
9. Natural Time Analysis of Electrocardiograms

Abstract. Here, we present the results obtained from the natural time analysis of electro-
cardiograms. Considering that a general agreement about whether normal heart dynamics
are chaotic or not is still lacking, and that a physiological time series may be due to a mixed
process, stochastic and deterministic, we use here the concept of entropy which is equally
applicable to deterministic as well as stochastic processes. Sudden cardiac death is a fre-
quent cause of death and may occur even if the electrocardiogram seems to be strikingly
similar to that of a healthy individual. Upon employing, however, the fluctuations of the
entropy in natural time, when a time window of certain length is sliding each time by one
“pulse” (heartbeat) through the whole time series, sudden cardiac death individuals (SD)
can be clearly distinguished from the truly healthy individuals. Furthermore, by using the
complexity measures introduced in § 3.6.1 to quantify the change of the natural entropy
fluctuations either by changing the time window length scale or by shuffling the “pulses”
randomly, we can achieve the classification of individuals into three categories: healthy,
heart disease patients and SD. In addition, when considering the entropy change under
time reversal, at certain time window length scales (which have a clear physical meaning),
not only can the SD risk be identified, but also an estimate of the time of the impend-
ing cardiac arrest can be provided. In particular, after the maximization of the amplitude
of ΔS at the scale of 13 heartbeats, ventricular fibrillation starts within ≈3 hours in 16
out of 18 SD. Finally, an 1/ f model is proposed in natural time which leads to results that
are consistent with the progressive modification of heart rate variability in healthy children
and adolescents. The model results in complexity measures that separate healthy dynamics
from heart disease patients as well as from SD.

9.1 Natural time analysis of the RR, QRS and QT time series

9.1.1 Introduction

The advantages of using the concept of the entropy in the analysis of a physiological
time series in general, and of electrocardiograms (ECG) in particular, has been already
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explained in Section 3.1. In addition, it was explained there why the complexity measures
associated with the entropy S defined in natural time (which is a dynamic entropy) have
certain advantages compared to those based on static entropy (e.g. Shannon entropy). Ear-
lier attempts in the ECG analysis have actually used measures related to dynamic entropy.
For example, the so-called approximate entropy (AE) [48] or sample entropy (SE) [51]
have been used earlier by other authors. Examples showing that the procedure developed
here gives [63] better results than that based on AE or SE will be put forward later in
§ 9.2.3. Also, Costa et al. [11] introduced the multiscale entropy approach, the algorithm
of which is based on AE or SE, calculating the entropy at different scales. As for the S, it
differs essentially from the other entropies, because it is defined [61, 62] in an entirely dif-
ferent time-domain (see Fig. 9.1(b)). Moreover, as already mentioned (§ 4.8.3), in order to
discriminate similar-looking electric signals emitted from systems of different dynamics,
the following seems to hold [68]:

Signals that have S values more or less comparable to Su (which is the case of all ECG,
see Fig. 9.11 that will be discussed later) can be better classified by the complexity
measures relevant to the fluctuations δS of the entropy.

If the S values differ markedly from Su (which is usually the case for SES and AN),
the classification of these signals should be preferably made by the use of the S values
themselves (see Section 4.10). Hereafter, we focus on the case of ECG.

In a single sinus (normal) cycle of an ECG, the turning points are traditionally labeled
with the letters Q, R, S, T; see Fig. 9.1(a). It has been clinically observed that the QT in-
terval usually exhibits prolonged values before cardiac death (see Ref. [26] and references
therein). In Fig. 9.1(b) we show how the QT interval time series can be read in natural
time. By the same token, one can read in natural time the RR (beat-to-beat) interval time
series (see Figs. 2.2(a) and 2.2(b)) as well as the QRS interval time series. The RR and
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Fig. 9.1 (a) Schematic diagram (not in
scale) of a three heartbeat excerpt of an
ECG in the usual (conventional) time do-
main. Only the durations Qm,Qm+1,Qm+2
of the QT interval (marked in each single
cycle of the ECG corresponding to one
heartbeat) are shown. (b) The QT interval
time series of (a) read in natural time; the
vertical bars are equally spaced and the
length of each bar denotes the duration of
the corresponding QT interval marked in
(a). Taken from Ref. [66].
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QRS intervals (mainly the RR) can be automatically detected [32, 30, 31, 22] more easily
than the QT.

Sudden cardiac death, which is the primary cause of mortality in the industrialized
world [7], may occur even if the ECG looks to be similar to that of truly healthy (H)
humans.

Here, we present a surrogate data analysis which differentiates the ECG of H from
those of sudden cardiac death individuals (SD) based on the fluctuations of the entropy
S in natural time.

The fact that a system contains nonlinear components does not necessarily reflect that a
specific signal we measure from the system also exhibits nonlinear features. Thus, before
analyzing this signal by applying nonlinear techniques, we must first clarify if the use
of such techniques is justified by the data available. The method of surrogate data has
been extensively used to serve such a purpose (see Ref. [55] for a review). Surrogate data
refer to data that preserve certain linear statistic properties of the experimental data, but
are random otherwise [8, 57]. These data are prepared by various procedures, e.g., see
Ref. [57]. Here, the surrogate data are obtained by shuffling the Qk randomly and hence
their distribution is conserved. Applying such a procedure, we do the following: consider
the null hypothesis that the data consist of independent draws from a fixed probability
distribution of the dwell times; if we find significantly different serial correlations in the
data and their shuffles, we can reject the hypothesis of independence [55]. In other words,
the tested null hypothesis is that Qk are independent and identically distributed (i.i.d.)
random variables, i.e., that there are no correlations between the lengths of consecutive
intervals. If the original (continuous) time series is Markovian then the null hypothesis for
the Qk should hold, i.e., the Qk are i.i.d. random variables. The terminology “Markovian”
here always refers to the original time series.

Following § 3.6.1, as a measure of the natural time entropy S fluctuations we consider
the standard deviation δS when we calculate the value of S for a number of consecutive
pulses and study how S varies when sweeping this time-window through the whole time
series. In all examples, we use here a sliding window of length 3 to 10 pulses, except other-
wise stated. Concerning the symbols: we reserve δS only for the case when the calculation
is made by a single time-window, e.g., 5 pulses. The symbol δS denotes the average of the
δS values calculated for a sequence of single time-windows, e.g., 3, 4 and 5 pulses. Fi-
nally, 〈δS〉 stands for the δS values averaged over a group of individuals, e.g., the healthy
subjects. The subscript “shu f ” means that the relevant quantity refers to data obtained by
shuffling Qk randomly.

We used here the QT database from physiobank [14] (see also Ref. [31]), which is
publicly accessible and consists of 105 fifteen-minute excerpts of Holter recordings as fol-
lows: 10 from MIT-BIH Normal Sinus Rhythm Database (i.e., healthy subjects, hereafter
labeled H), 15 from MIT-BIH Arrhythmia Database (MIT), 13 from MIT-BIH Supraven-
tricular Arrhythmia Database (MSV), 6 from MIT-BIH ST Change Database (MST), 33
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from the European ST-T Database (EST), 4 from MIT-BIH Long-Term ECG Database
(LT) and 24 from sudden cardiac death patients from BIH(SD) (BIH denotes the Beth
Israel Hospital).

9.1.2 The quantities δS and δSshu f . The non-Markovianity of electrocardiograms

We now investigate if the δS values alone can “recognize” the non-Markovianity in ECG
[67]. In Fig. 9.2, we plot, for the QRS interval time series, the δS value averaged over
each of the aforementioned seven groups versus the time-window length. Since all time
series of these seven groups have ≈103 intervals, we insert in the same figure the results
calculated for a Markovian case of comparable length ≈103. In particular, we consider a
dichotomous Markovian time series, in which we recall (e.g. § 4.1.1 and § 4.1.3) that the
dwell times (Qk) are exponentially distributed. (Since in the calculation of S only ratios
of Qk are involved the result does not depend on the transition rates of the Markovian
process.) An inspection of this figure shows that the Markovian case exhibits δS values that
are roughly one order of magnitude larger than those of the seven groups of ECG, which
clearly points to the non-Markovianity of all the signals in these groups. We emphasize
that the same conclusions are drawn if we consider, instead of QRS, the time series of QT,
or RR intervals.
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intervals (see the text) of the seven
groups of ECG versus the time-window
length. The corresponding values for
a Markovian time series (103 pulses,
labeled M) are also plotted. Taken from
Ref. [67].

In summary, the δS value alone can recognize the non-Markovianity in ECG.

We now study δSshu f (§ 3.6.1). Having in mind Eq. (3.63), in Fig. 9.3(a) we plot, for
each of the 105 individuals, the value of σ/μ versus the corresponding value of δSshu f
(time-window range 3–10 beats) for the RR intervals. The same is repeated in Figs. 9.3(b)
and 9.3(c) for the QT and QRS intervals, respectively. All these three plots, can be de-
scribed by linear behavior and a least-squares fitting to a straight line passing through the
origin leads to the following slopes: 38.6 ± 0.6, 36.8 ± 0.2 and 40.1 ± 0.4, for the RR,
QT and QRS intervals, respectively. This points to the conclusion that δSshu f provides a
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Fig. 9.3 The σ/μ value, for each of the
105 individuals, versus the corresponding
δSshu f value for the (a) RR, (b) QT and (c)
QRS intervals. The identity of the individual
associated with each point can be found in
Ref. [64]. Taken from Ref. [67].

measure of σ/μ . Note that, although these three slopes are more or less comparable, they
differ by amounts lying outside their standard error. Furthermore, if we study altogether
the RR, QT and QRS intervals, for the 10 healthy humans only (Fig. 9.4), a good linearity
of σ/μ versus δSshu f results with a slope 37.5 ± 0.4. (note that if we study each of the
three intervals separately, we find slopes that agree within the error margins, i.e., 37.5 ±
0.4, 37.1± 0.7 and 37.8± 0.1 for the RR, QT and QRS intervals, respectively). The origin
of this common behavior in the healthy humans merits further investigation.
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Fig. 9.4 The σ/μ value for RR, QT and
QRS intervals of the ten H versus the
corresponding δSshu f value (time-window
range 3–10 beats). The straight line results
from a least-squares fit of all the thirty
points. For the identity of the individual
associated with each point see Ref. [64].
Taken from Ref. [67].

One could argue that Qk may become i.i.d. upon their shuffling. In § 3.4.6, we showed
that, when Qk are i.i.d., δS is actually proportional to σ/μ , since the following relation
holds (see Eq. (3.63)):

δSshu f =
σ
μ
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and e denotes, as usually, the base of the natural logarithms. The relation (9.1) reveals that
δSshu f versus σ/μ must be a straight line with a slope ranging from 34.2 to 40.4, for a
time-window length 3 to 10. This result is comparable with the slopes determined above
from the analysis of the ECG data.

We now proceed to compare δSshu f with δS in ECG. We first point out that for a
Markovian case we expect δSshu f = δS in view of the following:

Since, by definition, δSshu f corresponds to the entropy fluctuations upon shuffling Qk
randomly, it is naturally expected that in a Markovian case the two quantities δS and
δSshu f should coincide. Note, however, that the reverse is not always true. The equality
δSshu f = δS may also hold for non-Markovian time series, as will be demonstrated
below with precise examples.

Figure 9.5(a) depicts the δS values, calculated for each of the 105 individuals, ver-
sus the corresponding δSshu f for the RR intervals (time-window range 3–10 beats). The
same is repeated in Figs. 9.5(b) and 9.5(c) for the QT and QRS intervals, respectively. In
each case, we also plot the straight line δSshu f = δS to visualize that the vast majority
of points fall below this line. The non-equality of δSshu f and δS has been also verified
by applying the Wilcoxon paired signed-rank test, which is recommended [42] to be fol-
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Fig. 9.5 The δS value, for each of the
105 individuals versus the corresponding
δSshu f value for (a) RR, (b) QT and (c) QRS
intervals. The straight line, drawn in each
case, corresponds to δSshu f = δS. For the
identity of the individual associated with each
point see Ref. [64]. Taken from Ref. [67].

lowed for non-Gaussian paired data. The tested null hypothesis is that the means of δSshu f

and δS are the same and is rejected at a level of significance well below 0.01, since the
data of Figs. 9.5(a),(b) and (c) lead to normally distributed variables z = −8.29, −6.81
and −6.32, respectively (note that the corresponding one-tailed asymptotic significance is
given by P(Z < z), i.e., the probability of obtaining a normally distributed variable obeying
N(0,1) that is smaller than z). Note that a least-squares fit to a straight line passing through
the origin, results in the following expressions: δS = 0.76(3)δSshu f , δS = 0.85(2)δSshu f ,
δS = 0.94(2)δSshu f for the Figs. 9.5(a), 9.5(b), 9.5(c), respectively. The sampling rate fexp
in ECG is 250 Hz, thus the experimental error in their allocation is around 1/ fexp = 4 ms.
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This, if we take as an example the RR intervals, reflects in the calculation of δS and δSshu f
errors which are drastically smaller than those required to eventually justify a compatibil-
ity of the expression δS = 0.76(3)δSshu f , obtained from Fig. 9.5(a), with a straight line of
slope equal to unity, i.e., δS = δSshu f .

The difference between δS and δSshu f could be understood in the context that the
former depends on the sequential order (of beats), while the latter does not.

Since short- (and long-) range correlations is a usual feature (see Ref. [16] and ref-
erences therein) in heartbeat dynamics, which are possibly destroyed (or become weaker)
upon randomizing the data, more “disorder” is intuitively expected to appear after random-
ization, thus reflecting δSshu f > δS. Furthermore, note that in all plots of Fig. 9.5 there
are some drastic deviations from the straight line δS = δSshu f . The origin of some of these
deviations will be discussed in Section 9.2.

Finally, by means of a precise example related to SD and H, we further clarify below
the aforementioned point that the equality δS = δSshu f does not necessarily reflect
Markovianity.

