
8. Natural Time Analysis of Dynamical Models

Abstract. We apply here the natural time analysis to the time series of the avalanches in
several SOC models as well as to other dynamical models. First, in a simple deterministic
SOC system introduced to describe avalanches in stick–slip phenomena that belongs to the
same universality class as the “train” model for earthquakes introduced by Burridge and
Knopoff, we find that the value κ1 = 0.070 can be considered as quantifying the extent of
the organization of the system at the onset of the critical stage. Second, in the conservative
case of the Olami–Feder–Christensen (OFC) earthquake model, the value κ1 = 0.070 is
accompanied by an abrupt exponential increase of the avalanche size which is indicative
of the approach to a critical behavior. In the non-conservative case of OFC, in the later part
of the transient period, coherent domains of the strain field gradually develop accompanied
by κ1 values close to 0.070. Furthermore, there is a non-zero change ΔS of the entropy in
natural time under time reversal, thus reflecting predictability in the OFC model. Third, an
explanation for the validity of the condition κ1 = 0.070 for critical systems on the basis of
the dynamic scaling hypothesis is forwarded. Fourth, when quenching the 2D Ising model
at temperatures close to but below Tc, which is qualitatively similar with the pressure
stimulated currents SES generation model, and set Qk = |Mk| (where Mk stands for the
evolution of the magnetization per spin), we find κ1 = 0.070. Fifth, in a deterministic
version of the original Bak–Tang–Wiesenfeld sandpile model, the value κ1 ≈ 0.070 is
reached during the transient to the self-organized criticality. Finally, natural time analysis
of the avalanches observed in laboratory experiments on three-dimensional ricepiles and
on the penetration of the magnetic flux into thin films of high Tc superconductors, leads
to κ1 values around κ1 = 0.070. A further investigation of the experiment on ricepiles
reveals that the sequential order of the avalanches captured by the natural time analysis
is of profound importance for establishing the SOC state and constitutes the basis for the
observation of the result κ1 ≈ 0.070.
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342 8. Natural Time Analysis of Dynamical Models

8.1 Is self-organized criticality (SOC) compatible with prediction?

Recent aspects. The models analyzed here in natural time

The SOC concept, that has been originally introduced by Bak, Tang and Wiesenfeld [6]
using as an example the sandpile model, was an attempt to explain the ubiquity of scale in-
variance in nature (see also Refs. [44, 74]). Systems, in general, are termed self-organized
critical if they reach a stationary state (after a transient during which the system acquires
criticality [32, 33]) characterized by power laws without the need for fine-tuning an ex-
ternal parameter, for example the temperature or pressure. There is more or less a gen-
eral tendency [85] on confining the term self-organized critical to those systems that are
slowly driven and that display fast, avalanche-like dissipation events. In other words, in
SOC systems, the competition between a driving force that very slowly injects energy and
the dynamics of local thresholds can drive the system into a critical state where a minor
perturbation can trigger an avalanche of any size and duration [6, 7, 66]. In particular, in
the original sandpile model, the random, slow addition of “blocks” in a two-dimensional
lattice (along with a local conservation law) drives the system into a critical state, where
power law distributed avalanches maintain a steady regime far from equilibrium.

The fact that avalanches were taken [6] as uncorrelated in the original SOC sandpile
model, has been used as an argument that is not possible to predict the occurrence of
large avalanches (relevant claims are cited in Refs. [66, 65]). A belief has been expressed
that power law distributed avalanches are inherently unpredictable, which came from the
concept of SOC, but interpreted in the way that, at any moment, any small avalanche can
eventually cascade to a large event.

However, prediction is possible, because the system is not at, but close to, the critical
state [21, 66].

This, became clear from the accumulated theoretical and experimental evidence, which
could be summarized as follows (see also § 6.5.3). First, some cellular automaton SOC
models have been analyzed for the predictability of very large avalanches (responsible for
the cut-off on the power law distribution) [62] and in addition precursors of large events
have been identified [41, 67] in dissipative or hierarchical lattices. Second, the prediction
of extreme avalanches in self-organized critical sandpiles have been studied in recent de-
tailed numerical studies [32] which showed that: (a) particularly large events in a close to
SOC system can be predicted on the basis of past observations; (b) the predictive power
stems from temporal correlations which are pure finite size effects, i.e., it disappears in the
infinite system size limit as all avalanches become independent of each other; (c) under
variation of the system size, predictability persists if the magnitude used to define ex-
treme events is scaled linearly in the maximal possible avalanche size. It was also clarified
[33] that SOC seems to be an unsuitable mechanism for the explanation of the extreme
events that occur in clusters. Third, experimental work has recently demonstrated [66] the
possibility of avalanche prediction in the classical SOC paradigm, i.e., a pile of grains:
by knowing the position of every grain in a two-dimensional pile, avalanches of moving
grains do follow a distinct power law distribution, but large avalanches are found [66] to
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Table 8.1 Compilation of the 14 cases described in this monograph in which the condition κ1 = 0.070 has
been ascertained.

No. Case Class

1 SES activities (Section 4.2) Field experiments
2 Seismicity preceding major EQs (Sections 7.1 to 7.5) "
3 Ricepiles (§ 8.5.1) Laboratory measurements
4 Magnetic flux avalanches in high Tc superconductors (§ 8.5.2) "
5 Burridge & Knopoff “train” EQ model (§ 8.2.2) Dynamical models
6 Olami–Feder–Christensen EQ model (conservative case, § 8.3.2) and

“foreshocks” in the non-conservative case (§ 8.3.3)
"

7 Dynamic scaling hypothesis with z = 2.0–2.4 (Section 8.4, § 8.4.3) "
8 Deterministic version of the original sandpile SOC model (§ 8.4.2) "
9 Generalized stochastic directed SOC model (§ 8.5.2) "
10 2D Ising model quenched close to, but below, Tc (§ 8.4.1) Other models
11 Pressure stimulated currents model for SES generation (§ 2.4.2) "
12 fBm time series with DFA exponent α = 1 (§ 3.4.3) "
13 Stochastic Cantor set: p-model describing turbulence (§ 6.2.5) "
14 Power law distributed uncorrelated energy bursts with γ = 1.87

(§ 2.5.4, Fig. 2.6)
"

be preceded on the average by continuous detectable variations in the internal structure of
the pile.

To answer the aforementioned question on predictability, in this Chapter we will an-
alyze in natural time the time series of avalanches in some dynamical models including
typical SOC examples like sandpiles, as well as in laboratory measurements on ricepiles
and magnetic flux penetration in high Tc superconductors which are believed to be SOC
systems.

Table 8.1 includes all 14 cases discussed in this monograph where the condition κ1 ≈
0.070 has been ascertained, thus strengthening the conjecture that: if a system acquires
criticality, the condition κ1 = 0.070 holds (but not the inverse as for example case
No. 14).

8.2 Natural time analysis of the Burridge & Knopoff “train”

earthquake model

8.2.1 The earthquake model proposed by Burridge & Knopoff. The “train” model.

Introduction

An earthquake is a stick–slip dynamical instability of a pre-existing fault driven by the
motion of a tectonic plate [71, 72]. A relatively simple dynamical model that contains
much of the essential physics of earthquake faults is the so-called spring-block model
originally proposed [14] by Burridge and Knopoff (BK). It consists of an assembly of
blocks, each of which is connected via elastic springs to the nearest neighboring blocks.
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The blocks are also connected to the driving plate by elastic springs and rest on a surface
with a velocity-weakening stick–slip friction force (note that the friction force decreases
as the velocity is increased). When the force acting on a block overcomes the static friction
with the surface, the block slips. Then a redistribution of forces takes place in the neighbors
that eventually trigger new displacements. An EQ event is defined as a cluster of blocks
that move (slip) due to the initial slip of a single block. A numerical study in one dimension
had already been made by BK, and later Carlson, Langer and others [18, 19] proceeded to
more extensive studies of the one-dimensional and two-dimensional BK models focusing
on the magnitude distribution of EQ events. Spatiotemporal correlations of the 2D BK
model have been studied [55] by considering also long-range inter-block interactions.

In the BK model studied by Carlson, Langer and others, each block is connected, as
mentioned above, to the driving element. To model the dynamics of EQs, Burridge and
Knopoff in their original work [14] also studied the case of a chain of blocks (situated
on a rough surface with friction) connected by elastic springs and pulled only at one end
with a constant small velocity. The dynamics of the model is as follows. All the blocks
are initially at rest. As the driver pulls the first block, the latter remains stuck until the
elastic force overcomes the static friction. When this occurs, the first block will move a
little. Such small events (or EQs) will continue and increase the elastic force on the sec-
ond block. When the elastic force on the second block overcomes the friction force, an
event involving the two blocks will occur. The dynamics continues with events involving
three, four, five or all the blocks in the system. This model is usually called the “train”
model since it has some similarity with a train, where the driving force is applied only
at one end of the chain (e.g., Ref. [75]). The dynamics here is governed by coupled or-
dinary differential equations which makes its study very time-consuming. To make this
system more amenable to computer simulations, de Sousa Vieira [76] introduced a contin-
uous cellular automaton that exhibits SOC and belongs to the same universality class as
the “train” model. This deterministic one-dimensional model, for the avalanches in stick–
slip phenomena, which is very close to the case of an array of connected pendulums first
discussed by Bak et al. [6], is defined as follows (see Refs. [76, 26, 70]). Consider a one-
dimensional system, where a continuous (force) variable fl ≥ 0 is associated with each site
l, l = 1,2, . . . ,L. Initially all fl have the same value f0 which lies below a threshold fth.
One can set fth = 1.0 without loss of generality. The basic time step consists of varying the
force on the first site according to f1 = fth +δ f ; the system then relaxes with a conserva-
tive redistribution of the forces at the site fl ≥ fth (toppling site) and its nearest neighbors
according to fl =Ψ( fl − fth) and fl±1 = fl±1 +Δ f /2, where Δ f is the change of force
at the overcritical site andΨ(x) a periodic nonlinear function. This condition mimics the
redistribution of forces when the block l is displaced (stick–slips) by Δxl during an ‘earth-
quake’ in the “train” model [76]. The relaxation continues until all sites have fl < fth for
all l. The size of the ‘earthquake’ corresponds to the number of topplings, s, required for
the system to relax, and is considered here as the appropriate value of Qk in natural time.
Then, the driving force at the first site sets in again. This is complemented by open bound-
ary conditions; i.e., the force is ‘lost’ at l = 1 and l = L. The nonlinear periodic function
used here (which means that, when considering that the force supposed mimics the net
effect of the two forces in the “train” model, i.e., the elastic and the friction forces, the
periodicity of the elastic force dominates over the form of the friction force) is similar to
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the one used in Refs. [76, 26], i.e., a sawtooth functionΨ(x) = 1−ax +[ax] , where [. . .]
denotes the integer part of ax and a is a number. It was shown [76] that such a system
evolves to a SOC state where the avalanche distributions are scale-free, limited only by
the overall system size.

