
4. Natural Time Analysis of Seismic Electric Signals

Abstract. The natural time analysis of all the measured SES activities showed that they
are characterized by very strong memory and their normalized power spectraΠ(ω) versus
ω fall on a universal curve having κ1(= 〈χ2〉− 〈χ〉2) value equal to 0.070. This curve
coincides with the one obtained on theoretical grounds when assuming that SES are gov-
erned by critical dynamics. Upon shuffling the events (pulses) randomly, the memory is
destroyed and the κ1 value becomes equal to that κu(= 1/12 ≈ 0.083) of a “uniform”
distribution. This shows that the self-similarity solely stems from long range temporal
correlations. Concerning the distinction of SES activities from similar looking “artificial”
(man-made) noises, we find the following. Modern techniques of Statistical Physics, e.g.,
detrended fluctuation analysis (DFA), multifractal DFA, wavelet transform, when applied
to the original time series cannot achieve such a distinction, but when they are applied in
natural time a clear distinction emerges. For example, for the SES activities the DFA expo-
nent in natural time is close to unity, i.e., α ≈ 1, while for “artificial” noises it is markedly
smaller, i.e., α < 0.85. Also the entropy S in natural time can achieve such a distinction:
For SES activities both S and S− (where S− stands for the entropy in natural time un-
der time reversal) are smaller than the entropy Su ≈ 0.0966 of the “uniform” distribution,
which is not the case for the “artificial” noises where S is larger than (or equal to) Su and
S− may either be smaller or larger than Su. Upon “shuffling” the events (pulses) randomly,
both values of S and S− in the SES activities turn out to be equal to Su, which conforms
with the aforementioned conclusion that in SES activities the self-similarity originates
solely from long range temporal correlations. Finally, when investigating the dependence
of the fluctuations Δχl of the average value of natural time under time reversal versus
the window length l, we can also achieve a distinction between SES activities and “artifi-
cial” noises. In particular, when studying the log-log plot of Δχl versus l, the former give
ascending curves, in contrast to the latter that result in descending curves.
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192 4. Natural Time Analysis of Seismic Electric Signals

4.1 Dichotomous time series. Markovian and non-Markovian

processes

4.1.1 Difference between natural time analysis and earlier studies of dichotomous

time series. The Markovian process

The following point should be stressed concerning one of the key differences of the nat-
ural time analysis compared to the earlier procedures in the study of dichotomous time
series. For such time series, the quantity Qk (see § 2.1.2, Fig. 2.1(a)) coincides with the
so-called dwell time (for the high-level state only) and is one of the basic characteristics of
a dichotomous (i.e., on–off) process. The standard procedure consists of the determination
of the dwell times distribution P(Q): for a Markovian process P(Q) is exponential, i.e.,
P(Q) = e−Q/Q/Q (frequently the average dwell time Q is different for the high- and the
low-level states). For non-Markovian (which contain some “memory”) processes P(Q) is
non-exponential, e.g., stretched exponential, i.e., of the form e−(Q/τ)b

where 0 < b < 1, or
even algebraic. On the other hand, the natural time analysis is carried out in terms of the
couple (χk,Qk), which takes into account the ordering of the pulses, and hence not solely
based on the statistics of their durations, i.e., P(Q).

We just mention here that ionic current fluctuations in membrane channels (ICFMC),
the long-range correlations of which have been studied in Ref. [21], can be also approx-
imated by dichotomous time series. Further, we clarify that (see Ref. [9] and references
therein) single ionic channels in a membrane open and close spontaneously in a stochastic
way, resulting in current and voltage changes which resemble the realizations of random
telegraph signals (RTS, dichotomous noise). The channel’s opening state can be deter-
mined [21] on the basis of the ion current: a low current corresponds to a closed channel
state, while high current values indicate an open state (see Fig. 4.1). It has been shown
[8] that the action of membrane-embedded enzymes depends critically on fluctuations of
the membrane potential, and that the main source of these fluctuations originates in the
fluctuations of ionic concentrations due to the action of ion channels. Recall that the SES
activities have also an RTS feature, e.g., see Figs. 2.8 and 4.2. These figures also depict
a number of “artificial” noises (see § 1.2.3) that have been intentionally selected to ex-
hibit a RTS feature similar to that of SES activities. Note that N1–N5 and N9 of Fig. 4.2
correspond to n1–n5 and n6 of Fig. 2.8, respectively.

Hence, apart from a difference in the time-scales, the feature of all these electric sig-
nals is similar to that of the SES activities (RTS shape). This similarity instigated the
simultaneous study of SES activities, “artificial” noises and ICFMC by Varotsos et al.
[32, 34, 33], as will be explained below.
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Fig. 4.1 Excerpt of the ionic current
fluctuation in membrane channels
(ICFMC) ( fexp =10 kHz) studied in
Ref. [21] (see also Refs. [10, 9]).

4.1.2 Non-Markovian character of SES activities and “artificial” noises

Varotsos et al. [32] showed, by means of the Smoluchowski–Chapman–Kolmogorov func-
tional equation (SCK equation), that the SES activities exhibit non-Markovian character
(i.e., contain some “memory”, see § 4.1.1). The stationarity of the signal was studied by
the quantiles procedure. Subsequently, Varotsos et al. [33], in order to further investigate
the non-Markovianity for both SES activities and “artificial” noises, proceeded to the study
of the non-Markovian quantitative global measure G. Furthermore, they studied the coef-
ficients of skewness and kurtosis.

The non-Markovian quantitative global measure G. Following Siwy and Fuliński [23],
the definition of G can be summarized as follows: one of the properties of a Markov pro-
cess is that it satisfies the SCK equation (e.g., see Ref. [32]). The deviation from this
equation, i.e.,

Dm,n(t,τ) = P(m, t|n,0)−
M

∑
k=1

P(m, t|k, t− τ)P(k, t− τ|n,0), (4.1)

measures the degree of non-Markovianity. In Eq. (4.1), the indices k,m,n = 1,2, . . .M
number the electric field states (note that in our case we have M = 2 different states, labeled
“high”, m = 1, and “low”, m = 2, respectively; we consider as “high”-level states those
having the largest deflections of the electric field amplitude with respect to the background
level; see the arrows in Fig. 4.2). The P(m, t|n,s) stands for the field–field conditional
probability that the electric field E(t) is in the state number m, under the condition that at
the earlier time s < t the field E(s) was in the state number n.

The integral measure (mean square characteristics) of the non-Markovianity is [9, 23]

G = G(τ,T ) =

[
1
T

1
M2

M

∑
m,n

∫ τ+T

τ
D2

m,n(t,τ) dt

]1/2

(4.2)
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Fig. 4.2 Excerpts of: (a) four SES activities recorded
on April 18, 1995 (K1), April 19, 1995 (K2), March 17,
2001 (A) and February 5, 2002 (U); (b) nine “artificial”
noises recorded on November 14, 1997 (N1), November
15, 1997 (N2), November 16, 1997 (N3, N4 and N5),
July 13, 2001 (N6), August 4, 2001 (N7), March 22,
2001 (N8 and N9). The SES activity U was recorded
at IOA (see Ref. [34]), while for the SES activities K1,
K2 and A see the caption of Fig. 4.5. The “artificial”
noises were distinguished from SES activities according
to the criteria discussed in Section 1.2, and collected at
various stations (see the map of Fig. 1.2), i.e., N1 to N5
at VOL, N6 and N7 at IOA, N8 and N9 at LAG (this
is a station lying very close to ASS). The electric field
E is presented here in normalized units (μ and σ stand
for the mean value and the standard deviation in each
case, respectively). The arrows on the right indicate the
polarity of the deflection from the background level to
the largest (in amplitude) electric field variations (i.e.,
from the “low”-level to the “high”-level states). Taken
from Ref. [34]. Note that N1–N5 and N9 correspond to
n1–n5 and n6 of Fig. 2.8, respectively.

where T is the range of the time t and τ is the shift in the SCK equation. As an example,
for the SES activity K1 and the “artificial” noise N1 mentioned in Fig. 4.2, the calculation
for T = 100 s yields Gmax(= supτG(τ,T )) = 0.107± 0.002 and 0.135± 0.004, respec-
tively. For computer-generated Markovian dichotomous series of comparable length, the
corresponding G values are smaller by one order of magnitude, which also suggests the
non-Markovian character of the experimental data for both cases, i.e., K1 and N1, respec-
tively (this non-Markovianity has been also shown by employing the entropy fluctuations
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δS in natural time and the relevant complexity measures; see Table 4.5 and the last para-
graph of § 9.1.2).

Skewness and kurtosis. The coefficients of skewness (γ1) and kurtosis (β2) are (see
p. 928 of Ref. [1]):

γ1 = μ3/σ3 and β2 = μ4/σ4 (4.3)

where μn denotes the nth central moment, i.e., μn = ∑s(xs−μ)n ps for randomly distributed
data xs with point probabilities ps. The symbol μ stands for the mean and σ for the stan-
dard deviation. For Markovian processes, the durations of the “high”- (Th) and “low”-level
states (Tl) should follow exponential distributions p(T) = λ exp(−λT) (see § 4.1.1), for
which the values γ1 = 2, β2 = 9 and σ2/μ2 = 1 are expected. The two coefficients γ1 and
β2 are tabulated along with σ2/μ2 in table II of Ref. [28], for both series of the “high”-
and “low”-level states’ durations of the “artificial” noises and the SES activities depicted
in Fig. 2.8. Comparing these values with those expected from an exponential distribution,
we find [33] the following: None of the time series of durations, corresponding to either the
SES activities or the “artificial” noises investigated, could be compatible with an exponen-
tial distribution. Moreover, the Kolmogorov-Smirnov test excludes for the SES activities
the Gaussian distribution.

In short, both the SES activities and the “artificial” noises exhibit non-Markovian char-
acter.

