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Preface

IH 2010 was the 12th Information Hiding Conference, held in Calgary, Canada,
June 28–30, 2010. This series of conferences started with the First Workshop
on Information Hiding, held in Cambridge, UK in May 1996. Since then, the
conference locations have alternated between Europe and North America. The
conference has been held annually since 2005.

For many years, information hiding has captured the imagination of re-
searchers. This conference series aims to bring together a number of closely
related research areas, including digital watermarking, steganography and ste-
ganalysis, anonymity and privacy, covert and subliminal channels, fingerprint-
ing and embedding codes, multimedia forensics and counter-forensics, as well
as theoretical aspects of information hiding and detection. Since its inception,
the conference series has been a premier forum for publishing research in these
areas. This volume contains the revised versions of 18 accepted papers (incorpo-
rating the comments from members of the Program Committee), and extended
abstracts of two (out of three) invited talks.

The conference received 39 anonymous submissions for full papers. The task
of selecting 18 of them for presentation was not easy. Each submission was
reviewed by at least three members of the Program Committee or external re-
viewers reporting to a member of the Program Committee. In the case of co-
authorship by a Program Committee member, five reviews were sought. There
is no need to say that no member of the Program Committee reviewed his or
her own work. Each paper was carefully discussed until consensus was reached.
The contributions of invited speakers were not formally reviewed.

The invited speakers of IH 2010 were:
Gábor Tardos . . . . . Capacity of collusion-secure fingerprinting—a trade-

off between rate and efficiency

Pim Tuyls . . . . . . . . Hardware instrinsic security

Boris Škorić . . . . . . Security with noisy data

We would like to thank all those who helped with the organization of the con-
ference and in particular the members of the local organizing team whose un-
relenting effort ensured a smooth running of the conference. We would like to
thank Kris Narayan for his continued effort in maintaining the Web pages and the
iChair submission system, and for lending us a hand whenever it was needed. The
conference benefitted from the generous financial support of Alberta Innovates,
the European Office of Aerospace Research and Development, Technicolor, and
the University of Calgary’s Department of Computer Science, Faculty of Science,
and Institute for Security, Privacy & Information Assurance (ISPIA).



VI Preface

We gratefully appreciate the work of the 24 external reviewers and 4 shep-
herds who lent us their experience in shepherding four conditionally accepted
papers.

Finally, we would like to thank the authors of all submitted papers for their
hard work, and also all presenters and attendees of the conference whose support
ensured the success of this conference.

August 2010 Rainer Böhme
Philip W. L. Fong

Reihaneh Safavi-Naini
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André Adelsbach
Hadi Ahmadi
Gerard Allwein
Manuela Berg
Stefan Berthold
Tomas Filler
Elke Franz
Martin Gagne
Steven J. Greenwald
Christian Grothoff
Stefan Köpsell
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FPGA Time-Bounded Unclonable Authentication

Mehrdad Majzoobi, Ahmed Elnably, and Farinaz Koushanfar

Rice University, Electrical and Computer Engineering, Houston TX 77005, USA
{mehrdad.majzoobi,ahmed.elbanby,farinaz}@rice.edu

Abstract. This paper introduces a novel technique for extracting the unique tim-
ing signatures of the FPGA configurable logic blocks in a digital form over the
space of possible challenges. A new class of physical unclonable functions that
enables inputs challenges such as timing, digital, and placement challenges can
be built upon the delay signatures. We introduce a suite of new authentication
protocols that take into account non-triviality of bitstream reverse-engineering in
addition to the FPGA’s unprecedented speed in responding to challenges. Our
technique is secure against various attacks and robust to fluctuations in opera-
tional conditions. Proof of concept implementation of the signature extraction and
evaluations of the proposed methods are demonstrated on Xilinx Virtex 5 FPGAs.
Experimental results demonstrate practicality of the proposed techniques.

1 Introduction

Any security mechanism is centered on the concept of a secret. Classic cryptography
protocols relay on a secret key for reversing trapdoor functions. While such protocols
are often secure against algorithmic attacks, it is well-known that the digitally stored se-
cret keys can be attacked and cloned. Furthermore, conventional SRAM-based FPGAs
suffer from major limitations in secret key storage since their fabrication technology
cannot easily integrate non-volatile memory (NVM). Thus, the keys need to be stored
on off-chip memory where communicating the keys to- and from- the off-chip com-
ponents demands secure channels and additional protocols. On-chip NVM requires the
overhead of a constant power source. Such a reliance not only incurs additional over-
head, but increases the vulnerability to attacks.

Physical unclonable functions (PUFs) are an efficient enabling mechanism for many
security applications [1,2]. PUFs exploit the secret information that inherently exists
in the unclonable physical variations of the silicon devices. Moreover, PUFs provide
a unique chip-dependent mapping from a set of digital inputs (challenges) to digital
outputs (responses) based on the unique properties of the underlying physical device.
PUFs can be employed to provide security at multiple levels and for addressing a range
of problems in securing processors [3], software protection [4], IP protection [5], and
IC authentication [6]. Even though a number of methods for realizing PUFs on FPGAs
were proposed and implemented to date [5,7], the scope of the existing FPGA PUF
methods is limited. Either they have a limited number of challenge-response pairs, or
they are limited by the routing constraints on FPGAs, or they are vulnerable to learning
and reverse engineering attacks.

R. Böhme, P.W.L. Fong, and R. Safavi-Naini (Eds.): IH 2010, LNCS 6387, pp. 1–16, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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In this paper, we introduce a novel approach for implementing FPGA PUFs. In this
proposed approach, first, the timings of each configurable logic block is accurately char-
acterized for different combinations of inputs. Then a PUF is implemented such that a
challenge to the PUF queries relationship of the clock pulses with respect to the delays
for a subset of configurable blocks. Reproducing the responses requires the knowledge
of the extracted delays as well as the structure and placement of the PUF circuit. We in-
troduce a dynamic authentication protocol, where the placement of the PUF is randomly
updated in each round of authentication, forcing the adversary to constantly reverse-
engineer the configuration bit stream to discover the PUF structure and placement. The
protocol is based on the fact that it is infeasible to reverse-engineer the configuration
bit stream and generate the challenge-response signatures through simulation in a short
time duration compared to evaluation on hardware. Our contributions are as follows:

– Introduction of structures for efficiently extracting the unclonable analog delay sig-
natures of each of the FPGA configurable logic blocks over the possible inputs
(challenges) using only commodity test equipments.

– A suite of new authentication protocols are built upon the extracted timing signa-
tures.A new time-bounded protocol further takes advantage of the gap of between
PUF simulation time and evaluation time on the authentic physical hardware to
enhance the security of authentication against learning attacks.

– A linear calibration method is developed to compensate for the effects of variations
in operating temperature and supply voltage to assure signature consistency.

– Experimental results and proof-of-concept implementation are demonstrated on
Xilinx Virtex 5 FPGAs. The results show the applicability of the proposed meth-
ods, uniqueness of the signatures, and their robustness against the fluctuations in
operational and environmental conditions.

The remainder of the paper is organized as follows. Section 2 summarizes the related
literature. In Section 3 we present our method for timing signature extraction from a
circuit for each possible challenges. Section 4 introduces time-bounded authentication
protocol and its variants. Attacks and countermeasures are discussed in Section 4.3.
Calibration for signature and response robustness against fluctuations in operational
conditions is discussed in Section 5. Experimental evaluations are demonstrated in Sec-
tion 6. Finally, we conclude in Section 7.

2 Related Work

The idea of using the complex unclonable features of a physical system as an under-
lying security mechanism was initially proposed by Pappu et al. [1]. The concept was
demonstrated by mesoscopic physics of coherent light transport through a disordered
medium. Another group of researchers observed that the manufacturing process
variability present in modern silicon technology can be utilized for building a PUF.
They proposed the arbiter-based PUF architecture which was based on the variations
in CMOS logic delays, and demonstrated its implementation in the ASIC technology,
and discussed a number of attacks and countermeasures [2,8,9,6,10]. In particular,
they made the observations that the linear arbiter-based PUF is vulnerable to modeling
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attacks and proposed using nonlinear feed forward arbiters and hashing to safeguard
against this attack [2]. Furthermore, they made the important observation that the PUF
responses may not all be stable, and to alleviate the issue, proposed utilizing error cor-
recting codes [11]. Further efforts were made to address the PUF vulnerability issues by
adding input/output networks, adding nonlinearities to hinder machine learning and en-
forcing an upper bound on the PUF evaluation time [7,12,13,14,15]. The recent work in
[7] demonstrated that even though successful ASIC implementation of arbiter PUF was
shown, FPGA implementation of this PUF is not possible in the state-of-the-art tech-
nology. This is because of the routing constraints for implementing the similar parallel
paths enforced by the regularities in the underlying FPGA fabric. For implementing
PUFs on FPGA, Ring oscillator (RO) PUFs were proposed [6]. The major drawback
of the RO PUFs is having only a quadratic number of challenges with respect to the
number of ROs [12]. Furthermore, the ROs (while in use) consume significant dynamic
power due to frequent transitions during oscillations. SRAM PUFs suffer from the same
limitation in terms of the number of possible challenge combinations [12].

This paper presents the first practical method and proof of concept FPGA imple-
mentation of a PUF with exponential number of possible challenges of different kind
including placement challenges. The new proposed PUF uses the unique cell-by-cell
characteristics of the FPGA array. Note that time-bounded properties of FPGA PUFs
was briefly mentioned by [7]. The authors in [13] exploited the time-boundedness char-
acteristics of generic public key protocol by PUFs but no practical implementation op-
tions were discussed.

Besides the ongoing research on PUFs, several other relevant work on delay char-
acterization serve as the enabling thrust for realization of our novel PUF structures. To
perform delay characterization, Wong et al. in [16] proposed a built-in self-test mecha-
nism for fast chip level delay characterization. The system utilizes the on chip PLL and
DCM modules for clock generation at discrete frequencies.

3 Delay Signature Extraction

To measure the delays of components inside FPGA, we exploit the device reconfigura-
bility to implement a delay signature extraction circuit. A high level view of the delay
extraction circuitry is shown in Figure 1. The target circuit/path delay to be extracted
is called the Circuit Under Test (CUT). Three flip flops (FFs) are used in this delay ex-
traction circuit: launch FF, sample FF, and Capture FF. The clock signal is routed to
all three FFs as shown on the Figure. Assume for now that the binary challenge input
to the CUT is held constant and thus, the CUT delay is fixed.

Assuming the FFs in Figure 1 were originally initialized to zero, a low-to-high sig-
nal is sent through the CUT by the launch flip flop at the rising edge of the clock.
The output is sampled T seconds later on the falling edge of the clock (T is half
the clock period). Notice that the sampling register is clocked at the falling edge of
the clock. If the signal arrives at the sample flip flop before sampling takes place, the
correct signal value would be sampled, otherwise the sampled value would be differ-
ent producing an error. The actual signal value and the sampled value are compared
by an XOR logic and the result will be held for one clock cycle by the capture FF.
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Fig. 1. The timing signature extraction circuit

A more careful timing analysis of the
circuit reveals the relationship be-
tween the delay of the CUT (tCUT ),
the clock pulse width (T ), the clock-
to-Q delay at the launch FF tclk2Q,
and the clock skew between the
launch and sample FFs tskew . The
setup/hold of the sampling register
and the setup/hold time of the cap-
ture register are denoted by tsetS , tholdS , tsetC , and tholdC respectively. The propa-
gation delay of the XOR gate is denoted by tXOR. The time it takes for the signal to
propagate through CUT and reach the sample flip flop from the moment the launch flip
flop is clocked is represented by tP . Based on the circuit functionality in Figure 1, tP =
tCUT + tclk2Q − tskew .

As T approaches tP , the sample flip flop enters a metastable operation because of the
setup and hold time violations and its output becomes nondeterministic. The probability
that the metastable state resolves to a 0 or 1 is a function of how close T is to tP . For
instance, if T and tCUT are equal, the signal and the clock simultaneously arrive at the
sample flip flop and metastable state resolves to a 1 with a probability of 0.5. If there
are no timing errors in the circuit, the following relationships must hold:

tholdC < tP < T − tsetS (1)

tP < 2T − (tsetC + tXOR) (2)

The errors start to appear if tp enters the following interval:

T − tsetS < tP < T + tholdS (3)

The rate (probability) of observing timing error increases as tp gets closer to the upper
limit of Equation 3. If the following condition holds, then timing error happens every
clock cycle:

T + tholdS < tP < 2T − (tsetC + tXOR) (4)

Notice that in the circuit in Figure 1, high-to-low and low-to-high transitions travel
through the CUT every other clock cycles. The propagation delay of the two differ in
practice. Suppose that the low-to-high transition propagation delay (tl→h

p ) is smaller
than high-to-low transition propagation delay (th→l

p ). Then, for example if for low-to-
high transitions, tl→h

p satisfies Inequalities 1, 2 and for high-to-low transitions, th→l
p

satisfies Inequality 4, timing errors happen only for high-to-low transitions and as a re-
sult timing error can only be observed 50% of the times. Figure 2 (a) illustrates this
scenario.

Observability of timing errors follow a periodic behavior. In other words, if tp goes
beyond 2T − (tsetC + tXOR) in Inequality 4, the rate of timing errors begin to decrease
again. However this time the decrease in the error rate is not a result of proper operation
yet it is because the errors can not be observed and captured by the capture flip flip. In-
equalities 5 and 6 correspond to the transition from the case where timing error happens
every clock cycle Inequality 4) to the case where no errors can be detected Inequality 7.
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2T − (tsetC + tXOR) < tP < 2T + (tholdC − tXOR) (5)

tP < 3T − tsetS (6)

2T + (tholdC − tXOR) < tP < 3T − tsetS (7)

Timing errors no longer stay undetected if tp is greater than 3T − tsetS . Timing errors
begin to appear and be captured if tp falls into the following intervals:

3T − tsetupS < tp < 3T + tholdS (8)

tp < 4T − (tsetupC + tXOR) (9)

If the following condition holds, then timing error gets detected every clock cycle.

3T + tholdS < tp < 4T − (tsetupC + tXOR) (10)

This periodic behavior continues the same way for integer multiples of T , however it
is physically upper bounded by the maximum clock frequency of the FPGA device.
In general, if T is much larger than the XOR and flip flop delays, the intervals can be
simplified to n×T < tp < (n + 1)×T and timing errors can only be detected for odd
values of n where n=0,1,2,3,...

In the rest of the paper, we refer to the characterization circuit that includes the as
a characterization cell or simply a cell. Each cell in our implementation on FPGA is
pushed into one configurable logic block (CLB). The circuit under test consists of four
cascaded look-up tables (LUT) each implementing a variable delay inverter. We explain
in Section 3.3 how the delay of the inverters can be changed.

3.1 Signature Extraction System

In this subsection, we present the system that efficiently extracts the probability of ob-
serving timing failure as a function of clock pulse width for a group of components on
FPGA. The circuit shown in Figure 1 only produces a single bit flag of whether errors
happen or not. We also need a mechanism to measure the rate or probability at which
errors appear at the output of the circuit in Figure 1.

To measure the probability of observing error at a given clock frequency, an error
histogram accumulator is implemented by using two counters. The first counter is the
error counter whose value increments by unity every time an error takes place. The
second counter counts the clock cycles and resets (clears) the error counter every 2N

clock cycles, where N is the size of the counters. The value of the error counter is
stored in the memory exactly one clock cycle before it is cleared. The stored number
of errors normalized to 2N yields the error probability value. The clock frequency to
the system is swept linearly and continuously in Tsweep seconds from fi = 1

2Ti
to

ft = 1
2Tt

, where Tt < tp < Ti. A separate counter counts the number of clock pulses
in each frequency sweep. This counter acts as an accurate timer that bookmarks when
a timing error happened. The value of this counter is retrieved every time the number
of counted errors are recorded (i.e. every 2N cycles). A unique time stamp (Tm) can be
calculated which indicates at what point during the sweep time a certain value appears
in the clock counter. By knowing Tm, the frequency associated to the m-th error value
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(a) (b)

Fig. 2. (a)The timing diagram showing occurrence of timing error. (b) The architecture for chip
level delay extraction of logic components.

can be easily calculated using the linear interpolation fm = (ft − fi) × Tm

Tsweep
+ fi.

The system shown in Figure 2 (b) is used for extracting the delays of an array of CUTs
on the FPGA. Each square in the array represents the characterization circuit shown in
Figure 1 and is referred to as a cell in the remainder of the text. Any logic configuration
can be utilized within the CUT in the characterization circuit. In particular, the logic
inside the CUT can be made a function of binary challenges, such that its delay varies
by the given inputs. The system in Figure 2 (b) characterizes each cell by sweeping the
clock frequency once. Then, it increments the cell address and moves to the next cell.
The cells are characterized in serial. The row and column decoders activate the given
cell while the rest of the cells are deactivated. Therefore, the output of the deactivated
cells remain zero. As a result, the output of the OR function solely reflect the timing
errors captured in the activated cell. Each time the data is written to the memory, three
values would be stored: the cell address, the accumulated error value, and the clock
pulse number at which the error has occurred. The clock counter is reset at each new
sweep. The whole operation iterates over different binary challenges to the cells. Please
note that the scanning can also be performed in parallel to save time.

3.2 Parameter Extraction

So far we have described the system that measure the probability of observing timing
error for different clock pulse widths. The error probability can be represented com-
pactly by a set of few parameters. These parameters are directly related to the circuit
component delays and flip flop setup and hold time. It can be shown that the probability
of timing error can be expressed as the sum of shifted Gaussian CDFs [7]. The Gaussian
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nature of the error probabilities can be explained by the central limit theorem. Equation
11 shows the parameterized error probability function.

fD,Σ(t) = 1 + 0.5
|Σ|−1∑
i=1

−1�i/2�Q(
t − di

σi
) (11)

where Q(x)= 1√
2π

∫∞
x

exp
(
−u2

2

)
and di+1 > di. To estimate the timing parameters, f

is fit to the set of measured data points (ti,ei), where ei is the error value recorded when
the pulse width equals ti.

3.3 Challenge Configuration

To enable authentication, we require a mechanism for devising challenge inputs to the
device and observing the device invoked responses. Fortunately, the capture flip flop
yields a binary response. Assuming that the flip flop characteristics are known and con-
stant, the response is a function of the clock pulse width T , and the tCUT . Thus, one
way to challenge the circuit and read its response out is to change the clock pulse width.
The use clock pulse width has a number of implications. The response from the PUF
will be deterministic if the T are either too high and too low. Predictability of responses
makes it easy for the attacker to impersonate the PUF.

Another way to challenge the PUF is to alter the tCUT . So far, we assumed
that the delay of CUT is not changing which means the CUT have a specific con-
figuration and specific input vector. Changing the input vector can alter the signal
path delay, and hence the response. CUT is implemented by a set of LUT Figure 3

Fig. 3. The internal structure of LUTs. The signal
propagation path inside the LUTs change as the in-
puts change.

shows the internal circuit structure
of an example 3-input LUT. In
general, a Q-input LUT consists of
2Q-1 2-input MUXs which allow
selection of 2Q SRAM cells. The
SRAM cell values are configured to
implement a pre-specific function-
ality. In this example, the SRAM
cell values are configured to build
a negated parity generation function
of the three inputs to the LUT. If
the number of ones in A1A2A3 are
even, then the output will be equal
to 1. If the inputs A1A2 are held
constant, the function O = f(A1)
implements an inverter regardless of
A1A2. However changing the input
A1A2 can alter the delay of the inverter due to the changes in the signal propagation
path inside the LUT and process-dependant variations in delay of paths with the same
length. The LUTs in Xilinx Virtex 5 FPGAs, consist of 6 inputs. Five inputs of the LUT
can be used to alter the inverter delay yielding 25 = 32 distinct delays for each LUTs.
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4 Authentication

In this section, we show how the extracted cell characteristics in Section 3 can be uti-
lized for FPGA authentication. The following terminology is used in the rest of the
paper. The verifier (V ) authenticates the prover (P ) who owns the FPGA device. The
verifier authenticates the device by verifying the unique timing properties of the de-
vice. The challenge vectors are denoted by ci, i = 1, . . . , N , and the corresponding
responses are denoted by ri, i = 1, . . . , N . The PUF that performs the challenge to
response transformation is denoted by T : T (ci) : = ri, i = 1, . . . , N .

4.1 Classic Authentication

The registration and authentication processes for the classic authentication case are
demonstrated in the diagram in Figure 4 (a) and (b) (disregard the darker boxes for now).
The minimum required assumptions for this case are (i) the verifier is not constrained
in power (ii) it is physically impossible to clone the FPGA (iii) the characteristics of the
FPGA owned by the prover is a secret only known to the prover and verifier.

As shown in Figure 4(a), during the registration phase, the verifier extracts and se-
curely stores the cell delay parameters by performing characterization as explained in
Sections 3. By knowing the FPGA-specific features in addition to the structure and
placement of the configured PUF circuit, the verifier is able to predict the responses to
any challenges to the PUF circuit. After registrations, the FPGA along with the pertinent
PUF configuration bitstream is passed to the end-user.

At the authentication, end-user (prover) is queried by the verifier to make sure he is
the true owner of the FPGA. Classic authentication is shown in Figure 4(b). To authenti-
cate the ownership, the verifier utilizes a random seed and generates a set of pseudoran-
dom challenge vectors for querying the prover. The prover responds to the challenges
she receives from the verifier by applying them to the configured FPGA hardware. The
verifier then compares the received responses from the prover with the predicted ones,
and authenticates the chip if the responses are similar.

To ensure robustness against errors in measuring the delays and the change in delay
measurement conditions, the registration entity may also compute the error correction
information for the responses to the given challenges. To prevent information leakage
via the error correction bits, secure sketch techniques can be used. A secure sketch
produces public information about its input that does not reveal the input, and still
permits exact recovery of the input given another value that is close to it [17].

The device is authenticated if the response after error correction would be mapped
to the the verifier-computed hash of responses. Otherwise, the authentication would
fail. Alternatively, the verifier can allow for some level of errors in the collected
responses and remove the error correction and hashing from the protocol. However,
accepting some errors in the responses, the verifier would be more suspectable to emu-
lation/impersonating attacks [2,15].

4.2 Time-Bounded FPGA Authentication Using Reconfigurability

After the FPGA registration, the verifier is able to compute and predict the responses to
any set of challenges by knowing (i) the cell-level features of the pertinent FPGA, (ii)
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Fig. 4. (a) FPGA registration (b) Classic authentication flow (c) Time-bound authentication flow

the circuit structure and (iii) placement of the PUF circuit. The information on the PUF
circuit structure and placement is embedded into the configuration bitstream. In the
classic authentic method, the bitstream is never changed. A dishonest prover, off-line
and given enough time and resources can (i) extract the cell-level delays of the FPGA
and (ii) reverse engineer the bitstream to discover the PUF structure and its placement
on the FPGA. During the authentication, he can compute the responses to the given
challenges online by simulating the behavior of the PUF on the fly and produce the
responses that pass the authentication.

A stronger set of security protocols can be built upon the fact that the prover
is the only entity who can compute the correct response to a random challenge
within a specific time bound since he has access to the actual hardware. In this
protocol, prior to the beginning of the authentication session, the FPGA is blank.
The verifier then sends a bitstream to the device in which a random subset of LUTs
are configured for authentication. After the device is configured, the verifier starts
querying the FPGA with random challenges. The verifier accepts the responses
that are returned back only if Δt ≤ Δtmax where Δt is the time lapsed on the
prover device to compute the responses after receiving the configuration bitstream,
and Δtmax is the upper bound delay estimated computation of responses by the
authentic FPGA prover device, which is composed of device configuration, response
generation, error correction, and hashing time all performed in hardware. The ver-
ifier would authenticate the device, only if the time the device takes to generate
the response is less than Δtmax. We denote the minimum emulation time by temu

min ,
where temu

min >> Δtmax. Time-bounded authentication protocol can be added to the
authentication flow, as demonstrated in Figure 4(c). Compared to the classic authen-
tication flow, a time bound check is added after the hash function. While performing
the above authentication, we emphasize on the assumption that the time gap between the



10 M. Majzoobi, A. Elnably, and F. Koushanfar

hardware response generation and the simulation (or emulations) of the prover must
be larger than the variation in channel latency. The time-bound assumption would be
enough for providing the authentication proof [7,13,18].

4.3 Attacks and Countermeasures

Perhaps the most dangerous of all attacks is the impersonation attack. Impersonation
attack aims at deceiving the verifier into authentication by cloning the same physical
device, reverse-engineering and simulation of the authentic device behavior, or storing
and replaying the communication, or random guessing. Among these threats only the
reverse engineering and simulation attack may stand any chance of success. To break
the time-bound protocol, an adversary needs to find the response to a new challenge,
he has to reverse engineering the bitstream and simulate (or emulate) the PUF behavior
within the given time constraint. Even after many years of research in rapid simulation
technologies for hardware design and validation, fast and accurate simulation or emula-
tion of a hardware architecture is extremely slow compared to real device. In addition,
even though bitstream reverse-engineering have partially been performed on some FP-
GAs [19], performing it would require a lot of simulations and pattern matching. Thus,
it would take many more cycles than the authentic hardware where the verifying time is
dominated by bitstream configuration time (order of 100μs). Simulating bitstream on
software models would also take many more cycles than hardware and cannot be done
within the limited time-bound. A great advantage of this authentication method is the
large degree of freedom in selecting the LUTs that would be queried.

5 Robustness

The extracted delay signatures at characterization phase are subject to changes due to
aging of silicon devices, variations in the operating temperature and supply voltage of
the FPGA. Such variations can undermine the reliability of the authentication process.
In this paper, we take a pragmatic approach to the problem which in conjunction with
existing error correction methods [11] can significantly leverage performance and relia-
bility of key generation and authentication. The proposed method performs calibration
on clock pulse width according to the operating conditions.

Fortunately, many modern FPGAs are equipped with built-in temperature and core
voltage sensors. Before authentication begins, the prover is required to send to the ver-
ifier the readings from the temperature and core voltage sensors. The prover then based
on the current operating conditions calibrate the clock frequency. The presented cali-
bration method linearly adjusts the pulse width using Equation 12.

Tcalib = αtemp × (tempcurrent − tempref ) + Tref (12)

Tcalib = αvdd × (vddcurrent − vddref ) + Tref (13)

tempref and vddref are the temperature and FPGA core voltage measured at the char-
acterization time. tempcurrent and vddcurrent represent the current operating condi-
tions. The responses from the PUF to the clock pulse width Tcalib are then treated as if
Tref were sent to the PUF at reference operating condition. The calibration coefficients
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αtemp and αvdd are device specific. These coefficients can be determined by testing
and characterizing each single FPGA at different temperatures and supply voltages.
For example, if Dtemp1

i and Dtemp2
i are i-th extracted delay parameter under operating

temperatures temp1 and temp2, then αt,i = D
t1
i −D

t2
i

t1−t2
.

6 Experimental Evaluations

In this section, the implementation details of the signature extraction system are pre-
sented. We demonstrate results obtained by measurements performed on Xilinx FPGAs
and further use the platform to carry out authentication on available population of FP-
GAs. For delay signature extraction, the system shown in Figure 2 (b) is implemented
on Xilinx Virtex 5 FPGAs. The systems contains a 32× 32 array of signature extraction
circuits as shown in Figure 1. The CUT inside the characterization circuit consists of 4
inverters each being implemented using one 6-input LUT. The first LUT input (A1) is
used as the input of the inverter and the rest of the LUT inputs (A2,...,A6) serve as the
binary challenges to alter the effective delay of the inverter. The characterization circuit
is pushed into 2 slices (one CLB) on the FPGA. In fact, this is lower limit on number
of slices that can be used to implement each characterization circuit. This is because in-
terconnections inside the FPGA forces all the flip flops inside the same slice use either
rising edge or falling edge clocks. Since the launch and sample flip flop must operate
on different clock edges, they cannot be placed inside the same slices. In total, 8 LUTs
and 4 flip flops are used (within two slices) to implement the characterization circuit.
The error counter size (N ) is set to 8, and the accumulated error values are stored if
they are between 7 and 248.

We use an ordinary desktop function generator to sweep the clock frequency from
8MHz to 20MHz and afterwards shift the frequency 34 times up using the PLL inside
the FPGA. The sweeping time is set to 1 milliseconds (due to the limitations of the
function generator, the lower sweeping time could not be reached). The measured ac-
cumulated error values are stored on an external memory and the data are transferred
to computer for further processing. Notice that the storage operation can easily be per-
formed without the logic analyzer by using any off-chip memory.

The system is implemented on twelve Xilinx Virtex 5 XC5VLX110 chips and the
measurements are taken under different input challenges and operating conditions. The
characterization system in total uses 2048 slices for the characterization circuit array
and 100 slices for the control circuit out of 17,280 slices.

The measured samples for each cell and the input challenge is processed and the
twelve parameters as defined in Section 3.2 are extracted. Figure 5 shows the measured
probability of timing error versus the clock pulse width for a single cell and a fixed
challenge. The (red) circles represent original measured sample points and the (green)
dots show the reconstructed samples. As explained earlier, to reduce the stored data size,
error samples with values of 0 and 1 (after normalization) are not written to the memory
and later are reconstructed from the rest of the sample points. The solid line shows the
Gaussian fit on the data expressed in equation 11. Parameter extraction procedure is
repeated for all cells and challenges. Figure 6 shows the extracted parameters d1 and
σ1 for all PUF cells on chips #9 while the binary challenge is fixed. The pixels in the
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Fig. 5. The probability of detecting timing errors versus the input clock pulse width T . The solid
line shows the Gaussian fit to the measurement data.
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Fig. 6. The extracted delay parameters d1 (a) and σ1 (b) for chips 9

images correspond to the cells of the 32×32 array on FPGA, and their value represent
the corresponding extracted parameters. Some levels of spatial correlation among d1

parameters can be observed on the FPGA fabric. The boxplot in Figure 7 (a) shows the
distribution of the delay parameters di for i=1,2,...,6 over all 12 chips and 1024 cells
and 2 challenges. The central mark on the boxplot denotes the median, the edges of
the boxes correspond to the 25th and 75th percentiles, the whiskers extent to the most
extreme data points and the red plus signs show the outlier points.

Now using the measured data from the twelve chips, we investigate different au-
thentication scenarios. The existing authentication parameters within defined frame-
work substantially increases the degree of freedom under which authentication may
take place. These parameters include the number of clock pulses (denoted by Np), the
number of tried challenges (denoted by Nc), the clock pulse width (denoted by T ), and
the number of PUF cells (Ncell) being queried. In other words, in each round of authen-
tication, Nc challenges are tried during which Np pulses of width T are sent to Ncell

cells on the chip. The response for each challenge can be regarded as the percentage of
ones in the Np response bits.

In the first experiment, we study the effect of the number of cells and the width of
clock pulse on the probability of detection (pd) and false alarm (pf ). Detection error
occur in cases where the test and target chip are the same, but due instability and noise
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Table 1. Probability of false alarm (a) and probability of detection (b)

(a)

Ncell
Challenge Pulse Width

1.23 1.15 1.06 1.03 0.9 0.87

64 0.96 0 0 0 0 1.52
128 2.04 0 0 0 0 1.52
256 4.55 0 0 0 0 1.52

(b)

Ncell
Challenge Pulse Width

1.23 1.15 1.06 1.03 0.9 0.87

64 93.3 96.2 100 100 100 100
128 94.2 98.8 100 100 100 100
256 99.85 100 100 100 100 100
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Fig. 7. (a) Distribution of delay parameters di. (b) The distribution of d1 for normal, low operating
temperature, and low core voltage.

in responses to fail to be authenticated as the same. On the other hand, false alarm
corresponds to the cases where the test and target chip are the different, but they are
identified at the same chips. During the experiment, the binary challenges to PUF cells
are fixed and the number clock pulses is set to Np = 8. Next, we study different cases
where the clock width (T ) is set to each of the medians of the values shown in Figure
7 (a). Setting the clock pulse width to the median values result in least predictability in
responses. The same experiment is repeated for 10 times to obtain 10 response vectors
for each chip. After that, the distance between the responses from the same chips (intra-
chip) over repeated evaluations are measured using the normalized L1 distance metric.
The same procedure is performed on responses from different chips over difference
evaluations in order to find the inter-chip responses.

If the distance between the test chip and the target chip responses is smaller than
a pre-specified detection threshold, then the chip is successfully authenticated. In the
experiments the detection threshold is set at 0.15.

Tables 1 shows the probability of detection and false alarm for different clock pulse
widths and number of queried PUF cells. As it can be observed the information ex-
tracted from even the smallest set of cells is sufficient to reliably authenticate the FPGA
chip if the pulse width is correctly set. In the next experiments, we study the effect of
fluctuations in the operating conditions (temperature and core supply voltage) on the
probabilities of detection and false alarm. Moreover, we demonstrate how linear cali-
bration on the challenge clock pulse width can improve the reliability of detection.

To determine the calibration coefficient defined in Equation 12, we repeat the delay
extraction process and find the delay parameters for all twelve chips at temperature -
10oC and core voltage 0.9 Volts. The chip operates at the temperature 37oC and core
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Table 2. The probability of detection and false alarm before and after performing calibration on
the challenge pulse width in presence of variations in temperature and core voltage

No Calibration Calibrated
NC=1 NC=2 NC=1 NC=2

vlow tlow vlow tlow vlow tlow vlow tlow

pd pf pd pf pd pf pd pf pd pf pd pf pd pf pd pf

T

1.23 18.4 0 33.3 16.7 18.4 0 33.3 22.29 100 0 75 0 100 0 75 0
1.06 18.4 0 18.4 0 18.4 0 18.4 0 50 0 50 0 57.3 0 50 0
1.01 18.4 0 16.7 0 18.4 0 16.7 0 66.6 0 75 0 68.2 0 75 0
0.95 18.4 0 16.7 0 18.4 0 16.7 0 66.7 0 100 0 84.9 0 100 0
0.9 16.7 0 25 0 16.7 0 25 0 83.3 0 91.7 0 83.4 0 100 0
0.87 25 0 25 0 25 1.5 25 0 100 0 100 0 100 0 100 0

voltage of 1 volts in the normal (reference) condition. We use the built-in sensors and the
Xilinx Chip Scope Pro package to monitor the operating temperature and core voltage.
To cool down the FPGAs, liquid compressed air is consistently sprayed over the FPGA
surface. Figure 7 (b) depicts the changes in the distribution of the first delay parameter
d1 at the three different operating conditions.

The probabilities of detection and false alarm are derived before and after performing
calibration on the challenge pulse width for different clock pulse widths and number of
binary challenges to the cells. In this experiment, all 1024 PUF cells on the FPGA are
queried for the response. The number of pulses sent for each binary challenge is set
Np =8 as before. As it can be seen in Table 2, the detection probabilities are significantly
improved after performing linear calibration based on the coefficients extracted for each
chip. The variables vlow and tlow correspond to -10oC temperature and 0.9 supply volt-
ages respectively. The reported probabilities of Table 2 are all in percentage. Also note
that for the challenge pulse width of T = 0.87 ns, the probability of detection reaches
100% and probability of alarm falls to zero after calibration. The same holds true for
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Nc = 2 and T = 0.87, 0.9, 0.95. Thus, increased level of reliability can be achieved
during authentication with proper choice of pulse width and number of challenges.

Figure 8 shows how performing calibration decreases the intra-chip response dis-
tances in presence of temperature changes. The histogram correspond to T = 0.95 ns
and Nc = 2 in Table 2 before and after calibration.