8.2.2 Natural time analysis of the “train” model

In Fig. 8.1, we present the results obtained from the deterministic one-dimensional SOC
system described above in § 8.2.1 that belongs, as mentioned, to the same universality class
as the “train” model for EQs. The same parameters as in Ref. [26], i.e., L = 1024, a = 4,
f0 = 0.87 and δ f = 0.1, have been used. In Fig. 8.1(a), the number of topplings s is plotted
in red versus the avalanche number i for the first 160,000 avalanches which shows in fact
how these series of avalanches can be read in natural time. The blue curve in Fig. 8.1(a),
shows how the quantity κ1 evolves avalanche by avalanche. There, we also plot in green
the total force X(i) of the system after each avalanche, computed from X(i) = ∑L

l=1 fl(i),
whose stabilization provides [26] a measure of the approach to SOC. An inspection of
Fig. 8.1(a) reveals that (after the transient and hence) when the system enters into the
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(a)

(b) Fig. 8.1 The results of the model
discussed in the text for 160,000 (a)
and 40,000 (b) avalanches as read
in natural time, for L = 1024, a = 4,
f0 = 0.87 and δ f = 0.1. The avalanche
size s is depicted by red color, and the
variance κ1 by blue color. The thick
blue line corresponds to κ1 = 0.070.
The total force of the system after
each avalanche X(i) is plotted with
green color and read in the right scale.
For an extension of this figure to 106

avalanches see Fig. 8.2. Taken from
Ref. [82].
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critical state, the κ1 value fluctuates around 0.070 (designated by the thick blue line).
The latter becomes clear in Fig. 8.1(b), which reproduces Fig. 8.1(a) but in an enlarged
time scale for the first 40,000 avalanches and shows that for i > 5,000 (i.e., just when
the system enters into the SOC state) κ1 scatters around 0.070. This behavior has been
verified for a wide range of parameters L,a, f0 and δ f just before the SOC state is reached.
Note that, once the statistically steady SOC state is established, the κ1 value gradually
increases reaching the corresponding value of κu = 1/12 of a “uniform” distribution (see
§ 2.1.3). This can be seen in Fig. 8.2 which has been plotted for 106 avalanches. The
model discussed here leads to a power law with a realistic b value of the Gutenberg–
Richter law. In particular, de Sousa Vieira [76] concluded that the distribution of avalanche
sizes s is a power law with an exponent τ ≈ 1.54 that corresponds to b ≈ 0.81. This lies
in the range (0.8 to 1.2) of the b values found experimentally (see Section 6.1). In spite
of this agreement, however, we note that the BK model cannot account for the observed
spatiotemporal complexity of seismicity, e.g. the Omori law for aftershocks [55].
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Fig. 8.2 The results of the
model discussed in the text for
106 avalanches. The parameters
(as well as the symbols) here
are the same as in Fig. 8.1
(except that the total force X(i)
is not plotted, for the sake
of simplicity). The horizontal
green line corresponds to κ1 =
0.070, and the black one to
κu = 1/12.

In the focal region of a future earthquake the stress gradually changes before failure.
It is commonly accepted that, after the mainshock occurrence, the stress value reduces
to a smaller value, a fact, however, which is not fully captured by the simple BK model
considered here. In other words, in the steady SOC state of this model the system has
an average fl value, f̄l , around f̄l = 0.8785 that remains almost constant (i.e., practically
within 0.0055) after the occurrence of any avalanche (cf. X(i) in Fig. 8.1). Our compu-
tations reveal (see Fig. 8.3) that when considering a reasonable decrease, e.g., by a few
percent, of f̄l , the system exits the steady SOC state and then returns to it through a tran-
sient in which the κ1 value scatters around 0.070, similarly to that depicted in Fig. 8.1.
This can be seen in Fig. 8.3, which depicts the results that show what happens with κ1
when reducing each fl by 1% (a), 2% (b) and 10% (c) of its value at SOC. The κ1 value is
given here in red while magenta corresponds to one standard deviation ±σ . A reasonable
reduction of fl may be around a few percent at the most (see especially Fig. 8.3(a) and
8.3(b)). The results have been obtained by means of the Monte Carlo procedure described
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Fig. 8.3 Results showing the
behavior of the average value of
κ1 (red) when decreasing f̄l to
(a) 99%, (b) 98% and (c) 90%
of its value at SOC. The results
have been obtained as follows.
We considered 103 systems with
the initial fl values randomly
scattered around f0 = 0.87. Each
system was driven to SOC and in
order to obtain a reliable series
fl SOC , l = 1,2, . . .L, the first 107

avalanches were ignored in natural
time analysis. Then, each of these
fl values was reduced to 99%,
98% and 90%, respectively, of
its value at SOC, i.e., fl SOC , and
natural time analysis was initiated
(i = 0). The magenta curves depict
the one standard deviation(±σ )
interval. The horizontal green line
corresponds to κ1 = 0.070, and
the black one to κu = 1/12. Taken
from Ref. [82].
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Fig. 8.4 The results obtained
when using, instead of the
periodic function Ψ(x), the
strictly non-increasing func-
tion φ(x) = (2−δ f )2/a

x+(2−δ f )/a − 1,
introduced in Ref. [57]. The
parameters L = 1024, a = 4,
f0 = 0.87 and δ f = 0.1 are the
same as those in Figs. 8.1 and
8.2. Results are given for 106(a)
and 40,000(b) avalanches.
The quantities shown here are
the same as those plotted in
Fig. 8.2. The horizontal green
line corresponds to κ1 = 0.070,
and the black one to κu = 1/12.
As shown in (b), the avalanche
size s(≡ Qk) is quasi-periodic,
leading to κ1 values “oscillat-
ing” close to (but mostly higher
than) κu.

in the caption of this figure. Hence, the value κ1 = 0.070 can be considered as quantifying
the extent of the organization of the complex system at the onset of the critical stage.

We emphasize that such a behavior is not observed for a variant of the model which
does not exhibit SOC [76], e.g., when using, instead of a periodic function Ψ(x), the
strictly non-increasing function φ(x) introduced by Nakanishi [57] (see Fig. 8.4). This
figure shows the results, in a similar fashion to those depicted in Fig. 8.1, obtained from
the model when using, instead of the periodic function Ψ(x), the strictly non-increasing
function introduced by Ref. [57]. In this case the behavior of κ1 is found to be distinctly
different from that of the SOC model depicted in Fig. 8.1 as well as in Fig. 8.2.

In summary, natural time analysis was made for a one-dimensional SOC model intro-
duced to describe avalanches in stick–slip phenomena. It belongs to the same univer-
sality class as the “train” model for earthquakes suggested by Burridge and Knopoff.
We found that the value κ1 = 0.070 can be considered as quantifying the extent of the
organization of the complex system at the onset of the critical stage.
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8.3 Natural time analysis of the Olami–Feder–Christensen (OFC)

earthquake model

8.3.1 The Olami–Feder–Christensen model. Introduction

The OFC model originated by a simplification of the Burridge & Knopoff spring-block
model [14] by mapping it into a non-conservative cellular automaton, simulating the earth-
quake’s behavior and introducing dissipation in the family of SOC systems. In the spring-
block model, which as mentioned in § 8.2.1 consists of a two-dimensional array of blocks
in a flat surface, each block is connected (by elastic springs) with its neighbors, and in
the vertical direction, to a driving plate which moves horizontally at velocity v. When the
force acting on a block overcomes the static friction with the surface, the block slips. In
the OFC model the force on a block is stored in a site of a square lattice, and the static
friction threshold is assumed to have the same value over all blocks. If force input occurs
in discrete steps instead of continuous and if thresholds are random but not quenched,
quasi-periodicity emerges combined with power laws [65].

The criticality of the OFC model has been debated [21, 54]. Also, the SOC behavior of
the model is destroyed upon introducing some small changes in the rules of the model, e.g.,
replacing open boundary conditions with periodic boundary conditions [64], introducing
frozen noise in the local degree of dissipation [56] or in its threshold value [43], including
lattice defects [23]. Despite these findings as well as others which show [61], that it is
insufficient to account for certain aspects of the spatiotemporal clustering of seismicity, the
OFC model appears to show many features found in real earthquakes. As far as earthquake
predictability [62] or Omori law [39, 36] are concerned, the OFC model appears to be
closer to reality than others [85]. In addition, for certain values of the local degree ‘α’
of dissipation (i.e., if ‘α’ is chosen above 0.17, see also below), the OFC model exhibits
avalanche size distribution that agrees well [52] with the Gutenberg–Richter (G-R) law; see
Eq. (6.1). These are some of the reasons why the OFC model is considered to be the prime
example [5] for a supposedly SOC system for earthquakes but the question of whether real
earthquakes are described or not by SOC models of this type, or whether other kinds of
mechanisms, e.g., Refs. [51, 50], need to be involved, remains unsolved [9, 86, 39, 36, 65].
Note also that an analysis of the OFC model in the nonextensivity framework (Section 6.5)
has been made by Caruso et al. [20] and further discussed in Ref. [69].