4.1.3 Markovian dichotomous time series. Spectral analysis and detrended

fluctuation analysis (DFA)

This was studied in Ref. [33]. Following Berezhkovskii and Weiss [6], in the case of a
Markovian dichotomous (M =2, m =1,2; these are the symbols used in § 4.1.2) time series,
the probability densities for the time spent in a single sojourn in the states “high” (m = 1)
and “low” (m = 2) respectively are both exponential, i.e.,

p1(T ) ∝ exp(−T/τhigh), p2(T ) ∝ exp(−T/τlow) (4.4)

and lead to the following expressions for the field–field conditional probabilities

P(1, t + τ|1, t) = τeff

[
1
τlow

+
exp(−τ/τeff )

τhigh

]
(4.5)

and
P(2, t + τ|1, t) =

τeff

τhigh

[
1− exp(−τ/τeff )

]
, (4.6)

where 1/τeff ≡ 1/τhigh +1/τlow and τ is a time lag. Note that the expressions of Eqs. (4.5)
and (4.6) for the conditional probabilities satisfy the SCK functional equation (see § 4.1.2).
The probability to observe the “high” state P1 is
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P1 =
τhigh

τlow + τhigh
, (4.7)

and the joint probability P11(τ) to observe the “high” state at both the times t and t + τ ,
due to the definition of the conditional probability, is

P11(τ) = P1P(1, t + τ|1, t). (4.8)

The power spectral density S(ω) is the Fourier transform of the autocovariance � (τ) =
[x(t + τ)− x][x(t)− x] of the stationary signal x(t) [25] with average value x:

� (τ) = x(t + τ)x(t)− x2 =
1

2π

∫ ∞

0
S(ω) cos(ωτ) dω. (4.9)

If we assume that the states “low” and “high” have amplitudes 0 and ΔE, respec-
tively, we have x = (ΔE)P1, and x(t + τ)x(t) = (ΔE)2P11(τ), and using the expressions
of Eqs. (4.5) and (4.7)–(4.9), we finally obtain

� (τ) = (ΔE)2 τeff

τlow + τhigh
exp
(
− τ
τeff

)
(4.10)

Equation (4.10), using the Wiener–Khinchin theorem, leads to the power spectral density
S(ω)

S(ω) = 4
∫ ∞

0
� (τ) cos(ωτ) dτ =

4(ΔE)2τ2
eff

(τlow + τhigh)(1+ω2τ2
eff )

(4.11)

The last relation reveals that the high-frequency behavior of the spectrum becomes
S(ω) ∝ω−2 if ω (1/τhigh +1/τlow), which corresponds to a random walk-like behavior
in short time-scales. We will come back to this point below.
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Fig. 4.3 Theoretical estimation of (a) the variability measure FDFA(thick line) versus l/τeff and (b) the
power spectral density S(ω) (thick line) versus ω/ωeff , for a Markovian dichotomous signal (see § 4.1.3).
The thin solid and dotted straight lines correspond to the short and long time ranges in each case, i.e., they
are approached for l � τeff and l  τeff , respectively. Taken from Ref. [33].
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Following Talkner and Weber [25], the squared variability of DFA (§ 1.4.2) is given, in
terms of S(ω), by:

F2
DFA(l) =

l
2π

∫ ∞

0
S(w/l)rDFA(w) dw (4.12)

where w denotes the dimensionless frequency and rDFA(w) is given by the explicit form:

rDFA(w) = [w4−8w2−24−4w2 cos(w)+24 cos(w)+24w sin(w)]/w6. (4.13)

In Fig. 4.3(a), the FDFA(l) versus l/τeff for a dichotomous Markovian process was
drawn using Eqs. (4.11)–(4.13), while Fig. 4.3(b) depicts S(ω) versusω/ωeff whereωeff ≡
2π/τeff , using Eq. (4.11). This figure shows that [33]:

– Concerning the DFA exponent α: (i) For short time-scales (high frequencies), i.e., Δ t�
τeff , the DFA exponent approaches the value α = 1.5. (Note that such a behavior is
expected for any signal with a high frequency spectrum as given in Eq. (4.11); see also
below.) (ii) For long time-scales (low frequencies), i.e., Δ t  τeff , we find α = 0.5,
as expected. (iii) For intermediate scales, comparable to (or shorter than) τeff , DFA
exponents exceeding unity (e.g., 1.2 or so) naturally emerge.

– Concerning the power spectrum exponent β (see § 1.4.2): it approaches the values 2
and 0 for the aforementioned short and long time-scales, respectively. For time-scales
comparable to (or shorter than) τeff , values of β around unity or larger (e.g. β = 1.4) can
fit the data. (In other words, data consisting, for example, of randomly distributed square
pulses, if analyzed in the range Δ t � τeff , may approximately obey S ∝ ω−β , β ≈1.)
Note that, for a given (high) frequency range, upon increasing 1/τeff the calculated
value of β becomes larger.

We now define for non-Markovian time series the quantity T in an analogous way with
the quantity τeff introduced above for the Markovian ones, i.e., 1/T ≡ 1/Th+1/Tl , where
Th and Tl denote the average dwell time in the “high” and the “low” state, respectively.
The values of T for all SES activities and “artificial” noises mentioned in Fig. 2.8 (which
are non-Markovian, e.g., see § 4.1.2) can be found in table I of Ref. [28] and vary in the
range from 4 s to 20 s. In Fig. 4.4(a), we give examples of DFA plots of three Markovian
time series with τlow/2 = τhigh/2 = τeff = 4 s, 10 s and 100 s; the first two (τeff = 4 s and
τeff = 10 s, upper two curves) have been intentionally selected to have τeff comparable to
the T of the SES activities and “artificial” noises. Comparing the DFA plots of the SES
activities (that will be discussed later in § 4.4.1) with the upper two curves of Fig. 4.4(a),
we find that a cross-over occurs at the same region Δ t ≈ 30 s (with almost the same α
exponents in the short scales only). In other words, in short time-scales, even Markovian
dichotomous time series (that have τeff values comparable to T of the SES activities and
“artificial” noises) result in α values in the range 1 ≤ α ≤ 1.5 with a cross-over at Δ t ≈
30 s. More generally, we can state [33] that not only signals of dichotomous nature, but
any signal with a high frequency spectrum as given in Eq. (4.11) will lead to the same
scaling behavior of FDFA(Δ t) for small time lags Δ t (irrespective of the particular shape of
the signal; for example, a Gaussian signal with this spectrum will be much smoother and
will display a continuity of values rather than only two steps).
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Fig. 4.4 (a) The variability measure FDFA(Δ t) (in units of ΔE) for three Markovian dichotomous time
series, calculated with τeff = 4 (triangles), 10 (open circles) and 100 s (open squares). The solid lines, in
each case, correspond to the theoretical analysis described in § 4.1.3. (b) The same as in (a), but calculated
when the time series are read in natural time. The straight lines (dotted in (a), solid in (b)) correspond to
α = 0.5. The curves are shifted relative to each other by constant factors. Taken from Ref. [33].

The aforementioned points hold provided that the analysis is made in the conventional
time frame. If the analysis is performed in natural time (considering as “high” either of the
two states in the Markovian series), we find the following values: DFA exponent α = 0.5
(see Fig. 4.4(b)) and power spectrum exponent β = 0. The latter values may elucidate
the Markovian nature of the time series, avoiding the existence of the aforementioned
characteristic intermediate scaling regions that appear in the analysis in the conventional
time frame.

We now turn to the case of spikes. This corresponds to a very small value of τeff
(≈ τhigh � τlow). Recall that upon decreasing τeff (see Figs. 4.3(a) and 4.4(a)) the region
described by the exponent α = 0.5 extends to even shorter scales. This reveals that sig-
nals with superposed random spikes exhibit uncorrelated behavior (i.e.,α = 0.5) at small
scales.

By summarizing, we can state that:

For Markovian dichotomous signals, the quantity τeff – defined by 1/τeff ≡ 1/τhigh +
1/τlow – plays a key role. For time-scales comparable to (or shorter than) τeff , the
power spectrum can be well described by a power law, S( f ) ∝ 1/ f β , with an exponent
β around unity or larger, for example, β = 1.0–1.2 (note that β approaches the value 2
and 0 for short and long time-scales, i.e., in the “high”- and “low”-frequencies, respec-
tively). In other words, this reflects that even randomly distributed square pulses could
also be approximated by such a behavior. Thus, several published claims that “the ap-
pearance of a power law with an exponent β around unity constitutes a signature for
critical behavior” should be examined, in each case, with extreme care.
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Concerning DFA, a signal with (true) long-range correlations can be misinterpreted as
having uncorrelated behavior and vice versa. Specifically: (a) truly correlated signals
(0.5 <α ≤ 1.5) with superposed random spikes may show uncorrelated behavior (α =
0.5) at short time-scales, (b) truly uncorrelated signals with superposed random square
pulses, show “correlated” behavior (e.g., α ≈ 1.0–1.4) at time-scales comparable to (or
shorter than) τeff . We can overcome both difficulties if the analysis is made in natural
time.

4.2 Normalized power spectrum of SES activities. The universality

emerged in natural time

4.2.1 Normalized power spectrum of SES activities and “artificial” noises in natural

time. A universality for SES activities

Figure 4.5(a) depicts the SES activities recorded before the mainshocks labeled K, E and
A of Fig. 4.5(b) (excerpts of these SES activities have been shown in Figs. 2.8 and 4.2).
Once a SES activity has been recorded, we can read it in natural time and then proceed
to its analysis. As an example, let us consider the SES activity K1 (see Fig. 4.5; see also
Fig. 1.11(a)) recorded on April 18, 1995, that preceded the Mw6.6 earthquake that occurred
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Fig. 4.5 (a) SES activities recorded before the mainshocks on May 13, 1995, (K), June 15, 1995, (E), and
July 26, 2001, (A), discussed in § 7.2.1, § 7.2.2 and § 7.2.3, respectively. K1 and K2 refer to the two SES
activities before the EQ labeled K (they are also depicted in Fig. 1.11(a),(b)). The upper two SES activities
were recorded at IOA, while the lower two at VOL (note that the SES polarities, for drawing convenience,
are arbitrary here; the correct polarities can be found, for example, in Fig. 4.2). (b) Map showing the EQ
epicenters (circles) and the sites (triangles) of the measuring SES stations. Taken from Ref. [31].
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at Grevena-Kozani on May 13, 1995 (see § 7.2.1). This lasted for around three and a half
hours and was collected with a sampling rate fexp = 1 sample/sec (thus we have N =
11,900 data points). Figure 4.6 shows how the SES activity K1 of Fig. 4.5 can be read in
natural time.

Figure 4.7 depicts Π (φ ) for the four SES activities of Fig. 4.5, along with eight “arti-
ficial” noises recorded at various stations of the telemetric network which have a similar
feature with SES (but do not satisfy the SES recognition criteria; see Section 1.2).
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Fig. 4.7 The normalized power spectraΠ(φ) for the SES activities (red solid lines) – depicted in Fig. 4.5 –
related with the EQs labeled: K, E, and A (in the inset, from the top to the bottom: K1, A, E, K2) along
with those of a number of “artificial” noises (green broken lines). The blue dotted curve corresponds to the
theoretical estimation of Eq. (2.75), which holds for critical dynamics. The inset shows in an expanded
scale the behavior of Π(φ) at small φ values, i.e., φ → 0. Taken from Ref. [31].



4.2 Normalized power spectrum of SES activities. The universality emerged in natural time 201

An inspection of this figure shows the following two facts [31]. First, the curves fall
practically into two different classes, labeled “noises” and “SES activities” respectively.
This classification, provides a tool for a distinction between “artificial” noises and SES
activities (see § 4.2.2).

