
Nested and Dynamic Contract Boundaries�

T. Stephen Strickland and Matthias Felleisen

PLT @ Northeastern University
{sstrickl,matthias}@ccs.neu.edu

Abstract. Previous work on software contracts assumes fixed and stat-
ically known boundaries between the parties to a contract. Implementa-
tions of contract monitoring systems rely on this assumption to explain
the nature of contract violations and to assign blame to violators. In this
paper, we explain how to implement arbitrary, nested, and dynamic con-
tract boundaries with two examples. First, we add nestable contract re-
gions to a static, first-order module system. Second, we show that even a
dynamic, higher-order, and hierarchical module system can be equipped
with software contracts that support precise blame assignment.

1 Contracts for Modules

PLT Scheme [1] comes with a widely used contract system for specifying behav-
ioral (functional) properties of module exports and imports. Roughly speaking,
a behavioral software contract imposes restrictions on the domain and range of a
function that flows from one module to another. If the function does not produce
the kind of values promised in a contract, the run-time monitoring system raises
a contract exception and blames the server module for exporting an ill-behaved
function. Conversely, if the client module applies an imported function to values
that fail to satisfy the domain contract, the run-time system blames the client
for not living up to its promises.

Unlike other systems for monitoring behavioral software contracts [2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], PLT Scheme’s contract system does not
restrict contracts to first-order functions and methods. Instead, programmers
may formulate contracts for all kinds of values, including higher-order values [18].
The module system, however, is restrictive. In particular, modules are merely
first-order namespaces, without mechanism for nesting them or linking them in
a recursive fashion. Naturally programmers chafe under this module system and
call for more flexibility.

At the same time, the theory of contracts assumes fixed and statically known
boundaries between contract parties. Contract implementations combine com-
pilers that can determine the parties to each contract from the source text with
a run-time checking system that exploits this knowledge for blaming violators.

In this paper, we relax these restrictions and show how to add arbitrary con-
tract boundaries to the PLT Scheme module system and how to implement
� This research was partially supported by the US Air Force Office of Scientific Re-

search and the National Science Foundation.

M.T. Morazán and S.-B. Scholz (Eds.): IFL 2009, LNCS 6041, pp. 141–158, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

142 T.S. Strickland and M. Felleisen

contracts for its units, a higher-order, hierarchical, and dynamic component sys-
tem [19,20]. Sections 3 and 4 make up the core of the paper. Both use the same
organization, explaining the nature of the contract boundary first and, based
on that, its enforcement. In particular, the third section adds nested contract
regions to PLT Scheme’s module system, while the fourth section explains con-
tracts for its unit system. In section 5 we revisit the design decisions concerning
blame assignment with a side-by-side comparison of the two extensions. Finally,
the last section compares this paper with a concurrent publication on a theoret-
ical model of a structural (ML-like) module system [21]. The paper starts with
a section that briefly describes the existing module system and its contracts.

2 Static Modules in PLT Scheme

PLT Scheme provides static modules that are neither nestable nor first-class.
Figure 1 contains an example consisting of two modules. A module may export
values via their names1 through the use of the provide form. Another module
makes use of these values via a require form. Modules may not require each
other (or themselves) in a cyclic fashion.

server client

#lang scheme
(define (sqrt n) . . .)
. . . (sqrt 3) . . . (sqrt 0) . . .
(provide sqrt)

#lang scheme
(require server)
. . . (sqrt 3) . . .
. . . (sqrt 0) . . .

Fig. 1. Example modules

Findler and Felleisen’s work on higher-order contracts [18] presents a model
for adding contract checks to such a module system. The implementation of this
model in the PLT Scheme module system operates via the provide/contract
form, which specifies a sequence of names paired with contracts. The main idea
behind this implementation is that module interfaces serve as natural contract
boundaries. Values that flow across a contract boundary are checked for the
specified properties, while values that stay on one side remain unchecked.

A contract boundary in PLT Scheme brings together two contract parties. One
is the exporting server module; the other one is the importing client module in
which the name is used. The contract monitoring system uses the module names
to assign blame when it discovers and signals contract violations. In analogy to
type theory, we call the name of the server module a positive blame label of a
specific contract, and the name of the client module a negative blame label.

The design decision of not monitoring the uses of contracts within a module is
due to both software engineering considerations and compilation issues. In par-
ticular, we consider the inside of a module a space where programmers should
1 In PLT Scheme, modules can also export values for use at compile-time as well as

run-time. Here we focus on run-time values.

Nested and Dynamic Contract Boundaries 143

trust their own instincts, even allowing temporary violations of contracts; the
alternative poses severe challenges known as the callback problem [22]. Further-
more, monitoring the uses of contracts within a module would negatively affect
opportunities for tail-call optimizations, an essential element of functional and
object-oriented program design.

server client

#lang scheme
(define (sqrt n) . . .)

. . . (sqrt 3) . . . (sqrt −1) . . .

(provide/contract
[sqrt (→ positive? positive?)])

