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Preface

This volume contains the selected peer-reviewed revised articles that were pre-
sented at the 21st International Symposium on Implementation and Application
of Functional Languages (IFL 2009). IFL 2009 was held September 23–25, 2009
at Seton Hall University in South Orange, NJ, USA. This version of the IFL
symposium marked a milestone by being the first ever to be held in the United
States. Our goals are to make IFL a regular event held in the USA and in Europe
by alternating the host continent every year and to foster collaborations, interac-
tions, and friendships between researchers and practitioners on both continents
and beyond.

The IFL symposia bring together researchers and practitioners that are
actively engaged in the implementation and the use of functional and function-
based programming languages. Every year IFL provides a venue for the pre-
sentation and discussion of new ideas and concepts, of work in progress, and of
publication-ripe results. Participants are invited to submit either a draft paper or
an extended abstract describing work to be presented at the symposium. These
submissions are screened by the Program Committee Chair to make sure they
are within the scope of IFL. The submissions accepted for presentation appear
in the draft proceedings distributed at the symposium. Submissions appearing
in the draft proceedings are not peer-reviewed publications. After the sympo-
sium, authors are given the opportunity to consider the feedback received from
discussions at the symposium and are invited to submit revised, full articles to
the formal review process. The revised submissions are reviewed by the Program
Committee using prevailing academic standards, and the best submissions are
chosen to appear in the formal proceedings. This volume is the result of the work
done by the IFL 2009 Program Committee and the contributing authors.

Benjamin C. Pierce, the IFL 2009 guest speaker from the University of
Pennsylvania, delivered an engaging talk entitled “How to Build Your Own Bidi-
rectional Programming Language.” Pierce focused on the semantics and the im-
plementation of programming languages that not only update their output based
on changes in the input, but that also update their input based on changes made
to the output. In addition, Pierce discussed several sample applications that are
well-suited for bidirectional programming languages, like bidirectional transfor-
mations on trees for XML documents, on relational data, and on strings. He
enthusiastically engaged questions posed by IFL 2009 participants and we thank
him for his contribution to IFL 2009.

Following in the IFL tradition, IFL 2009 provided participants with an op-
portunity to get to know each other and to talk outside the formal setting of
presentations with a social event on the second day of the symposium. Partici-
pants traveled to Manhattan to visit the observatory at Rockefeller Center and
to walk across the Brooklyn Bridge. After the visit to Manhattan, participants
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traveled to the symposium’s banquet dinner in the Ironbound neighborhood of
Newark, NJ where they were treated to a traditional Spanish tapas and dinner
feast with a flamenco show.

Shortly before IFL 2009, the programming languages community lost one
of its most distinguished members. In June of 2009 Peter J. Landin passed
away. At IFL, we dearly felt his passing. IFL has honored Peter since 2003 by
awarding each year the Peter J. Landin Award to the best article presented at the
symposium. The recipients of the award for IFL 2009 are Vincent St-Amour and
Marc Feeley, from the Université de Montréal in Canada, for their contribution
entitled “PICOBIT: A Compact Scheme System for Microcontrollers.”

IFL 2009 was made possible by the generous support provided by Jane Street
Capital, Seton Hall University’s Office of the Provost, Seton Hall University’s
College of Arts and Sciences, and Seton Hall University’s Department of Math-
ematics and Computer Science. At Seton Hall, a heart-felt thank you for their
extraordinary efforts to make IFL 2009 a success is extended to Associate Provost
Kirk Rawn, Dean Joseph R. Marbach, Dean Susan Kilduff, Joan Guetti, Lysa
D. Martinelli, and Thomas A. McGee. We are equally grateful to Yaron Minsky
from Jane Street Capital. A debt of gratitude for addressing every need that
came up during the symposium is owed to Rositsa Abrasheva, Florian Buchbeg-
ger, and Barbara Mucha. We thank all the members of the Program Committee
for their advice, time, and thoughtful reviews and all the members of the orga-
nizing committee for their logistical support without which this volume would
have never have become a reality. We are very grateful to Daniel P. Friedman
from the University of Indiana for selflessly assisting with the editing of the
articles appearing in this volume. Finally, we thank the authors for submitting
their articles and trusting that we would do our best to positively showcase their
work.

In closing, we trust that the readers of this volume will find its contents
engaging hopefully inspiring them to start or continue their work on the imple-
mentation and the use of functional languages. Make sure to join us at a future
version of IFL!

April 2010 Marco T. Morazán
Sven-Bodo Scholz
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A Typical Synergy: Dynamic Types and Generalised Algebraic
Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Thomas van Noort, Peter Achten, and Rinus Plasmeijer

The Very Lazy λ-Calculus and the STEC Machine . . . . . . . . . . . . . . . . . . . 198
Jan Rochel

Engineering Higher-Order Modules in SML/NJ . . . . . . . . . . . . . . . . . . . . . . 218
George Kuan and David MacQueen

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237



PICOBIT: A Compact Scheme System for
Microcontrollers

Vincent St-Amour and Marc Feeley

Université de Montréal
{stamourv,feeley}@iro.umontreal.ca

Abstract. Due to their tight memory constraints, small microcontroller
based embedded systems have traditionally been implemented using low-
level languages. This paper shows that the Scheme programming lan-
guage can also be used for such applications, with less than 7 kB of
total memory. We present PICOBIT, a very compact implementation of
Scheme suitable for memory constrained embedded systems. To achieve
a compact system we have tackled the space issue in three ways: the de-
sign of a Scheme compiler generating compact bytecode, a small virtual
machine, and an optimizing C compiler suited to the compilation of the
virtual machine.

1 Introduction

Applications for embedded systems vary greatly in their computational needs.
Whereas some modern cell phones, GPS receivers, and video game consoles con-
tain CPUs, memory and peripherals that are comparable to desktop computers,
there is at the other extreme embedded systems with very limited resources. We
are interested in applications with complex behavior and low speed requirements
such as smart cards, remote sensors, RFID, and intelligent toys and appliances.
These devices have relatively simple, slow, power efficient processors and only
a few kilobytes of memory integrated with peripherals on an inexpensive single
chip microcontroller.

Due to the extreme memory constraints such applications are traditionally
implemented using low-level languages, typically C and assembler, which give
programmers total control and responsibility over memory management at the
expense of software development ease and speed. The overall objective of our
work is to show that a high-level mostly functional garbage collected language is a
viable option in this context. In this paper we explain the design of the PICOBIT
system, a very compact implementation of the Scheme programming language
which targets these applications. We discuss three variants of the system, which
represent different trade-offs and levels of featurefullness. The most compact
variant allows Scheme programs to run on microcontrollers with less than 6 kB
of ROM and 1 kB of RAM. The system is being used in two notable contexts. It
is the firmware of the “PICOBOARD2”, a small mobile robot programmable in
Scheme which is used to teach introductory computer science at the Université

M.T. Morazán and S.-B. Scholz (Eds.): IFL 2009, LNCS 6041, pp. 1–17, 2010.
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2 V. St-Amour and M. Feeley

de Montréal. It is also used to implement the S3 network protocol stack [1],
which implements a basic stack for embedded systems supporting TCP, UDP,
ARP, etc.

2 Related Work

Virtual machine-based approaches have been used in the past to run high-level
languages in embedded environments. Invariably space savings are achieved by
implementing a subset of an existing high-level language. For example, the Java
language has been adapted for embedded applications and the most compact
version is the Java Card Platform virtual machine [2]. To reduce the memory re-
quirements some important features of Java have been removed, notably garbage
collection and the 32 bit integer type (int) are optional, and the 64 bit integer
type (long) and threads do not exist. Therefore the programming style is lower-
level than with full Java. Moreover smart cards which run Java typically have
an order of magnitude more memory than our target platforms.

Due to its small size Scheme has been a popular language to implement in
memory constrained settings. Many of the compact systems are based on in-
terpreters and were designed for workstation class platforms. Some of the most
compact are based on a compiler generating compact bytecode for a virtual
machine. In particular the BIT [3] and PICBIT [4] Scheme systems implement
most of the R4RS [5] and target small embedded systems having less than 8 kB
of RAM and less than 64 kB of ROM. PICOBIT is a descendent of BIT and
PICBIT whose requirements are more modest.

3 Overview

The PICOBIT Scheme system has three parts: the PICOBIT Scheme compiler,
the PICOBIT virtual machine, and the SIXPIC C compiler. The PICOBIT
Scheme compiler runs on the host development system, which is typically a
workstation, and compiles from Scheme to a custom bytecode designed for com-
pactness. The Scheme compiler is itself written in Scheme, though it is not
self-hosting.

The PICOBIT VM runs on any platform for which there is a C compiler.
Currently, we target the popular Microchip PIC18 family of microcontrollers
which are cheap single-chip microcontrollers. The VM executes the bytecode
produced by the PICOBIT Scheme compiler. The VM is written in C for porta-
bility reasons, since most microcontroller platforms already have C compilers
targeting them. Therefore, the PICOBIT virtual machine can be compiled for
any microcontroller which has a C compiler, making PICOBIT a highly portable
platform.

Finally, we have developed the SIXPIC C compiler, a C compiler which was de-
signed specifically to compile virtual machines. We studied the patterns present
in typical virtual machines (and the PICOBIT virtual machine in particular) to
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Fig. 1. Workflow of the PICOBIT Scheme system

add specialized optimizations and omit certain features of the C language in or-
der to reduce the size of the generated code for virtual machines. This compiler
is typically used to compile the PICOBIT virtual machine.

4 General Approach

Because of the code size limitations of our target environment, our approach was
designed with the primary goal of generating compact code. Performance of the
generated code was a secondary concern, and has not been addressed at length.

The bytecode the PICOBIT Scheme compiler generates is higher level than
raw machine code. The bytecode necessary to accomplish a task is typically more
compact than the corresponding machine code. Therefore, the use of interpreted
bytecode can lead to savings in a program’s code size over the use of machine
code. We must keep in mind that the virtual machine needed to execute this
bytecode also takes space. However, since the size of the virtual machine is inde-
pendent of the size of the programs it executes, it is a fixed cost that is amortized
over the cost of all the executed programs. We therefore postulate that once ap-
plications reach a certain size, the combined sizes of the application’s bytecode
and of the virtual machine would be smaller than the size of the machine code
resulting from the native compilation of the application.

Another key point of our approach is that we control every step of the execution
process. By controlling both the Scheme compiler and the virtual machine, we can
adapt the bytecode representation to better fit the needs of our applications.
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Controlling both the virtual machine and the C compiler which compiles it
means that we can specialize the C compiler to use domain-specific optimiza-
tions: optimizations that are especially interesting when compiling virtual ma-
chines or optimizations that are possible thanks to properties of virtual machines,
and would not be valid for all programs.

Finally, the use of a virtual machine also increases the portability of our
system. Since the PICOBIT virtual machine is written in a highly portable
subset of C, porting it to different architectures is easy. So far, PICOBIT has
been ported to the PIC18, MSP430, i386, amd64 and PowerPC architectures,
and compiles successfully using the SIXPIC, MCC18, Hi-Tech C, mspgcc, and
gcc C compilers. Of course, this portability argument does not yet extend to our
SIXPIC C compiler, which currently only supports the PIC18 architecture.

Several versions of the PICOBIT Scheme system exist, catering to different
application types and sizes. The full version of PICOBIT supports all the features
described in this article, and is suitable for large applications dealing with a
large amount of data. A somewhat smaller version of PICOBIT removes support
for unbounded precision integers in return for a smaller virtual machine size.
Finally, a minimalist version of PICOBIT also exists, called PICOBIT Light,
which removes support for unbounded precision integers and byte vectors, is
limited to 16 global variables and 128 memory objects, but is much more compact
than the full version (5.2 kB versus 15.6 kB). This version is appropriate when
building simpler applications that only deal with small amounts of data at the
same time. For example, a temperature sensor that sends reports via UDP using
the S3 network stack.

5 Supported Scheme Dialect

Unlike most programming platforms targeting embedded systems, PICOBIT sup-
ports a large number of high-level programming language features. It supports a
broad subset of the R5RS [6] Scheme standard including macros, automatic mem-
ory management, lists, closures and higher-order procedures, first-class continu-
ations and unbounded precision integers as well as some extensions such as byte
vectors and lightweight threads.

Other featureswere consciously excludeddue to their lack of usefulness in an em-
bedded context, for instance floating-point, rational and complex numbers, string
to symbol conversion (and vice versa), S-expression input, file I/O, eval. Omitting
these features leads to a smaller, and thus more compact implementation.

5.1 Built-in Data Structures

Being a member of the LISP family of languages, the Scheme language makes
heavy use of lists. Therefore, PICOBIT offers built-in support for lists and im-
plements many common list operations. These lists are heterogeneous lists, and
can thus be used to implement most other data structures easily.

This flexibility opens possibilities regarding which classes of applications can
reasonably be implemented in embedded systems. Indeed, some applications
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which have been deemed too complex for small embedded systems would be
straightforward to implement using advanced data structures, reducing the need
for more sophisticated hardware where microcontrollers could suffice.

In addition to lists, PICOBIT offers support for byte vectors, which are equiv-
alent to fixed-width byte arrays, and heterogenous vectors, which are represented
as lists. Byte vectors being more efficient than lists for many tasks common on
embedded systems (mostly thanks to their O(1) random access), byte vector
support is especially interesting on our target platforms. The implementation of
byte vectors in the VM is explored in detail in section 7.7.

Finally, PICOBIT also offers limited support for strings.

5.2 First-Class Continuations

First-class continuations are one of Scheme’s key features, and accounts for a
large part of the language’s flexibility. They are usually considered difficult, or
costly, to implement, which has led some Scheme implementations to omit them.

Since first-class continuations can be used to implement useful control struc-
tures that cannot easily be implemented using traditional embedded development
techniques (such as multithreading), we chose to implement them in PICOBIT.
To illustrate this, the PICOBIT standard library includes a compact continuation-
based multithreading system, implemented in 30 lines of Scheme which compile
down to 141 bytes of bytecode. Writing such a multithreading system in C and
including it in the virtual machine would have likely resulted in a larger code size.
In addition, the same first-class continuation primitives used here could be used to
implement backtracking or early exits without any changes to the virtual machine.

6 The PICOBIT Scheme Compiler

The PICOBIT Scheme compiler is a specialized optimizing Scheme compiler which
generates bytecode. This bytecode can then be executed using the PICOBIT vir-
tual machine. In order to produce highly compact bytecode, some specialized opti-
mizations have been added to the compiler. Most of these optimizations are made
possible by the extensive use of whole-program analysis throughout the compiler.
When compiling a program, PICOBIT appends it to its standard library and com-
piles the result. By compiling applications and the standard library as a single
program, all the whole-program analyses done in the compiler also apply to the
standard library, which leads to more optimization opportunities.

In addition to using selected optimizations to achieve low code sizes, we have
designed a custom instruction set, shared by the PICOBIT Scheme compiler and
the PICOBIT virtual machine.

6.1 Optimizations

Keeping in mind that the goal of the PICOBIT Scheme system is to produce
compact code, the optimizations implemented in the PICOBIT Scheme compiler
were chosen mostly for their effect on the resulting code size.
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In order to minimize the number of allocations done at runtime, a mutability
analysis is done over the whole program at compile-time. Variables that are
never mutated are not allocated in memory at runtime, reducing the program’s
memory footprint and eliminating some variable bookkeeping code, reducing
the application code size. For this mutability analysis to be valid, the compiler
must analyze the whole program at the same time, which makes PICOBIT’s
single-program compilation process interesting.

The PICOBIT Scheme compiler also does branch tensioning. Whenever a
branch instruction points to another branch instruction, the destination of the
first is changed to that of the second, and so on in case of longer branch series.
While this optimization is reasonably useful in most compilers, combining it
with single-program compilation opens up new possibilities. When using separate
compilation, inter-module branches cannot be tensioned, since the nature of
such a branch’s destination is unknown. However, when using single-program
compilation, all destinations are known at compile-time, and what would have
been inter-module branches can be tensioned like any other branches, which
leads to more optimization opportunities. Tail-called functions that are only
called once are thus inlined to completely eliminate a branch instruction.

Finally, a treeshaker [7] was added to the PICOBIT Scheme compiler in order to
remove any code that is not actually used in the program from the resulting byte-
code. A depth-first search is done on the application (and the standard library)
to determine which procedures are reachable from the top level. Only these pro-
cedures then end up being compiled to bytecode. The rest are simply ignored.

The use of whole-program compilation combined with a treeshaker has an
obvious advantage over the use of separate compilation and linking. When using
separate compilation, each compilation unit has to be compiled in its entirety,
as it is impossible to know before linking which of its procedures will actually be
used. With our approach, however, we can exclude unreachable code from the
final binary at compile-time, without having to do link-time optimization.

This treeshaker makes it possible to have a well-furnished standard library
and still generate compact output, since any unused library procedures will not
be present in the resulting bytecode. In our case, the PICOBIT standard library
compiles down to 2064 bytes of bytecode, which can be rather large compared
to the size of some programs. A PICOBIT program that does not use strings
will not include the string functions of the standard library, and will therefore
save 508 bytes.

6.2 The PICOBIT Bytecode

Since our goal is to compile applications to small amounts of bytecode, much of
the design of the bytecode was geared towards representing common idioms as
compactly as possible.

The PICOBIT virtual machine is a stack-based virtual machine. Therefore,
pushing values on the data stack is a common operation for the vast majority of
the programs it runs. As such, effort was put towards representing pushing in-
structions in a compact way. This was achieved by having pushing instructions of
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000xxxxx Push constant x
001xxxxx Push stack element #x
0100xxxx Push global #x
0101xxxx Set global #x to TOS
0110xxxx Call closure at TOS with x arguments
0111xxxx Jump to closure at TOS with x arguments
1000xxxx Jump to entry point at address pc + x
1001xxxx Go to address pc + x if TOS is false
1010xxxx xxxxxxxx Push constant x
10110000 xxxxxxxx xxxxxxxx Call procedure at address x
10110001 xxxxxxxx xxxxxxxx Jump to entry point at address x
10110010 xxxxxxxx xxxxxxxx Go to address x
10110011 xxxxxxxx xxxxxxxx Go to address x if TOS is false
10110100 xxxxxxxx xxxxxxxx Build a closure with entry point x
10110101 xxxxxxxx Call procedure at address pc + x − 128
10110110 xxxxxxxx Jump to entry point at address pc + x − 128
10110111 xxxxxxxx Go to address pc + x − 128
10111000 xxxxxxxx Go to address pc + x − 128 if TOS is false
10111001 xxxxxxxx Build a closure with entry point pc + x − 128
10111110 xxxxxxxx Push global #x
10111111 xxxxxxxx Set global #x to TOS
11xxxxxx Primitives (+, return, get-cont, ...)

Fig. 2. The PICOBIT instruction set and its bytecode encoding

different lengths, as shown in figure 2. When operands are short enough (typically
4 or 5 bits), short instructions can be used, leading to savings in code size.

To make the most of these short instructions, the shortest value encodings are
assigned to frequently used values, as explained in section 7.4. In addition, global
variable encodings are assigned in decreasing order of frequency of use, so that
the most frequently used global variables are assigned the shortest encodings,
and can therefore be used with the short instructions.

In addition to short pushing instructions, PICOBIT also supports short rela-
tive addressing instructions. In some frequently occurring cases, such as a goto-
if-false whose destination is no more than 15 bytecodes away, instructions fit in
a single byte, rather than the three bytes of an absolute addressing instruction.
To make the most of these instructions, we use trace scheduling to position the
destination code as close to the instructions that reference this destination.

7 The PICOBIT Virtual Machine

The PICOBIT virtual machine is the part of the PICOBIT system that resides
on the target microcontroller and interprets the bytecode generated by the PI-
COBIT Scheme compiler. As such, care was taken to build the virtual machine
to be as compact as possible, which means that algorithms and data structures
are kept simple throughout the virtual machine. That being said, the PICOBIT
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virtual machine is a full-featured virtual machine which includes a garbage col-
lector, an implementation of unbounded precision integers and support for data
structures.

7.1 Environment Representation

The PICOBIT virtual machine being a stack-based virtual machine, environ-
ments are represented as stacks. These stacks are themselves represented as
PICOBIT lists made of cons cells, allocated in the heap. When looking up a
variable in an environment, it is therefore necessary to know its depth in the
stack at the current execution point, which can be determined statically.

7.2 Automatic Memory Management

The PICOBIT virtual machine includes a mark-and-sweep garbage collector.
Due to the limited amount of memory available on our target systems, a mark-
and-sweep garbage collector is especially interesting as the whole heap can be in
use at the same time. By comparison, copying garbage collectors can only use
half of the available memory at a given time, thereby cutting the heap size in half
and limiting the data size of the applications that can be run on a given chip.
Another advantage of a mark-and-sweep garbage collector is that the necessary
algorithms are simple, which leads to a compact garbage collector.

The Deutsche-Schorr-Waite algorithm [8] is used in the marking phase, and
it really shines in an embedded context. Since this algorithm does not need to
use a stack to traverse a tree, no memory needs to be allocated for such a stack.
Reserving a portion of the heap for such a stack would be an unattractive option,
considering the low amount of available memory to begin with. The use of the
Deutsche-Schorr-Waite algorithm therefore allows us to use a larger portion of
the microcontroller’s memory for our heap, enabling more complex applications
to be run using PICOBIT.

7.3 Address Space Layout

The distinction between RAM and ROM is important in embedded systems,
especially for single-chip microcontrollers. Since there is usually more ROM than
RAM available, it is interesting to move as much data as possible to ROM, to
leave as much room in RAM as possible for mutable data. Literal values and
variables that are never mutated (and whose value is known at compile-time)
are stored in ROM whereas mutable variables and temporaries are stored in
RAM. Therefore, objects manipulated by the PICOBIT virtual machine can be
located either in ROM or in RAM.

To reference these objects, the full version of PICOBIT uses 13-bit encod-
ings, whereas the Light version uses 8-bit encodings. Using shorter encodings
obviously reduces the number of objects that can be referenced, as shown in
figure 3, but since 8-bit encodings can be manipulated using 8-bit rather than
16-bit machine operations, their use leads to a more compact virtual machine
on 8-bit microcontrollers.
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Encoding PICOBIT PICOBIT Light
0 #f

1 #t

2 ’()

3 – 44 -1 – 40
45 – 127 41 – 123 ROM values

128 – 255 124 – 251 Heap values
256 – 259 252 – 255

N/A260 – 511 ROM values
512 – 4095 Heap values

4096 – 8191 Byte vector space

Fig. 3. Object encoding in PICOBIT and PICOBIT Light

In order for objects to contain references to objects stored both in ROM and
in RAM, it was necessary to partition PICOBIT’s address space. For instance, a
pair (whose internal layout is discussed in section 7.4) could have its car stored
in ROM and its cdr stored in RAM, in the heap. To reflect this address space
partition, the object reference determines whether it points towards a ROM
object or a RAM object.

References can denote ROM and RAM objects, and also preallocated con-
stants that occupy no memory. As shown in figure 3, references with a value
from 0 to 259 (0 to 44 for PICOBIT Light) refer to immediate values. Preallo-
cating commonly used values reduces the amount of memory, both ROM and
RAM, required to store values. Many common operations, in particular arith-
metic on small numbers, can therefore be done without allocating any memory.
Furthermore, since special short instructions (see section 6.2) exist to handle
references with small values, the use of these frequently occurring preallocated
constants can help reduce the size of application bytecode.

Finally, the fourth zone of PICOBIT’s address space is used for byte vectors.
The use of this zone will be detailed in section 7.7.

To simplify, and therefore reduce the size of, the virtual machine, RAM and
ROM objects have the same layout, which only depends on their type, not on
their location. Further details about these layouts are found in section 7.4.

7.4 Object Representation

The PICOBIT virtual machine being designed for dynamic languages, it is nec-
essary to encode objects stored in memory along with their type and garbage
collection information.

First of all, all objects are 32 bits wide, whether they are stored in ROM, along
with the program, or in RAM, in the heap. We can therefore consider the heap as
a simple array of objects, and short indices can be used to refer to objects instead
of longer pointers, which leads to a compact object representation. Having a
single object size also simplifies garbage collection. Instead of having to figure
out where objects begin and end, the sweeping phase of the garbage collector
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Fig. 4. Object encodings in PICOBIT and PICOBIT Light

only has to iterate on the array representing the heap. In addition, since the
garbage collection flags are located in the same place for objects of all types, it
is not necessary to know the exact type of an object when sweeping it.

In addition to being all the same size, PICOBIT objects all follow the same
general structure, as shown in figure 4. These similarities reduce the number of
virtual machine primitives needed to access the data contained in objects, as
the same primitives can be used on most data types. Once again, needing fewer
data access primitives helps keep the PICOBIT virtual machine’s size small.

7.5 Unbounded Precision Integers

A feature that sets PICOBIT apart from most other embedded programming
environments is the availability of unbounded precision integers. Traditionally,
embedded programming environments on 8-bit microcontrollers offer support for
numeric values up to 32 bits wide. However, larger values are needed in some
embedded applications. For instance, the S3 network stack, which runs on top of
the PICOBIT system, uses 48 bit integers to store MAC addresses. Large integral
values are also necessary for some cryptographic calculations, for instance the
SHA family of cryptographic hashing functions, which need values up to 512 bits
wide.
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Embedded applications also often need to keep track of time, sometimes with
a high degree of precision (when controlling machinery, for example). If an ap-
plication keeps track of time at the microsecond level using a 32-bit value, a
wraparound will occur every hour or so. To handle such wraparounds, complex
logic might have to be included in the application, leading to an ad-hoc bignum
implementation.

The support for large integers in embedded systems can also create oppor-
tunities to do processing that would traditionally be done on host systems or
specialized hardware directly on microcontrollers, therefore reducing latency and
bandwidth needs, and increasing the autonomy of such embedded systems.

As can be seen in figure 4, unbounded precision integers are encoded in PI-
COBIT as linked lists of 16 bit values. At the end of each list is either the
integer 0 or -1, to represent the sign. 0, -1 and other small integers have ded-
icated encodings and do not need to be represented as linked lists. The use of
this “little-endian” representation simplifies the bignum algorithms in particular
for numbers of different lengths.

On versions of PICOBIT which do not support unbounded precision integers
(including PICOBIT Light), integers are limited to 24 bits, and encoded directly
in the object.

7.6 First-Class Continuations

Many Scheme systems implement first-class continuations by copying the stack
into the heap with each call to call/cc, which can cause an important overhead
both in terms of speed and in terms of space.

PICOBIT avoids this overhead by avoiding the use of a call stack, and directly
allocating each continuation in the heap like any other object. Manipulating con-
tinuations is therefore as simple and efficient as manipulating any other object.
In effect, this representation gives us first-class continuations for free. Thus,
operations on continuations are implemented as simple virtual machine instruc-
tions. Being allocated in the heap, discarded continuations are garbage collected,
regardless of how they have been used.

As shown in figure 4, continuations are represented as a chain of continuation
objects, each containing a reference to its parent continuation and a reference
to a closure object. The closure object contains the entry point of the function
associated to the continuation and the enclosed environment.

This representation of continuations is very compact, with two objects (the
continuation object and the closure object) per frame. When using the multi-
threading system included in the PICOBIT standard library, each thread only
causes an overhead of one continuation frame, or 8 bytes. Applications with sev-
eral threads, such as systems monitoring multiple sources of input, can thus be
implemented with a very low memory footprint.

7.7 Byte Vectors

Unlike other PICOBIT objects, byte vectors do not necessarily occupy four bytes.
In order to guarantee fast random access, byte vectors have to be allocated as



12 V. St-Amour and M. Feeley

a single contiguous space of the appropriate size. To preserve the advantages
brought by having all objects of the same size in the heap, we allocate byte
vectors in a different section of memory. As such, references with values over
4095 point to objects within this zone, which we call the byte vector space.

Like the heap, the byte vector space is allocated by increments of four bytes.
However, unlike with the heap, contiguous segments of any length (bounded by
the size of the byte vector space) can be allocated in the byte vector space. A
simple first-fit allocation algorithm is used to decide where to allocate each byte
vector.

In addition to the byte vector contents which are located in the byte vector
space, byte vectors are also composed of a header, containing the length of the
byte vector and a pointer to the start of the contents (as seen in figure 4). These
headers are stored in the heap, and as such are four bytes wide and follow the
same general layout as any heap object.

PICOBIT Light does not offer support for byte vectors, which removes the
need for a separate byte vector space, and simplifies several algorithms of the
virtual machine, leading to a more compact VM.

8 The SIXPIC C Compiler

When using the PICOBIT Scheme system, the total size of the software running
on the target system is the sum of the size of the PICOBIT virtual machine
and of the application programs, and our goal is to minimize that total size. As
we have seen earlier, the PICOBIT Scheme compiler was designed to generate
compact application bytecode. The size of the virtual machine remains, and in
some cases it can account for an important part of the whole system. While the
PICOBIT virtual machine can be compiled with any C compiler, some savings
in code size can be achieved by using a specialized C compiler to compile it. The
SIXPIC C compiler is one such compiler.

The SIXPIC C compiler was designed to generate compact code, especially
when compiling virtual machines. This was done by analyzing the code of typical
virtual machines (including the PICOBIT virtual machine) to find and then
optimize common patterns. This analysis also showed us which features of the C
language were seldom used for virtual machines, and could therefore be omitted
from SIXPIC. In addition to reducing the complexity of the compiler, some of
these omissions also opened possibilities for optimization which would not have
been valid otherwise.

8.1 Restrictions

Even though virtual machines are complex pieces of software, they do not make
use of every single feature of the C language. Therefore, while designing SIXPIC,
some features could be left out and some others were restricted to the subset
actually used by most virtual machines.
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The first notable omission is support for floating point numbers. Since the
PICOBIT Scheme system does not support them, and that most microcontrollers
do not support floating point operations, this omission is pretty straightforward.

Since virtual machines typically manage their data structures at the bit level
(especially in embedded systems), ordinary C structs are not generally useful in
the context of virtual machines.

A more controversial restriction would be that SIXPIC does not support re-
cursive (or mutually-recursive) functions. At first glance, this might appear re-
strictive. However, since typical virtual machines consist mostly of a switch
statement in a loop, recursion is not needed. This omission is what makes our
specialized calling convention possible.

8.2 Calling Convention

To support recursive functions, a call stack is usually needed. Most modern work-
station architectures provide hardware support for such stacks, which makes the
compiler’s job easier. However, most microcontroller architectures do not offer
such support, which means that the compiler would need to build a software
stack in memory in order to support recursive functions. The creation and use
of such a stack increases the complexity, and therefore the size, of the generated
code. By giving up support for recursive functions, no such stack is needed any-
more and it becomes possible to use a calling convention which passes function
arguments in pre-determined registers. This approach is taken by the leading
embedded C compilers, such as Microchip’s Hi-Tech C R© compiler.

With the SIXPIC C compiler, we take this approach further. Since we do
not support recursive functions, every variable (be it a local variable, a global
variable, or a function parameter) can be allocated at a static location. We then
use whole-program analysis to determine which variables interfere with each
other and use the results to do register allocation for the whole program all at
once.

Since the location of each variable is known at compile-time, we can avoid
moving values to and from the registers needed by the calling convention. In-
stead, we use a specialized calling convention where the caller moves the argu-
ments directly in the registers where the callee’s local variables reside, as shown
in figure 5.

8.3 Optimizations

As with the PICOBIT Scheme compiler, the optimizations present in the SIXPIC
C compiler were chosen for their impact in reducing the size of the resulting code.

First of all, our register allocation algorithm does register coalescing. Since the
SIXPIC C compiler does whole-program register allocation, register coalescing
can be used more broadly. Instead of being limited to coalescing virtual registers
inside each function, as would be the case with intra-procedural register alloca-
tion, global register allocation makes it possible to coalesce registers being used
in two different functions. With our specialized calling convention (see subsec-
tion 8.2), such opportunities occur enough to be worthwhile. We measured that
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C code Stack-based Register-based Specialized
byte f (byte x) { ... ... ...

return x + 3; push $y move $y A move $y $x

} call $f call $f call $f

byte y = 3; ... ... ...

f(y); f: pop $x f: move A $x f:

... ... ... ...

Bytes of PIC18 machine code: 20 12 8

Fig. 5. Comparison between a stack-based calling convention, a register-based calling
convention and our specialized calling convention

the use of register coalescing reduces the size of the generated code by around
4.5%, mostly by eliminating move instructions between coalesced registers. Out
of the 2420 byte cells found in the PICOBIT virtual machine, 1453 end up being
coalesced. After register allocation, only 324 bytes of RAM are necessary for the
VM’s variables, excluding the heap.

By looking for patterns in the code of several virtual machines, we noticed that
the switch/case construct was extensively used, especially for instruction de-
coding. PICOBIT is no exception. We also noticed that most of the switch/case
statements used in virtual machines respected several other properties, including
the absence of default labels and the presence of mostly contiguous label num-
bers. We therefore worked on an implementation of switch/case that would
generate compact code, especially when the above properties hold. After trying
several implementations, we settled on a branch table-based approach which,
despite the absence of computed branches on the PIC18 architecture, generates
compact code in the cases that interest us.

Like the PICOBIT Scheme compiler, SIXPIC does trace scheduling. The ben-
efits explained in section 6.1 also apply to SIXPIC, since it also does single-
program compilation. When compiling the PICOBIT virtual machine, 519 jumps
are shortened thanks to trace scheduling and 228 are eliminated altogether,
which saves 6.3% of the virtual machine size.

Instead of providing an external set of hardware access routines with which
applications can be linked, these routines are defined in terms of the compiler’s
abstract assembly language. When compiling a program, SIXPIC joins these
routine’s control flow graphs to the program’s, and uses the resulting graph for
the rest of the compilation process. Therefore, all the whole-program optimiza-
tions described above are run on these routines at the same time, resulting in a
greater optimization potential.

Finally, the SIXPIC C compiler uses, like the PICOBIT Scheme compiler, a
treeshaker to remove any unused code from the generated executable, reducing
its size. As is the case with the Scheme compiler, SIXPIC appends its standard
library to application programs, then compiles only the reachable parts. Once
again, the use of this treeshaker helps SIXPIC achieve low application code sizes
by excluding unused code in the application (or in the standard library).
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9 Experimental Results

9.1 Bytecode-Based Approach

As we anticipated, a bytecode-based approach to embedded application devel-
opment leads to compact application sizes.

In figure 6, we show examples of programs used with the PICOBOARD2
robot, and the amount of bytecode required for each. As we can see, all these
programs, even relatively sophisticated ones like a web server, can be repre-
sented compactly using bytecode. These small code sizes were obtained despite
PICOBIT having a large (2064 bytes) standard library, thanks to the treeshaker,
which removes unused parts of the library from the final bytecode.

We have also compared the S3 TCP/IP stack, which is used with the PICO-
BIT Scheme system, to Adam Dunkels’s uIP [9] stack, which is written in C
and is compiled natively to machine code. Both stacks implement a similar set
of features and share most design decisions. They can be therefore considered
roughly equivalent for our comparison’s purposes.

When compiling S3 with the PICOBIT Scheme compiler, we obtain 3.1 kB
of bytecode whereas when we compile the uIP stack using Microchip’s MCC18
compiler, we obtain a 10.0 kB binary. Thus compiling to bytecode resulted in
the application being about three times as compact.

Since the bytecode is useless without the PICOBIT virtual machine to in-
terpret it, we have to include the size of the virtual machine to get realistic
figures. When comparing the size of the whole systems (see figure 7), the na-
tively compiled uIP is about twice as compact as the combination of S3 and of
the PICOBIT virtual machine.

However, the size of the virtual machine is a fixed cost which is independent of
the size of the application it interprets. Therefore, the cost of the virtual machine
is amortized over all the applications it executes.

Program Code size (B)
Flashing led 9

Follow the light 101
Remote control 106

Hello 355
Light sensors 374

Multi-threaded presence counter 599
Web server 1033

Fig. 6. Example PICOBOARD2 programs

Stack Code size (kB) VM size (kB) Total size (kB)
S3 3.1 15.6 18.7

uIP 10.0 - 10.0

Fig. 7. Comparison between the S3 and uIP embedded network stacks
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Version SIXPIC MCC18 Hi-Tech C
Full PICOBIT 17.5 kB 24.8 kB 15.6 kB

Without bignums 13.0 kB 17.0 kB 11.6 kB
PICOBIT Light 7.2 kB 8.0 kB 5.2 kB

Fig. 8. Size comparison between the different versions of the PICOBIT VM compiled
with various C compilers

Since TCP/IP stacks are complex applications, we believe that the compactness
of bytecode versus machine code that we have observed when compiling S3 would
hold when compiling other complex applications. We therefore expect that for suf-
ficiently large applications, our bytecode-based approach would lead to smaller
system sizes than a native compilation-based one. Due to their smaller size, we ex-
pect that the restricted versions of PICOBIT will fare even better in this regard.

Keeping in mind that our motivation was to execute larger programs on
smaller chips, the fact that our bytecode-based approach will likely behave better
than native compilation for sufficiently large programs is promising.

9.2 Specialized C Compiler

Another key element of our approach towards embedded development is the use
of a specialized C compiler optimized towards virtual machines. So far, this ap-
proach looks promising, but a sufficiently optimizing general-purpose C compiler
can still generate more compact code than our specialized SIXPIC C compiler,
as is shown in figure 8.

Thanks to its domain-specific optimizations, SIXPIC outperforms Microchip’s
MCC18 general-purpose C compiler by about 42% when compiling the PICOBIT
virtual machine. However the more mature Microchip’s Hi-Tech C compiler gen-
erates code that is 12% more compact than SIXPIC’s, likely due to its broader
range of general-purpose optimizations. We expect that adding more domain-
specific optimizations to the SIXPIC C compiler will allow it to close the gap.

10 Future Work

While some work has already been done towards making the PICOBIT bytecode
compact, it has mostly consisted in observing the generated code and finding
more compact encodings by hand. An interesting, and more rigorous, approach
would be to use Huffman encoding on the bytecode to further reduce its size.
Such an approach has been successful [10] for several virtual machines, and could
lead to reductions in application code size.

Some work also remains to be done on the SIXPIC C compiler to handle in
a more compact fashion some common virtual machine idioms. So far, work has
been done to leverage several interesting properties of virtual machines, most
notably their lack of recursive functions, but some observed virtual machine
patterns are not yet properly exploited by SIXPIC.
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Finally, as previously mentioned, the instruction set and data types of the
PICOBIT virtual machine, even though they were chosen and designed with
the Scheme language in mind, are general enough to support other dynamic
languages, such as Python or Perl. The Factor language also comes to mind, as
a dynamically-typed garbage-collected stack-based language could integrate well
with the stack-based PICOBIT virtual machine.

11 Conclusion

We have presented an implementation of the Scheme programming language
which is suitable for programming small microcontrollers. The system supports
several high-level constructs not usually available in microcontroller development
tools, including garbage collection, higher-order procedures, first-class continu-
ations, threads, and unbounded precision integers. Our approach tackles the
space issue in three ways: the design of a Scheme compiler generating com-
pact bytecode, a small virtual machine, and an optimizing C compiler suited
to the compilation of the virtual machine. Although there are still avenues for
improvement that we will pursue in our future work, our results show that a
fairly featurefull Scheme system can run on platforms with only a few kilobytes
of memory. For instance, it allows a basic network protocol stack (S3) to run on
a microcontroller with less than 19 kB of ROM.
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Abstract. Kansas Lava is a domain specific language for hardware de-
scription. Though there have been a number of previous implementations
of Lava, we have found the design space rich, with unexplored choices.
We use a direct (Chalmers style) specification of circuits, and make sig-
nificant use of Haskell overloading of standard classes, leading to con-
cise circuit descriptions. Kansas Lava supports both simulation (inside
GHCi), and execution via VHDL, by having a dual shallow and deep em-
bedding inside our Signal type. We also have a lightweight sized-type
mechanism, allowing for MATLAB style matrix based specifications to
be directly expressed in Kansas Lava.

1 Introduction

In the Computer Systems Design Lab (CSDL) at KU we build systems in hard-
ware and software. We are also avid users of Haskell. Lava [1], an Embedded
Domain Specific Language (EDSL) for expressing hardware level concerns, is
a natural way for a CSDL member to think about constructing and express-
ing our systems. In this paper, we introduce our version of Lava, called Kansas
Lava, and describe how we use modern functional language techniques includ-
ing applicative functors and type functions to improve the overall expressiveness
of our hardware simulation and synthesis toolkit, and work towards a unified
development story of specification to implementation.

Lava is the name given for a family of Haskell hosted Embedded DSLs for ex-
pressing (typically) gate-level hardware descriptions. In general, Lava is a design
pattern for EDSL construction, when trying to capture hardware concerns. This
section provides an overview of the well-known Lava design pattern, and in the
next section we introduce our variant of Lava.

The central idea in Lava is that, under the correct conditions, we can observe
a function as a circuit. Consider this half adder description.

halfAdder :: (Bit,Bit) -> (Bit,Bit)

halfAdder (a,b) = (carry,sum)

where carry = and2 (a,b)

sum = xor2 (a,b)

M.T. Morazán and S.-B. Scholz (Eds.): IFL 2009, LNCS 6041, pp. 18–35, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Given suitable input, it is possible to execute this function directly.

> halfAdder (high,low)

(low,high)

We can extract the truth table for the halfAdder by applying it to all possible
inputs.

> [ (b1,b2,halfAdder b1 b2) | b1 <- [low,high], b2 <- [low,high] ]

[ (low,low,(low,low),

(low,high,(low,high),

(high,low,(low,high),

(high,high,(high,low) ]

This is classical functional programming. As well as executing this halfAdder,
in Lava we can also extract the internal wiring of the function by applying
halfAdder to suitability constructed dummy arguments. Consider the following
implementation of Lava.

data Bit = High | Low | Xor2 Bit Bit | And2 Bit Bit | Var String

and2 (a,b) = And2 a b

xor2 (a,b) = Xor2 a b

high = High

low = Low

This is a traditional deep embedding of a domain specific language. In this
case, the language is Lava itself. Now, if we apply halfAdder with suitably
annotated Vars, we get a data structure that contains the internal structure of
the halfAdder function.

> halfAdder (Var "a",Var "b")

(And2 (Var "a",Var "b"),Xor2 (Var "a",Var "b"))

From structures that represent these wiring diagrams, we can generate struc-
tural VHDL that represents the wire routing between established components. In
this way, compiling combinational circuits is straightforward, if tedious. Compil-
ing sequential circuits, however, exposes a critical shortcoming with the original
Lava design pattern. Specifically, there is no easy way to observe the wiring cy-
cles that exist in sequential circuits. Addressing this issue led to a fork in the
design specifics of Lava implementations.

Consider the following circuit for computing the parity of an ongoing signal.

-- Parity specification

parity :: Bit -> Bit

parity input = output

where

output = xor2 (delay output,input)

parity is defined as the xor2 of the current input value with the value of parity
on the previous cycle. The delay combinator takes a signal that changes over
time, and delays the output by one clock cycle.
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The earlier trick of using Var as a dummy argument inside our deep DSL
does not work directly. Assuming we have augmented our deep DSL to include
delay, applying parity to an instance of Var gives an infinite result.

> parity (Var "x")

Xor2 (Delay (Xor2 (Delay (Xor2 (Delay (...

There are two common solutions to the problem of infinite computation result-
ing from circular definitions. One solution is to use monads (or similar categorical
structure) to wrap the result in a way that circularity becomes observable. This
is the approach taken by Singh [2]. Using monads has the advantage that it
avoids unsafe Haskell constructs and can be expressed in idiomatic Haskell. The
disadvantage is that the type of parity changes, as well as the specific form
of the specification body, compromising the declarative flavor of the hardware
description.

A second solution to reifying specifications like parity relies on the fact that
the internal definition of parity is represented using a cyclic graph structure.
With the ability to observe sharing [3,4] we can extract these cycles, though we
need to be careful not to lose some equational reasoning options. In practice,
observable sharing does not interfere with Haskell’s pure idioms, and is arguably
more declarative.

Both solutions for resolving cycles result in a netlist structure of gates and
wiring. From this netlist, generating VHDL is straightforward. Lava becomes a
macro language inside Haskell for writing combinational and sequential circuits.
A VHDL synthesizer compiles the generated VHDL to implementations in FPGA
or another silicon technology. The Lava concept has been both influential and
successful. Lava has been used to build a number of FPGA based hardware
solutions [2,5], and has also had tremendous success in helping teach hardware
design at both the graduate and undergraduate level [6].

2 Kansas Lava

Kansas Lava is an effort to extend the Lava design pattern with modern func-
tional programing technology. In particular, we attempt to scale up the ideas in
Lava to operate on larger circuits and with larger basic components.

– Kansas Lava uses a single Signal type for all types of signals. Some versions
of Lava use overloading to interpret constructs in either a synthesis or simu-
lation mode. Our experience is that a single concrete type is easier to work
with in practice, and we have included the two main interpretations into our
Signal type. Ultimately this allows a closer fit between our specifications
of behavior and synthesizable code. We give an example of this process in
section 8.

– Like other Lava implementations before it, Kansas Lava supports both syn-
thesis and simulation. This supports a workflow where first a simulation
model is developed, then refined to a synthesizable variant, then further
refined to satisfy performance constraints.
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– Kansas Lava uses modern Haskell idioms. We define Signal as an applicative
functor [7]. Arithmetic is overloaded over Signal, so we can use standard
arithmetic operators and represent constants. This leads to simpler and more
Haskell-like circuit specifications.

– Kansas Lava has direct support for including new blocks of existing VHDL
libraries as new, well typed primitives. This allows Kansas Lava to be used
as a high-level glue between existing solutions.

– Kansas Lava includes simple type checking over binary representations. What
might be used as a single polymorphic entity inside Lava will be instanti-
ated to a specific, monomorphically sized implementation in VHDL. This
type checker is lightweight, as described in section 6.

– Kansas Lava uses an implementation of sized types, built using type func-
tions. This library includes sized 1 and 2 dimensional matrices, along with
sized signed and unsigned numerical representations. In Haskell, requiring a
14-bit unsigned value is unusual, but in hardware, we often know and want to
enforce a specific width and format. We describe our sized type mechanism
in section 4.

The primary contribution of our work so far is bringing together all the above
elements into a single modern framework. One of our target applications – wire-
less communication circuits – makes heavy use of matrix operations to express
encoding and decoding mechanisms [8], so we pay careful attention to support
a straightforward encoding of such operations. In particular, the use of type
functions to implement sized types makes matrix operations clear and straight-
forward. Furthermore, we believe our use of sized types for both ranged values
and indices is novel and useful when specifying hardware.

3 Signal for Synthesis and Simulation

Building up small Lava circuits for bit-level operations is a well understood
process. One aspect that is unusual about Kansas Lava is the coupling between
the model and the synthesizable circuit, which both are embedded in the single
Signal type. In this section, we introduce the Kansas Lava Signal type and
give examples of its use.

A Signal is a value that is typically represented by a signal in VHDL, and
implemented by a physical vector of wires. A Signal of a specific type represents
an infinite sequence of elements of this type. Semantically, we model Signal as

Signal α = Nat → α

where Nat is a clock cycle count.
Kansas Lava provides basic primitives that act over types such as Signal Bool.

For example, a simple xor over two signals has the type

xor2 :: Signal Bool -> Signal Bool -> Signal Bool
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Literally, xor2 takes two signals of boolean values, and return a signal of
booleans. The half adder from section 1 can be given the descriptive type

halfAdder :: (Signal Bool,Signal Bool) -> (Signal Bool, Signal Bool)

We denote an infinite stream of boolean values using low or high for streams
of True and False respectively.

low :: Signal Bool

high :: Signal Bool

Many interesting signals can be constructed; for example a multiplexer

mux2 :: Signal Bool -> (Signal a, Signal a) -> Signal a

where the mux2 selects between two signals based on a boolean signal argument.
Furthermore, Signal is an applicative functor [7]. The applicative functor

provides a clean way of expressing computation over time-varying streams of
values. For Signal the applicative functor operators have the type

pure :: a -> Signal a

(<*>) :: Signal (a -> b) -> Signal a -> Signal b

(<$>) :: (a -> b) -> Signal a -> Signal b

We can generate infinite sequences of a single specific value, and we can merge
a sequence of functional values with a sequence of arguments using individual
applications, giving a sequence of results. This raises the question of how to
realize a Signal of functional values in hardware.

Signal α is a dual representation, combining an infinite sequence of α values
with a deep embedding of the structure of computation. With this shared repre-
sentation, all synthesizable circuits can be simulated directly, but not all circuits
can be synthesized.

In Kansas Lava, the distinction between synthesizable and non-synthesizable
hinges on the presence of applicative functor constructs. The applicative func-
tor provides a convenient interface for specifying behavior but is unsuitable for
synthesizable circuits. This distinction induces the design flow illustrated in fig-
ure 1. We start with a Haskell model, then use applicative functors to rebuild
the model in a way that understands time, then we factor out the applicative
functor, where the remaining circuit is now synthesizable.

Haskell
Implementation

Applicative Functors
+ Kansas Lava

Kansas Lava without
Applicative Functors

�� ��

Native
Haskell

Shallow
Embedding

Deep
Embedding

Fig. 1. Kansas Lava Design Flow
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4 Sized Types and Sized Matrices

Many specifications of behaviors for error correcting codes are expressed in terms
of matrices. In this section, we describe matrices in Kansas Lava, which use a
sized type implementation to catch size mismatches statically. The basic type
of a matrix is Matrix ix a, where ix is a type encoding of the size, and a is
the type of elements of the matrix. A vector of boolean values of size 32 has
the type Matrix X32 Bool. The sized types from X1 to X256 are provided, and
other larger numbers are straightforward to construct. We consider matrices as
a hybrid between lists and tuples. Like tuples, the type completely determines
the number of elements that the matrix contains, and like lists every element in
the matrix has the same type.

Matrices are created by coercion from a standard list.

> :t matrix

matrix :: (Size i) => [a] -> Matrix i a

> matrix [1..4] :: Matrix X4 Int

[ 1, 2, 3, 4 ]

When creating a matrix, you must specify the type. We display matrices as
list of elements, with traditional spacing between elements. These matrices are
functors, so we can fmap (functor map) over these matrices.

> let m = matrix [1..4] :: Matrix X4 Int

> fmap (*2) m

[ 2, 4, 6, 8 ]

Kansas Lava also supports multi-dimensional matrices. As in the case of single
dimension matrices, we create them from a flat list, with the size determining
the partitioning of the input list.

> matrix [1..12] :: Matrix (X3,X4) Int

[ 1, 2, 3, 4,

5, 6, 7, 8,

9, 10, 11, 12 ]

For two dimensional matrices, the show routine renders the matrix as a sin-
gle list, using layout to denote the partitioning. From this basis, we can build
combinators to operate over matrices, performing functions like transpositions,
splicing, and joining.

Incorporating matrix sizes allows general functions to be defined. For example,
identity creates an identity matrix.

> :t identity

identity :: (Size x, Num a) => Matrix (x, x) a

> identity :: Matrix (X4,X4) Int

[ 1, 0, 0, 0,

0, 1, 0, 0,

0, 0, 1, 0,

0, 0, 0, 1 ]
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The type of identity states that the result must be a square matrix, and the
elements must admit Num.

The Xn type has a concrete realization in the form of a natural between 0 and
n−1. This represents the range of possible valid index values for a specific array.
The ix type is not just a phantom type [9] to represent size, it also is one of the
ways we index into a Matrix. Indexing has the type

(!) :: (Size ix) => Matrix ix a -> ix -> a

Sized types are useful for ensuring consistences between the matrix sizes. For
example, the definition of matrix multiply is

mm :: (...) => Matrix (x,y) a -> Matrix (y,z) a -> Matrix (x,z) a

mm a b = forAll $ \ (i,j) -> sum [ a ! (i,r) * b ! (r,j) | r <- all ]

The type captures exactly the requirement that the number of columns in the
first matrix must match the number of rows in the second matrix. The forAll
function creates a new matrix from a function that takes a matrix index and
returns the element at that index.

Sized types allow computation on types. The type of beside, which places
two matrices side by side is

beside (...) => Matrix (x,y1) a -> Matrix (x,y2) a -> Matrix (x,y3) a

Ignoring the type constraint for a moment, an example of its use is

> let i = identity :: Matrix (X4,X4) Int

*Main> i ‘beside‘ i

[ 1, 0, 0, 0, 1, 0, 0, 0,

0, 1, 0, 0, 0, 1, 0, 0,

0, 0, 1, 0, 0, 0, 1, 0,

0, 0, 0, 1, 0, 0, 0, 1 ]

So what is the actual type of beside, including class constraints? Consider
possible ways we may use sizes at compile time.

– We want to know the total size of the result matrix, if we know the sizes of
the two arguments.

– Alternatively, we want to be able to infer the type of a specific argument, if
we know the size of the other argument and the result.

We provide these capabilities using explicit type functions [10], providing an ADD
and SUB at the type level. These are type functions and provide inference in a
single direction. For example, the type ADD X2 X3 maps to X5.

For each of the arguments and the result, we provide a single type function
that can compute the sized type, given the following type to beside.

beside

:: ( Size m, Size left, Size right, Size both

, ADD left right ~ both

, SUB both left ~ right

, SUB both right ~ left

) => Matrix (m, left) a -> Matrix (m, right) a -> Matrix (m, both) a
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In English, this means that m, left, right, and both are all sized types. The
result column count both is the sum of the left column count and the right
column count. The ~ operator indicates type equality.

Given the ability to represent sizes at the type level, we can use them for both
the sizes of matrices as well as the size of numerical representations. Haskell
libraries provide a small number of specifically sized signed and unsigned rep-
resentations, but often in circuits more precise control of sizes is required, such
as Int9 (a signed 9-bit integer) or Word34 (an unsigned 34-bit integer). Sized
matrices are used to encode arbitrarily sized signed and unsigned numbers.

data Signed ix = Signed (Matrix ix Bool)

data Unsigned ix = Unsigned (Matrix ix Bool)

In Kansas Lava, we provide instances of Num, Enum, Bits, and other standard
classes for both Signed ix and Unsigned ix. The implementation given here
is the specification; for efficiency we utilize an underlying encoding of Signed
and Unsigned using an Integer. The Signed and Unsigned types provide a
standard interface for modular arithmetic in Haskell.

> let x = 100 :: Signed X8

> x

100

> x + 1

101

> x * x

16

5 Sized Types and Hardware Representations

In Kansas Lava, like many Haskell programs, types reveal a great deal about
implementation. Kansas Lava uses a small set of types from which all circuits
are constructed. Table 1 gives a list of the basic types used. For these types, we
have selected specific VHDL implementations.

– Signal Bool is a boolean that changes over time. In hardware, it is repre-
sented by a single wire, either for control or data.

i0 : in std_logic

– Signal (Unsigned ix) is a unsigned number.

i0 : in std_logic_vector(ix-1 downto 0);

– Matrix ix1 (Signal (Unsigned ix2)) is a group of signals, where each
signal represents a signed number that changes over time. In addition, we
know the number of elements in this group statically.

i0,i1,i2,...,iix1 : in std_logic_vector(ix2-1 downto 0);
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Table 1. Types in Kansas Lava

Type Hardware Representation

Signal α Clocked value of type α that changes over time
Matrix φ α 1 dimensional matrix of α with φ elements
Matrix (φ1, φ2) α 2 dimensional matrix of α with φ1 column, and φ2 rows.
Signed φ Signed number represented using φ bits.
Unsigned φ Unsigned number represented using φ bits.
Bool a boolean; True or False.