Secondly, Fig. 4.7 reveals that, for natural frequencies φ smaller than 0.5, the Π (φ )
values of the SES activities scatter around the dotted curve, which has been estimated
from theoretical considerations when approaching a critical point, i.e., Eq. (2.75) of
§ 2.4.2. In other words, the normalized power spectra in natural time of all the SES
activities obey a “universal” curve.

Note that a possible explanation of the very pronounced “modes” in some “artificial”
noises depicted in Fig. 4.7 has been discussed in Ref. [34].

4.2.2 Distinction of SES activities from “artificial” noises based on the normalized

power spectrum

Figure 4.8 depicts, for the region of natural frequencies 0≤ φ ≤ 0.5, the normalized power
spectra Π(φ) of the electric signals mentioned in Fig. 2.8 together with the one corre-
sponding to the “open” states of ICFMC (see Fig. 4.1). The natural time representation of
all these electric signals is shown in Fig. 4.9.

Figure 4.8 shows that the curves for the SES activities and “artificial” noises fall prac-
tically into two different classes, as already mentioned above (§ 4.2.1), while the ICFMC
curve lies just between them and very close to the one that corresponds to the “uniform”
distribution (labeled “uniform” in Fig. 4.8); see § 2.1.3. The universal curve for SES activ-
ities obeying Eq. (2.75) – which is labeled “theory” in Fig. 4.8 – implies that the variance
of χ is κ1 = 〈χ2〉− 〈χ〉2 = 0.070 for SES activities (cf. Eq. (2.77), see also the last col-
umn in Table 4.1). The κ1 value that reproduces [32] the ICFMC data is 0.080±0.003 and

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5
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"uniform"
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Fig. 4.8 The normalized power spectra
Π(φ): SES activities (dotted lines)
and “artificial” noises (broken lines) of
Fig. 2.8. Three solid curves are also
shown: the lower corresponds to the
“uniform” distribution (Eq. (2.51) of
§ 2.4.1), the middle to ICFMC “open”
states (see Fig. 4.1 of § 4.1.1), while the
uppermost to the theoretical estimation,
Eq. (2.75), for SES activities (critical
dynamics). Reprinted from Ref. [27],
Copyright (2009), with permission from
TerraPub.
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Fig. 4.9 The signals mentioned in Fig. 4.8
read in natural time; it depicts pk versus χk
with continuous lines for the sake of reader’s
convenience and hence p(χ) versus χ; see
Eq. (2.4) (in reality, this should be plotted
as in the lower part of Fig. 2.1(a) or as in
Fig. 7.2(b)). Taken from Ref. [33]. Excerpts
of these signals in the conventional time
domain are depicted in Figs. 2.8, 4.1 and 4.2.

κu = 1/12≈ 0.083 for the “uniform” distribution; see Eq. (2.46). Thus, for the “artificial”
noises the variance κ1 is larger than around 0.083. Hence, the difference 1/12−κ1(≡ Δκ)
could be considered as a measure of the deviation of a signal from that of the “uniform”
distribution.

By summarizing, SES activities are distinguished from “artificial” noises (AN) ac-
cording to:

κ1,SES < κu ≤ κ1,AN (4.14)

where the subscripts designate each class of signals and κu ≈ 0.083. Moreover, the
SES activities satisfy Eq. (2.77), i.e.,

κ1,SES ≈ 0.070 (4.15)

4.3 Superiority of applying Hurst (R/S) analysis in the natural time

domain

4.3.1 Conventional Hurst analysis

A way of studying correlations in a time series is provided by the Hurst analysis [13]
known as rescaled range analysis (R/S). This compares the correlations in the time series
measured at different time-scales and is similar to the classical fluctuation analysis (FA).
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Table 4.1 Summary of the DFA results (when employing E-approximation together with the modification
of Eq. (4.20), see § 4.5.2) for the “high”- and the “low”-level states’ durations (labeled αhigh and αlow,
respectively) along with the κ1 values for the SES activities and “artificial” noises depicted in Fig. 4.2.
Taken from Ref. [34].

Signal αhigh αlow κ1

K1 0.98±0.08 0.31±0.12 0.063±0.003
K2 0.92±0.10 0.49±0.09 0.078±0.004
A 0.87±0.27 0.34±0.25 0.068±0.004
U 0.98±0.13 0.70±0.15 0.071±0.004

N1 0.68±0.07 0.70±0.08 0.115±0.003
N2 0.79±0.03 0.54±0.04 0.093±0.003
N3 0.78±0.06 0.47±0.08 0.100±0.008
N4 0.76±0.06 0.55±0.06 0.100±0.013
N5 0.68±0.05 0.62±0.05 0.086±0.007
N6 –∗) –∗) 0.092±0.004
N7 –∗) –∗) 0.083±0.006
N8 –∗) –∗) 0.102±0.004
N9 0.78±0.20 0.11±0.20 0.084±0.004

*) For N6, N7 and N8 no reliable slope could be determined in view of the small number of pulses (N<25).

Hurst’s method fails to determine correlation properties if linear or higher order trends
are present in the data, while detrended fluctuation analysis (DFA) (see § 1.4.2) –
which is a significant improvement of FA – explicitly deals with monotonous [5] trends
in a detrending procedure with remarkable results.

In short (e.g. see Ref. [5]), in Hurst (R/S) analysis, one calculates in each segment n the
range R of the ‘profile’ y(n) (see Eq. (1.9)) given by the difference between maximal and
minimal value R = max[y(n)]−min[y(n)]. The ‘rescaling of range’ is done by dividing
R by the corresponding standard deviation S of the same segment. The mean 〈R/S〉 of
all quotients at a particular scale s is analogous to the fluctuation function F(s) already
discussed in the description of DFA (see Eq. (1.12)) and for long-range correlated signals
shows a power law scaling relationship with s, with an exponent usually called Hurst
exponent H (recall Eq. (2.78)). We first note that “persistence” usually means the tendency
to keep moving in a fixed direction once the random walker has started moving in that
direction [47].

In a persistent time series the increase in the values of the series is more likely to be
followed by an increase and conversely, the decrease is more likely to be followed by
a decrease. This occurs when 1/2 < H < 1.
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Fig. 4.10 The mean rescaled range 〈R/S〉 of the
Hurst analysis as a function of Δ t for the original
time series of the SES activities and “artificial”
noises mentioned in Fig. 4.2. For the convenience
of the reader, the data points for each time series are
vertically displaced after subsequent multiplication
by a factor of 2, starting from N9; a solid straight
line corresponding to H = 1 is also plotted. Taken
from Ref. [29].

The results of the (R/S) analysis are given in Fig. 4.10 for the original time series of
both the SES activities (the upper four curves) and “artificial” noises mentioned in Fig. 4.2.
Since 〈R/S〉 ∝ (Δ t)H , the value of the Hurst exponent H is found from the slope (labeled
H0 in Table 4.2) of the corresponding log-log plot, when approximating it with a single
straight line (note that all scaling methods related to the original Hurst analysis that yield
the H exponent, assume a finite variance and according to the central limit theorem the
underlying statistics are Gaussian).

An inspection of Fig. 4.10 shows that a value in the range 0 < H < 1/2 (which means
antipersistent time series, reflecting that increases in the values of a time series are
likely to be followed by decreases, and conversely) cannot be seen.

Furthermore, no case with H = 1/2 (purely random changes) can be recognized. In
all the cases of Fig. 4.10, the resulting H values lie between approximately 0.9 and 1.0
(Table 4.2), which suggest the persistent character of the examined time series (strong
memory; see Ref. [32] and references therein). Thus, when Hurst analysis is carried out
in the original time series, the H values alone cannot lead to any distinction between SES
activities and “artificial” noises.

If we repeat the analysis of Fig. 4.10, but for the dichotomous time series (i.e., the con-
verted from the original time series “0–1” dichotomous representation) we find somewhat
smaller values (labeled Hd in Table 4.2) approximately in the range 0.75 to 0.90. Thus, the
conclusion for the persistent character of the time series still remains.
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Table 4.2 Summary of the (R/S) analysis for all the signals mentioned in Fig. 4.2. The symbols Ho and Hd
stand for the slopes determined by using either the original time series or the dichotomous representation,
respectively. Hhigh and Hlow stand for the corresponding slopes for the “high”- and the “low”-level states’
durations, respectively. Taken from Ref. [34].

Signal Ho Hd Hhigh Hlow

K1 0.90±0.02 0.77±0.04 0.85±0.05 0.62±0.05
K2 0.96±0.01 0.81±0.05 0.87±0.09 0.70±0.08
A 0.96±0.02 0.76±0.06 0.82±0.28 0.61±0.21
U 0.95±0.02 0.80±0.06 0.89±0.13 0.72±0.12

N1 0.94±0.01 0.78±0.05 0.70±0.07 0.64±0.06
N2 0.94±0.01 0.84±0.04 0.77±0.03 0.58±0.03
N3 0.97±0.03 0.85±0.04 0.80±0.06 0.57±0.05
N4 0.99±0.03 0.87±0.05 0.72±0.04 0.63±0.04
N5 0.94±0.04 0.79±0.06 0.76±0.04 0.66±0.04
N6 1.06∗)±0.02 0.86±0.06 –∗∗) –∗∗)

N7 0.93±0.02 0.79±0.05 –∗∗) –∗∗)

N8 1.09∗)±0.02 0.86±0.05 –∗∗) –∗∗)

N9 1.01∗)±0.20 0.84±0.25 0.75±0.20 0.55±0.22

*) The value of H should not exceed unity (see the text), but here we reproduce the directly computed
slope. Note that the computed Hd in the third column never exceeds unity.
**) For N6, N7 and N8 no reliable slope could be determined in view of the small number of pulses
(N < 25).

By summarizing, the (R/S) Hurst analysis of the SES activities and “artificial” noises
reveals a persistent character of both time series, but cannot distinguish between them.

4.3.2 Hurst analysis of the time series of durations of the “high”- and the

“low”-level states. Hurst analysis in natural time

The results of Hurst analysis for the time series of durations of the “high”- and the “low”-
level states are shown in Fig. 4.11. The analysis of the former states constitutes, of course,
the Hurst analysis in natural time (recall Fig. 2.1(a)). The following common characteristic
results for both the SES activities and “artificial” noises. The H values are systematically
larger for the time series of the “high”-level states’ durations when compared to the cor-
responding values of the “low”-level ones (labeled Hhigh and Hlow, respectively, in Table
4.2). The persistent character (1/2 < H < 1) of the time series of the “high”-level states’
durations seems to be well-established, while this holds to a lesser degree for the time se-
ries of the “low”-level ones (because a few of the corresponding H values, e.g. see A, N3
and N9 in Table 4.2, do not differ significantly from 1/2). Moreover in all cases, Hhigh is
greater than Hlow.
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Fig. 4.11 The (R/S) Hurst analysis for the time series of the “high”(panels a and c)- and the “low”(panels
b and d)-level states’ durations for the SES activities and the “artificial” noises mentioned in Fig. 4.2. The
data points for each time series are vertically displaced after subsequent multiplication by a factor of 2,
starting from U or N9. For the reader’s convenience, apart from the linear least-squares fits, the straight
lines with slopes 0.9 in (a), 0.7 in (b), 0.75 in (c) and 0.6 in (d) are also plotted. Taken from Ref. [29].

