
Proposal and Evaluation of APIs for Utilizing

Inter-Core Time Aggregation Scheduler

Satoshi Yamada and Shigeru Kusakabe

Graduate School of Information Science and Electrical Engineering,
Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, Japan

satoshi@ale.csce.kyushu-u.ac.jp,

kusakabe@ait.kyushu-u.ac.jp

Abstract. This paper proposes and evaluates APIs for Inter-Core Time
Aggregation Scheduler (IAS). IAS is a kernel-level thread scheduler to
enhance performance of multi-threaded programs on multi-core proces-
sors. IAS combines time-multiplexing and space-multiplexing schedul-
ing to utilize caches existing per processing core and shared between
processing cores.

We present the effect of APIs in two aspects. Firstly, we show that
we can effectively and easily set the aggregation strength in IAS based
on the quantum time. Secondly, we show that we can gain the effect of
space-multiplexing without setting processor affinity of each thread by
grouping processing cores and running IAS per group. We implement
IAS and its APIs by modifying a Linux kernel and present its effect on
a commodity multi-core processor.

Keywords: Thread Scheduling, Multi-core Processor, Cache Sharing,
Multi-threaded Program.

1 Introduction

In this paper, we show the proposal and the evaluation of APIs for Inter-Core
Time Aggregation Scheduler (IAS). IAS is a kernel-level thread scheduler to
enhance the performance of multi-threaded programs on a commodity multi-core
processor. IAS combines time-multiplexing and space-multiplexing scheduler to
utilize the caches existing per processing core (Core) and shared between Cores.
The contributions of this paper is as follows:

– We show that we can effectively and easily set the aggregation strength in
IAS based on the quantum time, which is a period of time that the thread
uses CPU.

– We show that we can gain the effect of space-multiplexing without setting
the processor affinity of each thread by grouping Cores and running IAS per
group.

Nowadays, we have several kinds of multi-core processors, such as
Simultaneous Multi-Threading (SMT), Chip Multi-Processing (CMP), and Chip

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2010, LNCS 6253, pp. 191–207, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

192 S. Yamada and S. Kusakabe

Multi-Threading (CMT), where we can execute threads in parallel. One of the
main differences between multi-core processors and conventional shared-memory
multi-processors is that caches, typically L2 caches, are generally shared by Cores
in multi-core processors. It is widely known that combinations of threads run-
ning simultaneously on different Cores affect the utilization of caches and the
performance in a multi-core processor because Cores compete the shared cache
with each other[1,2,3]. To utilize the shared cache in a multi-core processor,
we propose a thread scheduling mechanism which focuses on multi-threaded
programs.

In this paper, a multi-threaded program means a program which executes
multiple kernel-level threads sharing the same memory address space in par-
allel. In Linux, for example, we can implement multi-threaded programs with
POSIX library, Java, Perl, MPI, OpenMP, and Open64 because a thread in
these languages and compilers systems corresponds to a native thread in the
kernel. The rationale of focusing on only multi-threaded programs is that many
modern programs, especially commercial programs, are getting multi-threaded
as multi-core processors widely spread. For example, database servers and Web
servers, such as MySQL and Apache HTTP Server, are multi-threaded to handle
multiple client connections efficiently. The modern benchmark programs such as
DaCapo Benchmarks[4] and Parsec Benchmark[5] also employ multi-threading
to simulate popular and emerging workloads. We expect that we will have more
multi-threaded programs and more chances to apply our scheduling mechanism.

Kernel

User

Helper-thread

Autonomically control
 the parameters

Set the aggregation policy

Explicitly specify
the parameters by user

Fig. 1. The overview of the scheduling mechanism. We divide the functions related
to scheduling into three domains, which enables the dynamic and flexible control of
thread aggregation. In this paper, we focus on User domain.

We show the overview of our scheduling mechanism in Fig. 1. The scheduling
mechanism is made up of three domains, Kernel, User, and Helper-thread. Kernel
domain provides a basic scheduling mechanism and implemented as IAS. User
and Helper-thread are domains which control the parameters for Kernel domain.
User domain provides the interfaces to control the parameters explicitly assum-
ing that users are aware of the characteristics of the workloads. Helper-thread
domain analyzes the characteristics of the currently executed workloads, detect
the degradation of the performance of multi-threaded programs, and controls

Proposal and Evaluation of APIs for Utilizing IAS 193

the parameters autonomically. Thus, our scheduling mechanism can be applied
to the characteristics of the workloads without modifying and re-building Ker-
nel. In this paper, we focus on User domain, and present the APIs to control
the behavior of IAS. The detailed design and implementation of Helper-thread
domain is our future work.

IAS is a kernel-level thread scheduler for commodity platforms with multi-core
processors and implemented by modifying the scheduler of Linux kernel. IAS
dynamically aggregates sibling threads, kernel-level threads sharing the same
memory address space, and executes them simultaneously on different Cores
based on the assumption that sibling threads share a certain amount of working
set, the memory area to be accessed by threads. The benefit of IAS is to increase
the possibility that co-scheduled threads share their working set and decrease
the capacity pressure on the cache. IAS may increase the simultaneous access
to the working set, where only transactional access is permitted with locks and
semaphores, and cause frequent stalls. However, according to the researches on
the analysis of the performance of CMP, the L2 cache misses caused by the
insufficiency of capacity are the most influential[3,6]. Therefore, we expect the
enhancement of the performance by IAS.

