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Preface

This volume contains the papers presented at the 15th workshop on Job Schedul-
ing Strategies for Parallel Processing that was held in Atlanta (GA), USA, on
April 23, 2010 in conjunction with the IEEE International Parallel Processing
Symposium 2010.

This year 18 papers were submitted to the workshop. All submitted papers
went through a complete review process, with the full version being read and
evaluated by an average of four reviewers. We would like to especially thank
the program committee members and additional referees for their willingness to
participate in this effort and their excellent, detailed reviews:

Henri Casanova, Peter A. Chronz, Walfredo Cirne, Julita Corbalan, Arash
Deshmeh, Dick Epema, Dror G. Feitelson, Allan Gottlieb, Rajkumar Kettimuthu,
Virginia Lo, Kuan Lu, Vicent Matossian, Jose E. Moreira, Bill Nitzberg, Elizeu
Santos-Neto, Angela C. Sodan, Mark S. Squillante, Dan Tsafrir, Philipp Wieder,
and Ramin Yahyapour.

The papers in this volume show a prolific growth in the areas of applicability
for parallel scheduling. Together with the more common scheduling aspects (such
as cluster and Grid scheduling, workload analysis, metrics, quality of service, and
task scheduling), these papers increasingly discuss more recent problems and
applications, such as virtualized environments, many-core processors, DNA se-
quencing, and Hadoop. This volume also includes a paper that summarizes Dan
Tsafrir’s work on understanding the role of user estimates in job scheduling eval-
uations. His insights, which were presented in this workshop’s keynote, are quite
instructive and lead to the conclusion that accurate user estimates are indeed
better for efficient scheduling. Although this conclusion may sound intuitive, it is
actually contradictory to previous studies that found inaccurate estimates to im-
prove scheduler performance. Following his analysis, Dan also suggests practical
ways to deal with estimate inaccuracy for realistic job scheduler evaluations.

One of the stated goals of the JSSPP workshop is to explore the applica-
tion of traditional scheduling topics to novel scenarios. A good example of such
topics is task and graph scheduling, which until last year was largely outside
the scope of JSSPP. Recent technologies are reviving interest in this topic, as
was discussed last year in the context of workflow jobs in a Grid environment
(in a paper by Gong et al.), and this year in the context of the emerging multi-
core/multi-threaded processors. Xia, Prasanna, and Li apply ideas from dynamic
load balancing and hierarchical thread grouping to the contemporary architec-
ture of the Sun Niagara processor with its 64 hardware threads. A different
thread-level scheduling aspect for many-core architectures is introduced in the
paper by Yamada and Kusakabe. Here, a modification to the operating sys-
tem is suggested to permit multi-threaded applications to aggregate time and
space resources for improved cache efficiency. In another example of applying
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traditional scheduling to newer problems, the paper by Saule, Bozdag, and
Catalyurek shows how a contemporary DNA sequencing workload can benefit –
in terms of reduced slowdown – from the application of earliest-deadline-first to
moldable-job scheduling.

Two other papers combine traditional scheduling techniques with modern
technological challenges and capabilities. For the former, the paper by Klusáček
and Rudová? addresses a deficiency in many of the workload traces used for job
scheduling simulations: the lack of complete system and workload information,
including machine characteristics and failures. Adding these data to a trace (syn-
thetically or with actual collected data, in the case of MetaCentrum’s trace) can
significantly alter the results of a scheduler evaluation. For the latter, the paper
by Verboven, Vanmechelen, and Broeckhove introduces a scheduling scheme for
virtual machines, where the workload has mixed high and low quality-of-service
(QoS) requirements. The scheduler takes advantage of the relative ease that vir-
tualization offers for job preemption to let overbooked low-priority jobs fill in for
underutilized resources, without interrupting high-priority jobs. Overbooking is
also explored in the paper by Birkenheuer, Brinkmann, and Karl, extending their
work from the previous workshop. Here, the authors integrate a statistical risk
assessment module to their Grid/Cloud scheduler that uses automated run-time
predictions to overbook backfilled “gaps”, while still minimizing the economic
penalties to the system owner from missed deadlines.

The economics of Grid scheduling and QoS were in fact a major theme in
this year’s papers, and played a minor part in several other papers. The paper
by Sandholm and Lai explores a dynamic resource allocation scheduler for the
popular Hadoop environment, in which users receive a share of computational
resources that is proportional to their bid. On a related vein, in Ding’s con-
tribution, a greedy double-auction mechanism to dynamically price resources is
simulated, backed by a theoretical analysis. Xiong’s paper on the other hand as-
sumes static pricing per QoS level, and proposes a resource allocation approach
to minimize the total cost to the application, again offering a theoretical treat-
ment of the optimization problem. Similarly, in the paper by Takefusa, Nakada,
Kudoh, and Tanaka, a linear-programming method is used to co-allocate process-
ing and networking resources to Grid applications, based on an actual system’s
problem statement. And last but not least, in the metascheduler proposed by
Fölling, Grimme, Lepping, and Papaspyrou, different sites can “lease;; under-
utilized resources to heavily loaded sites that request them.

A few years ago, we described the transition of the classic job scheduling
paradigm for parallel processing based on the proliferation of new technolo-
gies like many-core architectures and Grid or Cloud computing. Today, we can
observe that these technological advances produce significant changes in the us-
age patterns. Due to many-core architectures, the exploitation of parallelism is
not restricted any more to a few high performance applications. Similar to the
situation during the last decade of the previous century when every application
exploited superscalar processors, applications are now expected to make efficient
use of multiple cores. This of course results in new challenges for job scheduling.
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Furthermore, Grid and Cloud computing provides affordable processing power
to many users, leading to new applications if there are efficient resource manage-
ment systems. These resource management systems will consist of multiple layers
related to users, resource providers, and domain managers. However, the alloca-
tion of tasks to these layers is still under investigation. Therefore, we strongly
believe that research in the field of this workshop will remain interesting and
challenging in the years to come.

The proceedings of previous workshops are available from Springer as LNCS
volumes 949, 1162, 1291, 1459, 1659, 1911, 2221, 2537, 2862, 3277, 3834, 4376,
4942, and 5798. Since 1995 these volumes have also been available online.

June 2010 Eitan Frachtenberg
Uwe Schwiegelshohn
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Hierarchical Scheduling of DAG Structured Computations on Manycore
Processors with Dynamic Thread Grouping . . . . . . . . . . . . . . . . . . . . . . . . . 154

Yinglong Xia, Viktor K. Prasanna, and James Li

Multiplexing Low and High QoS Workloads in Virtual Environments . . . 175
Sam Verboven, Kurt Vanmechelen, and Jan Broeckhove

Proposal and Evaluation of APIs for Utilizing Inter-Core Time
Aggregation Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Satoshi Yamada and Shigeru Kusakabe

Using Inaccurate Estimates Accurately . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Dan Tsafrir

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223



Resource Provisioning in SLA-Based

Cluster Computing

Kaiqi Xiong and Sang Suh

Department of Computer Science, Texas A&M University,
Commerce, TX 75429, USA

kaiqi xiong@tamu-commerce.edu

Abstract. Cluster computing is excellent for parallel computation. It
has become increasingly popular. In cluster computing, a service level
agreement (SLA) is a set of quality of services (QoS) and a fee agreed
between a customer and an application service provider. It plays an im-
portant role in an e-business application. An application service provider
uses a set of cluster computing resources to support e-business appli-
cations subject to an SLA. In this paper, the QoS includes percentile
response time and cluster utilization. We present an approach for re-
source provisioning in such an environment that minimizes the total cost
of cluster computing resources used by an application service provider
for an e-business application that often requires parallel computation for
high service performance, availability, and reliability while satisfying a
QoS and a fee negotiated between a customer and the application ser-
vice provider. Simulation experiments demonstrate the applicability of
the approach.

Keywords: Cluster computing, scheduling theory, resource provisioning,
service level agreement, and percentile response time.

1 Introduction

In computer science, scheduling theory is concerned with the optimal allocation
of scarce resources such as servers, processors and network links to computer ser-
vice activities over time, with the objective of optimizing one or several computer
performance measures (e.g., see Levner [13]). Cluster computing is excellent for
parallel computation. It has become increasingly popular. The management of
computing service resources is fundamental to cluster computing. The increas-
ing pervasiveness of network connectivity and the proliferation of on demand e-
business applications and services in public domains, corporate networks, as well
as home environments give rise to the need for the design of appropriate service
management solutions in cluster computing. Accurately predicting e-business
application and scientific computation performance based on service statistics
and a customer’s perceived quality allows an application service provider (sim-
ply called a service provider) not only to assure quality of services but also to
avoid over provisioning to meet a service level agreement (SLA).

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2010, LNCS 6253, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 K. Xiong and S. Suh

Job scheduling has been a fruitful area of research for many decades. It in-
volves answers to the following questions:

1. How are jobs assigned to computing resources, such as processors and
machines?

2. What orders should we use to process jobs in a single computing resource?
3. How to allocate sufficient computing resources to match the requirements of

submitted jobs in terms of ensuring QoS guarantees?

The above three job scheduling questions are usually called the parallel job
scheduling problem, the job sequencing problem, and the resource provisioning
problem (also called the resource matching problem), respectively. While the job
sequencing problem is relatively simple, the parallel job scheduling problem and
the resource allocation problem are difficult to solve. Generally speaking, both
are NP-hard (see Du and Leung [7]). In this paper, we focus on the resource
provisioning problem that has been extensively researched over the years (see
Feitelson et al. [8] and Yom-Tov and Aridor [19]). In particular, we consider the
problem for avoiding the over-provisioning of computing resources. With over-
provisioning, computing resources are allocated more than service request jobs
actually need due to the over-determined requirements of service request jobs,
which should not occur as desired by a service provider for high profits.

Yom-Tov and Aridor [19] gave an example of two machines to explain how
badly over-provisioning affects machine utilization. However, if allocated com-
puting resources fall below a certain level or are insufficient, service request jobs
cannot complete to meet customer service requirements. Hence, the resource
provisioning problem plays a key role in job scheduling. It is an extremely im-
portant but very challenging problem as shown in Liu et al. [12], Naik et al [16],
and Yom-Tov and Aridor [19].

In this paper, we consider a resource provisioning problem in SLA-based clus-
ter computing where a service provider processes e-business application request
jobs for business customers subject to an SLA. Such request jobs often require
parallel computation for high service performance, availability, and reliability.
As shown in Figure 1, a customer represents a business that generates a stream
of service request jobs at a specified rate to be processed by a service provider’s
resources according to QoS requirements and for a given fee. A service request
job is transmitted to a service provider in a cluster computing system consisting
of a group of cluster nodes that are linked together to support parallel computa-
tion (e.g., see Aron et al. [1], Heath et al. [10] as well as Xiao and Ni [35]). Upon
the completion of a service request job at the service provider, the final result
is sent back to the customer. The service provider’s cluster nodes have or are a
set of computing resources so that they are capable to collaborate each other in
parallel for processing the service request job. Such computing resources in each
cluster node may include processors and cluster servers/machines as discussed
in Shin et al. [17] as well as Xiao and Ni [35]. For presentation purpose, we ex-
plicitly think the computing resource of each node as cluster servers. (Note that
in this paper “computing resource” or “server” are used alternatively.)
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Fig. 1. Customer Service Request Jobs in SLA-based Cluster Computing

The resource provisioning problem is to minimize the overall cost of the service
provider’s computing resources of each node allocated to the business customer
in terms of the number of servers at each cluster node while satisfying an SLA
agreement. The SLA is a contract negotiated and agreed between the customer
and the application provider. It defines the quality of service (QoS) and a fee.
In this paper, the QoS metrics include:

1. Percentile response time-γ% (0 ≤ γ ≤ 100) of the time the response time,
i.e., the time to execute a service request job, is less than a pre-defined value;

2. Cluster utilization-It is the percentage of the time that the cluster node is
utilized.

Both of them are often called SLA performance metrics in the literature. These
QoS requirements are typical metrics included in an SLA (e.g., see INTERNAP
[25] as well as Martin and Nilsson [28]). As an end user of e-business appli-
cations, a customer is in general concerned about response time rather than
throughput (for example, in an online business, an buyer often concerns about
how soon his/her order will be processed and completed). Hence, we do not in-
clude throughput as a metric in this study. Security, reliability and survivability
may be included in an SLA as well as described in Jacob [26]. We will discuss
them in another paper.

In this paper, we present the resource provisioning problem by minimizing
the total cost of each cluster node’s computer resources required to ensure a
given percentile of the response time and cluster utilization. We formulate the
provisioning problem as a constrained optimization problem. By modeling a
typical customer service scenario as a queueing network, we first propose an
approach to computing the percentile response time of a service request job. We
note that the proposed approach can be also applied to a queueing network whose
cluster nodes are arbitrarily linked as long as the link can be quantified. Then,
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we present an approach to solving the constrained optimization problem by
calculating the computing resource of each cluster node required in each service
provider’s node. To the best of our knowledge, our study is the first attempt to
analytically solve the resource provisioning problem under the consideration of
percentile response time and cluster utilization for cluster computing by using a
queueing network method.

The rest of the paper is organized as follows. Related work is presented in
Section 2. In Section 3 we formulate the resource provisioning problem with
the SLA performance metrics. In Section 4 we model the service request jobs
processed in SLA-based cluster computing as a queueing network and give an
approximation approach to computing the percentile response time of a customer
service request job in the queueing network. We further propose an approach for
solving the provisioning problem. Numerical experiments are given in Section 5.
We conclude our results in Section 6.

2 Related Work

The job scheduling questions presented in Section 1 have been extensively stud-
ied. They play an important role in not only parallel computation but also other
areas. Many real-world problems can be modeled as scheduling problems. For
example, the relationship between jobs and computing resources is similar to the
one between the following pairs: students and teachers, patients and doctors, as
well as ships and docks. Only a few scheduling problems have been shown to
be tractable, that is, they are solvable in polynomial time. For the remaining
ones, the only way to secure optimal solutions is usually by enumerative meth-
ods, requiring exponential time (e.g., see Cook [6], Garey and Johnson [9], and
Papadimitriou [15]).

Resource management including resource monitoring as well as resource
matching and/or resource provisioning has been researched over many years.
Feitelson et al. [8] and Yom-Tov and Aridor [19] have studied resource provi-
sioning for job scheduling in heterogeneous server clusters. Ngubiri and Vlient
[14] discussed a processor provisioning problem in multi-cluster systems. Bucur
[3], Bucer and Epema [4], and Jones [11] have considered the problem of resource
provisioning for Distributed ASCI Supercomputer (DAS). Bucur and Epema [4]
proposed and analyzed resource provisioning approaches in different scenarios.
Jones [11] focused on scheduling techniques and how they are affected by network
characteristics like latencies.

In the paper, we consider a job as a stream of customer service requests in
cluster computing. The problem of multiple heterogeneous resources allocated to
a single job has been discussed in Liu et al. [12]. It is an one-to-many matching
problem under the constraints of application specific global aggregations, for
example, total memory sizes and processor capacities.

As we know, in the above literature the authors only considered the average
metric value of a job stream as a performance metric. This is because an average
metric value is relatively easy to calculate. However, customer is more inclined
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to request a statistical bound on its response time than an average response
time. Thus, we use the percentile response time as our performance metric in
the paper.

Resource provisioning with the constraints of a variety of QoS metrics such
as response time, cluster utilization, or packet loss rate for other computing
infrastructures such as a network system have been extensively studied in the
literature as well. Bouillet, et al. [20] considered a routing and resource manage-
ment problem subject to the requirements of aggregate bandwidth from ingress
to egress nodes. In [21], Chassot et al. dealt with a communication architecture
with guaranteed end-to-end QoS in an IPv6 environment. The end-to-end QoS
includes an end-to-end delay (i.e., response time). Chassot et al. only discussed
and measured the maximal, minimal and average values of response time. Cao
and Zegura [22] considered the bandwidth allocation scheme for an available bit
rate service. In Liao and Campbell [27], a mechanism was developed with the
capability of delivering capacity provisioning in an efficient manner providing
quantitative delay-bounds with differentiated loss across per-aggregate service
classes.

3 The Resource Provisioning Problem

In this section, we study the customer service request jobs depicted in Figure 1
where a service request job is transmitted to m cluster nodes within a service
provider. For presentation purposes, we assume that each cluster node has only
one type of cluster server associated with cost cj . If they have multiple types of
servers, we can decompose each cluster node into several individual sub-nodes
so that each one only contains one type of servers with the same cost.

Let Nj be the number of servers at node j (j = 1, 2, · · · , m). Thus, the
resource provisioning problem is to minimize the overall cost of the comput-
ing resources required while satisfying SLA requirements in cluster computing.
That is, the resource provisioning problem is quantified by solving for dj in the
following provisioning problem:

I = min
d1,···,dm

(d1 c1 + · · ·+ dm cm) (1)

subject to SLA constraints, where dj represents the number of servers required in
cluster node j and hence its value is 1, 2, · · · , or Nj, each server associated with
cost cj . Performance and a service fee are the two most important components
for a variety of SLAs in high performance computing such as cluster and grid
computing to support parallel computing for business applications. In this paper,
the SLA constraints include the aforementioned percentile response time and
cluster utilization as well as a service fee.

As discussed in Section 1, we consider cluster utilization and the percentile
of response time as the SLA performance metrics. The cluster utilization is the
percentage of the time that the cluster node is utilized. It will be discussed
in detail in Section 4.1. The cluster utilization within a service provider is not
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observed by a customer (see Martin and Nilsson [28]). Instead, response time
can be directly measured by a customer. It directly reflects service performance
as stated in Martin and Nilsson [28], Paxson [30] and Padhye et al. [31].

As described earlier, in the literature, typically the average response time
(or an average execution time) is used (e.g., see Martin and Nilsson [28] as
well as Menasce and E. Casalicchio [29]). The average response time is heavily
influenced by “outliers,” which occur in almost all measurements. Therefore,
although the average response time is relatively easy to calculate, it may not
address the concerns of a customer. Typically, a customer is more inclined to
request a statistical bound on its response time than an average response time.
For instance, a customer can request that 95% of the time its response time
should be less than a desired value. Hence, in this paper we are concerned with
the statistical bound on the response time.

The response time is the time it takes for a service request job to be executed
on the service provider’s cluster nodes and then sent its completed job back to
the customer. Let T be a random variable representing the response time, and
let fT (t) and FT (t) be its probability and cumulative distributions pdf and CDF,
respectively. Also, let T D be the desired target response time that a customer
requests and agrees with its service provider based on a fee paid by the customer.
The statistical bound on the response time can be expressed by

FT (t)|t=T D =
∫ T D

0

fT (t) dt ≥ γ% (0 ≤ γ ≤ 100) (2)

which is called percentile response time. This means that γ% of the time a service
request job will be executed in less than T D.

As an example let us consider an M/M/1 queue with arrival rate λ and service
rate μ. The service discipline is FIFO. The steady-state probability of the system
is p0 = 1− ρ, and pk = (1− ρ)ρk, k > 0, where ρ = λ

μ (see Perros [32]). The
response time T is exponentially distributed with the parameter μ(1 − ρ), i.e.,
its probability distribution is given by

fT (t) = μ(1− ρ)e−μ(1−ρ)t

Using the definition given in (2), we have that

FT (t)|t=T D = 1− e−μ(1−ρ)T D ≥ γ% (3)

For example, to ensure that in a 95% (=γ%) of time, customer service request
jobs can be executed in T D. It follows from (3) that

e−μ(1−ρ)T D ≤ 5%

which is equivalent to

μ ≥ λ +
ln 20
T D
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Furthermore, the resource provisioning problem can be formulated as the
following integer optimization problem.

The Resource Provisioning Problem in SLA-based Cluster
Computing:

Find integers dj (0 ≤ dj ≤ Nj; j = 1, 2, · · · , m) in the m-dimensional provision-
ing problem (1) under the constraints of I ≤ CD, the percentile response time as
expressed by (2), and the cluster utilization satisfying ρj ≤ ζj%, and ρoverall ≤
ζ% respectively, where CD is a fee negotiated and agreed upon between a cus-
tomer and the service provider, ρj is the average cluster utilization of node
j, and ρoverall is the average cluster utilization of all the cluster nodes within
the service provider. Parameters ζj and ζ are pre-defined values in the SLA
(j = 1, 2, · · · , m).

4 The Solution of the Resource Provisioning Problem

In this section, we study a queueing network model that depicts the path that
service request jobs have to follow through the cluster nodes’ resources owned
by the service provider described in Figure 1. The queueing model is shown in
Figure 2. We refer to the queueing model as a service request job model since it
depicts the computing resources used to provide computing services to respond
a customer’s service job requests.

The service request job model consists of a single infinite server, and m service
provider’s stations (or simply called nodes. In the rest of this paper, without any
confusion station and node are alternatively used) numbered sequentially from 1
to m as shown in Figure 2. After a customer exits from the single infinite server,
it will continue to be served at all m nodes. Upon completion of its service at
the m-th node, a customer may exit the queueing network with probability α,
or may return to the beginning the queueing network with probability 1 − α,
which characterizes the retransmission of a service request job within the service
provider, shown in Figure 2.

As seen in Figure 1, each cluster node consists of multiple servers that are
linked together to support for parallel computations. The servers of each clus-
ter node are commonly, but not always, connected to each other through fast
local area networks. Cluster nodes are usually deployed to improve performance
and/or availability over that of a single computer, while typically being much

l

X

Infinite
Server

Station 1

y1(n1)μ1

X1

Station m

Xm

a

ym(nm)μm

1-a

Fig. 2. A Service Request Job Model
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more cost-effective than single computers of comparable speed or availability
(see Luke [2]). Each cluster node has a group of linked servers to work together
closely so that it is treated as a single computer in many respects. Thus, in the
following discussion each service provider’s cluster node is modeled as a single
G/G/1 queue with arrival rate λj and service rate ψ(dj)μj , where ψ(dj) is a
known function of dj and depends on the configuration of servers at each node
or station. It is non-decreasing and can be inverted, i.e., ψ−1 exists. For in-
stance, suppose that a station represents a group of CPUs. Then, ψ(n) can be
seen as a CPU scaling factor for the number of CPUs from 1 to n. According to
Chang [5], ψ(n) = ξlog2 n, where ξ is a basic scaling factor from 1 CPU to 2. So,
ψ−1(n) = ξ− log2 n.

Let Λ be the arrival rate generated by a customer as well as λ and λj be
the effective arrival rates to the infinite server, respectively. The infinite server
represents the total propagation delay from the first cluster node through the
m-th cluster node. The first station in Figure 2 models the architecture and
elements (i.e., servers) of the first cluster node in Figure 1. The j-th station in
Figure 2) (j = 2, 3, · · · , m) models the architecture and elements of the j-th
cluster node in Figure 1.

We have the traffic equations: λ = Λ + (1 − α)λm and λj = λ that implies
λj = λ = Λ

α , and the utilization of each station is ρj = λj

ψ(dj)μj
= Λ

αμjψ(dj)

(j = 1, 2, · · · , m). Note that the infinity server has the same effective arrival
rate as node j. Thus, let p(t) and pj(t, ψ(dj)μj) be the pdfs of response time
at the infinity server and node j (these pdfs can be at least determined by a
curve fitting of measurement data as discussed in Zandt [36]), and LX(s) and
LXj (s, ψ(dj)μj) its corresponding Laplace transform at the infinite server and
node j respectively, where X is the service time at the infinite server, and Xj

is the time elapsed from the moment a service request job arriving at node j to
the moment it departs from the node.

4.1 An Algorithm for the Resource Provisioning Problem

In order to present our approach for solving the resource provisioning problem,
we need to derive the Laplace-Stieltjes transforms (LST) of the probability dis-
tribution of the response time.

Let T (k) be the response time of k-th visit at the infinite server, the first
node, the second node, ..., and m-th node. Then, T (k) is considered as the sum
of the response time of the k-th pass at the infinite server plus the response time
of the k-th pass at all the m stations:

T (k) = X + X1 + X2 + · · ·+ Xm

where we assume that each router is independent of each other. That is, we
assume that the waiting time of a service request job at a station or a node
is independent of its waiting times at other stations or nodes. Then, the total
response time of a service request is

T =
∞∑

k=1

p(k)T (k)
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where p(k) is the steady state probability that a request will circulate k times
at the infinite server and the j-th station through the computing system. p(k)
is determined by

p(k) = α(1 − α)k−1

Thus, the LST of the response time T is

LT (s) =
∞∑

k=1

p(k)Lk
X(s)Lk

X1
(s, ψ(d1)μ1) · · ·Lk

Xm
(s, ψ(dm)μm)

which can be re-written as follows:

LT (s) =
αLX(s)Πj=1LXj (s,ψ(dj)μj)

1 − (1 − α)LX(s)Πm
j=1LXj (s, ψ(dj)μj)

(4)

where LX(s) and LXj (s, ψ(dj)μj) (j = 1, 2, · · · , m) are the LST of the response
time X and the response time Xj .

The probability distribution fT (t) and the cumulative distribution FT (t) of
the response time T can be calculated by inverting LT (s) and LT (s)/s respec-
tively, that is,

fT (t) = L−1 (LT (s)) and FT (t) = L−1

(
LT (s)

s

)
(5)

We observe that fT (t) and FT (t) are usually nonlinear functions of t and dj .
Hence, the resource provisioning problem is an m-dimensional linear provisioning
problem subject to nonlinear constraints. In general, it is not easy to solve this
problem. However, the complexity of the problem can be significantly reduced
by postulating that the utilization of each node in Figure 2 should be the same
for all nodes. That is, we find the optimum value of d1, · · · , dm such that

ρ1 = · · · = ρm
def
= â

where ρj = λj

ψ(dj)μj
is the average cluster utilization of the j-th node (j =

1, 2, · · · , m). This is called the balanced condition. (We note that in production
lines, it is commonly assumed that the service stations are balanced whose fur-
ther justification can be found in Xiong [18]).

We further consider the cluster utilization of the service model within the
service provider’s node, and derive the following result.

Proposition: The average cluster utilization of all the cluster nodes within the
service provider is

ρoverall(â) =
âm

1− (1− α)âm
(6)

Proof. From the structure of the queueing network, the average cluster utiliza-
tion of this SLA-based cluster model within the service provider can be computed
by

ρoverall(â) =
∞∑

k=1

p(k)ρ1(â) · · · ρj(â)
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where p(k) = α(1 − α)k−1 and ρj(â) = ρj . Due to the balanced condition, we
have ρj(â) = â, and then easily get (6). The proof is complete.

As presented in the resource provisioning problem, the constraint of cluster uti-
lization at each node: ρj(âj) ≤ ζj%, and the constraint of the average cluster
utilization of all the cluster nodes within the service provider: ρoverall(âu) ≤
ζ%. To ensure the cluster utilization guarantees, we require that âj = â ≤
ζj% and âm

1−(1−α)âm ≤ ζ%. This implies that

â ≤ min
{

ζ1%, · · · , ζm%, m

√
ζ%

1 + (1− α)ζ%

}
(7)

In addition, note that λj

ψ(dj)μj
= â. Hence, ψ(dj) = λ

â μj
, i.e., dj = ψ−1

(
λ

â μj

)
for

j = 1, 2, · · · , m. This implies
∑m

j=1 cjdj reduces to a function of variable â. Thus,
we have the following algorithm for solving the resource provisioning algorithm.

Algorithm

a. Find â in the following minimization problem of a percentile response time
and its corresponding optimum values of d

(1)
j :

â(1) ← arg min
â

FT (t)|t=T D

subject to the constraint: FT (t)|t=T D ≥ γ% at â = â(1), where FT (t) is given
by (5). Then, the optimum values of d

(1)
j for the percentile response time

guarantee are given by d
(1)
j = ψ−1

(
λj

â(1) μj

)
for j = 1, 2, · · · , m.

b. Calculate â given in (7) to ensure the guarantees of cluster node utilization.
Their maximal values a

(2)
j for stations 1, 2, and 3 are computed by

a
(2)
j =

λj

μj
max

{
(ζj%)−1, m

√
1 + (1− α)ζ%

ζ%

}

Thus, its corresponding optimum values of d
(2)
j are equal to d

(2)
j = ψ−1

(
a
(2)
j

)
for j = 1, 2, · · · , m.

c. Calculate the maximum values dM
j such that dM

j = max{d(1)
j , d

(2)
j }, and then

choose the optimum values of dj are equal to dM
j (j = 1, 2, · · · , m).

d. Check if 0 ≤ dj ≤ Nj (j = 1, 2, · · · , m) and I ≤ CD are satisfied. If yes,
the obtained dj is the optimum number of servers required at each cluster
node. That is, the service provider should allocate at least dj servers at
each cluster node to ensure the SLA guarantee. Otherwise, the resource
provisioning problem subject to the SLA cannot be solved. In this case, the
service provider will inform the customer “We need to re-negotiate the SLA,”
or both.
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Note that if we cannot get a solution for the resource provisioning problem using
the above algorithm, then the service provider cannot execute service request
jobs in the SLA-based cluster computing due to at least one of the following
reasons: (i) the service provider has insufficient computing resources (i.e., μj ,
Nj , or both are too small), (ii) a pre-specific fee is too low (i.e., I > CD), or
(iii) at least one cluster node is over-utilized. Using these information, we may
detect and debug a service provider’s capacity problem, that is, the SLA needs
to be re-negotiated.

In this algorithm, the run-time for Steps b, c and d have the same run-time
O(m). The efficiency of this algorithm is determined by the run-time for inverting
the LST of the response time in Step a, which can be efficiently done as well (see
Graf [24]). Let T1 be the run-time for the inversion of the LST and T2 be the time
to find â(1) except the time to invert the LST of the response time. (This is an
one-dimensional minimization problem. So, generally speaking, T2 is relatively
smaller than T1.) Thus, the total run-time for the Algorithm is O(T1 + T2 + m).

As we see, the total run-time for the Algorithm is mainly determined by O(T1),
which depends on the number of function evaluations required for each value of
t that is varied in each numerical approximation method for the inversion of
a Laplace transform. In our numerical experiments, it usually took a couple of
minutes to complete the evaluation.

Remarks: In the above algorithm, if we require that each node has the same
pre-defined ζj , then the constraints of ρj(âj) ≤ ζj% (j = 1, 2, · · · , m) reduce to
the only one constraint: ρ1(â1) ≤ ζ1%, due to the above proposition.

5 Numerical Experiments

In this section we demonstrate how to apply our algorithm to solve the resource
provisioning problem subject to an SLA.

Clearly, our proposed method heavily depends on the computation of the
inverse Laplace transform of LT (s). Many studies have been done in the past
a few decades as described in Graf [24]. Since the numerical computation of an
inverse Laplace transform is an ill-posed problem, no single method works for
any inverse Laplace transform problem (see Graf [24]). This is because in this
case there is a singular point that significantly affects the numerical computation
of an inverse Laplace transform. Thus, we employed several different numerical
methods for inverting a given LT (s). If two or more methods can reach about the
same results, then we are confident that the derived numerical inverse Laplace
transform is correct. These numerical methods include the inversion methods
using Laguerre functions and Fourier functions in Graf [24], Gaussian quadrature
formulas in Piessens [33], and the method by Gaver [23] and Stehfest [34]. The
Laguerre method in Graf [24] and the Gaver-Stehfest method in Gaver [23] and
Stehfest [34] compute more rapidly but are slightly less accurate compared to
the Gaussian quadrature formulas in Piessens [33].

We consider the service request job model shown in Figure 2. For presentation
purpose, we only consider a three-station model, i.e., m = 3. The values of
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Table 1. The Values of c1, c2, c3, C
D, N1, N2, N3, T

D, γ, α, ζ1, ζ2, ζ3, and ζ

c1 c2 c3 cD N1 N2 N3 TD γ α ζ1 ζ2 ζ3 ζ

8 8 3 800 50 80 100 0.08 98 0.8 0.78 0.9 0.92 0.58

parameters cj , CD, Nj , T D = 0.08, γ, α, ζ1, ζ2, ζ3, and ζ are given in Table 1
for j=1, 2, 3.

We further choose Λ =200, μ1 = 48, μ2 = 38, and μ3 = 25. Also, let fX1(t) and
fX3(t) be Erlang-2 distributions with ν1 = ψ(d1)μ1 and ν3 = ψ(d3)μ3 for cluster
nodes 1 and 3 respectively, fX2(t) is an Erlang-1 distribution with ν2 = ψ(d2)μ2,
where ψ(dj) = 1.5log2 dj for j = 1, 2, 3. Then, λ = Λ/α = 250.

According to our algorithm in Section 4, we calculate the optimum numbers
of d1, d2 and d3 using the following steps.

We first solve for â(1) in the Step a of Algorithm. That is, let us find the
minimum value of â such that F (t)|t=T D = F (T D) ≥ 0.98, where F (T D) is
computed by

F (t) = L−1
{ 200

s(s + 250)
Π3

j L(fXj (s))
1− 0.2Π3

j L(fXj (s))

}

and L(fXj (t)) is the LST of fXj (t) for j = 1, 2, 3. Thus, we get â = 0.85.
Consequently, d

(1)
1 = 23, d

(1)
2 = 34, and d

(1)
3 = 68.

Then, we use Step b of the Algorithm to compute a
(2)
1 = max{6.6774, 6.4780}

= 6.6774, a(2)
2 = max{7.3099, 8.1828}= 8.1828 and a

(2)
3 =max{10.8696, 12.4379}

= 12.4379. Thus, d
(2)
1 = 26, d

(2)
2 = 37, and d

(2)
3 = 75.

By using Step c,we get dM
1 = 26, dM

2 = 37, and dM
3 = 75. We further choose

dj = dM
j , and verify that I =

∑3
j=1 cjdj = 729 < CD. This means that the

optimum values are d1 = 26, d2 = 37 and d3 = 75.
Extensive numerical results point to the fact that the proposed method pro-

vides an efficient way to calculate computing resources required for SLA
assurance.

6 Conclusions

Cluster computing is excellent for parallel computation. It has become increas-
ingly popular. We have proposed an approach for resource provisioning in a
typical SLA-based cluster computing environment, whereby we minimize the to-
tal cost of computing resources allocated to a customer so that a given set of
SLAs including percentile of the response time and cluster utilization is satisfied.

We have further formulated the resource provisioning problem as an opti-
mization problem subject to SLA constraints for a typical SLA-based cluster
computing system, and developed an efficient approach to solving the problem.
Finally, we have demonstrated how to use our proposed approach to finding the
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minimum values of computing resources required for the customer SLA guaran-
tee by conducting numerical experiments.

Most importantly, we should point out that the proposed approach of this
paper provides a framework for addressing and solving this type of resource
provisioning problems subject to a given set of SLAs for high-performance com-
puting systems including cluster and grid computing systems. Moreover, this
approach can be extended to study a service request job model whose cluster
nodes are arbitrarily linked as long as the defined link can be quantified. In this
paper, we only considered a percentile of response time and cluster utilization in
the SLA. Other metrics such as security, availability, vulnerability, and reliability
will be discussed in another paper.
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Abstract. Co-allocation of performance-guaranteed computing and
network resources provided by several administrative domains is one of
the key issues for constructing a QoS-guaranteed Grid. We propose an
advance reservation-based co-allocation algorithm for both computing
and network resources on a QoS-guaranteed Grid, modeled as an inte-
ger programming (IP) problem. The goal of our algorithm is to create
reservation plans satisfying user resource requirements as an on-line ser-
vice. Also the algorithm takes co-allocation options for user and resource
administrator issues into consideration. We evaluate the proposed algo-
rithm with extensive simulation, in terms of both functionality and prac-
ticality. The results show: The algorithm enables efficient co-allocation
of both computing and network resources provided by multiple domains,
and can reflect reservation options for resource administrators issues as
a first step. The calculation times needed for selecting resources using an
IP solver are acceptable for an on-line service.

1 Introduction

Grid and network resource management technologies have enabled the construc-
tion of large-scale QoS-guaranteed Grid environments, which consist not only of
performance-guaranteed multiple-computer clusters and storage resources, but
also bandwidth-guaranteed networks linking the distributed resources. Several
research projects have achieved coordination of resource managers for comput-
ers and network bandwidth and have constructed QoS-guaranteed Grid envi-
ronments [1,2,3]. In contrast to canonical Grid environments, whose network
resources are shared by abundant users, network links in these QoS-guaranteed
Grids are dedicated to requesting users in order to guarantee the specified band-
width.

In QoS-guaranteed Grid environments, each resource is managed by a local
resource manager (RM) provided by several administrative domains or orga-
nizations, including commercial sectors. Therefore, each RM had better have
an advance reservation capability, in order to provide a performance-guaranteed
resource for a QoS-guaranteed Grid user, who also co-reserves other resources, in-
cluding commercial resources. The KOALA[4] Grid scheduler and the QBETS[5]

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2010, LNCS 6253, pp. 16–34, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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batch queue prediction service provide co-allocation of multiple cluster resources
in coordination with RMs, without advance reservation, by acquiring and pre-
dicting the status of RMs. However, these strategies cannot guarantee to allocate
the resources at the same time, so that the co-allocation user may have to pay
for some resources, even if one resource may not be allocated at the expected
time.

Therefore, “advance reservation” is one of the key technologies for a QoS-
guaranteed Grid, and we have been working on development of the GridARS
resource management framework[6] and the PluS plugin scheduler[7]. GridARS
co-works with multiple RMs for computers, networks, and other resources, which
manage the actual resources, and a reservation table of the resources, and co-
allocates requested resources in advance for each QoS-guaranteed Grid user. PluS
can be used in an RM and allows advance reservation on existing batch queuing
systems, such as Sun GridEngine[8] and TORQUE[9], as well as Maui[10].

An important issue is then the question of Grid schedulers’ advance reservation-
based co-allocation of many kinds of distributed resources provided by various or-
ganizations. For building a QoS-guaranteed Grid, co-allocation algorithms have
to select not only computers and storage resources, but also network links be-
tween the selected resources. Also, all of detailed resource allocation information
in each RM will not be disclosed via commercial services. Grid schedulers for QoS-
guaranteed Grids cannot apply either canonical Grid co-allocation algorithms
[11,4,12] based on list-scheduling heuristic approaches, or network routing algo-
rithms [13] based on Dijkstra’s algorithm, straightforwardly. In addition, such a
scheduling problem is known as NP-hard. It is important to determine co-allocation
plans with short calculation time, especially for an on-line service.

Moreover, the co-allocation algorithms should reflect the following user and
administrators scheduling options: In a user view, there should be options for re-
source co-allocation: (a) reservation time, (b) price, and (c) quality (availability).
On the other hand, there should be options: (A) load balancing among RMs, (B)
preference allocation to specific RMs because of energy savings or alliance issues,
and (C) allocation suited for each user service level in an administrator view.
Some studies[14,15,16,17] have already proposed advance reservation-based co-
allocation algorithms for the both computer and network resources, but they
have not adequately taken these options into account.

We propose an on-line advance reservation-based co-allocation algorithm for
both computing and network resources on QoS-guaranteed Grids. The goal of
our algorithm is to create reservation plans satisfying user resource requirements
and to take the above co-allocation options in the user and administrator issues
into consideration. In the proposed algorithm, our Grid scheduler (1) receives
limited dynamic resource information from related RMs, (2) selects multiple
combinations of suitable resources using the information, and (3) co-allocates
the resources based on the selections. In phase (2), we modeled the co-allocation
problem as an integer programming (IP) problem and applied IP solvers, in order
to reflect the user and administrator options. We also describe how to apply the
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options to these phases. This proposed algorithm could also be applied to co-
allocation without advance reservation.

We evaluate the proposed algorithm in our advance reservation-based co-
allocation model with extensive simulation, and show the validity of the algo-
rithm in terms of functionality and practicality. Experiments on functional issues
show that our algorithm enables efficient co-allocation of both computing and
network resources provided by multiple domains, and can take administrator
co-allocation options as a first step. In the experiments on practical issues, the
calculation times of the proposed co-allocation method are acceptable for an
on-line service.

2 Advance Reservation-Based Co-allocation Model

2.1 Overview of the Resource Management Framework

To enable a QoS-guaranteed Grid, we have been developing a Resource Manage-
ment Framework called ’GridARS’, as shown in Figure 1. Each of the domains, A
andB, inFigure 1denotes anetworkdomainmanagedbya single administrative or-
ganization. This GridARS framework provides users with a QoS-guaranteed Grid,
which spans several management domains, and is based on advance reservation.

The GridARS framework consists of a Global Resource Coordinator (GRC),
which behaves as a Grid Scheduler, and Resource Managers (RMs), which man-
age each local resource. GRC and RM work together to provide users a QoS-
guaranteed Grid. NRM, CRM, and SRM in Figure 1 denote Resource Managers
for Networks, Computers, and Storages, respectively. More than one GRC is
allowed in a single system. GRCs could be configured in a coordinated hierarchi-
cal manner, or in parallel, where several GRCs compete for resources with each
other on behalf of their users. Some GRCs have a co-allocation planning capa-
bility, called Planner. Based on the reservation plans produced by a Planner,
GRCs will perform resource reservation on subordinate GRCs or RMs.

Global Resource 

Coordinator 

(GRC)

NRM

CRM

CRM
NRM

CRM

GRC

Domain B

User / Application

SRM
SRM

CRM

Domain A

Fig. 1. Overview of the Resource Management Framework
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2.2 User Requests

We have performed several experiments on our QoS-guaranteed Grid, where we
co-allocated several computing clusters, and light-path networks between those
clusters, and ran real applications [1,2,18]. The applications include a molecu-
lar dynamics simulation program with GridRPC and MPI, and HD video live-
streaming. The goal of the co-allocation algorithm proposed in this paper is to
create resource reservation plans for simultaneous co-allocation.

On the left of Figure 2, we show a resource request from a user. On the right
hand side, we show a plan generated by GRC Planner. For computing resources,
users can specify the number of sites, the number of CPUs or cores for each
site, and other attributes such as OSs. For network resources, users can specify
bandwidth between the computing resource sites, latency, and other attributes,
such as media types and availability. Users can also specify a time frame for each
resource. In Figure 2, we specify EarliestStartTime (EST ), LatestStartTime
(LST ), and Duration (D), where the user wants to reserve a time slot D units
long, start after EST and before LST , i.e., finish before LST + D.

The GRC Planner gets a request from a user, selects resource groups from a re-
source pool, as shown in Figure 3, and creates reservation plans. Figure 3 shows
a real resource pool used for an experiment performed by Japan’s G-lambda
project [19] and the United States’ EnLIGHTened Computing project[20]. The
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two projects achieved the world’s first inter-domain coordination of resource
managers for in-advance reservation of network bandwidth and compute re-
sources between and among both the US and Japan in the fall of 2006[2]D.

The reservation plan shown on the right hand side of Figure 2 demonstrates
how computing resources (SiteA, SiteB, SiteC) and network resources between
them are allocated and the start time and end time of the time slot are deter-
mined. Note that network topology produced by a Planner is not real network
topology with real routers and switches, but an abstracted higher-level notation.
This is because NRMs will be provided by the commercial sector, and abstract
away the underlying real network configuration. In the planned topology, a net-
work in a single domain is denoted as just a path. When the network spans
several domains, it will be denoted as a set of paths connected together. In
Figure 2, the network between SiteA and SiteC is denoted as a single path in
Domain1, while the network between SiteA and SiteB is denoted as two paths
in Domain1 and Domain2, connected at the domain exchange point X1.

2.3 Retrieving Available Resource Information from RMs

In order to have reservation planning, GRC has to retrieve available resource
information for the future. In our co-allocation model, we assume that RMs will
be provided by providers in the commercial sector, who will not disclose all the
available resource information, including reservation time tables. The G-lambda
project, which is a collaboration between industrial and governmental labora-
tories, AIST, KDDI R&D Laboratories, NTT, and NICT, has defined a web
services-based resource reservation interface called GNS-WSI, which takes ac-
count of commercial services. GNS-WSI provides operations retrieving available
resource information as well as reservation operations. We use the GNS-WSI
retrieving operations, in which a requester has to specify a time frame to get
available resource information.

3 An Advance Reservation-Based Co-allocation
Algorithm

3.1 The Stages of Resource Co-allocation

We propose an on-line advance reservation-based co-allocation algorithm with
the goal of creating reservation plans satisfying user resource requirements. The
algorithm is invoked at every reservation request arrival. The stages of reserva-
tion planning and resource co-allocation in GRC are as follows:

1. GRC receives a co-allocation request from a user.
2. GRC Planner creates multiple reservation plans for the request.

2i Planner selects N laddered time frames from [EST, LST + D].
2ii The Planner retrieves available resource information results at N time

frames from RMs.
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2iii Using this available resource information, the Planner determines N ′

(N ′ ≤ N) reservation plans, based on a co-allocation method described
in the next section.

2iv The Planner sorts N ′ plans by suitable order, which depends on co-
allocation options in user and administrator issues.

3. In accordance with the reservation plans created by Planner, GRC tries to
co-allocate the selected resources in cooperation with the subordinate RMs.

4. GRC returns co-allocation results, whether the resource co-allocation has
succeeded or not, to the user. If it has failed, the user will resubmit a request
with updated resource requirements.

As described in Section 2.2, a user can specify an exact reservation time or
a range using the ESTCLSTC and D parameters. In the former case, GRC
Planner creates reservation plans at the specified time frame. In the latter case,
the Planner seeks available resources of available time frames in [EST ,LST +D].
Therefore, the Planner creates multiple plans in stage 2. In stage 2i, it is possible
to allow GRC administrators to make a trade-off between creating more suitable
reservation plans with a large N and small planning cost with a small N . In stage
2ii, multiple query results are retrieved by a single query operation, using the
GNS-WSI interface described in Section 2.3. In addition, GRC Planner can send
queries to subordinate RMs concurrently. In stage 2iii, N reservation planning
can running concurrently. Co-allocation options shown in stage 2iv are described
in Section 3.4.

3.2 The Co-allocation Method Based on a General Optimization
Problem

We propose a co-allocation method for both computing and network resources,
modeled as an integer programming (IP) problem. This method is applied in
stage 2iii.

Resource Notation. We denote resources as a directed graph G = (V, E), as
shown in Figure 4, where V is a set of vertices in G and E is a set of edges
in G. Vertex vq denotes a computing resource site or a network exchange point
between network domains. Edges eo,p and ep,o denote network paths managed
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Fig. 4. Resources denoted as a graph
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by NRMs. In Figure 4, there are two network domains (Domain1 and Domain2),
which provide network paths. Here, eo,p denotes an edge from vo to vp, while
ep,o denotes an edge from vp to vo. Parentheses attached to a vertex denote
the number of available CPUs (or cores) at the sites, which will be referred to
as wci(i ∈ V ). Parentheses attached to an edge denote the bandwidth of the
path, which will be referred to as wbk(k ∈ E). Note that v2 and v3 in Figure
4 are network exchange points, which do not have any CPUs. We could add
more attributes on vertices and edges, such as network latency or availability.
The values per unit of each CPU and bandwidth are denoted as vci(i ∈ V )
and vbk(k ∈ E), respectively. These values will be prices or cumulative points
to reflect co-allocation options. Note that wbk and vbk are shared by eo,p

and ep,o.

Resource Request Notation. Next, we denote a resource request from a user
as a complete graph Gr = (Vr , Er), where Vr denotes required compute sites, and
Er denotes edges between Vr. The number of CPUs, provided by each compute
site, and the network bandwidth are denoted as rcj(j ∈ Vr) and rbl(l ∈ Er).

Modeling as a Mixed Integer Programming Problem. Now, we can plan
resource reservation as the 0-1 integer programming (0-1 IP) problem to deter-
mine the following variables, with the parameters shown above. “0-1 IP” aims
to find a combination of binary (0 or 1) variables to minimize or maximize an
objective function subject to linear constraints.

xi,j ∈ {0, 1} (i ∈ V, j ∈ Vr) (1)
yk,l ∈ {0, 1} (k = (m, n) ∈ E, m, n ∈ V,

l = (o, p) ∈ Er , o, p ∈ Vr) (2)

xi,j describes computing resource allocation, 1 means the requested resource
denoted by the column is allocated to the actual resource denoted by the row.
yk,l describes network resource allocation, 1 means the network path is taken,
while 0 means it is not.

The objective function and constraints are described as follows:

Minimize

∑
i∈V,j∈Vr

vci · rcj · xi,j +
∑

k∈E,l∈Er

vbk · rbl · yk,l

(3)

Subject to

∀j ∈ Vr,
∑
i∈V

xi,j = 1 (4)

∀i ∈ V,
∑
j∈Vr

xi,j ≤ 1 (5)



An Advance Reservation-Based Co-allocation Algorithm 23

∀i ∈ V,
∑
j∈Vr

rcj · xi,j ≤ wci (6)

∀l ∈ Er,
∑
k∈E

yk,l

{≥ 1 (rbl �= 0)
= 0 (rbl = 0) (7)

∀k ∈ E,
∑
l∈Er

rbl · yk,l ≤ wbk (8)

∀l = (o, p) ∈ Er, ∀m ∈ V,∑
n∈V,m �=n

y(n,m),(o,p) −
∑

n∈V,m �=n

y(m,n),(o,p) =
{

xm,o − xm,p (rbl > 0)
0 (rbl = 0) (9)

The objective function Equation (3) is meant to minimize the sum of the selected
compute and network resources values.

Equations from (4) to (6) are constraints on computing resources, while Equa-
tions (7), (8) are constraints on network resources. Equation (9) is a constraint
on both computing and network resources. Equation (4) ensures each compute
site request j will be allocated on just one site. Equation (5) ensures each real
site i will not be allocated to more than two sites. Equation (6) ensures each
allocated site i has more CPUs than the required number. Equation (7) denotes
that for a path l, the sum of yk,l is more than 1 when a user requests bandwidth
on path l, and 0 when a user does not. The sum will become 1 if the path is in-
cluded in a single domain, and become n if the path spans n domains. Equation
(8) denotes real path k can provide more bandwidth than required.