Hence, the memory of the time series of both the SES activities and “artificial” noises
may be mainly attributed to the strong correlation between the “high”-level states’
durations.

Note, however, that when comparing the SES activities and “artificial” noises, the
H values of their “high”-level states’ durations do not differ significantly enough to
guarantee a safe distinction between them.
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4.4 Superiority of applying detrended fluctuation analysis (DFA) in

the natural time domain

4.4.1 DFA of the original time series

Upon using the conventional DFA (§ 1.4.2), we obtain [34] the results depicted in Fig. 4.12
for both the SES activities and “artificial” noises mentioned in Fig. 4.2 (cf. recall that the
DFA for a long duration SES activity has been already presented in § 1.4.3, see Fig. 1.17).
A least squares fit to a single straight line (despite the fact that the data in some cases
obviously deviate from such a scheme, see also below) reveals that the slopes of these
log-log plots (labeled α0 in Table 4.3) scatter for all cases around α ≈1, with a plausible
uncertainty around 0.15. This reveals long-range temporal correlations. Upon repeating
the analysis for their dichotomous time series, slightly different values for each case were
obtained (labeled αd in Table 4.3), and hence the conclusion concerning the strongly per-
sistent character remains the same.
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Fig. 4.12 The dependence of FDFA on Δ t in the
conventional DFA of the original time series
(in normalized units) of the SES activities and
“artificial” noises mentioned in Fig. 4.2. The data
points for each time series are vertically displaced
after subsequent multiplication by a factor of
2, starting from N9. For the sake of reader’s
convenience, a solid straight line corresponding to
the slope α = 1 is plotted. Taken from Ref. [29].

If the log-log plot in Fig. 4.12 is approximated with two straight lines, the following re-
sults were obtained [34]: For both SES activities and “artificial” noises, the slope at shorter
scales (i.e., Δ t ≤ 30 s) was found to lie in the range α = 1.1–1.4, labeled αshort

0 in Table 4.3,
while for longer scales a value mostly in the range α ≈ 0.8–1.0 was determined (labeled
α long

0 in Table 4.3), without, however, any safe classification between SES activities and
“artificial” noises on the basis of the α values alone. The fact that both types of signals ex-
hibit a cross-over at Δ t ≈ 30 s and also give almost the same DFA exponent (αshort

0 ≈ 1.2)
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Table 4.3 Results from the conventional DFA of the signals mentioned in Fig. 4.2. The symbols αo and
αd stand for the DFA slopes obtained from either the original time series (in normalized units) or the
dichotomous representation, respectively, for the whole Δ t range. The corresponding slopes when consid-
ering either short Δ t (smaller than approximately 30 s) or long Δ t (larger than approximately 30 s) are
also shown, being labeled with a superscript “short” and “long”, respectively. Taken from Ref. [34].

Signal αo αshort
o α long

o αd αshort
d α long

d

K1 0.95±0.04 1.19±0.02 0.88±0.02 0.95±0.04 1.21±0.04 0.90±0.02
K2 0.95±0.06 1.22±0.04 0.81±0.02 0.96±0.06 1.23±0.03 0.82±0.02
A 1.06±0.10 1.36±0.05 0.96±0.04 1.08±0.10 1.41±0.05 0.98±0.04
U 0.95±0.04 1.03±0.05 0.81±0.03 0.95±0.04 1.07±0.04 0.79±0.03

N1 1.05±0.05 1.26±0.04 0.98±0.02 1.01±0.05 1.21±0.04 0.95±0.03
N2 1.04±0.03 1.21±0.03 1.01±0.02 0.97±0.03 1.12±0.03 0.94±0.02
N3 1.01±0.04 1.15±0.03 0.97±0.02 0.99±0.04 1.11±0.03 0.95±0.02
N4 1.04±0.04 1.08±0.03 1.02±0.02 1.02±0.04 1.01±0.03 1.02±0.02
N5 0.94±0.10 1.22±0.04 0.79±0.02 0.92±0.10 1.17±0.04 0.78±0.02
N6 1.14±0.11 1.39±0.04 0.89±0.03 1.13±0.11 1.43±0.04 0.86±0.03
N7 1.08±0.09 1.32±0.04 0.96±0.03 1.03±0.09 1.34±0.04 0.82±0.04
N8 1.15±0.12 1.49±0.04 0.78±0.03 1.12±0.12 1.45±0.04 0.76±0.03
N9 0.97±0.20 1.53±0.04 0.55±0.02 0.93±0.20 1.46±0.04 0.52±0.02

can be understood in the context of § 4.1.3 where it is shown that for dichotomous time
series such a behavior should be observed at short time scales, i.e., Δ t <∼ τeff .

By summarizing, when the conventional DFA is applied to the original time series of
the SES activities and the “artificial” noises, no distinction can be achieved.

4.4.2 DFA of the time series of durations of the “high”- and the “low”-level states.

Superiority of applying DFA in natural time

We now present the results of DFA for the time series of durations of the “high”- and the
“low”- level states which are depicted in Fig. 4.13. Three main points emerge [34]:

First, both the SES activities and “artificial” noises exhibit for the time series of the
“high”-level states’ durations α values which are systematically larger than the corre-
sponding values of the time series of the “low”-level ones (labeled αhigh and αlow, respec-
tively in Table 4.1).

Second, the α values for the time series of the “high”-level states’ durations (which
reflects that, in reality, DFA is applied in natural time) point to the following difference:
for the SES activities (Fig. 4.13(a)) the αhigh values lie approximately in the range 0.9–1.0,
while for the “artificial” noises (Fig. 4.13(c)) the αhigh values are markedly smaller, i.e.,
αhigh ≈ 0.65–0.8 (Table 4.1). We emphasize that such a difference between SES activities
and “artificial” noises is not noticed upon comparing their series of the “low”-level states’
durations.
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Fig. 4.13 The results of DFA (when employing E-approximation together with the modification of
Eq. (4.20); see § 4.5.2) for the time series of the “high” (panels a and c)- and the “low” (panels b and
d)-level states’ durations (measured in sec, and hence F ′2(l) is also measured in sec) for the SES activities
and “artificial” noises mentioned in Fig. 4.2. The data points for each time series are vertically displaced
after subsequent multiplication by a factor of 2, starting from U or N9. For the reader’s convenience, apart
from the linear least-squares fits, the solid straight lines with slopes α = 1 in (a), α = 0.5 in (b), α = 0.8
in (c) and α = 0.5 in (d) are also plotted. Taken from Ref. [29].

Third, comparing the α values between the time series of the two states’ durations in
the SES activities, the following characteristic is found: the αlow values for the time series
of the “low”-level states’ durations scatter more or less around 0.5 (see Fig. 4.13(b)), thus
being appreciably smaller than the aforementioned values αhigh ≈ 0.9–1.0 for the series of
the “high”-level states’ durations (Fig. 4.13(a)).



210 4. Natural Time Analysis of Seismic Electric Signals

Hence, only in natural time DFA can distinguish SES activities from “artificial” noises
leading to an exponent α ≈ 1.0 for the SES activities, while α ≈ 0.65–0.8 for “artifi-
cial” noises.

4.5 Superiority of applying multifractal detrended fluctuation

analysis (MF-DFA) in the natural time domain

4.5.1 Monofractals and multifractals. The necessity for multifractal analysis

Monofractal signals are homogeneous in the sense that they have the same scaling proper-
ties, characterized locally by a single singularity exponent h0, throughout the signal. Thus,
monofractal signals can be indexed by a single global exponent, e.g., the Hurst exponent
H ≡ h0, which suggests that they are stationary from the viewpoint of their local scaling
properties (e.g., Ivanov et al. [14] and references therein). Since the power spectrum and
the correlation analysis (including the conventional DFA, see § 1.4.2) can measure only
one exponent, these methods are more suitable for the investigation of monofractal signals.

Concerning the use of these methods, however, the following points should be consid-
ered with care. A power spectrum calculation assumes that the signal is stationary and
hence when applied to non-stationary time series it can lead to misleading results, as al-
ready mentioned in § 1.4.1. (A time series is stationary if the mean, standard deviation, and
all higher moments, as well as the correlation functions, are invariant under time transla-
tion.) Thus, a power spectrum analysis should be necessarily preceded by a test for the
stationarity of the data analyzed. As for the DFA, see § 1.4.2, it can determine the (mono)
fractal scaling properties even in non-stationary time series (but see also Refs. [12, 7] on
this point), and can avoid, in principle, spurious detection of correlations that are artifacts
of non-stationarities.

In several cases, however, the records cannot be accounted for by a single scaling ex-
ponent (i.e., do not exhibit a simple monofractal behavior). In general, if a multitude of
scaling exponents is required for a full description of the scaling behavior, a multifractal
analysis must be applied. Multifractal signals are intrinsically more complex, and inhomo-
geneous, than monofractals (e.g., Ref. [14] and references therein). A reliable multifractal
analysis can be performed by multifractal detrended fluctuation analysis [46, 15], which
is summarized below in § 4.5.2. A similar analysis can be also performed by the wavelet
transform (e.g., see Ref. [22]; see also § 4.6.1). Both these methods have been used in
Refs. [34, 33] to analyze time series of SES activities and “artificial” noises (for the ap-
plication of these methods to electrocardiograms see § 9.5.1). It was found [34, 33] that
the multifractal analysis, when carried out in the conventional time-frame did not lead to
any distinction between these two types of signals, but it does so, if the analysis is made
in natural time. This will be explained below in § 4.5.3 and § 4.6.2.
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4.5.2 Multifractal detrended fluctuation analysis. Background

A generalization of the DFA, termed multifractal DFA (hereafter labeled MF-DFA), allows
[46, 15] the multifractal characterization of non-stationary time series. Compared to DFA
(see § 1.4.2), in MF-DFA the following additional two steps should be taken.

First, we average over all segments to obtain the q-th order fluctuation function Fq(s):

Fq(s)≡
{

1
Ns

Ns

∑
ν=1

[
F2(s,ν)

] q
2

} 1
q

(4.16)

where
F2(s,ν) =

1
s

νs

∑
n=(ν−1)s+1

ỹs(n)2, (4.17)

and the index variable q can take any real value except zero. This is repeated for several
scales s.

