
theory inspired agent scheduling algorithms such as the Best Response algorithm
in [25], could be implemented on top of our scheduler for Hadoop jobs. Meta-
scheduling across Hadoop clusters in different organization is also simplified by
exposing different demand-based prices for running jobs in a cluster.

Other work to improve the FIFO and fair share scheduling in Hadoop includes
the LATE scheduler [26]. The main purpose of the LATE scheduler is to predict
Hadoop job progress more accurately and to take overhead into account when
launching speculative tasks. In [27] the work on the LATE scheduler is extended
by two new techniques, delay scheduling and copy-compute splitting, designed
to improve data locality and avoid reduce slot bottlenecks respectively. These
techniques are complimentary to our work. In theory both of these issues are
orthogonal to our scheduling mechanism since they tackle separate problems
(not incentives and accountability which are at the core of our work). In practise,
the delayed scheduling technique would require some changes in how slots are
allocated in our scheduler, but since we only charge for slots that are actually
used, the general accounting mechanism would stay the same.

MapReduce scheduling has also been explored beyond the traditional data
center domain, such as for Cell [28], GPUs [29], and shared memory architec-
tures [30]. Our general proportional share MapReduce slot algorithm presented
in this paper could thus potentially also be employed in these other domains.

7 Conclusion

Our experimental results demonstrate that our scheduler scales better than
the existing Hadoop schedulers in the number of queues. Having more queues

Dynamic Proportional Share Scheduling in Hadoop 129

allows providers to provide more service levels. The fair-share scheduler could
not even handle the experimental workload for two concurrent queues, whereas
the capacity scheduler was not able to handle the workload with ten queues. The
Dynamic Priority scheduler handles up to 80 queues efficiently, which was only
limited by the memory capacity of the experiment client node.

This enhanced scalability is due to the light-weight design of DP. In contrast
to the other schedulers, it does not incur the overhead of heuristics for inferring
fair priorities over time. Instead, DP users directly decide priorities, so it only
has to maintain the budget currently remaining. As of this writing, the capac-
ity scheduler contains 140KB of non-test source code, the fair-share scheduler
130KB, and DP 55KB.

Furthermore, we have shown that DP adapts service levels dynamically and
quickly even during heavy load, adheres to them more accurately. This was
shown by having 10 users with a stream of 10 15min jobs all boost their single
high priority jobs accurately without overhead or notable randomness.

DP also solves the problems of lost data locality and virtualization overhead
that we encountered in our previous work on virtualized MapReduce [7]. The
downside is that we lose some control over tasks that are long-running, and the
isolation properties cannot be enforced as strictly. However, an advantage is that
it becomes easier to provision commonly used software and data sets in shared
test-beds.

Future work includes leveraging the dynamic capacity control in our scheduler
to adaptively change the allocations to meet higher level SLA goals such as
deadlines.

References

1. White, T.: Hadoop: The Definitive Guide. O’Reilly, Sebastopol (2009)

2. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: Symposium on Operating System Design and Implementation (2004)

3. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System. In: ACM Sym-
posium on Operating Systems Principles (2003)

4. Bryant, R.E.: Data-intensive supercomputing: The case for DISC. Technical Report
CMU-CS-07-128, Carnegie Mellon University (2007)

5. http://wiki.apache.org/hadoop/PoweredBy| (2009)

6. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for
Structured Data. In: Symposium on Operating System Design and Implementation
(2006)

7. Sandholm, T., Lai, K.: Mapreduce optimization using regulated dynamic priori-
tization. In: SIGMETRICS 2009: Proceedings of the Eleventh International Joint
Conference on Measurement and Modeling of Computer Systems, pp. 299-310.
ACM, New York (2009)

8. Waldspurger, C.A.: Lottery and Stride Scheduling: Flexible Proportional-Share
Resource Management. Technical Report MIT/LCS/TR-667 (1995)

9. Amazon elastic compute cloud (2008), http://aws.amazon.com/ec2| (retrieved
March 6, 2008)

http://wiki.apache.org/hadoop/PoweredBy
http://aws.amazon.com/ec2

130

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

T. Sandholm and K. Lai

Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer Sci-
ence, Heidelberg (2008)

Frachtenberg, E., Schwiegelsohn, U.: New Challenges of Parallel Job Scheduling.
In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2007. LNCS, vol. 4942, pp.
1-23. Springer, Heidelberg (2008)

Lifka, D.: The ANL/IBM SP scheduling system. In: Feitelson, D., Rudolph, L.
(eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 295-303. Springer,
Heidelberg (1995)