Equation (9) is derived from the mass balance constraints[21], which claim
that at any vertex on a graph, total inflows plus generation on the vertex are
equal to total outflows. Assume a path of flow f with one intermediate node
between start and end. Here, generations are f from the start point, −f from
the end point, and 0 from the intermediate node of the path. Assume we have a
bandwidth reservation request for path l. From application of the mass balance
constraint with flow f = 1, for each path l = (o, p)io denotes a start point and p
denotes an end point of l) and each m (a computing resource site or a network
exchange point), we obtain Equation (9). The value of Equation (9) will be 1
if m is the start point, and −1 if m is the end point, and 0 if m is the others.
Here, xm,o = 1 when m is the start point, xm,p = 1 when m is the end point,
and xm,o = xm,p = 0 when m is neither the start nor end point. Therefore, the
right of Equation (9) could be represented as xm,o − xm,p. Thus, this equation
ties xi,j and yk,l together.

The proposed co-allocation method, based on a general optimization problem,
could be applied to co-allocation without advance reservation. It is also effective
when some of the resources are specified by the users in advance.

3.3 Additional Constraints for Optimization

Generally, calculation times of general optimization problems, including 0-1 IP,
become exponentially long when the number of variables becomes large, due



24 A. Takefusa et al.

to NP-hard. We propose additional constraints, which are expected to make
calculation times of our co-allocation method shorter.

Subject to

∀l ∈ Er, ∀m, n ∈ V (m �= n), y(m,n),l + y(n,m),l ≤ 1 (10)

∀l ∈ Er,
∑
k∈E

yk,l ≤ Pmax (11)

Equation (10) indicates that both of the directed edges between the same two
points, (m, n) and (n, m), are not selected in each requested network. Equation
(10) enables solvers to avoid redundant search for an optimal solution. Equation
(11) specifies Pmax, the maximum number of paths, which make up each re-
quested network. Here, Pmax, given heuristically, makes the search area smaller
and calculation time prospects shorter, although we might not be able to find
an optimal solution, whose network consists of more than Pmax paths.

3.4 Reflecting Co-allocation Options in the Algorithm

As mentioned in Section 1, there are co-allocation options in user and GRC ad-
ministrator issues: A user uses her co-allocation option to prioritize (a) reserva-
tion time, (b) price, and (c) quality (availability), in addition to general resource
requirements. A GRC administrator has options to prioritize (A) load balancing
among RMs, (B) preference allocation to specific RMs, and (C) allocation suited
for each user service level.

These co-allocation options can be reflected in the proposed algorithm as
follows: For option (a), we sort reservation plans by late reservation time in
stage 2iv. For (b), we set the values vci and vbk to CPU and bandwidth unit
prices and sort plans by the total price in stage 2iv. For (c), we set vci and
vbk to their points, such as levels of fault tolerance, and sort plans by the total
points in stage 2iv. To fulfill the administrator’s options (A) and (B), we have
to weight each resource and add other objective functions. Option (C) could be
handled by modification of the available resource retrieval information, which
reflects service level requirements from the users.

4 Experiments

4.1 Simulation Model

We conduct simulations to investigate the validity of our co-allocation algo-
rithms, in terms of functionality and practicality. In the experiments on the
functional issues, we investigate if the algorithm can schedule both computing
and network resources from multiple domains efficiently, and if our algorithm
can take co-allocation options in user and administrator issues into consider-
ation. In the experiments on the practical issues, we compare the calculation
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times of our algorithm with/without additional constraints, Equation (10) and
Equation (11), applying different IP solvers.

In the both simulations, we assume the experimental environment shown in
Figure 3, used in the EnLIGHTened and G-lambda (ELGL) experiments. The
environment consists of three network domains and two domain exchange points,
as shown in Figure 5. In-domain computing resource sites, denoted by black
circles, are inter-connected by a complete graph and each domain exchange point,
denoted by a white circle, and each in-domain site is connected to every other,
respectively.

An overview of simulation settings is given in Table 1. In our simulations, there
are two users, UserA and UserB, and each user requests resource co-allocation,
repeatedly, as shown in Figure 6. Each user request arrives in the first 24 hours
and it reserves resources for the next 24 hours. Interarrival rate of each user
request is set to 407.327 [sec], so that the request loads are set to 10 [%] at
144 [min] to 100 [%] at 1440 [min]. The number of reservation plans N in the
GRC Planner is set to 10. For each request, co-allocation plans are sorted by
reservation time, and applied the (a) reservation time option. In the experiments,
we assume a smallish numbers of CPUs at each site (8 - 64 CPUs) and the
requested site (1-8), because the calculation times of our algorithm does not
depend on the number of CPUs, but on the number of sites.

4.2 Experiments on Functional Issues

First, we compare success ratios of resource co-allocation among two users, UserA
and UserB and investigate the functionality needed to reflect the administra-
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Table 1. Simulation settings

Simulation environment settings
Configuration No. of GRC=1, No. of NRM=3 (N, S, U), No. of CRM=10

No. of sites / domain name 4/N, 3/S, 3/U
Domain exchange points X1 (N, S, U), X2 (N, S)

No. of CPUs N{8, 16, 32, 64}, S{8, 16, 32}, U{8, 16, 32}
CPU unit value 1

Bandwidth [Gbps] in-domain paths : 5, inter domain paths : 10
Bandwidth unit values in-domain paths : 5, inter domain paths : 3

Resource requirement settings
Users UserA, UserB

Resource requirement types Type1,2,3,4 (Uniform distribution)
Requested No. of CPUs 1, 2, 4, 8 for all sites in Type1,2,3,4 (Uniform distribution)

Requested bandwidth [Gbps] 1 for all paths in Type1,2,3,4 (Fixed)
Interval of each user request Poisson arrivals
Reservation duration [min] 30, 60, 120 (Uniform distribution)

LST - EST Reservation duration × 3

tor option (C). In this experiment, we used GLPK (GNU Linear Programming
Kit)[22] as a solver for 0-1 IP in the proposed algorithm. We assume that the
users co-allocation option is (a), and the administrator options are (A) and (C).
In the experiments with option (C), the service level (SL) of UserB is set to
low: UserB can book half of the available resources, while UserA can book all of
them.

Figure 7 shows success ratios of resource co-allocation, requested by UserA and
UserB, respectively. The horizontal axis indicates elapsed time in each simulation
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Fig. 7. Comparison of resource co-allocation success ratios. The request load varies
from 10 [%] to 100 [%].
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and the vertical axis indicates the success ratio. Each plot shows the average
success ratio of requests that arrived between 0 and 144 [min] to between 1296
and 1440 [min] in 10 simulation runs, respectively. The request load is 0-10 [%]
between 0 and 144 [min] and 90-100 [%] between 1296 and 1440 [min]. “UserA”
and “UserB” denote UserA and UserB, and “-N” and “-S” denote results with
option (A) and (C) applied. UserB is set to a low SL.

The results of a normal case (“-N”) show that success ratios of UserA and
UserB are 0.918 and 0.897, when the request load = 50 [%] (720 [min]), and still
0.618 and 0.609, when the load = 80 [%] (1152 [min]). The main result here is
that the proposed algorithm is effective for co-allocation of multiple computing
and network resources spanning over multiple network domains.

In comparison of service levels, success ratios of UserA and UserB are compa-
rable in the results with option (A) (“-N”) applied. On the other hand, UserA’s
results show better success ratios, 0.595 when request load = 100 [%], than
UserB’s results, 0.374, in the option (C) results. Therefore, Figure 7 shows that
the algorithm can take option (C) into consideration.

Next, we compare the co-allocation results with administrator options (A) and
(B). In the cases with option (B), specific sites are prioritized by the weights of
CPUs. Figure 8 shows the results of applying option (A) (top), option (B) prior-
itized by the number of CPUs in each site (middle), and option (B) prioritized
by network domains (bottom). Each CPU unit value is set to 1 in the top cases,
1, 10, 100, 1000 for 64, 32, 16, 8 CPU sites in the middle cases, and 1, 10, 100
for domain N, S, U sites in the bottom cases. Our algorithm selects resources to
minimize total resource weight.

The simulation results show that resource utilization of the top graph increases
almost uniformly. On the other hand, sites with many CPUs and sites belonging
to domain N are preferentially selected in the middle and bottom graphs if the
total load of resource requests is not high. Therefore, the experimental results
prove that our algorithm can takes co-allocation options in administrator issues
into consideration.

4.3 Experiments on Practical Issues

The goal of our algorithm is to be used in an on-line service. However, our
algorithm is modeled as 0-1 IP, and so its calculation time becomes drastically
long when the number of valuables becomes large, due to NP-hard. Therefore, we
confirm our algorithm is practical when used to compare the calculation times
of our algorithms with/without additional constraints in Section 3.3, applying
different IP solvers.

In the comparison of IP solvers, we apply free open source solvers, GLPK
(GNU Linear Programming Kit)[22] and a satisfiability problem (SAT) based
solver, Sugar++[23] with a SAT solver, MiniSat[24]. Sugar++ enables a SAT
solver to solve an optimization problem, which maximizes or minimizes its ob-
jective functions. Sugar++ temporally determines the maximum or minimum
value of the objective function and solves a SAT problem using the SAT solver,
repeatedly. Then, Sugar++ finds an optimal solution.
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Fig. 8. Comparison of resource utilization between sites. Three patterns of adminis-
trator’s options are applied, option (A) (top), option (B) prioritized by the number of
CPUs in each site (middle), and option (B) prioritized by network domains (bottom).
For each axis, N0 - U2 indicate compute resource site names, 10 % - 100 % indicate
request load, and 0 - 0.8 indicate resource utilization of each site, respectively.
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Table 2. Comparison of calculation times of 0-1 IP

Avg [sec] Max [sec] σ
GLPK 0.779 8.492 1.721

GLPK-st 0.333 4.205 0.700
MiniSat-st 12.848 216.434 27.914

MiniSat-st-1 1.918 2.753 0.420

Experimental Results of Calculation Times. We compare four patterns of
solvers and constraints as follows:

GLPK: GLPK is applied.
GLPK-st: GLPK with additional constraints in Section 3.3 is applied.
MiniSat-st: Sugar++ and MiniSat with the additional constraints are applied.
MiniSat-st-1: Sugar++ and MiniSat with the additional constraints are applied,

however, this solves a SAT problem once only, and does not obtain an optimal
solution.

For each -st version, Pmax is set to 2 in the experiments.
Table 2 shows the average, maximum, and standard deviation (σ) of calcula-

tion values after applying the different combinations shown above. The results
of GLPK and GLPK-st show that GLPK-st is twice as fast than GLPK without
additional constraints. From the results one can see that much improvement
can be gained by applying additional constraints for IP problems. In our com-
parison of solvers, IP-based GLPK-st and SAT-based MiniSat-st, the GLPK-st
results show much shorter times than the MiniSat-st ones. The results here in-
dicate IP-based solvers are quite suitable for our scheduling problems. However,
MiniSat-st-1 shows the best performance of all combinations, in terms of the
maximum values and standard deviations.

Next, we wish to compare the average calculation times for each request in
Figure 9 and Figure 10. The horizontal axis denotes the request number and each
plot is the average calculation time of N = 10 reservation plans for each request,
because these N plans can be solved independently in the embarrassingly parallel
(EP) manner. The vertical axis of Figure 9 denotes elapsed time in log scale and
the results from 0 to 10 [sec] are shown in Figure 10.

Figure 9 indicates that the calculation times of solvers needed to obtain an
optimal solution are rather dispersed, while those of MiniSat-st-1 are not. How-
ever, the dispersion decreases when the request number becomes large. The main
results here indicate that the search areas of IP problems become small and the
calculation times decrease, when the available resources decrease.

In Figure 10, one can see the three lines of the results of applying MiniSat-st-
1. Therefore, the calculation time of MiniSat-st-1, which satisfies all of the con-
straints, but does not obtain an optimal solution, is proportional to the number
of vertices in Figure 6.

Discussion. There are lots of scheduling studies applying a sort of heuristic
method, because scheduling problems are known as NP-hard. On the other hand,
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the coverage of IP problems is expanding, because of the recent rapid increase in
computer performance and the improvement of IP algorithms and solvers. Also,
the IP calculation times can be reduced by applying additional constraints and
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approximate solutions, which does not obtain an optimal solution. Commercial
IP solvers, such as ILOG CPLEX[25], are also known to reduce calculation times
by applying additional constraints in pre-processing. In addition, approximate
solutions can provide a solution, which is not optimal, but close to an optimal
solution, with a short calculation time. Therefore, approximate solutions seem
efficient for scheduling problems, which do not need an optimal solution.

While the number of variables in the proposed algorithm becomes N3 de-
pending on the number of computer sites N , our co-allocation problem has the
following characteristics and modeling as an IP problem is an effective approach
for the problem:

– The search area of a single GRC can be localized, because GRCs are located
hierarchically as shown in Figure 1.

– Thenumber of variables scales by the number of computer sites, not computers.
– In practical use, additional constraints will be defined, such as those for

communication latencies, resource hardware requirements, and execution
environments.

5 Related Work

There are several Grid scheduling algorithms for both computing and network
resources. The differences between our algorithms are described as follows:

The VIOLA project has work on development of the MetaScheduling Ser-
vice (MSS)[14], which co-allocates both computing and network resources, based
on advance reservation. Roblitz proposed a Grid scheduling algorithm of co-
reservation for multiple resources, based on general optimization problems[15].
The differences between the above two algorithms and ours are: their GRC can
obtain all of the reservation time tables managed by local resource managers
and their algorithms assume a simple network resource model, such as a single
domain and single switch configuration.

Ando and Aida proposed a Grid scheduling algorithm for both computing and
network resources, and modeled a single domain network and multiple switch
configuration[16]. Their algorithm, based on a general backtrack approach, re-
serves computers and the related network paths incrementally, releases the re-
served resources when the next required resource could not be discovered, and
then finds the next candidate. This results in a complicated co-allocation process
and blocking of many resources during the process.

Elmroth and Tordsson also propose a co-allocation algorithm[17] for
NorduGrid[26]. Their algorithm fixes a reservation time and searches a com-
bination of required computers first, and the related network paths next. If it
cannot find the requested resources, it slides the reservation time frame and
searches for resources in the same manner, repeatedly. This approach causes
a long planning time, when constraints of the latter resources are strict, such
as less network bandwidth available, and when resource co-allocation is failed,
while our approach does not.
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Both backtrack and NorduGrid approaches were not able to find suitable re-
sources, e.g., due to expensive price, long communication latency, and redundant
path networks, because they select the first found resources. On the other hand,
our algorithm can take co-allocation options in user and administrator issues
into consideration and find suitable resources.

Netto and Buyya proposed automatic rescheduling of multiple co-allocation
requests of computing resources based on advance reservation[27], in order to
achieve high utilization. However, it is difficult to reschedule various allocated
resources automatically, when the number of allocated resources, including net-
works, becomes larger and the resources are provided by commercial entities,
which do not disclose the detailed reservation time tables and also charge for the
resources.

Rescheduling is an important issue for a QoS-guaranteed Grid not only to in-
crease system utilization but to recover failures. Our approach is that our monitor-
ing system[28] provides a user monitoring information on the reserved resources
and the user can send a modification request to our co-allocation system, if re-
quired. The proposed algorithm can be applied to such a modification request.

6 Conclusions and Future Work

We propose an on-line advance reservation-based co-allocation algorithm for
both computing and network resources on QoS-guaranteed Grids, constructed
over multiple network domains. The proposed IP-based algorithm can create
reservation plans satisfying user resource requirements and takes co-allocation
options in user and administrator issues into consideration. The proposed algo-
rithm could also be applied to co-allocation without advance reservation.

Our experimental results showed the validity of the proposed algorithm, in
terms of both functionality and practicality: Our algorithm enables efficient
co-allocation of both computing and network resources provided by multiple
domains, and can reflect reservation options in administrator issues. The calcu-
lation time needed for selecting resources is acceptable for an on-line service.

For future work, we will improve our algorithm and conduct further exper-
iments on the scalability with more actual constraints, such as communication
latencies, resource hardware requirements, and execution environments. We also
plan to apply sophisticated economy models for resource pricing and SLA mod-
els on resource provider sides, and will confirm that our algorithm can also take
user co-allocation options efficiently under these situations.
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Abstract. To improve the resource utilization and satisfy more users, a
Greedy Double Auction Mechanism(GDAM) is proposed to allocate re-
sources in grid environments. GDAM trades resources at discriminatory
price instead of uniform price, reflecting the variance in requirements for
profits and quantities. Moreover, GDAM applies different auction rules
to different cases, over-demand, over-supply and equilibrium of demand
and supply. As a new mechanism for grid resource allocation, GDAM
is proved to be strategy-proof, economically efficient, weakly budget-
balanced and individual rational. Simulation results also confirm that
GDAM outperforms the traditional one on both the total trade amount
and the user satisfaction percentage, specially as more users are involved
in the auction market.

1 Introduction

Due to the specialities such as geographical distribution, heterogeneity and site
autonomy, it is hard and challenging to manage grid resources. Fortunately, with
the emergence of the grid economy, economic-based model is proposed to allo-
cate resources in grid. This economic mechanism includes auctions, commodity
markets, tenders and posted price and has many attractive features[1,2].

Auction-based resource allocation has attracted much attentions since it re-
quires less global information, has decentralized structure and is easy to imple-
ment. Depending on the type of interactions between sellers and buyers, auctions
can be classified into two classes, one-sided auctions and two-sided auctions. In
one-sided auctions, only grid users submit bids to a central auctioneer, while in
two-sided auctions, also called double auctions, both users and resource owners
submit bids. The selling price and the users and the resource owners that trade
are decided by the central auctioneer based on different types of double auction
mechanisms. According to the trading units, the double auction can be classified
as SDA (Single-unit Double Auction), where at most one unit of resource can
be traded in one auction, and MDA (Multi-unit Double Auction), where more
than one unit of resource can be traded in one auction. MDA is more suitable
for a huge number of buyers and sellers trading through network, thus can be
well applied to resource allocation in a grid environment.

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2010, LNCS 6253, pp. 35–50, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The earliest work on economic-based resource allocation can be traced back to
1968 when Sutherland proposed the auction mechanism for resource allocation in
PDP-1 machine[3]. GRACE [4] presented a economic-based grid resource man-
agement architecture and described several economic models. Popcorn [5] was
a Web based computing market, which adopted both one-sided and two-sided
auctions to realize on-line resource allocation across the Internet. Spawn [6] man-
aged heterogeneous computer resources based on Vickery auction, so did CORE
[7]. Double auctions were used in JaWS [8] and preferred by many projects such
as Tycoon [9]. However, these projects only adopted the basic auction methods
instead of researching them deeply. In [10] and [11], a SDA market is designed,
but only the strategy behavior on the buyers side was considered. Still in a SDA,
[12] considered strategy behaviors both on the sellers and buyers sides. In [13],
a MDA mechanism was proposed for the electric market, using the uniform auc-
tion. Different double auction protocols are compared in [14] and combinatorial
MDA for resource allocation was studied in [15] and [16]. Double auction is also
further used in grid scheduling[17,18].

In this paper, we propose a double auction based resource allocation mech-
anism, a greedy MDA, trying to make the resource consumers and providers
trade as more as possible under the guarantee of their QoS demands(that is the
requirements for prices and quantities).

The rest of this paper is organized as follows. The next section gives the basic
framework of the auction market. In section 3 the disadvantages of the tradi-
tional auction mechanism are described and GDAM is presented. Some features
of GDAM are proved in section 4. In section 5, simulation experiments are con-
ducted and the results are discussed. The last section includes the conclusion of
this paper.

2 The Basic Market Framework

Generally, entities that can be traded in a grid market are different kinds of grid
resources, such as storage resource and computing resource. In this paper we
focus on auctions for only one kind of grid resource and the combinatorial auction
is not considered. The auction market is constituted by three components, Seller
Agent (SA), who works on behalf of sellers, Buyer Agent (BA), who works on
behalf of buyers and Auction Agent (AA), who manages the auction market. A
buyer will send to its BA the buy request, br = (q, p), where br.q is the quantity
of the resource it needs and br.p is the bidding price for a unit of the resource. A
seller will send to its SA the sell request, sr = (q, p), where sr.q is the quantity of
the resource it wants to sell and sr.p is the asking price for a unit of the resource.
And neither a SA nor a BA knows the treading requests of other agents. After
receiving the trading requests from SAs and BAs, AA makes use of a certain
double auction mechanism to decide the buyers and seller who can trade and the
amounts and prices of the resources that will be traded. AA organizes double
auctions at regular time interval, and BAs and SAs submit their own trading
requests at the auction period.
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The market framework is illustrated in figure 1.

Auction
Agent

Buy
Agent

. . .

Buy
Agent

Buy
Agent

Sell
Agent

. . .

Sell
Agent

Sell
Agent

Fig. 1. The basic market framework

3 Greedy Double Auction Mechanism

Most researches on double auction in the economic field aim at maximizing
the total market value, that is, maximizing the collective surplus of the market
participants. However, these mechanisms are not quite suitable for the grid.
Firstly, before the final trading price is determined by AA, neither SAs nor BAs
know how much profit they will get from trading per unit of resource. Thus, the
market can not guarantee a definite profit for the participants. Secondly, under
traditional mechanisms the final trading price for all the grid resources is the
same, which is unfair. A resource with a better quality may have a higher cost,
and is supposed to be traded at a higher price. Thirdly, in order to maximize the
collective surplus, traditional mechanisms tend to trade the buyers and sellers
with the largest gaps between their reservation prices. This causes two problems.
On one hand, the market value is shared by the minority and is distributed
unbalanced for only a small percentage of participants can make successful trade,
especially when the number of participants is large. On the other hand, the
utilization of grid resources is low. Few buyers can eventually benefit from the
resources they need, making many resources, which can potentially be traded
and utilized, idle. In this paper, a greedy double auction mechanism(GDAM) is
proposed which does not focus on how to maximize the total market value but
how to improve the resources utilization and benefit the majority of the market
participants.

Under GDAM, the auction market provides trading service for the partici-
pants, using trading price and trading amount as two QoS parameters. As for a
seller j he requires the selling service with srj .p and srj .q as his QoS require-
ments; as for a buyer i he requires the buying service with bri.p and bri.q as
his QoS requirements. A seller’s asking price is his expected profit plus the cost
of providing per unit of resource, while a buyer gets his bidding price by sub-
tracting the cost from the value created by consuming per unit of the resource.
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Let seller j’s cost of providing per unit of resource be scj and the value created
by buyer i’s consuming per unit of resource be cvi. Let qij denote the quantity
buyer i buys from seller j, then the surplus of buyer i for this transaction is

sbi = (cvi − bri.p)bri.q. (1)

and the surplus of seller j is

ssj = (srj .p− scj)srj .q. (2)

By dong this, the profits of the successful participants can be guaranteed. With
trading at the expected price, no agents will complain about the unfairness. And
our mechanism works in three different cases.

Case I: Supply over Demand (SoD). In this case, there are more supply
quantities than demand quantities available in the auction market. Let m be the
number of buyers and n be the number of sellers then (3) holds.

n∑
j=1

srj .q ≥
m∑

i=1

bri.q + T (T > 0). (3)

Without loss of generality, we assume

br1.p ≥ br2.p... ≥ brm.p. (4)

sr1.p ≥ sr2.p... ≥ srn.p. (5)

According to (4) and (5), GDAM arranges the demand quantities and supply
quantities in the descending order of price(refer to figure 2). We can see from
figure 2 that the price-quantity broken line of the buyers crosses that of the
sellers at some crossing points. These crossing points can be divided into two

Quantity

Price

sr1

br1

brK

brm

srn

brE

srF

srF+1

fi

gi

fi+1

gi+1

fi.p

fi.q

gi.p

gi.q

srL brK+1

Fig. 2. Supply over Demand
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classes: up-crossing point fi and down-crossing point gi. fi occurs when (6) and
(7) hold, and we call brK and srL up critical requests.

brK+1.p < srL.p < brK .p. (6)

L∑
i=1

sri.q >
K∑

i=1

bri.q. (7)

If and only if fi exists and (8) and (9) hold, gi will be generated, and we call
srF and brE down critical requests.

srF+1.p < brE .p < srF .p. (8)

E∑
i=1

bri.q >

F∑
i=1

sri.q. (9)

With all the trading requests submitted to AA by SAs and BAs, AA will use
the SoD auction rule illustrated in figure 3.

In step (2) and (3), we remove the the selling requests with too high ask-
ing prices and rank all the left requests, including demand and supply, in the
descending order of price. During the next do loop(step (4) to (8)), the first
up-crossing point and down-crossing point, along with the corresponding critical
requests SL and brE , is found, and then the leading selling request Si whose
asking price is under the bidding price of brE is figured out. To satisfy more
buying requests, we replace the critical selling request SL with the new selling
request Si by shifting the position of Si to that of SL. It is motivated by the fact
that there are more supply quantities than demand quantities and the buying
requests have a greater impact on the total trade quantities.

The do loop ends under two conditions. One is that there are no more up-
crossing points, which means the entire price-quantity broken line of sellers is
below that of buyers. The other is that there is only an up-crossing point but
no down-crossing points, which indicates that the price-quantity broken line
of buyers is above that of sellers before the up-crossing point while the price-
quantity broken line of buyers is below that of sellers after the up-crossing point.
The first condition is processed from step (9) to (19). In the first if-else state-
ment(step (10) to (16)), the selling request SSN , and buying request brBN , with
the smallest quantity margin between each other, are figured out. After that,
buying requests bri with indices i < BN and sellers with indices j < SN par-
ticipate in trade(step (17) to (19)). Note that SSN and brBN are sacrificed in
order to avoid the partial trade which couldn’t meet the QoS needs of trading
quantity. Though step (18) and step (19) can also lead to partial trade, this cut
of a buyer’s demand quantity or a seller’s supply quantity is usually so small
that it can be neglected without degrading the QoS of auction market. In step
(18), if Sj .q <

∑SN−1
j=1 Sj .q −

∑BN−1
i=1 bri.q/(SN − 1) , seller j sells nothing and

the ”burden”,
∑SN−1

j=1 Sj .q−
∑BN−1

i=1 bri.q/(SN −1)−Sj .q, will be split equally
by the rest of SN − 2 sellers. The procedure keeps running until each remaining
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(1) collect all the selling requests into S and all the buying requests into B
(2) delete from S the selling requests whose asking prices are higher than the
highest bidding price among B
(3) arrange the demand quantities and supply quantities in a descending order
of price
(4) do until there is no up-crossing point or no down-crossing point
(5) figure out the first up-crossing point and down-crossing point and the
corresponding critical requests SL and brE

(6) N = min{i|Si.p ≤ brE.p, L < i ≤ |S|}
(7) delete all the selling requests Sj(L ≤ j < N) from S
(8) enddo
(9) if there is no up-crossing point

(10) if
∑m

i=1 bri.q ≤ ∑|S|
j=1(Sj .q)

(11) figure out SN , where
∑SN−1

i=1 Si.q <
∑m

i=1 bri.q ≤ ∑SN
i=1 Si.q

(12) BN := m
(13) endif

(14) else figure out BN , where
∑BN−1

i=1 bri.q <
∑|S|

i=1 Si.q ≤ ∑BN
i=1 bri.q

(15) SN := |S|
(16) endelse
(17) if

∑SN−1
j=1 Sj .q ≥ ∑BN−1

i=1 bri.q
(18) bri(i < BN) buy all its quantity bri.q at price bri.p

Sj(j < SN) sell a quantity Sj .q−(
∑SN−1

j=1 Sj .q−∑BN−1
i=1 bri.q)/(SN−1)

at price Sj .p
(19) else Sj(j < SN) sell all its quantity Sj .q at price Sj .p

bri(i < BN − 1) buy a quantity bri.q − (
∑BN−1

i=1 bri.q −∑SN−1
j=1 Sj .q)/(BN − 1) at price bri.p

(20) else find the up-crossing point and the corresponding brK and SL

(21) if
∑L−1

j=1 Sj .q ≥ ∑K−1
i=1 bri.q

(22) bri(i < K) buy all its quantity bri.q at price bri.p
Sj(j < L) sell a quantity Sj .q − (

∑L−1
j=1 Sj .q − ∑K−1

i=1 bri.q)/(SN − 1) at
price Sj .p
(23) else Sj(j < L) sell all its quantity Sj .q at price Sj .p

bri(i < K−1) buy a quantity bri.q−(
∑K−1

i=1 bri.q−∑L−1
j=1 Sj .q)/(BN−1)

at price bri.p

Fig. 3. The SoD auction rule in case of supply over demand

seller trades a positive quantity. Step (19) involves the same situation of buyers.
The second condition is handled in the last four steps(step (20) to (23)). Only
K buyers and L sellers before the up-crossing point can trade and the processing
method is similar to the first one.

Case II: Demand over Supply (DoS). In this case, there are more demand
quantities than supply quantities available in the auction market. Then (10)
holds.



A Greedy Double Auction Mechanism for Grid Resource Allocation 41

br1

sr1

brK

srL

srL+1

fi+1

gi

gi+1

fi

srF

brE

brE+1

brm

srn

Price

Quantity

fi.p

fi.q

gi.p

gi.q

Fig. 4. Demand over Supply

n∑
j=1

srj .q + T <

m∑
i=1

bri.q (T > 0). (10)

Without loss of generality, we assume

br1.p ≤ br2.p... ≤ brm.p. (11)

sr1.p ≤ sr2.p... ≤ srn.p. (12)

This time, a DoS auction rule will be adopted by GDAM. The DoS rule is
similar to the SoD rule in Case I except that the buying requests will be shifted
to satisfy more selling requests since the selling requests have a greater impact
on the total trade quantities and should be satisfied first. According to the DoS
auction rule, GDAM arranges the demand quantities and supply quantities in
the ascending order of price(refer to figure 4). We can see from figure 4, the price-
quantity broken line of the buyers crosses that of the sellers at some crossing
points. The up-crossing point fi occurs when (13) and (14) hold, and we call
brK and srL up critical requests.

srL.p < brK .p < srL+1.p. (13)

K∑
i=1

bri.q >
L∑

i=1

sri.q. (14)

If and only if fi exsits and (15) and (16) hold, gi will be generated, and we call
srF and brF down critical requests.

brE .p < srF .p < brE+1.p. (15)

F∑
i=1

sri.q >

E∑
i=1

bri.q. (16)

The DoS auction rule is shown in figure 5.
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(1) collect all the selling requests into S and all the buying requests into B
(2) delete from S the selling requests whose asking prices are higher than the
highest bidding price among B
(3) arrange the demand quantities and supply quantities in the ascending order
of price
(4) do until there is no up-crossing point or no down-crossing point
(5) figure out the first up-crossing point and down-crossing point and the
corresponding critical requests BK and srF

(6) N = min{i|Bi.p ≥ srF .p,K < i ≤ |B|}
(7) delete all the buying requests Bj(K ≤ j < N) from B
(8) enddo
(9) if there is no up-crossing point

(10) if
∑|B|

i=1 Bi.q ≤ ∑n
j=1(srj .q)

(11) figure out SN , where
∑SN−1

i=1 sri.q <
∑|B|

i=1Bi.q ≤ ∑SN
i=1 sri.q

(12) BN := |B|
(13) endif
(14) else figure out BN , where

∑BN−1
i=1 Bi.q <

∑n
i=1 sri.q ≤ ∑BN

i=1 Bi.q
(15) SN := n
(16) endelse
(17) if

∑SN−1
j=1 srj .q ≥ ∑BN−1

i=1 Bi.q
(18) Bi(i < BN) buy all its quantity Bi.q at price Bi.p

srj(j < SN) sell a quantity srj .q−(
∑SN−1

j=1 srj .q−∑BN−1
i=1 Bi.q)/(SN−1)

at price srj .p
(19) else srj(j < SN) sell all its quantity srj.q at price srj .p

Bi(i < BN − 1) buy a quantity Bi.q − (
∑BN−1

i=1 Bi.q −∑SN−1
j=1 srj .q)/(BN − 1) at price Bi.p

(20) else find the up-crossing point and the corresponding up critical requests
BK and srL

(21) if
∑L−1

j=1 srj .q ≥ ∑K−1
i=1 Bi.q

(22) Bi(i < K) buy all its quantity Bi.q at price Bi.p
Sj(j < L) sell a quantity srj .q − (

∑L−1
j=1 srj .q − ∑K−1

i=1 Bi.q)/(SN − 1)
at price srj .p
(23) else srj(j < L) sell all its quantity srj .q at price srj .p

Bi(i < K−1) buy a quantity Bi.q−(
∑K−1

i=1 Bi.q−∑L−1
j=1 srj .q)/(BN−1)

at price Bi.p

Fig. 5. The auction rule in case of demand over supply

Case III: Supply equals Demand. In this case, the overall supply quantities
are equivalent or nearly equivalent to the overall demand quantities. And (17)
holds.

|
n∑

j=1

srj .q −
m∑

i=1

bri.q| < T (T > 0). (17)

Our mechanism is very simple. The SoD rule in Case I and the DoS rule in
Case II are used in turn. The one that enables a larger trade amount will be
finally adopted.
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4 Features of GDAM

Double auctions have some features, which can also be evidenced in our mecha-
nism, such as strategy-proof, weakly budget-balanced, etc.

Theorem 1: Under the assumption that the QoS requirements(prices
and quantities) of the buyers and sellers are private informations, GDAM
is strategy-proof with respect to both QoS parameters, weakly budget-
balanced and individually rational.

Proof: According to GDAM, the price-quantity broken line of the traded sellers
is always below that of the buyers. Assume M and N are the collection of these
buyers and sellers respectively, we can get

∑|M|
i=1 bri.p∗bri.q−

∑|N |
j=1 srj .p∗srj.q ≥

0 which indicates that the mechanism can always get nonnegative payment.
Hence our mechanism is weakly budget-balanced. In fact, the nonnegative sur-
plus is supposed to be earned by the market maker for managing the auction
market.

As stated in section 3, a bidding price covers the profit expected by the buyer
and the asking price contains the profit expected by the seller. Each agent gets
expected profit if it succeeds in trading, or zero if it fails. Hence our mechanism
is individually rational.

Suppose in the scenario of Case I, a seller srL over-reports his asking price
in order to get more profit, while others remain unchanged(refer to figure 6).
In figure 6 if seller L reports his asking price honestly, he will get the surplus,
ssL = (srL.p − scL)srL.q according to (2). If he over-reports his price by an
amount of d, his surplus becomes (srL.p + d − scL)srL.q with an extra surplus
of d · srL.q. If he continues over-reporting the price by another amount e with
srL.p + e > brE .p, he will lose the opportunity of making successful trade based
on SoD rule and gets a surplus of zero. Though over-reporting the price may
produce extra surplus, it is hard for a SA to implement this over-reporting

Quantity

srL

brE

srL+1

srL.p
srL.p+d

srL.p+e

Price

Fig. 6. Seller L over-reports his price while others remain unchanged
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strategy successfully under our mechanism. It is easy to explain. Since the QoS
requirements of trading agents are transparent between each other, a SA never
knows which agents will trade finally, let alone the BA who is ”just above” him.
Therefore a seller can not decide how much to over-report his price, and the
arbitrary over-reporting may actually reduce his surplus as discussed previously.
The same proving procedure can be applied to the scenario of Case II where
a buyer wants to under-report his price. Since the trading agents have no idea
of which auction rule (SoD or DoS) will be adopted by our mechanism and
misreporting their prices may take a big risk of losing profit, they will not cheat
on their prices. Furthermore, an agent has no incentive to misreport his trading
quantity since an agent’s trading price will not be affected by the quantity under
GDAM. So we can see that GDAM is strategy-proof with respect to both price
and quantity.

Theorem 2: GDAM enables larger trade amount than the traditional
mechanism, resulting in a better utilizing of grid resources.

Proof: Assume that K buyers and L sellers will finally trade under the tra-
ditional auction mechanism. If we arrange these L sellers in the descending
order of price, as illustrated in figure 7, we can see that these L sellers will
also succeed in trading according to SoD rule. Moreover, SoD results in a larger
trading amount. It works as follows. Seek for the buyer brE , which satisfies
brE .p < sr1.p ≤ brE−1.p. If brE does not exist, we move forward to find the
buyer brF , which satisfy brF .p < sr2.p ≤ brF−1.p. Continue the process until
the proper buyer is found. Without loss of generality, assume brE is found. Let
g =

∑E−1
i=1 bri.q −

∑L
j=1 srj .q. If there is a seller srH(H > L) that satisfies

srH .q < g and will not cause an up-crossing point (will not let (6) and (7) hold),
srH , which is abandoned under traditional mechanism, can also trade according
to SoD rule. The analysis for DoS rule can be conducted in the same way by
arranging the K buyers in the ascending order of price.

Price

Quantity

rsL (rbK+1,XK+1)
p*

br1

brK-1

brK

srL
srL-1

sr1
brE

Fig. 7. The L successful sellers are rearranged
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5 Experiments and Analysis

5.1 Parameter Definition

The parameters that will be used are given as follows:

– Number of Agents: We consider two cases. When the number of SA, n
equals the number of BA, m, we run simulation at m = n=10, 40, 70, 100,
200, 500, 800, 1000 respectively. When n �= m, the simulation is performed at
(m, n)=(20,180), (40,160), (60,140), (80,120), (100,100), (120,80), (140,60),
(160,40), (180,20) respectively.

– Resource Quantity: We assume that both the resource quantities de-
manded by buyers and that supplied by sellers are uniformly distributed
between 10 and 100 (the unit depends on the kind of resource).

– Resource Price: We assume the sellers’ asking prices are uniformly dis-
tributed between 50 and 100 (Grid $) and the buyers’ bidding prices are
subject to uniform distribution U(25, 75), U(50, 100) and U(75, 125)
respectively.

– Expected Profit: As for seller j, his expected profit, sepj, from per unit
of resource equals the result of subtracting the resource cost from his asking
price. As for buyer i, if we subtract his bidding price from the value that
he can create from consuming per unit of the resource, we get his expected
profit, bepi.

– Aggregate Surplus as: Assume M and N represent the collection of buyers
and sellers that can trade respectively. Then the aggregate surplus of the
auction market is

∑|M|
i=1 bepi · bri.q +

∑|N |
j=1 sepj · srj .q.

– Market Surplus ms: The market surplus is the profit that the market can
obtain. Assume M and N represent the collection of buyers and sellers that
can trade respectively. Let vp be the total value paid by all the buyers, va

be the total value got by all the sellers. We have va =
∑|M|

i=1 bri.p · bri.q,
vp =

∑|N |
j=1 srj .p · srj .q and ms = va− vp.

5.2 Performance Metric

The following performance metrics have been used for evaluation.

– Economic Efficiency Loss eel: In the economic field, a market’s efficiency
is usually measured by comparing the aggregate profit made by the partic-
ipants to the maximum profit that theoretically could be made. So under
GDAM, the efficiency of the double auction market equals as

as+ms . We treat
the profit obtained by the market maker, ms as an economic loss and the
economic efficiency loss can be expressed as eel = ms

as+ms , then the market’s
economic efficiency is equal to 1− eel.

– Trade Amount ta : The trade amount, ta is the total quantity of resources
that can be successfully traded under our mechanism. A lager trade amount
means a greater utilization of grid resources enabled by the market.
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Table 1. The auction results under different mechanisms

br.p = U(25, 75) br.p = U(75, 125)

n = m ta SN BN ta SN BN

TAM 10 64.1 2 2 325.1 6 8

SoD 10 114.5 3 5 452.3 8 9

DoS 10 121.9 3 5 466.1 9 9

TAM 40 479.2 9 11 1578.5 32 36

SoD 40 783.1 15 16 2076.6 37 39

DoS 40 800.1 15 17 2090.4 38 39

TAM 70 892.9 16 17 2817.3 55 47

SoD 70 1515 24 25 3693.2 68 60

DoS 70 1533.7 24 26 3728 69 63

TAM 100 1302.6 21 22 4052.9 68 63

SoD 100 2263.9 42 41 5320.6 98 92

DoS 100 2284.8 42 44 5335.7 99 90

TAM 200 2680.7 40 43 8178.1 144 158

SoD 200 4827.5 79 83 10760.3 189 199

DoS 200 4849.4 75 84 10760.2 189 199

TAM 500 6802.4 124 128 20561.3 382 377

SoD 500 12700.7 232 234 27151 496 494

DoS 500 12725.6 229 235 27187.1 499 495

TAM 800 10926.2 184 200 32915.7 576 590

SoD 800 20692.8 352 375 43549.5 767 798

DoS 800 20718.7 345 376 43565.5 774 796

TAM 1000 13673.1 267 261 41169.5 751 758

SoD 1000 26024.7 493 479 54498.8 996 993

DoS 1000 26151.4 487 484 54514.9 998 990

– User Satisfaction Percentage: Under GDAM either a seller or a buyer is
the user of the trading service provided by the auction market. The sellers’
satisfaction percentage, ssp of the trading service is measured by comparing
the number of sellers who trade to the number of all the sellers who partic-
ipate the auction. The same meaning holds true for the buyers satisfaction
percentage, bsp.

5.3 Experiment Procedures

The first experiment was performed to compare GDAM with the traditional
auction mechanism(TAM), actually the one proposed in [13]. The number of
the buyers, m is equivalent to the number of the sellers, n and the bidding
prices’ distribution varies from U(25, 75) to U(75, 125) while the asking prices’
distribution is fixed at U(50, 100). The experiment result is shown in table 1,
where SN and BN represent the number of the sellers and buyers that can trade
respectively. All the experiment results in this paper are the average of 10,000
same experiments.
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Fig. 8. The auction results with the varying difference between m and n

Fig. 9. The economic efficiency of SoD and DoS with m = n and br.p = U(50, 100)

We can see when the distribution of bidding price changes from U(25, 75) to
U(75, 125), under each of the three mechanisms both the trade amount and the
number of successful agents increase. This is easy to understand for a BA with a
higher bidding price has more probability to trade. When br.p = U(25, 75) with
the same m, the trade amount and the number of successful agents produced by
TAM are much less compared to SoD. The trade amount made by TAM only
takes up an average of 56.1% of the amount produced by SoD (with a minimum
of 53% and a maximum of 61%). This complies with Theorem 2. And SoD
satisfies much more users (with the average of ssp and bsp being 40% and 44%
respectively) compared to TAM (with the average of ssp and bsp being 23% and
24% respectively). When br.p = U(75, 125) we can draw a similar conclusion and
the user satisfaction percentage is nearly 100%. We can also find that there is
merely a slight difference between the results under SoD and DoS in terms of
trade amount and user satisfaction percentage, so we can select one out of the
two auction rules in random for Case III.

In the second experiment we use the scenario where n > m to simulate Case I
and m > n to simulate Case II. The adopted (m,n) pairs are (20,180), (40,160),
(60,140), (80,120),(100,100), (120,80), (140,60), (160,40), (180,20) and we assume
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the bidding price has a distribution of U(25, 75). When m− n < 0 the SoD rule
is used to decide which agents will trade ; when m − n > 0 the DoS rule is
adopted. The experiment result is illustrated in figure 8. We can see that with
the value of m − n increasing from -160 to 0 the trade amount increases under
either mechanism. The trade amount of SoD is always above the trade amount
of TAM and this distance becomes larger when m approaches n little by little.
When m = n both SoD and DoS produce the maximum trade amount (2258.9
and 2289 respectively). When m > n DoS is adopted and as the value of m− n
increases from 0 to 160, the trade amount decreases from 2289 to 514.7. Even
the demand quantity is not equivalent to the supply quantity, GDAM still have
an advantage over TAM in improving the utilization of grid resources and when
this equivalence becomes smaller the advantage becomes more obvious.

We have also performed an experiment to study the economic efficiency of
GDAM. Assume M and N represent the collection of buyers and sellers that can
trade respectively. Then the market’s economic efficiency loss, eel = ms

as+ms =∑ |M|
i=1 bri.p·bri.q−

∑ |N|
j=1 srj .p·srj .q∑ |M|

i=1 bepi·bri.q+bri.p·bri.q+
∑ |N|

j=1 sepj ·brj .q−srj .p·srj .q
. For simplicity, we assume the

seller’s expected profit equals the buyers’, and we assume the expected profit,
ep is 0.2, 0.4 and 0.6 respectively. The value of economic efficiency of GDMA
(1-eel) is shown in figure 9. We can see from figure 9 that as the number of the
participants becomes larger the economic efficiency of our mechanism approaches
100% nearer. So GDAM is suitable for the environment where there are a huge
number of participants, which can well meet the requirement of the grid. Note
that as ep increases from 0.2 to 0.6 the corresponding economic efficiency of both
SoD and DoS also increases. This is because successful agents with a larger ep
get more surpluses, making the economic efficiency loss relatively smaller.

6 Conclusion

Traditional double auction mechanisms aim at maximizing the total market
value instead of enabling more participants to benefit from the market, which
is to some extent a kind of system-centric allocation mechanism. In this paper,
a novel greedy double auction mechanism(GDAM) is proposed, under which
both SAs and BAs consume the trading service that can meet their own QoS
requirements of the expected price and amount. What is more important, to
satisfy as more participants as possible, GDAM makes use of SoD and DoS
rules in different cases. The advantages of GDAM have been proved, such as
strategy-proof and individually rational. Simulation results also confirm that
GDAM outperforms the traditional one on both the total trade amount and the
user satisfaction percentage. And as more agents join in the auction market, the
economic efficiency of GDAM will also increase making it is very suitable for the
grid environment.
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Abstract. The commercial exploitation of the emerging Grid and Cloud
markets needs SLAs to sell computing run times. Job traces show that
users have a limited ability to estimate the resource needs of their ap-
plications. This offers the possibility to apply overbooking to negotia-
tion, but overbooking increases the risk of SLA violations. This work
presents an overbooking approach with an integrated risk assessment
model. Simulations for this model, which are based on real-world job
traces, show that overbooking offers significant opportunities for Grid
and Cloud providers.

1 Introduction

Grid, Cloud, and HPC providers need intelligent strategies to optimally utilize
their existing resources, while not violating quality of services (QoS) guarantees
negotiated with the customers and described through service level agreements
(SLAs). For the acceptance test of committing to an SLA, a provider uses run-
time estimations as well as a deadline from the customer. Job traces show that
the user’s ability to estimate runtimes is limited[1]. This leads to a statistical
measurable overestimation of runtimes as well as to underutilized resources, as
jobs are tending to end earlier than negotiated.

To increase the resource utilization and therefore the profit of a provider, we
propose to combine overbooking and backfilling techniques for parallel resources
in the acceptance test. This instrument should increase system utilization, while
not affecting already planned jobs. To successfully use overbooking strategies,
we have to be able to calculate the risk of violating SLAs. Our approach uses
a history of the distribution of job execution time estimations and their corre-
sponding real runtimes. The probability of success (PoS) for overbooking can
then be calculated based on the likelihood that the job finishes within the given
runtime.

Scheduling Model. We propose a commercial scenario, where a job execution
is negotiated between a Grid customer and a provider. For operation, the grid
provider uses a planning based scheduling system. This means that the jobs are
not scheduled in a queue, but added to a plan of jobs, where each job has, if
accepted, an assigned start time, a number of assigned resources, and a maximum
duration. The scenario has four characteristics:

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2010, LNCS 6253, pp. 51–76, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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1. the underlying scheduling strategy is FCFS with conservative backfilling
2. the user pay for their submitted jobs proportionally to the computation time

they estimate
3. the customers have to receive their jobs’ results within a given deadline.
4. the monetary penalty inflicted on the system’s owner for missing a job’s

deadline is equal to the price users pay to for a successful execution

Under these assumptions, the our approach evaluates whether schedulers can
exploit automated runtime predictions (along with the fact users typically give
inaccurate runtime estimates) in order to overbook the gaps within the schedule
in a manner that increases the overall profit of the provider.

Technically, the plan of a scheduler has two dimensions, where the width is
the number of nodes in the cluster and the time corresponds to the height.
When a job request enters the system, the scheduler puts the job in this plan
as a rectangle between its release time and deadline. If the job is accepted, it
is placed in the schedule and no other jobs can be assigned to this area (see
Figure 1). Therein, the latest start is the point in time, where all previous jobs
ended consuming their whole estimated runtime. Here the job can start in every
case as long the underling resources did not crash. The earliest possible start
time is the time where the job can start if all previous jobs needed null runtime.
This practically means the start of the latest job starting before or the jobs
release time. The job will thus start somewhere in between the earliest and
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Fig. 1. Exemplary job schedule
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latest possible start. If the scheduling algorithm cannot place the job according
to the resource and deadline constraints, the job has to be rejected.

This paper is organized as follows: Section 2 presents the related work on
overbooking, scheduling, resource stability assessment, and planning. Section
3 introduces our methods and instruments to measure the inaccuracy of the
users’ runtime estimates. Section 4 describes how we calculate the probability
of success of overbooking a schedule. Section 5 evaluates the proposed methods
and algorithms and presents simulation results based on real job traces and the
paper finishes with a discussion about the achieved goals.

2 Related Work

This section presents the technical basics and related work in the area of schedul-
ing and overbooking. Firstly, it discusses theoretical approaches for planning,
followed by scheduling approaches. Then, the paper introduces related work on
machine failures and risk assessment in Grid and Cluster systems. At last, we
discuss related work on overbooking and its impact on planning and scheduling.

Planning Theory. Planning strategies are also known as Strip Packing problem
[2]. The aim is to pack jobs in a way that the height of the strip is minimal
while the jobs must not overlap themselves. Different strategies have been devel-
oped, which should pack as optimal as possible, where optimal packing itself is
NP-hard.

Strip Packing distinguishes between offline and online algorithms. Offline al-
gorithms are unusable in our scheduling approach, as jobs are not known in
advance. Approaches usable in our online scheduling environment are bottom-
left algorithms, which try to put a new job as far to the bottom left of the strip
as possible [3]. Level algorithms split the strip horizontally in levels of different
sizes [4]. In these levels, appropriate sized jobs can be placed. Shelf algorithms di-
vide the strip vertically in smaller shelves, which could be used for priority based
scheduling [5]. Hybrid algorithms are combinations of the above-mentioned algo-
rithms [2]. The disadvantage of the presented scheduling approaches is that jobs
in Grid or Cloud environments are connected with an SLA that contains a strict
deadline. Therefore, the approach of strip and shelf algorithms of packing jobs
earlier or later is impossible. A usable approach here is the simple bottom-left
algorithm, where the bottom is given by the earliest start time of a job and a
natural ceiling is given by its deadline.

Scheduling Approaches. Many scheduling strategies for cluster systems are still
based on first-come first-serve (FCFS). FCFS guarantees fairness, but leads to
a poor system utilization as it might create gaps in the schedule.