Previously, we investigated the effect of IAS with several multi-threaded bench-
mark programs and clarified two problems for the effective use of IAS[7,8]. The
first problem is the aggregation strength. The effect of IAS depends on the
characteristic of programs and platforms such as the size of shared working set
between sibling threads of the programs and that of the shared cache size of
the platforms. In case sibling threads share a working set, strong aggregations
of sibling threads are likely to enhance the performance. On the other hand,
IAS can degrade the performance when the workload is I/O intensive and the
aggregation of sibling threads results in poor utilization of CPU. For this rea-
son, we should control if we aggregate sibling threads of a program or not, and
the aggregation strength. The second problem is the groups of Cores to execute
IAS. IAS aggregates sibling threads on the group of Cores specified in the kernel.
Previously, we have evaluated the effect of IAS on a dual-core processor. In the
dual-core processor, we can make only a single group of Cores. Nowadays, the
number of Cores has increased and the structure of the memory hierarchy tends
to become complex like Intel Core i7. In such platforms, aggregations of sibling
threads with a single group of Cores may increase the overhead of communi-
cations between Cores because we assume that sibling threads share a certain
amount of working set. Setting processor affinities and assigning Cores to every
different program like a conventional space-multiplexing may decrease the com-
munication between Cores. However, it is another difficult issue to optimally set
the processor affinity of each thread. We consider that setting multiple groups
of Cores to run IAS can reduce the overhead of communications between Cores
and we should have an interface to control the groups.

In this paper, we propose and evaluate APIs for IAS to settle the problems
mentioned above. We show that we can effectively and easily set the aggregation
strength in IAS based on the quantum time of the previously executed thread.

194 S. Yamada and S. Kusakabe

We also show that we can gain the effect of space-multiplexing without setting
the processor affinity of each thread by splitting Cores into several groups and
running IAS per group.

The rest of this paper is organized as follows. Section 2 explains the imple-
mentation and preliminary evaluation of IAS. Section 3 explains the proposal
of APIs. Section 4 presents the evaluation of the effectiveness of APIs. Section
5 introduces related works and clarifies our research position. We conclude in
Section 6.

2 Implementation and Evaluation of Inter-Core Time
Aggregation Scheduler (IAS)

In this Section, we explain the implementation and the evaluation of IAS. We
implement IAS by modifying Completely Fair Scheduler (CFS) in Linux 2.6.24
because we assume the use of IAS on commodity processors. IAS ignores the
inversion of the priority of each thread in SCHED NORMAL class, which is
non-real-time thread in Linux, and dynamically aggregates sibling threads. We
explain the scheduling mechanism of CFS for threads of SCHED NORMAL class
in Section 2.1 and IAS in 2.2. In Section 2.3, we show the preliminary evaluation
of IAS on a commodity processor. Based on the preliminary evaluation, we show
the problems of running IAS and necessity of effective APIs.

2.1 Completely Fair Scheduler (CFS)

CFS is the standard thread scheduler employed in Linux since its version 2.6.23.
CFS is designed to equally distribute CPU time to threads with the same static
priority. CFS counts the quantum time of each thread in nanoseconds and cal-
culates the priority as vruntime based on the quantum time and nice value.
When a thread is dispatched by the scheduler, the additional vruntime value
is calculated from the quantum time and added to the current vruntime of the
thread. CFS sets higher priority for threads with less vruntime to accomplish
the fair usage of CPU between threads which start at the same time with the
same nice value. The runqueues and independent schedulers exist per Core. The
load balancer in CFS equalizes the sum of weight, which is a value correspond-
ing to nice value and defined in the kernel, between runqueues. CFS does not
recognize the memory address space of each thread both in scheduling and load
balancing.

2.2 Overview of Inter-Core Time Aggregation Scheduler (IAS)

IAS implements two scheduling policies at the same time. The first scheduling
policy is the time aggregation, which executes sibling threads in a row on a
single Core. The second scheduling policy is the inter-core aggregation, which
simultaneously executes sibling threads on different Cores. In this section, we
firstly explain Time Aggregation Scheduler (TAS), which is the implementation
of the time aggregation. Then, we explain the extension of TAS to adopt the
inter-core aggregation.

Proposal and Evaluation of APIs for Utilizing IAS 195

14108 20

current thread 17

CB
Runqueue of CFS

A mm mm

Fig. 2. Example case of TAS. A circle represents a thread and the pattern inside the
circle expresses its memory address space. TAS looks for the sibling thread of the
current thread from the list of the sibling threads. If there exists a sibling thread
(thread C in this case), TAS considers the thread as the candidate for the next thread.

Implementation of Time Aggregation Scheduler (TAS). The basic idea
of the implementation of TAS is to dynamically give a priority bonus to the
sibling thread of the currently executed thread. As we mentioned in Section
2.1, the priority of a thread is higher when vruntime of the thread is smaller.
Therefore, the priority bonus for TAS works to reduce vruntime of the sibling
thread. To implement this idea in CFS, we add a flag to task struct, the struc-
ture to maintain the states of a thread in Linux, to recognize if the thread
has the sibling threads or not. When a thread creates its sibling thread, TAS
sets the flag in task struct and inserts the thread into the list of its sibling
threads. The list of the sibling threads exists per Core and sorted in the as-
cending order of vruntime. We show an example case of the time aggregation in
Fig. 2.