– Signal (Matrix ix1 (Unsigned ix2)) is a single time-varying value, that
represents a group of unsigned numbers. It is represented by a single signal
of size MUL ix1 ix2, which is the concatenation of the matrix elements.

i0 : in std_logic_vector(ix1 * ix2 - 1 downto 0);

In this way, the choice of type at the Lava level is directly reflected into the
choice of type at the VHDL level. The user can tune their representation choice
to take into account the Haskell level model and the interface required in VHDL.

6 Implementation of Kansas Lava

The implementation of Kansas Lava follows the patterns of its predecessors by
using a deep embedding of Signal to represent the circuit shape. We use IO-
based observable sharing [4], and make heavy use of overloading. We currently
have three back ends: VHDL, schematic, and a debugging output format. All
three back ends share the same reification implementation and type inference
mechanism for VHDL-level signals.

The Signal type is a tuple of a shallow and deep embedding.

data Signal a = Signal (Seq a) (Driver E)

The shallow embedding is a Seq, which is an infinite stream with the ability to
include unknown values, and includes an optimization for constant streams.

data Seq a = (Maybe a) :~ (Seq a)

| Constant (Maybe a)

Seq is an applicative functor, so the standard applicative functor interface can
be used to construct shallow embedded behaviors.

A Driver is a data structure that represents a wire, which may be an (named)
output from another entity, a global input pad, or a constant integer.

data Driver s = Port Var s

| PathPad [Int]

| Lit Integer
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The type E is a wrapper around an Entity, used to simplify reification.

data E = E (Entity (Ty Var) E)

Entity is the central data type inside our embedding.

data Entity ty s = Entity Name [Var] [(Var,Driver s)] [[ty]]

An Entity is a globally scoped name representing a specific function, a list
of named output ports, a list of input ports with the values that drive them,
and finally some type information about the entity. An entity inside Kansas
Lava corresponds one-to-one to an entity in VHDL, though we do not choose to
implement all our entities this way.

Consider xor2 high (bitNot low), which has two entities xor2 and bitNot.
The result Signal becomes a tree of entities.

Signal (Constant (Just False))

(Port "o0" (E (Entity "xor2"

["o0"]

[("i0",Lit 1),

("i1",Port "o0" (E (Entity "bitNot"

["o0"]

[(i0,Lit 0)]

[...])))]

[...]))

)

This shallow and deep embedding inside Signal is constructed by having every
primitive operator split Signal into shallow and deep components, performing
operations on each, then rebuilding a new Signal.

We observe sharing over the E type using the data-reify package. The reify
function has the type

reify :: E -> IO (Graph (Entity (Ty Var))

data Graph e = Graph [(Int,e Int)] Int

We reuse the Entity type after reification, where Drivers are replaced with
node identifiers representing the driving node. This structure is a netlist, and
variants of this exist in all the recent variants of Lava. VHDL generation is
simply a pass that traverses the netlist graph, mapping each Entity to either
a VHDL entity instantiation or an equivalent behavioral expression. Figure 2 in
section 7 shows an example fragment of VHDL generated from Lava.

6.1 Type Inference for VHDL Generation

Performing reification allows us to observe cycles in a circuit specification, which
is necessary to generate VHDL from the Kansas Lava deep embedding. Unfortu-
nately, the ability to observe the circuit structure doesn’t provide sufficient infor-
mation needed to generate VHDL. This is because the sized type information—
from which it is possible to derive VHDL signal widths—is not maintained in
the deep embedding.
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Kansas Lava sized types ensure that a circuit is constructed correctly, but
when decomposing the deep embedding of the circuit, this information has been
discarded. The representation of an Entity maintains all of the input drivers for
the Entity in a single homogeneous list, which requires the type parameter for
Signals to be removed. By not maintaining type information in the deep em-
bedding, we gain flexibility and the ability to include externally-defined VHDL
entities without having to adapt the deep embedding data structure. On the
other hand, throwing away the type information requires us to reconstruct the
information to generate VHDL. This reconstruction is performed in parallel with
reification. Type reconstruction is performed as an inference step, implemented
using equivalence sets of types, where the equivalence is dictated by the Haskell
types; a straightforward implementation of substitutions and their unification.

As an example, consider the generation of type equivalences for the polymor-
phic mux2 function.

mux2 :: Signal Bool -> (Signal a,Signal a) -> Signal a

Assuming the inputs are called “cond” (the Signal Bool), “a” and “b”, and the
output is called “r”, the inference algorithm infers the following partition. The
second element in the outer set indicates that the signals “a”, “b” and “c” all
inhabit the same type equivalence set.

{ { bit, cond }, { a, b, r } }
Given the equivalence relation for a single entity, the equivalence relation for

an entire circuit is constructed by iteratively merging equivalence classes. If the
input for one entity is connected to the output of a second entity, the equivalence
classes of the input and the output are merged.

This process repeats for each input/output connection. When the inference
has completed, each equivalence class should have a single ground (i.e. monomor-
phic sized) type, which is then assigned as the type to all of the nodes within
that equivalence class. If an equivalence class contains no ground types, then
the circuit is polymorphic, which we report as an error. This can happen if there
is an unused loop of signals with no connecting type “edges” to give the loop a
type.

7 Representing Addressable Memory

The Kansas Lava delay construct is used to create registers. When generating
VHDL, Kansas Lava will represent these registers as primitive flip-flop elements.
Each delay element will result in a collection of primitive flip-flops of the requisite
width. While modern FPGA fabrics are reasonably register-rich, there remains
a limit on the number of registers available. Moreover, a register is only capa-
ble of storing a single value: to represent addressable memory as registers, it is
necessary to construct the address decoding logic as a multiplexer in the Lava
design. Furthermore, each element in the address space will consume a number
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of flip-flops resources equal to the data width stored in the memory. As a con-
sequence, memories with an address space of even moderate size represented in
this way can quickly consume the available register resources.

As an alternative to distributed memory implemented using flip-flops, most
FPGAs also contain a number of dedicated components which allow that allows
the implementation of larger memories without consuming register resources.
These memories, termed BRAMs in Xilinx technical documentation, are less
plentiful than flip-flops, yet allow for the implementation of a smaller number of
larger memory elements.

In addition to the restricted number of dedicated BRAM resources, these
elements exhibit a different timing behavior than distributed RAM. For example,
BRAM reads take two clock cycles, as compared to the single-cycle read time
of registers. The two-cycle latency of BRAMs complicates their use in Lava
designs, which—when restricted to using only delays for memory elements—has
a purely synchronous stream semantics, with values produced on every clock
cycle. The addition of BRAM elements complicates this semantics, due to the
introduction of a read latency. While the performance impact of this latency can
be minimized, as reads can be pipelined, an engineer using Lava must take extra
care to account for read latencies when designing circuits.

7.1 Modeling Memories in Kansas Lava

Kansas Lava models a BRAM as a function mapping a memory operation to
a value. A memory operation can either be a read, containing an address, or a
write, containing both an address and a value to be written.

data MemOp a d = R a | W a d

type Memory a d = Signal (MemOp a d) -> Signal d

Kansas Lava implements this memory model in the shallow embedding of
Kansas Lava using a Haskell Map for storing memory contents and a queue of
values that captures the read latency of BRAMs. The single-step interpretation
of a memory operation is shown in the memop definition below.

type MemRep a d = (Map a d, [d])

memop :: Ord a => MemRep a d -> MemOp a d -> (MemRep a d,d)

memop (m,ds) (R a) = ((m,vs),v)

where val = M.lookup a m

(v,vs) = dequeue (enqueue val ds)

memop (m,ds) (W a d) = ((m’,vs),v)

where m’ = M.insert a d m

(v,vs) = dequeue (enqueue 0 ds)

The memop function takes a map (m), a queue of delayed values (ds), and
a memory operation. The function returns a new map and queue, along with
a value. This single-step memory interpretation can be lifted to a Seq–based
interpretation by using an accumulating map over Seqs.
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The deep embedding of a BRAM element is implemented as a special Entity
that takes a single input (the memory operation) and generates a single output.
When rendered to VHDL, the memory operation for a BRAM with an address
of a bits and with a data value size of d bits will result in an (a + d + 1)
bit signal. The least significant bit represents the BRAM write-enable signal,
while bits a downto 1 represent the address for both reads and writes, and bits
a+d+1 downto a+1 represent the data value for a write. Kansas Lava provides
readMem and writeMem functions which perform the relevant bit packing, as there
is currently no way to directly represent Haskell data values in VHDL. These
functions are lifted to the Signal type, using the Haskell constructors for the
shallow embedding and performing bit concatenation for the deep embedding.

The deep embedding of a memory component is rendered to behavioral VHDL,
as described by the Xilinx synthesis documentation, rather than directly instan-
tiated. Figure 2 shows a fragment from the VHDL produced for an 8-bit address
× 8-bit data BRAM. The type sig_o_2_ram_type declares a VHDL array type
of the requisite size, used by the BRAM signal sign_o_2_ram. The sig_o_5
assignment represents the packing of a read operation (with zeros for the high
data bits and the least-significant write-enable bit). The address signal, i2, is
exposed as an input port to the enclosing VHDL entity, which is not shown. The
signal assignments sig_o_7, sig_o_6, and sig_o_4 perform the bit slicing from
elements of the memory operation. In the synchronous synch process, the bit
sig_o_4 determines if the memory is written or read.

8 A Extended Example of Kansas Lava

We are using Kansas Lava to construct hardware implementations of commu-
nication circuits for forward error correction (FEC) codes over wireless fading
channels. One component in a (FEC) circuit, an interleaver, performs a reorder-
ing of coded bit sequences to mitigate the effects of burst channel noise.

Coded bits within a communication frame are transmitted out-of-order, which
allows bit errors due to short noise bursts to be distributed in reasonably even
fashion across the frame. This makes it less likely that adjacent coded bits will
be corrupted, a condition from which it is challenging to recover the intended bit
transmission using our chosen error correction scheme. In the implementation of
the interleaver, we use a permutation on the order of bits in the sequence to be
communicated.

The permutation f is applied in the transmission circuit, and the inverse
permutation f−1 is applied in the receiving circuit. Permutations are applied on
a per-frame basis, the domain (and range) of the permutation function operates
over a finite domain. We can model the permutation f as a mapping from logical
bit address to transmitted bit address.

Representing such a permutation as a function is a challenge due to the re-
quirement that the permutation appear random. In general, a random permuta-
tion cannot be described in more compact form than just enumerating the input
to output address mapping. Moreover, the particular properties of the commu-
nication channel may impose additional characteristics on the permutation, for
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signal sig_o_2 : std_logic_vector(7 downto 0);

signal sig_o_7 : std_logic_vector(7 downto 0);

signal sig_o_6 : std_logic_vector(7 downto 0);

signal sig_o_4 : std_logic;

signal sig_o_5 : std_logic_vector(16 downto 0);

type sig_o_2_ram_type is array(0 to 255) of std_logic_vector(7 downto 0);

signal sig_o_2_ram : sig_o_2_ram_type;

begin

sig_o_5 <= to_unsigned(0,8)&unsigned(i2)&to_unsigned(0,1);

sig_o_7 <= sig_o_5(16 downto 9);

sig_o_6 <= sig_o_5(8 downto 1);

sig_o_4 <= sig_o_5(0);

synch: process (clk,i1,sig_o_4,sig_o_7) is

begin

if rising_edge(clk) then

if sig_o_4=’1’ then

sig_o_2_ram(conv_integer(sig_o_6)) <= sig_o_7;

sig_o_2 <= (others => ’0’);

else

sig_o_2 <= sig_o_2_ram(conv_integer(sig_o_6));

end if;

end if;

end process;

Fig. 2. VHDL generated for memory components

example, that adjacent input bits be separated by a minimum distance in the
transmitted sequence. These requirements combine to make an algorithmic def-
inition of the permutation difficult, if not impossible.

We have developed a general interleaver circuit that utilizes aBRAM component
to implement the permutation, as shown in figure 3. A user describes the permu-
tation as a list of pairs [(Addr,Addr)]mapping input address to output address.
The inverse permutation is constructed by reversing the order of the pair elements.
The circuit initializes a BRAM with the contents of this mapping. As bits arrive
in sequence, a counter provides an input address to the ROM, which will yield the
address in the permuted frame where the bit should be positioned.

The input bit is written to a buffer at the generated address. To allow the cir-
cuit to continually generate permuted values, the circuit uses a double-buffering
technique, where the input bits for one frame are written to a BRAM, while at the
same time the permuted input bits for the previous frame are read. In this way,
the circuit allows permutation phases to be pipelined, with a one-frame latency.

In the circuit schematic, the toggle counter will change at every rollover of
the address counter. The toggle output is connected to multiplexers in front
of each buffer BRAM. In one mux, a high toggle output will select the read
operation for the buffer, while a low toggle output will select the write operation.
For the other mux, the selection is reversed. Finally, a multiplexer connected to
the output ports of the BRAMs will select the output from the buffer that is
currently being read, based on the toggle output.
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Fig. 3. Permutation Circuit Schematic

permute :: (...) => [(d, d)] -> Time -> Signal Bool -> Signal Bool

permute permutation clk input = out

where out = mux2 toggle_z_zz bufA bufB

addr = counter clk

permRead = readMem addr

rom = bram permutation clk permRead

writeReq = writeMem rom input_zz

readReq = readMem addr_zz

muxA = mux2 toggle_z readReq writeReq

muxB = mux2 toggle_z writeReq readReq

bufA = bram initBuf clk muxA

bufB = bram initBuf clk muxB

initBuf = [(i,False) | i <- [minBound..maxBound]]

toggle = delay clk high (toggle ‘xor2‘ overflow)

where overflow = (addr .==. 0)

addr_zz = delayN 2 clk addr

input_zz = delayN 2 clk input

-- the ’toggle’ has a built-in 1-cycle delay,

-- so we only delay 1 cycle

toggle_z = delayN 1 clk toggle

toggle_z_zz = delayN 2 clk toggle_z

Fig. 4. Permutation Circuit in Lava
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Figure 4 shows the description of the permutation circuit in Kansas Lava. The
permutation parameter defines the mapping from input bit address to output
bit position. The input parameter is the frame bit input sequence, and the
circuit output is the bit sequence of the permuted frame. Within the circuit
definition, the bram function instantiates a BRAM with the supplied contents.
The remainder of the internal signals corresponds to those in the figure.

This Lava definition demonstrates a complication of using memory compo-
nents. It is necessary to manually add delay components to compensate for
read latencies. This is indicated in the definitions by a _z suffix to a signal
name. The result of the ROM read introduces a 2-cycle latency, so it is neces-
sary to add two delays in the input signal to insure that data values line up
with write addresses. Similarly, the toggle signal is delayed two cycles for the
input to the memory read/write operations, and then a further two cycles for
the buffer read output, since that too introduces a two-cycle delay.

9 Related Work

The idea of having a program that generates code is an old one, as are the ideas
behind Lava itself. The original ideas for Lava can be traced back through work
on the Ruby [11] hardware description language and prior to that, μFP [12].
Both of these rely upon the close similarity of circuits and functional languages.
Both involve taking input and returning output, and both can represent state
(using registers or using streams) as feedback loops. A good summary of the
principles behind Lava specifically can be found in [1].

ForSyDe [13] is a system that is close in spirit to Kansas Lava. Like Kansas
Lava, ForSyDe is intended to support the modeling of system level concerns, and
is also embedded in Haskell. Kansas Lava circuits are clocked circuits, with all
Signal computations based on a stream-based model of computation. ForSyDe
offers support for several additional models of non-terminating computation in
addition to clocked synchronous Signals. ForSyDe directly supports both a shal-
low and deep embedding of Signals. The two embeddings provided as separate
implementations with the same interface, and the ForSyDe programmers can
use Haskell import directives to choose which to invoke. Finally, ForSyDe uses
type classes (rather than the more recently developed type functions) to imple-
ment basic type-level arithmetic to model arbitrary sized wiring patterns. Kansas
Lava’s use of type functions allows for overloading of sized types and indexing.
In particular, in Kansas Lava, the sizes are themselves first class values, and can
be used for indexing, giving cleaner and lighter weight matrix specifications.

JHDL [14] is a hardware description language, embedded in Java, which shares
many of the same ideas found in Lava. In JHDL, structural circuits are straight-
forward to express by writing stylized Java programs, and the computational
mechanisms provided by Java can be productively used when generating these
structural circuits.

There are many other hardware description languages that either use a func-
tional language, or have a functional basis. We refer the reader to the compre-
hensive comparative review authored by the developers of ForSyDe [15].
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10 Conclusions and Future Work

Kansas Lava represents a continuation and expansion on the heritage of Lava.
The inclusion of sized types provides a straightforward embedding of a low-
level hardware concern within Haskell, leveraging modern facilities provided by
Haskell extensions.

Prior Lava work has identified a series of design decisions with associated
trade-offs. These include various implementation strategies of shallow vs. deep
embedding and of observable sharing. We have endeavored to choose an imple-
mentation strategy that leverages these design alternatives in a modular and
general manner.

Kansas Lava is an ongoing and actively supported project. As such, we in-
tend to continue to improve and extend the library to include more sophisticated
data modeling capabilities. It is clear that developing efficient hardware requires
close attention to the performance implications of implementation choices, which
are often abstracted away in a functional language. We believe a principled ap-
proach to program manipulation [16], using type-based transformations that
preserve computational behavior while modifying performance, has the poten-
tial to bridge the gap between specification and implementation by allowing an
abstract specification to be incrementally refined to suitable implementations.

A further direction of inquiry involves the expression of more sophisticated
control patterns in Kansas Lava. For example, the introduction of BRAM into
Lava requires an engineer to manually manage deviations from the synchronous
stream model of computation. Embedding timing properties within a Lava speci-
fication as types may allow the automatic insertion of control logic to compensate
for timing incompatibilities. In addition to the case demonstrated by BRAMs,
where timing latencies are statically known, this can be expanded to situations
where timing properties are dynamic, allowing the inclusion of components such
as SDRAM that exhibit non-deterministic timing behavior.
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Abstract. Workflow management systems (WFMSs) are systems that
generate, coordinate and monitor tasks performed by human workers in
collaboration with automated (information) systems. The iTask system
(iTasks) is a WFMS that uses a combinator language embedded in the
pure and lazy functional language Clean for the specification of highly
dynamic workflows. iTask workflow specifications are declarative in the
sense that they only specify (business) processes and the types of data
involved. They abstract from user interface and storage issues, which are
handled generically by the workflow engine.

Earlier work has focused on the development of the iTask combinator
language. The workflow language was implemented as an engine that
evaluated task combinator expressions and generated interactive web
pages. Although suitable for its original purpose, this architecture has
proven to be less so for generating practically usable workflow support
systems.

In this paper we present a new implementation of the iTask system
that implements the combinator library using a service based architec-
ture that exposes the workflow and a user friendly Ajax client. Because
user interface issues are outside the scope of workflow specifications, and
cannot be specified explicitly, it is crucial that the generic operationaliza-
tion of the declarative interaction primitives is of adequate quality. We
explain the novel generic libraries we have developed for this purpose.

1 Introduction

Workflow management systems (WFMSs) are systems that generate, coordinate
and monitor tasks performed by human workers in collaboration with auto-
mated (information) systems. Many contemporary WFMSs suffer from lack of
flexibility. This is partially caused by the static nature of the languages used
for modeling the business processes they coordinate. To address this limitation
the iTask system has been developed. This system uses a function combinator li-
brary embedded in the pure and lazy functional programming language Clean to
model business processes, and allows specification of highly dynamic workflows.
The iTask system uses declarative specifications of tasks. Task specifications de-
fine what has to be done, by whom and when. However, they do not specify
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how tasks are presented to users, how results are entered, or how progress is
visualized. These operational details are taken care of fully automatically.

Earlier work [6,9,11,12] has focused primarily on the benefits of the iTask
system for programmers. Its goal has been to develop and extend the iTask
combinator library to be able to express powerful, yet concise, specifications of
arbitrary business processes. For this purpose a prototype implementation of the
iTask engine with a minimum level of usability that could be used to simulate
workflow scenarios by expert users has been sufficient.

In this paper we present a new implementation of the iTask system that uses
a service based architecture to enable a practically applicable interface for end-
users. Since user interaction is considered a declarative aspect of the iTask lan-
guage and outside the scope of a workflow specification, it is critical for the
usefulness of the iTask system that the generic framework performs adequately
in this area. We show how we operationalize workflow specifications in such a
way that, for end-users, selecting and working on tasks is no more difficult than
the use of an average e-mail client.

The contributions of this paper are the following:

– We present a new implementation of the iTask system. We discuss its new
service based architecture and key features, and how it compares to previous
implementations.

– We explain the declarative nature of the iTask system. We discuss what
is specified by iTask expressions, and what is not. We show how workflow
specifications are operationalized by the iTask engine.

– We present a novel generic web interface library in Clean. This library pro-
vides type-driven Html visualizations of data as well as editable Ajax forms
for manipulating data.

The remainder of this paper is organized as follows: First we cover the concept
of declarative workflow specification in the iTask system in Section 2. Then an
architectural overview of the iTask system is given in Section 3. The generic web-
interface library is explained in Section 4. We discuss related work in Section 5
after which final concluding remarks are given in Section 6.

2 Declarative Workflow Specification

The iTask combinator language is designed for declarative specification of work-
flows. This means that the specifications describe what has to be done, not how.
However, one cannot speak of a language being declarative without specifying
at which level of granularity. The level of abstraction of a domain determines
whether a specification can be classified as declarative at that level. Since this
level is not always immediately clear, especially in workflow languages, we elab-
orate on it some more in this section.

2.1 When Is a Workflow Specification Declarative?

The iTask system is based on the idea that in workflow support systems, the only
differences that really matter between two systems are: 1) The (business) process
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they support, and 2) The data that is exchanged between actors. Everything else
that is needed to build these systems can be generic. The iTask system provides
both a specification language to describe the processes and data, as well as a
framework that provides the generic foundation that operationalizes them.

In this context, we classify a specification as declarative when everything in it
specifies either data or process. Contrary to what is sometimes called declarative
workflow, a process can be specified very rigidly but still be considered declara-
tive with respect to this definition. A specification that also specifies issues such
as presentation, or storage is considered not declarative in this context. A quick
glance at the signature of one of the iTask primitives for interacting with users in
Figure 1 illustrates this best. For instance, the enterInformation primitive yields
a task that asks a user to provide some information. This primitive describes
the action that is needed to achieve some goal, but leaves entirely open how
information is entered.

2.2 The iTask Workflow Language

Above we have already loosely mentioned the iTask specification language, yet
we have not explained how it is defined and implemented. The iTask language is a
domain specific language embedded in the pure and lazy functional programming
language Clean. It is essentially an API of functions and (monadic) function
combinators that is used to construct complex functions that when evaluated
compute the tasks that have to be done. However, from the point of view of a
workflow programmer, the combinator API is just a collection of primitives and
operators that are used to define workflows in a syntax that just happens to
have a striking resemblance to Clean.

The central concept of iTask workflow specifications is that everything is a
task that produces a typed result once it is done. Tasks are represented by
the abstract Clean type :: Task a, where a is the type of the result of the task.
Although everything is a task, we can still make a distinction between basic
tasks and combined tasks. Basic tasks are the smallest units of work like entering
some data in a form, or reading a piece of data from a database. From these
basic tasks, larger more complex tasks are constructed using task combinators.
For example the monadic bind combinator (>>=), where the result of the first
task is passed to a function that computes the second. By combining tasks
sequentially, in parallel or conditionally, tasks of unlimited complexity can be
constructed. A short excerpt with common tasks and combinators from the iTask
API is shown in Figure 11. The full API consists of many more basic tasks and
combinators, like for instance, for interacting with users, generic storage and
retrieval, access to meta-data of other workflows and users. Examples of iTask
workflow specifications have been given in [9,11].

2.3 Implementation Consequences

As can be seen in the API in Figure 1, workflow specifications in the iTask sys-
tem define nothing more than data and process. However, a complete executable
1 Context restrictions on overloaded types have been omitted for clarity.
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workflow system is generated from just that and nothing else. A major conse-
quence of this design is that this generic foundation that is used to generate a
working system from these high level specifications must be of such quality, that
there is no need to further hack or tweak the system after generation. When this
is not the case the risk exists that clever programmers will find ways to abuse the
workflow language to force for example a specific interface layout. This clutters
the workflow definitions and makes them no longer declarative.

Of course there are domains where generic solutions are far inferior to special-
ized instances. Entering a location for example, is easier by putting a marker on a
map than by entering coordinates in a form. For these situations the iTask system
provides the possibility to define custom domain libraries that contain data types
and task primitives along with specializations of the generics. This enables the use
of custom code when necessary without cluttering the workflow specifications.

— Basic tasks —

// Ask a user to enter information.
enterInformation :: question → Task a

// Ask a user to enter information while subject information is shown
enterInformationAbout :: question s → Task a

// Show a message to a user
showMessage :: message → Task Void

// Show a message and subject information to a user
showMessageAbout :: message s → Task Void

// Create a value in the data store
dbCreateItem :: Task a

// Read a value from the data store
dbReadItem :: !(DBRef a) → Task (Maybe a)

— Task combinators —

// Lift a value to the task domain
return :: a → Task a

// Bind two tasks sequentially
(>>=) infixl 1 :: (Task a) (a → Task b) → Task b

// Assign a task to another user
(@:) infixr 5 :: UserId (Task a) → Task a

// Execute two tasks in parallel
(-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b)
// Execute two tasks in parallel, finish as soon as one yields a result
(-||-) infixr 3 :: (Task a) (Task a) → Task a

// Execute all tasks in parallel
allTasks :: ([Task a] → Task [a])
// Execute all tasks in parallel, finish as soon as one yields a result
anyTask :: ([Task a] → Task a)

Fig. 1. A short excerpt from the iTask API
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3 The Revised iTask System

As mentioned in Section 1 the original iTask system was used primarily to ex-
plore the design of a workflow language based on function combinators. However,
experiments with building applications beyond the level of toy examples showed
that much hacking and tweaking was necessary to build somewhat usable appli-
cations. Examples of such tweaking are: the use of multiple variants of essentially
the same task: chooseTaskWithButtons and chooseTaskWithRadios, or the use of pre-
sentation oriented data types such as HtmlTextArea instead of just String. To be
able to generate iTask applications at the level of usability that may be expected
from contemporary web-based information and workflow systems, without clut-
tering the workflow specifications with presentation issues, a major redesign of
the iTask engine was necessary.

3.1 Original Architecture

Originally the architecture of the iTask system as presented in [10,9] was that of
a simple web application that dynamically generated Html pages. The content of
these pages was generated by a program compiled from an iTask workflow spec-
ification and a generic base system. This architecture is depicted graphically in
the left diagram of Figure 2. Page content generation was performed by appli-
cation of a workflow definition to an initial state which yielded an output state
that accumulated Html code. The abstract type Task a of task primitives and
combinators was defined as Task a :== *TSt → (a,*TSt) which is Clean’s notation
for a function that takes a unique state of type TSt and returns a value of type a

and new state. Additionally to generating the Html code for the tasks to display
on the page, TSt also accumulated ad-hoc meta-data about tasks, which was used
to generate the navigation components for switching between tasks. When users
triggered some event in the generated page, like clicking a button or changing
the content of a textbox, the event was sent to the server by reloading the entire
page, and used to generate the updated page. This was necessary because each
event could potentially cause the workflow to be reduced or the user interface
to be different.

Fig. 2. Architecture old (left) and new (right) iTask system
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3.2 Fundamental Problems

The original architecture, though suitable for showing the expressive power of
the combinators, suffered from some scalability problems. When used in a more
realistic setting, this architecture has a number of fundamental problems.

1. The first issue is one of separation of concerns. The original implementation
of the task combinators as functions that both compute the advancement
in a workflow and the representation of that workflow as a user interface
only works for small examples. As soon as you want to define more intricate
workflow combinators or put higher demands on the user interface, the im-
plementations of the workflow combinators quickly becomes too complex to
manage.

2. Another problem, which is related to the previous issue, is that in the origi-
nal architecture the only way to interact with iTask workflows was through
the web interface. There was no easy means of integrating with other sys-
tems. The obvious solution would be to add some flavor of remote procedure
calling to the system, but this would then also have to be handled within
the combinators, making them even more complex.

3. The final issue, which may appear trivial, is the necessity to reload an entire
page after each event. This approach is not only costly in terms of network
overhead, it also inherently limits the possibilities for building a decent user
interface. Essential local state, such as cursor focus, is lost during a page
reload which makes filling out a simple form using just the keyboard nearly
impossible.

3.3 Improved Architecture

To solve the problems described in the previous section, a drastic redesign of the
iTask system was needed. The only way to address them was to re-implement
the iTask combinator language on top of a different architecture.

The architecture of the new iTask implementation is a web-service based client-
server architecture and is shown in head to head comparion with the old architec-
ture in Figure 2 and illustrated in more detail in Figure 3. The major difference
between the old and new architecture is that the new server system does not gen-
erate web pages. Instead, it evaluates workflow specifications with stored state of
workflow instances to generate data structures called Task Trees. These represent
the current state of workflows at the task level. These trees contain structural
information: how tasks are composed of subtasks, meta-data: for example, which
user is assigned to which task, and task content: a definition of work that has to
be done. For interactive tasks, the content is a high-level user interface defini-
tion that can be automatically generated, which will be explained in Section 4.
Task trees can be queried and manipulated by a client program through a set of
JSON (JavaScript Object Notation: A lightweight data-interchange format) web
services.

The overview shown in Figure 3 illustrates how the various components in the
server correspond with components in the client. The workflow specifications are
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queried directly through the workflow directory service. The authentication ser-
vice queries the user store. All other services use the task trees as intermediate
representation. In the next section, the computation of task trees and the indi-
vidual services are explained in more detail.

The iTask system provides a default web based Ajax client system, described
in Section 3.5, that lets users browse their task list, start new workflow instances
and work on multiple tasks concurrently. However, because the service based ar-
chitecture nicely separates the computation of workflow state from presentation,
and communication is based on open web standards, it is also easy to integrate
with external systems. For example, we have also built a special purpose client
written in Python that monitors a filesystem for new documents and starts a new
workflow for processing that simply uses the same services as the standard client.

Fig. 3. A detailed architecture overview

3.4 The Server System

The server system manages a database with the state of all active workflow
instances (processes) and user and session information. It offers interaction with
the workflow instances through JSON webservices. Requests to these services are
HTTP requests that use HTTP POST variables to pass arguments. Responses are
JSON encoded data structures. The server system is generated by compiling a
Clean program that evaluates the startEngine function defined by the iTask base
system. This function takes a list of workflow specifications as its argument.
The iTask system provides two implementations of the startEngine function. One
implements a simple HTTP server, which is useful for development and testing.
The other implements the server system as a CGI application for use with third
party web server software.

Task Tree Computation. The core task of the server system is to compute
and update representations of the current states of executing workflow processes.
The central internal representation of the state of a workflow instance that is
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computed by a combinator expression is a data structure called Task Tree. It is
a tree structure where the leaves are the atomic tasks that have to be performed,
and the nodes are compositions of other tasks. It is the primary interface between
the workflow specifications and the rest of the framework and is queried to
generate task lists and user interface definitions. Task trees are defined by the
following Clean data type:

1:: TaskTree

2= // A stand-alone unit of work with meta-data
3TTMainTask TaskInfo TaskProperties [TaskTree]
4// A task composed of a sequence of tasks
5| TTSequenceTask TaskInfo [TaskTree]
6// A task composed of a set tasks to be executed in parallel
7| TTParallelTask TaskInfo [TaskTree]
8// A task that interacts with a user
9| TTInteractiveTask TaskInfo (Either TUIDef [TUIUpdate])
10// A task that monitors an external event source
11| TTMonitorTask TaskInfo [HtmlTag]
12// A completed task
13| TTFinishedTask TaskInfo

14

15// Shared node information: task identifiers, labels, debug info etc.
16:: TaskInfo

17// Task meta-data for main tasks, assigned user, priority etc.
18:: TaskProperties

Every function of type Task a generates a (sub) task tree. Combined tasks use
their argument tasks to compute the required sub task trees. Because an expla-
nation of task tree generation is impossible without examining the combinators
in detail, we will restrict ourselves to a demonstration of their use by means of
an example. Let’s consider the following simple workflow specification:

1bugReport :: Task Void

2bugReport = reportBug >>= fixBug

3where
4reportBug :: Task BugReport

5reportBug = enterInformation "Please describe the bug you have found"

6

7fixBug :: BugReport → Task Void

8fixBug bug = "bas" @: (showMessageAbout "Please fix the following bug" bug)

Figure 4 graphically illustrates two task trees that reflect the state of this work-
flow at two moments during execution. The tree on the left is produced during
the execution of the first reportBug task. The bind (>>=) combinator only has a
left branch, which is the TTInteractiveTask that contains a user interface definition
for the bug report form. The tree on the right is produced during the execution
of fixBug. At this point the leftmost branch is reduced to a TTFinishedTask and
the @: has been expanded to a subtree consisting of a bind of some getUserByName

task, that is finished, and a TTMainTask containing the TTInteractiveTask with the
interface definition for showing the bug report.
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Fig. 4. Task tree during reportBug (left) and fixBug (right)

The Authentication Service. The iTask server maintains a user and role
database such that (parts of) workflows can be restricted to users with spe-
cial roles, and roles may be used to find the right type of worker to do a cer-
tain task. The server handles authentication of clients and keeps a database
of authenticated time-limited sessions. This service consist of two methods,
/handlers/authenticate which accepts a username and password and yields a ses-
sion key to access the other services, and /handlers/deauthenticate that can be
passed a session key to explicitly terminate a session.

The Workflow Directory Service. In order to initiate new workflow instances,
the iTask server offers a directory service to browse the available workflow defini-
tions. The server maintains a hierarchical directory of available workflows that
are filtered by the roles of a user. The /handlers/new/list method yields the list
of possible workflows and subdirectories for any given node in the hierarchy. The
/handlers/new/start method starts a new instance of a workflow definition and re-
turns a task identification number for the top level task of that workflow instance.

The Tasklist Service. Users can find out if there is work for them through
the tasklist service. The /handlers/work/list method yields a list of all main tasks
assigned to the current user along with the meta-data of those tasks. This list
is an aggregation of all active tasks in all workflow instances the current user is
involved in. Because tasks are often subtasks of other tasks, parent/child relation
information is also available in the list entries to enable grouping in a client.

The Task Service. To actually get some work done, users will have to be able to
work on tasks through some user interface. Because the tasks are highly dynamic,
no fixed user interface can be used. Therefore, the iTask system uses a generic
library to generate high-level user interface definitions that are interpreted by
the client. The /handlers/work/tab method returns a tree structure that represents
the current state of a workflow instance. This tree data is used by a client either
to render an interface, or to adapt an already rendered interface. When a user
updates an interactive control, this method is called with the event passed as
an argument. This yields a new tree that represents the updated state of the
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workflow after this event and possibly events from other users. This process is
explained in more detail in Section 4.

The Property Service. To update the meta-data of a workflow instance, for
example to reassign tasks to different users or change their priority, the service
/handlers/work/property may be used. This service can set any of the meta-data
properties of a workflow instance.

3.5 The Client System

Although the iTask system focuses on workflow specification and execution on
the server, the average end-user will only interact with this server through a
client. While the JSON service API is not limited to one specific client, the
iTask system provides a default Javascript client built with the ExtJS framework.
ExtJS is a Javascript library that facilitates construction of “desktop like” Ajax
applications with multiple windows, different kinds of panels, and other GUI
components in a web browser. The iTask client runs in any modern web browser
and provides everything a user needs to view and work on tasks. Figure 5 shows a
screenshot of the iTask client with multiple tasks opened. The client user interface
is divided into three primary areas in a layout that is common in e-mail client
applications. This similarity is chosen deliberately to ease the learning of the
application. The area on the left of the screen shows a folder hierarchy that
accesses the workflow directory service. New workflow instances can be started
by clicking the available flows in the folders. The top right area shows a user’s
task list, and the final main area is the lower right task area. In this part of the

Fig. 5. The iTask client interface
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interface area users can work on multiple tasks concurrently in a series of tabs.
New tabs are opened by clicking items in the task list.

The most interesting feature of the client application is its ability to dynam-
ically render and update arbitrary user interfaces defined by the server. It con-
structs the user interfaces required to work on tasks by interpreting a definition
it receives from the server. It then monitors all interactive elements in the inter-
face and synchronizes changes to them with the server in the background. The
server processes the user input and responds by sending instructions to adapt the
user interface when necessary. A big advantage of this design is that the server
is kept synchronized with the client. This way the server can provide immediate
feedback or dynamically extend an interface without the need for page refreshes.
It also means that tasks can be reassigned at any moment without losing any
work.

4 Dynamic Generic Web-Interfaces

One of the primary reasons for redesigning the iTask using a different architecture
was to improve the user experience for end-users. In this section we show how
the new iTask system makes use of the new architecture to operationalize the
declaritive user interaction primitives of the specification language.

For basic tasks like enterInformation or displayMessageAbout to be operational-
ized, the iTask system needs to be able to generate forms for entering data and
visualizations of data to display. Because user interface issues are an aspect that
is abstracted from in the iTask specification language, it is essential that its
implementation is able to generate satisfactory user interfaces. For any type
that someone defines in a workflow specification, the system needs to be able to
generate forms and renderings that have to have the following properties:

– They need to be laid out in a visually and ergonomically pleasing way.
– They need to react responsively and consistently. The cursor should follow a

logical path when using the keyboard to navigate through a form and there
must never be unexplainable loss or change of focus.

– They must communicate clearly what is optional and what is mandatory.
The forms must ensure that mandatory input is entered.

– They must be able to adapt dynamically depending on the choice of con-
structor for algebraic data types. It is, for example, simply impossible to
generate a static form for entering a list, because the number of elements is
unbounded.

The redesign of the iTask system with a service based architecture and stand-
alone (Javascript) client as explained in Section 3 removes the implicit usability
limitations of the original iTask system. It enables a new approach to dynamic
interface generation that uses type generic functions as can be defined in Clean
[1] on the server and an interpreter in the client that is able to meet the demands
stated above.

Figure 6 shows the user interface that is generated for the BugReport type used
in the enterInformation task of the bugReport example in Section 3.4:
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Fig. 6. An automatically generated form

1:: BugReport =
2{ application :: String

3, version :: Maybe String

4, date :: Date

5, occursAt :: BugOccurence

6, severity :: BugSeverity

7, description :: Note

8}
9:: BugSeverity = Low | Medium | High | Critical

10:: BugOccurence = Startup | Shutdown | Other Note

The demands stated above are all applicable to this relatively simple type al-
ready. It contains both optional and mandatory parts, it has to adapt dynam-
ically when the Other constructor is chosen and it has a wide variety of input
elements that have to be arranged in a pleasing layout. An attentive reader may
even spot that different input controls are used to select a constructor in Fig-
ure 6 for BugOccurence and BugSeverity. This choice is not specified explicitly, but
is decided by a layout heuristic in the interface generation.

4.1 Key Concepts

The iTask system generically provides generic user interfaces through the in-
terplay between two type generic functions. The first one, gVisualize, generates
visualizations of values that are rendered by the client. The second one, gUpdate,
maps updates in the rendered visualization back to changes in the correspond-
ing values. Before explaining these functions in detail, we first introduce the key
concepts underlying their design.

Visualizations. Visualizations in the iTask system are a combination of pretty
printing and user interface generation. The idea behind this concept is that they
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are both just ways of presenting values to users, whether it is purely informa-
tional or for (interactive) editing purposes. The generic user interface library
therefore integrates both in a single generic function. Furthermore, most types
of visualizations can be coerced into other types of visualizations. For exam-
ple: a value visualized as text can be easily coerced to an Html visualization, or
vice versa. The library offers functions for such coercions. There are six types of
visualizations currently supported as expressed by the following type:

1:: VisualizationType

2= VEditorDefinition

3| VEditorUpdate

4| VHtmlDisplay

5| VTextDisplay

6| VHtmlLabel

7| VTextLabel

And four actual visualizations:

1:: Visualization

2= TextFragment String

3| HtmlFragment [HtmlTag]
4| TUIFragment TUIDef

5| TUIUpdate TUIUpdate

The VHtmlDisplay and VTextDisplay constructors are pretty print visualizations in
either plain text or Html. The VHtmlLabel and VTextLabel constructors are sum-
maries of a value in at most one line of text or Html. Labels and display visual-
izations use the same constructor in the Visualization type. The VEditorDefinition

and VEditorUpdate visualizations are explained in the next two subsections.

User Interface Definitions. When a value is to be visualized as an editor, it is
represented as a high-level definition of a user interface. These TUIDef definitions
are delivered in serialized form to a client as part of a TTInteractiveTask node of
a task tree. A client can use this definition as a guideline for rendering an actual
user interface. The TUIDef type is defined as follows:

1:: TUIDef

2= TUIButton TUIButton

3| TUINumberField TUINumberField

4| TUITextField TUITextField

5| TUITextArea TUITextArea

6| TUIComboBox TUIComboBox

7| TUICheckBox TUICheckBox

8...

9| TUIPanel TUIPanel

10...

11:: TUIButton =
12{ name :: String

13, id :: String

14, text :: String

15, value :: String
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16, disabled :: Bool

17, iconCls :: String

18}
19:: TUIPanel =
20{ layout :: String

21, items :: [TUIDef]
22, buttons :: [TUIDef]
23...

24}
Components can be simple controls such as buttons described by the TUIButton

type on line 11, or containers of other components such as the TUIPanel type on
line 19 that contains two containers for components: One for its main content,
and one additional container for action buttons (e.g. ”Ok” or ”Cancel”).

User Interface Updates. To enable dynamic user interfaces that adapt with-
out replacing an entire GUI, we need a representation of incremental updates.
This is a visualization of the difference between two values expressed as a series
of updates to an existing user interface.

1:: TUIUpdate

2= TUIAdd TUIId UIDef

3| TUIRemove TUIId

4| TUIReplace TUIId UIDef

5| TUISetValue TUIId String

6| TUISetEnabled TUIId Bool

7:: TUIId :== String

New components can be added, existing ones removed or replaced, values can
be set and components can be disabled or enabled. The TUIId is a string that
uniquely identifies the components in the interface that the operation targets.
The one exception to this rule is the TUIAdd case, where the TUIId references the
component after which the new component will have to be placed.

User interface updates are computed by a local structural comparison while
traversing an old and new data structure simultaneously. This ensures that only
substructures that have changed are being updated.

Data Paths. In order to enable updating of values, it is necessary to
identify substructures of a data structure. A DataPath is a list of integers
(::DataPath :== [Int]) that are indexes within constructors (of arity > 0) when
a data structure is being traversed. Figure 7 show some example DataPaths for
a simple binary tree. DataPaths are a compact, yet robust identification of sub-
structures within a data structure.

Data Masks. When a data structure is edited, it is possible that during this
editing, parts of the structure are temporarily in an “invalid” state. For example
when an element is added to a list: between the structural extension of the list
and the user entering the value of the new element, the list is in a state in which
one of its elements has a value, but that is not entered by the user. To indicate
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Fig. 7. Data paths for a value of type ::Tree = Node Tree Int Tree | Leaf Int

which parts of a data structure have been accessed by a user we use the DataMask

concept. A DataMask is simply a list of all paths that have been accessed by a
user (::DataMask :== [DataPath]). This additional information is used to enhance
usability by treating components that have not been touched by a user different
from those that the user has already touched. For example, validation of only
those fields in a form that have already been filled out.

4.2 The Big Picture

With the key concepts explained, we can now sketch the big picture of how user
interfaces of interactive tasks are handled. This process consists of three main
steps:

1. An initial user interface definition (TUIDef) representing the current value of a
data structure and its mask is generated by a generic function on the server.
This definition is rendered by the client and event handlers are attached to
interactive components to notify value changes.

2. When a user changes an interactive component, an encoding of this change
and the data path of the component are sent back to the server and inter-
preted by another type generic function that updates the data structure and
mask to reflect the change.

3. The updated data structure is compared to its previous value and if there
is a structural difference, a list of TUIUpdate is computed and sent back to
the client. The client interprets these instructions and modifies the interface
accordingly.

In the next section we will explain some of the machinery behind those steps.
For reasons of brevity we do not go into implementation details, but explain the
key data structures and type signatures of key functions instead.

4.3 Low Level Machinery

The core machinery of the library consists of two generic functions: gVisualize
and gUpdate. Instances of these functions for concrete types can be automatically
derived. Because these functions have been designed favoring pragmatism over
elegance, the library exposes them through a set of wrapper functions:
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1//Visualization wrappers (under condition that gVisualize exists for type a)
2visualizeAsEditor :: String DataMask a → ([TUIDef] ,Bool)
3| gVisualize{|�|} a

4visualizeAsHtmlDisplay :: a → [HtmlTag]
5| gVisualize{|�|} a

6determineEditorUpdates :: String DataMask DataMask a a → ([TUIUpdate] ,Bool)
7| gVisualize{|�|} a

8...

9//Update wrappers (under condition that gUpdate exists for type a)
10updateValueAndMask :: String String a DataMask *World → (a,DataMask,*World)
11| gUpdate{|�|} a

12...

Tasks such as enterInformation use the visualizeAsEditor wrapper to create the
content of a TTInteractiveTask node in the task tree. All interactive components
are given an identifier derived from their data path within the data structure.
This enables the client to send back updates when such a component is updated.
When a client sends an event to the server, the updateValueAndMaskwrapper is used
to process the update. Its first two arguments are a string representation of the
data path, and a string representation of the update. The last parameter is the
unique world. Clean uses uniqueness typing to facilitate stateful functions by
threading an abstract World value. The main reason that updates are impure,
is that it enables impure specializations for specific types. For example when
updating a Maybe Date from Nothing to Just, the current date can be set as value.
After updating a value and mask, the determineEditorUpdates wrapper is used to
create task content containing an incremental update for the client GUI.

Although the generic functions are never called directly, and for normal use
only derived for types, we conclude this section with a brief overview of their
type signatures and arguments to give an impression of what goes on under the
hood.

1generic gVisualize a ::

2(VisualizationValue a)
3(VisualizationValue a)
4VSt → ([Visualization] , VSt)
5

6:: VisualizationValue a = VValue a DataMask | VBlank

7:: VSt =
8{ vizType :: VisualizationType

9, idPrefix :: String

10, label :: Maybe String

11, currentPath :: DataPath

12, useLabels :: Bool

13, onlyBody :: Bool

14, optional :: Bool

15, valid :: Bool

16}
The first two arguments are wrapped values of type a with their mask, or an
undefined blank. The last argument that is both input and output of gVisualize
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is the visualization state. This state contains all parameters relevant to the
visualization and is used to keep track of global properties. The optional field
in the structure is used to mark parts of editor visualizations as optional. A
specialization of gVisualize for the Maybe a type sets this field to true, and then
produces a visualization of type of a. When a visualization of an optional value
that is Nothing needed, there is no value of type a available. In that case VBlank

values are used. The valid field of VSt is used to validate mandatory fields. It is
updated at each interactive element and set to False when a non-optional field
is not masked. This validation is used to disable completion of a task until its
form has been filled out completely.

1generic gUpdate a :: a *USt → (a, *USt)
2:: *USt =
3{ mode :: UpdateMode

4, searchPath :: DataPath

5, currentPath :: DataPath

6, update :: String

7, consPath :: [ConsPos]
8, mask :: DataMask

9, world :: *World

10}
11:: UpdateMode = UDSearch | UDCreate | UDMask | UDDone

The gUpdate function traverses a data structure recursively and at each point
transforms the value and state according to one of four modes. In UDSearch mode,
the currentPath path field is compared to the searchPath field and update is applied
when they are equal. The mode is then set to UDDone and the mask field is updated
to include the value of currentPath.. In UDDone mode, the function does nothing
and is just an identity function. When a constructor of an algebraic data type is
updated to one that has a non-zero arity, the gUpdate function needs to be able
to produce default values for the substructures of the constructor. It uses its
UDCreate mode to create these values. In this mode, the gUpdate ignores its input
value and returns a default value. The last mode is the UDMask mode, which adds
the paths of all substructures to the mask as it traverses the data structure. This
is used to compute a complete mask of a data structure.

5 Related Work

The iTask system is a workflow management system, and is therefore comparable
with other WFMSs. However, unlike many contemporary WFMSs (e.g. YAWL,
WebSphere, Staffware, Flower, Bonita), the iTask system does not use a graphical
formalism for the specification of workflows, but uses a compact combinator
language embedded in a general purpose functional language instead.

Although the iTask system is a WFMS, many web applications can be consid-
ered workflow support systems in some way or another. Therefore one could also
view the iTask system as a more general framework for (rapid) development of
web applications. This makes it comparable with other web development frame-
works found in functional languages like WASH/CGI [14]and HAppS [5] in Haskell,
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XCaml in OCaml, or the frameworks available in dynamic scripting languages like
Rails [13] in Ruby or Django [2] in Python. While these frameworks aim to sim-
plify the development of any type of web application, the iTask system will only
be suitable for applications that can be sensibly organized around tasks.

The final body of work that may be classified as related is not so much related
to the iTask system itself but rather to its new generic web visualization library.
Other functional web GUI libraries exist like the WUI combinator library in Curry
[4], or the iData toolkit [8] in Clean that powered previous iTask implementations.
The new iTask visualization library differs from those libraries in that it makes
use of an active Ajax client, in this case built with the ExtJS framework [3]. This
gives the generated editors more control over the browser than is possible with
plain Html forms, hence enabling the generation of more powerful “desktop-like”
user interfaces. However, the iTask client is a single application that interprets
instructions generated on the server and is not to be confused with client side
application frameworks such as Flapjax [7]. Such frameworks could be used as a
replacement for ExtJS in alternative iTask clients.

6 Conclusions

In this paper we have presented a new implementation of the iTask system. This
new implementation uses a service-based architecture combined with an active
client. This approach enables the generation of more user-friendly interfaces for
end-users without compromising the declarative nature of the iTask language.

Although seemingly superficial, improved usability is a crucial aspect of the
implementation of the iTask workflow language, because the iTask system gen-
erates executable systems solely from a workflow specification and nothing else.
Hence, the generation quality largely determines the usefulness of the language.

A direct consequence of, and a primary motivation for, this work is that it
enables case study and pilot research to validate the effectiveness of the function
combinator approach to workflow modeling used by the iTask system in scenarios
with real end-users. Not surprisingly, such realistic case studies in the context
of supporting disaster response operations are planned for the coming years.

More information, examples and downloads of the iTask system can be found
at: http://itasks.cs.ru.nl/.
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Abstract. ChalkBoard is a domain specific language for describing
images. The ChalkBoard language is uncompromisingly functional and
encourages the use of modern functional idioms. ChalkBoard uses off-
the-shelf graphics cards to speed up rendering of functional descriptions.
In this paper, we describe the design of the core ChalkBoard language,
and the architecture of our static image generation accelerator.

1 Introduction

Options for image generation abound. Functional languages and image gener-
ation have been courting for decades. Describing the mathematics of images
in functional languages like Haskell [1] is straightforward. Yet there is no clear
choice for describing images functionally, and then efficiently rendering them.

There certainly are many image generation choices in Haskell. The popular
cairo[2], for example, is an efficient image language, based on imperatively draw-
ing shapes onto a canvas, with a Haskell IO port of the API. We are explicitly
interested in exploring purely functional representations of images and want to
understand if they can be made efficient.

The ChalkBoard project is an attempt to bridge the gap between the clear
specification style of a language with first-class images, and a practical and effi-
cient rendering engine. Though systems like cairo offer the ability to use created
images as new components, the hook here is that with the first-class status offered
by pure functional languages comes clean abstraction possibilities, and therefore
facilitated construction of complex images from many simple and composable
parts. This first-class status traditionally comes at a cost—efficiency. Unless the
work of computing these images can be offloaded onto efficient execution engines,
then the nice abstractions become tremendously expensive. This paper describes
a successful attempt to target one such functional image description language to
the widely supported OpenGL standard.

Figure 1 gives the basic architecture of ChalkBoard. Our image specification
language is an embedded Domain Specific Language (DSL). An embedded DSL
is a style of library that can be used to capture and cross-compile DSL code,
rather than interpret it directly. In order to do this and allow use of a polygon-
based back-end, we have needed to make some interesting compromises, but
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the ChalkBoard language remains pure, has a variant of functors as a control
structure, and has first-class images. We compile this language into an imperative
intermediate representation that has first-class buffers—regular arrays of colors
or other entities. This language is then interpreted by macro-expanding each
intermediate representation command into a set of OpenGL commands. In this
way, we leverage modern graphics cards to do the heavy lifting of the language.

ChalkBoard
Image

Specification

Deep
DSL

ChalkBoard
IR

OpenGL

GPU

DSL Capture

& Compile
�� ChalkBoard

Back End
��

Fig. 1. The ChalkBoard Architecture

Both subsystems of ChalkBoard are written in Haskell, and are compiled
using GHC [3]. We have plans for other back ends for ChalkBoard that share
the same Intermediate Representation (IR), but in this paper we focus on how
we use OpenGL to achieve fast static image generation from a purely functional
specification. Specifically, this paper makes the following contributions.
– We pursue an efficient functional representation of images. In order to do

this, we build a simple image generation DSL, modeled on Elliott’s Pan [4],
but with an abstract principal data type to facilitate introspection.

– To allow DSL capture, we needed to impose some restrictions on the form
of expressions. In particular, we identify challenges with capturing maps
over functors and introduce our solution, the observable O, which should be
reusable in other DSLs.

– Having captured our DSL, we need a vehicle to experimentally verify our
image generation ideas. We describe the design of our ChalkBoard acceler-
ator and give some initial performance results for our ChalkBoard compiler
and runtime system that demonstrate that ChalkBoard has sufficient per-
formance to carry out these future experiments.

Our intent with the technology discussed in this paper is that it will be of
immediate applicability, as well as serve as a basis for future dynamic image
generation and processing tools, all of which will be executing specifications
written in functional languages.

2 Functional Image Generation

As a first example of ChalkBoard, consider drawing a partially-transparent red
square over a partially-transparent green circle. The image we wish to draw looks
like Figure 2.

We can describe the picture in Figure 2 using the following ChalkBoard
specification.
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Fig. 2. Square over Circle

board = unAlpha <$> (sq1 ‘over‘ cir1 ‘over‘ boardOf (alpha white)) 1

where 2

cir1 = move (0.2,0.2) 3

$ choose (withAlpha 0.5 green) (transparent white) 4

<$> circle 5

sq1 = move (-0.2,-0.2) 6

$ choose (withAlpha 0.5 red) (transparent white) 7

<$> square 8

This fragment of code specifies that

– A circle (line 5), colored green with 50% transparency (line 4), is moved
slightly up and to the right (line 3).

– A square (line 8), colored red and also with 50% transparency (line 7), is
moved slightly down and to the left (line 6).

– Both these shapes are placed on a transparent background (line 4 & 7).
– The red square is placed on top of the green circle, which is on top of a white

background (line 1).

In order to understand the specifics of the ChalkBoard language, we need to think
about types. In ChalkBoard, the principal type is a Board, a two dimensional
plane of values. So a color image is a Board of color, or RGB. A color image with
transparency is Board of RGBA. A region (or a plane where a point is either in
a region or outside a region) can be denoted using Board of Bool. Table 1 lists
the principal types of Boards used in ChalkBoard.