In Fig. 9.6, we plot for the QT intervals δSshu f versus δS (for time-window range 3–10
beats) for SD and H. We see that there are several individuals (mainly SD, see also the
next Section) whose values lie practically (i.e., within the error margins) on the straight
line δS = δSshu f . If we plot their δS- (or δSshu f -) values versus the time-window (in a
similar fashion as in Fig. 9.2), we find that they are distinctly smaller than those of the
Markovian case (note that the δS values in Fig. 9.6 are smaller than 10−2, while those of
the Markovian case – depicted in the upper curve in Fig. 9.2 – are ≈ 2×10−2 or larger).
This makes clear that these individuals cannot be characterized as exhibiting Markovian
behavior. (This non-Markovianity holds for all H and all SD.)
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Fig. 9.6 The δS value, in each of
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for the QT intervals versus δSshu f
(time-window range: 3–10 beats).
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are appreciably smaller than the δS
value (≈2× 10−2) of the Markovian
time series (103 events) depicted in
Fig. 9.2. Taken from Ref. [67].
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In addition, we note that in Ref. [67] (see § 4.8.3) the difference between δS and δSshu f
in the SES activities and “artificial” noises was also studied. It was found (see Table 4.5)
that there is a systematic tendency pointing to a value of δSshu f /δS larger than unity either
for the time-window range 3–5 or for the time-window range 3–10. This is consistent with
the non-Markovianity of these signals, thus strengthening the conclusions of § 4.1.2 and
§ 4.1.3.

9.1.3 Distinction between healthy humans and sudden cardiac death ones by means

of either δS(QT) or the ratio δSshu f /δS of the RR or QRS intervals

We emphasize that, in this subsection, we consider a set consisting only of two groups of
ECG, namely H and SD. In other words, we are interested here in the distinction of the
(otherwise healthy) SD from H, i.e., if the population under investigation does not include
heart disease patients.

First, we point out that in all SD, the values of the quantities δS and δSshu f themselves
of the QT intervals exceed those of H, see Fig. 9.7. This important distinction between
SD and H cannot be attributed (see Sec. VIII of Ref. [63]) to the allocation error of the
QT interval.

We now turn to examine whether H and SD can also be distinguished by means of the
ratio δSshu f /δS, which is just the complexity measure ν introduced in § 3.6.1: we calculate
this ratio, for each type of interval, at two ranges: (i) a short (s) range 3–4 beats and (ii)
a longer (L) range 50–70 beats. By defining ν ≡ δSshu f /δS (see Eq. (3.82)), hereafter the
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Fig. 9.7 (a) The δS(QT ) value for each of the 24 SD and 10
H (see Table 9.2) and (b) the average of the δS(QT) values –
designated by 〈δS(QT )〉 – along with their standard deviation for
each of the two groups SD and H versus the time-window length.
Taken from Ref. [68].
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following ratios are investigated: νs(τ) and νL(τ), where τ denotes the type of interval (i.e.,
τ = RR, QRS or QT) and s,L refer to the range studied (i.e., s = 3–4 beats and L = 50–70
beats).

The calculated values for νs(τ) and νL(τ) for the three types of intervals are given, for
all H and SD, in Table 9.1. The minima minH [νκ(τ)] and maxima maxH [νκ(τ)] (where κ
denotes either the short, κ = s, or the longer, κ = L, range) among the healthy subjects are
also inserted in two separate rows, for each type of interval and each range studied. These
minima and maxima are labeled Hmin and Hmax, respectively. The cases of SD which have
smaller and larger values than Hmin and Hmax (reported in each column) are marked with
superscripts “*)” and “**)”, respectively.

A careful inspection of Table 9.1 leads to the following main conclusion: all SD violate
one or more H-limits (i.e., they have values that are smaller than Hmin or larger than Hmax).
We intentionally emphasize that this conclusion is also drawn even when disregarding the
results for the QT intervals. Concerning the latter intervals: Only 5 SD out of 24 violate
the H-limits; however, in all SD, their δS values themselves, as mentioned, are larger than
those in H, see also Figs. 9.6 and 9.7. The usefulness of this difference will be discussed
later in Section 9.2.

In other words, when focusing our investigation solely on the RR and QRS intervals,
all SD violate one or more of the four H-limits related to νs(RR), νL(RR), νs(QRS)
and νL(QRS).

This is of profound importance from practical point of view, because the RR and QRS
intervals can be detected more easily (and accurately) than the QT by means of an auto-
matic threshold based detector (e.g., see Ref. [22] that evaluated the results of a detector
that has been forwarded in Refs. [32] and [30] to determine automatically the waveform
limits in Holter ECG).

A further inspection of Table 9.1 leads to the following additional comment:

When investigating the RR intervals alone (which can be detected automatically more
easily and precisely than the other intervals), i.e., studying νs(RR) and νL(RR), the
vast majority of SD (22 out of 24 cases) can be distinguished from H. Only two SD,
i.e., sel30 and sel47, obey the corresponding H-limits.

Specifically, concerning νs(RR), fifteen SD have values smaller than Hmin = 1.18, while
only one SD (i.e., sel43) has a value exceeding Hmax = 2.25. As for νL(RR), eighteen SD
exceed Hmax = 0.77, while only 2 SD (i.e., sel34 and sel42) have values smaller than
Hmin = 0.44.

9.1.3.1 Tentative physical interpretation of the above results

The main feature of the aforementioned results focuses on the fact that most SD simul-
taneously have νs(RR) values smaller than Hmin(= 1.18) and νL(RR) values exceeding
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Table 9.1 The values of the ratios δSshu f /δS in the short (s) range 3–4 (νs) or in the longer (L) range 50–
70 beats (νL) in H (sel16265 to sel17453) and SD (sel30 to sel17152) for the RR, QRS and QT intervals.
Taken from Ref. [67].

νs, 3–4 beats νL, 50–70 beats
Individual RR QRS QT RR QRS QT

sel16265 1.82 1.00 1.24 0.48 1.02 0.76
sel16272 1.74 0.99 0.98 0.77 1.08 1.11
sel16273 2.21 1.00 1.48 0.50 0.88 0.71
sel16420 1.55 0.98 1.08 0.53 1.09 0.90
sel16483 2.25 1.02 1.14 0.52 1.16 0.92
sel16539 1.42 1.06 1.25 0.50 1.08 0.65
sel16773 1.94 1.00 0.99 0.44 1.05 0.96
sel16786 1.42 1.00 1.19 0.56 1.04 0.77
sel16795 1.18 0.98 1.08 0.73 0.96 0.99
sel17453 1.38 1.01 1.02 0.56 0.98 0.81

Hmin 1.18 0.98 0.98 0.44 0.88 0.65
Hmax 2.25 1.06 1.48 0.77 1.16 1.11

sel30 1.29 1.11∗∗) 1.09 0.65 0.72∗) 1.09
sel31 0.96∗) 1.08∗∗) 1.17 1.23∗∗) 0.94 0.62∗)

sel32 1.39 1.14∗∗) 1.12 1.02∗∗) 0.69∗) 0.90
sel33 1.05∗) 0.99 1.00 0.86∗∗) 0.82∗) 0.99
sel34 2.11 1.29∗∗) 1.11 0.42∗) 0.78∗) 0.67
sel35 1.00∗) 1.00 0.96∗) 1.01∗∗) 1.05 1.08
sel36 1.02∗) 1.02 1.04 0.92∗∗) 1.00 0.88
sel37 1.07∗) 1.18∗∗) 1.07 0.55 0.75∗) 0.65
sel38 0.99∗) 1.09∗∗) 1.13 1.37∗∗) 0.89 1.04
sel39 0.96∗) 1.02 1.06 2.93∗∗) 0.92 0.90
sel40 1.01∗) 1.00 0.93∗) 0.78∗∗) 0.93 1.29∗∗)

sel41 1.07∗) 1.04 1.02 1.07∗∗) 0.84∗) 0.96
sel42 1.63 1.08∗∗) 1.23 0.42∗) 1.06 0.67
sel43 2.71∗∗) 1.11∗∗) 1.05 0.56 0.76∗) 0.89
sel44 0.91∗) 0.95∗) 0.88∗) 2.24∗∗) 1.46∗∗) 1.32∗∗)

sel45 0.98∗) 1.24∗∗) 1.29 0.98∗∗) 0.86∗) 0.79
sel46 1.03∗) 1.01 1.03 1.00∗∗) 0.84∗) 1.01
sel47 1.56 0.97∗) 1.03 0.45 0.97 1.01
sel48 0.82∗) 1.18∗∗) 1.44 1.48∗∗) 0.68∗) 0.73
sel49 0.93∗) 1.11∗∗) 0.96∗) 1.22∗∗) 0.70∗) 1.14∗∗)

sel50 1.05∗) 0.98 0.98 0.93∗∗) 1.23∗∗) 1.50∗∗)

sel51 1.25 1.01 0.97∗) 1.05∗∗) 1.24∗∗) 0.91
sel52 1.50 1.16∗∗) 1.22 1.00∗∗) 0.73∗) 0.68
sel17152 1.64 1.01 1.04 0.90∗∗) 1.01 0.97

*) These values are smaller than the minimum (Hmin) value of δSshu f /δS in H for each range.
**) These values are larger than the maximum (Hmax) value of δSshu f /δS in H for each range.



392 9. Natural Time Analysis of Electrocardiograms

Hmax(= 0.77). The RR time series of healthy subjects are characterized by high complex-
ity (e.g., see Refs. [18, 16]); this, if we recall that in a Markovian series we intuitively
expect δSshu f /δS = 1 (and hence νs = 1 and νL = 1), is compatible with the fact that in
all H both νs(RR) and νL(RR) distinctly differ from unity (see Table 9.1).

We now turn to SD by considering that for individuals at high risk of sudden cardiac
death the fractal physiological organization (long-range correlations) breaks down and
this is often accompanied by emergence of uncorrelated randomness, see Ref. [16] and
references therein; see also § 9.2.1.

It is therefore naturally expected that in SD the values of νs(RR) and νL(RR) become
closer to the Markovian value (i.e., unity) compared to H. Hence, in SD, νs(RR) naturally
becomes smaller than the value 1.18 (the corresponding Hmin-limit) and νL(RR) larger than
0.77 (the corresponding Hmax-limit).

We now focus on the following important property of H: although both νs(RR) and
νL(RR) differ from unity, as mentioned, they systematically behave differently, i.e.,
νs(RR) > 1 while νL(RR) < 1. The exact origin of the latter difference has not yet been
identified with certainty, but the following comments might be relevant: First, in the frame
of the frequency-domain characteristics of heart rate variability (e.g., Refs. [38, 49]), we
may state that νs(RR) and νL(RR) are associated with the high-frequency (HF, 0.15–
0.4 Hz) and low-frequency (VLF: 0.015–0.04 Hz, LF: 0.04–0.15 Hz) range in the RR
tachogram (“instantaneous” heart rate, i.e., 1/RR, see also § 9.4.3 and § 9.5.1). An im-
portant difference on the effect of the sympathetic and parasympathetic modulation of
the RR intervals has been noticed (e.g., see Ref. [38] and references therein): Sympa-
thetic tone is believed to influence the VLF-LF component whereas both sympathetic and
parasympathetic activity have an effect on the HF component (recall that our results show
νs(RR) > νL(RR)). Second, at short time-scales (high frequencies), it has been suggested
[46] that we have relatively smooth heartbeat oscillations associated with respiration (e.g.,
15 breaths per minute corresponds to a 4 sec oscillation with a peak in the power spectrum
at 0.25 Hz, see Ref. [38]); this is lost upon randomizing the consecutive intervals Qk, thus
probably leading to (larger variations – compared to the original experimental data – be-
tween the durations of consecutive intervals and hence to) δSshu f values larger than δS, i.e.,
a νs(RR) value larger than unity. Such an argument, if true, cannot be applied, of course, in
the longer range 50–70 beats and hence explain why the opposite behavior, i.e., δSshu f <
δS, then holds. The latter finding must be inherently connected to the nature itself of the
long-range correlations. The existence of the latter is evident from the fact that (in this
range also) the RR-intervals result in δS values (≈10−3) which significantly differ from
the Markovian δS value (≈10−2), compare Fig. 9.5(a) with the upper curve in Fig. 9.2.

A simplified interpretation of the results of Fig. 9.6, and in particular the reason why for
the QT intervals the quantity δS is larger for the SD than for the H, could be attempted if
we consider that: (i) S could be thought as a measure of the “disorder” (in the consecutive
intervals) (ii) the essence of the natural time analysis is built on the variation of the du-
rations of consecutive pulses, and (iii) it has been clinically observed (e.g., see Ref. [26])
that the QT interval (which corresponds to the time in which the heart in each beat “re-
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covers” – electrically speaking – from the previous excitation) exhibits frequent prolonged
values before cardiac death. Thus, when a time-window is sliding on an ECG of H, it
is intuitively expected to find, more or less, the same S values (when sweeping through
various parts of the ECG) and hence a small δS value is envisaged. By the same token,
in an ECG of SD, we expect that, in view of the short–long–short sequences of the QT
intervals, the corresponding S values will be much different (compared to H), thus leading
to a larger δS value (note that in the same frame we may also understand why the σ/μ
values – and hence δSshu f , see Eq. (9.1) – are larger in SD than those in H, as shown in
Fig. 9.6).

9.2 Complexity measures of the RR, QRS and QT intervals in natural

time to classify sudden cardiac death individuals, heart disease

patients and truly healthy ones

9.2.1 Introduction

In complex systems operating far from equilibrium like the case of heart dynamics [16],
long-range correlations play an important role (such correlations are also of prominent
importance in equilibrium systems when approaching a critical point, e.g., the “critical”
temperature Tc, i.e., T → Tc; see Section 1.5). Specifically the existence of long-range
correlations in the heart rate variability has been independently established by several
applications of DFA, e.g., see Refs. [46, 16] and references therein. Additional studies
[21, 18] showed that healthy dynamics exhibits even higher complexity characterized by
a broad multifractal spectrum (note that both methods for its determination, i.e., MF-DFA
and wavelet transform, see Sections 4.5 and 4.6, respectively, have been employed). This
high complexity breaks down in illness and is usually associated with increased mortality
in cardiac patients (for more details see § 9.5.1). Thus, in ECG it is advisable that both
correlations (i.e., short- and long-range), in general, be studied carefully and hence ap-
propriate complexity measures should be envisaged. This is, in simple terms, the physics
underlying the procedure that is followed in this Section.