Fig. 2 shows the runqueue of CFS1 and the additional links of sibling threads
for the time aggregation. The circles in Fig. 2 represent threads and the rectangle
containing threads represents a runqueue. The number in a thread shows vrun-
time of the thread. Each thread in Fig. 2 owns vruntime of around 10 to 20 for
ease of explanation, however, it is common for threads in Linux to own vruntime
in the millions and the billions calculated from their quantum time counted in
nano seconds. Threads are queued in the ascending order of vruntime and shown
from the left in the runqueue in Fig. 2. The patterns inside the threads repre-
sent the memory address spaces. Our scheduler links the sibling threads in the
ascending order of their vruntime. The links between sibling threads are dashed
lines in Fig. 2. We add a member, mm sibling, to the structure of the mem-
ory address space, mm struct, in Linux. The links of the sibling threads begin
with mm sibling (represented as mm in Fig. 2). The currently executed thread
A has been dequeued from the runqueue. After executing thread A, CFS selects
thread B as the next thread. TAS checks if the flag for the sibling threads is set
in thread A. TAS recognizes that the flag is set and looks for the sibling thread
from the list of the sibling thread starting from the mm sibling of thread A.
TAS finds thread C from the list and considers thread C as another candidate.

1 The runqueue of CFS has a structure of Red-black tree. We express the runqueue
as a list for ease of explanation.

196 S. Yamada and S. Kusakabe

We set the priority bonus for aggregating sibling threads in advance and our
scheduler evaluates the expression below.

B.vruntime > C.vruntime − priority bonus (1)

In this paper, we express vruntime of a thread as thread ID.vruntime like
B.vruntime. If expression (1) is true, then TAS will select thread C. If we set
the priority bonus equal to or larger than 7 in Fig. 2, TAS will select thread
C as the next thread. Otherwise, TAS selects thread B. Thus, TAS is able to
aggregate sibling threads while considering the priority of each thread. Also, the
scheduling algorithm of TAS is O(1) because the link of sibling threads is sorted
in ascending order of vruntime.

Runqueue on
Core 0 (master)

Runqueue on
Core 1 (slave)

current thread

current thread

ia_mm

A

B C D

E

F G H

Fig. 3. Example case of IAS. When sibling threads (circles with the same pattern)
are aggregated in Core 0 by TAS, the memory address space of the sibling thread is
registered in ia mm. The scheduler on Core 1 recognizes for threads sharing the same
memory address space by looking at ia mm and considers the thread as the candidate
for the next thread.

Extension of TAS to add the inter-core aggregation. We extend TAS
to adopt the inter-core aggregation to implement IAS. First of all, we run inde-
pendent TAS per Core and assign each Core a role of master or slave Core.
IAS lets every Core cooperatively aggregate sibling threads by making slave
Cores follow the aggregation on master Core. When the scheduler on master
Core finds a chance of aggregating sibling threads, it sets a pointer, ia mm, to
the memory address space of the currently executed thread. Otherwise, ia mm is
NULL. Only master Core can manipulate ia mm while slave Cores only refer
to ia mm. When ia mm is set to an actual memory address space, the schedulers
on slave Cores look for the sibling threads sharing the memory address space,
which ia mm points to, in their own runqueue. If there exists sibling threads,
the schedulers consider the threads as the candidates for the next thread to be
scheduled with the priority bonus.

We show an example case of IAS on a platform of a dual-core processor in
Fig. 3. In Fig. 3, the circles represent threads and squares represent runqueues
on each Core. The pattern inside the thread represents the memory address
space and three threads are waiting in the runqueue on each Core. While we

Proposal and Evaluation of APIs for Utilizing IAS 197

omit vruntime values in Fig. 3, threads are enqueued into each runqueue in the
ascending order of their vruntime from the left. Thread A is running on master
Core and thread E is running on slave Core. We also omit the links between
sibling threads in Fig.3. Thread B on master Core and thread F on slave Core
are to be scheduled next to thread A and thread E in case of CFS. After executing
thread A on master Core, thread C is also the candidate to be scheduled next
in TAS because thread C is the sibling thread of thread A. If thread C satisfies
expression (1), the scheduler on master Core sets the memory address space of
thread C to ia mm (solid arrow in Fig. 3). On slave Core, the scheduler checks
ia mm in scheduling (dashed arrow in Fig. 3). After executing thread E, thread
F, G, and H are the candidates because thread G is a sibling thread of thread
E and thread H is a sibling thread sharing the memory address space set in
ia mm. To execute sibling threads simultaneously on different Cores, IAS raises
the priority of the thread sharing the memory address space, which ia mm points
to, with the priority bonus. Thread H has the priority bonus against thread F
and thread G. If thread H satisfies both expression (2) and (3), thread H will be
scheduled after thread E.