Backfilling, in contrast, is able to increase system utilization and throughput
[6]. It has not to schedule a new job at the end of a queue, but is able to fill gaps,
if a new job fits in. The additional requirement for the ability to use backfilling
is an estimation about the runtime of each job. The runtime estimations are,
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in our scenario, part of the SLAs. The EASY (Extensible Argonne Scheduling
sYstem) backfilling approach can be used to further improve system utilization.
Within EASY, putting a job in a gap is acceptable if the first job in the queue
is not delayed [6]. However, EASY backfilling has to be used with caution in
systems guaranteeing QoS aspects, since jobs in the queue might be delayed.

Therefore, Feitelson and Weil introduced the conservative backfilling approach,
which only uses free gaps if no previously accepted job is delayed [7]. Simulations
show that both backfilling strategies help to increase overall system utilization
and reduce the slowdown and waiting time of the scheduling system [8]. The work
also shows that the effect of the described backfilling approaches is limited due to
inaccurate runtime estimations. Several papers analyzes the effect of bad runtime
estimations on scheduling performance.

An interesting effect is that bad estimations can lead to a better performance
[9]. Tsafrirs shows an approach to improve scheduling results by adding a fixed
factor to the user estimated runtimes [10].

Effort has been taken to develop methods to cope with bad runtime estima-
tions. Several approaches tried to automatically predict the application runtimes
based on the history of similar jobs [11,12,13]. Tsafier et al. present a scheduling
algorithm similar to the EASY approach (called EASY++) that uses system-
generated execution time predictions and shows an improved scheduling per-
formance for jobs’ waiting times [14]. The approach shows that automatically
runtime prediction can improve backfilling strategies.

The approaches found in literature are not directly applicable to our work.
The algorithms target queuing based systems and provide best effort. Their aim
is to improve system utilization and to decrease the slowdown of single jobs. Our
approach is a planning based scheduling scenario with strict deadlines, given by
SLAs. We want to provide an acceptance test, where we have to decide if we
can successfully accept an additional job and thus improve a provider’s profit by
overbooking resources.

Machine Failure and Risk Assessment. Schroeder [15] and Sahoo [16] have shown
that machine crashes in cluster systems are typically busted and correlated and
Iosup and Nurmi showed that the failures rates of large clusters follows a Weibull
distribution best [17,18]. The project AssessGrid [19] created instruments for risk
assessment and risk management at all Grid layers. This includes risk awareness
and consideration in SLA negotiation [20] and self-organisation of fault- tolerant
actions. The results allow Grid providers to assess risk and end-users also to know
the likelihood of an SLA violation in order to accurately compare providers SLA
offers. The motivation of the research presented in this paper has its origin in
work done by AssessGrid.

Overbooking. Overbooking is widely used and analyzed in the context of hotels
[21] or airline reservation systems [22,23]. However, overbooking of Grid or Cloud
resources differs from those fields of applications. A cluster system can always
start jobs if enough resources are free, while a free seat in an airplane cannot be
occupied after the aircraft has taken off.



Risk Aware Overbooking for Commercial Grids 55

Overbooking for web and Internet service platforms is presented in [24]. It is
assumed that different web applications are running concurrently on a limited
set of nodes. The difference to our approach is that we assign nodes exclusively.
Therefore, it is impossible to share resources between different applications, while
it is possible to use execution time length overestimations, which are not appli-
cable for web hosting.

Overbooking for high-performance computing (HPC), cloud, and grid com-
puting has been proposed in [25,26]. However, the references only mention the
possibility of overbooking, but do not propose solutions or strategies. In the Grid
context, overbooking has been integrated in a three-layered negotiation proto-
col [27]. The approach includes the restriction that overbooking is only used
for multiple reservations for workflow sub-jobs. Chen et al. [28] use time sharing
mechanisms to provide high resources utilization for average system and applica-
tion loads. At high load, they use priority-based queues to ensure responsiveness
of the applications. Sulisto et. al [29] try to compensate no shows of jobs with
the use of revenue management and overbooking. However they do not deal with
the fact that jobs can start later and run shorter than estimated.

Nissimov and Feitelson introduced a probabilistic backfilling approach, where
user runtime estimations and a probabilistic assumption about the real end time
of the job allow to use a gap smaller than the estimated execution time [30]. In
the scope of estimating the PoS of putting a job in a gap, the probabilistic back-
filling and our overbooking scenario are similar. The difference is that Nissimovs
acceptance test is applied to an already scheduled job and aims to reduce its
slowdown, while our approach is used during the acceptance test at arrival time
[30].

We have proposed our ideas for overbooking with focus on a single resource
[31,32] and are extending the algorithms and investigations for parallel resources
in this work.

3 Probability Density Function

The Probability Density Function (PDF) for a job describes the likelihood that
a job ends after exactly x % of its estimated runtime. An example for a PDF is
given in Figure 2, which shows this probability distribution for all jobs submitted
to a compute cluster in 2007.

Building a PDF. We assume that a job has an assigned start time, but it can
start anytime after its release time, if the corresponding resources are free earlier.
Therefore, all currently running jobs on the assigned resources have an influence
on the real start time of a new job. Every such job has its own probability density
function that describes its likelihood to end at some point in time. The aim of
the following algorithm is to build a joint PDF, which contains information for
a set of jobs. This PDF is the basis to calculate the probability that this set of
jobs ends before the deadline of the last job.

The challenge is that several jobs j1 to jn can end before the start of a new
job. The maximum number n of jobs is equal to the amount of resources required
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Fig. 2. The PDF derived from all jobs of 2007 in the examined cluster

by the job. The minimum number is zero, when all resources are free at the job’s
release time.

The latest point in time, where a job will start is the latest planned finish
time of any job planned on the used resources before.

However, a job is allowed to start earlier if possible. The earliest possible
start time is either the jobs release time or the time where the job can start if
all previous need zero runtime. This is the start time of the latest job starting
before. The new job might start directly after this job’s start, if it ends directly
after dispatching, for example due to a missing input.

An example is given in Figure 1 for a job which requires five resources . We
have to calculate the PDF of all jobs that are scheduled before and can possibly
run in the time between the release and start of the new job.

Deriving PDFs from Job Traces. One way to create PDFs is an analysis of the
ratio of real to estimated runtime of historical job traces. Figure 2 shows the
Probability Density Function of an exemplary cluster for 2007.

This work assumes that the user’s estimation accuracy will not change too
much over time. Thus, the past performance of users might be a good estimate
for the future. The more job traces are available, the more information the PDF
can contain. This work did not only calculate a basic PDF for all jobs, but also
different PDFs for different estimated job runtimes.

In Figure 3, we show eight different cumulative distribution functions (CDF)
each for an estimated time range, which are integrated over the corresponding
PDFs. The figure shows that the estimation quality of the users is best for
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Fig. 3. The CDF for several time slots

jobs from three to four hours. As result, we assume that quality of the users’
estimations in our planning based scheduling also depends on the estimated
length of the runtime.

Calculating the joint PDF for a Job. We have derived several PDFs for different
runtime estimations. Thus, when a new job arrives in the system, the most
appropriate PDF, according to the estimated runtime, is chosen for the job itself.
Unfortunately, the PDF is not a continuous function, but given from traces. In
our framework, we have decided to use discrete steps with one value for each
percent step.

For the calculation of the probability that a job ends at time t, it is necessary
to calculate the expected joint probability density function for the execution
time distribution for the job and its predecessors. In the case that both PDFs
are overlapping, the expected joint execution time distribution consists of the
convolution of the jobs basic PDF and the calculated PDF of all jobs finishing
earlier (see also [32]).

For the simulation, the convolutions are based on discrete values and are
stretched or shrank according to the required number. This is given by the
number of steps used per time unit and the length of the job. In reality the
distributions are continuos functions and the discrete mapping reduces the ac-
curacy. Nevertheless, the convolutions have to be calculated numerically, as no
(reasonable) closed formula exists.
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4 Risk Assessment for Overbooking

The aim of this section is to define the statistical model used to calculate the
probability of success (PoS), which is later assigned to every job. The PoS is cal-
culated based on the statistical runtime overestimations, the estimated runtime
for the job, the maximal available runtime inside the gap, as well as the failure
rate of the resource. If the gap is smaller than the estimated runtime, there is a
chance that the job will still be successful, if it finishes earlier.

The PoS helps the overbooking algorithm to manage and control the underly-
ing scheduling. An acceptance test has to be applied for each new job to decide
whether it is beneficial to accept this job even when the underlying resources
are overbooked.

Table 1. Job scheduling information

Variable Content

r release time
ω estimated execution time
ddl deadline
s start time
f finish time of the job
n number of nodes

We assume that the system consists out of N resources, where each resource
has the same failure rate λ and repair rate μ. A job j requests n resources and
has an earliest release time r, an estimated execution time ω, and a deadline ddl.
When the job is placed, the start time s is either its release time or the finish
time of the last previous job. The finish time f is important if the scheduling
strategy follows conservative backfilling, where the job should not delay following
jobs. Therefore, the job will be killed at f = snext.

Calculating the PoS for Overbooking. The probability of successfully complet-
ing an overbooked job depends on the probability of resource failures and the
probability that the new job finishes in time. To finish in time means that the
job has an execution time that fits into a gap between flast and snext. For
the calculations, we will define a job j as a tupel [s, r, ω, ddl, n]. The result
of the calculation is the probability that a new job is successful in a given gap.

PoS(jnew). The probability PoS(jnew) depends on the probability Pavailable(s)
that the requested resources are operational at start time s, the probability
Pexecutable(jnew) that the job is able to end within its given maximum execution
time, and Psuccess(jnew) which is given by the machine failure rate λ and the
job’s execution time. Therefore,

PoS(jnew) = Pavailable(s) · Pexecutable(jnew) · Psuccess(jnew).
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Pavailable(s). The probability that the resource is operational at the start time
is

Pavailable(s) = (
MTTF

MTTF + MTTR
)n = (

1
λ

1
λ + 1

μ

)n = (
1

1 + λ
μ

)n

where n is the requested number of resources, MTTF is the mean time to failure
1
λ and MTTR is the mean time to repair 1

μ . This model assumes that the node
failures are independent, which is a simplification compared to previous work
[17,15]. It has been shown that node failures are bursty and correlated. However,
as a job execution is not possible even when one of the planned resources fails,
we do not include the amount of other node failures here. In praxis, when the
failure rates and behavior of the underling cluster system is known Pavailable(s)
should be analyzed in more detail. However, the failure analysis is not in scope
of this work.

Pexecutable(jnew). The calculation of the probability to successfully execute
Pexecutable(jnew) is given by the PDF convolution. The result (between 0 and
1) is the PoS of the job. The higher this value is, the more likely is the success.

If the job jnew has no predecessor it is scheduled at its release time and
Pexecutable(jnew) is given by its own execution time distribution and the maximal
execution time t of the job. Pexecutable(jnew) = 1 if the job has its full estimated
execution time ω available and less if the job is overbooked.

If the job jnew has one or more direct predecessors the convolution of the
execution time distribution has always to be computed with the joint distribution
of the previous jobs, which already includes the distributions from all possibly
influencing previously planned jobs.

Pexecutable(jnew) =
∫ t

0

(PDFjobs before ◦ PDFnew job)

Psuccess(jnew). Psuccess(jnew) describes the probability that the job’s resources
survive the execution time. It has been shown that crashes in cluster systems
are correlated an bursty [15,16] and the failures rates of large clusters follows
a Weibull distribution [17,18]. Following, the definition of Psuccess(jnew) as 1 −
e−( x

β )k

would describe the survival rate. Here x is the execution time, β > 0
describes the spreading of the distribution, and k describes the failure rate over
time. A value of k < 1 indicates that the failure rate decreases over time, due to
hight infant mortality, k = 1 means the failure rate is constant, and a value of
k > 1 indicates that the failure rate increases with time, e.g. due to some aging
process.

However, the Weilbull distribution describes an aging processes of the re-
sources over years while the typical jobs are lasting hours to some days. In
addition, the failure rate λ has to be adapted over the day and week/weekend
as it is shown that it depends on the load of the system [15,16]. As the current
workload traces do not contain the corresponding machine failure traces, we con-
centrate on the job traces and simplify the failure rate. We assume a constant
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failure rate λ for the job execution time x. The constant failure rate allows us
to model the probability that the job’s resources survive the execution time as
the constant failure probability λ, the job’s execution time x, times the number
of requested resources n, and therefore,

Psuccess(jnew) = e−λ·x·n.

Risk an Opportunity of Overbooking. Mathematically, the opportunity of over-
booking would be defined by the PoS of the job and the possible income described
as fee of the SLA. On the other hand, there is always a risk accepting an over-
booked job. This is defined as the probability occurrence times the impact of
this event. The probability of the bad effect is the PoF of accepting the job and
the impact is described by the penalty defined in the SLA for a violation.

Accordingly, during SLA negotiation a simple equation can decide whether it
is beneficial to accept an SLA with overbooking or not.

– If(PoS · Charge > PoF · Penalty) accept the SLA,
– else reject the SLA.

This term simply says: Do not accept jobs, where the risk is higher than the
opportunity.

Possible Planning Strategies. Generally, the scheduler holds a list of all jobs
in the schedule. For each new job jnew arriving in the system, the scheduler
computes the PoS for the execution of this job in every free space in the sched-
ule where the job might be executed. For the concrete implementation of the
scheduling algorithm, several strategies could be applied. A conservative ap-
proach could be chosen, where the job is placed in the gap with the highest PoS,
a best-fit approach uses the gap providing the highest profit, while still ensuring
an acceptable PoF and a first fit approach places the job in the first gap with
acceptable PoS.

Implemented First Fit. In this paper we will further investigate an overbooking
strategy based on first fit. We check all time-slots starting with the release time
of the job where at least the requested amount of resources is available. For
each time slot, the algorithm checks, how long the requested resources will be
available. If more resources than requested are available, the algorithm chooses
the first resources according to their numbers, placing it as left as possible. The
algorithm calculates the PoS for placing the new job in this gap based on the
chosen resources, the gap length, and the joint PDF. If the PoS is higher than
the given threshold, the algorithm places the job in the gap. The approach is
thus strongly related to the bottom left first approach in the field of strip packing
algorithms [3].

The Overbooking Process. Concluding, the overbooking algorithm follows 5 steps:

1. For every new job
2. Detect the possible places for the job
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3. Do for all places beginning with the first
(a) Calculate the joint PDF for the jobs before
(b) Combine the PDF of the jobs before and the actual job’s PDF.
(c) With this PDF, the resource stability, and number of resources, build

the PoF
(d) If the PoF is smaller than the threshold, accept the job

4. If no place with suitable PoF has been found, reject the job.

5 Evaluation

This section describes the evaluation of the benefit of our overbooking approach.
We have used four job traces from the parallel workloads archive1 as input,
namely SDSC SP2, KTH, BLUE, and CTC. The presented simulations eval-
uate the outcomes for conservative backfilling and two different overbooking
approaches. Firstly, we use a basic statistical model with one PDF built from
past user-estimations and secondly, we use an extended statistical model with
several PDFs for different time slice lengths.

Simulation Model. Several parameters influence the simulation results. For each
test run, the incoming jobs contain the number of required nodes and an esti-
mated and real job length. The job submission times and their release times as
well as the up and downtime of the resources have been randomly chosen (see
Table 2). Based on this input data, the strategies have been applied and the
results are evaluated.

Simulation Resources: Actually, we chose the number of nodes for the simulation
according to the size of the cluster system where the traces were from. Thus,
the numbers of nodes in the simulation were 128 nodes for the SDSC trace, 100
for KTH, 144 for the BLUE trace, and 430 nodes for CTC. The stability of the
underlying resources is not given in the traces. Therefore, the simulation has set
the chance to survive a month for each resource to 95%, which correspondents
to λ = 0.000068943 and lasted the MTTR of 12 hours (μ = 0.08333).

Table 2. Job Creation Model

Variable Description

req. job length e Chosen from job traces
real job length ω Chosen from job traces

average time between submission o 1 hour
average delay between job submission and release time r 12 hours

deadline ddl r + 5 · e
req. nodes n Chosen from job traces

1 Parallel Workloads Archive:
http://www.cs.huji.ac.il/labs/parallel/workload/
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Charge and Penalty. A very important point for the economical adaptability of
overbooking is the ratio of the charge of an SLA to its penalty. The overbooking
strategy has to be more careful, if ratio between penalty and charge is higher
while the opportunity becomes bigger for higher charges. The simulation assumes
the charge and penalty are the same and one hour execution time counts as one
virtual money unit.

Job Creation Model. The jobs arrival times follow an exponential distribution
with given delay to the last job. This delay directly describes the load of the
simulation, the faster the jobs are arriving the higher the possible utilization.
The chosen simulation parameters enforce that more jobs are submitted than
the system could successfully execute. This is done to be able to simulate an
environment were overbooking seems to be promising. The release time of the
jobs also follows an exponential distribution with a mean of 12 hours which is
added to the job submission time. Each simulation ends after the deadline of the
last accepted job.

One input parameter of each simulation run is a threshold Pmax that provides
the maximum PoF acceptable by the scheduler for different situations. The over-
booking strategy of accepting jobs is based on the PoF given by the convolution
of the execution time distribution with the distribution of the previous jobs. A
job is placed in the first gap where the calculated PoF is lower than Pmax.

Use of Different Job Traces. We have removed all jobs that do not contain an esti-
mated runtime as well as a real runtime entry. All jobs except the last 1, 000 trace
entries were used for each setting to learn the jobs’ runtime behavior. Based on
this jobs we created, according to Section 3, a distribution for the simple overbook-
ing approach and several time slice distributions for the time slice overbooking.
Thereafter, we have used the last 1, 000 jobs as simulation input.

SDSC. Figures 4 to 7 show the results based on the SDSC SP2 trace. Figures 4
and 5 show the accumulated results of Figures 6, and 7. This means for the jobs
Figure 4 contains the successful minus the failed jobs and Figure 5 contains the
profit minus the penalty. For this simulation, 0.5 hours have been chosen as basic
random value for the delay between the jobs. The SDSC cluster system had 128
nodes. From the 60, 000 jobs of SDSC the first 59, 000 were taken to learn the
jobs’ runtime behavior. The simulation starts with a maximum acceptable PoF
for a job of 0.05 and ends with 1. Like in all following simulation runs, 1000 jobs
were submitted to the system.

The backfilling strategy always planed 570 jobs with 2, 600 hours execution
time. Both overbooking strategies have at the beginning a sum of 770 jobs and
a bit more than 2, 600 hours gain. These 770 jobs are the successful jobs minus
the failed jobs.

The number of jobs is for both overbooking approaches at the beginning
Pmax = 0.05 much better than backfilling and then rapidly shrinking. This has
two reasons. Firstly, for a higher threshold, jobs with more nodes and longer
estimated runtimes are accepted. This circumvented the acceptance of some



Risk Aware Overbooking for Commercial Grids 63

0 10 20 30 40 50 60 70 80 90 100
450

500

550

600

650

700

750

800

Pmax in percent

N
um

be
r 

of
 J

ob
s

Sum of successful jobs with backfilling
Sum of successful jobs with simple overbooking
Sum of successful jobs with time slice overbooking

Fig. 4. SDSC: Sum of successful jobs
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Fig. 5. SDSC: Sum of profit

shorter jobs. Secondly, an increasing amount of jobs failed with the increasing
Pmax.

For the gain, which reflects the successful utilization of the resources, the
behavior is a little different. The gain of simple overbooking is at the beginning
just a little bit better than the backfilling approach and shrinks for higher Pmax.
This shows that the quality of the underlying statistical analysis is paramount
for a successful overbooking approach. The profit for the time slice approach



64 G. Birkenheuer, A. Brinkmann, and H. Karl

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

Pmax in percent

N
um

be
r 

of
 jo

bs

Fig. 6. SDSC: Shown is the number of successful and failed jobs
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Fig. 7. SDSC: Shown is the profit and penalties of successful and failed jobs

increases from Pmax = 0.05 to 0.1 where the sum of successful jobs is falling.
This is caused by the fact that the simulation has accepted some longer jobs
including more nodes, which were not chosen in the run with a lower threshold
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Fig. 8. KTH: Sum of successful jobs

(0.05). Thereafter, the gain of time slice overbooking is falling as more resource
consuming jobs are accepted. Some of this jobs are failing hand in hand with
the higher accepted risk. This shows that the threshold choice is very important
for successfully applying overbooking. The gain of simple overbooking is worse
than backfilling from a Pmax of 0.1. The time slice overbooking performs better
until a Pmax of 0.3.

For this simulation, Pmax = 0.1 should be chosen to maximize profit. With
the SDSC traces it is possible to increase the profit by 30% compared to a
conservative backfilling strategy.

All in all, there are many peaks in the figures. This is caused by the fact that
with little higher PoF threshold an additional job can be accepted that prohibits
the acceptance of some following jobs and vice versa.

KTH. Figures 8, 9,10, and 11 show the results based on the KTH trace. For
this simulation, 0.1 hours have been chosen as basic random value for the delay
between the jobs. The KTH cluster had 100 nodes. From the 28, 500 jobs of KTH
the first 27, 500 were taken to learn the jobs’ runtime behavior.

The backfilling strategy always planed 400 jobs with 2, 100 hours execution
time. The simple overbooking strategy has at the beginning also a sum of 400
successful jobs with 1, 200 hours gain, while the time slice overbooking has a
sum of 600 successful jobs and 2, 600 hours gain.

The gain of simple overbooking is nearly always worse than the backfilling
strategy. This shows that applying overbooking with a simple statistical analysis
can have a severe impact on the providers profit. The sum of successful jobs and
gain is falling rapidly under the backfilling level. Interesting is that the number
of successful jobs and profit is rapidly shrinking from 0.05 to 0.1 and all in all
less jobs are accepted. This means, due to a little higher accepted PoF, jobs with
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Fig. 9. KTH: Sum of profit
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Fig. 10. KTH: Shown is the number of successful and failed jobs

more resource requirements are accepted and fail. With higher Pmax the amount
of successful jobs is increasing again. This has little effect on the sum of successful
jobs as simultaneously the number of failing jobs is also increasing. However, with
the use of an improved statistical analysis even with a varying behavior of jobs
the overbooking can, carefully adapted, increase the profit. With Pmax = 0.05
the gain of time slice overbooking is better than the backfilling approach. It
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Fig. 11. KTH: Shown is the profit and penalties of successful and failed jobs

is increased by about 23 %. This trace shows that for some user behaviors on
clusters an enhanced statistical analysis should be adapted, to further improve
the overbooking result. Using statistical analysis based on applications or users
basis serve this purpose.

BLUE. Figures 12, 13,14, and 15 show the results based on the BLUE trace.
For this simulation, 1 hour has been chosen as basic random value for the delay
between the jobs. The BLUE cluster had 144 nodes. From the 243, 000 jobs of
BLUE the first 242, 000 were taken to learn the jobs’ runtime behavior.

The backfilling strategy always planed 330 successful jobs with an execution
time gain of 2, 500 hours. Both overbooking strategies have at the beginning a
sum of 690 successful jobs and 2, 500 hours gain. Overbooking strongly depends
on Pmax. For the first simulation runs with low Pmax the profit and jobs improves
with the increasing Pmax. From a Pmax of 0.2 the sum of successful jobs falls due
to less accepted but larger jobs and from a Pmax of 0.4 also the gain is falling
due to the continuous increasing amount of violated SLAs. Backfilling has more
gain than simple overbooking from Pmax = 0.5 and is better than time slice
overbooking from a Pmax = 0.8. For the BLUE trace and a Pmax = 0.25, the
simple overbooking strategy can increase the gain by 50% and the time slice
overbooking can increase the gain by 55%.

CTC. Figures 16, 17, 18, and 19 show the results based on the CTC trace. For
this simulation, 0.1 hours have been chosen as basic random value for the delay
between the jobs. The CTC cluster had 430 nodes. From the 67, 000 jobs of CTC
the first 59, 000 were taken to learn the jobs’ runtime behavior.
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Fig. 12. BLUE: Sum of successful jobs
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Fig. 13. BLUE: Sum of profit

The backfilling strategy always planed 840 jobs with 7, 700 hours execution
time. Both overbooking strategies have at the beginning a sum of 930 successful
jobs and also 7, 700 hours gain. The gain of the simple overbooking approach is
maximal for Pmax = 0.1 and falls under the gain of backfilling from Pmax = 0.15.
The time slice approach produces a maximal gain for Pmax = 0.15 and is falls
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Fig. 14. BLUE: Shown is the number of successful and failed jobs
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Fig. 15. BLUE: Shown is the profit and penalties of successful and failed jobs
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Fig. 16. CTC: Sum of successful jobs
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Fig. 17. CTC: Sum of profit
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Fig. 18. CTC: Shown is the number of successful and failed jobs

Fig. 19. CTC: Shown is the profit and penalties of successful and failed jobs

under the backfillings’ gain from a Pmax = 0.3. For the CTC trace and a Pmax =
0.1, the simple and time slice overbooking strategy can increase the gain by 4 %.

CTC with low load. Figures 20 and 21 show the results based on the CTC trace
with a low load. For this simulation, 1 hour has been chosen as basic random
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Fig. 20. CTC with low load: Sum of successful jobs

0 10 20 30 40 50 60 70 80 90 100
7650

7700

7750

7800

7850

7900

7950

8000

8050

Pmax in percent

G
ai

n 
in

 e
xc

eu
tio

n 
ho

ur
s

Gain of backfilling
Gain of simple overbooking
Gain of time slice overbooking

Fig. 21. CTC with low load: Sum of profit

value for the delay between the jobs. The backfilling strategy always planed 978
jobs with 8, 000 hours execution time, thus nearly every incoming SLA. We skip
the figures for profit/penalty and success/failed jobs here as nothing happens.
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The overbooking approaches accept at the beginning less jobs than the back-
filling approach. The reason for this behavior is that the risk of machine outages
is also calculated in the PoF calculation; this means that for long running jobs
including many cores there is a chance that the job might fail due to a machine
outage. When the threshold is very low the machine does not accept some of
this jobs even if the machine is empty. With a threshold of more than 0.1 the
overbooking is similar to backfilling. As no more jobs can be accepted, even
accepting high risk, the overbooking profit does not decrease.

6 Discussion

This work aims to increase a providers profit in a commercial scenario, by ap-
plying overbooking to resource planning. In the evaluation section we simulated
the approach based on job traces from the parallel workload archive.

The simulation underlines that overbooking, carefully applied, provides a good
opportunity for a grid provider to further increase its profit. For instance:

– With the SDSC traces and a threshold of Pmax = 0.1 the profit is increased
by 30% compared to a conservative backfilling strategy.

– With KTH and Pmax = 0.05 the profit is increased by 23 %.
– With BLUE and Pmax = 0.3 the profit is increased by 55 %.
– With CTC and a Pmax = 0.15 the profit is increasing by 4%

In addition, the evaluation shows that the performance of the time slice over-
booking is nearly always better than the simple overbooking. This shows that
the quality of the underlying statistical analysis is paramount for a successful
overbooking approach.

Where with some traces the profit is increasable by over 50 %, for others only
very little additional profit is possible. An improved statistical analysis might still
allow to increase the profit, however when the jobs of users in a cluster system
(nearly) always fully use then estimated runtime the application of overbooking
is not profitable. In addition, the last evaluation shows that the application of
overbooking makes sense in cluster systems with high load only.

7 Conclusion

This paper has motivated the idea of using overbooking to increase the ability
to accept more SLAs in Grid, Cloud or HPC environments. As overbooking
increases the probability of SLA violations, mechanisms for assessing the risk
have been shown. The evaluation shows that the additional profit depends on
the load of the system, the accuracy of the underlying runtime estimations, and
the given real runtime distributions. The additional profit varies depending on
the accuracy of the statistical analysis and the load of the system up to over
50% of additional gain.
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For future work it is interesting to determine if there are user and applica-
tion specific distributions that would allow to increase the quality of the risk
estimations for overbooking. Additionally we plan to examine the abilities of us-
ing virtualization techniques. This would allow to migrate jobs that took more
time as their original gap length allows. If enough other resources are available
at the end of a job’s gap, the job is moved to these resources, thus an SLA
violation might be prevented. Finally, we want to find a heuristic, which can es-
timate the PoF for a job without the CPU time-consuming convolution of PDF
distributions.
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Abstract. In this paper, we address job scheduling in Distributed Com-
puting Infrastructures, that is a loosely coupled network of autonomous
acting High Performance Computing systems. In contrast to the common
approach of mutual workload exchange, we consider the more intuitive
operator’s viewpoint of load-dependent resource reconfiguration. In case
of a site’s over-utilization, the scheduling system is able to lease resources
from other sites to keep up service quality for its local user community.
Contrary, the granting of idle resources can increase utilization in times
of low local workload and thus ensure higher efficiency. The evaluation
considers real workload data and is done with respect to common service
quality indicators. For two simple resource exchange policies and three
basic setups we show the possible gain of this approach and analyze the
dynamics in workload-adaptive reconfiguration behavior.

1 Introduction

The use of High Performance Computing (HPC) in research, development, and
production has become a typical part of day-to-day work since its emergence
in the late 1980s; the operation of batch-oriented, large-scale Massively Parallel
Processing systems is a commodity service for users in many universities, research
centers, and medium-to-large enterprises.

Such systems are typically acquired with respect to the demand of the local
user communities. Naturally, this demand is subject to constant change: the
usage of HPC systems in research is typically bound to fixed publication dates,
and industrial applications depend on the amount of orders or certain—internal
and external—projects. Hence, the load of such systems fluctuates over time,
a fact that obviously does not comply with the goal of its operator, namely
permanent high utilization. In static environments, this leads to two undesirable
situations: Either the system is underutilized, which harms the expected return
on investment of the HPC system or, in case of over-utilization, the users are
forced into unacceptable delays due to a large backlog of work.

From an operator’s point of view, the natural way to cope with this tension
would be a dynamic reconfiguration of their system in an on-demand fashion:
For example, if the user-generated workload grows due to a conference deadline
or a project deliverable, the operator would add additional resources to his local
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system until the backlog shrinks again. On the other hand, he could offer idle
parts of the system to other parts of his organization, such as different depart-
ments in an enterprise or cooperating institutes within a network of universities.
While such an approach ensures that the system is well-utilized—a fundamental
performance benchmark for most operators and their institutions—over time, it
also delivers a higher level of service quality to the users due to the adaptiveness
to their workload.

The technical foundation for Distributed Computing Infrastructures (DCIs)
that are capable of providing such service has been laid during the late 1990s
with the emergence of Grid Computing[1]. In this area, a plethora of research
has been conducted with respect to sensible workload distribution. Due to the
architectural nature of Grid Computing, much effort has been put into mech-
anisms for the delegation of workload between participating compute centers.
However, while being accepted as a basis for very large research projects such as
the LHC, Grid Computing is not very wide-spread in the commercial domain and
still—due to its stems in academic HPC infrastructures and its strong tailoring
to their organizational architectures—comprises a high level of complexity.

Over the last two years, this technical foundation has been largely simpli-
fied and commoditized: With the widespread offering of Cloud Computing ser-
vices and IaaS1, system administrators can provision additional resources, e.g.
compute, storage, and even networking, on-demand without having to make a
permanent investment into extending the local facilities.

The availability of such technology in conjunction with the demand for adap-
tive reconfiguration of DCI environments open new challenges in the manage-
ment of such systems. With respect to automated capacity planning, the effi-
cient and situation-adaptive scheduling of incoming workload raises interesting
questions:

– Is it beneficial for the system owner to invest into an expansion, or would
it be sufficient to ”lease” a certain amount of resources for a fixed period of
time?

– Can the temporary give-away of local resources to befriend departments
within a larger company provide both better overall utilization while at the
same time ensuring user satisfaction?

– How does the meaning of classic utilization metrics change in such dis-
tributed, regularly self-reconfiguring systems?

In this paper, we attempt a first step towards addressing these issues: We as-
sume a simplified DCI scenario with identical resources and investigate the
performance of two algorithmic approaches to the leasing and granting of re-
sources between autonomous HPC systems. Herein, we establish mechanisms
for situation-based decision making on the distributed management level and
evaluate the dynamics of system reconfiguration.

Although scheduling decision making happens mostly on the management
level, it comprises to very different aspects in realization: a selection policy to find
1 Infrastructure as a Service.
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adequate partner sites for resource leasing in a distributed scenario as well as the
development of decision policies for resource request and delegation respectively.
While the former aspect is rather technically addressing balancing behavior on a
global level, the latter emphasizes site performance for a local user community.

In order to investigate local behavior, we focus on minimum-sizes scenarios
with only two sites and ignore the issue of load balancing on a global level. We
evaluate these setups using workload data from three real-world HPC traces,
analyze the behavior of resource leases and grants, and find improvements for
both user- and provider-related metrics as basis and motivation for further re-
search in resource delegation approaches. Nevertheless, the authors are aware of
the fact that these first ideas have to be extended towards scalable heuristics
that are capable to deal with mutable partner in a larger DCI.

The remainder of the paper is organized as follows: Section 2 gives an over-
view of existing approaches to scheduling in DCI environments. This is followed
by a formal description of the DCI environment and the resulting scheduling
problem in Section 3. Section 4 details our two-layered scheduling architecture
while the proposed scheduling policies are then described in Section 5. We present
a performance evaluation of our strategies in Section 6 and conclude the paper
in Section 7.

2 Background

Automated capacity planning and workload scheduling in DCI systems is a well-
covered research topic and stems back to classic parallel machine scheduling
problems.

In recent years, a remarkable amount of effort has been put into workload dis-
tribution among autonomously acting HPC centers within the broader context
of Grid Computing: Scenarios that assume such federated environments often
imply centralized scheduling services [2]. For example, Ernemann et al. [3] show
advantages of hierarchical scheduling in general by considering the AWRT ob-
jective. Further, Kurowski et al. [4] identify multiple objectives for efficient job
scheduling in Grids and propose a strategy based on prediction mechanisms and
resource reservation. For decentralized environments, only few results that sup-
port the delegation of workload have been published. England and Weissman [5]
give an estimation of costs and benefits of load sharing relying on synthetic work-
loads only. Grimme et al. [6] analyze the prospects of collaborative job sharing
and compare their results to the non-cooperative scenario of the same machines.
Recent works of Fölling et al. [7,8] propose a fuzzy-based, evolutionary opti-
mized exchange policy for a fully decentralized scenario which shows robustness
even in changing environments and automatically adapts to the current local
load.

With the elasticity of IaaS-supported DCI environments, a new kind of flexi-
bility challenges current scheduling approaches due to the inherent reconfigura-
bility of machines and the resulting changes in scheduling responsibilities. Up to
now, this aspect—especially with respect to classic HPC workloads with parallel
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jobs—has only occasionally been discussed in research: Since the complexity of
operating such systems in the large scale and the feasibility of provisioning and
reconfiguring them on-demand hampered the realization for production environ-
ments, discussion focused on rather low-level computer hardware. For example,
Kota et al. [9] consider the problem of scheduling and mapping of tasks onto
reconfigurable logic units for a given application introducing a concept of pa-
rameterized modules. Their approach is a typical example of scheduling in the
context of reconfigurable hardware that involves varying sizes of available hard-
ware. Subramaniyan et al. [10] transferred similar ideas to the HPC context and
analyzed the dynamic scheduling of large-scale HPC applications in parallel re-
configurable computing environments. They assess the performance of several
common HPC scheduling heuristics that can be used by an automated job man-
agement service to schedule application tasks on parallel reconfigurable systems.
However, their approach is limited to a single HPC system and does not involve
the interaction of multiple autonomous partners in a DCI environment.

The reconfigurability of a HPC center within a larger DCI environment obvi-
ously provides inherent support of multi-site computing on the capacity planning
and workload distribution level. In multi-site computing, jobs can be executed
beyond site boundaries, effectively running parts of the job at distinct locations.
Naturally, additional problems with respect to data availability and network per-
formance arise here. Nevertheless, Ernemann et al. [11] identify improvements
for the AWRT objective assuming hierarchical centralized scheduling structures
in multi-site computing. Further, Zhang et al. [12] provide an overview of ex-
isting multi-site computing approaches and present an adaptive algorithm that
incorporates also common local scheduling heuristics. Recently, Iosup et al. [13]
proposed a delegated matchmaking method, which temporarily binds resources
from remote sites to the local environment.

All approaches assume an additional scheduling layer on top of classic LRMS
which coordinates the underlying resources in a hierarchical fashion but their
architectures imply that local sites have to (partially) cede their autonomy for
the benefit of coordinated DCI scheduling on a higher level.

Further, Weissmann and Grimshaw [14] presented an approach for decentral-
ized DCI systems which introduces all basic policies to exchange jobs between
autonomous sites. However, their policies are based on an unrestrictive informa-
tion model between the sites which allows a local scheduler to query detailed
information about the system states of potential delegation targets. This in-
cludes also queries on estimated start times at foreign sites for specific jobs. As
in real DCI systems such information are usually treated confidential, it requires
new heuristics that even yield acceptable scheduling performance when only
local information is accessible for decision making. Moreover, their scheduling
approaches are only considered theoretically without performance measurement
on workload data. Thus, with respect to the work at hand, their results cannot
be used for the matter of comparison.
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3 Problem Formulation

In HPC systems, job scheduling is an online problem regardless of the assumed
machine configurations. Users submit parallel jobs over time while neither their
submission time nor the precise processing time are known in advance. We fur-
ther consider independent2 jobs that are neither malleable nor moldable. Each
job j is characterized by its degree of parallelism mj, its processor indepen-
dent processing time pj and its estimated processing time pj , see Feitelson et
al. [15]. pj is provided by the user at submit time and originally was intended
to recognize erroneous jobs and abort them if they take longer than the user ex-
pected. Scheduling heuristics, however, also use pj for making better decisions.
The number of required processors mj is available at the release time rj of job j.

The DCI environment we consider in our work consists of K loosely coupled
HPC sites. Each site k owns mk identical processors such that every parallel job
can be executed on each subset of local processors. Although existing studies for
heterogeneous DCI environments show that the processing time of jobs depends
on both the application structure and the target architecture, see for example
Sabin et al. [16], the list of top-performing HPC installations3 proves almost
homogeneity in terms of processors families and architectures. Therefore, we
additionally assume identical processors among all sites.

During its execution phase, each job requires exclusive access to mj ≤ mk

processors. As users submit their jobs locally, the corresponding site has to
guarantee that every submitted job can—regardless of the availability of remote
systems—be executed. Therefore, jobs that require more than the total number
of locally available processors (mj > mk) are rejected. Further, all jobs run to
completion without the possibility of being preempted, since the majority of
HPC applications and systems does not support this. As such, the completion
time within the schedule S at site k is denoted by Cj(Sk).

In our system model, we further allow multi-site execution, that is each job
can be executed on any subset of processors within the whole DCI environment.
This is typically possible4 for embarrassingly parallel jobs that comprise many
sequential, independent invocations of the same application. Examples for this
application class are parameter sweeps—tools that repeatedly process the same
input data, with varying parameter settings—or SPMD5-style programs. Iosup
et al. [17] have shown that this class is the most widely spread kind of jobs in
productive grids and DCI environments. Although distributed filesystem access
and network latency may impair the execution speed of such applications in a
multi-site execution scenario, Ernemann et al.[11] have shown that the significant
improvements in schedule quality often compensate for the inferior performance.
Formally, such a multi-site job j is scheduled on mj|k own resources at the
submission site k ∈ K and mj�k foreign resources using altogether mj = mj|k +
mj�k resources as defined before.
2 With no dependencies among them, that is.
3 www.top500.org, January 2010.
4 Provided that data availability (for example, via a shared file system) is guaranteed.
5 Single Process, Multiple Data.

www.top500.org
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4 System Model

In our system model, we establish a two-layered architecture at every site,
see Figure 1: The Local Resource Management System (LRMS) is responsible for
the local allocation of jobs onto resources, while the Distributed Resource Man-
agement System (DRMS) layer realizes the the lease-and-grant mechanism and
policy. Within the latter layer, resource requests are formulated and negotiated
in order to adapt the local system to the current load situation.
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Fig. 1. Resource Brokering within a Computational Grid scenario with independent
sites

4.1 LRMS Layer

The Local Resource Management System (LRMS) layer consists of a waiting
queue and a scheduling algorithm that assigns jobs to processors in its domain.
This local scheduling domain comprises all processors that are exclusively con-
trolled by the LRMS. In contrast to classic settings, this domain is subject to
changes over time: While foreign resources can be logically integrated into the
LRMS and used by the local scheduling algorithm, it is also possible to dele-
gate own resources to foreign scheduling domains, putting them under exclusive
control of the remote RMS. Further, jobs can be prioritized.

Among the variety of LRMS scheduling algorithms, we chose the Extensible
Argonne Scheduling System (EASY) [18] for our analysis as it enjoys widespread
application. On invocation, EASY tries to execute the job j at the head of the
waiting queue, if—with respect to mj—enough processors are currently available.
Otherwise, it tries to ”backfill” a subsequent job in the queue, ensuring that—
based on pj—job j is not delayed. Note, however, that the overall methodology
is not restricted to any kind of local scheduling algorithm.
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4.2 DRMS Layer

The DRMS layer is able to extend the local scheduling domain by leasing re-
sources from other sites. In this way, the site is able to gain exclusive control on
foreign resources. We assume that submitted jobs have to pass through this layer
before they can be handled by the underlying LRMS6. For each job, a resource
delegation policy (RDP) decides whether additional resources should be leased
to increase the scheduling performance at the local site or not. If yes, resource
requests are send and negotiated with other partners within the DCI system.
Each request contains the number of desired resources and a timespan for which
the site wants to gain exclusive access to them. Granting sites also apply their
RDP in order to determine whether to accept or decline the request. Decision
making is based on multiple input features such as the users’ job submission
behavior, the current resource usage, and the local backlog. Finally, it is not
allowed to grant already leased resources to a third party.

5 Resource Delegation Policy

At the DRMS level, the resource delegation policy steers the individual nego-
tiation behavior of each participating site within the DCI. We here introduce
two approaches that feature a very simple design, are minimally invasive to the
LRMS, and still achieve good scheduling results. Both are triggered by the sub-
mission of a single job and can be applied under restrictive information policies,
that is without exchange of information between the interacting partners.

The Simple Submission Triggered Resource Delegation (S-STRD) policy tries
to prioritize incoming jobs, if a resource lease for this particular submission can
be acquired. Figure 2 presents the behavior of the policy in a flow chart (left
side) and gives an example for a submitted job (right side). Resource leasing is
attempted every time the currently available resources cannot meet the submit-
ted job’s processor demand. After the submission of a new job to the DRMS,
it is automatically forwarded to and enqueued at the LRMS ➀. Furthermore,
the DRMS checks whether there are enough idle resources available to directly
execute the job ➁. In the positive case, the DRMS leaves further handling to
the LRMS. Otherwise, the DRMS formulates a resource lease request with the
number of requested, but locally unavailable resources and the user’s runtime
estimate for the job. This request is then posted to the delegation partners in the
system ➂. If the request is granted, the job is prioritized for direct execution ➃.
After completion of the job, which is not necessarily equal to the user estimate,
leased resources are returned to the granting site.

In the example (cf. Figure 2), we assume a waiting queue with three jobs at
Site 1. Further, both sites have scheduled occupations for different timespans. At
time t a new job j with a demand of mj = 4 and pj = 100 is submitted to Site 1.
Since the job cannot be scheduled on local resources directly, Site 1 requests
6 This poses no restriction in terms of usability, since the DRMS can act as a proxy

of the LRMS towards the user.
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Fig. 2. Activity diagram and example for the Simple Submission Triggered Resource
Delegation Policy

two additional resources for a timespan of pj from Site 2, which in turn accepts
the request and grants two resources to Site 1. Having a sufficient number of
processors available for the immediate execution of j, S-STRD prioritizes the job
and, on invocation of the LRMS’s scheduling algorithm, it is started immediately
on two local and two remote resources.

The extended version of the algorithm (X-STRD) differs in the repetition of
steps ➁−➃ (compare Figure 2): These are applied for each job in the queue
(including the new job), starting at the queue’s head. Obviously, this approach
less penalizes already waiting jobs, since they considered first. Still, this policy
demands extensive inter-site communication due to many additional resource
requests and makes the extended approach less practical for the use in real
scheduling systems. We still evaluate this policy as an extremal case for an
excessive use of resource delegation between the sites to assess the achievable
performance.

6 Performance Evaluation

We estimate the quality of the proposed mechanisms by means of simulation.
In order to quantify the performance, we apply common performance indicators
for job scheduling in parallel machine and DCI environments and adapt them
to reconfigurable machine environments accordingly. Moreover, we use recorded
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(non-synthetic, that is) workload traces as input to our simulations to ensure
realistic results. Finally, we discuss the implications from the simulation results
for three distinct scenarios.

6.1 Quality Measures

From the quantitative side, we look at three common metrics:
The Average Weighted Response Time (AWRT) basically denotes for all users

how long they have to wait for their jobs to complete on the average.

AWRTk =

∑
j∈τk

pj ·mj · (Cj(S)− rj)
∑

j∈τk

pj ·mj
(1)

It is computed for all jobs j ∈ τk that have been submitted to site k, see Equa-
tion 1. It is widely agreed that a short AWRT is the best way to describe
the average performance a provider can offer users for job execution. Follow-
ing Schwiegelshohn and Yahyapour [19], we weight the response time of each
job with its resource consumption (pj ·mj). This ensures that neither splitting
nor combination of jobs can influence the objective function in a beneficial way.
Note that we calculate mj = mj|k + mj�k in order to incorporate the execution
of jobs on remote resources.

The Squashed Area7 (SAk) reflects the overall resource usage of all submitted
jobs per participating site k. In a scenario where jobs are partially executed on
remote sites, we have to refine the original metric as follows:

SAk =
∑
j∈τk

pj ·mj|k +
∑
l/∈τk

pl ·ml|k (2)

SAk is determined as the sum both local (j ∈ τk) and foreign (l /∈ τk) jobs’
resource consumption fractions (pj ·. . . and pl ·. . .) that are executed on resources
belonging to site k (mj|k and ml|k), see Equation 2.

SAλ
k =

∑
j∈τk

pj ·mj�k (3)

To further measure the amount of work running on leased processors from within
the DCI environment, we define the ”leased” Squashed Area SAλ

k as the sum of
local (j ∈ τk) jobs’ resource consumption fractions (pj · . . .) that are executed
on resources not belonging to site k (mj�k), see Equation 3.

The Utilization (Uk) describes the ratio between overall resource usage avail-
able resources after the completion of all and measures how efficiently the pro-
cessors of site k are used over time.

st(Sk) = min
{

min
j∈τk

{Cj(Sk)− pj}, min
l/∈τk

{Cl(Sk)− pl}
}

, and (4)

Cmax,k = max
{

max
j∈τk

{Cj(Sk)}, max
l/∈τk

{Cl(Sk)}
}

. (5)

7 This metric sometime also called Total Work.
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It refers to the timespan relevant from the schedule’s point of view, delimited
by the start time of the first job, see Equation 4, to the end time of the last job,
see Equation 5, in schedule Sk. Note that both points in time consider local jobs
(j ∈ τk) and fractions of delegated jobs (l /∈ τk).

Uk =
SAk

mk · (Cmax,k − st(Sk))
(6)

Uk, formally defined in Equation 6, often serves as a quality measure from the
site provider’s point of view.

6.2 Input Data

The Parallel Workloads Archive8 provides job submission and execution record-
ings on real-world HPC system site, each of which containing information on
relevant job characteristics like estimated and real processing time, release date,
resource demand, and others. We applied pre-filtering steps to the original data
in order to remove partially erroneous information: we discard jobs with invalid
release dates (rj < 0), processing times (pj ≤ 0), resource requests (mj ≤ 0) as
well as unsatisfiable resource demands on the submitted site (mj > mk).

Table 1. Workload characteristics of the used input data, including AWRT in seconds,
U in %, and Cmax in seconds for single site execution with EASY

Identifier #Jobs mk AWRT U Cmax Setup 1 Setup 2 Setup 3

KTH-11 28479 100 75157.63 68.72 29363626 X X

CTC-11 77199 430 52937.96 65.70 29306682 X X

SDSC05-11 74903 1664 54953.84 60.17 29357277 X X

We select three traces for our evaluation: The KTH trace which contains
records from a 100 processor IBM RS/6000 SP system at the Swedish Royal
Institute of Technology in Stockholm, the CTC trace from a 430 processor
IBM RS/6000 SP system at the Cornell Theory Center in Ithaca, NY, and
a log recorded 2005 at the San Diego Supercomputer Center in La Jolla, CA
(SDSC05).

Since the original workloads cover unequal periods, we shorten all original
workloads to the largest common lenght, namely eleven months. Additionally,
we assume identical timezones and therefore similarize the diurnal rhythm of job
submission: In geographically dispersed DCI scenarios, different timezones may
induce positive scheduling effects as idle machines can be used by jobs from peak
loaded sites in accordance with day-time differences, see Ernemann at al. [20].
Here, we cannot benefit from timezone shifts in our scenario. As such, the results
will likely improve in time-shifted environments.

8 http://www.cs.huji.ac.il/labs/parallel/workload/

http://www.cs.huji.ac.il/labs/parallel/workload/
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Finally, we simulate the workload on their original machine configuration with
an non DCI-aware LRMS that uses the EASY algorithm and take the results
as reference for local-only scheduling, see Section 4.1. Relevant characteristics of
the examined traces and the corresponding results for AWRT, Utilization, and
Cmax are listed in Table 1. During the course of this paper, we will refer to this
non-cooperative case for the matter of comparison.

6.3 Performance Results

We investigate three scenarios (cf. Table 1): The first scenario comprises the
small KTH machine with 100 processors and the mid-sized CTC machine with
430 processors. Further, we evaluate a scenario with the small KTH machine and
the large-scale HPC system SDSC05 with 1664 processors and combine further
CTC and SDSC05. For all scenarios, we apply the two discussed strategies. The
results of all evaluations are shown in Table 2.