7 Conclusions

We presented a technique for FPGA authentication that takes advantage of the
unclonable timings variability present in FPGAs, the FPGA reconfigurability, and its
unprecedented speed. Authentication comprises of two phases; namely registration and
authentication. During registration, cell level timing features are extracted and stored in
a database. Later at the authentication phase, the verifier generates a random configu-
ration bitstream and sends to the prover. A unique aspect of the new method is its high
degree of freedom in placing the PUF cells and selection of challenges. The protocol
relies on the fact that online reverse-engineering of the bitstream is a non-trivial task.
A new calibration method for improving robustness to temperature and voltage fluctu-
ations was demonstrated. Evaluations on Xilinx V5 FPGA show the effectiveness and
practicality of the new timing signature extraction and authentication method.
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Abstract. This paper presents a unified formal framework for inte-

grated circuits (IC) Trojan detection that can simultaneously employ

multiple noninvasive measurement types. Hardware Trojans refer to

modifications, alterations, or insertions to the original IC for adversarial

purposes. The new framework formally defines the IC Trojan detection

for each measurement type as an optimization problem and discusses

the complexity. A formulation of the problem that is applicable to a

large class of Trojan detection problems and is submodular is devised.

Based on the objective function properties, an efficient Trojan detection

method with strong approximation and optimality guarantees is intro-

duced. Signal processing methods for calibrating the impact of inter-chip

and intra-chip correlations are presented. We propose a number of meth-

ods for combining the detections of the different measurement types.

Experimental evaluations on benchmark designs reveal the low-overhead

and effectiveness of the new Trojan detection framework and provides a

comparison of different detection combining methods.

1 Introduction

The prohibitive cost of manufacturing ICs in nano-meter scales has made the
use of contract foundries the dominant semiconductor business practice. Unau-
thorized IP usage, IC overbuilding, and insertion of additional malware circuitry
(Trojans) are a few of the major threats facing the horizontal IC industry where
the IP providers, designers, and foundries are separate entities [8]. The Trojan
attacker modifies the original design to enable an adversary to control, monitor,
spy contents and communications, or to remotely activate/disable parts of the
IC. Trojans are often hidden and are rarely triggered as needed.

A standing challenge for noninvasive IC testing and Trojan detection is deal-
ing with the increasing complexity and scale of the state-of-the-art technology.
It is hard to distinguish between the characteristic deviations because of the pro-
cess variations and the alterations due to the Trojan insertion. What complicates
the problem even more is that the space of possible changes by the adversary
is large. Very little is known or documented about IC Trojan attacks. The pos-
sible adversaries are likely financially and technologically advanced and thus,
intelligent attacks are possible. Because of the hidden functional triggering of
Trojans, the logic-based testing methods are unlikely to trigger and distinguish
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the malicious alterations. The conventional parametric IC testing methods have
a limited effectiveness for addressing Trojan related problems. Destructive tests
and IC reverse-engineering are slow and expensive.

This paper formally devises a new unified framework that simultaneously
integrates the results of several noninvasive measurement types. Each nonin-
vasive measurement type is called a modality: unimodal detection employs a
single measurement modality for finding the internal characteristics of the chip,
while multimodal detection combines the measurements from several modalities
to reveal the unwanted changes to the original design. We show that the de-
tection objective for each modality is submodular. The submodularity property
formalizes the intuition that inserting a Trojan would have a higher impact on a
small circuit than inserting the same Trojan to a larger circuit that contains the
smaller circuit as a subpart. The concept is demonstrated in Figure 1. The design
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Fig. 1. The submodular property

consists of 9 gates G1, . . . , G9, 6 inputs and 2 outputs. A Trojan gate GT is added.
Consider a subcircuit of this design composed of gates G1, . . . , G5 in the dotted
square that also includes GT . Now, for one input vector applied to the circuit,
the ratio of the current leaked by GT to the rest of the circuit leakage would be
higher for the subcircuit compared to the whole circuit. We exploit the theoret-
ical results known for submodular functions to propose a near-optimal Trojan
detection algorithm. Our contributions are as follows: (1) Proposing a unified
noninvasive Trojan detection framework, (2) Formulating the optimization prob-
lem for simultaneous gate level profiles and Trojan detection for each modality,
(3) Exploiting submodularity to achieve a near optimal solution for unimodu-
lar detection, and (4) Devising and comparing four methods for combining the
results of multiple unimodal detections on benchmark designs.

2 Related Work

Hardware Trojan detection is a new and emerging research area. Agrawal et
al. [1] use destructive tests to extract a fingerprint for a group of unaltered
chips based on the global transient power signal characteristics. The other chips
would be noninvasively tested against the extracted fingerprints by statistical
Hypothesis testing. The overhead of destructive testing, sensitivity to noise and
process variations, and lack of usage of the logical structure and constraints are
the drawbacks of this method.
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Banga et al. [4,3] propose a region-based testing that first identifies the prob-
lematic regions based on power signatures and then performs more tests on the
region. The underlying mathematical and logical circuit structure or the pro-
cess variations are not considered. Rad et al. [24,23] investigate power supply
transient signal analysis methods for detecting Trojans. The focus is on test
signatures and not on the lower-level components (e.g., the gate level character-
istics). Rad et al. further improved the resolution of power analysis techniques
to Trojans by carefully calibrating for process and test environment (PE) varia-
tions. The main focus of this research is on the evaluation of four experimental
signal calibration techniques, each designed to reduce the adverse impact of PE
variations on their detection method. They also investigated the sensitivity of
their Trojan detection method in terms of determining the smallest detectable
Trojan under conditions such as measurement noise.

Jin and Markis [11] extract the path delay fingerprints by using the well-
known principal component analysis that is a statistical dimension reduction
technique. They use Hypothesis testing against the delay fingerprints to detect
the anomalies. This approach also does not consider the gate level components
and would also require exponential path measurements in the worst case. Li
and Lach propose adding on chip delay test structures for Trojan detection [16].
Gate level characterization for noninvasive post-silicon IC profiling [12] and for
Trojan detection was used in [20,22,2,28]. However, the previous work did not
provide a systematic algorithm with any kind of optimality, nor they addressed
calibration, sensitivity, or multimodal combining. Our work provides the first
rigorous treatment of the multimodal Trojan detection problem, near-optimal
solutions, mathematical calibration. Even though a number of authors suggested
the potential benefits of combining different measurement types, to the best of
our knowledge no systematic approach with evaluation results on combining
different test and measurement modalities was reported.

Our method exploits the concept and results of submodular function opti-
mization [21]. The concept has been utilized earlier in a variety of contexts [13],
including but not limited to: set cover [9], sensor networks [15], linear regression
[7], graph problems [6], and social networks [18]. To the best of our knowledge,
our work is the first to use submodularity for IC Trojan detection.

3 Preliminaries

In this section, we provide the necessary background and the measurement setup.

(i) Process variations. As the CMOS dimensions shrink, uncertainty in the
device characteristics increases. The variations might be temporal or spatial.
In controlled settings, the dominant source of difference between the chips is
the spatial variation [27,17]. Spatial variation may be intra-die, or inter-die,
and could be systematic or random. We use the widely adopted Gaussian vari-
ation models [17]. Timing and dynamic power variations are a linear function
of the variations and follow the same Gaussian patterns, while the leakage has an
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approximately lognormal distribution. Our approach works for the stationary
process variation models.

(ii) Trojan threat model. From the conventional testing and inspections point
of view, the Trojan IC has exactly the same set of I/O pins, has the same
deterministic I/O response as the original plan, and has the same physical form
factor. A Trojan causes a change in the statistical distribution of the estimated
gate characteristics that otherwise follow the process variation distributions. Our
method uses the likelihood of the post-silicon characteristics for detection. The
intra-chip correlations are assumed to have a lower amplitude when compared
to the impact of the Trojans on the estimated profiles. The nominal values for
the gate characteristics are available via the factory provided simulation models
needed to ensure design-time power control and timing closure.

(iii) Measurement setup. We use similar measurement set-up as the conven-
tional testing. However, our assumption is that the chip has already passed the
standard automatic test pattern generation (ATPG) tests, and does not include
any of the standard faults. For timing measurements, we exploit the classic tim-
ing test and validation techniques: Given an input vector to a test chip, applying
the test input vector with multiple clock frequencies can give us the pass/fail be-
havior of the chips. The path delay would be the shortest clock period for which
the chip does not fail with the intended input vector. We use the testing pattern
generation method described in [29].The leakage current can be measured via
the commonly known IDDQ test methods, where IDDQ refers to the measure-
ment of the quiescent power-supply current. The IDDQ tests are often done via
the off-chip pins by the precision measurement unit (PMU) [26]. The dynamic
current tests are referred to as IDDT tests. IDDT tests can be done by averag-
ing methods that do not require high precision or high frequency measurement
devices needed for capturing the transient signals [10].

4 Unimodal Trojan Detection

The basis of the unimodal Trojan approach is the gate profiling discussed in
Section 4.1. In Section 4.2 we show the detection problem is submodular. We
further discuss the complex structure of the general unimodal detection prob-
lem which cannot be optimally addressed. We opt to use our prior knowledge
about the process variations and submodularity property to address the problem
in a hierarchical way. The precursor for our hierarchical method is systematic
calibration that is discussed in Section 4.3.

4.1 Gate Profiling

In this subsection, we show how the side-channel measurements can be decom-
posed to their gate level components post-silicon. One can exploit the linear re-
lationship between the IC’s gate level profile and the side-channel measurements
(constrained by the logic relations) to estimate the gate level characteristics. We
introduce a formal framework for this problem:
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Problem. UNIMODAL GATE PROFILING (MODALITY M).

Given. A combinational circuit C, with NI primary inputs x1, . . . , xNI , and
NO primary outputs z1, . . . , zNO , where the netlist and logic structure is fully
available. The circuit consists of interconnections of single-output gates where
each gate Gk, k = 1, . . . , Ng implements an arbitrary logic function. The nominal
profile of Gk for the modality M for each possible combination of gate inputs is
available from the technology libraries and simulations models.

Measurements. For the modality M , a set of input vectors (V ’s) that are each
an NI tuple (v1, v2, . . . , vNI ), where vj ∈ {0, 1} for j = 1, . . . , NI are available.
Component values of V are applied to the primary inputs x1, . . . , xNI which
changes the states of the internal gates. For one or more input vectors, the side
channel measurement is recorded either from the output pins, from other external
pins, or contactless. The side-channel measurement is a linear combination of the
gate characteristics in measurement modality M and a measurement error.

Objective. Estimate the post-silicon profile of each gate for the modality M .
A key step in noninvasive profiling of the chips is generation of input vectors

that can controllably change the states of the gates such that this modification
is observable from the measurement medium. Note that generating the input
patterns that can distinctively identify each gate’s characteristics is known to be
NP-complete and has been a subject of extensive research in circuit testing [10].
We use the best known methods in testing for generation of the input vector
patterns that maximally cover all the gates. Although we are limited by the
same constraints as testing in terms of gate coverage, the difference here is that
we are not detecting a particular fault model or the worst-case behavior (e.g.,
critical paths or stuck at fault) but we are estimating the gate parameters that
may incur a certain error.

In delay testing, the input vectors have to functionally sensitize the tested
paths such that the output is observable at an output pin. Delay test generation
methods for sensitizing paths that achieve a high coverage, i.e., exercising many
paths are available. Since there is a linear relationship between the tested paths
and the gate delays, the explored paths directly translate to high coverage of the
gate delays. We use the path sensitizing method proposed by Murakami et al
[19]. Similarly, we use the available high coverage test vector generation methods
for IDDQ, and for IDDT testing [25]. The number of generated input vectors is
linear with respect to the total number of gates.

(i) Timing modality. The noninvasive timing measurements are taken by
changing the inputs and measuring the time propagation of input transition
to the output nodes. In this paper we consider the gate delays and ignore the
wires. However, we emphasize that since the wire timings are linearly added to
the path delays (assuming that crosstalk is bounded by controlling the possible
couplings), their inclusion in the linear formulations is straightforward.
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One can test J different paths and write a linear system of delay equations.
The gate delays (T (Gkj )) on each chip are the variables (because of the process
variation and operation effect) and Tmeas(P )’s are the path delays that are
measured on each chip:

EQj : Σ
Kj

kj=1T (Gkj ) = Tmeas(Pj), Pj = {Gkj}
Kj

1 , 1 ≤ j ≤ J .

Noninvasive gate profiling aims at solving the above system of equations in
presence of measurement error. If measuring the path delay Tmeas(Pj) incurs the
error εT (Pj), the optimization problem objective function (OF) and constraints
(C’s) can be written as follows:

OF : min
1≤j≤J

F(εT (Pj)) (1)

C′s : Σ
Kj

kj=1T (Gkj ) = Tmeas(Pj) + ε(Pj), Pj = {Gkj}
Kj

1 , 1 ≤ j ≤ J .

where F is a metric for quantifying the measurement errors; commonly used
forms of F are the maximum likelihood formulation, or the lp norms of errors
defined as: lp = (

∑J
j=1 |εT (Pj)|p)1/p, if 1 ≤ p < ∞, and lp = maxJ

j=1 |εT (Pj)|,
if p = ∞.

The delay of one gate T (Gk) can be further written in terms of the deviation
from the nominal delay of this gate from the value specified in the technology
files. If the nominal gate delay value for the gate type Gk is T nom(Gk) and the
deviation from nominal for Gk for the chip under measurement is θT (Gk), then
T (Gk) = θT (Gk)T nom(Gk) and thus, the unknowns are θT (Gk)′s and ε(Pj)′s.
The variable θT (Gk) is called the delay (timing) scaling factor of Gk. If there
were no path measurement errors, the number of equations (J) required to have
a full-rank system would be the same as the number of variables (gate delays).
In presence of errors, the number of required equations is slightly higher, but
the order is still linear in terms of number of gates Ng.

(ii) Leakage power modality. The leakage measurements rely on the fact
that leakage is a function of the gate input for each gate type. Since the supply
voltage is fixed, the static power is only dependent on the leakage current. For
each input vector in quiescent state, the external pin current can be measured
and written in terms of the sum of the individual components. For example, for
(v1; v2; v3; v4) =1111, the total measured leakage current can be written as:
Φmeas(1111) + εΦ(1111) = ΦG1(11) + ΦG2(11) + ΦG3(00) + ΦG4(00) + ΦG5(11)
+ ΦG6(11), where ΦGk

(x1x2) is the leakage current for gate Gk for its incident
input (x1x2), and εΦ(.) denotes the measurement error for the incident input.
Each gate’s leakage can be further decomposed to the nominal leakage value for
the gate type and a leakage scaling factor denoted by θΦ(Gk), i.e., ΦGk

(x1x2) =
θΦ(Gk)Φnom

Gk
(x1x2). Therefore, the linear optimization can be written over the

J leakage measurements:

OF : min
1≤j≤J

F(εΦ(Xj)) (2)

C′s : Σ
Ng

k=1θΦ(Gk)Φnom
Gk

(xj) = Φmeas(Xj) + εΦ(Xj) .
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(iii) Dynamic power modality. The dynamic power is dependent on the
input transition. The measured average dynamic current (Section 3(iii)) can be
written as the sum of the gate dynamic currents. Thus, the linear optimization
for J dynamic current measurements would be:

OF : min
1≤j≤J

F(εΨ (Xj→j+1)) (3)

C′s : Σ
Ng

k=1θΨ (Gk)Ψnom
Gk

(xj→j+1) = Ψmeas(Xj→j+1) + εΨ (Xj→j+1) .

where εΨ (.) denotes the measurement error for a reading, θΨ (Gk) is the gate
scaling factor for the dynamic current, Ψnom

Gk
(.) is the nominal dynamic current

value for gate Gk for the pertinent transition, xj→j+1 refers to input vector
transition from the vector j to j1, and Ψmeas(.) is the extracted dynamic current
measured at the external pin.

We see that each of the modalities can be written in the unified format of a
system of linear equations. In the remainder of the paper we use the following
generic notations for the gate profiling over the different modalities.

(i) OF: minF(ε), Constraints: Aθ = B+ε; where A[J×Ng] and B[J] are given by
the technology values and J measurements, θ[Ng] is a vector of unknown scaling
factors, and ε[Ng] is a vector of measurement errors.

(ii) Alternatively, the optimization problem can be written as OF: maxL(ε),
Constraints: Aθ = B+ε, where L is the likelihood that the variations are com-
ing from a certain distribution, e.g., normal distribution. Under the assumption
of normal error distribution, maximizing the likelihood corresponds to minimiz-
ing the F = l2 error norm.

4.2 Unimodal Detection

Let us assume that the gates are positioned at the locations D in the 2D layout
space. For a single modality we can find an estimation of each gate’s profile. As
we described in Section 3(i), the profile of a benign gate can be modeled as the
sum of its inter-chip and intra-chip systematic process variations, the random
process variations, and measurement noise. The global objective of Trojan de-
tection is to maximize the probability of Trojan detection (PD) and to minimize
the probability of false alarm (PFA). However, explicit formulation of the two
objectives is not plausible, since probability of detection/false alarm can only
be determined for cases where we know the exact Trojan attack and the ground
truth. Instead, our Trojan detection attempts at removing the impact of the
anomalous gates by reweighing. The reweighing is done such that the likelihood
of the remaining benign gate profiles being drawn from the process variation and
noise distribution after mapping to the benign space is maximized. Based on
this criteria, the objective here is to select a subset of gates Γ ⊆ D for the linear
program and reweigh them such that the likelihood L(D\Γ, ε) is maximized (i.e.,
the gate profiles fall into the benign space for maximizing the PD), subject to
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the cost constraint Q(Γ ) for selecting the O gates as Trojan (for minimizing the
PFA). Reweighing is done by setting the gate scaling factor to its nominal value
of unity, assuming the systematic variations are calibrated. Let qu denote the
budget for the cost Q(Γ ). Thus, one can write the objective function and the
constraints of the problem as follows:

OF : max
Γ⊆D

L(D\Γ, ε) (4)

C′s : Q(Γ ) ≤ qu; Aθ{θ∈[(Γ⊆D)∪(Γ=1)]} = B{θ∈[(Γ⊆D)∪(Γ=1)]} + ε .

The first constraint corresponds to the cost budget for the number of Trojans.
The second constraint set corresponds to the gate level profiling discussed in
the previous section (after reweighing the anomalies). Assuming the distribution
of random process variations is Gaussian and the systematic process variations
follows a 2D Gaussian in the spatial domain, the above likelihood function will
always be lowered if we select to reweigh the maximum number of anomalies
qu. This is because the reweighing can make the noisier observations more con-
sistent and therefore improve the likelihood results. But this is not usually de-
sirable since it would unnecessarily increase the PFA. Notice that the OF in
Equation 4 has two simultaneous goals, one is to find the location of the gates
that maximize the likelihood, and the other is to maximize the likelihood of
the estimation error ε. Generally speaking, detecting guaranteed anomalies in
problems like ours where there is an uncertainty about the value and interval
of the variables (dependent on the other variables values) was demonstrated to
be NP-hard [14]. Thus, we can only hope for heuristics and approximations to
address the problem.

Iterative hierarchical detection and profiling. To simultaneously address
the two goals embedded in Equation 4, we take a hierarchical approach for solving
the problem by separation of concerns paradigm and iterative evaluations. We
first present the high level view of this algorithm and then propose a class of
formulations for which we can derive tight bounds on the solutions obtained by
our approach. Our method is presented in Algorithm 1.

The procedure iteratively increases the maximum allowed number of anoma-
lies qu, starting from zero (Step 1). The stopping criteria of the iterative algo-
rithm is improvement above a certain threshold (Step 2). For each added value
of qu (Step 3), we follow a greedy selection and add the most discrepant gate o
to the set Γ (Step 4)). Discrepancy is evaluated as the distance to the projection
into the benign gate space (Steps 5-7). A new round of gate level profiling is
done after adding the newly reweighed gate o (Step 5). Since the derived gate
profiles contain both systematic and random variations, calibration is performed
to adjust for the systematic variations (Step 6). Now, the benign gates would
only have random variations. The anomaly detection criteria is evaluated for
checking the stopping condition for the algorithm (Step 7).
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Algorithm 1 - Unimodal anomaly detection
Input. Combinational circuit, noninvasive measurements for J inputs, nom-
inal technology values;
Output. Scaling factors (θ) from gate level profiling (GLP); anomalous
gate set (Γ );

1 Set Γ = ∅, qu = 0; Perform an initial GLP;
2 While (improvement by anomaly reweighing) do
3 qu++;
4 Select the gate o to reweigh (Γ = Γ ∪ {o});
5 Perform a GLP with the reweighted o;
6 Calibrate for systematic variations;
7 Evaluate the improvement criteria;

The complexity of Algorithm 1 can be computed as follows. Let Ng denote
the total number of gates in the circuit. Assuming that solving the linear system
and calibration are at most of polynomial complexity, the worst case complexity
of the above algorithm would still be polynomial and is effectively dominated by
the time the solver takes to find the gate level profiles. The exact form of the
GLP objective function would determine the solver time. For example, maximiz-
ing the likelihood for Gaussian distribution corresponds to solving a quadratic
optimization problem in each round. The number of iterations is much less than
the number of gates Ng since not all gates will be reweighed and the improvement
criteria has a diminishing return property that would decrease at each iteration.
If the Trojan is so large that many gates need to be reweighed, then the problem
becomes trivial: it is well known in statistics that the anomaly detection is only
challenging when the outlier characteristics only slightly differ from noise [14].

Greedy anomaly detection. For evaluating the improvement criteria for
reweighing the gates in Γ , we propose a formulation of the anomaly detection
objective based on likelihood improvement. This objective aims at performing
penalty reduction. The penalty reduction metric quantifies the expected reward
obtained by reweighing a set of gates. The expected penalty reduction due to
reweighing the gates in the set Γ is denoted by R(Γ ) and is defined as:

R(Γ ) = L(D) − L(D\Γ ) . (5)

The above formulation has a number of important properties that we exploit
in our framework. A set function R is called submodular if it satisfies the fol-
lowing properties: (i) the penalty will not be reduced if we do not reweigh a
new anomalous gate, i.e., R(∅) = 0; (ii) R is a nondecreasing set function and
thus, reweighing a new anomaly could just decrease the associated penalty, i.e.,
R(Γ1) ≤ R(Γ2), for Γ1 ⊆ Γ2 ⊆ D; (iii) the set function satisfies the diminishing
return property: if we reweigh a gate in a smaller set of gates with logic relations
(denoted by Ds), we improve the reward by at least as much, as if we reweigh
in a larger set of gates (denoted by Dl) with logic relations such that Dl ⊆ Ds.
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Nemhauser et al. [21] have shown that a function R is submodular if and only
if the following theorem holds:

THEOREM 1. For all detected and reweighed Trojans Γ1 ⊆ Γ2 ⊆ D and a new
candidate point o ∈ D\Γ2 the following holds:

R(Γ1 ∪ {o}) −R(Γ1) ≥ R(Γ2 ∪ {o}) −R(Γ2) . (6)

It can be shown that the reward function R satisfies the above theorem [15].
Now our optimization problem over Γ can be expressed as:

OF : max
Γ⊆D

R(Γ ) C′s : Q(Γ ) ≤ qu .

Since solving the above problem has been shown to be NP-hard for the most in-
teresting instances [9], we address the above optimization problem by the greedy
procedure described in Algorithm 1. This is because a key result states that for
submodular functions, the greedy algorithm achieves a constant factor approxi-
mation:

THEOREM 2 [21]. For any submodular function R that satisfies the above
three properties, the set ΓG obtained by the greedy algorithm achieves at least
a constant fraction (1 − 1/e) of the objective value obtained by the optimal so-
lution, or,R(ΓG) ≥ (1 − 1/e)max|Γ≤qu| R(Γ ). Perhaps more surprisingly, Feige
has shown that no polynomial time algorithm can provide a better approxima-
tion guarantees unless P=NP [9]. Thus, for any class of submodular objective
functions, the proposed greedy selection algorithm results in the best achievable
solution.

4.3 Calibration

To perform the anomaly detection, it is required that we calibrate for the sys-
tematic variations after profiling the gates. As mentioned in Section 3(i), the sys-
tematic variations consist of inter-chip and intra-chip variations. The inter-chip
variations are simply affecting the mean of the variations and can be adjusted
for by shifting the mean extracted profile values to have a mean of unity. The
intra-chip variations are in form of a spatial distribution, e.g., 2D Gaussian in our
model. The key observation is that the spatial rate of change of the neighboring
gate level profiles due to the systematic intra-chip variations (spatial correla-
tions) is slower than the rate of change because of the Trojan insertion. The
larger Trojans that would affect many gates in a larger area are trivial to detect
and would not be a challenge to address. This suggests using a high-pass filter
over the 2D discrete space of the gate layouts for the identification of the sharp
edges that have high frequency components in their frequency transformation.
In this paper, we use the 2D Discrete Cosine Transform (DCT).

5 Multimodal Trojan Detection

The next step of our approach is to combine the results for anomalous gate
detection over the M modalities. While there are a number of possible methods
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to accomplish this task, our goal is to combine the unimodal methods to optimize
the PD and PFA results. Assume that Cm(Gk) is the anomaly vote for gate Gk

in modality m:

Cm(Gk) =
{

1 for Gk anomalous in modality m;
0 otherwise.

We propose four methods for combining the results of different modalities.

(i) Unanimous voting: In this voting approach, the Trojan gates are those
that have been marked anomalous by all the M modalities. For example, for the
three modalities the following constraint should hold for marking a gate as Tro-
jan: CT (Gk)+CΦ(Gk)+CΨ (Gk) = 3 where the subscripts T , Φ, and Ψ denote the
timing, quiescent current, and dynamic current measurement modalities respec-
tively. This voting method is likely to decrease PD but improves PFA. It would
also give the minimum achievable PFA (lower bound) by any linear combination
of the unimodal detection methods.

(ii) Conservative voting: A gate that has been marked anomalous by any
of the modalities is marked as a Trojan by the conservative voting method. In
our case, the following constraint is necessary and sufficient for marking a gate
Gk as Trojan by conservative voting: CT (Gk) + CΦ(Gk) + CΨ (Gk) ≥ 1. This
voting method is likely to increase PFA but also increases PD. It would also give
the maximum achievable PD (upper bound) by any linear combination of our
anomaly detection methods.

(iii) Majority voting: Here, the Trojan gates are those that have been marked
anomaly by at least 1 + 	M

2 
 of the modalities. In our case, the majority voting
translates to the following condition: CT (Gk) + CΦ(Gk) + CΨ (Gk) ≥ 2. This
method provides a useful trade-off between the PD and PFA values.

(iv) Weighed voting: The voting methods above assume that all the modalities
have the same detection ability. However, this is not true. For example in our
experiments we see that there is less controllability/observability for the timing
modality. For example, assume that we give the weights ST

k , SΦ
k , and SΨ

k for
gate Gk for timing, leakage, and dynamic current respectively. Now, the votes of
the three unimodal detectors over an anomalous gates are combined as follows:
ST

k CT (Gk) + SΦ
k CΦ(Gk) + SΨ

k CΨ (Gk) ≥ threshold. If this expression is true, the
gate Gk is marked as the Trojan. Changing the detection threshold introduces
a tradeoff between PD and PFA values.

6 Experimental Evaluations

6.1 Evaluation Set-Up

We evaluate the performance of the unimodal detection and the unified multi-
modal framework on the widely used MCNC benchmark suite. The ABC syn-
thesis tool from UCB was used for mapping the benchmark circuits to NAND2,
NAND3, NAND4, NOR2, NOR3, NOR4, and inverter library gates. Placing
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the gates on the layout placement is done by the Dragon placement tool from
UCLA. The gates have different sizes and they are located on irregular grids.
The process variation model is as described in Section 3(i). In a number of our
experiments, the amount of variations are altered and the detection results are
tested against the variation fluctuations. In cases where we do not change the
variations, the random variation is 12%, intra-die variation correlation is 60%
of the total variation [5]; 20% of the total variation is uncorrelated intra-die
variation and the remaining variation is allotted to the inter-die variation. The
noninvasive measurement setup was described in Section 3(iii).

To find the values for timing, leakage, and dynamic currents for each of the
library gate files over various input states, we performed HSPICE simulations for
the 65nm CMOS transistor technology. The linear optimization was performed
using the MATLAB optimization toolbox. Several other internal MATLAB func-
tions are used for computing the likelihood and for filtering to calibrate the
systematic variations. Each of our reported numbers and statistics are averaged
over 100 runs of the random circuit instances.

6.2 Unimodal Trojan Detection

Gate level profiling. Finding the gate level profiles is the essence of the pro-
posed approach. Table 1 shows gate level dynamic power, static power, and
timing profiling results on benchmark circuits. For these evaluations the num-
ber of measurements is the minimum of double the number of gates and the
maximum number of tests that can be done on the circuit. The first column
shows the name of the benchmark denoted by ct. The second column shows the
number of gates in the benchmark denoted by Ng. The number of primary in-
puts and primary outputs denoted by #i and #o are shown in the third and
fourth columns respectively. The next nine columns show the profile estimation
l2 errors in the presence of 3%, 5%, and 10% measurement error for the three
modalities respectively. On the average, the gate level profile estimation error
is 3.8%, 4.8%, and 9.6% for the different measurment errors in case of dynamic
power. The error in static power profiling is 4%, 6%, and 10% for 3%, 5%, and
10% of the measurement error respectively. For the timing modality the profiling
error is 4%, 6%, and 11%.

Table 1. Dynamic power, static power, and timing profile estimation error for MCNC

benchmark circuits

D. Power S. Power Timing

ct Ng #i #o 3% 5% 10% 3% 5% 10% 3% 5% 10%

C1355 512 41 32 7.8 9.1 11.5 8.5 10 12 4 8 12.3

c8 165 28 18 4.2 6.4 11.2 5.6 7 11.6 5.3 7 11.5

C3450 1131 50 22 3.5 6 9.5 4 5.9 9.8 2.9 4.1 9.2

C432 206 36 7 1.5 3.1 6.9 1.7 3.5 7.2 3.8 5.4 10.1

C499 532 41 32 2.2 4.2 8.8 2.9 4.5 9 5 6.5 12
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Unimodal Anomaly detection. In this Section, we evaluate the performance
of the unimodal anomaly detection over the three modalities under study. We
study three scenarios: (i) a Trojan-free circuit, (ii) one extra NAND2 gate in-
serted as a Trojan, and (iii) a 3-gate comparator circuit is inserted. The Trojans
are inserted in the empty spaces within the automatic layout generated by the
Dragon tool. An important property for unimodal anomaly detection is how
the diminishing return property changes. As we discussed earlier, this function
should be monotonically decreasing assuming no random perturbations. We have
tested the validity of our assumption on multiple benchmark circuits. An exam-
ple result is shown in Figure 3 for the leakage modality for the C432 benchmark
and 100 measurements. The results for the other two modalities are similar.
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Fig. 3. The stepwise diminishing return

improvement for leakage modality

As we can clearly see on the figure, the difference between diminishing returns
of two consecutive steps of our algorithm is much higher for the larger Trojan, it
becomes lower for the smaller Trojan and it is really low for the Trojan free case.
The same phenomena is observed over all the modalities. This result is really
important for adjusting the stopping criteria of our algorithm. Basically, when
the Trojan circuit reaches the same diminishing return difference as the Trojan-
free circuit, no further significant improvement is foreseen. The above results
gave us an insight to set the stopping criteria for Algorithm 1. For example, we
set it such that the diminishing return is decreased by more than 2 in each step.
As can be seen on the Figure 3, this decision would result in an average 1 gate
false alarm for this circuit with 206 gates, i.e., PFA = 1/206 = 0.5% and about
2 gates are not detected in case of the smaller Trojan, about 1%. It should
be noted that we detect more anomalous gates than what is inserted by the
Trojan because the Trojan gates affect the side channel characteristics of the
logically connected gates. This result can be used to help localize the Trojan,
however, this is out of the scope of this work. Figure 2 shows the boxplot of the
number of iterations (qu) before our stopping criteria is reached for 100 runs
over 3 benchmarks for leakage modality. The number of iterations corresponds
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Table 2. The number of gates giving false alarm in a non Trojan circuit

ct UNA CON MAJ WD

C1355 0/512 4/512 2/512 2/512

c8 0/165 3/165 1/165 2/165

C3450 0/1131 3/1131 3/1131 3/1131

C432 1/206 2/206 1/206 1/206

C499 0/532 3/532 1/532 1/532

to the number of detected anomalous gates. We see that the number of detected
anomalous gates increases as the Trojan size increases.

Table 2 shows the PFA (in terms of number of gates giving false alarm in the
circuit) for 100 chips with no Trojan. The false negatives ranged from 0 to 4 gates
and are largest for the timing modality. The first column shows the name of the
benchmark. The rest of the columns show the results for different multimodal
methods: unanimous (UNA), conservative (CON), majority (MAJ), and weighed
(WD). The unanimous voting performs best in terms of PFA. This is because it
can filter out the effect of the modalities that give more false positives.

We also studied the probability of detection PD using the different voting
methods. Our PD results demonstrate an average of 86%, 99%, 98%, and 98%
for unanimous, conservative, majority, and weighted voting respectively. The
unanimous voting yields the worst PD while as we described earlier, it resulted
in the best PFA. The conservative voting yields the best PD at the expense of
worsening the false alarm probability PFA. On the other hand, the majority vot-
ing and weighed voting result in a good trade-off between the two probabilities.
In addition, we observed that the weighted voting gives the best result when
we assign the lowest weight to the timing modality. The inefficiency of timing
modality is because the small Trojans would only affect a few of the tested tim-
ing paths, whereas many more sets of current tests would show the impact of
the modified currents. The two power modalities are much more effective in de-
tecting Trojans. Another interesting observation was that even though there is
a good amount of independent information in the static and dynamic current
tests, the outcomes of the two testing modalities demonstrate an average of 73%
correlations on our benchmark circuits.

7 Conclusion

Our work presents a new unified formal framework for IC Trojan detection by
noninvasive measurements from multiple test modalities. For each modality, a
unimodal anomaly detection is built upon the gate level profiling. Since the
problem is extremely complex, we devise an iterative detection and profiling
method. Our objective function for detecting the abnormal gate level behavior
is shown to be submodular. Because of the objective submodularity, our iterative
greedy detection and profiling algorithm achieves a near optimal solution (within
a constant fraction of the optimal) in polynomial time. We show a method to
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calibrate the systematic variations. Our multimodal Trojan detection approach
combines the unimodal detection results using a number of different techniques.
Experimental evaluations on benchmark circuits using timing, leakage current,
and transient currents show the effectiveness of our approach.
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Abstract. Software tamper-resistance mechanisms have increasingly assumed
significance as a technique to prevent unintended uses of software. Closely re-
lated to anti-tampering techniques are obfuscation techniques, which make code
difficult to understand or analyze and therefore, challenging to modify mean-
ingfully. This paper describes a secure and robust approach to software tamper
resistance and obfuscation using process-level virtualization. The proposed tech-
niques involve novel uses of software checksumming guards and encryption to
protect an application. In particular, a virtual machine (VM) is assembled with
the application at software build time such that the application cannot run without
the VM. The VM provides just-in-time decryption of the program and dynamism
for the application’s code. The application’s code is used to protect the VM to en-
sure a level of circular protection. Finally, to prevent the attacker from obtaining
an analyzable snapshot of the code, the VM periodically discards all decrypted
code. We describe a prototype implementation of these techniques and evaluate
the run-time performance of applications using our system. We also discuss how
our system provides stronger protection against tampering attacks than previously
described tamper-resistance approaches.

1 Introduction and Overview

Today, software applications have become essential for the correct functionality of many
critical systems, e.g., transportation control systems, banking and medical devices. Such
critical software systems present potential targets for attacks from adversaries equipped
with advanced reverse engineering tools. Any unauthorized modification could lead to
extensive disruption of services and loss of life and property.

Software developers have used a variety of schemes to protect software from unau-
thorized modification [12,7,1,2]. However, current tamper-resistance techniques suffer
from a variety of major drawbacks.

– Much of the previous research has targeted making the application hard to ana-
lyze statically [14]. For example, an opaque predicate is a predicate that is difficult
to analyze statically. However, several runs in a simulator can determine which
branches are highly biased and thereby provide the information required to defeat
these protections.

– The use of additional hardware is required by some solutions [18]. This extra hard-
ware adds an additional cost that will have to be borne by the end user, and might
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restrict the software to a particular set of platforms. Consequently, adoption of these
techniques has been slow.