In particular, here we employ the complexity measures introduced in § 3.6.1 to quantify
the change of the natural entropy fluctuations at different length scales in time series emit-
ted from systems operating far from equilibrium. Along these lines, we use in ECG the
ratios δSi(RR)/δS j(RR), δSi(QRS)/δS j(QRS) and δSi(QT )/δS j(QT ) for the RR, QRS
and QT intervals, respectively, where i, j denote the time-window length used in the calcu-
lation of δS. Assuming that j < i, these three ratios provide measures of the δS-variability
when a scale i changes to a scale j. We select as a common scale (for all RR, QRS and
QT) the smallest j value reasonable for natural time analysis, i.e., j = 3 beats, and for the
short-range (s) i = 5, while for the longer (L) i = 60 beats.
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Thus, in accordance to § 3.6.1, the following ratios are studied: λs(τ)≡ δS5(τ)/δS3(τ)
and λL(τ)≡ δS60(τ)/δS3(τ), where τ denotes the type of interval, i.e., τ = RR, QRS
or QT.

We also define [68] the ratios

ρi(τ) = δSi(RR)/δSi(τ), (9.3)

which provide a relative measure of the δS values of the RR intervals compared to
either QRS or QT (for the same number of beats i). Here, we will use for the short-
range ρs(τ)≡ ρ3(τ) and for the long-range ρL(τ)≡ ρ60(τ).

Thus, we have 10 complexity measures related to λ and ρ in total: six variability
measures, i.e., λs(RR), λL(RR), λs(QRS), λL(QRS), λs(QT ), λL(QT ), and four relative
ones, i.e., ρs(QRS), ρL(QRS), ρs(QT ), ρL(QT ).

We shall show below that these complexity measures identify SD by analyzing fifteen-
minute electrocardiograms and comparing them to those of truly healthy humans. In ad-
dition, these measures seem to be complementary to the ones employed in § 9.1.3, and
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altogether enable the classification of individuals into three categories: H, heart disease
patients and SD. We use here the QT-Database of physiobank mentioned in Section 9.1
by considering, beyond the 10H and 24 SD, four groups of heart disease patients, i.e., 15
MIT, 13 MSV, 33 EST and 6 MST. Thus, 101 individuals out of 105 have been investigated
(note that the group LT consisting of 4 individuals was discarded in view of its small pop-
ulation). Examples of the δS values, calculated for the RR, QRS and QT intervals in the
range 3 to 100 beats are plotted in Figs. 9.8(a) and (b) for one H and one SD, respectively.
As for the symbols, we use the same as those mentioned in § 9.1.1.

9.2.2 Distinction of sudden cardiac death individuals (SD) from truly healthy

ones (H)

Here, as in § 9.1.3, we consider a set consisting only of two groups of ECG, namely H and
SD. Thus, we focus here on the distinction of the (otherwise healthy) SD from H, i.e., if
the population under investigation does not include heart disease patients.

The calculated values for the complexity measures λκ ,ρκ (where κ denotes either the
short, κ = s, or the longer, κ = L, range) are given, for all H and SD, in Table 9.2. The
minima minH [λκ(τ)] and maxima maxH [λκ(τ)] among the healthy individuals for the RR
(τ = RR) and QRS (τ = QRS) intervals are also inserted in this Table. We also include
the corresponding minima minH [ρκ(τ)] and maxima maxH [ρκ(τ)] for (the relative δS-
variability measure) ρ . For the sake of simplicity, they are labeled Hmin and Hmax, re-
spectively, and jointly named H-limits. The superscripts ‘a’ and ‘b’ show the cases of SD
which have smaller and larger values than Hmin and Hmax, respectively. In two individu-
als, i.e., sel41 and sel51, it is uncertain whether their measure λs(QRS) violates the value
Hmin = 1.15.

Table 9.2 reveals that all SD violate one or more H-limits of the four complexity
measures λs(RR), λL(RR), ρs(QRS) and ρL(QRS), and hence can be distinguished
from H.

In other words, the δS-variability measures of the RR-intervals, together with their
relative ones with respect to the QRS (i.e., four parameters in total), seem to achieve a
distinction between SD and H.

Note that λκ(RR) alone can classify the vast majority of SD, i.e, all SD except sel47.
Furthermore, attention is drawn to the point that if we also consider the λκ(τ) values
calculated (not in the original, but) in the randomized (“shuffled”) sequence of Qm, we
find that all SD violate one or more H-limits of λκ(RR) and λκ,shu f (RR) (see Table 9.2
and table VII of Ref. [63], respectively). This allows using again four parameters in
total the distinction of all SD from H by using the RR intervals only.

Thus, we found that among the 10 parameters defined in the original time series ex-
tracted from each ECG (or 20 parameters, in total, if we also account for the correspond-
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Table 9.2 The variability measures (λ ), the relative ones (ρ), and the ratios ν ≡ δSshu f /δS in the short
(s) range and in the longer (L) range in H (sel16265 to sel17453) and SD (sel30 to sel17152) along with
their δS3−4(QT ) values. Taken from Ref. [68].

Individual RR QRS QT RR over QRS

λs(RR) λL(RR) λs(QRS) λL(QRS) λs(QT ) λL(QT ) ρs(QRS) ρL(QRS)

sel16265 1.72 2.38 1.19 0.52 1.27 0.88 0.88 4.01
sel16272 1.69 1.35 1.29 0.61 1.21 0.50 0.18 0.40
sel16273 1.61 2.69 1.16 0.59 1.30 1.11 1.11 5.05
sel16420 1.51 1.74 1.22 0.48 1.37 0.66 0.96 3.46
sel16483 1.43 2.37 1.23 0.49 1.31 0.68 0.25 1.22
sel16539 2.00 1.94 1.26 0.50 1.41 1.08 1.85 7.10
sel16773 1.92 2.61 1.21 0.49 1.31 0.70 0.90 4.84
sel16786 1.71 1.57 1.19 0.51 1.31 0.84 1.16 3.56
sel16795 1.77 0.99 1.24 0.55 1.16 0.56 0.77 1.37
sel17453 1.87 1.67 1.26 0.54 1.22 0.68 1.49 4.59
Hmin 1.43 0.99 1.16 0.48 1.16 0.50 0.18 0.40
Hmax 2.00 2.69 1.29 0.61 1.41 1.11 1.85 7.10

sel30 1.11a) 0.89a) 1.20 1.05b) 1.28 0.56 0.51 0.43
sel31 0.96a) 0.34a) 1.39b) 0.89b) 1.30 0.84 1.10 0.42
sel32 0.96a) 0.67a) 1.26 0.96b) 1.16 0.65 0.23 0.16a)

sel33 1.14a) 0.77a) 0.96a) 0.52 1.21 0.53 0.79 1.17
sel34 1.87 3.04b) 1.33b) 1.22b) 1.15a) 0.85 0.40 1.00
sel35 1.12a) 0.52a) 1.24 0.66b) 1.12a) 0.44a) 1.72
sel36 1.31a) 0.62a) 1.12a) 0.51 1.26 0.60 2.35b) 2.88
sel37 0.92a) 0.71a) 1.26 0.87b) 1.11a) 0.78 0.71 0.58
sel38 0.91a) 0.34a) 1.27 0.65b) 1.03a) 0.50 0.65 0.34a)

sel39 0.81a) 0.11a) 1.23 0.72b) 1.17 0.58 0.80 0.12a)

sel40 1.66 0.81a) 1.14a) 0.55 1.19 0.43a) 0.12a) 0.18a)

sel41 1.14a) 0.48a) 1.18 0.70b) 1.22 0.56 0.21 0.15a)

sel42 1.10a) 1.81 1.16 0.51 1.31 1.01 0.95 3.40
sel43 1.69 3.04b) 1.24 0.77b) 1.26 0.68 0.06a) 0.23a)

sel44 1.18a) 0.18a) 1.52b) 0.43a) 1.02a) 0.34a) 0.59 0.25a)

sel45 0.92a) 0.42a) 1.16 0.73b) 1.37 0.68 1.46 0.85
sel46 0.94a) 0.43a) 1.05a) 0.71b) 1.12a) 0.55 1.35 0.82
sel47 1.54 2.07 1.19 0.54 1.36 0.57 0.16a) 0.63
sel48 0.84a) 0.30a) 1.23 1.08b) 1.14a) 1.00 0.91 0.26a)

sel49 0.93a) 0.33a) 1.17 0.83b) 1.16 0.50 1.27 0.50
sel50 1.32a) 0.59a) 1.28 0.46a) 1.21 0.32a) 1.78 2.31
sel51 1.83 0.72a) 1.14a) 0.42a) 1.24 0.66 0.16a) 0.27a)

sel52 1.40a) 0.73 1.32b) 1.02b) 1.29 1.01 0.14a) 0.10a)

sel17152 1.06a) 0.93a) 1.31b) 0.58 1.13a) 0.54 0.06a) 0.10a)

min 0.81 0.11 0.96 0.42 1.02 0.32 0.06 0.10
max 1.87 3.04 1.52 1.22 1.37 1.01 2.35 3.40



9.2 Complexity measures of the RR, QRS and QT intervals in natural time 397

Table 9.2 Continued

RR over QT 3–4 beats (νs)c) 50–70 beats (νL)c)

ρs(QT ) ρL(QT ) RR QRS QT RR QRS QT δS3−4(QT )×103

2.44 6.62 1.87 0.98 1.29 0.48 1.02 0.75 0.38
0.67 1.79 1.65 0.88 0.94 0.77 1.10 1.07 0.48
3.17 7.65 2.18 0.99 1.46 0.50 0.88 0.71 0.24
1.97 5.21 1.60 0.99 1.07 0.53 1.09 0.90 0.36
0.96 3.37 2.27 0.99 1.17 0.52 1.15 0.92 0.35
5.57 10.04 1.43 1.07 1.27 0.50 1.08 0.65 0.52
1.49 5.54 1.85 1.01 0.91 0.44 1.05 0.97 0.55
3.97 7.43 1.39 1.01 1.19 0.55 1.04 0.77 0.23
2.87 5.08 1.10 0.98 1.05 0.74 0.95 1.00 0.56
2.91 7.12 1.46 1.01 1.02 0.57 0.98 0.81 0.34
0.67 1.79 1.10 0.88 0.91 0.44 0.88 0.65 0.23
5.57 10.04 2.27 1.07 1.46 0.77 1.15 1.07 0.56

1.73 2.73 1.15 1.08b) 1.13 0.66 0.71a) 1.10b) 1.04b)

0.80 0.32a) 0.90a) 1.06 1.15 1.23b) 0.97 0.63a) 3.01b)

0.63a) 0.64a) 1.31 1.11b) 1.13 1.02b) 0.69a) 0.90 1.14b)

2.41 3.50 1.07a) 1.00 1.08 0.85b) 0.83a) 1.00 0.76b)

1.16 4.12 2.13 1.11b) 1.12 0.41a) 0.77a) 0.67 0.69b)

0.83 0.99a) 1.02a) 0.97 0.97 1.02b) 1.05 1.07 6.45b)

1.45 1.52a) 1.03a) 1.01 1.08 0.93b) 0.99 0.89 2.08b)

1.19 1.07a) 1.11 1.17b) 1.07 0.56 0.75a) 0.64a) 3.30b)

0.37a) 0.25a) 1.15 1.08 1.12 1.33b) 0.89 1.03 2.71b)

1.53 0.28a) 0.97a) 0.97 0.99 2.93b) 0.93 0.89 2.44b)

0.20a) 0.38a) 1.03a) 1.01 0.93 0.79b) 0.94 1.30b) 3.43b)

0.80 0.68a) 0.91a) 1.04 1.06 1.05b) 0.84a) 0.96 1.53b)

1.62 2.89 1.63 1.09b) 1.26 0.43a) 1.06 0.66 0.95b)

0.11 0.48a) 2.79b) 1.12b) 1.08 0.56 0.77a) 0.89 2.23b)

1.08 0.58a) 0.91a) 0.92 0.90a) 2.25b) 1.46b) 1.33b) 4.12b)

1.14 0.71a) 0.97a) 1.05 1.11 0.98b) 0.88 0.79 1.71b)

1.59 1.26a) 1.01a) 0.99 1.01 0.99b) 0.85a) 1.01 3.44b)

0.14a) 0.49a) 1.60 0.97 0.97 0.45 0.96 1.02 2.85b)

1.36 0.41a) 0.84a) 1.24b) 1.42 1.49b) 0.68a) 0.74 1.75b)

1.08 0.71a) 0.86a) 1.15b) 0.96 1.21b) 0.71a) 1.11b) 3.96b)

1.21 2.26 1.07a) 1.00 0.91 0.93b) 1.20b) 1.62b) 5.21b)

0.30a) 0.33a) 1.30 1.04 1.00 1.05b) 1.24b) 0.90 1.83b)

0.42a) 0.31a) 1.51 1.13b) 1.17 1.02b) 0.73a) 0.67 1.66b)

0.23a) 0.40a) 1.68 1.01 1.03 0.91b) 1.01 0.97 1.15b)

0.11 0.25 0.84 0.92 0.90 0.41 0.68 0.63 0.69
2.41 4.12 2.79 1.24 1.42 2.93 1.46 1.62 6.45

a) These values are smaller than the Hmin given in each column.
b) These values are larger than the Hmax given in each column.
c) These values do not fully coincide with those given in Ref. [67] for the reasons discussed in § 9.2.7.



398 9. Natural Time Analysis of Electrocardiograms

ing parameters defined in the time series obtained after shuffling the Qm randomly), only
four are required for the distinction between SD and H. We clarify that this seems to
be extremely difficult to be achieved by chance. In order to visualize it, if we assume
(for the sake of convenience only) independent and identically distributed (i.i.d.) values
of the parameters for one subject, we find that the probability that all 4 parameters are
within the bounds (minima and maxima) set by 10 other subjects (i.e., the healthy ones)
is (1−2/11)4 ≈ 0.448. Thus, the probability that all 24 additional subjects are classified
as SD by pure chance is (1−0.448)24 ≈ 6.4×10−7, i.e., extremely small (note that only
if one decides which parameters one wants to use before the calculation of the values is
this probability valid; this is the reason why blind evaluation – defining all methods, pa-
rameters and criteria studying one set of data, and then testing the significance using an
additional set of independent data – is considered very important in medical applications
and/or publications). If one just picks 4 parameters out of the original 20 as in our case, the
above probability should be multiplied by the possible combinations of selecting 4 objects
among 20, i.e., 20!/(4!16!) = 4,845, leading to a value 0.31% of achieving our result by
chance.
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9.2.2.1 Physical interpretation of the aforementioned results in § 9.2.2

The main feature of these results focuses on the fact that both ratios λs(RR) and λL(RR)
become smaller in the vast majority of SD, compared to H.