Table 2. Evaluation results for both strategies S-STRD and X-STRD for the given
three scenarios. Values for AWRT, U, and Cmax are shown as well as their improvements
in %, the absolute amount of mutually exchanged resources as leased Squashed Area
SAλ

k , and the average queue length Q̄

S-STRD-Broker

Metrics Setup 1 Setup 2 Setup 3

Workload KTH-11 CTC-11 KTH-11 SDSC05-11 CTC-11 SDSC-11

AWRTk 62055.37 51444.91 58432.61 54738.92 45062.71 54635.66
Uk 65.22 66.46 62.63 60.54 63.37 60.80
Cmax,k 29363626 29332185 29363626 29353826 29328089 29335555

ΔAWRTk 17.43 2.82 22.25 0.39 14.88 0.58
ΔUk -5.09 1.15 -8.86 0.62 -3.54 1.05

SAλ
k 573141728 413432502 630674342 383713739 1768336330 1493028875

Q̄ 4.08 8.06 2.31 17.07 3.07 13.22

X-STRD-Broker

Metrics Setup 1 Setup 2 Setup 3

Workload KTH-11 CTC-11 KTH-11 SDSC05-11 CTC-11 SDSC-11

AWRTk 56115.99 50851.43 52253.12 55729.64 40940.23 52990.40
Uk 64.40 66.65 56.88 60.86 62.71 60.98
Cmax,k 29363626 29332185 29363626 29364647 29306682 29339742

ΔAWRTk 25.34 3.94 30.48 -1.41 22.66 3.57
ΔUk -6.28 1.44 -17.22 1.16 -4.55 1.34

SAλ
k 640012760 442455083 682003341 250461072 2105350162 1722880873

Q̄ 4.48 10.17 1.82 18.62 2.93 14.53

Almost all results show an improvement in AWRT compared to local execu-
tion, which indicates that both partners benefit from their cooperation. Figure 3
depicts the improvements obtained in three scenarios for both policies. The S-
STRD strategy yields good results, improving the AWRT of the smaller part-
ner for at least 15% in all scenarios. As expected, small partners benefits from
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the enormous resource potential provided by large partners. However, simula-
tions show that large partners also profit from cooperation with small partners.
Although this improvement is marginal for the SDSC05 site, the increase of
utilization, see Table 2, indicates a compact schedule and thus better resource
usage.
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Fig. 3. Improvements in AWRT for all setups and both policies

Besides AWRT comparison, we analyze the reconfiguration behavior at both
sites. Figure 4 exemplary shows the dynamics of both systems for Setup 1 and
the S-STRD policy. Obviously, the local resource configurations are subject
to continuous changes while—on the average—they nearly keep their size, see
Figure 5. During the simulated workload period, KTH occasionally grants all its
resources to the larger site, but also quadruples its original size through leases.
In the latter case, the reconfiguration almost switches the original sizes of the
setup. This impressively demonstrates the potential of a workload-triggered re-
configuration where the user visible provider domains remain stable: resources
adapt to submitted workload but offer an accustomed environment to users.

Finally, we investigate X-STRD and identify larger benefits for all smaller
sites. Compared to the application of S-STRD we can also show AWRT im-
provements for larger sites. However, we observe a deterioration in AWRT for
the Setup 2 compared to uncooperative processing, see Figure 3(b). This behav-
ior is due to unbalanced exchange of resources indicated by SAλ

k for the second
setup in Table 2: While the small KTH site is able to increase its resource capac-
ity, the larger site’s requests are frequently rejected for S-STRD leading to higher
utilization and increased AWRT. Thus, we conclude that the extended strategy
can yield better results for all participating sites but is less robust against large
discrepancies in machine size: In X-STRD, continuous workload submission re-
sults in frequent traversals of the complete queue. As a consequence, this gives
small sites more opportunities to gain additional resources from the larger site
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Fig. 4. Continuous reconfiguration of both KTH and CTC sites during workload
processing
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Fig. 5. Aggregated site reconfiguration properties for Setup 1. The two leftmost plots
refer to leased resources by KTH and CTC to the respective partner site. The two
rightmost plots state on each site’s size configurations during cooperation.
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to execute long waiting jobs. The opposite is not necessarily true, as the resource
capacity of a small site restricts the larger site’s chances.

7 Conclusion and Future Work

In this work we approached the topic of collaboration in distributed computing
infrastructures from a new and more operator-centric perspective: the delegation
of resources between partner sites. In order to adapt to fluctuating local user de-
mand while constantly offering high service quality, cooperating HPC providers
are enabled to mutually lease resources from other partners or grant them to
him. To this end, we devised a delegation layer above the local management layer
of each site and two delegation policies which combine negotiation capabilities
with scheduling decisions making. This ensures both independent acting sites in
a decentralized scenario as well as a situation-aware delegation behavior while
leaving the local management systems largely untouched.

For evaluating the proposed collaboration scenario, we investigated several
two-site setups consisting of different-sized installation by simulatively feeding
them with real-world workload data. Both delegation policies demonstrated their
potential realizing an enormous increase in service quality for almost all partici-
pating sites, with less robustness of second delegation approach against extremal
differences in site size, leading to degradation of service quality in specific cases.

Moreover, we were able to show the dynamics of site reconfiguration in the
proposed scenario: The sites frequently changed their configuration in order to
fit their workload. In fact, the fluctuations in site configurations ranged from
completely granting all resources to leases that multiply the site’s own size. This
impressively demonstrates the hidden potentials of collaboration in DCIs and
should motivate operators to provide locally idle resources in order to benefit
from cooperation in terms of service quality and effective resource usage.

Our next steps will be twofold: On the one hand, we will consider several
restrictions in our current model: Since in practice multi-site execution of jobs
might be prohibited, more powerful heuristics should yield good schedules with-
out spreading jobs among site boundaries. This is, the have to decide between
either local or remote execution.

On the other hand, advanced heuristics should be applicable under limited
information exchange. To this end, they should favor a collaborative and/or
partner-specific adaptive behavior. In this context—besides scalarization issues—
global balancing effects and benefits of the second level partner site selection
strategies have to be evaluated in larger scenarios with multiple participating
sites. Those policies can possibly base on load balancing between multiple part-
ners or cost models for resource delegation.

Finally, non job-specific leases have to be considered, allowing to ”borrow” a
certain amount of resources for a certain timeframe and thus to fully take care
of capacity planning on these resources, as currently delivered by modern IaaS
environments.
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Abstract. A crucial step in DNA sequence analysis is mapping short se-
quences generated by next-generation instruments to a reference genome.
In this paper, we focus on efficient online scheduling of multi-user paral-
lel short sequence mapping queries on a multiprocessor system. With the
availability of parallel execution models, the problem at hand becomes a
moldable task scheduling problem where the number of processors needed
to execute a task is determined by the scheduler. We propose an online
scheduling algorithm to minimize the stretch of the tasks in the system.
This metric provides improved fairness to small tasks compared to flow
time metric and suits well to the nature of the problem. Experimental
evaluation on two workload scenarios indicate that the algorithm results
in significantly smaller stretch compared to a recent algorithm and it is
more fair to small sized tasks.

1 Introduction

The rate of increase in DNA sequence information have greatly exceeded the
expectations due to the emergence of next-generation sequencing instruments,
including Roche’s (454) GS FLX Genome Analyzer, Illumina’s Solexa IG se-
quencer, and Applied Biosystem’s SOLiD system, which are capable of sequenc-
ing more than one billion bases a day. The massive volumes of generated data
pose new computational and analytical challenges that need to be addressed
rapidly to keep up with the pace of the advancements in sequencing technology.

In many genome-wide and targeted studies, such as whole-genome resequenc-
ing, transcriptome analysis, small RNA analysis, targeted sequencing, DNA
methylation and ChIP sequencing, one of the first steps to analyze the generated
data sequences (reads) is to map them to a reference genome. This computa-
tionally intensive process involves mapping hundreds of millions of short reads
generated in a typical run of a high throughput sequencing system to a refer-
ence genome that consists of up to three and a half billion bases. Since next
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generation sequencing instruments usually generate reads as short as 35-50 base
pairs, more specialized mapping algorithms such as MapReads [1], RMAP [2],
MAQ [3], SOAPv2 [4] or Bowtie [5], have been introduced and shown to be more
efficient than traditional local alignment algorithms BLAST, FASTA and their
variants [6,7,8] for this particular problem. Even with these new algorithms, how-
ever, the mapping process takes days on a single computer which becomes a bot-
tleneck in the application workflow given that the goal is to be able to sequence
the entire human genome in 15 minutes by the year 2013 [9]. As a natural step
to speed up the mapping process, several parallelization techniques have been
proposed in our recent work [10] which apply to many short sequence mapping
algorithms, i.e., those based on hashing or indexing the reference genome.

In this work, we consider online scheduling of multiple parallel short sequence
mapping tasks in a multi-user environment. The methods introduced in [10] de-
scribe several ways of distributing the reads and the genome data onto the pro-
cessors of a cluster to parallelize short sequence mapping process. Furthermore for
each method, a cost model is provided to estimate the parallel execution time for
a given number of reads and a given reference genome size. Using these cost mod-
els, it is possible to determine the best parallelization method and the estimated
execution time for each short sequence mapping task on a given number of proces-
sors. Therefore, in the considered scheduling problem, the number of processors
to be used for executing a task is decided by the scheduler based on the current
load and availability in the system. In scheduling literature, such tasks are said
to be moldable parallel tasks1 as opposed to rigid parallel tasks which require the
number of processors a task will use to be provided by the user.

In this paper, we propose an algorithm to schedule moldable tasks that arise
in parallel short sequence mapping. Due to the large variety of task sizes and
the availability of accurate execution time estimates, we focus on minimizing the
stretch of the tasks in the system which is defined as the time a task spends in
the system normalized by its execution time. Compared to the commonly used
flow time (average turnaround time) metric, stretch provides fairness to all tasks
in the system by including the execution time of the tasks in its definition. This
objective was first studied for sequential tasks without preemption [13] and later
with preemption [14] in the context of bag-of-tasks applications. To the best of
the authors knowledge, this work is the first to consider the minimization of the
stretch objective in moldable task scheduling without preemption.

The rest of this paper is organized as follows. In Section 2, we provide back-
ground information about parallel short sequence mapping. Sections 3 and 4
present moldable task scheduling and a brief discussion of two recent stud-
ies. We give details of the proposed scheduling algorithm for moldable tasks in
Section 5. Then, we report results from our experimental studies in Section 6
and conclude in Section 7.

1 They were originally called malleable tasks [11]. Feitelson et al. [12] made the dis-
tinction between constant number of processors and variable number of processors
by using moldable for the former case and malleable for the latter one. However, they
were still called malleable in more recent works.
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2 Parallel Short Sequence Mapping

The short sequence mapping problem asks for identifying the matching locations,
possibly with some mismatches, of short input sequences (reads) on a reference
genome. There are many mapping algorithms in the literature [1,5,3,4,2], most
of which use a hash or an index table to store all consecutive same sized sub-
sequences of either the reference genome or the query sequences to increase
efficiency of the mapping process. The use of such data structures (i.e. hash or
index), makes the problem less data dependent and enables accurate estimation
of execution times by only taking global properties of the input problem into
account.

A hashing based short sequence mapping algorithm consists of two major
steps [10]. In the first step, a hash table is constructed by computing a hash
value for each sub-sequence of the reference genome having length equal to read
length. The execution time of this step can be modeled as cgG , where cg is the
time needed to compute a hash value for a single sub-sequence and G is the size
of the reference genome. In the second step, reads are matched to the genome by
looking up their corresponding hash values in the hash table. When a fixed sized
hash table is used, average number of collisions during table look-up depends
on the number of entries in the table, which is proportional to genome size G .
Therefore, the time required to process all reads can be modeled as (cr +ccG)R ,
where R is the number of reads, cr is the constant work needed to process a
single read, and cc is a constant to capture additional work to resolve collisions.
Then, the total execution time can be modeled as: cgG + (cr + ccG)R .

As discussed in [10], straightforward methods to parallelize a mapping algo-
rithm is to partition the reads and/or the reference genome to the processors of
a cluster. This way, parallel execution time would be expressed as follows:

cg
G

Ng
+ (cr + cc

G

Ng
)

R

Nr
(1)

where Ng and Nr respectively are the number of parts the genome and the
reads are divided. For a cluster with m processors, Ng × Nr ≤ m should be
satisfied.

In addition to partitioning the reads and the genome, a new technique to
assign reads and the genome to the processors is also introduced in [10]. In this
method, called Suffix Based Assignment (SBA), each processor is assigned a
set of suffixes and is only held responsible for matching reads to the genome
sequences that end in those suffixes. Each suffix consists of one or more nu-
cleotide symbols. For example, if a processor is assigned the suffix AC, it is
only responsible for matching reads that end in AC (e.g. ACCGTTAAC) to the
genome sequences that also end in AC. Although SBA allows better parallelism,
it comes with the cost of extra scan operations to compare sequences against
the suffixes assigned to each processor. We represent the cost of checking the
suffix of a genome and a read sequence by cgs and crs , respectively. Moreover,
we use Ns to denote the number of suffix groups to be considered. An example
of suffix groups for Ns = 2 would be {A, C} and {G, T}. SBA can be applied
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in combination with reads and genome partitioning and can be considered as
a new dimension for parallelism. Then, under perfect load balance, the parallel
execution time can be formulated as follows

cgs
G

Ng
+ cg

G

NgNs
+ crs

R

Nr
+ (cr + cc

G

NgNs
)

R

NrNs
(2)

where Ng×Nr×Ns ≤ m and Ns > 1. Remark that if Ns = 1, there is no need
to do suffix checking, hence with cgs = 0 and crs = 0 Equation (2) reduces to
Equation (1).

Please note that, by using tree-based one-to-all data distribution scheme, data
distribution time, which includes distribution of input sequences and possibly
reference genome to the processors of the parallel machine, becomes negligible
in comparison to actual mapping computations. Therefore, it is omitted in these
formulas. Furthermore, our earlier work [10] shows that these estimates are ac-
curate.

3 Moldable Task Scheduling

3.1 Problem Formulation and Properties

In this section we discuss details about online scheduling of parallel short se-
quencing mapping tasks in a multi-user environment. We consider a typical on-
line setting, where n independent tasks are dynamically submitted to a cluster of
m identical processors. Arrival time of task i to the system is denoted by ri . We
use the notation pi,j to represent the execution time of task i on j processors.
Information about arrival or execution time of the tasks are not available to the
scheduler until submission. The scheduling problem we consider is to decide the
number of processors πi to be allocated for each task i and the time σi when
the execution of task will start on the system. The completion time Ci of task
i is Ci = σi + pi,πi

.
In the short sequence mapping problem considered in this paper, each task i

corresponds to a mapping request of Ri reads on a genome of size Gi . Therefore,
for each task i and each number of processors j ≤ m , pi,j is computed using
Equation (2) by replacing G with Gi and R with Ri . The values for Nr ,
Ng and Ns are chosen such that the total execution time predicted by this
equation is minimized for the given values of Gi , Ri and j . In short sequence
mapping, storing the genome in a hash table implies high memory requirement
that prevents two tasks to be executed simultaneously on the same processor.
Thus, preemption is not allowed. Monotony of computation time and absence of
super-linear speedup are common assumptions in moldable scheduling. One can
check that they are valid for the parallel short sequence mapping tasks.

3.2 Objective Functions

The general objective in online scheduling is to execute all submitted tasks with-
out delaying their execution too much in the system. A desired property of a
scheduler is to avoid starvation while ensuring an overall good response time.
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The most studied objective functions in moldable task scheduling are based
on aggregation of completion time (makespan) of the tasks, such as the min-
imization of maximum completion time and minimization of average comple-
tion time. A common technique to optimize completion time is to use dual-
approximation [15,16]. This technique consists of choosing a target value for the
objective and then to decide the most efficient number of processors a task should
use to finish before the targeted completion time. Such number of processors is
commonly called the canonical number of processors. A major disadvantage of
using completion time in the objective function is the requirement of a time
origin, which does not suit well to online scheduling problems.

A commonly used metric in online scheduling that does not require a time
origin is the flow time (also known as turnaround time). Flow time of a task
i is the time the task spends in the system and is calculated as Fi = Ci − ri .
Two related objective functions are the minimization of maximum flow time
(Fmax = maxi Fi ) and the minimization of the average flow time (

∑
i Fi

n ). The
former is especially well known for preventing starvation and is usually optimized
by using the first-come first-serve (FCFS) ordering. Examples of flow minimiza-
tion can be found in [17,18,19].

Since the flow time metric does not take the size of the tasks into account,
objective functions that utilize this metric tend to create schedules in which
small tasks spend as much time in the system as the large tasks. This results
in small tasks waiting in the system queue longer than the large tasks, hence
introduces unfairness against small tasks. To avoid this situation, the stretch
metric can be used to replace flow time in the objective function. The stretch of
a task is defined as the time spent by the task in the system normalized by its
processing time. This metric has been studied for online scheduling of rigid tasks
with preemption in [20] and for sequential task scheduling without preemption
in [13] and then with preemption in [14]. However, to the best of the authors’
knowledge, it has never been used nor defined in online moldable scheduling
without preemption. We use the processing time of the task on one processor for
normalization and the stretch of a task i is si = Ci−ri

pi,1
. Corresponding objective

functions for stretch are the minimization of maximum stretch (S = maxi si )
and the average stretch (

∑
si

n ).
Using an adversary technique, one can prove that in an online setting it is not

possible to get an approximation algorithm for the minimization of maximum
or average stretch objectives without preemption even if the system is composed
of a single processor. Adversary technique works by dynamically constructing
the instance that worsens the performance the most by taking advantage of the
decisions of the algorithm. In this case, the idea is to first feed one long task
to the scheduler. Once the execution of that task starts, the adversary submits
a bunch of much smaller tasks to the system. Since these small tasks cannot
start before the execution of the first task completes, the stretches of the small
tasks are as large as the ratio between the execution time of the smallest task
to that of the largest task. Such analysis is usually only useful for designing
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approximation algorithms. However, Section 6 indicates that similar effects also
appear in practice.

In the job scheduling literature, objective functions similar to stretch have
also been used. A commonly used objective function is the slowdown of a rigid
task, which is the time the task spends in the system divided by its processing
time. Since the task is rigid, the processing time is the actual execution time
of the task. As a result, the slowdown always greater than one. Stretch can be
considered as an extension of slowdown for the moldable tasks model.

A variant of the slowdown objective function is Bounded slowdown (BSLD)
[12], which is used to avoid over-emphasizing the significance of small tasks. In
this objective function, the processing time of the tasks are assumed to be greater
than a given constant. Since this may resut in some taks to have a slowdown less
than 1, the slowdown values between 0 and 1 are rounded up to 1. Due to the
rounding, BSLD is not appropriate for the moldable task model, as the stretch
or slowdown values of interest for this model can be less than 1.

Another closely related objective function is the Xfactor [21], which is defined
as queuingtime+pi,1

pi,1
. Xfactor is always greater than one and it does not take into

account the number of processors used to execute a task.

3.3 Backfilling Strategies

In most scheduling algorithms, tasks are scheduled as soon as possible in the
order of their arrival times. This approach tends to create holes in the sched-
ule, which can later be utilized using a conservative or an aggressive backfilling
strategy. In conservative backfilling, a task is scheduled in the first hole that
can accommodate the task. If no such hole exists, the task is scheduled at the
end of the schedule. In aggressive backfilling, a task is scheduled in the first
hole that has enough number of available processors. If this creates a conflict,
the task in conflict that has the largest start time is rescheduled. This approach
provides a much better utilization of the cluster by reducing the number and size
of the holes in the schedule. However, it tends to reschedule large tasks several
times, causing longer delays for them. More details on backfilling strategies can
be found in [22].

4 Analysis of Existing Solutions

4.1 The Fair-Share Scheduling Algorithm

The fair-share scheduling algorithm has been proposed in [19] and refined in [18]
to optimize the average turnaround time. The basic principle of the original
algorithm is to greedily schedule tasks one by one to minimize their completion
time using aggressive backfilling. However, this approach leads to scheduling
each task to execute in parallel using all processors in the system. Since efficiency
usually decreases with the number of processors, tasks spend too much time in
the system using this approach. To avoid such scenarios, the fair-share algorithm
limits the maximum number of processors that can be allocated to each task.
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This limit is called the fair-share limit, and finding a good value for the fair-
share limit is the motivation behind the mentioned studies. The fair-share limit
of a task i was first set to the ratio of work associated with the task to the
total work associated with all tasks pending in the system. Using this limit is
stated to be fair since it allocates more processors to larger tasks while limiting
the maximum allocation by the weight of the tasks. It was shown that using
a fair-share limit of

√
pi,1∑

k

√
pk,1

leads to better results. However, this value was
reported to be too restrictive and multiplied by an overbooking factor to allow
the scheduler to consider a larger number of possibilities [18].

The fair-share algorithm induces starvation due to aggressive backfilling which
can delay all the tasks but the first to be executed. Therefore, the tasks are parti-
tioned in multiple queues based on the their sizes. Ensuring that the first task of
each queue is never delayed reduces starvation. To further reduce starvation, the
Xfactor of a task is introduced: Xfactor(i) = t+pi,1−ri

pi,1
, where t is the current

time. A task whose Xfactor exceeds a certain threshold is no longer allowed to
be rescheduled by the aggressive backfilling technique.

4.2 Iterative Moldable Scheduling Algorithm

The fair-share algorithm provides fairly good performance but requires tun-
ing many parameters. In [18], Sabin et al. proposed a parameter-free iterative
scheduling technique which is reported to outperform the fair-share algorithm
and its variants.

The fundamental idea in the algorithm is to make all tasks rigid, i.e., decide
the number of processors to be allocated for each task. Then, the tasks are
scheduled using a conservative backfilling technique. The order in which the task
are considered for backfilling is not given in [18]. In the following we assume that
tasks are considered in the FCFS order.

The question of how many processors to allocate for each task is addressed
using a simple principle. The algorithm starts by allocating one processor to each
task and computing the corresponding schedule. Then, the task that would have
the most reduction in its processing time by using an extra processor is found.
Subsequently, an additional processor is assigned to that task and a new schedule
is computed. If the new schedule has a better average turnaround time, then the
extra processor allocation is confirmed and the process is repeated iteratively.
Otherwise, the algorithm rolls back to the previous allocation state and never
tries to assign an additional processor to this task again.

The algorithm implicitly assumes that the processing time of a task strictly
decreases with the number of processors. However, this assumption may not hold
in practice. For example, it is fairly common that parallel algorithms require a
number of processors which is a power of two. Similarly, in the short sequence
mapping problem the values of Nr , Ng and Ns in Equation (2) have to be
integer. If the number of processors m is prime, it is likely that the optimal
partitioning scheme uses at most m − 1 processors, which induces steps in the
speedup function.
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Improvements to the algorithm: Existence of steps in the speedup function
results in early termination of the iterative scheme in the algorithm of Sabin et
al. [18]. To remedy this situation, we propose the following modification. If task i
is allocated x processors, instead of considering its execution on x+1 processors,
we consider its execution on x + k processors (k ≥ 1) such that pi,x−pi,x+k

k is
maximal. If the speedup function is convex, this modification behaves the same
as the original algorithm. If the speed up function is not convex, the modification
allows to skip the allocation sizes that would lead to low efficiency (and thus skips
steps). Throughout the paper, we refer to this variant of the algorithm as the
improved iterative algorithm.

5 Deadline Based Online Scheduling

In this work, we propose an algorithm called Deadline Based Online Scheduling
(DBOS) with the goal of minimizing the stretch of the tasks in the system.
Throughout the section, we consider a typical system where the scheduler is
invoked when a task enters or exits the system. Using the DBOS algorithm, the
scheduler computes a new schedule for all tasks pending in the system queue.
Tasks that have already started execution are kept running.

The outline of the DBOS algorithm is presented in Algorithm 1. The main idea
in the algorithm is to compute the “best” achievable maximum stretch, denoted
by S , using a binary search within lines 2–14. At each iteration of the binary
search, a new schedule is computed by calling the MoldableEDF (for Moldable
Earliest Deadline First) procedure using the current value of S . If the returned
schedule is not feasible, S is increased. Otherwise it is decreased to find a tighter
bound for maximum stretch. Since there is no apriori upper bound on S , the
algorithm starts with computing one in lines 2–6.

Once the “best” feasible value of S is found, it is multiplied by an online
factor ρ . The reason for relaxing the S value is to increase the efficiency of
the system as well as to leave potentially more processors to the tasks that will
arrive in the future. Furthermore, this helps improving the performance in the
adversary scenario discussed in Section 3.2. The online factor ρ is the key to the
online aspect of the DBOS algorithm.

In lines 20–30 of Algorithm 1, the details of the MoldableEDF procedure is
given. Given a value of S , MoldableEDF starts by computing a deadline Di =
ri + pi,1S for each task i (lines 21–22). This reduces the problem to scheduling
the tasks before their deadlines. Then, the tasks are scheduled greedily in non-
decreasing order of their deadlines. For each task i , the smallest number of
processors j that allows the task to finish before its deadline Di without moving
any previously scheduled task is determined. Finally, task i is scheduled to start
as soon as possible on j processors. If it is not possible to schedule task i before
Di , the constructed schedule is labeled as infeasible. Remark that the core of
the deadline scheduling algorithm from line 23 to line 29 is generic. It could be
used for a classical scheduling problem of moldable tasks with deadline.

The algorithm has several interesting properties. First of all, if MoldableEDF
was an exact algorithm, then the optimal maximum stretch would be found.
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Algorithm 1. Deadline Based Online Scheduling Algorithm
1: procedure DBOS(INPUT: ρ , OUTPUT: π∗ , σ∗ )
2: LB ← 0, S ← 1
3: while Not Feasible (π, σ ) do � Compute an initial feasible maximum stretch
4: S ← 2S
5: (π, σ) ←MoldableEDF (S)

6: UB ← S
7: while UB �= LB do � Find the best maximum stretch using a binary search
8: S ← UB+LB

2

9: (π, σ) ←MoldableEDF (S)
10: if Feasible (π, σ) then
11: (π∗, σ∗) ← (π, σ)
12: UB ← S
13: else
14: LB ← S
15: (πρ, σρ) ←MoldableEDF (ρS) � Relax S by a factor of ρ if it is feasible
16: if Feasible (πρ, σρ) then
17: (π∗, σ∗) ← (πρ, σρ)

18: return (π∗, σ∗)

19:
20: procedure MoldableEDF(S )
21: for all i ≤ n do � Compute a deadline for each task
22: Di ← ri + pi,1S

23: Construct initial processor allocation using information about running tasks
24: for all task i in non-decreasing Di order do
25: for all j from 1 to m do
26: x← earliest time that j processors are available for pi,j units of time
27: if x+ pi,j ≤ Di then
28: πi ← j ; σi ← x
29: Exit inner for loop

30: return (π, σ)

The deadline scheduling problem as well as the maximum stretch optimization
problem are NP-Complete [23]. However, it is likely that if an approximation
algorithm for the deadline scheduling problem was known, it would lead to an
approximation algorithm for the maximum stretch optimization problem.

MoldableEDF is a greedy algorithm and is not optimal as it can fail to find the
best feasible solution. However, the MoldableEDF is based on two principles that
make it efficient. First, the tasks are considered in non-decreasing order of dead-
lines. This principle, called Earliest Deadline First, leads to optimality in single
processor deadline scheduling problems and provides guaranteed approximation
for the sequential task scheduling problem on an arbitrary number of processors.
Second, the algorithm allocates the minimum number of processors that ensures
a task matches its deadline. This decision maximizes the processor availability
for the other tasks in the system, hence helps keeping the system efficiency high.
Moreover, it helps avoiding local optima due to presence of steps in the speedup
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Table 1. (Left) Sequencing machines and the number of reads each of them produces
in a single run. (Right) Genomes and their sizes.

Sequencing machine Number of reads

454 GS FLX Genome Analyzer 1 million
Solexa IG sequencer 200 million
SOLiD system 400 million

Genome Size (bases)

E. Coli 4.6 million
Yeast 15 million
A. Thaliana 100 million
Mosquito 280 million
Rice 465 million
Chicken 1.2 billion
Human 3.4 billion

function. This principle is similar to the canonical number of processors used in
makespan optimization.

6 Experiments

Execution time of short sequence mapping tasks vary significantly depending
on the size of the reference genome and the number of reads to be mapped
(see Table 1). For instance, a targeted sequence analysis involves mapping a
few million reads to a genome segment of a few hundred thousand bases and
can be carried out in a couple of minutes. On the other hand, a whole-genome
resequencing application requires mapping hundreds of millions of reads and may
take a few hours for mosquito and a few days for human genome. In this section,
we report on the simulation results of the DBOS algorithm on a 512-processor
cluster using two workload scenarios that reflect such variety in task execution
times. The first scenario is based on a log file from a supercomputing center and
is included to assess the performance of the algorithm on well known data. The
second scenario is designed to simultate the load of a cluster dedicated for short
sequence mapping tasks.

In the first scenario, we used a real log file (SDSC Par 96 in [24]) of parallel jobs
submitted to the San Diego Supercomputing Center (SDSC). This file contains
information about a task’s arrival time, runtime on the system and the number
of processors used for its execution. We considered the first 5, 000 tasks, and
similar to [18], we used the Downey model [25] to estimate the scalability of
the tasks. The Downey model requires two parameters for each task: maximum
parallelism and variance of parallelism of the task. The value of the maximum
parallelism is randomly selected between p and 512, where p is the recorded
number of processors used to execute the task in the log file. The value of the
variance of parallelism is randomly selected between 0 and 2 which is a realistic
range for this parameter [25]. Since the Downey model is stochastic, 10 different
instances were generated.

In the second scenario, each workload consists of 5,000 parallel short sequence
mapping tasks and each task arrives at the cluster with an inter-arrival time
chosen from a exponential distribution of parameter λi . We varied λi to obtain
6 different load conditions, where load is defined as the ratio of the sum of
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sequential processing times of all tasks to the time that elapsed between the
arrival of the first and the last task. In other words, for a load of l , if all tasks
were executed sequentially, then total computing power of l processors would
be used to execute the tasks over the time for which the activity on the cluster
is simulated. Therefore, in our tests, if the load is larger than 512, the cluster
is clearly overloaded. However, due to non-linear scalability of the tasks and
random arrival times, it is very likely that the cluster gets overloaded even for
load values less than 512. A task in this scenario represents a mapping operation
of short sequences generated by one of the sequencing machines to one of the
genomes listed in Table 1. The sequencing machine and the genome associated
with a task is chosen randomly and the parallel execution time of the task is
computed using the formulas from Section 2. The sequential processing time of
the generated tasks vary between 30 seconds and 22 days.

Results of the DBOS algorithm are presented in comparison to the iterative
algorithm of Sabin et al. [18] which was described in Section 4.2.

6.1 Downey Model

First we present aggregate results from 10 runs using Downey model on the
SDSC log file. Since 5,000 tasks are scheduled in each run, we had scheduling
information about 50,000 tasks in 10 runs. In Figure 1(a), the flow time of these
50,000 tasks are shown in increasing flow time order for DBOS and the iterative
algorithms (the improved version of the iterative algorithm is not presented here
as it is equivalant to the original iterative algorithm since there are no steps in
speedup functions of the Downey model). Figure 1(b) shows the corresponding
chart with stretch on the y-axis. Due to wide variation of flow times and stretch
values, log scale is used in the y-axis of both charts. These results show that
on the average DBOS provides a better flow time and stretch compared to the
iterative algorithm. Recall that if a task has a stretch greater than 1, it means
that the time it spends in the system is greater than its sequential execution time.
In other words, the speedup gain due to parallel execution is lost. The iterative
algorithm resulted in more than 23% of the tasks to have stretch greater than
1, whereas the corresponding quantity was only 6% for DBOS with ρ = 1. The
results improved even further when the value of ρ is increased to 1.5. In that
case, only 1% of the tasks had a stretch greater than 1. In Figure 1(c), the
percentage of tasks with stretch greater than 1 is shown for different task-size
groups. The results indicate that the iterative algorithm results in a relatively
unfair schedule by penalizing smaller tasks more in terms of their stretch. For
example, 34% of the tasks in the smallest task-size group have a stretch larger
than 1. DBOS results in a more fair schedule, where less than 7% and 1% of the
tasks had a stretch greater than 1 even for the smallest tasks with ρ = 1 and
ρ = 1.5, respectively.

Note that larger tasks can afford longer delays without much degradation in
their stretch. However, smaller jobs suffer more especially when the cluster is
overloaded. This is similar to the worst case online scenario on a single processor
as mentioned in Section 3.2, in which a very short task arrives just after a
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Fig. 1. Comparison of DBOS and the iterative algorithm on the SDSC/Downey work-
load. The y-axis is in log scale for (a) and (b). The lower is the better in all figures.

very long task is scheduled. Existence of some tasks getting a stretch over 100
in our experiments is the proof that such phenomenon appears also in practice.
Nevertheless, if a value larger than 1 is used for the online factor ρ this behavior
occurs rarely.

6.2 The Short Sequence Mapping Application

In the second set of experiments we considered workloads consisting of short
sequence mapping tasks as described in the second scenario above. We gener-
ated 6 different load cases and for each case we generated 20 workloads. Since
the instance generation will not provide the same load when run with the same
parameters, we considered a range of load values around a targeted load value
(and tuned the λi parameter to reach this load). The 6 load cases in the ex-
periments correspond to the following ranges of load values: 100-115, 200-230,
330-360, 150-500, 500-570 and 640-710. Note that in the last two cases the cluster
is overloaded (as the load is greater than the number of processors). These cases
are included to see the performance of the algorithm in extreme load conditions.
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Fig. 2. Impact of the online factor ρ on the performance. The y-axis is in log scale for
(a), (b) and (d). The lower is the better in all figures.

We started with assessing the impact of the online factor ρ of the DBOS al-
gorithm and used values of ρ chosen from the set {1, 1.1, 1.3, 1.5} . Recall that
the parameter ρ allows to take the online characteristics of the problem into
account by relaxing the instant maximal stretch to improve overall efficiency.
In Figure 2(a), average stretch achieved by the DBOS algorithm with different ρ
values are given under different load cases. For each load case and for each ρ
value, the average stretch values are shown sorted. Figure 2(b) displays the cor-
responding results for maximum stretch values. In Figure 2(c), the percentage
of tasks with stretch greater than 1 is shown for different task-size groups using
the aggregate results from all 20 workloads that have load in the 330-360 range.

The results in Figure 2 suggest that both average and maximum stretch
improves significantly with ρ until ρ = 1.3, after which the improvement is
marginal. In general, using a ρ value greater than 1 results in an increase
in the stretch of the tasks with extremely small stretch and a decrease in the
stretch of the tasks with extremely large stretch (results were similar to those in
Figure 1(b), hence omitted). Therefore, using larger ρ values helps reducing
the variance of stretch as well as the average and maximum stretch. As seen in
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Fig. 3. Comparison of DBOS and the iterative algorithm on short sequence mapping
application workloads

Figure 2(c), small sized tasks benefit the most from larger ρ values, as they
are more likely to get large stretch values due to cases similar to the worst-case
scenario described in Section 3.2. As the load in the system increases, there are
far more tasks in the system and the online factor becomes less effective as it
is no longer sufficient to keep a portion of the processors available for the tasks
that will arrive in the future. Figures 2(a) and 2(b) illustrate that the online
factor has very little impact in the two extreme load cases, where load is greater
than 500.

In order to determine a reasonable range of values for the online parameter
ρ , we computed the average stretch for different ρ values under different load
conditions. The results of this experiment are given in Figure 2(d), where each
point is the average over 20 instances of similar loads. Since the variance of
average stretch values is low, (see Figure 2(a)), the standard deviation is omitted
in this figure for clarity. The results show that the optimal value of ρ depends
on the load of the system. The average stretch quickly drops when ρ increases
as more room is created for small tasks. Then it slowly increases as all the tasks
get delayed and some machines of the cluster are left idle. The shape of the curve
allows easy estimation of the optimal ρ with a gradient method. Moreover, note
that the average stretch has small variation around the optimal ρ value. For
instance, for a load between 330 to 360, the optimal ρ value is 2.4 and all
ρ values between 1.6 and 3.8 result in average stretch values within 20% of
the optimal. Therefore, fine tuning of the ρ value is not essential as long as
unreasonable values are avoided. In the rest of the experiments, the value of ρ
is set to 1.5 which is a reasonable value for underloaded cluster scenarios.

In Figure 3 the results of the DBOS algorithm on short sequence mapping
workloads are presented in comparison to the two variants of the iterative algo-
rithm mentioned in Section 4.2: the original algorithm in [18], and the improved
version for non-convex speedup function. These two variants lead to different
results due to steps in the speedup curves of the short sequence mapping tasks.
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Results in Figure 3(a) show that the improved version leads to around 50%
improvement in flow time; steps in speedup curves prevent the original version
from using available parallelism. On the overloaded cases, the two versions are
comparable since there are more tasks in the queue and both algorithms use all
available processors. If the average flow time is the target metric in an appli-
cation, our proposed improvement should be used in the iterative algorithm to
handle non-convex speedup curves.

However, under-utilization of the cluster in the original iterative algorithm
results in better stretch values. Indeed, the improved algorithm tends to utilize
all processors in the cluster, thus tasks entering the system are delayed and get
large stretch values. The original version results in many processors to remain
idle, therefore, tasks that enter the system are scheduled immediately and ob-
tain small stretch values. However, note that if the application had required the
number of processors to be a power of two, the original iterative algorithm would
never schedule a task on more than two processors, hence would not get a stretch
better than 0.5. This is worse than the improved version which reaches an av-
erage stretch of 0.3. On the other hand, if the first step in the speedup curve
appears on a large number of processors, the behavior of the original iterative
algorithm converges to that of the improved one.

As clearly seen in Figure 3, DBOS achieves better stretch than both variants of
the iterative algorithm. The difference is especially larger for low load conditions,
where more than 70% improvement is achieved relative to the original iterative
algorithm. The performance of the original iterative algorithm is comparable
with DBOS only under the cases where the cluster had a load greater than 400.
DBOS outperforms the revision of the iterative algorithm up to 85% on low load
cases.

In terms of flow time, DBOS achieves better results than the iterative algo-
rithm under low and medium load and worse results only in overloaded cluster
conditions. Results in Figure 3 leads to the conclusion that DBOS achieves a
balance between inefficient over-parallelism as in the case of improved iterative
algorithm, and under-utilization of the cluster as in the case of original iterative
algorithm. Therefore, except for extreme load conditions, it usually gives the
best stretch and flow time among the considered algorithms.

The scheduling overhead of both DBOS and the iterative algorithm are low
and mainly depends on the number of tasks in the queue. On a regular desktop
(2.4Ghz Intel Core2 processor, 2GB of memory), our unoptimized implementa-
tion of DBOS and the iterative algorithm take about 20 to 30 seconds to schedule
5000 tasks. Despite a greedy algorithm would deliver the schedules faster, the
computation times of the benchmarked algorithms are far from being prohibitive
since the execution of tasks in a cluster can last for hours and since the scheduling
process does not interfere with tasks already being executed.

7 Conclusion

The most computationally demanding step in DNA sequence analysis is mapping
sequences generated by next-generation sequencing instruments to a reference
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genome. In this paper, we investigated online scheduling of multiple parallel
short sequence mapping tasks in a multi-user environment. Availability of ac-
curate estimates of parallel execution times of short sequence mapping queries
allows using the moldable task model in the scheduling process. Existing stud-
ies mainly focus on optimizing the average flow time of tasks, which produces
schedules unfair against small tasks. In the context of sequential tasks, one of
the proposed solutions to address the fairness issue was the use of stretch metric.
To the best of our knowledge, the work presented in this paper is the first that
uses the stretch metric for moldable task scheduling without preemption. Exper-
iments on two different workload scenarios, one based on the log of a production
batch system and one reflecting realistic use-case scenario of the short sequence
mapping application, showed that the proposed DBOS algorithm provides better
schedules than the compared algorithms in terms of the stretch metric while
improving the flow time on many cases. The results demonstrated that DBOS
achieves a balance between inefficient over-parallelism and under-utilization of
the cluster, two competing issues regarding online task scheduling.

References

1. Applied Biosystems, MapReads: SOLiD System Color Space Mapping Tool,
http://solidsoftwaretools.com/gf/project/mapreads/

2. Smith, A.D., Xuan, Z., Zhang, M.Q.: Using quality scores and longer reads improves
accuracy of solexa read mapping. BMC Bioinformatics 9(1), 128 (2008)

3. Li, H., Ruan, J., Durbin, R.: Mapping short dna sequencing reads and calling
variants using mapping quality scores. Genome Research 18(11), 1851–1858 (2008)

4. Li, R., Yu, C., Li, Y., Lam, T.W.W., Yiu, S.M.M., Kristiansen, K., Wang, J.:
SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15),
1966–1967 (2009)

5. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short dna sequences to the human genome. Genome Biology 10(3),
R25 (2009)

6. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment
search tool. Journal of Molecular Biology 215, 403–410 (1990)

7. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison.
Proc. National Academy of Sciences 85, 2444–2448 (1988)

8. Zhang, Z., Schwartz, S., Wagner, L., Miller, W.: A greedy algorithm for aligning
DNA sequences. Journal of Computational Biology 7(1/2), 203–214 (2000)

9. Davies, K.: Pacific Biosciences preparing the 15-minute genome by 2013. Bio IT
World (2008)

10. Bozdag, D., Barbacioru, C.C., Catalyurek, U.: Parallel short sequence mapping for
high throughput genome sequencing. In: Proc. of the International Parallel and
Distributed Processing Symposium (2009)

11. Turek, J., Wolf, J.L., Yu, P.S.: Approximate algorithms scheduling parallelizable
tasks. In: Proc. of the fourth Symposium on Parallel Algorithms and Architectures,
pp. 323–332. ACM, New York (1992)

12. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory
and practice in parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.)
IPPS-WS 1997 and JSSPP 1997. LNCS, vol. 1291, pp. 1–34. Springer, Heidelberg
(1997)

http://solidsoftwaretools.com/gf/project/mapreads/


A Moldable Online Scheduling Algorithm 109

13. Bender, M., Muthukrishnan, S., Rajaraman, R.: Improved algorithms for stretch
scheduling. In: Proc. of the Symposium on Discrete Algorithms, pp. 762–771 (2002)

14. Legrand, A., Su, A., Vivien, F.: Minimizing the stretch when scheduling flows of
biological requests. In: Proc. of the Symposium on Parallelism in Algorithms and
Architectures (2006)

15. Jansen, K., Porkolab, L.: Linear-time approximation schemes for scheduling mal-
leable parallel tasks. In: Proc. of 10th SODA, pp. 490–498 (1999)

16. Mounie, G., Rapine, C., Trystram, D.: A 3/2-approximation algorithm for schedul-
ing independent monotonic malleable tasks. SIAM J. Comput. 37(2), 401–412
(2007)

17. Drozdowski, M., Dell’Olmo, P.: Scheduling multiprocessor tasks for mean flow time
criterion. Computers and Operations Research 27(6), 571–585 (2000)

18. Sabin, G., Lang, M., Sadayappan, P.: Moldable parallel job scheduling using job
efficiency: An iterative approach. In: Frachtenberg, E., Schwiegelshohn, U. (eds.)
JSSPP 2006. LNCS, vol. 4376, pp. 94–114. Springer, Heidelberg (2007)

19. Srinivasan, S., Subramani, V., Kettimuthu, R., Holenarsipur, P., Sadayappan, P.:
Effective selection of partition sizes for moldable scheduling of parallel jobs. In:
Sahni, S.K., Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552, pp.
174–183. Springer, Heidelberg (2002)

20. Muthukrishnan, S., Rajaraman, R., Shaheen, A., Gehrke, J.: Online scheduling to
minimize average stretch. In: Proc. of FOCS, pp. 433–443 (1999)

21. Srinivasan, S., Krishnamoorthy, S., Sadayappan, P.: A robust scheduling technology
for moldable scheduling of parallel jobs. In: Proc. of Cluster 2003, pp. 92–99 (2003)

22. Srinivasan, S., Kettimuthu, R., Subramani, V.: Selective reservation strategies for
backfill job scheduling. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 55–71.
Springer, Heidelberg (2003)

23. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York
(1979)

24. Feitelson, D.: Parallel workloads archive,
http://www.cs.huji.ac.il/labs/parallel/workload/

25. Downey, A.B.: A parallel workload model and its implications for processor allo-
cation. Cluster Computing 1(1), 133–145 (1998)

http://www.cs.huji.ac.il/labs/parallel/workload/


Dynamic Proportional Share Scheduling in

Hadoop

Thomas Sandholm and Kevin Lai

Social Computing Lab, Hewlett-Packard Labs, Palo Alto, CA 94304, USA
{thomas.e.sandholm,kevin.lai}@hp.com

Abstract. We present the Dynamic Priority (DP) parallel task sched-
uler for Hadoop. It allows users to control their allocated capacity by
adjusting their spending over time. This simple mechanism allows the
scheduler to make more efficient decisions about which jobs and users to
prioritize and gives users the tool to optimize and customize their alloca-
tions to fit the importance and requirements of their jobs. Additionally,
it gives users the incentive to scale back their jobs when demand is high,
since the cost of running on a slot is then also more expensive. We en-
vision our scheduler to be used by deadline or budget optimizing agents
on behalf of users. We describe the design and implementation of the DP
scheduler and experimental results. We show that our scheduler enforces
service levels more accurately and also scales to more users with distinct
service levels than existing schedulers.

Keywords: MapReduce, Dynamic Priority, Task Scheduling.

1 Introduction

Large compute clusters have become increasingly easier to program because of
simplified parallel programming models such as MapReduce. At the same time,
the costs for deploying and operating such clusters are significant enough that
users have a strong incentive to share them. However, MapReduce was initially
designed for small teams where resource contention can be resolved using FIFO
scheduling or through social scheduling.

In this paper, we examine different task-scheduling methods for shared Hadoop
(an open source implementation of MapReduce) clusters. As a result of our anal-
ysis of Hadoop scheduling, we have developed the Dynamic Priority (DP) sched-
uler, a novel scheduler that extends the existing FIFO and fair-share schedulers
in Hadoop. This scheduler plug-in allows users to purchase and bid for capacity
or quality of service levels dynamically. The capacity allotted, represented by
Map and Reduce task slots, is proportional to the spending rate a user is willing
to pay for a slot and inversely proportional to the aggregate spending rate of all
existing users. When running a task on the alloted slot, that same spending rate
is deducted from the user’s budget.

This simple mechanism allows the DP scheduler to make more efficient de-
cisions about which jobs and users to prioritize and gives users the ability to
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optimize and customize their allocations to fit the importance and requirements
of their jobs. Additionally, it gives users the incentive to scale back their jobs
when demand is high, since the cost of running on a slot is then also more expen-
sive. We envision the DP scheduler to be used by deadline or budget optimizing
agents on behalf of users. In comparison to existing schedulers, the DP imple-
mentation is simpler because it does not rely on heuristics, while still providing
preemption and being work-conserving.

We present the design and implementation of the DP scheduler and exper-
imental results. We show that our scheduler enforces service levels more accu-
rately and also scales to more users with distinct service levels than existing
schedulers. We also show how the dynamics of budgets and spending rates affect
job completion time. The DP scheduler enables cost-driven scheduling across
Hadoop clusters potentially operated from different sites and administrative
domains.

This paper is organized as follows. In Section 2 we review the current Hadoop
schedulers. We then describe the design and rationale behind our scheduler im-
plementation in Section 3. In Section 4 and Section 5 we present and discuss a
series of experiments used to evaluate our scheduler. Finally, we relate our work
to previous work in Section 6 and conclude in Section 7.

2 Hadoop MapReduce

Apache Hadoop [1] is an open source version of the MapReduce parallel program-
ming framework [2] and the Google Filesystem [3]. Historically it was developed
for the same reasons Google developed their corresponding protocols, to index
and analyze a huge number of Web pages. Data parallel programming or data-
intensive scalable computing (DISC) [4] have since been deployed in a wide range
of applications (e.g., OLAP, data mining, scientific computing, media process-
ing, log analysis and data warehousing [5]). Hadoop runs on tens of thousands
of nodes in production at Yahoo!, and Google uses their implementation heavily
in a wide range of production services such as Google Earth [6].

The MapReduce model allows programmers to focus on designing the applica-
tion workflow and how data are filtered and aggregated in the different stages of
these workflows. The system takes care of common distributed systems tasks such
as scheduling, input partitioning, failover, replication, and distributed sorting of
intermediate results. The main benefits compared to other parallel programming
models are the inherent data-local scheduling, and the ease of use, leading to
increased developer productivity and application robustness.

In the seminal deployment at Google [2] the MapReduce architecture com-
prises one master and many workers. The input data is split and replicated in
64 MB blocks across the cluster. When a job executes, the input data is par-
titioned among parallel map tasks and assigned to slots on idle worker nodes
by the master while considering data locality. Similarly, the master schedules
reduce tasks on idle worker nodes that read the intermediate output from the
map tasks. Between the map and the reduce phases of the execution the inter-
mediate map data are shuffled across the reduce nodes and a distributed sort
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is performed. This ensures that all data with a given key are guaranteed to be
redirected to the same reduce node, and in the reduce processing phase all keys
are streamed in a sorted order. Re-execution of a failed task is supported where
the master reschedules the task. To address the issue of a small number of tasks
executing substantially slower than average and slowing down the overall job
completion time, duplicate backup tasks are speculatively executed and the task
that completes first is used whereas others are discarded.

2.1 Scheduling

In Hadoop all scheduling and allocation decisions are made on a task and node
slot level for both the map and reduce phases. I.e., not all tasks of a job may be
scheduled at once. The reason for not scheduling on a resource (node) level but
on a slot level, is to allow different nodes of different capacity to offer varying
numbers of slots and to increase the benefits of statistical multiplexing. The
assumption is that even very complex jobs can be broken down into primitive
tasks that may run in parallel on a commodity compute unit. The schedulers
assume that each task in the same job takes roughly the same amount of time
to complete given a slot. If this is not the case some heuristics may be applied
like speculative scheduling.

All tasks are by default scheduled using a FIFO queue. Experience from large
deployments at Yahoo! shows that this leads to inefficient allocations and the
need for “social scheduling”. The next generation scheduler in Hadoop, Hadoop
on Demand (HOD), addressed this issue by setting up private MapReduce clus-
ters on demand, managed by the Torque batch scheduling system. This approach
failed in practice because it violated the data locality design of the original
MapReduce scheduler, and it became too high of a maintenance burden to sup-
port and configure an additional scheduling system1. Creating small sub-clusters
for processing individual users’ tasks, as in the HOD case, violates locality be-
cause the processing nodes only cover a subset of the data nodes, and thus more
data transfers are needed to stage in and out data to and from the compute
nodes.