F.vruntime > H.vruntime − priority bonus (2)

G.vruntime > H.vruntime − priority bonus (3)

Following the steps above, IAS can execute sibling threads nearly simultaneously
on different Cores while considering the priority of each thread. When thread H
does not satisfy expression (2) and (3), IAS behaves as TAS. If expression (4)
is satisfied, thread G will be the next thread. If expression (4) is not satisfied,
thread F will be scheduled.

F.vruntime > G.vruntime − priority bonus (4)

IAS uses the link of sibling threads, which we use for the time aggregation, to
search for the sibling threads. The scheduling cost of IAS is also O(1) because
the sibling threads are sorted in ascending order in the link.

2.3 Preliminary Evaluation of Inter-Core Time Aggregation
Scheduler (IAS)

In this section, we show the preliminary evaluation of IAS in terms of its over-
head against CFS. We also show the effectiveness of IAS on RUBiS benchmark[9],
which is a benchmark program to measure the performance of a Web application
server running a multi-threaded HTTP server and a database server simultane-
ously. Firstly, we show that the overhead of IAS is small compared to CFS.
Then, we show that the effect of IAS depends largely on the value of the priority
bonuses[8], indicating that an easy and effective way of controlling the priority
bonus is necessary.

198 S. Yamada and S. Kusakabe

Overhead of IAS. We evaluate the additional overhead of IAS compared to
CFS. The following tasks are causes of the overhead of IAS.

– Setting the flag of sibling threads in the added member of task struct
– Setting link between sibling threads in the runqueues
– Considering sibling threads in scheduling

We implement a benchmark, which measures the execution time of creating and
joining multiple sibling threads, to evaluate the total additional overhead of IAS.
The created sibling threads just join with the parent thread. Also, we set the
priority bonus for IAS as 0 to schedule threads according to the priority of CFS.
We compare the execution time in CFS and IAS and measure the sum of the
listed overhead.

According to our measurements, we see the increase of the execution time in
IAS by 1% in creating and joining 500K sibling threads. In case the aggregation
of sibling threads degrades the performance, we only have to set the priority
bonus as 0.

Table 1. Result of RUBiS benchmark

Kernel CFS IAS
1Mvruntime 10Mvruntime 100Mvruntime

Completed Sessions 230 259 (1.12) 301 (1.30) 265 (1.15)

Response Time (ms) 62,556 48,760 (0.77) 43,090 (0.68) 53,230 (0.85)

Effect of IAS on RUBiS benchmark. We show the effect of IAS in running
RUBiS benchmark in Table 1. RUBiS is a benchmark application which simulates
the workload of ebay.com and evaluates the performance of a Web application
consisting of a HTTP and a database server. RUBiS sends simultaneous requests
from multiple clients to the Web application server and evaluates the throughput
(Completed Sessions) and the average response time (Response Time) of each
request. Both HTTP (Apache HTTP server 2.2.8) and database servers (MySQL
5.0.45) are multithreaded, therefore, IAS aggregates threads of both servers.
We use RUBiS benchmark because each thread of these transaction-oriented
applications is likely to share the working set rather than scientific application
benchmarks[10,11]. We change the value of the priority bonus and compare the
result with CFS. The numbers in the parentheses indicates the ratio of the result
in IAS against CFS.

In Table 1, we see the increase of the throughput and the reduction of the
response time in IAS compared to CFS, indicating IAS is effective in enhancing
the performance of a Web application server. We also see that the effect varies
as we change the priority bonus and we have to set the priority bonus around 10
millions to maximize the effect. When we set the priority bonus as high as 100
millions vruntime, IAS aggregates too many sibling threads of one server and
let the sibling threads of another server wait too long. The result shows that we
have to tune the priority bonus to accomplish the better performance in running
multiple multi-threaded programs.

Proposal and Evaluation of APIs for Utilizing IAS 199

2.4 Problems of IAS

Based on the preliminary evaluation in Section 2.3, we consider two problems in
running IAS as shown below.

– Control of the priority bonus
– Allocation of master/slave role

Firstly, the effectiveness of IAS depends on the characteristic of each program. In
case IAS degrades the total performance by the aggregation of some programs,
users should have an interface to set the priority bonus as 0 or tell the kernel not
to aggregate the sibling threads of those programs. Even when IAS enhances
the total performance by aggregating the sibling threads of some programs,
the priority bonus should be given in proper strength to maintain some degree
of fairness of CPU usage between threads. Assuming users are aware of the
characteristics of each program in advance, it is still difficult to properly give the
priority bonus in vruntime. As we mention in Section 2.1, vruntime is calculated
in the order of nano seconds and too fine-grained for users to control the behavior
of the scheduler. We consider that users should have an interface to control the
aggregation strength other than specifying the priority bonus in vruntime.

Secondly, users should have an interface to allocate multiple groups of master/
slave flexibly. Nowadays, we have multi-Core processors with complex memory
hierarchy. For example, Intel Core 2 Quad has four Cores. Each Core has own L1
data/instruction cache and a single L2 cache is shared between two Cores, while
no cache is shared between all Cores. In this case, aggregating sibling threads
with a single ia mm may increase the overhead of communication between Cores
not sharing the same L2 cache. We consider that users should have an interface
to allocate multiple groups of master/slave Cores.