#lang scheme
(require server)
. . .
. . . (sqrt 3) . . .

. . . (sqrt −1) . . .

Fig. 2. Modules with an example contract

Figure 2 displays contracted versions of the modules from figure 1. Specifically,
the server module exports sqrt with a contract that demands positive numbers
as inputs and promises the same for the results. The use of sqrt with −1 in
client—see boxed code—triggers a contract violation error that blames client
for applying sqrt to an inappropriate value. In contrast, the gray-shaded call to
sqrt on −1 within server is not monitored and so does not signal a contract
error; presumably server knows how to deal with complex numbers.

3 Nested Contract Regions

While programmers appreciate the rationale of not monitoring contracts within
a module, they also commonly wish to isolate regions that they can protect with
contracts, even within modules. This is especially true for debugging sessions or
for modules that grow into large bodies of code. Unlike the static module system
in section 2, one such region may be nested within another, or a module may
contain several parallel regions. In response to this request, we introduce contract
regions. The first subsection introduces the idea via a series of examples, which
at the same time suggests design desiderata for this new feature. The second
subsection describes our implementation.

3.1 The Pragmatics of Contract Regions

Consider the module fragment on the left-hand of figure 3. It displays the frag-
ment of a module that contains the definition of the serve function, which imple-
ments a basic webserver, and two applications; the second one is faulty, applying
serve to a low TCP port, that is, a TCP port with a numeric value less than
1024, for which the program does not have the necessary permissions.

To protect serve from such errors within the module, a programmer could
create a separate static module that defines serve and exports it with an appro-
priate contract. Of course this strategy imposes a high overhead. Worse, it may

144 T.S. Strickland and M. Felleisen

#lang scheme
(define (serve p)

(let ([s (tcp-listen p)])
(handle-request s)
(serve p)))

. . .
(serve 8080)
. . .
(serve 80) ;; error, no superuser permissions

#lang scheme
(with-contract serve

([serve (→ high-tcp-port? void?)])
(define (serve p)

(let ([s (tcp-listen p)])
(handle-request s)
(serve p)))

. . .
(serve 80) ;; contract violation

Fig. 3. Modules and contract regions

not work if the to-be-separated parts are mutually referential, because the PLT
Scheme module system does not support mutually recursive linking.

Instead we introduce the with-contract form. The right-hand side of figure 3
shows the simplest way to use the with-contract form. It consists of three
pieces: a name, which is used to assign blame; a sequence of contracted variables;
and a sequence of definitions. Every variable listed in the second part must have
a definition in the third part, but there may be additional definitions in this
third part that do not come with a contract.

Since the with-contract syntax is heavy-weight for single definitions, we
introduce a convenience abbreviation named define/contract. The syntax of
define/contract is similar to that of PLT Scheme’s define, except for the
addition of a contract before the body of the definition. With define/contract,
the code in the above figure would look like this:

#lang scheme
(define/contract (serve n)

(→ high-tcp-port? void?)
(let ([s (tcp-listen p)]) (handle-request s) (serve p))))

. . .

The abbreviation is translated into a contract region that uses the name of the
defined value as the blame label.

The with-contract form introduces a block of definitions. As such, it can be
used in any syntactic position where definitions are allowed. It does not introduce
a new lexical scope, meaning both contracted and uncontracted definitions are
accessible in the surrounding lexical scope. Conversely, all internal definitions
may access any external definitions at will.

Not surprisingly, the name of the contract region serves as the positive blame
label for all contracts listed in the with-contract form. The question is what
we should consider as the client of the region and what we should use as the
negative blame label for the contracts. Obviously, if there is no other contract
region in the module, the rest of the module is the client. If, however, a module
contains several regions or regions are nested, we have a choice to make.

Nested and Dynamic Contract Boundaries 145

#lang scheme
(define/contract (encode key msg)

(→ prime? string? string?)
. . .)

(define/contract (send-msg msg)
(→ string? void?)
. . . (encode 20 m) . . .) ;; contract error, blame: ???

Fig. 4. Two parallel contract regions

Consider the two regions in figure 4. It appears convenient to use send-msg as
the most precise negative blame label for the use of encode here. Put differently,
all parallel contract regions could be considered as clients of each other. Although
this design choice is appealing, it is inappropriate. Instead we say that a contract
region introduces a contract boundary between itself and its surrounding context.
If this surrounding context allows the contracted value to flow into other contract
regions, those regions are clients of the context not the original contract region.
For our above example, this means that when send-msg is called, the enclosing
module context is blamed for the misuse of encode. We revisit this choice at
length in section 5.

#lang scheme
(with-contract serve

([serve (→ high-tcp-port? void?)])
(define (serve p)

(let ([s (tcp-listen p)]) (handle-request s) (serve p)))
(define (serve-80) (with-su (serve 80))) ;; ok

(serve 8080)
(serve 80) ;; contract error, module misused serve

Fig. 5. External vs. internal uses

Just as with module-based contracts, a contract region does not monitor inter-
nal uses of the contracted definitions. To illustrate this point, take a look at the
serve-80 function in figure 5, which correctly sets up the necessary permissions
for accessing low TCP ports with the with-su form. The external uses of serve
are checked according to the contract, and so the last call to serve still fails, but
the internal use in the definition of serve-80 is not restricted and succeeds.