Description of the Olami–Feder–Christensen (OFC) model. The OFC model [59] runs
as follows: we assign a continuous random variable zi j ∈ (0,1) to each site of a square lat-
tice, which represents the local ‘energy’. Starting with a random initial configuration taken
from a uniform distribution in the segment (0,1), the value zi j of all sites is simultaneously
increased at a uniform loading rate until a site i j reaches the threshold value zthres = 1 (i.e.,
the loading Δ f is such that (zi j)max +Δ f = 1). This site then topples which means that
zi j is reset to zero and an ‘energy’ αzi j is passed to every nearest neighbor. If this causes
a neighbor to exceed the threshold, the neighbor topples also, and the avalanche contin-
ues until all zkl < 1. Then the uniform loading increase resumes. The number of topplings
defines the size s of an avalanche or “earthquake”. This is the quantity that is used as Qk
in the natural time analysis. The coupling parameter α can take values from zero to 0.25.
Smaller α means more dissipation, and α = 0.25 corresponds to the conservative case.
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The parameter α is the only parameter of the model, apart from the system size L, the edge
length of the square lattice. Except from the initial condition the model is deterministic.
The model can be supplemented by open boundary conditions (OBC) in which the sites
at the boundary distribute energy to the outer sites, which cannot topple, thus energy is
removed at the boundary. Another possibility, is to use free boundary conditions (FBC). In
this case, α varies locally

αi j =
1

ni j +K
. (8.1)

where ni j is the actual number of nearest neighbors of the site i j. For sites in the bulk
ni j = 4, for sites at the edges ni j = 3 and for the four sites at the corners ni j = 2. The
symbol K denotes the elastic constant of the upper leaf springs measured relatively to that
of the other springs between blocks [36]. Obviously the OFC model is non-conservative
for K > 0 for which αi j < 0.25 in the bulk. Finally, periodic boundary conditions (PBC)
can be imposed but these destroy [64] criticality. Except in the case of PBC, the sites at the
boundary receive energy only from three or two neighbors, and therefore topple on aver-
age less often than sites in the interior, which leads to the formation of “patches” of sites
with similar energy. This patch formation proceeds from the boundaries inward [53, 29].
Due to the dynamics of the model, there occur avalanches of all sizes. The mechanism pro-
ducing these avalanches are different on different scales [29]. Large avalanches are mainly
patch-wide avalanches, while smaller avalanches occur between patches and constitute a
series of ‘foreshocks’ or ‘aftershocks’ [39]. Also, avalanches at different distances from
the boundaries have different sizes.

As already mentioned, there has been no agreement as to whether the model is indeed
critical for all values of the coupling or only in the conservative case [21, 22, 54]. In partic-
ular, detailed analytical studies [13, 24] for a random-neighbor version of the OFC model
concluded that only in the conservative limit the model becomes critical (this conclusion
was also shared by de Carvalho and Prado [21]). Furthermore, using a variety of argu-
ments and large-scale computer simulations, the most exhaustive analyses [10, 35, 85, 5]
coincide to the conclusion that the spatially extended version of the non-conservative OFC
model is not critical.

Thus, the state of the art is [9] that the OFC model is not truly scale-invariant except
for its conservative limit.

8.3.2 Natural time analysis of the Olami–Feder–Christensen model

8.3.2.1 Results in the transient and the stationary regime of the OFC model

We first present the results [68] for the transient regime of the OFC model using the quan-
tity f = ∑(Δ f ), which represents the total increase of zi j due to the external force loading
in each site. Since the loading rate is assumed uniform in time, f plays a role analogous
to that of the conventional time T , i.e., T ≡ f .
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We find that the conservative and non-conservative cases of the OFC model display a
qualitatively different behavior.

In the former case, as can be seen in Figs. 8.5(a),(b) which depict the evolution of
κ1 versus the ‘time’ T , the quantity κ1 exhibits a single transient consisting of an abrupt
decrease, from a value larger than κu down to κ1 ≈ 0 (for larger L see Fig. 8.6), and then κ1
gradually increases up to the value κu = 1/12. The latter value reflects that the system has
reached a steady state, thus the κ1 value approaches that of the “uniform” distribution. Note
that, as the number of avalanches taken into account in the κ1-calculation increases, the
contribution of the avalanches in the transient regime to the κ1 value becomes gradually
smaller compared with that of the avalanches in the stationary regime. In addition, we
note that the number of avalanches corresponding to the minimum value of κ1 was found
to scale with L2. This is reminiscent of the scaling found in Ref. [22] when plotting the
mean ‘energy’ per site ζ = ∑zi j/L2 versus the number of avalanches. The use of the
‘time’ T which is intensive and not extensive quantity, as does the number of avalanches,
simplifies the study of this transient. By investigating the κ1 versus T curves for various L
and examining their behavior close to κ1 ≈ 0, we find (see Fig. 8.6) that all these curves
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collapse onto a single curve. Figure 8.5(c) depicts the size s of avalanches versus T along
with the mean energy ζ . We observe that the almost abrupt decrease of κ1 is due to the
drastic (exponential) increase by several orders of magnitude of the avalanche size s when
ζ approaches its steady state value. This exponential increase is better visualized in Fig. 8.6
where, for the sake of clarity, we depict for L = 500(1000) the maximum avalanche size
deduced every 30(100) avalanches versus T (cf. the two values 30 and 100 are considered
to account for the fact that the larger system exhibits more avalanches for the same increase
in T ). One can recognize roughly three linear regions (only two of which are fitted with
straight lines in Fig. 8.6, for the sake of clarity) in this log-linear plot (right scale). The first
one corresponds to the region T ∈ [0.08,0.11] during which the (maximum) avalanche size
increases by almost one order of magnitude (see the lower thick solid lines in Fig. 8.6).
The second stage corresponds to an almost abrupt later increase by almost five orders of
magnitude during T ∈ [0.12,0.131], which is linear in the log-linear plot, see the steeper
thick solid lines in Fig. 8.6. After T = 0.131, which is the value at which the initial linear
increase of ζ ceases, see Fig. 8.5(c), the (maximum) avalanche size does not exhibit any
obvious trend, thus making unnecessary the plot of the corresponding fits in Fig. 8.6.

The non-conservative case gives a more complicated feature, see Fig. 8.7, because the
aforementioned single transient of the conservative case now splits into two parts. Fig-
ures 8.7(a),(b) depict the evolution of κ1 versus T for α = 0.24 for various lattice sizes.
In Fig. 8.7(b), which is an excerpt of Fig. 8.7(a), an abrupt decrease of κ1 is observed
at T ≈ 0.3, accompanied by a peak of ζ (see Fig. 8.7(c)) centered at T ≈ 0.16, which
for large L does not depend on L. This κ1 decrease is followed by an increase – coming
from a decrease of s (see Fig. 8.7(c)) – and κ1 reaches a maximum which is subsequently
followed by a gradual decrease down to a minimum. This second minimum is observed
at T ≈ 1 for L = 50, T ≈ 5 for L = 100 and T ≈ 25 for L = 200, thus indicating that it
scales somewhat faster than L2, which deviates from the finite-size scaling found for the
single minimum of the transient in the conservative case. Note that the finite-size scal-
ing observed during the first part of the transient could be attributed to an almost one
order of magnitude exponential increase of s when T varies approximately in the range
[0.10,0.20] (see Fig. 8.7(c) and Fig. 8.8(a)) which is similar to the one observed in the
conservative case when T ∈ [0.08,0.11] (see Fig. 8.8(b)). The dissipation, however, does
not allow the emergence of the second much more significant exponential increase of s ob-
served in the conservative case (see the steeper thick solid lines in Fig. 8.6 and the insets
of Fig. 8.8). This might be the reason for which the simple finite-size scaling found for
T ∈ [0.10,0.20] ceases at later times T . The apparent similarity of the first transient stages
observed for T ∈ [0.08,0.11] and T ∈ [0.10,0.20] for the conservative (e.g. Fig. 8.8(b))
and non-conservative cases (e.g. Fig. 8.8(a)), respectively, could be understood as follows.
Figure 8.8 shows the T -dependence of the percentage Pvis (red solid lines) of the sites
“visited” by the OFC toppling rule, which ‘diffuses’ energy to the nearest neighbors. We
observe that in both cases a similar exponential increase starts when Pvis approaches the
value of the site percolation threshold pc (pc = 0.59274598(4); see Ref. [49]) for the two-
dimensional square lattice. Thus, when the “visited” sites begin to percolate through the
square lattice, the two cases exhibit a similar behavior irrespective of the energy conser-
vation. It seems that the interplay between the diffusive character of the OFC toppling
rule and the geometrical phenomenon of percolation is dominating at this stage. Recall
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show the percentage Pvis (red solid
lines) of the sites “visited” by the
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with the site-percolation threshold
[49] pc = 0.59274598(4) (green
dashed horizontal line) for the two-
dimensional square lattice. The
whole picture for T ∈ [0,0.25] is
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that an “unvisited” site of low or moderate random initial ‘energy’ (zi j)0 will be toppled
if it receives, apart from the overall increase of ∑(ΔF)(= T ), enough energy to exceed
the threshold due to the energy that has diffusively arrived at the site from another site (of
possibly higher initial ‘energy’ (zi′ j′)0). During this stage it is reasonable to assume that
the energy δ z arriving at an “unvisited” site reaches it through a single path. Thus, the
amount δ z scales as αn, where n is the (presumably small) number of the sites in the path.
This amount is not significantly affected whether α = 0.24 or α = 0.25 and this is why the
conservative and the non-conservative cases resemble each other. Later, as the visited sites
cluster, the differences emerge dramatically: the energy loss in the non-conservative case
occurs at all points of the lattice (∝ L2) thus destroying finite-size scaling, whereas in the
conservative case the clusters formed do not alter the finite-size scaling since the energy
loss occurs only at the boundaries (∝ L) of the system. Returning, now to the κ1 behavior,
we observe the following:
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Fig. 8.9 Snapshot images of the strain field in the OFC model (L = 100 and a = 0.22, OBC), showing
that the coherent structure formation is accompanied by values of κ1 close to 0.070. Here only avalanches
with s > 10 are considered in natural time analysis and N corresponds to the number of such avalanches.
The grey scale (black to white) corresponds to the values of zi j (zero to unity).