Recall that the δSi(RR) values themselves cannot distinguish SD from H, see
Fig. 9.9(a), in contrast to the ratios δSi(RR)/δS3(RR), see Fig. 9.9(b).

We now consider that for individuals at high risk of sudden cardiac death, the fractal
organization (long-range correlations) that characterizes the healthy subjects breaks down
(see Refs. [18, 15] and references therein; see also § 9.2.1 and § 9.5.1). This breakdown
is often accompanied by emergence of uncorrelated randomness (as already mentioned in
§ 9.1.3.1) or excessive order (e.g., periodic oscillations appear in the heart rate recordings
of “frequency” ≈ 1/min, which are associated with Cheyne–Stokes breathing) [15].

Let us now calculate [67] the δS values in a (dichotomous) Markovian (hereafter la-
beled� ) time series (exponentially distributed durations), see § 9.1.2, hereafter labeled
δSi(� ), for a total number of N = 103 pulses (i.e., length comparable to that of the ECG
analyzed here). These values are plotted – along with those for SD and H – in green in
Fig. 9.9(a) and show that the corresponding λs and λL variability measures are

λs(� ) = 1.20±0.03 and λL(� ) = 0.64±0.05; (9.4)

see Fig. 9.9(b). Three comments are now in order:

First, the δSi(� ) values differ drastically, see Fig. 9.9(a), from the δSi(RR) values
themselves of both SD and H, which indicates that the RR intervals (both in SD and
H) exhibit non-Markovian behavior, as mentioned in § 9.1.2.

This is consistent with the aspects that bodily rhythms, such as the heartbeat, show
complex dynamics, e.g., Refs. [18, 15].

Second, the fact that λs(RR) in SD becomes smaller than in H can now be understood
as follows: Since H exhibit a high degree of complexity, it is expected that (even)
their Hmin value (= 1.43) should markedly exceed λs(� ). On the other hand, in SD
this high complexity breaks down and hence their λs(RR) values naturally approach
λs(� ), thus becoming smaller.

This is strengthened by the fact that the SD average value of λs(RR) in Table 9.2 is
1.19, which almost coincides with λs(� )(= 1.20).

The latter coincidence also occurs for the QRS intervals in both H and SD, which agrees
with the observations [26] mentioned above (§ 9.1.3.1) that the prolonged QT intervals in
SD mainly originate from enlarged ST values, while their QRS intervals may remain the
same.
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Third, we now turn to the interpretation of the results related to λL(RR). In H, it is ex-
pected that (in view of the RR long-range correlations [15]) the corresponding values
must be appreciably larger than λL(� ) = 0.64±0.05. We now examine the SD: If, in
SD “uncorrelated randomness” appears, this reflects that their λL(RR) values naturally
approach λL(� ), thus becoming smaller (compared to H); this actually occurs in the
vast majority of SD in Table 9.2.

If in SD the aforementioned periodicities (associated with Cheyne–Stokes breathing)
appear, it is naturally expected (as shown below in § 9.2.2.2) to find large δS values when
a time-window of length around 60 beats, or so (i.e., related to the aforementioned “fre-
quency” ≈ 1/min) sweeps through the RR time series. This for SD, results in δS values
even larger than those in H, since in H no such periodicities appear, as actually observed
in the two cases marked with superscript ‘b’ (i.e., those exceeding Hmax) in Table 9.2.

The plausibility of the above interpretation is considerably strengthened by the follow-
ing remarks. Recall that the Hmin values for λs(RR) and λL(RR) have been determined
empirically by selecting the smallest values among the 10 H. We may overcome this em-
pirical selection, however, as follows. We divide each ECG in equal and non-overlapping
segments of length (l) significantly larger than the time-window of 60 beats (e.g., l = 180
or 120 beats; see Tables 9.3 and 9.4, respectively) and calculate the corresponding mea-
sures [λs(RR)]l and [λL(RR)]l for the various segments labeled by l. The mean values
〈λκ(RR)〉l for each individual, agree more or less with the values that have been obtained
above, when the time-window swept through the whole record and their standard devia-
tions provide a measure of the variability of each of these two complexity measures among
the various segments studied in each record. Comparing the values of min{[λs(RR)]l} and
min{[λL(RR)]l} (see the Tables 9.3 and 9.4) to λs(� ) and λL(� ), respectively, we find
the following. In H , the values of min{[λκ(RR)]l} significantly exceed λκ(� ) for κ = s
or L, as they should (with a possible exception of min{[λL(RR)]l} for sel16795, which
might be due to the fact that the ECG of this individual has the smallest length, i.e., 760
beats, among the H). On the other hand, most SD (e.g., in Table 9.3 those marked with ‘c’
and ‘d’) exhibit min{[λκ(RR)]l} values which are smaller than (or equal to) λκ(� ) for
κ = s or L (the values in bold, in both Tables 9.3 and 9.4, indicate the minority of cases of
SD in which the resulting min{[λκ(RR)]l} values exceed λκ(� )). Interestingly, all these
(21 or 22 out of 24) SD cases coincide with those already marked with ‘a’ in Table 9.2 on
the basis of the empirically determined H-limits of λs(RR) and λL(RR). Thus, the essence
of our findings could be summarized as follows:

When a time-window sweeps through the whole record available, the vast majority of
SD exhibits λs(RR) and λL(RR) values which are significantly smaller than those in
H and hence SD are distinguished from H. This finding stems from the fact that some
segments of the SD records exhibit values of these measures that are comparable with
those of a Markovian behavior (see Fig. 9.9(b)).
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Table 9.3 The resulting values of the variability measures λs(RR) and λL(RR) when using segments of
length l = 180 beats and then calculating their mean and minimum values. Taken from Ref. [63].

Signal λs(RR) λL(RR)

λs(RR)a) λs(RR)b) 〈λs(RR)〉l min{[λs(RR)]l} λL(RR)a) λL(RR)b) 〈λL(RR)〉l min{[λL(RR)]l}
sel16265 1.72 1.73 1.69 1.52 2.38 2.40 1.78 0.92
sel16272 1.69 1.66 1.67 1.56 1.35 1.44 1.31 1.12
sel16273 1.61 1.60 1.60 1.52 2.69 2.67 2.50 1.11
sel16420 1.51 1.54 1.50 1.43 1.74 1.80 1.80 1.37
sel16483 1.43 1.38 1.40 1.30 2.37 2.51 2.19 1.44
sel16539 2.00 2.10 2.02 1.73 1.94 2.08 1.92 1.03
sel16773 1.92 1.93 1.90 1.66 2.61 2.64 2.26 1.52
sel16786 1.71 1.78 1.76 1.54 1.57 1.70 1.51 0.95
sel16795 1.77 1.81 1.77 1.67 0.99 1.10 0.82 0.41e)

sel17453 1.87 1.91 1.90 1.85 1.67 1.73 1.68 0.93

sel30 1.11c) 1.12 1.17 1.03 0.89 1.06 1.38 1.21

sel31 0.96c) 0.96 0.97 0.88 0.34d) 0.34 0.35 0.28
sel32 0.96c) 1.12 1.28 0.93 0.67d) 0.95 1.32 0.39
sel33 1.14c) 0.90 1.07 0.92 0.77 0.74 0.87 0.77

sel34 1.87 2.07 1.99 1.50 3.04 3.48 2.82 1.32

sel35 1.12c) 1.13 1.14 1.07 0.52d) 0.58 0.56 0.44
sel36 1.31c) 1.30 1.33 1.16 0.62d) 0.63 0.64 0.48
sel37 0.92c) 0.91 0.94 0.75 0.71d) 0.78 0.69 0.51
sel38 0.91c) 0.81 1.09 0.79 0.34d) 0.12 0.36 0.08
sel39 0.81c) 0.81 0.81 0.79 0.11d) 0.11 0.10 0.07
sel40 1.66 1.16 1.65 1.60 0.81d) 0.82 0.67 0.35
sel41 1.14c) 1.13 1.31 0.91 0.48d) 0.44 0.63 0.10
sel42 1.10c) 1.22 1.31 0.87 1.81d) 2.13 2.59 0.69
sel43 1.69 1.55 1.63 1.52 3.04 3.85 3.24 1.65

sel44 1.18c) 1.17 1.19 1.17 0.18d) 0.18 0.17 0.13
sel45 0.92c) 0.92 1.12 0.82 0.42d) 0.42 0.65 0.11
sel46 0.94c) 0.96 0.94 0.88 0.43d) 0.46 0.41 0.30
sel47 1.54 1.54 1.54 1.37 2.07 2.16 2.32 1.81

sel48 0.84c) 0.84 0.93 0.84 0.30d) 0.30 0.79 0.14
sel49 0.93c) 0.89 0.93 0.87 0.33d) 0.37 0.32 0.20
sel50 1.32c) 1.33 1.33 1.16 0.59d) 0.73 0.61 0.49
sel51 1.83 1.87 1.79 1.63 0.72d) 0.75 0.77 0.66
sel52 1.40c) 1.41 1.13 0.99 0.73d) 0.74 0.69 0.49

sel17152 1.06c) 0.94 1.00 0.87 0.93d) 0.98 1.12 0.51

a) They come from Table 9.2.
b) These values, for the sake of comparison, are obtained after applying a detection algorithm which
excludes the “outliers”; this algorithm is analogous to the one used by Ivanov et al. [21].
c) These individuals have min{[λs(RR)]l} values which are equal to or smaller than the value λs(� ) =
1.20±0.03 discussed in the text.
d) These individuals have min{[λL(RR)]l} values which are equal to or smaller than the value λL(� ) =
0.64±0.05 discussed in the text.
e) The ECG of this individual has the smallest length (760 beats) among the H, which might be one of the
reasons why this case only deviates from the other H.
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Table 9.4 The resulting values of the variability measures λs(RR) and λL(RR) when using segments of
length l = 120 beats and then calculating their mean and minimum values. Taken from Ref. [63].

Signal λs(RR) λL(RR)

〈λs(RR)〉l min{[λs(RR)]l} 〈λL(RR)〉l min{[λL(RR)]l}
sel16265 1.70 1.46 1.87 0.98
sel16272 1.66 1.46 1.20 0.82
sel16273 1.59 1.47 1.95 0.79
sel16420 1.51 1.39 1.57 0.86
sel16483 1.42 1.23 2.45 0.90
sel16539 2.04 1.67 1.50 0.90
sel16773 1.91 1.67 2.41 0.77
sel16786 1.78 1.49 1.18 0.69
sel16795 1.77 1.68 0.68 0.44e)

sel17453 1.93 1.77 1.33 0.77

sel30 1.09 0.93 1.02 0.68
sel31 0.99 0.87 0.31 0.19
sel32 1.34 0.92 1.82 0.27
sel33 1.13 0.91 0.70 0.46
sel34 2.01 1.39 2.92 1.26

sel35 1.15 1.03 0.45 0.35
sel36 1.33 1.21 0.64 0.36
sel37 0.96 0.75 0.53 0.33
sel38 1.11 0.78 0.34 0.07
sel39 0.81 0.78 0.10 0.06
sel40 1.66 1.58 0.64 0.23
sel41 1.32 0.88 0.58 0.18
sel42 1.43 0.81 2.31 0.48
sel43 1.62 1.42 3.39 1.11

sel44 1.19 1.13 0.16 0.09
sel45 1.17 0.81 0.69 0.19
sel46 0.94 0.85 0.41 0.29
sel47 1.55 1.34 1.83 1.28

sel48 0.98 0.77 1.64 0.14
sel49 0.91 0.86 0.25 0.08
sel50 1.32 1.09 0.51 0.34
sel51 1.80 1.60 0.63 0.57
sel52 1.11 0.94 0.72 0.29

sel17152 0.99 0.79 1.16 0.40

e) The ECG of this individual has the smallest length (760 beats) among the H, which might be one of the
reasons why this case only deviates from the other H.

The same conclusions are drawn irrespective of whether we use a detection algorithm to
exclude ‘outliers’ from the records. In the third column (labeled with a superscript ‘b’) of
Table 9.3, we present the values obtained after applying such a detection algorithm. More
precisely a moving window average filter was applied. For each set of five contiguous
intervals, a local mean was computed, excluding the central interval. If the value of the
central interval exceeded the local average by a factor 1.5 or larger, it was considered to
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be an outlier and excluded from the interval series. This algorithm is analogous to the one
used by Ivanov et al. [21].

9.2.2.2 Study of the δS values for time series with a “sinusoidal” background

In Fig. 9.10, we show the δS value calculated when a time-window of length 3–100 beats
is sliding through the time series given by

xk = a+b sin(2πk/T ), (9.5)

or
yk = μ+σ sin(2πk/T )η , (9.6)

where η is an exponentially distributed random variable of unit mean and standard devi-
ation. The amplitude of the “oscillation” b or σ is comparable to the standard deviation
of the RR intervals in ECG and the “period” T is 60 beats, i.e., comparable to that of
the periodic oscillations in the heart rate recordings which are associated with Cheyne–
Stokes breathing [15] mentioned above in § 9.2.2.1. The main result of Fig. 9.10 could be
summarized as follows:
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Eq.(9.6)

Fig. 9.10 The δS values versus the time-window length for one H (sel16265) together with those obtained
using Eq. (9.5) (dotted blue) or Eq. (9.6) (broken green). Note that no maximum at around 60 beats appears
in the case of H. Taken from Ref. [63].

When the length of the sliding time-window becomes equal to the “period” (T = 60
beats) of the “oscillating” background, the δS value becomes maximum.
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Note that the window length corresponding to the maximum amplitude is practically
equal to that observed if the “oscillating” background were solely present; the latter case
for the sake of comparison is also plotted in dotted blue in Fig. 9.10.