The introduction of a distinction between internal and external uses of con-
tracted variables naturally raises the question where the contract itself lives. In
order to explain this issue, we use the example in figure 6. The contract region
contains several functions to operate on record-like list values that represent
student information. These records contain two fields: names, represented as
strings, and nine-digit numbers used for unique identification. The predicates
id? and student? are used within the contracts for the other operations. How-
ever, these predicates are also contracted, and thus we must decide whether the

146 T.S. Strickland and M. Felleisen

#lang scheme
(with-contract student

([id? (→ any/c boolean?)] [make-student (→ string? id? student?)]
[student-name (→ student? string?)] [student-id (→ student? id?)]
[student? (→ any/c boolean?)])

(define (id? n) (and (natural-number? n) (< n 1000000000)))
(define (make-student s n) (list s n))
(define (student-name s) (first s))
(define (student-id s) (second s))
(define (student? s)

(and (list? s) (= (length s) 2) (string? (first s)) (id? (second s)))))

Fig. 6. Operations for student records

uses within those contracts must be checked. Since the contracts are a part of
the with-contract form itself, we consider it reasonable to treat such uses as
internal uses, meaning they are not protected.

#lang scheme
(define (salary? s) (or (natural-number? s) (eq? s #f)))
(define (make-employee s n) (list s n))
(define (employee? s)

(and (list? s) (= (length s) 2) (string? (first s)) (salary? (second s))))
(define (employee-name e) (first e))
(define (employee-salary e) (second e))
;; test data
(define loe1 (list (make-employee "Bob" 45000) (make-employee "Stan" 50000)))
(define loe2 (list (make-employee "Ana" 50000) (make-employee "James" #f)))
. . .
(define (get-salaries loe) (map employee-salary loe))
. . .

Fig. 7. An evolving payroll program

Protection Against Externally Defined Values. In contrast to modules,
contract regions can exchange values in both directions, and this has serious
implications for the contract system. In particular, the creator of a contract
region may wish to protect it from values that flow in from its context. Thus,
our with-contract construct supports this form of protection, too.

Consider the code snippets in figures 7 and 8, representing two stages in
the evolution of an application. The application stores employee records, which
are similar to the student records we saw earlier. Originally, employee salaries
were always numbers, and the given definition for get-salaries sufficed. However,
records are not removed immediately when the employee leaves the company.
For now, an interim solution has been found in which the salary field is set to
#f, but get-salaries has not been updated to report a salary of 0 for these cases.

Nested and Dynamic Contract Boundaries 147

. . .
(define/contract (payroll loe)

(→ (listof employee?) number?)
(foldl + 0 (get-salaries loe)))

. . .
(payroll loe1)
. . .
. . .
(payroll loe2) ;; error
. . .
. . .

. . .
(define/contract (payroll loe)

(→ (listof employee?) number?)
#:freevars ([get-salaries

(→ (listof employee?)
(listof number?))])

(foldl + 0 (get-salaries loe)))
. . .
(payroll loe1)
. . .
(payroll loe2) ;; contract error

Fig. 8. Payroll contracts

A new function payroll is added that retrieves the current payroll total for the
company: see the left-hand side of figure 8. When the value #f used for James’s
salary flows into the payroll function, however, it causes an error. After all, the
programmer of payroll expected get-salaries to return a list of numbers, but it
doesn’t always do so.

To express this kind of expectation and to pinpoint the contract violator, the
with-contract and define/contract forms come with optional contracts on
their free variables, which are introduced via the keyword #:freevars. These con-
tracts affect all uses of the listed free variables within the contract region. With
this feature, the programmer may add a contract for the get-salaries function
as shown in the right-hand side of figure 8. This contract fails on the second use
and appropriately blames payroll for providing a bad value for get-salaries .

3.2 Implementing Contract Regions

The addition of nested contract regions poses novel problems for the implemen-
tation of contract monitoring. Specifically, the revised contract monitor must be
able to retrieve the blame label for the current contract region, replace uses of
contracted definitions outside of the region with guarded versions, and replace
uses of contracted free variables inside the region with guarded versions.

We describe the compilation of contract regions in terms of substitution. The
macro-based compiler [23, 24] inspects the list of contracted names. For each
contracted name, it chooses a fresh name and substitutes that name for uses
of the original name within the body of the contract region. The compiler also
replaces the original name where it is bound in its definition. These substitutions
ensures that the definition of the contracted name is exchanged for a definition
of the fresh name, and that all uses of the contracted name refer instead to the
uncontracted, fresh name.

At this point, the compiler could create a new definition of the contracted
name that wraps the value associated with the fresh name with a contract. This
would, however, disassociate the value internal to the contract region, referred
to by the fresh name, and the external value, referred to by the contracted name.