After the second minimum, κ1 increases slowly up to the value κu. It is during this
increase that a prolonged period exists in which coherent domains of the zi j field (strain
field) are developed in the non-conservative case; see Fig. 8.9.

Recall that Figs. 8.5 and 8.7 have been drawn by considering all avalanches generated,
i.e, Qk = sk ≥ 1. Similar natural time analysis, however, can be performed upon adopting
an avalanche size threshold s0 (i.e., an avalanche of size s is considered as an event in
natural time only if s > s0).
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Selecting an appropriate threshold s0 relative to the edge length L, we can find κ1
values that scatter around 0.070 when the aforementioned coherent structures in the
strain field start to appear in the non-conservative case. Such an example is shown in
Fig. 8.9 in which a threshold s0 = 10 was selected for L = 100 and α = 0.22.

Recapitulating the aforementioned results in the transient regime, we see that when
comparing the conservative and non-conservative cases, they exhibit considerable differ-
ences on how they move away from the initial random state. The question is raised, how-
ever, of whether some of these differences can shed light on which of these behaviors is
critical and the other not. An answer can be provided on the basis of the following two key
differences related to the curves κ1 versus T and ζ versus T . First, let us consider the κ1
versus T behavior. In the conservative case, when studying the system for various system
sizes L and focusing on the behavior close to κ1 ≈ 0, we observe, as mentioned, that all
the κ1 vs T curves collapse onto a single curve (see Fig. 8.6).

In addition, in the conservative case, the value κ1 ≈ 0.070 (that occurs at T = 0.119)
is accompanied by an abrupt exponential increase of the avalanche size s, which is
indicative of the approach to a critical behavior; see the arrows in Fig. 8.6 that mark
the cross-over points between the aforementioned log-linear fits (thick straight lines)
of the (maximum) avalanche size.

It is this drastic increase of s – by several orders of magnitude – which leads to a κ1
decrease down to κ1 ≈ 0 and then κ1 gradually increases reaching the value κu = 1/12
in the stationary regime. On the other hand, in the non-conservative case the curves κ1
vs T obtained upon increasing the system size L, do not collapse onto a single curve (see
Fig. 8.7(b), where it is evident that the second part of the transient does not coincide
for different L). Second, let us now consider the ζ vs T behavior: In the conservative
case; Fig. 8.5(c) shows that the curves of the mean energy ζ upon studying different L
collapse onto a single one after the exponential increase of s (subsequent to the appearance
of κ1 ≈ 0.070 mentioned above). Such a collapse in the ζ vs T curves, however, is not
observed in the non-conservative case, see Fig. 8.7(b) (note that in this case, Fig. 8.7(c),
the s vs T curve exhibits an increase of only around one order of magnitude in contrast to
the several orders of magnitude increase of the conservative case mentioned above).

We now summarize the behavior in the transient regime. Only in the conservative
case when studying κ1 vs T and/or ζ vs T (recall that the quantities κ1, T and ζ
are intensive and not extensive) the curves obtained upon varying the system size L
collapse onto a single curve, as it should for a critical system. This is not observed
in the non-conservative case, meaning that a larger system needs larger T to reach the
‘steady-state’ ζ value. This points to (the absence of a thermodynamic limit, and hence
to) non-criticality.
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As for the stationary regime, for both the conservative and the non-conservative cases,
the κ1 value stabilizes at a value around κu = 1/12, see Figs. 8.5(a) and 8.7(a), which as
mentioned reflects that the system has reached a steady state.

8.3.3 The predictability of the OFC model based either on the mean energy or on

the interrelation between the κ1 value and the exponent of the inverse Omori

law

Here, in order to study the predictability of the OFC model which has been attributed to the
occurrence of ‘foreshocks’ (note that ‘aftershocks’ have been also observed) in the non-
conservative case of the model [39], we start with a prediction algorithm motivated by the
one used by Zhang et al. [88]. This algorithm was inspired by an earlier one proposed by
Keilis-Borok and coworkers [46, 45] and by Pepke and coworkers [62, 63]. In particular,
we consider the mean ‘energy’ ζ which is a function of the ‘time’ T . For this function,
the time increased probability (TIP) is turned on when ζ > ζc, where ζc is a given thresh-
old in the prediction. If the size s of the next avalanche is greater than a target avalanche
size threshold sc, we have a successful prediction. For binary predictions, the prediction of
events becomes a classification task with two type of errors: missing an event and giving a
false alarm. We therefore choose, in a similar fashion as in § 6.4.2, the receiver operating
characteristics (ROC) graph [30] to depict here the prediction quality. As an example, the
ROC graph for L = 100 and K = 2 is shown in Fig. 8.10, where the various curves corre-
spond to various values of sc increasing from the bottom to the top. Recalling from § 6.4.2
that the diagonal line in such a plot corresponds to random predictions, and the points in
each curve lie above it (meaningful predictions), we conclude that the precursory function
ζ results in meaningful prediction which becomes very robust for larger values of sc. We
note, however, that the selection of the mean energy ζ as a precursory function suffers
from the drawback that in the case of earthquakes the measurement of this quantity is dif-
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ficult in practice and indirect (what can be measured by some techniques is the increment
of stress or strain not the absolute values themselves [88]).

The occurrence of ‘foreshocks’ ( f ) as well as ‘aftershocks’ (a) in the OFC model has
been exhaustively studied by Helmstetter et al. [36]. Here, we solely focus on the former
(foreshocks) that are described by the so-called inverse Omori law [38, 36] which states
that the average increase of seismicity observed at the time t before the occurrence time tc
of a mainshock is given by

Nf (t) =
Kf

(tc− t + c)p f
(8.2)

where the subscript “ f ” refers to the foreshocks and the quantities Kf and c are taken
constants. The inverse Omori exponent p f is usually close to or slightly smaller than the
corresponding exponent pa of the usual Omori law for aftershocks [37] (see also Section
6.1). Helmstetter et al. [36] defined as a “mainshock” (see their definition d = 0) any
earthquake of magnitude m which was not preceded or followed by a larger earthquake in
a time window of length T (m) equal to 1% of the average return time of an earthquake
of magnitude m. Foreshocks are then selected as all earthquakes occurring within the time
T (m) before a mainshock. The value of p f has been found [37] by averaging the seismicity
rate before a large number of mainshocks, because there are huge fluctuations of the rate
of seismicity before individual mainshocks. Helmstetter et al. [36] generated synthetic
catalogs with the OFC model and determined the p f value using various lattice sizes L
and K values, see their table I. They studied the cases for K = 0.5, 1, 2 and 4, i.e., for bulk
α = 0.222, 0.2, 0.167 and 0.125, and among the results presented in their table I, we only
focus here on the larger lattice sizes, i.e., L = 1024 and L = 2048. The average value of
these p f exponents results equal to p f = 0.72, if we consider all the relevant p f values that
correspond [36] to b values ranging from b = 0.67 to b = 0.92. If we restrict ourselves,
to those p f values corresponding to more reasonable values of b, e.g., b ≥ 0.76, we find
that the average p f value increases somewhat to p f = 0.78. These average p f values (0.72
and 0.78) suggest that p f may be considered to be around p f ≈ 0.75, which is just the p f
value given in their Fig. 2 for a synthetic catalog generated [36] with L = 2048 and K = 2.
The power law form of the inverse Omori law, i.e., Eq. (8.2), implies that in natural time

p(χ) =
1− p f

(1−χ)p f
(8.3)

which reflects an increase of foreshocks as we approach the mainshock at χ = 1. Equation
(8.3), when substituted into Eq. (2.97) for the estimation of the variance κ1 of natural time,
leads to

κ1 =
2

(2− p f )(3− p f )
− 1

(2− p f )2 (8.4)

The κ1 values determined from Eq. (8.4) are plotted versus p f in Fig. 8.11. At the same
plot, the two κ1 values that correspond to the aforementioned average p f values (i.e.,
p f = 0.72 and p f = 0.78) are marked, which scatter around κ1 ≈ 0.070. This κ1value is
comparable with the one (κ1≈ 0.070) determined when analyzing in natural time the small
seismic events that occur after the initiation of a SES activity and before the occurrence of
a mainshock (see Chapter 7). In other words:
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The ‘foreshocks’ associated with the non-conservative OFC model give on the average
a κ1 value which is more or less comparable with that (κ1 ≈ 0.070) obtained from the
analysis of the real seismic data that precede mainshocks.
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Fig. 8.11 The values of κ1 vs
the power law exponent p f
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to the two average p f values
discussed in the text.

We note, however, that this property of κ1 is difficult to be used for the prediction of
the avalanches in the OFC model in a way similar to that used for ζ . The reason is that
the mean energy ζ solely depends on the current state of (the zi j field of) the system,
whereas κ1 reflects the history of the system as it evolves starting from some (initial) state.
Thus, the application of κ1 for prediction purposes in the OFC model requires the real-time
identification of the initiation of the foreshock time series. The latter is extremely difficult.
Recall that in the field experiments, it is the initiation of the SES activity which signifies
that the stress has reached a critical value (see § 1.6.2) in the preparatory volume; then, the
identification of a “critical” time series, by employing the method explained in Chapter 7,
allows the determination of the occurrence time of the impending strong earthquake.