The basic pattern of image creation begins by using regions (Board Bool) to
describe primitive shapes. ChalkBoard supports unit circles and unit squares, as
well as rectangles, triangles, and other polygons. The primitive shapes provided
to the ChalkBoard user have the following types:

circle :: Board Bool

square :: Board Bool

rectangle :: Point -> Point -> Board Bool

triangle :: Point -> Point -> Point -> Board Bool

polygon :: [Point] -> Board Bool
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Table 1. Boards and Type Synonyms in ChalkBoard

Board RGB Color image
Board RGBA Color image with transparency
Board Bool Region
Board UI Grayscale image

type UI = Float Values between 0 and 1
type R = Float Floating point coordinate
type Point = (R,R) 2D Coordinate or point

To “paint” a color image, we map color over a region. Typically, this color im-
age would be an image with the areas outside the original region being completely
transparent, and the area inside the region having some color. This mapping can
be done using the combinator choose, and the <$> operator.

choose (alpha blue) (transparent white) <$> circle

We choose alpha blue for inside the region, and transparent white outside the
region. The <$> operator is a map-like function which lifts a specification of how
to act over individual points into a specification of how to translate an entire
board. The types of choose and <$> are

choose :: O a -> O a -> O Bool -> O a

(<$>) :: (O a -> O b) -> Board a -> Board b

choose is a bool-like combinator that we partially apply, and <$> is an fmap-like
combinator. The type O a is an observable version of a. We can consider O to
have this trivial definition, though O is actually an abstract type.

data O a = O a -- working definition; to be refined.

We will redefine our O type and consider its implementation in section 6.
ChalkBoard provides all point-wise functions and primitives already lifted

over O. For example, the colors, and functions like alpha and transparent have
the types

red :: O RGB

green :: O RGB

blue :: O RGB

alpha :: O RGB -> O RGBA

transparent :: O RGB -> O RGBA

Our boards of RGBA, or images of transparent color, can be combined (overlaid)
into new boards of RGBA.

(choose (alpha blue) (transparent white) <$> circle)

‘over‘

(choose (alpha green) (transparent white) <$> square)
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The combinator over is used to lay one Board onto another Board.

over :: Board a -> Board a -> Board a

Also, these boards of RGBA can be (value) transformed into Board RGB, true
color images. Again, this translation is done using our map-like operator, <$>,
and a point-wise unAlpha.

unAlpha <$>

((choose (alpha blue) (transparent white) <$> circle)

‘over‘

(choose (alpha green) (transparent white) <$> square))

unAlpha removes the alpha component of RGBA, leaving RGB.
As well as translating point-wise, ChalkBoard supports the basic spatial trans-

formational primitives of scaling, moving and rotating, which work over any
Board.

scale :: Float -> Board a -> Board a

scaleXY :: (Float,Float) -> Board a -> Board a

move :: (Float,Float) -> Board a -> Board a

rotate :: Float -> Board a -> Board a

This is a significant restriction over the generality provided in Pan, and one we
intend to lift in a future version of ChalkBoard.

Finally, we also have a primitive for constructing a (conceptually infinite)
Board of a constant value, which has the type

boardOf :: O a -> Board a

Using these combinators, ChalkBoard constructs images by combining primi-
tives and translating them in both space and representation, ultimately building
a Board RGB. ChalkBoard also supports importing of images as Board RGBA,
and other Board creation primitives, for example font support, are planned.

3 ChalkBoard Example: Drawing Lines

Now that we have our fundamental primitives and combinators, we can build
more interesting, complex combinators. We can build a box combinator which
takes two points and constructs a region box between them.

box :: (Point,Point) -> Board Bool

box ((x0,y0),(x1,y1)) = polygon [(x0,y0),(x1,y0),(x1,y1),(x0,y1)]

Using this box function, we can build a straight line region builder.

straightline :: (Point,Point) -> R -> Board Bool

straightline ((x1,y1),(x2,y2)) width =

move (x1,y1)

$ rotate (pi /2 - th)

$ box ((-width/2,0),(width/2,len))

where

(xd,yd) = (x2 - x1,y2 - y1)

(len,th) = toPolar (xd,yd)
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(a) (b) (c)

Fig. 3. How straightline works

Figure 3 illustrates how straightline operates. Assuming the dots are the
target start and end points of our straight line, and the bottom left intersection
is (0,0), we draw a box of the correct size and width (a), rotate it (b), then move
it to the correct location. There are other ways of writing straightline, but
this is compositionally written.

Now we can draw lines between arbitrary points of arbitrary thicknesses, and
we can simulate curved lines using many of these straight segments together. To
do this, we have a function, outerSteps, which counts a (specified) number of
steps between 0 and 1, inclusive.

> outerSteps 5

[0.0,0.2,0.4,0.6,0.8,1.0]

The result here is a set of 6 values, or the 5 steps of size 0.2 between 0 and 1.
Using outerSteps, we sample a function that encodes the curved line. We draw
the curved line by drawing straight lines between the sample points, and filling
in any infidelity at the joins between these lines with small dots the size of the
width of the lines.

functionline :: (UI -> Point) -> R -> Int -> Board Bool

functionline line width steps = stack

[ straightline (p1,p2) width

| (p1,p2) <- zip samples (tail samples)

] ‘over‘ stack

-- not the first or last point

[ dotAt p | p <- tail (init samples) ]

where

samples = map line (outerSteps steps)

dotAt p = move p $ scale width circle

Figure 4 gives examples of functionline being used on a function with 3,
10, and 50 segments. Figure 4 shows how with a higher number of samples the
quality of rendering the curved line improves.

In fact, all these functions are already defined with the ChalkBoard library,
but are given here as an illustration of the flavor of ChalkBoard and how it
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3 segments 10 segments 50 segments

Fig. 4. Examples of functionline

compromises between continuous boards, and discrete components on these
boards. Collectively, ChalkBoard combinators give a clean and productive envi-
ronment for scripting images.

4 Considerations with Compiling ChalkBoard

ChalkBoard has a simple semantic model. A Board of α is a field of α-values
over R2, where R2 is a floating point coordinate for two dimensions.

Board α = (R, R) → α

This is exactly the model used in Pan [4], on which the ChalkBoard language
is based. Pan uses this semantic model of a function directly to implement a
Board, but though we too share the same semantic model, we want a different
implementation.

– In ChalkBoard, Board is abstract , specifically to admit the possibility of
future representation optimizations. In Pan, the equivalent of Board is im-
plemented as an explicit function, directly guided by the semantic model.
Our choice of abstraction limits the language to using only the built-in com-
binators for Board transformation. This is a significant restriction, especially
when compared to the full expressiveness of Pan, and one we intend to revisit
in the future.

– ChalkBoard is intended as a system for constructing complex images, consist-
ing of perhaps tens of thousands of individual components. The functional
representation precludes this being efficiently rendered, though techniques
like the worker/wrapper transformation [5] could be used to translate an
explicit function into something like our abstract representation.

Consider the ChalkBoard image in Figure 2. We will use this example to illustrate
a number of the challenges with optimizing a chalkboard specification of an
image. Figure 2 was generated by first building a Board Bool for each of the
two basic shapes, using our <$> on each board to convert it to a Board RGBA, and
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then using move to move these boards to the desired locations. Finally, these two
boards are overlaid, using over, and the alpha channel is removed for rendering
as a color image.

Our plan of attack is to augment the representation of Board internally, re-
place the shape primitives with more complex information about what is being
rendered, and attempt to translate our tree of operations into the drawing of
polygons. Rendering polygons is something OpenGL does extremely efficiently.
We will allow fallback onto the slower pixel sampling if needed. The longer term
goal is to allow most user-written ChalkBoard specifications to be compiled ef-
ficiently, and tell the user when a board is being rendered using the fallback
sampling. Currently, however, the ChalkBoard language discussed in this paper
is limited enough that no fallback is ever actually needed.

5 Capturing the Domain Specific Language ChalkBoard

ChalkBoard is a language that describes boards, and these boards are functor-
like. The language provides mechanisms for (1) describing the creation of boards,
and for creating boards from boards, using (2) spacial transformations and (3)
a functor-style map. In this section, we will consider how to express all three of
these language aspects in a deep embedding of the ChalkBoard language.

Constant boards are captured using a Constant constructor, inside Board.

data Board a where

Constant :: O a -> Board a

...

Here we use GADT [6] syntax for Board because of the ability to declare con-
structors that are specialized to monomorphic instances, and we present each of
the principal constructions individually.

Primitives shapes, like circles and squares, are regions, or Board Bool. They
are represented inside the data structure Board using a list of points that mark
a convex boundary of the region.

So for primitives we have the constructor

data Board a where

Polygon :: (...) -> Board Bool

...

We can see the use of the monomorphic constructor here.
Representing squares is easy using the four corner points, but what about the

points around a circle? There are infinitely many corner points on a circle, that
is, there are infinitely many points that match, for example, the equation

√
x2 + y2 = 0.5

Graphic rendering systems approximate the circle using a small number of
corners on a small circle and a larger number of corners on a larger circle. At
this point, we appeal to classical functional programming and defer the decision
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about how many points to use to approximate the circle using a function. The
type of the Polygon constructor is

data Board a where

Polygon :: (Float -> [Point]) -> Board Bool

...

The Float argument is the resolution of the final polygon. Specifically, it is
an approximation of how many pixels a line of unit length would affect. We can
now give a definition for square and circle.

square :: Board Bool

square = Polygon (const [(-0.5,-0.5),(-0.5,0.5),(0.5,0.5),(0.5,-0.5)])

circle :: Board Bool

circle = Polygon $ \ res ->

let ptcount = max (ceiling res) 3

in [ (sin x/2,cos x/2)

| x <- map (* (pi/(2 * fromIntegral ptcount)))

(take ptcount [0..])

]

sin and cos are used to find the x and y points on a unit circle (after scaling),
and the number of points is dictated by the size of the final circle. The point count
formula used here generates reasonable images, but remains open to further
tuning.

Spacial transformations are also handled using a single Board constructor,
which combines all the relevant transformations.

data Board a where

Move :: (Float,Float) -> Board a -> Board a

Scale :: (Float,Float) -> Board a -> Board a

Rotate :: Float -> Board a -> Board a

...

move :: (Float,Float) -> Board a -> Board a

move (x,y) = Move (x,y)

scale :: Float -> Board a -> Board a

scale w = Scale (w,w)

rotate :: Radian -> Board a -> Board a

rotate r = Rotate r

Finally, we have our functor map (or fmap) like operators. Consider the fol-
lowing attempt at a fmap constructor.

data Board a where

Fmap :: forall b . (b -> a) -> Board b -> Board a -- WRONG

...

(<$>) = Fmap
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This can be used to successfully typecheck a ChalkBoard-like language and con-
struct a representation of Board, but we run into a fatal problem when we try to
walk the Board tree during compilation. Here b can be any type; we have lost the
type information about what it was. We can expect an <$> over a Board Bool to
have a completely different operational behavior than an <$> over a Board RGB!
When walking our tree and performing our abstract attribute grammar inter-
pretation, we get stuck.

We address this problem by assuming our pointwise function is a function
over our observable type O. So we have the corrected

data Board a where

Fmap :: forall b . (O b -> O a) -> Board b -> Board a

...

(<$>) = Fmap

and we also require our O type to hold runtime type information, as described
in section 6. It looks like using O just postpones the problem, and does not solve
it. By forcing pointwise manipulations to be expressed in the O language, we
can observe what the user intended, without requiring that every function be
directly promoted into a Board equivalent.

We can now construct basic abstract syntax trees for ChalkBoard, using our
Board data type. For example

scale 2 (choose red green <$> square)

represents the creation of a red square on a green background. It constructs the
Board tree

Scale (2,2) (Fmap (...) (Polygon (...))

We can extract the specific polygon points contained inside the Polygon con-
structor when we are compiling for OpenGL because in context we know the
size of the target image. The challenge is how do we extract the first argument
to Fmap? To do so, we use our observable type, O.

6 O, the Observable

The data type O, which we nickname the observable, is the mechanism we use
to observe interesting values. The idea is that an observable can simultaneously
have a shallowly and deeply embedded interpretation of the same constructed
expression. We can use the shallow interpretation to directly extract the value
of any O expression, and we examine the deep interpretation to observe how a
result was constructed. Specifically, the data definition for O is

data O a = O a E -- abstract in ChalkBoard API

E is a syntax tree of possible O expressions. By limiting the ways of building O, we
allow O expressions to be built only out of primitives we know how to compile.
In ChalkBoard, E has the definition
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data E = E (Expr E)

data Expr e

= Var Int | Lit Float | Choose e e e

| O_Bool Bool | O_RGB RGB | O_RGBA RGBA

| Alpha UI e | UnAlpha e

...

We use implicit recursion inside Expr so we can share this functor-style repre-
sentation of Expr between our expression inside O and the internal compiler; see
[7] for a detailed description of this design decision.

To illustrate how we build our primitives, the definition of choose is

choose :: O a -> O a -> O Bool -> O a

choose (O a ea) (O b eb) (O c ec) = O (if c then a else b)

(E $ Choose ea eb ec)

We can also build primitive O values using our Obs class.

class Obs a where

o :: a -> O a

That is, only instances of Obs can construct objects of type O a. ChalkBoard uses
this to provide a way of taking a value of Bool, RGB, RGBA, or Float and lifting
it using the o function into the O structure. In many ways, this is a restricted
version of return for monads, or pure for applicative functors [8].

So how do we actually observe a function? By giving a dummy argument
and observing the resulting expression. The Expr type above contains a Var
constructor specifically for this purpose. If we take the example

choose red green :: O Bool -> O RGB

We can pass in the argument ‘O ⊥ (Var 0)’ to this function, and get the result

O ⊥ (E (Choose

(E (O_RGB (RGB 1 0 0)))

(E (O_RGB (RGB 0 1 0)))

(E (Var 0))))

where the structure of the choose and the arguments are completely explicit.
Using this trick, we can observe the function argument to our functor because
we require the argument and result type to both be of type O. Ignoring the type
change between the function argument to Fmap and its tree representation, our
earlier example can be parsed into

Scale 2 (Fmap (E (Choose

(E (O_RGB (RGB 1 0 0)))

(E (O_RGB (RGB 0 1 0)))

(E (Var 0))))

(Polygon (...))

)

thus allowing compilation.
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7 ChalkBoard IR

We use both the inspection of the Board structure itself and the observation of O
objects to construct our ChalkBoard abstract syntax tree. From here, compila-
tion is a matter of implementing the attribute grammar interpretation over this
tree in a way that leverages OpenGL’s polygon pushing abilities. We translate
into a ChalkBoard Intermediate Representation (CBIR), then interpret CBIR
on the fly into OpenGL commands.

Statement stmt ::= allocate dest (x,y) back Allocate Buffer
| buffersplat dest src pointmaps Splat Texture
| colorsplat dest col points Splat Color
| delete src Deallocate
| save src filename Write to file
| exit

Background back ::= col Background Color
| Ptr Pointer to an Image

Color col ::= RGB RGB Constant
| RGBA RGBA Constant

dest,src ::= buffer-id

pointmap ::= (point,point)
pointmaps ::= pointmap1, pointmap2, . . . , pointmapn n ≥ 3

point ::= (u,v)
points ::= point1, point2, . . . , pointn n ≥ 3

x,y ::= int
u,v ::= float

Fig. 5. ChalkBoard Intermediate Representation

Figure 5 gives the syntax of CBIR. There are two main commands.

– allocate, which allocates a new, fixed-sized buffer in graphics memory.
– buffersplat, which takes a polygon from one buffer and renders it onto

another buffer. buffersplat takes a source and destination buffer, and a
sequence of point maps, each of which is a mapping from a point on the
source board to a point on the destination board. This mapping capability
is both powerful and general. It can be used to simulate scaling, translation,
or rotation. This is the command that does the majority of the work inside
ChalkBoard.

As well as the two principal instructions, there are also commands for deallo-
cation of buffers, saving buffers to disk images, and colorsplat, a specialized
version of buffersplat where the source is a single color instead of a buffer.
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8 Compiling ChalkBoard to ChalkBoard IR

When compiling ChalkBoard, we traverse our AST in much the same way as
the attribute grammar example above, but instead of passing in the inherited
attribute (x, y) many times, we walk over our graph once, providing as inherited
attributes:

– a basic quality of the required picture argument. In this way, a specific Board
can know how much it is contributing to the final image;

– any rotations, translations, or scaling performed above this node;
– and an identifier for a pre-allocated target buffer.

We then have a set of compilation schemes for each possible Board type. In
general we perform the following compile steps

– Constant Boards compile into a single splat onto the target board.
– Move, Scale and Rotate update the inherited attribute context, recording

the movement required, and then compile the sub-board with this new con-
text.

– For Over, we interpret the child boards according to the type of Board. For
Board Bool and Board RGBA, Over draws the back (second) board, and then
draws the first board on top. For Board RGB, Over simply compiles the first
board.

– For Fmap we infer the type of the map by inferring the type of the functional
argument to Fmap, using the capabilities provided by O. We then emit the
bridging code for the Fmap, compiled from the reified functional argument,
and call the relevant compilation scheme for the sub-board’s type.

The compilation scheme for Board Bool has one extra inherited attribute, a
color to use to draw True values. The primitive Polygon, which is always of
type Board Bool, is translated into a colorsplat of the pre-computed True
color onto a pre-allocated backing board that is initialized to the False color.

The key trick in the compiler is compiling a Fmapwhich translates a Board Bool
into a Board RGB (or Board RGBA). For example

( Fmap f (Polygon (...) :: Board Bool) ) :: Board RGB

f here has type O Bool -> O RGB. To compile the inner Board Bool syntax tree,
we need to compute the True (or foreground) color, and False (or background)
color. To find these colors, we simply apply f to True, and also apply f to False,
giving the two colors present on the board.

9 Interpreting ChalkBoard IR

The ChalkBoard IR is interpreted by the ChalkBoard Back End (CBBE). This
CBBE is run in a separate thread from the rest of ChalkBoard. After it has
been initialized, it waits on an MVar (a type of concurrency “mailbox” used in
concurrent Haskell programs) for lists of CBIR instructions from the compiler.
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These CBIR instructions are then expanded and executed inside OpenGL. After
these instructions are executed, a specified final board is printed out onto the
screen by the CBBE. A new set of instructions can then be passed to the CBBE
in order to repeat the process. Any of the boards can also be saved to a file using
the save CBIR instruction.

The concept of a Board in ChalkBoard translates roughly into an OpenGL tex-
ture inside the CBBE. For each new buffer that is allocated in the CBIR instruc-
tions, a new OpenGL texture is created in the CBBE. These new textures can have
a variety of internal formats based on the color depth needed by the board (Lu-
minance, RGB, or RGBA) and either have an initial color specified by the CBIR
instruction or an initial image that is read in from a specified image file.

These textures can then be texture-mapped onto one another in order to create
the effects of buffersplat in the CBIR. The preferred way to do this is using
the OpenGL Framebuffer object, or FBO. The FBO saves a lot of overhead
by allowing images to be rendered straight into a texture instead of onto the
screen, from which images would need to be copied back into a texture. When
splatting one board onto another, the back or destination texture is attached
to the current color attachment point of the FBO, and then the front or source
texture is simply texture-mapped on top of it using the pointmaps specified in
the CBIR instruction. The resulting image is automatically rendered into the
destination texture. There is no additional copying necessary because the effects
have already been stored in the destination texture directly.

To support older graphics cards and drivers, an alternate method to using
FBOs is also implemented. The main difference between the methods is that
drawing in the alternative method must be done to the default screen Frame-
buffer and then copied back out into the appropriate destination texture using
glCopyTexImage. Because we use double buffering, the images are drawn to the
buffer and then copied out without ever being swapped onto the screen. In this
way, the actual step-by-step drawing is still invisible to the user but will take
considerably longer than when using FBOs because the resulting image structure
must be copied back out into the destination texture.

As an example of the performance difference between the two methods, we
wrote a small micro-benchmark, called ChalkMark, to stress test splatbuffer
by rendering 5000 triangles onto a buffer 100 times. When running ChalkMark
on a OSX 10.5 with an NVIDIA GeForce 8600M GT running OpenGL 2.0, the
CBBE currently achieves about 38,000 splatbuffer commands per second when
using an FBO, versus about 11,000 splatbuffer commands per second when
using the alternative glCopyTexImage. Even as we further tune the CBBE, we
expect the difference between the two methods to remain this significant. Thank-
fully, most systems today that would use ChalkBoard should have graphics cards
with FBO support, with the glCopyTexImagemethod providing only backwards
compatibility.

ThecolorsplatCBIR instructionalsouses these twomethods for its implemen-
tation in the CBBE. Itworks in much the same way as the buffersplat instruction
except that a simple, colored polygon is drawn over the destination texture instead
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of texture-mapping a second source texture onto it. This removes the needless over-
head of allocating extra 1x1 texture boards just to use as basic colors.

Though there remains considerable scope for optimizing the use of the OpenGL
pipeline, and there also are many improvements that could be made to our Chalk-
Board compiler, we have found the current performance is more than sufficient for
simple animations.

10 Related Work

Functional image generation has a rich history, and there have been many pre-
vious image description languages for functional languages. Early work includes
Reade [9], where he illustrates the combinational nature of functional program-
ming using a character picture DSL in ML, resulting in ASCII art, Peter Hender-
son’s functional geometry [11], Kavi Arya’s functional animation [12], and more
recently Findler and Flatt’s slide preparation toolkit [13]. Functional languages
are also used as a basis for a number of innovative GUI systems, the most in-
fluential one being the Fudgets toolkit [14]. ChalkBoard instead concerns itself
with image generation and not GUIs, and intentionally leaves unaddressed the
issues of interactivity and interactivity abstractions.

Elliott has been working on functional graphics and image generation for many
years resulting in a number of systems, including TBAG [15], Fran [16] Pan[17]
and Vertigo [18]. The aims of these projects are aligned with ChalkBoard—
making it easier to express patterns (sometimes in 2D, sometimes in 3D) using
functional programs and embedded domain specific languages, and to aggres-
sively optimize and compile these embedded languages. Elliott’s ongoing work
has certainly been influential to us, and ChalkBoard starts from the basic com-
binators provided by Pan. The main difference from the user’s point of view is
the adoption of the ability to aggressively optimize and compile these EDSLs for
faster execution.

There are a number of imperative style interfaces to graphic systems in
Haskell. Hudak [10] used the HGL graphics Library, which exposes the basic
imperative drawing primitives of Win32 and X11, allowing students to animate
basic shapes and patterns. On top of this imperative base, Hudak shows how
to build purely functional graphics and animations. OpenGL, GLUT and other
standard graphics systems are also available to Haskell programmers, through
FFI layers provided on hackage.haskell.org. The issue remains that these
libraries behave like imperative graphics libraries.

11 Conclusion and Future Work

We have developed an OpenGL-based accelerator for a simple domain specific
language for describing images. The language supports basic shapes, trans-
parency, and color images, and our implementation also provides import and
export of images in popular image formats. Our system generates images suc-
cessfully and quickly, giving a many-fold improvement over our previous imple-
mentation of ChalkBoard.
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In order to capture our DSL, we needed to invent our observable object O,
and create a small, functor-like algebra for it. This idiom appears to be both
general and useful, and merits further study. Lifting this idea into the space of
applicative functors [8] is an obvious next step.

Our implementation has many possible improvements and enhancements.
In the current ChalkBoard compilation scheme, we do not make use of the
buffersplat primitive, but we expect to do so in the near future as we continue
to enhance our compiler. Specifically, we will use data reification [7] to allow the
observation of sharing of boards and other intermediate values, and buffersplat
will allow us to compile this sharing into CBIR. There are a number of interesting
compilation tradeoffs to explore here.

We intentionally chose OpenGL as a well-supported target platform. Most
modern graphics cards are independently programmable beyond what is offered
in OpenGL, through interfaces like OpenCL or CUDA. We use OpenGL be-
cause it offers the hardware support for what we specially want—fast polygon
rendering—rather than using general computation engines for polygon pushing.
In the future, we will consider in what way we can use these additional compu-
tational offerings while at the same time retaining the fast polygon support.

We want to use ChalkBoard for drawing educational animations. Right now, a
Board is a two-dimensional abstract object. Could we make it a three-dimensional
object with time as the third dimension, and build on the ideas from functional re-
active programming (FRP) [19]? If we limit ourselves to only animations, and not
reactivity, could we simplify the current complexities and challenges surround-
ing FRP events, and build a small animation language on top of ChalkBoard?
In particular, we are interested in describing animations that are performed on
streaming video sources.

We believe that ChalkBoard is a viable and useful research platform for exper-
imenting with applied functional programming. All the diagrams in this paper
that did not require font support were rendered using ChalkBoard. The version
of ChalkBoard discussed in this paper is available on the Haskell package server
hackage, and development continues on the next version.
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Abstract. Developing efficient parallel programs is more difficult and
complicated than developing sequential ones. Skeletal parallelism is a
promising methodology for easy parallel programming in which users
develop parallel programs by composing ready-made components called
parallel skeletons. We developed a parallel skeleton library SkeTo that
provides parallel skeletons implemented in C++ and MPI for distributed-
memory environments. In the new version of the library, the implemen-
tation of the parallel skeletons for lists is improved so that the skeletons
equip themselves with fusion optimization. The optimization mechanism
is implemented based on the programming technique called expression
templates. In this paper, we illustrate the improved design and imple-
mentation of parallel skeletons for lists in the SkeTo library.

Keywords: Skeletal parallelism, fusion transformation, list skeletons,
expression templates, template meta-programming.

1 Introduction

Hardware environments for parallel computing are now widely available. The
popularization and growth of multicore CPUs call for more parallelism to utilize
the potential of the hardware. Developing parallel programs, however, is more
difficult and complex than developing sequential ones due to, for example, data
distribution, communication, and load balancing.

Skeletal Parallelism [1] is a promising methodology for this problem. In the
skeletal parallelism, parallel programs are developed by composing ready-made
components, called parallel skeletons, which are abstract computational patterns
often used in parallel programs. Parallel skeletons conceal many details of par-
allelism in their implementation and, thus, allow for the development of parallel
programs as if they were sequential programs. This paper considers parallel skele-
tons for data-parallel computations in which large amounts of data are processed
in parallel.
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Our group has intensively studied skeletal parallelism for data-parallel com-
putations since the late 90’s. We have developed several methods for deriving
skeletal parallel programs and for optimizing skeletal programs using fusion
transformation [2] based on the constructive algorithmic theory [3]. To make
these results easily available, we have developed a parallel skeleton library named
SkeTo [4]: the name is from the abbreviation of Skeleton Library in Tokyo and
it also means helper or supporter in Japanese. Three important features of the
SkeTo library are:

– The library is implemented in standardC++ and MPI (MessagePassing Inter-
face), and we can widely use the library on distributed-memory environments
as well as shared-memory ones. Users who know C++ can use the library with-
out learning another language or library for parallel programming.

– The library provides parallel skeletons for data-parallel computation. Sup-
ported data structures are lists (one-dimensional arrays), matrices (two-
dimensional arrays), and trees. Parallel skeletons over these data structures
have similar interfaces.

– The library provides a mechanism of optimizing skeletal programs based on
fusion transformation [5].

The SkeTo library version 0.3beta was released in January 2007. After this re-
lease, some problems were found that needed be resolved and the new version 1.0
of the SkeTo library was developed. Two important improvements of the library
are:

– With the old version, users had to select the proper skeleton for their specific
situation (e.g., a skeleton to overwrite lists). In the new version, selections
are automatically done by the library.

– In the old version, the fusion optimization was implemented in OpenC++ [6]–
a meta-programming language for C++. OpenC++ is now obsolete. In the
new version, the fusion optimization mechanism is implemented using stan-
dard C++ in conjunction with the meta-programming technique called ex-
pression templates [7]. In addition, more powerful fusion rules than those of
the old version are implemented.

The SkeTo library is available for several environments. In terms of the OS, it
is available for Linux, Mac OS X, and Windows with cygwin; in terms of the
Compiler, it is available for GCC versions 3.4 and 4.3, and Intel Compilers 9.1
and 11.1; in terms of the MPI library, it is available for mpich and OpenMPI.

This paper discusses the design and the implementation of the parallel list
skeletons in the SkeTo library. The focus is on the self-optimization mechanism
implemented with expression templates. The rest of the paper is organized as
follows. Section 2 presents the sequential and the parallel definitions of the list
skeletons provided in the SkeTo library and discusses how to optimize skeletal
programs using fusion transformation. The implementation of the parallel list
skeletons is discussed in Section 3. Section 4 evaluates the performance of the
SkeTo library using two examples. Related work is reviewed in Section 5 and
concluding remarks are presented in Section 6.



74 K. Matsuzaki and K. Emoto

generate(f, n) = [f(0), f(1), . . . , f(n − 1)]

map(f, [a0, a1, . . . , an−1]) = [f(a0), f(a1), . . . , f(an−1)]

zipw(f, [a0, a1, . . . , an−1], [b0, b1, . . . , bn−1]) = [f(a0, b0), f(a1, b1), . . . , f(an−1, bn−1)]

reduce(⊕, [a0, a1, . . . , an−1]) = a0 ⊕ a1 ⊕ · · · ⊕ an−1

scan(⊕, e, [a0, a1, . . . , an−1], ptr) = [e, e ⊕ a0, . . . , e ⊕ a0 ⊕ a1 ⊕ · · · ⊕ an−2]
where ptr ← e ⊕ a0 ⊕ a1 ⊕ · · · ⊕ an−2 ⊕ an−1

scanr(⊕, e, [a0, a1, . . . , an−1], ptr) = [a1 ⊕ · · · ⊕ an−2 ⊕ an−1 ⊕ e, . . . , an−1 ⊕ e, e]
where ptr ← a0 ⊕ a1 ⊕ · · · ⊕ an−2 ⊕ an−1 ⊕ e

shift�(e, [a0, a1, . . . , an−1], ptr) = [e, a0, . . . , an−2] where ptr ← an−1

shift�(e, [a0, a1, . . . , an−1], ptr) = [a1, . . . , an−1, e] where ptr ← a0

Fig. 1. The sequential definition of list skeletons. Updates of values through pointers
are denoted by ptr ← a to make the definition consistent with the implementation in
the SkeTo library.

2 Parallel List Skeletons in the SkeTo Library

The parallel skeletons provided in the SkeTo library are computational patterns
in the Bird-Meertens Formalism (BMF) [3] that was originally studied for se-
quential programming. This section defines the parallel list skeletons from two
viewpoints: the sequential definition from the user’s point of view and the paral-
lel definition from the implementer’s point of view. This sections also discuss how
to apply fusion transformation to optimize programs with parallel list skeletons.

2.1 Sequential Definition of List Skeletons

Figure 1 shows some of the list skeletons available in the SkeTo library. Users
develop their programs based on this sequential definition.

Skeletons generate, map, and zipw are element-wise computational patterns.
Skeleton generate(f, n) returns a list of length n whose elements are the results
of the function f applied to the indices [0, . . . , n−1]. Skeleton map(f, as) applies
the function f to each element of the list as. Skeleton zipw(f, as, bs) applies the
function f to each pair of corresponding elements of the lists as and bs.

Skeleton reduce(⊕, as) computes the reduction of the list as with the associa-
tive binary operator ⊕. Skeleton scan(⊕, e, as, ptr) computes accumulation on
the list as from the left to the right (also called prefix-sums) with the associa-
tive binary operator ⊕. The accumulation starts at e, and the fully accumulated
result is returned through the pointer ptr . Skeleton scanr(⊕, e, as, ptr) accumu-
lates from the right to the left.

Skeleton shift�(e, as, ptr) (shiftr in the program code) returns a list whose
elements are shifted to the right, where the leftmost value is e and the original
rightmost value is returned through ptr . Skeleton shift�(e, as, ptr) (shiftl in
the program code) is a shift computation from the right to the left.
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generate(f, n)
= let bsi = generatelocal(f, �i ∗ n/p	, �(i + 1) ∗ n/p	 − 1) for i ∈ [0, p − 1]

in [bs0, . . . , bsp−1]

map(f, [as0, . . . , asp−1])
= let bsi = maplocal(f, asi) for i ∈ [0, p − 1]

in [bs0, . . . , bsp−1]

zipw(f, [as0, . . . , asp−1], [bs0, . . . , bsp−1])
= let csi = zipwlocal(f, asi, bsi) for i ∈ [0, p − 1]

in [cs0, . . . , csp−1]

reduce(⊕, [as0, . . . , asp−1])
= let bi = reducelocal(⊕, asi) for i ∈ [0, p − 1]

in reduceglobal(⊕, [b0, . . . , bp−1])

scan(⊕, e, [as0, . . . , asp−1], ptr)
= let bsi = scanlocal(⊕, ι⊕, asi, ci) for i ∈ [0, p − 1]

[d0, . . . , dp−1] = scanglobal(⊕, e, [c0, . . . , cp−1], ptr)
esi = maplocal((di⊕), bsi) for i ∈ [0, p − 1]

in [es0, . . . , esp−1]

shift�(e, [as0, . . . , asp−1], ptr)
= let bi = last(asi) for i ∈ [0, p − 1]

[c0, . . . , cp−1] = shift�global(e, [b0, . . . , bp−1], ptr)
dsi = shift�local(ci, asi,NULL) for i ∈ [0, p − 1]

in [ds0, . . . , dsp−1]

Fig. 2. The parallel definition of list skeletons based on the sequential definition given in
Figure 1. The subscript “local” indicates that a skeleton is used as a local computation
and the subscript “global” indicates that a skeleton is used as a global computation.
The definition of generatelocal is a bit different from that in Figure 1. It takes the first
and the last indices of the list as input. Function last returns the last element of the
given list and ι⊕ is the unit of the binary operator ⊕.

2.2 Parallel Definition of List Skeletons

The SkeTo library is a parallel skeleton library for distributed-memory envi-
ronments. We adopt the SPMD (Single Program/Multiple Data) computation
model in which each process has its own data. In this model, we implement a
list as a nested list whose elements are local lists allocated by processes. More
concretely, in an environment with p processes we represent a list of n elements
a0, a1, . . . , an−1 as follows.

[[a0, . . . , a�n/p�−1], . . . , [a�(p−1)∗n/p�, . . . , an−1]]

The parallel implementation of the list skeletons consists of local computation
parts in which each process computes independently with its local lists and of
global computation parts for which inter-process communication occurs. Figure 2
shows the definition of the list skeletons for parallel implementation. We omit
the definition of scanr (and shift�), since it is similar to that of scan (and shift�).



76 K. Matsuzaki and K. Emoto

Since skeletons generate, map, and zipw are element-wise computational pat-
terns, they can be easily implemented with local computations. Skeleton reduce
first performs local reduction on each local list, and then reduces the local results
with a global computation. Skeleton scan is implemented in three steps: (1) we
compute scan for each local list, (2) compute scan globally on the results of the
local scans, and (3) update the results of local scan with local map for each local
list. Skeleton shift� is implemented by global shift� applied to the last elements
of local lists followed by local shift� applied to each local list.

Note that there exists another three-step implementation of scan that con-
sists of local reduce, global scan, and local scan. This implementation is not
used, because applying the fusion transformation to the local scan is, in general,
complicated.

2.3 Target of Fusion Optimization

In the skeletal parallelism, users develop parallel programs by composing several
skeletons. One potential drawback of such a methodology is the overhead caused
by many calls of skeletons with intermediate data passed between skeletons. The
fusion transformation is an important optimization technique that removes such
overhead, and there have been several studies on this topic [8, 9, 2, 5]. We will
review these studies in Section 5.

In the new version of the SkeTo library, we implemented the fusion trans-
formation focusing on realistic and important parts of skeletal programs. The
idea is to fuse the local computation parts only, instead of applying the fusion
transformation over whole skeletons. As we defined in Figure 2 the skeletons are
implemented with local computations and global computations, and we apply
the fusion transformation to the consecutive local computations between global
computations. Figure 3 shows an example of the targets of the fusion transfor-
mation. It is worth noting that almost all the skeletal programs to which the
fusion mechanism of the old version of the SkeTo library can be applied to can
be optimized. Moreover, programs can be optimized using the scan and shift
skeletons.

Now the targets of the fusion transformation are formalized. First, in the im-
plementation of the shift� and shift� skeletons the global shift computation is
moved before the local shift computation. Based on this fact and on the def-
inition of skeletons in Figure 2, observe that the local computations between
global computations have a specific form: almost element-wise computations
(map, zipw, shift�, and shift�) occur in some order first and then scanning on
local lists (reduce or scan) may follow. Therefore, there is a fusion transforma-
tion implementation for this specific form. Implementation details are given in
Section 3.

The fusion transformation considered here is known as the loop-fusion opti-
mization. It is worth noting that loop-fusion often makes a program faster when
the loop computations are rather small. Sometimes, however, loop fusion makes
the program slower due to the increased number of registers needed.
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as

maplocal

scanlocal

scanglobal

maplocal

ziplocal

as

reducelocal

reduceglobal

Fig. 3. Two targets of the fusion transformation (denoted by dashed lines). After the
fusion transformation, the number of local computations (loops) decreases from 5 to 2.
You may think that this example is artificial, but this combination of skeletons comes
from parallelization of a very common form of recursive functions on lists [10].

3 Implementation of Parallel List Skeletons in the SkeTo
Library

Before discussing the implementation details, example programs to compute the
variance of n values [a0, . . . , an−1] (where ai = i5 mod 100) using the following
definition below are displayed.

ave =
∑n−1

i=0 ai/n

var =
∑n−1

i=0 (ai − ave)2/n

Figure 4 shows a program with simple for-loops, Figure 5 shows a program with
the SkeTo library, and Figure 6 shows a program with the STL library.

3.1 Interface

Distributed List Structure. In the SkeTo library, distributed lists are pro-
vided as instances of the template class dist_list. Data distribution is con-
cealed in the constructors of the dist_list class and users do not need to know
how the elements of a list are distributed to the processes.

One difference of the new implementation from the previous one is that the
real buffer of a distributed list is managed with its reference count in another
class dist_list_buffer to which the dist_list class has a pointer. With this
change, we can implement automatic allocation/release of memory and auto-
matic dispatching to specialized skeletons that overwrite the results on the in-
puts. We illustrate the difference with an example. In the previous version, users
had to call delete explicitly to release the memory used by the distributed lists
as follows:
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#include <iostream>
using namespace std;
const int n = 10000000;

int main(int, char**) {
int *as = new int[n];
double ave = 0;
for (int i = 0; i < n; ++i) {

as[i] = i*i*i*i*i % 100;
ave += as[i];

} ave /= n;

double var = 0;
for (int i = 0; i < n; ++i) {

var += (as[i]-ave) * (as[i]-ave);
} var /= n;

cout << var << endl;
delete [] as;

}

Fig. 4. A program using for-loops

#include <iostream>
#include <sketo/sketo.h>
#include <sketo/list_skeletons.h>
const int n = 10000000;

using namespace std;
using namespace sketo;
using namespace sketo::list_skeletons;

struct gen
: public functions::base<int (int)> {
int operator()(int i) const {

return i*i*i*i*i % 100;
}

};

int sketo::main(int, char**) {
dist_list<int> as;
as = generate(n, gen());
double ave

= reduce(plus<double>(), as) / n;

double var
= reduce(plus<double>(),

map(functions::square<double>(),
map(bind2nd(minus<double>(), ave),

as))) / n;

sketo::cout << var << endl;
}

Fig. 5. A program using the SkeTo library

#include <iostream>
#include <vector>
#include <functional>
#include <algorithm>
#include <numeric>
using namespace std;

const int n = 10000000;

struct gen {
mutable int index;
gen() : index(0) {};
double operator()() const {
const int i = index++;
return i*i*i*i*i % 100;

}
};

struct minus_ave_sqr {
double ave;
minus_ave_sqr(double ave) : ave(ave) { }
double operator()(double x) const {
return (x - ave) * (x - ave);

}
};

int main() {
vector<double> as(n);

generate(as.begin(), as.end(), gen());
double ave
= accumulate(as.begin(), as.end(),

0.0, plus<double>()) / n;

transform(as.begin(), as.end(),
as.begin(),

minus_ave_sqr(ave));
double var
= accumulate(as.begin(), as.end(),

0.0, plus<double>()) / n;

cout << var << endl;
}

Fig. 6. A program using STL
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dist_list<int> *as = new dist_list<int>(array, size);

dist_list<int> *bs = list_skeletons::map(f, as);

...

delete bs;

delete as;

In the new version of the SkeTo library, the dist_list class is responsible for
memory management and, thus, programmers can simplify as follows:

dist_list<int> as(array, size);

dist_list<int> bs = list_skeletons::map(f, as);

...

Parallel Skeletons. The parallel list skeletons that manipulate distributed lists
are defined in the name space list_skeletons. The interfaces of the parallel
list skeletons are essentially the same as before.

In the SkeTo library, the argument functions for parallel skeletons are func-
tion objects (objects that implement an operator() method). With function
objects instead of function pointers, compilers can find the concrete definition
of the functions and optimize the function calls by inline expansion. The in-
line expansion works quite well when programs are the composition of several
small components. Function objects passed to parallel skeletons are instances
of classes that inherit one of the template classes sketo::functions::base for
the declaration of the types of the arguments and the return value. For exam-
ple, a function object that takes a value of type A and returns a value of type B
should inherit the template class sketo::functions::base<B (A)>. These base
classes are implemented in a similar way to the boost::function. The reason
for reimplementation is that boost::function cannot be inline-expanded due to
its implementation. For the same reason, anonymous functions, boost::lambda,
have problems of efficiency. It is worth noting that the function objects provided
by <functional> in STL are available in SkeTo.

The most important change to the interface of parallel list skeletons is that we
only provide a single function for each skeleton. In the previous implementation,
we provided two or more functions for a skeleton. For example, for the map
skeleton there were three functions: normal map function with two arguments,
map function with three arguments, and specialized implementation map_ow for
overwriting. In the new version, we unify those implementations into a single
interface. In fact, based on the reference count in dist_list_buffer and the
expression template technique, the library dispatches skeleton calls to specific
implementations. The details of the implementation with expression templates
are shown in the next subsection.

To illustrate the differences consider the following example. In the previous
version, to overwrite the results of map onto its inputs a specialized version of
the map skeleton, namely map_ow, had to be used as follows:

list_skeletons::map_ow(f, as);

list_skeletons::map_ow(g, as);

v = list_skeletons::reduce(plus, 0, as);.
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With the new version the code is written as follows:

as = list_skeletons::map(f, as);

as = list_skeletons::map(g, as);

v = list_skeletons::reduce(plus, as);.

The library automatically selects the specialized code. Furthermore, since the
result of the map is dist_list, we can also write it in the following nested way:

v = list_skeletons::reduce(plus,

list_skeletons::map(g,

list_skeletons::map(f, as)));.

3.2 Optimization Mechanism by Expression Templates

The new version of the SkeTo library uses expression templates [7] to implement
fusion transformations and uses overwriting for memory reuse. This section in-
troduces the expression template technique and illustrates how the optimization
mechanisms are implemented.

Expression Templates. This subsection introduces the meta-programming
technique called expression templates [7]. This technique has been used to im-
plement efficient libraries for linear-algebraic computations [11] and for domain-
specific regular expressions.

When an expression in C++ is evaluated, the sub-expressions are evaluated
one by one. Consider evaluating the following code where the variables A, B, C
and D are vectors:

D = A + B - C;

Usually, the sub-expression A + B is evaluated first which generates, E, an
intermediate vector. Then the subtraction, E - C, is computed which also gen-
erates, F, another intermediate vector. Finally, the vector F is assigned to D.

The use of the expression template technique generates certain structures rep-
resenting the computation (often tree structures like abstract syntax trees) and
delay the computation until the results are required. By delaying the computa-
tion, efficient code can be generated for the whole expression. In the example
above, an instance of template type plus<vec,vec> is generated for the sub-
expression A + B, then the right-hand side of the expression is given as an in-
stance of template type minus<plus<vec,vec>,vec>, and finally the member
function

vec::operator=(minus<plus<vec,vec>,vec>)

is called. Proper code is generated for these member functions with the help of the
template structures. In the example above, a fast implementation corresponding
to the following loop is generated:

for (int i = 0; i < n; i++) { D[i] = A[i] + B[i] - C[i]; }.
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Implementation of Fusion Transformation. In Section 2.3, we stated that
the target of the fusion transformation is a set of consecutive local computations
between global computations. Due to the lack of type inference in C++, in the
new version of the SkeTo, we apply the fusion transformation to local computa-
tions that are written as a single expression. For example, in the following code
from Figure 5

double var

= reduce(plus<double>(),

map(functions::square<double>(),

map(bind2nd(minus<double>(), ave), as))) / n;

the two maps and the reduce are the target of the fusion transformation.
In the implementation, template types for local map, local zipw, local shift�,

and so on are defined. For example, the template object for local map, ls_mapobj,
is defined as follows:

template <typename F, typename AS>

struct ls_mapobj {

F f;

const AS as;

ls_mapobj(const F &f, const AS &as) : f(f), as(as) { }

typedef typename F::result_type element_type;

element_type local_get(int i) const { return f(as.local_get(i)); }

...

};.

This template object stores the function object and the argument list, and the
computation of the map skeleton is executed in the member function local_get.
The map skeleton just generates this template object as follows:

template <typename F, typename AS>

_impl::ls_mapobj<F, AS> map(F f, const AS& as) {

return _impl::ls_mapobj<F, AS>(f, as);

}.

The computation of a parallel skeleton is delayed until either reduce, scan,
scanr or an assignment to a list occurs. For example, in the implementation of
reduce, the computation of skeletons is triggered through the member function
local_get as shown in the following code:

A result = as.local_get(0);

{

const int n = as.get_local_size();

for (int i = 1; i < n; ++i) {

result = oplus(result, as.local_get(i));

}

}.

To illustrate how the fusion transformation with expression templates is done
consider, once again, the sample code above. The skeleton reduce takes a value
of type
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ls_mapobj<G,ls_mapobj<F,dist_list<double> > >

where F represents the type of bind2nd(minus<double>(),ave), and G repre-
sents the type of functions::square<double>(). Then, in the computation of
reduce, the local computation represented by two ls_mapobjs are fused to the
local reduction because the local_get functions of the two ls_mapobj are called
in a nested way. After fusion optimization and inline expansion, the main loop
of the generated code becomes the same as the following simple loop:

double result = (as[0] - ave) * (as[0] - ave);

for (int i = 1; i < n; ++i) {

result = result + (as[i] - ave) * (as[i] - ave);

}.

The performance effects of the fusion transformation are discussed in Section 4.
The current implementation of the fusion transformation for programs includ-

ing shift� or shift� has room for improvement. For example, for the following
code

bs = map(f, shiftr(e, as));

the current implementation generates code corresponding to the following loop.

for (int i = 0; i < n; ++i) {

bs[i] = f( (i==0) ? e : as[i-1] );

}

However, the following loop is faster in many cases.

bs[0] = f(e);

for (int i = 1; i < n; ++i) {

bs[i] = f( as[i-1] );

}

This improvement of the fusion transformation is a part of our future work.

Implementation of Specialized Skeletons. Overwriting the results of paral-
lel skeletons onto their inputs is an important optimization in terms of memory
consumption and the cost of memory allocation/release. The implementation of
this optimization is also attained by expression templates.

A single line of the skeletal programs usually has the following form.

as = skeleton calls;

With the expression templates, the right-hand side skeleton calls forms a tree
structure representing the skeleton calls. The following template member func-
tion was added to dist_list

template <typename BS> void operator=(const BS &bs);

and the dispatch mechanism was implemented in the member function.
The results of skeletons are overwritten when all the following conditions hold

(where as denotes the distributed list on the left-hand side):
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1. The buffer is already allocated for as.
2. The length of as is the same as that of resulting list of the right-hand side.
3. The reference count in as is greater by one than the number of occurrences

of as on the right-hand side. Note that the reference count of as increases
if it appears on the right-hand side, and this condition means that as does
not share the array with other variables.

4. The tree structure has no shift�/shift� applied to as except for the root.

Note that in condition 4 we permit the inclusion of scan and scanr because they
allocate another distributed list.

Revealing Errors in Programs Developed with Expression Templates.
Expression templates are an important programming technique for implementing
efficient libraries. However, a problem occurs when we use expression templates
for implementing a skeleton library: unreadable error messages appear when we
fail to compile template programs. It is worth noting that the following discussion
is relevant to the use of GCC. The Intel Compiler checks errors before expanding
expression templates and, thus, the following “tricks” are unnecessary.

When using expression templates for linear-algebraic computations, the pri-
mary operators used in user programs are + and * and, as such, programs have
fewer errors. However, in skeletal parallel programming, users can specify any
function for parallel skeletons and thus user programs tend to have errors. For
example, in the code displayed in Figure 5, a programmer may mistakenly pass a
unary function, like square<double>(), as the first argument to bind2nd. This
single mistake causes 20 lines of error messages. A sample error message line is
a line:.

sketo/list_skeletons_with_fusion.h: In member function ’typename F::

result_type sketo::_impl::ls_mapobj<F, AS>::local_get(int) const [

with F = sketo::functions::square<double>, AS = sketo::_impl::

ls_mapobj<std::binder2nd<sketo::functions::square<double> >, sketo::

dist_list<double> >]’: .

Note that this error is detected inside the library code even though the bug is in
the user code. Users not familiar with the implementation details of the SkeTo
library cannot determine the reason for this annoying error message.

To resolve this problem, we provide another implementation of the SkeTo li-
brary that does not optimize skeletal programs by expression templates. Users
can easily switch the implementations: defining a macro __SKETO_NO_FUSION__
at the preprocessing stage is enough and no change to the program code is
needed. The bug can easily be found with this alternative library implementa-
tion. For the above example, the error messages are reduced to 13 lines and the
bug can directly be identified in:

variance.cpp:26: error: no matching function for call to ’map(std::

binder2nd<sketo::functions::square<double> >, sketo::dist_list<

double>&)’
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Fig. 7. The execution time for computing variance

Table 1. The execution time for
computing variance (in seconds)
#cores 1 2 4 8
LOOP 1.10 1.11 0.61 0.51
SkeTo 2.38 1.25 0.68 0.50
SkeTo N.O. 3.93 2.25 1.43 1.26
STL 2.60 1.64 1.24 1.19

4 Experiments

To evaluate the performance of the SkeTo library, experiments with computing
variance (Figures 4, 5, and 6), the bracket matching problem [10], and the N-
queen problem were conducted.

Variance computation was used to evaluate the sequential performance, the
speed-up, and the overhead of the parallel list skeletons. In the experiments, a
list of length 200,000,000 was used. The experiments were carried out on a desk-
top PC with two Intel Xeon E5430 (2.66GHz, quad-cores) CPUs and 8 GByte
memory. The compiler and MPI library were GCC 4.4.0 and mpich 1.2.7p1. Fig-
ure 7 and Table 1 show the results of experiments. LOOP indicates the program
with simple loops in Figure 4 parallelized with OpenMP, SkeTo indicates the
program with the SkeTo library in Figure 5, SkeTo N.O. indicates the same pro-
gram as SkeTo but no optimization is applied, and STL indicates the program
with STL in Figure 6 parallelized with GCC libstdc++ parallel mode [12]. With
the fusion optimization using expression templates, the program utilizing SkeTo
is optimized so that it achieves almost the same performance as the simple for-
loops with OpenMP. It is worth noting that the SkeTo library and the program
in Figure 5 are also available on distributed-memory environments. The pro-
gram without fusion optimization and the program with STL are slower due to
the overhead caused by multiple list traversals. Note that the relatively small
speedups in this example are due to memory bandwidth saturation.

The bracket matching problem [10] was used to investigate the effects of the
fusion optimization using expression templates. The outline of the skeletal pro-
gram for this problem is the same as that in Figure 3, but the concrete function
objects for skeletons are a bit more complicated. The complete definition can
be found in [10]. The main part of the program is the first map and scan: the
function g′2 for map is
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Table 2. The execution time
for the bracket matching problem
(in seconds)

# core 1 4 8 16
SkeTo 12.26 3.29 1.62 0.88
SkeTo N.O. 15.21 3.94 2.01 1.23

g′2(a) = if isOpen(a) then ([a], 1, 0)
elseif isClose(a) then ([ ], 0, 1)
else ([ ], 0, 0)

and the operator ⊗ for scan is

(cs1, n1, m1) ⊗ (cs2, n2, m2) = if m1 ≥ n2 then (cs1, n1, m1 − n2 + m2)
else (cs1 ++ drop(m1, cs2), n1 + n2 − m1, m2)

where the operator ++ concatenates two lists and the function drop(m1, cs2)
drops the first m1 elements from the list cs2.

In the experiment, the string length is 100,000,000, the different types of
brackets is 4, and the maximum nesting of brackets is 10. The hardware envi-
ronment is a cluster of four PCs with an Intel Core2Quad 2.4GHz CPU and
4 GByte memory connected with Gigabit Ethernet. The compiler and library
used are Intel C++ Compiler 9.0 and MPICH 1.2.7p1. The optimized version
and the non-optimized version of the skeletal program were executed varying
the number of cores from 1 to 16. Table 2 shows the results of the experiments
and Figure 8 plots the speed-up with respect to the execution of the optimized
version on one core. The optimized version is 20% faster than the non-optimized
version independent of the number of cores.

Finally, experiments to evaluate the scalability of the SkeTo library using
the 18-Queens problem are presented. The hand-written code using MPI and C
developed by Kise et al. [13] (qn24b) and a program with list skeletons using the
SkeTo library (SkeTo) are used as benchmarks. The environment is a cluster of
PCs with dual Xeon 2.4GHz CPUs and 2GByte memory connected with Gigabit
Ethernet, GCC 4.1.2, and mpich 1.2.7p1. Figure 9 and Table 3 show the empirical
results.

From these results, we can see that both programs achieve good speedups. In
this example, nonoptimized version runs as fast as the optimized version, since
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Table 3. The execution time for
18-Queens problems (in seconds)

#CPU 1 4 16 32
SkeTo 554 157 39.9 20.9
qn24b 596 149 37.3 18.7

almost all the execution time is spent in a single map skeleton. The program
with the SkeTo library shows a bit worse scalability. This is due to the static
scheduling policy of the SkeTo library: the program with the SkeTo library runs
a bit faster on 1 CPU, but the loads may be ill-balanced on many CPUs. In
the future version of the SkeTo library we would like to integrate dynamic load-
balancing.

5 Related Work

Parallel Skeleton Libraries

Several parallel skeleton libraries have been implemented. Since the idea of skele-
tal parallel programming is closely related to functional programming, there are
several implementations based on functional languages such as Haskell [14], Tem-
plate Haskell [15], and SML [16].

There are also several implementations or widely used imperative languages
like C, C++, and Java developed for efficiency reasons. For example, Muskel [17]
and eSkel [18] provide parallel skeletons mainly for task-parallel computations;
Muesli [19] provides a two-tier model of task- and data-parallel skeletons; In-
tel TBB (Thread Building Blocks) [20] is now being widely used for multicore
parallel programming. Among these, Muesli is the skeleton library most related
to the SkeTo library. It provides data-parallel skeletons for lists and matrices
implemented in C++ and MPI (the new version of Muesli also uses OpenMP)
and some task-parallel skeletons. Compared with Muesli, the SkeTo library offers
the advantages of matrix skeletons that are defined based on the theory of con-
structive algorithmics [21], tree skeletons [22], and the optimization mechanism
based on the fusion transformation.