To address some of these shortcomings, Hadoop recently added a scheduling
plug-in framework with two additional schedulers that extend rather than replace
the original FIFO scheduler. The additional schedulers implement alternative
fair-share capacity algorithms where separate queues are maintained for separate
pools (groups) of users, and each are given some service guarantee over time. The
inter-queue priorities are set manually by the MapReduce cluster administrator.
This reduces the need for social scheduling of individual jobs but there is still
a manual or social process needed to determine the initial fair distribution of
priorities across pools, and once this has been set all users and groups are limited
by the task importance implied by the priority of their pool. There is no way
for users to optimize the usage of their granted allocation across jobs of different
importance, during different job stages, or to respond to run-time anomalies such

1 https://cwiki.apache.org/jira/browse/HADOOP-3421

https://cwiki.apache.org/jira/browse/HADOOP-3421
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as failures or slow nodes. The potential allocation inefficiency arising from this
static setup is the main target for our work.

Previously we studied scheduling of entire virtual-machine-hosted Hadoop
clusters in [7]. The general problem addressed there was how to scale up and
down a set of virtual machines running Hadoop workers to complete jobs more
cost-effectively and faster, based on knowledge of job workflow resource require-
ments. This approach works well if each user works with a separate data set.
However, in case of groups of people sharing large data sets, it becomes too much
of an overhead to load the data into multiple virtual clusters, and if file system
clusters are shared you face the same problem as with HOD of reduced data lo-
cality. Furthermore, Hadoop is very IO intensive both for file system access and
Map/Reduce scheduling, so virtualization incurs a high overhead. To address
these problems we, in this work, focus on the approach of allocating slots in the
Hadoop scheduler for different queues dynamically. This approach works both
in a virtual and physical cluster, and it incurs less overhead when sharing the
cluster among a large number of users. Next we describe our scheduler design
and implementation in more detail.

3 Design

The primary design goal of our Hadoop task scheduler is to allow capacity distri-
bution across concurrent users to change dynamically based on user preferences.
Traditional priority systems that try to guess user priority are too inaccurate [8],
and unregulated user priorities assume trusted small groups of users. Our sched-
uler automates capacity allocation and redistribution in a regulated task slot
resource market.

3.1 Mechanism

The core of our design is a proportional share resource allocation mechanism
that allows users to purchase or be granted a queue priority budget. This budget
may be used to set spending rates denoting the willingness to pay a certain
amount of the budget per Hadoop map or reduce task slot per time unit. The
time unit is configurable, and referred to as allocation interval. It is typically set
to somewhere between 10 seconds and 1 minute. In each allocation interval the
scheduler:

– aggregates all spending rates s from all current users to calculate the Hadoop
cluster price, p,

– for all users, allocates (si/p)× c task slots (both mappers and reducers) to
user i, where si, is the spending rate of user i, and c is the aggregate slot
capacity of the cluster,

– for all users, deducts si × ui from budget b where ui, is the number of slots
used by user i

Users consuming more resources will deplete their budget faster given the same
spending rate. However, they are guaranteed to not pay more than the spending
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rate per allocated slot. Thus a user’s bid represents her willingness to pay a
certain rate per slot.

It may appear that this model is biased towards users with small jobs who
would be able to outbid users with bigger jobs. However, in the Hadoop MapRe-
duce task model users with big jobs can effortlessly scale down their jobs to run
fewer concurrent tasks and thereby consume the same amount of resources per
time unit as small jobs but instead run longer. Our model thus sets the right
incentives for users to scale back resource consumption as much as their job
deadlines or SLAs allow.

Because we only want to charge each user for the capacity they use and
reallocate the unused capacity to other users, (and we want to make sure users
actually pay for the spending rate they bid) we calculate the capacity allocation
and the price to pay for slots for an allocation interval based on the spending
rates in the interval directly preceding the interval when the slots are consumed.
To avoid blocking new arriving users and having non-running users hold up
resources, we only calculate an allocation for a user if either a job is pending or
running for that user.

To adapt more quickly to user demand fluctuations and avoid head of queue
blocking and starvation issues, we support preemption where task slots that
have been allocated but are no longer paid for may be reclaimed and allocated
to other users. This works well for most applications since Hadoop automatically
puts preempted tasks back in the pending queue to be reallocated when demand,
measured by user spending rates, allows.

The key feature of this mechanism is that it discourages free-riding and gaming
by users. Users who claim a higher priority will have to pay for it, so they have
an incentive to accurately reveal how important priority is to them. In addition,
the variable pricing allows users with a low budget and low time-sensitivity to
run during low demand periods. These users would otherwise not be able to run
at all in a fixed pricing model. Conversely, at high demand periods, users have a
disincentive to run, but resources will nonetheless be available (for a high price)
for users that really need them.

The disadvantage is less capacity predictability and more variation in capacity
allocated to an application. However, the Hadoop MapReduce scheduling frame-
work allows jobs to be split up in finer grained tasks that can run and possibly
fail and recover independently. So the only thing the end users would need to
worry about is to get a good enough average capacity over some time to meet
their deadlines.

This introduces the difficulty of making spending rate decisions to meet the
SLA and deadline requirements. It is outside the scope of this paper and the
target of future work to address this particular issue, but the mechanisms pre-
sented here opens the door for innovation in this area, by allowing much more
fine grained control over resources for competing users in a multi-tenancy hosted
Hadoop cluster.

Figure 1 depicts how our scheduler components fit into the Hadoop architec-
ture. Alice is willing to pay $4 per slot, Bob is willing to pay $1.50, and Sam $2.
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Assuming that 15 slots are available to these three users in the global (logical)
slot table, Alice will be allocated 8 slots, Bob 3 slots and Sam 4 slots. Exactly
how these slots are mapped to physical nodes is not guaranteed. Whenever a
slot becomes available the allocations are recalculated to determine who should
get the new slot according to their granted share. Furthermore, local tasks are
attempted first. If that fails, remote rack tasks are scheduled. There may be op-
portunities to delay scheduling of some jobs to achieve a higher ratio of data local
tasks. However, in the current implementation we enforce the shares strictly in
each time period. This is not overly restricting because Hadoop replicates all the
data in at least three data blocks by default, which ensure many opportunities
for data local scheduling. Packing a user on a single node versus distributing the
job workload across nodes is another application specific trade-off that we may
address in future implementations.

Possible starvation of low-priority (low-spending) tasks can be mitigated by
using the standard approach in Hadoop of limiting the time each task is allowed
to run on a node. Moreover, our new mechanism also allows administrators to set
budgets for different users and let them individually decide whether the current
price of preempting running tasks is within their budget or if they should wait
until the current users run out of their budget. The fact that Hadoop uses task
and slot level scheduling and allocation as opposed to job level scheduling also
avoids many starvation scenarios.

If there is no contention, i.e. there are enough slots available to run all
tasks from all jobs submitted, the cost for excess resources essentially becomes
free because of the work conserving principle of our scheduler. However, the

Fig. 1. Dynamic Priority Scheduler Architecture. This example shows how a max ca-
pacity of 15 Map slots gets allocated proportionally to three users. For example, Alice
bids $4 and gets 4/(4 + 1.5 + 2) ∗ 15 = 8 slots. The central scheduler comprises a Dy-
namic Priority Allocator and a Priority Enforcer component responsible for accounting
and schedule enforcement respectively.
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guarantees of maintaining these excess resources are reduced. To see why, con-
sider new users deciding whether to submit jobs or not. If they see that the price
is high they may wait to preempt currently running jobs, but if the resources are
essentially given out for free they are likely to lay claim on as many resources
they can immediately.

We note that the Dynamic Priority scheduler can easily be configured to mimic
the behavior of the other schedulers. If no queues or users have any credits left
the scheduler reduces to a FIFO scheduler. If all queues are configured with the
same share (spending rate in our case) and the allocation interval is set to a
very large value, the scheduler reduces to the behavior of the static fair-share
schedulers.

3.2 Implementation

The Dynamic Priority scheduler is implemented as a scheduler plugin for the
Hadoop JobTracker service. This allows DP to be a drop-in replacement of the
default FIFO scheduler. The scheduler is split into two components: one for allo-
cation, Dynamic Priority Allocator, and one for enforcement, Priority Enforcer.

The Dynamic Priority Allocator implements dynamic slot allocation, budget-
ing and accounting, and provides a remote secure API to manage and monitor
budgets and spending rates.

The Priority Enforcer component is responsible for enforcing the shares of
resources calculated by the allocation component. It is responsible for picking
pending tasks from jobs to be scheduled when mapper and reducer slots open up
in Hadoop TaskTrackers. It thus implements the same functionality as the FIFO
and fair-share schedulers. However, these schedulers were not designed to handle
a large number of queues with constantly varying capacities that are determined
on demand from user input. They do not enforce shares at the granularity and
precision that our mechanism requires and do not support preemption to the
extent that we require.

The budgets and spending rates are stored in a storage component that can
be file-based or SQL-based. An XML REST Servlet controls the scheduler. The
monitoring component plugs into the Hadoop JobTracker Web console. The
Web console is depicted in Figure 2. The numbers displayed next to each queue

Table 1. REST XML API to Manage Scheduler Allocations

HTTP Options Description Authz

price Gets current price None
info=queue Gets queue usage info User
infos Gets usage info for all queues Admin
setSpending=spending&queue=queue Set the spending rate for queue User
addBudget=budget&queue=queue Add budget to queue Admin
addQueue=queue Add queue Admin
removeQueue=queue Remove queue Admin
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Fig. 2. MapReduce Administration Monitor

represent from top to bottom: current budget, spending rate, resource share,
slots used, and slots pending. The supported APIs are listed in Table 1 and an
example XML response for authorized requests can be seen in Listing 1.

Listing 1. Example XML response for authorized
requests
<QueueInfo>

<host>myhost</ host>
<queue name=" queue1">

<budget>99972 .0</budget>
<spending>0 .11</ spending>
<share>0.008979593</ share>
<used>1</used>
<pending>43</pending>

</queue>
</QueueInfo>

3.3 Security and Authentication

The existing Unix user and group based security model of Hadoop is too simple
to support a full-fledged multi-tenancy resource market as described above. More
specifically, relying on each user to pick queues and be trustworthy about their
identity would defeat the accounting and budget enforcement mechanism. As
a result, we implemented a lightweight symmetric key authentication and role-
based authorization protocol modeled after AWS Query Authentication [9], and
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OAuth. The advantage is that it is easy to use from any client and only requires
the capability to construct HMAC/SHA1 signatures based on shared secret keys.
The existing Hadoop command line clients were also extended to pass the sig-
natures required to submit jobs to queues being paid for in job configuration
parameters.

4 Evaluation

In this section, we describe experiments run to study the scalability and allo-
cation dynamics of our scheduler. There are three sets of experiments. In the
first set, we examine the correlation of spending rates, budgets and performance
metrics. In the second set, we study how accurately and effectively service levels
can be supported. Finally we measure how well the system adapts to changes
in spending rates. Unless otherwise stated all users are given the same budgets
in all experiments. We use the term queue interchangeably with the term user
since all users are given a dedicated queue to submit their jobs on in all of our
experiments. Our scheduler allows queues to be shared across users but it should
be compared to sharing bank accounts or access to a PC account among users,
i.e. sharing security credentials such as passwords, which is generally frowned
upon.

4.1 Setup

We use two testbeds for our evaluation: a 30 node quad-core cluster (referred
to as the big cluster) and a 5 node octo-core cluster (referred to as the small
cluster). The small cluster runs on virtual machines, whereas the big cluster is
installed directly on the hardware. More details of the clusters are shown in
Table 2.

For both setups, we allocate one queue per user and run 2-80 users concur-
rently. All users run the same benchmark application, the Pi estimator from the
Hadoop example code base. The Pi application was set up to be able to con-
sume the entire cluster if run in isolation (i.e. number of job tasks were set to
the number of slots available in the cluster), and thus ran slower when there was
contention. The pi precision target was set to 450000000 for the small cluster and
500000000 for the big cluster to ensure that the application was both CPU and
data intensive. The ability to fine-tune the CPU versus data intensity without
having to provision a large amount of data was the main reason we chose the Pi
application for our experiments. The fact that all Hadoop applications conform
to the same general internal structure (MapReduce) allows us to treat the results
more generally than with a typical parallel workload. To stress the system, all
users are launched concurrently and submit a continuous stream of jobs. In the
initial 2-user experiments we test the FIFO, Fairshare (fair-share scheduler de-
veloped at Facebook), and Capacity (fair-share scheduler developed at Yahoo!)
schedulers and compare them to the Dynamic Priority scheduler that we devel-
oped. The Fairshare and Capacity schedulers were not able to handle the 10-80
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Table 2. Experiment Cluster Setup

Cluster Used in Graphs Nodes Cores (CPUs) Physical/Virtual OS Disk

big 3-9 30 120(30) Physical CentOS 5 45TB
small 10-11 5 40(40) Virtual CentOS 5 250GB

queue and user workload reliably so they were excluded from the larger experi-
ments. To switch between the schedulers during the experiment we restarted the
JobTracker service resulting in a clean start since no running job information is
persisted in the current version of the JobTracker. The stream of jobs from the
clients is not affected either during a restart since the clients will just resubmit
jobs when a job is done or fails.

4.2 Spending Rates, Budgets and Performance

In the first experiment, we start two concurrent user workloads. We give queue1
an initial budget of 1000 and queue2 10000 credits. The spending rate per
Hadoop slot of queue1 is set to twice the rate of queue2. Since queue1 will
then be allocated twice as many resources the total spending is expected to be
4 times that of queue2 in any allocation interval.

Figure 3 depicts the budget over time for the two users, and Figure 4 shows
the completion time of their jobs over the same time period. Our scheduler is
initially configured to run without preemption and queue1 will thus not see an
immediate benefit in completion time.

We also see that the budget of queue1 runs out at time 05/15-22:00, at which
point the allocation is given over to queue2, and the performance of queue1
degrades significantly. At time 05/16-14:00 the budgets of queue1 and queue2
are reset to 10000 and the scheduler is reconfigured to preempt. We now see
that the queue1 completion time is around 3000s for each job in Figure 4 and
the spending is about 26-27% more than queue2 (25% expected) as seen in
Figure 3. We do not obtain exactly half the job completion time when getting
twice the amount of resources but about 1.8. This is because we only control
the slot capacity not other resources such as HDFS (distributed file system)
IO and network bandwidth. We can also see that the higher spender (queue1)
gets a very stable high performance, oscillating between 3000-3200s completion
times compared to the low priority queue (queue2) which oscillates between
4500-5800s.

Now just looking at Figure 4 at time 05/18-00:00 we reconfigure the cluster to
use the Capacity scheduler. The differentiation in obtained service level is far less
although the capacity configuration is the same, twice as many slots for queue2.
We attribute this to less aggressive preemption, and less granular control over
allocations in this scheduler compared to ours. We can also see that the min/max
range variation is greater for both queues with the capacity scheduler. Queue1
oscillates between 3000-3600s, and queue2 oscillates between 3600-5500s.

Taking the ratio of minimum performance to maximum performance we get
a differentiation of about 1.5 to be compared to 1.8 for our scheduler. At time
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05/19-00:00 we had a failed attempt to set up the Fairshare scheduler for this
workload. We saw that all schedulers showed signs of a memory bloat with
workload and would eventually run out of memory. This behavior was most
apparent with the Fairshare scheduler which did not manage to complete a
single job. We point out that this bug was not in any of the schedulers but
in the jobtracker framework, so it just surfaces how different schedulers handle
memory in general. So instead at time 05/19-18:00 we reconfigure the cluster
with the standard FIFO scheduler. We can see that this scheduler does not offer
any differentiation as expected, and the average performance level is above the
queue1 level and below the queue2 level obtained with the other schedulers.

We note that the capacity scheduler was configured with 60min preemption.
More frequent preemption caused problems with completing the tasks. Neither
the fair-share nor the FIFO schedulers supported preemption in the versions
tested2. However, both Capacity and Fairshare Queue/Pool capacity was config-
ured the exact same way as with our scheduler, with the only difference that it
was not able to change over time. The FIFO scheduler was not configured with
any priorities, since no queue-based priorities could be set.

Fig. 3. 2-user budget dynamics example. The graph shows how the budget (y-axis)
evolves over time (x-axis as month/day and time). The slopes of the curves represent
the spending rates of the users over time. Queue(user)1 uses twice the spending rate of
queue(user)2. At the center of the graph the budgets of both users are reset to 10000
(time 05/16 14:00).

We stress that it is not simply an implementation artifact that the capacity
and fair-share schedulers perform poorly in these tests. These schedulers were
not designed for dynamic priorities nor for handling a large number of queues
from the outset as our scheduler was3.
2 Hadoop 0.20-0.21 code base checked out around May 2009
3 http://issues.apache.org/jira/browse/HADOOP-4768

http://issues.apache.org/jira/browse/HADOOP-4768
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Fig. 4. 2-users service differentiation trace. The graph shows the completion time over
time for jobs submitted by the 2 users in the budget graph in Figure 3. The first half of
the timeline corresponds directly to the timeline in the budget graph. The second half
corresponds to experiments with the capacity, fairshare and FIFO schedulers. The first
drop in completion time for queue1 is correlated with the budget running out. The key
result is the clear separation of completion times between queue1 and queue2 seen in
the first half compared to the second half of the graph.

4.3 Allocation Fidelity and Overhead

Now we look at how well we can preserve the differentiation of service levels
with more users and queues. Figure 5 shows the completion times obtained for
10 queues when queue n is given a share of n/

∑10
i=1 i. We can see that all 10

service levels are enforced successfully. At time 05/21-10:00 we reconfigure the
cluster with the FIFO scheduler. We note that there is a random distribution
of service levels for the first job because there is no preemption. For other jobs
the identical service level is given to all jobs. This experiment showcases that
a dynamic non-stationary workload with users entering and leaving the system
may result in random highly variable service levels even with the FIFO scheduler.

In Figure 6 we show the results of an experiment that ran our scheduler with
preemption and 80 users first, then the FIFO scheduler and finally our scheduler
without preemption. Still we see that the 10 service levels are maintained. We do
not obtain more than 10 service levels with this application (Pi estimator). The
number of service levels obtainable depends both on overhead and bottlenecks in
the specific applications run but also on the overall scale of the cluster and the
slots available. We also note here that the preempting version of our scheduler, in
the left half of the graph, delivers somewhat more stable service level than the
non-preemptive one (after time 05/24-22:00) but the differences are cosmetic.
This experiment again shows that our scheduler shapes the workflow into the
desired service levels quickly.
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Fig. 5. 10-user service differentiation trace. The graph shows completion time for jobs
(y-axis) over time (x-axis). The first half of the graph shows how our scheduler separates
the queues’ performance compared to the second half when the FIFO scheduler was
used. Half of the queues obtain better performance and the other half worse than the
FIFO case.

Fig. 6. Sample of 80-user service differentiation trace. The graph shows completion
time (x-axis) over time (y-axis) using the same setup as in the 2-user graph in Figure 5,
but with 80 users. For clarity only a sample of the users are shown. The results are
very similar to the 2-user graph, which shows how our scheduler’s ability to differentiate
service levels scales well in number of queues/users.
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Table 3. Distance to Ideal Line (in seconds) from Average Queue Completion Time
with Approximate 95% Confidence Bounds

Scheduler Queue1 Queue2

Capacity 1000 ± 150 600 ± 250
DynPrio 800 ± 20 300 ± 200

We now study the performance fidelity of the granted allocation more care-
fully. There is obviously some trade-offs in throughput of the system and the
level of preemption enforced since a killed Hadoop task (note not a job) must be
restarted from the beginning. Figure 7 shows the fidelity versus overhead for the
two-user experiment. The ideal line depicts the performance expected if queue1
runs its jobs twice as fast as queue2, but the average across the queues is the
same as for the FIFO case (e.g. optimal fidelity and maximum throughput). Our
dynamic priority scheduler running with preemption comes closest to meeting
this ideal, but we can also see that we can improve the throughput and move
closer to the FIFO line if preemption is not turned on. Improved closeness to
ideal here is seen by observing that both the queue1 point and the queue2 point
in the graph for the 60s preempt dynprio line are closer to the respective ideal
line points (see also Table 3).

Fig. 7. 2-user fidelity to granted shares and throughput loss. This graph compares the
overhead of differentiating service levels to using FIFO scheduling. The fairshare sched-
uler was not included in the results due to reliability issues. However, it behaves sim-
ilarly to the capacity share scheduler. The ideal line represents the performance that
should have been observed for the two queues if adhering to the configured capacities
while obtaining the same throughput as with the FIFO scheduler. When comparing
the slopes of the dynprio preempt line and the capacity scheduler line with the ideal
line we see that the slope of the dynprio line is a closer match (one of the goals of our
scheduler).
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One could argue that the capacity scheduler achieves the least degradation
across both users while still achieving some differentiation and should therefore
be preferred. This may be the case in fair-share scheduled systems where users
do not pay for their usage. But in a cloud computing scenario where queue1
actually paid twice as much as queue2 it may no longer hold true. We focus
more on differentiating service-levels that are as close as possible to the ca-
pacity you pay for as opposed to achieving some overall fair outcome in our
scheduler.

Figure 8 shows the corresponding graph for the 10 user experiment. We can
see that the extremes (highest and lowest service levels) are far away from the
ideal line whereas service levels 3 through 9 mimic the ideal scenario well. We
also show an ideal adjusted line that has the same service level as the dynamic
priority scheduler for the maximum service level but the same degradation in
service levels as the ideal line. We can see that only service levels 1 and 2 fall
outside of the ideal and ideal adjusted lines, which indicates that our scheduler
is a bit biased against users with low spending rates. The same behavior can be
seen in the 80-user experiment depicted in Figure 9. Here we note that the users
are heavily discretized in groups of about 10-15. This is most likely due to the
MapReduce workload chosen which only uses 10 reducers, and thus limits the
reduce phase throughput to 10 service levels.
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Fig. 8. 10-user fidelity to granted shares and throughput loss. This graph compares the
overhead of differentiating service levels to using FIFO scheduling for the experiment
with 10 users (user 1-10 denoted on x-axis). The ideal adjusted line corresponds to the
ideal (no overhead and perfect differentiation) line with the same minimal completion
time as observed in the experiments. Only users 1 and 2 (with the lowest slot capacity)
deviate significantly from the ideal lines.
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overhead of differentiating service levels to using FIFO scheduling for the experiment
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Fig. 10. Dynamic priority adjustment with 10 users, with 60s preemption. The graph
shows the completion times of jobs for queues/users who increased their spending rates
for their x’th job, where x is the queue number. All boosted jobs obtained a significant
decrease in completion time, showing the agility and dynamic nature of our scheduler.

4.4 Adaptability of Service Levels

We run the final experiments on our small cluster and investigate how well we
can dynamically adjust the service levels. 10 users all run 10 Pi estimator jobs
in sequence and concurrent with all the other users. User n is given a 4x boost
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Fig. 11. Dynamic priority adjustment with 10 users, without preemption. The graph
shows the completion times of jobs for queues/users who increased their spending rates
for their x’th job, where x is the queue number when no preemption was used. The
graph looks almost identical to the preemption graph with only slight deviations for
the boosted jobs from user 1 and user 10.

in spending rate for job n. In Figure 10 we can see that a 3x performance boost
is obtained consistently for all users and jobs regardless of when during the job
sequence the boost kicks in. The valleys hover around completion times of 300s,
whereas the average of non-valley jobs lies around 900s. Figure 11 shows the same
experiment but with preemption turned off. We can then see that the service
levels of the first jobs are random but all other jobs follow the same pattern as in
the preemption case. This shows that we are able to converge quickly to a stable
state even without preemption. The overhead of preemption, calculated based
on the difference in average job completion time between the two experiments
was less than 2.6%.

5 Discussion

Some issues merit additional discussion: preemption, dynamic adjustment, and
currency management.

Whether preemption should be offered or not depends on the types of
workloads expected. For CPU bound, embarrassingly parallel applications that
benefit from holding a slot for a longer duration of time, preemption may be
necessary to avoid starvation effects. On the contrary, for data bound applica-
tions that stream small amounts of input at a time into Map and Reduce tasks
that complete within a couple of minutes, preemption may not add much value.
We saw that using preemption incurred a small (2.6%) overhead in throughput,
but allowed the system to adhere to service levels more quickly and accurately.
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Note that preemption in the Hadoop context is somewhat different from the
traditional CPU/scheduling type of preemption. Hadoop preemptions do not
suspend and then resume the task but rather kills the task and forces it to start
over again. It thus causes a throughput penalty. Care must hence be taken to
kill the jobs that will degrade the throughput the least while still ensuring that
starvation and unfairness effects are minimized.

One feature of the Dynamic Priority scheduler (DP) is that it allows users to
change the priority of jobs during a run. However, it does not require it. Users
who prefer not to monitor their jobs can let them run as initially configured. The
opportunity to change priorities is most useful to handle unexpected situations
like server failures, increases in load by other users, and the inability of users to
predict their own job runtimes. In the latter case, DP allows users to adjust their
spending rates so that the actual running time of their jobs fits their deadlines.

Since the DP introduces a currency into the system, it requires the system
administrator to manage the overall economy of the system. The basic goal is
to keep a stable exchange rate between currency and computational work. Users
need to be able to expect that 1 credit will generally get 1 server hour (for
example). Of course, prices will fluctuate, but the average should remain stable.
Admins can do this by setting a total income rate per hour for the system which
is equal to the number of servers. The admin then distributes this income among
the users. For example, a cluster of 200 servers would have an income of 4800
credits per day which can be allocated for users. This total is fixed, regardless
of the number of users, so the admin should reserve some amount for new users.
As the admin adds new servers, the total can increase.

If prices start increasing significantly, this indicates that the system is under-
provisioned with respect to its load. The admin should consider adding more
servers and/or moving some users to another system. Conversely, if prices col-
lapse, then the system is over-provisioned and the admin can add users and/or
remove servers.

The admin must be careful with the inevitable demands to increase the income
rate for some users. If some users actually have more important jobs than other
users, then the admin should increase the income rate of the important users
while decreasing the rate for other users such that the total income rate is the
same. Otherwise, the system will enter an inflationary spiral that is difficult to
break out of.

6 Related Work

Parallel job scheduling is a well-investigated field both in theory and in practice
with applications beyond computational resource management [10]. Theoretical
studies commonly assume embarrassingly-parallel jobs which has lead to much of
the innovation in the field to be driven by simulations and experiments [11]. The
most commonly deployed scheduling regime is First-Come-First-Served (FCFS)
or variations thereof. FCFS suffers from head of queue blocking and starvation
issues. Two popular variations to address these issues are backfilling [12] and
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gang scheduling [13] [14]. Many heuristics and variations have been proposed to
improve throughput, e.g. Shortest-Job-First (SJF), or fairness, e.g. Fair-Share
Scheduling. Many of these classical scheduling algorithms focus on improving
systems metrics such as utilization and average response time. Some of these
systems may however be very inefficient in terms of serving the most important
task at the best time from an end-user point of view. The reason for this is that
priorities are either assigned by the system, or are only valid across jobs for the
same user, as exemplified by the Maui scheduler [15].

Proportional share and Lottery scheduling were proposed in [8] to give users
more direct and dynamic control over capacity allocations for different types of
tasks over time. In previous work this technique has been applied to both cluster
node [16] and VM resource scheduling [17]. To our knowledge our work is the
first applying the proportional share mechanism to MapReduce slot scheduling
for computational clusters.

Our scheduling approach is closely related to and inspired by economic sched-
ulers, whereby you bid for resources on a market and receive allocations based on
various auction mechanisms [18,19,20,17,21,22,23,24]. We do not preclude nor re-
quire that our scheduler budgets are tied to a real currency. Furthermore, we do
not assume that there are competing users who should be given different shares
of the resources. Giving all users the same budget initially but allowing them to
spend this budget at different rates is a valid use case of our scheduler. Many game
theory inspired agent scheduling algorithms such as the Best Response algorithm
in [25], could be implemented on top of our scheduler for Hadoop jobs. Meta-
scheduling across Hadoop clusters in different organization is also simplified by
exposing different demand-based prices for running jobs in a cluster.

Other work to improve the FIFO and fair share scheduling in Hadoop includes
the LATE scheduler [26]. The main purpose of the LATE scheduler is to predict
Hadoop job progress more accurately and to take overhead into account when
launching speculative tasks. In [27] the work on the LATE scheduler is extended
by two new techniques, delay scheduling and copy-compute splitting, designed
to improve data locality and avoid reduce slot bottlenecks respectively. These
techniques are complimentary to our work. In theory both of these issues are
orthogonal to our scheduling mechanism since they tackle separate problems
(not incentives and accountability which are at the core of our work). In practise,
the delayed scheduling technique would require some changes in how slots are
allocated in our scheduler, but since we only charge for slots that are actually
used, the general accounting mechanism would stay the same.

MapReduce scheduling has also been explored beyond the traditional data
center domain, such as for Cell [28], GPUs [29], and shared memory architec-
tures [30]. Our general proportional share MapReduce slot algorithm presented
in this paper could thus potentially also be employed in these other domains.

7 Conclusion

Our experimental results demonstrate that our scheduler scales better than
the existing Hadoop schedulers in the number of queues. Having more queues
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allows providers to provide more service levels. The fair-share scheduler could
not even handle the experimental workload for two concurrent queues, whereas
the capacity scheduler was not able to handle the workload with ten queues. The
Dynamic Priority scheduler handles up to 80 queues efficiently, which was only
limited by the memory capacity of the experiment client node.

This enhanced scalability is due to the light-weight design of DP. In contrast
to the other schedulers, it does not incur the overhead of heuristics for inferring
fair priorities over time. Instead, DP users directly decide priorities, so it only
has to maintain the budget currently remaining. As of this writing, the capac-
ity scheduler contains 140KB of non-test source code, the fair-share scheduler
130KB, and DP 55KB.

Furthermore, we have shown that DP adapts service levels dynamically and
quickly even during heavy load, adheres to them more accurately. This was
shown by having 10 users with a stream of 10 15min jobs all boost their single
high priority jobs accurately without overhead or notable randomness.

DP also solves the problems of lost data locality and virtualization overhead
that we encountered in our previous work on virtualized MapReduce [7]. The
downside is that we lose some control over tasks that are long-running, and the
isolation properties cannot be enforced as strictly. However, an advantage is that
it becomes easier to provision commonly used software and data sets in shared
test-beds.

Future work includes leveraging the dynamic capacity control in our scheduler
to adaptively change the allocations to meet higher level SLA goals such as
deadlines.
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Abstract. This paper has been inspired by the study of the complex
data set from the Czech National Grid MetaCentrum. Unlike other widely
used workloads from Parallel Workloads Archive or Grid Workloads
Archive, this data set includes additional information concerning ma-
chine failures, job requirements and machine parameters which allows
to perform more realistic simulations. We show that large differences
in the performance of various scheduling algorithms appear when these
additional information are used. Moreover, we studied other publicly
available workloads and partially reconstructed information concerning
their machine failures and job requirements using statistical and ana-
lytical models to demonstrate that similar behavior is also expectable
for other workloads. We suggest that additional information about both
machines and jobs should be incorporated into the workloads archives to
allow proper and more realistic simulations.

Keywords: Grid, Cluster, Scheduling, MetaCentrum, Workload,
Failures, Specific Job Requirements.

1 Introduction

Large computing clusters and Grids have become common and widely used plat-
forms for the scientific and the commercial community. Efficient job scheduling in
these large, dynamic and heterogeneous systems is often a very difficult task [1].
Development or application of an efficient scheduling algorithm requires a lot
of testing and evaluation before such solution is applied in the production sys-
tem. Due to several reasons, such as the cost of resources, reliability, varying
background load or the dynamic behavior of the components, experimental eval-
uation cannot be usually performed on the real systems. Many simulations with
various setups that simulate different real-life scenarios must be performed us-
ing the same and controllable conditions to obtain reliable results. This is hardly
achievable in the production environment.

Usually, workload traces from the Parallel Workloads Archive (PWA) [2] or
Grid Workloads Archive (GWA) [3] are used as the simulation inputs. However,
these data do not contain several parameters that are important for realistic
simulations. Typically, very limited information is available about the Grid or
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cluster resources such as the architecture, the CPU speed, the RAM size or the
resource specific policies. However, these parameters often significantly influence
the decisions and performance of the scheduler. Moreover, no information con-
cerning background load, resource failures, or specific users’ requests are avail-
able. In heterogeneous environments, users often specify some subset of machines
or clusters that can process their jobs. This subset is usually defined either by the
resource owners’ policy (user is allowed to use such cluster), or by the user who
requests some properties (library, software license, execution time limit, etc.) of-
fered by some clusters or machines only. Also, the combination of both owners’
and users’ restrictions is possible. When one tries to create a new scheduling
algorithm and compare it with current approaches such as EASY Backfilling [4],
Conservative backfilling [5], or algorithms used in, e.g., PBSpro [6], LSF [7] or
Moab [8], all such information and constraints are crucial, since they make the
algorithm design much more complex. If omitted, resulting simulation may pro-
vide misleading or unrealistic results as we show in Section 6.

So far, we have been able to collect complex real-life data set from the Czech
national Grid infrastructure MetaCentrum [9] that covers many previously men-
tioned issues such as machine parameters and supported properties, specific job
requirements or machine failures. Using this complete data set [10] we were able
to perform more realistic simulations. We have studied behavior of several objec-
tive functions that cover typical requirements such as the average job slowdown,
the average response time, or the average wait time. We have compared schedule-
based algorithms involving Local Search [1] which we have been developing for
couple of years [11,12], as well as queue-based solutions such as FCFS or EASY
and Conservative Backfilling. In our study, we have focused on two scenarios.
The first (BASIC) scenario does not involve machine failures. Moreover, all jobs
can be executed on any cluster (if enough CPUs are available), representing the
typical amount of information available in the GWA or the PWA workloads.
The second (EXTENDED) scenario uses additional information available in the
MetaCentrum data set such as machine failures or additional cluster and job
properties defining the job-to-cluster suitability (specific job requirements). As
observed during the experiments (see Figure 2), the differences in the values of
objective functions between these two scenarios are often large.

While the effects of machine failures on the cluster [13,14,15] or the Grid [13,16]
performance are widely discussed, we are not aware of similar works that would
also cover the effects of specific job requirements. Therefore, inspired by our own
interesting results, we have decided to perform further analysis of existing work-
loads. When it was possible, we tried to recover additional information “hidden”
in the available data covering both machine failure intervals and job requirements.
When informations were insufficient we carefully generated synthetic machine fail-
ures using a statistical model. Once created, these “extended” workloads were
compared through experiment with their original simpler versions. As expected,
we have often discovered disproportion in the values of objective functions similar
to the differences observed for the MetaCentrum data set. This supports our idea
that scheduling algorithms should be evaluated using complete data sets.
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The paper is organized as follows. First, we define the studied problem. Next,
we discuss the PWA and GWA workloads, known failure traces and character-
istics of considered workloads. The model used to create extended workloads
is introduced and considered scheduling algorithms are described. We provide
the detailed experimental evaluation with discussion of results and conclude our
paper with a short summary.

2 Problem Description

In this section we describe the investigated job scheduling problems, starting
with the simpler BASIC and followed by the EXTENDED problem. These
problems are specified by characteristics of considered machines and jobs. We
also define the optimization criteria considered for the evaluation of generated
solutions.

2.1 BASIC Problem

The system is composed of one or more computer clusters and each cluster is
composed of several machines. So far, we expect that all machines within one
cluster have the same parameters. Those are the number of CPUs per machine
and the CPU speed. All machines within a cluster use the Space Slicing pro-
cessor allocation policy [17] which allows the parallel execution of several jobs
at the cluster when the total amount of requested CPUs is less or equal to the
number of CPUs of the cluster. Therefore, several machines within the same
cluster can be co-allocated to process the given parallel job. On the other hand,
machines belonging to different clusters can not be co-allocated to execute the
same parallel job.

Job represents a user’s application. Job may require one (sequential) or more
CPUs (parallel). Also the arrival time and the job length are specified. There are
no precedence constraints among jobs and we consider neither preemptions of
the jobs nor migrations from one machine to another. When needed, the runtime
estimates are precise (perfect) in this study.

2.2 EXTENDED Problem

This scenario extends the BASIC problem with some more features that are
based on the characteristics of the MetaCentrum Grid environment. First of
all, each cluster has additional parameters that closely specify its properties.
These parameters typically describe the architecture of the underlying machines
(Opteron, Xeon, . . . ), the available software licenses (Matlab, Gaussian, . . . ),
the operating system (Debian, SUSE, . . . ), the list of queues allowed to use this
cluster (each queue has a maximum time limit for the job execution, e.g., 2 hours,
24 hours, 1 month), the network interface parameters (10Gb/s, Infiniband, . . . ),
the available file systems (nfs, afs, . . . ) or the cluster owner (Masaryk University,
Charles University, . . . ). We expect that all the machines within one cluster have
the same parameters.
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Corresponding information is often used by the user to closely specify job’s
characteristics and requirements. Those are typically the time limit for the ex-
ecution (given by the queue or user), the required machine architecture, the
requested software licenses, the operating system, the network type or the file
system. Users may also directly specify which cluster(s) is suitable for their jobs.
In another words, by setting these requirements, user may prevent the job from
running on some cluster(s). In real life, there are several reasons to do so. Some
users strongly demand security and full control and they do not allow their jobs
(and data) to use “suspicious” clusters which are not managed by their own
organization. Others need special software such as Matlab or Gaussian which is
not installed everywhere. Some clusters are dedicated for short jobs only (2 hours
limit) and a user wanting more time is not allowed to use such cluster, and so
on. All these requests are often combined together. In the EXTENDED problem
all such requirements have to be included into the decision making process to
satisfy all specific job’s requirements. If no suitable machine is found, the job has
to be cancelled. Clearly, the specific job requirements cannot be used when the
corresponding cluster parameters are not known. Without them, consideration of
“job-to-machine” suitability is irrelevant. Therefore, whenever the term specific
job requirements is referenced in this paper, it means that both additional job
and cluster parameters are applied, decreasing the number of suitable clusters
for the job execution.

Finally, machine failures are considered in the EXTENDED scenario. It means
that either one or more machines within a cluster are not available to execute
jobs for some time period. Such failure may be caused by various reasons such as
the power failure, the disk failure, the software upgrade, etc. However, we do not
differentiate between them in this study. As a result of the failure, all jobs that
have been — even partially— executed on such machine are immediately killed.
Once the failure terminates, machine is restarted and becomes available for the
job processing. Previously killed jobs are not resubmitted.

2.3 Evaluation Criteria

The quality of the generated solutions can be reflected by various types of op-
timization criteria. In both scenarios the following objective functions are con-
sidered: the avg. response time [17], the avg. slowdown [17] and the avg. wait
time [18]. In addition, the total runtime of the scheduling algorithm is measured
as a standard evaluation criteria. If machine failures are used we also count the
total number of killed jobs. The avg. response time represents the average time
a job spends in the system, i.e., the time from its submission to its termination.
The avg. slowdown is the mean value of all jobs’ slowdowns. Slowdown is the
ratio of the actual response time of the job to the response time if executed with-
out any waiting. Avg. wait time is the time that the job spends waiting before
its execution starts. As pointed out by Feitelson et al. [17], the use of response
time places more weight on long jobs and basically ignores if a short job waits
few minutes, so it may not reflect users’ notion of responsiveness. Slowdown
reflects this situation, measuring the responsiveness of the system with respect
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to the job length, i.e., jobs are completed within the time proportional to the
job length. Wait time criterion supplies the slowdown and response time. Short
wait times prevent the users from feeling that the scheduler “forgot about their
jobs”. All preceding objectives consider successfully executed jobs only, since
killed jobs are not included. On the other hand, the total number of killed jobs
is always monitored when machine failures are used. Finally, the total runtime of
the scheduling algorithm measures the total CPU time needed by the scheduling
algorithm to develop the solution for a given experiment.

3 Existing Sources of Workloads and Failure Traces

Two main publicly available sources of cluster and Grid workloads exist. Those
are the Parallel Workloads Archive (PWA) [2] and the Grid Workloads Archive
(GWA) [3]. There are two major differences between them. First of all, PWA
maintains workloads coming from one site or cluster only (with few exceptions),
while each workload in the GWA covers several sites. Second, the Grid Work-
loads Format (GWF) [19] is an extension to the Standard Workloads Format
(SWF) [20] used in the PWA, reflecting some Grid specific job aspects. For
example, each job in the GWF file has an identifier of the cluster where the
job was executed. Moreover, the GWF format contains several fields to store
specific job requirements. However, none of the six currently available traces
uses them. These archives also often lack detailed and systematic description
of the Grid or cluster resources, where the data were collected. Beside the real
workloads, various models for generating synthetic workloads were proposed and
implemented [21,22,23].

Traces of different kinds of failures related to the computer environment
are collected in several archives such as the Repository of Availability Traces
(RAT) [24] or the Computer Failure Data Repository (CFDR) [25]. For our
purposes, the most suitable is the Failure Trace Archive (FTA) [13], that—
among others—currently stores two Grid and cluster failure traces. Those are
the Grid’5000 and the LANL traces. Remaining Grid or cluster related traces are
either incomplete (PNNL) or were not yet converted from their original “raw”
formats (EGEE, NERSC, HPC2, HPC4)1. FTA contains description of nodes
but does not contain the information about jobs.

The complete MetaCentrum data set is publicly available at http://www.fi.
muni.cz/~xklusac/workload. It contains trace of 103,620 jobs that includes
specific job requirements as well as description of 14 clusters (806 CPUs) with
the information about machine architecture, CPU speed, memory size and the
supported properties. Also, the list of available queues including their priorities
and associated time limits is provided. There is the trace of machine failures
and the description of temporarily unavailable machines that were reserved or
dedicated for special purposes. The average utilization of MetaCentrum varies
per cluster with overall utilization being approximately 55%. In this work, we
simulate neither reserved nor dedicated machines and we focus strictly on the
1 In December 2009.

http://www.fi.muni.cz/~xklusac/workload
http://www.fi.muni.cz/~xklusac/workload
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Table 1. Main characteristics of PWA, GWA, FTA and MetaCentrum archives

PWA GWA FTA MetaCentrum

job description Yes Yes No Yes

machine description Partial Partial Yes Yes

failures No No Yes Yes

specific job requirements No Partial No Yes

problem involving machine failures and specific job requirements. Therefore, the
overall machine utilization has decreased to approximately 43% in our experi-
ments2.

Using these data sources we have selected three candidate workloads that have
been used for the evaluation. Certainly the MetaCentrum workload was used as
our base data set. Next, two more workloads were selected and carefully extended
to obtain all information necessary for the EXTENDED problem. Methodolo-
gies used to generate such workloads are described in the next section. The SWF
workload format does not contain information about job execution site, which
is needed when generating extended workloads. Therefore, we were left with the
GWA that contains six workloads now. However, three of them contain only se-
quential jobs, thus three candidates remained3: Grid’5000, DAS-2 and Sharcnet.
Sadly, we had to eliminate Sharcnet since it does not provide enough information
to generate the workload for the EXTENDED problem (see Section 4.2).

Grid’5000 is an experimental Grid platform consisting of 9 sites geographically
distributed in France. Each site comprises one or several clusters, there are 15
clusters in total. The trace contains 1,020,195 jobs collected from May 2005 till
November 2006. The total number of machines is not provided with the trace,
therefore we had to reconstruct it from the job trace and information about
machine failures available in the Grid’5000 failure trace. Then, we were able to
determine the probable number of machines for each cluster. Totally, there has
been approximately 1343 machines (2686 CPUs). Grid’5000 has a low average
utilization being only 17%. On the other hand, there is a publicly available failure
trace for Grid’5000 in the FTA, which is very convenient for our experiments.
Sadly, all fields corresponding to specific job requirements are empty in the
workload file.

DAS-2 (Distributed ASCI Supercomputer 2) workload trace comes from a
wide-area Grid composed of 200 Dual Pentium-III nodes (400 CPUs). The Grid
is built out of 5 clusters of workstations located at five Dutch Universities. Trace
contains 1,124,772 jobs collected from February 2005 till December 2006. The
workload has a very low utilization of approximately 10%. There is no failure
trace available and the workload trace contains no specific job requirements.

2 Machines dedicated or reserved for special purposes are considered as 100% utilized.
3 If all jobs are sequential (non-parallel), then all scheduling algorithms considered in

this paper follow more or less the FCFS approach.
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Finally, Table 1 presents the main characteristics of PWA, GWA, FTA and
MetaCentrum archives.

4 Extending the BASIC Problem

In this section we describe the main methods used to generate the synthetic
machine failures and the specific job requirements. Using them, the Grid’5000
and the DAS-2 workloads were enriched towards the EXTENDED problem.

4.1 Machine Failures

Since both MetaCentrum and Grid’5000 data sets contain real machine failure
traces, only the DAS-2 workload has been extended by the synthetic machine
failures. First of all, the original DAS-2 workload was analyzed to determine the
first time when each cluster was used by some job. As is shown in the Figure 1
(top left), only the DAS2/fs0 cluster was used from the beginning, four remaining
clusters started to execute jobs approximately three months later. We have used
this observation to generate four “initial cluster failures” that cover the time
before the cluster was (probably) operational.

Next, the synthetic machine failures were generated. Five main parameters
had to be determined. First of all, the total number of failures (F ) has been
established. Then, for each failure, four parameters have been chosen: failure
duration, failure arrival time and the cluster and its machine that will exhibit
this machine failure.

When solving these problems we were inspired by the model proposed by
Zhang et al. in [14] and findings in [15,16,26]. We also used three available
failure traces (MetaCentrum, Grid’5000, LANL) to get the necessary statistical
data. As discussed in [15], failure rates are roughly proportional to the number
of nodes (N) in the system. Therefore, the total number of failures (F ) was
computed as:

F = N ·D ·AFC (1)

where D is the duration of DAS-2 workload in hours, and the AFC (Average
Failure Count) is the average number of failures per machine per hour. While
N and D were known, AFC had to be selected. Since we have no information
concerning the real failure rates in DAS-2, we used known failure traces to com-
pute the AFC values. Figure 1 (top middle) shows the AFC values for known
failure traces. Grid’5000 shows suspiciously high AFC value, which is probably
caused by the fact that some reported failures are rather “false alarms” than
actual failures as discussed in [13]. In MetaCentrum, the AFC value is much
more smaller while the low failure rates of LANL result in the lowest observed
AFC. Since the large amount of failures in Grid’5000 is suspicious we have cho-
sen LANL’s and MetaCentrum’s AFC values as two possible inputs into our
failure generator. This resulted in two different failure traces for DAS-2. In the
remaining text, DAS-2-L represents DAS-2 workload with failure trace generated
using the LANL-based parameters while DAS-2-M represents solution based on
the MetaCentrum parameters.
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Fig. 1. The cluster start times in DAS-2 (top left), the average number of failures per
node per day (AFC) (top middle), the number of failures per year in LANL (top right),
the CDFs of failure durations for Grid’5000, LANL and MetaCentrum (bottom left)
and the CDFs of “suitability distribution” of jobs onto clusters (bottom right)

Next, the remaining parameters were generated using the model [14] of Zhang
et al. This involved the use of Weibull distribution [27] to generate the inter-
arrival times between failures. Sahoo et al. [26] discussed that there are strong
temporal correlations between failure arrivals. Using the model of Zhang et al.,
this behavior was simulated by including so called “failure bursts”, i.e., multiple
failures on one cluster appearing in (almost) the same time. Failure durations for
DAS-2-L and DAS-2-M were generated using the Weibull distribution. Parame-
ters of the distribution were selected by fitting the shape of Weibull Cumulative
Distribution Function (CDF) [27] to the original CDFs of LANL and MetaCen-
trum failure durations that are shown in Figure 1 (bottom left)4. These CDFs
represent the probability that the duration of machine failure will be less than
or equal to x minutes.

The distribution of failures between clusters was done using the observations
of LANL’s failure distribution pattern shown in Figure 1 (top right) which has
been closely discussed in [15]. Here, clusters with the same hardware and age

4 The CDF of LANL is smoother since it was reconstructed from higher number of
known failure durations. The x-axis is in log. scale.
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have their failure rates roughly proportional to the number of machines within
the cluster. This indicates that failure rates are not growing significantly faster
than linearly with the cluster size [15]. Figure 1 (top right) shows this behavior
for sites 9, 10, 11 and 12 in LANL. According to the available data, all DAS-2
clusters are based on the same hardware, therefore we have used the same linear
distribution of failures in our failure generator.

Finally, the distribution of failures on the machines within one cluster was
analyzed. Several authors show that such distribution is not uniform for a given
cluster [26,28]. However, our own analysis of MetaCentrum failure trace showed
that this is not always true. In MetaCentrum, some clusters had rather uniform
failure distribution while for others it was highly unbalanced, showing signifi-
cantly different shapes per each cluster. Since we have no reliable information
about the type or shape of the desired distribution, we have decided to use simple
uniform distribution in this case.

4.2 Specific Job Requirements

As far as we know there is no available model to simulate specific job require-
ments. Moreover, the only workload we are aware of that contains such informa-
tion is the MetaCentrum workload. Our goal was to recreate such information
for both DAS-2 and Grid’5000 workloads. Since it would be highly unreliable
to simply transform known MetaCentrum pattern on different workloads, we
have decided to use more realistic and conservative approach when establish-
ing these requirements. Our approach is based on the analysis of the original
DAS-2 and Grid’5000 workloads. In both of them each job contains identifier of
the type (name) of the application that was used to execute the job as well as
the identifier of the target cluster where it was finally executed [19]. Using this
information, we could easily reveal the actual mapping of applications (jobs) on
the clusters. To be more precise, we constructed a list of clusters where jobs
having the same application identifier were executed. Next, during the simu-
lation the application identifier is detected for each job and the corresponding
clusters from the list are taken to be the only suitable execution sites for the
job. Since we have no other information concerning job requirements, we used
this mapping as the model of specific job requirements. Resulting CDFs based
on such distributions are shown for the Grid’5000 and the DAS-2 workloads
in Figure 1 (bottom right) together with the known distribution of MetaCen-
trum. Here, each CDF represents the probability that the job will be executable
on at most x% of available machines. As it has been briefly mentioned in Sec-
tion 3, this approach is not applicable for the Sharcnet workload, where the
number of job identifiers is almost the same as the number of jobs in the work-
load. Thus, similar statistics did not make any sense and Sharcnet has not been
used.