8.3.4 The predictability of the OFC model on the basis of the change ΔS of the

entropy in natural time under time reversal

Here, we focus on what happens before the occurrence time T0 of a large avalanche during
the stationary regime of the non-conservative case of the OFC model by employing the
change ΔS of the entropy in natural time under time reversal (Section 3.5). In particular,
for each large avalanche, we study the time evolution of ΔSl (see § 3.5.1) obtained from
the preceding avalanches time series. Following the study of foreshocks in Ref. [36] and
in view of the fact that, as mentioned in § 8.3.3, there are huge fluctuations before in-
dividual large avalanches, our results have been found by averaging the values obtained
before an appreciably high number of large avalanches. For example, Fig. 8.12 depicts the
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results for the average change ΔS (left scale) of the entropy in natural time under time
reversal and the average value of the mean energy ζ (right scale) obtained by using the
last 1,000 avalanches (irrespective of their size) before large avalanches of size s ≥ 100
(red), 1,000 (green) and 2,000 (blue) in the non-conservative OFC model with L = 100
and K = 2. In the horizontal axis, the time is measured from the occurrence time T0 of
the large avalanche. We find that ΔSl minimizes (note that. |ΔSl | maximizes) before the
impending large avalanche, thus signaling the imminent major event. The negative values
of ΔS reflect, through Eq. (3.79), that the avalanche size tends to increase as the time ap-
proaches that of the large avalanche, “mainshock” (due to the foreshocks, mentioned in the
previous subsection, that start to become discernable from the background “seismicity”).
Furthermore, note that ΔS changes sign, becoming negative, when the parameter ζ almost
starts to increase (recall that the quantity ζ , as shown in § 8.3.3, can be used as a predictor
for the large avalanches).
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Fig. 8.12 Results from averaging the last 1,000 events before a large avalanche (s ≥ 100, 1,000, 2,000
occurring at T0) in the OFC model with L = 100 and K = 2: the change ΔS (left scale, thick lines) of the
entropy in natural time under time reversal and the mean energy ζ (right scale, thin lines) as a function of
the ‘time’ (T0−T ) to the large avalanche. Note that ΔS minimizes before the occurrence time T0 of the
large avalanche, and changes sign when ζ almost starts to increase.

Proceeding one step further, Fig. 8.13 depicts the ROC graph when using ΔS as a pre-
dictor. In this calculation, ΔS was determined as the average value of ΔSl using the (past)
events that occurred within the time period Tnow−T = 0.05 to 0.2, where Tnow stands for
the present time. This ΔS is used as a predictor for the size of the next avalanche (in the
sense described above in § 8.3.3; see also § 6.4.2). The results (red curves) lie above the
diagonal and are statistically significant when compared with the cyan curves that cor-
respond to the extrema of 100 trials obtained when performing the same calculation by
using randomly shuffled ΔS values. These results are certainly less impressive than those
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Fig. 8.13 Receiver operating char-
acteristics graph (red) for the non-
conservative OFC model with L = 100
and K = 2 when using ΔS as a pre-
dictor (i.e., the TIP is on when ΔS
becomes less than some threshold):
The true positive rate (hit rate) ver-
sus the false positive rate (false alarm
rate) for various sc values increasing
from the bottom (sc = 100) to the
top (sc = 2,500) with constant steps.
The cyan curves depict the extrema
obtained when repeating 100 times
the same calculation using a random
predictor (see the text).

in Fig. 8.10, but we emphasize that the predictor here is solely based on the sizes of the
past avalanches.

8.3.5 Summary of the results

The main conclusions of the natural time analysis of the time series of avalanches in the
OFC model could be summarized as follows.

First, concerning the transient period: the behavior is different depending on whether
the model is conservative (α = 0.25) or non-conservative (α < 0.25). In the former case,
there is a single transient which mainly consists of an abrupt decrease of the variance κ1,
down to a minimum κ1 ≈ 0 and then a gradual increase up to the value κu = 1/12 of the
“uniform” distribution.

Before this minimum, the κ1 vs T curves deduced for various system sizes (L ≥ 500)
collapse onto a single curve and when the κ1 value reaches κ1 = 0.070 (at around
T = 0.119), an abrupt exponential increase of the avalanche size s occurs signaling the
approach to the critical behavior.

It is this drastic increase of s which decreases the κ1 value to κ1 ≈ 0 (the number of
the generated avalanches corresponding to the minimum value κ1 ≈ 0 is found to scale
with L2). On the other hand, in the non-conservative case, the transient period splits into
two parts. In the first part, the number of avalanches corresponding to the minimum κ1
value does scale with L2, but in the second part it increases much more quickly. During the
second part, coherent domains of the strain field gradually develop. This coherent structure
formation is accompanied by κ1 values close to 0.070.
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Second, the resulting power law exponent p f of the inverse Omori law for the ‘fore-
shocks’ identified in the non-conservative cases for large lattice sizes (L ≥ 1024), is
shown to correspond to κ1 values scattered around κ1 ≈ 0.070.

Third, there exists a nonzero change ΔS of the entropy in natural time under time
reversal, thus signaling the breaking of the time symmetry and reflecting predictability
in the OFC model.

8.4 Explanation of κ1 = 0.070 for critical systems on the basis of the

dynamic scaling hypothesis

We deal with time series of signals emitted from complex dynamical systems, i.e., systems
consisting of interacting components that evolve with time. In natural time analysis, when
the system is in thermodynamic equilibrium, it should produce stationary time series with
probabilities pk independent of χk. The situation is drastically different when the system is
in non-equilibrium state. When the system approaches the critical state, clusters of the new
phase are formed by enhanced fluctuations and their size increases as does the correlation
length. But this happens not instantly, because long-range correlations develop gradually
leading to the so-called dynamic phase transition (critical transition) (see § 1.5.2). Thus,
the time series emitted in such a non-equilibrium process will be non-stationary and pk, or
the corresponding probability density function p(χ) will no longer be independent of χ .

Using p(χ), the normalized power spectrum of Eq. (2.31) can be re-written as

Π(ω) =
∫ 1

0

∫ 1

0
p(χ)p(χ ′) cos

[
ω(χ−χ ′)] dχ dχ ′ (8.5)

A Taylor expansion of Eq. (8.5) around ω → 0 leads to the value

κ1 =
1
2

∫ 1

0

∫ 1

0
p(χ)p(χ ′)

(
χ−χ ′)2 dχ dχ ′ (8.6)

Since p(χ) is the normalized energy released at χ , for a dynamical system at criticality,
it also characterizes the way energy is released during the evolution of the dynamic transi-
tion. Energy release may be caused by some existing external field coupled with the newly
forming phase. The interaction energy density may comprise several terms the most sig-
nificant of which is usually expected to be of the dipole type; for example the interaction
Hamiltonian density hint = −E ·p (hint = −B ·m) in the case of an electric E (magnetic
B) external field, where p (m) stands for the electric (magnetic) dipole moment density of
the new phase. This interaction energy is proportional to the linear dimension of the newly
forming phase (the system volume is kept constant) and hence it is proportional to the cor-
relation length ξ (this will be proven below). According to the dynamic scaling hypothesis
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(see Refs. [11, 73] and references therein), already explained in § 1.5.3, the time-dependent
correlation length ξ at dynamic phase transitions scales as ξ ∝ t

1
z , where z is the so-called

dynamic critical exponent. The time t is usually measured in Monte Carlo steps, i.e., using
the internal clock of the system. Assuming that the dynamic scaling hypothesis should also
hold for p(χ) at criticality, we expect [81]:

p(χ) = Ncχ
1
ζ (8.7)

where ζ is another dynamic exponent (not to be confused with the mean energy ζ of
Section 8.3), and Nc a normalization factor to make

∫ 1
0 p(χ) dχ = 1. In fact, Eq. (8.7)

is plausible from the definition of pk, i.e., it represents the normalized energy emitted
during the k-th event and the energy at criticality has a power law distribution. By inserting
Eq. (8.7) into Eq. (8.6), we obtain:

κ1 =
1+ζ
1+3ζ

−
(

1+ζ
1+2ζ

)2

(8.8)

Substituting the value of ζ by the dynamic critical exponent z for various universality
classes of critical systems [58], we can obtain the values of κ1 depicted in Fig. 8.14. Notice
that for most universality classes, z varies in a region from z = 2 to z = 2.4 and thus (see
Fig. 8.14) the value of κ1 obtained by Eq. (8.8) are in the range 0.068 to 0.071. Especially
for the two-dimensional (2D) Ising model, which is qualitatively similar to the process of
SES emission (see § 8.4.1), one has z = 2.165 (see Ref. [42]) leading through Eq. (8.8)
to κ1 = 0.0697 ≈ 0.070. These results seem to justify the substitution of ζ by z, strongly
suggesting that they are the same dynamic exponent. This is not unreasonable since, in
reality, the Monte Carlo steps used in the computation of z actually correspond to natural
time steps.

Explanation of the statement that the interaction energy is proportional to the linear
dimension of the newly formed phase. Following § 1.5.3, in the non-equilibrium scaling
state, the equal-time correlation function C(r, t) (see Eq. (1.37)) of an order parameter field
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Fig. 8.14 The values of κ1 as a function
of dynamic critical exponent. Vari-
ous dynamical universality classes are
depicted according to their dynamic
critical exponent value (see tables IV,
VII, IX, XI of Ref. [58]). Models A
and B correspond to non-conserved or
conserved order parameter dynamics
as defined by Hohenberg and Halperin
[40]. Taken from Ref. [81]. Note that the
value κ1 = 0.070 corresponds to z≈ 2.2.
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φ(x, t) in the space of D-dimension has the form [12] given by Eq. (1.38) that contains the
usual critical exponent η .