– Encryption techniques have been used to prevent static disassembly of applications.
However, decryption occurs at a coarse level of granularity and as such, there is
little protection from dynamic analysis [4].

– A number of schemes have an impractical overhead constraint or provide only
a partial solution. The Proteus system involves overheads between 50X-3500X,
which is too high for most applications [1]. Remote tamper-proofing techniques,
although widely used among embedded devices [19], require strict Quality-of-
Service guarantees [6]. A realistic solution must have tolerable overheads otherwise
developers will be unwilling to deploy such measures on a large scale.

To address these shortcomings, this work presents a novel scheme for software tam-
per resistance, using process-level virtualization. The idea involves new and improved
techniques for code checksumming and encryption, which are allied with process-level
virtualization to impart dynamic tamper resistance to applications. The process-level
virtual machine (VM) continually shifts the attack surface of the application, making it
hard for the adversary to identify vulnerable locations and mount an attack. The pro-
posed solution provides numerous contributions over previous work.

1. The continuous shifting of the application code provides increased ability to pro-
tect against run-time attacks, e.g., checking code in the application is not executed
in-situ but from randomized locations in memory as the program executes. This
dynamism is missing in current techniques.

2. The decryption of program blocks occurs just-in-time on a per-instruction basis.
As such, the granularity of decryption is significantly finer than previous software
approaches [5,4].

3. Novel uses of checksumming guards provide a strong level of circular protection
involving both the application code and the virtual machine’s code. Together, these
guards are used to achieve dynamism in the virtual machine’s protection mecha-
nisms, providing stronger protection than the application could achieve alone.

4. Process-level virtualization, coupled with frequent code cache flushing, provides
increased protection against malicious OS attacks with less exposure of the defense
mechanism. As described in Section 5.3, the use of virtualization inherently pro-
vides security against such attacks without requiring specialized protection tech-
niques.

5. Stealthy schemes for periodic code cache flushing ensure higher levels of entropy in
the system by regularly discarding decrypted instructions and relocating application
code while maintaining tolerable overhead.

The paper also provides an evaluation of the security techniques and the protection
being applied to the application code.

The rest of the paper is structured as follows. Section 2 describes the malicious envi-
ronment in which software has to run. Section 3 describes the protection mechanisms.
The evaluation of these techniques is described in Section 4. Section 5 discusses the
relative merits of our approach over previous work done in this area. Section 6 gives a
brief overview of previous work, and finally conclusions are presented in Section 7.



A Secure and Robust Approach to Software Tamper Resistance 35

2 Threat Model

To understand our approach, it is first necessary to understand the hostile environment
in which software must be protected. An adversary can use various tools like debug-
gers, simulators, and emulators to run, modify, and observe the program in a number
of ways. For example, the popular VoIP tool, Skype, was cracked using a debugger to
obtain the entire unencrypted code base in memory and then applying standard static
analysis techniques on the unencrypted code. Even the operating system can be mod-
ified to return inaccurate information [20]. Consequently, we consider all software on
the machine as potentially malicious, and the entire application (including any virtual
machines distributed with said software) as potentially vulnerable to attack. However,
the application is created at a trusted development site (including tools and developers),
as such, the threat model does not include attacks during software production.

Furthermore, even hardware can be emulated to return forged results to the applica-
tion. In essence, this is a white-box attack on the application. The adversary can inspect,
modify, or forge any information in the system. Given enough time and resources, the
adversary can always succeed in manually inspecting and making modifications to the
program. However, human adversaries have difficulty directly solving large problems.
As such, they rely on algorithmic solutions to perform various analyses on applica-
tion packages, including determining instruction locations, disassembling the program,
capturing the control-flow or call graphs, to name a few.

3 Protection Model

While being cognizant of the threat model described in Section 2, our solution seeks
to address the problems with current technology for tamper resistance and obfuscation.
At software creation time, protection features (i.e., guards as described in Section 3.1
and encryption as described in Section 3.2) are applied to a virtual machine and the
application, generating a package which is challenging to analyze statically. The pro-
tected application (and the VM) is then ready to be distributed into a potentially hostile
environment.

The VM provides just-in-time, on-demand decryption of the application instructions.
Guards and application code are cached in software, so that the system avoids de-
crypting frequently executing instructions multiple times. To provide a shifting attack
surface, the VM periodically discards any cached (and hence decrypted) instructions
(described in Section 3.3).

These approaches make the dynamic analysis techniques challenging to conduct.
The following sections provide more details about how the mechanisms work, while
Section 5 provides a more in-depth security discussion about the tractability of common
attack vectors.

3.1 Guards

We propose novel uses of self-introspective code called guards ( as described by Chang,
et al. [7]) to provide tamper resistance. Each guard checks a range of memory addresses,
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Fig. 1. Layout of an encrypted binary protected by guards

using a lightweight hash function which consists of a few logical and memory opera-
tions. Guards are placed such that they mutually protect the application as well as the
VM. Unlike previous approaches, this technique binds the protection mechanism of the
application closely with that of the VM, hampering the adversary from dissecting them.

In our approach, guards protect the encrypted application instructions. Figure 1 illus-
trates the layout of a protected binary, with guards (G1, G2, G3, and G4) and associated
checksums inserted in both the encrypted application and the VM. For example, the
guard G3, located in the VM, protects encrypted application code (shown in hatching
in the figure), whereas the encrypted guard G4, located in the application, protects the
VM. Initially, guard code templates are inserted probabilistically throughout the appli-
cation and the VM. The checksums are only calculated after the entire application has
been encrypted. This technique offers stronger protection than guarding plaintext code
in the case where the adversary is able to locate and adjust the checksums to reflect any
malicious modifications. The adversary would now have to encrypt the modifications
as well and update the checksums accordingly. Although the guards located in the VM
are unencrypted, the cyclic nature of guard protection ensures that such guards are safe-
guarded from tampering. Implementation details of checksumming guards is described
in Section 4.1

An important consequence of using process-level virtualization is that application
guards never execute from their original location in the binary. Instead, as illustrated in
Figure 2, the code is copied to a separate location and then executed. Therefore, even
if the adversary is able to observe the run-time behavior of the guards, their original
locations in the application remain secure.

3.2 Encryption

Previous approaches have handled software decryption at a coarse level of granularity
(e.g., at the function level [5] or bulk decryption, in which the entire code base is de-
crypted in memory [4]). Our scheme performs just-in-time, on-demand decryption, as
shown in Figure 2. The entire text segment of the application along with its guards, is
encrypted using a strong encryption algorithm, as shown by the shading on the right of
the figure. At run time, the VM loads the application and starts decrypting and decoding
application instructions one basic block at a time (this process is known as translation).
The block is cached in software and scheduled for execution. After the block executes,
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control again enters the VM. If next instruction to be executed already exists in the code
cache, control directly transfers to that instruction. Otherwise, the VM begins decrypt-
ing and decoding instructions at the next application address. The translated block is
then placed at the next available location in the code cache. To increase the amount of
entropy, a random number of instructions are appended to each translated block.

Ensuring the obscurity of the decryption key is important for the success of this
scheme. If this key can be determined, the adversary can decrypt the text segment of
the application and analyze the contents of the original application. Currently the de-
cryption process uses a single key for encryption and decryption. Chow, et al. proposed
a solution in which the key of the underlying block cipher is expanded from several
bytes to a collection of look up tables with a total size in the order of hundreds of kilo-
bytes [8]. Although an attack on this scheme has been published, it incurs a significant
overhead in terms of computation time [3]. The system can be made more secure by
using different keys for different parts of the code segment, and encrypting different
parts multiple times to make it harder for the adversary to decrypt the application.

3.3 Flushing

Portions of the plaintext application code are cached in software to avoid the overhead
of frequent decryption. Over a period of time, the application code will build up in
the cache, and the adversary will be able to analyze the application from the cache. A
stealthy technique is required to continuously reduce the plaintext code available to the
adversary. Flushing the code cache at periodic intervals achieves this goal and prevents
the adversary from obtaining a sizable chunk of the plaintext code. Flushing splits up the
run-time information into multiple pieces, forcing the adversary to craft them together
to fully analyze the application.

Periodic flushing also aids in providing a constantly changing execution profile of
the application. It regularly shifts the attack surface of the application, as the protection
mechanisms are relocated after each flush. This entropy is furthered increased by adding
a random number of instructions to each basic block in the software cache, as described
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in Section 3.2. Randomized blocks combined with flushing ensure that guards regularly
execute from different addresses in the code cache.

Flushing can be triggered by a periodic signal generated by the operating system.
However, the threat model includes the case where the application is run on top of a
malicious OS. The adversary could modify the OS kernel such that the signal is not
delivered to the application at all, thus disabling the flushing completely. Therefore, an-
other technique is required for triggering the code flushing. Ideally, this scheme should
depend on an inherent property of the application itself, making it difficult to alter the
system via an external agency. The flushing should be triggered stealthily, without alert-
ing the adversary as to when the code cache is cleared of the stored instructions. One
such scheme involves counting a particular type of instruction at run time and trigger-
ing the flush when a threshold has been crossed. The instruction should be numerous
enough and well spread out throughout the application code such that the flushing be-
havior is approximately periodic. As an example, we chose indirect jumps (including
function returns) as our candidate instruction. The application is run in training mode
and the average number of indirect jumps executed per second is calculated. Flushing
occurs based on some function of this average.

4 Evaluation

We have designed a prototype that implements our techniques, using a combination of
binary rewriting and a process-level virtual machine, called Strata [17]. Strata runs as a
co-routine with the application, making modifications as it is running. It mediates pro-
gram execution by dynamically examining and translating program instructions before
they are run on the host CPU. Frequently executing instructions are cached in a soft-
ware code cache. The original application is first linked with the Strata libraries [17].
We then use a link-time binary rewriting tool to introduce guards into the program code
(both Strata and original application) and encrypt the application text segment (but not
Strata code) using AES.

Our proof-of-concept implementation targets the Intel x86 platform, but the concepts
described in this work are platform-independent. This system was evaluated using the
C language benchmarks of the SPEC CPU2000 suite. All the performance related plots
are normalized to native execution (i.e., no protection techniques) and averaged over
five runs. The number of guards inserted into the application and VM is determined by
a heuristic. The heuristic takes into account the expected coverage (number of guards
covering each byte of the program on average), and the size of the address range, given
by N = K∗P

S where K is the approximate coverage desired by the user, P is the
program text size, S is the average guard range size set by the user and N is the number
of guards.

We performed evaluative studies with various guard sizes and coverage rates. For our
analytical study, we chose an average guard range of 8KB and set the coverage rate to 4,
as this configuration provided good trade off in terms of performance and security. Due
to space constraints, we can only present some of the results in the following section.
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4.1 Run-Time Protection

The creation and placement of guards are driven by probabilistic models. Each basic
block is assigned a probability of obtaining a guard, which is inversely proportional to
its profiled execution count. The guard range sizes are determined based on the Gaus-
sian distribution and are independent of the actual location of the guard itself. Exper-
iments showed that guard coverage is highly unbalanced if the starting addresses of
the guard ranges are selected randomly. To improve the coverage, addresses are deter-
mined sequentially starting from the initial address of the program. The range size is
still generated probabilistically, making it hard for the adversary to locate the ranges.

Analyzing the run-time protection afforded by the system is an important aspect of
this research. Guards that execute rarely would leave the application vulnerable to mod-
ification for a majority of its execution time. Investigation into the run-time behavior of
the guard system revealed that the initial phase of the program shows a large number of
guards being executed, and this behavior is consistent across all the benchmarks. Our
placement scheme is more favorable towards basic blocks which have a low execution
count, and application startup code tends to have a high number of such blocks. Once
the startup phase comes to a close, the number of guards executing per second decreases
but many guards still execute in the steady state. Phase changes will tend to show in-
creased guard execution rate, while steady state behavior (e.g., a tightly run loop) will
have a decreased guard rate.

Figure 3 shows the run-time characteristics for a guarded application. Figure 3a
shows the frequency of guard execution per second for 176.gcc. The figure shows
that a significant number of guards execute in the first second itself and consequently
a large proportion of the code is checked. In an ideal case, each byte of the program
should be protected by multiple guards, so that even if an adversary manages to disable
some of them, there are other guards offering protection. Therefore, an important metric
in security systems is connectivity of a program byte, which is defined as the number of
unique guards covering that byte. Figure 3b shows that on average about 80% of the ap-
plication text is covered by three to four guards. This value indicates that on average, to
modify a single byte of application code, the adversary will have to disable 3-4 guards,
which in turn are protected by 3-4 guards each. Such a distributed protection scheme
makes it difficult for the attacker to target any single point of vulnerability.

The strength of a tamper resistance system can be evaluated by measuring the av-
erage time delay between successive checks on a program byte. This metric indicates
how long modifications can exist in the system before detection. Figure 4 illustrates
this metric for all the benchmarks. On average, checks are performed every 3.5 seconds
for each byte in the program, indicating that any modification in the code will be de-
tected within 3.5 seconds on average. We believe that this value is sufficient protection
for many classes of applications, such as word processors, web browsers and media
players. For example, using these techniques to protect media players will prevent the
adversary from viewing digital media for any practical amount of time.
176.gcc and 254.perlbmk are the best-protected benchmarks. These two

benchmarks are the largest in the benchmark suite, and closely resemble real world
applications like word processors and web browsers in having multiple phases of exe-
cution. As such, this data indicates our techniques can provide strong tamper resistance
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Fig. 3. Run-time characteristics for the guarded application

to actual applications while adding tolerable overhead. Applications in which a tight
loop runs for a majority of program lifetime need further investigation and will be ad-
dressed in future work.

Figure 5 displays the distribution of guards based on the guards’ location (VM or
application) and the guards’ protection target (VM or application), along with the total
number of guards executed. There is also a category for guards which simultaneously
protect both the VM and the application regardless of their location, called Combined.
The figure shows that 78% of the guards are located in the application, on average.
These guards are the ones encrypted and consequently get exposed to continuous dy-
namism due to the system’s dynamic protection mechanisms. These guards never exe-
cute from their original locations in the application. From this data, we conclude that the
majority of the guards execute in a stealthy manner, given that the dynamic protection
schemes provide sufficient dynamism.
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4.2 Flushing

Guards provide resistance to tampering but flushing is required to reduce leakage of
information that an adversary can use to understand the application. This lack of under-
standing makes it hard for the adversary to disable protection techniques and modify
the application in a meaningful manner (i.e., achieving the adversary’s goal). Flushing
must occur stealthily at a regular interval, forcing the adversary to analyze the code at
a finer level of granularity. For example, instead of obtaining the entire plaintext code
once the application is loaded in memory, as in Skype, the adversary will have to ana-
lyze the code frequently to obtain all the code snapshots. In this section, we analyze the
effects of flushing based on the frequency of indirect branches executed on performance
and program security. Initially, the application is profiled, using SPEC’s training input,
to obtain the number of indirect branches executed per second (designated as R in the
following discussion). The performance overhead for flushing after every 10R, R, and
R/10 branches was 25%, 30% and 55% respectively, compared to native execution. The
overhead for flushing every R/10 branches is quite high but the other two options show
promising results. We found the rate of flushing becomes somewhat inconsistent, spe-
cially if the threshold is set too low. In particular, flushing performed after every R/10
branches differs when compared with flushing performed every 0.1 sec. The reason
for this behavior is that indirect branches are not temporally uniform but are clumped
together in time.

However, the flushing rate by itself does not give any indication of the amount of pro-
tection afforded, so we measured the rate at which application text appears in the code
cache. Figure 6, which plots the behavior of 176.gcc, indicates that, even without
flushing, only some of the program text is present in the cache at a time. Even flushing
every 10 R branches per second shows some benefit, as much of the code is used in
startup or tear down, after which it can be flushed out of the cache. Flushing every R
branches does a much better job at keeping a significant portion of the application out
of the cache. Flushing R/10 branches per second does the best job, as no more than

Fig. 5. Breakdown of guard types based on location and protection targets. The numbers on top
of each bar correspond to the number of unique guards executed during the reference run of the
program.
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30% of the code resides in the cache at any point in time, while only adding an over-
head of around 20%. This value is much better than bulk decryption, which has 100%
application code decryption at startup. Decryption on a per-function basis typically has
high overhead (up to 8X), unless functions are encrypted selectively based on profiled
information [5].

Flushing aids in relocation during a program run but code needs to execute from
different locations across program runs as well. This code shifting hampers the adver-
sary from launching iterative attacks on the application. As such, a small number of
random instructions (between 2-8) are appended at the end of each basic block in the
software cache. This randomization ensures that there is a high probability that rela-
tive distance between any two basic blocks is different across runs. As a consequence,
guards will execute from different locations across runs. Figure 7 shows the distribution
of cache addresses of guards across 10 runs of the same executable. The software cache
was flushed once every second so that even within a single run, guards execute from
multiple locations. Each guard had at least 10 distinct locations within the cache.

4.3 Performance Overhead

Figure 8 displays the performance overhead of each individual technique as well as the
combined performance compares it with the benchmarks running under Strata without
any protection. On average, the overhead of baseline Strata is 16% over native execution
while the overhead of running an encrypted application is 17% over native. In spite of
using a heavy-weight algorithm (AES), the low overhead can be explained by the fact
that most of the time is spent on executing the application from the software cache rather
than decryption. The guards add, on average, an overhead of 7% over native execution
while flushing adds approximately 10% overhead. Overall, an overhead of 35% is added
to the benchmarks compared to native execution. Approximately half of the overhead is
due to the VM itself, and research is ongoing into reducing this overhead. The average
coverage for each byte of the program has been set to 4. In totality, this data indicates
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once every second). The run time is normalized to native.

that our approach can provide strong protection to real-world applications at a lower
overhead than comparable techniques.

5 Security Discussion

5.1 Circular Protection

All the techniques mutually reinforce each other to provide a strong tamper-resistance
run-time environment. For example, the guards are inserted into the program and en-
crypted. They check the encrypted binary as well as the VM code. For an attack to be
successful, the adversary will have to find and update all the guards (since each guard is
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protected by a network of multiple guards). The encryption protects the static location of
the guards, while the flushing provides variance for the dynamic location. Likewise, the
guards provide protection for the decryption and flushing codes. Similarly, the flushing
protects against dynamic tracing techniques, and prevents persistent changes to the code
cache. Taken together, these techniques impart missing dynamism to current protection
mechanisms. The emphasis of these techniques is the run time, as such, they can be easily
combined with existing static protection mechanisms for comprehensive security.

5.2 Effectiveness against Static and Dynamic Analysis

Static analyzers will not function on the application text encrypted with a randomly
selected key. The virtual machine is less protected from static analysis than the applica-
tion code. However, there are encrypted guards in the application protecting the VM. As
such, the adversary will not be able to modify the VM using only static analysis. The
VM also maintains a static internal data structure that maps original application ad-
dresses of basic blocks to their code cache counterparts. To prevent the adversary from
exploiting this data structure, its location and organization can be made dynamic on a
per-flush basis. Padding the cached basic blocks with random number of bytes makes
it highly probable that a mapping is valid only for one cache flush cycle. Disabling the
VM will render the application unusable because the VM is responsible for decryption.

Dynamic tools and analyzers use traditional static analysis techniques on the run-
time trace of the program and obtain a sizable snapshot of the application code. Peri-
odic flushing of the cached code reduces the amount of code kept in plaintext form in
memory by a significant amount. To fully analyze the application, the adversary will
have to obtain multiple code cache snapshots and craft them together.

5.3 Effectiveness against OS and VM attacks

Modified OSes have already been used to mount successful attacks against software
guard systems. Guard systems work on the assumption that the underlying hardware
follows the von Neumann architecture (data reads and instruction fetches go to the
same memory structure). Wurster, et al. showed a quick workaround to guards: sepa-
rate data and instruction memory [20]. Each page of the application was duplicated and
modifications were applied to it. The kernel was modified such that data reads would go
to the unmodified application, whereas instruction fetches would bring in instructions
from the tampered copy. Our solution defeats this attack in two ways. First, the applica-
tion code is encrypted on disk and decrypted on an on-demand basis, as such creating
a tampered copy is not trivial. Secondly, VMs continuously flush and execute instruc-
tions from the code cache, which defeats this split-memory attack [11]. Any attempt to
tamper with the underlying memory system would render the VM and consequently,
the application, unusable.

An attacker might consider replacing the VM with a copy where flushing has been
disabled. However, VM replacement requires extracting the decryption key, which is
believed to be expensive [3]. Such extraction can be made arbitrarily difficult through
the use of multiple decryption keys, multiple binary encodings and decodings, and mul-
tiple VMs.
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5.4 Effectiveness against Skype Attack

Skype is a popular Voice-over-IP tool, whose protection mechanism included a com-
bination of encryption, guards and run-time code generation [4]. However, there were
flaws in these techniques, which led to the binary being cracked. The code decryption
and run-time code generation operated at coarse levels of granularity, enabling the ad-
versary to overcome these protections at run time. The location of the checking guards
was determined statically, making them vulnerable to collusion attacks.

Our techniques would have thwarted this attack in multiple ways. The VM decrypts
the application in an on-demand manner and flushes periodically, as such the appli-
cation code is never exposed completely. Therefore, analysis can only proceed in a
piecemeal manner, making it harder for the adversary. The VM constantly rearranges
and randomizes the code locations in the cache, making it hard for the adversary to use
any systematic means to locate the guards. So, even if two or more instances of the
application are compared, there will be no correlation between guards locations in each
instance. Finally, even if the adversary is able to make any meaningful changes to the
code cache, periodic flushing discards any modification within a short amount of time.

6 Related Work

Considering the importance of tamper resistance and obfuscation, a significant amount
of work has been done in these areas [13,7,2,1,5]. Code obfuscation protects applica-
tions against reverse engineering, insofar as to make the algorithms harder to under-
stand [9]. Tamper resistance strives to make software immune to malicious modifica-
tions. Realistic, usable solutions must provide practical overhead or software developers
will be unwilling to adopt the security measures.

Tamper resistance protects the authenticity of application code. Aucsmith introduced
a system called Integrity Verification Kernels (IVK) [2]. Significant work in tamper re-
sistance is based on one or more of Aucsmith’s ideas. Perhaps the most well known
work in this area is software guards. Chang, et al. first introduced this idea [7], and
this was further extended by Horne et al. [12]. However, neither work was evaluated
extensively over a standard benchmark suite. Jacob, et al. developed another technique
called oblivious hashing [13]. None of these techniques prevent attackers from using
dynamic techniques to identify and remove the protections. Adapting hardware-based
solutions, to production environments is non-trivial, since the threat model requires
linking software with specialized hardware, increasing the overall cost of the
system [18]. Tamper-resistance solutions created via a Virtual Machine Monitor(VMM)
often leave the VMM vulnerable [10,16]. Our system provides provides protection for
the entire package. An important prerequisite for modifying applications is to under-
stand the underlying algorithms of the program. Techniques which make it difficult to
understand a program are known as obfuscations, both statically [9], and by using dy-
namic techniques [15]. Code encryption hampers software tampering and static analysis
to a great extent, however, previous techniques have either incurred high performance
overhead [5], or used extra hardware for decryption.
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7 Conclusions

We have described and evaluated a unique technique which provides resistance to
tampering and code obfuscation, using process-level virtualization. We make use of
software guards that checksum portions of the application text. For added protection,
these guards are encrypted using a strong encryption algorithm using a random key.
The encrypted application is then executed under control of a VM, whose code cache is
periodically flushed to reduce information leakage. Therefore, with an additional over-
head of approximately 14% over the VM (35% over native execution), these techniques
can be applied to applications, resulting in a more secure execution environment, even
on malicious hosts.
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An overview was given of security applications where noisy data plays a substantial
role. Secure Sketches and Fuzzy Extractors were discussed at tutorial level, and two
simple Fuzzy Extractor constructions were shown. One of the latest developments was
presented: quantum-readout PUFs.

Biometrics and Physical Unclonable Functions. Noise plays an essential role in a num-
ber of security applications based on biometrics and Physical Unclonable Functions
(PUFs). In biometric authentication, the best way to preserve user privacy would be to
store a one-way hash of the biometric, just like the password hashes in a unix password
file. However, the noise inherent in biometric measurements prevents one from directly
applying a hash function. A PUF [6,7] is a complex piece of material. Depending on
the properties (physical and/or mathematical unclonability/opaqueness/manychallenge-
response pairs) PUFs can be used for a variety of purposes such as authentication, anti-
counterfeiting, tamper evidence, software-to-hardware binding and read-proof key
storage. In the latter case the term Physically Obfuscated Key (POK) is used [3]. An
overview can be found in [8]. Just as with biometrics, measurements are noisy, which
poses a problem when the data has to serve as a cryptographic key or has to be hashed.

Secure Sketches and Fuzzy Extractors. A special form of error correction is needed:
It is prudently assumed that the adversary is an insider who has access to any database
keys and therefore to all enrollment data. The error correction redundancy must not leak
confidential information. Security primitives achieving these goals were first developed
in [4,5,2]. A Secure Sketch (SS) allows for exact reconstruction of a discrete variable
X , with the use of helper data W that minimally leaks about X . A Fuzzy Extractor
(FE) allows for exact reproduction of a derived secret S (from discrete or continuous
X), where W does not leak about S.
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A SS can always be turned into a FE by using Universal Hash Functions (UHFs)
[1]. This involves a large entropy loss, which in the case of continuous variables can be
avoided [9] by the use of equiprobable discretization (right Fig. below).

Quantum Readout of PUFs. Recently it was realized [10] that a PUF’s physical un-
clonability can be combined with quantum unclonability: if the PUF challenges and re-
sponses are single quanta, tamper evident readout is automatically achieved, even if the
PUF is in hostile territory. This readout can serve as an authenticated quantum channel
for Quantum Key Distribution. (Usually in QKD the classical channel is authenticated.)
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Abstract. As forgeries have become popular, the importance of forgery

detection is much increased. Copy-move forgery, one of the most com-

monly used methods, copies a part of the image and pastes it into an-

other part of the the image. In this paper, we propose a detection method

of copy-move forgery that localizes duplicated regions using Zernike mo-

ments. Since the magnitude of Zernike moments is algebraically invariant

against rotation, the proposed method can detect a forged region even

though it is rotated. Our scheme is also resilient to the intentional dis-

tortions such as additive white Gaussian noise, JPEG compression, and

blurring. Experimental results demonstrate that the proposed scheme is

appropriate to identify the forged region by copy-rotate-move forgery.

Keywords: Digital Forensics, Copy-Move Forgery, Copy-Rotate-Move

Forgery, Zernike Moments.

1 Introduction

As the image processing softwares have been developed, even people who are
not experts in image processing can easily alter digital images. It brings about
great benefits, but also side effects: a number of tampered images have recently
been distributed or have even been published by major newspapers. Therefore,
it is important to verify the authenticity of digital images. Among forgery tech-
niques using typical image processing tools, copy-move forgery is one of the most
commonly used methods. The copy-move forgery copies a part of the image and
pastes it into another part of the image to conceal an evidence or deceive people.
Figure 1 shows an example of the altered photograph released by Iran and pub-
lished by western media including The New York Times, The Los Angeles Times,
BBC News, and etc. on July 9, 2008 [1]. In Fig. 1(a), two major sections (encir-
cled in black) appear to be replicated from other sections (encircled in white).
Actually Fig. 1(a) was released on the front pages of those of newspapers and
lately corrected to the original image as Fig. 1(b).

The first method for detecting copy-move forgery was suggested by Fridrich et
al. [2]. They lexicographically sorted quantized discrete cosine transform (DCT)
coefficients of small blocks and then checked whether the adjusted blocks are
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(a) (b)

Fig. 1. An example of copy-move forgery [1]: (a) the forged image with four missiles

and (b) the original image with three missiles

similar or not. On the other hand, Popescu et al. employed principal component
analysis (PCA) to extract important feature vectors and checked the similarity of
blocks [3]. Similarly, Li et al. calculated the similarity of blocks based on discrete
wavelet transform and singular vector decomposition (DWT-SVD) and Luo et
al. measured block characteristics vector from each block [4,5]. Mahdian et al.
exploited blur invariant moments to detect duplicated regions [6]. Since they
used the property invariant to blur, their scheme has robustness against post-
processing such as blur degradation, additional noise, and arbitrary contrast
changes.

Copy-move forgery as depicted in Fig. 1 usually means that the copied part of
the image is pasted into another part of the image without any geometric change.
However, people easily modify the geometry of the copied part so that the forged
image seems to be original. Among the geometric modifications, rotation is com-
monly used to provide spatial synchronization between the copied region and its
neighbors. In this paper, therefore, the forgery technique which copies a region
and rotates it before pasting is named as copy-rotate-move (CRM) forgery. Fig-
ure 2 shows an example of CRM forgery. Fig. 2(a) is an original image and
Fig. 2(b) and Fig. 2(c) are the forged images. In Fig. 2(b), the left aircraft (en-
circled in white) is copied and pasted into the image with no change. In Fig. 2(c),
by contrast, the copied aircraft (encircled in black) is slightly rotated before past-
ing into the middle region. As seen with the naked eye, the rotated aircraft in
Fig. 2(c) looks more natural than the duplicated aircraft in Fig. 2(b).

There are several papers for figuring out CRM forgery. Bayram et al. applied
Fourier-Mellin transform to the block [7]. However, according to their experi-
mental results, the scheme performed well when the degree of rotation is small.
Bravo-Solorio et al. suggested to represent each block in log-polar coordinates
[8]. Then they defined 1-D descriptor as summation of angle values to achieve
rotational invarance. Since the method depends on the pixel values, it is sensi-
tive to the change of the pixel values. There are some approaches that extracted
interest points on the whole image by scale-invariant feature transform (SIFT)
[9,10,11]. Due to the fact that SIFT keypoints guarantee geometric invariance,
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(a) (b) (c)

Fig. 2. An example of copy-rotate-move forgery: (a) the original image with two air-

crafts, (b) the forged image with three aircrafts by copy-move forgery, and (c) the

forged image with three aircrafts by copy-rotate-move (CRM) forgery

their method enables to detect rotated duplication. However, these schemes still
have a limitation on detection performance since it is only possible to extract
the keypoints from peculiar points of the image.

In this paper, we propose detection scheme for copy-rotate-move (CRM)
forgery using Zernike moments. Since the magnitude of Zernike moments are
algebraically invariant against rotation, the proposed method can detect the
forged region even though it is rotated before pasting. The proposed scheme
also performs well when white Gaussian noise is added to the image, the image
is compressed in JPEG format, and even blurred.

The rest of the paper is structured as follows. We first overview the Zernike
moments in Sec. 2. The details of proposed method are explained in Sec. 3.
Experimental results are then exhibited in Sec. 4 and Sec. 5 concludes.

2 Zernike Moments

Moments and invariant functions of moments have been extensively used for
invariant feature extraction in a wide range of pattern recognition, digital wa-
termark applications and etc. [12,13]. Of various types of moments defined in
the literature, Zernike moments have been shown to be superior to the others
in terms of their insensitivity to image noise, information content, and ability
to provide faithful image representation [13,14,15]. In this section, we describe
Zernike moments mathematically. Some of the materials in the following are
based on [13,15].

2.1 Definition

The Zernike moments [16] of order n with repetition m for a continuous image
function f(x, y) that vanishes outside the unit circle are

Anm = n+1
π

∫ ∫
x2+y2≤1

f(x, y)V ∗
nm(ρ, θ)dxdy , (1)
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where n a nonnegative integer and m an integer such that n−|m| is nonnegative
and even. The complex-valued functions Vnm(x, y) are defined by

Vnm(x, y) = Vnm(ρ, θ) = Rnm(ρ) exp(jmθ) , (2)

where ρ and θ represent polar coordinates over the unit disk and Rnm are poly-
nomials of ρ (Zernike polynomials) given by

Rnm(ρ) =
(n−|m|)/2∑

s=0

(−1)s[(n−s)!]ρn−2s

s!( n+|m|
2 −s)!(n−|m|

2 −s)!
. (3)

Note that Rn,−m(ρ) = Rnm(ρ). These polynomials are orthogonal and satisfy∫ ∫
x2+y2≤1

[V ∗
nm(x, y)] × Vpq(x, y)dxdy = π

n+1δnpδmq ,

where δab =
{

1, a = b
0, otherwise .

(4)

For a digital image, the integrals are replaced by summations. To compute the
Zernike moments of a given block, the center of the block is taken as the origin
and pixel coordinates are mapped to the range of the unit circle. Those pixels
falling outside the unit circle are not used in the computation. Note that A∗

nm =
An,−m.

2.2 Rotational Invariance of Zernike Moments

This section proves algebraic invariance of Zernike moments against rotation.
Consider a rotation of the image through angle α. If the rotated image is denoted
by f ′, the relationship between the original and rotated image in the same polar
coordinate is

f ′(ρ, θ) = f(ρ, θ − α) . (5)

From Eq. (1) and (2), we can construct

Anm = n+1
π

∫ 2π

0

∫ 1

0 f(ρ, θ)V ∗
nm(ρ, θ)ρ dρ dθ

= n+1
π

∫ 2π

0

∫ 1

0 f(ρ, θ)Rnm(ρ) exp(−jmθ)ρ dρ dθ .
(6)

Therefore, the Zernike moment of the rotated image in the same coordinate is

A′
nm = n+1

π

∫ 2π

0

∫ 1

0 f(ρ, θ − α)Rnm(ρ) exp(−jmθ)ρ dρ dθ . (7)
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By a change of variable θ1 = θ − α,

A′
nm = n+1

π

∫ 2π

0

∫ 1

0
f(ρ, θ1)Rnm(ρ) exp(−jm(θ1 + α))ρ dρ dθ1

=
[

n+1
π

∫ 2π

0

∫ 1

0
f(ρ, θ1)Rnm(ρ) exp(−jm θ1)ρ dρ dθ1

]
exp(−jmα)

= Anm exp(−jmα) .

(8)

Equation (8) shows that each Zernike moment acquires a phase shift on rotation.
Thus |Anm|, the magnitude of the Zernike moment, can be used as a rotation
invariant feature of the image. Therefore we calculate the magnitude of the
Zernike moments to uniquely describe each block regardless of the rotation.

3 Copy-Rotate-Move (CRM) Forgery Detection

In order to detect CRM forgery, it is reminded that the proposed scheme should
satisfy the property of Eq. (5) from the algebraic point of view. Moreover, it
should be insensitive to additive noise or blurring since a forger might slightly
manipulate the tampered region to conceal clues of forgery. In this perspective,
we adopt Zernike moments which have desirable properties such as rotation
invariance, robustness to noise, and multi-level representation [14].

We first divide the suspicious image f of M × N into overlapped sub-blocks
of L × L to calculate Zernike moments. Each block is denoted as Bij , where i
and j indicates the starting point of the block’s row and column, respectively.

Bij(x, y) = f(x + j, y + i) , (9)
where x, y ∈ {0, ..., L − 1}, i ∈ {0, ..., M − L},and j ∈ {0, ..., N − L}

Hence, we are able to obtain Nblocks of overlapped sub-blocks from the suspicious
image.

Nblocks = (M − L + 1) × (N − L + 1) (10)

We assume that the pre-defined size of block is smaller than the tampered region.
After that, the Zernike moments Aij of particular degree n are calculated from
each block and vectorized. The entire number of moments in the vector is

Nmoments =
n∑

i=0

(⌊
i

2

⌋
+ 1
)

. (11)

After that, we can construct Z, a set of vectorized magnitude values of the
moments Aij .

Z =

⎡⎣ |A00|
...

|A(M−L)(N−L)|

⎤⎦ (12)
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The set Z is then lexicographically sorted since each element of Z is a vector.
The sorted set is denoted as Ẑ. From the set Ẑ, the Euclidean distance between
adjacent pairs of Ẑ is calculated. If the distance is smaller than the pre-defined
threshold D1, we consider the inquired blocks as a pair of candidates for the
forgery.