Table 2 summarizes the origins of all extensions of the original workloads.
Presented generator of machine failures and specific job requirements can be
downloaded at http://www.fi.muni.cz/~xklusac/generator

http://www.fi.muni.cz/~xklusac/generator
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Table 2. Origin of machine failures and specific job requirements for the EXTENDED
problem

MetaCentrum Grid’5000 DAS-2

machine failures
original original synthetic DAS-2-M

data data synthetic DAS-2-L

specific job req.
original synthetic by synthetic by

data workload analysis workload analysis

5 Scheduling Algorithms

Scheduling was performed by simulated centralized scheduler [1] that managed
target clusters using different algorithms. We have used FCFS, EASY backfill-
ing (EASY) [4] and Conservative backfilling (CONS) [5,29] optionally optimized
with a Local Search (LS) algorithm [11,12]. EASY backfilling is an optimization
of the FCFS algorithm, focusing on maximizing the system utilization. When
the first (oldest) job in the queue cannot be scheduled because not enough pro-
cessors are available, it calculates its earliest possible starting time using the
runtime estimates of running jobs. Finally, it makes a reservation to run the job
at this pre-computed time. Next, it scans the queue of waiting jobs and schedules
immediately every job not interfering with the reservation of the first job. While
EASY makes reservation for the first job only, Conservative backfilling makes
the reservation for every queued job. These reservations represent an execution
plan. We call this plan the schedule [30]. This schedule is updated whenever
a new job arrives or some job completes its execution. Moreover, it allows us to
apply advanced scheduling algorithms to optimize the schedule. This is the goal
of the LS optimization procedure. LS maintains the schedule and optimizes its
quality. New jobs are added to the schedule using CONS, i.e., they are placed
to their earliest starting time. LS is run periodically and it consists of several
iterations. In each iteration, random waiting job is selected and removed from
the schedule and a new reservation is chosen randomly either on the same cluster
or on a different one. Other reservations are updated with respect to this new as-
signment. Typically, when the original reservation is cancelled, later reservations
can be shifted to the earlier start times. Analogically, new reservation can collide
with existing reservations. If so, these are shifted to the later start times. Then,
the new schedule is evaluated using the weight function W which is defined by
Equation 2.

wsld = (sldprevious − sldnew)/sldprevious

wwait = (waitprevious − waitnew)/waitprevious

wresp = (respprevious − respnew)/respprevious

W = wsld + wwait + wresp (2)
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W is a sum of three decision variables wsld , wwait and wresp which are com-
puted using the avg. job slowdown, avg. job wait time and avg. job response
time of the previous and new schedule. They express the percentage increase or
decrease in the quality of the new schedule with respect to the previous schedule.
A positive value represents an improvement while a negative means that the new
schedule represents a worse solution. Obviously, some correction is needed when
the waitprevious or respprevious is equal to zero but it is not presented to keep
the code clear5. The final decision is based on the W value. If the W is greater
than 0, then the new schedule is accepted, otherwise it is rejected and the sched-
ule returns to the previous state. Iterations continue until the predefined number
of iterations or the given time limit is reached. When applied, LS is executed
every 5 minutes of simulation time. Here we were inspired by the actual setup
of the PBSpro scheduler [6] used in the MetaCentrum which performs priority
updates of jobs waiting in the queues with a similar periodicity. The maximum
number of iterations is equal to the number of currently waiting jobs (schedule
size) multiplied by 2. The maximum time limit was set to be 2 seconds which is
usually enough to try all iterations. At the same time, it is still far less than the
average job inter-arrival time of the densest DAS-2 trace (50 seconds). Since LS
uses random function in each of its iteration, all experiments involving the LS
algorithm have been repeated 10 times using different seeds, their results have
been averaged and the standard deviation computed.

FCFS, EASY Backfilling and Conservative Backfilling are usually applied to
schedule jobs on one cluster only. Since all our data sets involve several clusters,
algorithms have been extended to allow scheduling over multiple clusters. This
extension is very simple. FCFS, EASY and CONS simply check each cluster
separately, finding the earliest possible reservation. If multiple choices to execute
the job appear, the fastest available cluster is selected. If all available clusters
have the same speed, the first choice is taken6.

Next extension defines algorithms’ reactions in case of a machine failure or
restart. The simplest extension is made in FCFS. Here, machine failure or restart
simply changes the set of CPUs to be used by the FCFS. Similar case applies
for EASY, CONS and LS. However, machine failure may collide with existing
reservations made by EASY, CONS or LS. If so, different actions are taken for
EASY, CONS and LS. EASY checks whether the reservation of the first job is
still valid. If not, it creates a new one. Since CONS and LS make reservation for
every job it is more probable that collisions will appear. In our implementation,
all jobs having reservations on the cluster where the machine failure occurred
are re-backfilled using CONS. Other jobs’ reservations are not changed since the
total re-computation of all reservations for all clusters is very time consuming
as we have have observed in our initial tests. If there are many machine failures,
some highly parallel jobs may not be able to get a reservation, because there
is not enough CPUs available in the system. If so, these jobs are canceled and
removed from the queue since their huge wait times would distort the simulation

5 By definition, slowdown is always greater or equal to 1.
6 Clusters are ordered according to the total number of CPUs in descending order.
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results. Jobs killed due to a machine failure are not resubmitted. Upon a machine
restart, both FCFS and EASY try to use new CPUs immediately. CONS and
LS behave somehow different since they have a reservation for every job at that
moment. All reservations on the cluster where the machine restart appeared
are recreated to utilize the restarted machine. Again, only the jobs having a
reservation on such cluster are re-backfilled to minimize the algorithm’s runtime.
Reservations of jobs on remaining clusters are not changed. It may result in a
temporally unbalanced distribution of jobs, since the re-backfilled jobs may not
utilize all CPUs, especially if many machines restarted at the same moment.
Such CPUs can be potentially suitable for jobs having reservations on different
clusters. However, this imbalance is only temporal as new job arrivals or LS
optimization will quickly saturate the available CPUs.

The inclusion of specific job requirements is very simple. All scheduling algo-
rithms will allow job’s execution on some cluster(s) if and only if the cluster(s)
meets all specific job requirements.

6 Evaluation

All simulations were performed using the GridSim [31] based Alea simulator [32]
on an Intel QuadCore 2.6 GHz machine with 2048MB of RAM. We have com-
pared values of selected objective functions and the algorithms’ runtime when
the original (BASIC problem) and extended workloads (EXTENDED problem)
have been used, respectively. As mentioned in Section 2, BASIC problem does
not involve machine failures and specific job requirements while the EXTENDED
does. In order to closely identify the effects of machine failures and specific job
requirements on the values of objective functions, we have considered three dif-
ferent problems using the extended workloads. In EXT-FAIL only the machine
failures are used and the specific job requirements are ignored. EXT-REQ repre-
sents the opposite problem, where the failures are ignored and only the specific
job requirements are simulated. Finally, EXT-ALL uses both machine failures
and specific job requirements. Using these setups, four different experiments were
conducted for MetaCentrum and Grid’5000: BASIC, EXT-FAIL, EXT-REQ and
EXT-ALL. Since DAS-2 has two variants of failure traces (DAS-2-L and DAS-2-
M), there are six different experiments for the DAS-2 workload: BASIC, EXT-
FAIL-L, EXT-FAIL-M, EXT-REQ, EXT-ALL-L and EXT-ALL-M, where “-L”
or “-M” suffix specifies whether DAS-2-L or DAS-2-M failure trace has been
used. Table 3 summarizes all data sets and problems we have considered in our
experiments.

We start our discussion with the MetaCentrum workload where all informa-
tion needed to simulate the EXTENDED problem were known, thus these results
are the most reliable (see Figure 2). Next, we continue with the Grid’5000 (see
Figure 3), where the EXTENDED problem was created using known data from
the Failure Trace Archive (machine failures) and synthetically generated specific
job requirements. Finally, Figure 5 presents results for the DAS-2 where addi-
tional data for the EXTENDED problem were generated synthetically. Resulting
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Table 3. Overall summary of workloads, problems and performed experiments

MetaCentrum Grid’5000 DAS-2

BASIC BASIC BASIC BASIC

EXTENDED

EXT-FAIL EXT-FAIL EXT-FAIL-L

EXT-FAIL-M

EXT-REQ EXT-REQ EXT-REQ

EXT-ALL EXT-ALL EXT-ALL-L

EXT-ALL-M

values of the avg. slowdown [17], the avg. response time [17] and the avg. wait
time [18] are discussed for all experiments outlined in Table 3. For all data sets
the total algorithm runtime follows the expectations— the more complex prob-
lem is considered and the more sophisticated algorithm is applied, the higher
the algorithm runtime is. Machine failures often collide with existing reserva-
tions which have to be recreated. When also specific job requirements are used,
checks to identify suitable clusters must be performed for each job, increasing
the total runtime of all scheduling algorithms.

6.1 MetaCentrum Workload

Figure 2 shows the results for the MetaCentrum workload. As we can see the
highest differences in the values of objective functions appear between BASIC
and EXT-ALL experiments, which correspond with our expectations. In case
of BASIC, the differences between all algorithms are not very large for all con-
sidered objectives. On the other hand, when the EXT-ALL problem is applied,
large differences appear for all criteria. It is most significant in case of FCFS
which generates the worst results among all applied algorithms. The values of
FCFS are truncated for better visibility. EASY and CONS perform much bet-
ter, while the best results are achieved by LS in most cases. Interesting results
are related to the EXT-FAIL and EXT-REQ scenarios. As we can see, the in-
clusion of machine failures (EXT-FAIL) has usually a smaller effect than the
inclusion of specific job requirements (EXT-REQ). Clearly, it is “easier” to deal
with machine failures than with specific job requirements when the overall sys-
tem utilization is not extreme. In case of a failure, the scheduler has usually
other options where to execute the job. On the other hand, if the specific job
requirements are taken into account other possibilities may not exist, and jobs
with specific requests have to wait until the suitable machines become available.

The comparison of EASY and CONS is interesting as well. Many previous
studies have tried to analyze their behavior [5,33,29,34]. A deep study of Feit-
elson [5] suggests that CONS is likely to produce better slowdown than EASY
when precise runtime estimates are used and the system utilization is higher
than approximately 50%. Similar behavior can be seen in the case of MetaCen-
trum, namely for EXT-REQ and EXT-ALL problems. Feitelson observed such
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Fig. 2. Observed values of objective functions and the number of killed jobs for the
MetaCentrum workload

large differences for workloads with at least 55-65% (Jann, Feitelson) or 85-95%
(CTC) system utilization. For smaller system utilization, the performance of
EASY and CONS was similar. However, the utilization of MetaCentrum is 43%
on average. The reason for this behavior lies in the use of specific job require-
ments (EXT-REQ, EXT-ALL). As discussed, here jobs with specific require-
ments have to wait until the suitable machines become available. This in fact
generates a higher system utilization on particular clusters, thus the benefits of
CONS in this situation appear even for systems with a lower overall utilization.
If no specific job requirements are used (BASIC, EXT-FAIL), CONS produces
worse or equal results than EASY in all cases.

Feitelson [5] suggests that EASY should generate better response time than
CONS. This is clearly recognizable for BASIC and EXT-FAIL problems, while
CONS is slightly better for EXT-REQ and EXT-ALL, but the difference is very
small. Periodical application of LS optimization routine always improve the solu-
tion with respect to the CONS and — with an exception of the avg. response time
in BASIC and EXT-FAIL —LS generates the best results among all algorithms.
The standard deviation of different LS executions is very small. Concerning the
total number of killed jobs, there is no clear pattern indicating the best al-
gorithm. To sum up, the use of specific job requirements and machine failures
significantly influence the quality of generated solution. In case of MetaCentrum,
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an experimental evaluation ignoring these features may be quite misleading. As
was shown, the optimistic results for the BASIC problem are very far from those
appearing when a more realistic EXT-ALL problem is considered.

6.2 Grid’5000 Workload

Figure 3 shows the results for the Grid’5000 workload. Similarly to the MetaCen-
trum workload, the highest differences appear between BASIC and EXT-REQ
and EXT-ALL problems as can be seen in the case of the avg. slowdown and
the avg. wait time. Again, due to the same reasons as before, the inclusion of
specific job requirements (EXT-REQ) has a higher effect than the inclusion of
machine failures (EXT-FAIL). The values of FCFS are often truncated for better
visibility.

A closer attention is required when analyzing the average response time for
EXT-FAIL and EXT-ALL problems in Grid’5000 shown in Figure 3 (top right).
Initially, it is quite surprising that the average response time for EXT-FAIL
and EXT-ALL is smaller than for the BASIC problem. The explanation is quite

Fig. 3. Observed values of objective functions and the number of killed jobs for the
Grid’5000 workload
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straightforward. In our simulations, whenever some machine fails, all jobs being
executed on this machine are killed immediately. Moreover, such jobs are not
resubmitted. As mentioned in Section 4.1, the failure rate in Grid’5000 is very
high causing many premature job terminations (see Figure 3, bottom right).
Therefore, long jobs are more likely to be killed than the short ones. Our ex-
periments confirmed this expectations. The average length of a killed job in
EXT-FAIL (FCFS) has been 60,690 seconds. However, the average length of all
jobs in Grid’5000 is just 2,608 seconds. It means that especially long jobs are
being killed in this case. Therefore, whenever machine failures have been used
(EXT-FAIL, EXT-ALL), the average response time has been smaller than for the
BASIC and the EXT-REQ problems, since many long jobs have been killed and
their long response times could not have been taken into account. The compari-
son of the avg. slowdown or the avg. wait time for BASIC and EXT-FAIL shows
nearly no difference. Failures in Grid’5000 are usually very short as is shown in
Figure 1 (bottom left). Therefore, they do not cause significant delays in job ex-
ecutions, although they appear very frequently. Moreover, the system utilization
is very low (17%), so there is usually enough free CPUs to immediately start the
execution of a newly incoming job.

As expected, FCFS did not perform well. In the Grid’5000 job trace, there are
several jobs that request a large number of CPUs and only the largest clusters
can be used. Since FCFS does not allow backfilling, smaller jobs in the queue
have to wait until such large job has enough free CPUs to start its execution. It
produces huge slowdowns for short jobs, although the overall utilization is only
17%. All remaining algorithms have been able to deal with such situations more
efficiently, producing more or less similar solutions.

An interesting result is related to the Figure 3 (bottom right) showing the
number of killed jobs. Here the total number of failed jobs for EXT-ALL is
significantly lower than in the case of EXT-FAIL. This behavior is a combination
of three factors and needs a closer explanation. First factor is related to the
cluster selection process. If there are more suitable clusters to execute a given
job then all scheduling algorithms applied in this paper select the fastest one.
However, there are no information about clusters’ speed in Grid’5000 and DAS-2,
thus all clusters are considered to be equally fast. In such situation, all algorithms
will choose the first suitable cluster (see Section 5), i.e., “the first fit” approach
is applied. Since the Grid’5000 has a very small utilization (second factor) and
clusters are always checked in a given order, most jobs are actually executed on
the largest cluster. The third factor is the high failure rate in Grid’5000 (see
Figure 1 top middle). The largest cluster exhibits 42% of all failures. When
many jobs are executed on this single cluster, then the probability that machine
failure will kill some job is rather high. For FCFS, there were 18668 killed jobs
in the EXT-FAIL problem. 95.3% of them were killed at the largest cluster.
Once the EXT-ALL problem is being solved, specific job requirements cause
that some jobs have to be executed on different clusters. As a side effect, the
number of failed jobs decreases, as observed in Figure 3 (bottom right). To
conclude, the combination of the “first fit” cluster selection policy together with
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Fig. 4. Observed values of objective functions and the number of killed jobs for the
FCFS and FCFS-LB in Grid’5000

high failure rate and low utilization may be very dangerous with respect to the
number of killed jobs according to our observation. To prove this hypothesis we
have developed a new version of the cluster selection policy, where— if multiple
choices are available— a random cluster is selected using uniform distribution
rather than the first one. We have used this policy in FCFS-LB (FCFS with Load
Balancing) scheduling algorithm and compared this solution with the original
“first fit” FCFS. The results are shown in Figure 4. All experiments involving the
FCFS-LB algorithm have been repeated 10 times using different seeds and their
results have been averaged and the standard deviation computed. Concerning
the number of killed jobs (rightmost graph) we can see that FCFS-LB works
much better than FCFS since jobs are uniformly spread over available clusters.
Also the avg. slowdown and avg. wait time is slightly better for BASIC and EXT-
FAIL. On the other hand, as soon as specific job requirements are considered
(EXT-REQ, EXT-ALL) FCFS-LB produces worse results on average. Closer
inspection shows, that the actual performance depends on the seed used in the
random number generator, as can be seen from the large values of standard
deviations. Clearly, simple solution such as FCFS-LB is not sufficient for more
complex problems. We will try to fully understand this phenomena in the future
since it is beyond the focus of this paper.

6.3 DAS-2 Workload

Figure 5 shows the results for the DAS-2 workload. DAS-2 uses artificially gen-
erated failure traces. To obtain more reliable results, all experiments involving
machine failures have been repeated 10 times using different instances of failure
traces. Each failure trace instance have been generated using a different seed.
Finally, all results have been averaged and the standard deviation computed.
As before, the highest differences in the values of objective functions appear be-
tween BASIC and EXT-ALL-L/EXT-ALL-M problems. For BASIC, no matter
what scheduling algorithms is applied, the avg. slowdown, the avg. response time
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and the avg. wait time are always nearly the same. Again, the poorest results
are related to the application of FCFS. The disproportion between EXT-FAIL-L
and EXT-FAIL-M observed for FCFS can be still reduced by any other more
complex algorithm. Similarly to the MetaCentrum workload, LS generates the
best results in all cases. As soon as EXT-ALL-L or EXT-ALL-M is applied,
the differences between scheduling algorithms become more visible. Especially
for the EXT-ALL-M, the use of more complex scheduling algorithms start to
make sense. Although the absolute differences of selected objective functions
between BASIC and EXT-ALL-M or EXT-ALL-L are not very large, still the
application of machine failures and especially specific job requirements results
in different behavior even for so lowly utilized system (10%) as the DAS-2 is.
When the higher failure rate of the MetaCentrum workload is used to gener-
ate the failures (EXT-ALL-M) the resulting values of the avg. wait time and the
avg. response time are worse than the corresponding values for the workload with
LANL-based failures (EXT-ALL-L). In this case (EXT-FAIL-M, EXT-ALL-M),
the performance of FCFS often highly oscillates as demonstrate the large values

Fig. 5. Observed values of objective functions and the number of killed jobs for the
DAS-2 workload
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of standard deviation. FCFS is very sensitive to the used failure trace instance,
while all remaining algorithms show quite stable performance. Also, the number
of killed jobs is higher when the MetaCentrum-based failures are used which
is expectable. Again, the use of specific job requirements (EXT-REQ) has usu-
ally higher effect than the use of machine failures only (EXT-FAIL-L, EXT-
FAIL-M).

6.4 Summary

In this section we have shown that the use of complete data sets has signif-
icant influence on the quality of generated solutions. Similar patterns in the
behavior of scheduling algorithms have been observed using three different data
sets. First of all, the differences between studied algorithms are usually small
for the BASIC problems, but the situation changes for the EXTENDED prob-
lems. Here, an application of more intelligent scheduling techniques may lead to
significant improvements in the quality of generated solutions, especially when
the system utilization is not very low. In such case, the optimization provided
by Local Search (LS) algorithm may outperform all remaining algorithms as
observed for the MetaCentrum data set. LS operates over the schedule of job
reservations that is generated by CONS. When the system is lowly utilized,
such schedule is often empty since jobs are executed immediately after their
arrival. Then, LS has a little chance for optimization and its performance is
very close to the original CONS algorithm as observed in Grid’5000 and DAS-2
cases. In addition, specific job requirements may have higher impact than ma-
chine failures. So far, the differences between the EASY and CONS solutions
were likely to appear in systems with high utilization [5]. As observed in the
MetaCentrum experiment, the application of specific job requirements can sig-
nificantly decrease the threshold of the system utilization when the differences
between algorithms are likely to appear. The inclusion of machine failures may
have severe effect on the values of objective functions as observed mainly in
Grid’5000 having a very high failure rate. In this case, another objectives such
as the total number of killed jobs must be taken into account to explain other-
wise “confusing” results. Moreover, low utilization, high failure rates combined
with scheduler’s selection policies could bring unexpected problems such as high
numbers of killed jobs (“first-fit” job allocation). Trying to solve this problem
using some form of load balancing may help, but other objectives can be easily
degraded due to highly unstable performance as observed for FCFS-LB. Here,
immediate solutions such as the simple load balancing do not work very well,
since many other factors interact together. These observations support our idea
that complete workload traces should be collected, published and used by the
scientific community in the future. They will allow to test more realistic scenar-
ios and they will help to understand the complicated behavior of real, complex
systems.



The Importance of Complete Data Sets 151

7 Conclusion

Based on the real-life data from the Czech Grid MetaCentrum, we have demon-
strated that machine failures and specific job requirements significantly affect
the performance of various scheduling algorithms. Since the workloads in current
archives miss to capture these features we have carefully extended selected exist-
ing workloads to show that they may exhibit similar behavior. Clearly, complete
and “rich” data sets influence the algorithms’ behavior and causes significant dif-
ferences in the values of objective functions with respect to the simple versions
of the problems. As far as we know, specific job requirements have not been used
in the context of Grid and cluster scheduling so far. We have shown that they
should not be underestimated and their effects should be closely studied in the
future. We suggest, that beside the common workloads from the GWA and the
PWA, also the complete ones should be collected, published and applied to eval-
uate existing and newly proposed algorithms under harder conditions. As it was
presented, existing base workloads may not clearly demonstrate the differences
between trivial and advanced scheduling algorithms. When possible, detailed and
standardized description of the original cluster and Grid environment should be
provided as well, to assure that simulations will use correct setups. As a first
step we provide the complex MetaCentrum data set for further open research.
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Abstract. Many computational solutions can be expressed as directed
acyclic graphs (DAGs) with weighted nodes. In parallel computing,
scheduling such DAGs onto manycore processors remains a fundamental
challenge, since synchronization across dozens of threads and preserv-
ing precedence constraints can dramatically degrade the performance.
In order to improve scheduling performance on manycore processors, we
propose a hierarchical scheduling method with dynamic thread group-
ing, which schedules DAG structured computations at three different
levels. At the top level, a supermanager separates threads into groups,
each consisting of a manager thread and several worker threads. The su-
permanager dynamically merges and partitions the groups to adapt the
scheduler to the input task dependency graphs. Through group merg-
ing and partitioning, the proposed scheduler can dynamically adjust to
become a centralized scheduler, a distributed scheduler or somewhere in
between, depending on the input graph. At the group level, managers col-
laboratively schedule tasks for their workers. At the within-group level,
workers perform self-scheduling within their respective groups and exe-
cute tasks. We evaluate the proposed scheduler on the Sun UltraSPARC
T2 (Niagara 2) platform that supports up to 64 hardware threads. With
respect to various input task dependency graphs, the proposed scheduler
exhibits superior performance when compared with other various base-
line methods, including typical centralized and distributed schedulers.

Keywords: Manycore processor, hierarchical scheduling, thread
grouping.

1 Introduction

Given a program, we can represent the program as a directed acyclic graph
(DAG) with weighted nodes, in which the nodes represent code segments, and
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edges represent dependencies among the segments. An edge exists from node v
to node ṽ if the output from the code segment performed at v is an input to the
code segment at ṽ. The weight of a node represents the (estimated) execution
time of the corresponding code segment. Such a DAG is called a task dependency
graph, and the computations that can be represented as task dependency graphs
are called DAG structured computations [1,2]. The objective of task scheduling
for DAG structured computations on manycore processors is to minimize the
overall execution time by proper allocation of the tasks to concurrent threads,
while preserving the precedence constraints among the tasks [2,3].

Scheduling DAG structured computations on manycore processors is a fun-
damental challenge in parallel computing nowadays. The trend in architecture
design is to integrate more and more cores onto a single chip to achieve higher
performance. Such architectures are known as manycore processors. Examples of
existing manycore processors include the Sun UltraSPARC T1 (Niagara) and T2
(Niagara 2), which support up to 32 and 64 concurrent threads, respectively [4].
The Nvidia Tesla and Tilera TILE64 are also available. More manycore pro-
cessors are emerging soon, such as the Sun Rainbow Falls, IBM Cyclops64 and
Intel Larrabee [5]. Such processors are more interested in how many tasks from a
DAG can be completed efficiently over a period of time rather than how quickly
an individual task can be completed.

Our contributions in this paper include: (a) We propose a hierarchical schedul-
ing method which schedules DAG structured computations at three different
levels on manycore systems. (b) We propose a dynamic thread grouping tech-
nique to merge or partition the thread groups at run time, so that the pro-
posed scheduler can dynamically adjust to become a centralized scheduler, a
distributed scheduler or somewhere in between, depending on the input graph.
(c) We implement the hierarchical scheduling method on the Sun UltraSPARC
T2 (Niagara 2) platform. (d) We conduct extensive experiments to validate the
proposed method.

The rest of the paper is organized as follows: In Section 2, we review the
background and related work. Section 3 presents the hierarchical scheduling
scheme. We illustrate experimental results in Section 4 and address the future
research in Section 5.

2 Background and Related Work

In this paper, the input to task scheduling is a directed acyclic graph (DAG),
where each node represents a task and each edge corresponds to precedence con-
straints among the tasks. Each task in the DAG is associated with a weight, which
is the estimated execution time of the task. A task can begin execution only if
all of its predecessors have been completed [6]. The task scheduling problem is
to map the tasks to the threads in order to minimize the overall execution time
on parallel computing systems. Task scheduling is in general an NP-complete
problem [7,8]. We consider scheduling an arbitrary DAG with given task weights
and decide the mapping and scheduling of tasks on-the-fly. The goal of such
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dynamic scheduling includes not only the minimization of the overall execution
time, but also the minimization of the scheduling overhead [2].

The scheduling problem has been extensively studied for several decades
[1,9,2,10]. Early algorithms optimized scheduling with respect to the specific
structure of task dependency graphs [11], such as a tree or a fork-join graph. In
general, however, programs come in a variety of structures [2]. Karamcheti and
Chien studied hierarchical load balancing framework for multithreaded compu-
tations for employing various scheduling policies for a system [12]. Recent re-
search on scheduling DAGs includes [13] where the authors studied the problem
of scheduling more than one DAG simultaneously onto a set of heterogeneous
resources, and [1] where Ahmad proposed a game theory based scheduler on
multicore processors for minimizing energy consumption. Dongarra et al. pro-
posed dynamic schedulers optimized for some linear algebra problems on general-
purpose multicore processors [10]. Scheduling techniques have been proposed by
several emerging programming systems such as Cilk [14], Intel Threading Build-
ing Blocks (TBB) [15], OpenMP [16], Charm++ [17] and MPI micro-tasking [18],
etc. All these systems rely on a set of extensions to common imperative program-
ming languages, and involve a compilation stage and runtime libraries. These
systems are not optimized specifically for scheduling DAGs on manycore proces-
sors. For example, Dongarra et al. showed that Cilk is not efficient for schedul-
ing workloads in dense linear algebra problems on multicore platforms [19]. In
contrast with these systems, we focus on scheduling for DAGs on manycore
processors.

To design an efficient scheduler we must take into account the architectural
characteristics of processors. Almost all the existing manycore processors have
relatively simple cores, compared with general-purpose multicore processors,
e.g., AMD Opteron and Intel Xeon. For example, the pipeline of the Ultra-
SPARC T2 does not support out of order (OoO) execution and therefore results
in a longer delay. However, the fast context switch of such processors over-
laps such delays with the execution of another thread. For this reason, the Ul-
traSPARC generally shows higher throughput when enough parallel tasks are
available [4].

Directly utilizing traditional scheduling methods such as centralized or dis-
tributed scheduling can degrade the performance of DAG structured compu-
tations on manycore processors. Centralized scheduling has a single thread to
allocate tasks, which may not be able to serve the rest of the threads in time.
This leads to starvation of some threads, especially when the tasks can be com-
pleted quickly. On the other hand, distributed scheduling requires many threads
to schedule tasks. This limits the resources for task execution. In addition, many
schedulers accessing shared variables can result in costly synchronization over-
head. Therefore, an efficient scheduling method on manycore processors must
be able to adapt itself to input task dependency graphs. To the best of our
knowledge, no scheduling algorithm for DAG structured computations has been
proposed specifically on manycore processors such as the UltraSPARC T2.
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3 Hierarchical Scheduling

3.1 Organization

The input graph is represented by a list called the global task list (GL). Fig-
ure 1(a) shows a portion of the task dependency graph. Figure 1(b) shows the
corresponding part of the GL. As shown in Figure 1(c), each element in the GL
consists of task ID, dependency degree, task weight, successors and the task meta
data (e.g. application specific parameters). The task ID is the unique identity of
a task. The dependency degree of a task is initially set as the number of incoming
edges of the task. During the scheduling process, we decrease the dependency
degree of a task once a predecessor of the task is processed. The task weight is
the estimated execution time of the task. We keep the task IDs of the successors
along with each task to preserve the precedence constraints of the task depen-
dency graph. When we process a task Ti, we can locate its successors directly
using the successor IDs, instead of traversing the entire list. In each element, we
have task meta data, such as the task type and pointers to the data buffer of the
task, etc. The GL is shared by all the threads.

Fig. 1. (a) A portion of a task dependency graph. (b) The corresponding representation
of the global task list (GL). (c) The data of element Ti in the GL.

We illustrate the components of the hierarchical scheduler in Figure 2. The
boxes with rounded corners represent thread groups. Each group consists of a
manager thread and several worker threads. The manager in Group0 is also the
supermanager. The components inside of a box are private to the group; while
the components out of the boxes are shared by all groups.

The global ready list (GRL) in Figure 2 stores the IDs of tasks with dependency
degree equal to 0. These tasks are ready to be executed. During the scheduling
process, a task is put into this list by a manager thread once the dependency
degree of the task becomes to 0.

The local ready list (LRL) in each group stores the IDs of tasks allocated to
the group by the manager of the group. The workers in the group fetch tasks
from LRL for execution. Each LRL is associated with a workload indicator (WI)
to record the overall workload of the tasks currently in the LRL. Once a task is
inserted into (or fetched from) the LRL, the indicator is updated.
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Fig. 2. Components of the hierarchical scheduler

The local completed task list (LCL) in each group stores the IDs of tasks
completed by a worker thread in the group. The list is read by the manager
thread in the group for decreasing the dependency degree of the successors of
the tasks in the list.

The arrows in Figure 2 illustrate how each thread accesses a component (read
or write). As we can see, GL and GRL are shared by all the managers for both
read and write. For each group, the LRL is write-only for the manager and read-
only for the workers; while LCL is write-only for the workers and read-only for
the manager. WI is local to the manager in the respective group only.

3.2 Dynamic Thread Grouping

The scheduler organization shown in Figure 2 supports dynamic thread grouping,
which means that the number of threads in a group can be adjusted at runtime.
We adjust groups by either merging two groups or partitioning a group. The
proposed organization ensures efficient group merging and partitioning.

Figure 3(a) illustrates the merging of Groupi and Groupj, i < j. The two
groups are merged by converting all threads of Groupj into the workers of Groupi

and merging WIs, LCLs and LRLs accordingly. Converting threads of Groupj

into the workers of Groupi is straightforward: Managerj stops allocating tasks to
Groupj, but performs self-scheduling as a worker thread. Then, all the threads in
Groupj access tasks from the merged LRL and LCL. To combine WIi and WIj ,
we add the value of WIj to WIi. Although WIj is not used after merging, we still
keep it updated for the sake of possible future group partitioning. Merging the
lists i.e. LCLs and LRLs is efficient. Note that both LCL and LRL are circular
lists, each having a head and a tail pointer to indicate the first and last tasks
stored in the list, respectively. Figure 3(b) illustrates the approach to merge two
circular lists. We need to update two links only, i.e. the bold arrows shown in
Figure 3(b). None of the tasks stored in the lists are moved or duplicated. The
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head and tail of the merged list are Headi and Tailj, respectively. Note that
two merged groups can be further merged into a larger group.

We summarize the procedure in Algorithm 1. Since the queues and weight
indicators are shared by several threads, locks must be used to avoid concurrent
write. For example, we lock LRLi and LRLj immediately before Line 1 and
unlock them after Line 3. Algorithm 2 does not explicitly assign the threads in
Groupi and Groupj to Groupk, since this algorithm is executed only by the su-
permanager. Each thread dynamically updates its group information and decides
if it should be a manager or worker (see Algorithm 2).

Fig. 3. (a) Merge Groupi and Groupj . (b) Merge circular lists Listi and Listj . The
head (tail) points to the first (last) tasks stored in the list. The blank elements have
no task stored yet.

Algorithm 1. Group merge
Input: Groupi and Groupj .
Output: Groupk = Groupi + Groupj

{Merge LRLi and LRLj}
1: Let LRLj .Head.Predecessor points to LRLi.T ail.Successor
2: Let LRLi.T ail.Successor points to LRLj .Head
3: LRLk.Head = LRLi.Head, LRLk.T ail = LRLj .T ail

{Merge LCLi and LCLj}
4: Let LCLj .Head.Predecessor points to LCLi.T ail.Successor
5: Let LCLi.T ail.Successor points to LCLj .Head
6: LCLk.Head = LCLi.Head, LCLk.T ail = LCLj .T ail

{Merge WIi and WIj}
7: WIk = WIi +WIj

Groupi and Groupj can be restored from the merged group by partitioning. As
a reverse process of group merging, group partitioning is also straightforward and
efficient. Due to space limitations, we do not elaborate it here. Group merging
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and partitioning can be used for groups with an arbitrary number of threads.
We assume the number of threads per group is a power of two hereinafter for
the sake of simplicity.

3.3 Hierarchical Scheduling

Using the proposed data organization, we schedule a given DAG structured
computation at three levels. The top level is called the meta-level, where we
have a supermanager to control group merging/partitioning. At this level, we
are not scheduling tasks directly, but reconfiguring the scheduler according to
the characteristics of the input tasks. Such a process is called meta-scheduling.
The supermanager is hosted along with the manager of Group0 by Thread0.
Note that Manager0 can never become a worker as discussed in Section 3.2.

The mediate level is called the group level, where the manager in each group
collaborates with each other and allocates tasks for the workers in the group.
The purpose of collaborating between managers is to improve the load balance
across the groups. Specifically, the managers ensure that the workload in the
local ready lists is roughly equal for all groups. A manager is hosted by the first
thread in a group.

The bottom level is called the within-group level, where the workers in each
group perform self-scheduling. That is, once a worker finishes a task execution
and updates LCL in its group, it fetches a new task, if any, from LRL imme-
diately. Self-scheduling keeps all workers busy, unless the LRL is empty. Each
worker is hosted by a separate thread.

Fig. 4. The hierarchical relationship between the supermanager, managers and workers,
and the corresponding scheduling schemes

The hierarchical scheduler behaves between centralized and distributed sched-
ulers, so that it can adapt to the input task graph. Note that each group consists
of a manager thread and several worker threads. When all the groups are merged
into a single group, the proposed method becomes a centralized scheduler; when
multiple groups exist, the proposed method behaves as a distributed scheduler.

3.4 Scheduling Algorithm and Analysis

We propose a sample implementation of the hierarchical scheduler presented in
Section 3.3. Based on the organization shown in Section 3.1, we use the following
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notations to describe the implementation: Assume there are P threads, each
bound to a core. The threads are divided into groups consisting of a manager
and several workers. GL and GRL denote the global task list and global ready
list, respectively. LRLi and LCLi denote the local ready list and local completed
task list of Groupi, 0 ≤ i < P . dT and wT represent the dependency degree and
the weight of task T , respectively. WIi is the workload indicator of Threadi.
Parameters δM , δ+ and δ− are given thresholds. The boxes show the statements
that access variables shared by all groups.

Algorithm 2 illustrates the framework of the hierarchical scheduler. In Lines 1-
3, thread groups are initialized, each with a manager and a worker, along with
a set of ready-to-execute tasks stored in LRLj, where the overall task weight is
recorded in WIj . A boolean flag fexit in Line 3 notifies if the threads can exit
the scheduling iteration (Lines 5-15). rank controls the size of groups: Increasing
rank leads to merging of two adjacent groups; while decreasing rank leads to
partitioning of current groups. rank = 1 corresponds to the minimum group size
i.e. two threads per group. Thus, we have 1 ≤ rank ≤ log P . The group size Q
is therefore given by:

Q =
P

2log P−rank
= 2rank (1)

Line 4 in Algorithm 2 starts all the threads in parallel. The threads perform
various scheduling schemes according to their thread IDs. The first thread in
each group is a manager (Line 8). In addition, the first thread in Group0 i.e.
Thread 0 performs as the supermanager (Line 10). The rest of the threads are
workers (Line 13). Given thread ID i, the corresponding group is 
i/Q�.

Algorithm 3 shows the meta-scheduling method for the supermanager. The
algorithm consists of two parts: updating rank (Lines 1-2) and re-grouping
(Lines 3-11). We use a heuristic to update rank: Note that WIj is the com-
putational workload for Groupj . A large WIj requires more workers for task ex-
ecution. |LCLj| is the number of completed tasks and d is the average number of
successive tasks. For each completed task, the manager reduces the dependency
degree of the successive tasks and moves ready-to-execute tasks to LRLj. Thus,
(|LCLj| · d) represents the workload for the scheduler. A larger (|LCLj | · d) re-
quires more managers for task scheduling. In Line 1, the ratio r tells us if we need
more managers or more workers. If more workers are needed, we increase rank
in Line 2. In this case, groups are merged to provide more workers per manager.
Otherwise, rank decreases. Line 2 also ensures that rank is valid by checking
the boundary values. d, δ+ and δ− are given as inputs. The re-grouping depends
on the value of rank. If rank increases, two groups merge (Line 5); if rank de-
creases, the merged group is partitioned (Line 9). The two operators Merge(·)
and Partition(·) are discussed in Section 3.2. Line 12 flips fexit if no task remains
in GL. This notifies all of the threads to terminate (Line 5 in Algorithm 3).

Algorithm 4 shows an iteration of the group level scheduling for managers.
Each iteration consists of three parts: updating WIi (Lines 1-2 and 15), main-
taining precedence relationship (Lines 3-8) and allocating tasks (Lines 9-14).
Lines 3-8 check the successors of all tasks in LCLi in batch mode to reduce
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Algorithm 2. A Sample Implementation of Hierarchical Scheduler
Input: P threads; Task dependency graph stored in GL; Thresholds δM , δ+ and δ−.
Output: Assign each task to a worker thread

{Initialization}
1: Groupj={Manager : Thread2j , Worker : Thread2j+1}, j = 0, 1, · · · , P/2 − 1
2: Evenly distribute tasks {Ti|Ti ∈ GL and di = 0} across LRLj , WIj =∑

T∈LRLj
wT , ∀j = 0, 1, · · · , P/2 − 1

3: fexit =false, rank = 1

{Scheduling}
4: for Thread i = 0, 1, · · · , P − 1 pardo
5: while fexit =false do
6: Q = 2rank

7: if i%Q = 0 then

{Manager thread}
8: Group level scheduling at Group�i/Q� (Algorithm 4)
9: if i = 0 then

{Supermanager thread}
10: Meta-level scheduling (Algorithm 3)
11: end if
12: else

{Worker thread}
13: Within-group level scheduling at Group �i/Q� (Algorithm 5)
14: end if
15: end while
16: end for
17: if GL = ∅ then fexit =true

synchronization overhead. Let m = 2rank − 1 denote the number of workers per
group. In the batch task allocation part (Lines 9-14), we first fetch m tasks from
GRL. Line 12 is an adaptive step of this algorithm. If the overall workload of
the m tasks is too light (

∑
T∈S′ wT < ΔW ) or the current tasks in LRLi is not

enough to keep the workers busy (WIi < δM ), more tasks are fetched for the
next iteration. This dynamically adjusts the workload distribution and prevents
possible starvation for any groups. In Line 10, the manager inspects a set of tasks
and selects m tasks with relatively more successors. This is a widely used heuris-
tic for scheduling [2]. Several statements in Algorithm 4 are put into boxes, where
the managers access shared components across the groups. Synchronization cost
of these statements varies as the number of groups changes.

The workers schedule tasks assigned by their manager (Algorithm 5). This
algorithm is a straightforward self-scheduling, where each idle worker fetches a
task from LRLi and then puts the tasks to LCLi after execution. Although
LRLi and LCLi are shared by the manager and worker threads in the same
group, no worker accesses any variables shared between groups.
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Algorithm 3. Meta-Level Scheduling
for Supermanager

{Update rank}
1: r =

∑P/Q
j=0 (WIj/(|LCLj | · d)),

rankold = rank
2: rank ={

min(rank + 1, logP ), r > δ+
max(rank − 1, 1), r < δ−

{regrouping}
3: if rankold < rank then

{Combine Groups}
4: for j = 0 to P/(2 ·Q) − 1 do
5: Groupj = Merge(Group2j ,

Group2j+1)
6: end for
7: else if rankold > rank then

{Partition Group}
8: for j = P/Q− 1 downto 0 do
9: (Group2j , Group2j+1) =

Partition(Groupj)
10: end for
11: end if

Algorithm 4. Group Level Scheduling
for the Manager of Groupi

{Update workload indicator}
1: ΔW =

∑
T̃∈LCLi

wT̃

2: WIi = WIi −ΔW

{Update precedence relations}
3: for all T ∈ {successors of T̃ , ∀T̃ ∈
LCLi} do

4: dT = dT − 1
5: if dT = 0 then

6: GRL = GRL ∪ {T}; GL = GL\{T}
7: end if
8: end for

{Batch task allocation}
9: if LRLi is not full then

10: S′ ⇐ fetch m tasks from GRL, if any

11: if
∑

T∈S′ wT < ΔW or WIi < δM

then
12: Fetch more tasks from GRL to S′,

so that
∑

T∈S′ wT ≈ ΔW + δM

13: end if
14: LRLi = LRLi ∪ {S′}
15: WIi = WIi +

∑
T∈S′ wT

16: end if

4 Experiments

4.1 Computing Facilities

The Sun UltraSPARC T2 (Niagara 2) platform was a Sunfire T2000 server with
a Sun UltraSPARC T2 multithreading processor [4]. UltraSPARC T2 has 8 hard-
ware multithreading cores, each running at 1.4 GHz. In addition, each core sup-
ports up to 8 hardware threads with 2 shared pipelines. Thus, there are 64
hardware threads. Each core has its own L1 cache shared by the threads within
a core. The L2 cache size is 4 MB, shared by all hardware threads. The platform
had 32 GB DDR2 memory shared by all the cores. The operating system was
Sun Solaris 11 and we used Sun Studio CC with Level 4 optimization (-xO4) to
compile the code.

4.2 Baseline

To compare the performance of the proposed method, we performed DAG struc-
tured computations using Charm++ [17] Cilk [14] and OpenMP [16]. In addi-
tion, we implemented three typical schedulers called Cent ded, Dist shared and
Steal, respectively. We evaluated the baseline methods along with the proposed
scheduler using the same input task dependency graphs.
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Algorithm 5. Within-Group Level Scheduling for a Worker of Groupi

Input:
Output:
1: Fetch T from LRLi

2: if T �= ∅ then
3: Execute task T
4: LCLi = LCLi ∪ {T}
5: end if

(a) Scheduling DAG structured computations using Charm++ (Charm++):
Charm++ runtime system employs a phase-based dynamic load balancing scheme
facilitated by virtualization, where the computation is monitored for load imbal-
ance and computation objects (tasks) are migrated between phases by message
passing to restore balance. Given a task dependency graph, each task is pack-
aged as an object called chore. Initially, all tasks with dependency degree equal
to 0 are submitted to the runtime system. When a task completes, it reduces the
dependency degree of the successors. Any successors with reduced dependency
degree equal to 0 are submitted to the runtime system for scheduling.

(b) Scheduling DAG structured computations using Cilk (Cilk): This base-
line scheduler performed work stealing based scheduling using the Cilk runtime
system. Unlike the proposed scheduling methods where we bound a thread to a
core of a multicore processor and allocated tasks to the threads, we dynamically
created a thread for each ready-to-execute task and then let the Cilk runtime
system schedule the threads onto cores. Although Cilk can generate a DAG dy-
namically, we used a given task dependency graph stored in a shared global list
for the sake of fair comparison. Once a task completed, the corresponding thread
reduced the dependency degree of the successors of the task and created new
threads for the successors with dependency degree equal to 0. We used spinlocks
for the dependency degrees to prevent concurrent write.

(c) Scheduling DAG structured computation using OpenMP (OpenMP): This
baseline initially inserted all tasks with dependency degree equal to 0 into a
ready queue. Then, using the OpenMP pragma directives, we created threads to
execute these tasks in parallel. During executing the tasks in the ready queue,
we inserted new ready-to-execute tasks into another ready queue for parallel
execution in the next iteration. Note that the number of tasks in the ready
queue can be much greater than the number of cores. We let the OpenMP
runtime system to dynamically schedule tasks to underutilized cores.

(d) Centralized scheduling with dedicated core (Cent ded): This scheduling
method bound each thread to a separate core. One thread was the manager and
the rest were workers. The input DAG was local to the manager. Each worker had
a ready task list shared with the scheduler thread. There was also a completed
task list shared by all the threads. The manager was also in charge of all the
activities related to scheduling and the workers executed assigned tasks only.
Pthread mutex locks were used for the ready task lists and completed task list.
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(e) Distributed scheduling with shared ready task list (Dist shared): In this
method, we distributed the scheduling activities across the threads. This method
had a shared global task list and a shared ready task list. Each thread had a local
completed task list. The schedulers integrated into each thread fetched ready-
to-execute tasks from the global task list, and inserted the tasks into the shared
ready task list. If the ready task list was not empty, each thread fetched tasks
from the ready task list for execution. Each thread inserted the IDs of completed
tasks into its completed task list. Then, the scheduler in each thread updated
the dependency degree of the successors of tasks in the completed task list, and
fetched the tasks with dependency degree equal to 0 for allocation. Pthreads
mutex locks were used for the global task list and the ready task list.

(f) Task stealing based scheduling with distributed ready task list (Steal):
Although the above baseline Cilk is also a work stealing scheduler, it used the
Cilk runtime system to schedule the threads, each corresponding to a task. On
the one hand, the Cilk runtime system has various additional optimizations;
on the other hand, scheduling the threads onto cores incurs overhead due to
context switching. Therefore, for the sake of fair comparison, we implemented the
Stealing baseline; we distributed the scheduling activities across the threads,
each having a shared ready task list. The global task list was shared by all the
threads. If the ready task list of a thread was not empty, the thread fetched a task
from it at the top for execution and upon completion updated the dependency
degree of the successors of the task. Tasks with dependency degree equal to 0
were placed into the top of its ready task list by the thread. When a thread
ran out of tasks to execute, it randomly chose a ready list to steal a task from
its bottom, unless all tasks were completed. The data for randomization were
generated offline to reduce possible overhead due to random number generator.
Pthreads spinlocks were used for the ready task lists and global task list.

4.3 Datasets and Data Layout

We experimented with both synthetic and real datasets to evaluate the perfor-
mance of the proposed scheduler. For the synthetic datasets, we varied the task
dependency graphs so that we can evaluate our scheduling method using task de-
pendency graphs with various graph topologies, sizes, task workload, task types
and accuracies in estimating task weights. For the real datasets, we used task
dependency graphs for blocked matrix multiplication (BMM), LU and Cholesky
decomposition. In addition, we also used the task dependency graph for exact
inference, a classic problem in artificial intelligence, where each task consists
of data intensive computations between a set of probabilistic distribution ta-
bles (also known as potential tables) involving both regular and irregular data
accesses [20].

We used the following data layout in the experiments: The task dependency
graph was stored as an array in the memory, where each element represents a
task with a task ID, weight, number of successors, a pointer to the successor
array and a pointer to the task meta data. Thus, each element took 32 Bytes,
regardless of what the task consisted of. The task meta data was the data used
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for task execution. For LU decomposition, the task meta data is a matrix block;
for exact inference, it is a set of potential tables. The lists used by the scheduler,
such as GRL, LRLs and LCLs, were circular lists, each having a head and a tail
pointer. In case any list was full during scheduling, new elements were inserted
on-the-fly.

4.4 Results

We compared the performance of the proposed scheduling method with two
state-of-the-art parallel programming systems i.e. Charm++[17], Cilk [14] and
OpenMP [16]. We used a task dependency graph for which the structure was a
random DAG with 10,000 tasks and there was an average of 8 successors for each
task. Each task was a dense operation, e.g., multiplication of two 30 × 30 ma-
trices. For each scheduling method, we varied the number of available threads,
so that we could observe the achieved scalability. The results are shown in Fig-
ure 5. Similar results were observed for other tasks. Given the number of available
threads, we repeated the experiments five times. The results were consistent; the
standard deviation of the results were almost within 5% of the execution time.
In Figure 5(a), all the methods exhibited scalability, though Charm++ showed
relatively large overhead. A reason for the significant overhead of Charm++ com-
pared with other methods is that Charm++ runtime system employs message
passing based mechanism to migrate tasks for load balancing (see Section 4.2).
This increased the amount of data transferring on the system bus. Note that the
proposed method required at least two threads to form a group. In Figure 5(b)
where more threads were used, our proposed method still showed good scala-
bility; while the performance of the OpenMP and Charm++ degraded significantly.
As the number of threads increased, the Charm+ required frequent message pass-
ing based task migration to balance the workload. This stessed the system bus
and caused the performance degradation. The performance of OpenMP degraded
as the number of threads increase, because it can only schedule the tasks in
the ready queue (see Section 4.2), which limits the parallelism. Cilk showed
scalability close to the proposed method, but the execution time was higher.