It was stated above that the most significant part of the energy release is expected to be
of the dipole type, caused by the interaction Hamiltonian Hint =−E ·P(=

∫
V hint dx), and

that this interaction energy is proportional to the linear dimension of the newly forming
phase. This statement, following a suggestion of Professor Hiroshi Ezawa, can be shown
as follows. The dipole moment P is given by the integral of its density p

P =
∫

V
p(x, t) dx. (8.9)

Assuming p(x, t) fluctuating under a given electric field E, one focuses on the magnitude
P, considering that

P2 =
∫

dx

∫
dx′p(x, t) ·p(x′, t),

which, on average, is related to the correlation function (see Eq. (1.37)) by

〈
P2〉 =

∫
dx

∫
dx′
〈
p(x, t) ·p(x′, t)

〉
=
∫

dx

∫
dr
〈
p(x, t) ·p(x+ r, t)

〉
= D

∫
V

dx

∫ R

0
SD rD−1C(r, t) dr, (8.10)

where V is D-dimensional and SD is the surface area of the unit sphere in D dimensions,
and C(r, t) is given by Eq. (1.38), so that

〈
P2〉 = DV SD

∫ R

0

c
rη−1 f

(
r
ξ (t)

)
dr

= DV SD
c

ξ (t)η−2

∫ ∞

0

c
sη−1 f (s) ds ∝

1
ξ (t)η−2 = ξ (t)2−η , (8.11)

irrespective of the dimensionality D of V , where we have changed the variable of integra-
tion from r to s = r/ξ (t) assuming V →∞. Since η ≈ 0 irrespective of the dimensionality
D of V (e.g., see Ref. [8]), Eq. (8.11) leads to√

〈P2〉 ∝ ξ (t), (8.12)

which gives a linear growth of P =
√
〈P2〉 with ξ (t).

8.4.1 Natural time analysis of the 2D Ising model quenched close to, but below, Tc.

The qualitative similarity to the original SES generation model

Here we treat the case of quenching a ferromagnetic Ising system from a high temperature
state to a temperature close to (but below) the critical temperature. This case is studied
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here since it is qualitatively similar to the pressure stimulated currents (PSC) generation
mechanism of SES [78] (see § 1.6.2) in the following sense. In the focal region of a future
earthquake, which contains ionic materials, the stress gradually changes before failure. In
ionic solids containing aliovalent impurities, extrinsic defects are formed due to charge
compensation, which are attracted by nearby aliovalent impurities, thus forming electric
dipoles that can change their orientation in space through a defect migration. Stress vari-
ations may decrease the relaxation time of these dipoles and when the pressure, or the
stress in general, reaches a critical value a cooperative orientation of these electric dipoles
occurs, which results in the emission of a transient electric signal, which constitutes the
SES. The amount of energy released during this relaxation is proportional to the electric
dipole moment. This phenomenon may be considered as qualitatively similar to a rapid
quench of a ferromagnetic Ising system from a high temperature state (corresponding to
the initial random orientations of the magnetic dipoles) to a temperature close and below
the critical temperature Tc. Of course, in the case of PSC and hence for the SES, it is not
the temperature that changes, but it is the pressure. Pressure variations modify the coupling
between the dipoles so that effectively the critical state is reached.

The calculations have been carried out as follows. A 2D Ising system (with Hamilto-
nian H =−J ∑〈i j〉 sis j, where si =±1 and J stands for the coupling constant between the
nearest neighbors si and s j) in a square lattice of linear size L (with periodic boundary con-
ditions) was prepared in a high-temperature state and then instantaneously quenched to a
temperature (just) below Tc. The evolution of the magnetization per spin Mk = ∑si/L2 was
simulated by the standard Metropolis algorithm and studied as a function of the number k
of Monte Carlo steps (MCS). The latter was set to zero when the system is quenched at a
temperature close but below Tc, and increased by 1 after each Monte Carlo step, i.e., after
all the spins of the system have been renewed following the standard Metropolis algorithm.
For the purpose of the present simulation, k runs from k =1 to 104 MCS. Figure 8.15(a)
depicts the ensemble average 〈|Mk|〉 of |Mk| obtained from 103 replicas for various sizes
L = 100, 200, 400 and 1,000. It is observed in the figure that, due to the well-known phe-
nomenon of critical slowing down [48], systems of larger linear size need larger number
of MCS to finally reach the equilibrium magnetization. We now present in Fig. 8.15(b) a
log-log plot of the values shown in Fig. 8.15(a). This reveals that, practically independent
of L, the dynamics of 〈|Mk|〉 is a power law: 〈|Mk|〉 ∝ k1/z with the dynamic exponent z
very close to [42] z =2.165 (see the thick cyan straight line in Fig. 8.15(b)).

This dynamic model was then analyzed in natural time by setting Qk = |Mk|. Figure
8.15(c), which depicts the results for κ1 as a function of the number k of Monte Carlo
steps that followed the instantaneous quench, clearly shows that κ1 ≈ 0.070.

This result coincides with the one obtained above (i.e., κ1 = 0.0697) in § 8.4, when
substituting in Eq. (8.8) ζ by the aforementioned value z = 2.165.
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8.4.2 The original Bak–Tang–Wiesenfeld sandpile SOC model and its fully

deterministic version. Natural time analysis

Here, we come back to the original archetypal “sandpile” automaton described in Ref. [6]
(see also Section 8.1), hereafter called the Bak–Tang–Wiesenfeld (BTW) model. Let us
consider the D-dimensional BTW model on a hypercubic lattice of linear size L in which
integer variables zi ≥ 0 represent units of sand. We perturb the system by adding a unit of
sand at a randomly chosen site zi→ zi +1. If the corresponding zi exceeds the critical value
2D, the site is called unstable; an unstable site relaxes (topples): its zi value is decreased
by 2D, and the amount of units of sand of its 2D nearest neighbors (nn) is increased by
one:

zi → zi−2D (8.13)

znn → znn +1 (8.14)

Thus, the neighboring sites may be activated and an avalanche of relaxations may proceed.
This avalanche stops when all sites are stable again. A relaxation event is characterized by
its size s (total number of topplings), area a (number of distinct toppled sites), duration
t (number of parallel update steps until stable configuration is reached), and its radius
r (e.g., the maximal distance between the original and a toppled site). According to the
basic hypothesis of Bak et al. [6], in the SOC state the probability distributions of values
x = s,a, t,r exhibit power law behavior

Px(x) ∝ x−τx (8.15)

with x ∈ {s,a, t,r}. According to Ref. [47], Eq. (8.15) might not be in general true for
complete avalanches but it does hold for waves of topplings. Specifically, waves represent
relaxation processes in which any site topples at most once and hence do not contain
multiple toppling events in the origin of the avalanche (note that the latter, for D ≥ 4,
are so rare that they can be neglected). Ktitarev et al. [47] proved analytically that the
upper critical dimension of the BTW model is Du = 4, showing that previously observed
deviations from mean field behavior at D = 4 are due to logarithmic corrections. For this
case, D = 4, the scaling behavior of waves and avalanches is characterized by the same
exponents and scaling functions.

In order to proceed to numerical simulations, we study a fully deterministic version of
the BTW sandpile model, where the random site seeding is replaced by regular seeding at
the central site of the hypercubic lattice, suggested by Wiesenfeld et al. [84]. They showed
that despite this strict determinism, the system for D = 2 evolves into a SOC state. The
natural time analysis (with initial condition zi = 0) of the time series of avalanches lead to
κ1 values plotted in Fig. 8.16 for D = 2 to D = 7. Focusing on the aforementioned upper
critical dimension (hence corresponding to the mean field case) D = 4, we see that the κ1
value fluctuates close to 0.070.

The κ1 values for various D plotted in Fig. 8.16 fluctuate around the value obtained
from Eq. (8.8) for ζ = D/2, i.e., 0.056 for D = 2, 0.064 for D = 3, 0.069 for D = 4, 0.071
for D = 5, 0.073 for D = 6 and 0.075 for D = 7. This result can be understood on the
following grounds.



8.4 Explanation of κ1 = 0.070 for critical systems on the basis of the dynamic scaling hypothesis 369

0  5000 10000  15000 20000  25000 30000  
0.05

0.1

Number of Avalances

0.05
0.07
0.09

0.05
0.07
0.09

       
0.05
0.07
0.09

0.05
0.07
0.09       
0.04
0.05
0.06
0.07

1 

D=2 

D=3

D=4 

D=5 

D=6 

D=7 

Fig. 8.16 The evolution of κ1 values versus the number of consecutive avalanches for various D values,
i.e., for D = 2 to D = 7, for the centrally fed sandpile. The initial condition is zi = 0. For the sake of
comparison, the broken horizontal line shows the value of κ1 = 0.070. Taken from Ref. [81].

Since an avalanche occurs every 2D seeds are fed into the central site, the number of
avalanches is equal to the number of seeds n fed divided by 2D. Natural time increases by
1/N when an avalanche occurs, thus we have

χk =
k
N

, k =
[ n

2D

]
. (8.16)

where the brackets [·] denote the integer part. The local conservation of the units of sand
(i.e., sand particles can move only to nearest neighbors sites) expressed in Eqs. (8.13) and
(8.14), leads to the fact that the expected number of toppling Gi j at site j, upon adding a
particle at site i is characterized by [27]

Gi j ∝ r2−D
i j , (8.17)

where ri j is the distance between the sites i and j. Since we deal with a centrally fed
sandpile, the total expected number of topplings 〈s〉 is found by integrating Eq. (8.17) in
the hypersphere of radius l of the sandpile:

〈s〉 ∝
∫ l

0
G0 jSDrD−1

0 j dr0 j ∝
∫ l

0
r0 j dr0 j ∝ l2. (8.18)

With regard to l, recent mathematical studies [31] show that the linear dimension of the
formed sandpile grows as

l ∝ n1/D (8.19)
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Inserting Eqs. (8.16) and (8.19) into Eq. (8.18), we obtain 〈s〉 ∝ χ2/D which reflects (cf.
Eq. (8.7)) that ζ = D/2.