3 APIs for Inter-Core Time Aggregation Scheduler (IAS)

In this section, we propose the APIs for IAS, set ias agg and set ias alloc,
which deal with the problems described in Section 2.4. In Section 3.1, we ex-
plain set ias agg, which controls the strength of aggregation of sibling threads.
In Section 3.2, we explain set ias alloc, which controls the assignment of
master/slave.

3.1 set ias agg

There are five arguments passed to set ias agg as shown below.

– pid
– agg
– bonus type
– bonus value
– limit

200 S. Yamada and S. Kusakabe

We specify the process ID to control the aggregation of its sibling threads by
pid. At the implementation level, set ias agg sets the values of agg, bonus type,
bonus value, and limit to the members added in the data structure of memory
address space of thread pid. The values stored in the members in the memory
address spaces are the parameters for IAS to make scheduling decisions. We
explain each member below.

agg must be 0 or 1. If agg is 0, IAS does not aggregate sibling threads of pid.
If agg is 1, IAS aggregates sibling threads of pid. The kernel initializes the values
of agg as 0 and IAS does not aggregate any threads by default. Users should
set agg as 1 only when they judge that the aggregation of the sibling threads is
effective.

IAS provides two ways to specify the priority bonus with bonus type and
bonus value. bonus type takes 0 or 1. If bonus type is 0, IAS gives the priority
bonus in vruntime specified in bonus value. In this case, bonus value ranges
from 0 to over 18,446,744,073G vruntime2. If bonus type is 1, IAS gives the pri-
ority bonus by multiplying the quantum time of the previously executed thread
by bonus value. There are four reasons to utilize the quantum time of previously
executed thread. Firstly, the change of the additional vruntime influences the
order of threads in the runqueues. We assume that parallel tasks are equally
assigned to sibling threads during their execution. In this case, the difference of
vruntime between sibling threads are less than the quantum time of previously
executed thread. For this reason, we consider that setting the quantum time as
the criterion of the priority bonus is reasonable. Secondly, the quantum time
changes dynamically according to the workload, therefore, it is hard for users to
statically guess the effective priority bonus. Thirdly, it is easy to evaluate the
quantum time because CFS tracks it for the calculation of vruntime. Fourthly,
it is easier to make a guideline of using IAS between different programs. As we
mention, the range of bonus value is too wide to properly decide the effective
priority bonus to enhance the throughput while keeping a certain fairness be-
tween different programs. For these reasons, we consider that using the quantum
time provides a reasonable way of the abstraction.

Users can also restrict the number of sibling threads successively scheduled
per aggregation on a single Core by specifying the value of limit. IAS counts the
number of sibling threads successively selected on a single Core. When the count
exceeds the limit, IAS does not give the priority bonus to sibling threads and
resets the count.

3.2 set ias alloc

set ias alloc assigns master/slave roles to each Core. The arguments passed
to set ias alloc are numbers which specify the role of each Core. We as-
sume the use of set ias alloc from command lines because the allocation of
master/slave influences the execution of all threads in the system and we need
to observe the impact while interactively running programs.
2 vruntime has the type of unsigned long long and we assume to use 32 bit kernel

here.

Proposal and Evaluation of APIs for Utilizing IAS 201

Table 2. The correspondence between the number and its role in set ias alloc

Number in ias job alloc[] Correspondent Role

0 master 0

1 slave 0

2 master 1

3 slave 1

4 master 2

5 slave 2

6 master 3

7 slave 3

IAS controls the role of each Core by using an array ias job alloc[], which
we defined inside the kernel. The index of ias job alloc[] corresponds to
the ID of Core starting with 0. For example, the role of Core 2 is stored in
ias job alloc[2]. So far, IAS is able to deal with octa-core processors and the
role of each Core is specified with numbers from 0 to 7. We show the correspon-
dence between the numbers and its role in Table 2. In Table 2, Cores on slave 0
follow the aggregation of Core on master 0. Following command sets two inter-
core aggregation groups on a quad-core processor, one inter-core aggregation
group consists of Core 0 and 1 and another group Core 2 and 3.

$ set_ias_alloc 0 1 2 3
\widehat{}

4 Evaluation of APIs with memory Program in SysBench

In this section, we evaluate the effectiveness of APIs with memory program in
SysBench[14]. In Section 4.1, we explain memory program, our experimental plat-
form, and the method of the evaluation. In Section 4.2, we explain the result
and show that our API is effective in utilizing IAS.

4.1 memory Program and Experimental Platform

SysBench benchmark suites is a collection of benchmark programs to evaluate
the performance of workloads related to Online Transaction Processing. memory
program in SysBench focuses on the performance of sequential reads from or
writes to a memory block. memory program creates sibling threads and lets them
repeat accessing a specified size of shared or unique memory block until the total
accessed size exceeds a user-specified size. There are several metrics in memory
program such as the average time of each data access and the total elapsed time.
We can control memory program through the parameters such as the number of
threads, the size of the memory block, and the total access size.