We compared the proposed scheduling method with three typical schedulers, a
centralized scheduler, a distributed scheduler and a task-stealing based scheduler
addressed in Section 4.2. We used the same dataset as in the previous experiment,
but the matrix sizes were 50 × 50 (large) and 10 × 10 (small) for Figures 6(a)
and (b), respectively. We normalized the throughput of each experiment for com-
parison. We divided the throughput of each experiment by the throughput of the
proposed method using 8 threads. The results exhibited inconsistencies for the
two baseline methods: Cent ded achieved much better performance than Dist
shared with respect to large tasks, but significantly poorer performance with
respect to small tasks. Such inconsistencies implied that the impact of the input
task dependency graphs on scheduling performance can be significant. An ex-
planation to this observation is that the large tasks required more resources for
task execution, but Dist shared dedicated many threads to scheduling, which
limits the resources for task execution. In addition, many schedulers frequently
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(a) Scalability with respect to 1-8 threads

(b) Scalability with respect to 8-64 threads

Fig. 5. Comparison of average execution time with existing parallel programming
systems

accessing shared data led to significant overheads due to coordination. Thus,
the throughput decreased for Dist shared as the number of threads increased.
When scheduling small tasks, the workers completed the assigned tasks quickly,
but the single scheduler of Cent ded could not process the completed tasks and
allocate new tasks to all the workers in time. Therefore, Dist shared achieved
higher throughput than Cent ded in this case. When scheduling large tasks, the
proposed method dynamically merged all the groups and therefore became the
same as Cent ded (Figure 6(a)). When scheduling small tasks, the proposed
scheduler became a distributed scheduler by keeping each core (8 threads) as
a group. Compared with Dist shared, 8 threads per group led to the best
throughput (Figure 6(b)). Steal exhibited increasing throughput with respect
to the number of threads for large tasks. However, the performance tapered off
when more than 48 threads were used. One reason for this observation is that, as
the number of thread increases, the chance of stealing tasks also increases. Since
a thread must access shared variables when stealing tasks, the coordination over-
head increased accordingly. For small tasks, Steal showed limited performance
compared with the proposed method. As the number of threads increases, the
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throughput was adversely affected. The proposed method dynamically changed
the group size and merged all the groups for the large tasks. Thus, the proposed
method becomes Cent ded except for the overhead of grouping. The proposed
scheduler kept each core (8 threads) as a group when scheduling the small tasks.
Thus, the proposed method achieved almost the same performance as Cent ded
in Figure 6(a) and the best performance in Figure 6(b).

(a) Performance with respect to large tasks (50×50
matrix multiplication for each task)

(b) Performance with respect to small tasks (10×10
matrix multiplication for each task)

Fig. 6. Comparison with baseline scheduling methods using task graphs of various task
sizes

We experimentally show the importance of adapting the group size to the task
dependency graphs in Figure 7. In this experiment, we modified the proposed
scheduler by fixing the group size. For each fixed group size, we used the same
dataset in the previous experiment and measured the performance as the num-
ber of threads increases. According to Figure 7, larger group size led to better
performance for large tasks; while for the small tasks, the best performance was
achieved when the group size was 4 or 8. Since the optimized group size var-
ied according to the input task dependency graphs, it is necessary to adapt the
group size to the input task dependency graph.
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(a) Performance with respect to large tasks (50×50
matrix multiplication for each task)

(b) Performance with respect to small tasks (10×10
matrix multiplication for each task)

Fig. 7. Performance achieved by the proposed method without dynamically adjusting
the scheduler group size (number of threads per group, thds/grp) with respect to task
graphs of various task sizes

In Figure 8, we illustrated the impact of various properties of task dependency
graphs on the performance of the proposed scheduler. We studied the impact
of the topology of the graph structure, the number of tasks in the graph, the
number of successors and the size of the tasks. We modified these parameters of
the dataset used in the previous experiments. The topologies used in Figure 8(a)
included a random graph (Rand), a 8-dimensional grid graph (8D-grid) and the
task graph of blocked matrix multiplication (BMM). Note that we only used the
topology of the task dependency graph for BMM in this experiment. Each task
in the graph was replaced by a matrix multiplication. We evaluate the full BMM
as a real-life problem in Figure 13. According to the results, for most of the
scenarios, the proposed scheduler achieved almost linear speedup. Note that the
speedup for 10× 10 task size was relatively lower than others. This was because
synchronization in scheduling was relatively large for the task dependency graph
with small task sizes. Note that we used the speedup as the metric in Figure 8.
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(a) Task graph topology (b) Number of tasks in task graph

(c) Number of successors of each task (d) Task size

Fig. 8. Impact of various properties of task dependency graphs on speedup achieved
by the proposed method

By speedup, we mean the serial execution time over the parallel execution time,
when all the parameters of the task dependency graph are given.

In Figure 9, we investigated the impact of task types on scheduling perfor-
mance. The computation intensive tasks (Computation) were matrix multiplica-
tions, for which the complexity was O(N3), assuming the matrix size was N×N .
In our experiments, we had N = 50. The memory access intensive tasks (Mem
Access) summed an array of N2 elements using O(N2) time. For the last task
type (Mixed), we let all the tasks with an even ID perform matrix multiplication
and the rest sum an array. We achieved speedup with respect to all task types.
The speedup for memory access intensive tasks was relatively lower due to the
latency of memory access.

Figure 10 reflects the efficiency of the proposed scheduler. We measured the
execution time of each thread to check if the workload was evenly distributed,
and normalized the execution time of each thread for the sake of comparison.
The underlying graph was a random graph. We also limited the number of avail-
able cores in this experiment to observe the load balance in various scenarios.
Each core had 8 threads. As the number of cores increased, there was a minor
imbalance across the threads. However, the percentage of the imbalanced work
was very small compared with the entire execution time.

For real applications, it is generally difficult to estimate the task weights accu-
rately. To study the impact of the error in estimated task weight, we intentionally
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Fig. 9. Performance of the proposed method with respect to computation intensive
tasks, memory access intensive tasks and the mix

Fig. 10. Load balance achieved by the proposed method with respect to various number
of available cores

added noise to the estimated task weight in our experiments. We included noise
that added 5%, 10% and 15% of the real task execution time. The noise was
drawn from uniform distribution using the POSIX math library. According to
the results in Figure 11, the impact was not significant.

In Figure 12, we investigated the overhead of the proposed scheduler. Using
the same dataset used in the previous experiment, we first performed hierarchical
scheduling and recorded to which thread a task was allocated. According to such
allocation information, we performed static scheduling to eliminate the overhead
due to the proposed dynamic scheduler. We illustrate the execution time in
Figure 12. Unlike the previous experiments, we show the results with respect to
execution time to compare both the scalability and the scheduling overhead for a
given number of threads. As we can see, the overhead due to dynamic scheduling
was very small.

The above experiments were conducted using synthetic datasets, so that we
could control the parameters and then study the impact of various factors to
the scheduling performance. We achieved consistent results for real application
datasets too. In Figure 13, we constructed the task dependency graph according
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Fig. 11. Impact of the error in estimated task weight on speedup achieved by the
proposed method

Fig. 12. Overhead of the proposed scheduling method

Fig. 13. Performance of the proposed scheduler for real applications

to blocked matrix multiplication (BMM), LU decomposition and Cholesky de-
composition [10]. For the BMM, we used a matrix of size 600× 600 with block
size 50×50. The total number of tasks was 3312. For both the LU and Cholesky
decomposition, the matrix size was 1000× 1000 and block size was 50× 50. The
total number of tasks was 2870. In Figure 14, we applied the proposed scheduler
for parallel exact inference [20]. The task dependency graph for this problem
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Fig. 14. Performance of the proposed scheduler for exact inference

had 1023 nodes and each node had a potential table of 4096 entries. We man-
ually partitioned the potential tables at different sizes and therefore had three
datasets. The sizes of the partitioned potential table were 4096, 1024 and 256 for
large, mediate and small tasks, respectively. The proposed scheduler worked well
for all the real applications. Note that we used the metric speedup instead of
absolute execution time or throughput. This is because the absolute performance
requires optimization of both the tasks and the scheduler. We only focused on
scheduler design in this paper, therefore we used the metric of speedup.

5 Conclusion

We proposed a hierarchical scheduling scheme for manycore processors. In our
method, we divided the threads into groups, each having a manager to perform
scheduling at the group level and several workers to perform self-scheduling for
the tasks assigned by the manager. A supermanager was used to dynamically ad-
just the group size, so that the scheduler could adapt to the input task depen-
dency graph. We analyzed the proposed method and demonstrated its advantages
for manycore architectures. The experimental results on the Sun UltraSPARC T2
processors were encouraging, compared with typical baseline schedulers and exist-
ing parallel programming systems. In the future, we plan to study data layout for
high throughput processors to efficiently use the data cache of the UltraSPARC
processors, since the L2 cache is no more than 4 MB, shared by up to 64 hardware
threads. We would also like to explore the heuristics for assigning tasks of vari-
ous types to a core. For example, interleaving the computationally intensive tasks
with memory access intensive tasks may improve the overall performance.

References

1. Ahmad, I., Ranka, S., Khan, S.: Using game theory for scheduling tasks on multi-
core processors for simultaneous optimization of performance and energy. In: Intl.
Sym. on Parallel Dist. Proc., pp. 1–6 (2008)

2. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys 31(4), 406–471 (1999)



174 Y. Xia, V.K. Prasanna, and J. Li

3. Zhu, W., Thulasiraman, P., Thulasiram, R.K., Gao, G.R.: Exploring financial ap-
plications on many-core-on-a-chip architecture: A first experiment. In: Frontiers of
High Performance Computing and Networking, pp. 221–230 (2006)

4. Sheahan, D.: Developing and tuning applications on UltraSPARC T1 chip multi-
threading systems. Technical report (2007)

5. Tan, G., Sreedhar, V.C., Gao, G.R.: Analysis and performance results of computing
betwenness centrality on ibm cyclops64. Journal of Supercomputing (2009)

6. Ahmad, I., Kwok, Y.K., Wu, M.Y.: Analysis, evaluation, and comparison of algo-
rithms for scheduling task graphs on parallel processors. In: Proceedings of the 1996
International Symposium on Parallel Architectures, Algorithms and Networks, pp.
207–213 (1996)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

8. Papadimitriou, C., Yannakakis, M.: Towards an architecture-independent analysis
of parallel algorithms. In: Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing, pp. 510–513 (1988)

9. Benoit, A., Hakem, M., Robert, Y.: Contention awareness and fault-tolerant
scheduling for precedence constrained tasks in heterogeneous systems. Parallel
Computing 35(2), 83–108 (2009)

10. Song, F., YarKhan, A., Dongarra, J.: Dynamic task scheduling for linear algebra
algorithms on distributed-memory multicore systems. In: International Conference
for Hight Performance Computing, Networking Storage and Analysis (2009)

11. Coffman, E.G.: Computer and Job-Shop Scheduling Theory. John Wiley and Sons,
New York (1976)

12. Karamcheti, V., Chien, A.: A hierarchical load-balancing framework for dynamic
multithreaded computations. In: Proceedings of the ACM/IEEE Conference on
Supercomputing, pp. 1–17 (1998)

13. Zhao, H., Sakellariou, R.: Scheduling multiple DAGs onto heterogeneous sys-
tems. In: IEEE International Symposium on Parallel and Distributed Processing
(IPDPS), pp. 1–12 (2006)

14. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An efficient multithreaded runtime system. Technical report, Cambridge
(1996)

15. Intel Threading Building Blocks, http://www.threadingbuldingblocks.org/
16. OpenMP Application Programming Interface, http://www.openmp.org/
17. Charm++ programming system, http://charm.cs.uiuc.edu/research/charm/
18. Ohara, M., Inoue, H., Sohda, Y., Komatsu, H., Nakatani, T.: Mpi microtask for

programming the cell broadband enginetm processor. IBM Systems Journal 45(1),
85–102 (2006)

19. Kurzak, J., Dongarra, J.: Fully dynamic scheduler for numerical computing on
multicore processors. Technical report (2009)

20. Xia, Y., Feng, X., Prasanna, V.K.: Parallel evidence propagation on multicore pro-
cessors. In: The 10th International Conference on Parallel Computing Technologies,
pp. 377–391 (2009)

21. Bader, D.: High-performance algorithm engineering for large-scale graph problems
and computational biology. In: 4th International Workshop on Efficient and Ex-
perimental Algorithms, pp. 16–21 (2005)

http://www.threadingbuldingblocks.org/
http://www.openmp.org/
http://charm.cs.uiuc.edu/research/charm/


Multiplexing Low and High QoS Workloads in

Virtual Environments

Sam Verboven, Kurt Vanmechelen, and Jan Broeckhove

University of Antwerp,
Department of Computer Science and Mathematics,

Middelheimlaan 1, 2020 Antwerp, Belgium
sam.verboven@ua.ac.be

Abstract. Virtualization technology has introduced new ways for man-
aging IT infrastructure. The flexible deployment of applications through
self-contained virtual machine images has removed the barriers for mul-
tiplexing, suspending and migrating applications with their entire execu-
tion environment, allowing for a more efficient use of the infrastructure.
These developments have given rise to an important challenge regarding
the optimal scheduling of virtual machine workloads. In this paper, we
specifically address the VM scheduling problem in which workloads that
require guaranteed levels of CPU performance are mixed with workloads
that do not require such guarantees. We introduce a framework to ana-
lyze this scheduling problem and evaluate to what extent such mixed ser-
vice delivery is beneficial for a provider of virtualized IT infrastructure.
Traditionally providers offer IT resources under a guaranteed and fixed
performance profile, which can lead to underutilization. The findings of
our simulation study show that through proper tuning of a limited set
of parameters, the proposed scheduling algorithm allows for a significant
increase in utilization without sacrificing on performance dependability.

Keywords: Workload multiplexing, Virtualization, Overbooking,
Scheduling.

1 Introduction

A current trend in IT infrastructure management is the reliance on virtualization
technology to mitigate the costs of application and IT infrastructure deployment,
management and procurement. Virtualization technology allows one to manage
an application and its execution environment as a single entity, a virtual machine
(VM). It allows for the full configuration of an application and its execution
environment to be captured in a single file, a virtual machine image. These
virtual machine images can be deployed in a hardware-agnostic manner on any
hardware that hosts a compatible virtual machine monitor (VMM) such as Xen
[1] or VMware’s VMM. VM monitors thereby offer flexibility in partitioning the
underlying hardware resources and ensure isolation between the different virtual
machines that are running on the same hardware. Aside from the benefits of
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this technology in the context of privately owned data centers, these features
have also fostered the development of a new IT infrastructure delivery paradigm
that is based on outsourcing. The possibility to deploy an entire environment
in a low-cost and hardware-neutral manner has paved the way for cloud [2,3]
infrastructure as a service (IaaS) providers to open up their large datacenters to
consumers, thereby exploiting significant economies of scale.

One of the most well known providers in this new market is Amazon with their
Elastic Compute Cloud (EC2) [4] offering. As is typical for an IaaS provider,
Amazon offers a discrete number of resource types or instance types as they are
called, with varying performance characteristics. Such an instance type delivers
a guaranteed level of compute capacity. An EC2 small instance type for exam-
ple, contractually delivers a performance that is equivalent to a 2007 Opteron
processor with a 1.0-1.2 GHz clock frequency. The performance guarantees in
this service delivery model are crucial because the use of the compute service is
paid for by the hour, and not by actual compute capacity delivered or used. The
combination of these performance guarantees and the fact that virtual machine
workloads can vary significantly can lead to infrastructure underutilization in ab-
sence of corrective measures. In addition, the ability to buy reserved instances
at EC2 that have a guaranteed level of performance and availability, further in-
creases the chances for underutilization. The recent addition of a spot market [5]
for EC2 instances whereby instance types are dynamically priced and potentially
killed by the provider if their standing bid does not meet the spot price, provides
an indication for this problem of (temporary) underutilization. The addition of
this market mechanism changes the scheduling problem within the datacenter
from one in which a given set of workloads need to be balanced out over the
available hardware, to one in which the change of an admission parameter,the
instance’s spot price, can trigger an influx of additional VM workloads into the
datacenter. These workloads run under lower availability guarantees as they can
be shutdown by the provider if they cause interference with workloads that run
under a high availability regime, such as the reserved instance or on-demand
instances at EC21.

Scheduling workloads that have low priority and quality of service (QoS) guar-
antees in terms of performance, alongside with high-QoS workloads thus offers a
possibility to deal with underutilization. Consider for example the addition of a
batch job workload to a 4-way server that is running a VM with four cores host-
ing a high priority web service. The web service’s spiky load pattern opens up
the possibility for filling in underutilized periods with the batch workload. Such a
scheduling approach must ensure that high-QoS workloads do not suffer from per-
formance degradation caused by their multiplexing with low-QoS workloads. At
the same time, enough low-QoS workloads should pass admission control in order
to achieve the highest possible utilization and throughput of the infrastructure.

1 Note that EC2 uses an indirect mechanism for this by increasing the spot price to a
level that rises above the standing bid of an adequately high number of spot instance
workloads. This clears them for shutdown under the contractual rules of the trading
agreement.
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Although some commercial products exist, such as VMware’s vSphere, that
perform load balancing in a cluster for a given set of virtual machines, no definite
solution exists today for tackling this problem if a free decision can be made to
accept additional low-QoS workloads. In this paper, we present a simulation
framework to analyze the performance of VM scheduling problems and evaluate
a scheduling algorithm that is tailored towards the multiplexing of these high-
and low-QoS workloads in a virtual machine context. We demonstrate that by
tuning a limited set of parameters a tradeoff can be made between maximizing
utilization and avoiding workload interference.

2 Model

2.1 Resource and Job Model

In this contribution, we research the VM scheduling problem within the context
of the following model. We explore the problem in a setting with one infrastruc-
ture provider P , that hosts a set of m machines Mj (j = 1, · · · , m). These are
considered to be identical parallel machines so each machine is able to execute
any job from the set of n jobs Ji (i = 1, · · · , n), and for the machine’s processing
capacity sj we have, ∀i, j ∈ {1, · · · , m} : si = sj = 1. A job, which models the
execution of a virtual machine instance, has a varying load pattern over time
and is sequential, i.e. it runs on only one machine at a time. A job has a release
time ri, and a duration pi. We consider two types of QoS levels for jobs. High-
QoS jobs must be able to start at time ri and should be able to allocate the full
processing power of the machine on which they are deployed. These jobs are not
preemptible, e.g. a virtual machine running a relational database. Low-QoS jobs
can be preempted at a fixed cost cp. In this work, we assume that job preemp-
tion requires a suspension of the virtual machine. Equivalently, a resumption of
a virtual machine instigates a cost cr. The job startup costs (cb) and termination
costs (ct) are also modeled as we are dealing with VMs. For preemption, we only
consider the case wherein a VM is swapped out of memory to make room for the
other VMs that run on the server. An example of a workload that is amenable
to a low-QoS regime is a virtual machine that executes low-priority batch jobs.

A machine corresponds to a virtualized core of a server that runs a virtual
machine monitor. The provider P operates a cluster of such servers. A machine
can accommodate more than one job at a time. We assume that the distribution
and multiplexing of a VMs workload over the virtual cores of a server is man-
aged by the virtual machine monitor and do not explicitly model this behavior.
We also do not model the overheads that such multiplexing brings in terms of
technical considerations such as I/O contention for resources or cache line in-
validations. Although these aspects can certainly have a significant impact on
this study, they are also very application dependent and difficult to model and
simulate. In that respect, this study maps out the maximum performance that
can be attained under the proposed scheduling approach.
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2.2 VM Management Model and Simulation Framework

For managing the distribution of virtual machines over multiple servers in the
cluster a virtual infrastructure manager (VIM) is required. There are multiple
such managers currently available such as vSphere (VMWare’s commercial offer-
ing), or one of the open source alternatives such as OpenNebula [6] or Eucalyptus
[7]. Depending on the capabilities of the VIM, a set of features and operations is
available to manage the execution of the VM instances on the cluster. Because of
its generality, we have chosen to model our scheduling problem in the context of
the features offered by the OpenNebula toolkit. The open nature of the project,
the emphasis on being a research platform and the generality of its feature set
are the main factors that influenced this choice.

One of the schedulers already available for OpenNebula is the Haizea [8,6]
scheduler. The VM operations available to the scheduler are shutdown, start,
suspend and resume. The scheduler is assumed to have no knowledge of pi. In
order to deal with infrastructure underutilization, we take an overbooking ap-
proach. That is, we allow the scheduler to allocate more resources than physically
available on the cluster node. Such an overbooking has to be actively managed
by active scheduling decisions in order to limit the interference of low-QoS loads
with high-QoS loads. As the Haizea scheduler already supports many of the fea-
tures required for overbooking, such as the support for differentiation between
multiple job types, it is chosen as the basis for our scheduler.

All of the scheduler’s decisions result in a series of commands and correspond-
ing VM states that can be used to drive the two enactment backends available
in Haizea. The first is a simulated backend used in the presented experiments,
the second drives the OpenNebula virtual infrastructure engine where Haizea
can be used as an alternative to the default scheduler. One of the major ben-
efits of the second backend is that all the scheduling algorithms implemented
within the extended framework are automatically compatible with OpenNebula.
An advantage of this choice is that the results of our simulation studies can be
verified in a real-world setting without much additional cost.

Haizea’s simulation mode uses a simulation core that keeps track of all actions
that are scheduled with a specific firing and finishing time. The simulation steps
through time by subsequently adjusting the simulator’s virtual clock to the time
of the next action. At each step, the state of the simulated environment is updated
and user code can step in to schedule new actions. A single VM operation, such as
suspend, can involve one or more actions, depending on the level of detail in the
VM managementmodel. For example, one could explicitly model the time required
for state checkpointing, or the I/O operation involved in storing the checkpoint.

With a configurable time frequency, our scheduler performs an overbooking
step. In such a step all available machines are polled to obtain the active jobs
and their current utilization. This information is then used to determine all the
VM operations that are required, based on the scheduling policy’s options. In-
terspersed with these fixed steps lie management steps. During the management
steps all events that do not coincide with overbooking step times are performed
e.g. issuing a shutdown command when a VM has finished its workload.
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3 Scheduling Algorithm

Any overbooking scheme will have the same general goal: reduce resource wastage
due to underutilization while at the same time having a minimal impact on the
existing resource users. As a result of their suspend and resume capabilities VMs
are uniquely suited for this goal provided they have different types of QoS re-
quirements. A lower priority VM can be suspended and resumed at a later, more
opportune time and/or location without losing any performed work. The sched-
uler determines the suitability of machines for low-QoS jobs and only launches
the job if sufficient resources are available. For high QoS jobs, the scheduler in-
stalls reservations to make sure resources are available for the entire duration of
the workload. Low-QoS jobs are queued up until machines are available.

As jobs only use a single machine, the amount of jobs supported by a single
cluster node can be expressed in slots. Each slot is equivalent to the processing
capability of a single CPU core. As such, we will refer to a machine Mi as a slot
in the remainder of this paper. Slots provide a convenient abstraction to specify
both the available physical resources as well as the maximum allowed amount
of overbooking.

High-QoS jobs may require the full processing capacity of the reserved slots at
some point in time but it is reasonable to assume this is not permanently the case.
The reserved but unused resources pose both an opportunity and a challenge.
There is an opportunity to increase overall utilization by scheduling in low-
QoS workloads. Depending on the QoS guarantees, interference with high-QoS
workloads with must be completely avoided or kept within reasonable bounds.
In contrast to the EC2 approach, we want to preserve the work that has been
completed in a low-QoS VM and therefore do not kill it if it is detected to
interfere with high-QoS VMs. Therefore, our scheduler must take into account
the overheads of suspending and resuming low-QoS VMs. Suspending as well as
starting and stopping a VM can be a resource intensive operation. Depending
on the configuration of the cluster, it is possible that all four major resources
(CPU, memory, disk and network) are heavily taxed.

We quantify the interference between VMs by measuring the CPU utilization
on a node in excess of 100%. As mentioned before, this is only one dimension of
interference that can exist between VMs that are deployed on the same node.
Other dimensions such as contention for disk I/O bandwidth will be investigated
in future work.

A simple and effective method to put restrictions on the allowed ranges for
overbooking is the introductions of bounds. The base algorithm determines its
actions using a lower and an upper bound. The lower bound puts a limit on the
maximum node utilization for nodes where new low QoS VMs are booted. The
upper bound is used to decide when a VM should start suspending. Keeping
in mind the overhead of starting and suspending a VM, the algorithm will not
schedule more than one of these operations simultaneously one a node.

Our scheduling algorithm works in two steps: scheduling new overbooking re-
quests and evaluating running requests. The first step, for which pseudo-code
is shown in Algorithm 1, works as follows. The algorithm starts by obtaining
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a list of all the nodes that can currently support an extra VM. The suitability
of a node is determined by comparing the node utilization (including the loads
introduced by possible overbooked VMs) with a configurable lower bound. All
nodes with a utilization lower or equal to this lower bound are added to a list of
overbooking candidates. After suitable candidates are found the list of low-QoS
requests is updated: incoming requests are added to the back of the queue while
suspended requests are added to the front. Suspended requests are ordered by
initial arrival time with the oldest appearing at the front of the queue. With all
necessary data gathered, VMs can be scheduled until either the available nodes
or requests are exhausted.

Input: Set of nodes, Set of vm requests, lower bound
foreach Node i do

if Utilization(i) ≤ lower bound then
available nodes.add(i) ;

end
end
Update(vm requests) ;
while available nodes remaining & vm requests remaining do

vm = vm requests.pop() ;
n = available nodes.pop() ;
Schedule(vm on Node n) ;

end

Algorithm 1. Adding Overbooked VMs

Since utilization is a volatile property the conditions for overbooking will need
to be evaluated at regular intervals. The pseudo code for this part of the algo-
rithm can be found in 2. All nodes supporting one or more overbooked VMs are
evaluated, and if the total utilization equals or surpasses the set lower bound
the VM that was added last will be suspended.

Input: Set of nodes, upper bound
foreach Node i do

if Utilization(i) ≥ upper bound then
vm = overbooked vms(i).get last() ;
Suspend(vm) ;

end
end

Algorithm 2. Suspending Overbooked VMs

4 Experiments

In this section, we evaluate the performance of our scheduling algorithm. We first
outline our experimental setup after which we present and discuss our results.



Multiplexing Low and High QoS Workloads in Virtual Environments 181

4.1 Experimental Setup

Our experimental setup consists of three major aspects: the cluster used to
deploy the VMs, a list of high- and low-QoS requests and the load generators
attached to the requests. The cluster consists of 50 homogeneous octacore nodes.
To generate a non-trivial synthetic load pattern that is reminiscent of the behav-
ior of real-world workloads, we introduce the following three different application
types2 following [9]:

Noisy: Starting from a mean utilization value μ, a load pattern is generated by
drawing random numbers from a normal distribution N(μ, 15). An example
of a noisy load pattern for μ = 75 can be found in Figure 1.
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Fig. 1. Sample noisy load pattern

Spiky: This load pattern is based on a normal distribution with σ = 5. To
add load spikes to the pattern, each drawing of the load distribution has
1% chance of generating a spike with 90% chance of having a positive one.
Each spike has 50% chance of continuing. An example spiky load pattern for
μ = 75 can be found in Figure 2.

Business: A business load pattern is slightly more complicated in that a func-
tion is used to determine the μ parameter of the normal distribution N(μ, 5)
depending on the time of day. The value of μ is calculated with a piece-
wise function that represents utilization fluctuations coinciding with business
hours. The function is configured with a minimum (min) and a maximum
(max) utilization value. Utilization rises from min to max between 8.00 and
10.00 in the morning. Between 11.30 and 13.30 there is a slight drop repre-
senting lunch hours. In the evening there is a second decline dropping back to
min between 16.00 and 18.00. The incremental utilization changes between
min and max are calculated by adjusting the amplitude and period of a
sinus function. During weekends, the function returns the minimum value.
An example business load pattern for min = 50 and max = 90 is shown in
Figure 3.

2 By manipulating a limited number of parameters we can emulate a wide range of
applications.
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Fig. 2. Sample spiky load pattern
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Fig. 3. Sample business load pattern on a weekday

Each high-QoS application has an equal chance of generating one of the three
load patterns. For the spiky and noisy load patterns, μ is drawn from a normal
distribution N(75, 15). For the business load pattern, min = 50 and max =
90. An example of a possible workload during a weekday on a node in the
cluster can be found in Figure 4. High-QoS applications are generated in such
a manner that load patterns are randomly scheduled among the different nodes
on the cluster. Each low-QoS application has a noisy load pattern with μ = 90
simulating CPU intensive batch jobs. Each separate application consists of a
single job. High-QoS jobs are generated in such a manner that all physical slots
are continuously occupied. Using 50 octacore nodes this means there are 400
high-QoS applications running at any given time, one for each core. The low-
QoS job arrival rate is set a level that ensures the queue never becomes empty.
The maximum amount of concurrently executing low-QoS applications depends
on the overbooking slots per node.

All application runtimes are generated according to a geometrical distribution.
If X is the runtime in minutes, the probability is expressed in equation 1 for
n = 30, 60, 90, ... with p equaling 0.1% and 1% for respectively high- and low-
QoS applications.

Pr [X = n] = p (1− p)(
n
30−1) (1)
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Fig. 4. Sample load pattern on a single eight core node during a weekday

Preliminary tests indicated that the results for running the simulation for one
week and for one month produced equivalent results. This is a logical consequence
of the weekly repeating pattern. To reduce the time needed to produce results for
the numerous tests, we reduced the time horizon of the simulation to one week.
The frequency for running the overbooking logic was set to 5 minutes. The costs
for VM operations were configured as cb = cp = cr = ct = 30s. Providing an
estimate for VM operations in a cluster environment depends highly on not only
the storage and network configuration but also on the target VM memory usage.
The 30s estimate should be viewed in the context of a cluster using fast network
storage to provide the VM images and VM instances using 1 GB of memory.
This assumption removes the need to model migration overhead when resuming
VMs on different nodes.

Executing the scenario without overbooking logic results in a mean CPU
utilization of 69.4% during a total of 67,200 workload hours. Every test consist
of three parameters: available overbooking slots, upper- and lower bound. These
are chosen in function of the relatively high average utilization on the simulated
cluster. The amount of overbooking slots was taken to either be 1, 2 or 3. We
varied the upper and lower bounds in increments of 5 between [85, 95] and [60,80]
respectively. Since each CPU core can maximally account for a utilization of
12,5%, the minimum difference between lower and upper bound is taken to be
15%. Relaxing this constraint will often result in immediately suspending the
VM once it becomes active. All other lower bounds are set 5% apart going down
until 60.

4.2 Results

The outcome of the experiments is gathered into Tables 1-3, each containing the
results of the test performed for a set amount of overbooking slots. The first
column contains upper and lower bounds. The third column shows the average
utilization achieved when the overbooking logic is active. The average utiliza-
tion of 69.4% achieved without overbooking, increases to more than 87% for the
scenario with three slots, a lower bound of 80 and upper bound of 95. A con-
servative bound configuration of 85-60 using a single overbooking slot, leads to
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a utilization of 73.7%. The fourth column contains the hours of workload that
have executed within overbooked low-QoS VMs. This total does not include any
VM operation overhead, only active VMs can contribute to the total. The fifth
column shows the amount of VM suspensions. The second to last column con-
tains the amount of degradation points if the results are interpreted without any
overhead. Degradation points are all overbooking time steps where a total load
was recorded that would impact the high-QoS VMs. The last column contains
the amount of degradation points taking into account a 5% overhead.

From the preliminary results in Tables 1, 2 and 3 we can reach some initial
conclusions with respect to the parameter variations and their results. For the
purpose of this discussion we will refer to the difference between upper and lower
bounds as the overbooking window size. Negative effects are considered to be a
combination of increased suspensions (and the resulting resumptions) and an
increase in the amount of degradation points at both 95 and 100%.

We will first look at the impact caused by the amount of available overbooking
slots. The influence of the amount of overbooking slots is lowest in the scenarios
with the lowest bound values. This can be attributed to the fact that the average
utilization without overbooking is already relatively high, and only allows for a
single overbooked VM when bounds are set low. When the bounds are increased
more interesting results can be observed. Moving from one overbooking slot to
two yields higher utilization levels and often lower negative effects for similar
bound values. A single overbooking slot performs only slightly better when the
lower bound is set at 60 and total utilization is lowest. Increasing the slot amount
to a maximum of three overbooked VMs on the other hand results in similar uti-
lization levels while having the same or more negative effects. A higher maximum
increase in utilization can be achieved but there is a substantial increase in the
amount of negative effects as well. It seems that in most cases, two overbooking
slots is the most appropriate setting for this type of workload.

A detailed side by side comparison of Tables 1-3 shows that although the
numbers may vary, the trends that can be detected are similar. There are two
trends that deserve some further discussion, namely the effects of increasing the
lower bound with regard to a fixed upper bound and increasing the upper bound
with regard to fixed window sizes.

Increasing lower bounds: The first trend is the effect obtained by increasing
the lower bound and keeping all other parameters constant. This results in
utilization gains that slowly decrease per step. At the same time we find
there is an exponential increase in negative effects. This is illustrated in
figure 5, the lower bound is increased in steps of 5 from 60 to 80 creating
corresponding overbooking windows [35:15]. The results show that although
increasing the lower bound will give better utilization gains, these come at
an increasingly higher cost. Figures 6 and 7 further show that this effect is
present in all window, upper bound combinations.

Increasing upper bounds: Increasing the upper bound under a fixed window
size results in a linear increase in utilization (see Figure 6) while suspen-
sions (and degradation points) remain at roughly the same magnitude (see
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Figure 7). From these results we find that choosing a higher upper bound
will increase utilization while having a small impact on the negative effects
of overbooking.

In summary, we find that selecting a correct amount of overbooking slots is
an important part of achieving optimal results. There is a tipping point where
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Table 1. The results using different bound combinations and one overbooking slot

Bounds Slots Utilization Hours Suspends > 100% > 95%

85 - 60 1 73.7 3297.79 405 0 1
85 - 65 1 75.19 4434.55 1125 0 3
85 - 70 1 76.36 5338.98 3443 0 17

90 - 60 1 74.57 3966.83 191 0 10
90 - 65 1 76.3 5290.09 406 0 25
90 - 70 1 77.42 6150.38 1033 0 62
90 - 75 1 78.28 6806.58 2508 6 195

95 - 60 1 75.25 4491.03 144 3 144
95 - 65 1 77.29 6043.97 234 7 234
95 - 70 1 78.45 6936.92 383 13 384
95 - 75 1 79.17 7478.31 660 22 660
95 - 80 1 79.66 7864.45 1305 64 1305

Table 2. The results using different bound combinations and two overbooking slots

Bounds Slots Utilization Hours Suspends > 100% > 95%

85 - 60 2 73.86 3418.20 490 0 1
85 - 65 2 75.81 4909.43 1839 0 9
85 - 70 2 77.83 6457.53 6797 3 81

90 - 60 2 75.07 4341.34 243 0 15
90 - 65 2 77.59 6277.52 746 1 49
90 - 70 2 79.87 8020.48 2507 7 196
90 - 75 2 82.13 9760.40 7461 49 868

95 - 60 2 75.84 4934.74 176 7 177
95 - 65 2 79.37 7639.71 370 18 371
95 - 70 2 82.21 9813.01 888 43 888
95 - 75 2 84.45 11528.12 2207 135 2208
95 - 80 2 86.16 12845.09 5498 577 5498

extra slots will only add negative effects without additional gain in utilization.
We also find that increasing the lower bound has diminishing effects on uti-
lization gains while negative effects increase exponentially. On the other hand,
increasing the upper bound in our current simulator does not add negative ef-
fects while utilization displays a steady increase. This leads us to believe that
a correct upper bound will most likely depend on limiting factors not yet ex-
plored in this research3. We can however conclude that the upper bound should
be placed as high as possible. Depending on the amount of negative effects an
administrator is prepared to allow, an optimal set of bounds can be chosen to
maximize utilization.

3 In multi core systems with more VMs than cores, performance degradation will occur
somewhere before total utilization hits 100%.
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Table 3. The results using different bound combinations and three overbooking slots

Bounds Slots Utilization Hours Suspends > 100% > 95%

85 - 60 3 73.88 3429.17 476.0 0.0 1.0
85 - 65 3 75.81 4915.34 1866.0 0.0 10.0
85 - 70 3 77.84 6468.15 6871.0 6.0 94.0

90 - 60 3 75.0 4289.79 242.0 0.0 16.0
90 - 65 3 77.57 6266.12 757.0 1.0 51.0
90 - 70 3 79.89 8047.17 2619.0 13.0 211.0
90 - 75 3 82.35 9921.47 8502.0 107.0 1190.0

95 - 60 3 75.88 4964.69 172.0 8.0 173.0
95 - 65 3 79.38 7643.12 376.0 18.0 376.0
95 - 70 3 82.36 9926.95 966.0 53.0 966.0
95 - 75 3 84.92 11885.76 2898.0 246.0 2899.0
95 - 80 3 87.33 13733.74 8838.0 1376.0 8838.0

5 Related Work

To deal with underutilization in batch queuing systems, backfilling techniques
such as EASY [10] are often used. Jobs can jump ahead in the queue if they do
not delay the start time of the first job in the queue. Conservative backfilling
approaches [11] require that upon a backfill operation, no job in the queue is
delayed in order to maintain fairness. A problem with these approaches is their
reliance on user estimates of job runtimes which are often incorrect [12]. Several
techniques have been proposed to model this runtime in order to tackle this
problem [13,14,15].

Aside from backfilling, overbooking of resources is another technique to deal
with underutilization. The scheduler deliberately overbooks resources in order
to deal with jobs that do not use their allocated resource share fully. Sulistio et.
al [16] developed a resource overbooking scheme for a setting in which resource
reservations are made on a grid infrastructure. Whereas our work hinges on the
exploitation of the volatility of VM workloads, their model attempts to deal with
the binary case wherein reservations are not used at all or are canceled. They use
a richer model for the cost of overbooking by introducing a penalty model that is
linked to a renumeration, whereas we only consider the number of performance
degradation points the schedule generates. In future work, we are interested in
including such an application-specific penalty model to diversify the loss of value
an application faces if it is subject to a degradation in performance.

An approach to overbooking non-preemptive workloads in a non-virtualized
setting was proposed by Urgaonkar et al. [17]. They demonstrated that con-
trolled overbooking can dramatically increase utilization on shared platforms.
Resource requirements are based on detailed application profiling combined with
guarantees requested by application providers. The profiling process requires all
applications to run on a set of isolated nodes while being subjected to a real-
istic workload, this workload generates a set of parameters that must be rep-
resentative for the entire application lifetime. Instead of pro-actively managing



188 S. Verboven, K. Vanmechelen, and J. Broeckhove

overbooking, application placement is based on a set of constraints and a prob-
ability with which these constraints may be violated.

Perhaps somewhat surprisingly, workload traces from the LCG-2 infrastruc-
ture, which supports the data processing of CERN’s Large Hadron Collider, have
shown that as much as 70% of the jobs run by a Tier-2 Resource center in Russia
use less than 14% of CPU-time during their lifetime [18]. On the other hand,
98% of the jobs use less than 512MB of RAM. Cherkasova et al. thus investi-
gate the potential of running the batch workloads in VMs and overbooking grid
resources to increase utilization. The authors conclude that the use of virtual-
ization and multiplexing multiple VMs on a single CPU core allows for a 50%
reduction in the required infrastructure while rejecting less than 1% of the jobs
due to resource shortage.

Birkenheuer et al. [19] tackle underutilization for queue-based job scheduling
by modeling the probability that a backfill operation in the job queue delays
the execution of the next job due to bad user runtime estimations or resource
failure. A threshold is defined on this probability to decide whether a job can be
used for backfilling. Birkenheuer et al. report on a 20% increase in utilization on
a schedule for a workload trace of a 400 processor cluster. Their work is however
not adopted to the specifics of virtual machine scheduling and only considers a
single-processor case.

At the level of the VMM, priorities and weights can also be assigned to VMs
such that high priority workloads maintain their resource share in the presence
of low priority loads [20]. The VMM scheduler operates in time quanta that
are in the order of tens of milliseconds to ensure the system allocates resources
under the configured allocation constraints. Our approach differs from this in
that we suspend virtual machines so that their memory pages can be reclaimed
by other VMs. Although memory overcommitment is possible in popular VMMs
such as Xen, HyperV and VMware, this can result in noticeable performance
degradation if the VMs actually require the overcommitted memory [21,22].

6 Future Work

Our first direction of future work will be to further evaluate the effectiveness of
the presented scheduling approach. To obtain a complete view a larger amount
of slot, bound and scenario combinations must be evaluated. Likewise, we wish
to extend the set of workloads that are analyzed and, if possible, make use of
trace data from real workloads. Our second goal is to classify VM workloads into
predefined classes so that an optimal scheduling configuration can be chosen au-
tomatically. Thirdly, we want to improve the scheduling algorithm itself. In this
regard we plan to explore the potential of workload modeling and prediction
techniques to attain a more intelligent mapping between a low-QoS workload
and the cluster node it is placed on. Finally, we plan to add aspects such as
memory and network usage to the model in order to increase the accuracy of
our results and to allow for the development of more complete scheduling. Using
this more accurate model, we will compare our simulation results to those from
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OpenNebula experiments conducted with a real backend. In this manner, incon-
sistencies in the model and its assumptions can be rectified providing a realistic
basis for further research.

7 Conclusion

We have introduced a scheduling algorithm which multiplexes low- and high-QoS
workloads on a virtualized cluster infrastructure in order to increase the infras-
tructure’s utilization through overbooking. By monitoring the difference between
formal and actual requirements of high-QoS workloads in terms of CPU load, an
opportunity to add low-QoS workloads to a cluster node is detected. We intro-
duce a limited set of parameters in our scheduling policy so that a flexible tradeoff
can be made between maximization of infrastructure utilization and workload
interference. The results obtained from initial testing show that depending on
the requirements, optimal parameters can be selected that significantly increase
utilization while causing limited interference with high-QoS workloads. We iden-
tified general trends in the system’s performance through parameter tuning and
identified a number of guidelines to determine an optimal parameter setting.
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Abstract. This paper proposes and evaluates APIs for Inter-Core Time
Aggregation Scheduler (IAS). IAS is a kernel-level thread scheduler to
enhance performance of multi-threaded programs on multi-core proces-
sors. IAS combines time-multiplexing and space-multiplexing schedul-
ing to utilize caches existing per processing core and shared between
processing cores.

We present the effect of APIs in two aspects. Firstly, we show that
we can effectively and easily set the aggregation strength in IAS based
on the quantum time. Secondly, we show that we can gain the effect of
space-multiplexing without setting processor affinity of each thread by
grouping processing cores and running IAS per group. We implement
IAS and its APIs by modifying a Linux kernel and present its effect on
a commodity multi-core processor.

Keywords: Thread Scheduling, Multi-core Processor, Cache Sharing,
Multi-threaded Program.

1 Introduction

In this paper, we show the proposal and the evaluation of APIs for Inter-Core
Time Aggregation Scheduler (IAS). IAS is a kernel-level thread scheduler to
enhance the performance of multi-threaded programs on a commodity multi-core
processor. IAS combines time-multiplexing and space-multiplexing scheduler to
utilize the caches existing per processing core (Core) and shared between Cores.
The contributions of this paper is as follows:

– We show that we can effectively and easily set the aggregation strength in
IAS based on the quantum time, which is a period of time that the thread
uses CPU.

– We show that we can gain the effect of space-multiplexing without setting
the processor affinity of each thread by grouping Cores and running IAS per
group.

Nowadays, we have several kinds of multi-core processors, such as
Simultaneous Multi-Threading (SMT), Chip Multi-Processing (CMP), and Chip
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Multi-Threading (CMT), where we can execute threads in parallel. One of the
main differences between multi-core processors and conventional shared-memory
multi-processors is that caches, typically L2 caches, are generally shared by Cores
in multi-core processors. It is widely known that combinations of threads run-
ning simultaneously on different Cores affect the utilization of caches and the
performance in a multi-core processor because Cores compete the shared cache
with each other[1,2,3]. To utilize the shared cache in a multi-core processor,
we propose a thread scheduling mechanism which focuses on multi-threaded
programs.

In this paper, a multi-threaded program means a program which executes
multiple kernel-level threads sharing the same memory address space in par-
allel. In Linux, for example, we can implement multi-threaded programs with
POSIX library, Java, Perl, MPI, OpenMP, and Open64 because a thread in
these languages and compilers systems corresponds to a native thread in the
kernel. The rationale of focusing on only multi-threaded programs is that many
modern programs, especially commercial programs, are getting multi-threaded
as multi-core processors widely spread. For example, database servers and Web
servers, such as MySQL and Apache HTTP Server, are multi-threaded to handle
multiple client connections efficiently. The modern benchmark programs such as
DaCapo Benchmarks[4] and Parsec Benchmark[5] also employ multi-threading
to simulate popular and emerging workloads. We expect that we will have more
multi-threaded programs and more chances to apply our scheduling mechanism.

Kernel

User

Helper-thread

Autonomically control
 the parameters

Set the aggregation policy

Explicitly specify
the parameters by user

Fig. 1. The overview of the scheduling mechanism. We divide the functions related
to scheduling into three domains, which enables the dynamic and flexible control of
thread aggregation. In this paper, we focus on User domain.

We show the overview of our scheduling mechanism in Fig. 1. The scheduling
mechanism is made up of three domains, Kernel, User, and Helper-thread. Kernel
domain provides a basic scheduling mechanism and implemented as IAS. User
and Helper-thread are domains which control the parameters for Kernel domain.
User domain provides the interfaces to control the parameters explicitly assum-
ing that users are aware of the characteristics of the workloads. Helper-thread
domain analyzes the characteristics of the currently executed workloads, detect
the degradation of the performance of multi-threaded programs, and controls
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the parameters autonomically. Thus, our scheduling mechanism can be applied
to the characteristics of the workloads without modifying and re-building Ker-
nel. In this paper, we focus on User domain, and present the APIs to control
the behavior of IAS. The detailed design and implementation of Helper-thread
domain is our future work.

IAS is a kernel-level thread scheduler for commodity platforms with multi-core
processors and implemented by modifying the scheduler of Linux kernel. IAS
dynamically aggregates sibling threads, kernel-level threads sharing the same
memory address space, and executes them simultaneously on different Cores
based on the assumption that sibling threads share a certain amount of working
set, the memory area to be accessed by threads. The benefit of IAS is to increase
the possibility that co-scheduled threads share their working set and decrease
the capacity pressure on the cache. IAS may increase the simultaneous access
to the working set, where only transactional access is permitted with locks and
semaphores, and cause frequent stalls. However, according to the researches on
the analysis of the performance of CMP, the L2 cache misses caused by the
insufficiency of capacity are the most influential[3,6]. Therefore, we expect the
enhancement of the performance by IAS.

Previously, we investigated the effect of IAS with several multi-threaded bench-
mark programs and clarified two problems for the effective use of IAS[7,8]. The
first problem is the aggregation strength. The effect of IAS depends on the
characteristic of programs and platforms such as the size of shared working set
between sibling threads of the programs and that of the shared cache size of
the platforms. In case sibling threads share a working set, strong aggregations
of sibling threads are likely to enhance the performance. On the other hand,
IAS can degrade the performance when the workload is I/O intensive and the
aggregation of sibling threads results in poor utilization of CPU. For this rea-
son, we should control if we aggregate sibling threads of a program or not, and
the aggregation strength. The second problem is the groups of Cores to execute
IAS. IAS aggregates sibling threads on the group of Cores specified in the kernel.
Previously, we have evaluated the effect of IAS on a dual-core processor. In the
dual-core processor, we can make only a single group of Cores. Nowadays, the
number of Cores has increased and the structure of the memory hierarchy tends
to become complex like Intel Core i7. In such platforms, aggregations of sibling
threads with a single group of Cores may increase the overhead of communi-
cations between Cores because we assume that sibling threads share a certain
amount of working set. Setting processor affinities and assigning Cores to every
different program like a conventional space-multiplexing may decrease the com-
munication between Cores. However, it is another difficult issue to optimally set
the processor affinity of each thread. We consider that setting multiple groups
of Cores to run IAS can reduce the overhead of communications between Cores
and we should have an interface to control the groups.

In this paper, we propose and evaluate APIs for IAS to settle the problems
mentioned above. We show that we can effectively and easily set the aggregation
strength in IAS based on the quantum time of the previously executed thread.
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We also show that we can gain the effect of space-multiplexing without setting
the processor affinity of each thread by splitting Cores into several groups and
running IAS per group.

The rest of this paper is organized as follows. Section 2 explains the imple-
mentation and preliminary evaluation of IAS. Section 3 explains the proposal
of APIs. Section 4 presents the evaluation of the effectiveness of APIs. Section
5 introduces related works and clarifies our research position. We conclude in
Section 6.

2 Implementation and Evaluation of Inter-Core Time
Aggregation Scheduler (IAS)

In this Section, we explain the implementation and the evaluation of IAS. We
implement IAS by modifying Completely Fair Scheduler (CFS) in Linux 2.6.24
because we assume the use of IAS on commodity processors. IAS ignores the
inversion of the priority of each thread in SCHED NORMAL class, which is
non-real-time thread in Linux, and dynamically aggregates sibling threads. We
explain the scheduling mechanism of CFS for threads of SCHED NORMAL class
in Section 2.1 and IAS in 2.2. In Section 2.3, we show the preliminary evaluation
of IAS on a commodity processor. Based on the preliminary evaluation, we show
the problems of running IAS and necessity of effective APIs.

2.1 Completely Fair Scheduler (CFS)

CFS is the standard thread scheduler employed in Linux since its version 2.6.23.
CFS is designed to equally distribute CPU time to threads with the same static
priority. CFS counts the quantum time of each thread in nanoseconds and cal-
culates the priority as vruntime based on the quantum time and nice value.
When a thread is dispatched by the scheduler, the additional vruntime value
is calculated from the quantum time and added to the current vruntime of the
thread. CFS sets higher priority for threads with less vruntime to accomplish
the fair usage of CPU between threads which start at the same time with the
same nice value. The runqueues and independent schedulers exist per Core. The
load balancer in CFS equalizes the sum of weight, which is a value correspond-
ing to nice value and defined in the kernel, between runqueues. CFS does not
recognize the memory address space of each thread both in scheduling and load
balancing.