9.2.3 Comparison of the present results in natural time with those deduced from the

Approximate Entropy (AE) or the Sample Entropy (SE) to distinguish SD

from H

In § 9.1.1, it was mentioned that two other dynamic entropies, i.e., AE or SE, have been
applied to ECG analysis. Here, we compare [63] the results of these two entropies to
distinguish SD from H with those achieved above in § 9.2.2 by means of the complexity
measures in natural time.

AE and SE are based on two input parameters: the sequence length m and the tolerance
level r. The smallest values of entropy correspond to perfectly regular sequences, since
the output of these algorithms provides a likelihood measure that two sequences (within
tolerance level r) remain close at the next point. Note that as r decreases both AE and SE
increase, because the criterion for sequence matching becomes more stringent [51].

In Fig. 9.11, we plot the values of AE calculated for r = 0.2STD and m = 2 (as recom-
mended in the program apen [25]) and SE, again for m = 2, and r = 0.2STD (by means
of the program sampen [33]) along with the values of the entropy S in natural time for
SD and H.

Note that no distinction of all individuals can be achieved by means of either AE or
SE (note that this still holds if we calculate AE for r = 0.65STD as recommended
in Ref. [44]), although the average values of the two groups actually turn out to be
different. This shows the necessity of using the complexity measures based on the
fluctuations δS of the entropy S in natural time in order to obtain the distinction of all
SD from H as in § 9.1.3 and § 9.2.2. Such a distinction cannot be achieved by means
of the S values themselves (which are close to Su, see Fig. 9.11) as already emphasized
in § 9.1.1.

9.2.4 The procedure for identifying SD among other individuals that include

healthy ones and heart disease patients

We first address the question of distinguishing all SD from the other individuals (heart
disease patients and H).

We use here the 101 individuals mentioned in § 9.2.1.

The values of all the complexity measures in natural time: λ , ρ , ν ,δS3−4(QT), λshu f ,
ρshu f and δS3−4,shu f (QT) for each one of the 101 ECG can be found in Table 9.2 and
in tables III to VII of Ref. [63] which are freely accessible.
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Fig. 9.11 The values (for m = 2, r = 0.2STD) of AE (upper panel) or SE (lower panel) versus the entropy
S in natural time calculated for SD and H. Taken from Ref. [63].

In addition, the quality of ECG data was discussed in Ref. [63] with the following
results: Among the 101 individuals investigated, five patients have been identified as “out-
liers”. The appearance of such “outliers” is not surprising (see below) when using (as we
did) an automatic threshold detector [31, 22, 32, 30] for the allocation of the intervals.
More precisely, their recognition was made as follows: four individuals, i.e., two MIT
(sel230 and sel231) and two EST (sele0612 and sele0704), have been identified as “out-
liers”, because they exhibit νs(QRS) values which are unusually larger than unity (a simple
statistical test – by means of the STATIST [39] – of the 101 νs(QRS) values, immediately
shows that these four cases can be considered as “outliers”). The fifth individual identified
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as “outlier”, i.e., sele0136, has a ρL(QRS) value drastically larger than the corresponding
values of all other patients.

An inspection of the measures λ , ρ , ν shows three facts. First, all SD and all patients
violate one or more H-limits. Second, none of the measures λ , ρ , ν alone, or a combination
of two of them, can effectively differentiate the SD from the patients. Third, if we consider
the three measures λ , ρ , ν (i.e., 16 parameters consisting of the 10 parameters explained
in § 9.2.1 and the 6 parameters of νs and νL related to the RR, QRS and QT intervals, e.g.,
see Table 9.1) altogether, we find that 20 SD out of 24 violate some of the limits of both
patients and H, thus allowing in principle a distinction of the vast majority of SD from the
other individuals.

Thus, in summary, the consideration of the quantities (λ , ρ , ν) only, does not lead to
a distinction of all SD from the patients. The same conclusion is drawn if we alterna-
tively consider the quantities (λ , λshu f ,ρ) only.
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Fig. 9.12 The average of the
δS(QT ) values – labeled 〈δS(QT )〉
– for each of the six groups labeled
H, MIT, MSV, MST, EST and SD
versus the time-window length. The
bars denote the standard error of the
mean. (The corresponding standard
deviations overlap considerably and
hence are not shown for the sake of
clarity.) The lowermost curve and
the uppermost curve correspond to H
and SD, respectively and hence co-
incide with the two curves depicted
in Fig. 9.7(b). Taken from Ref. [68].

We now turn to the investigation of the δS(QT) values, which as shown in Fig 9.7(a)
allows the distinction of all SD from H. In Fig. 9.12, the average value 〈δS〉(QT) for each
group is plotted versus the time-window length. It is intriguing that the results of the four
groups (MIT, MSV, MST, EST) of patients are located between H (the lowermost curve)
and SD (the uppermost curve). We emphasize, however, that if we plot the curves for each
one of the 101 individuals (in a way similar to that of Fig. 9.7(a)), we find that there are
some patients whose results overlap with either SD or H. We now restrict ourselves to
δS3−4(QT) which for the sake of simplicity will be hereafter simply denoted δS(QT). Let
us consider only the limiting cases – i.e., the values corresponding to the lowermost and
the uppermost curve, to be called hereafter δS(QT)min,ξ and δS(QT)max,ξ , respectively –
obtained in each group ξ of heart disease patients, i.e., ξ = MIT, MSV, EST or MST. In
order to distinguish SD from heart disease patients, we must appropriately discriminate
the overlap which refers to those of the patients that lie above the uppermost δS(QT) of H;
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the latter from now on will be called δS(QT)max,H . Thus, the limits of the patients we are
currently interested in, do not extend from δS(QT)min,ξ to δS(QT)max,ξ , since they must
exceed δS(QT)max,H , i.e.,

δS(QT ) > δS(QT )max,H . (9.7)

The curve which corresponds to the one of the patients that has δS(QT) lying just above
the δS(QT )max,H corresponds to a value, which will be hereafter labeled δS(QT)min′,ξ (e.g.
see fig.3 of Ref. [63]). Thus, if we apply to each group ξ of patients the condition

δS(QT )min′,ξ ≤ δS(QT )≤ δS(QT )max,ξ (9.8)

we are left only with those of the patients of the group ξ that actually overlap with SD.
We now recall that the measures λ , ρ , ν altogether, which are in fact ratios of δS values,

enable the discrimination of the vast majority of SD from all the others (i.e., heart disease
patients and H), while the δS(QT) values themselves efficiently distinguish, as mentioned
(see Fig. 9.7), all SD from H. This motivates us to investigate whether a proper combi-
nation of these two facts can serve our purpose, which refers to the identification of all
SD among the other individuals (heart disease patients and H). Thus, we now compare the
quantities λ , ρ , ν , δS(QT) altogether of each SD to the corresponding parameters of only
those among the patients that happen to have δS(QT) values exceeding the corresponding
values of H, i.e., obey the condition (9.7), or preferably the more accurate condition (9.8).

Such a comparison reveals that some of the 17 parameters of λ , ρ , ν , δS(QT), in
all SD, lie outside the limits of these patients (cf. the same happens, of course, if we
compare each SD to the limits of H). These results point to the conclusion that all 24
SD are distinguished from the patients (and H). The same conclusion is drawn if we
consider instead, the 17 parameters λ , λshu f , ρ , δS(QT).

We emphasize, however, that the study of the estimation errors (see § 9.2.7 and Section
9.3; see also the Appendix of Ref. [68]) reveals that:

The confidence level for the distinction of all SD from the patients becomes apprecia-
bly larger if we combine all the measures λ , λshu f , ρ ρshu f , ν (of all intervals) with
the condition (9.8) applied to both δS(QT) and δSshu f (QT) (i.e., in reality, we then
consider the limits of those patients whom both δS(QT) and δSshu f (QT) values are
larger than those in H which are shown in Fig. 9.6).

A compilation of the limits of each of the complexity measures λ , ρ ,λshu f , ρshu f , ν
along with those of δS3−4(QT ) and δS3−4,shu f (QT ) in healthy humans (H) and in four
groups (MIT, MSV, EST, MST) of heart disease patients is given in Table 9.5.
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Table 9.6 The number of SD and patients that can be distinguished from H when using λκ (RR) or
λκ,shu f (RR) alone.

Group Total number
of individuals

λκ (RR) λκ,shu f (RR) λκ (RR) and
λκ,shu f (RR)

SD 24 23 10 24
MIT 15 14 6 14
MSV 13 13 2 13
EST 33 29 8 29
MST 6 5 0 5

We now comment on two points.

First, since it is known that heart rate variability depends strongly on age, it is highly
recommended that when comparing values of the aforementioned complexity mea-
sures, the corresponding limits should be taken from subjects (heart disease patients
and H) of comparable age [66].

Second, we now focus on the importance of the sequential order of Qm on the aforemen-
tioned complexity measures. We prefer to deal with the results related to the RR intervals
since it is known that the healthy heart beats irregularly and that the RR intervals fluctuate
widely, following complicated patterns [9]. Let us investigate, for example, the possibility
of using λκ (RR) alone to distinguish the SD as well as the four groups of patients from
H, i.e., examine whether the λκ (RR) values of each individual violate one (at least) of the
relevant H-limits.

The results show (see Table 9.6) that the vast majority of SD and of each group of
patients is well distinguished from H by means of λκ (RR) alone.

The situation drastically changes, however, if we use, instead of λκ (RR), the λκ,shu f
values (see the tables V to VII in Ref. [63]): only the minority of SD and of each group
of patients can be differentiated from H. Since the calculation of the λκ (RR) values takes
into account the sequential order of Qm, while the λκ,shu f (RR) values do not, this points to
the following conclusion:

It is the sequential order of beats that contains the primary information which enables
the distinction between the SD and heart disease patients, on the one hand, and the H,
on the other.

This might explain why procedures based on the entropy in natural time (which is dy-
namic entropy, affected by the sequential order [67]) – and hence consider the complexity
measures mentioned in § 9.2.1 – can achieve such a distinction, while static entropy (e.g.,
Shannon entropy, see Ref. [67]) cannot.
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9.2.5 Distinction of heart disease patients from H

This distinction can be made by identifying as heart disease patients the individuals
whom one or more of the parameters associated with λ , ρ , ν (of RR, QRS, QT) and
δS(QT ) violate the H-limits provided that the distinction of the SD has been preceded
by the procedure described above in § 9.2.4.

Furthermore, comparing each of the tables in Ref. [63] that present the aforementioned
parameters for each group of heart disease patients to (the H in) Table 9.2, we also find
that:

In all heart disease patients, at least one of their four λ parameters associated with
RR and QRS, i.e., λs(RR), λL(RR), λs(QRS) and λL(QRS), violates one of the corre-
sponding H-limits, thus allowing again a distinction between patients and H. In other
words, only four parameters are needed to distinguish heart disease patients from H.

A further inspection reveals that among the limits of these four λ parameters most
of the heart disease patients violate the ones of λs(RR) and/or λL(RR).

Thus, in a future population consisting of all three categories SD, heart disease patients
and H, in order to separate the last two, we may work as follows. By considering the limits
given in Table 9.5, we first apply the procedure to identify the SD (as described in § 9.2.4)
among the other individuals, thus only heart disease patients and H remain. It seems then
that, in the latter population, the λ parameters of the RR and QRS can efficiently distin-
guish heart disease patients from H (this can be further strengthened by the additional use
of the corresponding ν parameters, which differentiate most of the heart disease patients
– but not all of them – from the H). In other words, any (explicit) information on the QT
may not be prerequisite to distinguish between heart disease patients and H. This is con-
sistent with the aforementioned (§ 9.1.1) clinical observations that the prolongation of the
QT (due to the lengthening of the ST interval) is mainly a characteristic of the SD.

9.2.6 Complementarity of the complexity measures for identifying sudden cardiac

death individuals (SD)

We first discuss the complementarity of the two procedures described above in § 9.1.3
and § 9.2.2 for the distinction of the (otherwise healthy) SD from H, i.e., if the population
under investigation does not include heart disease patients.

Recall that in § 9.1.3 entropy fluctuations – deduced from the original and the “shuf-
fled” time series – on fixed time-scales have been employed, while in § 9.2.2 entropy
fluctuations on different time-scales have been considered.
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This complementarity holds in the following sense: if in the frame of the one procedure
an ambiguity emerges in the distinction between SD and H, the other procedure gives a
clear answer.

We now study, as an example, the following two procedures: i.e., the one that uses
δS(QT) (see § 9.1.3) and the other which combines the measures λ , ρ (see § 9.2.2). The
δS3−4(QT) values of SD and H given in the last column of Table 9.2 are classified into
two classes: the larger values correspond to SD, and the lower ones correspond to H (see
also Figs. 9.7 and 9.12). Let us focus on the two lowermost SD values and the upper-
most H value. The former two correspond to sel33 and sel34 (δS3−4(QT) = 0.00076 and
0.00069, respectively) and the latter one to sel16795 (δS3−4(QT) = 0.00056). In view of
their δS3−4(QT) values proximity, one may wonder whether these two SD could be con-
fused with H. This ambiguity can be resolved in the light of the other procedure (i.e., λ , ρ),
as follows. Table 9.2 reveals that sel33 markedly violates both the Hmin-limit for λs(QRS)
and Hmin for λs(RR) (the latter can be visualized in Fig. 9.13). As for sel34, the Hmax-limit
of λL(QRS) is strongly violated. We now turn to an alternative example, i.e., sel47, which,
by means of the method using the complexity measures λ , ρ (of the RR and QRS intervals,
see § 9.2.2) could be confused with H, because a deviation of only around 12% from the
Hmin-limit of minH [ρs(QRS)] = 0.18 is noticed. This ambiguity can be resolved by means
of the procedure using δS(QT) (§ 9.1.3) as follows: sel47 has δS3−4(QT) = 0.0029, which
exceeds significantly, i.e., by a factor 5, the corresponding value of sel16795, who has the
largest δS3−4(QT) = 0.00056 value among the H.
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Fig. 9.13 The δS3−4(QT) values along
with those of λs(RR) and λL(RR) for
SD (red) and H (black). The individual
sel33 is marked with a green column.
Taken from Ref. [68].