We show the parameters used for the evaluation in Table 3. In the following
explanation, we show the used parameters in the parentheses. We execute 10

202 S. Yamada and S. Kusakabe

Table 3. Parameters for evaluating memory program

Parameter Specified value

-num-threads 100

-memory-oper write

-memory-scope global

-memory-block-size set ias agg 4(MB)
set ias alloc 1, 2, 4, 6, 8, 10

12, 14, 16(MB)

-memory-total-size set ias agg 10 (GB)
set ias alloc 5, 10, 15

20, 25(GB)

Table 4. Specification of our experimental platform

Processor Intel Core 2 Quad

L2 Cache Size / Latency 3MB×2 / 5.6 ns

Memory Size / Latency 1.8GB / 74.4 ns

OS / kernel CentOS 5.3 / Linux 2.6.24

memory programs simultaneously to mingle threads of different memory address
spaces. We let each program create 100 sibling threads (–num-threads=100) and
let sibling threads access the shared memory block (-memory-scope=global) to
focus on the effect of utilizing the locality between sibling threads. Each thread
writes to the memory block sequentially (–memory-oper=write). We can con-
trol the size of the memory block (–memory-block-size) and the total access
size (–memory-total-size). We use different values for –memory-block-size and
–memory-total-size in the evaluation of each API and explain them in the eval-
uation method below.

We also show our experimental platform in Table 4. Intel Core 2 Quad is
quad-core processor and has two L2 caches, each of which is shared by two
Cores.

We measure the total elapsed time and the number of resource stalls (RE-
SOURCE STALLS.ANY[15]), and compare the results in CFS and IAS with
APIs. We show the method of the evaluation in each API below.

Evaluation Method of set ias agg. In the evaluation of set ias agg, we fo-
cus on the function of setting the value of the priority bonus. We use a single value
for the –memory-block-size and the –memory-total-size as shown in Table 3 and
set the same parameter to ten memory programs. We compare the results of the
different methods of setting the priority bonus. We directly specify it in vruntime
or calculate by multiplying the quantum time of the previously executed thread.
In case of setting bonus type as 0, we try wide range of bonus value from 1K to
10M vruntime because it is difficult to previously guess the effective value. In case
of setting bonus type as 1, we multiply the quantum time by 1 to 5.

Proposal and Evaluation of APIs for Utilizing IAS 203

Evaluation Method of set ias alloc. In the evaluation of set ias alloc,
we use five different –memory-total-size values for ten memory programs as shown
in Table 3, assuming a situation when a user executes several different pro-
grams. We also change –memory-block-size to investigate the relationship be-
tween the size of the shared working set and the effect of IAS in setting multiple
master/slave groups.

We prepare three cases, where we set different master/slave groups and
processor affinity of the threads, and compare their results. The first case is to
use a single master/slave group, where Core 0 is master 0 and other three
Cores are slave 0, and not to set the processor affinity to any threads (Case 1).
We set two master/slave groups, where Core 0 is master 0 and Core 1 is
slave 0 while Core 2 is master 1 and Core 3 is slave 1, in the second and the
third case (Case 2 and Case 3). The difference between Case 2 and Case 3 is
the setting of the processor affinity of threads. In Case 2, we do not specify the
processor affinity of threads and threads can be executed in every Core. In Case
3, we divide memory programs into two groups as programs of the same total
size are split into different master/slave group. For example, sibling threads of
a memory program with –memory-total-size of 10GB are executed on Core 0 and
Core 1 while sibling threads of another memory program with –memory-total-size
of 10GB are executed on Core 2 and Core 3. By specifying the processor affinity
as described above, we can divide the workload equally into two Core groups
with different L2 caches and restrict the overhead of communication between
Cores. We expect the optimal performance in Case 3 and evaluate how close the
result in Case 1 and 2 will be. We set the priority bonus as 50M vruntime based
on our previous experiment[7].

4.2 Results

In this section, we firstly show the results of the evaluation of set ias agg.
Succeedingly, we show the results of the evaluation of set ias alloc.

Results of the evaluation of set ias agg. We show the result of the evalu-
ation of set ias agg in Fig. 4. In Fig. 4, we show the ratio of the execution time
in IAS against CFS (lines), and the absolute value of the resource stalls (bars)
in each parameter. In Fig. 4, we express each parameter as d [1,2,3,4,5] when
we set bonus type as 1, and s [1K,10K,100K,1M,10M]when we set bonus type
as 0. We see that the reduction of the execution time and the resource stalls be-
comes larger as we increase the value of the parameter when we set bonus type
as 1. On the other hand, we see little effect of IAS when bonus value is from 1K
to 100K when we set bonus type as 0. When we set bonus value higher than 1M
vruntime, we see the effect becomes larger. We consider that bonus value be-
low 1M vruntime is too small in this experiment because the average additional
vruntime, which we measure simultaneously during the experiment, is 33M.

We conclude that we can set the priority bonus easily and effectively by setting
the priority bonus based on the quantum time rather than specifying in vruntime.

204 S. Yamada and S. Kusakabe

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.6e+11

 1.9e+11

 2.2e+11

 2.5e+11

 2.8e+11

 3.1e+11

T
h

e
ra

ti
o

of
 t

h
e

ex
ec

u
ti

on
 t

im
e

in
 e

ac
h

 p
ar

am
et

er
 a

ga
in

st
 C

F
S

T
h

e
n

u
m

be
r

of
 r

es
ou

rc
e

st
al

ls

Parameter for set_ias_agg
d_1 d_2 d_3 d_4 d_5 s_1K s_10K s_100Ks_1M s_10M

Fig. 4. The effect on the execution time (lines) and the resource stalls (bars) in using
set ias agg

Results of the evaluation of set ias alloc. We show the result of the
evaluation of set ias alloc in Fig. 5. In Fig. 5, we show the ratio of the ex-
ecution time in IAS against CFS in Case 1, 2, and 3. We can see the effect in
Case 2 and 3 are larger than that in Case 1. We consider that the result shows
the effect of space-multiplexing, which reduces the overhead of communication
between Cores in Case 2 and 3. We also consider that the effect will be larger in
many-core processors with deeper memory hierarchy.