Second, we determine the scaling behavior of the fluctuation functions by analyzing
log-log plots Fq(s) versus s for each value of q. For long-range correlated series, Fq(s)
increases for large values of s as a power law:

Fq(s) ∝ sh(q), (4.18)

where the function h(q) is called generalized Hurst exponent.

For stationary time series the aforementioned Hurst exponent H (see § 4.3.1) is iden-
tical to h(2),

h(2) = H. (4.19)

For monofractal time series, h(q) is independent of q; all stationary long-range cor-
related series can be characterized by the power law decay of their power spectra
S( f ) = f−β with frequency f , and β = 2H−1.

Furthermore, Kantelhardt et al. [16], in order to improve the scaling of the DFA fluctu-
ations at short scales s, suggested a modified fluctuation function using randomly shuffled
(shuf) copies of the original time series. This modification is useful to be incorporated in
MF-DFA as well [15] and can be written as:

Fmod
q (s) = Fq(s)

Fshu f
q (s′) s0.5

Fshu f
q (s) s′0.5

(4.20)

for s′  s, where Fshu f
q (s′) denotes the root mean square fluctuation function averaged

over several configurations of the randomly shuffled data taken from the original record
and s′ ≈ N/20.

The MF-DFA method requires series of compact support. In order to analyze data
with fractal support, Varotsos et al. [34] suggested an additional modification called “Eu-
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clidean (E-) approximation”. In this approximation, instead of [F2(s,ν)]q/2 in Eqs. (4.16)
and (4.20), the “Euclidean distance” d(s,ν) ≡ {[F2(s,ν − 1)]q +[F2(s,ν)]q +[F2(s,ν +
1)]q}1/2 is used.

In Ref. [34], it was shown that when dealing with time series of small length, both the
above corrections improve significantly the conventional DFA (see fig. 11 of Ref. [34]).
The corresponding fluctuation measure is denoted by F ′q(s) and is the one used in Fig. 4.13
as well as for the determination of h(q) in Figs. 4.14, 4.15 and 4.16.

Relation of MF-DFA to standard multifractal analysis. The scaling exponent τ(q) in
the standard multifractal formalism (§ 4.6.1) is connected to the partition function Zq(s)
through

Zq(s) ∝ sτ(q) (4.21)

It can be shown [15] that τ(q) is related to the exponent h(q) defined in Eq. (4.18) as
follows:

τ(q) = qh(q)−1. (4.22)

4.5.3 Multifractal detrended fluctuation analysis in natural time compared to that

in conventional time

The results of the MF-DFA analysis (§ 4.5.2) of the original time series for both the SES
activities and “artificial” noises are depicted in Fig. 4.14. An inspection of this figure
shows that no obvious common characteristic can be recognized to allow any systematic
distinction between SES activities and “artificial” noises. In order to visualize the difficulty
of such a distinction, we reproduce in the inset of Fig. 4.14 a case of a SES activity, i.e., A,
which, when compared to the artificial noise N4, shows an almost identical dependence of
h(q) versus q (for q < 4).

When studying the time series of the durations of the “high”- and the “low”-level states
alone (Fig. 4.15), the following common feature emerged. In the time series of the “high”-
level states (which reflects – if we recall Fig. 2.1(a) – that, in reality, MF-DFA is applied
in natural time), the h(q) curves for the SES activities (Fig. 4.15(a)) lie systematically
higher than those in the case of “artificial” noises (Fig. 4.15(b)). For example, for q = 2,
the h(2) values for the SES activities lie close to unity, while for the “artificial” noises
they scatter approximately in the range 0.65–0.8 (see Fig. 4.16 and the second column
in Table 4.4). On the other hand, if we compare the time series of the “low”-level states’
durations (although, in general, they have smaller h(2) values than those corresponding
to the “high”-level states’ durations), no general feature can be recognized to distinguish
the SES activities from the “artificial” noises. Varotsos et al. [34] emphasized that the
“artificial” noises, which are characterized by κ1 ≥ 0.083 (§ 4.2.2), are accompanied by
h(2) values of the “high”-level states’ durations smaller than≈0.8 (see Fig. 4.17). We shall
return to this point in § 4.7.1.
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Fig. 4.14 The MF-DFA analysis for the original time series of the SES activities (solid curves) and “arti-
ficial” noises (dotted curves) mentioned in Fig. 4.2. The q-dependence of the asymptotic scaling exponent
h(q) determined by fits to the log-log plots of F ′q(s) vs s (see § 4.5.2) at the regimes where the fits are
straight lines. The corresponding regimes are given in Ref. [29]. For the inset, see the text. Taken from
Ref. [29].

Summarizing, when MF-DFA is applied to the original time series of SES activities
and “artificial” noises, no distinction can be achieved (see Fig. 4.14); only if it is ap-
plied in natural time can MF-DFA distinguish SES activities from “artificial” noises;
see Fig. 4.16 together with the second column in Table 4.4.

4.6 Superiority of applying the wavelet transform in natural time

4.6.1 The wavelet transform, background. Comparison of the estimators of scaling

behavior

The main disadvantage of the classical tool of Fourier transform in signal processing is its
missing localization property: if a signal changes at a specific time, its transform changes
everywhere and a simple inspection of the transformed signal does not reveal the position
of the alteration. This originates from the fact that the Fourier transform decomposes a
signal in plane waves (trigonometric functions), which oscillate infinitely with the same
period and have no local character. Another disadvantage of Fourier analysis lies in the
separate description and presentation of time and frequency.
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Table 4.4 Summary of the results in natural time for the SES activities and the “artificial” noises men-
tioned in Fig. 4.2 together with the results obtained from the analysis of the closed states for ICFMC.
Taken from Ref. [33].

Signal h(2)∗) h(2)∗∗) S κ1

K1 0.98±0.08 0.91±0.10 0.067±0.003 0.063±0.003
K2 0.92±0.10 0.94±0.17 0.081±0.003 0.078±0.004
A 0.87±0.27 – 0.070±0.008 0.068±0.004
U 0.98±0.13 1.10±0.27 0.092±0.004 0.071±0.004
ICFMCc 0.86±0.07 0.096±0.003 0.080±0.003
‘uniform’ ln(2)/2−1/4 1/12
N1 or n1 0.68±0.07 0.86±0.12 0.143±0.003 0.115±0.003
N2 or n2 0.79±0.03 0.81±0.05 0.103±0.003 0.093±0.003
N3 or n3 0.78±0.06 0.69±0.11 0.117±0.010 0.100±0.008
N4 or n4 0.76±0.06 0.84±0.13 0.106±0.010 0.100±0.013
N5 or n5 0.68±0.05 0.77±0.08 0.091±0.011 0.086±0.007
N9 or n6 0.78±0.20 – 0.102±0.007 0.084±0.004

*) From MF-DFA in natural time (§ 4.5.3).
**) From the orthogonal wavelet transform in natural time (§ 4.6.2)

If we use instead a locally confined little wave (wavelet), then translation and scaling
allows for a “frequency” resolution at arbitrary positions.

Thus, the wavelet transform allows more flexibility (e.g., see Ref. [19]): in simple
words, the wavelet, which can be almost any chosen function, can be shifted and dilated to
analyze signals. The wavelets can be interpreted as generalized oscillations (small waves)
abstractly expressed in a zero mean value (see below). The price of this versatility is that
two variables appear in the transform: the location and the scale of the wavelet. If the
wavelet ψ is translated to a point t0 and dilated by a factor l then we calculate the inner
(scalar) product of the signal f with the function ψt0,l(t). If f shows a big change in a
neighborhood of the point t0 it has a high-frequency spectrum there.
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The continuous wavelet transform of a given real function f (t) is defined (e.g., see Ref.
[4] and references therein) with a family of test functions ψt0,l(t) as the inner product

Tψ [ f ](t0, l) = 〈 f |ψt0,l〉 ≡
∫

f (t)ψt0,l(t) dt. (4.23)

Each test function ψt0,l is obtained from a single function ψ(t) (termed analyzing
wavelet) by means of a translation and a dilation:

ψt0,l(t) =
1
l
ψ
(

t− t0
l

)
(4.24)

where t0 ∈ � and l ∈ �∗+ (where � stands for the set of real numbers and �∗+ for the
positive ones). The function ψ(t) is chosen such that both its spread in time and frequency
are relatively limited.

In addition to being well localized both in time and frequency, ψ is required to satisfy
the admissibility condition which in its weak form implies that ψ must be of zero mean
(hence ψ is a band-pass or oscillating function, whence the name “wavelet”, e.g. see
Ref. [2] and references therein).

In the study of the scaling behavior, the following two features of the wavelet transform
play key roles. (a) The wavelet basis is constructed from the dilation (change of scale)
operator; thus the analyzing family exhibits a scale-invariant feature. (b) ψ(t) is chosen so
as to have a number nψ ≥ 1 of vanishing moments:∫

tkψ(t) dt ≡ 0, k = 0,1, . . . ,nψ −1 (4.25)

The Fourier transformΨ(ω) of φ(t) satisfies

|Ψ(ω)| ≈ ωnψ , ω → 0. (4.26)

A common way to build admissible wavelets of arbitrary order nψ is to successively
differentiate a smoothing function, e.g., the Gaussian function:

gnψ (t) =
dnψ

dtnψ
e−t2/2 (4.27)

The orthogonal wavelet transform. One can show that if ψ is properly chosen, then
the family

{
2 j/2ψ j,k

}
j,k∈� , with ψ j,k(t) = 2− jψ(2− jt − k), is an orthonormal basis of

L2 (e.g., Ref. [19]). The term 2 j/2 is just a normalization factor. The orthogonal wavelet
coefficients can then be defined by:

d f ( j,k) = 〈 f |ψ j,k〉. (4.28)
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Orthogonal wavelets that are often used in practice are the Daubechies wavelets, in-
dexed by a parameter nD = 1,2, . . ., which corresponds to the order of the wavelet. The
Daubechies wavelet with nD = 1 is in fact the Haar wavelet [11] (which is discontinuous;
it equals 1 at 0≤ t < 1/2,−1 at 1/2 < t ≤ 1 and 0 otherwise), but the Daubechies wavelets
with nD > 1 are continuous with bounded support, and have nD vanishing moments.

The Wavelet Transform Modulus Maxima (WTMM) method. This method [22] is based
on the local maxima of the modulus of the continuous wavelet transform, i.e., on the local
maxima t0,i (over t0) of the function |Tψ [ f ](t0, l)|, where l is a fixed scale. In other words,
in practice, instead of averaging over all values of |Tψ [ f ](t0, l)|, one averages (within the
WTMM) only the local maxima of |Tψ [ f ](t0, l)| and sums up the q-th power of these
maxima,

Z(q, l) =
imax

∑
i=1
|Tψ [ f ](t0,i, l)|q (4.29)

If scaling behavior is observed, scaling exponents τ(q) can be defined by:

Z(q, l) ∝ lτ(q) (4.30)

These τ(q) exponents are identical [15] to the τ(q) in Eq. (4.21) and related to h(q) as
shown in Eq. (4.22). Attention is drawn to the point that usually in WTMM the time series
are analyzed directly instead of the profile y(i) defined in § 1.4.2.