148 T.S. Strickland and M. Felleisen

If either code internal or external to the contract region mutates their respective
binding, that mutation is not reflected in the other portion of code.

To allow for checked mutation, our system binds the contracted name to a
syntax transformer that expands each use to a guarded use of the fresh name.
Doing so ensures that the use evaluates to the current value of the fresh name,
and it also enforces that the contract system checks the current value for ad-
herence to the contract. Furthermore, the syntax transformer also allows the
compiler to track mutation of the contracted name. When this occurs, the com-
piler generates an expression that instead mutates the fresh name, guarding the
new value with the contract. Here our system uses the context as the positive
blame and the contract region as the negative blame, as the new value flows into
the contract boundary during mutation.

To protect free variables with contracts, a similar set of substitutions is per-
formed. The compiler produces a fresh name for each protected free variable, and
creates a syntax transformation for that fresh name that expands references into
guarded references and mutations into guarded assignments to the free variable.

The macros for contract regions need to access the blame label for the context.
For this, we turn to syntax parameters [1], which provide a mechanism for tem-
porarily setting compile-time values for the macro expansion of a specific region
of code. Our system binds a syntax parameter to the appropriate blame label
during the expansion of the body of a contract region; otherwise, the syntax
parameter is instead set to the blame label for the current module.

4 Contracts for Nominally Linked Units

In addition to static first-order modules, PLT Scheme supports a separate com-
ponent system, called units [19,20]. Units are analogous to ML’s functor module
system [25,26] and the mixins and traits of OO programming languages [27,28].

Roughly speaking, the unit system supports hierarchical programming with
first-class components. Each unit is parameterized over its linking context; each
unit also exports a set of names. The unit system supports two operations on
units: linking and invoking. A number of units with matching signatures can be
linked in a graph-based fashion; the result is a new unit with its own parameter-
ization over its future contexts, which flow into its constituent units, and its own
exports, which flow out of its constituent units. A unit whose parameterization is
empty may be invoked, meaning the unit’s body is evaluated sequentially. Units
are first-class values and may even be loaded at run-time. They co-exist with
modules and as such may flow across module boundaries.

Understanding unit signatures is key to understanding units as contract
boundaries. The first subsection therefore describes signatures, which name col-
lections of variables for import or export from a unit. It also introduces the ad-
dition of contracts for signatures. The second and third subsections then present
examples of uncontracted and contracted units. The last subsection explains how
to implement units as contract boundaries in PLT Scheme and how the addition
of contracts affects our implementation.

Nested and Dynamic Contract Boundaries 149

#lang scheme
(define-signature worldˆ

(key?
key=?
big-bang))

(define-signature clientˆ
(world?
tock
clack))

. . .

#lang scheme
(define-signature world/cˆ

((contracted
[key? (→ any/c boolean?)]
[key=? (→ key? key? boolean?)]
[big-bang (→ any/c void?)])))

(define-signature client/cˆ
((contracted

[world? (→ any/c boolean?)]
[tock (→ world? world?)]
[clack (→ world? any/c world?)])))

. . .

Fig. 9. Signatures with contracts

4.1 Signatures and Contracts

A unit signature is a named collection of variables. Units use sequences of sig-
natures to specify their imports and exports. An exported signature can satisfy
an import requirement for another unit only if that unit imports the signature
with the same name. In other words, the unit system uses nominal matching.

For our examples, we use the two signatures on the left side of figure 9.2

These signatures describe interfaces that are useful for implementing interactive
animations in a world-passing style [29]. The worldˆ signature contains three
names: key? , which is a predicate that determines whether a value is a keyboard
event; key=? , which is an equivalence predicate; and big-bang, which launches an
animation when applied to a world (world?). The clientˆ signature also contains
three names: world? , which is a predicate on worlds; tock , which is an event
handler for clock ticks, mapping worlds to worlds; and clack , which is an event
handler for keyboard events, from worlds and keyboard events to worlds.

Naturally, programmers wish to express such specifications as contracts in or-
der to protect units. We have therefore extended the language of signatures with
the contracted keyword, which combines signature variables with contracts.
The right hand side of figure 9 shows the contracted versions of the signatures.
Notice that signature contracts can involve elements of the same signature.

4.2 Units without Contracts

The import signatures of a unit introduce bindings for all their variables for
the unit body; conversely, if a unit exports a signature, it must define all the
variables listed in the signature. Figure 10 contains some sample units3 that
utilize the uncontracted signatures from the preceding subsection.

2 The ˆ character at the end of signature names is merely a convention.
3 As with ˆ, the use of @ is a naming convention for units.