2.2 Overview of Inter-Core Time Aggregation Scheduler (IAS)

IAS implements two scheduling policies at the same time. The first scheduling
policy is the time aggregation, which executes sibling threads in a row on a
single Core. The second scheduling policy is the inter-core aggregation, which
simultaneously executes sibling threads on different Cores. In this section, we
firstly explain Time Aggregation Scheduler (TAS), which is the implementation
of the time aggregation. Then, we explain the extension of TAS to adopt the
inter-core aggregation.
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14108 20

current thread 17

CB
Runqueue of CFS

A mm mm

Fig. 2. Example case of TAS. A circle represents a thread and the pattern inside the
circle expresses its memory address space. TAS looks for the sibling thread of the
current thread from the list of the sibling threads. If there exists a sibling thread
(thread C in this case), TAS considers the thread as the candidate for the next thread.

Implementation of Time Aggregation Scheduler (TAS). The basic idea
of the implementation of TAS is to dynamically give a priority bonus to the
sibling thread of the currently executed thread. As we mentioned in Section
2.1, the priority of a thread is higher when vruntime of the thread is smaller.
Therefore, the priority bonus for TAS works to reduce vruntime of the sibling
thread. To implement this idea in CFS, we add a flag to task struct, the struc-
ture to maintain the states of a thread in Linux, to recognize if the thread
has the sibling threads or not. When a thread creates its sibling thread, TAS
sets the flag in task struct and inserts the thread into the list of its sibling
threads. The list of the sibling threads exists per Core and sorted in the as-
cending order of vruntime. We show an example case of the time aggregation in
Fig. 2.

Fig. 2 shows the runqueue of CFS1 and the additional links of sibling threads
for the time aggregation. The circles in Fig. 2 represent threads and the rectangle
containing threads represents a runqueue. The number in a thread shows vrun-
time of the thread. Each thread in Fig. 2 owns vruntime of around 10 to 20 for
ease of explanation, however, it is common for threads in Linux to own vruntime
in the millions and the billions calculated from their quantum time counted in
nano seconds. Threads are queued in the ascending order of vruntime and shown
from the left in the runqueue in Fig. 2. The patterns inside the threads repre-
sent the memory address spaces. Our scheduler links the sibling threads in the
ascending order of their vruntime. The links between sibling threads are dashed
lines in Fig. 2. We add a member, mm sibling, to the structure of the mem-
ory address space, mm struct, in Linux. The links of the sibling threads begin
with mm sibling (represented as mm in Fig. 2). The currently executed thread
A has been dequeued from the runqueue. After executing thread A, CFS selects
thread B as the next thread. TAS checks if the flag for the sibling threads is set
in thread A. TAS recognizes that the flag is set and looks for the sibling thread
from the list of the sibling thread starting from the mm sibling of thread A.
TAS finds thread C from the list and considers thread C as another candidate.

1 The runqueue of CFS has a structure of Red-black tree. We express the runqueue
as a list for ease of explanation.
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We set the priority bonus for aggregating sibling threads in advance and our
scheduler evaluates the expression below.

B.vruntime > C.vruntime− priority bonus (1)

In this paper, we express vruntime of a thread as thread ID.vruntime like
B.vruntime. If expression (1) is true, then TAS will select thread C. If we set
the priority bonus equal to or larger than 7 in Fig. 2, TAS will select thread
C as the next thread. Otherwise, TAS selects thread B. Thus, TAS is able to
aggregate sibling threads while considering the priority of each thread. Also, the
scheduling algorithm of TAS is O(1 ) because the link of sibling threads is sorted
in ascending order of vruntime.

Runqueue on 
Core 0 (master)

Runqueue on
Core 1 (slave)

current thread

current thread

ia_mm

A

B C D

E

F G H

Fig. 3. Example case of IAS. When sibling threads (circles with the same pattern)
are aggregated in Core 0 by TAS, the memory address space of the sibling thread is
registered in ia mm. The scheduler on Core 1 recognizes for threads sharing the same
memory address space by looking at ia mm and considers the thread as the candidate
for the next thread.

Extension of TAS to add the inter-core aggregation. We extend TAS
to adopt the inter-core aggregation to implement IAS. First of all, we run inde-
pendent TAS per Core and assign each Core a role of master or slave Core.
IAS lets every Core cooperatively aggregate sibling threads by making slave
Cores follow the aggregation on master Core. When the scheduler on master
Core finds a chance of aggregating sibling threads, it sets a pointer, ia mm, to
the memory address space of the currently executed thread. Otherwise, ia mm is
NULL. Only master Core can manipulate ia mm while slave Cores only refer
to ia mm. When ia mm is set to an actual memory address space, the schedulers
on slave Cores look for the sibling threads sharing the memory address space,
which ia mm points to, in their own runqueue. If there exists sibling threads,
the schedulers consider the threads as the candidates for the next thread to be
scheduled with the priority bonus.

We show an example case of IAS on a platform of a dual-core processor in
Fig. 3. In Fig. 3, the circles represent threads and squares represent runqueues
on each Core. The pattern inside the thread represents the memory address
space and three threads are waiting in the runqueue on each Core. While we
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omit vruntime values in Fig. 3, threads are enqueued into each runqueue in the
ascending order of their vruntime from the left. Thread A is running on master
Core and thread E is running on slave Core. We also omit the links between
sibling threads in Fig.3. Thread B on master Core and thread F on slave Core
are to be scheduled next to thread A and thread E in case of CFS. After executing
thread A on master Core, thread C is also the candidate to be scheduled next
in TAS because thread C is the sibling thread of thread A. If thread C satisfies
expression (1), the scheduler on master Core sets the memory address space of
thread C to ia mm (solid arrow in Fig. 3). On slave Core, the scheduler checks
ia mm in scheduling (dashed arrow in Fig. 3). After executing thread E, thread
F, G, and H are the candidates because thread G is a sibling thread of thread
E and thread H is a sibling thread sharing the memory address space set in
ia mm. To execute sibling threads simultaneously on different Cores, IAS raises
the priority of the thread sharing the memory address space, which ia mm points
to, with the priority bonus. Thread H has the priority bonus against thread F
and thread G. If thread H satisfies both expression (2) and (3), thread H will be
scheduled after thread E.

F.vruntime > H.vruntime− priority bonus (2)

G.vruntime > H.vruntime− priority bonus (3)

Following the steps above, IAS can execute sibling threads nearly simultaneously
on different Cores while considering the priority of each thread. When thread H
does not satisfy expression (2) and (3), IAS behaves as TAS. If expression (4)
is satisfied, thread G will be the next thread. If expression (4) is not satisfied,
thread F will be scheduled.

F.vruntime > G.vruntime− priority bonus (4)

IAS uses the link of sibling threads, which we use for the time aggregation, to
search for the sibling threads. The scheduling cost of IAS is also O(1 ) because
the sibling threads are sorted in ascending order in the link.

2.3 Preliminary Evaluation of Inter-Core Time Aggregation
Scheduler (IAS)

In this section, we show the preliminary evaluation of IAS in terms of its over-
head against CFS. We also show the effectiveness of IAS on RUBiS benchmark[9],
which is a benchmark program to measure the performance of a Web application
server running a multi-threaded HTTP server and a database server simultane-
ously. Firstly, we show that the overhead of IAS is small compared to CFS.
Then, we show that the effect of IAS depends largely on the value of the priority
bonuses[8], indicating that an easy and effective way of controlling the priority
bonus is necessary.
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Overhead of IAS. We evaluate the additional overhead of IAS compared to
CFS. The following tasks are causes of the overhead of IAS.

– Setting the flag of sibling threads in the added member of task struct
– Setting link between sibling threads in the runqueues
– Considering sibling threads in scheduling

We implement a benchmark, which measures the execution time of creating and
joining multiple sibling threads, to evaluate the total additional overhead of IAS.
The created sibling threads just join with the parent thread. Also, we set the
priority bonus for IAS as 0 to schedule threads according to the priority of CFS.
We compare the execution time in CFS and IAS and measure the sum of the
listed overhead.

According to our measurements, we see the increase of the execution time in
IAS by 1% in creating and joining 500K sibling threads. In case the aggregation
of sibling threads degrades the performance, we only have to set the priority
bonus as 0.

Table 1. Result of RUBiS benchmark

Kernel CFS IAS
1Mvruntime 10Mvruntime 100Mvruntime

Completed Sessions 230 259 (1.12) 301 (1.30) 265 (1.15)

Response Time (ms) 62,556 48,760 (0.77) 43,090 (0.68) 53,230 (0.85)

Effect of IAS on RUBiS benchmark. We show the effect of IAS in running
RUBiS benchmark in Table 1. RUBiS is a benchmark application which simulates
the workload of ebay.com and evaluates the performance of a Web application
consisting of a HTTP and a database server. RUBiS sends simultaneous requests
from multiple clients to the Web application server and evaluates the throughput
(Completed Sessions) and the average response time (Response Time) of each
request. Both HTTP (Apache HTTP server 2.2.8) and database servers (MySQL
5.0.45) are multithreaded, therefore, IAS aggregates threads of both servers.
We use RUBiS benchmark because each thread of these transaction-oriented
applications is likely to share the working set rather than scientific application
benchmarks[10,11]. We change the value of the priority bonus and compare the
result with CFS. The numbers in the parentheses indicates the ratio of the result
in IAS against CFS.

In Table 1, we see the increase of the throughput and the reduction of the
response time in IAS compared to CFS, indicating IAS is effective in enhancing
the performance of a Web application server. We also see that the effect varies
as we change the priority bonus and we have to set the priority bonus around 10
millions to maximize the effect. When we set the priority bonus as high as 100
millions vruntime, IAS aggregates too many sibling threads of one server and
let the sibling threads of another server wait too long. The result shows that we
have to tune the priority bonus to accomplish the better performance in running
multiple multi-threaded programs.



Proposal and Evaluation of APIs for Utilizing IAS 199

2.4 Problems of IAS

Based on the preliminary evaluation in Section 2.3, we consider two problems in
running IAS as shown below.

– Control of the priority bonus
– Allocation of master/slave role

Firstly, the effectiveness of IAS depends on the characteristic of each program. In
case IAS degrades the total performance by the aggregation of some programs,
users should have an interface to set the priority bonus as 0 or tell the kernel not
to aggregate the sibling threads of those programs. Even when IAS enhances
the total performance by aggregating the sibling threads of some programs,
the priority bonus should be given in proper strength to maintain some degree
of fairness of CPU usage between threads. Assuming users are aware of the
characteristics of each program in advance, it is still difficult to properly give the
priority bonus in vruntime. As we mention in Section 2.1, vruntime is calculated
in the order of nano seconds and too fine-grained for users to control the behavior
of the scheduler. We consider that users should have an interface to control the
aggregation strength other than specifying the priority bonus in vruntime.

Secondly, users should have an interface to allocate multiple groups of master/
slave flexibly. Nowadays, we have multi-Core processors with complex memory
hierarchy. For example, Intel Core 2 Quad has four Cores. Each Core has own L1
data/instruction cache and a single L2 cache is shared between two Cores, while
no cache is shared between all Cores. In this case, aggregating sibling threads
with a single ia mm may increase the overhead of communication between Cores
not sharing the same L2 cache. We consider that users should have an interface
to allocate multiple groups of master/slave Cores.

3 APIs for Inter-Core Time Aggregation Scheduler (IAS)

In this section, we propose the APIs for IAS, set ias agg and set ias alloc,
which deal with the problems described in Section 2.4. In Section 3.1, we ex-
plain set ias agg, which controls the strength of aggregation of sibling threads.
In Section 3.2, we explain set ias alloc, which controls the assignment of
master/slave.

3.1 set ias agg

There are five arguments passed to set ias agg as shown below.

– pid
– agg
– bonus type
– bonus value
– limit
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We specify the process ID to control the aggregation of its sibling threads by
pid. At the implementation level, set ias agg sets the values of agg, bonus type,
bonus value, and limit to the members added in the data structure of memory
address space of thread pid. The values stored in the members in the memory
address spaces are the parameters for IAS to make scheduling decisions. We
explain each member below.

agg must be 0 or 1. If agg is 0, IAS does not aggregate sibling threads of pid.
If agg is 1, IAS aggregates sibling threads of pid. The kernel initializes the values
of agg as 0 and IAS does not aggregate any threads by default. Users should
set agg as 1 only when they judge that the aggregation of the sibling threads is
effective.

IAS provides two ways to specify the priority bonus with bonus type and
bonus value. bonus type takes 0 or 1. If bonus type is 0, IAS gives the priority
bonus in vruntime specified in bonus value. In this case, bonus value ranges
from 0 to over 18,446,744,073G vruntime2. If bonus type is 1, IAS gives the pri-
ority bonus by multiplying the quantum time of the previously executed thread
by bonus value. There are four reasons to utilize the quantum time of previously
executed thread. Firstly, the change of the additional vruntime influences the
order of threads in the runqueues. We assume that parallel tasks are equally
assigned to sibling threads during their execution. In this case, the difference of
vruntime between sibling threads are less than the quantum time of previously
executed thread. For this reason, we consider that setting the quantum time as
the criterion of the priority bonus is reasonable. Secondly, the quantum time
changes dynamically according to the workload, therefore, it is hard for users to
statically guess the effective priority bonus. Thirdly, it is easy to evaluate the
quantum time because CFS tracks it for the calculation of vruntime. Fourthly,
it is easier to make a guideline of using IAS between different programs. As we
mention, the range of bonus value is too wide to properly decide the effective
priority bonus to enhance the throughput while keeping a certain fairness be-
tween different programs. For these reasons, we consider that using the quantum
time provides a reasonable way of the abstraction.

Users can also restrict the number of sibling threads successively scheduled
per aggregation on a single Core by specifying the value of limit. IAS counts the
number of sibling threads successively selected on a single Core. When the count
exceeds the limit, IAS does not give the priority bonus to sibling threads and
resets the count.

3.2 set ias alloc

set ias alloc assigns master/slave roles to each Core. The arguments passed
to set ias alloc are numbers which specify the role of each Core. We as-
sume the use of set ias alloc from command lines because the allocation of
master/slave influences the execution of all threads in the system and we need
to observe the impact while interactively running programs.
2 vruntime has the type of unsigned long long and we assume to use 32 bit kernel

here.
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Table 2. The correspondence between the number and its role in set ias alloc

Number in ias job alloc[] Correspondent Role

0 master 0

1 slave 0

2 master 1

3 slave 1

4 master 2

5 slave 2

6 master 3

7 slave 3

IAS controls the role of each Core by using an array ias job alloc[], which
we defined inside the kernel. The index of ias job alloc[] corresponds to
the ID of Core starting with 0. For example, the role of Core 2 is stored in
ias job alloc[2]. So far, IAS is able to deal with octa-core processors and the
role of each Core is specified with numbers from 0 to 7. We show the correspon-
dence between the numbers and its role in Table 2. In Table 2, Cores on slave 0
follow the aggregation of Core on master 0. Following command sets two inter-
core aggregation groups on a quad-core processor, one inter-core aggregation
group consists of Core 0 and 1 and another group Core 2 and 3.

$ set_ias_alloc 0 1 2 3
\widehat{}

4 Evaluation of APIs with memory Program in SysBench

In this section, we evaluate the effectiveness of APIs with memory program in
SysBench[14]. In Section 4.1, we explain memory program, our experimental plat-
form, and the method of the evaluation. In Section 4.2, we explain the result
and show that our API is effective in utilizing IAS.

4.1 memory Program and Experimental Platform

SysBench benchmark suites is a collection of benchmark programs to evaluate
the performance of workloads related to Online Transaction Processing. memory
program in SysBench focuses on the performance of sequential reads from or
writes to a memory block. memory program creates sibling threads and lets them
repeat accessing a specified size of shared or unique memory block until the total
accessed size exceeds a user-specified size. There are several metrics in memory
program such as the average time of each data access and the total elapsed time.
We can control memory program through the parameters such as the number of
threads, the size of the memory block, and the total access size.

We show the parameters used for the evaluation in Table 3. In the following
explanation, we show the used parameters in the parentheses. We execute 10
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Table 3. Parameters for evaluating memory program

Parameter Specified value

-num-threads 100

-memory-oper write

-memory-scope global

-memory-block-size set ias agg 4(MB)
set ias alloc 1, 2, 4, 6, 8, 10

12, 14, 16(MB)

-memory-total-size set ias agg 10 (GB)
set ias alloc 5, 10, 15

20, 25(GB)

Table 4. Specification of our experimental platform

Processor Intel Core 2 Quad

L2 Cache Size / Latency 3MB×2 / 5.6 ns

Memory Size / Latency 1.8GB / 74.4 ns

OS / kernel CentOS 5.3 / Linux 2.6.24

memory programs simultaneously to mingle threads of different memory address
spaces. We let each program create 100 sibling threads (–num-threads=100) and
let sibling threads access the shared memory block (-memory-scope=global) to
focus on the effect of utilizing the locality between sibling threads. Each thread
writes to the memory block sequentially (–memory-oper=write). We can con-
trol the size of the memory block (–memory-block-size) and the total access
size (–memory-total-size). We use different values for –memory-block-size and
–memory-total-size in the evaluation of each API and explain them in the eval-
uation method below.

We also show our experimental platform in Table 4. Intel Core 2 Quad is
quad-core processor and has two L2 caches, each of which is shared by two
Cores.

We measure the total elapsed time and the number of resource stalls (RE-
SOURCE STALLS.ANY[15]), and compare the results in CFS and IAS with
APIs. We show the method of the evaluation in each API below.

Evaluation Method of set ias agg. In the evaluation of set ias agg, we fo-
cus on the function of setting the value of the priority bonus. We use a single value
for the –memory-block-size and the –memory-total-size as shown in Table 3 and
set the same parameter to ten memory programs. We compare the results of the
different methods of setting the priority bonus. We directly specify it in vruntime
or calculate by multiplying the quantum time of the previously executed thread.
In case of setting bonus type as 0, we try wide range of bonus value from 1K to
10M vruntime because it is difficult to previously guess the effective value. In case
of setting bonus type as 1, we multiply the quantum time by 1 to 5.
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Evaluation Method of set ias alloc. In the evaluation of set ias alloc,
we use five different –memory-total-size values for ten memory programs as shown
in Table 3, assuming a situation when a user executes several different pro-
grams. We also change –memory-block-size to investigate the relationship be-
tween the size of the shared working set and the effect of IAS in setting multiple
master/slave groups.

We prepare three cases, where we set different master/slave groups and
processor affinity of the threads, and compare their results. The first case is to
use a single master/slave group, where Core 0 is master 0 and other three
Cores are slave 0, and not to set the processor affinity to any threads (Case 1).
We set two master/slave groups, where Core 0 is master 0 and Core 1 is
slave 0 while Core 2 is master 1 and Core 3 is slave 1, in the second and the
third case (Case 2 and Case 3). The difference between Case 2 and Case 3 is
the setting of the processor affinity of threads. In Case 2, we do not specify the
processor affinity of threads and threads can be executed in every Core. In Case
3, we divide memory programs into two groups as programs of the same total
size are split into different master/slave group. For example, sibling threads of
a memory program with –memory-total-size of 10GB are executed on Core 0 and
Core 1 while sibling threads of another memory program with –memory-total-size
of 10GB are executed on Core 2 and Core 3. By specifying the processor affinity
as described above, we can divide the workload equally into two Core groups
with different L2 caches and restrict the overhead of communication between
Cores. We expect the optimal performance in Case 3 and evaluate how close the
result in Case 1 and 2 will be. We set the priority bonus as 50M vruntime based
on our previous experiment[7].

4.2 Results

In this section, we firstly show the results of the evaluation of set ias agg.
Succeedingly, we show the results of the evaluation of set ias alloc.

Results of the evaluation of set ias agg. We show the result of the evalu-
ation of set ias agg in Fig. 4. In Fig. 4, we show the ratio of the execution time
in IAS against CFS (lines), and the absolute value of the resource stalls (bars)
in each parameter. In Fig. 4, we express each parameter as d [1,2,3,4,5] when
we set bonus type as 1, and s [1K,10K,100K,1M,10M]when we set bonus type
as 0. We see that the reduction of the execution time and the resource stalls be-
comes larger as we increase the value of the parameter when we set bonus type
as 1. On the other hand, we see little effect of IAS when bonus value is from 1K
to 100K when we set bonus type as 0. When we set bonus value higher than 1M
vruntime, we see the effect becomes larger. We consider that bonus value be-
low 1M vruntime is too small in this experiment because the average additional
vruntime, which we measure simultaneously during the experiment, is 33M.

We conclude that we can set the priority bonus easily and effectively by setting
the priority bonus based on the quantum time rather than specifying in vruntime.
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Fig. 4. The effect on the execution time (lines) and the resource stalls (bars) in using
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Results of the evaluation of set ias alloc. We show the result of the
evaluation of set ias alloc in Fig. 5. In Fig. 5, we show the ratio of the ex-
ecution time in IAS against CFS in Case 1, 2, and 3. We can see the effect in
Case 2 and 3 are larger than that in Case 1. We consider that the result shows
the effect of space-multiplexing, which reduces the overhead of communication
between Cores in Case 2 and 3. We also consider that the effect will be larger in
many-core processors with deeper memory hierarchy.

When we compare Case 2 and Case 3, Case 3 seems advantageous only when
the memory block is less than 6MB. In other parameters, the effects in Case 2
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and 3 are almost the same while Case 3 is the optimal setting as we described in
Section 4.1. By considering users do not have to set the processor affinity, Case
2 becomes more advantageous as working set gets larger. We conclude that we
can gain the effect of reducing the overhead of communication between Cores by
setting multiple master/slave Cores with set ias alloc.

5 Related Research

As caches are generally shared between Cores in multi-core processors, many
thread-level schedulers have been proposed to utilize the caches. Many researches
proposed to split the thread execution into the sampling phase and the scheduling
phase[16,17,18]. In the sampling phase, the kernel samples the information of each
thread execution. In the scheduling phase, the kernel schedules the combination
of threads to execute them simultaneously between different Cores based on the
information obtained in the sampling phase. For example, Fedorova[18] calculates
the size of the working set of each thread by tracing its behavior in the sampling
phase. They schedule the combinations of threads to let the sum of the working set
fit within the capacity of the L2 cache. The benefit of this sampling and schedul-
ing approach is that we can apply this method to any case of thread execution in
theory. The problem of this approach is the overhead of sampling information, es-
pecially when running many threads, as IAS supposes[12,19]. Moreover, the com-
plexity of optimal co-scheduling in multi-core processor, where a cache is shared
between all Cores and the number of Cores is more than 2, is NP-complete[2]. We
focus on a more realistic approach. Even though IAS does not intend to schedule
threads optimally, IAS only focuses on the memory address space of each thread
and its overhead is little as we see in Section 2.3.

The basic idea of our approach is similar to that of Chen[3] in that their
scheduling algorithm executes threads sharing the working set simultaneously
on different Cores to utilize the shared cache. Chen also proposes a compiler
to control the granularity of threads to fit with the caches of the processor.
Chen’s approach is applicable to fine-grained multi-threaded programs, which
contains DAGs inside, and shows that their scheduling method can enhance the
throughput by carefully tuning the granularity of threads by their compiler. The
difference between IAS and Chen’s approach is that IAS is intended to work
for multi-programmed execution while Chen only considers single-programmed
execution. IAS does not detect the size of the working set shared between sib-
ling threads while Chen’s approach does not consider the influence from other
programs. We consider that we can enhance the performance of broader range
of multi-threaded programs by mixing IAS and Chen’s approach.

Ziemba also focuses on the locality of references between sibling threads and
investigates the effect of space-multiplexing with a Web application server[20].
Ziemba sets different processor affinities for threads of HTTP and application
servers in executing SPECweb benchmark[21]. Ziemba presents their aggrega-
tion is effective and enhances the performance of the Web application server,
indicating the locality of references between sibling threads. However, Ziemba
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mentions that it is difficult to statically analyze applications and optimally set
processor affinities. In this paper, we present that we can gain the effect of
space-multiplexing without setting processor affinities in each thread.

6 Conclusion

This paper proposes and evaluates APIs for IAS, which is a kernel-level thread
scheduler to enhance the performance of multi-threaded programs. We have pro-
posed IAS, which dynamically aggregates sibling threads in O(1 ) to utilize the
cache shared between Cores. In this paper, we present two APIs, set ias agg,
which controls the aggregation of sibling threads, and set ias alloc, which
controls master/slave groups. The effectiveness of our API is described in two
aspects. Firstly, we show that we can effectively and easily set the aggregation
strength in IAS based on the quantum time of the previously executed thread by
using API set ias agg. Secondly, we show that we can gain the effect of space-
multiplexing by grouping Cores and running IAS per group without setting the
processor affinity of each thread by using API set ias alloc.

Our future work includes the investigation of the effect of IAS with more
general benchmark applications. We consider that IAS is especially effective in
benchmark applications, which runs multiple multi-threaded programs simulta-
neously such as SPECweb[21]. We also investigate the effectiveness of Helper-
thread mentioned in Section 1. Even though we can set the priority bonus easily
with set ias agg, we still have to set the parameter manually. We will develop
Helper-thread mechanism to detect the degradation of multi-threaded programs
and automatically tune the priority bonuses to enhance the effect of IAS. In
addition, we will develop scheduling strategies to control the behavior of Helper-
thread such as the frequency of sampling thread information and the granularity
of parameter changes.
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Abstract. Job schedulers improve the system utilization by requiring
users to estimate how long their jobs will run and by using this infor-
mation to better pack (or “backfill”) the jobs. But, surprisingly, many
studies find that deliberately making estimates less accurate boosts (or
does not affect) the performance, which helps explain why production
systems still exclusively rely on notoriously inaccurate estimates.

We prove these studies wrong by showing that their methodology is
erroneous. The studies model an estimate e as being correlated with r ·F
(where r is the runtime of the associated job, F is some ”badness” factor,
and larger F values imply increased inaccuracy). We show this model is
invalid, because: (1) it conveys too much information to the scheduler;
(2) it induces favoritism of short jobs; and (3) it is inherently different
than real user inaccuracy, which associates 90% of the jobs with merely
20 estimate values, hindering the scheduler’s ability to backfill.

We conclude that researchers must stop using multiples of runtimes as
estimates, or else their results would likely be invalid. We develop (and
propose to use) a realistic model that preserves the estimates’ modality
and allows to soundly simulate increased inaccuracy by, e.g., associat-
ing more jobs with the maximal runtime allowed (an always-popular
estimate, which prevents backfilling).

Keywords: Supercomputing, scheduling, backfilling, user runtime
estimates.

1 Context and Background

In a typical supercomputing environment, the supercomputer is a machine that’s
comprised of up to tens of thousands of nodes, servicing work that is generated
by hundreds of users, who collectively submit tens- to hundreds of thousands of
jobs. The runtime of jobs ranges from several seconds to tens of hours or more.
Jobs can be serial, but more often than not they are parallel. In the context of
this paper, “parallel” doesn’t mean embarrassingly parallel; rather, each job is
comprised of a collection of threads that cooperate and communicate to solve
one problem. It is therefore crucial that a job’s threads run simultaneously.

Jobs have several attributes, notably, the ID of their submitters (uid), their
arrival time, runtime, and size (the number of nodes or processors they require).

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2010, LNCS 6253, pp. 208–221, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Table 1. A typical log file that records the activity of a supercomputer; each line is
associated with one submitted job; each column is associated with one job attribute

jobID arrival time size runtime estimate uid . . .

1 2010, Apr 24, 12:00:01 2 00:15:37 00:30:00 1013 . . .
2 2010, Apr 24, 12:05:37 128 01:50:01 18:00:00 1013 . . .
3 2010, Apr 24, 13:25:20 49 18:00:00 18:00:00 1237 . . .

. . . . . . . . . . . . . . . . . . . . .

Table 2. Activity logs we use; see [16] for more details regarding the machines and
their workload. We refer to logs in their abbreviated name (leftmost column)

abbrev. ver. site cpus jobs duration util.

CTC 1.1 Cornell Theory Ctr 512 77,222 6/96–5/97 56%
KTH 1.0 Swedish Royal Instit. of Tech. 100 28,490 9/96–8/97 69%
SDSC 2.1 San-Diego Supercomput. Ctr 128 59,725 4/98–4/00 84%
BLUE 2.1 San-Diego Supercomput. Ctr 1,152 243,314 4/00–6/03 76%

We normally think of jobs as rectangles, whereby the vertical dimension is the
size, and the horizontal dimension is the runtime. The size if often referred to
as the “width” of the jobs (hence jobs can be narrow or wide), and the runtime
is often referred to as the “length” of the job (hence jobs can be short or long).

The work submitted by users throughout the lifetime of the machine is recorded
in activity logs similar to the one depicted in Table 1.

Many activity logs were collected over the years in the parallel workload
archive [16]. Table 2 lists the ones that are used in this study.

2 Backfilling

The baseline scheduling algorithm of most supercomputers is typically rather sim-
ple. When a user submits a job, (s)he specifies how many nodes the job needs. The
job is then placed in a First-Come First-Served (FCFS) wait queue until enough
nodes become free (due to previously submitted jobs that terminate), at which
point the job is started, and it runs to completion in batch mode, on a dedicated
partition, without ever being preempted. This is illustrated in Figure 1(a).

The problem with FCFS is fragmentation. So all mainstream schedulers em-
ploy the optimization that allows job 4 to jump over job 3, provided job 4 doesn’t
delay job 3, as depicted in Figure 1(b). The act of small jobs jumping ahead be-
fore their turn to fill holes in the schedule is called backfilling [13].

2.1 Pros of Backfilling: Simple, Effective, and Popular

There are several properties that make backfilling an attractive algorithm: (1) it’s
simple for users to understand and for developers to implement; (2) it’s a batch
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Fig. 1. (a) A space/time Gantt chart displaying a FCFS schedule. The X and Y axes
denote time and the nodes comprising the machine, respectively. Each rectangle repre-
sents a job, such that the rectangle’s width and height are the job’s runtime and size,
respectively. The job numbers indicate arrival order (not arrival time). (b) Backfilling
reduces fragmentation and improves the utilization by allowing narrow/short jobs to
start ahead of their time. Note that it would have been impossible to backfill job 4 had
its length been more than 2 time units, as job 3 would have been delayed.

scheduler, which is a virtue in the context of high-performance computing, be-
cause applications are often tailored to make use of all available memory, in which
case not sharing the memory with others is important; (3) empirical studies show
that backfilling improves the utilization of the machines by 10–30 percentage
points [12]; and, (4) as it turns out, despite its simplicity, backfilling produces
performance results that are a close second to more sophisticated scheduling
schemes that, e.g., employ preemption and migration [2,26].

The consequence of the above attractive properties of backfilling is that it
became the de-facto standard for supercomputer scheduling. Backfilling is nowa-
days supported by all the relevant mainstream production products [7], including
Load Leveler (by IBM), Maui and Moab (by Cluster Resources), LSF (by plat-
form), OpenPBS and PBS-Pro (by Alair), and GridEngine (by Sun). A survey
of the top 50 machines within the top-500-list [4] indicated that 60% of them
employ backfilling as their scheduling algorithm [6]. Probably due to its pop-
ularity and success, there are many research efforts and papers that deal with
backfilling, and many variants were suggested [9].

2.2 Cons of Backfilling: Mandating User Runtime Estimates

There is a price to pay for all the aforesaid attractive properties: in order to
operate correctly, a backfilling scheduler must know what’s going to happen in
the future, namely, it must know in advance how long each job will run.

For example, in Figure 1(b), assume we’ve just reached T2 (time unit 2), J1

(job 1) has just ended, and J3 (which is the next job in the queue) cannot be
started, because there are currently not enough free processors. To enforce the
backfilling rule (small jobs can backfill only if, by so doing, they don’t delay the
first queued job), the scheduler needs to know the runtime of J2 so as to be able
to compute the earliest start time of J3 (which is T4). Likewise, the scheduler
needs to know that J4 is short enough so as not delay J3 if it is backfilled.
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To make such determinations possible, users are mandated to provide run-
time estimates for each job they submit. And jobs that attempt to exceed their
estimates are killed by the system so as not to violate subsequent commitments.

3 Studying the Impact of User Inaccuracy: Wrong Way

The impact of user runtime estimates on the performance of backfilling systems
has intrigued many researchers. The first published work we are aware of that
investigated the issue was a 1995 technical report from Carnegie Mellon Univer-
sity by Suzuoka et al. [19]; this work came out in the same year as the paper that
introduced backfilling [13]. As of this writing, the most recent published work
on the subject is an IPDPS 2010 paper by Tang et al. [20], which was awarded
best paper (attesting the continued interest in this topic).

These two studies frame 15 years of research (surveyed below) that attempted
to understand how inaccurate user estimates affect performance. We argue that
the conclusions of most of these research efforts regarding inaccuracy are
wrong.

The canonical (and possibly the only) way to study the impact of (in)accuracy
of estimates on performance is to: (1) take a workload as depicted in Table 1;
(2) manipulate the values within its estimates’ column; (3) feed the modified
log into a simulator that simulates the run with those artificial estimates; and
(4) observe the change in the resulting performance metrics that the simulator
outputs. By repeatedly invoking this procedure (initially using completely accu-
rate estimates and then systematically making them less accurate) it is possible
to tabulate the performance as a function of the “magnitude” of inaccuracy.

The question is, of course, how to artificially generate those increasingly in-
accurate estimates, and how to define and quantify the said magnitude of inac-
curacy. We contend that previous studies got this point wrong and that this is
why their results are invalid.

The reminder of this Section is dedicated to describing how inaccuracy is
typically modeled (Section 3.1); to highlighting the strange, contradictory re-
sults such models have yielded and the conflicting attempts to explain them
(Section3.2); and to resolving the aforementioned contradiction, while providing
the explanation to the counterintuitive results (Section 3.3).

3.1 Modeling Increased Inaccuracy with the F -Model

In 1998, to study the sensitivity of backfilling to poor estimates, Feitelson and
Mu’alem proposed the “F -model” [8] as follows:

– let r be the runtime of job J ,
– let e denote the (artificially-generated) estimate of J ,
– let F ≥ 1 be a “badness factor”,
– then e is chosen at random from a uniform distribution e ∈ [r, F · r].
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F was termed the “badness factor”, because the artificial estimates start off
completely accurate when F = 0, and then they become increasingly inaccurate
as F grows. Note that, according to the backfilling rules (Section 2.2), F cannot
be smaller than 1, since a job must be killed if it tries to exceed its estimate
(so as not to violate subsequent commitments), which means r ≤ e must always
hold.

We note that it is often more convenient to normalize the badness factor so
that it would start from zero. We thus set f to be f = F − 1 and use the upper-
or lowercase notation as is convenient; for the lowercase notation, the following
holds:

– f ≥ 0 (when f = 0, the estimates are completely accurate), and
– e is chosen at random from a uniform distribution e ∈ [r, (f + 1) · r].

The F -model has been used when simulating workloads that lacked estimates
data [10,15,25], but, much more importantly, it and its variants have been exten-
sively used to study the impact of inaccurate estimates on backfilling algorithms
[1,3,5,8,11,14,17,18,19,20,26,27]; one simpler variant that has been likewise used
is the “deterministic F -model” [1,5,15,19,27], in which there is no randomness
and each estimate is set to be a direct multiple of the runtime and the badness
factor: e = r · F .

3.2 The Inaccuracy Mystery

Many of those that utilized the F -model to study inaccuracy reported a surpris-
ing, counterintuitive result. They found that inaccurate estimates are usually
preferable over accurate ones. This is illustrated in Figure 2 that shows the
overall average wait time and bounded slowdown of jobs obtained when simu-
lating the run of the workloads from Table 2 with completely accurate estimates
(F = 1) and with estimates that are set to be exactly double the runtime (F = 2
in the deterministic model). The studies that observed this surprising phe-
nomenon explained it with what we call the “holes argument” [1,8,14,15,18,27],
as articulated by Chiang et al.:

The Holes Argument: “We note that for large F (or when multiplying
estimates by two), jobs with long runtimes can have very large runtime
overestimation, which leaves larger ‘holes’ for backfilling shorter jobs. As
a result, average slowdown and wait may be lower.” [1]

Other researchers that utilized the F -model observed a different, though equally
counterintuitive, phenomenon. They found that the performance is insensitive
to the (in)accuracy of estimates. This is illustrated in Figure 3.1 Faced with
(a tiny fraction of) such results, researchers concluded that the performance
is uncorrelated to F [5,11,20,25,27]. For example, England et al. suggested a
1 In all plots depicting the behavior of the deterministic and the random model along

the same X axis, we divide F by 2 in the deterministic case, so as to make both
models have the same mean.
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Fig. 2. Lower values mean better performance. Thus, counterintuitively, using com-
pletely accurate estimates (“perfect”) typically produces inferior results to when es-
timates are set to be double the runtime (“perfect X 2”). A job’s wait time is the
duration that elapses between its submission time and the time is starts to run. A

job’s bounded slowdown is defined to be max
(
1 , w+r

max(10,r)

)
, where w and r are the

job’s wait- and run-times in seconds, respectively; this is a bounded from of the slow-
down metric (w+r

r
) that eliminates the emphasis on very short jobs (shorter than 10

seconds). Performance results throughout this paper are averages across all job.

“robustness” metric for the evaluation of computer systems, and claimed (in a
case-study attempting to demonstrate the usefulness of their metric) that:

The Robustness Claim: “Our results support those of a previous work
and also indicate that backfilling is robust to inaccurate runtime es-
timates in general. It seems that, with respect to backfilling, what the
scheduler doesn’t know won’t hurt it.” [5]

Likewise, Tang et al. argued (in their IPDPS’10 best paper) that:

The Insensitivity Claim: “Our analysis indicates that FCFS [with
backfilling] is not sensitive to user runtime estimates.” [20]

Those that attempted to explain this surprising finding have done so with the
help of what we call the “balance argument” [11,25,26,27], as articulated by
Zhang et al.:

The Balance Argument: “We can understand why backfilling is not
that sensitive to the estimated execution time by the following reason-
ing. On average, overestimation impacts both the jobs that are running
and the jobs that are waiting. The scheduler computes a later finish time
for the running jobs, creating larger holes in the schedule. The larger
holes can then be used to accommodate waiting jobs that have overesti-
mated execution times. The probability of finding a backfilling candidate
effectively does not change with the overestimation.” [25]

For example, doubling the lengths of all the jobs in Figure 1 only means the X-axis
is scaled by a factor of two, but doesn’t change anything regarding the backfilling
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terintuitively, there is no clear connection between f and the associated performance.

decision: indeed, after doubling, job 4 looks twice as long in the eyes of the sched-
uler, but the same applies to the 2-time-units-hole opened by job 2, so job 4 can
backfill before the doubling if and only if it can do so after the doubling.

While both the holes argument and the balance argument seemingly make
sense, one obvious problem with them is that they are contradictory. If the bal-
ance argument is correct, then there is no benefit in opening those “larger holes”
as suggested by the holes argument, because backfilling candidates would become
proportionally longer and cancel the effect. Conversely, the holes argument im-
plies a performance improvement that is proportional to F , in contrast to the
balance argument rationale. Indeed, the holes argument seems contradictory to
Figure 3, and the balance argument seems contradictory to Figure 2.

3.3 Solving the Mystery: The Heel-and-Toe Backfilling Dynamic

To make sense of the counterintuitive, contradictory findings, we do what inac-
curacy studies should have done in the first place but for some reason didn’t.
Namely, we exploit the random component of the F -model in order to quantify
performance in terms of statistical mean and confidence intervals. As it turns out,
doing so transforms the noisy results (presented in Figure 3) into well-behaved
curves that expose a clear trend as demonstrated in Figure 4.

The fact that a clear trend exists means that all the papers that argued that
performance is insensitive to accuracy were mistaken. Their mistake was caused
by conducting only a few experiments (a tiny fraction of Figure 3), instead of
achieving statistical confidence.

Three of the four simulated logs (SDSC and KTH not shown) produce results
similar to that of BLUE as depicted in the left of Figure 4. The performance
trend for these logs can be characterized as “V shaped”, namely, initially the
curves drop (performance improves) and then the trend is reversed (performance
worsens). The performance of CTC is “L shaped”, asymptotically converging to
some value after the initial drop.

We will now explain why the curves behave as they do, starting with the ini-
tial drop that indicates performance improvement across all four logs for small
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seeds; the “random” curve shows the mean of these runs, and the matching “90% con-
fidence” curves show the 5th percentile to the 95th percentile. (We thus performed
1002 = 10, 000 simulations of scheduling the jobs for each trace.) The deterministic
model is unaffected by different seeds (lacking a random component), and so the as-
sociated results remain noisy, but we can see that the deterministic curve roughly
approximates the best case scenario of the random experiments. Although not shown,
the SDSC and KTH logs produce qualitatively similar results to that of BLUE (for
both bounded slowdown and wait time) [24].

f values. We begin by noting that, in accordance to the holes argument (and in
contrast to the balance argument), backfilling activity intensifies when inaccu-
racy is increased as shown in Figure 5. Namely, the larger f is, the more jobs
enjoy backfilling.

The question is why? What’s wrong with the balance argument? Why aren’t
the bigger holes canceled out by the proportionally bigger backfill candidates?
The answer is the “heel-and-toe” backfilling dynamic,2 which we illustrate in
Figure 6 and characterize next. For simplicity, we assume all estimates are ex-
actly double the runtime (F=2 under the deterministic model). Based on the
information available to the scheduler at T0 (time 0), it appears the earliest time
for J3 (job 3) to start is T12, even though the real earliest start time is actually
T6. Thus, the scheduler makes a “reservation” on J3’s behalf for T12 and can only
backfill jobs that honor this reservation. At T4, J2 terminates. As J1 is still run-
ning, nothing has changed with respect to J3’s reservation, and so the scheduler
scans the wait queue in search of appropriate candidates for backfilling. J4 (the
first backfill candidate under FCFS) fits the gap between T4 and the reservation
(T12) and it is therefore backfilled, effectively pushing back the real earliest time
at which J3 could have started from T6 to T8. (Likewise, when J1 terminates,
2 In the Talmud, the expression “heel-and-toe” describes a slow and careful motion,

whereby a person advances by repeatedly moving the heel of the back foot adjacent
to the toe of the front foot.
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Fig. 6. Illustrating the heel-and-toe backfilling dynamic. Job numbers indicate arrival
order. Job estimates are exactly double their runtime (F=2). The left portion of jobs
(green/dark) indicates their real runtimes. Due to the doubling, the scheduler views jobs
as twice as long (right portion; yellow/bright). The bottom arrows show the progress
of time, whereas the top black arrows show the earliest time at which job 3 would have
been started, had real runtimes been known to the scheduler (at that point in time).
The thief’s width shows the amount of “stolen” time, at the expense of job 3.

then J5 is backfilled, and when J4 terminates, then J6 is backfilled, respectively
pushing J3’s real earliest start time to T9 and then T10.)

To exemplify that the heel-and-toe dynamic does indeed occur, we define “wild
backfilling” to be a backfill decision that result in a delay of the earliest start
time possible of the first queued job (all backfill decision in Figure 6 are wild).
We further define the “stolen time” to be the duration of the time interval by
which the earliest start time got delayed (in Figure 6 this is 4 time units, from
T6 to T10). Figure 7 confirms that the heel-and-toe dynamic does in fact occur,
by showing the wild backfilling rate and average stolen time within the SDSC
simulations (again, the other logs are similar).

The heel-and-tow dynamic induces a state whereby shorter jobs (those that fit
the steadily shrinking holes) are favored. This explains the performance improve-
ment. In particular, Figure 7 shows that the dynamic intensifies as F grows, ex-
plaining the observed performance improvement trend caused by steadily grow-
ing inaccuracy (initial part of the V and L curves in Figure 4).
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Importantly, notice that the heel-and-tow dynamic reconciles between the
contradictory holes argument and balance argument. The performance improve-
ment attributed to positive F s is not because of wider holes in the schedule that
allow for more backfilling (in accordance to the holes argument), because back-
fill candidates are indeed widened proportionally (in accordance to the balance
argument). Rather, it is the result of a heel-and-toe effect that manages to keep
the holes open by backfilling shorter jobs in a way that repeatedly delays the
execution of the first queued job.
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Fig. 7. The impact of the heel-and-toe backfilling dynamic. In SDSC, up to 5% of the
jobs are started as a result of a wild backfilling decision (left), causing the first queued
jobs to be delayed by up to 4 hours (right), on average.

To finish, we need to explain why performance worsens for all but the CTC log
(the ascending, right part of the V shape) and why CTC is different (L-shaped).
The explanation is detailed elsewhere [21,24], and, to keep the discussion focused,
we only provide the intuition here. The performance is worsened, because the
probability that the scheduler will “mistake” short jobs for long (and vice versa)
monotonically increases with F . Formally, if the runtime of two jobs J1 and J2 is
r1 and r2, respectively, and we assume (without loss of generality) that r1 < r2,
then we can prove that the probability Pr(e1 > e2) monotonically increases with
F , where e1 ∈ [r1, r1 ·F ] and e2 ∈ [r2, r2 ·F ] are the randomly chosen estimates of
J1 and J2, respectively. (And this is, by the way, the reason why the deterministic
curve roughly follows the best case scenario of the random model in Figure 4, as
this probabilistic argument doesn’t apply.) The reason CTC is largely unaffected
by the probabilistic argument, is that it lacks the bursty nature that the other
workloads have (meaning, the wait queue is typically short and so the chances
of making the Pr(e1 > e2) mistake are smaller); when artificially introducing
burstiness to CTC, the associated performance curves become V-shaped like
that of the other workloads.
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4 Studying the Impact of User Inaccuracy: Right Way

The previous section might seem to suggest that increased inaccuracy improves
performance (thereby corroborating the conclusions of many past studies). Noth-
ing can be further from the truth. The conclusions of the previous section are
based on artificial inaccuracy as generated by the F -model, whereas real inac-
curacy (as manifested by real users) is inherently different, and it affects perfor-
mance in an entirely different way. In reality, less accurate estimates worsen the
performance, in contrast to what we’ve learned in the previous section [23].

As it turns out, inaccuracy of human users takes the form of utilizing very
few “round” values, such as 15 minutes, 1 hour, and oftentimes the maximal
runtime allowed. In fact, in all of our logs, merely 20 such canonical values are
used by 90% of the jobs as estimates. This user behavior is clearly evident from
Figure 8, which plots the cumulative distribution function of the runtimes and
estimates of jobs. In contrast to the smooth runtime curve, the estimates form
a rigid staircase-like structure, whereby each stair is associated with a single
popular estimate value.

Importantly, the modality of estimates hampers backfilling systems, because
jobs with different runtimes all look the same to the scheduler, preventing it
from distinguishing between short and long jobs and limiting its ability to utilize
existing holes in the schedule. (Conversely, by definition, the F -model provides a
fairly good relative ordering of the jobs and a lot of variability for the scheduler
to work with.)

Especially harmful to performance is the fact that the maximal allowed run-
time is always a very popular estimate value among users (e.g., in the case of
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Fig. 8. Cumulative distribution function (CDF) of jobs’ runtimes and estimates. The
runtime curves appear higher because runtimes are always shorter than estimates (un-
derestimated jobs are killed). We denote the maximal allowed runtime as Emax. (This
is also the maximal allowed estimate, as jobs are allowed to run until their estimate is
reached.) In SDSC and CTC the Emax is 18h; in KTH and BLUE, 4h and 2h serve
as the “effective” Emax, because most jobs were submitted during daytime or to the
express queue, respectively, and 4h and 2h are the associated limits enforced on those
systems. Clearly, Emax is a popular value.
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CTC, 25% of the jobs utilized this value as estimate; see Figure 8). It is harmful
because such jobs are never backfilled. Indeed, if all the jobs choose the max-
imum as their estimate, then there would be no backfilling activity, and the
schedule would largely revert to plain FCFS.

The bottom line is that, when researchers wish to assess the impact of inac-
curacy on performance, they should not use the F -model, as using it for this
purpose constitutes a serious methodological error that would likely invalidate
their results [23]. When using the F -model, researchers simply convey to the
scheduler too much information that it would probably never enjoy in real-
ity (fairly accurate relative ordering of jobs), and they additionally induce the
heel-and-toe dynamic, which further unrealistically improves the results of their
evaluation by artificially favoring shorter jobs.

The correct way to evaluate the impact of increased inaccuracy is by making
the estimates distribution more modal. (For example, by associating an increas-
ing number of jobs with the maximal runtime allowed.) In a different work, we
have developed a detailed model that accurately captures the modal nature of
the estimates distribution and that allows its users to control the “amount” of
modality [23]. The model is freely available for download [22] from the parallel
workload archive [16].

5 Conclusions

Backfilling drastically improves the system utilization [12] by allowing jobs to
run ahead of their time, provided they do not delay higher-priority jobs. But
in order to do so, backfill systems require users to estimate how long their jobs
would run. Ever since the inception of backfilling, researchers wondered about
the impact of inaccurate estimates on performance, and many studies addressed
this issue (surveyed above).

To evaluate the impact of inaccuracy, researchers associated each job with
an artificial estimate e that is a multiple of the actual runtime r with some
“badness” factor F , such that e = r ·F (or such that e is correlated with r ·F );
with this “F -model”, larger F s supposedly imply increased inaccuracy. Relying
on the F -model, researchers repeatedly reached a counterintuitive conclusion:
that performance improves by (or is insensitive to) increased inaccuracy.

In this paper we have refuted this counterintuitive conclusion, by exposing
the F -model to be erroneous. It artificially conveys too much information to the
scheduler (the relative ordering of jobs), and, in addition, it implicitly nudges
the system towards shortest-job scheduling through a “heel-and-toe” dynamic
that manages to keep backfilling windows open at the expense of the first-queued
job. In contrast, the inaccuracy of real user estimates worsens the performance,
because users utilize very few “round” estimates (especially the maximal run-
time), making it hard for the scheduler to distinguish between long and short
jobs and hindering its ability to backfill effectively (e.g., jobs with the maximal
runtime as estimate would never be backfilled).

We thus proclaim that the popular F -model is inappropriate for being used
in studies that wish to learn the effect of inaccurate user estimates. Researchers
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should stop using multiples of actual runtimes as estimates, or else they would
likely get invalid results. To get trustworthy results, researchers should preserve
the modal nature of user estimates [23]. We have made available a model that
does so [22], and we recommend to prefer it over the F -model; with the suggested
model, researchers can explore the impact of increased user inaccuracy by, e.g.,
increasingly associating more estimates with the maximal runtime allowed.
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