Ẑp =
(
ẑp
1 , ẑp

2 , ..., ẑp
Nmoments−1, ẑ

p
Nmoments

)
,

Ẑp+q =
(
ẑp+q
1 , ẑp+q

2 , ..., ẑp+q
Nmoments−1, ẑ

p+q
Nmoments

)
,√

Nmoments∑
r=1

(
zp

r − zp+q
r

)2
< D1

(13)

Due to the fact that the neighboring blocks might result in relatively similar
Zernike moments, we calculate the distance between the actual blocks of the
image as follows: √

(i − k)2 + (j − l)2 > D2 ,

where Ẑp = |Aij | and Ẑp+q = |Akl| .

(14)

We determine whether the investigated blocks are duplicated or not according
to the Eq. (13) and Eq. (14).

3.1 Complexity Analysis

This section analyzes time complexity of the proposed method. We first calculate
Nmoments of Zernike polynomials from Eq. (2). It roughly takes

O(Nmoments) .

After that, we should compute Zernike moments from each overlapped block
using the polynomials. Since a moment is calculated by the pointwise multipli-
cation of the polynomial and the overlapped block, we need O(L2) time to attain
the moment value. Therefore, we entirely need about

O(Nblocks × Nmoments × L2)

time to quantify all the moments. The following component to consider is time
complexity of the lexicographical sorting of Nblocks data with the length of
Nmoments. It approximately takes

O(Nmoments × Nblocks × log Nblocks) .
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(a) (b) (c) (d)

Fig. 3. Examples of CRM forgery and its detection result: (a) the forged im-

age by CRM forgery of 10◦, (b) Forged Region, (c) Detected Region, and (d)

(Forged Region ∩ Detected Region)

Since L is relatively small, O(Nblocks × Nmoments × L2) takes similar time to
O(Nmoments ×Nblocks× log Nblocks). To sum up, total time complexity is around

O(Nmoments)+O(Nblocks×Nmoments×L2)+O(Nmoments×Nblocks×logNblocks) .

In the actual experiment with the machine of 2.4 GHz quadcore processor, 4 GB
RAM, coded by C++, and the condition of Sec. 4, it takes about 5 seconds to
process one image.

4 Experimental Results

4.1 Measuring the Forgery

For a detection of copy-rotate-move or copy-move forgery, we need appropriate
measures to evaluate the performance of the method. In this paper, we adopt
Precision, Recall, and F1-measure which are often-used measures in the field
of information retrieval [17].

Precision and Recall, corresponding to exactness and completeness of the
method, respectively, are defined as

Precision =
True Positive

T rue Positive + False Positive
, (15)

Recall =
True Positive

T rue Positive + False Negative
. (16)

From Equations (15) and (16), we see that high Precision values indicate
low a FalsePositive rate, whereas high Recall values correspond to a low
FalseNegative rate. More specifically, the Precision denotes the ratio of True
Positive components to elements categorized into the positive class after in-
vestigating. In summary, the Precision is a measure for the probability that a
detected region is correct. In our perspective, the Precision in percentage terms
is represented as below.

Precision =
(Forged Region ∩ DetectedRegion)

DetectedRegion
× 100 [%] (17)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4. Images used in the experiments

On the other hand, the Recall is the ratio of True Positive components to
elements inherently ranked as the positive class. It means that the Recall is a
measure for the probability that a correct region is detected. In this context, the
Recall in percentage terms is

Recall =
(Forged Region ∩ DetectedRegion)

ForgedRegion
× 100 [%] . (18)

However, there is a trade-off between Precision and Recall. Greater Precision
might decrease Recall and vice versa. To consider both Precision and Recall
together, we compute the F1-measure, the harmonic-mean of Precision(P ) and
Recall(R).

F1-measure =
2

1
P + 1

R

=
2PR

P + R
(19)

Figure 3 shows examples of CRM forgery and its detection result. We can cal-
culate Precision, Recall, and F1-measure from the forged and detected region.

4.2 Experimental Setup

We firstly conducted our experiments with 12 TIFF images from a personal
collection and [3,6]. Using these images, copy-move forgery with various manip-
ulations such as rotation, JPEG compression, AWGN, blurring and combined
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Fig. 5. Precision-Recall Curves for Fig. 4(a) : (a) the curves for varying block size,

(b) the curves for varying degree of Zernike moments

attacks was performed. Figure 4 shows the images used in the experiments.
We carried out the proposed method for every test image and consequently
Precision, Recall, and F1-measure were evaluated. Moreover, we conducted
our experiments with an extended dataset, which consists of 100 images from
the National Geographic [18].

Since the targets to be investigated are normally color images, there exist two
options for operating the method: 1) calculate Zernike moments from each color
channel and subsequently concatenate the moment values, 2) simply convert the
RGB image into a gray image. Since each individual color channel undergoes the
same copy-move forgery, we choose the latter method.

All duplications were performed with regions of size 100×70 and a translation
of (100, 50). To decide on the block size we drew Precision-Recall curve for vari-
ous block sizes by changing the threshold D1. Figure 5(a) shows Precision-Recall
curves for different block sizes for the image depicted in Fig. 4(a). We no-
tice that larger block sizes result in the higher detectability. However the high
detectability with large blocks is dominated by the size of duplicated region.
We also notice that a small block size almost does not detect the copy-move
forgery. Therefore we set the block size L to 24 in all our following experi-
ments. As mentioned in Eq. (10), the number of blocks in a suspicious image is
Nblocks = (M −L+1)× (N −L+1). Since L is relatively smaller than M or N ,
the complexity of the method is dominated by the image size. We define M , and
N as 400, and 320, respectively. Therefore, total number of blocks to be dealt
with is (400−24+1)×(320−24+1) = 111969. We furthermore analyzed the in-
fluence of the degree of Zernike moments. Figure 5(b) depicts Precision-Recall
curves for different degrees for the image depicted in Fig. 4(a). We can observe
that the degree of Zernike moments almost does not affect to the detectability.
Therefore, each block is represented by the Zernike moments of 5 indicating
Nmoments = 12 by Eq. (11). Finally, we need to define decision thresholds D1

and D2, which represent the similarity between two blocks and the distance of
them, respectively. From the Precision-Recall curves with the block size of 24
and the degree of 5 depicted in Fig. 5, we calculated F1-measures for varying
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Fig. 6. CRM forgery detection results for Fig. 4(a) : (a) Precision, (b) Recall, and (c)

F1-measure

threshold D1. We set the D1 to 300 from the result of F1-measures. Since the
adjacent blocks might have similar moment values, the distance threshold D2 is
defined as 50.

Under these conditions, the following sub-sections analyze the performance
of the proposed scheme in three perspectives. First of all, we take account of
CRM forgery. After that, we present the robustness against intended distortions
such as JPEG compression, AWGN, and blurring. Finally, combined attacks are
considered.

4.3 Test for CRM Forgery

In this experiment, we conducted CRM with rotations in the range of 0◦ to 90◦,
applied in steps of 10◦. Figure 6 depicts Precision, Recall, and F1-measure of
various degrees for Fig. 4(a). Even though the proposed scheme is theoretically
invariant against rotation, the actual results have lower performance than ex-
pected as shown in Fig. 6. There might be two reasons for the degradation. At
first, Zernike moments calculated on the discrete domain have inherent quanti-
zation error since the moments are originally defined on the continuous domain.
Secondly, the interpolation caused by the rotation step can also increase the error
rate. In this experiment, we used cubic kernel for the interpolation. Neverthe-
less, the experiments confirm that the Precision is relatively high, which means
most part of detected region is correct. Table 1 shows experimental results for

Table 1. Detection rates for CRM of 30◦ for 12 images

Measures (%) Measures (%)

Image P R F1 Image P R F1

(a) 85.41 55.50 67.28 (g) 83.76 85.49 84.62

(b) 92.76 68.67 78.91 (h) 86.60 82.01 84.24

(c) 66.78 91.10 77.06 (i) 73.43 83.54 78.16

(d) 97.84 62.87 76.55 (j) 79.31 83.97 81.57

(e) 67.96 71.66 69.76 (k) 83.57 85.68 84.51

(f) 98.80 65.33 74.71 (l) 86.88 83.76 85.29

Average 83.59 76.63 78.89
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Fig. 7. Detection results for CRM forgery among proposed, SIFT, FMT, and LPM

detector: (a) F1-measure of various degrees for Fig. 4(a), (b) F1-measure for 12 images

undergoing CRM of 30◦

12 images undergoing CRM of 30◦. The average rate of Precision, Recall, and
F1-measure were 83.59%, 76.63%, and 78.89%, respectively.

We also compared our method with several CRM detectors: SIFT [10], FMT [7],
and LPM [8]. Except for the SIFT based detector, we lexicographically sorted
the extracted features from overlapping blocks to find adequate pairs of similar
blocks. Since the SIFT is a kind of region descriptor, constructed with a set of
matched points, it is hard to define where detected area is. Therefore we con-
structed a maximum polygonal convex inside the detected cluster. Then we calcu-
lated F1-measure of each detector to measure quantitative performance.
Figure 7(a) shows F1-measure of various rotational degrees for Fig. 4(a) by 4
detectors. Similarly, Fig. 7(b) represents the experimental results for 12 images
undergoing CRM of 30◦ by the detectors. We observe that the proposed detector
provides higher F1-measure than the others regardless of the amount of rotation
or the concrete image. It is noticeable that the SIFT based method shows low
detectability for the image (g) and (j) in Fig. 7(b) since the number of matched
points are reduced for the image with less prominent structures.

To ensure the reliability of the proposed method, we also tested the method
with the extended dataset. Figure 8 shows detectability of CRM of 30◦ for 100
images. Boxes represent F1-measures between lower quartile and upper quartile.
The red line inside the box indicates the median value. Whiskers extend from
each end of the box to the adjacent values in the data; the most extreme values
within 1.5 times the interquartile range from the ends of the box. Outliers are
data with values beyond the ends of the whiskers. Outliers are displayed with
a red + sign. From the result of Fig. 8, we notice that the proposed method
performs better than the other detectors. We also notice that the SIFT based
method shows several outliers, which represent lower detectability. As a conse-
quence, the experimental results suggest that the proposed method is indeed
capable of detecting CRM forgeries.
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Fig. 8. Detection results for CRM of 30◦ with extended dataset

4.4 Test for Intended Distortions

Through this section, we present the detectability of copy-move forgery without
rotation against intended distortions such as JPEG compression, AWGN, and
blurring. We added Gaussian noise to the copied region or performed blurring
before pasting into another part of the image. In case of JPEG compression, we
compressed the whole image and not only the copied part. Figure 9 shows detec-
tion results of forgeries for Fig. 4(a) under several circumstances. We regularly
changed the strength of each attack and analyzed the result.

By concentrating on the graphs for Recall in Fig. 9, we notice that the Recall
values decrease considerably as a function of image quality. From these results,
we conclude that severe attacks cause low detectability. Therefore we restrict our
analysis in the following to attacks where the PSNR of the distorted region is
above 30 dB. For example, we concentrate on noisy images with a variance of the
Gaussian noise less than or equal to 0.003, since a distortion with N(0, 0.003)
amounts to about 31 dB. Similarly, the blurring with the radius larger than 2
or the quality factor for JPEG compression smaller than 60% is not considered
in this test. Table 2 shows experimental results for intended distortions with-
out rotation for 12 images. The average rate of F1-measure for each case was
81.20%, 72.50%, and 93.67%, respectively. The experiments demonstrate that
the proposed method is reasonably robust against intended distortions.

Table 2. Detection rates for intended distortions without rotation for 12 images

F1-Measures(%) F1-Measures(%)

Image JPEG
(QF=70%)

AWGN
(var=0.003)

Blurring
(radius=1)

Image JPEG
(QF=70%)

AWGN
(var=0.003)

Blurring
(radius=1)

(a) 85.50 71.46 97.47 (g) 74.34 60.06 92.01

(b) 88.74 82.07 94.83 (h) 72.55 60.59 89.85

(c) 82.82 69.05 96.19 (i) 72.75 75.55 94.67

(d) 78.58 70.75 92.50 (j) 68.14 61.16 92.89

(e) 91.05 55.50 95.70 (k) 85.53 88.95 94.45

(f) 88.38 93.95 85.62 (l) 86.06 80.94 97.85

Average 81.20 72.50 93.67
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Fig. 9. Detection rates for intended distortions without rotation for Fig. 4(a): (a)∼(c):

detection rate against JPEG quality factor, (d)∼(f): detection rate against AWGN with

different variances, and (g)∼(i): detection rate against blurring with different radius

(a) (b)

Fig. 10. Two scenarios of combined manipulation: (a) CRM of 10◦, AWGN with var =

0.003, and JPEG re-compression (QF=80%), (b) CRM of 10◦, blurring with radius =

1, and JPEG re-compression (QF=80%)

4.5 Test for Combined Manipulation

Finally, we present the robustness of proposed CRM detection scheme against
combined manipulation. There might be two scenarios of CRM when a forger
tampers an image. The forger would spread additional noise to eliminate the
clues for manipulation after CRM. And then he or she will recompress the forged
image. Similarly, the forger would blur the altered region instead of adding noise
in the second scenario. Figure 10 depicts the detailed scenarios. Furthermore,
Figure 11 represents detectability of various detectors of the scenario. We observe
that the detectability of the SIFT based method in Fig. 11 has become worse
compared with Fig. 7(b). This is so because the number of matched points by
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Fig. 11. Detectability for combined attacks among proposed, SIFT, FMT, and LPM

detector: (a) F1-measure for 12 images undergoing the scenario of Fig. 10(a), (b)

F1-measure for 12 images undergoing the scenario of Fig. 10(b)

the SIFT method is reduced as we manipulate the image. On the other hand,
the results confirm the reliability of the proposed scheme even after combined
manipulation. Through the experiments, it proves that the proposed detector
performs better than others as well.

5 Conclusion

With the rapid progress of image processing technology, an appropriate foren-
sic application has become more important. In this paper, we proposed copy-
rotate-move (CRM) detection scheme for a suspicious image. To extract feature
vectors of a given block, we calculated the magnitude of Zernike moments. The
vectors were then sorted in lexicographical order. We investigated the similarity
of adjacent vectors after that. Finally, the suspected regions were measured by
Precision, Recall, and F1-measure. Experimental results supported that the
proposed method was appropriate to identify and localize the CRM region even
though the region had been manipulated intentionally. However, in spite of an
algebraic invariant of rotation, detection errors occurred due to the quantiza-
tion and interpolation error. Though we concerned several attacks, our method
is still weak against scaling or the other tampering based on Affine transform.
Thus, we need to improve the proposed method so that it is robust against those
of attacks. Additionaly, there exist many efficient data structures to represent
nearest neighbors. Therefore, our future work concentrates on establishing an
appropriate data structure as well.
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Abstract. The goal of blind image forensics is to distinguish original

and manipulated images. We propose illumination color as a new indi-

cator for the assessment of image authenticity. Many images exhibit a

combination of multiple illuminants (flash photography, mixture of in-

door and outdoor lighting, etc.). In the proposed method, the user selects

illuminated areas for further investigation. The illuminant colors are lo-

cally estimated, effectively decomposing the scene in a map of differently

illuminated regions. Inconsistencies in such a map suggest possible image

tampering. Our method is physics-based, which implies that the outcome

of the estimation can be further constrained if additional knowledge on

the scene is available. Experiments show that these illumination maps

provide a useful and very general forensics tool for the analysis of color

images.

Keywords: Blind image forensics, scene analysis, physics-based illumi-

nant color estimation.

1 Introduction

The goal of image forensics is to assess image authenticity. This can be achieved
by actively embedding a security scheme in the image, like a digital watermark.
However, current hardware does not typically provide such signatures. Therefore,
blind image forensics aims at assessing image authenticity and origin without
having an embedded security scheme available. In the past few years, different
branches of blind image forensics have evolved.

For a more complete overview on the methods in blind image forensics, see e.g.
[37,33].Some of the existing approaches are classification based [6,22].
Unfortunately, the outcome of these algorithms is often hard to interpret for
non-technical surveyors, e.g. in court. Other approaches search for artifacts of a
specific tampering operation, like the algorithms for copy-move forgery detection
(see e.g. [20,2,3,32,31]), resampling detection [35], or methods for the analysis of
double JPEG compression (see e.g. [29,15,7]). In general, these methods are suit-
able for an automated analysis of an image. Unfortunately, researchers are also
� Corresponding author.
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working on methods to hide image manipulation artifacts, thus effectively coun-
teracting the aforementioned methods [23]. A third family of algorithms aims
at verifying expected image-sensing artifacts. One prominent example of these
methods is the recovery of the characteristic noise pattern of camera sensors [30].
Other methods estimate the camera response function [17], demosaicing [12], or
lens properties [21].

Lastly, the examination of scene properties is another approach in image foren-
sics. Unlike the aforementioned methods, it often involves (to a limited extend)
user interaction, especially if human knowledge about the scene content is re-
quired. In this respect, methods for the assessment of scene properties often
serve as a computational tool for a human surveyor. The advantage of such
techniques is that it is frequently not straightforward to hide traces of tamper-
ing from these methods. Disguising scene inconsistencies is typically a tedious
manual process, that may additionally require high algorithmic knowledge. Thus,
scene consistency assessment can provide powerful tools for forensic analysis. To
our knowledge, only a small amount of work has been done in this direction.
For instance, Johnson and Farid demonstrated the recovery of the illumination
direction of objects [19] and compared the estimated position of light sources
in the scene [18]. Yu et al. examined specularity distributions for recapturing
detection [40]. Lalonde and Efros used color distributions in pictures in order to
detect spliced images [25].

We propose a new method for the assessment of illumination-color consistency
over the scene by extracting local illumination estimates. To our knowledge, no
similar approach has been proposed in image forensics. Our method is based
on an extension of an illumination estimation method that is grounded on the
physical principles of image formation. In contrast, most state-of-the-art methods
for illuminant color estimation are machine-learning based. However, it is our
belief that deviations from the expected result can be easier explained using a
physics foundation than by machine-learning results, as detailed in Sec. 4.2. We
believe this is a highly desirable property in forensics applications. Depending on
the number of light sources of the scene, we show that these local estimates can
provide further insights on the scene construction. For instance, if a photographer
took an image at night using flashlight (which is typically a relatively bluish
light source), we can obtain a rough relative depth estimate from the decay of
the blue channel in the illuminant estimates. Inconsistencies in the illumination
distribution can be used to distinguish original and spliced images.

The contributions of this paper are:

1. The development of a physics-based method for the recovery of the illumi-
nant color for different objects in the scene.

2. The introduction of an illumination map based on a distance measure
on the estimated results.

3. The demonstration of the feasibility of employing this illuminant map in
forensic analysis.
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2 Overview of the Method

We present a system for the assessment of the illuminant color consistency over
the image. The method involves the following steps.

1. The image is segmented in regions of approximately the same object color.
These segments are called superpixels. A superpixel is required to a) be
directly illuminated by the light sources under examination and b) roughly
adhere to the physical model presented in Sect. 3.

2. A user selects such superpixels whose incident illuminant he wants to further
investigate. Every group of superpixels represents one illuminant color under
investigation.

3. Estimation of the illuminant color is performed twice. First, the estimation
is done on every superpixel separately. Second, the estimation is done on the
user-selected superpixel groups for greater robustness.

4. The user-selected groups form the reference illuminants. A distance measure
from these illuminants to every superpixel estimate is computed. We visualize
these per-superpixel distances in what we call a distance map to support the
analysis of the illumination color consistency.

In special cases, this method can be fully automated. On the other hand, since
the estimation of the illuminant color is an underconstrained problem, there
will always exist scenes that can not be correctly processed. We believe that a
limited degree of human interaction is a valid tradeoff between the accuracy of
the method and its usability.

3 Estimation of the Illuminant Color

There is a large body of work on the estimation of illuminant color. Most of these
methods process the entire scene globally for the recovery of a single dominant
illumination color. To overcome the fact that illuminant color estimation is an
underconstrained problem, many (especially physics-based) techniques make re-
strictive assumptions that limit their applicability (e.g. [26,13,24]). As a result,
machine learning methods have been more successful in processing arbitrary
images, e.g. [4,9,10,14,28]. However, since illuminant estimation is an undercon-
strained problem, every method has its individual failure points. We chose a
physics-based method, since the failures typically result from broken underlying
assumptions. As such, they can (by human observers) more easily be predicted
and explained, which we consider highly important for forensics applications.

3.1 Inverse-Intensity Chromaticity Space

We extend a physics-based approach that was originally proposed by Tan et al [39]
so that:

1. it can be applied on a wider range of real-world images, and
2. it can be applied locally, so that illuminants at selected regions can be inde-

pendently estimated.
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The foundation of [39] is the dichromatic reflectance model [38], which states
that the amount of light reflected from a point, x, of a dielectric, non-uniform
material is a linear combination of diffuse reflection and specular reflection. Fur-
ther assumptions are that the color of the specularities approximates the color
of the illuminant, and that the camera response is linear.

When an image is taken with a trichromatic camera, the sensor response Ic(x)
for each color filter c, c ∈ {R, G, B} is:

Ic(x) = wd(x)Bc(x) + ws(x)Gc(x) , (1)

where wd(x) and ws(x) are geometric parameters of diffuse and specular re-
flection respectively. B(x) and Gc(x) are the sensor responses for diffuse and
specular reflectance. Note that in [39], Gc does not depend on x due to the as-
sumption that the specular color is globally constant. In this paper, we estimate
illumination locally and thus write Gc(x). Let σc the image chromaticity, i.e.

σc(x) =
Ic(x)∑
i Ii(x)

where i ∈ {R, G, B} . (2)

For the remainder of the paper, we define i ∈ {R, G, B} and use this index for
summing over the color channels. In a similar manner, we can define the diffuse
chromaticity Λc(x) and the specular chromaticity Γc(x) as

Λc(x) =
Bc(x)∑
i Bi(x)

, (3)

Γc(x) =
Gc(x)∑
i Gi(x)

. (4)

Equation (1) can be rewritten as

Ic(x) = md(x)Λc(x) + ms(x)Γc(x) , (5)

where
md(x) = wd(x)

∑
i

Bi(x) , (6)

ms(x) = ws(x)
∑

i

Gi(x) . (7)

Tan et al. [39] showed, that there exists a linear relationship between diffuse,
specular and image chromaticities,

σc(x) = pc(x)
1∑

i Ii(x)
+ Γc(x) , (8)

where
pc(x) = md(x)(Λc(x) − Γc(x)) . (9)

pc(x) is the slope of a line with intercept Γc(x), i.e. the specular chromaticity,
which is also the illuminant chromaticity. The domain of the line is determined
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Fig. 1. Sample pixel distributions in IIC space (blue chromaticity). Left: ideal image,

middle: synthetic image (violet and green bowls). Right: specular pixels converge to-

wards to the blue portion of the illuminant color (recovered at at the y-axis intercept).

Highly specular pixels are shown in red.

by 1/
∑

i Ii(x) and the range is given by 0 ≤ σc ≤ 1. Domain and range together
form the inverse-intensity chromaticity (IIC) space [39].

This space can be used to estimate the illumination color in an image. Ev-
ery color band c ∈ {R, G, B} is projected in a separate IIC diagram. One can
then obtain estimates for each of these three color channels. All three channels
together form the illuminant estimate. Fig. 1 shows a synthetic example for the
blue channel. The x-axis corresponds to the inverse-intensity 1/

∑
i Ii(x), and

the y-axis to σc. In Fig. 1 the y-axis shows the blue chromaticities. An idealized
distribution is shown in Fig. 1(a). On a uniformly colored surface, pixels with
a mixture of specular and diffuse chromaticities form roughly a triangle that
points towards the illuminant chromaticity (the y-axis intercept). Purely diffuse
pixels form a straight line. Fig. 1(b) shows a rendered image of two balls of
distinct colors, and Fig. 1(c) shows the distributions of the balls-image in the
blue chromaticity IIC space. In this synthetic setup, the triangles can be clearly
captured, as well as the diffuse horizontal lines. Any method for finding the in-
tersection of the triangle with the y-axis gives then the illuminant chromaticity
estimate in the respective channel. The final estimate of the illuminant color
is obtained by considering all three color bands red, green and blue. In [39],
this is done by first segmenting highly specular pixels in the image (marked
red in Fig. 1(c)) and then performing a Hough transform on these specular
pixels.

3.2 Local Analysis of Pixel Distributions

On real-world images, the automatic extraction of highly specular pixels is a
very challenging task with unreliable performance (see e.g. [36]). Furthermore,
the basic method [39] does not handle cases with multiple light sources. We
analyzed and extended the exploitation of pixel distributions in IIC space, so
that it can overcome these two weaknesses.
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In order to avoid specularity segmentation, we chose to perform simple shape
checks on the pixel distributions in IIC space in order to identify specular re-
gions. Instead of examining the entire pixel distribution, we perform the analysis
over small connected image regions of roughly uniform object color (albedo). De-
pending on the outcome of our shape analysis, we can either use this local region
to obtain an illuminant estimate, or reject it if it does not seem to fulfill the un-
derlying assumptions of the proposed model. Using local regions allows us to
incorporate multiple sampling and voting in the estimation of local illuminants.
Ultimately, this improved exploitation of the IIC space makes the method more
robust to real-world analysis and also enables us to examine multiple illuminants.
More specifically, the proposed algorithm works as follows.

1. For every dominant illuminant in the scene, select regions that a) follow the
dichromatic reflectance model and b) are mostly lit by that light source.

2. Segment these regions in superpixels with roughly uniform chromaticity.
3. Further subdivide these superpixels in a rectangular grid. We call each such

rectangular subregion a patch.
4. Transform every patch to inverse intensity space.
5. Apply tests on the shape of the patch’s pixel distribution. If the distribution

passes, obtain a local illuminant color estimate for this patch.
6. Obtain a color estimate for each dominant illuminant, based on a majority

vote on local estimates of the user-selected regions.

For the superpixel segmentation, we used the publicly available code by Felzen-
szwalb and Huttenlocher [8] on the image chromaticities, though any segmenta-
tion method could be used. We choose the segmentation parameters 0.1 ≤ σ ≤
0.3 and 100 ≤ k ≤ 300. Typically σ = 0.3 and k = 300 gave satisfying results,
dividing the image in not too small regions of similar object color. The grid size
is adaptive to the image size, typically between 16 and 32 pixels in the horizontal
and vertical directions.

Pixel distributions that are assumed to exhibit a combination of specular and
diffuse reflectance should have: a) a minimum x-axis elongation in IIC space,
and b) a non-horizontal slope (as long as the object albedo is different from
the illuminant color, which is typically the case). Thus, we use the following
criteria to examine whether a patch satisfies these two properties and hence has
an increased probability of providing a reasonable estimate.

– The superpixel segmentation is performed for increasing the probability of
uniform underlying albedo.

– The elongation of a patch in IIC space is tested by computing the eccentricity
of the distribution of the pixels in the patch,

ecc(PIIC) =

√
1 −

√
λ1√
λ2

, (10)

where λ1 and λ2 are the largest and second largest eigenvalues, respectively.
A value close to 1 is matches the model best, while lower values lead to more
estimates. In our experiments, we chose as a limit 0.6.
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– The slope of a patch in IIC space is approximated by the direction of the
eigenvector λ1, and should be slightly larger than 0. In our experiments, we
chose a minimum slope of 0.003.

The vote for a patch is computed as the intercept of the eigenvector of λ1 with
the y-axis. Note that duplicate entries in the IIC diagram are discarded from
these computations, as well as pixels that are very close to the limits of the
camera sensor response.

4 Illuminant Color for Image Forensics

Once the illuminant color estimates for the user-annotated regions are computed,
the whole image can be examined for illumination color inconsistencies, as de-
scribed in Sect. 4.1. Since the estimation of the illuminant color is a severely un-
derconstrained problem, we briefly discuss failure cases and possible workarounds
in Sect. 4.2. Please note that, as will be shown in Sect. 5, our illumination esti-
mation method performs comparably to other state-of-the-art single illuminant
estimation methods.

4.1 Detecting Inconsistencies in Illumination

The same process (see Sect. 3.2) that was used in computing the illuminant color
estimates at the user-specified regions is now extended to the entire image. The
voting, however, is now performed for every superpixel. Thus, every superpixel
contains an individual illuminant estimate. We store these illuminant estimates
in a new image, where each superpixel is colored according to its estimated
illuminant color ΓI(x). We call this new image illumination map, see Fig. 2.
This map gives already quite meaningful results for the analysis.

For forensic analysis, we aim to quantify the relationship between the illumi-
nant estimates. In a scene with truly one dominant illuminant, this can be done
by comparing the angular errors of the individual illuminant estimates. However,
most real-world scenes contain a mixture of illuminants. Their influence on the
scene is closely connected to the positions of the objects relative to the positions
of the light sources. Since the geometric composition of the scene is typically
unknown, we resort to developing a tool for supporting the visual assessment of
the scene, which we call distance map.

The distance map captures how well the illuminant estimation at each super-
pixel fits to the estimated dominant illuminants. For improved clarity, we assume
two dominant illuminants I1 and I2 that were obtained from two user-selected
regions. The methodology can however easily generalize to more illumination
sources. We aim to create a grayscale-image that depicts the relative influence
of both light sources. The distance map is created by assigning the value 0 (black)
to the user-defined region corresponding to illuminant I1. Similarly, the second
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user-defined region, which gave rise to dominant illuminant I2, is assigned the
value 1 (white). Then, for all the remaining pixels, the distance value Id(x) is
computed as

Id(x) = (ΓI(x) − I1) ◦ (I2 − I1) , (11)

where ◦ denotes scalar multiplication. The distance map is then a grayscale
image with values in the range [0, 1]. Such a map captures the relative influence
of both light sources in this pixel.

The illumination map and the distance map are used together for the analysis
of the image. In order to be consistent, a local illuminant estimate in an image
must a) either exhibit a relative illuminant contribution that fits in the spatial
layout of the scene or b) fail to fulfill the underlying physical model. In the latter
case, it must be ignored for the analysis.

Fig. 2. Original Image, illumination map and distance map for the image under exam-

ination. Foreground persons are estimated with a bluish color, probably due to flash-

light, while persons in the background are increasingly red illuminated. The distance

map between foreground and background illumination spots captures this relationship

as a black-to-white transition.

By adjusting the values of the criteria on the pixel distributions, it is possible
to obtain fewer estimates that fit the physical model better (at the expense of
larger regions with sparse or no estimates). Alternatively, less strict parameters
lead to a more complete map, where also more outliers are expected. In general,
we preferred in our experiments lenient settings. For the slope we set a lower
bound of 0.003, and for the eccentricity 0.5. A stricter set of values, i.e. 0.01 for
the slope and 0.95 for the eccentricity, typically results in fewer outliers.

4.2 Caveats and Workarounds

In some cases, the estimation of the illuminant color can not be successfully ap-
plied. Fortunately, for a physics-based method like the proposed one, the reason-
ing about failure cases is often easier than for machine-learning methods. While
failures in the latter case often arise due to limitations of the training data
or algorithm-dependent assumptions on the color distributions, physics-based
methods mainly fail due to violations of the assumed reflectance model. This
makes it possible to argue about possible problems and look for workarounds.
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(a) (b) (c) (d)

Fig. 3. Failure cases for the proposed illuminant color estimation method. Figures 3(a)

and 3(c) are the original images, Figures 3(b) and 3(d) the respective illumination

maps. In Fig. 3(b), the illuminant estimate in the shadowed area under the head of the

left actor is biased towards the object color. In Fig. 3(d), the fluorescent suit of the

actor overproportionally pushes the illuminant estimate towards extreme values.

We present some cases where our method is problematic. First, the camera
response is assumed to be linear. This is leveraged by the fact that we exploit
only the relationship between illuminant estimates, and do not consider absolute
estimates. Nevertheless, a gamma estimation method, e.g. [27], can be used to
normalize the image. Some non-dielectric surfaces are especially difficult to han-
dle, e.g. fluorescent materials (see Fig. 3) and metals. Other failure cases involve
areas that are mostly diffuse, or highly textured, or in shadow (see Fig. 3).
Finally, the method is inherently limited by the assumption that the color of the
specularity closely approximates the color of the illuminant.

We found, that by visual inspection it is often possible to distinguish failure
cases from real inconsistencies. However, it is possible to follow specific rules to
minimize the risk of misjudging the scene under observation. The most robust
approach is to use only identical or very similar materials for the analysis, e.g.
faces in a crowded scene. We reflect this by demanding the user to select regions
that a) are of interest for the examination and b) roughly adhere to the model.

5 Experiments

Section 5.1 demonstrates the effectiveness of our core algorithm in accurately re-
covering the color of the illumination. In Sect. 5.2, we demonstrate its usefulness
in forensics applications. The code is publicly available on our webpage1.

5.1 Evaluation on Benchmark Databases

Until today, the color research community focused mostly on single-illuminant
scenes. Therefore, to the best of our knowledge, no ground-truth illuminant
1 http://www5.informatik.uni-erlangen.de/code

http://www5.informatik.uni-erlangen.de/code
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Fig. 4. Examples of benchmark laboratory images by [1]

Table 1. Algorithm performance on benchmark laboratory images (left) and on real-

world images (right). The results are taken from [14,28].

Method Median e

Gamut mapping 3.1◦

Gray-World 8.8◦

White-Patch 5.0◦

Color-by-Correlation 8.6◦

Proposed method 4.4◦

Method Median e

Regular gamut with offset-model 5.7◦

Gray-World 7.0◦

White-Patch 6.7◦

Color-by-Correlation 6.5◦

1st-order Gray-Edge 5.2◦ (∗)
2nd-order Gray-Edge 5.4◦ (∗)
Tan et al. [39] 5.6

Proposed method 4.4◦

color dataset exists for scenes containing multiple illuminants. We evaluated the
proposed illuminant estimation method on two widely used publicly available
ground-truth databases. The error between ground truth Γl and estimated illu-
minant color Γe is typically measured as angular error in RGB-space, defined
as

e = cos−1

(
Γl · Γe

‖Γl‖‖Γe‖

)
(12)

Somewhat unusual compared to other fields of computer vision, the success of
illuminant-estimation methods is typically measured using the median over mul-
tiple images [16].

The first dataset, introduced by Barnard et al. [1], contains high-quality lab-
oratory images. We used the “dielectric specularities” part of the dataset. It

Fig. 5. Examples of benchmark real-world images
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Fig. 6. Tampered image. Illumination map as well as distance map show a clear differ-

ence between the first two and the third person. Since the three stand close together

in the image, it can be assumed that this difference is due to tampering.

Fig. 7. Original image (top left) and tampered image (top right). A comparison of the

skin regions of the people exposes the inserted man in the distance map.
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Fig. 8. Original image (top left) and tampered image (top right). At first glance, illumi-

nation map and distance map show plausible results on the tampered image. However,

the illuminant estimates are obtained from the front of the woman, which is turned

away from the restaurant lights. Therefore, the expected illumination should be more

bluish, like e.g. at the back of the person in the middle.

contains 9 scenes, each under 11 different illuminants, since this part contains
a mixture of specular and diffuse pixels. Example images are shown in Fig. 4.
The proposed method performs comparable to other state-of-the art illuminant
estimation methods, as shown in Table 5.1 (left). The results from the other
methods were taken from [34].

The second dataset, presented by Ciurea and Funt [5], contains a wide variety
of real-world scenes. The ground truth is estimated from a fixed matte gray ball
that is mounted in front of the camera, as shown in Fig. 5. For the evaluation
of the methods, the ball has to be masked out. Table 5.1 (right) shows that the
proposed method is highly competitive on this dataset. The results marked with
(*) are taken from [28], the remaining results are from [14].

5.2 Exposing Digital Forgeries

For qualitative results on multiple illuminants, we collected from various sources,
mostly flickr [11], approximately 430 images containing scenes with multiple
illuminants or unusual single-illuminant setups. Besides these images, which were
assumed (or known, respectively) to be original, 10 forgeries have also been
examined using the proposed method. In the following, we present three cases
where image geometry and illumination create discontinuities. Fig. 6 shows a
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case where the change in the illumination color is barely explicable with the
scene setup. Both the illumination map as well as the distance map exhibit a
sharp transition between the two persons in the foreground and the third in the
back, which could only be feasible if there was a greater distance between them.