Ousterhout, J.K.: Scheduling techniques for concurrent systems. In: 3rd Interna-
tional Conference on Distributed Computing Systems, pp. 22-30 (1982)

Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel job scheduling - a status
report. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004.
LNCS, vol. 3277, pp. 1-16. Springer, Heidelberg (2005)

Jackson, D., Snell, Q., Clement, M.: Core algorithms of the maui scheduler. In: 7th
International Workshop on Job Scheduling Strategies for Parallel Processing, pp.
87-102 (2001)

Chun, B.N., Culler, D.E.: Market-based proportional resource sharing for clusters.
Technical Report CSD-1092, University of California at Berkeley, Computer Sci-
ence Division (2000)

Lai, K., Rasmusson, L., Adar, E., Sorkin, S., Zhang, L., Huberman, B.A.: Ty-
coon: an implemention of a distributed market-based resource allocation system.
Multiagent and Grid Systems 1, 169-182 (2005)

Ernemann, C., Yahyapour, R.: Applying economic scheduling methods to grid en-
vironments. In: Grid Resource Management: State of the Art and Future Trends,
pp. 491-506 (2004)

Piro, R.M., Guarise, A., Werbrouck, A.: An economy-based accounting infrastruc-
ture for the datagrid. In: GRID 2003: Proceedings of the 4th International Work-
shop on Grid Computing, Washington, DC, USA, p. 202. IEEE Computer Society,
Los Alamitos (2003)

Waldspurger, C.A., Hogg, T., Huberman, B.A., Kephart, J.O., Stornetta, W.S.:
Spawn: A Distributed Computational Economy. Software Engineering 18, 103-117
(1992)

Chun, B.N., Culler, D.E.: User-centric performance analysis of market-based clus-
ter batch schedulers. In: Proceedings of the 2nd IEEE International Symposium
on Cluster Computing and the Grid (2002)

Sandholm, T., Lai, K., Clearwater, S.: Admission control in a computational mar-
ket. In: CCGrid 2008: Proceedings of the 8th International Symposium on Cluster
Computing and the Grid (2008)

Wolski, R., Plank, J.S., Bryan, T., Brevik, J.: G-commerce: Market formulations
controlling resource allocation on the computational grid. In: IPDPS 2001: Pro-
ceedings of the 15th International Parallel and Distributed Processing Symposium
(IPDPS 2001), Washington, DC, USA, p. 10046.2. IEEE Computer Society, Los
Alamitos (2001)

Buyya, R., Murshed, M., Abramson, D., Venugopal, S.: Scheduling Parameter
Sweep Applications on Global Grids: A Deadline and Budget Constrained Cost-
Time Optimisation Algorithm. Software: Practice and Experience (SPE) Jour-
nal 35, 491-512 (2005)

Feldman, M., Lai, K., Zhang, L.: A price-anticipating resource allocation mecha-
nism for distributed shared clusters. In: Proceedings of the ACM Conference on
Electronic Commerce (2005)

26.

27.

28.

29.

30.

Dynamic Proportional Share Scheduling in Hadoop 131

Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapRe-
duce performance in heterogeneous environments. In: OSDI 2008: 8th USENIX
Symposium on Operating Systems Design and Implementation (2008)

Zaharia, M., Borthakur, D., Sarma, J.S., Elmeleegy, K., Shenker, S., Stoica, I.:
Job scheduling for multi-user mapreduce clusters. Technical Report UCB/EECS-
2009-55, Electrical Engineering and Computer Sciences University of California at
Berkeley (2009)

Rafique, M.M., Rose, B., Butt, A.R., Nikolopoulos, D.S.: Cellmr: A framework for
supporting mapreduce on asymmetric cell-based clusters. Parallel and Distributed
Processing Symposium, International, 1-12 (2009)

He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a MapReduce
framework on graphics processors. In: PACT 2008: Proceedings of the 17th In-
ternational Conference on Parallel Architectures and Compilation Techniques, pp.
260-269. ACM, New York (2008)

Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating
MapReduce for multi-core and multiprocessor systems. In: HPCA 2007: IEEE 13th
International Symposium on High Performance Computer Architecture, pp. 13-24
(2007)

	Dynamic Proportional Share Scheduling in Hadoop
	Introduction
	Hadoop MapReduce
	Scheduling

	Design
	Mechanism
	Implementation
	Security and Authentication

	Evaluation
	Setup
	Spending Rates, Budgets and Performance
	Allocation Fidelity and Overhead
	Adaptability of Service Levels

	Discussion
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