150 T.S. Strickland and M. Felleisen

. . .
;; get-last-key , a primitive, returns #f if no key was pressed
;; since the last call; otherwise it returns the pressed key
(define-unit world@ (import clientˆ) (export worldˆ)

(define (key? k) (memq k (list "up" "down")))
(define (key=? ke1 ke2) (string=? ke1 ke2))
(define (big-bang w)

(let ([ke (get-last-key)])
(if ke (big-bang (clack w ke))

(begin (sleep .1) (big-bang (tock w)))))))
;; Here a world is a number that represents the height of
;; a rocket on a 500 pixel high canvas (not shown here).
(define-unit client@ (import worldˆ) (export clientˆ)

(define (world? n) (and (integer? n) (>= n 0) (<= n 500)))
(define (tock n) (+ n 10))
(define (clack n ke)

(cond [(key=? ke "up") (+ n 10)]
[(key=? ke "down") (− n 10)]))

(big-bang 0))
. . .

Fig. 10. Example interactive animation units

When compound-unit is used to link a collection of units, the exported
definitions from one unit are typically used to satisfy import requirements for
one or more of the other units. Thus we can link client@ and world@ like this:

(define pgrm@
(compound-unit/infer (import) (export) (link world@ client@)))

The “infer” suffix is a variant of compound-unit that infers how to wire up
the exports and imports of the constituents.

In general, the result of linking is a unit that has its own list of imports and
exports and whose body is a sequence of the constituent unit bodies in the order
listed in the link clause. The exports of the compound unit are satisfied from
the exports of the constituent units, and the imports of the compound unit may
be used to satisfy imports of the constituents. In contrast to modules, units can
thus be compounded hierarchically, and they may refer to each other’s exports
and imports in a mutually referential manner.

Finally, units with empty import signatures can be invoked, e.g.

(invoke-unit pgrm@)

The effect is to execute the body of world@ , which consists entirely of definitions,
and then to execute the body of client@ , which calls big-bang.

4.3 Units with Contracts

The use of signatures with contracts turns units into contract regions and their
boundaries into contract boundaries. In the following code, the definitions of

Nested and Dynamic Contract Boundaries 151

world@ and client@ differ from the earlier definitions only in the import/export
specification, and so we elide the bodies:

(define-unit world@ (import client/cˆ) (export world/cˆ) . . .)
(define-unit client@ (import world/cˆ) (export client/cˆ) . . .)

When we link client@ and world@ and invoke the result:
(invoke-unit

(compound-unit/infer (import) (export) (link world@ client@)))

then client@ is blamed if either tock or clack cause the world to become negative
or increase beyond 500.

The signatures world/cˆ and client/cˆ illustrate that a contract in a signature
may refer to other elements from the same signature. Thus, we must decide how
these contracts interact with the linked units’ contract boundaries. In particu-
lar, we must decide whether references to signature elements within contracts
are guarded or not. For the purposes of this paper, we consider all signature
contracts as occurring within the importing unit’s contract boundary and there-
fore the compiler guards all uses of contracted signature elements inside those
contracts. This ensures that exported variables are not misused by the contracts
and concurs with our implementation strategy.4

4.4 Implementing Units as Contract Boundaries

Adding contracts to the unit system poses several challenges. First, units do not
enter a contract with a known party; instead they specify via signature contracts
what they expect from their context. Second, the same unit may be linked to
several different units at run-time and may thus enter contracts with several
different parties. Hence, the compiler cannot pass on enough knowledge about
the contract parties to the run-time checks. Third, due to nominal linking, a
compound unit may only link constituent units whose contracts are identical.
Therefore blame labels can be exchanged as units are linked.

The first part of this section describes how units are implemented in PLT
Scheme. The second part explains the addition of signature-based contracts to
the existing implementation. The third part covers additional features of the
unit system.

Units in PLT Scheme. The current unit system in PLT Scheme follows the
model by Owens and Flatt [19] for first-class modules. In this model, signatures
are matched nominally when units are linked. The implementation exploits this
nominal matching to provide inference for linking.
4 This design decision is overly conservative and deserves to be revisited once we have

enough experience with our new contract system. Furthermore the current contract
system does not permit programmers to use elements from one signature in a different
signature for the specification of contracts. Extending the contract system in this
direction may also force us to revisit the design decision on how to check contracted
functions within contracts.

152 T.S. Strickland and M. Felleisen

The compiler5 translates a unit into a thunk that is hidden in a unique struc-
ture value. On application, the thunk returns two values:

– a mapping from exports to reference cells, and
– a function that implements the body of the unit. The function consumes a

mapping from imports to reference cells; it returns the last value computed
by the unit body.

In the unit’s body, the compiler replaces uses of imports with accesses to the
import mapping. To each definition of an exported item, the compiler adds an
assignment to the appropriate reference cell. Once an export cell is set, its value
never changes.

A unit invocation invokes the thunk to obtain an export mapping and a body
function. The latter is then applied to an empty import mapping, which evaluates
the unit body.

Since units are represented as thunks, the compiler translates a compound-
unit form to a thunk, too. This thunk performs the following operations:

1. It applies the thunks for the constituent units and collects the resulting
export mappings and body functions.

2. It constructs an export mapping for the compound unit from the collected
export mappings.

3. It creates a body function that consumes the import mapping of the com-
pound unit. For each linked unit in listed order, this new body function:
(a) creates an import mapping from the compound unit’s import mapping

and the collected export mappings of the other units, and
(b) applies that unit’s body function to the created import mapping.