The example in Fig. 7 shows outdoor illumination with one dominant illumi-
nant. Again, we compare the skin regions of the people, in order to have roughly
comparable object materials. The selected regions are the directly lit skin of
the inserted person versus the directly lit skin of other guests. The illumination
map shows blueish estimates for the inserted man. The distance map makes this
difference even more visible. Note that the estimates of the coast line in the
background should be ignored (although they fit well, in this particular case).
The underlying pixels must be assumed to be purely diffuse, and thus do not
satisfy our underlying assumptions.

Fig. 8 contains a more complex case. The woman in the right is inserted in
the image. Illumination map and distance map are plausible, compared to the
people that stand similarly close to the restaurant. However, adding again the
scene geometry gives a strong clue that this scene is not original. Since the woman
is turned away from the restaurant, the illuminant color on the woman’s chest
should share greater similarity with the body parts of the other people that are
turned away from the restaurant lights.

6 Conclusion

We presented a method that estimates the color of the illuminant locally and
applied it to the detection of tampered images. A user interactively marks re-
gions whose illuminants should be further investigated. On these regions, the
illuminant color is estimated. Then, the local illuminant estimation process is
extended to the whole image. In scenes with multiple illuminants, one can typi-
cally observe a transition between these illuminants that is consistent with the
scene geometry. In order to verify this, we introduced the illuminant map, con-
sisting of all local illuminant estimates, and a distance map, that captures the
influence of every illuminant. If an image has been manipulated, the transition
between these illuminants should accordingly be disturbed.

This is preliminary work. In the future, we will extend this approach in two
directions. First, the user interaction can further be reduced by postprocessing of
the illuminant map and the distance map. Secondly, we aim to develop more rig-
orous methods for a more detailed analysis of inconsistencies in the illumination
map and the distance map.
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Abstract. The talk presented a short history of collusion resistant fin-

gerprinting concentrating on recent results that represent joint work with

Ehsan Amiri.

1 The Model

To ensure protection of their copyright, content producers often make each copy
of their productions unique by embedding a distinct code in each. For this to
work they have to be able to hide the positions where the code is embedded.
A collision attack is performed by a group of malicious users (the pirates), who
compare their copies and identify the positions where they differ as a position of
the embedded code. They can then arbitrarily change the code in these positions.
We assume however that they do not notice the positions of the hidden code
where all their codes agreed and therefore they cannot alter these positions.
This is the marking assumption.

A (collusion resistant) fingerprinting code consists of a randomized procedure
to choose codewords (the code generation) and a tracing algorithm that finds one
of the pirates based on all these codewords and and the forged codeword read from
the unauthorized copy made by the pirates. We say that the code (or the tracing
algorithm) errs if it falsely accuses an innocent user or outputs no accused user
at all. This should happen with small probability. The mathematical definition
was first given by Boneh and Shaw [4] and can also be found in most of the
papers cited below. Here we do not go beyond the slightly informal explanation
given above, but in order to be able to speak about the result we have to list
the numerous parameters a fingerprinting code has. These are

– alphabet size. The codewords are are sequences over a fixed alphabet Σ. Most
of the research on fingerprinting codes concentrates on the binary alphabet
Σ = {0, 1}, but fingerprinting is worth studying over larger alphabets too
and the size |Σ| of the alphabet is an important parameter.

– codelength. This is the length of the codewords, usually denoted by n.
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– number of users. Usually denoted by N , this is also the number of codewords.
– number of pirates. In most codes one has to assume a bound t on the number

of pirates responsible for the collusion attack. If the actual number of pirates
is t or less, the tracing algorithm should perform with small error probability.
In many of the fingerprinting codes the probability of accusing an innocent
user is small even if the number of pirates exceeds t, only the probability of
tracing algorithm failing by not producing any accusations increases in this
case.

– error probability. We say that a a code is ε-secure against t pirates or it is an
ε-secure t-fingerprinting code, if the probability of the error of the tracing
algorithm is at most ε for any set of at most t pirates performing an arbitrary
pirate strategy to produce the forged codeword provided that they obey the
marking assumption.

– rate. The rate R of a fingerprinting code is computed from the number N
of codewords and the length n as R = log N/n, where the logarithm is
binary. In the trivial t = 1 case (no collusion) it is enough to ensure that the
codewords are pairwise distinct and thus a rate of R = log |Σ| is achievable
(R = 1 for binary codes), the reciprocal of the rate gives how much longer
the codewords are compared to these trivial binary codewords.

To simplify the large number of parameters we concentrate on maximizing the
rate of a sequence of fingerprinting codes (a fingerprinting scheme) subject to
the conditions that the number of users and the length should go to infinity,
the error probability should go to zero while the number of pirates and and
the alphabet is fixed. The t-fingerprinting capacity for alphabet size |Σ| is the
maximum achievable limit rate of such fingerprinting schemes.

The goal of fingerprinting research is to find efficient and secure fingerprinting
codes. The paramount problem in the application of fingerprinting codes is the
high cost of embedding every single digit of the code. This makes it important to
design secure fingerprinting codes that are short, or equivalently, have high rate.
In particular, recent research focused on finding or estimating the t-fingerprinting
capacity for various values of t (mostly considering the binary alphabet).

2 History of Results

Boneh and Shaw [4] were first to define fingerprinting secure against collusion
attacks. They proposed such binary codes of length O(t4 log(N/ε) log(1/ε)) for
N users that are ε-secure against t pirates. This translates to a t-secure fin-
gerprinting scheme with rate of Ω(1/t4). The same paper gave a lower bound
of Ω(t log(1/(tε))) for the length of the fingerprinting code with the same pa-
rameters. This does not quite translate to an upper bound on the binary t-
fingerprinting capacity but still roughly correspond to an O(1/t) bound.

The paper [11] introduced a new and more efficient codes. The rate of these bi-
nary t-secure codes are 1/(100t2) and the same paper also gave a lower bound on
the length of t-secure fingerprinting codes that roughly translates to an O(1/t2)
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upper bound on the rate for any alphabet size. This settled the order of mag-
nitude for the t-fingerprinting capacity: it is Θ(1/t2). The large constant factor
between the lower and upper bound motivated further research and many sub-
sequent papers (e.g., [3,7,8,9,10]) managed to improve the constant 100 in the
construction with optimizing various parameters in the construction and/or bet-
ter analysis in the estimate of the error probability.

Amiri and Tardos [1] and independently Huang and Moulin [5,6] (for a broader
class of models including the marking assumption model surveyed here) designed
fundamentally different fingerprinting codes in an attempt to find the optimal
rate, the fingerprinting capacity. While these new codes in the two papers are
slightly different they are very similar and achieve identical rates. I conjecture
that the rates achieved are optimal (i.e., they achieve the t-fingerprinting capac-
ity) to the best of my knowledge this has not been fully proved yet.

3 Comparison of the Techniques

Bias based code generation was introduced in [11]. This is a two phase process for
generating the code words starting with picking iid. biases for each position from
1 to n and continuing with picking each digit of each codeword independently
with the bias determined by the position of the digit. In the binary case a bias
for position i is a real number 0 ≤ pi ≤ 1 and the digit i of a codeword x
is picked with P [xi = 1] = pi. For larger alphabets the bias is an arbitrary
distribution on Σ. The same code generation was used later in [1], but with a
different distribution to choose the biases from.

The tracing algorithm in [11] is simple and efficient, whether a user is accused
or not is determined by simple linear constraint, most notably it is determined by
the codeword of the user, the forged codeword and the biases without regard to
all the other codewords. This makes the tracing algorithm linear time in the size
of the code matrix. In contrast, in the schemes of [1,5] and also in the scheme
of the earlier paper [2] of Anthapadmanabhan, Barg and Dumer the tracing
algorithm has to consider each t-tuple of users to decide which user to accuse,
thus the accusation of a user depends on the codewords of all other users too.
This makes tracing rather inefficient.

4 Further Research Directions

An obvious research direction is to combine the efficiency of the tracing algorithm
in [11] with the higher rates of [2] (for t = 2 pirates) and of [1,6] (for any number
of pirates). With Ehsan Amiri we achieved partial results in this direction. These
results are yet to be published.

For the first non-trivial case when the code should be secure against only
t = 2 pirates we can design a more efficient tracing algorithm for the fingerprint-
ing code of [2,1] (these have the same very simple code generation procedure
for t = 2: each user receives an independent uniform random binary codeword).
Although accusation of a user still depends on codewords of all other users too
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(this is unavoidable), the new tracing algorithm is linear time in the size of the
codematrix. So in the case of two pirates the shorter codes and the faster tracing
algorithms can be achieved simultaneously without having to compromise in
either.

For more than two pirates our results are much more modest. First, we can
achieve a small speedup of the tracing algorithm. Instead of considering all t-
tuples of users for a tracing algorithm with N t as the leading term in its running
time we can slightly improve the exponent. This represent a slightly more effi-
cient, but still optimal length fingerprinting codes. Another possible approach
is to insist on a much faster tracing algorithm for the price of a slightly longer
code (i.e., lower rates). We devised a sequence of intermediate fingerprinting
codes representing a gradual trade-off between efficiency (speed of tracing) and
length (rate). It is not clear however, whether this trade-off is inherent or just
the result of our imperfect techniques.

Another important research direction is to study how the alphabet size in-
fluences the fingerprinting capacity. By the results of [11,1] the O(1/t2) upper
bound for the t-fingerprinting capacity holds with an absolute constant indepen-
dent of the alphabet size, but our preliminary calculations show that the actual
t-fingerprinting capacity grows substantially with moving from binary to larger
alphabets. It would be important to determine the limit rates achievable as the
alphabet size grows.
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Abstract. In this article, we propose a new construction of probabilistic

collusion-secure fingerprint codes against up to three pirates and give a

theoretical security evaluation. Our pirate tracing algorithm combines a

scoring method analogous to Tardos codes with an extension of parent

search techniques of some preceding 2-secure codes. Numerical examples

show that our code lengths are significantly shorter than (about 30% to

40% of) the shortest known c-secure codes by Nuida et al. (Des. Codes

Cryptogr., 2009) with c = 3. Some preliminary proposal for improving

efficiency of our tracing algorithm is also given.

1 Introduction

1.1 Background and Related Works

Recently, digital content distribution services have been widespread by virtue of
progress of information technology. Digitization of content distribution has im-
proved convenience for ordinary people. However, the digitization also enables
malicious persons to perform more powerful attacks, and the amount of illegal
content redistribution is increasing very rapidly. Hence technical countermea-
sures for such illegal activities are strongly desired.

Fingerprint code is a possible solution for such problems. It supposes that each
copy of a content is divided into several segments (common to all copies), in each
of which a bit of an encoded user ID is embedded by the content provider by
using watermarking technique. The embedded encoded ID (fingerprint) provides
traceability of an adversarial user (pirate) when an unauthorized copy of the
content is distributed. Such a scheme aims at tracing some pirates, without
falsely tracing any innocent user, from the fingerprint embedded in the pirated
content with an overwhelming probability. It has been noticed that a coalition of
pirates can perform certain strong attacks (so called collusion attacks) against
the fingerprint, therefore any effective fingerprint code should be secure against
collusion attacks, called collusion-secure codes. In particular, if the code is secure
against collusion attacks by up to c pirates, then the code is called c-secure [2].

Among several constructions of collusion-secure codes proposed so far, the
one proposed by Tardos [13] is “asymptotically optimal”, in the sense that the
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order of his code length with respect to the allowable number c of pirates is
theoretically the lowest (which is quadratic in c). For improvements of Tardos
codes, the constant factor of the asymptotic code length has been reduced by
c-secure codes given by Nuida et al. [9] to approximately 5.35% of Tardos codes,
which is the smallest value so far provable without any additional assumption.
On the other hand, after the article of Tardos, several collusion secure codes
have been proposed, e.g., [1,3,6,8,10], which restrict the number of pirates to
c = 2 but achieve further short code lengths. Such constructions of short c-
secure codes for a small c would have not only theoretical but also practical
importance; for example, when the users are less anonymous for the content
provider (e.g., the case of secret documents distributed in a company), it seems
infeasible to make a large coalition confidentially. The aim of this article is to
extend such a “compact” construction to the next case c = 3.

For related works, we notice that there is an earlier work by Sebé and Domingo-
Ferrer [12] for 3-secure codes. On the other hand, there is another work by Kita-
gawa et al. [5] on construction of 3-secure codes, in which very short code lengths
are proposed but its security is evaluated only by computer experiments for some
special attack strategies.

1.2 Our Contribution

In this article, we propose a new construction of 3-secure codes and give a the-
oretical security evaluation. The codeword generation is just a bit-wise random
sampling, which has been used by many preceding works as well. The novel point
of our construction is in the pirate tracing algorithm, which combines the use of
score computation analogous to Tardos codes [13] with an extension of “parent
search” technique of preceding works against two pirates [1,6,10]. Intuitively,
the scoring method works well when the parts of fingerprint in the pirated con-
tent are chosen not evenly from the codewords of pirates, while the extended
“parent search” technique works well when the fingerprint is evenly chosen from
codewords of pirates, hence their combination is effective in any case.

Under some parameter choices, our code lengths are approximately 3% to 4%
shorter than 3-secure codes by Sebé and Domingo-Ferrer [12], and approximately
30% to 40% shorter than c-secure codes by Nuida et al. [9] for c = 3. This shows
that our code length is even significantly shorter than the shortest known c-
secure codes [9].

In fact, Kitagawa et al. [5] claimed that their 3-secure code provides almost
the same security level as our code for the case of 100 users and 128-bit length.
However, they evaluated the security by only computer experiments for the case
of some special attack algorithms, while in this article we give a theoretical secu-
rity evaluation against arbitrary attack algorithms under the standard Marking
Assumption (cf., [2]). (One may think that the perfect protection of so-called un-
detectable positions required by Marking Assumption is not practical. However,
this is in fact not a serious problem, as a general conversion technique recently
proposed by Nuida [7] can supply robustness against erasure of a bounded num-
ber of undetectable bits.)
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Moreover, for efficiency of our tracing algorithm, we also discuss an imple-
mentation method for the algorithm. By an intuitive observation, it seems more
efficient for an average case than the naive implementation. A detailed evaluation
of the proposed implementation method will be a future research topic.

1.3 Notations

In this article, log denotes the natural logarithm. We put [n] = {1, 2, . . . , n}
for an integer n. Unless some ambiguity emerges, we often abbreviate a set
{i1, i2, . . . , ik} to i1i2 · · · ik. Let δa,b denote Kronecker delta, i.e., we have δa,b = 1
if a = b and δa,b = 0 if a �= b. For a family F of sets, let

⋃
F and

⋂
F denote

the union and the intersection, respectively, of all members of F .

1.4 Organization of the Article

Section 2 gives a formal definition of collusion-secure fingerprint codes. In Sect.
3, we describe our codeword generation and pirate tracing algorithms, state main
results on the security of our 3-secure codes, and give numerical examples for
comparison to preceding works. Section 4 summarizes the outline of the security
proof; details are given in the appendix, where some parts are omitted due to
the page limitation and will appear in the forthcoming full version of this article.
Finally, in Sect. 5, we discuss an implementation issue of our tracing algorithm.

2 Collusion-Secure Fingerprint Codes

In this section, we introduce a formal definition for fingerprint codes (Definition
1). First we explain notations in the definition. Let N be the total number of
users, m the code length, and 1 ≤ c ≤ N an integer parameter. The set U = [N ]
signifies the set of all users, the subset UP in Step 2 is the coalition of pirates,
and UI = U \UP is the set of innocent users (the innocent users are not concerned
in Definition 1, as they play passive roles only). Fix a symbol ‘?’ different from
‘0’ and ‘1’, called erasure symbol. The codeword wi in Step 3 is the fingerprint
for user i ∈ U , and the word y in Step 4, called attack word, is the fingerprint
embedded in the pirated content. The set Acc in Step 5 consists of the users
traced from the pirated content. The events Acc ∩ UP = ∅ and Acc �⊆ UP are
referred to as false-negative and false-positive (or false-alarm), respectively, and
both of them are called tracing error. Now the definition is as follows:

Definition 1. Given the parameters N , m and c, we define the following game,
which we refer to as pirate tracing game. The players of the game is a provider
and pirates, and the game is proceeded as follows:

1. Provider generates an N × m binary matrix W = (wi,j)i∈[N ],j∈[m] and an
element st called state information.

2. Pirates generate UP ⊆ U = [N ], 1 ≤ |UP| ≤ c, without knowing W and st.
3. Pirates receive the codeword wi = (wi,1, . . . , wi,m) for every i ∈ UP.



Short Collusion-Secure Fingerprint Codes against Three Pirates 89

4. Pirates generate a word y = (y1, . . . , ym) on {0, 1, ?} under a certain restric-
tion (e.g., Definition 2 below), and send y to provider.

5. Provider generates Acc ⊆ U from y, W , and st, without knowing UP.
6. Then pirates win if Acc∩UP = ∅ or Acc �⊆ UP, and otherwise provider wins.

Let Gen, Reg, ρ, and Tr denote the algorithms used in Steps 1, 2, 4, and 5, respec-
tively. We call Gen, Reg, ρ, and Tr codeword generation algorithm, registration
algorithm, pirate strategy, and tracing algorithm, respectively. We refer to the
pair C = (Gen, Tr) as a fingerprint code, and the following quantity

Pr[(W, st) ← Gen(); UP ← Reg(); y ← ρ(UP, (wi)i∈UP);
Acc ← Tr(y, W, st) : Acc ∩ UP = ∅ or Acc �⊆ UP]

(1)

(i.e., the overall probability that pirates win) is called an error probability of C.
For j ∈ [m], j-th column in codewords is called undetectable if j-th bits

wi,j of the codewords wi of pirates i ∈ UP coincide with each other; otherwise
the column is called detectable. In this article, we put the following standard
assumption on y in Step 4, called Marking Assumption [2]:

Definition 2. The Marking Assumption states the following: For every unde-
tectable column j, we have yj = wi,j for some (or equivalently, all) i ∈ UP.

We say that a fingerprint code C is collusion-secure if the error probability of C is
sufficiently small for any Reg and ρ under Marking Assumption. More precisely,
we say that C is c-secure (with ε-error) [2] if the error probability is not higher
than a sufficiently small value ε under Marking Assumption.

3 Our 3-Secure Codes

Here we propose a codeword generation algorithm Gen and a tracing algorithm
Tr for 3-secure codes (c = 3). The security property will be discussed below.

The algorithm Gen, with parameter 1/2 ≤ p < 1, is the codeword generation
algorithm of Tardos codes [13] but the probability distribution of biases is dif-
ferent: For each (say, j-th) column, each user’s bit wi,j is independently chosen
by Pr[wi,j = 1] = pj , where pj = p or 1−p with probability 1/2 each. Then Gen
outputs W = (wi,j)i∈[N ],j∈[m] and st = (pj)j∈[m].

To describe the algorithm Tr, we introduce some notations. For binary words
w1, . . . , wk of length m, we define the envelope of w1, . . . , wk by

E(w1, . . . , wk) = {y ∈ {0, 1}m | yj ∈ {w1,j, . . . , wk,j} for every j ∈ [m]} . (2)

Then for a binary word y of length m and a collection W = (wi,j) of codewords
of users, we define

T (y) = {i1i2i3 ⊆ U | i1 �= i2 �= i3 �= i1, y ∈ E(wi1 , wi2 , wi3)} (3)

(see Sect. 1.3 for the notation i1i2i3). A key property implied by Marking As-
sumption is that if the attack word y contains no erasure symbols, then y belongs
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to the envelope of the codewords of pirates and, if furthermore |UP| = 3, the
family T (y) contains the set of three pirates. By using these notations, we de-
fine the algorithm Tr as follows, where the words y, w1, . . . , wN and the state
information st = (pj)j∈[m] are given:

1. Replace each erasure symbol ‘?’ in y with ‘0’ or ‘1’ independently in the
following manner. If yj = ?, then it is replaced with ‘1’ with probability pj ,
and with ‘0’ with probability 1 − pj. Let y′ denote the resulting word.

2. Calculate a threshold parameter Z = Zy′ as specified below.
3. For each i ∈ U , calculate the score S(i) of i by

S(i) =
∑

j∈[m] ; y′
j=1

δwi,j ,y′
j
log

1
pj

+
∑

j∈[m] ; y′
j=0

δwi,j ,y′
j
log

1
1 − pj

. (4)

4. If S(i) ≥ Z for some i ∈ U , then output every i ∈ U such that S(i) ≥ Z,
and halt.

5. Calculate T ′ = {T ∈ T (y′) | T ∩ T ′ �= ∅ for every T ′ ∈ T (y′)}. If T ′ = ∅,
then output nobody, and halt.

6. If
⋂
T ′ �= ∅, then output every member of

⋂
T ′, and halt.

7. Calculate P = {P = i1i2 ⊆ U | i1 �= i2, P ∩ T �= ∅ for every T ∈ T ′}. Let Pk

be the set of all i ∈ U such that |{P ∈ P | i ∈ P}| = k.
8. If P1 �= ∅, then output every i ∈ U such that ii′ ∈ P for some i′ ∈ P1, and

halt.
9. If |P| = 7, then output every i ∈ U such that ii′ ∈ P for some i′ ∈ P2, and

halt.
10. If |P| = 6, then output every i ∈ P3, and halt.
11. If |P| = 5 and T ′′ = {i1i2i3 ∈ T ′ | i1i2, i2i3, i1i3 ∈ P} �= ∅, then output

every member of P2 ∩ (
⋃
T ′′), and halt.

12. If |P| = 5 and T ′′ = ∅, then output every i ∈
⋃
P such that ii′ �∈ P for some

i′ ∈
⋃
P , and halt.

13. If |P| = 4, then output every i ∈
⋃
P such that T ∈ T ′ and T ⊆

⋃
P imply

i ∈ T , and halt.
14. If |P| = 3, then output every i ∈

⋃
P , and halt.

15. Output nobody, and halt.

This algorithm is divided into two parts; Steps 1–4 and the remaining steps.
The former part aims at performing coarse tracing to defy “unbalanced” pirate
strategies; namely, if some pirates’ codewords contribute to generate y at too
many columns than the other pirates, then it is very likely that scores of such
pirates exceed the threshold and they are correctly accused by Step 4.

On the other hand, the latter complicated part aims at performing more re-
fined tracing. First, the algorithm enumerates the collections of three users such
that y′ can be made (under Marking Assumption) from their codewords, in other
words, the collection is a candidate of the actual triple of pirates. Steps 5 and 6
are designed according to an intuition that a pirate would be very likely to be
contained in much more candidate triples than an innocent user. When the trac-
ing algorithm did not halt until Step 6, the possibilities of “structures” of the set
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T ′ are mostly limited, even allowing us to enumerate all the possibilities. How-
ever, it is space-consuming to enumerate them and determine suitable outputs
in a case-by-case manner. Instead, we give an explicit algorithm (Steps 7–15)
to determine a suitable output, which is artificial but not too space-consuming.
Some examples of the possibilities of T ′ are given in Fig. 1, where 1, 2, 3 are the
pirates, ij are innocent users and the members of T ′ are denoted by triangles.

�1

�2 �3

�i1 �i2

�i3 �i4

�
��

�
��

�
��

�
��

�
��

�
��

����
�

�
�

P = {12, 13, 23, 3i1, 2i2}
P1 = {i1, i2}
output = 2, 3

�1 �3

�2 �i1 �i2

�
�

� ����

�
�

�

P =

{13, 1i1, 1i2, 23, 2i1, 2i2, 3i1}
P1 = ∅, P2 = {i2}
output = 1, 2

�1 �3 �i2

�2 �i1 �i3

�
�

� ����

�
�

� ����

P = {13, 1i1, 23, 2i1, 3i1}
P1 = ∅, T ′′ = ∅
⋃

P = {1, 2, 3, i1}, 12 �∈ P
output = 1, 2

Fig. 1. Examples of the sets T ′ and P

For the latter part, the tracing tends to fail in the case that the set T (y′) con-
tains much more members other than the triple of the pirates, which tends to
occur when the contributions of the pirates’ codewords to y was too unbalanced.
However, such an unbalanced attack is defied by the former part, therefore the
latter part also works well. More precisely, an upper bound of the error probabil-
ity at the latter part will be derived by using the property that scores of pirates
are lower than the threshold (as otherwise the tracing halts at the former part);
cf., Appendix E. Our scoring function (4), which is different from the ones for
Tardos codes [13] and its symmetrized version [11], is adopted to simplify the
derivation process. Although it is possible that the true error probability is re-
duced by applying the preceding scoring functions, a proof of a bound of error
probability with those scoring functions requires another evaluation technique
and would be much more involved, which is a future research topic.

Note that, for the case p = 1/2, it is known that the “minority vote” by
three pirates for generating y cancels the mutual information between y and a
single codeword, therefore the pirates are likely to escape from the former part
of Tr. However, even by such a strategy the pirates are unlikely to escape from
the latter part of Tr, as collections of users rather than individual users are
considered there.

The threshold parameter Z = Zy′ in Step 2 is determined as follows. Let AH

be the set of column indices j such that (pj , y
′
j) = (p, 1) or (1 − p, 0), i.e., the

occurrence probability of the bit y′
j ∈ {0, 1} at j-th column is p ≥ 1/2, and let

AL = [m]\AH. Put aH = |AH| and aL = |AL|. Choose a parameter ε0 > 0 which
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is smaller than the desired bound ε of error probability. Then choose Z = Zy′

satisfying the following condition:∑
kH,kL≥0

kH log 1
p +kL log 1

1−p≥Z

(
aL

kL

)
paL−kL(1 − p)kL

(
aH

kH

)
pkH(1 − p)aH−kH ≤ ε0

N
. (5)

An example of a concrete choice of Z satisfying the condition (5) is as follows:

Z0 = aHp log
1
p

+ aL(1 − p) log
1

1 − p

+

√√√√ 1
2

((
log

1
p

)2

aH +
(

log
1

1 − p

)2

aL

)
log

N

ε0

(6)

(see Appendix A for the proof). From now, we suppose that the threshold Z
satisfies the condition (5) and Z ≤ Z0.

For the security of the proposed fingerprint code, first we present the following
result, which will be proven in Sect. 4:

Theorem 1. By the above choice of ε0 and Z, if the number of pirates is three,
then the error probability of the proposed fingerprint code is lower than

ε0 +

(
N − 3

3

)
(1 − 3p2

+ 10p3 − 15p4
+ 12p5 − 4p6

)
m

+ 3(N − 3)(N − 4)
(
p2

(1 − p)
2
(
√

p +
√

1 − p) + 1 − p − p2
+ 4p3 − 2p4)m

+ (N − 3)(1 − p)
−3

√
(m/2) log(N/ε0)

(
p4−3p

(p2 − 3p + 3) + (1 − p)
3p+1

(p2
+ p + 1)

)m
.

(7)

Some numerical analysis suggests that the choice p = 1/2 would be optimal (or
at least pretty good) to decrease the bound of error probabilities specified in
Theorem 1. In fact, an elementary analysis shows that the second term in the
sum, which seems dominant (cf., Theorem 2 below), takes the minimum over
p ∈ [1/2, 1) at p = 1/2. Hence we use p = 1/2 in the following argument. Now
it is shown that the error probability against less than three pirates also has
the same bound under a condition (9) below (which seems trivial in practical
situations), therefore we have the following (which will be proven in Sect. 4):

Theorem 2. By using the value p = 1/2, the proposed fingerprint code is 3-
secure with error probability lower than

ε0 +
(

N − 3
3

)(
7
8

)m

+ 3(N − 3)(N − 4)

(
10 +

√
2

16

)m

+ (N − 3)8
√

(m/2) log(N/ε0)

(
7
√

2
16

)m (8)

provided
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m ≥ 8 log(N/ε0)
(
1 + (16 log(N/ε0))

−1
)2

. (9)

Note that when p = 1/2, the score S(i) of a user i is equal to log 2 times the
number of columns in which the words wi and y′ coincide. Hence the calculation
of scores can be made easier by using the “normalized” score S(i)/ log 2 instead,
which is equal to m minus the Hamming distance of wi from y′, together with
the “normalized” threshold Z0/ log 2 = m/2 +

√
(m/2) log(N/ε0).

Table 1 shows comparison of our code lengths (numerically calculated by using
Theorem 2) with 3-secure codes by Sebé and Domingo-Ferrer [12]. Table 2 shows
the comparison with c-secure codes by Nuida et al. [9] for c = 3. The values of
N and ε and the corresponding code lengths are chosen from those articles. The
tables show that our code lengths are much shorter than the codes in [12], and
even significantly shorter than the codes in [9] which are in fact the shortest
c-secure codes known so far (improving the celebrated Tardos codes [13]). On
the other hand, recently Kitagawa et al. [5] proposed another construction of
3-secure codes, and evaluated the security against some typical pirate strategies
in the case N = 100 and m = 128 by computer experiment. The resulting error
probability was ε = 0.009. For the same error probability, our code length (with
parameter ε0 = ε/2) is m = 135. Therefore our code, which is provably secure
in contrast to their code, has almost the same length as their code.

Table 1. Comparison of code lengths with the codes in [12]

N = 128 N = 256 N = 512

ε = 0.14 × 10−6 ε = 0.15 × 10−13 ε = 0.19 × 10−27

Sebé & Domingo-Ferrer [12] 6985 14025 28105

Our code 282 502 934

(ε0 =) (1/2)ε (7/10)ε (7/10)ε

ratio 4.04% 3.58% 3.32%

Table 2. Comparison of code lengths with the codes in [9] (c = 3)

N = 300, ε = 10−11 N = 109, ε = 10−6 N = 106, ε = 10−3

Nuida et al. [9] 1309 1423 877

Our code 420 556 349

(ε0 =) (9/10)ε (1/100)ε (1/100)ε

ratio 32.1% 39.1% 39.8%

4 Security Proof

In this section, we present an outline of the proof of Theorems 1 and 2. Omitted
details of the proof will be supplied in the appendix. First, we present some
properties of the threshold Z = Zy′ , which will be proven in Appendix A:
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Proposition 1. 1. If Z satisfies the condition (5), then the conditional prob-
ability that S(I) ≥ Z for some I ∈ UI, conditioned on the choice of y′, is not
higher than (N − 1)ε0/N .

2. The value Z = Z0 in (6) satisfies the condition (5).

To prove Theorem 1, we consider the case that |UP| = 3. By symmetry, we may
assume that UP = {1, 2, 3}. Put TP = 123, therefore we have TP ∈ T (y′) by
Marking Assumption. Now we consider the following four kinds of events:

Type I error: S(I) ≥ Z for some innocent user I ∈ UI.
Type II error: T ∩ TP = ∅ for some T ∈ T (y′).
Type III error: There are T1, T2 ∈ T (y′) such that ∅ �= T1 ∩ T2 ⊆ UI, |T1 ∩

TP| = 1 and |T2 ∩ TP| = 1.
Type IV error: S(i) < Z for every i ∈ {1, 2, 3}, and there is an innocent user

I such that 12I ∈ T (y′), 13I ∈ T (y′) and 23I ∈ T (y′).

Then we have the following property, which will be proven in Appendix B:

Proposition 2. If the number of pirates is three, then tracing error occurs only
when one of the Type I, II, III and IV errors occurs.

By this proposition, the error probability is bounded by the sum of the proba-
bilities of Type I–IV errors. By Proposition 1, the probability of Type I error is
bounded by ε0. Now Theorem 1 is proven by combining this with the following
three propositions, which will be proven in Appendices C–E, respectively:

Proposition 3. If the number of pirates is three, then the probability of Type II
error is not higher than

(
N−3

3

)
(1 − 3p2 + 10p3 − 15p4 + 12p5 − 4p6)m.

Proposition 4. If the number of pirates is three, then the probability of Type
III error is not higher than

3(N − 3)(N − 4)
(
p2(1 − p)2(

√
p +
√

1 − p) + 1 − p − p2 + 4p3 − 2p4
)m

. (10)

Proposition 5. If the number of pirates is three and the threshold Z is chosen
so that the condition (5) holds and Z ≤ Z0, then the probability of Type IV error
is lower than

(N − 3)(1 − p)
−3

√
(m/2) log(N/ε0) (p4−3p

(p2 − 3p + 3) + (1 − p)
3p+1

(p2
+ p + 1)

)m
.

(11)

To prove Theorem 2, we set p = 1/2. Then the bound of error probability given
by Theorem 1 is specialized to the value specified in Theorem 2. Hence our
remaining task is to evaluate the error probabilities for the case that the number
of pirates is one or two.

First we consider the case that there are exactly two pirates, say, 1, 2 ∈ U .
The key property is the following, which will be proven in Appendix F:

Proposition 6. In this situation, if the condition (9) is satisfied, then the prob-
ability that S(1) < Z and S(2) < Z is lower than ε0/N .
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By this proposition, when the condition (9) is satisfied, at least one of the two
pirates is output in Step 4 of the tracing algorithm with probability not lower
than 1 − ε0/N . On the other hand, by Proposition 1, some innocent user is
output in Step 4 with probability not higher than (N −1)ε0/N . Hence in Step 4,
at least one pirate and no innocent users are output with probability not lower
than 1−ε0. This implies that the error probability is bounded by ε0 in this case.

Secondly, we consider the case that there is exactly one pirate, say, 1 ∈ U . In
this case, Marking Assumption implies that y′ = w1. Now an easy calculation
shows that S(1) ≥ Z0 ≥ Z provided m ≥ 2 log(N/ε0) (note that p = 1/2), which
follows from the condition (9). Therefore the pirate is always output in Step 4
of the tracing algorithm, and by the same argument as the previous paragraph,
the error probability is bounded by ε0 in this case as well. Hence the proof of
Theorem 2 is concluded.

5 On Implementation of the Tracing Algorithm

In this section, we discuss some implementation issue of the tracing algorithm
Tr of the proposed 3-secure code. More precisely, we consider the calculation of
the set T (y′) appeared in Step 5 of Tr. By a naive calculation method based on
the definition (3) of T (y′), we need to check the condition y′ ∈ E(wi1 , wi2 , wi3)
for every triple i1i2i3 of users, therefore the time complexity with respect to the
user number N is inevitably Ω(N3). As this complexity is larger than tracing
algorithms of many other c-secure codes such as Tardos codes [13], it is important
to reduce the complexity of calculation of T (y′).

To calculate the collection T (y′), we consider the following algorithm, with
codewords w1, . . . , wN and the m-bit word y′ as input:

1. Set L(1)
1 = {i ∈ [N ] | wi,1 = y′

1} and L(1)
2 = L(1)

3 = ∅.
2. For each 2 ≤ j ≤ m, construct L(j)

1 , L(j)
2 and L(j)

3 inductively, in the following
manner. (At the beginning, set L(j)

1 = L(j)
2 = L(j)

3 = ∅.)
(a) Put Cj = {i ∈ [N ] | wi,j = y′

j}.
(b) Set L(j)

1 = L(j−1)
1 ∩ Cj .

(c) Add the pair {L(j−1)
1 \ Cj , Cj \ L(j−1)

1 } of subsets of [N ] to L(j)
2 .