Instead of developing a new library, providing a parallel implementation to
an existing standard library is another approach to skeletal parallelism. For ex-
ample, DatTel [23] and MCSTL [12] are parallel implementations for STL (the
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standard template library) in C++. In particular, the latter is now integrated
into GCC with the name “libstdc++ parallel mode,” and is used in the experi-
ments in Section 4.

Optimization of Skeletal Programs by Fusion Transformation

The fusion transformation is an important optimization technique that removes
overhead caused by too many skeleton calls with intermediate data between
them. There have been several studies on this topic [2, 5,8, 9,24,25].

In the framework proposed by Aldinucci et al. [8], many transformation rules
are used to optimize skeletal programs. They considered not only simple rules
like map-map fusion, but also complex rules like fusing scan and reduce under
certain conditions on operators. The number of optimization rules, however,
easily becomes too large and it is unrealistic to implement all of them.

In the previous version of the SkeTo library [5], we implemented a fusion
optimization mechanism based on normal forms that characterize data genera-
tion/consumption. The fusion rules on those normal forms were proposed in [2].
Though this method is simple and rather easy to implement, the fusion transfor-
mation often fails for scan and shift skeletons. Note that the fusion optimization
by the expression templates covers almost all the cases that the fusion mecha-
nism in the old version can be applied to.

Single assignment C (SAC) [25] is a programming language with high level ar-
ray operations. The SAC compiler has a powerful fusion optimization mechanism
called with-loop-folding [24], which combines consecutive array operations into
a singe one. The basic idea for the fusion transformation is almost the same:
to fuse almost element-wise computations. Since the optimization was imple-
mented in the SAC compiler, it supports more powerful optimizations such as
high-dimensional arrays, more complicated data movement, and changing the
size of arrays.

Expression Templates

In the new implementation of the SkeTo library, we implemented the fusion
transformation by the expression template technique. Expression templates are
often used in efficient implementations for linear algebraic computation and in
domain-specific computations such as those for regular expressions. For the lin-
ear algebraic computation, Blitz++ [11] and the uBLAS library in the Boost
library1 are two well-known implementations. As a research-level implementa-
tion, NT2 [26] implemented several nontrivial optimizations for parallel linear-
algebraic computation with expression templates.

6 Conclusion

This paper discusses the new design and implementation of the parallel list skele-
tons of the SkeTo library. Based on the parallel definition of the list skeletons, we
1 http://www.crystalclearsoftware.com/cgi-bin/boost wiki/

wiki.pl?Effective UBLAS
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formalized the target of the fusion transformation as consecutive local compu-
tations between global computations. The optimization mechanism in the new
version of the SkeTo library was implemented using expression templates. The
presented experiments confirm the good performance of the SkeTo library and,
in particular, the good performance of the fusion optimization implemented in
the new library.

As we stated in Section 3.2, the results of the fusion transformation for the
computations with shift skeletons are not the best ones. Emoto et al. [9] proposed
an optimization method for those computations with shift skeletons. Implement-
ing this optimization for the SkeTo library is a part of our future work.
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Abstract. Compilers for polymorphic languages are required to treat values in
programs in an abstract and generic way at the source level. The challenges of
optimizing the boxing of raw values, flattening of argument tuples, and raising
the arity of functions that handle complex structures to reduce memory usage are
old ones, but take on newfound import with processors that have twice as many
registers. We present a novel strategy that uses both control-flow and type in-
formation to provide an arity raising implementation addressing these problems.
This strategy is conservative — no matter the execution path, the transformed
program will not perform extra operations.

1 Introduction

Arity is the number of arguments that a function accepts. The arity raising transforma-
tion takes a function of n arguments and turns it into a function of ≥ arguments. By
increasing the number of arguments to a function, we increase the opportunity for the
compiler to store values associated with those arguments in registers instead of in heap-
allocated data. Reducing the amount of heap-allocated data both reduces pressure on
the garbage collector and removes overhead associated with writing and reading data in
memory.

There are two major sources of extra memory allocations that we focus on removing.

1. Raw data, such as integers and floating-point numbers, stored in a heap objects
2. Datatypes and tuples, which package up a set of data into a single structure in

memory

Both of these sources of memory allocations and memory access have been shown
to be very expensive by Tarditi and Diwan [1]. In fact, the overhead associated with
reading and writing a uniform representation and extra checks to see if the garbage
collector needs to run often cost more than the garbage collection process itself. In their
work, using a simulator to collect instruction counts, they showed that 19-46% of the
execution time of a program in Standard ML of New Jersey was spent in tasks related
to storage management.

The first source of extra memory allocations is commonly known as boxing. By
storing raw data into heap objects, the rest of the system does not need to worry about
the format of the raw object. The garbage collector treats all values in registers and the
stack as pointers and can trace them uniformly. Polymorphic functions operate on values
of any type without taking special action based on the underlying object type. But this
uniform treatment comes at a cost — allocating and accessing raw data in the heap can
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be very expensive, especially for small and frequently used data. Our implementation
of arity raising determines where it is safe to pass the raw object value instead and
removes the creation of the box object.

The second source of memory allocations is tuples and datatypes. If the user has cre-
ated a very deeply nested set of datatype definitions or tuples but functions commonly
only need few pieces of data deep within that datatype, it can be expensive to create and
traverse the whole structure just to handle those few pieces of data. Our implementation
of arity raising determines when only a few pieces of a datatype are being used and
allocates and passes just those pieces, rather than the entire structure.

This paper describes a strategy for arity raising that allows the compiler to safely in-
crease the number of parameters to a function and remove allocations due to both box-
ing operations and data structures. This strategy is conservative — it will not change the
program in a way that could degrade the performance by introducing extra operations.
We restrict ourselves to transforming expressions along a code path without branches.
Those transformations move expressions and eliminate matching allocation and selec-
tion pairs.

After presenting some preliminary notation we use in our arity raising strategy, in
Section 3 we describe the analysis of function bodies. This analysis provides informa-
tion on when it is useful to transform data stored in heap objects into directly passed
parameters. In Section 4, we show how to use the gathered information to transform
function definitions and call sites. Following an example of the analysis and trans-
formation, we discuss implementation details of this arity raising strategy within the
Manticore compiler. We present performance measurements of our implementation in
Section 7 then cover the substantial related work and conclude.

2 Preliminaries

We use the direct style intermediate representation in Figure 1 for this presentation. We
assume that all bound variables are unique and that associated with each application
call site is a program point, labeled with a superscript l, that is a unique label for the
expression. Booleans, tuples, and functions are the only values that variables can take
on in this language. Integers may only be used in selections.

We assume the presence of the maps in Figure 2, computed using a control-flow
analysis, to build this graph. Our implementation uses a control-flow analysis similar to
that presented by Serrano [2], which provides sufficient information to implement these
maps.

F maps each function identifier to the list of all program points (call sites) if they are
known. If a function identifier g has an unknown call site, then F(g) is ∅. A function
escapes if it has any potentially unknown call sites and F maps those functions to ∅.
We cannot safely perform a translation on any functions with unknown call sites.

C lists the set of functions that can be called at a given program point or ∅ if the set
is unknown. A call site with unknown target functions can not be transformed.

A maps a function to the set of all the functions that could potentially share call sites
with it. This map can be computed from the F and C maps provided by control-flow
analysis.
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Exp � e ::= x variable or function name
| fun g(x) = e1 in e2 function binding
| let x = e1 in e2 local variable binding
| if x then e1 else e2 conditional
| gl(x) application (labeled)
| 〈x〉 tuple creation
| #i(x) tuple selection
| b boolean

i ∈ N literal integers

l ∈ L labels

b ∈ {true, false} boolean values

Fig. 1. Direct style intermediate representation

F : FunID → 2L Function call sites
C : L → 2FunID Called functions by call site
A : FunID → 2FunID Functions sharing call sites
U : VarID → N Variable use count

Fig. 2. Maps computed by static analysis

The use count of a variable is the number of times that the variable occurs in any
position other than its binding occurrence. The map U provides the use count of a
variable.

3 Signature Analysis

The signature analysis phase of this optimization contains almost all of the complexity.
Control-flow analysis is run over the whole program before we begin execution. Any
function with unknown call sites is ignored. For all functions with only known call sites,
we gather information from the body of the function and then compute a signature based
on whether or not call sites are shared with other functions.

3.1 Gathering Information

An access path is a series of tuple selection operations performed on a parameter. Ac-
cess paths are zero-based and the selections occur in left-to-right order. The access path
0.1.2 means to take the first parameter to the function, select the second item from it,
and then select the third item from that. The variable map

V : var → path

maps a variable to an access path. The notation Vf refers to the map V restricted to
those variables defined within the function f. The initial value for each variable is .
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V[[]] : Exp → Unit
V[[fun g(x) = e1 in e2]] = ∀xi ∈ x (V(xi) := i); V[[e1]] ; V[[e2]]

V[[let x = #i(y) in e2]] =

{V(x) := V(y).i; V[[e2]]
V[[e2]]

when V(y) �= ∅
otherwise

V[[let x = e1 in e2]] = V[[e1]] ; V[[e2]]
V[[if x then e1 else e2]] = V[[e1]] ; V[[e2]]

V[[e]] = ()

Pf (p) =
∑

x|Vf (x)=p

(
U(x) − ⏐⏐{y | x ≺ y and V(y) �= ∅}⏐⏐

)

Fig. 3. Algorithm to compute variable and path maps

The path map Pf maps an access path to a count of the number of times that path
is directly used. The path map Pf is specific to function f , as access paths are relative
to the parameters of the function and have a different meaning within different scopes.
The path map is equal to the use count of the variable associated with that path minus
any uses of that variable as the target of a selection.

To illustrate these definitions, consider the following intermediate representation for
the function f:

fun f(x) =
let a = #0(x)
let b = #1(a)
in b

· · ·
The intermediate representation for the function f above has the following variable and
path maps:

V = {x �→ 0,a �→ 0.0,b �→ 0.0.1}
Pf = {0 �→ 0, 0.0 �→ 0, 0.0.1 �→ 1}

The variable map indicates that x is the first parameter, a is the first slot of the first
parameter and that b is the second slot of the first slot of the first parameter. And the
path map indicates that only the variable b is used outside of tuple selection expressions.

The imperative map V is filled in by the algorithm V in Figure 3. Where a more
specific case appears earlier in the algorithm, that case is to be run in place of the more
general one later. The most important two cases are function definition and variable
binding where the right hand side is a selection. The operation ≺ is a binary operator
that is true if the first access path is a prefix of the second. For example, the access path
0.1 is a prefix of 0.1.3 but is not a prefix of 0.2. The map P is defined directly.

Consider the algorithm V applied to the example function f at the beginning of this
section. The maps V and Pf are initially empty. Analysing the function binding, we
add all of the parameters to the map V , binding them to their corresponding index.
The function binding for f defines a single parameter, x, so the variable map is set to
{x �→ 0}. At each local variable binding whose right hand side is a selection, the path
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represented by that selection statement and base variable is entered in the map V as
corresponding to that variable. After processing the two let bindings within the body
of f, the variable map V = {x �→ 0,a �→ 0.0,b �→ 0.0.1}. The map Pf is now valid
on those three paths, returning the path map described earlier.

3.2 Computing Signatures

The function’s signature is a list of all arguments passed to the function.1 Given the
maps V and P , we can compute an individual function’s ideal arity-raised signature and
final arity-raised signature. A function’s ideal signature is the signature that promotes
the variables corresponding to selection paths that are used in the function’s body up
to parameters — but only if another parameter is not a prefix of the proposed new
parameter. This ideal signature is a list of of selection paths. A function’s final signature
is a list of access paths, sorted in lexical order. The final signature of a function also
differs from the ideal signature in that it is the same as all other functions that it shares
a signature with.

The ideal signature reduces the list of selection paths because if one variable’s path
is a prefix of another variable’s path, the variable that is a prefix will already require
the calling function to do an allocation of all of the intermediate data. For example, in
the function usesTwo below, it may be worth promoting the variable first to a pa-
rameter, but we will not also promote the variable deeper to a parameter. Promoting
deeperwill not open up any opportunities to remove allocated data from any callers of
the usesTwo function, but will introduce more register pressure. There is a possibility
that we could avoid a memory fetch if there was a spare register and we could directly
pass deeper instead of performing a selection from first, but since our algorithm is
conservative and aggressive promotion results in huge numbers of parameters in prac-
tice, we will not promote variables like deeper.

fun usesTwo (param) =
let first = #1(param)
let deeper = #2(first)
in otherFun (first, deeper)

The ideal signature for a function f is denoted by σf and is defined as follows:

σf = { p | p ∈ ρf ∧ (�q ∈ ρf )(q ≺ p)}
where ρf = { p ∈ rng(Vf ) ∧ Pf (p) > 0} is the list of all of the access paths
corresponding to variables in the function f with non-zero use counts after substracting
their uses in tuple selections. The ideal signature is computed by selecting all of the
paths that do not have a prefix in ρf .

The map S is from a set of function identifiers to either a new signature or ∅, indi-
cating that the function will not have its parameter list or any passed arguments trans-
formed.

We build up the map S by using the A map provided by control-flow analysis to
determine the set of all functions that share call sites and computing the merged sig-
nature from their ideal signatures. The merged signature of two ideal signatures is a

1 In the implementation of Manticore, the signature also includes the current exception handler.
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set consisting of the shortest prefix paths between the two signatures and is defined as
follows:

σ1 � σ2 = { p | p ∈ σ1 ∧ (�q ∈ σ2)(q 
 p)} ∪ { p | p ∈ σ2 ∧ (�q ∈ σ1)(q 
 p)}

Note, however, that the merged signature may not be safe. Consider the pair of functions
below, usesFirst and usesSecond, and assume that they share a call site.

fun usesFirst(param) =
let first = #1(param)
in first

fun usesSecond(param) =
let second = #2(param)
in second

They will have the following ideal signatures:

σusesFirst = {0.1}
σusesSecond = {0.2}

And therefore their merged signature is: σusesFirst � σusesSecond = {0.1, 0.2}
Unfortunately, there is no guarantee that it is safe to perform the merged selections

at all of the unshared call sites. For example, assume usesFirst is called in the
following way:

let x = <2.0>
in usesFirst (x)

Then adding a selection of a second element as required by the shared signature would
result in the following unsafe code after transformation:

let x = <2.0>
let first = #1(x)
let second = #2(x)
in usesFirst (first, second)

Since there is no second element in the allocated argument tuple, the transformation
will have introduced an unsafe selection.

In an untyped setting, for any path that is in one signature to be safe, it needs to be a
prefix of or equal to a path in the other signature. If either of the sets σ′

1 or σ′
2 below are

non-empty, we cannot compute a common signature for this pair of functions using this
algorithm.2 In that case, the map S will instead return a final signature corresponding
to the default calling convention.

σ′
1 = { p | p ∈ σ1 ∧ (�q ∈ σ2)(p 
 q ∨ q 
 p)}

σ′
2 = { p | p ∈ σ2 ∧ (�q ∈ σ1)(p 
 q ∨ q 
 p)}

2 See the implementation notes in Section 6 for how we avoid this limitation in Manticore
through the use of type information.
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4 Transformation

Each new function signature requires the code to be transformed in three places.
Figure 4 shows the transformation process on this intermediate representation via the T

transformation.
For each function that is a candidate for arity raising, we transform the parameter

list of the function definition to reflect its new signature. That new signature is made up
of the variables corresponding to the paths that are part of the final signature in S. The
parameters are ordered by the lexical order of the paths as returned by S.

The parameter to the transformation ys is the set of variables that have been lifted
to parameters of functions. We add variables to this set at any function definition where
we add a variable to the parameter list. When we encounter a variable binding for a
member of the set ys, we skip that binding since the variable is already in scope at the
parameter binding.

At each location where the function is called, we replace the call’s argument list
with a new set of arguments selected from the original ones based on the new signature.
There is one procedure not defined: in the case of a call to a function that is being arity
raised, we construct a series of let bindings for the new arguments based on the final
signature of the functions sharing that call site, represented by the variable sels.

For example, if the function f has an entry in the map S with a value of [0.0, 0.1.0],
then a call to the function f will be transformed from

T[[]] : (Exp× V ars) → Exp

T[[fun f(x) = e1 in e2]]ys =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fun f(x) = T[[e1]]ys
in T[[e2]]ys

fun f(z) = T[[e1]]z ∪ ys
in T[[e2]]ys

when S(f) = ∅

where z = {z|(∃p)(p ∈ S(f)
∧ V(z) = p)}

T[[let x = e1 in e2]]ys =

⎧⎪⎪⎨
⎪⎪⎩

T[[e2]]ys

let x = T[[e1]]ys
in T[[e2]]ys

when x ∈ ys

otherwise

T[[if x then e1 else e2]]ys = if x then T[[e1]]ys
else T[[e2]]ys

T[[f l(x)]]ys =

⎧⎪⎪⎨
⎪⎪⎩

f l(x)

let new = sels
in f(new)

when C(l) = ∅ ∨ S(C(l)) = ∅

where sels = S(C(l)) paths

T[[〈x〉]]ys = 〈x〉
T[[#i(x)]]ys = #i(x)

T[[x]]ys = x
T[[b]]ys = b

Fig. 4. Algorithm to arity raise functions
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f(arg)

into

let a1 = #0(arg)
let t1 = #1(arg)
let a2 = #0(t1)
in f(a1, a2)

Transformation of the code is performed in a single pass over the intermediate repre-
sentation.

5 An Example

To better understand the intermediate representation, what the optimization looks at
and attempts to remove, and what the desired generated code looks like, we present an
example that exhibits both of the types of memory allocations listed in the introduction.
Raw floating point numbers are boxed and there is a user-defined type. This code defines
an ML function that takes a pair of parameters — a datatype with two reals, and another
real. The function then extracts the first item from the datatype and adds it to the second
parameter. The second member of the datatype is unused.

datatype dims = DIM of real * real;
fun f(DIM(x, _), b) = x+b;
f (DIM(2.0, 3.0), 4.0)

This code transforms into the following intermediate representation, as presented in
Figure 1 but augmented with reals and the addition operator. Temporary variables have
been given meaningful names in the example to aid understanding.

fun f(params) =
let dims = #0(params)
let fourB = #1(params)
let four = #0(fourB)
let twoB = #0(dims)
let two = #0(twoB)
let six = two+four
in <six>

let twoB = <2.0>
let threeB = <3.0>
let fourB = <4.0>
let dims = <twoB, threeB>
let args = <dims, fourB>
in f (args)

This intermediate representation is clearly too naive to generate efficient code from.
Note that we use the same mechanism, allocation, to box raw values, to allocate tuples,
and to allocate datatypes. This similarity, which is manifest in the Manticore interme-
diate representation, allows our arity raising algorithm to treat all three mechanisms
uniformly. Even though boxing of types, tuples, and datatype definitions will ultimately
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have different output from the code generator, uniform treatment in the intermediate
representation enables optimizations in arity raising and elsewhere in the compiler.

The function f above has the following variable and path maps:

V =
{
params �→ 0,dims �→ 0.0, fourB �→ 0.1,
four �→ 0.1.0, twoB �→ 0.0.0, two �→ 0.0.0.0

}

Pf = {0 �→ 0, 0.0 �→ 0, 0.1 �→ 0, 0.1.0 �→ 1, 0.0.0 �→ 0, 0.0.0.0 �→ 1}
Since there is only one function and its call site is immediate, the control-flow analysis
information is not too interesting. The ideal signature for this function is:

σf = [0.1.0, 0.0.0.0]

After running the transformation T, the code is now:

fun f(two, four) =
let val six = two+four
in <six>

let twoB = <2.0>
let threeB = <3.0>
let fourB = <4.0>
let dims = <twoB, threeB>
let args = <dims, fourB>
let dims’ = #0(args)
let fourB = #1(args)
let four = #0(fourB)
let twoB = #0(dims’)
let two = #0(twoB)
in f (two, four)

After Manticore’s standard local cleanup phase to remove redundant allocation and
selection pairs and unused variables, we have the following intermediate code:

fun f(two, four) =
let six = two+four
in <six>

f(2.0, 4.0)

6 Implementation

Manticore [3] is a compiler for a parallel programming language based on Standard
ML. Arity raising is performed on the weakly typed, continuation-passing style (CPS)
intermediate representation. Unlike the direct style representation, the CPS represen-
tation of the program treats both function calls and returns uniformly. This uniform
treatment allows arity raising to remove allocations not only on arguments to functions,
but also from values returned in the original source program.

After types are inferred on the original source program, we both preserve and check
them through each transformation in our intermediate representation. Monomorphic
types are preserved exactly, but polymorphic types are weakened to an unknown type.
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This type information is sufficient to provide a better solution to the incompatible
paths problem mentioned during Section 3. In Manticore, we first compute the merged
signature with all functions that share call sites. Instead of then removing all unique
selection paths, as presented earlier in this paper, we check the type of the provided
argument at each call site to ensure that the selection path is both safe and has the same
representation. The selection path is safe if the selection path is guaranteed to be valid.
For example, the selection path 0.1 is valid in the type ((int * int) * any) but
is not a safe selection into an argument with type (any * any). The selection path
has the same representation if the type of the data selected has the same representation
format. For example, since raw floating point numbers have a different representation
than raw integers, even though the selection path 0.1 is valid in the types ((int *
int) * any) and ((int * float) * any), it would be unclear whether the
argument should be passed as an integer in a general-purpose register or in a floating-
point register. The selection path 0 would be used instead in this case, as the tuple types
(int * int) and (int * float) share the same representation.

We are also less conservative in Manticore with branches than we presented in Sec-
tion 1, where we stated that no transformations are performed inside of the arms of
conditional branches. If a conditional statement is a direct check against a property of a
selection from a parameter path, then we do not permit any paths derived from that path
to be added into the maps, but we do allow analysis to continue within the arms of the
conditionals. Consider the following function, which extracts two parameters, performs
a conditional check on one, and then performs some other operations.

fun f(params) =
let x = #0(params)
let y = #1(params)
in if null? x
then ...
else ...

Within the arms of the conditional, if there are further selections to the paths corre-
sponding to the variables x and y, only selections through the variable y will be added
to the variable map. We conservatively assume that, unless the parameter type guaran-
tees that the selection is safe, the conditional may be protecting operations based on the
runtime structure of the data.

7 Results

We performed two studies on a set of four benchmarks. The first study investigates the
reduction in allocated bytes of memory across the default ML function calling conven-
tion without any arity raising, an argument-only form of arity raising similar to what
is used in most other strongly-typed functional language implementations, and the full
arity raising algorithm presented in this paper. The second study examines the impact
on program runtime across these three arity raising strategies.
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7.1 Experimental Method

Our test machine has four quad-core AMD Opteron 8380 processors running at 2.5GHz.
Each core has a 512KB L2 cache and shares 6MB cache with the other cores of the
processor. The system has 32GB of RAM and is running Debian Linux (kernel version
2.6.31.1-amd64).

7.2 Benchmarks

We evaluated the three strategies on the benchmarks listed in the table below. For each
benchmark, this table provides the size, in lines of code, and a small description of
the type and shape of data manipulated. Since we cannot perform arity raising on any
functions that the control-flow analysis determines may escape, we also provide the
number of functions eligible for arity raising and the number of functions that escape.
Some of the escaping functions are due to imprecision in the control-flow analysis, but
many more are due to passing functions to our C runtime for storage in the scheduling
queues used to implement Manticore’s parallel language features.

Benchmark Size Eligible Escaping Description
barnes-hut 323 504 97 Floating point with datatypes

life 181 106 39 Integers and list operations
mandelbrot 91 228 55 Loop-heavy floating point

quickhull 138 366 76 Floating point with heavy random access
raytracer 548 308 55 Floating point with trivial parallelism

The Barnes-Hut benchmark [4] is a classic N-body problem solver. Each iteration has
two phases. In the first phase, a quadtree is constructed from a sequence of mass points.
The second phase then uses this tree to accelerate the computation of the gravitational
force on the bodies in the system. Our benchmark runs 20 iterations over 1,000,000
particles. Our version is a translation of a Haskell program [5].

Life is a simulation of Conway’s game of life. This benchmark is an example of
code that this arity raising algorithm cannot optimize — the code operates over lists of
tupled integers. Since there are no explicit, deep data structures to remove and access
to individual data elements is guarded in conditionals, we cannot promote the data to
arguments.

Mandelbrot renders a 3000× 3000 image of the Mandelbrot set. This benchmark has
a very tight set of inner loops over floating point values that take most of the runtime
and benefits heavily from arity raising, since loops are implemented as function calls
and floating points values are boxed and stored in memory rather than registers in the
default ML calling convention.

The Quickhull benchmark determines the convex hull of 20,000,000 points in the
plane. This algorithm is interesting for Manticore because while it is trivially parallel,
the parallel subtasks are not guaranteed to be of equal work sizes. This code is based on
the algorithm presented in [6].

The Raytracer benchmark renders a 1000×1000 image in parallel as two-dimensional
sequence, which is then written to a file. The original program was written in ID [7] and
is a simple ray tracer that does not use any acceleration data structures.
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7.3 Conventions

The default calling convention in the tables below is the default calling convention
specified in the user’s program. All arguments are tupled and passed as a single value
to the function.

The argument-only calling convention is a straightforward, type-directed translation
of the function’s argument tuple from a single value into the set of tupled items. This
calling convention does not remove any nested tupling.

The full calling convention is the result of the arity raising strategy presented in this
paper.

7.4 Allocation

The table below shows the raw allocation data in megabytes (220 bytes) allocated along
with percentage improvements over the default calling convention. Smaller numbers
are better, and the two percentages reported are mbarg−only

mbdefault
and mbfull

mbdefault
, where

mbarg−only is the argument-only arity raising algorithm, mbdefault is the default ML
calling convention, and mbfull is the full arity raising algorithm presented in this work.
In all benchmarks, argument-only allocates fewer bytes than the default convention, and
the full arity raising algorithm allocates even fewer.

Benchmark Default Arg-Only Full mbarg−only

mbdefault

mbfull

mbdefault

barnes-hut 325,435 298,755 282,196 91.8% 86.7%
life 32,581 32,130 31,364 98.6% 96.2%

mandelbrot 200,421 125,136 57,558 62.4% 28.7%
quickhull 72,790 67,577 62,136 92.8% 85.4%
raytracer 369,958 273,952 273,890 74.0% 74.0%

Barnes-hut and quickhull have some opportunities to perform arity raising on tight
inner loops, but the use of parallel language constructs around the tight loops as men-
tioned in this section’s introduction prevents the optimization of several inner functions.
Life operates on lists of data, providing almost no opportunities to optimize the code.
However, our transformation does no harm to the generated code for life. Mandelbrot
has significant opportunities for optimization due to the large number of values passed
around in small structures within functions that call each other in a tight loop. Both
argument-only and the full strategy turn a signficiant number of the intermediate struc-
tures into values passed in registers. The raytracer’s functions generally operate over
either an individual data structure or a single vector at a time. Since there is only one
level of allocation to remove, the full arity raising strategy does not show significant
benefit over the argument-only convention.

7.5 Execution Time

The table below shows the execution time in seconds along with percentage improve-
ments over the default calling convention. Again, smaller numbers are better, and the
two percentages reported are targ−only

tdefault
and tfull

tdefault
, where targ−only is the argument-

only arity raising algorithm, tdefault is the default ML calling convention, and tfull
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is the full arity raising algorithm presented in this work. In all benchmarks, argument-
only runs faster than the default convention, and the full arity raising algorithm runs
even faster.

Benchmark Default Arg-Only Full targ−only

tdefault

tfull

tdefault

barnes-hut 10.660 10.644 10.473 99.8% 98.2%
life 4.193 4.171 4.002 99.5% 95.4%

mandelbrot 5.027 4.427 4.152 88.1% 83.6%
quickhull 4.720 4.667 4.432 98.9% 93.9%
raytracer 7.78 7.186 6.489 92.4% 83.4%

For all of the benchmarks, small reductions in allocated bytes result in small reduc-
tions in runtime, and larger reductions in allocated bytes result in larger reductions in
runtime. One interesting case, though, is the speedup on the raytracer benchmark of
the full arity raising algorithm over the argument-only algorithm despite a very small
reduction in the number of bytes allocated. This speedup is because there are a few
core functions used in inner loops whose heap-allocated parameters were turned into
raw parameters. Though the values passed to these functions were only being allocated
infrequently, because the functions are called with the same data repeatedly, removal of
the memory access results in a significant performance improvement.

8 Related Work

Optimizations to reduce the amount of overhead introduced by the language or exe-
cution model abound. Boxing optimizations change programs to deal with raw values
directly instead of either storing them in an altered format or in a heap-allocated struc-
ture, introducing coercions between a boxed and unboxed format and increasing the
amount of knowledge the generated code has about the specific type of the values in the
program.

Datatype flattening reduces the overhead introduced by structuring raw data into
heap-allocated objects. In cases where a set of values is placed into an object in the
heap just to be passed to a method and subsequently pulled back out into their raw
forms, avoiding the intermediate allocation saves a significant amount of overhead.

The related work over the last twenty years has mostly used either type or control-
flow to drive their optimizations and most has addressed either the problem of optimiz-
ing boxing or flattening datatypes. Our presented work is unique because it uses both
type and control-flow information and, by treating boxes and datatypes identically, both
flattens datatypes and optimizes boxing. Our work also looks at data usage patterns
within called functions, which has to this point been ignored.

8.1 Boxing Optimizations

One of the earliest pieces of formal work on the correctness of a system that handles
boxed and unboxed versions of raw data types in the same program was done by Leroy
[8]. He introduced operators for boxing and unboxing and extended the type system
to handle either boxed values or unboxed values. He then showed how to construct a
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version of the program that has changed all monomorphic functions — the functions
where the raw type is known — to use unboxed values. Calls to his box and unbox
operations (called wrap and unwrap in this paper) are introduced around polymorphic
functions, as anywhere that the type is unknown the value must be in the uniform,
boxed representation. Leroy then showed that the version of the program that purely
used boxed types computes the same thing as the version of the program that uses a
mixed representation. This strategy of mixed representations driven purely by the type
system was then directly implemented in their compiler.

Complementary work by Peyton-Jones et al. lifted box and unbox operations into
the source language (Haskell) as well as the intermediate representation [9]. They
showed a significant number of transformations that can be performed in an ad-hoc
manner within the compiler once the boxing information is available — not only cancel-
ing matched pairs of coercions, but also avoiding repeated coercion of the same value.
Since they were working with a lazy language, they also provided several valuable in-
sights into the interaction of strictness analysis and unboxed types. Most importantly,
whenever an argument is strict (always going to be evaluated), it is safe to change that
from a boxed to an unboxed argument, as it will be available at the time of the call. If
the argument were not strict, then we would need to instead have an unboxed slot so
that we could hold the code that will lazily produce the value instead.

Henglein also made all of the boxing and unboxing operations explicit in the inter-
mediate representation of his program [10]. He then provides a set of reduction rules
that move coercions to places that are considered more formally optimal by his frame-
work. By moving coercions until box and unbox operations are adjacent, it is possible
to cancel out the pair of coercions. Depending on the order of the cancellations, this or-
der choice corresponds to either keeping the data in its raw unboxed form or leaving the
data in boxed form. Keeping data in raw form is good for monomorphic function calls,
which can take arguments in raw form. Keeping data in boxed form is good for poly-
morphic function calls in this framework, as polymorphic calls required raw types in
boxed form in order to dispatch properly. This work did not address which strategy was
preferred, nor did this work provide an implementation or benchmarks. Unfortunately,
this notion of optimality is based on the static number of coercions in the program, and
even the decisions of whether to optimize first for raw form arguments or first for boxed
form arguments is based on static determination of the number of polymorphic versus
monomorphic functions in the program. Dynamic execution behavior is not considered
in this framework.

A few years later, Thiemann revisited the theoretical work done by Henglein and
provided a deterministic set of reduction relations for determining coercion placement
[11]. In particular, he chose a strategy of attempting to push unboxings toward calls in
tail position. Since his work is primarily on the intermediate representation, this strategy
ensured that there would be a register available to hold the value and that it would not
have to be spilled (and thus boxed).

Ignoring type information, work by Goubault performs intraprocedural data-flow
analysis to cancel nearby box and unbox pairs [12]. While this strategy seems like it
would intuitively be much worse than the previous whole program approach, Goubault
also introduced a method called partial inlining. This method takes the bit of wrapper
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code that includes the box or unbox operations, which occur at the start of the called
function and moves them into the caller. By moving those operations out of the called
function, if there was an operation that can now be cancelled in the calling function,
this allows that pair of operations to be canceled. While this strategy was not imple-
mented, this work is important because it pushed the idea of splitting out the prologue
and epilogue of a function and inlining them at the call sites.

Serrano uses a control-flow analysis approach based on 0CFA to gather information
about data values and where they are used [13]. Where functions are called monomor-
phically, he specializes the functions to use raw types. In practice on a wide set of
examples, he saw significant speedups and complete removal of boxing, in many cases.
This optimization worked very well for the untyped scheme language he was compiling
and produced results similar to those reported for type-directed approaches.

Also ignoring type information is the work on the placement of box and unbox op-
erations is work by Faxén [14]. His work performs whole-program control-flow analysis
(CFA) and does the usual cancelling of matched coercion operations. He also uses the
CFA information to identify potential sensitive locations in the program (like loops)
where moving a box or unbox operation that was not inside of the sensitive area into
that area could cause a major change in performance. By respecting the control-flow of
the program, his implementation did not exhibit some of the significant reductions in
performance that were shown by the previous works on coercion placement when the
benchmark included a mix of polymorphic and monomorphic functions.

Attempting to tie up the argument between the type directed and control-flow di-
rected work is a paper comparing practical results in the implementation of the Ob-
jective Caml compiler by Leroy[15]. He provided performance data showing that a
combined strategy, using the type information in restricted area based on a control-flow
analysis (provided by an analysis similar to sub-0CFA with n = 1[16]) provided the
best results. Relying exclusively on type information lead to extremes in either mov-
ing or not moving the coercion operators and results in performance that is worse than
doing nothing at all on certain benchmarks. By preserving types during compilation,
they could be used when the coercion optimization were going to be applied within
functions.

The TIL compiler by Tarditi and Morrisett used a combination of explicit representa-
tion of coercions, type dispatch in polymorphic functions, and compiler optimizaitons
to remove boxing [17]. The compiler keeps around type information throughout the
compilation process. After inlining, it is possible to have a call that boxes and then
uses the type dispatch of the polymorphic function immediately in sequence, which
their compiler then removes. Since TIL is a whole-program compiler and inlined very
aggressively, it was so effective at removing all boxing on the small benchmarks they
used that it is hard to tell if this approach would scale to larger programs [18]. Regard-
less, they got extremely good results with a primarily type-directed approach.

8.2 Arity Raising

Hannan and Hicks produced some of the earliest formal work on the correctness of
arity raising [19]. They showed that if a type system captures pairs in its types, then
functions that take a single argument that is a pair can be transformed to instead take
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two arguments (consisting of the individual elements of the pair), all of the call sites
can be fixed up, and the program still computes the same value. This transformation
was very straightforward and did arity raising whenever it was possible, in a purely
type directed manner. Like this work, they rely on the type system to determine where
arity raising is safe. Unlike our work, they flatten all types that it is possible to flatten
without regard for what the function uses.

Recently, Ziarek et al. showed an enhanced arity raising transformation for MLTon
[20]. The MLTon compiler performs a full defunctorization, monomorphisation, and
defunctionalization of the program. This set of transformations means that there are no
polymorphic functions left at the time that arity raising is being performed. Their ap-
proach to arity raising involves passing both the original version of the argument and
all of the flattened arguments (relying on useless variable elimination to remove the
original version). They provide and compare three different strategies for arity raising:
flatten-all flattens every data type completely into arguments, argument-only just flat-
tens the first level of the argument to functions, and bounded attempts to flatten tuples
up to a fixed depth only if they were created in the calling function. This heuristic is
similar to our combination of control-flow analysis and target usage to determine which
parts of the data structure to flatten; we never leave the original version of the argument
around, however, as our analysis guarantees that we pass the necessary substructures of
the data to the called function. This work has been implemented and benchmarked in
the context of MLTon, but is not part of the standard distribution.

Bolingbroke and Peyton-Jones came up with a new intermediate representation for
their implementation of Haskell, GHC, that is strict [21]. By translating laziness into
thunks, lazy evaluation is captured in a function and then forced at any use site. Now,
strictness analysis is not required for the classic optimizations discussed earlier in this
and the previous section on boxing — they can be used as-is. Their proposal for arity
raising uses only lexically apparant arguments and type information available at the
call site. They perform neither control-flow analysis nor defunctionalization, so they
will not be able to handle higher-order arguments in a rich way. This work has not yet
been implemented.

9 Conclusion

We have presented a strategy for arity raising that is conservative and have described
its implementation in the Manticore compiler. Our benchmark results show that this
strategy is effective at reducing the number of bytes allocated and the runtime for several
types of programs. Programs without opportunities for arity raising are not adversely
affected.
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Abstract. We introduce symbiotic expressions, a method for algebraic
simplification within a compiler, in lieu of an SMT solver, such as Yices
or the Omega Calculator. Symbiotic expressions are compiler-generated
expressions, temporarily injected into a program’s abstract syntax tree
(AST). The compiler’s normal optimizations interpret and simplify those
expressions, making their results available for the compiler to use as a
basis for decisions about further optimization of the source program.
The expressions are symbiotic, in the sense that both parties benefit: an
optimization benefits, by using the compiler itself to simplify expressions
that have been attached, lamprey-like, to the AST by the optimization;
the program being compiled benefits, from improved run-time in both
serial and parallel environments.

We show the utility of symbiotic expressions by using them to extend
the SAC compiler’s With-Loop-Folding optimization, currently limited
to Arrays of Known Shape (AKS), to Arrays of Known Dimensional-
ity (AKD). We show that, in conjunction with array-based constant-
folding, injection and propagation of array extrema, and compiler-based
expression simplification, symbiotic expressions are an effective tool for
implementing advanced array optimizations. Symbiotic expressions are
also simpler and more likely to be correct than hard-coded analysis, and
are flexible and relatively easy to use. Finally, symbiotic expressions are
synergistic: they take immediate advantage of new or improved optimiza-
tions in the compiler. Symbiotic expressions are a useful addition to a
compiler writer’s toolkit, giving the compiler a restricted subset of the
analysis power of an SMT solver.

1 Introduction

Compilers use a variety of algebraic expression analysis techniques to make code
optimization decisions. For example, loop fusion in SISAL [1,2,3] requires that
two loops have the same bounds; an array-bounds-check removal in Fortran must
determine if an index vector lies entirely within the array from which it selects;
the array language SaC’s With-Loop-Folding (WLF) optimization [4,5] must
compute the intersection of two index-vector sets. Although these operations are
often straightforward for humans to solve by inspection, a compiler may require
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some effort to achieve the same end. Common compiler-based approaches for
performing this task include ad hoc analysis code, tailor-made for each specific
optimization, such as [6], or use of an existing SMT solver, such as Yices [7]
or the Omega Library [8,9]. In order to motivate a different approach to the
problem, consider an Nth-difference array computation, used for signal processing
or time-series analysis or, with N = 1, to compute delta-modulation values from
a digitized audio signal, X, written as the SaC expression:

X - (genarray( [N], 0) ++ drop(-N, X))

That is, create a zero-vector of length N; catenate to it the original vector X after
dropping its last N elements; then subtract that from X. Instead of performing
these operations piecemeal, each creating array-valued intermediate results, we
would like the compiler’s WLF optimization to fuse those operations into a single
loop. To do this, the optimizer has to prove that the shape of the catenate result
matches the shape of X. In certain limited contexts, idiom recognition can detect
common code patterns of this sort. However, in the more general case, the com-
piler must solve algebraic expressions involving array shapes and values, using
standard rules of arithmetic on arrays, distributive law, associative law, de Mor-
gan’s laws, Boolean algebra, array versions of constant and value propagation,
constant folding, common sub-expression elimination, etc. A common compiler
design approach here is to restrict the domain of an optimization to fixed-shape
arrays, and to simple index expressions. The required algebraic analysis is then
hard-coded into the optimization itself.

Going beyond this point with hard coding is tedious, it does not generalize,
and is not good software engineering. Although SMT solvers can often simplify
these expressions, there are a few problems with that approach. First, there is
an impedance mismatch between the intermediate language (IL) of the com-
piler and the API of the solver: the relevant IL data must be converted to a
form acceptable to the solver, and when the solver finishes, its results must be
converted back to IL form. Second, and somewhat harder, is the question of
exactly what data should be provided to the solver. In the above example, we
would need information about the argument and result shapes of a number of
functions, potential values of parameters, etc. The task of deciding exactly what
metadata–array shapes, index vector bounds, etc.–have to be passed to the solver
can be nearly as difficult as solving the problem itself. Finally, it is difficult to
use partial results generated by an SMT solver, since the answers tend to be
of the yes-no variety: results from partial constraint resolution are not easy to
exploit. Given this, we decided to tackle the problem in a different way.

Our solution entailed some modest extensions to the SaC constant-folding
(CF) optimizations, to include some of the constraint resolution capabilities used
in SMT solvers. Traditional constant folding comprises simple term-rewriting
rules, such as replacing the vector expression ([2,3,4] + 4) by [6,7,8]. The
SaC compiler extends traditional constant folding to arrays in several ways,
shown in Figure 1. Symbolic constant simplification (SCS) simplifies array-valued
expressions on Boolean, arithmetic, and other functions. Constant Folding also
performs removal of run-time guards and compiler-internal primitives, in the
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form of SAA-constant folding (SAACF). This is driven by SAA-derived array
rank and shape information [10]. Structural-constant constant folding (SCCF)
replaces an array expression by its elements when those parts are arrays, and
eliminates indexed references to array-valued intermediate results, thereby im-
plementing array contraction [2].

Type Expression Result
SCS Array + 0 Array

SCS Array - Array genarray(shape(Array), 0)

SCS Vec * VecOfZeros VecOfZeros

SCS BoolArray | FALSE BoolArray

SCS BoolArray | TRUE genarray(shape(BoolArray), TRUE)

SCS max( Array, Array) Array

SCS Array <= Array genarray(shape(Array), TRUE)

SCCF sel( [2], [a, b, c, d] c

SCCF [a, b] ++ [c, d] [a, b, c, d]

SCCF X = modarray( M, iv, V) z = V

z = sel( iv, X) . . .
SAACF take( shape(Vec), Vec) Vec

Fig. 1. Array-based constant folding examples

The remainder of this paper is structured as follows: Section 2 introduces
Symbiotic Expressions, an alternate solution, within our limited context, to an
SMT solver, introduces array extrema, and presents a running example of our
solver injecting, propagating, simplifying, and exploiting symbiotic extrema ex-
pressions; Section 3 offers an example of using symbiotic extrema expressions to
implement a new optimization, Algebraic With-Loop Folding (AWLF), including
the performance characteristics of the new optimization; Section 4 presents the
impact of symbiotic expressions within the compiler itself; Section 5 discusses
related work; we end with our conclusions and future work in Section 6.

2 Symbiotic Expression Design and Implementation

The SaC compiler’s optimizers are heavy-duty array tools, including associative
law (AL), arithmetic simplification (AS), array constant folding (CF), common-
subexpression elimination (CSE), constant propagation (CP), distributive law
(DL), value propagation (VP), and many others.

The availability of such capabilities led us to conjecture that the SaC com-
piler, with some enhancements, might be powerful enough to perform the al-
gebraic simplifications required by new optimizations. Our idea was to have
the compiler inject appropriate algebraic expressions and/or SaC source code
into the Abstract Syntax Tree (AST) of the program being compiled, run them
through the optimizer cycle, and then see if the expressions had been simplified
enough to guide further optimization.
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Our proposed approach offered several potential advantages over an SMT
solver. First, the entire metadata question became a non-issue, because all in-
formation needed by the compiler-based solver was directly available as AST
nodes. Second, if our approach worked, it would constitute a generic technique
that could be used for other algebraic expression simplification work within
the compiler, giving it on-going, extensible value. Third, any new optimizations
within the compiler would themselves become available for use by the rest of
the compiler, perhaps improving the performance of symbiotic-expression-based
optimizations that have no apparent connection to the new optimization.

We now describe the design and implementation of Symbiotic Expressions, and
how we have used such expressions to implement Algebraic With-Loop Folding
(AWLF), an extended array optimization. We use a trivial SaC program as a
running example, to illuminate salient steps of the compiler’s actions.

2.1 Running Example

Our running example is a trivial SaC program that computes a vector of the
first N integers, then reverses that vector and displays the result. This could
be written as print(reverse(iota(N))), using SaC standard libraries, but
inasmuch as we want to highlight the code simplification process, we provide the
required functions as source code. We start with the program shown in Figure 2.
Our goal in the example is to have the compiler fold with-loops into a single,
data-parallel with-loop, and to perform other beneficial code improvements.

The fundamental structure of interest here is the SaC with-loop, a data-
parallel array comprehension construct comprising two basic components: the
first is a shape descriptor, such as genarray(s,c), that specifies creation of
an array with frame shape s, and cell shape c, to produce a result of shape
shp++shape(c), with sub-array c as the contents of its cells. For example, with
: genarray([2,3], 42) creates an array of shape [2,3], populated with 42.
The second component is zero or more generators that specify the contents of
sub-arrays within that array. For example, adding the generator ([0,0] <= i
<= [0,1]) : 666 creates a two-row matrix, in which each row is [666, 42].

2.2 Symbiotic Expressions

Symbiotic Expressions are compiler-generated expressions, written in SaC itself
or the IL, that are attached, lamprey-like, as AST nodes near relevant primitives.
The compiler simplifies these expressions in exactly the same way that it simpli-
fies the rest of the AST, because the injected expressions are indistinguishable
from other AST nodes. Unlike the lamprey, however, symbiotic expressions, once
simplified, are exploited by the compiler’s optimizers to improve code even fur-
ther. This benefits the “host” AST and the compiler, hence the term symbiotic.

We represent symbiotic expressions as primitive functions with an arbitrary
number of arguments, the first of which becomes the result of the function,
allowing us to insert symbiotic expressions into the AST with the assurance
that data flow will preserve them over optimizations. Remaining arguments have
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use Array:{-,<,shape,sel};

int main()

{ N = StdIO::readInt();

ints = iota(N);

z = reverse(ints);

StdIO::print(z);

return(0);

}

inline int[.] reverse( int[.] v)

{ lim = shape(v) - 1;

z = with { ( [0] <= [j] < shape(v) ) : v[lim - j];

} : genarray( shape(v), 0 );

return( z);

}

inline int[.] iota( int y)

{ z = with { ( [0] <= [k] < [y]) : k;

} : genarray( [y], 0 );

return(z);

}

Fig. 2. Running example source code

semantic meaning only in the context of their application: their expressions are
simplified by the optimizers, but the compiler is otherwise unaware of them.
We might re-implement symbiotic expressions using just one primitive function,
attaching, as the second argument, a tag that would identify the particular type
of symbiotic expression being computed.

Symbiotic expressions are removed from the AST by a post-optimizer traver-
sal and by dead code removal (DCR), so they have no detrimental impact on
code generation. In this regard, they are merely code annotations, similar in
spirit to the PHI functions of Static Single Assignment form [11]. The code that
was optimized, thanks to the presence of symbiotic expressions, of course, re-
mains optimized. Now, we discuss the injection, propagation, simplification, and
exploitation of symbiotic expressions in slightly more detail.

2.3 Extrema

We introduced extrema into the SaC compiler to allow us to analyze array
shapes and index vector sets. Extrema are expressions, attached to index vector
descriptors, that give estimates of the minimum and maximum values of an
array, to be used in a manner similar to integer range analysis [6]. For instance,
the index scalar j in the reverse function has a minimum value of the vector
[0] and a maximum value of shape(v). For compatibility with the compiler’s
internal canonical representation for with-loop bounds, the maximum extremum
is greater by one than the actual maximum index value, which is shape(v)-1.
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2.4 Extrema Injection

The SaC compiler uses a functional AST, in the sense that all of AST nodes
must be connected by data flow to the main computation, or they are deemed
dead, to be deleted from the AST by DCR. Hence, symbiotic expressions that
are inserted into the AST must be hooked into it functionally, so that they will
be preserved over optimizations; we discuss this requirement in [12].

Extrema are associated with-loop induction variables as arguments to an in-
ternal primitive function, attachextrema , that serves to preserve the extrema
via data flow, and to associate extrema values with each variable. The reverse
function, after introduction of extrema, is shown in Figure 3. By this time, any
compiler optimizations on j can exploit its extrema. However, the index opera-
tion, v[idx], which could exploit extrema, has no extrema on idx as yet; that
information becomes available later, through extrema propagation.

inline int[.] reverse(int[.] v)

{ lim = shape(v) - 1;

lb = [0];

ub = shape(v);

z = with { (lb <= [j] < ub) {

j = _attachextrema_(j, lb, ub);

idx = lim - j;

el = v[idx];

} : el;

} : genarray(shape(v), 0 );

return(z);

}

Fig. 3. IL after expression injection

2.5 Extrema Propagation

In order to be useful, extrema must be propagated from their origins to the
referents of the variables with which they are associated. In our example, idx is
offset from the with-loop’s index vector, j. When one of a primitive function’s
arguments has extrema, the compiler’s extrema propagation phase will inject
symbiotic expressions to compute extrema for the primitive, attaching them to
the AST as was done for with-loop index vectors. From a Hoare logic perspec-
tive, extrema propagation thus derives post-conditions for primitive operations
given an existing pre-condition. In our example, the vector index offset computa-
tion (lim-j) meets this criterion, so two subtraction expressions are created, to
compute the new extrema for idx, using lim and the extrema of j as arguments.
The resulting expressions are injected into the AST as shown in Figure 4, then
subjected to the compiler’s normal optimizations, where they will be simplified,
hopefully enough to be exploited by the compiler.
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inline int[.] reverse(int[.] v)

{ lim = shape(v) - 1;

lb = [0];

ub = shape(v);

z = with { (lb <= [j] < ub) {

j = _attachextrema_(j, lb, ub);

idx = lim - j;

maxidx = lim - lb + 1;

minidx = lim - (ub - 1);

idx = _attachextrema_(idx, minidx, maxidx);

el = v[idx];

} : el;

} : genarray(shape(v), 0 );

return(z);

}

Fig. 4. IL after expression propagation

2.6 Symbiotic Expression Simplification and Exploitation

Symbiotic expression simplification is performed entirely by compiler optimiza-
tion cycles. We will summarize the process as it operates on our running example.
With-loop invariant removal (WLIR) moves maxidx and minidx out of the with-
loop; array-based Constant Folding (CF) removes the idempotent subtraction of
vector zero in maxidx; Constant Folding (CF) reduces the addition and subtrac-
tion of one to zero, ultimately leading to shape(v) as value of maxidx. Constant
and Value Propagation (CVP) replaces maxidx by ub, making maxidx dead code,
removed by Dead Code Removal (DCR), giving the IL shown in Figure 5.

inline int[.] reverse(int[.] v)

{ lim = shape(v) - 1;

lb = [0];

ub = shape(v);

minidx = lim - (ub - 1);

/* minidx: ((shape(v)-1) - (shape(v)-1)) */

z = with { (lb <= [j] < ub) {

j = _attachextrema_(j, lb, ub);

idx = lim - j;

idx = _attachextrema_(idx, minidx, ub);

el = v[idx];

} : el;

} : genarray(shape(v), 0 );

return(z);

}

Fig. 5. IL after optimization cycle 1
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At this point, Algebraic With-Loop Folding Inference (AWLFI) injects code,
slightly more complex than that shown in Figure 6, to compute the intersection
of the with-loop bounds in iota() that generated v with idx’s index set ex-
trema, using the attachintersect primitive to attach the calculation to the
AST, in a manner similar to guards [12] and integer range analysis [6]. As with
attachextrema , this primitive uses data flow to associate its first argument
with its result; the remaining arguments act as annotations to be simplified by
the optimizers, and provide a mechanism to let the AWLF traversal find the
requisite intersection information for the subsequent index operation. Figure 7
shows how in SaC a symbiotic expression can be written.

Concurrently, AL, AS, and DL rearranged the terms comprising minidx, from:

((shape(v)-1) - (shape(v)-1))

to:

((shape(v)-shape(v)) + (1-1))

Next, CF replaces both terms by [0], and later eliminates the addition. Since lb
is also [0], CF replaces minint by [0]. The term maxint is similarly simplified,

inline int[.] reverse(int[.] v)

{ lim = shape(v) - 1;

lb = [0];

ub = shape(v);

minidx = lim - (ub - 1);

z = with { (lb <= [j] < ub) {

j = _attachextrema_(j, lb, ub);

idx = lim - j;

idx = _attachextrema_(idx, minidx, ub);

minint = sacprelude:partitionIntersectMin(lb, minidx);

maxint = sacprelude:partitionIntersectMax(ub, ub);

idx = _attachintersect_(idx, minint, maxint);

el = v[idx];

} : el;

} : genarray shape(v), 0 );

return( z);

}

Fig. 6. IL after array intersection computation insertion

inline int[.] partitionIntersectMax( int[.] idxmin, int[.] bound1)

{

dif = _sub_VxV_( idxmin, bound1);

p = _ge_VxS_( dif, 0);

z = _mesh_VxVxV_( p, idxmin, bound1);

return(z);

}

Fig. 7. SAC-defined symbiotic expression function
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first to max(shape(v),shape(v)), and then to shape(v), giving the IL shown
in Figure 8. At this point, the intersect terms minint and maxint match the
extrema of idx, which satisfies the needs of AWLF.

inline int[.] reverse( int[.] v)

{ lim = shape(v) - 1;

lb = [0];

ub = shape(v);

z = with { ( lb <= [j] < ub) {

j = _attachextrema_( j, lb, ub);

idx = lim - j;

idx = _attachextrema_( idx, lb, ub);

idx = _attachintersect_( idx, lb, ub);

el = v[idx];

} : el;

} : genarray( shape(v), 0 );

return( z);

}

Fig. 8. IL after constant folding

The intersect calculation is the information AWLF needs to replace v[idx]
with the cell computation body from iota(). In this trivial case, the code body
is merely the with-loop’s induction variable, so we end up, after extrema and
dead code deletion, with the single, well-optimized with-loop shown in Figure 9.

inline int[.] reverse( int[.] v)

{ lim = shape(v) - 1;

lb = [0];

ub = shape(v);

z = with { ( lb <= [j] < ub) {

el = lim - j;

} : el;

} : genarray( shape(v), 0 );

return( z);

}

Fig. 9. IL at completion

3 Algebraic With-Loop Folding

Now that we understand what symbiotic expressions are, and how they work,
we shall see how well they work in practice. With-loop folding (WLF) is the
fundamental loop optimization in the SaC compiler. It enables APL-like array
operations to be combined into a single data-parallel loop, eliminating array-
valued intermediate results and increasing the parallelism available within the
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program being compiled. WLF operates only on Arrays of Known Shape (AKS)–
the arrays of Fortran 77–but many array language applications deal with Arrays
of Known Dimension (AKD), but unknown shape. Although the AKS and AKD
versions of code may be nearly identical, AKD performance can be much worse
than AKS performance, because the compiler may not be able to deduce exact
shapes of all arrays. This led us to write a new optimization, algebraic with-
loop folding (AWLF), able to fold AKS and AKD arrays by using symbiotic-
expressions to perform the partial symbolic evaluation of algebraic with-loop
index sets and their set intersections required by the optimization. We then
conducted a series of experiments to quantify the relative performance of AWLF
against WLF.