When we compare Case 2 and Case 3, Case 3 seems advantageous only when
the memory block is less than 6MB. In other parameters, the effects in Case 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 6 8 12 14 16

R
at

io
 o

f
th

e
ex

ec
u

ti
on

 t
im

e
in

 e
ac

h
 s

ch
ed

u
le

r
ag

ai
n

st
 C

F
S

Memory Block Size (MB)
10

Case 1 Case 2 Case 3

Fig. 5. The effect on the execution time in setting multiple ia mm with set ias agg

Proposal and Evaluation of APIs for Utilizing IAS 205

and 3 are almost the same while Case 3 is the optimal setting as we described in
Section 4.1. By considering users do not have to set the processor affinity, Case
2 becomes more advantageous as working set gets larger. We conclude that we
can gain the effect of reducing the overhead of communication between Cores by
setting multiple master/slave Cores with set ias alloc.

5 Related Research

As caches are generally shared between Cores in multi-core processors, many
thread-level schedulers have been proposed to utilize the caches. Many researches
proposed to split the thread execution into the sampling phase and the scheduling
phase[16,17,18]. In the sampling phase, the kernel samples the information of each
thread execution. In the scheduling phase, the kernel schedules the combination
of threads to execute them simultaneously between different Cores based on the
information obtained in the sampling phase. For example, Fedorova[18] calculates
the size of the working set of each thread by tracing its behavior in the sampling
phase. They schedule the combinations of threads to let the sum of the working set
fit within the capacity of the L2 cache. The benefit of this sampling and schedul-
ing approach is that we can apply this method to any case of thread execution in
theory. The problem of this approach is the overhead of sampling information, es-
pecially when running many threads, as IAS supposes[12,19]. Moreover, the com-
plexity of optimal co-scheduling in multi-core processor, where a cache is shared
between all Cores and the number of Cores is more than 2, is NP-complete[2]. We
focus on a more realistic approach. Even though IAS does not intend to schedule
threads optimally, IAS only focuses on the memory address space of each thread
and its overhead is little as we see in Section 2.3.

The basic idea of our approach is similar to that of Chen[3] in that their
scheduling algorithm executes threads sharing the working set simultaneously
on different Cores to utilize the shared cache. Chen also proposes a compiler
to control the granularity of threads to fit with the caches of the processor.
Chen’s approach is applicable to fine-grained multi-threaded programs, which
contains DAGs inside, and shows that their scheduling method can enhance the
throughput by carefully tuning the granularity of threads by their compiler. The
difference between IAS and Chen’s approach is that IAS is intended to work
for multi-programmed execution while Chen only considers single-programmed
execution. IAS does not detect the size of the working set shared between sib-
ling threads while Chen’s approach does not consider the influence from other
programs. We consider that we can enhance the performance of broader range
of multi-threaded programs by mixing IAS and Chen’s approach.

Ziemba also focuses on the locality of references between sibling threads and
investigates the effect of space-multiplexing with a Web application server[20].
Ziemba sets different processor affinities for threads of HTTP and application
servers in executing SPECweb benchmark[21]. Ziemba presents their aggrega-
tion is effective and enhances the performance of the Web application server,
indicating the locality of references between sibling threads. However, Ziemba

206 S. Yamada and S. Kusakabe

mentions that it is difficult to statically analyze applications and optimally set
processor affinities. In this paper, we present that we can gain the effect of
space-multiplexing without setting processor affinities in each thread.

6 Conclusion

This paper proposes and evaluates APIs for IAS, which is a kernel-level thread
scheduler to enhance the performance of multi-threaded programs. We have pro-
posed IAS, which dynamically aggregates sibling threads in O(1) to utilize the
cache shared between Cores. In this paper, we present two APIs, set ias agg,
which controls the aggregation of sibling threads, and set ias alloc, which
controls master/slave groups. The effectiveness of our API is described in two
aspects. Firstly, we show that we can effectively and easily set the aggregation
strength in IAS based on the quantum time of the previously executed thread by
using API set ias agg. Secondly, we show that we can gain the effect of space-
multiplexing by grouping Cores and running IAS per group without setting the
processor affinity of each thread by using API set ias alloc.

Our future work includes the investigation of the effect of IAS with more
general benchmark applications. We consider that IAS is especially effective in
benchmark applications, which runs multiple multi-threaded programs simulta-
neously such as SPECweb[21]. We also investigate the effectiveness of Helper-
thread mentioned in Section 1. Even though we can set the priority bonus easily
with set ias agg, we still have to set the parameter manually. We will develop
Helper-thread mechanism to detect the degradation of multi-threaded programs
and automatically tune the priority bonuses to enhance the effect of IAS. In
addition, we will develop scheduling strategies to control the behavior of Helper-
thread such as the frequency of sampling thread information and the granularity
of parameter changes.