(d) For each pair {K1, K2} of subsets of [N ] in L(j−1)
2 ,

– add two pairs {K1 ∩ Cj , K2} and {K1 \ Cj , K2 ∩ Cj} to L(j)
2 ;

– add the triple {K1 \Cj, K2 \Cj, Cj \ (K1 ∪K2)} of subsets of [N ] to
L(j)

3 .
(e) For each triple {K1, K2, K3} of subsets of [N ] in L(j−1)

3 , add three triples
{K1 ∩ Cj , K2, K3}, {K1 \Cj , K2 ∩Cj , K3}, {K1 \Cj , K2 \ Cj , K3 ∩Cj}
to L(j)

3 .
(f) Remove from L(j)

2 every pair {K1, K2} with K1 or K2 being empty, and
from L(j)

3 every triple {K1, K2, K3} with K1, K2 or K3 being empty.
3. Output the collection of the triples T = i1i2i3 of distinct numbers i1, i2, i3

satisfying one of the following conditions:
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– we have i1 ∈ L(m)
1 and i2, i3 are arbitrary;

– for some {K1, K2} ∈ L(m)
2 , we have i1 ∈ K1, i2 ∈ K2 and i3 is arbitrary;

– for some {K1, K2, K3} ∈ L(m)
3 , we have i1 ∈ K1, i2 ∈ K2 and i3 ∈ K3.

An inductive argument shows that, for each j ∈ [m] and each triple of distinct
i1, i2, i3, the j-bit initial subword (y′

1, . . . , y
′
j) of y′ is in the envelope of the j-bit

initial subwords of wi1 , wi2 , wi3 if and only if one of the following conditions is
satisfied (note that the order of members of a pair or triple is ignored):

– we have i1 ∈ L(j)
1 and i2, i3 are arbitrary;

– for some {K1, K2} ∈ L(j)
2 , we have i1 ∈ K1, i2 ∈ K2 and i3 is arbitrary;

– for some {K1, K2, K3} ∈ L(j)
3 , we have i1 ∈ K1, i2 ∈ K2 and i3 ∈ K3.

By setting j = m, it follows that the above algorithm outputs T (y′) correctly.
Now for each 2 ≤ j ≤ m, complexity of computing L(j)

1 , L(j)
2 , and L(j)

3 from
L(j−1)

1 , L(j−1)
2 , and L(j−1)

3 is approximately proportional to N times the total
number of members of L(j−1)

2 and L(j−1)
3 . Hence the total complexity of the algo-

rithm is approximately proportional to Nm times the average of total number of
members in L(j)

2 and L(j)
3 over all 1 ≤ j ≤ m−1. This implies that the order (with

respect to N) of complexity of calculating T (y′) can be reduced from Θ(N3) if the
average number of pairs and triples in L(j)

2 and L(j)
3 is sufficiently small. The au-

thor guesses that the latter average number is indeed sufficiently small in most of
the practical cases, as the size of T (y′) would be not large in average case (provided
the code length m is long enough to make the error probability of the fingerprint
code sufficiently small). A detailed analysis of this calculation method will be a
future research topic. Instead, here we show some experimental data for running
time of the above algorithm, which was implemented on a usual PC with 1.83GHz
Intel Core 2 CPU and 2Gbytes memory. We chose parameters N = 1000, m = 180,
ε0 = 0.001, and adopted minority vote attack as pirate strategy. Then the aver-
age running time of the algorithm over 10 trials was 4331.5 seconds, i.e., about 1
hour and 13 minutes, where the calculation of running times was restricted to the
case that scores of all users are less than the threshold, as otherwise the tracing
algorithm halts before Step 5.

6 Conclusion

In this article, we proposed a new construction of probabilistic 3-secure codes and
presented a theoretical evaluation of their error probabilities. A characteristic of
our tracing algorithm is to make use of both score comparison and search of the
triples of “parents” for a given pirated fingerprint word. Some numerical exam-
ples showed that code lengths of our proposed codes are significantly shorter than
the previous provably secure 3-secure codes. Moreover, for the sake of improving
efficiency of our tracing algorithm, we also proposed an implementation method
for the algorithm, which seems indeed more efficient for an average case than
the naive implementation. A detailed evaluation of the proposed implementation
method will be a future research topic.
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Appendix: Proofs of the Propositions

A Proof of Proposition 1

First, we prove the claim 1 of Proposition 1. For each I ∈ UI and σ ∈ {H, L}, let
Kσ = {j ∈ Aσ | wI,j = y′

j}. We have S(I) = |KH| log(1/p) + |KL| log(1/(1 − p)).
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Now note that the choice of y′ is independent of wI. This implies that we have
Pr[wI,j = y′

j | y′] = p for each j ∈ AH, and we have Pr[wI,j = y′
j | y′] = 1− p for

each j ∈ AL. Hence the conditional probability that |KH| = kH and |KL| = kL,
conditioned on this y′, is

(
aL
kL

)
(1 − p)kLpaL−kL

(
aH
kH

)
pkH(1− p)aH−kH . This implies

that Pr[S(I) ≥ Z | y′] is equal to the left-hand side of (5), therefore the claim 1
holds as there exist at most N − 1 innocent users I.

Secondly, to prove the claim 2, we use Hoeffding’s Inequality:

Theorem 3 ([4], Theorem 2). Let X1, X2, . . . , Xn be independent random
variables such that ai ≤ Xi ≤ bi for each i. Let X be the average value of
X1, . . . , Xn. Then for t > 0, we have

Pr[X − E[X ] ≥ t] ≤ exp
(

−2n2t2∑n
i=1(bi − ai)2

)
. (12)

As mentioned above, the left-hand side of (5) is equal to Pr[S(I) ≥ Z | y′], where
I is any specified innocent user. Now by regarding S(I) as the sum of bit-wise
scores X1, . . . , Xm, Theorem 3 implies that

Pr[S(I) − μ ≥ mt | y′] ≤ exp
(

−2m2t2

aH(log(1/p))2 + aL(log(1/(1 − p)))2

)
(13)

for t > 0, where μ = aHp log(1/p)+aL(1−p) log(1/(1−p)). See the forthcoming
full version of this article for the detail. Now by setting t = η/m where

η =
√

(1/2)
(
(log(1/p))2 aH + (log(1/(1 − p)))2 aL

)
log(N/ε0) , (14)

the right-hand side of (13) is equal to ε0/N . For the left-hand side of (13), we
have Pr[S(I)−μ ≥ mt | y′] = Pr[S(I) ≥ μ + η | y′], while Z0 = μ + η. Hence the
condition (5) is satisfied, concluding the proof of Proposition 1.

B Proof of Proposition 2

To prove Proposition 2, suppose that it is not the case of Type I–IV errors. We
show that tracing error does not occur in this case. Recall that TP = 123 ∈ T (y′).
By virtue of Step 4 of Tr and the absence of Type I error, it suffices to consider
the case that S(i) < Z for every i ∈ U . We have TP ∈ T ′ by the absence of Type
II error. Hence every T ∈ T ′ intersects TP, and

⋂
T ′ ⊆ TP. By virtue of Step 6,

it suffices to consider the case that
⋂
T ′ = ∅. Now there are the following two

cases: (A) we have |T ∩ TP| = 1 for some T ∈ T ′; (B) we have |T ∩ TP| = 2 for
every T ∈ T ′ \ {TP}.

For case (A), let T1 ∈ T ′ and |T1 ∩ TP| = 1. By symmetry, we may assume
that T1 ∩ TP = {1}. By the fact

⋂
T ′ = ∅, there is a T2 ∈ T ′ such that 1 �∈ T2.

We may assume by symmetry that 2 ∈ T2, as T2 ∩ TP �= ∅. We have T1 ∩ T2 �= ∅
as T1 ∈ T ′, therefore the absence of Type III error implies that 3 ∈ T2. Put
T2 = 23I with I ∈ UI, and T1 = 1II′ with I′ ∈ UI. Now the fact {TP, T1, T2} ⊆ T ′



Short Collusion-Secure Fingerprint Codes against Three Pirates 99

implies that P ⊆ {12, 13, 1I, 2I, 2I′, 3I, 3I′}, therefore the correctness of the output
of Tr in this case can be verified by case-by-case analysis (note that it is not the
case of Type II or III error). For the detail of the proof, see the forthcoming full
version of this article.

For case (B), as
⋂
T ′ = ∅, there are I1, I2, I3 ∈ UI such that 12I3, 13I2, 23I1 ∈

T ′. By the absence of Type IV error, it does not hold that I1 = I2 = I3. By
symmetry, we may assume that I1 �= I2. Now the fact {123, 12I3, 13I2, 23I1} ⊆ T ′

implies that P ⊆ {12, 13, 23, 1I1, 2I2, 3I3}, while 12, 13, 23 ∈ P by the assumption
of the case (B). Therefore the correctness of the output of Tr in this case can be
verified by case-by-case analysis as well (note that it is not the case of Type II
or III error). For the detail of the proof, see the forthcoming full version of this
article. Hence the proof of Proposition 2 is concluded.

C Proof of Proposition 3

To prove Proposition 3, let I1, I2 and I3 be three distinct innocent users. Given
y′ and st = (pj)j , we introduce the following notation for j ∈ [m]:

ξH
j =

{
1 if pj = p ,

0 if pj = 1 − p ,
ξL
j = 1 − ξH

j . (15)

Note that Aσ = {j | y′
j = ξσ

j } for σ ∈ {H, L}. We write Aσ = Aσ(y′, st) and
aσ = aσ(y′, st) to emphasize the dependency on y′ and st. Then, as the bits
of codewords are independently chosen, we have Pr[I1I2I3 ∈ T (y′) | y′, st] =
(1 − p3)aL(1 − (1 − p)3)aH , therefore

Pr[I1I2I3 ∈ T (y′)] =
∑
y′,st

Pr[y′, st](1 − p3)aL(y′,st)(1 − (1 − p)3)aH(y′,st) . (16)

Now we present the following key lemma:

Lemma 1. Among the possible pirate strategies ρ, the maximum value of the
right-hand side of (16) is attained by the majority vote attack, namely the attack
word y for codewords w1, w2, w3 of three pirates satisfies that yj = 0 if at least
two of w1,j , w2,j , w3,j are 0 and yj = 1 otherwise.

The formal proof of Lemma 1 will be given in the forthcoming full version of this
article. Intuitively, this lemma follows from the facts that the right-hand side of
(16) is getting larger as the value of aH(y′, st) is increasing and that the majority
of the three bits w1,j , w2,j , and w3,j is more likely to be ξH

j than the minority
of the three bits. (Note that the difficulty of the proof of Lemma 1 is due to the
fact that the pirate strategy ρ is not necessarily a column-wise strategy.)

Owing to Lemma 1, we may assume that ρ is the majority vote attack. Then
for each j ∈ [m], we have j ∈ AH(y′, st) with probability 3p2(1 − p) + p3 =
3p2 − 2p3 and j ∈ AL(y′, st) with probability 1− 3p2 + 2p3. Now a computation
shows that

Pr[I1I2I3 ∈ T (y′)] = (1 − 3p2 + 10p3 − 15p4 + 12p5 − 4p6)m (17)
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(see the forthcoming full version of this article for the detail). Hence Proposition
3 holds, as there are

(
N−3

3

)
choices of the triple I1, I2, I3.

D Proof of Proposition 4

To prove Proposition 4, we fix an innocent user I0 ∈ UI and consider the proba-
bility that there are T1, T2 ∈ T (y′) such that I0 ∈ T1 ∩ T2 ⊆ UI, T1 ∩ TP = {1}
and T2 ∩ TP = {2}; or equivalently, there are innocent users I1, I2 ∈ UI \ {I0}
such that 1I0I1 ∈ T (y′) and 2I0I2 ∈ T (y′). We introduce some notations. Given
y′, w1, w2, wI0 , and st = (pj)j , we define, for α, β, γ, δ ∈ {H, L},

aαβγδ = |{j ∈ [m] | y′
j = ξα

j , w1,j = ξβ
j , w2,j = ξγ

j , wI0,j = ξδ
j }| (18)

(see (15) for notations). Moreover, by using ‘∗’ as a wild-card, we extend nat-
urally the definition of aαβγδ to the case α, β, γ, δ ∈ {H, L, ∗}. For example, we
have aα∗∗δ = aαLLδ +aαLHδ +aαHLδ +aαHLδ. Note that aσ∗∗∗ = aσ (σ ∈ {H, L}).

Now we have Pr[1I0I1 ∈ T (y′) | y′, w1, w2, wI0 , st] = paHL∗L(1 − p)aLH∗H for an
innocent user I1 �= I0. As there are N − 4 innocent users I �= I0, we have
Pr[1I0I1 ∈ T (y′

) for some I1 ∈ UI | y′, w1, w2, wI0 , st] ≤ (N − 4)paHL∗L(1 − p)
aLH∗H ,

P r[2I0I2 ∈ T (y′
) for some I2 ∈ UI | y′, w1, w2, wI0 , st] ≤ (N − 4)paH∗LL(1 − p)

aL∗HH .

(19)

As Pr[E1, E2] ≤ min{Pr[E1], P r[E2]} and min{a, b} ≤
√

ab for a, b > 0, we have

Pr[1I0I1, 2I0I2 ∈ T (y′) for some I1, I2 ∈ UI | y′, w1, w2, wI0 , st]

≤ (N − 4)
√

p
aHL∗L+aH∗LL

√
1 − p

aLH∗H+aL∗HH
.

(20)

By Marking Assumption, a computation shows that

Pr[1I0I1, 2I0I2 ∈ T (y′) for some I1, I2 ∈ UI | y′, w1, w2, st]

≤ (N − 4)(2p− p2)bHLLH (1 − p2)bLHHL (p + (1 − p)
√

p)bHLHL+bHHLH+bHLHH+bHHLL

·
(
1 − p + p

√
1 − p

)bLHLH+bLLHL+bLHLL+bLLHH

,

(21)

where we put bαβγδ = |{j ∈ [m] | y′
j = ξα

j , w1,j = ξβ
j , w2,j = ξγ

j , w3,j = ξδ
j }| for

α, β, γ, δ ∈ {H, L}. By writing the right-hand side of (21) as η, it follows that

Pr[1I0I1, 2I0I2 ∈ T (y′) for some I1, I2 ∈ UI | wP] ≤
∑
y′,st

Pr[y′, st | wP]η , (22)

where wP denotes the collection of w1, w2, and w3. Now an argument similar
to Lemma 1 implies that the maximum value of the right-hand side of (22) is
attained by the majority vote attack, therefore a computation shows that

Pr[1I0I1, 2I0I2 ∈ T (y′) for some I1, I2 ∈ UI]

≤ (N − 4)
(
p2(1 − p)2(

√
p +
√

1 − p) + 1 − p − p2 + 4p3 − 2p4
)m (23)

(see the forthcoming full version of this article for the details). Hence Proposition
4 follows by considering the number of choices of I0 and the pair 1, 2.
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E Proof of Proposition 5

To prove Proposition 5, we fix an innocent user I and suppose that S(i) < Z for
every i ∈ 123. Given y′, w1, w2, w3, and st, we define, for α, β, γ, δ ∈ {H, L},

aαβγδ = |{j ∈ [m] | y′
j = ξα

j , w1,j = ξβ
j , w2,j = ξγ

j , w3,j = ξδ
j }| (24)

(see (15) for notations). Let wP denote the triple of w1, w2, and w3. Then we
have

Pr[12I, 13I, 23I ∈ T (y′
) | y′, wP, st] = paHLLH+aHLHL+aHHLL(1−p)

aLLHH+aLHLH+aLHHL .
(25)

For σ ∈ {H, L}, let au
σ and ad

σ be the number of indices j ∈ [m] of undetectable
and detectable columns, respectively, such that y′

j = ξH
j . Then an upper bound of

the logarithm of the right-hand side of the above equality is derived by Marking
Assumption and the relations S(i) < Z ≤ Z0 for every i ∈ 123 and p ≥ 1 − p,
therefore a computation shows that

Pr[12I, 13I, 23I ∈ T (y′) | wP]

<
∑
y′,st

S(1),S(2),S(3)<Z

Pr[y′, st | wP]η ≤
∑
y′,st

Pr[y′, st | wP]η , (26)

where

η = (1 − p)(3p−1)m(1 − p)−3
√

(m/2) log(N/ε0)

·
(
p3−3p(1 − p)1−3p

)au
H (1 − p)au

L
(
p2−3p(1 − p)1−3p

)ad
H

(27)

(see the forthcoming full version of this article for the details). Now an argument
similar to Lemma 1 implies that the maximum value of the right-hand side of
(26) is attained by the majority vote attack, therefore a computation shows that

Pr[12I, 13I, 23I ∈ T (y′)] =
∑
wP

Pr[wP]Pr[12I, 13I, 23I ∈ T (y′) | wP]

= (1 − p)−3
√

(m/2) log(N/ε0)
(
p4−3p(p2 − 3p + 3) + (1 − p)3p+1(p2 + p + 1)

)m
(28)

(see the forthcoming full version of this article for the details). Hence Proposition
5 follows, as there exist N − 3 choices of the innocent user I.

F Proof of Proposition 6

Given the codewords w1 and w2 of the two pirates 1 and 2, let ad denote the
number of detectable columns. Then by Marking Assumption and the choice
p = 1/2, we have S(1) + S(2) = (2m− ad) log 2 regardless of the pirate strategy
ρ. This implies that, if S(1) < Z and S(2) < Z, then we have

2m − ad < 2Z/ log 2 ≤ 2Z0/ log 2 = m +
√

2m log(N/ε0) , (29)
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therefore ad − m/2 > m/2 −
√

2m log(N/ε0) (note that the right-hand side is
positive under the condition (9)). By Hoeffding’s Inequality (Theorem 3) and
the condition (9), this occurs with probability not higher than

exp

⎛⎜⎝−2m2
(
m/2 −

√
2m log(N/ε0)

)2

m

⎞⎟⎠ <
ε0

N
(30)

(see the forthcoming full version of this article for the details). Hence the proof
of Proposition 6 is concluded.
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Abstract. Binary fingerprinting codes with a length of theoretically

minimum order were proposed by Tardos, and the traceability has been

estimated under the well-known marking assumption. In this paper, we

estimate the traceability and the false-positive probability of the finger-

printing code over AWGN channel, and propose a new accusation algo-

rithm to catch more colluders with less innocent users. The design of

our algorithm is based on the symmetric accusation algorithm proposed

by S̆korić et al. that focuses on the characteristic of the p.d.f. of the

correlation scores. The proposed algorithm first estimates the strength

of noise added to the code, and then calculates the specific correlation

scores among candidate codewords using the characteristic of the noisy

channel. The scores are finally classified into guilty and innocent by the

threshold obtained from the p.d.f. The performance of the proposed trac-

ing algorithm is evaluated by Monte Carlo simulation.

1 Introduction

Digital fingerprinting is used to trace the illegal users, where a unique ID known
as a digital fingerprint [10] is embedded into the content before distribution.
When a suspicious copy is found, the owner can identify illegal users by ex-
tracting the fingerprint. Since each user purchases contents involving his own
fingerprint, the fingerprinted copy slightly differs with each other. Therefore, a
coalition of users will combine their different marked copies of the same con-
tent for the purpose of removing/changing the original fingerprint. One of the
solution is to encode the fingerprint information by a binary code, known as
collusion secure code.

An early work on designing collusion-resistant binary fingerprinting codes
was presented by Boneh and Shaw [1] underlying the principle referred to as
the marking assumption. In this case, a fingerprint is a set of redundant digits
which are distributed in some random positions of an original content. When
a coalition of users attempts to discover some of the fingerprint positions by
comparing their marked copies for differences, the coalition may modify only
those positions where they find a difference in their fingerprinted copies. A c-
secure code guarantees the tolerance for the collusion attack with c pirates or
less. Tardos [9] has proposed a probabilistic c-secure code with error probability
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ε which has a length of theoretically minimal order with respect to the number
of colluders. Many researchers have focused on the characteristics of the code to
reduce the code length under the marking assumption. One of the interesting
reports is presented by S̆korić et al. [2] about the symmetric version of the tracing
algorithm and Gaussian approximation. Based on the report, the code length is
further shortened under a fixed false-positive probability.

Considering about the realistic situation, a fingerprinting codeword is em-
bedded into digital contents using a watermarking technique. Because of the
characteristic of the watermark extraction, the codeword is distorted by signal
processing operations as well as the collusion attack. Nuida et al. [7] gave a
security proof under an assumption weaker than the marking assumption. The
code length was evaluated under the binary symmetric channel with a certain
error rate. Once a code length is fixed in an application, however, the important
factor is how to detect as many colluders as possible with small and constant
false-positive probability.

In this paper, we study the tracing algorithm of Tardos’s fingerprinting code
under the following two assumptions. One is that a codeword is modulated by
BPSK at embedding into digital contents. The other is that a pirated codeword
produced by collusion attack is further distorted by transmitting over AWGN
channel. Different from the conventional assumption that allows bit flips of the
pirated codeword, the addition of white Gaussian noise is more realistic even
if the robust watermarking method is applied to embed the fingerprint into
digital contents. We first attempt to detect colluders directly from the degraded
codeword using soft decision method similar to the detection procedure of error
correcting codes. Then, we further reduce the probability of false-positive by
classifying the elements of the distorted codeword into reliable ones and the
others, and detect colluders with two steps. The first step reduces the candidates
of suspicious users using only reliable elements, and the second step further
narrows down the suspicious users using the whole codeword by the properly
designed threshold which is calculated under the Gaussian assumption of the
correlation score. The proposed approach can reduce the probability of false-
positive and can detect as many colluders as possible.

2 Preliminaries

2.1 Tardos Code

In this section, we first review the original Tardos’s binary fingerprinting code
[9]. Let N be the allowable number of users in a fingerprinting system. The
Tardos fingerprinting scheme distributes a binary codeword of length L to each
user. The codewords are arranged as an N × L matrix X, where the j-th row
corresponds to the fingerprint given to the j-th user. The generation of the
matrix X is composed of two steps.

1. A distributor is supposed to choose the random variables 0 < pi < 1 inde-
pendently for every 1 ≤ i ≤ L, according to a given bias distribution P ,
which satisfies the following conditions.
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– t = 1/300c
– 0 < t′ < π/4 , sin2 t′ = t , ri ∈ [t′, π/2 − t′]
– pi = sin2 ri , t ≤ pi ≤ 1 − t

Where ri is uniformly and randomly selected from the above range.
2. Each entry Xj,i of the matrix X is selected independently from the binary

alphabet {0, 1} with Pr(Xj,i = 1) = pi and Pr(Xj,i = 0) = 1 − pi for every
1 ≤ j ≤ N .

Let C be a set of colluders and c be the number of colluders. Then we denote
by XC the c × L matrix of codewords assigned to the colluders. Depending on
the attack strategy ρ, the fingerprint y = (y1, . . . , yL), yi ∈ {0, 1} contained in a
pirated copy is denoted by y = ρ(XC). In a tracing (accusation) algorithm A,
a correlation score Sj of the j-th user is calculated

Sj =
L∑

i=1

yiUj,i , (1)

where

Uj,i =

⎧⎨⎩
√

1−pi

pi
(Xj,i = 1)

−
√

pi

1−pi
(Xj,i = 0) .

(2)

If Sj exceeds a threshold Z, the j-th user is decided as guilty. The algorithm A
outputs a list of colluders.

S̆korić et al. [2] proposed a symmetric version of the correlation score:

Sj =
L∑

i=1

(2yi − 1)Uj,i . (3)

The traceability are usually evaluated in terms of the probability ε1 of accusing
innocent users and the probability of missing all colluders ε. In order to guarantee
that the probability of accusing innocent users is below ε1, the inequality L >
2π2c2 log(N/ε1) [2] must be satisfied. The number of traceable colluders depends
on the design of threshold Z. Referring to the Central Limit Theorem (CLT)
in [2] [3], the distribution of the score Sj for innocent users is approximated to
be Gaussian distribution N(0, L) because it is a sum of L elements in Eq.(3).
Under the Gaussianity assumption, the probability of false-positive that the j-th
innocent user is accused is represented as follows.

Pr
(
Sj > Z, j ∈ I

)
=

ε1
N

=
1
2
erfc
(

Z√
2L

)
, (4)

where I stands for a set of innocent users and erfc() is the complementary error
function. Hence, the threshold Z is written by a given ε1 [5]:

Z =
√

2L · erfc−1

(
2ε1
N

)
. (5)
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The validity of such a threshold Z is not assured because the use of the CLT
is not recommended in statistics (i.e. integral over the tail of a p.d.f.). Instead
of the use of CLT, conventional schemes calculated it based on the Chernoff’s
bound, union bound, etc. sacrificing the tightness of the upper bound. In this
paper, we evaluate the validity of the threshold Z in Eq.(5) using Monte Carlo
simulation and address the insight for the recommendation of the use of CLT.

At the collusion attack, c colluders try to find the positions of the embed-
ded codeword from differences of their copies, and then to modify bits of the
codeword in these positions. This attack model is called marking assumption
formulated as follows.

Let we say that position i is undetectable for colluders in C if the codewords
assigned to c colluders in C match in i-th position. Then, yi = Xj,i for any
j ∈ C. Under the marking assumption, colluders have no information on the i-th
position of innocent users if it is undetectable.

2.2 Relaxation of Marking Assumption

Suppose that a codeword of fingerprint codes is binary and each bit is embedded
into one of the segments of digital content without overlapping using a robust wa-
termarking scheme. It is possible for malicious users, called colluders, to compare
their fingerprinted copies of the content with each other to find the differences.
In the situation, the positions that the bit of their codewords is different are
detectable. The marking assumption states that any bit within a detectable po-
sition can be selected or even erased, while any bit without the position will be
left unchanged in the pirated codeword. A fingerprint code is called totally c-
secure if at least one of the colluders is traceable under the marking assumption
with the condition that the number of colluders is at most c. Boneh and Shaw,
however, proved that when c > 1, totally c-secure codes do not exist if the mark-
ing assumption is satisfied [1]. Under the weaker condition that one of innocent
users will be captured with a tiny probability ε, a c-secure code with ε-error was
constructed. Since then, the study of c-secure code has been investigated under
the marking assumption. Although the assumption is reasonable to evaluate the
performance of fingerprint codes, there is a big gap from practical cases as fol-
lows. Even if a watermarking scheme offers a considerable level of robustness, it
is still possible to erase/modify the embedded bits with a non-negligible proba-
bility due to the addition of noise to a pirated copy. Therefore, the bits at the
undetectable positions as well as the detectable ones may be erased/modified by
the attacks for the watermarked signal.

In order to cover more practical cases, various relaxation of marking assump-
tion have been introduced and several c-secure codes under those assumptions,
called robust c-secure codes, have been proposed in [7], [4], [8], [6]. Among those
assumptions, there are two common conditions: At least one of the colluders
is traceable and the number of colluders is at most c. Their goal is mainly to
estimate a proper code length L to satisfy that the probability of accusing an
innocent user is below ε1, which is dependent on the number of flipped bits at the
undetectable position. Although the study of such a code length is meaningful,
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there is still a difficulty to adapt the fingerprint codes in a system. When the
number of colluders is more than c, the false probability may be increased. Even
more, the dependency with the number of flipped bits lefts the uncertainty of
the code length. Colluders can take a stronger attack strategy for the underlying
watermarking scheme in order to affect more the embedded fingerprint code,
which is an unavoidable feature of watermarking schemes.

From the different viewpoint, it is an interesting challenge to design a proper
threshold Z for a given false probability ε1 under a fixed code length. Based
on the CLT, for a given false probability ε1, the threshold Z is calculated by
Eq.(5). The study in [5] shows the detectable number of colluders using such a
threshold. So, it is also interesting to estimate how many colluders will be able
to be caught by a tracing algorithm. To the best of our knowledge, no report
about the detectable number of colluders has been presented under a relaxed
version of the marking assumption.

Suppose that a fingerprint code is equipped in a fingerprinting system. Then,
the code length must be determined under the considerations of system policy
and attack strategies such as the number of colluders and the amount of noise.
Here, our interest is how to design the good tracing algorithm that can detect
more colluders and less innocent users no matter how many colluders get involved
in to generate a pirated copy and no matter how much amount of noise is added
to the copy.

3 Performance of Tracing Algorithm

In this section, we forget about the limitation of c-secure code such that the
number of colluders is less than c. The performance of conventional tracing
algorithm based on a threshold Z and its variant are evaluated for arbitrary
number c̃ of colluders.

3.1 Channel Model

The conventional analysis considers the case that colluders change several sym-
bols of a pirated codeword in an attempt to attack directly a pirated copy. Re-
gretfully, the attack model is merely a bit flip. If each symbol of codeword is em-
bedded into digital contents assisted by a watermarking technique, the extracted
symbol from a pirated copy must contain noise caused by attacks intended to
remove/modify the symbol. In such a case, it is a reasonable assumption that
the symbol is disturbed by additive white Gaussian noise, namely the codeword
is transmitted through AWGN channel.

Let y = (y1, . . . , yL) be the fingerprint produced from c̃ colluders’ codes under
the marking assumption. Namely, the fingerprint is represented by a binary
code. Here, we assume that a binary fingerprint code is embedded into digital
contents after the BPSK (Binary Phase Shift Keying) modulation, hence, ŷ =
(ŷ1, . . . , ŷL), where ŷi ∈ {−1, 1}. The codeword is transmitted through AWGN
channel.
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1. BPSK modulation
In the tracing algorithm of Eq.(3), each symbol of the pirated codeword is
modulated into two kinds of symbols {−1, 1} to calculate the correlation
score Sj . Since the modulation can be performed at the embedding, we
assume that a binary fingerprint codeword is modulated by BPSK before
embedding.

2. AWGN channel
Even if a robust watermarking method is used to embed the binary fin-
gerprint code into digital contents, it must be degraded by attacks. In our
assumption the effects caused by attacks are modeled by additive white
Gaussian noise, and the noise is added after collusion attack. The degraded
fingerprint codeword is represented by

ŷ′ = ŷ + e , (6)

where e is the additive white Gaussian noise.

3.2 Hard and Soft Decision

The signal extracted from a pirated copy is represented by analog value ŷ′. At
the tracing algorithm in Eq.(3), however, the codeword yi of a pirated copy must
be binary bit in {0, 1}. If it is not binary, the design of threshold Z in Eq.(5)
is not valid. A simple solution is to quantize ŷ′

i into “−1” if ŷ′
i < 0, otherwise

“1”. In this solution, an extracted signal is first quantized into digital value, and
then the tracing algorithm is performed to identify the colluders. This solution
is analogous to the hard decision (HD) method in error correcting code. Here,
there is an interesting question whether a soft decision (SD) method is applicable
to the tracing algorithm by adaptively designing a proper threshold or not. In
general, the performance of SD method is much better than the HD method in
error correcting code.

The design of threshold in Eq.(5) is based on the Gaussian approximation
of the score Sj . Referring to the CLT, the variance of Sj is L, and hence, the
proper threshold ZHD is calculated by the Eq.(5).

ZHD =
√

2L · erfc−1

(
2ε1
N

)
(7)

Since a pirated codeword is distorted by AWGN channel, the effect on Sj is
also approximated to Gaussian. Hence, if the variance σ2

SD of Sj using the SD
method is obtained, the proper threshold ZSD can be designed using the same
equation as the case of HD method:

ZSD =
√

2σ2
SD · erfc−1

(
2ε1
N

)
. (8)

Because of the randomness in the generation of codeword, the variance σ2
SD can

be calculated as follows.
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1. Generate N ′ fingerprint codewords Xj′,i for j′ �∈ {1, . . . , N}.
2. Calculate the correlation scores S′

j.
3. Compute the variance of S′

j , and output it as σ2
SD.

The generated N ′codewords Xj′,i are statistically uncorrelated with the pirated
codeword. If N ′ is sufficiently large, a proper variance can be obtained by the
above procedure, and finally, a proper threshold ZSD is derived.

3.3 Numerical Comparison

For the comparison of the performance of HD and SD methods, the number of
detected colluders and false-positive probability is plotted in Fig.1 and Fig.2,
respectively. The number of users is N = 104, the code length is L = 104, SNR
is fixed by 8 [dB], and the number of trials for Monte Carlo simulation is 105 in
this experiment. In addition, the range of bias distribution pi is given by setting
t = 0.000167 (c = 20). In the SD method, the number of codewords to calculate
σ2

SD is N ′ = 103. In this experiment, we check the validity of the use of CLT
to set the thresholds ZHD and ZSD from the targeted false-positive probability
point of view, which is designed by ε1 = 10−4.

From the Fig.1, we can see that the HD method detects more colluders than
the SD method. On the other hand, the false-positive probability of HD method
is much higher than that of SD method. It is because several bits are flipped
in the HD method by white Gaussian noise. Since the SD method calculates
ZSD according to the distribution of S′

j, the false-positive probability is not
so degraded. However, such a threshold ZSD is not always valid because the
Gaussian assumption of the distribution of S′

j becomes invalid when SNR is
decreased. Under the constant number of colluders, the number of detected col-
luders and the false-positive probability are evaluated by changing the amount
of noise. Figures 3 and 4 show the results when the number of colluders is 10.
Regardless of the amount of noise, the traceability of HD method is better than
that of SD method. It is noticed that the false-positive probability approaches
10−5 for both methods when SNR is increased. It is because the probability is
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sus SNR when c̃ = 10

10−5 when a pirated copy is not distorted by noise under the above conditions.
From these results, the use of CLT seems to be valid only when the amount of
noise is very small. Meanwhile, the result in Fig.4 shows the significant property
of both methods such that the probability of false-positive is increased with the
decrease of SNR. It also means that the increase of the probability is strongly
dependent on the number of flipped bits at a pirated codeword. It is remarkable
that the increasing rate of the probability of false-positive for the conventional
tracing algorithms that use a threshold to determine the guilty must be similar
to the above results because such a threshold is independent on the noise and
bit flips.

4 Proposed Tracing Algorithm

The number of flipped bits is increased with the noise energy because the prob-
abilities Pr(ŷi = 1 ∩ ei < −1) and Pr(ŷi = −1 ∩ ei > 1) become non-negligible.
In such a case, the designed threshold ZHD is not valid. In the HD method, the
degraded signal ŷ′

i is classified into only two symbols “−1” and “1” if ŷ′
i is more

than 0 or not. Considering the variance σ2
e of Gaussian noise, the classification

should be adaptively modified by a threshold Tσ2
e

that classifies ŷ′
i into three

symbols “−1”, “1”, and “0”.

4.1 Channel Estimation

After extracting the fingerprint signal from a pirated copy, we estimate the
variance of Gaussian noise using the extracted analog values. Using the variance
σ2

SD, the threshold Tσ2
e

is obtained accordingly.
If |y′

i| ≥ 1, then the absolute value of the amplitude of noise is estimated as

|ei| = |ŷ′
i| − 1 , (9)

because
Pr(ŷi = 1|ŷ′

i > 1) � Pr(ŷi = −1|ŷ′
i > 1) , (10)
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and
Pr(ŷi = −1|ŷ′

i < −1) � Pr(ŷi = 1|ŷ′
i < −1) . (11)

The probability Perr that the estimation of Eq.(9) is failed can be calculated
from Pr(ŷi = −1|ŷ′

i > 1) and Pr(ŷi = 1|ŷ′
i < −1), and is represented by

Perr =
1
2

Pr
(
(ei < −2) ∪ (ei > 2)

)
=

1
2

Pr(|ei| > 2) . (12)

Considering the property of AWGN channel, the probability Pr(|ei| > 2) can be
calculated by

Pr(|ei| > 2) = erfc
(

2√
2σ2

e

)
, (13)

where σ2
e is the variance of noise. Hence, when σ2

e is not very large, Perr is neg-
ligible and the estimation of Eq.(9) is valid. In such a case, σ2

e can be calculated
by

σ2
e =

∑
i∈{|ŷ′

i|≥1}(ei − e)2

Le
, (14)

where e is the average value of ei, i ∈ {|ŷ′
i| ≥ 1} and Le is the number of ŷ′

i

satisfies |ŷ′
i| ≥ 1.

When the variance σ2
e of Gaussian noise is very small, the probability Pr(ŷ′

i >
0|ŷi = −1) is negligible, and then the threshold for the classification is Tσ2

e
= 0.

Suppose that the probability is non-negligible. For a given threshold Tσ2
e
, the

probability Pflip that at least one symbol is flipped is calculated by

Pflip =
1
2
erfc
(

Tσ2
e√

2σ2
e

)
. (15)

If the code length is L, the average number of flipped bits is PflipL. By trans-
forming Eq.(15), the threshold Tσ2

e
is calculated as follows.