3.1 Experimental Setup

We evaluated the utility of symbiotic expressions by measuring their effective-
ness in performing AWLF vs. WLF, and also by measuring the performance
of each optimization on AKS vs. AKD arrays. Our platform was a 4GB AMD
Opteron 165, running at 1.8GHz, running Ubuntu 8.10, gcc 4.3.2 and sac2c
product Build #16338 (www.sac-home.org). We used CPU time measurements,
taken with PAPIEX [13,14], as our metric for this paper.

3.2 Experimental Findings and Performance

First, we compared the performance of AWLF vs. WLF on AKS array problems,
which gives the edge to WLF, because WLF exploits knowledge of fixed-shape
arrays. Figure 10 shows CPU-time ratios for AWLF vs. WLF on AKS-based
benchmarks, taken from the APEX test suite [15]. Our hope was that AWLF
would approach the same level of performance as WLF. Measured performance
levels turned out to be mixed, but quite respectable, for about two-thirds of
the tests. The benchmarks in which AWLF performs poorly, such as logd2AKS
and primesAKS, include those that require with-loop partition slicing, a WLF
optimization that we have not yet completely implemented in AWLF. In general,
we deem these results acceptable, as we understand the areas where AWLF is
deficient and we are taking corrective measures.

We then turned to the performance of AWLF on AKD arrays. Since these
arrays frequently appear in applications such as data base queries, stock ex-
change trading histories, stock market portfolio analysis, etc., we consider AKD
performance to be at least as important as AKS performance. The benchmark
programs for AKS and AKD are, essentially, identical. They differ only in that
the AKD versions hide the problem size from the compiler, preventing it from
inferring array shapes, as it does for the AKS versions. As with the AKS exper-
iments, we measured CPU times, shown in Figure 11, as the speedup of AWLF
over WLF1. Here, the benefits of AWLF emerge, showing most benchmarks
slightly faster under AWLF than under WLF; several are considerably faster.
1 We have intentionally restricted the y-axis scales on these charts, so that detail near

the bottom remains clear.
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Fig. 10. APEX AKS CPU time performance WLF vs. AWLF

The remaining problem areas in AWLF are attributable to two factors. First,
the uncompleted implementation of with-loop partition slicing affects some bench-
marks. Because AWLF makes use of Symbolic Array Attribute (SAA) [10] infor-
mation, it is implemented in a different optimimzation cycle from WLF. Both op-
timization cycles can be enabled independently; eventually, we will de-support the
WLF cycle. This problem does not, therefore, detract from the inherent benefits
of symbiotic expressions and AWLF.

We wanted to measure the performance of AWLF on AKS data vs. AKD data.
Ideally, both problems would execute with the same speed, except for degrada-
tion due to the need to pass array shapes into, and out of, functions. Hence, if
all results showed 100% for relative AKS and AKD performance, we could claim
success in masking the differences between AKS and AKD problems in AWLF.
The reality, is slightly different. Figure 12 presents the relative CPU time mea-
surements for AWLF operating on AKS and AKD problems; WLF measurements
are provided for comparison purposes. AWLF nearly always matches or exceeds
WLF performance, in the sense of making performance of AKD-based problems
approach AKS-based ones. If AWLF matches WLF performance on a bench-
mark, it means either that the benchmark is essentially entirely AKS-based, or
that AWLF is missing some potential folding opportunities.

It is clear that AWLF often performs better, offering AKD performance that
rivals AKS. Both optimizations, for reasons we do not yet understand, occasion-
ally do better on AKD problems than on AKS problems. These are the places
where the bar dips below 100%. The cause is likely some code unrelated to WLF
and AWLF, because these optimizations have no code in common.
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Fig. 11. APEX AKD CPU time performance WLF vs. AWLF

Cache performance generally improves with AWLF over WLF, as can be seen
in Figure 13 and Figure 14. L1 cache performance under AWLF is, with two
exceptions, either identical to, or superior to, that under WLF, sometimes by
one or more orders of magnitude. L2 cache performance shows similar results.

4 Compiler Impact

Given the poor theoretical worst-case performance of SMT solvers such as Yices
and Omega, it is reasonable to ask how well the SaC compiler performs when
it solves symbiotic expressions. We do not know, as we have not yet made any
controlled experiments to measure it, but we have observed that the SAACYC
optimization cycle runs more trips when it is solving those expressions. The cost
of our injected symbiotic expressions is, at least, several extra operations per
primitive involved in the chain between index vector creation and index vector
use, those operations being the ones that compute the new index vector extrema
and attach them to the AST. Multiple injections may be inserted and solved
concurrently, so the number of additional optimization cycles probably is not as
bad as it could be. Also, since the injected expressions have a tendency to be
quite simple, they are evaluated relatively quickly. Even so, their resolution may
require several iterations of the optimization cycle.

If the increased iteration count becomes a problem in practice, we might
want to consider introducing micro-optimization cycles, which we conceive of as
allowing a subset of optimizations to be explicitly invoked on a specific user-
defined function. The observation here is that optimizations such as CF, AS,
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DL, AL, VP, and CSE are useful for simplifying our symbiotic expressions used
in AWLF, other optimizations, such as those that manipulate with-loops, are
not, and could be omitted in a micro-optimization cycle.

In terms of compiler complexity, the work required to support symbiotic ex-
pressions was minimal, partly due to the excellent structure of the SaC compiler
as a research tool. Adding new primitives to the SaC compiler is merely a mat-
ter of adding an entry to one table, and defining the relationship between the
function result and its arguments, basically a cut-and-paste operation. Simple
abstract syntax tree traversals were added to introduce, propagate, exploit, and
delete the two new compiler primitives and extrema. This was facilitated by
Stephan Herhut’s creation of XML code that allows new compiler traversals to
be added with just a few lines of XML. Exploitation of extrema required more
effort, since it has to drive the entire AWLF optimization. Introduction and
propagation of extrema is straightforward; deletion of extrema is trivial.

In [16], which discusses some data flow problems similar to those in [12],
the authors state “A refinement-style representation also obscures optimization
opportunities by introducing multiple names for the same value.” The SaC com-
piler uses pattern-matching to chase back across multiple assignments, etc., so
this problem was largely solved for us already. Trivial changes were required to
several optimizations to make them skip over the extrema and intersect primi-
tives, usually no more than a name change in a pattern-matching function, from
one that traces back over assign chains, to one that traces back over both assign
chains and attach primitives.
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Most compiler traversals merely ignore primitives that are not relevant to
them, so the new primitives did not present any significant problems. The se-
mantics of the new primitives are very simple, from the standpoint of most of the
compiler; they can be thought of as idempotent functions whose result is their
first argument; remaining arguments are, essentially, annotations, even though
they are the symbiotic expressions that are simplified by the compiler.

Two WLF-related problems surfaced during the course of our experiments.
First, we noticed that AKD matrix products on character data, ipapeAKD and
ipopneAKD, performed about fifty times slower under WLF than under AWLF.
We considered discarding these benchmarks from our test suite, because they
reflect a performance problem that seems to go beyond WLF: other matrix prod-
uct codes, such as ipddAKD, do not have this problem. However, the very pres-
ence of such performance problems makes it clear that the ease of using built-in
optimizations to simplify algebraic expressions, rather than hand-crafting hard-
coded analysis, has payoffs beyond mere convenience for the compiler writer.
Hard-coded solutions may harbor code faults that only rarely raise their ugly
heads. Such faults are usually only found by careful examination of generated
IL code using a debugger to trace the cause of the fault.

Second, the dtb class of APEX benchmarks do not appear here because the
WLF tests crashed the SaC compiler, due to an erroneously detected array
bounds violation in WLF array offset computation. The AWLF code does not
exhibit this failure. Again, this demonstrates the virtue of using existing opti-
mizations to do the heavy lifting for new ones.

5 Related Work

Presently, we have not investigated the use of symbiotic expressions in other
compiler contexts nor the use of array-based constant folding in other compiler
projects. However, APL interpreters have always included special-case code to
detect algebraic identities, such as those shown in the introduction. Many of the
array-based constant-folding optimizations in SaC have their roots in APL.

In part, the extrema work was inspired by, and is a generalization of, earlier
work on Symbolic Array Attributes, Whereas SAA annotates AST array de-
scriptors with array dimension and shape information, extrema annotate them
with array value information; both methods then exploit the optimization pro-
cess itself to enable further optimizations; SAA information can, therefore, also
be considered symbiotic expressions, in the sense described here.

The main aim of the introduction of SAA expressions was to enable optimiza-
tions that require shape equalities as well as shape information across function
boundaries. After optimization, again in the spirit of symbiotic expressions, un-
used shape information is eliminated from the syntax tree.

The symbiotic expressions introduced in this paper are a generalization of
the SAA approach, albeit applied in a rather different context. While making
shape information explicit can be seen as a change in representation that facili-
tates further optimizations, extrema information adds new context information
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about the range of values possible at runtime. This information is attached and
propagated for selected values only, rather than for all values. Furthermore, the
constraints of interest here are not just equalities, but also inequalities of all
sorts. In our experience, simplification of shape expressions requires, for the
purposes of AWLF, exploitation of both SAA and extrema information.

The use of symbiotic expressions to narrow the range of index values in array
comprehensions has parallels with refinement types [17,18], also referred to as
predicate sub-typing [19]. Similar to refinement types, we annotate type infor-
mation with predicates–the minimal and maximal value of an index vector at
runtime. However, other than in refinement type systems, these refinements are
annotated automatically by the compiler and exploited only for the optimiza-
tions. Also, we do not use symbiotic expressions to prove user-defined properties
of programs. The main difference of our approach is that our annotations are
regular SaC expressions. They are neither encoded in the type system itself nor
are they a specific extension for refinement types. This allows us to reuse existing
optimizations, opposed to requiring a specialized SMT solver.

For the same reasons, symbiotic expressions are not dependent types. How-
ever, symbiotic expression might be useful in the context of dependent types to
prove user-annotated constraints and infer type information.

6 Conclusions and Future Work

Symbiotic expressions are source language or IL expressions. They are inserted
into the AST by the compiler, simplified by its optimization phases, then the
results are used by the compiler in further optimization, or for other desired
purposes, after which they are deleted from the AST, so they do not appear
in run-time code. Symbiotic expressions are a completely general approach for
letting a compiler use itself to solve its own problems, whatever they may be.

Our use of symbiotic expressions to implement AWLF within the SaC com-
piler has paid off well. The optimization worked correctly, essentially, from day
zero; the injection and propagation of symbiotic expressions was simple and
straightforward. It is a general approach that is applicable to many common
compiler problems.

Our success with symbiotic expressions suggests that, even if a compiler may
not have all the power of an SMT solver, our approach can be of use in other
contexts where SMT-like solvers or hand-coded expression simplifiers are used
today. Specifically, symbiotic expressions should be usable in almost any compiler
environment, including imperative, object-oriented, or functional settings. The
main contribution of our approach is that it makes all of the AST metadata
available in a common framework, where it is directly shared by optimizers
and other compiler components. We suggest that extending the optimization
capabilities of compilers to allow them to act as tightly integrated SMT solvers
would offer even greater benefits than we have obtained already.

Several benefits accrued from our use of symbiotic expressions to implement
AWLF. First, AWLF often brings AKD problem performance very close to AKS
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performance. Second, AWLF significantly reduces cache miss rates over WLF.
Third, because with-loops are the fundamental unit of parallel execution in SaC
AWLF increases the size of data-parallel code blocks and reduces the number
of parallel synchronization barriers. Since AWLF is able to fold more with-loops
than WLF, AWLF increases the available parallelism in AKD-dominated pro-
grams over WLF. Although space limitations preclude detailed discussion of
parallel performance measurements or performance against Fortran dialects, we
note that the logd2 benchmark executed in 1493msec under Fortran 95, 433msec
under Fortran 77, and 295msec under SaC in a serial environment.

We have begun to apply symbiotic expressions to the partial evaluation of
run-time guards. This project has the potential to increase significantly the num-
ber of guards that can be statically removed from SaC programs. Also, as we
noted in [12], guards can allow many optimizations to be performed in the ab-
sence of precise information about the arrays upon which they operate. These
guarded optimizations, or optimistic optimizations, can create the desirable sit-
uation whereby introduction of safety features, such as array bounds checking,
can materially speed programs up, rather than slow programs down.

We have not yet tried to scale symbiotic expressions beyond annotating and
exploiting range information for index values. It would be interesting to inves-
tigate if our approach can be extended to provide some or all of the power of
full refinement types. This would require more general annotations and a more
powerful optimization-based solver. To determine whether this would bring our
approach on a par with SMT-solver based solutions remains future work.
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Stream Fusion on Haskell Unicode Strings
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Abstract. Prior papers have presented a fusion framework called stream
fusion for removing intermediate data structures from both lists and ar-
rays in Haskell. Stream fusion is unique in using an explicit datatype to
accomplish fusion. We demonstrate how this can be exploited in the cre-
ation of a new Haskell string representation Text, which achieves better
performance and data density than String . Text uses streams not only to
accomplish fusion, but also as a way to abstract away from various under-
lying representations. This allows the same set of combinators to manip-
ulate Unicode text that is stored in a variety of ways.

1 Introduction

Lists are the primary workhorse data structure of functional programming. In
the programming language Haskell[1], strings are represented using the built-in
list type. This allows programmers to use standard polymorphic list combinators
to build complex string manipulation functions in the same way that they would
manipulate other lists. Haskell programmers often take advantage of this by
composing list functions to form “pipelines” for transforming lists (and strings).
For example:

return · words · map toUpper · filter isAlpha =<< readFile f

This program reads in a file, filters out the non-alphabetic characters, converts
the remaining characters to uppercase, and then tokenises them. It exemplifies
Haskell’s ability to create concise yet powerful programs through the compo-
sition of modular functions. It is also, however, extremely inefficient. Haskell’s
Strings are much larger than, for example, their C counterparts. To address these
inefficiencies, there is an alternative to String in the Haskell core libraries called
ByteString. ByteString addresses String ’s inefficiencies and achieves greater per-
formance, but it does so at the cost of support for non-ASCII characters. We
are introducing a new data type, Text , to fill in the gap left between these two
approaches. Text addresses the performance issues associated with String while
maintaining Unicode support.

The Text type is an array-based string representation that is faster and more
compact than String . Its API is based on Haskell’s list library, which means
that it can be used as a drop-in replacement for String . Figure 1 shows the
speed-up achieved by using Texts to run the example program from above. The
main contribution of this paper is a faster, more compact string representation

M.T. Morazán and S.-B. Scholz (Eds.): IFL 2009, LNCS 6041, pp. 125–140, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Sample comparison of Text and String runtimes

for Haskell that incorporates Unicode support. We implement Haskell’s list API
over Texts. Like ByteString, we use stream fusion to remove intermediate data
structures. Our use of stream fusion demonstrates how to exploit it in a novel
way. Our API implementation uses the Stream type as an abstraction over more
complex underlying representations. As we will show, this is an important aspect
of how we implemented the API for Text .

The rest of the paper is organised as follows: Section 2 provides some impor-
tant background information. It discusses Haskell’s String type and its advan-
tages and disadvantages. It presents some information on the Unicode standard
and Unicode encoding standards. It also provides a short introduction to stream
fusion. Section 3 discusses the internal structure of the Text datatype and how
it addresses the inefficiencies of String . Section 4 describes the API for Text and
how it uses stream fusion in its implementation. Section 5 presents and discusses
some benchmarks of Text in comparison with both String and ByteString. Sec-
tion 6 discusses some of the related fusion and string alternative efforts. Section 7
presents our conclusions and proposals for further work.

2 Background

2.1 The String and ByteString Types

Haskell defines String using the built-in list and Char types:

type String = [Char ]

There are many benefits to this design. It is consistent with the notion that
a string is a list of individual characters and allows us to manipulate them as
we would other lists. Haskell’s polymorphic list library contains functions that
encapsulate a variety of common recursion patterns. Programmers can compose
these functions to create modular programs where each of the individual compo-
nents can be reused. Strings are also Unicode-compliant. This elegance, however,
comes with a price. Figure 2 shows the structure of String . Using the Haskell list
type as the basis for String means that it uses a series of Cons cells to store val-
ues. In the case of String , each of these Cons cells points to both a heap-allocated
Char and then the next Cons cell in the list. Each heap-allocated object has a
word-sized (either 32-bit or 64-bit) header. All pointers are also word-sized. Each
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Fig. 2. The low-level structure of a String

Char is also word-sized. This amounts to a string representation that requires
20 bytes per character on a 32-bit system where only 8 to 32 bits are needed [2].1

Coutts et al. [3] created a new string type, ByteString , which offers better
density and performance than String . In order to overcome String ’s memory
and performance drawbacks, ByteString uses a strict, array-based representa-
tion. The underlying structure of this representation is shown in Figure 3. This
array structure eliminates the need for memory-consuming pointers and head-
ers for each character. It only uses 8 bits for each character instead of String ’s
32 bits. This compactness, while desirable, also sacrifices support for Unicode
characters, leaving a rather large gap between the performance of ASCII text
and Unicode text in Haskell. As a strict data structure, the creation of interme-
diate ByteStrings would have a severe impact on performance. To address this
problem, the authors of ByteString introduced a new fusion technique which
they called stream fusion [4]. This technique, which we also employ, is explained
briefly in Section 2.3.

Fig. 3. The low-level structure of a ByteString

2.2 Unicode

Unicode is a world standard for representing text in nearly all of the world’s
modern and historical writing systems [5], including, for example, Cyrillic, Ara-
bic, and East Asian scripts. The Unicode Standard also specifies three encoding
systems for Unicode code points: UTF-8, UTF-16, and UTF-32. Of these, UTF-8
and UTF-16 are variable-width, and UTF-32 is fixed-width. For variable-width

1 For ASCII characters, each repeated character only requires an additional 12 bytes
because GHC pre-allocates and shares ASCII characters.
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encodings, decoding a Unicode stream into Unicode code points involves some
binary arithmetic.

UTF-8 is a byte-oriented encoding in which each code point requires between
one and four bytes depending on its value (the larger the code point value,
the more bytes required). This encoding is the most compact, using only one
byte for the smallest code points. It is also backward compatible with ASCII
(that is, a UTF-8 document consisting only of those characters in ASCII will
be exactly the same). The price for UTF-8’s compactness is increased overhead
in decoding. Outside of traditional ASCII characters (i.e. any code point above
U+7F2), it is necessary to reconstruct code points from two or more bytes for
many commonly used characters (e.g. every character in the Cyrillic alphabet
or Arabic alphabets).

UTF-16 is a 16-bit-word-oriented encoding. Characters are encoded using one
or two words. Two adjacent words that are used to represent a character together
are a surrogate pair. In comparison with UTF-8, UTF-16 is less compact; the
minimum space required for a code point is 16 bits rather than 8. What this
costs in space, however, is gained in efficiency. The range of code points that fit
into one UTF-16 word is U+0000 to U+FFFF. This range is known as the Basic
Multilingual Plane which includes all writing systems currently in use around
the world as well as some writing systems no longer used.3. This means that
surrogate pairs occur rarely in modern language documents. Those code points
that are stored in only one 16-bit word are stored as raw values; no arithmetic
is required to decode them.

Of the three encodings, UTF-32 is the simplest. It represents each code point
as a 32-bit number. A code point requires at most 21-bits to represent its value,
so UTF-32 can represent any of them without any splitting or arithmetic. While
this is the most straightforward implementation of Unicode, it is also the most
inefficient in terms of space. All common (and even many obscure) code points
take up two to four times as much space as necessary.

Although UTF-8 is the most compact encoding, Text uses UTF-16 due to
its much lower overhead. In the case of ASCII characters, this does represent a
greater use of space that is strictly necessary. However, given the fact that UTF-
8 also requires 16 bits for any non-Basic Latin character, UTF-16 represents a
similar solution with far less overhead, especially for non-Latin-based scripts.

2.3 Stream Fusion

Stream fusion is a technique for removing intermediate data structures that
appear from the composition of recursive functions. These data structures are
created when one function passes data on to the next. They are then discarded,
waiting to be garbage collected. Depending on the situation, this can have a

2 Unicode code points are usually represented as “U+” prefixed to the hexadecimal
form of the number.

3 The exception to this is about 40,000 of the “Han Unification” characters used for
East Asian languages. These are rarely used or are obscure.
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significant impact on performance. Although other techniques have been imple-
mented in Haskell[6,7], the use of stream fusion for ByteString has demonstrated
that it is well-suited to fusing arrays. In contrast, other common fusion systems
are generally adapted for fusing lists. Here, we give an overview of the stream
fusion material published by Coutts et al., whose papers provide a more in-depth
explanation of the technique.

Stream fusion differs from other fusion strategies in using an explicit data
type:

data Stream a = ∃s. Stream (s → Step s a) s

data Step s a = Done | Yield a s | Skip s

A Stream is a co-recursive form of a list, where each element of the list may be
yielded one at a time. It contains a stepper function, which is used to unfold
the Stream, and an initial seed to pass to the stepper function. The results of
the stepper function cover three possibilities. The Yield constructor produces an
element and a new seed. The Done constructor signals the end of the list. The
case of Skip allows a new seed to be produced without yielding a value. This is
important in allowing us to define functions that have potentially non-productive
steps (e.g. filter). The central idea of stream fusion is that instead of recursive
functions over data structures, we can define non-recursive ones over streams.
We can then convert our data structures to and from streams to achieve the
desired transformation.

Data structures are converted to and from streams by the functions stream
and unstream. The stream function converts a data structure into a Stream. It
creates a new Stream with a stepper function that yields successive values of
the data structure until its end, finally yielding Done. For example, the stream
function over lists is

stream :: [a ] → Stream a
stream s0 = Stream next s0

where
next [ ] = Done
next (x : xs) = Yield x xs ·

The way to convert back to our original structure is with unstream. This function
actually applies a Stream’s stepper function recursively to each successive seed
until it encounters Done. For lists, the unstream function is

unstream :: Stream a → [a ]
unstream (Stream next s0 ) = unfold s0

where unfold s = case next s of
Done → [ ]
Skip s ′ → unfold s ′

Yield x xs → x : unfold xs ·

Functions over streams transform it by modifying the definition of its stepper
function. This is done by defining a new function that calls the original stepper
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mapS :: (a → b) → Stream a → Stream b
mapS (Stream next s0 ) = Stream next ′ s0

where
next ′ s = case next s of

Done → Done
Skip s ′ → Skip s ′

Yield a s ′ → Yield (f a) s ′

filterS :: (a → Bool) → Stream a → Stream a
filterS p (Stream next s0 ) = Stream next ′ s0

where
next ′ s = case next s of

Done → Done
Skip s ′ → Skip s ′

Yield a s ′ | p x → Yield a s ′

| otherwise → Skip s ′

Fig. 4. Some examples of stream functions

function and pattern matching on each of the three Step constructors. Figure 4
shows the stream version of some common list functions. The function filterS is
particularly notable in demonstrating the use of the Skip constructor. In the case
where the predicate p is not satisfied the Yield is replaced with a Skip which
discards the value and only keeps the seed. This allows the stepper function to
be productive without yielding an element we wish to discard.

It is important to note that stepper functions are non-recursive. When a
stream is unfolded, all the transformations are applied to a yielded element be-
fore producing a new one. This merges what would be several recursive traver-
sals over a structure into a single recursive unfold of a stream. In general, fusible
functions on streamable data structures are defined in terms of their analogous
stream transformers: stream and unstream. A fusible function defined in terms
of streams tends to have the following structure:

f x = unstream · fS · stream

where fS is the stream transformation analogue of f . Functions that only con-
sume streams have no unstream, and functions that only produce streams will
have no stream. When two fusible functions f and g are composed as f · g, they
can be inlined to form

unstream · fS · stream · unstream · gS · stream

In the middle of this function, there is an instance of unfolding a stream, only
to create a new one. Eliminating occurrences of stream · unstream yields the
program:

unstream · fS · gS · stream
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Removing this portion of the program produces a new program that is equiv-
alent. The occurrence of stream · unstream would have created an intermediate
data structure, only to convert it to new stream. Instead, the original stream is
transformed twice and then unfolded. To accomplish this fusion automatically,
we specify the following rewrite rule:

〈stream/unstream fusion〉 ∀s. stream (unstream s) �→ s

This rule can be specified in GHC using compiler directives [8], which allows us
to apply it automatically during compilation.

3 The Text Data Type

The first step in creating Text is to design its underlying datatype. The purpose
of the Text datatype is to store Unicode text more efficiently than String . Having
seen the effectiveness of array-based storage, we use this approach in Text . Using
an array removes the numerous pointers and Cons cells that account for so
much of the space consumed by a String . We can also remove the pointers to
elements, and their associated headers, by using an array of unboxed elements.
Finally, we can decrease the minimum size of a character by utilising a Unicode
encoding instead of representing them as raw code points. In this case, we chose
UTF-16. The reason for this decision is not arbitrary; UTF-16 achieved better
performance in benchmarks that dealt with large amounts of non-ASCII test,
most likely because of its simpler arithmetic [9]. We consider such a case to be
a major use of this library and therefore an important factor.

The result is the following definition of Text :

data Text = Text !(UArray Int Word16 ) !Int !Int

Text is an unboxed array of 16-bit words indexed by integers. The other integers
are offset and length fields. These fields allow “free” creation of substrings merely
by modifying these fields and pointing to the original string’s array. The excla-
mation points are strictness annotations which prevent these fields from being
calculated lazily; since the underlying array is strict anyway, any laziness will
only introduce inefficiencies. Figure 5 shows the underlying structure of Text .
The use of Word16 reflects our use of UTF-16, which is based on converting 1
or 2 16-bit words into a Unicode code point. Even in the worst case, Text still
only requires 32 bits instead of Strings 20 bytes.

Fig. 5. The low-level structure of a Text
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The switch from a list-based representation to an array-based one alters the
complexity of some fundamental string operations. Some operations are now
faster and consume less memory. Indexing is now a constant time operation,
allowing for easy reads in the middle of the string. Because of the length and
offset fields, operations involving substring creation (e.g. take and drop) do not
require any additional space. Functions that construct strings, however, require
more resources than before. Both cons and concat require all of its inputs to be
copied into a new array. This shifts cons from a constant time operation to linear
one, and concat has gone from being linear in the length of its first argument
to linear in the length of both arguments combined. The impact of these design
decisions is also measured in Section 5.

4 Fusion and the Text API

In Section 2, we introduced the Stream datatype, along with the associated
functions stream and unstream. These functions allowed us to use transformers
over Stream as transformers over a target data structure. The use of stream
and unstream allows us to syntactically identify and remove intermediate data
structures from a program automatically.

In order to take advantage of stream fusion, all we need to do is implement
Text versions of stream and unstream. The stream function must define a step-
per function and seed that will traverse an array. Slightly more complicated is
unstream, which needs to unfold the stream and place the yielded elements in
an array. This entails allocating an array of the appropriate size. The initial
solution to this problem was to start with a small array, allocating a new ar-
ray that was double the size of the original when needed. The cost of copying,
however, quickly overtook any performance gains. Instead, we added a strict Int
field to Stream. This field holds the length of the array from which the stream
was created, allowing the unstream to make a good guess of what the string
size will be. Copying can still be performed if necessary but is avoided in most
cases. Functions that modify the length of a string (e.g. cons,concat ,take,drop)
can modify this length field.

The crucial question in streaming Texts is how to manipulate them. In prior
implementations of stream fusion, the elements of the underlying data structure
are simply turned into a Stream of the same elements. This logic would lead us to
converting Texts to Stream Word16 s. This would mean that programmers would
have to deal with encoding and decoding UTF-16 values themselves, which is
highly undesirable. The idea is to abstract away from the underlying representa-
tion in our API, thus letting programmers deal with Char s. Therefore, we need
to implement stream and unstream so that they not only create a Stream, but
decode and re-encode UTF-16 values.

The first function, stream, decodes a UTF-16 array and creates a Stream from
the result. This function is shown in Figure 6. This function creates a Stream Char
whose stepper function next both decodes and streams elements of the array. The
seeds for this function are indices of the array. This implementation makes some
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stream :: Text → Stream Char
stream (Text arr off len) = Stream next off len

where
end = off + len
next !i

| i � end = Done
| n � 0xD800 ∧ n � 0xDBFF = Yield (chr2 n n2 ) (i + 2)
| otherwise = Yield (unsafeChr n) (i + 1)
where

n = unsafeAt arr i
n2 = unsafeAt arr (i + 1)

Fig. 6. The stream function for Text
.

important assumptions about the inputText . First, it assumes that all elements are
valid UTF-16 values. This eliminates the need to perform certain bounds checks.
The only condition we check about the elements is whether or not they are the be-
ginning of a surrogate pair. If they are, it is assumed the following element is a valid
second member of a surrogate pair. Finally, we use unsafeAt and unsafeChr , which
assume that the values they are given arevalid indices and charactervalues, respec-
tively. Making these assumptions cuts down significantly on the number of bounds
checks we need to perform. For large strings, doing these for every character has
a significant impact on performance. We allow ourselves to take these for granted
by assuming that all Texts are always valid UTF-16 streams. We can do this be-
cause we do full Unicode checks when Texts are created from other sources, and
then control the manipulation of Texts through our API.

The unstream function needs to convert a Char back into its UTF-16 equiv-
alent. This is shown in Figure 7. This function allocates an array based upon
length information given in the Stream. It then converts each character into one
or two Word16 s according to the UTF-16 standard. We again make the assump-
tion of safety of our characters and do not perform full Unicode bounds checking.
We can assume this rather safely because, unless the programmer is doing some-
thing tricky, Char will not contain an invalid Unicode code point. Furthermore,
we manually track the bounds of the allocated array so that bounds checking
does not need to be done with every write by the array API functions (hence
unsafeWrite).

Together, these two functions perform all of the Unicode encoding and decod-
ing necessary for string manipulation. This decision makes it easy to find and
eliminate bottlenecks in our code. All of the encoding overhead is concentrated
in only these two functions. Because stream fusion requires writing transforma-
tions over an explicit datatype, the usual stream transformers will work with
a streamed Text . The only modifications we make are to restrict the type of
certain functions (elements of a Text are always characters, and there are no
nested Texts) and modify our length field where appropriate.
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unstream :: Stream Char → Text
unstream (Stream next0 s0 len) = x ‘seq ‘ Text (fst x) 0 (snd x)

where
x :: ((UArray Int Word16 ), Int)
x = runST ((unsafeNewArray (0, len + 1) :: ST s (STUArray s Int Word16 ))

>>= (λarr → loop arr 0 (len + 1) s0 ))
loop arr !i !max !s

| i + 1 > max = do
arr ′ ← unsafeNewArray (0,max ∗ 2)
case next0 s of

Done → liftM2 (, ) (unsafeFreezeSTUArray arr) (return i)
→ copy arr arr ′ >> loop arr ′ i (max ∗ 2) s

| otherwise = case next0 s of
Done → liftM2 (, ) (unsafeFreezeSTUArray arr) (return i)
Skip s ′ → loop arr i max s′

Yield x s ′

| n < 0x10000 → do
unsafeWrite arr i (fromIntegral n :: Word16 )
loop arr (i + 1) max s ′

| otherwise → do
unsafeWrite arr i l
unsafeWrite arr (i + 1) r
loop arr (i + 2) max s ′

where
n = ord x ; m = n − 0x10000
l = fromIntegral ((shiftR m 10) + (0xD800))
r = fromIntegral ((m .&. (0x3FF)) + (0xDC00))

Fig. 7. The unstream function for Text

Placing our decoding and encoding functionality in the stream conversion
functions has another benefit: the stream fusion rewrite rule removes interme-
diate data structures and reduces the number of decodings/encodings that take
place within a program automatically. This concept is key to the abstraction
that we wish to achieve from the underlying data structure. Once we have a
definition for stream and unstream, we no longer care about the data represen-
tation that is being used in Text when writing transformations. Regardless of
the encoding of the characters, or the structure of the underlying sequence, the
string manipulation functions are identical.

This abstraction has useful implications. Suppose that we want to use a func-
tion from some other library that only gives us Strings. For our Text library to
work, we have to convert it first. For this, we use the pack function.

pack :: String → Text
pack str = (unstream (stream list str ))

where
stream list s0 = Stream next s0 (length xs)

where
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next [ ] = Done
next (x : xs) = Yield x xs

The pack function allows us to convert a String into a Text using streams. It
uses its own stream list function, which is actually just the list version of stream.
We then use unstream, which has already been heavily optimised, to write out
the stream to a Text . Using streams here doesn’t just make the function concise,
though. If we transform a Text created using pack , we can fuse any intermediate
Texts that are created. This means that in such a pipeline, only the final output
Text is created, even though the input to the pipeline is a String .

Another example of where this is exploited is in file I/O. One of the benefits of
ByteString is its extremely fast file I/O. To take advantage of this, we implement
stream fusion over ByteStrings as well. Unlike the original implementation of
ByteString fusion, though, we don’t treat ByteString as an array of characters
but rather as an array of bytes. We then implement the functions encode and
decode, which read to and write from ByteStrings. Again, we do so using streams
so that conversions do not result in unnecessary Texts being written. In addition,
we implement the arithmetic to encode/decode all possible Unicode encoding
standards. This is an example of where Unicode validation takes place when
creating Texts. Because it involves reading from an external source, we must
also check to make sure all the Unicode characters are valid and insert fallback
characters if necessary.

The use of stream fusion also allows for easy expansion of the API, for exam-
ple by an end-user of the library. As described in Section 2.3, transformations are
composed of stream, unstream, and a stream transformer. Programmers can eas-
ily define their own stream transformers and compose them with stream and/or
unstream as necessary to define their own fusible functions. The fusion can be
applied to them as it is to any pre-defined function.

While stream fusion is an extremely useful abstraction, there are some in-
stances where exploiting the low-level data structure can achieve better perfor-
mance. For example, the length and offset fields allow us to create a version of
tail that does not require copying:

unfused tail :: Text → Text
unfused tail (Text arr off len)

| len � 0 = errorEmptyList "tail"

| n � 0 xD800 ∧
n � 0 xDBFF = Text arr (off + 2) (len − 2)

| otherwise = Text arr (off + 1) (len − 1)
where

n = unsafeAt arr off

By checking whether the first character is a surrogate pair or not, we can decide
whether to move the offset by one or two characters and have a Text with
the desired contents without the copying of the Stream version. It isn’t fusible,
though. We would prefer a way to automatically choose the best version of tail
for a given situation. This can be accomplished with the following rule:

〈tail/unfused〉 ∀t . unstream (tailS (stream t)) �→ unfused tail t
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This rule states that any occurrence of tailS that is not fused with another stream
transformer should be converted to our low-level definition of unfused tail . If a
call to tail were fusible, it would not directly follow a call to stream because
stream fusion would have removed this call. Now, we have GHC choosing the
most appropriate function for us. This technique is useful for a variety of func-
tions where totally decoding or copying the string is not strictly necessary, such
as init , last , and append .

5 Performance

As a more compact and more efficient version of String , it is expected that
Text should be much faster than String . This is generally the case. Compared
to String , Text usually achieves much better performance. In comparison with
ByteString, the extra overhead of Unicode encoding and decoding means that,
for ASCII text, ByteString is still faster (and, at 8-bits per character, more
compact). Figure 8 shows the runtimes for each of the three string representa-
tions for some common functions. Although both Text and ByteString generally
outperform String , the runtimes of the cons function exhibit some of inherent
disadvantages of using an array-based string representation. Unlike lists, im-
plementations of cons over Texts require copying the source array completely,
resulting in a linear time operation instead of a list’s constant time one. Similar
functions, such as append , suffer from similar problems.

Fig. 8. Benchmarks: ASCII Text

Figures 9 and 10 show the performance of String versus Text for different
sets of Unicode text. Figure 9 shows benchmarks for Unicode text in the Basic
Multilingual Plane. The performance figures are very similar to the ASCII ones.
This is to be expected, as ASCII text is treated the same as other low-numbered
Unicode code points in UTF-16.

Figure 10 shows the performance of Text and String with text solely from the
Supplementary Multilingual Plane (SMP). The SMP consists of more rarely used
characters such as musical and mathematical notations. In general, a document
will very rarely contain more than a relatively small number of these characters.
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Fig. 9. Benchmarks: BMP Text

Fig. 10. Benchmarks: SMP Text

This benchmark represents a “worst case” of dealing with a document that ex-
clusively uses such characters. This has a critical impact on performance because
all SMP characters require two UTF-16 code points and must be assembled and
disassembled when being streamed and unstreamed. In this case, Text slows
down nearly to the performance of String , although still outperforms it in most
cases. This shows that, in a worst case scenario, Text still scales well and can
outperform String .

The benchmarks above show that Text outperforms String in single transfor-
mations, but fusion is an important aspect of this library. Figure 11 shows the
performance of Text versus String in a variety of common fusion patterns. These
benchmarks compare Text using stream fusion with String using foldr/build fu-
sion. The figures show that Text significantly outperforms String in these situ-
ations. This figure is perhaps the most crucial, as string manipulation functions
are more likely to be pipelined than called singly.

These benchmarks reveal that Text usually outperforms String , but that the
low-level differences between the two must be considered when using Text . The
inherent differences between arrays and lists makes some operations differ with
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Fig. 11. Fusion Benchmarks

respect to complexity. This performance can sometimes be regained by fusion.
The Stream version of these slower functions can easily fuse with other functions.
In such a case there is very little extra cost associated with performing them,
because the Text is already being copied. For example, cons x · map f xs , cons
will not have the same impact on performance as it does in isolation.

Text is therefore most useful for manipulating strings, for example from user
input or a file. Its performance becomes less desirable when constructing strings
through concatenation and similar operations.

Another consideration is the strictness of Text . In programs that use file I/O,
a lazy data structure will only read data into memory as necessary. Consider the
example program in Section 1. Although Text ’s runtime was better, the maximal
memory consumption was actually much smaller in String . This is because, in
String , new data can only be read in by readFile as it was consumed by foldl ,
but in Text the entire file is read in, and then consumed. For more discussion of
lazy Texts, see Section 7.

6 Related Work

Although stream fusion was chosen as the fusion framework for this particular
library, there are other related fusion frameworks that have been implemented
in Haskell:

foldr/build. The foldr/build fusion framework is currently used in GHC for
fusing lists [6]. It uses foldr with its traditional definition to consume lists
and a function called build to produce them. This makes some functions,
such as filter , much more straightforward to implement. It cannot, however,
fuse zips.

destroy/unfoldr. The destroy/unfoldr fusion system [7] is the most similar to
stream fusion. Like stream fusion, destroy/unfoldr uses the notion of co-data
to produce a list, but using the well-known list function unfoldr . Compared
with stream fusion, destroy/unfoldr has similar fusion capabilities, being able
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to express left folds and zips. However, unlike stream fusion, it requires re-
cursion for filter-like functions, which affect the compiler’s ability to perform
certain optimisations and can drastically impact performance.

Neither of these frameworks uses an explicit data type. This unique characteristic
of stream fusion is what makes it such a desirable candidate for our library,
because we can clearly separate the conversion between Char s and Word16 s
using the Stream datatype.

Stream fusion also already appears in the Haskell library ByteString [3]. As
previously mentioned, it has helped ByteString achieve (and sometimes beat) the
performance of similar programs written in C. ByteString also uses a ForeignPtr
for its underlying data structure, making it accessible to code in other languages
(notably C). There is also an implementation of stream fusion over Haskell
lists [4].

7 Conclusions

Stream fusion is already a known and successful fusion framework, but we have
exploited a useful aspect of it in the creation of Text . By treating stream fusion’s
Stream type as an abstraction from underlying representations, we have used
the stream fusion framework as tool for designing a library over strings that
is independent of various low-level representations. In doing so, stream fusion
not only prevents the creation of intermediate Texts in a string transformation
pipeline, it also prevents unnecessary conversion between different encodings and
data structures.

There is still plenty of work being done for Text . Since the completion of
this project, Bryan O’Sullivan has continued to maintain and refine Text . His
major contributions to the project have been to replace UArray with a lower
level (and thus faster and smaller) data type and to create a lazy version of
Text . He has done this by using a list of array chunks. He has also achieved 93%
QuickCheck [10] coverage of API functions, weeding out several subtle issues.
He has also shifted certain list API functions so that integer-based indexing is
less used (e.g. instead of returning the index of the first occurrence of ’c’, split
at the first occurrence of ’c’), which is more efficient. The most recent version
of Text is available in the Hackage database.

The performance of Text is generally better than that of String , and provides
a fast way to transform Unicode text in a functional style. Its current array-
based representation limits its flexibility in creating strings efficiently, and so
while the API abstracts away from its low-level representation, this still must be
considered when using Text to achieve the best performance. However, it may
be possible to use more sophisticated persistent data structures to create a more
versatile Text with even better performance.

Text ’s array-based structure also has some drawbacks with respect to persis-
tence. Currently, substrings can be created by modifying the length and offset
fields of an existing Text . While this has the benefit of allowing constant-time
substring creation, it does not take into account the size of the substring relative
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to its parent string. A very small substring may keep a much larger string from
garbage collection. We also have many operations with undesirable complexities
for building strings. We wish to investigate the possibility of using another data
structure for the underlying representation of Text . A possible candidate is to
use finger trees [11] of arrays to create a fusible rope [12]. This would make the
library better suited to manipulating and building strings.
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Abstract. Previous work on software contracts assumes fixed and stat-
ically known boundaries between the parties to a contract. Implementa-
tions of contract monitoring systems rely on this assumption to explain
the nature of contract violations and to assign blame to violators. In this
paper, we explain how to implement arbitrary, nested, and dynamic con-
tract boundaries with two examples. First, we add nestable contract re-
gions to a static, first-order module system. Second, we show that even a
dynamic, higher-order, and hierarchical module system can be equipped
with software contracts that support precise blame assignment.

1 Contracts for Modules

PLT Scheme [1] comes with a widely used contract system for specifying behav-
ioral (functional) properties of module exports and imports. Roughly speaking,
a behavioral software contract imposes restrictions on the domain and range of a
function that flows from one module to another. If the function does not produce
the kind of values promised in a contract, the run-time monitoring system raises
a contract exception and blames the server module for exporting an ill-behaved
function. Conversely, if the client module applies an imported function to values
that fail to satisfy the domain contract, the run-time system blames the client
for not living up to its promises.

Unlike other systems for monitoring behavioral software contracts [2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], PLT Scheme’s contract system does not
restrict contracts to first-order functions and methods. Instead, programmers
may formulate contracts for all kinds of values, including higher-order values [18].
The module system, however, is restrictive. In particular, modules are merely
first-order namespaces, without mechanism for nesting them or linking them in
a recursive fashion. Naturally programmers chafe under this module system and
call for more flexibility.

At the same time, the theory of contracts assumes fixed and statically known
boundaries between contract parties. Contract implementations combine com-
pilers that can determine the parties to each contract from the source text with
a run-time checking system that exploits this knowledge for blaming violators.

In this paper, we relax these restrictions and show how to add arbitrary con-
tract boundaries to the PLT Scheme module system and how to implement
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contracts for its units, a higher-order, hierarchical, and dynamic component sys-
tem [19,20]. Sections 3 and 4 make up the core of the paper. Both use the same
organization, explaining the nature of the contract boundary first and, based
on that, its enforcement. In particular, the third section adds nested contract
regions to PLT Scheme’s module system, while the fourth section explains con-
tracts for its unit system. In section 5 we revisit the design decisions concerning
blame assignment with a side-by-side comparison of the two extensions. Finally,
the last section compares this paper with a concurrent publication on a theoret-
ical model of a structural (ML-like) module system [21]. The paper starts with
a section that briefly describes the existing module system and its contracts.

2 Static Modules in PLT Scheme

PLT Scheme provides static modules that are neither nestable nor first-class.
Figure 1 contains an example consisting of two modules. A module may export
values via their names1 through the use of the provide form. Another module
makes use of these values via a require form. Modules may not require each
other (or themselves) in a cyclic fashion.

server client

#lang scheme
(define (sqrt n) . . . )
. . . (sqrt 3) . . . (sqrt 0) . . .
(provide sqrt)

#lang scheme
(require server)
. . . (sqrt 3) . . .
. . . (sqrt 0) . . .

Fig. 1. Example modules

Findler and Felleisen’s work on higher-order contracts [18] presents a model
for adding contract checks to such a module system. The implementation of this
model in the PLT Scheme module system operates via the provide/contract
form, which specifies a sequence of names paired with contracts. The main idea
behind this implementation is that module interfaces serve as natural contract
boundaries. Values that flow across a contract boundary are checked for the
specified properties, while values that stay on one side remain unchecked.

A contract boundary in PLT Scheme brings together two contract parties. One
is the exporting server module; the other one is the importing client module in
which the name is used. The contract monitoring system uses the module names
to assign blame when it discovers and signals contract violations. In analogy to
type theory, we call the name of the server module a positive blame label of a
specific contract, and the name of the client module a negative blame label.

The design decision of not monitoring the uses of contracts within a module is
due to both software engineering considerations and compilation issues. In par-
ticular, we consider the inside of a module a space where programmers should
1 In PLT Scheme, modules can also export values for use at compile-time as well as

run-time. Here we focus on run-time values.



Nested and Dynamic Contract Boundaries 143

trust their own instincts, even allowing temporary violations of contracts; the
alternative poses severe challenges known as the callback problem [22]. Further-
more, monitoring the uses of contracts within a module would negatively affect
opportunities for tail-call optimizations, an essential element of functional and
object-oriented program design.

server client

#lang scheme
(define (sqrt n) . . . )
. . . (sqrt 3) . . . (sqrt −1) . . .
(provide/contract
[sqrt (→ positive? positive?)])

#lang scheme
(require server)
. . .
. . . (sqrt 3) . . .
. . . (sqrt −1) . . .

Fig. 2. Modules with an example contract

Figure 2 displays contracted versions of the modules from figure 1. Specifically,
the server module exports sqrt with a contract that demands positive numbers
as inputs and promises the same for the results. The use of sqrt with −1 in
client—see boxed code—triggers a contract violation error that blames client
for applying sqrt to an inappropriate value. In contrast, the gray-shaded call to
sqrt on −1 within server is not monitored and so does not signal a contract
error; presumably server knows how to deal with complex numbers.

3 Nested Contract Regions

While programmers appreciate the rationale of not monitoring contracts within
a module, they also commonly wish to isolate regions that they can protect with
contracts, even within modules. This is especially true for debugging sessions or
for modules that grow into large bodies of code. Unlike the static module system
in section 2, one such region may be nested within another, or a module may
contain several parallel regions. In response to this request, we introduce contract
regions. The first subsection introduces the idea via a series of examples, which
at the same time suggests design desiderata for this new feature. The second
subsection describes our implementation.

3.1 The Pragmatics of Contract Regions

Consider the module fragment on the left-hand of figure 3. It displays the frag-
ment of a module that contains the definition of the serve function, which imple-
ments a basic webserver, and two applications; the second one is faulty, applying
serve to a low TCP port, that is, a TCP port with a numeric value less than
1024, for which the program does not have the necessary permissions.

To protect serve from such errors within the module, a programmer could
create a separate static module that defines serve and exports it with an appro-
priate contract. Of course this strategy imposes a high overhead. Worse, it may
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#lang scheme
(define (serve p)

(let ([s (tcp-listen p)])
(handle-request s)
(serve p)))

. . .
(serve 8080)
. . .
(serve 80) ;; error, no superuser permissions

#lang scheme
(with-contract serve

([serve (→ high-tcp-port? void?)])
(define (serve p)

(let ([s (tcp-listen p)])
(handle-request s)
(serve p)))

. . .
(serve 80) ;; contract violation

Fig. 3. Modules and contract regions

not work if the to-be-separated parts are mutually referential, because the PLT
Scheme module system does not support mutually recursive linking.

Instead we introduce the with-contract form. The right-hand side of figure 3
shows the simplest way to use the with-contract form. It consists of three
pieces: a name, which is used to assign blame; a sequence of contracted variables;
and a sequence of definitions. Every variable listed in the second part must have
a definition in the third part, but there may be additional definitions in this
third part that do not come with a contract.

Since the with-contract syntax is heavy-weight for single definitions, we
introduce a convenience abbreviation named define/contract. The syntax of
define/contract is similar to that of PLT Scheme’s define, except for the
addition of a contract before the body of the definition. With define/contract,
the code in the above figure would look like this:

#lang scheme
(define/contract (serve n)

(→ high-tcp-port? void?)
(let ([s (tcp-listen p)]) (handle-request s) (serve p))))

. . .

The abbreviation is translated into a contract region that uses the name of the
defined value as the blame label.

The with-contract form introduces a block of definitions. As such, it can be
used in any syntactic position where definitions are allowed. It does not introduce
a new lexical scope, meaning both contracted and uncontracted definitions are
accessible in the surrounding lexical scope. Conversely, all internal definitions
may access any external definitions at will.

Not surprisingly, the name of the contract region serves as the positive blame
label for all contracts listed in the with-contract form. The question is what
we should consider as the client of the region and what we should use as the
negative blame label for the contracts. Obviously, if there is no other contract
region in the module, the rest of the module is the client. If, however, a module
contains several regions or regions are nested, we have a choice to make.
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#lang scheme
(define/contract (encode key msg)

(→ prime? string? string?)
. . . )

(define/contract (send-msg msg)
(→ string? void?)
. . . (encode 20 m) . . . ) ;; contract error, blame: ???

Fig. 4. Two parallel contract regions

Consider the two regions in figure 4. It appears convenient to use send-msg as
the most precise negative blame label for the use of encode here. Put differently,
all parallel contract regions could be considered as clients of each other. Although
this design choice is appealing, it is inappropriate. Instead we say that a contract
region introduces a contract boundary between itself and its surrounding context.
If this surrounding context allows the contracted value to flow into other contract
regions, those regions are clients of the context not the original contract region.
For our above example, this means that when send-msg is called, the enclosing
module context is blamed for the misuse of encode. We revisit this choice at
length in section 5.

#lang scheme
(with-contract serve

([serve (→ high-tcp-port? void?)])
(define (serve p)

(let ([s (tcp-listen p)]) (handle-request s) (serve p)))
(define (serve-80 ) (with-su (serve 80))) ;; ok

(serve 8080)
(serve 80) ;; contract error, module misused serve

Fig. 5. External vs. internal uses

Just as with module-based contracts, a contract region does not monitor inter-
nal uses of the contracted definitions. To illustrate this point, take a look at the
serve-80 function in figure 5, which correctly sets up the necessary permissions
for accessing low TCP ports with the with-su form. The external uses of serve
are checked according to the contract, and so the last call to serve still fails, but
the internal use in the definition of serve-80 is not restricted and succeeds.

The introduction of a distinction between internal and external uses of con-
tracted variables naturally raises the question where the contract itself lives. In
order to explain this issue, we use the example in figure 6. The contract region
contains several functions to operate on record-like list values that represent
student information. These records contain two fields: names, represented as
strings, and nine-digit numbers used for unique identification. The predicates
id? and student? are used within the contracts for the other operations. How-
ever, these predicates are also contracted, and thus we must decide whether the
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#lang scheme
(with-contract student

([id? (→ any/c boolean?)] [make-student (→ string? id? student?)]
[student-name (→ student? string?)] [student-id (→ student? id?)]
[student? (→ any/c boolean?)])

(define (id? n) (and (natural-number? n) (< n 1000000000)))
(define (make-student s n) (list s n))
(define (student-name s) (first s))
(define (student-id s) (second s))
(define (student? s)

(and (list? s) (= (length s) 2) (string? (first s)) (id? (second s)))))

Fig. 6. Operations for student records

uses within those contracts must be checked. Since the contracts are a part of
the with-contract form itself, we consider it reasonable to treat such uses as
internal uses, meaning they are not protected.

#lang scheme
(define (salary? s) (or (natural-number? s) (eq? s #f)))
(define (make-employee s n) (list s n))
(define (employee? s)

(and (list? s) (= (length s) 2) (string? (first s)) (salary? (second s))))
(define (employee-name e) (first e))
(define (employee-salary e) (second e))
;; test data
(define loe1 (list (make-employee "Bob" 45000) (make-employee "Stan" 50000)))
(define loe2 (list (make-employee "Ana" 50000) (make-employee "James" #f)))
. . .
(define (get-salaries loe) (map employee-salary loe))
. . .

Fig. 7. An evolving payroll program

Protection Against Externally Defined Values. In contrast to modules,
contract regions can exchange values in both directions, and this has serious
implications for the contract system. In particular, the creator of a contract
region may wish to protect it from values that flow in from its context. Thus,
our with-contract construct supports this form of protection, too.

Consider the code snippets in figures 7 and 8, representing two stages in
the evolution of an application. The application stores employee records, which
are similar to the student records we saw earlier. Originally, employee salaries
were always numbers, and the given definition for get-salaries sufficed. However,
records are not removed immediately when the employee leaves the company.
For now, an interim solution has been found in which the salary field is set to
#f, but get-salaries has not been updated to report a salary of 0 for these cases.
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. . .
(define/contract (payroll loe)

(→ (listof employee?) number?)
(foldl + 0 (get-salaries loe)))

. . .
(payroll loe1 )
. . .
. . .
(payroll loe2 ) ;; error
. . .
. . .

. . .
(define/contract (payroll loe)

(→ (listof employee?) number?)
#:freevars ([get-salaries

(→ (listof employee?)
(listof number?))])

(foldl + 0 (get-salaries loe)))
. . .
(payroll loe1 )
. . .
(payroll loe2 ) ;; contract error

Fig. 8. Payroll contracts

A new function payroll is added that retrieves the current payroll total for the
company: see the left-hand side of figure 8. When the value #f used for James’s
salary flows into the payroll function, however, it causes an error. After all, the
programmer of payroll expected get-salaries to return a list of numbers, but it
doesn’t always do so.

To express this kind of expectation and to pinpoint the contract violator, the
with-contract and define/contract forms come with optional contracts on
their free variables, which are introduced via the keyword #:freevars. These con-
tracts affect all uses of the listed free variables within the contract region. With
this feature, the programmer may add a contract for the get-salaries function
as shown in the right-hand side of figure 8. This contract fails on the second use
and appropriately blames payroll for providing a bad value for get-salaries .

3.2 Implementing Contract Regions

The addition of nested contract regions poses novel problems for the implemen-
tation of contract monitoring. Specifically, the revised contract monitor must be
able to retrieve the blame label for the current contract region, replace uses of
contracted definitions outside of the region with guarded versions, and replace
uses of contracted free variables inside the region with guarded versions.

We describe the compilation of contract regions in terms of substitution. The
macro-based compiler [23, 24] inspects the list of contracted names. For each
contracted name, it chooses a fresh name and substitutes that name for uses
of the original name within the body of the contract region. The compiler also
replaces the original name where it is bound in its definition. These substitutions
ensures that the definition of the contracted name is exchanged for a definition
of the fresh name, and that all uses of the contracted name refer instead to the
uncontracted, fresh name.

At this point, the compiler could create a new definition of the contracted
name that wraps the value associated with the fresh name with a contract. This
would, however, disassociate the value internal to the contract region, referred
to by the fresh name, and the external value, referred to by the contracted name.
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If either code internal or external to the contract region mutates their respective
binding, that mutation is not reflected in the other portion of code.

To allow for checked mutation, our system binds the contracted name to a
syntax transformer that expands each use to a guarded use of the fresh name.
Doing so ensures that the use evaluates to the current value of the fresh name,
and it also enforces that the contract system checks the current value for ad-
herence to the contract. Furthermore, the syntax transformer also allows the
compiler to track mutation of the contracted name. When this occurs, the com-
piler generates an expression that instead mutates the fresh name, guarding the
new value with the contract. Here our system uses the context as the positive
blame and the contract region as the negative blame, as the new value flows into
the contract boundary during mutation.