4.6.1.1 Comparison of the estimators of scaling behavior

Most of the (non-parametric) techniques for estimating the scaling exponent of time series
that display scaling behavior consist essentially in the measurement of a slope in a log-log
plot. Abry et al. [3, 2] and Veitch and Abry [44] have advocated the use of orthogonal
wavelet-based estimators, which have several advantages. For example, they are blind to
eventual superimposed smooth behavior (such as trends) and they are very robust when
changing the slope of the underlying probability law.

Various wavelet-based estimators of self-similarity or long-range dependence scal-
ing exponent were compared by Audit et al. [4]. These estimators mainly include the
(bi)orthogonal wavelet estimators and the WTMM estimator. Their study focused both
on short and long time series and also compared the wavelet-based estimators with DFA
that is not wavelet-based. They found, among others, that the WTMM estimator leads

to larger mean squared errors (MSE) for short time series of length smaller than 128 (i.e.,
N ≤ 128) as compared to the orthogonal estimators but to much smaller MSE for long time
series (see table I of Ref. [4]). For time series of size 8192 (i.e., for sizes comparable to
those of the original time series of the SES activities and “artificial” noises), the WTMM
estimator using the wavelet g4, see Eq. (4.27), should be used.
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Furthermore, for short time series (N ≤ 128) it was shown [4] that DFA is the best
estimator. This justifies why in § 4.4.2 (as well as in Chapter 5) the method of DFA is
employed in order to analyze in natural time the SES activities and “artificial” noises
which have usually N ≈ 102 pulses (events).

4.6.2 The wavelet-based methods of estimating scaling behavior in natural time

compared to that in conventional time

We start with the application of the WTMM method to the (original) time series of SES
activities and “artificial” noises mentioned in Fig. 2.8 (see also the caption of Fig. 4.2).
Using a g4 wavelet, see Eq. (4.27), the analysis led to the results shown in Fig. 4.18.
Figure 4.18(b) reveals that the curves showing the q dependence of the generalized Hurst
exponent h(q) are not classified, thus not allowing any obvious distinction between SES
activities and “artificial” noises. The same conclusion is drawn (see Fig. 4.19(a)) if we
apply the orthogonal wavelet transform analysis to the original time series of the signals
mentioned in Fig. 2.8. This analysis was made with the program provided by Veitch et
al. [45] using the Daubechies wavelet nD = 1, after checking several other Daubechies
wavelets of higher order, i.e., nD > 1.
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Fig. 4.18 The q dependence of the exponent τ(q) and the generalized Hurst exponent h(q) (panels a and
b, respectively) resulting from the application of WTMM using a g4 wavelet for the signals mentioned in
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H = 1 was drawn in (a), while the solid curves in (b) correspond to the four SES activities (bold symbols,
while for the “artificial” noises thinner symbols were used). The data points in (a) for each time series are
vertically displaced by constant factors. Taken from Ref. [33].
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We now proceed to the application of the wavelet transform to the signals as they are
read in natural time, see Fig. 4.9. The results of the orthogonal wavelet transform analysis
(note that WTMM could not be reliably applied in view of the small number of pulses),
using again the Daubechies nD = 1 (i.e., Haar) wavelet, are depicted in Fig. 4.19(b). An
inspection of these h(q) versus q curves, in spite of the large estimation errors seems
to show a classification as follows. For q values around 2 or larger the resulting h(q)
values for the SES activities are higher than those of the “artificial” noises (see the h(2)
values in the third column in Table 4.4). In particular, the results show that the generalized
Hurst exponent h(2) for the SES activities is close to unity, while for the “artificial” noises
h(2) is markedly smaller. This conclusion is fully compatible with that deduced from the
application of MF-DFA in natural time (§ 4.5.3, see also the second column in Table 4.4).
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In summary, the wavelet transform analysis allows a distinction between SES activities
and “artificial” noises, but only if it is applied in natural time leading to h(2) ≈ 1 for
SES activities, while h(2) is markedly smaller for “artificial” noises.

4.7 Combining the normalized power spectrum analysis and

multifractal analysis in natural time. The K-means clustering

algorithm

4.7.1 Combining the variance κ1 and the generalized Hurst exponent h(2)

Towards this goal, we employ two independent methods: the normalized power spectrum
analysis in natural time (leading to the κ1 values, see § 4.2.2) and the MF-DFA (§ 4.5.3)
the application of which in natural time led for q = 2 to the h(2) values given in Table 4.4
(see also the columns labeled αhigh and κ1 in Table 4.1). Figure 4.20 presents the results
for the signals mentioned in Fig. 2.8 (see also the caption of Fig. 4.2) of these two methods
applied independently in natural time.
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Fig. 4.20 Combined results of the analyses in natural time, see § 4.7.1. Plot of h(2) versus Δκ (= 1/12−
κ1): SES activities K1, K2, A, U (filled squares), “artificial” noises n1 to n6 (open squares), and the ICFMC
(open states, labeled ICFMCo). The κ1 values come from the normalized power spectrum analysis (see
Fig. 4.8), while the h(2) values were obtained by MF-DFA (Fig. 4.16); all these values are given in Table
4.4. The DFA exponent (≈0.86) of the closed states for ICFMC (labeled ICFMCc) is also inserted [33].
The thick straight lines indicate the two groups resulting from the application of the K-means algorithm
explained in § 4.7.2; the full and open circles show the centroids of the two groups. Taken from Ref. [33].
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A unified feature seems to emerge. The deviations from the “uniform” behavior quan-
tified by Δκ (where Δκ ≡ 1/12− κ1, see § 4.2.2) are interrelated with the h(2) values:
First, the SES activities, which correspond to large Δκ values (Δκ > 0), are characterized
by the strongest “memory” (large h(2), close to unity); both their Δκ and h(2) values are
consistent with those expected for a critical behavior (see § 4.7.3 and § 2.4.2). Second, the
“artificial” noises simultaneously have smaller Δκ values (Δκ ≤ 0) and weaker “mem-
ory” (their h(2) values are markedly smaller than unity). Third, concerning the ICFMC,
the values related with the closed states, which have been found [24] to exhibit the stronger
“memory” (between the two states, i.e., closed and open, see Fig. 4.1), seem to lie between
the aforementioned two regimes.

Finally, Varotsos et al. [33] emphasized that, the randomly “shuffled” series of all the
three types of electric signals investigated, lead to h(2)≈ 0.5 (simple random behavior)
and Δκ ≈ 0 (e.g., see the SES activity in § 7.1.1). These two values are internally
consistent in the absence of heavy tails, because in the “shuffling” procedure the values
are put into random order, thus all correlations (memory) are destroyed (§ 2.5.2.1).

4.7.2 The K-means clustering algorithm

A more elaborated classification of the results depicted in Fig. 4.20, can be obtained by
using some clustering algorithm. In Ref. [33] a K-means type was used, which is a least-
squares partitioning method allowing users to divide a collection of objects into K groups
(e.g., see section 8.8 of Ref. [18]).

The K-means problem consists of dividing a set of multivariate data into non-overlapping
groups in such a way as to minimize the sum (across the groups) of the sums of squared
residual distances to the group centroid (this statistics is usually called sum of squared
errors). In other words, a computer program tries to minimize the sum, over all groups, of
the squared within-groups residuals, which are the distances of the objects to the respec-
tive group centroid. The groups obtained are such that they are geometrically as compact
as possible around their respective centroid.

In Ref. [33] the K-means partitioning program provided by Legendre [17] was used.
This program allows users to search through different values of K in a cascade, starting
with k1 groups and ending with k2 groups, with k1 ≥ k2. In the cascade from a larger
to the next smaller number of groups, the two groups whose centroids are the closest in
multivariate space are fused and the algorithm iterates again to optimize the sum of squared
errors function, reallocating objects to the groups. Varotsos et al. [33] run the program by
considering the 10 “objects”, i.e., the four SES activities and the six “artificial” noises
mentioned in Fig. 2.8 (see also the caption of Fig. 4.2). The h(2) values resulting from
MF-DFA in natural time and the κ1 values reported in Table 4.4 have been used. Studying
partitions from k1 = 5 to k2 = 2 groups, the clustering shown in Fig. 4.20 with the thick
straight lines was found [33].
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This clustering consists of the following two groups (K = 2): the first one includes the
four SES activities, while the second the six “artificial” noises n1 to n6. The centroid
of the first group (solid dot) lies at Δκ = 0.013, h(2) = 0.9375, while the centroid of
the second at Δκ = −0.013, h(2) = 0.745. Note that the Δκ value (= 1/12−κ1) of
the centroid of the group of the four SES activities corresponds to κ1 = 0.070, which
coincides with the theoretical value obtained for the SES activities in § 2.4.2, see
Eq. (2.77).

4.7.3 Comments on the differences in the memory and the variance κ1 among

electric signals of different nature

Let us focus on the tentative origin of the difference in the memory of SES activities and
“artificial” noises. In Ref. [34] an attempt was made towards understanding the aforemen-
tioned results (§ 4.5.3), which show that the values of the generalized Hurst exponent h(2)
of the “high”-level states’ durations of the SES activities are close to unity, while those of
the “artificial” noises are markedly smaller. Let us consider, at the moment, for the sake
of simplicity, the simple case of fBm (which has been proposed [48] to model the SES ac-
tivities for H → 1 and is the only Gaussian self-similar process with self-similarity index
H �= 0.5, e.g., see Ref. [21]; see also § 1.5.1.1): the Hurst exponent H has been suggested
as a measure of the degree (intensity) of self-similarity or long-range dependence, e.g.,
see Ref. [26] (see also Refs. [20, 49]). The power law decay of the covariance, Eq. (1.8),
characterizes long-range dependence. The higher the H the slower the decay, e.g., see
Eq. (1.15). If we now assume that, in general, h(2)(= H) is actually a measure of the in-
tensity of long-range dependence, we may understand that the SES activities, since they
exhibit critical dynamics (infinite long-ranged correlations), should have a long-range de-
pendence stronger (thus, a higher H) than that of the “artificial” noises. Note that the
model of critical behavior discussed in § 2.4.2, which resulted in Eq. (2.77), shows that
� (QkQk+l) is independent of l.

As for the fact that the ICFMC curve (κ1 = 0.080 ± 0.003) lies in Fig. 4.8 closer to
the “uniform” distribution compared either to the SES activities or the (majority of the)
“artificial” noises, this is not unreasonable for a biological system [34] (see Chapter 9,
e.g., Fig. 9.11).