References

1. Kim, S., et al.: Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture. In: Proceedings of the 13th International Conference on Parallel Ar-
chitectures and Compilation Techniques, pp. 111–122 (2004)

2. Jiang, Y., et al.: Analysis and Approximation of Optimal Co-Scheduling on Chip
Multiprocessors. In: Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, pp. 220–229 (2008)

3. Chen, S., et al.: Scheduling Threads for Constructive Cache Sharing on CMPs. In:
Proceedings of 19th ACM symposium on Parallel Algorithms and Architectures,
pp. 105–115 (2007)

4. DaCapo benchmark suite, http://dacapobench.org/

5. The PARSEC Benchmark Suite, http://parsec.cs.princeton.edu/

6. Chishti, Z., et al.: Optimizing Replication, Communication, and Capacity Alloca-
tion in CMPs. In: Proceedings of the 32nd International Symposium on Computer
Architecture, pp. 357–368 (2005)

http://dacapobench.org/
http://parsec.cs.princeton.edu/

Proposal and Evaluation of APIs for Utilizing IAS 207

7. Yamada, S., et al.: Development of a Thread Scheduler for Global Aggregation
of Sibling Threads. Research Reports on Information Science and Electrical Engi-
neering of Kyushu University 1(2), 69–74 (2008)

8. Yamada, S., et al.: Impact of Priority Bonuses of Inter-Core Aggregation Scheduler
on a Commodity CMP Platform. In: Workshop on Managed Many-Core Systems
(MMCS) co-located with ASPLOS (2009),
http://www.cercs.gatech.edu/mmcs09/program.htm

9. RUBiS: Rice University Bidding System, http://rubis.ow2.org/
10. Keeton, K., et al.: Performance Characterization of a Quad Pentium Pro SMP Us-

ing OLTP Workloads. In: Proceedings of the 25th Annual International Symposium
on Computer Architecture, pp. 15–26 (1998)

11. Redstone, J., et al.: An Analysis of Operating System Behavior on a Simultaneous
Multithreaded Architecture. In: Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Operating Systems, pp.
245–256 (2000)

12. DeVuyst, M., et al.: Exploiting Unbalanced Thread Scheduling for Energy and Per-
formance on a CMP of SMT Processors. In: Proceedings of 20th IEEE International
Parallel & Distributed Processing Symposium (2006)

13. Yamada, S., et al.: Effect of Context Aware Scheduler on TLB. In: Workshop on
Multi-Threaded Architectures and Applications, Published in CD (2008)

14. SysBench: a system performance benchmark, http://sysbench.sourceforge.net/
15. Intel 64 and IA-32 Architectures Software Developers Manual, Volume 3B: System

Programming Guide, Part 2,
http://www.intel.com/products/processor/manuals/index.htm

16. Parekh, S., et al.: Thread-Sensitive Scheduling for SMT Processors, Technical re-
port, Dept. of Computer Science and Engineering, University of Washington (2000)

17. Snavely, A., et al.: Symbiotic Jobscheduling with Priorities for a Simultaneous Mul-
tithreading Processor. In: Proceedings of International Conference on Measurement
and Modeling of Computer Systems, pp. 66–76 (2002)

18. Fedorova, A., et al.: Performance of Multithreaded Chip Multiprocessors and Im-
plications for Operating System Design. In: Proceedings of USENIX 2005 Annual
Technical Conference, pp. 395–398 (2005)

19. Chandra, D., et al.: Predicting Inter-Thread Cache Contention on a Chip Multi-
Processor Architecture. In: Proceedings of 11th International Symposium on High-
Performance Computer Architecture, pp. 340–351 (2005)

20. Ziemba, S., et al.: Analyzing the Effectiveness of Multicore Scheduling Using Per-
formance Counters. In: Proceedings of Workshop on the Interaction between Op-
erating Systems and Computer Architecture (2008)

21. SPECweb, http://www.spec.org/web2009/

http://www.cercs.gatech.edu/mmcs09/program.htm
http://rubis.ow2.org/
http://sysbench.sourceforge.net/
http://www.intel.com/products/processor/manuals/index.htm
http://www.spec.org/web2009/

	Proposal and Evaluation of API for utilizing Inter-Core Time Aggregation Scheduler
	Introduction
	Implementation and Evaluation of Inter-Core Time Aggregation Scheduler (IAS)
	Completely Fair Scheduler (CFS)
	Overview of Inter-Core Time Aggregation Scheduler (IAS)
	Implementation of Time Aggregation Scheduler (TAS).
	Extension of TAS to add the inter-core aggregation.

	Preliminary Evaluation of Inter-Core Time Aggregation Scheduler (IAS)
	Overhead of IAS.
	Effect of IAS on RUBiS benchmark.

	Problems of IAS

	APIs for Inter-Core Time Aggregation Scheduler (IAS)
	set_ias_agg
	set_ias_alloc

	Evaluation of APIs with memory Program in SysBench
	memory Program and Experimental Platform
	Evaluation Method of set_ias_agg.
	Evaluation Method of set_ias_alloc.

	Results
	Results of the evaluation of set_ias_agg.
	Results of the evaluation of set_ias_alloc.

	Related Research
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