To protect free variables with contracts, a similar set of substitutions is per-
formed. The compiler produces a fresh name for each protected free variable, and
creates a syntax transformation for that fresh name that expands references into
guarded references and mutations into guarded assignments to the free variable.

The macros for contract regions need to access the blame label for the context.
For this, we turn to syntax parameters [1], which provide a mechanism for tem-
porarily setting compile-time values for the macro expansion of a specific region
of code. Our system binds a syntax parameter to the appropriate blame label
during the expansion of the body of a contract region; otherwise, the syntax
parameter is instead set to the blame label for the current module.

4 Contracts for Nominally Linked Units

In addition to static first-order modules, PLT Scheme supports a separate com-
ponent system, called units [19,20]. Units are analogous to ML’s functor module
system [25,26] and the mixins and traits of OO programming languages [27,28].

Roughly speaking, the unit system supports hierarchical programming with
first-class components. Each unit is parameterized over its linking context; each
unit also exports a set of names. The unit system supports two operations on
units: linking and invoking. A number of units with matching signatures can be
linked in a graph-based fashion; the result is a new unit with its own parameter-
ization over its future contexts, which flow into its constituent units, and its own
exports, which flow out of its constituent units. A unit whose parameterization is
empty may be invoked, meaning the unit’s body is evaluated sequentially. Units
are first-class values and may even be loaded at run-time. They co-exist with
modules and as such may flow across module boundaries.

Understanding unit signatures is key to understanding units as contract
boundaries. The first subsection therefore describes signatures, which name col-
lections of variables for import or export from a unit. It also introduces the ad-
dition of contracts for signatures. The second and third subsections then present
examples of uncontracted and contracted units. The last subsection explains how
to implement units as contract boundaries in PLT Scheme and how the addition
of contracts affects our implementation.
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#lang scheme
(define-signature worldˆ

(key?
key=?
big-bang))

(define-signature clientˆ
(world?
tock
clack))

. . .

#lang scheme
(define-signature world/cˆ

((contracted
[key? (→ any/c boolean?)]
[key=? (→ key? key? boolean?)]
[big-bang (→ any/c void?)])))

(define-signature client/cˆ
((contracted

[world? (→ any/c boolean?)]
[tock (→ world? world?)]
[clack (→ world? any/c world?)])))

. . .

Fig. 9. Signatures with contracts

4.1 Signatures and Contracts

A unit signature is a named collection of variables. Units use sequences of sig-
natures to specify their imports and exports. An exported signature can satisfy
an import requirement for another unit only if that unit imports the signature
with the same name. In other words, the unit system uses nominal matching.

For our examples, we use the two signatures on the left side of figure 9.2

These signatures describe interfaces that are useful for implementing interactive
animations in a world-passing style [29]. The worldˆ signature contains three
names: key? , which is a predicate that determines whether a value is a keyboard
event; key=? , which is an equivalence predicate; and big-bang, which launches an
animation when applied to a world (world? ). The clientˆ signature also contains
three names: world? , which is a predicate on worlds; tock , which is an event
handler for clock ticks, mapping worlds to worlds; and clack , which is an event
handler for keyboard events, from worlds and keyboard events to worlds.

Naturally, programmers wish to express such specifications as contracts in or-
der to protect units. We have therefore extended the language of signatures with
the contracted keyword, which combines signature variables with contracts.
The right hand side of figure 9 shows the contracted versions of the signatures.
Notice that signature contracts can involve elements of the same signature.

4.2 Units without Contracts

The import signatures of a unit introduce bindings for all their variables for
the unit body; conversely, if a unit exports a signature, it must define all the
variables listed in the signature. Figure 10 contains some sample units3 that
utilize the uncontracted signatures from the preceding subsection.

2 The ˆ character at the end of signature names is merely a convention.
3 As with ˆ, the use of @ is a naming convention for units.
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. . .
;; get-last-key , a primitive, returns #f if no key was pressed
;; since the last call; otherwise it returns the pressed key
(define-unit world@ (import clientˆ) (export worldˆ)

(define (key? k) (memq k (list "up" "down")))
(define (key=? ke1 ke2 ) (string=? ke1 ke2 ))
(define (big-bang w)

(let ([ke (get-last-key)])
(if ke (big-bang (clack w ke))

(begin (sleep .1) (big-bang (tock w)))))))
;; Here a world is a number that represents the height of
;; a rocket on a 500 pixel high canvas (not shown here).
(define-unit client@ (import worldˆ) (export clientˆ)

(define (world? n) (and (integer? n) (>= n 0) (<= n 500)))
(define (tock n) (+ n 10))
(define (clack n ke)

(cond [(key=? ke "up") (+ n 10)]
[(key=? ke "down") (− n 10)]))

(big-bang 0))
. . .

Fig. 10. Example interactive animation units

When compound-unit is used to link a collection of units, the exported
definitions from one unit are typically used to satisfy import requirements for
one or more of the other units. Thus we can link client@ and world@ like this:

(define pgrm@
(compound-unit/infer (import) (export) (link world@ client@)))

The “infer” suffix is a variant of compound-unit that infers how to wire up
the exports and imports of the constituents.

In general, the result of linking is a unit that has its own list of imports and
exports and whose body is a sequence of the constituent unit bodies in the order
listed in the link clause. The exports of the compound unit are satisfied from
the exports of the constituent units, and the imports of the compound unit may
be used to satisfy imports of the constituents. In contrast to modules, units can
thus be compounded hierarchically, and they may refer to each other’s exports
and imports in a mutually referential manner.

Finally, units with empty import signatures can be invoked, e.g.

(invoke-unit pgrm@)

The effect is to execute the body of world@ , which consists entirely of definitions,
and then to execute the body of client@ , which calls big-bang.

4.3 Units with Contracts

The use of signatures with contracts turns units into contract regions and their
boundaries into contract boundaries. In the following code, the definitions of
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world@ and client@ differ from the earlier definitions only in the import/export
specification, and so we elide the bodies:

(define-unit world@ (import client/cˆ) (export world/cˆ) . . . )
(define-unit client@ (import world/cˆ) (export client/cˆ) . . . )

When we link client@ and world@ and invoke the result:
(invoke-unit

(compound-unit/infer (import) (export) (link world@ client@)))

then client@ is blamed if either tock or clack cause the world to become negative
or increase beyond 500.

The signatures world/cˆ and client/cˆ illustrate that a contract in a signature
may refer to other elements from the same signature. Thus, we must decide how
these contracts interact with the linked units’ contract boundaries. In particu-
lar, we must decide whether references to signature elements within contracts
are guarded or not. For the purposes of this paper, we consider all signature
contracts as occurring within the importing unit’s contract boundary and there-
fore the compiler guards all uses of contracted signature elements inside those
contracts. This ensures that exported variables are not misused by the contracts
and concurs with our implementation strategy.4

4.4 Implementing Units as Contract Boundaries

Adding contracts to the unit system poses several challenges. First, units do not
enter a contract with a known party; instead they specify via signature contracts
what they expect from their context. Second, the same unit may be linked to
several different units at run-time and may thus enter contracts with several
different parties. Hence, the compiler cannot pass on enough knowledge about
the contract parties to the run-time checks. Third, due to nominal linking, a
compound unit may only link constituent units whose contracts are identical.
Therefore blame labels can be exchanged as units are linked.

The first part of this section describes how units are implemented in PLT
Scheme. The second part explains the addition of signature-based contracts to
the existing implementation. The third part covers additional features of the
unit system.

Units in PLT Scheme. The current unit system in PLT Scheme follows the
model by Owens and Flatt [19] for first-class modules. In this model, signatures
are matched nominally when units are linked. The implementation exploits this
nominal matching to provide inference for linking.
4 This design decision is overly conservative and deserves to be revisited once we have

enough experience with our new contract system. Furthermore the current contract
system does not permit programmers to use elements from one signature in a different
signature for the specification of contracts. Extending the contract system in this
direction may also force us to revisit the design decision on how to check contracted
functions within contracts.



152 T.S. Strickland and M. Felleisen

The compiler5 translates a unit into a thunk that is hidden in a unique struc-
ture value. On application, the thunk returns two values:

– a mapping from exports to reference cells, and
– a function that implements the body of the unit. The function consumes a

mapping from imports to reference cells; it returns the last value computed
by the unit body.

In the unit’s body, the compiler replaces uses of imports with accesses to the
import mapping. To each definition of an exported item, the compiler adds an
assignment to the appropriate reference cell. Once an export cell is set, its value
never changes.

A unit invocation invokes the thunk to obtain an export mapping and a body
function. The latter is then applied to an empty import mapping, which evaluates
the unit body.

Since units are represented as thunks, the compiler translates a compound-
unit form to a thunk, too. This thunk performs the following operations:

1. It applies the thunks for the constituent units and collects the resulting
export mappings and body functions.

2. It constructs an export mapping for the compound unit from the collected
export mappings.

3. It creates a body function that consumes the import mapping of the com-
pound unit. For each linked unit in listed order, this new body function:
(a) creates an import mapping from the compound unit’s import mapping

and the collected export mappings of the other units, and
(b) applies that unit’s body function to the created import mapping.

4. It returns the new export mapping and body function.

Contracts in Signatures. Since units must agree on their shared signatures
by name and since we add contracts to signatures, linked units automatically
agree on all of the contracts of the shared variables. That is, unlike a module that
contains two parallel contract regions, a compound unit cannot possibly link two
units whose contracts don’t match, as in figure 11. Thus, it is impossible for the
linker to assume any responsibility for contract errors. Put differently, there is
no need for checking contracts within the compound unit and it need never be
blamed. Put positively, our implementation limits blame to the exporting unit
and the importing unit.

The key to our addition of contracts is to separate the translation of contracted
signature variables from those of uncontracted ones. For contracted exports, the
compiler generates code that sets the cell for the exported value to a structure
with two fields:

5 The unit system is actually implemented as a library based on the PLT macro
system, though it is impossible for a programmer to discover this programmatically.
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#lang scheme
(define-signature lexerˆ ((contracted [lex (→ string? (listof token?))])))
(define-signature lexer2ˆ ((contracted [lex (→ input-port? (listof token?))])))
(define-signature parserˆ ((contracted [parse (→ string? ast?)])))
(define-unit lexer@ (import) (export lexer2ˆ)

(define (lex str) . . . ))
(define-unit parser@ (import lexerˆ) (export parserˆ)

(define (parser str) (let ([tokens (lex str)]) . . . )))
(compound-unit/infer (link lexer@ parser@))

Fig. 11. Mismatched signatures and contracts

– one for the value of the exported variable, and
– one that uniquely identifies the exporting unit, i.e., its blame label.

When the compiler encounters a contracted import, it deconstructs this kind of
structure and retrieves the contract from the imported signature. From these two
pieces, the compiler constructs an appropriate guard expression for the imported
value. This contract-guard uses the export blame label for positive blame report
and the importing blame label for negative blame reports.6

Structural Linking and a Contract Combinator. The unit system supports
two more important linguistic constructs whose full descriptions are beyond
the scope of this paper. One form, unit/s , provides a mechanism for linking
units structurally. This provides backwards compatibility for use with an early
implementation of units in PLT Scheme [20].

The unit/s form takes import and export specifications as well as a unit value
and creates a new unit value. Its imports and exports must structurally match
the imports and exports of the given unit value; the resulting unit value uses
the given imports and exports and the given unit’s body. Since this operation on
units changes the import and export signatures, the contracts on the imported
and exported values may be inappropriate for the original unit. Hence, the com-
piler must introduce contract checks into the result of unit/s that blames the
new unit value when contract mismatches occur, instead of allowing either the
original unit value or any unit with which it is linked to be blamed.

The other form, unit/c, is a new form of contract specification, since units
are first-class values that also can cross contract boundaries. Technically, the
contract combinator unit/c is used in contracts to express contracts on units. A
contract on units is essentially a sequence of contracts for a unit’s exports and
imports. We implement this operation as a projection

6
on unit values, which

means that it takes a unit value as input and returns a new unit value that
monitors the flow of values across the unit boundary.
6 Roughly speaking, it applies two projections to the value: one for its “elimination”

(negative) and one for its “introduction” (positive). If something goes wrong with
the negative position, the client is blamed; otherwise the server is blamed. For details
on the general idea, see Findler and Blume’s report [30].
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Both of these forms require similar changes to the unit implementation, be-
cause both introduce structural notions of matching a unit’s exports to another
unit’s imports. Structural units, in turn, are a central piece of related work,
which we briefly compare to this work in section 6.

5 A Question of Blame

Now that we have described two new contract extensions—contract regions and
unit contracts—we are in a good position to compare and contrast the blame
story for the two. Examine the modules in figure 12. The module regions contains
two contract regions: server , which provides the implementation of a webserver,
and client , which (mis-)uses that implementation. Similarly, the module units
contains two units, server@ and client@ , which are in a relationship that is
analogous to that of server and client .

regions units

#lang scheme
(with-contract server

([serve (→ high-tcp-port? void?)])
. . . )

. . .

. . .

. . .

. . .

. . .

. . .
(with-contract client

([. . . ])
. . . (serve 80) . . . )

#lang scheme
(define-signature webˆ

((contracted
[serve (→ high-tcp-port? void?)])))

(define-unit server@
(import) (export webˆ)
. . . )

(define-unit client@
(import webˆ) (export)
. . . (serve 80) . . . )

(invoke-unit
(compound-unit/infer

(link server@ client@)))

Fig. 12. A comparison between contract regions and units

When evaluated, both modules result in a contract violation. In regions , the
module itself is blamed, since it is the context of the contract region server ,
whereas in units , client@ is blamed. The inquisitive reader may be surprised
that in the former case, the contract system did not blame client instead, which
would be a more specific region. After all, the purpose of blame assignment
is to assist programmers with debugging, calling for the most specific blame
justifiable.

One reason for this design decision is that only parties that explicitly enter into
a contract should be blamed for bad behavior. In the second module, the various
units, via signatures, enter into contracts for both their imports and exports.
That is, server@ (respectively, client@) declares that the exported (respectively,
imported) function serve is contracted through its use of the signature webˆ.
Since both parties have agreed to the contract, the two units are the only sources
of blame.
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In the first module, only server declares a contract on the function serve.
This agreement is with its context, i.e., the rest of the module regions . Thus
only server or regions can be blamed if part of the contract is violated. If client
had declared the same contract on serve via #:freevars, then it, too, would have
agreed to the contract and could be blamed appropriately.

regions2

#lang scheme
(with-contract server

([serve (→ high-tcp-port? void?)])
. . . )

. . .
(with-contract client

([. . . ])
#:freevars ([serve (→ tcp-port? void?)])
. . . (serve 80) . . . )

Fig. 13. Regions with differing contracts

Then again, client doesn’t have to specify the same contract as server . Thus,
in figure 13, neither contract region should be at fault, as both regions use the
serve function according to their own contract. Instead, the fault lies with the
context that ties the two regions together. It allows the value serve to flow
from one region to another even though the two impose distinct requirements at
their respective boundaries. This is analogous to the behavior of contracts for
structurally linked units, which we briefly mentioned in conjunction with unit/s
and which we discuss more extensively in the section on related work.

In fact, the first example can be seen as a special case of the second, if we
treat all uncontracted free variables flowing into a contract region as if they had
the implicit contract any/c, i.e., the most permissive contract. Thus, having the
context of the contract region serve as the negative blame leads to a consistent
handling of blame for contract regions.

6 Related Work

Our paper benefits from two pieces of related work. First, a parallel paper [21] ex-
plores the theory of contracts for the units described by Flatt and Felleisen [20],
i.e., units with structural signature matching. Matching signatures structurally
requires much deeper changes to the compiler and the run-time environment
than PLT Scheme’s unit system with nominal matching. Most importantly, it
introduces a third party of potential blame—the compounding unit—and there-
fore demands contract machinery for linking.

Structural signature matching is closely related to the world of ML-like module
systems based on functors and structures. As such, the parallel paper directly
applies to this world. In contrast, the implementation presented here is much
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closer to the world of nominal interfaces from OO programming languages and
should therefore carry over to contracts for mixins [27] and traits [28].

By inheritance, our paper extends the work by Findler and Felleisen [18] on
higher-order contracts for static and global contract boundaries. Our implemen-
tation heavily relies on Findler’s work with Blume [30], which is the current
theoretical underpinning for contracts. It explains contracts as pairs of projec-
tions and is the model for the implementation of contracts in PLT Scheme.

Historically, the notion of contracts and modules is due to Parnas [31] though
he did not coin the phrase “contract.” Meyer’s “design by contract” work in-
troduces this terminology [13]; his work on Eiffel popularized the idea in the
object-oriented community.

7 Conclusion

Software contracts enable programmers to protect collections of functions and
methods with simple, executable descriptions of expected behavior. Contract
monitoring ensures that all values that flow into and out of a protected region
satisfy its stated boundary invariants. When the contract monitor discovers a
contract violation, it must be able to pinpoint the guilty party and explain the
nature of the violation. Doing so is critical for the debugging process.

Given the growing importance of contracts, our work provides the important
generalization of introducing nested and dynamic contract boundaries. Techni-
cally, this paper introduces hierarchical contract regions for static modules and
contract boundaries for a hierarchical and dynamic module system. We conjec-
ture that future work on contract boundaries can benefit from either of those
two or a mix of them. Our implementation is available with the current release
of PLT Scheme (http://www.plt-scheme.org/).

Acknowledgments. We gratefully acknowledge comments and suggestions
from Robby Findler and the anonymous reviewers for IFL on early drafts of
this paper.

References

1. Flatt, M., et al.: PLT Scheme. Reference Manual PLT-TR2009-reference-v4.2.1.,
PLT Scheme Inc. (January 2009), http://plt-scheme.org/techreports/
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Abstract. Programs in languages such as Haskell are often datatype-
centric and make extensive use of folds on that datatype. Incremen-
talization of such a program can significantly improve its performance
by transforming monolithic atomic folds into incremental computations.
Functional incrementalization separates the recursion from the applica-
tion of the algebra in order to reduce redundant computations and reuse
intermediate results. In this paper, we motivate incrementalization with
a simple example and present a library for transforming programs using
upwards, downwards, and circular incrementalization. Our benchmarks
show that incrementalized computations using the library are nearly as
fast as handwritten atomic functions.

1 Introduction

In functional programming languages with algebraic datatypes, many programs
and libraries “revolve” around a collection of datatypes. Functions in such pro-
grams form the spokes connecting the datatypes in the center to a convenient
application programming interface (API) or embedded domain-specific language
(EDSL) at the circumference, facilitating the development cycle. These datatype-
centric programs can take the form of games, web applications, GUIs, compilers,
databases, etc. We can find examples in many common libraries: finite maps,
sets, queues, parser combinators, and zippers. Datatype-generic libraries with a
structure representation are also datatype-centric.

Programmersdeveloping datatype-centric programs often define recursive func-
tions that can be defined with primitive recursion. A popular form of recursion, the
fold (a.k.a. catamorphism or reduce), is (categorically) the unique homomorphism
(structure-preserving map) for an initial algebra. That is, an algebraic datatype
T provides the starting point (the initial algebra) for a fold to map a value of T to
a type S using an algebra F S → S, all the while preserving the structure of the
type T. Folds can be defined using an endofunctor F (another homomorphism),
and an F-algebra. Given a transformation that takes a recursive datatype T to its
base functor F T, we can define a fold that works for any type T. Before we get
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too far outside the scope of this paper, however, let us put some concrete notation
down in Haskell1.

The base functor for a type t can be represented by a datatype family[1]:

data family F t :: ∗ → ∗

A datatype family is a type-indexed datatype[2] that gives us a unique structure
for each type t. The types t and F t should have the same structure (i.e. same
alternatives and products) with the exception that the recursive points in t are
replaced by type parameters in F (this being the reason for the kind ∗ → ∗).
The isomorphism between t and F t is captured by the InOut type class.

class (Functor (F t)) ⇒ InOut t where
inF :: F t t → t
outF :: t → F t t

An algebra for a functor f is defined as a function f s → s for some result type
s. In the case of a fold, f is the base functor F t. We use the following type
synonyms to identify algebras:

type Alg f s = f s → s
type AlgF t s = Alg (F t) s

As mentioned above, the fold function is a structure-preserving map from a
datatype to some value determined by an algebra. Using the above definitions
and fmap from the Functor class, we implement fold as follows.

fold :: (InOut t) ⇒ AlgF t s → t → s
fold alg = alg ◦ fmap (fold alg) ◦ outF

A fold for a particular datatype T requires three instances: F T, InOut T, and
Functor (F T). Here is the code for a binary tree.

data Tree a = Tip | Bin a (Tree a) (Tree a)

data instance F (Tree a) r = TipF | BinF a r r

instance Functor (F (Tree a)) where
fmap TipF = TipF

fmap f (BinF x rL rR) = BinF x (f rL) (f rR)

instance InOut (Tree a) where
inF TipF = Tip
inF (BinF x tL tR) = Bin x tL tR
outF Tip = TipF

outF (Bin x tL tR) = BinF x tL tR

1 We use Haskell 2010 along with the following necessary extensions:
MultiParamTypeClasses, TypeFamilies, FlexibleContexts, KindSignatures, and
Rank2Types.
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One F-algebra for Tree is calculating the number of binary nodes in a value.

sizeAlg :: AlgF (Tree a) Int
sizeAlg TipF = 0
sizeAlg (BinF sL sR) = 1 + sL + sR

The simplicity of the above code2 belies the power it provides: a programmer
can define numerous recursive functions for Tree values using fold and an algebra
instead of direct recursion. With that understanding, let us return to our story.

Folds are occasionally used in repetition, and this can negatively impact a
program’s performance. If we analyze the evaluation of such code, we might see
the pattern in Figure 1. The variables xi are values of some foldable datatype
and the results yi are used elsewhere. If the functions fi change their values in
a “small” way relative to the size of the value, then the second fold performs a
large number of redundant computations. A fold is an atomic computation: it
computes the results “all in one go.” Even in a lazily evaluated language such
as Haskell, there is no sharing between the computations of fold in this pattern.

x1 ��� f0 x0

y1 ��� fold alg x1

x2 ��� f1 x1

y2 ��� fold alg x2

...

Fig. 1. Evaluation of re-
peated folds. The symbol
��� indicates that the right
evaluates to the left.

In this article, we propose to solve the problem
of repetitive folds by transforming repeated atomic
computations into a single incremental computa-
tion. Incremental computations take advantage of
small changes to an input to compute a new out-
put. The key is to subdivide a computation into
smaller parts and reuse previous results to compute
the final output.

Our focus is the incrementalization[4] of purely
functional programs with folds and fold-like func-
tions. To incrementalize a program with folds, we
separate the application of the algebra from the re-
cursion. We first merge the components of the F-
algebra with the initial algebra (the constructors). We may optionally define
smart constructors to simplify use of the transformed constructors. The recur-
sion of the fold is then implicit, blending with the recursion of other functions.

We motivate our work in Section 2 by taking a well-known library, incremen-
talizing it, and looking at the improvement over the atomic version. In Section 3,
we generalize this form of incrementalization—which we call “upwards”—into li-
brary form. Sections 4 and 5 develop two alternative forms of incrementalization,
“downwards” and “circular.” In Section 6, we discuss other aspects of incremen-
talization. We discuss related work in Section 7 and conclude in Section 8. All
of the code presented in this paper is available online3.

2 As simple as they are, the F, Functor , and InOut instances may be time-consuming
to write for large datatypes. Fortunately, this code can be generated with tools such
as Template Haskell[3].

3 http://people.cs.uu.nl/andres/Incrementalization/

http://people.cs.uu.nl/andres/Incrementalization/
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2 Incrementalization in Action

We introduce the Set library as a basis for understanding incrementalization.
Starting from a simple, naive implementation, we systematically transform it to
a more efficient, incrementalized version.

The Set library has the following API.

empty :: Set a
singleton :: a → Set a
size :: Set a → Int

insert :: (Ord a) ⇒ a → Set a → Set a
fromList :: (Ord a) ⇒ [a ] → Set a

The interface is comparable to the Data.Set library provided by the Haskell
Platform.

One can think of a value of Set a as a container of a-type elements such that
each element is unique. For the implementation, we use an ordered, binary search
tree[5] with the datatype introduced in Section 1.

type Set = Tree

We have several options for constructing sets. Simple construction is performed
with empty and singleton, which are trivially defined using Tree constructors.
Sets can also be built from lists of elements.

fromList = foldl (flip insert) empty

The function fromList uses insert which builds a new set given an old set and an
additional element. This is where the ordering aspect from the type class Ord is
used.

insert x Tip = singleton x
insert x (Bin y tL tR) = case compare x y of

LT → balance y (insert x tL) tR
GT → balance y tL (insert x tR)
EQ → Bin x tL tR

We use the balance function to maintain the invariant that a look-up operation
has logarithmic access time to any element.

balance :: a → Set a → Set a → Set a
balance x tL tR | sL + sR � 1 = Bin x tL tR

| sR � 4 ∗ sL = rotateL x tL tR (size tRL) (size tRR)
| sL � 4 ∗ sR = rotateR x tL tR (size tLL) (size tLR)
| otherwise = Bin x tL tR

where (sL, sR) = (size tL, size tR)
Bin tRL tRR = tR
Bin tLL tLR = tL

Here, we use the size of each subtree to determine how to rotate nodes between
subtrees. We omit the details4 of balance but call attention to how often the
4 It is not important for our purposes to understand how to balance a binary search

tree. The details are available in the code of Data.Set and other resources[5].
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size function is called. We implement size using fold with the algebra defined in
Section 1.

size = fold sizeAlg

The astute reader will notice that the repeated use of the size in balance leads
to the pattern of folds described in Figure 1. In this example, we are computing
a fold over subtrees immediately after computing a fold over the parent. These
are redundant computations, and the subresults should be reused. In fact, size
is an atomic function that is ideal for incrementalization.

The key point to highlight is that we want to store results of computations
with Tree values. We start by allocating space for storage.

data Treei a = Tipi Int | Bini Int a (Treei a) (Treei a)

We need to preserve the result of a fold, and the logical location is each recursive
point of the datatype. In other words, we annotate each constructor with an
additional field to contain the size of that Treei value. This can be visualized as
a Tree value with superscript annotations.

Bin4 2 (Bin1 1 Tip0 Tip0) (Bin2 3 Tip0 (Bin1 4 Tip0 Tip0))

We then define the function sizei to extract the annotation without any recursion.

sizei (Tipi i) = i

sizei (Bini i ) = i

The next step is to implement the part of the fold that applies the algebra
to a value. To avoid obfuscation, we create an API for Tree values by lifting the
structural aspects (introduction and elimination) to a type class.

class TreeS t where
type Elem t
tip :: t
bin :: Elem t → t → t → t
caseTree :: r → (Elem t → t → t → r) → t → r

An instance of TreeS permits us to use the smart constructors tip and bin for
introducing t values and the method caseTree (instead of case) for eliminating
them. Since the element type depends on the instance type, we use the associated
type Elem t to identify the values of the bin nodes. Applying this step to Treei,
we arrive at the following instance.

instance TreeS (Treei a) where

type Elem (Treei a) = a

tip = Tipi 0
bin x tL tR = Bini (1 + sizei tL + sizei tR) x tL tR
caseTree t b n = case n of {Tipi → t ; Bini x tL tR → b x tL tR}

We have separated the components of sizeAlg and merged them with the con-
structors, in effect creating an initial algebra that computes the size.
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For the finishing touches, we adapt the library to use the new datatype and
TreeS instance. The refactoring is not difficult, and the types of all functions
should be the same (of course, using Treei instead of Tree). Refer to the associated
code for the refactored functions. We have one last check to verify that we
achieved our objective: speed-up of the Set library.

To benchmark5 our work, we compare two implementations of the fromList
function. The first is given by the definition above. The second is from the
aforementioned refactored Set library using the Treei type. For each run, we
build a set from the words of a wordlist text file. The word counts increase with
each input to give an idea how well fromList scales.

Figure 2 lists the results. To collect these times, we evaluate the values strictly
to head normal form. Since Haskell is by default a lazily evaluated language, these
times are not necessarily indicative of real-world use; however, they do give the
worst case time, in which the entire set is needed.

It is clear (and no surprise) from the results that incrementalization has a
significant effect. We have changed the time complexity of the size calculation
from linear to constant, thus reducing the time of fromList by nearly 100% for
all inputs.

In this section, we developed a library from a naive implementation with
atomic folds into an incrementalized implementation. This particular work is
by no means novel, and no one would use the naive approach; however, it does
identify a design pattern that may improve the efficiency of other programs. In
the remainder of this article, we capture that design pattern in a library and
explore other variations on the theme.

3 Upwards Incrementalization

We take the design pattern from the previous section and create reusable compo-
nents and techniques that can be applied to incrementalize another program. We
call the approach used in this section upwards incrementalization, because we
pull the results upward through the tree-like structure of an algebraic datatype.

The first step we took in Section 2 was to allocate space for storing interme-
diate results. As mentioned, the logical locations for storage are the recursive
points of a datatype. That leads us to identify the fixed-point view as a natural
representation.

newtype Fix f = In {out :: f (Fix f)}

The type Fix encapsulates the recursion of some functor type f and allows us
access to each recursive point. We use another datatype to extend a functor
with a new field.

data Ann s f r = Ann s (f r)

5 All benchmarks were compiled with GHC 6.10.1 using the -O2 flag and run on a
MacBook with Mac OS X 10.5.8, a 2 GHz Intel Core 2 Duo, and 4 GB of RAM.
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5,911 16,523 26,234 words

Atomic 3.876 19.561 61.151 seconds
Incrementalized 0.010 0.028 0.056

Fig. 2. Performance of the atomic and incrementalized fromList

The type Ann pairs an annotation with a functor. Combined, Fix and Ann give
us an annotated fixed-point representation.

type Fixa s f = Fix (Ann s f)

We supplement this type with its base functor (along with instances of Functor
and InOut) and functions to introduce (ina), eliminate (outa), and extract the
annotation (ann) from Fixa values.

data instance F (Fixa s f) r = Ina
F s (f r)

ina :: s → f (Fixa s f) → Fixa s f
outa :: Fixa s f → f (Fixa s f)
ann :: Fixa s f → s

Another function that will be useful later is foldMapa.

foldMapa :: (Functor f) ⇒ (r → s) → Fixa r f → Fixa s f
foldMapa f = fold (λ(Ina

F s x) → ina (f s) x)

To continue with the example used in the Set library, we now represent the
binary search tree using the base functor of Tree introduced in Section 1. We
can define an alternative representation for Treei as TreeU.

type Typea s t = Fixa s (F t)
type TreeU a = Typea Int (Tree a)

We can use this type with an instance of TreeS in the same way as before;
however, we must first define a general form of upwards incrementalization.

Recall that our objective is to separate a fold into its elements: the application
of the algebra and the recursion. First, let us determine how to get an annotated
fixed-point type from a Haskell type; then, we can dissect the fold. Upwards
incrementalization is specified by upwards.

upwards :: (InOut t) ⇒ AlgF t s → t → Typea s t
upwards = fold ◦ pullUp

pullUp :: (Functor f) ⇒ Alg f s → Alg f (Fixa s f)
pullUp alg fs = ina (alg (fmap ann fs)) fs

The function upwards is naturally defined with fold. The pullUp function trans-
forms an algebra on a functor f with the result s to an algebra that results in
the annotated fixed point Fixa s f. It does this by mapping each annotated fixed
point to its annotation in f. The ina function (also an algebra) pairs the annota-
tion with x. This value is built atomically (since upwards is a fold). To construct
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the same value incrementally, we define introduction and elimination operations
under the TreeS instance.

instance TreeS (TreeU a) where

type Elem (TreeU a) = a
tip = pullUp sizeAlg TipF

bin x tL tR = pullUp sizeAlg (BinF x tL tR)
caseTree t b n = case outa n of {TipF → t ; BinF x tL tR → b x tL tR}

The primary differences from the Treei instance are that we use the base functor
constructors and that we wrap them with the algebra pullUp sizeAlg and unwrap
them with the coalgebra outa.

The library defined in this section allows programmers to write programs
with upwards incrementalization. Given a datatype, the programmer defines
an algebra that they want incrementalized. Using pullUp and the base functor
of that datatype, the programmer can easily build incremental results. Smart
constructors or a structure type class such as TreeS are not required, but they
can simplify the programming by hiding the complexities of incrementalization.

We now compare the performance of our generalized upwards incrementaliza-
tion against the specialized incrementalization presented in Section 2. Since the
incrementalized Set library was refactored to use the TreeS class, we can use the
same code for the generalized implementation but with the type TreeU instead
of Treei. We used the same benchmarking methodology as before to collect the
results in Figure 3.

Surprisingly, the generalized fromList performs better, running 15 to 17%
faster than the specialized version. It is not clear precisely why this is, though we
speculate that it is due to the structure of the explicit fixed point and annotation
datatypes.

An alternative benchmark is the time taken to build large values of each
datatype. This is independent of any library and reflects clearly the impact of
the incrementalization on construction. We compare the evaluation of building
three isomorphic tree values: construction of the Tree datatype with “built-in”
Haskell syntax, construction of the incrementalized TreeU type, and TreeU values
transformed from constructed Tree values.

We arrive at the results shown in Figure 4 using QuickCheck[6] to reproducibly
generate each arbitrary value with the approximate size shown. Each time is the
average over three different random seeds. As with previous comparisons, we
evaluate to head normal form. To be consistent with later comparisons, the
element type of the trees is Float.

The times of the comparison are virtually indistinguishable. This provides
good indication that upwards incrementalization does not impact the perfor-
mance of constructing values. Again, note that due to lazy evaluation, this only
predicts the worst case time, not the expected time for incremental updates.

In the next two sections, we look at other variations of incrementalization. It
could be said that upwards is the most “obvious” adaptation of folds; however,
it is also limiting in the functions that can be written. Algebraic datatypes
are tree-structured and constructed inductively; therefore, it is naturally that
information flows upward from the leaves to the root. It is also possible to pass



Pull-Ups, Push-Downs, and Passing It Around 167

5,911 16,523 26,234 words

Specialized 10.0 28.4 56.1 milliseconds
Generalized 8.3 24.1 46.8

Fig. 3. Performance of the specialized and generalized fromList

1,000 10,000 100,000 nodes

Tree 7.4 39.7 137.3 milliseconds
Incrementalized with pullUp 7.4 39.5 136.5
Transformed with upwards 7.4 39.6 137.4

Fig. 4. Performance of constructing trees with upwards incrementalization using the
size algebra

information downward from the root to the leaves as well as both up and down
simultaneously. We venture into this territory next.

4 Downwards Incrementalization

There are other directions that incrementalization can take. We have demon-
strated upwards incrementalization, and in this section, we discuss its dual:
downwards incrementalization. In this direction, we accumulate the result of
calculations using information from the ancestors of a node. As with its up-
wards sibling, the result of downwards computations is stored as an annotation
on a fixed-point value. To distinguish between the two, we borrow vocabulary
from attribute grammars[7]: a downwards annotation is inherited by the children
while an upwards annotation is synthesized for the parent.

Let us establish a specification of a fixed-point value with inherited annota-
tions. To do this, we start with Gibbons’ accumulations[8], in particular down-
wards accumulations. Accumulation is similar to incrementalization in the sense
that information flows up or down the structure of the datatype. Accumulations
collect this information in the polymorphic elements (e.g. the a in Tree a) while
incrementalization collects it at the recursive points. Gibbons modeled down-
wards accumulation using paths, and we borrow this concept for downwards
incrementalization.

A path is a route from a constructor in a value to the root of that value (i.e.
the sequence of ancestors). The type of a path is characteristic of the datatype
whose path we want, so we define Path as a type-indexed datatype. The Path
instance for the Tree type helps clarify the structure a path.

data family Path t

data instance Path (Tree a)
= PRoot | PBinL a (Path (Tree a)) | PBinR a (Path (Tree a))

data instance F (Path (Tree a)) r = PRootF | PBinLF a r | PBinRF a r

In downward accumulations, every element is replaced with the path from that
constructor. Then, a fold is applied to each path to determine the result that
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is stored in the element. In downwards incrementalization, we annotate every
constructor with its path. The primitives for this operation are defined by the
Paths class and exemplified by the Tree instance.

class (InOut t, InOut (Path t), ZipWith (F t)) ⇒ Paths t where
proot :: Path t
pnode :: F t r → F t (Path t → Path t)

instance Paths (Tree t) where
proot = PRoot
pnode TipF = TipF

pnode (BinF x ) = BinF x (PBinL x) (PBinR x)

The methods proot and pnode are used to link the constructors of Path t to the
constructors of the type t. The mapping is quite straightforward: there is always
one root constructor, and the remaining constructors match recursive nodes. The
function paths uses the methods of Paths to annotate every recursive point with
its path.

paths :: (Paths t) ⇒ t → Typea (Path t) t
paths = appa proot ◦ fold (ina id ◦ zipApp compa pnode)

appa x = foldMapa ($x)
compa f = foldMapa (◦f)
zipApp f g x = zipWith f (g x) x

In paths, we are folding over the type t with an algebra that again folds over the
annotated value to push the latest known constructor to the bottom of each child
path using function composition. We follow up with a second fold to apply the
composed functions to proot. We use an instance of the class ZipWith to merge
the recursive path nodes (that contain functions applying the constructor) with
the original base function.

class ZipWith f where
zipWith :: (a → b → c) → f a → f b → f c

The instances of ZipWith are trivial. Alternatively, we might have used a datatype-
generic programming library to zip functors together. To get an intuition of how
paths works, refer to the following example.

BinPRoot 2 TipPBinL 2 PRoot

(BinPBinR 2 PRoot 1 TipPBinL 1 (PBinR 2 PRoot) TipPBinR 1 (PBinR 2 PRoot))

Each constructor is initially annotated with the with id. As the outer fold works
upwards, the inner fold composes the current path constructor (e.g. PBinL or
PBinR) with the results. Finally, the function annotation for every node is applied
to the root PRoot.

We can now give a specification for inherited annotations.

downwards :: (Paths t) ⇒ AlgF (Path t) s → t → Typea s t
downwards alg = foldMapa (fold alg) ◦ paths
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We use paths to annotate all recursive points with their paths, and we fold
over the annotated result with an algebra that contains a fold over a path. The
path algebra is provided by the programmer. For example, suppose we want to
calculate the depth of a constructor:

depthAlgD p = case p of {PRootF → 1 ; PBinLF i → succ i ; PBinRF i → succ i}
Applying the depth algebra with a fold draws the information up from the bot-
tom, but in the case of a path, the “bottom” is the root of the tree. In this way,
inheritance is flipped head-over-heels.

Given the number of folds and redundant traversals of the fixed-point value
and paths, the definition of downwards is clearly inefficient. We may, of course,
improve its performance with manual optimizations, but in the end, it will still
be a fold. Instead, we deviate from this in our approach for downwards incre-
mentalization. The primary difference lies with the algebraic structure.

type AlgD f i = forall s.i → f s → f i

type AlgD
F t i = AlgD (F t) i

This algebra gives us the point of view of a constructor in a recursive datatype.
We no longer fold over a path, but rather inherit an i-type annotation, which
would have been the result of a fold on the path, from the parent. The type
f s → f i indicates that this algebra changes the elements of a functor f using
the inherited value, and the explicit quantification over s (producing rank-2
polymorphism below) preserves the downward direction of data flow. We used a
similar device in the type of pnode. Also similar to pnode, an AlgD algebra must
preserve the structure of the input.

We perform downwards incrementalization with an algebra transformation
similar to pullUp. The function pushDown demonstrates some similarities with
paths.

pushDown :: (ZipWith f) ⇒ i → AlgD f i → Alg f (Fixa i f)
pushDown init alg = ina init ◦ zipApp push (alg init)

where push i = pushDown i alg ◦ outa

We use zipApp to merge altered and unaltered functor values. The altered values
come by applying the initialized algebra. (In paths, we alter with pnode.) We have
removed most folds in pushDown, but we cannot remove recursion completely.
Finite values are constructed inductively (i.e. upward), yet we are pushing in-
herited annotations down to the children. If we construct a new Bin 1 x y value
from two Bin values x and y, we must (in a sense) ensure that x and y receive
their inheritance from their new parent.

The function pushDown takes a different algebra from downwards, but the dif-
ference between the algebra on paths and AlgD requires manageable changes. The
PRootF case is replaced by an initial inherited value, and the left and right Bin
paths are replaced by a single BinF case. We rewrite depthAlgD as the following:

depthInit = 1
depthAlg i t = case t of {TipF → TipF ; BinF x → BinF x (succ i) (succ i)}
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We can then use pushDown depthInit depthAlg to define the smart constructors—
in an instance of TreeS , perhaps—for downwards incrementalization.

Evaluating downwards incrementalization would ideally be done with a pro-
gram that made use of it. We have observed, however, that it is not clear how use-
ful downwards incrementalization is. We reuse the depth algebra from Gibbons[8]
in our example, but we have found very few interesting algebras. As a matter
of opinion, the incrementalization found in the next section appears much more
useful. Indeed, perhaps downwards incrementalization serves better to introduce
some concepts, in a simpler setting, that reappear in the next section. At the
very least, this section serves to make the discussion of incrementalization more
complete.

To evaluate the performance of downwards incrementalization, we benchmark
the construction of tree values annotated with depth. We look at the same com-
parison for downwards as we did for upwards. The details are given in Figure 5.

Downwards incrementalization is clearly less efficient than upwards incremen-
talization and constructing Tree values: 12 to 21% slower. The recursive down-
ward push accounts for the extra time. On the other hand, it is encouraging to
see that, at the worst case, downwards depth incrementalization is not too much
slower. In general, the evaluation time of downwards incrementalization can vary
greatly depending on the depth of the values and especially the algebra used.
As an algebra, depth is perhaps detrimental to efficiency since every new node
on top of the tree results in updates to every node down to the leaves. Lastly,
note that the downwards transformation is 8 to 11% slower in evaluation. This
difference indicates the time spent folding over the paths and the repetitive folds
over the tree.

The downwards direction puts an interesting twist on purely functional incre-
mentalization. The development of a Path and its use in downwards allows us to
understand inherited annotations while the incrementalizing function pushDown
provides a more efficient approach. In the next section, we look at the merger of
upwards and downwards incrementalization.

5 Circular Incrementalization

Combining upwards and downwards incrementalization leads us to another form:
circular incrementalization. Circular incrementalization merges the functionality
of both to allow for much more interesting algebras. Information flows both
from the descendants to the ancestors and vice versa. Circularity is achieved
by introducing feedback at the leaves and the root such that the result of one
direction of flow may influence the other. Fittingly, we annotate recursive points
with both synthesized and inherited annotations. The following functions serve
to access the annotations:

inh :: Fixa (i, s) f → i
syn :: Fixa (i, s) f → s

We illustrate circular annotations with a specification similar to upwards and
downwards. Every annotation combines both synthesized data from the subtree
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1,000 10,000 100,000 nodes

Tree 7.4 39.7 137.3 milliseconds
Incrementalized with pushDown 8.3 46.6 167.1
Transformed with downwards 9.0 51.7 185.4

Fig. 5. Performance of constructing trees with downwards incrementalization using the
depth algebra

(whose root is the annotated node) and inherited data from the context (the
entire tree-like value inverted, with a path from the current node to the root:
the same concept used in zippers[9]). At each node, we can use the algebra to
pass results either up or down or both. In our model, we build both subtrees
and contexts for each node and compute each annotation with a fold. In order
to create circularity, we use algebras whose results are functions that take the
other annotation as an argument. We first describe contexts, and then we extend
an annotated value with subtrees.

A context is an expansion of a path, and it can be defined in much the same
way. We use the type-indexed datatype Context and the type class Contexts to
give the structure of a datatype’s context and the primitives for building it,
respectively.

data family Context t

data instance Context (Tree a)
= CRoot | CBinL a (Context(Tree a)) (Tree a) | CBinR a (Tree a) (Context (Tree a))

data instance F (Context (Tree a)) r
= CRootF | CBinLF a r (Tree a) | CBinRF a (Tree a) r

class (InOut t, InOut (Context t), ZipWith (F t)) ⇒ Contexts t where
croot :: Context t
cnode :: F t t → F t (Context t → Context t)

instance Contexts (Tree a) where
croot = CRoot
cnode TipF = TipF

cnode (BinF x tL tR) = BinF x (λc → CBinL x c tR) (CBinR x tL)

Note the differences from paths. A context traces a path to the root, but a
Context value, unlike a Path, contains a node’s sibling recursive values. To an-
notate all nodes with contexts, we use the following function:

contexts :: (Contexts t) ⇒ t → Typea (Context t) t
contexts = appa croot ◦ fold (ina id ◦ zipApp compa (cnode ◦ fmap rma))

rma :: (InOut t) ⇒ Typea s t → t
rma = fold (inF ◦ outaF)

The only difference from paths is the need to fold the fixed point into its built-in
representation for context nodes. This is in accordance with the fact that the
only difference Context has from Path is the inclusion of sibling values represented
with the Haskell type. Here is an example of a context-annotated value.
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BinCRoot 2 TipCBinL 2 CRoot (Bin 1 Tip Tip)

(BinCBinR 2 Tip CRoot 1 TipCBinL 1 (CBinR 2 Tip CRoot) Tip TipCBinR 1 Tip (CBinR 2 Tip CRoot))

Given a value with contexts, we pair each annotation with its subtree via a
fold over a fixed-point value.

subtrees :: (InOut t) ⇒ Typea c t → Typea (c, t) t
subtrees = fold (λ(Ina

F c x) → ina (c, inF (fmap rma x)) x)

With subtree and context annotations, we can define circular annotations.
Circular annotations can be constructed with the following function:

circular :: (Contexts t)
⇒ AlgF (Context t) (s → i) → AlgF t (i → s) → t → Typea (i, s) t

circular algD algU = foldMapa cycle ◦ subtrees ◦ contexts

where cycle (ct, st) = let (i, s) = (fold algD ct s, fold algU st i) in (i, s)

Two algebras are necessary: one for each context and one for each subtree. The
result of each algebra is a function that is the inverse of the other. Subsequently,
each fold is applied to the result of the other, using a technique called circular
programming[10]. A circular program uses lazy evaluation to avoid multiple ex-
plicit traversals, and this is key to circular incrementalization. It allows us to
define algebras that rely on as-yet-unknown inputs. Feedback occurs when the
upwards algebra algU takes input from the downwards algebra algD, and vice
versa. It is possible to create multiple passes by defining multiple such depen-
dencies. Of course, it is also possible to create non-terminating cycles, but we
accept that chance in order to support expressive algebras.

Examples of problems that can be solved by circular incrementalization in-
clude the “repmin” problem from Bird[10] and the “diff” problem from Swier-
stra[11]. The latter is used to show why attribute grammars matter. Circular
incrementalization shares some similarities with attribute grammar systems, so
it is worth exploring this in more detail.

The naive implementation of Swierstra’s problem is a function that, given a
list of numbers, calculates the difference of each number from the average of the
whole list and returns the results in a list.

diff :: [Float ] → [Float ]
diff xs = let avg = sum xs / genericLength xs in map (subtract avg) xs

Swierstra demonstrates two more efficient implementations: one is manually de-
veloped and significantly more complex, and the other is generated from a sim-
pler attribute grammar specification using the UUAG system. We add to this an
implementation using circular incrementalization, though our definition works
on Tree values instead of lists.

The following types serve as specification for the annotations.

newtype Diffi = DI {avgi :: Float}
data Diffs = DS {sums :: Float, sizes :: Float, diffs :: Float}
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In the inherited annotation Diffi, we have the only inherited value, the average.
In the synthesized annotation Diffs, we have the sum of all element values, the
size or count of elements (genericLength for lists), and the resulting difference.

The algebra for subtrees establishes the synthesized annotation.

diffAlgU :: AlgF (Tree Float) (Diffi → Diffs)
diffAlgU TipF = DS {sums = 0, sizes = 0, diffs = 0}
diffAlgU (BinF x sL sR) i = dbins x (sL i) (sR i) i

dbins :: Float → Diffs → Diffs → Diffi → Diffs

dbins x sL sR i = DS {sums = x + sums sL + sums sR

, sizes = 1 + sizes sL + sizes sR

, diffs = x − avgi i}

In the Tip component, the values are initialized to zero. In the Bin component, we
perform the operations: summing the elements, counting the number of elements,
and computing the difference from the average. Since the elements of the algebra
are functions, we apply sL and sR to the inherited value i, ultimately used in diffs.

The algebra for contexts establishes the inherited annotation.

diffAlgD :: AlgF (Context (Tree Float)) (Diffs → Diffi)
diffAlgD CRootF s = DI {avgi = sums s / sizes s}
diffAlgD (CBinLF x i tR) sL = let j = i $ dbins x sL (fold diffAlgU tR j) j in j

diffAlgD (CBinRF x tL i) sR = let j = i $ dbins x (fold diffAlgU tL j) sR j in j

The CRootF case holds the calculation of the average because the sum and size
have been determined for the entire tree. The CBinLF and CBinRF cases determine
the synthesized annotations with folds of the trees not included in the subtree.
In these cases, we must also apply the upwards algebra effectively in reverse: the
result is used by the algebra’s function element i and passed onwards. Note that
we must be sure to always use the final inherited annotation (j in these cases)
in, for instance, fold diffAlgU tR j. Otherwise, the average value does not arrive
correctly at every node. Using j instead of i leads to more circular programming,
but it does not lead to cycles since there is no other feedback route from diffAlgD

into diffAlgU.
Here is an example of a value annotated with the diff algebra.

BinDI 1.5,DS 3 2 0.5 2 TipDI 1.5,DS 0 0 0

(BinDI 1.5,DS 1 1 (−0.5) 1 TipDI 1.5,DS 0 0 0 TipDI 1.5,DS 0 0 0)

The same average value has been inherited by every node. In the synthesized
annotations, the Bin constructors have the appropriate sum, size, and difference
annotations, and the Tip constructors have zeroes.

The specification of circular incrementalization above is clear but (of course)
not efficient. To define an efficient version, as with the downwards approach, we
use a different algebraic structure.

type AlgC f i s = i → f s → (s, f i)
type AlgC

F t i s = AlgC (F t) i s
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The AlgC type expands upon AlgD such that the synthesized annotations are
available for use as well as passed on to the parent. Put another way, we marry
the Alg and AlgD types and bear AlgC. The circular algebra is used in the following
algebra transformation.

passAround :: (Functor f, ZipWith f) ⇒ (s → i) → AlgC f i s → Alg f (Fixa (i, s) f)
passAround fun alg fis = ina (i, s) (zipWith pass fi fis)

where i = fun s
(s, fi) = alg i (fmap syn fis)
pass j = passAround (const j) alg ◦ outa

The function passAround borrows some aspects from pullUp and pushDown. From
the former, we take the upwards algebra applied to the mapped synthesized
results. As with the latter, we push the inherited annotations downward by
zipping the structures together and recursing. But unlike either previous form,
passAround also has circular dependencies on the annotations. The circularity of
i and s works in the same way as circular: by enabling the algebra to implicitly
traverse the structure and pass around annotations.

The attentive reader will notice that passAround supports restricted capabili-
ties compared to circular. In passAround, we only have feedback from synthesized
to inherited annotations at the top level, using the fun parameter. In the internal
nodes, the fun argument is const j, meaning we simply pass the inherited value
downwards. Since the definition of circular uses algebras with function results,
feedback can happen at any node. This means that circular is more expressive;
however, it also means that algebras for passAround are simpler to define. At this
point, we do not see the need for the increased expressiveness of circular, but we
do appreciate the simplified algebra of passAround.

We can solve the diff problem using the parameters of passAround. First, we
define the top-level feedback function.

diffFunC :: Diffs → Diffi

diffFunC s = DI {avgi = sums s / sizes s}
This is nothing more than the calculation of the inherited annotation. The cir-
cular algebra is also quite simple.

diffAlgC :: AlgC
F (Tree Float) Diffi Diffs

diffAlgC TipF = (DS {sums = 0, sizes = 0, diffs = 0}, TipF)
diffAlgC i (BinF x sL sR) = (dbins x sL sR i, BinF x i i)

Unlike with diffAlgD, we are not concerned with deciding which inherited an-
notation to pass on, and we do not need any (additional) circularity. We may
complete the circular incrementalization for Tree by defining a straightforward
TreeS instance using passAround diffFunC diffAlgC for the smart constructors.

We benchmark circular incrementalization in the same way as downwards
with one addition. We manually define a fast, accumulating diff function (type
Tree Float → Tree Float) that replaces each element with its difference. This func-
tion provides a basis for comparison with more typical atomic implementation.
See Figure 6 for results.
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1,000 10,000 100,000 nodes

Tree 7.4 39.7 137.3 milliseconds
Accumulating diff 7.7 41.3 142.9
Incrementalized with passAround 9.2 53.4 210.5
Transformed with circular 30.6 737.1 17,233.4

Fig. 6. Performance of constructing trees with circular incrementalization using the
diff algebra

Circular incrementalization is 12 to 26% slower than downwards incremental-
ization. It also is 20 to 47% slower than the accumulation. The accumulation is,
of course, an atomic function and would incur costs when used again while the
time for incrementalization would be amortized over repeated computations. The
circular transformation is radically less efficient and would not be useful in practice.

This concludes our look at the various forms of incrementalization. In the
following sections, we discuss aspects of incrementalization and related work.

6 Discussion

Several aspects of incrementalization deserve further discussion.

6.1 Combining Algebras

To simplify the presentation of incrementalization, we have ignored a potential
issue. Suppose we have the function union for incrementalized trees. If we define
the function for the Set library, the solution is the same as without incremen-
talization. On the other hand, we may define it more generally with the type
Typea s t → Typea s t → Typea s t. But with the approach described in this
paper, there is no guarantee that the annotation types in each parameter match
the same algebra. For example, we might have a type Int for size and a type Int
for sum. How do we merge these when we combine values from each parameter?

One option is to allow for different algebras and to use an additional algebra
for pairing the annotations together. At every node, we compute the annotations
for the algebras of each input. For union, this would result in a type Typea r t →
Typea s t → Typea (r, s) t. However, for some applications (such as the Set
library) this may not be desirable, since it changes the annotation types.

An alternative option is to ensure that an algebra is unique for the entire
program. We can do this by creating a multiparameter type class for annotations
that attach a type s to a type t: Annot s t. We then define union to have the type
(Annot s t) ⇒ Typea s t → Typea s t → Typea s t. There can be only one instance
of Annot for this pair of types, so the type system prevents an inconsistency
between the parameters.

6.2 Optimization

One possibility for speeding up incrementalization is the use of memoization or
storing the results of a function application in order to reuse them if the function
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is applied to the same argument. Typically, this technique involves a table map-
ping arguments to results. In both downwards and circular incrementalization,
pushing the inherited annotation down leads to recursion through the subtree
structure, and this is a large time factor in the these techniques. To memoize
the downwards function (push in pushDown and pass in passAround), we must
create a memo table for the inherited annotation.

There are several options for memoization from which we might choose. GHC
supports a rough form of global memoization using stable name primitives[12].
Generic tries may be used for purely functional memo tables[13] in lazy languages.

In general, the best choice for memoization is strongly determined by the
algebra used, but the options above present potential problems when used with
incrementalization. Creating a memo table for every node in a tree can lead to
an undesirable space explosion. For example, suppose the memo table at every
node in the downwards depth example contains two entries. The size of the
incrementalized value is already triple the size of an unincrementalized one.