4. It returns the new export mapping and body function.

Contracts in Signatures. Since units must agree on their shared signatures
by name and since we add contracts to signatures, linked units automatically
agree on all of the contracts of the shared variables. That is, unlike a module that
contains two parallel contract regions, a compound unit cannot possibly link two
units whose contracts don’t match, as in figure 11. Thus, it is impossible for the
linker to assume any responsibility for contract errors. Put differently, there is
no need for checking contracts within the compound unit and it need never be
blamed. Put positively, our implementation limits blame to the exporting unit
and the importing unit.

The key to our addition of contracts is to separate the translation of contracted
signature variables from those of uncontracted ones. For contracted exports, the
compiler generates code that sets the cell for the exported value to a structure
with two fields:

5 The unit system is actually implemented as a library based on the PLT macro
system, though it is impossible for a programmer to discover this programmatically.

Nested and Dynamic Contract Boundaries 153

#lang scheme
(define-signature lexerˆ ((contracted [lex (→ string? (listof token?))])))
(define-signature lexer2ˆ ((contracted [lex (→ input-port? (listof token?))])))
(define-signature parserˆ ((contracted [parse (→ string? ast?)])))
(define-unit lexer@ (import) (export lexer2ˆ)

(define (lex str) . . .))
(define-unit parser@ (import lexerˆ) (export parserˆ)

(define (parser str) (let ([tokens (lex str)]) . . .)))

(compound-unit/infer (link lexer@ parser@))

Fig. 11. Mismatched signatures and contracts

– one for the value of the exported variable, and
– one that uniquely identifies the exporting unit, i.e., its blame label.

When the compiler encounters a contracted import, it deconstructs this kind of
structure and retrieves the contract from the imported signature. From these two
pieces, the compiler constructs an appropriate guard expression for the imported
value. This contract-guard uses the export blame label for positive blame report
and the importing blame label for negative blame reports.6

Structural Linking and a Contract Combinator. The unit system supports
two more important linguistic constructs whose full descriptions are beyond
the scope of this paper. One form, unit/s , provides a mechanism for linking
units structurally. This provides backwards compatibility for use with an early
implementation of units in PLT Scheme [20].

The unit/s form takes import and export specifications as well as a unit value
and creates a new unit value. Its imports and exports must structurally match
the imports and exports of the given unit value; the resulting unit value uses
the given imports and exports and the given unit’s body. Since this operation on
units changes the import and export signatures, the contracts on the imported
and exported values may be inappropriate for the original unit. Hence, the com-
piler must introduce contract checks into the result of unit/s that blames the
new unit value when contract mismatches occur, instead of allowing either the
original unit value or any unit with which it is linked to be blamed.

The other form, unit/c, is a new form of contract specification, since units
are first-class values that also can cross contract boundaries. Technically, the
contract combinator unit/c is used in contracts to express contracts on units. A
contract on units is essentially a sequence of contracts for a unit’s exports and
imports. We implement this operation as a projection

6
on unit values, which

means that it takes a unit value as input and returns a new unit value that
monitors the flow of values across the unit boundary.
6 Roughly speaking, it applies two projections to the value: one for its “elimination”

(negative) and one for its “introduction” (positive). If something goes wrong with
the negative position, the client is blamed; otherwise the server is blamed. For details
on the general idea, see Findler and Blume’s report [30].

154 T.S. Strickland and M. Felleisen

Both of these forms require similar changes to the unit implementation, be-
cause both introduce structural notions of matching a unit’s exports to another
unit’s imports. Structural units, in turn, are a central piece of related work,
which we briefly compare to this work in section 6.

5 A Question of Blame

Now that we have described two new contract extensions—contract regions and
unit contracts—we are in a good position to compare and contrast the blame
story for the two. Examine the modules in figure 12. The module regions contains
two contract regions: server , which provides the implementation of a webserver,
and client , which (mis-)uses that implementation. Similarly, the module units
contains two units, server@ and client@ , which are in a relationship that is
analogous to that of server and client .

regions units

#lang scheme
(with-contract server

([serve (→ high-tcp-port? void?)])
. . .)

. . .

. . .

. . .

. . .

. . .

. . .
(with-contract client

([. . .])
. . . (serve 80) . . .)

#lang scheme
(define-signature webˆ

((contracted
[serve (→ high-tcp-port? void?)])))

(define-unit server@
(import) (export webˆ)
. . .)

(define-unit client@
(import webˆ) (export)
. . . (serve 80) . . .)

(invoke-unit
(compound-unit/infer

(link server@ client@)))

Fig. 12. A comparison between contract regions and units

When evaluated, both modules result in a contract violation. In regions , the
module itself is blamed, since it is the context of the contract region server ,
whereas in units , client@ is blamed. The inquisitive reader may be surprised
that in the former case, the contract system did not blame client instead, which
would be a more specific region. After all, the purpose of blame assignment
is to assist programmers with debugging, calling for the most specific blame
justifiable.