Notice that for the upper critical dimension, we have D = Du = 4, and hence ζ = 2
(which is equal to the mean field dynamic exponent z = 2, e.g. see Ref. [47]) which, in
view of Eq. (8.8), leads to κ1 = 0.0686(≈ 0.070).

The fulfillment of the condition κ1 = 0.070 could be alternatively seen as follows when
considering some points discussed in Ref. [17]: The relaxation of a site can induce a num-
ber of other sites to relax in turn if, because of the particles received, they exceed the
threshold. From the moment a site topples, the addition of particles stops until all sites
have relaxed (zi < 2D for all i, see Eq. (8.13)). This condition assures that the driving force
is ‘slow’ being the driving time exceedingly longer than the characteristic time of toppling
instances. The sequence of toppling events during this interval constitutes an avalanche.
For conservative models, the number of transferred particles equals the number of particles
lost by the relaxing site and dissipation occurs only at boundary, from which particles can
escape the system. Under these conditions the system reaches a stationary state character-
ized by a sequence of avalanches. Since the SOC algorithm is implemented basically as a
cellular automaton, the cluster growth is intrinsically of diffusive nature.

It is this diffusive nature of the cluster growth, which seems to lie behind the afore-
mentioned result κ1 = 0.070 in SOC models.

8.4.3 Natural time analysis of the mean field case

As mentioned above in Section 8.4 for most universality classes, z varies in a region from
z = 2 to z = 2.4 and thus (see Fig. 8.14) the values of κ1 obtained by Eq. (8.8) are in the
range 0.068 to 0.071. Moreover, in the mean field case, e.g. of the growing centrally fed
sandpile in § 8.4.2, we have

ζ = 2. (8.20)

By inserting Eq. (8.20) into Eq. (8.7), we get

p(χ) =
3
2
√
χ (8.21)

so that
∫ 1

0 p(χ) dχ = 1. Upon using Eq. (8.21) for the estimation of the variance κ1 of
natural time (see Eq. (2.37))

κ1 =
∫ 1

0
χ2 p(χ) dχ−

[∫ 1

0
χ p(χ) dχ

]2

, (8.22)
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we find and the corresponding κ1 value is κ1 = 0.0686. This value almost coincides with
the value κ1 ≈ 0.070 found (see Chapter 7) from the natural time analysis of seismicity
before large EQs.

The stability of the result κ1 ≈ 0.070 if a single realization of the process is available.
The results of this investigation, depicted in Fig. 8.17, show the following:

Fig. 8.17 The probability dis-
tribution of κ1 obtained after
randomly selecting M = 103

(red) or M = 104(green) sub-
series from a single realization
of the process described by
Eq. (8.21) using exponentially
distributed Qk (see the text).
Both distributions are peaked
close to κ1 = 0.070. Once the
events of the original realiza-
tion are shuffled randomly and
then M = 103 subseries are
analyzed, the peak of the new
distribution, shown in cyan, is
displaced to the right.

Even when using a single realization of the process described by Eq. (8.21) with Qk
exponentially distributed, i.e., Qk = rk

√
k where rk are exponential p.i.i.d. random

variables, and select random subseries of the process to be analyzed in natural time,
the pdf deduced for κ1 maximizes at κ1 ≈ 0.070.

This is reminiscent of the updated procedure used in § 7.1.2. This so, because in that
procedure we considered the time series of seismicity that occurs after the initiation of
the SES activity in the area candidate to suffer a mainshock and then used the subseries
corresponding to the seismicity in all possible subareas of the candidate area to construct
the pdf of the resulting κ1 values. It was then found that this pdf exhibits a maximum at
κ1 ≈ 0.070 when approaching the occurrence time of the mainshock.

8.5 Natural time analysis of time series of avalanches observed in

laboratory experiments

8.5.1 Time series of avalanches observed in ricepiles

Here, we consider the well-controlled experiment on three-dimensional ricepiles by Aegerter
et al. [2, 1]. Since a genuine understanding of the nature of SOC can be gained only when
the approach to the critical state is understood, Aegerter et al. studied the evolution of
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a three-dimensional pile of rice starting well away from the critical state and getting pro-
gressively closer. They found [1] that their experimental results are satisfactorily described
by well-founded concepts proposed [60] in the context of extremal dynamics. In the latter
context, Paczuski et al. [60] have derived an equation (predicting power law behavior),
which they call the gap equation, describing the approach of the system to the critical
state. Aegerter et al. [2] directly studied a measure of this gap given by the maximal local
slope of the ricepile and hence could test various scaling relations of extremal dynamics.
Furthermore, Aegerter et al. studied the evolution of avalanche sizes, as well as that of the
avalanche distributions, which can be used as further tests of extremal dynamics aspects.
Here we solely focus on the way the size ΔV of avalanches grow with time in the transient
regime, which was measured directly.

Figure 8.18(a) depicts the time evolution of ΔV obtained in one experiment of Ref. [2].
Upon analyzing these data in natural time when assuming Qk = ΔVk, we find the results
shown in Fig. 8.18(b).
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Fig. 8.18 (a): The evolution of the
avalanche sizes, in the transient regime,
for one of the experiments of Ref. [2]
on ricepiles. (b): The results of the
variance κ1 (dotted) and the entropy S
(solid) as they evolve event by event,
when the data of (a) are analyzed in
natural time. Taken from Ref. [70].
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A careful inspection of these results in ricepiles reveals that actually at later times
(N ≥ 350) the κ1 value scatters in the region around 0.070(10) (as well as that S ≈
0.070(10) < Su).

We clarify that upon shuffling the data, which reflects that the values are put into random
order and hence all correlations (memory) are destroyed [80] (see also § 2.5.2.1), we find
that, for N = 550, Prob[κ1 ≤ 0.070] < 2% (and Prob[S≤ 0.070] < 0.1%). This leads to the
following conclusion:

The sequential order of the avalanches captured by the natural time analysis is of
prominent importance [70] for establishing the SOC state and constitutes the basis for
the observation of the result κ1 ≈ 0.070.

8.5.2 Time series of magnetic flux avalanches observed in high Tc superconductors.

A generalized stochastic directed SOC model

The archetypal example of SOC is, as mentioned (Section 8.1 and § 8.2.2), the growing of
a sandpile [6, 7]. Furthermore, the critical state in superconductors has been proposed (e.g.
see Ref. [87]) to be a SOC system. The strong analogy between these two systems, i.e.,
sandpiles and superconductors, as first pointed out by de Gennes (see p.83 of Ref. [34]),
could be in principle understood as follows.

When a type II superconductor is put in a slowly ramped external field, magnetic vor-
tices start to penetrate the sample from its edges. These vortices get pinned by crystallo-
graphic defects (e.g., dislocations [78]), leading to the build-up of a flux gradient which
is only marginally stable in a similar fashion as is the slope in a slowly growing sandpile.
Hence, it can happen that small changes in the applied field can result in large rearrange-
ments of flux in the sample, known as flux avalanches [15, 4, 83].

We now proceed to the natural time analysis of the time series of the magnetic flux
avalanches measured in a thin film of YBa2Cu3O7−x. These measurements have been made
by Aegerter et al. [3]. They studied the local changes in the magnetic flux over the whole
central area of a sample via a highly sensitive magneto-optic setup, which allows that flux
changes corresponding to 2.5Φ0 can be resolved where Φ0 = h/2e is the magnetic flux
quantum (the flux of a single vortex). The pinning sites in the sample were uniformly dis-
tributed and consisted mostly of screw dislocations acting as point pins. For cuprate high
Tc superconductors such as YBa2Cu3O7−x the coherence lengths are in the order of tens
of Å, and thus atomic-scale structural inhomogeneities such as point defects and columnar
defects can play an important role in flux-line pinning. (In these superconductors, Su et
al. [77] found that Schottky defects formation energy increases almost linearly with BΩ ,
where B is the isothermal bulk modulus and Ω the mean volume per atom, in striking
agreement with an early model (termed the cBΩ model) proposed [79, 78] by one of the
present authors.)
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The data of Aegerter et al. [3] come from experimental runs consisting of 140 time
steps. The size and shape of the avalanches was determined from the difference ΔBz(x,y)
of two consecutive images (50 μT increase between images), where Bz(x,y) denotes the
flux density at the surface of the sample measured. From these differences, the average
increase in the applied magnetic field due to the stepwise field sweep, was subtracted in
order to solely study the avalanches. Once the incremental field difference is determined,
the size of an avalanche, corresponding to the displaced amount of flux ΔΦ , is estimated
from ΔBz by integrating over the whole area ΔΦ = 1

2
∫
ΔBz(x,y) dx dy.
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Fig. 8.19 (a): The time evolution of
the magnetic flux in YBa2Cu3O7−x
inside the sample over the 1st run of
fig.2 of Ref. [3]. (b): The results of the
variance κ1 (dotted) and the entropy S
(solid) as they evolve event by event,
when the data of (a) are analyzed in
the natural time-domain. Taken from
Ref. [70].

The time series of the avalanche behavior in a typical experiment of Aegerter et al.
[3] is depicted in Fig. 8.19(a), which shows that the evolution of the magnetic flux inside
the sample is intermittent with occasional large jumps. Figure 8.19(b) depicts the results
obtained [70] when the data of Fig. 8.19(a) are analyzed in natural time by assuming
Qk = ΔΦk.