To avoid space issues, we use a memo table size of one with an equality check.
The function push is easily modified (as is pass, using inh instead of ann)

push i x | i ann x = x
| otherwise = pushDown i alg (outa x)

In our experiments, unfortunately, memoization did not have a significant effect.
The memoized pushDown was up to 1% slower with the depth algebra, and the
memoized passAround was up to 1% faster with the diff algebra.

We leave it to future work to explore other forms of optimization.

6.3 Going Datatype-Generic

We have described incrementalization as a library with type classes for a pro-
grammer to instantiate. It can also serve as part of a datatype-generic program-
ming library.

For example, for datatypes that are represented using pattern functors or
structural functor types with explicit recursive points, we can define generic
functions such as folds and zips to use with all such types. Such a library is
described for rewriting[14] and mutually recursive datatypes[15]. Both Functor
and ZipWith can be instantiated with such a library, so by extension, we can use
the above definitions for pullUp, pushDown, and passAround. More details are
available in a technical report[16].

6.4 Applications of Incrementalization

We continue to search for particular uses of incrementalization outside of the Set
library, but one particular application appears very attractive: a generic incre-
mental zipper. The zipper[9] is a technique for navigating and editing values of
algebraic datatypes. By incrementalizing a zipper, annotations may be computed
incrementally as we navigate and change a value. Examples where this would be
useful include (partial) evaluation of an abstract syntax tree and online format-
ting of structured documents or code. We have outlined an implementation of a
generic incremental zipper elsewhere[16].
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7 Related Work

As we have mentioned, incrementalization is quite similar to attribute gram-
mars[7]. In addition, Fokkinga, et al[17] prove that attribute grammars can be
translated to folds. An annotation on a node in incrementalization is the result
of computing an attribute on a production.

Saraiva, et al[18] demonstrate incremental attribute evaluation for a purely
functional implementation of attribute grammars. They transform syntax trees
to improve the performance of incremental computation. Our approach is con-
siderably more “lightweight” since we write our programs directly in the target
language (i.e. Haskell) instead of using a grammar or code generation. On the
other hand, we cannot easily boost performance by rewriting.

Viera, et al[19] describe first-class attribute grammars in Haskell. Their ap-
proach ensures the well-formedness of the grammar and allows for combining
attributes in a type-safe fashion. Our approach to combining annotations is more
ad-hoc and we do not ensure well-formedness; however, we believe our approach
is simpler to understand and implement. We also show that our technique can
improve the performance of a library.

Our initial interest in incremental computing was inspired by Jeuring’s work
on incremental algorithms for lists[20]. This work shows that incremental algo-
rithms can also be defined not just on lists but on algebraic datatypes in general.

Carlsson[21] translates an imperative ML library supporting high-level incre-
mental computations[22] into a monadic library for Haskell. His approach relies
on references to store intermediate results and requires explicit specification of
the incremental components. In contrast, our approach is purely functional and
uses the structure of the datatype to determine where annotations are placed.
We can also hide the incrementalization using type classes such as TreeS . Incre-
mentalization, however, is limited to computations that can be defined as folds,
while Carlsson’s work is more free-form.

Bernardy[23] defines a lazy, incremental, zipper-based parser for the text edi-
tor Yi. His implementation is rather specific to its purpose and lacks an apparent
generalization to other datatypes. Further study is required to determine whether
Yi can take advantage of incrementalization.

8 Conclusion

We have presented a number of exercises in purely functional incrementalization.
Incrementalizing programs decouples recursion from computation and storing
intermediate results. Thus, we remove redundant computation and improve the
performance of some programs. By utilizing the fixed-point structure of algebraic
datatypes, we demonstrate a library that captures all the elements of incremen-
talization for folds.
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Abstract. We present a typical synergy between dynamic types (dy-
namics) and generalised algebraic datatypes (GADTs). The former pro-
vides a clean approach to integrating dynamic typing in a statically typed
language. It allows values to be wrapped together with their type in a
uniform package, deferring type unification until run time using a pat-
tern match annotated with the desired type. The latter allows for the
explicit specification of constructor types, as to enforce their structural
validity. In contrast to ADTs, GADTs are heterogeneous structures since
each constructor type is implicitly universally quantified. Unfortunately,
pattern matching only enforces structural validity and does not provide
instantiation information on polymorphic types. Consequently, functions
that manipulate such values, such as a type-safe update function, are
cumbersome due to boilerplate type representation administration. In
this paper we focus on improving such functions by providing a new
GADT annotation via a natural synergy with dynamics. We formally
define the semantics of the annotation and touch on novel other appli-
cations of this technique such as type dispatching and enforcing type
equality invariants on GADT values.

1 Introduction

In this paper we discuss a typical synergy between two concepts: dynamic types
(dynamics) and generalised algebraic datatypes (GADTs).

Types play an important role in strongly typed functional programming lan-
guages such as Clean and Haskell. Using static type checking, erroneous be-
haviour at run time is prevented. Moreover, more efficient code can be generated
using the knowledge provided by the types at compile time. However, in dynamic
systems that deal with user input, some types will only be known at run time.
Using dynamics, monomorphic [1] and polymorphic [2] values can be wrapped
together with their type in a black box. The dynamic is unwrapped by pattern
matching on the required type in a function definition, instead of specifying the
type explicitly in its signature. This approach defers part of the type checking
process until run time, exactly when the final required type information is made
available. Fortunately, this does not take place at the cost of the advantage of
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static typing since the type system guarantees that when pattern matching suc-
ceeds, the unwrapped dynamic can be used safely as dictated by the specified
type. Of course, pattern matching can fail and cause a run-time error, but this
is not different from conventional pattern matching.

Algebraic datatypes (ADTs) in functional languages allow us to inductively
define structures. Unfortunately, it does not allow us to enforce structural
validity at compile time. With the arrival of generalised algebraic datatypes
(GADTs) [6,10,14], this restriction is relieved by allowing constructors to explic-
itly dictate their types. On the one hand, this prevents us from constructing ill-
structured (i.e., ill-typed) values, and on the other hand this ensures structural
validity once a GADT value is pattern matched. In contrast to ADTs, GADTs
are heterogeneous structures since each constructor occurrence is implicitly uni-
versally quantified. Pattern matching such a value only introduces information
regarding the structure of the constructor types, leaving the type variables poly-
morphic. However, more information on their instantiation is often required, typ-
ically in functions that manipulate such values. Conventional approaches to this
problem are cumbersome, due to boilerplate type representation administration.

The main contribution of this paper is to define a type-safe update function
on GADT values via an annotation, achieved by a natural synergy between
dynamics and GADTs.

Overview

This paper is organised as follows. First, we elaborate on both dynamics and
GADTs (Section 2). We motivate the need for the synergy by defining an update
function on λ-terms (Section 3). Then, we formally define a semantics for the
new annotation via a synergy between dynamics and GADTs (Section 4). We
conclude with related work (Section 5) and a discussion on future work and other
applications of this technique (Section 6). In this paper we use Clean’s dynamics
and Haskell’s GADTs. For the sake of presentation, our examples use Haskell
syntax, augmented with Clean’s notation for dynamics.

2 Preliminaries

We start by introducing dynamics (Section 2.1) and GADTs (Section 2.2).

2.1 Dynamic Types

The advantage of statically typed languages is that types are verified at com-
pile time, preventing erroneous behaviour at run time due to ill-typed values.
However, static typing sometimes does not suffice since a type might only be
known at run time. Using dynamic types, values are wrapped in a black box,
not exposing the type of the contents to the outside world. But unlike existential
types [9], both the value and its type are unwrapped by pattern matching the
black box, thereby obtaining a value of the matched content type.
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In Clean, the keyword dynamic provides the mechanism to wrap values to-
gether with their type in a dynamic [13], obtaining a value of type Dynamic:

wrapInt :: Int → Dynamic
wrapInt x = dynamic x

Unwrapping the integer value is achieved by pattern matching on the dynamic
value using the :: annotation, thereby providing a required type:

unwrapInt :: Dynamic → Int
unwrapInt (x :: Int) = x
unwrapInt (x :: String) = stringToInt x
unwrapInt = 0

The first arm of the function pattern matches on a value x of type Int in the
dynamic. If this is the case, the value is returned unchanged. However, the value
in the dynamic is possibly a string and has to be converted to an integer first.
Due to run-time type unification, the dynamic pattern match can fail in case the
wrapped value is not of the type Int or String . It is our responsibility to provide
a catch-all arm which either returns a default value or a run-time error message.

Instead of defining a function for each value type that is turned into a dynamic,
we define a single function:

wrap :: TC α ⇒ α → Dynamic
wrap x = dynamic x

Since this function is polymorphic in the argument type, we require the context
to provide the type code (i.e., the value representation of the type) of α which is
stored together with the value x , using Clean’s built-in TC class constraint. A
type code also contains the definition of the type it describes, because dynamics
can be (de)serialised across modules and verifying name equivalence in a dynamic
pattern match does not suffice. Consequently, TC instances are only available
for nonabstract types.

Unlike Haskell, Clean supports type-dependent dynamics [11], which allows
us to use pattern variables in the type of a dynamic pattern match:

unwrap :: TC α ⇒ Dynamic → α
unwrap (x :: α∧) = x
unwrap = error "unwrap: incorrect type"

We require x to be of type α and refer to the same variable in the result type of
unwrap using the ∧ annotation. This causes both types to be coerced automat-
ically at run time. Therefore, a type code is required for α such that it can be
compared with the type code obtained from the dynamic pattern match. The
context in which this function is used determines which type code is provided.

Pattern variables can also be used to enforce type equality, for example, to
define function application of dynamics:
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apply :: TC α ⇒ Dynamic → Dynamic → Maybe α
apply (f :: β → α∧) (x :: β) = Just (f x )
apply = Nothing

The dynamic pattern matches in the first arm share the same scope. Therefore,
they only succeed once the argument type of the function matches the type of the
argument. Because the result type of the function in the first dynamic pattern
match refers to α in the result type of apply , a type code is required for this
type. As an example, consider the following expressions:

apply (dynamic fst) (dynamic (1, "2")) � Just 1
apply (dynamic fst) (dynamic 1) � Nothing

While the first expression succeeds, the second expression fails since the ar-
gument is not a pair. Finally, dynamics preserve lazy behaviour of functional
programs:

apply (dynamic fst) (dynamic (1,⊥)) � Just 1

Although the value ⊥ is part of the tuple that is wrapped in a dynamic, it is not
evaluated when (un)wrapped.

2.2 Generalised Algebraic Datatypes

Algebraic datatypes are an oft-used abstraction in functional languages since
they provide an inductive approach to defining complex structures by enumerat-
ing the alternatives of a type and the associated fields. For example, in Haskell,
an ADT representing λ-terms could be defined as follows:

data Lam = Undef
| Const Value
| App Lam Lam

The Undef constructor has no fields, while the Const constructor has a single
field for a value. The App constructor has two fields, which both can be any
term. The values are enumerated by another ADT:

data Value = VInt Int
| VFun (Value → Value)

Next, we define an evaluation function:

eval :: Lam → Value
eval Undef = ⊥
eval (Const x ) = x
eval (App f x ) = case eval f of

VFun f → f (eval x )
→ error "eval: not a function"
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The arms for Undef and Const are straightforward. However, since nothing
prevents us from constructing ill-typed terms, the arm for App has to ensure
that its first field actually evaluates to a function.

With the arrival of generalised abstract datatypes, we are able to enforce
structural validity by providing an explicit type signature to each constructor.
Consequently, a GADT imposes a heterogeneous structure since all constructors
are implicitly universally quantified. We illustrate the use of GADTs by defining
the Lam type again, this time describing typed λ-terms:

data Lam :: � → � where
Undef :: Lam α
Const :: α → Lam α
App :: Lam (β → α) → Lam β → Lam α

The Lam type is parameterised by the result type of the term once it is eval-
uated. With each constructor, we explicitly specify its result type. The Undef
constructor represents an undefined value. Since its result type α is free and
not bound by any fields, it can be unified with any other type. The Const con-
structor lifts any value to the Lam type. The App constructor is more explicit
about the types of its two field. The argument type of the function term must
match the type of the argument term. Then, its result type is the result type of
the function term. The explicit constructor types prevent us from constructing
ill-typed terms. Consider the following examples:

⊥ 1 ≡ App Undef (Const 1)

Since the return type of the Undef constructor can be anything, it is instantiated
to a function as App requires, thereby returning a value of type Lam α. When
we provide a term that does not return a function, the term becomes ill typed:

0 1 ≡ App (Const 0) (Const 1)

A more useful example actually applies a function. Consider the absolute value
of an integer:

abs 1 ≡ App (Const abs) (Const 1)

This term is well typed and returns a value of type Lam Int .
Type information described in the type of the constructors is also employed

when the constructors are pattern matched in a function definition. Since only
well-typed terms can be constructed, we can now safely and concisely define the
evaluation function:

eval :: Lam α → α
eval Undef = ⊥
eval (Const x ) = x
eval (App f x ) = eval f (eval x )
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The result type of the function depends on the term that is evaluated. Each
constructor dictates the type of its fields as well as the result type. For example,
evaluating the first field of the App constructors returns a function, which can
safely be applied to its evaluated second field. However, be aware that the exact
types of these fields are not known since we are dealing with a heterogeneous
structure.

3 Motivation

In this section, we motivate the need for the typical synergy between dynamics
and GADTs in the context of update functions on GADTs (Section 3.1). Next, we
discuss why the conventional approach is not suited to this problem (Section 3.2)
and how the synergy elegantly improves on these issues using a new GADT
annotation (Section 3.3).

3.1 Setting the Scene

We use as the running example the definition from Section 2.2 that represents
λ-terms. Our goal is to define an update function that takes such a term, and
updates a field of a constructor at a specified position with a new value. Then,
the desired type of the update function becomes:

update :: Lam α → Path → β → Lam α

The argument and result type of the function are the same since we only consider
updates that do not affect the top-level type of the term. However, an update
can change the structure. The path depicts the location of the update in the
heterogeneous structure:

type Path = [Int ]

The path is represented as a list of integers. The length of the list indicates the
recursive level (where the empty list is the root) of the target and each value the
field (where 0 is the first field) that must be considered. Since the path possibly
dictates an update anywhere in the heterogeneous structure, the type of the new
value is unrestricted. Hence, the challenge we face lies in only allowing type-safe
updates.

3.2 Conventional Approach

The conventional approach to this problem makes extensive use of equality
types [3,5]. By comparing the value representations of the type of the old and
new value, a proof of type equality can be obtained to ensure only type-safe
updates.
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First, we modify our original Lam definition from Section 2.2 to the following:

data LamR :: � → � where
UndefR :: LamR α
ConstR :: RepOf α → LamR α
AppR :: RepOf (LamR (β → α)) → RepOf (LamR β) → LamR α

The difference is that the types of the constructor fields now include a type
representation:

type RepOf α = (α,Rep α)

The Rep type enumerates the possible types, including the integer type, the
function type, and the LamR type:

data Rep :: � → � where
RInt :: Rep Int
RFun :: Rep α → Rep β → Rep (α → β)
RLamR :: Rep α → Rep (LamR α)

The Rep type is only a witness of a type, for example, the type LamR (Int → Int)
is witnessed by the value RLamR (RFun RInt RInt). For the sake of brevity,
this representation type only reflects monomorphic types. Given such witnesses,
we are able to construct the actual proof that the types of such Rep values are
the same. Such a proof is constructed by the following GADT:

data Equal :: � → � → � where
Refl :: Equal α α

The Equal type consists of a single constructor Refl , one that proves that both
of the type arguments are the same. Then, we define a type equality function
that performs a point-wise comparison of type representations, using Haskell’s
do notation:

eqR :: Rep α → Rep β → Maybe (Equal α β)
eqR RInt RInt = Just Refl
eqR (RFun x1 x2) (RFun y1 y2) = do Refl ← eqR x1 y1

Refl ← eqR x2 y2
return Refl

eqR (RLamR x ) (RLamR y) = do Refl ← eqR x y
return Refl

eqR = Nothing

Given two Rep values, this function either returns Just Refl if the type repre-
sentations are the same, thereby implicitly indicating that the types α and β
are the same as well, or Nothing . In the arms for RFun and RLamR we have to
explicitly pattern match the result of the recursion as to obtain its type equality
proof. Finally, we define a catch-all arm which returns Nothing for Rep values
that are not equal.
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Then, using the modified Lam definition and a type representation added to
the new value, we are finally able to define our update function:

updateR :: LamR α → Path → RepOf β → LamR α
updateR UndefR [ ] = UndefR
updateR (ConstR (x , rx)) [0] (y, ry) = case eqR rx ry of

Just Refl → ConstR (y, ry)
Nothing → ConstR (x , rx)

updateR (AppR (f , rf ) x ) [0] (y, ry) = case eqR rf ry of
Just Refl → AppR (y, ry) x
Nothing → AppR (f , rf ) x

updateR (AppR f (x , rx)) [1] (y, ry) = case eqR rx ry of
Just Refl → AppR f (y, ry)
Nothing → AppR f (x , rx)

updateR (AppR (f , rf ) x ) (0 : p) y = AppR (updateR f p y, rf ) x
updateR (AppR f (x , rx)) (1 : p) y = AppR f (updateR x p y, rx )
updateR x = x

In the arm for UndefR there is nothing left to do, we only have to make sure
that the path is fully consumed. The ConstR is the first interesting case, since
we have to verify that the types match by testing the equality of the Rep values.
Once these values are the same, we provide a proof that α and β are equal types
by pattern matching on the Refl constructor. Then, in the arms for AppR we
use the same approach and either replace its first or second field, or dispatch
on the head of the path and continue to recurse in either of its fields. Finally, a
catch-all arm is included to return the original term once the provided path is
incorrect. Whenever the function is applied, all the type representations need to
be provided explicitly:

updateR (ConstR (abs ,RFun RInt RInt)) [0] (neg,RFun RInt RInt)
�

ConstR (neg,RFun RInt RInt)

Although this approach guarantees type-safe updates, it is not a very elegant
definition. First of all, the invasive inclusion of Rep values in the datatype clutters
the update function with type equality witnesses and manual proofs. Moreover,
the types of the values that are updated have to be known beforehand since these
are enumerated in the Rep type and traversed in the type equality function.
Above all, this approach does not scale up to more complex structures and
update functions.

3.3 The Synergy

The conventional approach requires us to carry around type representations that
are used to convince the type checker of type equality. When we look back at Sec-
tion 2.1, we notice that this is actually what Clean’s TC type class provides. We
propose to adapt the original Lam definition from Section 2.2 again:
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data LamT :: � → � where
UndefT :: LamT α
ConstT :: TC α ⇒ α → LamT α
AppT :: (TC β,TC α) ⇒ LamT (β → α) → LamT β → LamT α

Instead of including Rep values, we include TC class constraints with the con-
structors that can be updated. Then, we define the update function using the
new ::G annotation on the field of a GADT constructor:

updateT :: TC β ⇒ LamT α → Path → β → LamT α
updateT UndefT [ ] = UndefT
updateT (ConstT (x ::Gβ∧)) [0] y = ConstT y
updateT (AppT (f ::Gβ∧) x ) [0] y = AppT y x
updateT (AppT f (x ::Gβ∧)) [1] y = AppT f y
updateT (AppT f x ) (0 : p) y = AppT (updateT f p y) x
updateT (AppT f x ) (1 : p) y = AppT f (updateT x p y)
updateT x = x

Let us take a look at the differences between this update function and the con-
ventional definition updateR from Section 3.2. First of all, this function operates
on the LamT type that is decorated with TC constraints, and its type contains
a TC constraint to obtain a type code for the new value of type β. Although the
update function was intended to be polymorphic at first, this constraint only
forbids abstract types to occur as new values, as discussed earlier in Section 2.1.
Another difference is that the function is no longer cluttered with verbose type
equality witnesses and manual proofs. Instead, the fields of the constructors are
annotated using the ::G annotation, accessing the instantiated polymorphic type
information. For example, in the arm for ConstT , the annotation denotes that x
is of type β, or even more specific, the type of the new value as determined by
the context in which this function is used. Note that the catch-all arm now also
takes care of any failing tests for type equality. Comparing the use of this update
function to the conventional approach emphasises the elegance of our approach:

updateT (ConstT abs) [0] neg � ConstT neg

Instead of explicitly providing type representations and equality proofs, it is now
the context that implicitly determines which fields are eligible for an update.

4 Semantics

In this section we present the formal semantics of the synergy. We formally define
a core functional language and the GADT annotation extension (Section 4.1).
Then, we describe the idea behind the translation from the extended language
to the core language by means of an example (Section 4.2), followed by a formal
approach (Section 4.3).
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(program) π ::= δ φ

(datatype declaration) δ ::= type T α = τ

| data T α = C τ

| data T :: κ where C :: σ

(qualified type) σ ::= TC α ⇒ τ
(base type) τ ::= α | Int | T

| τ1 τ2 | τ1 → τ2

| Dynamic
(annotation type) ω ::= α | α∧ | Int | T

| ω1 ω2 | ω1 → ω2

| Dynamic

(kind) κ ::= � | κ1 → κ2

(function declaration) φ ::= fix f :: σ = ε

(expression) ε ::= ⊥ | i | x | C
| ε1 ε2 | λx → ε | case εs of ρ → ε
| dynamic e :: ω

(nested pattern) ρ ::= � | C ρ
(base pattern) � ::= | i | x

| x :: ω

Fig. 1. The core language FC

4.1 Formal Language

The functional core language FC, which forms the basis of our semantics, is
depicted in Fig. 1. It is a common subset of Clean and Haskell, extended with
Clean’s dynamics and Haskell’s GADTs. An FC program consists of zero or more
datatype declarations and function declarations. A datatype is either a type
synonym, an ADT, or a GADT. A type comes in three flavours: a qualified
type, a base type, and an annotation type. A qualified type only includes the
TC constraint, as to facilitate dynamics, where we write τ as a shorthand for
the qualified type · ⇒ τ with no constraints. Second, a base type comprises the
polymorphic types. Very much like a base type, we define a separate annotation
type, but one that also allows the use of the ∧ annotation. A named function is
defined by its type and body. Amongst the well-known expressions, our language
supports the case construct to pattern match values, typically the arguments of
a function, and dynamic values. In the language of patterns we distinguish a
nested pattern from a base pattern, as to prepare for the language extension.
Finally, we do not explicitly include lists and tuples of arbitrary arity in the
language of expressions, patterns and types, since these can easily be realized
through predefined ADTs. We do not provide operational semantics and typing
for the core language since these have been studied in-depth elsewhere [2,4,6].
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(expression) ε ::= · · ·
| · · · | case εs of θ → ε
| · · ·

(pattern) θ ::= � | C ϑ

(field pattern) ϑ ::= ρ | x ::Gω

Fig. 2. The extended language FC+

Next, we define the extended language FC+ that allows us to use the GADT
annotation, as shown in Fig. 2. For the sake of simplicity, we only allow the new
annotation to occur on the top level of a constructor field pattern. However,
nested patterns can be easily achieved by nesting case expressions. We redefine
patterns in FC case expressions to be either a base pattern or a constructor with
field patterns. Then, a pattern in a constructor field is either an original nested
pattern, or an identifier annotated with a type.

As an example, we define the updateT function from Section 3.3 in the FC+

language:

fix updateT :: TC β ⇒ LamT α → Path → β → LamT α =
λx → λp → λy → case (x , p) of

(UndefT , [ ]) → UndefT
(x , (0 : [ ])) → case x of

ConstT (x ::Gβ∧) → ConstT y
AppT (f ::Gβ∧) x → AppT y x

→ x
(x , (1 : [ ])) → case x of

AppT f (x ::Gβ∧) → AppT f y
→ x

(AppT f x , (0 : p)) → AppT (updateT f p y) x
(AppT f x , (1 : p)) → AppT f (updateT x p y)

→ x

While being slightly more verbose than the original definition, a translation from
a Clean or Haskell definition is easily made. Note that the definitions of the Path
and LamT type from Section 3.1 and Section 3.3 respectively do not change in
the formal model.

4.2 Intuition

The general idea behind the translation is to take each GADT and translate
it to an extended parallel definition in which only constructor fields that are
annotated in the program are decorated with additional type information. A
conversion function inserts type information in the original definition and the
::G annotations are translated accessesing this information.
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For example, the LamT type from Section 3.3 translates to the following:

data Lam◦
T :: � → � where

Undef ◦T :: Lam◦
T α

Const◦T :: TC α ⇒ TypeOf α → Lam◦
T α

App◦
T :: (TC β,TC α) ⇒ TypeOf (LamT (β → α)) → TypeOf (LamT β)

→ Lam◦
T α

The extended definition, as well as its constructors, is given a new name. Since all
fields of the constructors are annotated in the update function from Section 3.3,
all fields of the Const◦T and App◦

T constructor now contain a typed value. Note
that in order to only have to translate patterns instead of complete functions
later on, the addition of type information is nonrecursive:

type TypeOf α = (α,Dynamic)

A typed value is simply the original value paired with its type stored in a dy-
namic. As a Dynamic can contain a value of any type, not necessarily the type
α, we use the following function to obtain correctness by construction:

fix typeOf :: TC α ⇒ α → TypeOf α =
λx → (x ,dynamic ⊥ :: α∧)

Since we only need the type of a value, it suffices to wrap ⊥ instead of an actual
value. As described in Section 2.1, the ∧ annotation refers to context-dependent
type information. The context in which typeOf is used determines the type that
is stored in the dynamic. Note that constructors can contain GADT values,
like App◦

T, which requires such types to be stored in a dynamic. Unfortunately,
type code facilities are yet to be defined for GADTs. Although GADTs greatly
complicate the type inference process [10,12], we hypothesize that storing such
values in dynamics is not different from ADT values since it does not affect the
unification of type codes that describe a GADT.

Then, the conversion from the original to the extended definition injects the
type information in constant time using the function typeOf :

fix toLam◦
T :: LamT α → Lam◦

T α =
λx → case x of

UndefT → Undef ◦T
ConstT x → Const◦T (typeOf x )
AppT f x → App◦

T (typeOf f ) (typeOf x )

The conversion only renames the UndefT constructor since it has no fields.
The fields of the ConstT and AppT constructor are extended with their types.
As the function typeOf dictates, this requires a type code for the field types.
The translation relies critically on this assumption, which is enforced by only
considering a FC+ program well typed if and only if each constructor has TC
constraints on every type variable occurring in its annotated fields. Fortunately,
as mentioned before in Section 2.1, the TC constraint is easily discharged for
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[[πFC+ ]] ≡ πFC

[[δ]] ≡ δ′ φ◦ [[φ]] ≡ φ′

[[δ φ]] ≡ δ′ φ◦ φ′
(t-prog)

Fig. 3. Translation of programs

any nonabstract type, which only forbids the use of the GADT annotation in
combination with abstract types.

Finally, we define the translation of the actual ::G annotation, accessing the
inserted type information. For example, the FC+ function updateT , as defined in
Section 4.1, is translated to FC:

fix updateT :: TC β ⇒ LamT α → Path → β → LamT α =
λx → λp → λy → case (x , p) of

· · ·
(x , (0 : [ ])) → case toLam◦

T x of
Const◦T (x , :: β∧) → ConstT y
App◦

T (f , :: β∧) (x , ) → AppT y x
→ x

(x , (1 : [ ])) → case toLam◦
T x of

App◦
T (f , ) (x , :: β∧) → AppT f y

→ x
· · ·

The conversion from the original to the extended GADT is applied to the scruti-
nee of the case expression. This provides type information in the pattern match,
allowing it to interact naturally like a conventional dynamic, in this case with
the type of the function using the ∧ annotation. Note that since the conversion
function is specific to a program, and not to each case expression, the fields that
do not use the annotation must discard the inserted type information as in the
case for App◦

T.

4.3 Formal Translation

We continue by defining the formal translation from the extended language FC+

to the core language FC. We conjecture that the translation is sound, every well-
typed FC+ program is translated to a well-typed FC program.

Let us begin by translating programs, as depicted by Rule t-prog in Fig. 3.
A program in the FC+ language is translated to the FC language by translating
both the datatype declarations and the function declarations.

In Fig. 4 we define the translation of datatype declarations. Type synonyms
and ADTs are left unchanged, as defined by Rules t-data-tsyn and t-data-adt.
We distinguish GADTs by using the metafunction annotated(T ) to test if it is
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[[δFC+ ]] ≡ δFC; φFC

[[type T α = τ ]] ≡ type T α = τ ; · (t-data-tsyn)

[[data T α = C τ ]] ≡ data T α = C τ ; · (t-data-adt)

¬ annotated(T )

[[data T :: κ where C :: σ]] ≡ data T :: κ where C :: σ; · (t-data-gadt-1)

annotated(T )
[[σ]]C ≡ σ◦; x ; ε◦ δ◦≡ data T ◦ :: κ where C ◦ :: σ◦

φ◦≡ fix toT ◦ :: T α → T ◦α =
tarity(T ) ≡ α λx → case x of

C x → C ◦ ε◦

[[data T :: κ where C :: σ]] ≡ data T :: κ where C :: σ δ◦; φ◦ (t-data-gadt-2)

Fig. 4. Translation of datatypes

[[σFC+ ]]C ≡ σFC; x ; εFC

[[τ ]]C ;0 ≡ τ◦; x ; ε◦

[[TC α ⇒ τ ]] ≡ TC α ⇒ τ◦; x ; ε◦
(t-qtype)

Fig. 5. Translation of qualified types

pattern matched somewhere in the program using the GADT annotation (e.g.,
annotated(Lam◦) ≡ True). If not, the original definition is returned without any
modifications, as defined by Rule t-data-gadt-1. However, an annotated GADT
requires some effort. In Rule t-data-gadt-2, the translation results in the original
definition, an extended definition δ◦, and a conversion function φ◦. By translating
the types of the constructors parameterized by the respective constructor name,
we obtain extended types together with corresponding pattern variables and ex-
pressions that extend these variables. The former is used to define the construc-
tor types of the extended definition, the latter two to define the corresponding
conversion function. The metafunction tarity(T ) provides zero or more fresh type
variables, determined by the arity of the type T (e.g., tarity(LamT ) ≡ α).

The translation of qualified types, parameterised by a constructor name, is
shown in Fig. 5. A qualified type propagates the translation to its base type,
adding a parameter which represents the index of the constructor field type
under translation.

In Fig. 6 we define the parameterised translation of such types, resulting
in an extended type, pattern variables, and expressions that extends these
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[[τFC+ ]]C ;n ≡ τFC; x ; εFC

[[T ]]C ;n ≡ T ; ·; · (t-type-data)
[[τ1 τ2]]C ;n ≡ τ1 τ2; ·; · (t-type-app)

¬ annotated(C ,n) [[τ2]]C ;n+1 ≡ τ◦
2; x2; ε◦2

[[τ1 → τ2]]C ;n ≡ τ1 → τ◦
2; x1 x2; x1 ε◦2

(t-type-fun-1)

annotated(C ,n) [[τ2]]C ;n+1 ≡ τ◦
2; x2; ε◦2

[[τ1 → τ2]]C ;n ≡ TypeOf τ1 → τ◦
2; x1 x2; (typeOf x1) ε◦2

(t-type-fun-2)

Fig. 6. Translation of base types

[[φFC+ ]] ≡ φFC

[[ε]] ≡ ε′

[[fix f :: σ = ε]] ≡ fix f :: σ = ε′
(t-fun)

Fig. 7. Translation of functions

variables. Since we are only interested in the fields of a constructor type, and the
type of an empty constructor is either a type constructor or a type application,
Rules t-type-data and t-type-app result in an unchanged type and no pattern
variables or expressions. The function type is the interesting case. If a construc-
tor field is not annotated in the program, as shown in Rule t-type-fun-1, it is
returned unchanged together with a fresh pattern variable and expression that
corresponds to the identity. Otherwise, the translation in Rule t-type-fun-2 ex-
tends the type of the constructor field with additional type information and
ensures that the fresh pattern variable is extended as well. In both cases we
recurse in the translation by incrementing the second parameter to denote the
next constructor field.

Next, we define the translation of functions by Rule t-fun in Fig. 7. A function
is translated by translating its body expression, which localises the conversion
and thus does not change the type of a function.

The translation of expressions is shown in Fig. 8. The basic building blocks of
expressions: bottom, integers, identifiers, and constructors, are left unchanged, as
can be seen in Rules t-exp-bot, t-exp-int, t-exp-id, and t-exp-con respectively.
Translation of an application is defined by Rule t-exp-app as translating both of its
expressions. Rule t-exp-abs defines the translation of an abstraction by translat-
ing the body expression. For case expressions, we define two separate rules, testing
if one of its patterns uses the GADT annotation. If not, it suffices to only translate
the scrutinee and the expression of each pattern, as defined by Rule t-exp-case-1.
Otherwise, Rule t-exp-case-2 defines that the conversion function must be applied
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[[εFC+ ]] ≡ εFC

[[⊥]] ≡ ⊥ (t-exp-bot)
[[i ]] ≡ i

(t-exp-int)

[[x ]] ≡ x
(t-exp-id)

[[C ]] ≡ C
(t-exp-con)

[[ε1]] ≡ ε′1 [[ε2]] ≡ ε′2
[[ε1 ε2]] ≡ ε′1 ε′2

(t-exp-app)
[[ε]] ≡ ε′

[[λx → ε]] ≡ λx → ε′
(t-exp-abs)

x ::Gα �∈ θ

[[εs ]] ≡ ε′s θ ≡ ρ [[ε]] ≡ ε′

[[case εs of θ → ε]] ≡ case ε′s of ρ → ε′
(t-exp-case-1)

x ::Gα ∈ θ btype(εs) ≡ T

[[εs ]] ≡ ε′s [[θ]] ≡ ρ [[ε]] ≡ ε′

[[case εs of θ → ε]] ≡ case toT ◦ ε′s of ρ → ε′
(t-exp-case-2)

[[ε]] ≡ ε′

[[dynamic ε :: ω]] ≡ dynamic ε′ :: ω
(t-exp-dyn)

Fig. 8. Translation of expressions

[[θFC+ ]] ≡ ρFC

[[�]] ≡ �
(t-pat-base)

[[ϑ]]C ;index ≡ ρ

[[C ϑ]] ≡ C ◦ ρ
(t-pat-con)

Fig. 9. Translation of patterns

to the translated scrutinee. The name of this function is determined by the meta-
function btype(εs) which determines the base name of the type of the scrutinee εs
(e.g., btype(ConstT 1) ≡ LamT ). Furthermore, each pattern is translated so that
the actualuse of the annotation is translated. As we will see in a moment, the trans-
lation of patterns takes care of renaming the constructors, which is required since
the scrutinee is converted to the extended type. Finally, Rule t-exp-dyn defines
the translation of a dynamic, simply translating its expression.

Patterns possibly provide access to the inserted type information, their trans-
lation is shown in Fig. 9. A base pattern is left untouched, as depicted in
Rule t-pat-base. In Rule t-pat-con, the constructor in a constructor pattern
is renamed and its fields are all translated, parameterised by the name of the
original constructor and a metavalue index that provides the index of each con-
structor field.
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[[ϑFC+ ]]C ;n ≡ ρFC

¬ annotated(C ,n)
[[ρ]]C ;n ≡ ρ

(t-fpat-pat-1)
annotated(C ,n)
[[ρ]]C ;n ≡ (ρ, )

(t-fpat-pat-2)

[[x ::Gω]]C ;n ≡ (x , :: ω)
(t-fpat-ann)

Fig. 10. Translation of field patterns

In Fig. 10 we conclude the translation from FC+ to FC by defining the trans-
lation of field patterns, being the language extension itself. Since the conver-
sion function that inserts type information is specific to a program, we have
to verify if the current field pattern is annotated somewhere in the program.
Rule t-fpat-pat-1 states that if a field is never annotated, then it does not need
to be translated. Otherwise, the additional information is discarded, as defined
by Rule t-fpat-pat-2. The core of the translation is captured by Rule t-fpat-ann.
A GADT annotation is erased by translating it to a dynamic type annotation,
yielding a pair that matches the original value and the type that is stored in the
dynamic.

5 Related Work

The foundations of structured programming on GADTs [7] provide an elegant
approach to defining algebras on GADTs. While such algebras provide an ab-
straction mechanism to define an update function, explicit type representations
and equality types [3,5] are still required. In Section 3.2, we discussed the disad-
vantages of such an approach. In our work, type representations and type equal-
ity proofs are implicitly provided by dynamics, which significantly improves the
elegancy of the function definitions.

Another approach to heterogeneous structures reflects the structure of a value
directly in its type [8]. For example, the type of a heterogeneous list is basically
a structure of nested tuples. Then, functions are defined on such structures using
the type class mechanism, dispatching on the type structure. To enforce type-safe
updates, yet another type class is defined to reflect type equality. Consequently,
this approach results in rather verbose definitions since all action takes place on
the level of type classes. Since the structure of the types are available, direct ma-
nipulation enables type-changing functions. Looking at the type of the update
function in Section 3.3, our approach seems to forbid any type-changing up-
dates. However, subterms can be replaced by arbitrary complex terms, thereby
changing the underlying type structure.
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6 Conclusion

We have presented the typical synergy between dynamics and GADTs to ele-
gantly define functions that manipulate GADTs, requiring instantiation informa-
tion on polymorphic types. Our approach comprises a new GADT annotation
and improves upon boilerplate type representation administration in conven-
tional approaches, since the functions are no longer cluttered with type equality
witnesses and manual proofs. Also, by using dynamics, the need to maintain
a closed enumeration of the used types is eliminated. Above all, our approach
scales up to more complex structures and functions due to its simplicity. We
have shown that the language extension is easily translated to a functional core
that supports both dynamics and GADTs.

One of the major limitations in our approach is that the use of type codes lim-
its the use of the GADT annotation to non-abstract types. It remains as future
work to define type codes for such types, as well as investigating if dynamics can
be implemented without type codes as class constraints. This would improve our
approach considerably since it will not require us to decorate GADTs beforehand
with type code constraints. Also, we plan to verify our hypothesis that storing
GADTs in dynamics is no different from conventional ADTs.

Despite these limitations, the translation to dynamics provides novel oppor-
tunities, such as type dispatching and enforcing type equality invariants on
GADTs. These opportunities require a more intricate translation than described
in this paper, since this class of functions projects values instead of manipulating
the values as such.
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Abstract. Current implementations of non-strict functional languages
rely on call-by-name reduction to implement the �-calculus. An interest-
ing alternative is head occurrence reduction, a reduction strategy specif-
ically designed for the implementation of non-strict, purely functional
languages. This work introduces the very lazy �-calculus, which allows
a systematic description of this approach. It is not based on regular
�-reduction but a generalised rewriting rule called γ-reduction that re-
quires fewer reductions to obtain useful results from a term. It therefore
promises more efficient program execution than conventional execution
models. To demonstrate the applicability of the approach, an adaptation
of the Pointer Abstract Machine (PAM) is specified that implements
the very lazy �-calculus and constitutes a foundation for a new class of
efficient functional language implementations.

1 Introduction

The �-calculus is the foundation for the semantics of functional programming
languages. Decades of research on the compilation and execution of non-strict
functional languages has resulted in a number of different abstract machines
such as in [Fairbairn 1987] [Peyton Jones 1987] [Burn 1988] [Peyton Jones 1992]
[Holyer 1998] [Leijen 2005] [Krivine 2007]. They implement the �-calculus by
applying non-strict (or lazy) reduction strategies, such as call-by-name reduction.

A promising alternative is the Pointer Abstract Machine [Danos 2004], which
is based on a reduction strategy that is lazier than call-by-name reduction in
a certain sense. The Pointer Abstract Machine (PAM) is derived from a gener-
alised version of the �-calculus and then extended to support the range of fea-
tures required for the implementation of a full-fledged functional programming
language. The result is the STEC machine, a concrete, implementation-oriented
manifestation of the PAM.

After giving a brief recapitulation of the �-calculus and lazy evaluation we
introduce the very lazy �-calculus, which forms the basis of the approach. It
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relies on a generalisation of �-reduction that leads to a new reduction strategy,
called head occurrence reduction. We systematically develop the STEC machine,
an abstract machine for the very lazy �-calculus. It has unique characteristics
that promises high-performance program execution. In the last section we dis-
cuss opportunities for further research in order to create a new kind of efficient
functional language implementation.

2 Basics

2.1 The �-Calculus

The pure, untyped �-calculus [Barendregt 1984] is a term rewriting system that
operates on terms called �-expressions. For a given set of variables V they are
defined by:

E ::= λV.E (abstraction)
| (E E) (application)
| V (variable)

(�-expression)

We henceforth assume that x, y, z ∈ V and e, e1, e2 ∈ E and also that for each
v ∈ V , abstractions of the form λv.E occur at most once in a term. This sim-
plification conforms to the handling of the name-capture problem in the context
of programming language implementation where at compile-time variables are
resolved to an unambiguous representation.

Three rewrite rules are defined for the evaluation of such expressions: α-, �-,
and η-conversion. For the implementation of functional programming languages,
α- and η-conversion are of minor importance and are not discussed here, leaving
�-conversion as the central evaluation mechanism of the �-calculus.

As long as the substitution variable x occurs at most once beneath the reduced
�-abstraction, �-conversion reduces the size of the expression, therefore it is more
often than not called �-reduction and is defined by:

(λx.e1) e2 −→βx e1[x := e2] (�-reduction)

A term is called a reducible expression (redex) if it has the form (λx.e1) e2. A
term in which no redexes occur is in normal form (NF).

2.2 Lazy Evaluation

In the implementation of programming languages the evaluation of an expression
yields the result of a computation. The analogy of a result in the �-calculus is
however not fully obvious. While a term in NF can be considered a result (as it
can no longer be reduced) in functional languages it turns out to be overkill to
reduce any given term to NF. Instead, other forms that may still contain redexes
are targeted, like weak normal form (WNF), head normal form (HNF), or weak
head normal form (WHNF), specified as follows, where AB∗ ::= A | (AB)B∗.
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ENF ::= λV.ENF | V E∗
NF (normal form)

EWNF ::= λV.E | V E∗
WNF (weak normal form)

EHNF ::= λV.EHNF | V E∗ (head normal form)
EWHNF ::= λV.EWHNF | V E∗ (weak head normal form)

If such a form semantically relates to a meaningful concept of a result, by evalu-
ating to this form instead of NF, redundant reductions can be avoided. To ensure
no effort is squandered due to such redundant reductions, a practical implemen-
tation of the �-calculus requires a well-defined scheme (reduction strategy) to
select for each �-reduction step a non-redundant abstraction. Well-established
examples are: normal order reduction to NF, hybrid normal order reduction to
NF, applicative order reduction to NF, hybrid applicative order reduction to NF,
call-by-value reduction to WNF, head spine reduction to HNF, call-by-name re-
duction to WHNF [Sestoft 2002].

Generally, non-strict languages imply the use of one of the last two strategies,
which never reduces redexes that occur within an argument. Moreover call-by-
name never reduces redexes beneath a �-abstraction.

@

r@

sλx

@

xλy

λz

@

yz

−→βx

@

r@

sλy

λz

@

yz

−→βy

@

rλz

@

sz

−→βz

@

sr

Fig. 1. Call-by-name reduction to WHNF

3 The Very Lazy �-Calculus

To motivate the derivation of a new calculus it is helpful to relate to the proper-
ties specific to the targeted class of programming languages. Therefore we refer
to language elements like constructors and case discrimination without explicitly
introducing them (as a part of the calculus). Constructors can be thought of as
free variables.

For the implemention of a non-strict language, it is in general desirable to
increase the degree of laziness by using a normal form that requires fewer re-
ductions. But then such a form is useless if it does not reflect the result of a
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computation in a sensible manner. Both WHNF and HNF fail to accomplish
this with adequate precision in regard to the specifics of non-strict functional
languages.

Operationally both forms of lazy evaluation (head spine reduction and call-
by-name reduction) proceed by walking down the spine, reducing any occurring
abstraction/application pairs on the way until the tip of the spine is reached.
Further action then depends on the quality of this value.

Let us assume that an expression e = ((λx.y) e1) e2 is the scrutinee in a case
discrimination. The selection of the case alternative then solely depends on the
constructor at the head position of its normal form eNF = y e2. However if y
is a constructor, e already is in a form that at the tip of its spine without the
need for any reductions reveals the value required to select the appropriate case
alternative. Then why should all satisfied abstractions above y be reduced before
effecting the case discrimination? After all such reductions may never affect a
free variable at the tip of the spine.

Thus, we attempt to specify a calculus with a normal form that accurately
captures this formulation of non-strict semantics, and a reduction strategy that
efficiently reduces to this normal form. Both concepts relate to the variable at
the tip of the spine, which we refer to as the head occurrence (hoc) [Danos 2004]
of an expression:

hoc(λx.e) = hoc(e)
hoc(e1 e2) = hoc(e1)
hoc(x) = x

(head occurrence)

3.1 The Quasi Head Normal Form

The normal form of the very lazy �-calculus is called quasi head normal form
(QHNF) [Danos 2004]. We give a definition that is more straightforward than
the original one by relating to the hoc of the NF:

EQHNF := {e ∈ E | hoc(e) = hoc(eNF )} (quasi head normal form)

An optimal reduction strategy that evaluates to QHNF in a minimum number of
steps must not perform unneeded reductions. The most direct approach for such
a strategy is to repeatedly substitute the variable t at the tip of the spine (hoc) by
reducing the corresponding abstraction λt until QHNF is obtained. This is gen-
erally not possible with �-reduction, however. The term e = ((λx.(λy.y)) e1) e2
for instance is not in QHNF, yet the �-calculus does not allow substituting for
y, as λy occurs directly beneath another abstraction λx and therefore cannot be
�-reduced before λx.

Considering this restriction of the �-reduction as an unnecessary shortcoming
of the �-calculus, we now attempt to generalise �-reduction in order to make it
more powerful.

3.2 The γ-Reduction

The very lazy �-calculus evaluates �-expressions by applying the γ-reduction
rule, which allows reductions of abstraction/application pairs along the spine
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that are not adjacent to each other. We write e1 −→γx e2 to denote a γ-reduction
e1 −→γ e2 that uses x as a substitution variable:

p0(e1) = x

e1 e2 −→γx e1[λx.e := e[x := e2]]
(γ-reduction)

Thereby p0 is a function that implements a simple parentheses-matching algo-
rithm treating applications as left and abstractions as right parentheses. The
idea is to identify abstraction/application pairs along the spine that would be
�-reduced in the course of head spine reduction to HNF. Subsequently, any of
these pairs can be reduced individually even if the abstraction node is not di-
rectly adjacent to the application node.

p0(λx.e) = x
pi(λx.e) = pi−1(e) (i > 0)
pi(e1 e2) = pi+1(e1)

(abstraction/application matching)

In the definition of γ-reduction above, p0(e1) walks down the spine to locate
the abstraction that matches the argument e2. This permits γ-reduction to skip
over abstraction and application nodes that occur in-between λx and e2 that
would have been reduced by conventional non-strict reduction strategies. For an
example see Fig. 4.

A proof of the consistency of γ-reduction with the semantics of the �-calculus
is not given here, but much as in [Kamareddine 2001] �-equivalence is easily de-
duced by decomposing γ-reduction into a �-reduction embedded in a sequence
of �-equivalent rearrangements of the spine. Moreover γ-reduction is a generali-
sation of �-reduction:

e1 = λx.e =⇒ p0(e1) = p0(λx.e) = x
=⇒ e1 e2 −→γx e1[λx.e := e[x := e2]] = e[x := e2]

We notice that indeed the �-irreducible expression e from above is γ-reducible:

((λx.(λy.y)) e1) e2 −→γy (λx.e2) e1

3.3 Quasi Head Normal Form, Revisited

Based on γ-reduction, QHNF can alternatively be redefined as

EQHNF ::= λV.EQHNF | EQHNF E∗ | i (quasi head normal form)

where i is a variable not substitutable by a γ-reduction. This is the case if either
the hoc i is free (e.g. a constructor), or if the corresponding abstraction λi is
unsatisfied (i.e. there is no matching application).

To see that both definitions of QHNF match, we show that for some term e
the hoc(e) is γ-irreducible if and only if hoc(e) = hoc(eNF ). This follows from
the robustness of the parentheses-matching algorithm in respect to γ-reductions,
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Fig. 2. Terms (1-3) are in QHNF, (4) is not as i is γ-reducible

which only ever reduce matching abstraction/application pairs from the spine.
Because the γ-irreducible hoc(e) cannot be substituted, it follows by induction
that hoc(e) remains at the tip of the spine during the entire γ-reduction to
normal form and therefore hoc(e) = hoc(eNF ).

Conversely if hoc(e) = hoc(eNF ), γ-reduction may never substitute hoc(e)
since otherwise it would not be �-equivalent.

WNF

NF

HNF

WHNF QHNF

ENF ⊂ EHNF ∩ EWNF

EWHNF = EHNF ∪ EWNF

EQHNF ⊃ EHNF

EQHNF �⊃ EWHNF

Fig. 3. Set relations between various normal forms

3.4 Head Occurrence Reduction

Based on this definition we can define an optimal reduction strategy to QHNF.
γ-reductions that substitute the hoc are clearly sufficient and are always needed.
We call the reduction strategy that in each step substitutes the hoc of the term
using a γ-reduction head occurrence reduction:

e −→γt e′ t = hoc(e)
e −→ e′

v −→ v
e −→ e′

λx.e −→ λx.e′
e1 −→ e′1

e1 e2 −→ e′1 e2

The evaluation of a term according to head occurrence reduction in each step
needs to identify three nodes affected by the reduction of the graph: t = hoc(e)
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at the tip of the spine, the corresponding abstraction node λt, which is located
further up the spine, and the matching application node with the right-hand
side e2 even further up the spine.

Head occurrence reduction is lazier than conventional lazy reduction strategies
in the sense that it reduces to a normal form that expresses the semantics of
non-strict functional languages more accurately than WHNF. Thus reductions
are avoided that deal with arguments of the result prematurely.

3.5 Examples

To compare our reduction strategy to conventional lazy evaluation, consider
the term ((λx.(λy.λz.z y)x) s) r. Three �-reductions are required for call-by-
need reduction to WHNF (Fig. 1). For the same term, head occurrence reduc-
tion requires only one γ-reduction to reduce to QHNF (Fig. 4). Furthermore
�-reduction can not produce the depicted transition. Pathological cases can be
constructed, such as (λx1 . . . λxn.λy.y) e1 . . . en or (λy(λx1 . . . λxn.y) e1 . . . en) e
that require n additional reductions to obtain WHNF.

@
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sλx

@

xλy

λz

@

yz
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@

sλx

@

xλy

@

yr

Fig. 4. Head occurrence reduction to QHNF

4 The STEC-Machine

We now derive an abstract machine that implements the very lazy �-calculus
exploiting its particular properties for improved efficiency. It is an adaptation of
the PAM enriched by language elements like case discrimination and primitive
functions to support practical functional languages.

A dominant issue in the design of such an abstract machine is that terms
representing nontrivial programs are graphs with directed cycles rather than
trees. This is due to functions that are used at different sites in the program
definition, and may involve (mutual) recursion. So we cannot statically unfold the
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graph, since the resulting tree would be of infinite size. Therefore the graph needs
to be expanded incrementally during evaluation. There are various solutions to
this, from simple approaches like copying parts of the graph as needed, to more
sophisticated techniques like super-combinator compilation [Hughes 1982].

Here however, we explore a new direction where the abstract machine’s main
run-time data structures remain unmodified once instantiated. While this seems
contrary to the notion of graph rewriting, the approach combines well with
the very lazy �-calculus. Let us first take a glance at the untyped language
interpreted by the abstract machine.

4.1 Abstract Machine Language, Pure Version

The term to be evaluated is given as a program definition comprising a set of
function definitions of the form:

f = λx1 . . . xm.a0 . . . an m, n ≥ 0

The arity of a function f denotes the number of parameters, here arity(f) =
m. On its right-hand side it specifies a non-empty list of arguments args(f) =
a0 . . . an that can be individually addressed by index: argsi(f) = ai. Note that
only a1 . . . an represent application nodes. Consequently a0 is not included in
the argument count |args(f)| = n.

The language interpreted by the STEC-machine is a simple, untyped, func-
tional language with a flat structure, i.e. all arguments of a function f are atomic,
such that each of f ’s arguments args(f) is a variable, either addressing a function
or a parameter. Non-atomic expressions in the source language occur through the
placement of parentheses or other language constructs that lead to the nesting of
expressions. The atomicity property is easily enforced at compile-time by factor-
ing each non-atomic argument into a separate function definition. This atomicity
of the function arguments induces a certain kind of linearity that characterises
the evaluation procedure to a large extent.

It is understood that in a compiled setting, numeric rather than symbolic
values are used to reference functions and parameters. Functions are referenced
by the address of the memory location of their definition. It is straightforward
to reference parameters by their index as they occur in the function’s parameter
list. However, the scope of a function f extends beyond its own parameter list.
On the right-hand side of f not only f ’s own parameters may be referenced
but also parameter variables that occur free in f . Therefore to unambiguously
address a specific parameter not only its index but also the associated function
must be specified.1 We use Pf

i to denote f ’s ith parameter. This may be thought
of as a form of reversed de-Bruijn index [De Bruijn 1972] with a pivot.

Another technique employed by today’s functional language implementations
to cope with free variables is �-lifting, however this transformation is just the
opposite of what we want to accomplish. Rather its reverse transformation called
�-dropping [Danvy 2000] might integrate well with our execution model.
1 Instead of naming f explicitly, also the nesting distance between f and the referenc-

ing argument could be used, which is however less descriptive.
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program-definition ::= function-definition+

function-definition ::= function-idarity argument+

arity ::= N
0

argument ::= function-id | P
function-id

N+

Fig. 5. Abstract syntax of the STEC machine language

In the absence of named parameters, we do not need to maintain parameter
lists. Instead we merely need to specify the arity of each function. We thus obtain
a specification of the abstract machine language that represents as a function
definition a term of the pure �-calculus as a spine-sequence of abstraction nodes
followed by application nodes (Fig. 5). Each function definition can be addressed
by a unique function ID, which can be regarded as a function name. However,
in compiled form is conveniently the memory address of the function definition.

What follows is a description of the dynamic behaviour of the STEC-machine
and its data structures created at run-time. During the evaluation, the program
definition is accessed only through the arity- and the args-functions. It is purely
static data, i.e. it is generated at compile-time and no rewriting takes place on
the original function definitions.

(1)
f = λx . id id (id x)
id = λx . x

(2)
f1 = id id idx

id1 = Pid
1

idx0 = id P
f
1

(3)

λx

@

@

xλc

c

@

λb

b

λa

a

Fig. 6. Term given as (1) a �-expression, (2) STEC machine code, (3) a fully-expanded
graph

4.2 Graph Expansion

In each step of the evaluation, head occurrence reduction performs γ-reductions
that substitute the variable at the tip of the spine (hoc). Therefore not only the
appropriate abstraction/application pair must be located, also the hoc is usually
not immediately at hand due to the fragmentation of the graph into function
definitions. Thus walking down the spine to reach its tip often requires a series
of graph expansions.

The root of the term to be evaluated is specified by a designated function f ,
whose definition directly represents the topmost fragment of the term.2 If the hoc
is not immediately visible, that is if the leftmost argument args0(f) references
2 Generally this function is named main or similarly.
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a function g rather than a parameter, then the graph has to be unfolded by
instantiating g in order to locate the hoc of the spine within g’s definition.