One reason for this design decision is that only parties that explicitly enter into
a contract should be blamed for bad behavior. In the second module, the various
units, via signatures, enter into contracts for both their imports and exports.
That is, server@ (respectively, client@) declares that the exported (respectively,
imported) function serve is contracted through its use of the signature webˆ.
Since both parties have agreed to the contract, the two units are the only sources
of blame.

Nested and Dynamic Contract Boundaries 155

In the first module, only server declares a contract on the function serve.
This agreement is with its context, i.e., the rest of the module regions . Thus
only server or regions can be blamed if part of the contract is violated. If client
had declared the same contract on serve via #:freevars, then it, too, would have
agreed to the contract and could be blamed appropriately.

regions2

#lang scheme
(with-contract server

([serve (→ high-tcp-port? void?)])
. . .)

. . .
(with-contract client

([. . .])
#:freevars ([serve (→ tcp-port? void?)])
. . . (serve 80) . . .)

Fig. 13. Regions with differing contracts

Then again, client doesn’t have to specify the same contract as server . Thus,
in figure 13, neither contract region should be at fault, as both regions use the
serve function according to their own contract. Instead, the fault lies with the
context that ties the two regions together. It allows the value serve to flow
from one region to another even though the two impose distinct requirements at
their respective boundaries. This is analogous to the behavior of contracts for
structurally linked units, which we briefly mentioned in conjunction with unit/s
and which we discuss more extensively in the section on related work.

In fact, the first example can be seen as a special case of the second, if we
treat all uncontracted free variables flowing into a contract region as if they had
the implicit contract any/c, i.e., the most permissive contract. Thus, having the
context of the contract region serve as the negative blame leads to a consistent
handling of blame for contract regions.

6 Related Work

Our paper benefits from two pieces of related work. First, a parallel paper [21] ex-
plores the theory of contracts for the units described by Flatt and Felleisen [20],
i.e., units with structural signature matching. Matching signatures structurally
requires much deeper changes to the compiler and the run-time environment
than PLT Scheme’s unit system with nominal matching. Most importantly, it
introduces a third party of potential blame—the compounding unit—and there-
fore demands contract machinery for linking.

Structural signature matching is closely related to the world of ML-like module
systems based on functors and structures. As such, the parallel paper directly
applies to this world. In contrast, the implementation presented here is much

156 T.S. Strickland and M. Felleisen

closer to the world of nominal interfaces from OO programming languages and
should therefore carry over to contracts for mixins [27] and traits [28].

By inheritance, our paper extends the work by Findler and Felleisen [18] on
higher-order contracts for static and global contract boundaries. Our implemen-
tation heavily relies on Findler’s work with Blume [30], which is the current
theoretical underpinning for contracts. It explains contracts as pairs of projec-
tions and is the model for the implementation of contracts in PLT Scheme.

Historically, the notion of contracts and modules is due to Parnas [31] though
he did not coin the phrase “contract.” Meyer’s “design by contract” work in-
troduces this terminology [13]; his work on Eiffel popularized the idea in the
object-oriented community.

7 Conclusion

Software contracts enable programmers to protect collections of functions and
methods with simple, executable descriptions of expected behavior. Contract
monitoring ensures that all values that flow into and out of a protected region
satisfy its stated boundary invariants. When the contract monitor discovers a
contract violation, it must be able to pinpoint the guilty party and explain the
nature of the violation. Doing so is critical for the debugging process.

Given the growing importance of contracts, our work provides the important
generalization of introducing nested and dynamic contract boundaries. Techni-
cally, this paper introduces hierarchical contract regions for static modules and
contract boundaries for a hierarchical and dynamic module system. We conjec-
ture that future work on contract boundaries can benefit from either of those
two or a mix of them. Our implementation is available with the current release
of PLT Scheme (http://www.plt-scheme.org/).

Acknowledgments. We gratefully acknowledge comments and suggestions
from Robby Findler and the anonymous reviewers for IFL on early drafts of
this paper.

References

1. Flatt, M., et al.: PLT Scheme. Reference Manual PLT-TR2009-reference-v4.2.1.,
PLT Scheme Inc. (January 2009), http://plt-scheme.org/techreports/

2. Beugnard, A., Jézéquel, J.M., Plouzeau, N., Watkins, D.: Making components con-
tract aware. IEEE Software, 38–45 (June 1999)

3. Carrillo-Castellon, M., Garcia-Molina, J., Pimentel, E., Repiso, I.: Design by con-
tract in Smalltalk. Journal of Object-Oriented Programming 7(9), 23–28 (1996)

4. Duncan, A., Hölzle, U.: Adding contracts to Java with Handshake. Technical Re-
port TRCS98-32, The University of California at Santa Barbara (December 1998)