4.8 The fluctuation function F(q) = 〈χq〉−〈χ〉q and the entropy S in

natural time

4.8.1 Classification of electric signals based on the function F(q) = 〈χq〉−〈χ〉q
versus q in various types of electric signals

In Ref. [33], it was proposed that a classification of the aforementioned three types of
electric signals of dichotomous nature, i.e., ICFMC, SES activities and “artificial” noises,
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becomes possible if we study, in the range 0 < q ≤ 2, the function F(q) = 〈χq〉− 〈χ〉q
versus q.

We recall that Fig. 4.9 shows how the electric signals, mentioned in Fig. 4.8 (see also
Figs. 2.8 and 4.2), are read in natural time. The function 〈χq〉−〈χ〉q versus q, for all these
electric signals, is depicted in Fig. 4.21(a), in the range 0 < q ≤ 2. (cf. Eq. (2.38), which
was introduced for n = positive integer only). This figure shows that the signals are now
classified:

The curves for the SES activities and “artificial” noises, at least in the range q ∈ (1,2)
fall practically into two different classes, while the ICFMC curve lies just between
them.

Note that the results, for q = 2, exhibit the feature already mentioned in § 4.2.2, i.e.,
for SES activities, they scatter around the value κ1(= 〈χ2〉−〈χ〉2) = 0.070, while for the
“artificial” noises κ1 ≥ 0.083, and for ICFMC κ1 = 0.080± 0.003≈ κu (see also Fig. 4.8).
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Fig. 4.21 (a) The function 〈χq〉−
〈χ〉q and (b) its derivative with re-
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versus q. ICFMC: Thick solid line;
SES activities: thin solid lines; “ar-
tificial” noises: broken lines. The
uncertainties for q = 2 in (a) and for
q = 1 in (b) are given in Table 4.4.
Taken from Ref. [33].



224 4. Natural Time Analysis of Seismic Electric Signals

4.8.2 Classification of electric signals based on the entropy S in natural time

The derivative of the function F(q) = 〈χq〉−〈χ〉q with respect to q, i.e.,

F ′(q) =
d
dq

(〈χq〉−〈χ〉q) = 〈χq lnχ〉−〈χ〉q ln〈χ〉 (4.31)

is plotted in Fig. 4.21(b) versus q. We may see again a classification. Furthermore, Varot-
sos et al. [33] drew attention to the region around q = 1. The quantity 〈χ lnχ〉−〈χ〉 ln〈χ〉
is just the one defined as entropy S in natural time, i.e., see Eq. (3.1). In addition,
Eq. (3.4) states that the entropy Su of the “uniform” distribution (see § 2.1.3) has the value
Su = 0.0966.

Therefore the three types of electric signals seem to be classified as follows (but see
also § 4.8.3): The “artificial” noises have an entropy larger than (or equal to) that of the
“uniform” distribution, i.e., S ≥ Su, while the SES activities exhibit S values smaller than
Su. As for the ICFMC, the S value lies just in the boundary between the SES activities and
the “artificial” noises and is very close to Su. The point that only n5 among the “artificial”
noises seems to have a smaller entropy than Su – see Table 4.4 – is discussed below.

Thus, in short, the entropy S = 〈χ lnχ〉−〈χ〉 ln〈χ〉 of the SES activities is smaller than
that (Su) of the “uniform” distribution, while the “artificial” noises have an entropy
larger than (or equal to) Su.

The following remarks are worth adding. First, when employing the K-means algo-
rithm mentioned in § 4.7.2, if the S values inserted in Table 4.4 are used instead of κ1, a
comparison of partitions into k1 = 4 to k2 = 2 groups also leads to the clustering shown in
Fig. 4.20.

Second, for each of the signals depicted in Fig. 4.9, the values of the scaling exponent
α (obtained from DFA) and κ1 do not change upon a time reversal. Such a reversal,
however, leads to a different S value labeled S−.

The latter important point has been already treated in Section 3.4 and will be further
discussed in Section 4.9. Third, if the number of pulses in a SES activity (or “artificial”
noise) is small (e.g. 3–50), the values of both κ1 and S are smaller than the actual ones;
the extent of this underestimation could be understood on the basis of Fig. 4.22 to which
we now turn. Figure 4.22, depicts the expected value for κ1 and S for a Markovian di-
chotomous time series (Section 4.1) as a function of the number of the “high” level states
N along with their uncertainty of ±σ . Recall that the values of κ1 and S for all the SES
activities and “artificial” noises mentioned in Fig. 4.9, are shown in Table 4.4. The fact
that only n5 among the “artificial” noises seems to have an entropy somewhat smaller than
Su (S[n5] = 0.091 ± 0.011) might be understood as follows: for n5, we have N ≈ 400 (see
Table 2.2) for which Fig. 4.22 reveals that the aforementioned value of 0.091 differs from
Su only by an amount smaller than one σ .
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4.8.3 Classification of electric signals by the complexity measures using the

fluctuations of the entropy in natural time

The values of the complexity measures λs, λs,shu f and νs, defined in § 3.6.1, for several
SES activities and “artificial” noises were calculated in Ref. [38] and the results are shown
in Table 4.5. The complexity measures have been calculated only in the short-range be-
cause the length of these signals in the natural time domain is on the average ≈102 pulses
and hence does not significantly exceed the time window length l ≈ 60 pulses, thus not
allowing a reliable calculation of the complexity measures in the longer scale (see § 3.6.1;
see also § 9.2.2.1 and § 9.2.7).

Table 4.5 The complexity measures λs, λs,shu f and νs of SES activities and “artificial” noises along with
their S values (note that the latter are compiled from Table 4.4). Taken from Ref. [36].

Signal λs λs,shu f νs S

K1 1.26 1.27 1.21 0.067±0.003
K2 1.26 1.29 1.30 0.081±0.003
U∗) 1.06 1.24 1.17 0.092±0.004∗)

A 0.97 1.14 0.97 0.070±0.008

n1 1.25 1.23 1.21 0.143±0.003
n2 1.30 1.31 1.18 0.103±0.003
n3 1.35 1.26 1.24 0.117±0.010
n4 1.36 1.26 1.20 0.106±0.010
n5∗) 1.32 1.28 1.12 0.091±0.011∗)

n6 1.36 1.01 1.15 0.102±0.007

*) Note that in these two cases the S values are comparable to Su, and hence their distinction can be made
on the basis of the λs values which differ markedly.
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An inspection of these results reveals that the λs values of most “artificial” noises are
somewhat larger than those in the SES activities. Note that in two cases, i.e., the SES
activity U and the “artificial” noise n5, for which the S values are comparable to Su (thus,
no distinction can be made on the basis of the S values alone), the distinction can be
achieved on the basis of the λs values, λs(U) < λs(n5), which differ markedly.

Recapitulating the distinction of similar-looking signals that are emitted from sys-
tems of different dynamics, we can now say the following [38]: If the S values differ
markedly from Su (which holds in most SES activities and “artificial” noises), the sig-
nals can be distinguished on the basis of the S values alone. On the other hand, if the S
values are close to Su (which holds in all ECG, see Chapter 9, but only in the minority
of SES activities and “artificial” noises) the signals can be better classified by using
the complexity measures based on the fluctuations δS of the entropy (see also § 3.6.1
and § 9.1.1).

4.9 Using the entropy S− or the fluctuations of natural time under

time reversal

4.9.1 Distinction of SES activities from “artificial” noises based on the entropy in

natural time under time reversal

The entropy S− in natural time under time reversal, defined in § 3.4.1 has been calculated
for all the SES activities and “artificial” noises tabulated in Table 4.4 (as well as for some
more recent examples) and the results can be found in Ref. [43] (see also Ref. [42]). Here,
Table 4.6 compiles the S and S− values of all these signals along with those of 16 SES
activities recorded during the subsequent years. The stations at which the latter SES activ-
ities have been recorded are also mentioned in Table 4.6. For the sake of completeness, we
also give in Table 4.6, the value of the variance κ1 = 〈χ2〉− 〈χ〉2 obtained in each case.
An inspection of Table 4.6 reveals the following:

The S values are actually classified, as stated above in § 4.8.2, i.e., S < Su for the SES
activities and Su

<∼ S for “artificial” noises. On the other hand, this does not hold in
general for the S− values.

This is so, since for all the SES activities (with the probable exception of K2) we find
that the S− values are smaller than (or equal to) Su, but for “artificial” noises no common
behavior could be found, because S− is either smaller or larger than Su.

In other words, no distinction between SES activities and “artificial” noises can be
achieved on the basis of S− values alone. This means the following, if we recall that the S
value takes into account the sequential order of pulses and hence captures elements of the
dynamics hidden in this order [37, 38]: Only when considering the true time arrow (i.e.,
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analyzing in natural time the signal as it was actually recorded in nature) the S value can
pinpoint the difference in the dynamics between these two groups of electric signals. Recall
that the SES activities are characterized by critical dynamics and hence exhibit infinitely
ranged long-range correlations, while in “artificial” noises the intensity of the long-range
correlations is markedly weaker [33] (see also § 4.7.3). Numerical studies of models which
show [41] that both S and S− are smaller than Su have been already presented in § 3.4.3
and § 3.4.4.

Table 4.6 The values of S, κ1, S− for the SES activities and “artificial” noises in Greece analyzed in
Ref. [43] (see also table I of Ref. [42]) together with the one labeled E in Fig. 4.5 as well as with 16 more
recent SES activities which are the following: M1 to M4 were recorded at MYT station, while V1 at VOL,
see fig. 1 of Ref. [41]. The SES activities PAT, shown in Fig. 7.2, and PAT2, see fig. 2 of Ref. [40], were
recorded at PAT station. The signals PIR1, PIR2, PAT3 and PAT4 correspond to the SES activities depicted
in figs. 3(a), 3(b), 3(d) and 3(e) of Ref. [39], respectively. They were recorded at PIR or PAT station. The
four additional SES activities recorded at PAT station during 2007 depicted in figs.5(a), 5(b), 5(c) and
5(d) in Ref. [30] are labeled PAT5, PAT6, PAT7 and PAT8, respectively. Finally, PIR3 stands for the SES
activity (see Fig. 7.22(b)) that was recorded [30] on January 14, 2008, at PIR which preceded the strongest
earthquake in Greece during the last 28 years that occurred on February 14, 2008.