While this at first might seem like a description of regular non-strict function
calls, those in the course of the instantiation also immediately pass the arguments
supplied by its caller to the callee. There are two possibilities that perform such
function calls, the push/enter and the eval/apply method [Marlow 2006]. Ulti-
mately this is where �-reductions take place in conventional functional language
implementations.

The very lazy �-calculus however allows the �-reduction to be omitted, thus no
arguments are passed to g. Therefore, according to head occurrence reduction,
γ-reductions cannot take place before the tip of the spine is revealed. Until then
the abstract machine simply proceeds to build the graph while walking down
the spine.

As the graph is only expanded along its spine, it has a linear structure in
the form of a series of functions that have been stuck together, which is easily
represented using a stack. Instead of explicitly maintaining abstraction and ap-
plication nodes (replicated from the function definitions), for efficiency, we use
entire functions as the unit of the run-time data structure.

4.3 The Evaluation Stack

These functions are represented by function instances, which hold a pointer to
the corresponding function definition and act as a copy of the function. Thus the
primary run-time data structure of the STEC-machine is a stack of instances, the
evaluation stack. It grows from right to left and unlike a usual stack, read accesses
within the evaluation stack are permitted. Instances are addressed according to
their stack position. The notation for an evaluation stack containing n instances:

E ::= In In−1 . . . I1 (evaluation stack)

Besides the evaluation stack, the state of the abstract machine comprises a status
register S that specifies the action that is to be taken next, and a target register
T that points to the stack address targeted by the action:

STE ::= (S, T, E) (configuration)

Summarising, the evaluation stack encodes the current term as a sequence of
function instances, each of them representing a segment of the term’s spine. The
graph is expanded along its spine as long as the leftmost instance t references
another function in its 0th argument, namely if args0(f) = g, assuming t is an
instance of f . We say that an argument request A0 is issued in order to exam-
ine the 0th argument of f . A graph expansion takes place by pushing another
instance (in this case of g) on the stack.

4.4 Locating an Abstraction

At some point the tip of the spine (hoc) is reached, which is indicated by
the 0th argument of the leftmost instance being a parameter Pf

i rather than
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a function reference. In order to effect a γ-reduction, the corresponding abstrac-
tion/application pair must be located. The abstraction will occur somewhere
further up the spine within an instance of f . However, there might be multiple
f -instances on the evaluation stack, but we want only the one that corresponds
to the appropriate abstraction.

To determine the correct scope of an instance t it suffices to identify the
instance s that created t. We call s the parent of t. This corresponds to the
edge from an argument node of s to its right-hand side in the term graph. This
relationship is expressed by parent edges in the evaluation stack that connect each
function instance with another instance further right in the stack. So besides
the reference to the function definition it represents, a function instance also
maintains a pointer to its parent. How parent pointers are established is covered
later. An instance of a function f with a parent edge to the instance at stack
address a is denoted by fa.

I ::= FA (function instance)

If the argument Pf
i occurs in a function g, then for each instance of g, the

corresponding instance of f is connected by a chain of one or more parent edges.3

When an argument of this form is encountered, the status register is set to
S = Pf

i , indicating a parameter request. Thereby the search for the abstraction
is conducted by following parent edges, which we call backtracing. Backtracing
is completed once the dynamic pivot (an instance of f) is located.4 The sought-
after abstraction is the ith parameter of the located function instance:

Parameter-Request: (Pf
i , a, ...gp

a...)
→ (Pf

i , p, ...gp
a...) f �= g (Backtrace)

→ (Ai, a − 1, ...gp
a...) f = g (Request argument)

4.5 Locating the Application

The application node that matches this abstraction is further up the spine, and
in the majority of cases (i.e. when the function application is perfectly saturated)
within the function instance just to the right of f , called f ’s predecessor.5 This
is where the search for the application node begins (T = a − 1). Thereby i − 1
abstractions (parameters of f) have already been skipped, therefore the next
i − 1 abstraction nodes that occur further up the spine cannot belong to the
abstraction that is to be γ-reduced.

To locate the corresponding application node, the spine has to be walked
upwards applying the parentheses-matching algorithm. S = Ai indicates that
3 This corresponds to static links and static chains in the call stack of the run-time

system of imperative programming languages.
4 Due to the scoping rules of functional languages it is always the first occurrence of

an f -instance that binds the requested parameter.
5 Accordingly in conventional execution models parameters of a perfectly saturated

function call passed directly by the caller.
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i − 1 unmatched abstraction nodes have been passed while walking upwards.
Thus the next i−1 application nodes must be skipped. Keeping in mind that each
function f represents a sequence of arity(f) abstractions followed by |args(f)|
applications, the algorithm is implemented as follows by the abstract machine:

Argument-Request: (Ai, a, ...f−
a ...)

→ (Ai−|args(f)|+arity(f), a − 1, ...f−
a ...) |args(f)| < i (Skip)

→ (argsi(f), a, ...f−
a ...) |args(f)| ≥ i (Serve)

Once the matching application node is found its value argsi(f) is to substitute
the tip of the spine in the subsequent γ-reduction. We say it is served (put into
the S for examination).

4.6 Very Lazy Evaluation

Once the hoc is identified and the corresponding abstraction/application pair is
located, according to the definition of γ-reduction the term is to be rewritten in
multiple positions: First, each occurrence of the substitution variable is replaced
by the argument’s right-hand side, then the abstraction and application nodes
are discarded. However, not one of these operations are performed by the ab-
stract machine, which at first may be surprising. Then again it is natural that
modifications of individual nodes cannot easily be mapped to a representation
of the term where function instances capture only its macro-structure and do
not reproduce the internal structure of the function definitions.

Consequently the abstract machine retains the abstraction/application pair,
which is semantically correct in terms of �-equivalency. This simplifies γ-reduction
considerably, as the de-Bruijn indexes remain valid so no α-conversion is neces-
sary. Here we do not discuss sharing, so we do not address multiple occurrences of
substitution variables. Thus nothing but the hoc itself must be substituted, which
coincides with what is defined as head linear reduction [Danos 2004].

But also the substitution of the hoc can be omitted, if it does not interfere
with subsequent evaluation. Indeed the 0th argument of an instance of a func-
tion f is examined only once, directly after it is pushed on the stack. Also it
is not counted in |args(f)| so it has no impact on the parentheses-matching
algorithm. Therefore the abstract machine leaves the hoc in place leaving all
function instances unmodified.

There are two cases for the value of the application node to distinguish for
further action. An argument may reference either a function or a parameter. Let
us first assume the former, thus S = f . Then f is instantiated and pushed on
the evaluation stack. Thereby the function instance containing the scrutinised
application node (the current value of the T -register) is registered as the parent
of the new function instance. Then S is set to A0 and T to the address of the
newly created function instance, such that again the 0th argument of the leftmost
function instance is examined for the next γ-reduction step.

Instantiate: (f, a, ...)
→ (A0, n, fa

n...) (Push Instance)



210 J. Rochel

If the argument is a parameter (S = Pf
i ) according to γ-reduction, it would

substitute the hoc by this value. But once again, no such substitution is per-
formed by the abstract machine, which saves an α-conversion. Instead, without
any intermediate rewriting the argument is treated directly as if it was the hoc,
according to the inference rules for parameter handling specified above.

4.7 Wrapping It Up

Based on the presented mechanisms a specification of the abstract machine can
be given that implements the very lazy �-calculus. The operational semantics
(Fig. 8) is specified in a rather unconventional but quite intuitive manner. Note
that variables with no relevance to a specific rule (don’t-cares) are denoted as
‘−’, similarly for sequences, denoted as ‘...’.

STE ::= (S, T, E) (configuration)
S ::= F | PF

N | AN (status register)
T ::= A (target register)
E ::= In In−1 ... I1 (evaluation stack)
A ::= N (stack address)
I ::= F A (function instance)
F ::= N (function address)

Fig. 7. Configuration grammar

Summarising, some interesting characteristics of the abstract machine can be
observed:

– Arguments are fetched at the latest moment possible in contrast to conven-
tional execution models where arguments are passed by the caller as soon
as they are available rather than as soon as they are required, which is a
form of strictness in the argument handling. Therefore it is in fact justified
to consider our model lazier.

– On the evaluation stack a function instance is always directly preceded by its
caller. This relation is modeled without the help of pointers. That structure
is exploited by the abstract machine when fetching arguments.

– There is no need to maintain a constantly updated environment. The evalua-
tion stack can be thought of as an incremental definition of the environment.

– Interestingly, the sequence of instances on the evaluation stack directly en-
codes the path from the root of the fully expanded, unreduced term to the
tip of its spine.

– The term is in QHNF either if the hoc is a free variable (such as a con-
structor), or if the term is functional such that for a selected abstraction
no matching application is found. The latter case manifests itself in an ar-
gument request attempting to cross the right boundary of the evaluation
stack.
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– Very lazy evaluation is linear in many aspects such as the manner in which
functions are defined, the linearity of the reduction strategy, and the run-time
data structure (the evaluation stack). This is possibile due to the technique
of using parent pointers and because of refraining from any rewriting on the
spine.

Initial State: (main,⊥, ε)

Instantiate: (f, a, ...)
→ (A0, n, fa

n...) (Push Instance)

Argument-Request: (Ai, a, ...f−
a ...)

→ (Ai−|args(f)|+arity(f), a − 1, ...f−
a ...) |args(f)| < i (Skip)

→ (argsi(f), a, ...f−
a ...) |args(f)| ≥ i (Serve)

Parameter-Request: (Pf
i , a, ...gp

a...)
→ (Pf

i , p, ...gp
a...) f �= g (Backtrace)

→ (Ai, a − 1, ...gp
a...) f = g (Request argument)

Fig. 8. Operational semantics

4.8 Example Evaluated

To depict the evaluation as performed by the STEC machine we regard the
execution of the example program from Fig. 6. It was chosen to exemplify the
operational semantics of the STEC machine rather than to reveal the advantages
of head occurrence reduction.

To understand the abstract machine evaluation given below, it is helpful to
identify each instance on the evaluation stack with the corresponding sequence
of spine nodes in Fig. 9. Therefore the function definitions from Fig. 6 need to
be consulted. First we expand the term along the spine beginning from the root
f to locate its hoc.

Initial State: (f,⊥, ε)
Push Instance: → (A0, 1, f⊥

1 )
Serve: → (id, 1, f⊥

1 )
Push Instance: → (A0, 2, id1

2 f⊥
1 )

The hoc is a (in Fig. 9). The corresponding argument belongs to id’s caller f .

Serve: → (Pid
1 , 2, id1

2 f⊥
1 )

Request argument: → (A1, 1, id1
2 f⊥

1 )
Serve: → (id, 1, id1

2 f⊥
1 )

Push Instance: → (A0, 3, id1
3 id1

2 f⊥
1 )

⎫⎪⎪⎬
⎪⎪⎭

a

For the next argument request in order to locate the appropriate application
node, a function instance must to be skipped. In Fig. 9 this corresponds to the
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xλc
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λb

b
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−→a

λx

@

@

xλc

c

@

λa

λb

b

−→b

λx

@

@

λa

λb

@

xλc

c

−→c

λx

@

@

λa

λb

@

λc

x

Fig. 9. Head linear reduction of the program graph of Fig. 6

abstraction node λa. The argument index is incremented by one such that the
matching application node (the one above λa) is also skipped:

Serve: → (Pid
1 , 3, id1

3 id1
2 f⊥

1 )
Request argument: → (A1, 2, id1

3 id1
2 f⊥

1 )
Skip: → (A2, 1, id1

3 id1
2 f⊥

1 )
Serve: → (idx, 1, id1

3 id1
2 f⊥

1 )
Push Instance: → (A0, 4, idx1

4 id1
3 id1

2 f⊥
1 )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

b

The call of a known function id by idx is realised a spine expansion:

Serve: → (id, 4, idx1
4 id1

3 id1
2 f⊥

1 )
Push Instance: → (A0, 5, id4

5 idx1
4 id1

3 id1
2 f⊥

1 )

Here it can be seen that some γ-reductions may not even require an update of
the evaluation stack.

Serve: → (Pid
1 , 5, id4

5 idx1
4 id1

3 id1
2 f⊥

1 )
Request argument: → (A1, 4, id4

5 idx1
4 id1

3 id1
2 f⊥

1 )

}
c

The request by idx for a parameter that was bound in a different function f
requires a backtracing step to locate the abstraction that binds the current hoc.

Serve: → (Pf
1 , 4, id4

5 idx1
4 id1

3 id1
2 f⊥

1 )
Backtrace: → (Pf

1 , 1, id4
5 idx1

4 id1
3 id1

2 f⊥
1 )

Request argument: → (A1,⊥, id4
5 idx1

4 id1
3 id1

2 f⊥
1 )

⎫⎬
⎭x

The evaluation terminates because a request attempts to cross the stack bound-
ary. That means that no abstraction/application pair could be located within
the spine, thus the term is in QHNF.
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4.9 Case-Discrimination and Primitives

To implement functional programming languages, two more issues need atten-
tion: case discrimination and primitives operators. They cannot be modeled by
means of the pure �-calculus, which has to be enriched for that purpose. Here,
this semantic extension is only realised on the abstract machine level, not as yet
another �-calculus variant.

program-definition ::= function-definition+

function-definition ::= function-idarity argument+ alternative∗

arity ::= N
0

argument ::= function-id | P
function-id

N+ | ON | constant
alternative ::= integer function-id | default function-id
constant ::= integer | float | ...

Fig. 10. Enriched abstract syntax of the STEC machine language

In the enriched abstract machine language, a case discrimination is specified
by attaching a non-empty, integer-indexed list of alternatives alts(f) to a func-
tion definition f , its right-hand side args(f) being the scrutinee. Constructors
are mapped to integers at compile-time unambigously within the constructor set
of one data type. Constructor parameters can be accessed as the function pa-
rameters of the alternatives’ right hand-side. No further measures are necessary
to model constructors, as they are adequately handled by the argument request
mechanism. A primitive operator (Oo) addresses a platform-specific functionality
that is identified by a unique numeric identifier o.

The operational semantics needs to account for the strictness that these
language constructs imply. The scrutinee of a case discrimination reveals its con-
structor only in QHNF. Thus, to select the correct case alternative, a continuation-
mechanism is required to return to the case discrimination once the scrutinee is
evaluated. Likewise, primitive operators are generally strict in all of their argu-
ments, so after the evaluation of each argument, the evaluation must return to its
call site, either to evaluate the next argument, or if it is saturated to apply the
operator.

Strict evaluation may nest, for instance, if the scrutinee of a case discrimi-
nation involves a further case discrimination. Therefore continuations are also
maintained in a stack, the continuation stack (C), thus we extend the abstract
machine configuration to:

STEC ::= (S, T, E, C) (configuration)

The continuation stack holds two types of tokens: case continuation tokens and
operator tokens, both of which specify the stack address that the continuation
returns to. Additionally an operator token needs to define the operator it repre-
sents as well as a list of previously evaluated operands.
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C ::= K∗ (continuation stack)
K ::= CA | OA

O[V ∗] (continuation)
O ::= N (operator)
V ::= integer | float | ... (constant value)

Continuations are pushed on the continuation stack when an operator or a func-
tion that defines a case discrimination is served. In the latter case the evaluation
(besides pushing the continuation) proceeds as before by evaluating its right-
hand side (the scrutinee). If an operator is served, its first operand is requested.

Instantiate: (f, a, ...)
→ (A0, n, fa

n..., ...) |alts(f)| = 0 (Push Instance)
→ (A0, n, fa

n..., Cn
...) |alts(f)| > 0 (Scrutinise)

Operator: (Oop,−, tn..., ...)
→ (A1, n, tn..., On

op[]...) (First Operand)

As soon as the subsequent computation yields a constant value c, indicated by
S = c, the continuation on the top of the stack is examined. For a case continu-
ation, the correct alternative is selected and served. For operator continuations,
before applying the operator it must first be checked whether more arguments
are required. Only when sufficient operands have been acquired, the operator is
applied and the result of the primitive operation is propagated. This semantics
is expressed in the last two groups of Fig. 12.

STEC ::= (S, T, E, C) (configuration)

S ::= F | PF
N | AN | OO | V (status register)

T ::= A (target register)
A ::= N (stack address)
E ::= In In−1 ... I1 (evaluation stack)
C ::= K∗ (continuation stack)
I ::= F A (function instance)
F ::= N (function address)

K ::= CA | OA
O [V ∗] (continuation)

O ::= N (operator)
V ::= integer | float | ... (constant value)

Fig. 11. Enriched configuration grammar

In this work we derived from the very lazy �-calculus the STEC-machine,
which is a concretisation of the PAM enriched by strict semantics to support
case discriminations and operators. In [Danos 2004] different concepts of head
linear reduction were mixed up in one definition. Here we clearly distinct be-
tween generalising �-reduction, defining a reduction strategy, and giving a con-
crete implementation that avoids rewriting. Furthermore we distinguish between
program compilation and execution.
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Initial State: (main,⊥, ε, ε)

Instantiate: (f, a, ..., ...)
→ (A0, n, fa

n..., ...) |alts(f)| = 0 (Push Instance)
→ (A0, n, fa

n..., Cn
...) |alts(f)| > 0 (Scrutinise)

Argument-Request: (Ai, a, ...f−
a ..., ...)

→ (Ai−|args(f)|+arity(f), a − 1, ...f−
a ..., ...) |args(f)| < i (Skip)

→ (argsi(f), a, ...f−
a ..., ...) |args(f)| ≥ i (Serve)

Parameter-Request: (Pf
i , a, ...gp

a..., ...)
→ (Pf

i , p, ...gp
a..., ...) f �= g (Backtrace)

→ (Ai, a − 1, ...gp
a..., ...) f = g (Request argument)

Operator: (Oop, −, tn..., ...)
→ (A1, n, tn..., On

op[]...) (First Operand)

Operand: (v, −, ..., Oa
op[v1, ..., vc]...)

→ (applyop(v1, ..., vc, v), −, ..., ...) arity(op) = c + 1 (Apply Operator)
→ (Ac+2, a, ..., Oa

op[v1, ..., vc, v]...) arity(op) > c + 1 (Next Operand)

Scrutinee: (c, −, ...fp
a ..., Ca

...)
→ (altsc(f), a, ...fp

a ..., ...) (Serve alternative)

Fig. 12. Enriched operational semantics

5 Perspectives

Even though the PAM has already been discovered years ago, it has not yet
been investigated extensively. However, there is ample opportunity for further
research, in particular it still remains a challenge to find efficient mechanisms
for sharing as well as for garbage collection that take advantage of the abstract
machine’s prominent features.

While it is difficult to reason about the performance of the abstract machine
compared to existing functional language implementations without taking these
issues into account, there are aspects about our approach that hold much po-
tential in this regard. Aside from the reduced amount of rewriting steps that
are required by the very lazy �-calculus, it is primarily the lean memory profile
of the STEC-machine that is promising. The run-time data structures are com-
pact, since per function instance only two pointers need to be allocated.6 This
results in a smaller memory footprint compared to conventional graph reduction
models, which in each closure also maintain a set of parameters. Furthermore it
is noticeable that no pointer updates are necessary resulting in very few write
accesses. While partly compensated by additional read accesses (because of the
6 A potential optimisation would be to allow variably-sized function instances, i.e.

instances without a parent pointer for functions without free parameter variables.
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need to locate abstraction/application pairs) still the advantage seems to pre-
dominate. This presumption however is yet to be validated in a comparison with
a well-established execution model like the STG-machine [Peyton Jones 1992].

Implementations based on super-combinators usually compile the abstract-
machine code into machine code of the target architecture that integrates the
semantics of the abstract machine and therefore can be directly executed by
a concrete machine. Due to the simplicity of the STEC-machine, a different
compilation model, one that separates the abstract machine and the function
definitions, seems to be adequate. The operational semantics can be implemented
in a very small piece of executable machine code. Each function definition can
be stored in a compact array as read-only data. Access to individual arguments
of a function definition (as frequently performed by the STEC-machine) can be
accomplished efficiently using an array lookup if a uniformly-sized representation
for the arguments is chosen. This would hardly be the case when compiling the
function definitions combined with the operational semantics to machine code,
which would also lead to a considerable increase of the memory footprint.

Since the evaluation stack only grows, a garbage-collection mechanism is re-
quired to release memory occupied by function instances that are no longer re-
quired. In that sense the evaluation stack in fact is a heap. However, it would be
short-sighted to neglect the fact that it is highly structured in comparison to a
usual heap in which data is organised as memory blocks at arbitrary positions that
refer to each other. Much is to be expected by a sophisticated garbage-collection
mechanism that systematically exploits this structure for increased efficiency. Since
the evaluation stack is an incremental definition of the environment, this would
effectively be realised as a (linear) compaction of the evaluation stack.

Obviously this linearity cannot be sustained once sharing is introduced to
the model, as sharing in a sense implies a non-linear structure. Still, the linear-
ity of evaluation might offer new possibilities for integrating sharing-techniques
that achieve a higher degree of sharing than full laziness by breaking the linear
structure only at few, well-defined points. In particular the subject of optimal
evaluation in the sense of [Lévy 1978] should be investigated in the light of very
lazy evaluation.

Summarising, there is still much opportunity for completion and optimisation
of the STEC-machine in order to obtain a new type of practical high-performance
functional language implementation. In particular it is an interesting question
which of the optimisations used by today’s compilers can be applied to the
STEC-machine and what new kind of possibilities for optimisations are opened
up by the model.
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Abstract. SML/NJ and other Standard ML variants extend the ML
module system with higher-order functors, elevating the module lan-
guage to a full functional language. In this paper, we describe the im-
plementation of higher-order modules in SML/NJ, which is unique in
providing “true” higher-order static behavior. This implementation is
based on three key ideas: unique internal variables (entity variables) for
naming static entities, factorization of the static information in both
basic modules and functors into signatures and realizations, and rep-
resenting the static “effects” and type-level mapping performed by a
functor using a static lambda calculus (the entity calculus). This design
conforms to MacQueen-Tofte’s re-elaboration semantics without having
to re-elaborate functor bodies at functor applications.

1 Introduction

The ML module system has evolved considerably over the past 25 years. One of
the Standard ML of New Jersey (SML/NJ) compiler’s more significant extensions
is support for higher-order functors, achieved by allowing structures, including
functor parameters and results, to contain functors as components. MacQueen
and Tofte [18] describe the original semantics for higher-order functors, which
has a strong policy regarding how functors propagate type information through
functor applications. We will refer to the MacQueen-Tofte higher-order functor
semantics as true higher-order behavior. This model of higher-order functors was
first implemented in SML/NJ Version 0.93 (1993), using techniques described
in Crégut and MacQueen [2]. That implementation evolved from an earlier im-
plementation of first-order functors, and its adaptation to handle higher-order
functors was complex and ad hoc. Here we describe the second generation im-
plementation used in current versions of SML/NJ, which is significantly simpler
and more principled. We focus on the representations and processes used in the
static elaboration phase of the compiler. The relatively straightforward elabora-
tion of the dynamic semantics of the module system through abstract syntax is
beyond the scope of this paper.

Due to space limitations, we can provide only a brief sketch of the context
of this work in the design of Standard ML and the evolution of its module
system. We assume the reader is familiar with Standard ML, including its module
system [19]. Further background is available from the tutorial by Harper and
Pierce [9]. An expanded version of this paper is available as a tech report [12],
and extensive background discussion and rigorous formal semantics for the design
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will be included in the first author’s forthcoming PhD thesis [11]. Full source
code for the implementation is available at www.smlnj.org.

1.1 SML 97 Module System

The ML module system provides a set of constructs for expressing large-scale pro-
gram architecture, and is also the means for defining and enforcing abstractions.
Basic modules, called structures, are collections of types, values, and hierarchi-
cally nested modules. Signatures express static interfaces of structures, function-
ing as types for structures. A signature comprises a collection of named type1,
value, and module specifications, specifying their kinds2, types, and signatures,
respectively. A functor is a module-level function formed by parameterizing a
structure (the functor body) with respect to a structure variable constrained by
a signature. Signatures and structures have a many-to-many relationship: mul-
tiple structures can match a single signature, and different signatures can be
ascribed to a given structure. Signature ascription coerces a structure to con-
form to a signature. ML supports two kinds of signature ascription. Transparent
signature ascription passes a type definition through to the coerced structure
even when the ascribed signature only has an open type spec corresponding to
that type. Opaque signature ascription (also called sealing ascription) generates
a fresh abstract tycon for each open type specification, enforcing abstraction by
hiding the original definition of the type name.

1.2 Higher-Order Functors

The need for higher-order functors arises naturally in a module system with
functors. Just as a first-order functor is formed by abstracting with respect
to an external structure name used in a structure expression, a higher-order
functor should result from abstracting with respect to the name of an external
functor. The module expression abstracted over could be either a basic structure
or a functor. So, for orthogonality, we should be able to abstract with respect
to both structure names and functor names over both structure and functor
expressions. However, this obvious extension raises some significant issues for
design, semantics, and implementation.

When abstracting over the name of either an imported structure or functor,
the parameter is described by a signature, which expresses all the static interface
information about the parameter that the client structure is allowed to know.
In the case of first-order structures (with no functor components), the signature
language is capable of expressing a fairly complete static description of a given
structure using definitional specs and where clauses to pin down the type com-
ponents. But when we abstract over an imported structure we normally use a
looser, less exact signature for the parameter to allow the parameter types to vary
1 Actually type constructors, but it is a common and convenient abuse of terminology

to refer to types when we mean type constructors (abbreviated as tycons).
2 Open type specs (e.g., type (’a,’b) t) specify only the kind or arity, while definitional

type specs (type ’a u = ’a list) include definitions.
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from one application to another. Signatures may be looser in two senses. First,
for some of the parameter’s tycons, we may use an open rather than definitional
spec, leaving the definitions to be supplied later by the argument structures
when the functor is applied. Second, the argument structure may contain excess
components, which will be dropped during coercion, or value components whose
types are more polymorphic than specified in the signature.

A functor can express complex static-level computations mapping its input
tycons to its output tycons, and we call this mapping the functor static action, or
simply the functor action. The defining characteristic of true higher-order static
behavior in functors is the faithful propagation of functor actions through func-
tor application. A functor action may involve the generation of fresh tycons (a
static effect), introduced either by datatype declarations or by opaque signature
ascriptions. However, functor signatures, which consist of only a named param-
eter signature and a result signature, are only capable of expressing very simple
functor actions where the result tycons can be defined directly in terms of the
parameter tycons, so functor signatures have a very limited ability to describe
functor static actions. Hence a full description of the static content of a functor
must include information beyond the functor signature, in all but the simplest
cases.

When a functor G is a component of the parameter of a functor F, G is
called a formal functor, and all we know about G is its functor signature. When
elaborating the body of F we need to determine a functor action for the formal
functor G, i.e., we need to synthesize a default functor action from a functor
signature. When F is applied to an actual parameter A, then the action of A.G
(suitably coerced) should be used in place of the approximation derived from
G’s specification in F. In other words, the static action of F should be properly
parameterized with respect to the static action of G. This requirement is the
essence of true higher-order behavior.3

The standard example illustrating this point is the Application functor:

signature SIG = s ig type t end

functor F( functor G(Y: SIG ) : SIG
structure A: SIG ) : SIG

= G(A)

functor Id (X: SIG) = struct type t = X. t end
functor Const (X: SIG) = struct type t = in t end
structure B: SIG = struct type t = bool end

structure R1 = F( Id , B) (∗ R1. t = bool ∗)
structure R2 = F(Const , B) (∗ R2. t = in t ∗)

3 A common alternative solution to this problem is applicative functor semantics [14].
However, such semantics cannot capture generative functor actions. Applicator func-
tor semantics is also fragile in the presence of aliasing of structures.
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Here the action of functor Id maps its argument tycon to itself (λt. t), while the
action of Const maps any argument tycon to int (λt.int). Applications of F invoke
F’s action, which in turn invokes the functor actions of its parameters.

1.3 Overview

The following two sections describe the module elaboration in SML/NJ. Section
2 describes the internal static representations of types, signatures, structures,
and functors. The main ideas are the use of internal entity variables and paths
for relative references to tycons, the factorization of the static representations
of modules into signatures and corresponding realizations of the signatures, and
the entity calculus, a static lambda calculus of entity expressions that we used
to represent the realization part of functors (their functor actions).

Section 3 covers the processes involved in the elaboration of modules, which
create and utilize the representations in Section 2. These processes include the
basic elaboration of signature, structure, and functor declarations, the static
aspect of functor application, and signature matching. An important subsidiary
process is signature instantiation, which is used in the elaboration of functors
and the application of formal functors (e.g., G in the example above).

Section 4 covers related work, and we conclude in Section 5 with some justi-
fication of the success of the design.

2 Semantic Objects

In the core ML language, a tycon always has a fixed identity such as a prim-
itive type or some specific user-defined type, e.g., type t = int. We call these
tycons nonvolatile. As discussed in Section 1.2, a functor parameter signature
may specify only the name and kind of a tycon without defining it. Such a tycon
is volatile because its actual definition is supplied upon each functor applica-
tion, and it can vary from one application to another. Tycons defined in terms
of volatile tycons are also considered volatile. For example, in the signature
sig type t type u = t list end, t and u are both volatile. Although volatile tycons
bear some resemblance to abstract types, volatility is not the same as abstract-
ness. The definition of a volatile tycon will be eventually determined, e.g., by
the actual parameter passed to a functor, after which the tycon may become
nonvolatile. However, a future definition of a volatile tycon cannot play a role
while type checking the functor itself, because it is not yet available.

2.1 Entity Paths

Following Harper and Lillibridge [8], we use internal names, which we call entity
variables, to provide a robust means to refer to tycons, structures, and functors
in the presence of shadowing of symbolic names. The term entity refers to the
internal representation of anything that may contain or produce static informa-
tion in the form of tycons, namely tycons themselves, structures, and functors.
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Entity variables are unique by construction and entity variable bindings cannot
be shadowed. Sequences of entity variables called entity paths are used to refer
to an entity that is located inside a hierarchy of nested structures.

Consider the example in Fig. 1. Assuming that eA is an entity variable for
A, and so on, type A.B.u can be referred to by the entity path eA, eB, eu. The
symbolic path and the corresponding entity path both designate an entity, but
an entity path is robust, in that there will always be a valid entity path for any
entity even when no corresponding symbolic path exists due to shadowing.

signature S =
s ig

structure A :
s ig

type t
structure B :

s ig
type u
val x : t

end
val y : t ∗ B. u

end
end

S SEM =
s ig

structure A (eA) :
s ig

type t (et)
structure B (eB) :

s ig
type u (eu)
val x : [et ]

end
val y : [et ] ∗ [eB , eu ]

end
end

Fig. 1. A syntactic signature and its semantic representation

2.2 Semantic Representations of Signatures

The semantic representation of a signature is a list of tuples consisting of a name,
a specification, and, for static components, a unique entity variable. Hereafter,
we use the term signature to refer to such semantic representations. We construct
signature representations either by translating a syntactic signature expression
or by inferring a signature from a basic structure expression. Using the entity
variables in a signature, we can map a symbolic path for a static component to
a corresponding entity path. In Fig. 1, S SEM represents the translation of the
syntactic signature S. We can traverse this signature following a symbolic path
A.B.u, collecting the corresponding entity path eA, eB, eu as we go.

We represent volatile tycon occurrences in value specifications by an entity
path relativized to the scope of the occurrence. For example, the spec for value
y has the relativized form [et] ∗ [eB, eu]. Due to the presence of volatile ty-
cons, a signature is only a partial representation of the static information in any
structure that matches the signature. The representation of such a structure
complements the signature with a realization that maps entity variables and
paths for volatile tycons to actual tycons, thus defining them.
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2.3 Structure Realization

A structure realization is a finite map from entity variables to entities. An entity
variable for a tycon component is mapped to a tycon. An entity variable for a
substructure is mapped to another structure realization. In the case of a functor
component, its entity variable is mapped to a functor realization, which will be
described in Section 2.5. Because structure realizations contain only static enti-
ties, value components are not represented. Because a structure realization may
contain nested structure realizations, it can be thought of as a tree where the
edges are labeled by entity variables, internal nodes are subtrees (structure real-
izations), and leaves are tycons or functor realizations. For example, Fig. 2 shows
a structure M matching signature S and the corresponding structure realization
rM that complements S with entities from M.

structure M : S =
struct

structure A =
struct

type t = in t
structure B =
struct

type u = bool
val x = 1

end
val y = (1 , t rue )

end
end

et

et eu

eB

eA

int

int bool

Fig. 2. A structure and structure realization matching signature S

The seemingly duplicate et edge under node B may look peculiar. Because
substructures such as B may be selected out by later declarations such as struc-
ture B’ = M.A.B, the structure realization of B must be able to stand on its own.
Consequently, we need to close the structure realization for B by including the
mapping for et, which is not a local component of B.

Looking up the type for value component M.A.y using S and this matching
realization takes two steps. First, we fetch the signature for A and use its entity
variable eA to select from rM the corresponding realization subtree rA. Then
we get the type specification [et] * [eB, eu] for y from A’s signature spec and
interpret its entity paths relative to rA, yielding int ∗ bool.

A generative type declaration such as datatype declaration produces a fresh
tycon with a unique identifying stamp. Other type declarations define tycon
components in terms of other tycons using a type expression or type function.
All tycons components are located at leaf nodes in the structure’s realization tree,
accessed by entity paths that specify their position in the structure hierarchy.
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2.4 Full Signatures

When we put together a signature and a compatible structure realization, i.e.,
a realization that at least maps all the entity paths in the signature, we have a
complete static description of a structure, which we call a full signature. Where
a structure expression has no explicit signature ascribed, the elaborator will syn-
thesize a signature and a matching realization to construct a full signature for
the structure. Actually, we always infer a full signature for a structure expres-
sion, even in a structure declaration with an ascription. Then we immediately
match that inferred full signature with the ascribed signature, producing a new
realization for the ascribed signature, as described in Section 3.

Multiple structure declarations can ascribe the same syntactic signature to
different structures. For example, consider a second structure declared with sig-
nature S:

structure M2 : S =
struct

structure A =
struct

type t = r e a l
structure B =
struct

type u = s t r i n g
val x = 1.0

end
val y = (1.0 , ” s t r i n g”)

end
end

et

et eu

eB

eA

real

real string

Although M and M2’s realizations obviously differ in content (but not in form),
their full signatures will share the same signature representation S SEM, repre-
senting the syntactic signature S. The sharing of common signature information
among all the structures matching an explicit signature is a major motivation
for the factorization into signature and realization.

2.5 Functor Entities and the Entity Calculus

The complete static description of a functor is called a full functor signature,
and it is also factored into a functor signature and a functor realization. The
semantic representation of a functor signature, which we informally write as
(X (ex):SIGPARAM) : SIGBODY, consists of a parameter signature SIGPARAM
and a functor body signature SIGBODY whose specifications may mention the
bound parameter X via the associated parameter entity variable ex. Both SIG-
PARAM and SIGBODY are semantic representations of signatures and thus are
decorated with entity variables and use entity paths to reference volatile entities.

While the functor signature specifies the fixed shape of the parameter and
result, information that is common to all calls of the functor, the functor real-
ization describes how the realization of the functor body structure is computed
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in terms of the realization of the parameter structure. The parameter realization
contains the static information that varies from call to call. This is where the
signature-realization factorization clarifies the semantics of functors. The func-
tor realization is an entity function of the form λex.strexp where strexp is a
structure entity expression that evaluates to a structure realization for the func-
tor body. These entity expressions and functions are formalized by an applied,
call-by-value λ-calculus called the entity calculus (Fig. 3). Terms in the entity
calculus express static information and are evaluated only during compilation,
specifically when elaborating functor applications (see Section 3).

tycon ::= Formal(tycon)

| Def(typeexp)

| Data(ConsName of typeexp)

| entitypath

strexp ::= STRUCTURE{entitydec}
| fctexp(strexp)

| FORM{sig}
| entitypath

entitydec ::= type ex = tycon

| structure ex = strexp

| functor ex = fctexp

| entitydec, entitydec

fctexp ::= λex.strexp [entityenv ]

| entitypath

Fig. 3. A simplified entity calculus

The tycon expressions include Formals representing dummy tycons that are
specified in a functor parameter. A typeexp is a type expression that may contain
applied occurrences of tycons. A Def tycon defines a tycon as an abbreviation
for a type expression. A Data tycon corresponds to an ML datatype with the
given constructor name and constructor argument type. For simplicity, we are
assuming here only one data constructor per datatype. Entity paths are the
relativized tycon references described earlier.

Entity declarations bind entity variables to an appropriate kind of entity ex-
pression. A functor body may contain free occurrences of entities such as a
tycon, structure, or functor declared in an outer functor, and these volatile en-
tities are denoted by entity paths (see Section 2.6 for an example). Thus, the
functor realization for higher-order functors requires a closure environment, and
the correct form of a functor realization is an entity function closure of the form
λex.strexp[entityenv ] where entityenv is an entity environment mapping all free
entity variables in strexp to entities. An entityenv has exactly the same rep-
resentation as a structure realization. Section 2.6 will further explain the need
for a closure environment. Structure entity expressions include a form for basic
structures, which encapsulate an entity declaration for its static components,
entity paths to refer to structure entities bound in the local entity environment,
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applications, and a special form (FORM) used in representations of functors in
formal parameters, which will be explained in Section 3.

Consider the following example:

functor F(X: s ig type t val x : t end) =
struct

datatype u = A of X. t
type v = X. t ∗ u l i s t
fun f ( x : X. t ) : u = A x

end

The above functor is represented by a functor signature and a functor real-
ization. The inferred functor signature is:

(X (eX ) : s ig type t (et ) val x : [et ] end)
: s ig

type u (eu ) type v (ev )
val f : [eX , et ] → [eu ]

end

where eX , et, eu, and ev are fresh entity variables.
The realization for the functor has to specify how realizations for the static

components of the result (entities for the types u and v) are constructed given
a structure realization for X, which includes a tycon entity for X. t . The functor
realization for F is the entity function:

λeX .STRUCTURE{type eu = tyconu, type ev = tyconv}
where tyconu and tyconv are tycon entity expressions for the datatype u and
type abbreviation v:

tyconu = Data(A of [eX , et])
tyconv = Def([eX , et] ∗ [eu] list)

Here the closure environment can be empty, assuming the functor is defined
at top level (it is also closed, having no references to nonlocal volatile entities).
When this functor is applied to an argument structure, the argument structure
is coerced by signature matching (described in Section 3) with the parameter
signature yielding a structure realization for the parameter signature. This pa-
rameter realization is bound to the entity variable eX and the body of the entity
function is evaluated in the resulting entity environment.

The body specifies that a structure realization is to be constructed, whose con-
tents will be defined by a sequence of two entity declarations. eu will be bound
to a new tycon generated from the datatype specification, with the associated
entity paths referencing imported types being evaluated relative to the evalu-
ation entity environment, the entity environment at that point of elaboration.
Similarly, the definition of type v will be instantiated by evaluating its embedded
entity paths in that same entity environment extended with the binding of eu.
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In particular, in the application F(struct type t = int end), the realization bound
to eX will be the entity environment {et �→ int}, and the evaluation entity en-
vironment for the body declarations is {eX �→ {et �→ int}}. Evaluating
tyconu in this environment yields a fresh datatype corresponding to the definition
datatype u = A of int. Evaluating tyconv yields an instantiated type abbreviation
definition equivalent to type v = int * (u list). The creation of the fresh datatype
tycon u is an example of a static effect in the entity language. Other tycon cre-
ation effects are associated with the process of opaque signature matching, where
fresh abstract types are introduced.

2.6 Higher-Order Functors

The preceding example involves the classic case of a first-order functor defined at
top level, i.e., not defined within another functor, where the closure environment
of the functor realization can be empty. Here we show that higher-order functors
can require a nontrivial closure environment. Consider the following example:

functor F(X: s ig type t end) =
struct

datatype u = C of X. t
functor G(Y : s ig type v val x : v ∗ u ∗ X. t end) =

struct
datatype s = D of X. t ∗ u → Y. v

end
end

We can see that all the tycons X.t, u, Y.v, and s are volatile in that their actual
bindings are to be determined later, when F is applied. When we relativize the
specification of datatype s with respect to these volatile tycons, we get:

tycons = Data(D of [eX , et] ∗ eu → [eY , ev])

Now consider an application of F, structure A = F(struct type t = int end). When
this expression is evaluated, we will develop an entity environment that binds eX

and its extension [eX , et] as before, and the definition of u will give rise to a new
datatype that will be bound to eu. As before, the realization of functor G will in-
volve a lambda expression in our entity calculus:

λeY .STRUCTURE{type es = tycons}
But note that this term binds only the entity variable eY , leaving eX and eu

occurring free in tycons. So the lambda term is not closed. As usual, we need
to close it by supplying a closure environment, namely the entity environment
mentioned above that binds eX and eu.

Now when we apply A.G we will add a binding of eY to its closure environment
and use this when evaluating the body of the lambda term for G. For instance, after

structure B = A.G( struct type = bool val x = ( true , A.C 3 , 1) end)

the B.s will denote the datatype Data (D of int ∗ A.u → bool).
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3 Elaboration

Elaboration is the translation of simple syntax trees produced by the parser
into (1) a typed abstract syntax for use in subsequent compiler stages, and
(2) a static environment mapping identifiers defined at top-level to their static
representations. As mentioned in the introduction, we are focusing exclusively
on how the static environment is produced; the construction of abstract syntax
is relatively straightforward in comparison.

At the core language level, the elaborator does type checking and type infer-
ence for value declarations, and produces static bindings mapping type names to
tycon representations, and variable, data constructor, and exception constructor
names to their types. At the module level, the elaborator translates signature,
structure, and functor expressions and declarations into the internal representa-
tions described in Section 2. The type information is recorded as new bindings
added to the static environment, which is used for elaborating later compilation
units (e.g., source files) that import them. An initial static environment contains
predefined modules, types, and values (the SML Basis libraries).

Elaboration can be broken down into a set of subtasks. The main tasks are
elaborating signature expressions, structure expressions, and functor declara-
tions, and these involve subsidiary processes including functor application, signa-
ture matching, and signature instantiation. Signature expressions and structure
expressions often occur as the definiens in a declaration, but they can also occur
“in-lined”, in an ascription in the case of signatures, or as a functor parameter
or functor body in the case of structures.

Elaboration modes. It is useful to distinguish two contexts in which elabora-
tion takes place: functor context, where the expression or declaration elaborated
occurs within the body of a functor, and top level, when outside of any func-
tor. Elaboration in a functor context is more complicated, because in addition
to performing the usual type-checking and static environment building tasks,
it must also “compile” declarations to the entity calculus expressions used to
encode the functor static action. Thus in a functor context elaboration must
operate in dual, simultaneous, modes. We use the term direct elaboration for the
basic mode that deals with type checking and translation to static representa-
tions, while entity compilation refers to the parallel process of compiling static
declarations into the entity calculus. Direct elaboration occurs in both contexts,
while entity compilation is relevant only to the functor context. In practice, to
simplify the code, we always perform both modes of elaboration and if we are
in top level mode we discard the unneeded byproducts of entity compilation.
The extra work involved in unnecessary entity compilation is not a significant
overhead.

Functor volatile entities. A related factor associated specifically with functor
mode is that static entities constructed within a functor (and the functor pa-
rameter itself) are volatile, as opposed to entities constructed in top level mode,
which are fixed and hence nonvolatile. During functor elaboration, the functor
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volatile entities are virtual or potential, in the sense that the actual entities will
be created later at functor application time. However, in the direct elaboration
mode volatile entities need to be represented by dummy entities to support type
checking, so they will have static representations in the “working” static en-
vironment used for direct elaboration of functor bodies. In embedded, in-line
signatures, and in compiled entity calculus expressions, references to volatile en-
tities (e.g., structures and tycons) must be “relativized” by translating them into
entity paths.

The process of relativizing references to volatile entities, and the interpretation
of the resulting entity paths, require that two additional parameters be provided
to the elaboration process. An entity environment is threaded through to be used
(1) to interpret entity paths of functor volatile entities in embedded signatures,
and (2) to construct closure environments for structure realizations and functor
realizations (entity functions). Elaboration of declarations will add new entity
variable bindings to this entity environment. The second new ingredient is called
an entity path context. It is an inverse environment that maps dummy volatile
entities to their entity paths, and it is used for relativization of references to
those dummy entities. So a complete schematic of the inputs and outputs of
elaboration is shown in Fig. 4.

elaborate
static environment

syntax trees typed abstract syntax

static environment

entity environment entity environment

entity path context

entity declaration

entity path context

Fig. 4. Schematic for elaboration

Signature elaboration. The specifications in the body of the signature are trans-
lated into a mapping from component names to internal specs in the form of
formal tycons for tycon specs, types for values, and semantic representations of
signatures and functor signatures for structure and functor elements respectively.
Each static element (tycon or module) is assigned a fresh entity variable. The
types of value elements, data constructors, and types occurring in definitional
type specs, are relativized by replacing local tycon references (which we can call
signature volatiles to distinguish them from functor volatiles) with entity paths.
If the signature is in-line in a functor context it may contain functor volatiles,
which are also relativized. Any where type constraints are elaborated and pushed
inward to the type specifications they apply to. Sharing constraints are recorded
in a normalized form as pairs of symbolic paths.

Structure elaboration. There are several cases for structure expression elabora-
tion, corresponding to the syntactic forms for such expressions (e.g., structures
declared in-line: struct ... end, structure symbolic paths: A, A.B, and functor ap-
plications). A symbolic name or path for a structure is looked up in the current
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static environment, returning a full signature for the structure. A basic in-line
structure expression struct decls end form is elaborated as follows:

1. elaborate the body declarations decls, yielding a static environment envBody,
an entity environment entEnv, and an entity declaration entityDec;

2. derive from envBody a signature and matching structure realization (entity
environment), and combine them to create a full signature;

3. return the full signature from step 2, a structure entity expression STRUC-
TURE{entityDec}, and the entity environment entEnv from step 1.

Signature matching. When a signature is ascribed to a structure in a struc-
ture declaration, or when a functor is applied to a structure, implicitly ascribing
the parameter signature to the argument, we must verify that the structure in
question matches the signature. This is a kind of module-level type checking,
but it also has a coercive effect, producing a modified structure realization that
exactly conforms to the ascribed signature (similar to coercive subtyping). Signa-
ture matching involves scanning the specifications in the signature and verifying
that the matching structure satisfies these specifications. There are two modes
of signature matching. Opaque signature matching generates fresh tycons for
signature volatile tycon specifications using signature instantiation (see below),
whereas transparent signature matching uses the corresponding tycons from the
matching structure.

Signature instantiation. At a couple of points during elaboration, we have only
a signature on hand when what we need is a full signature. To synthesize a full
signature from the signature, we need to produce a dummy structure realization
for the signature. Signature instantiation is the process of creating a “free”
structure realization for a signature. This process is nontrivial because of type
sharing specifications, which require two tycon names/paths to refer to the same
tycon.

This realization includes fresh formal tycons for each type component, but
chosen to satisfy the signature’s sharing constraints, and only those sharing
constraints (i.e., no incidental sharing not forced by the specifications). The al-
gorithm used for signature instantiation is adapted from the Patterson-Wegman
linear unification algorithm [22].

When instantiating a functor specification in a signature, we must create a
corresponding functor realization. This will be, as usual, an entity function, but
one where the body of the lambda abstraction is the special structure entity ex-
pression form (FORM{sig}) containing only the formal functor signature. What
happens when such a formal functor is applied will be explained below.

Functor application. When a functor is applied, the argument structure expres-
sion is elaborated to a full signature, and then signature matching is performed
to verify that it matches the parameter signature and to coerce the argument
structure realization to a realization for the parameter signature, yielding a full
signature for the coerced argument. The functor realization, which is an en-
tity calculus lambda-abstraction complete with a closure entity environment,
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is then applied to the argument realization using a conventional call-by-value,
environment-based interpreter for the entity calculus. As usual, this entails ex-
tending the closure environment with a binding of the argument realization to
the lambda-bound entity variable, and then evaluating the body structure ex-
pression with respect to this extended entity environment.

This is the standard case. But in a functor context, the functor being applied
may be an element of an outer functor parameter, i.e. a formal functor. Suppose,
for example, the elaborator encountered the following program:

funs ig FS() = s ig type t end
functor F(X: s ig functor G : FS end) =
struct

structure M = X.G()
end

functor H0() = struct type t = in t end
structure FR0 = F( struct functor G = H0 end)

where FS is a functor signature where the parameter signature is empty and the
result signature specifies a single tycon t. When elaborating the application of
functor X.G in the direct mode, we do not seem to have a functor realization
for X.G because that will only be supplied by an actual parameter (as in the
definition of FR0). We solve this problem by synthesizing a special entity function
from the functor signature FS. This entity function is, as usual, a closure of a
lambda expression, but the body of this lambda expression is a special form
of structure entity expression that simply wraps the body signature from FS:
FORM{sig type t end}. When elaborating X.G() in functor F’s body, we evaluate
this new form of structure expression by instantiating sig type t end with respect
to the evaluation environment. In this case, this will create a fresh abstract tycon
as the realization of t. This allows the type checking of the body of F to proceed
with no information about actual parameters other than that they match the
signature of X.

The entity declaration corresponding to M in the lambda abstraction for F
applies the relativized entity path for G to an empty structure entity expression:

structure eM = [eX , eG ] (STRUCTURE{})

When this declaration is evaluated at the call of F defining FR0, [eX , eG] will
evaluate to the entity function for H0, and this function will define the entity
binding of et to be int. So FR0.M.t is int. On the other hand, in the following
example, the definition of functor H1 uses an opaque ascription to cause a new
abstract tycon to be generated for t on each application.

functor H1() = struct type t = in t end :> s ig type t end
structure FR1 = F( struct functor G = H1 end)
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FR1.M.t will be a new abstract tycon. Thus, while the direct mode elaboration
of the body of F has to assume a conservative approximation to the functor
action of the G parameter, when F is applied it uses the actual functor action
associated with G in the argument. This technique is the key to supporting true
higher-order functor semantics.

Functor elaboration. Functor elaboration involves several new problems. One
issue is how to deal with references to the formal parameter structure in the
body, both during elaboration of the body and later during application of the
functor. As we have seen in the earlier example, when applying the functor, the
functor parameter will be represented by an entity variable that serves as the
formal parameter of the entity function.

During direct mode elaboration of the functor body, we bind the parameter
name to a full signature for the parameter structure obtained by instantiating the
parameter signature. This instantiation can serve as a formal representative of
all possible actual arguments because it embodies the minimal required sharing
among its tycon components. Any actual parameter will have to satisfy at least
as much sharing.

Now having bound the formal parameter symbol to the instantiation of the
parameter signature in the static environment, the body structure of the functor
is elaborated. This produces a full signature and a structure entity expression
for the functor body. A functor signature is created by combining the parameter
signature and the signature part of the body full signature. The functor’s entity
function is created by wrapping a lambda abstraction around the body’s struc-
ture entity expression, and closing it with respect to the entity environment in
which the functor is elaborated.

4 Related Work

Although the literature on module system semantics is rich, there are few ac-
counts of implementation techniques. As far as the authors know, this paper is
one of the few besides Crégut and MacQueen [2], which reported on an earlier
version of the SML/NJ implementation. In that implementation, the internal
representations and algorithms were considerably more baroque and less prin-
cipled. Before the implementation of the entity path and signature-realization
factorization, the compiler relied on comparison of stamp creation times to index
into several arrays containing the relevant static information. The former design
was fragile and insufficiently abstract. This new design is a clear advancement
that greatly simplifies the implementation.

Most of the literature focuses on the ML module system. Both Haskell [3] and
Scheme’s [7] module systems are primarily concerned about namespace manage-
ment through explicit import and export syntax. Because Haskell and Scheme
have no equivalent of functors in their module languages, and in the case of
Scheme no type components, they are not directly comparable to ML module
systems. The several proposals addressing module system semantics and design
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can be classified as falling under a continuum with the abstract approach on
one end and the operational approach on the other. The former, a term coined
by Shao [25], refers to the type-theoretic accounts in Harper-Lillibridge [8] and
Leroy [13]. The latter refers to the approach embodied in MacQueen-Tofte and
the Definition of Standard ML [19]. Several accounts [16, 10, 5, 24] follow the
abstract approach closely. Module systems in that group generally do not have
semantic representations of signatures distinct from syntactic signatures. Type
equivalence and generative types are generally modeled by a simple nominal
check and existential types respectively. Consequently, they do not support true
higher-order functor semantics. The TILT [10], Moscow ML [24], and Caml/O-
Caml [15] compilers are implementations from this line of development.

The Definition [19] does not include higher-order functors. The semantic ob-
jects in its treatment differ from ours primarily in our use of entity environments
and entity expressions. The Definition has a notion of type realizations, which
are maps from type names to tycons, and instantiation of both signatures and
functor signatures, producing a static environment and a pair of static envi-
ronments with a set of flexible names. In contrast to SML/NJ, the result of
functor instantiation is only an approximation of our functor realization – there
are no entity functions to express functor actions. Signatures in the Definition
explicitly name the volatile tycons, but there are no analogues of entity variables
associated with tycon, structure, and functor specs.

Other proposals fall somewhere in between the abstract and operational ap-
proaches. Biswas [1] and Shao [25] propose type-theoretic accounts that support
limited forms of higher-order functors. Both of these module systems can rep-
resent some functor actions (which they refer to as “argument-to-result depen-
dency”) in functor signatures. Biswas utilizes higher-order variables that have
about the same expressiveness as applicative functors in OCaml. A variant of
Biswas’s design is implemented in the Moscow ML compiler. Shao’s solution
uses a higher-order tycon that serves a similar role. Unlike Biswas and SML/NJ,
Shao’s account admits syntactic signatures that can express some functor actions
in terms of higher-order type constructor expressions.

More recent variations of the ML module system such as Dreyer’s RMC [4]
and MixML [6] express type abstraction using an existential type discipline fol-
lowing Mitchell and Plotkin [20] and Russo [24]. Signature matching is non-
coercive, though coercions are definable in the module language [5]. Montagu
and Rémy [21] develop a more modular form of the existential type calculus by
splitting open and pack into separate scoping and witness packing/unpacking
constructs to address the tension between modularity and existential-encoded
abstract types as pointed out by MacQueen [17]. None of these accounts handles
true higher-order functor semantics.

5 Conclusion

The type information generated during elaboration of ML modules can grow
quite large, and experience with early, relatively naive versions of the elaborator
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demonstrated that the size of static data structures could become a real resource
bottleneck. The implementation described here has proved very scalable in prac-
tice: SML/NJ is self-hosting and compiles a wide range of large Standard ML
programs that stress the module system [23]. We believe that factorization of
modules into signatures and realizations and the resulting sharing of signature
representations is a major factor in this scalability. Hash-consing of type infor-
mation turned out to be necessary in SML/NJ’s FLINT intermediate language,
but this technique has not been required in the front end, due partly to signature
sharing.

The current implementation of higher-order modules is also a marked im-
provement over the previously reported version in terms of simplicity and main-
tainability of the code. It is based on well-understood principles embodied in a
formal semantic model that allows us to have confidence in the correctness of
the approach. The key abstraction is the static entity calculus for representing
the static-level mapping defined for functors. This idea allows us to generalize
from first-order to higher-order functors with essentially no extra complexity in
the implementation. In essence, we have higher-order functors for free!
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