An inspection of the latter figure shows that for N = 140 the κ1 value is close to
0.070(5) (as well as that the S value is around 0.085, i.e., smaller than Su).
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The results obtained above have been compared [70] with those deduced from the nat-
ural time analysis of the numerical results from a generalized stochastic SOC model sug-
gested by Carbone and Stanley [17]. It consists of a family of stochastic directed clusters
generated by fractional Brownian paths with different correlation properties. Carbone and
Stanley showed that the cluster area, length and duration exhibit the characteristic scaling
behavior of SOC clusters. This model is considered [17] to be a generalized stochastic
model, including the Dhar-Ramaswamy [28] directed sandpile model (which can be de-
scribed assuming that the system is driven by particles added at the top layer i = 0 and
removed from the bottom layer i = L) and the stochastic models as particular cases.

Carbone and Stanley [17] consider a generalized Brownian walk y(i) defined by
y(i)≡ ∑i−1

k=0 ξk, where the steps ξk are taken from a discrete fGn (see § 1.5.1.1). The mean
square displacement of y(i) scales with Δ i as 〈y(i)2〉 ∝ (Δ i)2H , where H is the Hurst ex-
ponent (0 < H < 1). The moving average function ỹn(i) is

ỹn(i)≡ 1
n

n−1

∑
k=0

y(i− k), (8.23)

which is a linear operator whose output is still a generalized Brownian motion, but now
with the high-frequency components of the signals averaged out [16] according to the
window amplitude n. In order to characterize the clusters � corresponding to the regions
bounded by y(i) and ỹn(i) in terms of the characteristic exponents of SOC systems, they
define – for each cluster – the cluster area s j

s j ≡
ic( j+1)

∑
i=ic( j)

|y(i)− ỹn(i)|Δ i, (8.24)

where the index j refers to each cluster. The symbols ic( j) and ic( j +1) stand [17] for the
values of the index i corresponding to two subsequent intersections of the “lines” defined
by ỹn(i) and y(i), and Δ i is the elementary time interval corresponding to each step of
the random walker. Then, the pdf P(s) scales [17] as P(s) ∝ s−τ with τ = 2/(1 + H).
Considering that the exponent of the avalanche distribution reported from the data analysis
of Aegerter et al. [3] is around τ = 1.3, we find that it corresponds to H ≈ 0.5. Thus, in
Fig. 8.20, we plot P(s) versus s calculated for various n values for H = 0.5.

We now turn to the comparison of the results of this model with the aforemen-
tioned experimental results in YBa2Cu3O7−x films. Taking into account that the maximum
avalanche size smax detected by Aegerter et al. [3] is of the order of 104, an inspection of
Fig. 8.20 leads to n ≈ 200. In Fig. 8.21, we plot with solid lines the pdfs of κ1 and S that
have been obtained from the model of Ref. [17] for H = 0.5, n = 200 and N = 140. An
inspection of this figure shows that:

The maxima of the pdfs of κ1 and S lie around κ1 = 0.070(10) and S = 0.080(10),
respectively. These are comparable with the corresponding κ1 and S values obtained
from the natural time analysis of the experimental data depicted in Fig. 8.19(b) (for
N = 140).
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For the sake of comparison, in Fig. 8.21, we also plot the corresponding pdfs for two
non-critical cases associated with a “uniform” distribution (see § 2.1.3) i.e., (i) when Qk
are uniformly distributed in the range (0,1) (dotted) and (ii) when Qk are exponentially
distributed (broken) which corresponds to a dichotomous Markovian process (see Sec-
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tion 4.1), e.g, the case of the observed [25] RTS signals in metal-oxide-semiconductor
transistors with tunneling oxide. The maxima of the latter two cases lie at κ1 ≈ κu and
S ≈ Su, which markedly differ from those deduced for YBa2Cu3O7−x in Fig. 8.19(b) (for
N = 140).

By summarizing, the measurements of the penetration of magnetic flux into a thin film
of YBa2Cu3O7−x have been analyzed in natural time. This analysis leads to a value of
the variance κ1 = 〈χ2〉− 〈χ〉2 equal to κ1 ≈ 0.070. The same κ1 value is found from
the natural time analysis of a generalized stochastic SOC model proposed by Carbone
and Stanley [17].

Acknowledgments We express our sincere thanks Professor Rinke J. Wijngaarden, for sending us the
YBa2Cu3O7−x and ricepile data discussed in § 8.5.2 and § 8.5.1, respectively.
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66. Ramos, O., Altshuler, E., Måløy, K.J.: Avalanche prediction in a self-organized pile of beads. Phys.
Rev. Lett. 102, 078701 (2009)

67. Sammis, C.G., Smith, S.W.: Seismic cycles and the evolution of stress correlation in cellular au-
tomaton models of finite fault networks. Pure Appl. Geophys. 155, 307–334 (1999)

68. Sarlis, N.V., Skordas, E.S., Varotsos, P.A.: Natural time analysis of the Olami–Feder–Christensen
model. (to be published) (2011)

69. Sarlis, N.V., Skordas, E.S., Varotsos, P.A.: Nonextensivity and natural time: The case of seismicity.
Phys. Rev. E 82, 021110 (2010)

70. Sarlis, N.V., Varotsos, P.A., Skordas, E.S.: Flux avalanches in Y Ba2Cu3O7−x films and rice piles:
Natural time domain analysis. Phys. Rev. B 73, 054504 (2006)

71. Scholz, C.H.: Earthquakes and friction laws. Nature (London) 391, 37–42 (1998)
72. Scholz, C.H.: The Mechanics of Earthquakes and Faulting, 2nd ed. Cambridge University Press,

Cambridge U.K. (2002)



380 8. Natural Time Analysis of Dynamical Models

73. Sicilia, A., Arenzon, J.J., Bray, A.J., Cugliandolo, L.F.: Domain growth morphology in curvature-
driven two-dimensional coarsening. Phys. Rev. E 76, 061116 (2007)

74. Sornette, D.: Critical Phenomena in Natural Science, 2nd edn. Springer, Berlin (2004)
75. de Sousa Vieira, M.: Self-organized criticality in a deterministic mechanical model. Phys. Rev. A

46, 6288–6293 (1992)
76. de Sousa Vieira, M.: Simple deterministic self-organized critical system. Phys. Rev. E 61, R6056–

R6059 (2000)
77. Su, H., Welch, D.O., Wong-Ng, W.: Strain effects on point defects and chain-oxygen order-disorder

transition in 123 cuprate compounds. Phys. Rev. B 70, 054517 (2004)
78. Varotsos, P., Alexopoulos, K.: Thermodynamics of Point Defects and their Relation with Bulk Prop-

erties. North Holland, Amsterdam (1986)
79. Varotsos, P., Ludwig, W., Alexopoulos, K.: Calculation of the formation volume of vacancies in

solids. Phys. Rev. B 18, 2683–2691 (1978)
80. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Lazaridou, M.S.: Entropy in natural time domain. Phys.

Rev. E 70, 011106 (2004)
81. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Uyeda, S., Kamogawa, M.: Natural time analysis of criti-

cal phenomena. under preparation (2011)
82. Varotsos, P.A., Sarlis, N.V., Skordas, E.S., Uyeda, S., Kamogawa, M.: Natural time analysis of criti-

cal phenomena. the case of seismicity. EPL 92, 29002 (2010)
83. Welling, M.S., Aegerter, C.M., Wijngaarden, R.J.: Self-organized criticality induced by quenched

disorder: Experiments on flux avalanches in NbHx films. Phys. Rev. B 71, 104515 (2005)
84. Wiesenfeld, K., Theiler, J., McNamara, B.: Self-organized criticality in a deterministic automaton.

Phys. Rev. Lett. 65, 949–952 (1990)
85. Wissel, F., Drossel, B.: Transient and stationary behavior of the Olami–Feder–Christensen model.

Phys. Rev. E 74, 066109 (2006)
86. Yang, X., Du, S., Ma, J.: Do earthquakes exhibit self-organized criticality? Phys. Rev. Lett. 92,

228501 (2004)
87. Zaitsev, S.I.: Robin Hood as self-organized criticality. Physica A 189, 411–416 (1992)
88. Zhang, S., Huang, Z., Ding, E.: Predictions of large events on a spring-block model. J. Phys. A:

Math. Gen. 29, 4445–4455 (1996)


	8. Natural Time Analysis of Dynamical Models
	Abstract.
	8.1 Is self-organized criticality (SOC) compatible with prediction? Recent aspects. The models analyzed here in natural time
	8.2 Natural time analysis of the Burridge & Knopoff “train” earthquake model
	8.2.1 The earthquake model proposed by Burridge & Knopoff. The “train” model. Introduction
	8.2.2 Natural time analysis of the “train” model

	8.3 Natural time analysis of the Olami–Feder–Christensen (OFC) earthquake model
	8.3.1 The Olami–Feder–Christensen model. Introduction
	8.3.2 Natural time analysis of the Olami–Feder–Christensen model
	8.3.2.1 Results in the transient and the stationary regime of the OFC model

	8.3.3 The predictability of the OFC model based either on the mean energy or on the interrelation between the κ1 value and the exponent of the inverse Omorilaw
	8.3.4 The predictability of the OFC model on the basis of the change ΔS of theentropy in natural time under time reversal
	8.3.5 Summary of the results

	8.4 Explanation of κ1 = 0.070 for critical systems on the basis of the dynamic scaling hypothesis
	8.4.1 Natural time analysis of the 2D Ising model quenched close to, but below, Tc.The qualitative similarity to the original SES generation model
	8.4.2 The original Bak–Tang–Wiesenfeld sandpile SOC model and its fully deterministic version. Natural time analysis
	8.4.3 Natural time analysis of the mean field case

	8.5 Natural time analysis of time series of avalanches observed in laboratory experiments
	8.5.1 Time series of avalanches observed in ricepiles
	8.5.2 Time series of magnetic flux avalanches observed in high Tc superconductors. A generalized stochastic directed SOC model

	References