Tσ2
e

=
√

2σ2
e · erfc−1

(
2Pflip

)
(16)

Using Eq.(16), we can calculate the threshold Tσ2
e

for the given probability Pflip.

4.2 Adaptive Tracing Algorithm

It is reasonable to apply the HD method for |ŷ′
i| ≥ Tσ2

e
because they are judged

as the symbols “−1” or “1” with high probability 1−Pflip. Hence, such elements
are reliable to calculate correlation scores, while the other elements, |ŷ′

i| < Tσ2
e
,

are unreliable. Considering the property derived from the result in Sect.3.3, the
unreliable elements should be avoided in order to exclude the bit flips in a pirated
codeword. Thus, we replace the elements of pirated codeword ŷ′

i with Y
(1)
i as

follows.

Y
(1)
i =

⎧⎨⎩
1 (ŷ′

i ≥ Tσ2
e
)

−1 (ŷ′
i ≤ −Tσ2

e
)

0 (|ŷ′
i| < Tσ2

e
)

(17)

Notice that the above replacement implies the binary erasure channel (BEC).
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Let L(1) be the number of |ŷ′
i| ≥ Tσ2

e
and Z

(1)
HD be the proper threshold for

the determination of guilty. We first calculate the correlation score S
(1)
j :

S
(1)
j =

L∑
i=1

Y
(1)
i Uj,i . (18)

Then, L(1) is derived by counting the number of elements |ŷ′
i| ≥ Tσ2

e
, which is

corresponding to the variance of S
(1)
j . For the given probability ε

(1)
2 such that

an j-th innocent user gets accused, the threshold Z
(1)
HD is calculated as follows.

Z
(1)
HD =

√
2L(1) · erfc−1

(
2ε

(1)
2

)
(19)

Because of the randomness of the Gaussian noise, the reliable elements is re-
garded as the elements of sub-codeword with length L(1). The traceability of
the above method is lower than the original HD method because the length of
sub-codeword is reduced to L(1)(≤ L), though the increase of the false-positive
probability is limited. We denote this method by “method I”.

At the method I, only reliable elements |ŷ′
i| ≥ Tσ2

e
are selected for the tracing

algorithm. It does not mean that the other elements are useless for the judgment.
They also contain useful information to improve the traceability though they may
increase the probability of false-positive. In order to extract as much information
as possible without sacrificing the probability of false-positive, we propose a new
tracing algorithm which consists of two stages. First, suspicious users are listed
up using the method I by setting ε

(1)
2 higher to allow the false-positive at this

stage. Then, the elements |ŷ′
i| < Tσ2

e
are classified into two symbols “−1” and

“1”, and the others are changed 0. The replaced elements Y
(2)
i are represented

as follows;

Y
(2)
i =

⎧⎨⎩
1 (0 ≤ ŷ′

i < Tσ2
e
)

−1 (−Tσ2
e

< ŷ′
i < 0)

0 (|ŷ′| ≥ Tσ2
e
)

(20)

Only for the suspicious users whose scores are S
(1)
j > Z

(1)
HD, the correlation scores

S
(2)
j are calculated as follows.

S
(2)
j = S

(1)
j +

L∑
i=1

Y
(2)
i Uj,i (21)

Finally, j-th user is judged guilty if S
(2)
j > ZHD, where the threshold ZHD is

given by Eq.(7). We denote this method by “method II”.
In the method II, we first detect suspicious users from all users using the sub-

codeword under the criterion that their sub-codewords retain high correlation
with that of pirated codeword. The sub-codeword of pirated codeword is com-
posed of reliable elements |ŷ′

i| ≥ Tσ2
e

and the number of bit flips caused by the
additive noise is only PflipL in the sub-codeword. If PflipL is small, the number of
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innocent users involved in the detected suspicious users is expected to be ε
(1)
2 N .

In such a case, even if some innocent users are accidentally detected at the first
stage, the second stage excludes such innocent users with high probability. In
addition, without loss of generality, the following relation is satisfied.

Pr
(
S

(2)
j > ZHD|S(1)

j > Z
(1)
HD, j ∈ I

)
> Pr(Sj > ZHD, j ∈ I) , (22)

where I stands for a set of innocent users. Therefore, the method II can reduce
the probability of false-positive effectively.

The performance of method II depends on the selection of ε
(1)
2 and Pflip as

the number of suspicious users detected by the tracing algorithm is controlled
by these parameters. Remember that it is desirable to keep the number of bit
flips PflipL in a sub-codeword as small as possible from the result in Sect.3.3.

5 Experimental Results

We implement the proposed tracing algorithms and evaluate the collusion-
resistance. Under the marking assumption, c̃ codewords are randomly chosen
and majority attack is performed to produce a pirated codeword ŷ. After the
collusion attack, white Gaussian noise is added to the pirated codeword ŷ′

i and
try to detect as many colluders as possible from the degraded codeword ŷ′

i. The
length of codeword is L = 104 and the range of bias distribution pi is given
by setting t = 0.000167 (c = 20). The number of users is N = 104, and the
false-positive probability is ε1 = 10−4. For the design of the threshold Tσ2

e
, the

probability is fixed to Pflip = 10−4, which average number of flipped bits is
PflipL = 1. The number of trials for Monte-Carlo simulation is 105.

First, the number of detected colluders is evaluated for various SNR of AWGN
channel with a fixed number of colluders c̃ = 10. As evaluated in Sect.3.3, the
number of detected colluders of SD method is lower than that of HD method, so
we compare the performance of proposed methods with the HD method, which
results are shown in Fig.5 and Fig.6. We can see that the performance of the
method I is much lower than the others. It is because of the short code length
L(1) ≤ L. The method II improves the performance compared with the method
I. When the threshold Z

(1)
HD, which value is dependent on the given probability

ε
(1)
2 , is small, the number of suspicious users is increased, and hence, the number

of detectable colluders is improved as shown by the two cases ε
(1)
2 = 10−3 and

ε
(1)
2 = 10−4.

For the comparison with the HD method, the probabilities of false-positive
are shown in Fig.6. Although the probabilities of method I and method II are
slightly growing up with the increase of the amount of noise, the increasing rate
is much smaller than that of HD method. Compared with method II, we can
see that the false-positive probability of method I is monotonically growing up.
It is because of the following reason. Perr becomes large with the decrease of
SNR, and hence, the variance σ2

e estimated by Eq.(14) becomes smaller than the
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Fig. 5. The number of detected colluders,

where c̃ = 10 and ε1 = 10−4
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Fig. 6. The probability of false-positive,

where c̃ = 10 and ε1 = 10−4
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Fig. 7. Comparison of the number of detected colluders for various SNR

actual one. It causes the error on the estimation of the threshold Tσ2
e
. Since the

derived threshold is smaller than the actual one, the probability Pflip becomes
large. As the result, the number of flipped bits are increased and accordingly
the probability of false-positive is increased. It is remarkable that the error on
the estimation of σ2

e is almost canceled at the final determination of guilty in
method II, which is conformed by the experimental results.

As the reference data, the comparison of the number of detected colluders is
shown in Fig.7 by changing SNR, where the number of trials is 102 times. When
SNR is 5 [dB], the performance of method II with ε

(1)
2 = 10−3 is better than

that of method II with ε
(1)
2 = 10−4 because of the difference in the number of

detected suspicious users. When SNR is 6 [dB], no remarkable difference of the
performance is appeared, and they are approaching to the lines of HD method.
Referring to the results in Fig.6, it is confirmed that the false-positive probability
of method II is strongly dependent on the design of ε

(1)
2 .

For the evaluation of stability of false-positive probability, the number of
colluders c̃ is increased to produce a pirated codeword, and after the addi-
tion of noise, it is input to the proposed tracing algorithm. The probability of
false-positive for various number of colluders is plotted in Fig.8. We can see that
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Fig. 8. The probability of false-positive for various number of colluders

the probabilities are almost within a small range even if the number of colluders
is changed. We also evaluate the probability of false-positive for various kinds of
collusion attacks, which results are shown in Table 1. The table confirms that
the probability of false-positive is not dependent on the attack strategy.

The performance of the proposed tracing algorithm is further evaluated for
various kinds of parameters. Table 2 and Table 3 show the number of detected
colluders and the probability of false-positive under a constant number of collud-
ers c̃ when the allowable numbers of users in a fingerprinting system are N = 105

and N = 106, respectively. Due to the limitation of computational resources, the
number of trials for Monte Carlo simulation is 105 and 104 for N = 105 and 106,
respectively. In addition, we use the probabilities ε1 = 10−4 and ε1 = 10−3 to
keep the precision of the derived probability of false-positive. We set ε

(1)
2 under

the policy that the number of innocent users in the detected suspicious users is
10 in average. From these tables, we can see that the proposed tracing algorithm
with the above given parameters detects many colluders with less innocent users,
and the probability of false-positive is very close to the designed probability ε1.
The comparisons of the number of detected colluders and the probability of false-
positive are shown in Fig.9 and Fig.10, respectively. The solid line represents the
result of the case that the length is L = 10000 and the number of colluders is
c̃ = 10, the dashed line is the case with L = 5000 and c̃ = 7, and the dotted

Table 1. Comparison of false-positive probability for various kinds of collusion attacks,

where N = 104, c̃ = 10, L = 10000, ε
(1)
2 = 10−3, and ε1 = 10−4

SNR tracing collusion attack

[dB] algorithm majority minority random All-0 All-1

5 HD 111.6 × 10−4 111.9 × 10−4 105.2 × 10−4 113.3 × 10−4 110.6 × 10−4

method II 0.9 × 10−4 1.2 × 10−4 0.7 × 10−4 1.2 × 10−4 0.7 × 10−4

8 HD 17.1 × 10−4 16.0 × 10−4 17.2 × 10−4 16.6 × 10−4 15.6 × 10−4

method II 0.5 × 10−4 1.0 × 10−4 0.7 × 10−4 0.8 × 10−4 0.4 × 10−4

13 HD 0.1 × 10−4 0.7 × 10−4 0.2 × 10−4 0.2 × 10−4 0.4 × 10−4

method II 0.1 × 10−4 0.7 × 10−4 0.2 × 10−4 0.2 × 10−4 0.4 × 10−4
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Table 2. The number of detected colluders under a constant number of colluders c̃ = 10

when the allowable number of users is expanded, where the code length is L = 104

(a) N = 105, ε
(1)
2 = 10−4, and ε1 = 10−4

SNR [dB] HD method II

5 4.62 4.17

8 6.21 6.21

13 6.50 6.50

(b) N = 106, ε
(1)
2 = 10−5, and ε1 = 10−3

SNR [dB] HD method II

5 4.57 4.12

8 6.16 6.16

13 6.45 6.45

Table 3. The probability of false-positive under a constant number of colluders c̃ = 10

when the allowable number of users is expanded, where the code length is L = 104

(a) N = 105, ε
(1)
2 = 10−4, and ε1 = 10−4

SNR [dB] HD method II

5 871.6 × 10−4 3.5 × 10−4

8 135.7 × 10−4 3.7 × 10−4

13 1.1 × 10−4 1.1 × 10−4

(b) N = 106, ε
(1)
2 = 10−5, and ε1 = 10−3

SNR [dB] HD method II

5 910.8 × 10−3 2.6 × 10−3

8 146.5 × 10−3 2.2 × 10−3

13 0.5 × 10−3 0.5 × 10−3
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Fig. 10. Comparison of the false-positive

probability, where N = 104 and c̃ =

10, 7, 4 for the codes with length L =

10000, 5000, 2000, respectively

line is the case with L = 2000 and c̃ = 4. From Fig.9, it is confirmed that the
performance of method II is degraded from that of HD method when SNR drops
to less than 6 [dB]. The probability of false-positive is, however, much smaller
than that of HD method, and it almost keeps within a small range even if the
length is changed.

6 Conclusion

In this paper, we relaxed the marking assumption to consider more realistic sit-
uation. In our attack model, a pirated codeword is modulated by BPSK, and
is degraded by additive white Gaussian noise after performing collusion attack.
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Considering the watermarking technique, the extracted codeword from the pi-
rated copy is represented by analog values. To accommodate with the degra-
dation caused by the noise, the proposed tracing algorithm first estimates the
amount of noise injected to a channel, and then, detects as many colluders as
possible. In order not to increase the probability of false-positive, the proposed
algorithm classify the elements of the codeword into reliable ones and the others
and detect suspicious users using the former ones with the threshold calculated
under the Gaussian assumption of the correlation score. Then, among the suspi-
cious users, the proposed algorithm narrow down the suspicious users using the
whole codeword with the corresponding threshold. From the simulation results,
it is confirmed that the proposed tracing algorithm can detect many colluders
with less innocent users.
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Abstract. The field of steganalysis has blossomed prolifically in the past

few years, providing the community with a number of very good blind ste-

ganalyzers. Features for blind steganalysis are generated in many differ-

ent ways, typically using statistical measures. This paper presents a new

image modeling technique for steganalysis that uses as features the con-

ditional probabilities described by a stochastic model called a partially
ordered Markov model (POMM). The POMM allows concise modeling

of pixel dependencies among quantized discrete cosine transform coeffi-

cients. We develop a steganalyzer based on support vector machines that

distinguishes between cover and stego JPEG images using 98 POMM

features. We show that the proposed steganalyzer outperforms two com-

parative Markov-based steganalyzers [25,6] and outperforms a third ste-

ganalyzer [23] on half of the tested classes, by testing our approach with

many different image databases on five embedding algorithms, with a

total of 20,000 images.

1 Introduction

Steganography is the field of covert communication: sending a message in such a
way that only the sender and receiver are aware of the existence of the message.
While steganography has been practiced since ancient times, the availability of
digital media for hiding secret messages has exploded the use of this means of
communication. The goal of steganography is to embed a payload into a cover
object to obtain a stego object so that the presence of hidden information cannot
be detected by either perceptual or statistical analysis of the stego object. The
development of stego-detection schemes, called steganalysis, began immediately
after popular embedding freeware became available on the Internet. The main
goal of steganalysis is to identify whether a given object has a payload embedded
in it. Other information about the payload is often sought, including identifica-
tion of the steganography algorithm, estimation of payload length, recovery of
the payload, or obliteration of the payload. If there exists an algorithm that can
determine whether or not a given image contains a secret message with a success
rate better than random guessing, the steganographic scheme is considered to
be broken. A more detailed introduction to steganography and steganalysis can
be found in [13].

R. Böhme, P.W.L. Fong, and R. Safavi-Naini (Eds.): IH 2010, LNCS 6387, pp. 118–132, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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This paper focuses on steganalysis of still image data in the Joint Photo-
graphic Experts Group (JPEG) format. Image data is a good choice for hiding
payload, as this type of media file is readily available in copious amounts and
their use in steganography can be difficult to detect. JPEG images also have the
advantage of low bandwidth for storage and transmission, unlike raw or other
uncompressed formats, and there is a wide variety of freeware available for hiding
secret information; see the site stegoarchive.com [27].

Attacks on steganography have two broad divisions: targeted and blind ste-
ganalysis. In targeted steganalysis, known embedding signatures, such as charac-
teristic histogram shapes, are exploited to create specific feature values that can
distinguish between stego and cover images. Blind steganalysis systems use a set
of generic feature values that model image statistics so as to distinguish between
cover and stego images, and a pattern classifier for identification of classes. Blind
methods can be used on a variety of steganographic algorithms and offer the po-
tential to identify unknown but similar embedding algorithms. In this paper, we
approach the blind steganalysis problem as a two-class problem that identifies
an image as cover or stego. Features based on statistical measures of the data
have been most successful, as they contain information that quantify differences
between cover and stego images [6,23,12,18]. Our features arise from a stochas-
tic model that is able to differentiate ”noise” characteristics between cover and
stego images. The pattern classifier we use is a two-class support vector machine
(SVM), used in prior successful steganalysis systems [6,23].

Previous works using Markov-based features include the works by Shi et al.
[25] who used Markov transition matrices applied to differences of quantized
DCT coefficient values. The steganalyzer calculated four directional differences in
neighboring values in the DCT coefficients. Their steganalyzer used 324 feature
values, an SVM classifier, and approximately 7500 training images. In Pevný et
al.’s more recent work [23], the authors perform calibration of the image data first
and then average the four Markov feature direction sets into one set, producing
81 instead of 324 feature values. The 81 features are added to an extended
set of 193 DCT features, producing a total of 274 features. This set produces an
improvement in classification accuracy over Shi’s model. Later in 2008, Chen and
Shi [6] extended the steganalyzer in [25] to 486 features by computing transition
probability matrices for each difference JPEG 2-D array to utilize the intrablock
correlation, and ”averaged” transition probability matrices for those difference
mode 2-D arrays to utilize interblock correlation. Other Markov modeling for
steganalysis on spatial domain data has also been performed [28,22].

The rest of the paper is organized as follows. In Section 2, we give an introduc-
tion to POMMs and then develop a particular POMM model for the purpose of
steganalysis in Section 3. In Section 4 we give details of our experiments followed
by a discussion of the results in Section 5. We conclude with remarks in Section 6.

2 Partially Ordered Markov Models

The probabilistic model called partially ordered Markov models (POMM) can be
used to describe statistical characteristics of an image [9]. A subclass of Markov
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random fields, it is a model that was used previously for texture analysis and
synthesis [9,8,15] . In this paper, we show that it can provide a rigorous founda-
tion for describing steganalysis features in a theoretical probabilistic way. There
is dependency between DCT coefficients which the steganalyst can exploit to de-
tect hidden payload, as steganography embedding in the DCT domain typically
changes the statistical dependency among DCT coefficients. The steganalyst’s
job is to discover measures that quantify these changes. A Markov based process
has used to capture this dependency with success in [25,6]. In this section, we
present the partially ordered Markov model as a stochastic model used to exploit
inherent dependencies between DCT coefficients for steganalysis.

Markov random fields (MRFs) are a well-known modeling tool and have many
successes in image analysis. However, the use of MRFs continues to be problem-
atic when problems require computing an explicit joint probability, such as for
texture classification and parameter estimation. Development of POMMs grew
from investigating computationally efficient models to implement spatial stochas-
tic models for images. POMMs allow, under minimal and reasonable assump-
tions, an explicit closed form for the joint probability of the random variables
(r.v.s) at hand, expressed in terms of a conditional probability. The conditional
probabilities express the spatial dependency of the data, via a directional neigh-
borhood, unlike the undirected neighborhood of a MRF model. POMMs are a
generalization of Markov Mesh Models (MMMs) [2], which are themselves a gen-
eralization of Markov chains. A partially ordered Markov model generalizes the
concept of local neighborhood directionality by using an acyclic directed graph
underlying the pixel locations. An acyclic digraph, in turn, has a well-known re-
lation to a partially ordered set [3]. This characteristic results in a computational
advantage of POMMS over MRFs: whenever the normalizing constant needs to
be calculated, such as in determining the joint probability distribution function
(pdf), the joint pdf of a POMM is available in closed form, and the normalizing
constant for a POMM is always known and equal to the value one [9]. We next
present graph-theoretic concepts used to define a POMM.

Let V be a set of vertices, and E be a set of directed edges between ver-
tices in V . Thus, V = (V1, V2, ..., Vk) and E = {(i, j) : Vi, Vj ∈ V, and (i, j)
is an edge with tail on i and head on j}. For our purposes, we also assume
that there are no cycles in E, that is, there does not exist a sequence of edges
(i1, j1), (i2, j2), ..., (iu, ju) where jn = in+1, n = 1, ..., u − 1 and ju = i1. Thus,
we assume that (V, E) is an acyclic directed graph, or acyclic digraph.

The example we are interested in occurs on an M x N array of r.v.s that
represents the image data. Other examples can be found in [9]. The notation
P (A) denotes the (discrete) probability measure A, based on the r.v. A. We
use the common notation that an upper-case letter denotes the r.v. A, while
a realization of A is denoted by a. P (A|B) is used to denote the conditional
probability measure of A given another r.v. B. Let A = {Ai,j : 1 ≤ i ≤ M, 1 ≤
j ≤ N} be an array of r.v.s representing the image data on an M × N ar-
ray. Let S be a collection of ordered subsets described by S = {S1, ..., St},
where each Si is a ordered subset of r.v.s in array A. For example, we can let
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S1 = {A11, A12}, S2 = {A12, A13}, etc. for all horizontal pairs of pixels in A.
Let f be a function from S to IR where IR is the set of real numbers. In our
example, f(Si) = f(Ajk, Aj,k+1) for some indices i, j and k. Describe an edge Ei

between an element of the range of f and an element of S by Ei = (f(Si), Si).
Note that the image under f of Si is f(Si), and the pre-image of f(Si) is Si.
The edge has tail on image f(Si) and head on pre-image Si. Let E be the set
of all edges created on V in this manner. Let the set of vertices be the r.v.s
V = S ∪ f(S). It is straightforward to show that (V, E) is an acyclic digraph.
We discuss reasons for this particular choice of acyclic digraph below. We call
this example the function − subset acyclic digraph, denoted f − S, and use it
in Section 3 to create features.

An acyclic digraph has an associated partial order ≺ in the sense of Birkhoff
[3]. A partial order is defined as follows.

Definition 1. Let V be a set and let ≺ be a subset of V × V , that is, ≺ is a
binary relation on V . A set of elements V with binary relation ≺ is said to have
a partial order with respect to ≺ if the following properties hold:
1. w ≺ w for all w ∈ V (reflexivity)
2. w ≺ x, x ≺ y ⇒ w ≺ y (transitivity)
3. If w ≺ x and x ≺ w then w = x (anti-symmetry)

In this case, (V,≺) is called a partially ordered set, or a poset. By convention,
we write w � x to mean w ≺ x. A partial order can be loosely described as
a relationship between some pairs of elements in V , where not all elements are
necessarily related. A common example of a poset is the set of all subsets of a
set, ordered or related by set inclusion.

The relationship between an acyclic directed graph and a partial order is: two
elements Vi and Vj in the vertex set V are related under the partial order ≺ if
(i, j) is a directed edge in E. In this case we write Vi ≺ Vj .

We next give a few additional definitions that enable us to define a partially
ordered Markov model.

Definition 2. Let V be a set of vertices. For any B ∈ V , the cone of B is the
set cone B = {C ∈ V : C ≺ B, C �= B}.

Definition 3. For any B ∈ V , the adjacent lower neighbors of B are those
elements C ∈ V such that (C, B) is a directed edge in the graph (V, E). Formally,
adj≺B = {C : (C, B) is a directed edge in E}.

The set adj≺B is the set of vertices that have directed edges into B.

Definition 4. An element B in V is a minimal element if there is no element
C in V such that C ≺ B.

Equivalently, B is a minimal element if there is no directed edge (C, B) in E for
any C ∈ V . Let L0 be the set of minimal elements in the poset. For the remainder
of the paper, we assume that the elements of set V are random variables.

Definition 5. The partially ordered Markov model (POMM) is defined as fol-
lows: Let B ∈ V where (V, E) is a finite acyclic digraph of r.v.s and (V,≺) is its
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corresponding poset. Describe the set of r.v.s not related to B by YB = {C : B
and C are not related }. Then (V,≺) is called a partially ordered Markov model
(POMM) if for any B ∈ V \L0 and any subset UB ⊂ YB we have

P (B|cone B, UB) = P (B|adj≺B). (1)

This material is sufficient to discuss the features described next. The interested
reader is directed to [9].

3 POMMS for Steganalysis

With the notation introduced in the previous section, we now discuss the appli-
cation of POMMs to steganalysis. We describe a POMM whose random variables
use the quantized DCT coefficients array. Assume that the quantized coefficients
are described by random variables on a rectangular pixel set, and are given by
A = {Ai,j : 1 ≤ i ≤ M, 1 ≤ j ≤ N}. Let f be a function chosen by the ste-
ganalyzer that exploits the dependency among DCT coefficients. If f is a useful
function for the steganalyst, then the quantity P (Sk|f(Sk)), which is a measure
of the frequency of occurrence of the pre-image of f(Sk), can be used to dis-
tinguish between cover and stego images. This is the motivation for using the
partial order as described earlier. Experimental results shown below indicate that
at least for the choice of functions f we applied, these conditional probabilities,
when used as features, can distinguish between cover and stego very well.

For our purposes, the function

f(v1, v2) = v1 − v2 (2)

has been shown to be a useful feature for steganalysis [25], [6], where v1 and v2 are
two adjacent pixels. Using the function f in Eq. 2, we create a series of individual
POMMs whose underlying acyclic digraphs are constructed according to the f−S
example from Section 2. The feature values are conditional probabilities, which
are averaged over a collection of POMMs. Calibration is also applied, and the
final set of features is the difference between the input and calibrated image
features.

Given a rectangular array of r.v.s, we use the four directions horizontal,
vertical, diagonal, and minor diagonal to define the four sets Sh, Sv, Sd, Sm

based on directional subsets Sh
i,j = {Ai,j , Ai,j+1}, Sv

i,j = {Ai,j , Ai+1,j}, Sd
i,j =

{Ai,j , Ai+1,j+1}, and Sm
i,j = {Ai+1,j , Ai,j+1}. From these sets we construct the

four acyclic digraphs (V ∗, E∗) with V ∗ = S∗ ∪ f(S∗) and E∗ = {E∗
i : E∗

i =
(f(S∗

i ), S∗
i )}, ∗ ∈ {h, v, d, m}. For each (V ∗, E∗), we construct the correspond-

ing POMM P ∗ defined by its conditional probabilities

P ∗(S∗|f(S∗)) =
P ∗(S∗, f(S∗))

P ∗(f(S∗))
(3)
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These conditional probabilities are calculated by histogram binning of the data.
For computational purposes, we threshold values in the rectangular array A to
between −T and +T for some integer T :

Ai,j =

⎧⎪⎨⎪⎩
Ai,j if −T ≤ Ai,j ≤ T

−T if Ai,j < −T

+T if Ai,j > +T

This limits the number of values for P ∗(S∗|f(S∗)) to (2T + 1)2 for a given
direction ∗. If we define a (2T + 1) × (2T + 1) matrix F ∗ by

F ∗(w, z) = P ∗(S∗|f(S∗)) = P ∗(w, z|f(w − z)),

then a set of (2T + 1)2 features can be defined by

F (w, z) =
1
4

∑
∗∈{h,v,d,m}

F ∗(w, z) =
1
4

∑
∗∈{h,v,d,m}

P ∗(S∗|f(S∗)) =

=
1
4

∑
∗∈{h,v,d,m}

P ∗(w, z|f(w, z)). (4)

Thresholding reduces the number of features necessary for classification. Indeed,
larger values of T do not necessarily give better classification rates, as discussed
in Section 4. We next discuss the application of this POMM to two different
sets of arrays, one the global quantized DCT array values that captures the
intrablock dependencies, and the other the mode arrays that capture interblock
dependencies. Mode arrays are created by collecting the mode frequency from
different blocks.

3.1 Intrablock Features

Certainly, steganographic embedding can cause disturbances on the smoothness,
regularity, continuity, consistency, and/or periodicity of quantized DCT coeffi-
cients, and therefore affect correlations among DCT coefficients. To quantify
this change, we create the above defined POMM on the global quantized DCT
coefficients array. We use the averaged conditional probabilities given in Eq. 4 as
intrablock features for a given image. Since this POMM models the dependency
among DCT coefficients within a 8x8 DCT block, we refer to these as intrablock
features. This results in (2T + 1)2 features.

3.2 Interblock Features

Interblock dependency is determined by first collecting JPEG mode values into
an array, that is, the DCT coefficients located at the same relative position
within each 8x8 block. JPEG steganographic embedding typically disturbs this
kind of interblock dependency. Let the r.v. array A represent the quantized DCT
coefficient array with size MxN . Then there are Nr ∗ Nc number of 8x8 DCT
blocks where Nr = �M

8 � and Nc = �N
8 �. Let X i,j be the r.v. array formed by

collecting DCT coefficients located at i, j from every 8x8 block. Equivalently,
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X i,j
u,v is the DCT coefficient located at position (i, j) in the (u, v)-block where

1 ≤ u ≤ Nr, 1 ≤ v ≤ Nc. The array X i,j is called a mode array as it represents
mode or specific frequencies from every 8x8 block. There are 64 mode arrays
X i,j.

To capture interblock dependency, we calculate conditional probabilities as in
Eq. 4 on every mode array X i,j . We use the conditional probabilities averaged
over all 64 mode arrays as interblock features. This results in an additional
(2T + 1)2 features.

We apply calibration to reduce the dependency of the feature values on the
image content itself. Calibration is a well known technique in steganalysis that
can improve detection accuracy by making features dependent on the changes
incurred by data hiding rather on the image content itself [12]. More information
on calibration can be found in [21]. We cropped by 4 pixels on each side to
perform calibration.

Let Io be the given image, and let its calibrated image be Ical. We calculate
intra- and inter-block features for Ical also, and then use the difference between
the two features (F o−F cal)(w, z) as our final set of features. There are (2T +1)2

number of intrablock features and (2T + 1)2 number of interblock features, for
a total of 2*(2T + 1)2 number of features for a fixed value of T .

4 Experiments

It has been shown recently in [20] that the performance of a steganalyzer depends
on the database used for training and testing the steganalyzer. Therefore, for
our experiments, we use four different databases to compare our steganalyzer
based on proposed feature set with other steganalyzers.

– Bows2: This database contains 10,000 images of size 512x512 in pgm format.
– Camera: This database consists of 3164 images captured using 24 different

digital cameras (Canon, Kodak, Nikon, Olympus and Sony) previously used
in [14]. They include photographs of natural landscapes, buildings and object
details. All images are of size 512x512 and stored in a raw format (tif) i.e.
the images have never undergone lossy compression.

– Corel: This database consists of 8185 images from the Corel database [7].
They include images of natural landscapes, people, animals, instruments,
buildings, artwork, etc. Although there is no indication of how these images
have been acquired, they are very likely to have been scanned from a variety
of photos and slides. This database has been previously used in [30]. All
images are of size 512x512 and stored in a raw format (tif).

– NRCS: This database consists of 2,375 images from the NRCS Photo Gallery
[1].The photos are of natural scenery, e.g. landscape, cornfields, etc. These
images were acquired by scanning photographic negatives at three wave-
lengths, introducing a relatively high level of noise. This database has been
previously used in [19]. All images in this database too are of size 512x512
and stored in a raw format (tif). Results from this database are omitted from
the paper due to space limitiations.
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The last three databases were downloaded from [11]. We generate the training
and testing set for each database separately as follows. The images were di-
vided randomly into two disjoint groups of equal size. The first group was used
to create the training examples with both cover and stego data. The second
group contained the remaining images that were used for testing. We did not
use those stegoimages for which the steganography embedding algorithm exited
unsuccessfully. Thus, no image or its different variations were simultaneously
seen by the SVMs for testing and training, and there were an equal number
of images used for cover and stego. This strict division of images enabled us
to estimate the performance on never seen images. We intentionally chose to
generate our cover and stego images for training and classification in a way to
avoid double compression, reformatting the raw pgm files into JPEG files saved
with 75% quality factor. Recall that a JPEG image is double compressed when
it is first compressed using quantization matrix Q1, then uncompressed and
re-compressed using quantization matrix Q2, where Q2 �= Q1. When an image
undergoes double compression, the statistics of DCT coefficients can change, and
may resulting in misclassification if the steganalyzer is not designed to handle
detection of double compression. Our detection scheme assumes that the data
has not been double-compressed.

We generate stego images by embedding data with different message lengths
and different embedding algorithms. The five different steganography embedding
methods we consider are: OutGuess [24], F5 [29], JPHide& Seek [16], StegHide
[26], and JSteg [17]. Each of these methods embeds bits of value 0 or 1 directly
into the quantized DCT coefficient array. The payload is assumed to be an
encrypted bitstream. We use bits per nonzero ac coefficient, or bpnz to describe
message length, with bpnz = 0.05, 0.1, 0.2, 0.4. Images embedded using Outguess
have only bpnz = 0.05, 0.1, 0.2. Once the stego images are generated, we extract
feature values from the cover and stego images according to the steganalyzer.
For each database, feature set and for each algorithm we train a soft margin
support vector machine with gaussian kernel [4] (using LIBSVM [5]).

We determined the training parameters of the C-SVMs by grid-search per-
formed on the following multiplicative grid

(C, γ) ∈
{(

2i, 2j
)
|i ∈ Z, j ∈ Z

}
.

We compare our results with steganalyzer from feature set proposed in [25], [6]
and [23] abbreviating them as Markov324, Markov486 and Merged, respectively.

5 Discussion of Results

Tables 1-4 display the classifier results for values of T = 1, 2, 3, 4 and 5, presenting
the accuracy of detection in percentage values for each binary classifier: cover vs.
stego, for different embedding algorithms, for varying values of T , and for each
of the four databases. We first understand the effect of threshold parameter T
on the detection accuracy. Note that different values of T will produce different
POMMs and hence we get different feature sets. For purposes of comparison,
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Fig. 1. Detection accuracy results for different steganalyzers on BOWS2 database.

Note different scales on y axis.
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Fig. 2. Detection accuracy results for different steganalyzers on Camera database. Note

different scales on y axis.
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Fig. 3. Detection accuracy results for different steganalyzers on Corel database. Note

different scales on y axis.
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if more than 5000 images were used for training, we assume that differences
in classification of less than one percent are relatively equivalent. It is clear
from Tables 1-4 that the POMMs with T = 1 (18 features) and T = 2 (50
features) do not capture steganographic changes at lower embedding rate, and
this is true across the different databases. It is also clear that the POMMs with
T = 3 perform better than the other POMMs in smaller database (NRCS and
Camera) for JPHide whereas the POMM with T = 5 performs better on larger
databases. This trend is also true for F5. For example, POMM with T = 3 gives
a detection accuracy of 56% for 0.05 bpnz embedding for F5 algorithm whereas
POMM with T = 5 gives an accuracy of 50%. But the trend is reversed once
you go to a larger database. In Bows2 database which has 10000 images, the
POMM with T = 5 gives a detection accuracy rate of 54% for F5 at 0.05 bpnz
whereas POMM with T = 3 gives 51%. It can also be seen that POMM with
T = 3 gives an overall better detection for OutGuess irrespective of database
size. Performances of the POMM steganalyzers with T ≥ 3 are approximately
same for Jsteg and Steghide across different databases. It is clear that based on
the database size, a POMM can be build by selecting an appropriate value of T .
Based on the above observations, we chose POMM with T = 3 to compare our
approach with other steganalyzers proposed in the literature.