We now turn to the investigation (for details see Ref. [63]) of the complementarity of
the four quantities λ , ρ , ν and δS(QT ) on differentiating all SD from the others (i.e., heart
disease patients and H). This can be judged from an inspection of Table 9.7, which contains
the results to distinguish the SD among 101 individuals, for all possible combinations,
upon considering only three of these quantities (i.e., see the cases in Table 9.7 except of the
upper two where all four quantities are used). For example, the combination λ , ρ , ν cannot
differentiate four SD (i.e., sel30, sel32, sel34, sel37) from the heart disease patients. As a
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Table 9.7 Results of the distinction of 24 SD among 101 individuals upon using combinations of the
measures λ , ρ , ν along with δS3−4(QT ). Taken from Ref. [63]

Measures combineda) The non-differentiated SDb) Number of SD
distinguished

λ ,ρ,ν and relation (9.8) None 24 (all)

λ ,ρ,ν and relation (9.7) One: sel35(MIT) 23

λ ,ρ,ν Four: sel30(EST), sel32(EST), sel34(EST), sel37(EST) 20

λ ,ρ and relation (9.8) Four: sel30(MSV), sel41(MIT), sel46(MIT), sel49(MSV) 20

ρ,ν and relation (9.8) Three: sel33(MSV,EST), sel45(MIT,MSV), 21
sel46(MSV,EST)

λ ,ν and relation (9.8) Seven: sel36(MIT,EST), sel38(MIT), sel41(MSV), 17
sel42(EST), sel47(EST), sel51(EST),
sel17152(MSV,EST)

λ , ρ , ν of RR and QRS only Twelve: sel30(EST), sel32(EST), sel34(EST), 12
sel35(MIT,MSV), sel37(EST), sel38(MIT), sel40(EST),
sel43(EST), sel45(MSV), sel47(EST), sel50(MIT),
sel51(EST)

a) In all cases the data of the five heart disease patients sel230, sel231, sele0612, sele0704, sele0136 have
been excluded (see § 9.2.4).
b) In parenthesis we mark the group(s) of heart disease patients in which the corresponding SD is mislo-
cated.

second example, the combination ρ , ν and δS(QT ) cannot identify three SD (i.e., sel33,
sel45, sel46), who are different from the four that could not be discriminated by the former
combination λ , ρ , ν . By the same token, we find that each of the remaining combinations
fails to identify certain SD, who can be distinguished by another combination(s).

Therefore, we conclude that each of the four quantities λ , ρ , ν , δS(QT ) seems to
complement the others in identifying all SD (note that the same conclusion is drawn
if we alternatively use the four quantities λ , λshu f , ρ and δS(QT); see table XIII of
Ref. [63]).

In general, measures that employ entropy fluctuations of the original and shuffled
time series on fixed time-scales, seem to complement those that take into account
entropy fluctuations on different time-scales.

This might be understood in the context that each of these quantities, as already men-
tioned, presumably captures certain “elements” of heart dynamics only. As for the neces-
sity of using all these quantities, it might stem from the following fact. The database we
used, consists of SD individuals in which different physiological processes might have led
to sudden cardiac death. The selection of such a heterogeneous database was intentionally
made, because it was our aim to find, if possible, a general procedure for identifying SD.
If a study of “homogeneous” SD databases (in the sense that the same physiological pro-
cesses preceded the sudden cardiac death) is made, it may happen that a smaller number



9.2 Complexity measures of the RR, QRS and QT intervals in natural time 413

of parameters are necessary to distinguish all SD. Until the completion of such studies,
however, it is recommended to use all the parameters associated with the aforementioned
quantities, as described in Ref. [68].

9.2.7 The estimation errors in the procedure for identifying SD

Beyond the error introduced by the use of an automatic threshold detector for the allocation
of the corresponding intervals which is largest for the QT and smallest for the RR intervals,
the following two sources of errors must be considered [67, 68]: First, an estimation error
emerges when analyzing – instead of the original time series of length l ≈ 103 heartbeats
– smaller lengths l′ (e.g., see Table 9.3), which, however, still significantly exceed the
time-window lengths used, for example l′ ≈ 2×102 (obviously the errors associated with
the measures in the short-range, s, are smaller from those corresponding to the longer
range, L, because for the latter range the l/l′ values – due to the restricted length of the
records available – are small, thus not allowing more reliable statistics). Second, a source
of (statistical) error in the results emerges when considering the ratio(s) δSshu f /δS (i.e.,
when dealing with ν and λshu f ) instead of δS itself. While δS may be considered to have
a unique value for a (given) original Qm time series, the value of δSshu f depends on the
randomly shuffled Qm series each time selected (note that such differences are well known
[23] when dealing with randomized series of finite length). This is why the ν values given
in Ref. [67] for SD and H do not fully coincide with those tabulated in Ref. [68]. To account
roughly for the extent of this statistical error, we averaged here the δSshu f values calculated
over a number (e.g. 20) of randomly shuffled Qm-series generated from the same original
series and the corresponding standard deviation was estimated.

The final results of the above sources, could be summarized as follows [68]: The (per-
centage) estimation error was found to be on the average ≈10% for the complexity mea-
sures λ ,λshu f , ρ , ρshu f , ν associated with the RR and QRS intervals. Furthermore, since
the error in the δS(QT) may reach 20%, the estimation error in those of the complexity
measures that involve δS(QT) may be as high as ≈30%. Upon considering such error-
levels, hereafter called “plausible estimation errors” εp, a study of each of the methods for
the distinction of SD was made. The study was repeated by assuming larger (percentage)
estimation errors, hereafter labeled “modified estimation errors” εm, calculated for each
parameter from

εm = εp

(
1+

Hmax−Hmin

Hmax +Hmin

)
, (9.9)

see the last column in Table 9.5. Both studies led, more or less, to the same results, e.g.,
those obtained when using εm, which are tabulated in columns 5–7 in Table 9.8. The calcu-
lation, in each study, was made as follows. Each parameter was assumed to be equal to its
value (initially estimated from the original time series available) multiplied by a number
randomly selected in the range 1±εp or 1±εm, respectively) and then each of the methods
for the distinction of SD was applied. This application was repeated, for each method, 103

times via Monte Carlo.
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The extent to which these conclusions hold, was also investigated in the following ex-
treme case: the limits of the parameters of H (and patients), which are automatically ad-
justed for each “random” selection of the values described above, have been assumed to
additionally relax by (extra) amounts equal to εp or εm. Such a “relaxation” faces the ex-
treme possibility that the populations of H and heart disease patients analyzed here are not
considered large enough to allow a precise determination of their limits, and hence future
increased populations’ studies could somehow broaden these limits by extra amounts as
large as εp or εm. The corresponding confidence levels to distinguish SD from either H or
heart disease patients can be found in the last four columns of Table 9.8.

9.3 Summarizing the conclusions for identifying sudden cardiac death

individuals (SD) upon considering the error levels

As already mentioned in § 9.1.1, sudden cardiac death may occur even if the ECG looks
similar to that of truly healthy humans. In other words, we are interested here in the dis-
tinction of the (otherwise healthy) SD from H, i.e., if the population under investigation
does not include heart disease patients. To distinguish such cases, i.e., when we consider a
set consisting only of two groups of ECG, namely H and SD, the conclusions drawn from
the procedures developed in § 9.1.3 and § 9.2.2 above, are summarized below in § 9.3.1
and the relevant confidence levels are compiled in Table 9.8 under the Aim “Distinction of
SD from H”. As for the procedures developed to identify SD in a population that includes
H as well as heart disease patients (§ 9.2.4) that led to the limits compiled in Table 9.5, the
conclusions are summarized in § 9.3.2 and the corresponding confidence levels are given
in Table 9.8 against the Aim “Distinction of SD from heart disease patients”.

9.3.1 Summary of the conclusions for distinguishing SD from H

Among the four methods suggested (i.e., two in § 9.1.3 and two in § 9.2.2), the one that
uses the measures λ , ρ (associated, however, with all three types of intervals, i.e., 10
parameters in total, see first row in Table 9.8) seems to be robust [68] in the following
sense:

(i) When assuming the error-levels (see § 9.2.7) deduced from the data analyzed here
(the relevant results are inserted in Table 9.8 under the heading “Using the limits from the
data analyzed”):

The use of λ , ρ related to all intervals, thus 10 parameters in total, allows the distinc-
tion of all SD from H with a confidence level above 99%.

The confidence level decreases to 63%, 49%, 32% and 59% when using either four
parameters or one parameter only as follows: first: λκ (RR) and ρκ (QRS); second: λκ (RR)
and λκ,shu f (RR); third: νκ (RR) and νκ (QRS); fourth: δS3−4(QT), respectively.
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(ii) If we investigate the extreme case of the additional “relaxation” of the H-limits
mentioned in § 9.2.7 (the relevant results in Table 9.8 are under the heading “Using broader
limits”), the capability for the distinction of all SD still remains with the following results:

In the case of using solely λ , ρ for all intervals, the confidence level in distinguishing
all SD is 88%. It becomes appreciably higher, i.e., larger than 99%, if we use the
quantities λ , ρ , λshu f , ρshu f , ν , δS3−4(QT ), δS3−4,shu f (QT ) altogether.

When using, however, four parameters only in the first three combinations mentioned
above, the confidence level decreases to 90%, 36% and 8%, respectively (and to 77%
when using δS3−4(QT)), even when allowing two at the most SD – out of 24 – to be
misinterpreted as being H.

9.3.2 Summary of the conclusions for identifying SD among individuals that also

include heart disease patients and H

The corresponding conclusions related to the distinction of SD from heart disease patients
can be drawn on the basis of the values given in the lower part of Table 9.8.

In summary, the study of the estimation errors reveals [68] that if the limits of the
parameters that have been deduced from the ECG data analyzed here will not be broadened
by future investigations:

We can satisfactorily distinguish the totality of SD from H as well as discriminate the
totality of SD from heart disease patients, upon employing the quantities λ , λshu f , ρ ,
ρshu f , ν ,δS3−4(QT), δS3−4,shu f (QT) altogether, i.e., the sixth and the last method in
Table 9.8, respectively.

These quantities also allow the distinction of the totality of SD from H (as well as
distinguish the vast majority of SD from the heart disease patients) even if their limits will
be eventually broadened (by εm of Eq. (9.9), see § 9.2.7).

Concerning the number of parameters required to achieve the desired distinction [68]:
In reality, only twelve independent quantities, (i.e., the six: δSκ(τ) and the six δSκ,shu f (τ),
where κ = s,L and τ = RR, QRS, QT) are extracted from the experimental data. Thus, for
example, beyond δS3−4(QT ) or δS3−4,shu f (QT ), eleven additional parameters (out of 26)
of the ratios: λ , λshu f , ρ , ρshu f , ν are in principle required to be used for the distinction.
These twelve quantities, however, should not be fortuitously selected, but the following
points must be carefully considered: (i) priority should be given to the eight parameters
associated with λ values and λshu f (or ν) values of RR and QRS, (ii) using, at least, one
ρ-parameter (involving δS3−4(QT ) or δS3−4,shu f (QT )), and (iii) examining whether the
totality of the parameters used can actually reproduce the aforementioned twelve δS values
determined directly from the data. However, in order to avoid the difficulty arising from
the completeness (or not) of the aforementioned selection, at the present stage (i.e., until an



9.4 The change ΔS of the entropy in natural time under time reversal 417

appreciably larger number of H and heart disease patients will be analyzed to allow a better
precision in the determination of the corresponding limits, see § 9.2.7), it is recommended
to use – instead of twelve – all the 28 parameters associated with the quantities λ , λshu f ,
ρ , ρshu f , ν , δS3−4(QT ) and δS3−4,shu f (QT ).

9.4 The change ΔS of the entropy in natural time under time reversal:

identifying the sudden cardiac death risk and specifying its

occurrence time

9.4.1 Specifying the occurrence time of the impending cardiac arrest by means

of ΔS

Here, we make use of the Definition 3.2 of ΔS (see Eq. (3.64)) and the points developed
in § 3.5.1.

In particular, a window of length l is sliding, each time by one pulse, through the whole
time series. The entropies S and S−, and therefrom their difference ΔSl , are calculated
each time. Thus, we form a new time series consisting of successive ΔSl values.

We will show and that the determination of the occurrence time of the impending car-
diac arrest can be obtained [69] from the time evolution of ΔSl deduced from the RR time
series.

9.4.1.1 The ECG data analyzed in natural time

These are 159 long-lasting (from several hours to around 24 h) ECG recordings, which
come from databases [14], containing: (i) 72 healthy subjects, (ii) 44 patients with con-
gestive heart failure (CHF) (iii) 25 subjects with atrial fibrillation (AF) and (iv) 18 indi-
viduals suffered sudden cardiac death. In particular (see Ref. [65]), these data come from
the following databases [14]: (i) the MIT-BIH Normal Sinus Rhythm Database (nsrdb)
containing 18 H digitized with frequency fexp = 128 Hz, (ii) the Normal Sinus Rhythm
RR Interval Database (nsr2db) containing 54 H, fexp = 128 Hz (iii) the Congestive Heart
Failure RR Interval Database (chf2db) containing 29 subjects with congestive heart fail-
ure, fexp = 128 Hz, (iv) the BIDMC Congestive Heart Failure Database (chfdb) with 15
subjects with severe congestive heart failure, fexp = 250 Hz (v) the MIT-BIH Atrial Fib-
rillation Database (afdb) with 25 subjects with atrial fibrillation (AF) mostly paroxysmal,
fexp = 250 Hz and (vi) the Sudden Cardiac Death Holter Database (sddb), fexp = 250 Hz.
The latter contains 24 SD among which 12 had ECG with audited annotations. Here, be-
yond these 12 individuals, we studied six more (i.e., “33”, “37”, “44”, “47”, “48”, “50”)
whose ECG could be analyzed with confidence. Thus, we consider 18 (out of 24) SD
individuals of the sddb.
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The results presented in this Section refer to the RR intervals (see Fig. 2.2), i.e.,
Qm = RRm. For reasons that will be explained later, the study will be extended (in all
these 159 individuals except the 25 AF for which NN annotations were not available) to
the so-called NN intervals, i.e., Qm = NNm. These are intervals obtained from ECG an-
notation files by using the option [41] “-c -PN pN”, which yields only intervals between
consecutive normal beats, while intervals between pairs of normal beats surrounding an
ectopic beat are discarded. In both the RR and NN time series, in order to exclude “out-
liers” from the records, the detection algorithm proposed in Ref. [21] has been applied, i.e.,
for each set of five contiguous intervals, if the local mean, excluding the central interval,
is larger than twice the central interval then this interval is excluded from further analysis.
In Fig. 9.15(a) one H out of 72, i.e., the one labeled 16539, has been discarded because the
resulting σ [ΔS3](NN) value was unusually high compared to that in other H of nsrdb (see
table 2 of Ref. [65]). Furthermore, in Fig. 9.15(b), three H out of 72 (i.e., 16539, nsr024
and nsr044) have been also discarded since they have σ [ΔS3](RR) value unusually higher
than that in other H (see table 2 of Ref. [65]). For more details on the annotators used see
Ref. [65].