5. Edwards, S., Shakir, G., Sitaraman, M., Weide, B., Hollingsworth, J.: A framework
for detecting interface violations in component-based software. In: Proceedings
of the Fifth International Conference on Software Reuse, pp. 46–55. IEEE, Los
Alamitos (June 1998)

http://www.plt-scheme.org/
http://plt-scheme.org/techreports/

Nested and Dynamic Contract Boundaries 157

6. Helm, R., Holland, I.M., Gangopadhyay, D.: Contracts: specifying behaviorial com-
positions in object-oriented systems. In: Proceedings of Object-Oriented Program-
ming, Systems, Languages, and Applications, pp. 169–180 (1990)

7. Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M.: Java-MaC: a run-time
assurance tool for Java. Electronic Notes in Theoretical Computer Science 55(2),
218–235 (2001)

8. Kramer, R.: iContract: the Java design by contract tool. In: Proceedings of Tech-
nology of Object-Oriented Languages and Systems, pp. 295–307 (August 1998)

9. Karaorman, M., Hölzle, U., Bruno, J.: jContractor: a reflective Java library to
support design by contract. In: Cointe, P. (ed.) Reflection 1999. LNCS, vol. 1616,
pp. 175–196. Springer, Heidelberg (1999)

10. Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacobs, B.: JML: notations and
tools supporting detailed design in Java. In: Proceedings of Object-Oriented Pro-
gramming, Systems, Languages, and Applications, Companion, pp. 105–106 (2000)

11. Luckham, D.C.: Programming with Specifications: An Introduction to Anna, a
Language for Specifying ADA Programs. Springer, Heidelberg (1990)

12. Microsoft Corporation: Microsoft C# Language Specifications. Microsoft Press
(2001)

13. Meyer, B.: Applying design by contract. IEEE Computer 25(10), 40–51 (1992)
14. Weck, W.: Inheritance using contracts and object composition. In: Proceedings of

the Workshop on Components-Oriented Programming, pp. 384–388 (1997)
15. Gomes, B., Stoutamire, D., Vaysman, B., Klawitter, H.: A Language Manual for

Sather 1.1 (August 1996)
16. Plösch, R., Pichler, J.: Contracts: from analysis to C++ implementation. In: Pro-

ceedings of Technology of Object-Oriented Languages and Systems, pp. 248–257
(August 1999)

17. Ruby, C., Leavens, G.T.: Safely creating correct subclasses without seeing super-
class code. In: Proceedings of Object-Oriented Programming, Systems, Languages,
and Applications, pp. 208–228 (October 2000)

18. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: Proceedings
of the International Conference on Functional Programming, pp. 48–59 (October
2002)

19. Owens, S., Flatt, M.: From structures and functors to modules and units. In: Pro-
ceedings of the International Conference on Functional Programming, pp. 87–98
(September 2006)

20. Flatt, M., Felleisen, M.: Units: Cool modules for HOT languages. In: Proceedings
of Programming Language Design and Implementation, pp. 236–248 (June 1998)

21. Strickland, T.S., Felleisen, M.: Contracts for first-class modules. In: Proceedings of
the Fifth Dynamic Languages Symposium, pp. 27–38 (October 2009)

22. Szyperski, C.: Component Software. Addison-Wesley, Reading (1997)
23. Flatt, M.: Composable and compilable macros: You want it when?. In: Proceedings

of the International Conference on Functional Programming, pp. 72–83 (October
2002)

24. Culpepper, R., Tobin-Hochstadt, S., Flatt, M.: Advanced macrology and the imple-
mentation of Typed Scheme. In: Proceedings of the Scheme Workshop, Université
Laval Technical Report DIUL-RT-0701, pp. 1–14 (September 2007)

25. Leroy, X.: Manifest types, modules, and separate compilation. In: Proceedings of
Principles of Programming Languages, pp. 109–122 (January 1994)

26. Harper, R., Lillibridge, M.: A type-theoretic approach to higher-order modules
with sharing. In: Proceedings of Principles of Programming Languages, pp. 123–
137 (January 1994)

158 T.S. Strickland and M. Felleisen

27. Flatt, M., Findler, R.B., Felleisen, M.: Scheme with classes, mixins, and traits. In:
Proceedings of the Asian Symposium on Programming Languages and Systems,
pp. 270–289 (November 2006)

28. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable units of be-
havior. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248–274. Springer,
Heidelberg (2003)

29. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: A functional i/o sys-
tem or, fun for freshman kids. In: Proceedings of the International Conference on
Functional Programming, pp. 47–58 (October 2009)

30. Findler, R.B., Blume, M.: Contracts as pairs of projections. In: Hagiya, M., Wadler,
P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 226–241. Springer, Heidelberg (2006)

31. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15, 1053–1058 (1972)

	Nested and Dynamic Contract Boundaries
	Contracts for Modules
	Static Modules in PLT Scheme
	Nested Contract Regions
	The Pragmatics of Contract Regions
	Implementing Contract Regions

	Contracts for Nominally Linked Units
	Signatures and Contracts
	Units without Contracts
	Units with Contracts
	Implementing Units as Contract Boundaries

	A Question of Blame
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