Signal S κ1 S−

K1 0.067±0.003∗) 0.063±0.003∗) 0.074±0.003
K2 0.081±0.003∗) 0.078±0.004∗) 0.103±0.003
E 0.071±0.010 0.071±0.006 0.082±0.010
A 0.070±0.008∗) 0.068±0.004∗) 0.084±0.008
U 0.092±0.004∗) 0.071±0.004∗) 0.071±0.004
T1 0.088±0.007 0.084±0.007 0.098±0.010
C1 0.083±0.004 0.074±0.002 0.080±0.004
P1 0.087±0.004 0.075±0.004 0.081±0.004
P2 0.088±0.003 0.071±0.005 0.072±0.015
E1 0.087±0.007 0.077±0.017 0.081±0.007
M∗∗)

1 0.094±0.005 0.075±0.004 0.078±0.003
M∗∗)

2 0.089±0.003 0.076±0.004 0.084±0.003
M∗∗)

3 0.089±0.004 0.080±0.005 0.093±0.004
M∗∗)

4 0.080±0.005 0.073±0.004 0.086±0.006
V∗∗)1 0.078±0.006 0.074±0.004 0.092±0.005
PAT∗∗∗) 0.080±0.002 0.072±0.002 0.078±0.002
PAT∗∗∗)2 0.074±0.002 0.075±0.002 0.078±0.002
PIR∗∗∗∗)1 0.070±0.012 0.062±0.010 0.051±0.010
PIR∗∗∗∗)2 0.077±0.004 0.076±0.005 0.082±0.004
PAT∗∗∗∗)3 0.073±0.007 0.072±0.005 0.081±0.006
PAT∗∗∗∗)4 0.085±0.005 0.073±0.007 0.080±0.004
PAT5 0.067±0.007 0.074±0.007 0.079±0.007
PAT6 0.071±0.005 0.069±0.003 0.066±0.005
PAT7 0.072±0.003 0.067±0.003 0.069±0.003
PAT8 0.070±0.005 0.065±0.005 0.070±0.005
PIR3 0.086±0.003 0.070±0.005 0.070±0.005
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Table 4.6 Continued.

Signal S κ1 S−

n1 0.143±0.003∗) 0.115±0.003∗) 0.127±0.004
n2 0.103±0.003∗) 0.093±0.003∗) 0.122±0.003
n3 0.117±0.010∗) 0.100±0.008∗) 0.118±0.010
n4 0.106±0.010∗) 0.100±0.013∗) 0.138±0.010
n5 0.091±0.011∗) 0.086±0.007∗) 0.120±0.011
n6 0.102±0.007∗) 0.084±0.004∗) 0.095±0.007
n7 0.116±0.005 0.085±0.005 0.083±0.005
n8 0.117±0.004 0.095±0.007 0.099±0.005
n9 0.110±0.010 0.091±0.005 0.095±0.010
n10 0.112±0.005 0.087±0.007 0.087±0.006
n11 0.122±0.012 0.088±0.007 0.079±0.012
n12 0.104±0.005 0.094±0.005 0.103±0.009
n13 0.124±0.007 0.084±0.007 0.077±0.008
n14 0.124±0.005 0.087±0.005 0.081±0.007

*) From Ref. [33] and mentioned in Fig. 2.8.
**) From Ref. [41].
***) From Ref. [40].
****) From Ref. [39].

In other words, the SES activities can be distinguished from “artificial” noises by con-
sidering that for the SES activities both S and S− are smaller than Su, which is not the
case for “artificial” noises , i.e.,

S,S− < Su for SES activities (4.32)

This happens in addition to the fact that for the SES activities the variance κ1 is κ1 ≈
0.070, while for “artificial” noises we have κ1 ≥ κu ≈ 0.083, see § 4.2.2.

4.9.2 Distinction of SES activities from “artificial” noises on the basis of the

fluctuations of natural time under time reversal

In § 2.2.2, it was discussed that a measure of the long-range dependence emerges in natural
time if we study the dependence of the fluctuations of the average value of natural time
under time reversal

Δχ2
l ≡ � [(〈χ〉−〈T̂χ〉)2] = �

⎧⎨
⎩
[

l

∑
k=1

k
l
(pk− pl−k+1)

]2
⎫⎬
⎭ , (4.33)

on the window length l that is used for the calculation. In particular, it was shown that
Eq. (2.19) holds, i.e,

Δχl(≡
√
Δχ2

l ) ∝ lχH (4.34)
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Hence, the scaling exponent χH can be determined from the slope of the logΔχl versus
log l plot. Recall also that in such a plot, we have the interconnection:

χH ≈ H−1 for descending curves (4.35)

or
χH = H for ascending curves (4.36)

We now show [39] that the aforementioned scale-dependence of the fluctuations of
the natural time itself under time reversal provides a useful tool for the discrimination of
SES activities from “artificial” noises. We apply this procedure to the time series of the
durations of those signals analyzed in Ref. [43] that have enough number of pulses e.g.
≈102, excerpts of which are depicted here in Fig. 4.23(a). The relevant results are shown
in Fig. 4.23(b). An inspection of this figure interestingly indicates that all seven “artificial”
noises correspond to descending Δχl curves versus the scale l, while the three SES activ-
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ities to ascending curves (in a similar fashion as in Figs. 2.3(a) and 2.3(d), respectively)
as expected from the fact that the latter exhibit [34] infinitely ranged temporal correlations
(having H close to unity), while the former do not.

Hence, the method discussed here, which is based on the fluctuations of the average
value of the natural time itself under time reversal, enables the identification of long-
range correlations even for datasets of small size (≈102), thus allowing the distinction
of SES activities from “artificial” noises.

4.10 Summary of the criteria in natural time for the distinction of

SES activities from noise

By summarizing the previous Sections of this Chapter, the following three rules are put
forward for the distinction between SES activities and “artificial” noises (AN).

First (note that each class of signals below is designated by the relevant subscript):

κ1,SES < κ1,ICFMC(≈ κu)≤ κ1,AN, (4.37)

where κ1,ICFMC ≈ 0.080 and κu ≈ 0.083 and

κ1,SES ≈ 0.070. (4.38)

Second,
SSES, (S−)SES < Su ≤ SAN, (4.39)

where S and S− stand for the entropy in natural time and that under time reversal, respec-
tively; the value Su is the one of the “uniform” distribution, i.e., Su ≈ 0.0966. The S values
themselves are used for the distinction when they differ markedly from Su. On the other
hand, if the S values are found to be close to Su, which holds for the minority of the SES
activities and the AN, the distinction can be better made by using the complexity measure
λs of the fluctuations δS of the entropy (see § 4.8.3).

Third, if H denotes the generalized Hurst exponent h(2) in natural time,

HAN < HSES, (4.40)

where HSES is close to unity, i.e,
HSES ≈ 1.0 (4.41)

and HAN ≤ 0.86.

The same holds for the DFA exponent in natural time, i.e.,

0.86 < αSES ≈ 1.0 (4.42)

and
αAN = 0.65−0.80. (4.43)
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A safe distinction between SES activities and AN should not be solely based on the
above three rules but should be used in conjunction with the criteria explained in Section
1.2. The basic spirit behind these rules is that SES activities exhibit critical behavior while
AN do not. Some types of AN, however, may be also associated with criticality (e.g., when
a “man-made” system approaches failure) and hence could in principle be misinterpreted
on the basis of the above inequalities.

4.11 Procedure to analyze a long-duration SES activity in natural

time

When a short duration SES activity has an obvious dichotomous nature, the procedure
to read it in natural time is straightforward, i.e., the one shown in Fig. 2.1(a) where we
considered Qk as being proportional to the duration of the k-th pulse. This is the case, for
example, of the SES activity recorded at IOA on April 18, 1995, whose original time series
is shown in Fig. 1.11(a) (and see its excerpt in Fig. 4.2(a)), while Fig. 4.6 depicts how this
SES activity is read in natural time.
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We now focus on a long-duration SES activity of a non-obvious dichotomous nature
which is superimposed on a background that exhibits frequent small MT variations. Let us
consider, for example, the SES activity that lasted from February 29 until March 2, 2008
(channel “a” of Fig. 1.16), for which the procedure to subtract the MT background vari-
ations has already been presented in § 1.4.3.1. This subtraction results in channel “e” of
Fig. 1.16, which provides the time series that should be now analyzed in natural time: To
obtain the time series (χk,Qk), the individual pulses of the signal depicted in channel “e”
of Fig. 1.16 have to be identified. A pulse starts, of course, when the amplitude exceeds a
given threshold and ends when the amplitude falls below it. Moreover, since the signal is
not obviously dichotomous, instead of finding the duration of each pulse, one should sum
the “instantaneous power” during the pulse duration in order to find Qk. To this end, we
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plot in Fig. 4.24 the histogram of the “instantaneous power” P of channel “e” of Fig. 1.16,
computed by squaring its amplitude. An inspection of this figure reveals a bimodal feature
which signifies the periods of inactivity (P < 500 μV2 Hz) and activity (P > 500 μV2 Hz)
in channel “e” of Fig. 1.16. In order to find Qk, we focus on the periods of activity and
select the power threshold Pthres around the second peak of the histogram in Fig. 4.24. Let
us consider, for example, the case of Pthres = 1400 μV2Hz. In Fig. 4.25(a), we depict the
“instantaneous power” P of the signal in channel “e” of Fig. 1.16 versus time. Starting
from the beginning of the signal, we compare P with Pthres and when P exceeds Pthres we
start summing the P values until P falls below Pthres for the first time, k = 1. The result-
ing sum corresponds to Q1. This procedure is repeated until P falls below Pthres for the
second time, k = 2, and the new sum represents Q2, etc. This leads to the natural time
representation depicted in Fig. 4.25(b). The result depends, of course, on the proper selec-
tion of Pthres. The latter should be verified by checking whether a small change of Pthres
around the second peak of the histogram leads to a natural time representation resulting
in approximately the same values of the parameters κ1, S and S−. By randomly selecting
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Pthres in the range 500 to 2,000 μV2 Hz, we obtain that the number of pulses in channel
“e” of Fig. 1.16 is N = 1,100 ± 500 with κ1 = 0.070 ± 0.007, S = 0.082 ± 0.012 and
S− = 0.078 ± 0.006. When Pthres ranges between 1,000, and 1,500 μV2 Hz, the corre-
sponding values are N = 1,200 ± 200 with κ1 = 0.068 ± 0.003, S = 0.080 ± 0.005 and
S− = 0.074 ± 0.003. Thus, we observe that irrespective of the Pthres value chosen, the pa-
rameters κ1, S and S− obey the conditions (4.38) and (4.39) for the classification of this
signal as SES activity.

To summarize: natural time analysis allows the distinction between true SES activi-
ties and “artificial” (man-made) signals. This type of analysis, however, demands the
knowledge of the energy released during each consecutive event. (Note that the de-
termination of this energy is easier to conduct in the case of electric field variations,
because the magnetic field variations appear in the form of “spikes” when using coil
magnetometers which, as mentioned in § 1.4.4, act as dB/dt detectors.) If these electric
field variations are of clear dichotomous nature, the energy release is proportional to
the duration of each pulse. Otherwise, in the absence of an obvious dichotomous na-
ture, an analysis of the “instantaneous power” similar to that presented above should
be carried out to determine the parameters κ1, S and S− in natural time.
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