Table 9.9 Results of the application of the complexity measure ΔSl to the RR time series: the extrema
max(ΔS13) and min(ΔS13) in SD along with the time of their occurrence, i.e., Tmax and Tmin, respectively.
The latter time is measured from the time of the VF onset (except for “49”, who paced with no VF). In the
last column, the total duration of the record Ttotal measured from the time of the VF onset is also inserted.
Taken from Ref. [65].

Individual max(ΔS13) Tmax(s) min(ΔS13) Tmin(s) Ttotal (s)

30 0.0129 28,150.65 −0.0107 6,000.90 28,470.75
31 0.0182 1,497.47 −0.0174 1,492.78 49,341.89
32 0.0069 59,754.38 −0.0047 59,746.80 60,315.61
33 0.0168 3,021.60 −0.0237 11,212.63 17,176.40
34 0.0102 10,642.46 −0.0097 7,408.24 23,743.42
35 0.0214 22,674.56 −0.0220 7,872.32 86,398.19
36 0.0218 5,603.68 −0.0197 5,598.33 68,338.58
37 0.0355 5,361.32 −0.0569 5,370.84 5,470.82
41 0.0240 3,303.27 −0.0212 3,060.47 10,762.66
44 0.0146 7,993.19 −0.0123 34,421.23 70,723.33
45 0.0157 62,992.88 −0.0145 62,985.09 65,354.88
46 0.0184 13.38 −0.0166 5,244.22 13,304.91
47 0.0241 13,282.90 −0.0230 8,481.94 22,378.26
48 0.0146 8,921.66 −0.0150 8,930.64 8,978.57
49 0.0145 5,677.80 −0.0140 1,805.06 84,528.44
50 0.0353 1,349.73 −0.0347 4,349.58 42,339.39
51 0.0151 53,067.89 −0.0161 1,957.63 82,701.48
52 0.0293 2,552.97 −0.0252 2,567.82 9,158.85

9.4.1.2 Presentation of the ΔSl results

In Fig. 9.14(a), we give as an example the time series of ΔS13 for one SD, i.e., the one
labeled “30”. In the horizontal axis the time is measured from the ventricular fibrillation
(VF) onset. The time of the VF initiation for each SD (except for the individual “49”, who
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Fig. 9.14 Results from the analysis
of the RR time series: (a) Plot of the
quantity ΔS13 versus the time to the
VF onset for one SD, i.e., “30”. The
quantities max[ΔS13] and min[ΔS13] are
shown by arrows. (b) For each of the
18 SD (each bar corresponds to each
individual), we plot the max[ΔS13] value
– in the upper part (i.e., positive ΔS13
axis) – and the value min[ΔS13] – in the
lower part (i.e., negative ΔS13 axis) –
versus the time it appeared before the
VF onset. The shaded part indicates
the last 3 h before the VF onset. (c)
The red curve shows the number of SD
that violate both conditions Tmax ≤ 3 h
and Tmin ≤ 3 h as a function of scale l.
The probability achieving by chance the
relevant number of SD is drawn by blue
bars (right vertical scale). Reprinted with
permission from Ref. [69]. Copyright
(2007), American Institute of Physics.

paced with no VF) is given in the database used [14]. The VF initiation remains one of the
leading immediate causes of sudden cardiac death [1]. The maximum and the minimum
values of ΔS13 will be labeled max[ΔS13] and min[ΔS13], respectively. The time of their
appearances are designated Tmax and Tmin, respectively. An inspection of Fig. 9.14(a) in
conjunction to Table 9.9, reveals that Tmax ≈ 28,150 s and Tmin ≈ 6,000 s (before the VF
onset). The corresponding values for all the other SD studied, are also given in the same
Table, which presents the extrema of ΔS13 along with the time of their appearance. These
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values, which are depicted in Fig. 9.14(b), reveal that interestingly in the vast majority of
SD (i.e., in all the 18 SD except the individuals “32” and “45”, the latter having a history
of ventricular ectopy) they are smaller than around 3 hours. In other words, only for two
individuals (i.e., “32” and “45”) out of eighteen, both Tmax and Tmin are larger than around
3 hours. The results for a variety of other length scales are summarized in Fig. 9.14(c),
where we plot in red the number of SD that violate both conditions, i.e., Tmax ≤ 3 h and
Tmin ≤ 3 h, at various scales. The probability having such a result by chance is also shown
in the right vertical scale. This probability has been found by Monte Carlo calculation,
in which the observation times for both extrema, i.e., Tmax and Tmin, were assumed to be
uniformly distributed within the total duration Ttotal of the record for each individual (see
Table 9.9). We observe that for small scales (l < 30) the observed number of SD differs
significantly from the one expected by chance. Especially, the probability to find by chance
the result obtained at l = 13 is smaller than 0.2%.

In other words, an optimum length scale (i.e., l = 13 heartbeats) exists, at which the
magnitude of ΔSl (deduced from the RR time series, alone) maximizes (in 16 out of 18
cases) ≈ 3 hours at the most before the VF onset, thus signaling the imminent cardiac
death risk.

Since many SD experience arrhythmia (consisting of one or more types including pre-
mature ventricular contractions (PVCs), AF and non-sustained tachycardia), it has been
confirmed (through a direct inspection of the ECG) that the extreme values of ΔS13 in
Fig. 9.14(b) mainly come from trains of occurrences of PVCs. We emphasize, however,
that beyond the PVCs, the method of ΔSl captures additional elements of cardiac dynam-
ics that distinguish SD from other individuals as will be discussed in § 9.4.2.

9.4.2 Identifying the sudden cardiac death risk by means of complexity measures

based on ΔS

We now make use of the points treated in § 3.5.1 and § 3.6.2. In particular, following
§ 3.5.1, we recall that when we form the new time series consisting of successive ΔSl
values, the standard deviation of these values is denoted by σ [ΔSl ]. Upon shuffling the Qm
randomly (thus destroying any information hidden in the ordering of the events), the ΔSl
values turn to a sequence of different values labeled ΔSshuf

l whose standard deviation is
designated by σ [ΔSshuf

l ] (its theoretical estimation was given in § 3.5.2). The complexity
measure Nl ≡ σ [ΔSshuf

l ]/σ [ΔSl ] (see Eq. (3.83)), which quantifies the extent to which the
ordering of the heartbeats contributes to the ΔSl values (being unity for a random process),
is also computed.

In Fig. 9.15(a), we plot the quantities N3(NN) versus σ [ΔS7](NN) deduced from the
analysis of the NN time series of all individuals except of the 25 AF (since for the latter,
relevant NN annotations were not available).
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Thus, when using the NN time series alone, an inspection of Fig. 9.15(a) reveals the
major importance of the measure N3(NN) in two respects.

First, the vast majority of SD (i.e., 14 out of 18, lying in the shaded region) exhibit
N3(NN) values that are smaller than the minimum N3(NN) value computed among the
H which is labeled Hmin and marked with a horizontal green line in Fig. 9.15(a).

Second, the vast majority of CHF have N3(NN) values larger than Hmin, thus al-
lowing in principle a distinction between CHF and SD.
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In Fig. 9.15(b), we plot N3(RR) versus σ [ΔS7](RR) deduced from the RR time series.
This figure shows that the distinction between CHF and SD achieved in Fig. 9.15(a) is now
lost. This is understood in the context that frequent PVCs influence the RR time series (but
not the NN) of both CHF and SD.

Thus, when using the RR time series alone, a closer inspection of Fig. 9.15(b) reveals
two important points:

First, almost all SD (i.e., except “32”) exhibit N3(RR) values that are smaller (hence
high complexity breaks down) than the minimum value Hmin computed in H, thus
emphasizing again the importance of the scale l = 3.

Second, the shaded region that contains the vast majority of AF (18 out of 25) lies
to the right of the maximum value of σ [ΔS7](RR) observed in H, labeled Hmax (see
the rightmost vertical green line). Four out of the five SD (i.e., except “47”) located in
this region, suffered from atrial fibrillation, thus this shaded region seems to separate
AF from the others.

Thus, in short, the aforementioned method not only identifies the sudden cardiac death
risk but also provides a distinction of congestive heart failure patients from SD when NN
annotations are available.

9.4.3 Summary of the findings based on ΔS and their tentative explanation

In order to understand the physical origin of the findings in § 9.4.1 and § 9.4.2 we resort to
the neural influences on cardiovascular variability. Let us recall that:

Physiologically, the origin of the complex dynamics of heart rate has been attributed
to antagonistic activity of the two branches of the autonomic nervous system, i.e., the
parasympathetic and the sympathetic nervous systems, respectively, decreasing and
increasing heart rate [47, 29, 20, 2]. Their net result is what seems to be actually
captured by ΔSl , as shown in § 3.5.3.

A variety of research has now established [35], as already mentioned in § 9.1.3.1, two
clear frequency bands in heart rate and blood pressure with autonomic involvement. (i)
A higher frequency (HF) band, which lies in [6, 49] the range 0.15 to 0.40 Hz and is
[29] “indicative of the presence of respiratory modulation of the heart rate” or reflects [6]
“modulation of vagal activity, primarily by breathing”. (ii) A lower frequency (LF) band
from 0.04 to 0.15Hz (i.e., at around 0.1 Hz), which is usually described as corresponding to
[49] “the process of slow regulation of blood pressure and heart rate” or that [6] “it reflects
modulation of sympathetic or parasympathetic activity by baroflex mechanisms” due to
[29] “the emergence of a limit cycle caused by the vascular sympathetic delay” (note that
its exact explanation, however, is still strongly debated [38]). The aforementioned scale
l = 13 (see ΔS13 in Fig. 9.14(b)) corresponds to the LF band, while the scale l = 3 (see
N3 in Fig. 9.15), to the HF band. Thus, the magnitude of ΔSl , when calculated for length
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scales corresponding to the HF and LF bands, quantifies the extent to which the processes:
“modulation of vagal activity primarily by breathing” and the “slow regulation of blood
pressure and heart rate” are “disorganized”, respectively.

An alternative way of understanding intuitively the aforementioned findings is the fol-
lowing. If we consider [67] that S could be thought of as a measure of the “disorder” (in
successive intervals) and that the essence of the natural time analysis is built on the varia-
tion of the durations of consecutive pulses, we may say the following: when approaching
sudden cardiac death, the difference between the “disorder” looking in the (immediate)
future, i.e., S, and that in the (immediate) past, i.e., S−, becomes in SD of profound impor-
tance when compared to the corresponding difference under truly healthy conditions.

In summary, the complexity measure N3, based on the entropy change ΔSl under time
reversal at the scale l = 3 heartbeats, identifies the sudden cardiac death risk and
distinguishes SD from truly healthy individuals as well as from those with the life-
threatening congestive heart failure. Furthermore, the study of ΔSl at the scale l = 13
heartbeats provides an estimate of the occurrence time of the impending VF onset in
those classified as SD.

The importance of the aforementioned scale of l = 13 heartbeats also emerges from
studies on the correlation properties of the magnitude and the sign of the increments in
the intervals between successive heartbeats during daytime activity as well as during sleep
stages. Interestingly, it was found [24, 19] that the correlation behavior of the heartbeat
increments and their signs and magnitudes during daytime activity is similar to the be-
havior in REM (rapid eye-movement) sleep, but significantly different from the behavior
in deep sleep. It has been empirically observed [24, 19] by DFA that the most significant
differences between the different sleep stages occur in the following ranges: 8 ≤ l ≤ 13
and 11 ≤ l ≤ 150 heartbeats for the sign-series and magnitude-series respectively. It is
challenging that the scale l = 13 is just in the verge of these two important ranges. This
coincidence cannot be fortuitous, but might stem from the reasons (LF-band, etc.) dis-
cussed above.

9.5 Heart rate variability (HRV) and 1/f “noise”. A model in natural

time that exhibits 1/f behavior

9.5.1 The 1/f “noise”. Background

Among the different features that characterize complex physical systems, the most ubiq-
uitous is the presence of 1/ f a noise in fluctuating physical variables [36]. This means that
the Fourier power spectrum S( f ) of fluctuations scales with frequency f as S( f ) ∝ 1/ f a,
as already mentioned in § 1.4.2 (see also § 1.5.1.1). The power law behavior often persists
over several orders of magnitude with cutoffs present at both high and low frequencies.
Typical values of the exponent a approximately range between 0.8 and 4 (e.g., see Ref. [4]
and references therein), but in a loose terminology all these systems are said to exhibit 1/ f
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“noise”. Such a “noise” is found in a large variety of systems, e.g., condensed matter sys-
tems(e.g. Ref. [70]), granular flow [43], DNA sequence [45], ionic current fluctuations in
membrane channels [40], the number of stocks traded daily [34], chaotic quantum systems
[17, 50, 52, 53], human cognition [13] and coordination [72], burst errors in communica-
tion systems [5], electrical measurements [28], the electric noise in carbon nanotubes [10]
and in nanoparticle films [27], the SES activities (see § 1.4.3), etc. In some of these sys-
tems, the exponent a was reported to be very close to 1, but good quality data supporting
such a value exist in a few of them [70]. As an example we refer to the voltage fluctuations
when current flows through a resistor [71]. As a second example we recall the case of SES
activities discussed in § 1.4.3 in which we concluded that α ≈ 1. As a third example, we
mention the case of heart rate variability to which we now turn.

Various tests of time variation have been applied to heart rate variability to show that in
healthy subjects heart rate fluctuations display 1/ f noise and fractal dynamics with long-
range correlations, e.g., see Ref. [47]. These initial studies indicated rich dynamics with
differences between normal individuals and patients [15]. In particular, it has been found
(see Ref. [19] and references therein) that at scales above ≈1 min (l > 60 heartbeats) the
data during waking hours display long-range power law correlations over two decades with
average exponents αwake ≈ 1.05 for the healthy group and αwake ≈ 1.2 for congestive heart
failure patients. These values change to a smaller exponent αsleep ≈ 0.85 for the healthy
group and αsleep ≈ 0.95 for the heart failure group for the sleep data. Heart rate variability
(HRV) is a useful tool that might provide indices of autonomic modulation of the sinus
node [58] and its reduced value is a sign of autonomic imbalance. Later findings (e.g., Refs.
[21, 18]) showed that healthy heartbeat dynamics exhibits even higher complexity, which is
characterized by a broad multifractal spectrum as already mentioned in § 9.2.1 (concerning
the distinction between monofractals and multifractals, see § 4.5.1). This high complexity
breaks down in illness associated with altered cardiovascular autonomic regulation (e.g.,
Refs. [29, 19] and references therein). In particular, the heart rate in healthy subjects is a
multifractal signal while for subjects with a pathological condition, e.g. congestive heart
failure, it shows a clear loss of multifractality [18, 21]. In other words, for the heart failure
subjects the multifractal spectrum is nonzero only over a very narrow range of exponents
indicating an almost monofractal behavior.

The 1/ f a behavior has been well understood on the basis of dynamic scaling observed
at equilibrium critical points (e.g., § 1.5.3) where the power law correlations in time
stem from the infinite-range correlations in space (see Ref. [4] and references therein).
Most of the observations mentioned above, however, refer to non-equilibrium phe-
nomena for which – despite some challenging theoretical attempts [3, 12] – possible
generic mechanisms leading to scale-invariant fluctuations have not yet been identi-
fied.

In other words, despite its ubiquity, there is no yet universal explanation about the
phenomenon of the 1/ f a behavior.
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9.5.2 An evolution model in natural time that exhibits 1/f behavior

We describe here a simple evolutionary model which, in the frame of natural time, leads
to 1/ f a behavior with an exponent a close to unity.

This model [54] considers the following simple evolution picture. As the number of
generations n increases by one, a new species – whose ability to survive is character-
ized by a number ηn – appears. The new species competes and eliminates only the
existing species that have a lesser ability to survive. We show below that the number
of species εn, if considered as a function of the number of generations n, exhibits an
1/ f behavior and that it increases very slowly with n, actually logarithmically, thus
very few species survive in this competitive process.

The mathematical description of the model, in terms of set theory, is as follows. Let
us consider the cardinality εn (see § 2.7.1) of the family of sets En of successive extrema
obtained from a given probability distribution function (pdf); E0 equals the empty set. Each
En is obtained by following the procedure described below for n times. Select a random
number ηn from a given pdf (here, we use the exponential pdf, i.e., p(ηn) = exp(−ηn))
and compare it with all the members of En−1. In order to construct the set En, we discard
from the set En−1 all its members that are smaller than ηn and furthermore include ηn.
Thus, En �= /0 for all n > 0 and En is a finite set of real numbers whose members are always
larger or equal to ηn. Moreover, max[En] ≥ max[En−1]. The increase of the cardinality
εn ≡ |En| of these sets is at the most 1, but its decrease may be as large as εn−1−1. This
reflects an asymmetry if εn is considered as time series with respect to the natural number
n. An example of εn vs n is shown in Fig. 9.16(a). The cardinality εn exhibits 1/ f a noise
with a very close to unity; see Fig. 9.16(b). The mathematical model described above, the
analytical properties of which has been discussed in detail in Ref. [60], corresponds to
an asymptotically non-stationary process, since 〈εn〉 ∝ lnn with a variance 〈(εn−〈εn〉)2〉
∝ lnn (see Fig. 9.16(c)). In particular, it has been shown analytically in Ref. [60] that:

〈εn〉 =
n

∑
k=1

1
k
, (9.10)

〈(εn−〈εn〉)2〉 =
n

∑
k=1

(
1
k
− 1

k2

)
. (9.11)

Equations (9.10) and (9.11) reveal that both the average value μ ≡ 〈εn〉 and the variance
σ2 ≡ 〈(εn−〈εn〉)2〉 diverge logarithmically as n tends to infinity. The point probabilities
p(εn = m), however, remain localized around μ = 〈εn〉 ∝ lnn since σ/μ ∝ 1/

√
lnn.

Thus, in short, the model suggests that the cardinality εn of the family of sets En of suc-
cessive extrema exhibits a logarithmic creep and the 1/ f a behavior when considered
as time series with respect to the natural (time) number n.
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Fig. 9.16 (a): Example of the evo-
lution of εn versus the number of
generations n, i.e., in natural time.
An exponential pdf has been consid-
ered for the selection of ηn. (b): The
Fourier power spectrum of (a); the
(green) solid line corresponds to 1/ f
and was drawn as a guide to the eye.
(c): Properties of the distribution of
εn. The average value 〈εn〉 (plus) and
the variance 〈(εn−〈εn〉)2〉 (crosses)
as a function of n. The straight solid
line depicts ln(n) and was drawn for
the reader’s convenience. Taken from
Ref. [54].

Note that an interconnection between 1/ f a noise and extreme value statistics has been
proposed as providing a new angle at the generic aspect of the phenomena [3].

In order to check the stability of the results of Fig. 9.16, we present in Fig. 9.17(a) the
average power spectrum obtained from 104 runs of the model. A sharp 1/ f behavior is
observed. Moreover, in Fig. 9.17(b), we present the results of the corresponding average
values of FDFA−l of the DFA obtained for various orders l, i.e., when detrending with a
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Fig. 9.17 Results from 104

runs of the model presented
in Fig. 9.16: (a) the average
power spectrum, (b) detrended
fluctuation analyses of order l
(DFA-l). The black solid line in
(a) corresponds to 1/ f spectrum
and was drawn as a guide to the
eye. For the same reason in (b),
the black solid lines correspond
to αDFA = 1. In (b), the colored
solid lines correspond to the
least squares fit of the average
FDFA−l depicted by symbols of
the same color. The numbers in
parentheses denote the standard
deviation of αDFA−l obtained
from the 104 runs of the model.
The various FDFA−l have been
displaced vertically for the sake
of clarity. Taken from Ref. [54].

polynomial of order l, see § 1.4.2. Figure 9.17(b) indicates that αDFA−l is close to unity,
thus being compatible with the 1/ f power spectrum depicted in Figs. 9.16(b) and 9.17(a).

We recall that in the aforementioned example of Fig. 9.16(a) showing the evolution of
εn versus the number of generations n (i.e., in natural time), an exponential pdf has been
considered. After investigating several different distributions of ηn, we conclude that the
resulting spectral density depends only very weakly – if at all – on the pdf of ηn.

We find that, in order to obtain α ≈ 1, the only essential condition to be fulfilled is that
the corresponding pdf should be bounded from below (note that this is a reasonable
assumption if ηn is to be considered a measure of the ability to survive; a negative
measure would correspond to a species that is unable to survive).

This holds, of course, under the assumption that ηn come from the same pdf, i.e., they
are independent and identically distributed variables. Let us now investigate the case when
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Fig. 9.18 Time series of εn
when ηn come from fGn for
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ing from the bottom to the
top). Taken from Ref. [54].

ηn come from a stationary but long-range (time) correlated process, for example from frac-
tional Gaussian noise (fGn) (see § 1.5.1.1). To this end, several values of the H exponent
have been considered and indicative results are depicted in Fig. 9.18 for H = 0.5, 0.7, 0.9
and ≈1. A noticeable difference can be visualized in this figure upon increasing H: for
H = 1, which corresponds, for example, to the case of SES activities (see § 1.4.3, § 4.3.2,
§ 4.4.2 and Section 4.10) the results differ greatly from those corresponding to smaller ex-
ponents, e.g., H = 0.5–0.7, which are occasionally found in the analysis of electric signal
time series emitted from “artificial” (man-made) electrical sources (see § 4.4.2).

This model, beyond its applicability to HRV (see below in § 9.5.3), may be useful in
other disciplines as well. For example, in the frame of a formal similarity between
the discrete spectrum of quantum systems and a discrete time series [50], the fol-
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lowing striking similarity is noticed. The fact that a ≈ 1 together with the behavior
〈(εn−〈εn〉)2〉 ∝ lnn of the present model, is reminiscent of the power law exponent
and the 〈δ 2

n 〉 statistic in chaotic quantum systems [50, 52].

Furthermore, εn may be considered as equivalent to the dimensionality of the thresh-
olds distribution in the so-called coherent noise model (e.g. see Ref. [59] and references
therein).

9.5.3 The 1/f model proposed and the progressive modification of HRV in healthy

children and adolescents

The model described above in § 9.5.2 amounts to a sort of shot noise in a process showing
logarithmic creep, a non-stationary process. We now compare this prediction of the model
with the heart rate variability data in healthy children and adolescents versus age.

We consider here the HRV data in healthy children and adolescents presented by Silvetti
et al. [56]. In particular, the following two standard 24 h time-domain measures, among
others, were computed: SDNN (standard deviation of all normal sinus RR intervals over
24 h) and SDANN (standard deviation of the averaged normal sinus RR intervals for all
5-min segments). They evaluated 103 subjects (57 males and 46 females, aged 1–20 years)
and found that SDNN and SDANN, overall HRV measures, increased with age and were
gender-related. These data demonstrate that in healthy children and adolescents there is a
progressive modification of HRV that may reflect a progressive evolution of the autonomic
nervous system.

Using the results of Silvetti et al. [56], we plot in Fig. 9.19(a) SDNN vs age in a
semilogarithmic plot. An inspection of this figure reveals that, for ages below 14 yr,
in both male (blue) and female (red) subjects an almost logarithmic creep is present, a
property also exhibited by the model.

This logarithmic creep can also emerge from the results of Ref. [37] where the SDNN
versus age (A) was fitted by a power law, i.e., SDNN = 97.2×A0.20 [ms], for the period
from infancy to adolescence.

In particular, in Fig. 9.19(b), drawn on the basis of the data presented in fig. 4 of
Ref. [37] by using averages every one year of age, a logarithmic creep seems to provide
a better description for SDNN from early childhood to adolescence.

This behavior could be, in principle, understood in the following context. The present
model may simulate the variation of RR intervals around a mean value determined by the
sinoatrial node, thus leading to the logarithmic creep of SDNN visualized in Fig. 9.19. We
note that the model intrinsically represents a competitive evolution which is also present
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Fig. 9.19 (a): The mean values
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during the period of childhood. The complexity of heart rate dynamics is high in children
and illustrates [37]: “an increase of cholinergic and a decrease of adrenergic modulation
of heart rate variability with age, confirming the progressive maturation of the autonomic
nervous system.” In other words, in order to shed light on the underlying connection

between the presented model and the development of heartbeat regulation we could say the
following. As already mentioned in § 9.4.3, the origin of the complex dynamics of heart
rate has been attributed to the antagonistic activity of the parasympathetic and sympathetic
nervous system:

It is this antagonistic activity which seems to be captured by the model since its basic
spirit stems from a competitive evolution process.
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9.5.4 The complexity measures obtained from the 1/f model and their comparison

with HRV data

We now compare the results of the model in natural time with the HRV data – actually
the RR time series – of heart disease patients and healthy subjects that have been already
analyzed in natural time in Section 9.4. Recall that those data came from long time ECG
recordings [14] containing on average N � 105 heartbeats for each record. Thus, in order
to compare with the results already presented in Fig. 9.15(b) on HRV, we consider only
mature models with n � 106 and examine their evolution, i.e, the time series εn, for the
later 105 generations (cf. this is the order of magnitude of heartbeats in a 24 h ECG record-
ing). The proposed model results in N3 = 2.52±0.19 and σ [ΔS7] = (2.46±0.25)×10−3

shown by the (black) square in Fig. 9.20. This figure just reproduces Fig. 9.15(b) to which
the calculated values of the model (as well as those from the INAGS model, see below)
are now added. Concerning the calculated value of N3, this is close to (but below) the
minimum value Hmin observed in H and larger than the N3 values in the vast majority of
SD (where high complexity breaks down). As for the calculated σ [ΔS7] value, it lies to
the right of the maximum value of σ [ΔS7] observed in H as well as in the vast majority
of CHF located outside the shaded region which seems to separate AF from the others.
This is consistent with the fact that the (black) square corresponds to an 1/ f behavior,
while healthy heartbeat dynamics exhibits even higher complexity [21, 18] as mentioned
in § 9.5.1.

H
m

ax

H
m

in

Hmin

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

N
3 

(R
R

)

103 S7] (RR)

SCD
H

CHF
AF

present model

INAGS model

Fig. 9.20 The complexity measure N3 vs σ [ΔS7] for the RR time series. This figure is the same as
Fig. 9.15(b) to which the complexity measures obtained from the present 1/ f model as well as those
deduced from the model of Ref. [20] have been added, marked with (black) square and (green) circle,
respectively. Taken from Ref. [54].
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Indeed, let us consider the stochastic feedback model proposed by Ivanov, Nunes Ama-
ral, Goldberger and Stanley (INAGS) in Ref. [20] which describes the healthy regulation
of biological rhythms with a clear relation to the physiology of the heart; the effects of
the sinoatrial node along with the parasympathetic and the sympathetic influences were
taken into account. The INAGS model leads [20] to an approximately 1/ f 1.1 behavior and
generates complex dynamics that account for the functional form and scaling of the distri-
bution of variations of RR. The aforementioned complexity measures in natural time that
correspond to this model (by using the same parameters as those mentioned in fig. 2 of
Ref. [20]) have been calculated [54] and the results are depicted by the (green) circle in
Fig. 9.20. Interestingly, this point lies within the H-limits, as it should.

Summarizing, using the concept of natural time, a simple competitive evolution model
has been proposed that exhibits 1/ f a behavior with a close to unity. The model
amounts to a sort of shot noise in a process showing logarithmic creep (non-stationary
process), a behavior which is similar to the fact that the standard deviation of all nor-
mal sinus RR intervals over 24 h exhibits a logarithmic creep with age for children
and adolescents. The model predicts complexity measures (see the black square in
Fig. 9.20) that separate healthy dynamics from heart disease patients and SD, as intu-
itively expected since it corresponds to a simple 1/ f behavior.
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