Table 1. Detection accuracy results for

POMM based features on NRCS database

T=1 T=2 T=3 T=4 T=5

Jsteg

Cover 92.67 99.75 99.75 99.83 100.00
0.05 bpc 24.43 98.15 99.58 98.99 98.99
0.10 bpc 41.62 100.00 100.00 100.00 100.00
0.20 bpc 77.93 100.00 100.00 100.00 100.00
0.40 bpc 98.74 100.00 100.00 100.00 100.00

Outguess

Cover 81.89 99.58 99.92 99.66 99.66
0.05 bpc 37.18 97.39 98.31 99.16 98.90
0.10 bpc 61.64 99.92 100.00 100.00 100.00
0.20 bpc 90.37 100.00 100.00 100.00 100.00

F5

Cover 90.31 93.01 93.18 93.43 92.00
0.05 bpc 29.65 48.19 56.53 50.72 49.71
0.10 bpc 74.47 95.79 97.39 96.46 95.20
0.20 bpc 99.92 99.92 100.00 100.00 100.00
0.40 bpc 100.00 99.75 100.00 100.00 100.00

Steghide

Cover 71.61 95.37 96.04 96.29 96.12
0.05 bpc 36.82 74.05 74.56 72.11 73.38
0.10 bpc 40.86 89.81 92.25 91.24 90.73
0.20 bpc 49.03 97.73 98.99 98.99 99.16
0.40 bpc 62.59 99.58 99.75 100.00 100.00

JPHide

Cover 83.40 84.92 89.22 91.49 90.90
0.05 bpc 29.16 37.45 30.68 28.23 25.44
0.10 bpc 32.94 44.45 39.63 39.46 37.85
0.20 bpc 51.86 69.71 84.43 88.83 92.22
0.40 bpc 90.76 96.02 98.39 99.07 99.66

Table 2. Detection accuracy results for

POMM based features on Camera database

T=1 T=2 T=3 T=4 T=5

Jsteg

Cover 86.22 99.18 99.75 99.56 99.24
0.05 bpc 35.08 91.66 94.69 94.56 94.75
0.10 bpc 50.51 99.30 99.62 99.62 99.62
0.20 bpc 78.07 99.81 99.87 99.94 99.94
0.40 bpc 98.48 99.94 100.00 99.87 100.00

Outguess

Cover 74.53 97.47 97.91 97.47 96.65
0.05 bpc 52.39 89.80 94.14 94.39 93.69
0.10 bpc 72.71 99.35 99.81 99.81 99.81
0.20 bpc 94.03 99.93 99.93 100.00 100.00

F5

Cover 85.21 87.29 87.42 85.40 90.14
0.05 bpc 44.82 52.97 53.29 54.99 45.70
0.10 bpc 86.09 93.11 93.55 93.99 89.82
0.20 bpc 99.05 99.43 99.49 99.56 99.37
0.40 bpc 99.18 99.43 99.49 99.62 99.49

Steghide

Cover 58.85 90.01 90.52 90.14 89.51
0.05 bpc 56.01 76.80 79.71 80.28 79.14
0.10 bpc 60.05 87.55 90.39 90.39 89.82
0.20 bpc 67.13 96.97 98.23 97.98 97.98
0.40 bpc 77.24 99.56 99.94 99.81 99.75

JPHide

Cover 85.40 85.71 85.40 90.52 91.28
0.05 bpc 61.90 69.18 66.90 60.95 60.57
0.10 bpc 63.12 71.28 70.53 64.45 64.71
0.20 bpc 72.51 80.30 87.97 87.84 89.42
0.40 bpc 95.89 97.91 99.05 99.24 99.37

In Figures 1, 2, and 3, the order of the detection accuracy for each level of
embedding is, from left to right: Markov324, Markov486, Merged, and POMM.
It is clear that the steganalyzer based on our proposed feature set clearly beats
Markov324 and Markov486 in all the databases at all the embedding rates for
almost every steganography algorithm. Even though the performances of the
steganalyzers are very close to 100% for higher embedding rates, their perfor-
mances vary much more at lower embedding rates. Note that Markov486 is an
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Table 3. Detection accuracy results for

POMM based features on Corel database

T=1 T=2 T=3 T=4 T=5

Jsteg

Cover 87.02 97.80 99.76 99.80 99.95
0.05 bpc 29.79 97.39 99.61 99.58 99.39
0.10 bpc 54.72 99.98 100.00 100.00 100.00
0.20 bpc 86.78 100.00 100.00 100.00 100.00
0.40 bpc 98.53 100.00 100.00 100.00 100.00

Outguess

Cover 75.81 99.00 99.61 99.80 99.80
0.05 bpc 42.79 97.48 98.58 98.34 98.34
0.10 bpc 62.07 100.00 100.00 100.00 100.00
0.20 bpc 89.89 100.00 100.00 100.00 100.00

F5

Cover 86.19 93.55 92.55 92.18 91.79
0.05 bpc 27.32 37.51 41.10 40.81 40.74
0.10 bpc 50.42 88.76 91.30 90.69 90.27
0.20 bpc 99.07 100.00 100.00 100.00 100.00
0.40 bpc 99.88 100.00 100.00 100.00 100.00

Steghide

Cover 60.68 92.67 94.26 93.94 94.79
0.05 bpc 46.29 73.34 74.98 75.66 73.78
0.10 bpc 49.39 89.10 91.59 91.94 90.32
0.20 bpc 55.33 98.44 99.17 99.19 99.10
0.40 bpc 66.01 99.95 100.00 99.98 100.00

JPHide

Cover 79.06 83.68 86.17 85.46 85.24
0.05 bpc 42.18 42.59 43.26 44.33 44.41
0.10 bpc 44.52 48.80 52.54 54.94 56.23
0.20 bpc 54.37 72.63 89.44 92.66 92.88
0.40 bpc 81.80 99.14 99.93 99.90 99.95

Table 4. Detection accuracy results for

POMM based features on Bows2 database

T=1 T=2 T=3 T=4 T=5

Jsteg

Cover 93.18 98.84 99.48 99.46 99.48
0.05 bpc 33.48 92.72 97.24 96.80 96.38
0.10 bpc 58.30 99.52 99.78 99.78 99.72
0.20 bpc 83.48 99.98 100.00 100.00 99.96
0.40 bpc 97.14 100.00 100.00 100.00 100.00

Outguess

Cover 81.84 98.70 99.38 99.08 99.38
0.05 bpc 38.63 94.88 96.32 96.90 96.90
0.10 bpc 62.75 99.84 99.88 99.90 99.92
0.20 bpc 92.29 100.00 100.00 100.00 100.00

F5

Cover 87.66 90.86 91.12 90.66 89.42
0.05 bpc 29.16 49.56 51.56 52.66 54.58
0.10 bpc 66.90 95.90 96.78 96.90 97.18
0.20 bpc 99.46 99.98 99.98 100.00 99.98
0.40 bpc 99.78 99.98 99.98 100.00 100.00

Steghide

Cover 66.34 92.48 94.66 93.96 94.34
0.05 bpc 44.36 74.40 77.28 78.04 77.82
0.10 bpc 48.60 88.40 91.56 92.14 91.56
0.20 bpc 55.88 97.36 98.62 98.82 98.74
0.40 bpc 70.28 99.82 99.88 99.92 99.94

JPHide

Cover 90.34 92.64 94.66 95.14 94.98
0.05 bpc 64.95 71.73 69.60 70.90 70.80
0.10 bpc 66.66 74.13 73.25 74.67 75.32
0.20 bpc 74.18 85.12 94.01 94.25 94.79
0.40 bpc 92.88 99.14 99.78 99.60 99.58

extension of Markov324 and the added inter block features have helped in boost-
ing the performance. However, our POMM based steganalyzer shows significant
improvement in performance at the lower embedding rates compared to either
Markov scheme. For example, for Bows2 database, Markov324 and Markov486
has a detection accuracy close to 6% whereas POMM based steganalyzer gave a
detection accuracy of 71%. Our proposed steganalyzer has also performed better
than Merged for Outguess and Steghide across all the databases whereas Merged
performs better at lower embedding rates for F5 and JPHide. Both steganalyz-
ers perform equivalently at higher embedding rates and for detecting Jsteg. For
example, the Merged steganalyzer gave a detection accuracy of 55% for Steghide
at 0.05 bpnz for Corel database whereas our POMM based steganalyzer gave a
detection accuracy of 74%. On the other hand, for the same database, Merged
performed better for JPHide at 0.05 bpnz with a detection accuracy of 57%
whereas our POMM based steganalyzer detected 44% of the stego images cor-
rectly. And this trend holds across different databases.

6 Conclusion

Clearly the POMM outperforms the Markov324 and Markov486 steganalyzers
on these databases. The POMM also outperforms the Merged on Steghide and
Outguess on the Corel and NCRS databases, as well as on F5 cover (Corel,
NCRS) and Jsteg (0.05, NCRS). The creation of features using the POMM is a
completely different approach than Merged, and it can offer a theoretical basis
foundation for describing, and possibly analzying, steganalysis features.

The use of a partially ordered Markov model to describe pixel dependencies
for steganalysis is presented in this paper. The conditional probabilities given
by the POMM are used as features to describe inter and intra block pixel rela-
tions in JPEG image data. Other choices for the function f given in Equation
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2 can be devised to describe other pixel dependencies, giving rise to features
whose potential for steganalysis can be inspected. The POMM with 98 features
performed better than either Markov model with 324 or 486 features, and as
well as or better than the Merged model in half of the classes. Other POMM
feature models are being investigated for future steganalysis, and a multiclass
detector using this POMM has been developed for use in a police forensic lab
[10]. A double-compression detector front-end is being developed as well using
these POMM features. Questions that remain open include investigating the use
of the joint pdf for steganalysis, and also the use of POMMs for spatial domain
steganalysis. Also, can the spatial dependency itself be determined from the
data, and used to provide a POMM whose features can be used to produce an
accurate steganalyzer?
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Abstract. We compare two image bases with respect to their capa-

bilities for image modeling and steganalysis. The first basis consists of

wavelets, the second is a Laplacian pyramid. Both bases are used to

decompose the image into subbands where the local dependency struc-

ture is modeled with a linear Bayesian estimator. Similar to existing

approaches, the image model is used to predict coefficient values from

their neighborhoods, and the final classification step uses statistical de-

scriptors of the residual. Our findings are counter-intuitive on first sight:

Although Laplacian pyramids have better image modeling capabilities

than wavelets, steganalysis based on wavelets is much more successful.

We present a number of experiments that suggest possible explanations

for this result.

1 Introduction

Most steganalytic methods are not capable of detecting general steganographic
manipulations in images (universal steganalysis), since they are tuned to specific
steganographic algorithms. The few currently available universal steganalytic
algorithms [13,8,11,2] are relatively insensitive towards small embeddings. This
is due to the problem of detecting a tiny manipulation (the embedded data) in
a large amplitude signal (the carrier image).

The large amplitude of the carrier signal can be largely reduced by applying
an image model to a suitably transformed image. The image model is capable
of predicting transform coefficients from their local neighborhoods [4] based on
the coefficient statistics of the image. Since an embedded message cannot be
predicted from the neighborhood statistics of the image, it must be part of the
prediction error of the model [13]. Thus, by analyzing the prediction error instead
of the whole image, we effectively remove most of the carrier signal. The residual
is much more affected by the embedding manipulation than the full image which
results in a better detectability.

The initial image transform determines the basis in which the image is mod-
eled and in which the residual is characterized by a suitable set of statistical

R. Böhme, P.W.L. Fong, and R. Safavi-Naini (Eds.): IH 2010, LNCS 6387, pp. 133–144, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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descriptors which constitute the input to a final classifier stage. In such a ste-
ganalyzer architecture, a plausible hypothesis can be stated as follows: “The best
image basis (or the best associated subband transform) is that which leads to the
image model with the highest predictability since this most effectively removes
the carrier from a potential stego image”. Here, we show that this is not the
case, and provide some hints on the possible reasons for this counter-intuitive
result.

Our study is based on a modified version of the well-known steganalyzer of
Lyu and Farid [13] which we describe in the next section. The investigated
image bases are QMF wavelets [18] and Laplacian pyramids [1]. In Sect. 3, we
present our results on image modeling and steganalysis performance. Additional
experiments for explaining these results are discussed in Sect. 4. We conclude
with a brief summary in Sect. 5.

2 Lyu and Farid’s Algorithm and Modifications

The input of Lyu and Farid’s algorithm is an image in its pixel representation.
Originally, a wavelet pyramid is built for each color channel (as shown in the
upper path in Fig. 1). Alternatively, the image can be decomposed into a Lapla-
cian pyramid described later (lower path in Fig. 1). Quadrature mirror filters
are used for building the wavelet pyramid [18] with a quadrature mirror filter of
width 9. We get 3(3s + 1) subbands for an RGB image and a pyramid with s
scales and three orientation subbands, i. e. diagonal, vertical, and horizontal ori-
entation. In the case of the alternative Laplacian pyramid representation [1], we

Laplacian

or

Prediction

for each band separately

Classification

Wavelet

for each
color

Residual

log(|S/S|) SVM

mean, var

Statistics

skewness
kurtosis

− ?

S

S

yes

no

ˆ

ˆ

Fig. 1. The algorithm—schematics

use a standard binomial filter of width 5 to obtain the lowband approximation
of the image. The number of pyramid levels was chosen to be the same as in
the wavelet pyramid, but—since the Laplacian pyramid does not decompose the
image according to orientation—we have only one subband per pyramid level
which results in overall 3s subbands for color images.

For predicting coefficients from their neighborhood, we need to specify a neigh-
borhood structure for each image representation which is shown in Fig. 2. The
neighborhood structure for wavelets is the same as in [13] (cf. Fig. 2a), the
Laplacian neighborhood is constructed analogously (cf. Fig. 2b), but without
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Fig. 2. Neighborhood structure for image modeling (color neighbors not included).

The central coefficient to be predicted is C, the light gray neighbors can be optionally

included but did not lead to significantly different results.

orientation neighbors. Both representations contain the corresponding central
coefficient from the other color channels in their neighborhoods (not shown in
Fig. 2). Due to only including the neighboring coefficients from closest orien-
tations on the same scale (hence including horizontal and vertical coefficients
for predicting the diagonal subband, but only diagonal coefficients for both the
horizontal and vertical subbands), and correspondingly only one (diagonal) or
two neighbors (horizontal and vertical) from the coarser scales, neighborhoods in
the wavelet representation contain 9 coefficients, in the Laplacian representation
7 coefficients.

The predictions are computed with linear regression applied to each subband
separately, i. e., the magnitude of the central coefficient is obtained as a weighted
sum of the magnitudes of its neighboring coefficients greater than a given thresh-
old: It has been shown empirically that only the magnitudes of coefficients are
correlated, and the correlation decreases for smaller magnitudes [4]. The weight
sets over all subbands thus constitute the image model. In their original ap-
proach, Lyu & Farid used standard least-squares regression for this purpose. In
our implementation, we use Gaussian process (GP) regression [14,15] instead af-
ter normalizing all subband coefficients to the interval [0, 1]. This approach leads
to slightly more robust, but essentially comparable results for the purpose of this
study. GP regression needs an additional model selection step for estimating the
noise content in the image. For that, we use Geisser’s surrogate predictive prob-
ability [7]. It is computed on a subset of of the coefficients: The finest scales
are subsampled by a factor of 5 and the coarser by a factor of 3, each in both
directions. Details on this regression technique can be found in [15].
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Each estimator is trained and used for prediction on the same subband. Thus,
training and test set coincide for this application. From the predicted coefficients
Ŝ, small coefficients with amplitude below a threshold of t = 1/255 are set to
zero. For reconstructing complete images, the algebraic signs are transferred from
the original to the predicted subband coefficients. The residual r is computed by
taking the logarithm of the coefficients of the input image transform S and the
predicted coefficients Ŝ and subtracting them subsequently, hence r = log S −
log Ŝ.

Next, the four lowest statistical moments—i. e. mean, standard deviation,
skewness, and kurtosis—of the subband coefficients (called marginal statistics
in [13]) and of the subband residuals (called error statistics) are computed,
again for each color and subband separately. Finally, all these independently
normalized statistics serve as feature inputs for a support vector machine [17].
In this study, we use s = 3 pyramid levels which results in a 120-dimensional
feature vector for the wavelet representation and in a 48-dimensional vector for
the Laplacian decomposition. The final classification was done with a 1-norm
soft margin non-linear C-SVM using a Gaussian kernel. The choice of the pa-
rameter C of the SVM and the width σ of the Gaussian kernel was based on
a paired cross-validation procedure [16]. The SVM is tunable in order to adapt
the rate of false alarms and the detection rate.

3 Comparison between Wavelet and Laplacian Basis

3.1 Image Modeling Performance

The prediction quality of the image model is measured in terms of the explained
variance in pixel space

Vexpl ≡
Vimg − Verr

Vimg

with the variance Vimg ≡ (1/n)
∑

i,j

(
S(xi, yj) − S̄

)2 of the n image pixels
S(xi, yj) (with mean S̄) and the mean square error Verr ≡ (1/n)

∑
i,j

(
S(xi, yj)−

Ŝ(xi, yj)
)2 where Ŝ(xi, yj) are the predicted pixel values and the (i, j) run over

all pixels in the image1. In addition, we provide explained variances for each
analyzed image scale separately to highlight the relative contribution of each
image scale to the overall error. In this case, variances, errors and predictions
are computed in transform coefficient space instead of pixel space, and the (i, j)
run over all coefficients belonging to a given scale.

We compared the explained variances of the two image bases on the familiar
Brodatz texture database [3] which contains 111 640 × 640-sized grayscale im-
ages scanned off black and white prints. In addition, we tested both bases on an
image database containing more than 1600 never compressed RGB color images

1 We prefer explained variance over the frequently used mean square error since it

provides a relative measure of image modeling performance and thus is independent

of the actual scaling of the pixel values.
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provided by the German Federal Office for Information Security. Although tex-
tures are not representative for natural images, they constitute a good testbed
for local Markov random field (MRF) type image models such as ours since they
are statistically uniform at a limited range of scales and orientations and thus
help to reveal potential weaknesses of a model which otherwise could remain in-
visible in natural images with their variable mixture of local textures. Typically,
a higher performance of a local MRF-type model on a texture database leads to
a higher performance on natural images which was also the case in our tests.

Fig. 3 shows that the Laplacian image basis outperforms the wavelet basis
significantly in terms of explained variance, even if training and test region of
the images were not the same. This happened consistently, both in pixel space
(first bar group, “pixel space reconstruction”) and across the different scales
of the Laplace or wavelet decomposition (bar groups numbered 1–4). For RGB
images, the advantages of the Laplacian basis are less pronounced but still sig-
nificant, since the high correlations between the color channels are exploited by
the models as well and thus lead to smaller differences in their prediction per-
formance, see Fig. 4. The better prediction performance of the Laplace basis can
be attributed to two factors: (1) Laplace coefficients are higher correlated with
their neighbourhood than wavelet coefficient magnitudes and thus are easier to
predict; (2) The Laplace pyramid is overcomplete by a factor of 4/3 which allows
for a more finely grained modeling of the local dependency structure.

3.2 Steganalysis Performance

The wavelet and the Laplacian image models were used for determining both
marginal and residual statistics for the above-mentioned image database of never
compressed color images. This is known to be the most difficult setting for steg-
analysis, as the entropies of the images remain high. For instance, JPEG arti-
facts contained in the images from previous compression simplify steganalysis
[11]. Different embedding algorithms and rates were used for creating sets of
stego images from these clean images.

The comparison of the distributions of the residuals for a clean color image and
its corresponding stego version can be seen in Fig. 5. Here, for the sake of easily
recognizable differences, the complete least significant bit plane was replaced
by white noise, serving as a representative of a very simple steganogram. In
Fig. 6, the corresponding distributions for the same color image are shown for
the Laplacian image model. The differences are very small, compared to the
distributions computed with the wavelet model.

From these distributions, we computed the statistical moments for every color
image that serve as associated feature vectors. The dimensionality of these vec-
tors was 120 for wavelet decomposition, and 48 for Laplacian decomposition.
After normalizing the components of these vectors independently, we carefully
selected the parameters of the support vector machine and its Gaussian kernel
(SVM, cf. [5]) C and γ by employing a 5-fold cross-validiation scheme specifically
adapted to the steganalysis scenario [16] on 1000 clean and 1000 stego images.
Subsequently, we trained the SVM using the values of C and γ determined in the
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last step on 2000 images (the training data, 1000 clean and 1000 stego images),
and then tested with a set of 1200 examples (600 clean and 600 stego images).
We randomly divided the entire set into training and test sets and averaged over
100 splittings, which enabled us to estimate the error of the detection rate on
the test set. The results showed a considerable variance for the standard test
scenario of steganalysis with a fixed false positive rate of 1 %, but averaging over
the 100 splittings turned out to be sufficient for finding statistically significant
differences between the Laplace and wavelet basis.

We tested with two distinct normalization methods: Either each component
of the vectors is scaled independently to [0, 1]; or only the quantile range Q0.95−
Q0.05 of a component is standardized to [0, 1], while clipping values above and
below. We call the former standard and the latter interquantile normalization.
With normalization, features of high magnitude exert a less dominant influence
on the results. Additionally, for interquantile normalization, the detrimental ef-
fects of outliers are reduced.

If adapting the wavelet-based classifier such that the false positive rate falls be-
low 1%, then (12.6±0.2)%, (30.8±0.7)%, and (69.5±0.9)% of the stego images
can be detected for standard normalization and embedding rates of 10%, 25%,
and 50%, respectively. When normalizing the interquantile range of the features
to [0, 1], the detection rates are (8.5± 0.2)%, (14.4± 0.7)%, and (65.7± 1.4)%.
This is a higher performance than found by Lyu & Farid in [13]. The accuracies
are averaged over 100 test runs. These runs differ in that we randomly divided
the entire set into training and test sets repeatedly. The full set of the results
is shown graphically in Fig. 7, plus the prediction rate on ternary embeddings
[10,12] and on ±1 embeddings. ±1 embeddings conserve parity properties of the
images as it is described in [12]. In this case, for embedding rates of 50% and
25%, (76.8 ± 1.4)% and (37.1 ± 0.6)% of the stego images can be revealed for
standard normalization, and (81.9 ± 0.7)% and (20.7 ± 1.0)% for quantile nor-
malization. The error bars denote the standard error of the mean σ = σ/

√
n

over the n = 100 test runs, where σ =
√

Var(x) and x is the true positive rate
found.

The prediction accuracies for higher embedding rates are frequently higher for
standard normalization. However, for a reduced feature vector, containing only
error residuals or even a subset thereof, interquantile normalization allows for
higher detection rates.

In Fig. 7, Laplacian predictions are only shown for the highest embedding
rate of 50%, because their accuracies fall rapidly to values close to that achieved
by random guesses: The true positive accuracies are (4.5 ± 0.1)% and (3.9 ±
0.1)%, for standard and interquantile normalization, respectively. Obviously,
the detection rates of the Laplacian steganalyzer are inferior to those of the
wavelet steganalyzer.

4 Discussion

The hypothesis we investigate is that a better image model should yield a better
detection rate. According to Figures 3 and 4, the Laplacian representation is
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better than the wavelet representation in terms of explained variance. However,
the steganalysis experiments show that the detection performance of the wavelet
model is significantly higher than that of the Laplacian so that our plausible
hypothesis turned out to be wrong. As a consequence the wavelet representation
must have additional properties that allow for a better steganalysis performance
in spite of its inferior modeling capability.

We think that the improved discriminability in the wavelet domain can be
mainly attributed to two reasons:

1. In comparison to the Laplacian, the dimensionality of the feature vectors in
the wavelet representation is tripled since there are more subband statistics.
It is a well-known fact (see, e. g., [9]) that the probability that two classes
are separable increases with the dimensionality of their representation.
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2. As described in Sect. 2, the steganalyzer uses a threshold on the coefficients
before estimating the statistical moments of the subband coefficients. This
turns out to be a critical step since this prevents small coefficients from in-
fluencing the feature vectors used for classification. This type of thresholding
estimator is a well-known concept in signal processing where such estimators
are used for denoising. We can think of the prediction step in the stegana-
lyzer as a denoising step since we reconstruct the “true” or denoised image
from the contaminated or “noisy” stego image. Here comes into play a theo-
rem by Donoho & Johnstone [6] which states that a threshold estimator has
a higher denoising performance if the signal representation is sparse. Sparse
in this context means a representation of a signal that needs only a few coef-
ficients to approximate a signal with low error. Although we did not formally
test this on our data, it is a common observation that wavelets are a sparser
representation of natural images when compared to the Laplacian pyramid.
As a consequence, we can expect a more accurate estimation of the resid-
ual in the wavelet representation leading to better estimates of the subband
statistics which finally results in a higher classification performance.

The advantage of a high-dimensional representation can be demonstrated in a
simple experiment: On our test dataset of the 1600 color image pairs in uncom-
pressed format with a 50% LSB embedding (see Sect. 3.2), we first computed the
model predictions in the Laplacian domain and transformed the predicted images
back into their pixel representation. In the next step, both original image and
stego image were wavelet-transformed and subjected to the same analysis as be-
fore. In this way, the modeling step took place in the Laplacian domain, whereas
the classification step was based on feature vectors with the three-fold dimen-
sionality of the wavelet domain. As a result, detection performance of this hybrid
steganalyzer improved considerably from a true positive rate of (4.5 ± 0.1)% of
the pure Laplacian steganalyzer to (37.3 ± 1.0)%, although the performance of
the pure wavelet steganalyzer of (69.5±0.9)% could not be achieved. The results
are given at a fixed true negative rate of 99%.

A second experiment highlights the critical influence of the thresholding step:
Disabling the thresholding process in the wavelet steganalyzer reduces the detec-
tion performance from (69.5 ± 0.9)% to (27.1 ± 0.6)%. This demonstrates that
wavelet thresholding plays a role of similar importance to the higher dimension-
ality of the resulting feature vectors.

Finally one might ask why the hybrid steganalyzer from the first experiment
did not reach the performance of the pure wavelet steganalyzer. The reason for
this can be seen in a third experiment where we analyzed the explained vari-
ance in the wavelet domain of both the Laplacian model predictions and the
wavelet model predictions (cf. Table 1). The results show that, although the
Laplacian model is more accurate in its own domain, it does not reach the accu-
racy of the wavelet model in the wavelet domain. In our opinion, this accounts
for the observed performance difference between the hybrid and the pure wavelet
steganalyzer.
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Table 1. Mean over orientations for wavelet decompositions in % explained variance

of the hybrid and the pure wavelet steganalyzer

Clean images Clean images Stego images Stego images

(wavelet) (hybrid) (wavelet) (hybrid)

Pyramid level 1 89.6 % 88.7 % 88.5 % 87.9 %

Pyramid level 2 91.8 % 82.5 % 91.2 % 81.3 %

Pyramid level 3 91.9 % 94.3 % 91.4 % 94.2 %

5 Conclusion

In this study we analyzed the relationship between image modeling and de-
tection performance in a universal Lyu & Farid type steganalyzer. Our results
show that a high performance in image modeling does not directly transfer to a
higher steganalysis performance. Although the Laplacian representation leads to
a better image model, it shows an inferior detection performance. From the steg-
analysis point of view, the characteristics of the wavelet representation (sparse
representation and higher dimensionality of the feature vector) turned out to be
more important as it evidently allows the final classification stage to discrim-
inate between the resulting feature vectors more easily. Furthermore, it seems
important to stay in the same transformation space in all steganalysis steps from
image modeling, thresholding, computation of feature vectors to classification.
This study shows a connection between sparsity of the image basis, denoising
and steganalysis performance. In future work, we plan to make this link more
explicit.
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Abstract. Theoretical results about the capacity of stegosystems typi-

cally assume that one or both of the adversaries has perfect knowledge

of the cover source. So-called perfect steganography is possible if the em-

bedder has this perfect knowledge, and the Square Root Law of capacity

applies when the embedder has imperfect knowledge but the detector has

perfect knowledge. The epistemology of stegosystems is underdeveloped

and these assumptions are sometimes unstated. In this work we consider

stegosystems where the detector has imperfect information about the

cover source: once the problem is suitably formalized, we show a parallel

to the Square Root Law. This answers a question raised by Böhme.

1 Introduction

The most important ingredient of a stegosystem is the cover source, and the rel-

evant epistemology – who knows what about the covers – is sometimes neglected

in the literature. But knowledge about the covers is fundamental to the prob-

lem. It is known that perfect steganography is possible, conveying an amount of

payload linear in the cover size with zero risk of detection, as long as the em-

bedder has perfect knowledge of the cover distribution [18]. This is so because

the embedder can ensure that all the statistics of the cover source are preserved

by their embedding function1. On the other hand, we have a completely differ-

ent situation when the embedder does not know, and fails to preserve, all the

statistics of the covers: this leads to the Square Root Law [15,6,13] stating that

the information conveyed can grow at most of order
√

n, where n represents the

size of the cover, or face eventual certain detection.

The latter result assumes that the detector has perfect knowledge of the dis-

tribution of covers, so to compare potential stegotexts against it. This attack

model is defensible: taking the role of the embedder, it is conservative to assume

that the opponent has perfect knowledge, since we cannot then make the error

of underestimating them. However, it is arguable that for steganography in real

objects, be they digital images, audio, or even plain text, no perfect model of the

source exists [1] and therefore the opponent cannot have such perfect knowledge

1 In fact, perfectly secure steganography remains theoretically possible even if the em-

bedder does not know about the cover source, as long as they have an inexhaustible

cover supply from which to sample [9], but such embedding is practically infeasible.
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any more than can the embedder. In practice, steganalysts create models of cover

objects by examining finitely many examples of genuine covers, which leads to

an imperfect level of knowledge about the source. What is the consequence of

this imperfect knowledge for a detector, and can the square root capacity rule

be exceeded? This question was raised by Böhme [2] who pointed out

“The square root law is supported with evidence for fixed cover models

of the adversary... so far it does not anticipate adversaries who refine

their cover models adaptively.”

Modifying the square root law to this circumstance, in the simplest and most

abstract setting, is our goal in this paper.

In Sect. 2 we describe and justify our framework for a stegosystem with im-

perfect information, and in Sect. 3 state and prove a modified square root law for

this situation. There are new statistical challenges in this setting and we require

a discussion of the statistical property of unbiasedness, along with some analy-

sis. The significance of the theorem is discussed in Sect. 4: we shall see that the

embedder remains limited to payloads of order
√

n as long as the detector has

access to a linear number of examples of covers from which to learn about their

distribution. A superlinear number of covers conveys no asymptotic advantage

but a sublinear number of covers allows the embedder to improve on the order

of capacity
√

n. We briefly extend the result to the case when the embedder

also learns about the cover source from examples, and adapts their embedding

accordingly. We also discuss many avenues for further research.

We will use the following notation: f(n) = O(g(n)) indicates that f grows

asymptotically no faster than g, i.e. |f(n)| ≤ c|g(n)| for n ≥ N , for some c and

N ; f(n) ∼ g(n) means that f and g are asymptotically equal, i.e. f(n)/g(n) → 1

as n → ∞; f(n) = o(g(n)) means that f grows strictly slower than g, i.e.

f(n)/g(n) → 0 as n → ∞. Ω is the converse to O: f(n) = Ω(g(n)) if g(n) =

O(f(n)). We will use Knuth’s notation [8] for the falling Pochhammer symbol

nk = n(n − 1) · · · (n − k + 1), so that the binomial coefficients are
(
n
k

)
= nk/k!.

E[X ] and Var[X ] will denote the mean and variance of the random variable X ,

and X ∼ Bi(n, p) that X takes the binomial distribution with size parameter n
and probability parameter p.

2 Stegosystems with Imperfect Information

In a stegosystem with perfect information, both parties know the exact distribu-

tion of the covers. In this scenario it has already been shown that the embedder

can communicate completely undetectably at a nonzero (linear) rate by preserv-

ing all the statistics of the covers [18]. However, no such system, for embedding

in real-world cover media, has ever been constructed. That is because of the dis-

tinction, made clear by Böhme in [2,1], between artificial covers – mathematical

structures such as random variables or Markov chains – and empirical covers

which are
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“digital representations of parts of reality... They have to be obtained

through observation of reality... All kinds of digitised media data, such

as images, audio or video files, belong to this class.”

Böhme argues that the true distribution of real-world covers is incognisable.

Given this, we should focus on stegosystems with imperfect information where the

distribution can only be obtained approximately, by observation of the source.

It is consideration of imperfect embedding, where some statistic of the cover

source is not preserved by embedding, that leads to the Square Root Law of

capacity [15,6,13]. As the cover size increases the embedding rate must diminish,

lest evidence in abnormal statistics build to eventual certain detection. But these

results still require the detector to have perfect knowledge of the cover source,

arguably an equally unrealistic situation to that of perfect embedding. Böhme

comments that

“security in empirical covers depends on the steganalyst’s knowledge of

the cover source and the amount of evidence available to distinguish any

abnormality”

and we aim to quantify how secure capacity – the maximum payload which

cannot be detected with nontrivial error rates – depends on this steganalyst’s

knowledge and the size of the stego object.

Proving a theoretical result about capacity requires us to remain in the world

of artificial covers, and in Sect. 3 we will use the very simplest mathematical

model, of i.i.d. binary sequences, but we can reflect something of the incognis-

ability of cover distributions by saying that the exact value of the parameter(s)

of the model are not known to either party. This is our model for a stegosystem
with imperfect information. To an extent, this contradicts Kerckhoffs’ Principle:

we are assuming that the “enemy” (the steganalyst) does not have full knowl-

edge of the “system”, if we take the system to include the covers; in view of the

preceding discussion, this demonstrates that Kerckhoffs’ Principle should not be

applied blindly to the steganography problem. The covers are, in reality, external

to the system.

For our result, most of the assumptions apart from knowledge of the covers will

not be relevant: it will not matter whether the detector knows the embedding

algorithm or the size of embedded payload, though it is important that they

not know which locations in the cover have been used for payload. The latter

information is part of the secret embedding key, but for more on this assumption

see [13].

There remains the question of how we measure the embedder’s and detector’s

uncertainty about the parameter(s) of the artificial cover model. As in the clas-

sical square root law setting, we will assume that the embedder does not evolve

and proceeds with some fixed method which replaces symbols in the cover by

symbols with a non-identical distribution. For the detector, we will be guided

by the practice of steganalysis, in which researchers most commonly train a de-

tector using sets of genuine covers. We will assume that the detector has access

to some genuine covers from an independent but identically-distributed source
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to that of the embedder, i.e. limited access to a cover oracle. It will turn out

(Subsect. 4.1) that any finite limit on the size or number of covers leads to a

trivial situation, so we will suppose a limit of mn accesses to the oracle when

the cover size is n. (Briefly, in Subsect. 4.3, we will consider the case when the

embedder also makes use of a cover oracle. The result is rather different.)

We should ask whether it is plausible that the detector has access to the

embedder’s cover source. Of course it depends on the application, but for exam-

ple one could imagine that a well-motivated steganalyst can at least determine

forensically the model of camera used to take cover images, and then purchase

their own. Or, once the steganographer comes under suspicion, seize the camera

itself. A similar detector model, using limited access to a cover oracle, is found

in [10], although no capacity result is proved. The limitation in that work, in-

spired by computational complexity bounds, is of polynomially-many accesses to

the oracle; in our model we shall see (Subsect. 4.1) that linearly-many accesses

suffice to recover a square root law.

Taking the role of the embedder, it is conservative to assume that the op-

ponent has perfect knowledge of the cover source. It is also rather pessimistic,

and the work in this paper is motivated by the desire to relax the condition. We,

the embedder, may feel happier about transmitting information at a rate above
the capacity predicted by the square root law if we could, for example, prove that

our opponent needed to spend an exponential amount of time learning about the

cover source in order to catch us. Sadly for steganographers, it will turn out that

this is not the case.

3 The Square Root Law for Imperfect Detectors

To explain the difficulties in constructing a modified square root law for imperfect

detectors, and to contrast with new results, we begin by restating the simplest

square root law for the classical system when the detector has perfect knowledge

of the cover source.

Theorem 1. Suppose that cover objects consist of sequences of symbols which
are Bernoulli random variables with parameter p; we exclude the pathological
cases p = 0, 1. Suppose that the embedder replaces the cover symbols, indepen-
dently with probability γ, by stego symbols which are Bernoulli with parameter
q �= p. The steganalyst wishes to distinguish the cases γ = 0 and γ > 0. Let n be
size of the cover, i.e. the number of symbols.

(1) If γ
√

n → ∞ as n → ∞ then, for sufficiently large n, the steganalyst can
create an arbitrarily accurate detector.

(2) If γ
√

n → 0 as n → ∞ then, for sufficiently large n, every detector has
arbitrarily low accuracy.

We interpret the theorem to mean that γ = O(1/
√

n) is the critical rate: unless

γ diminishes at least this fast, large enough n will result in certain detection. If

the embedding involves a simple substitution (no source coding by the embedder)
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then the payload size is γn and this must grow slower than
√

n, hence the name

Square Root Law.

Theorem 1 has been known for a few years but the first published proof is

found in [13]. We briefly sketch the techniques used, for comparison with the

result about imperfect stegosystems below. For (1), the simple detector which

compares the proportion of observed “1” symbols with p, and rejects the null

hypothesis γ = 0 if the difference is significant, can be analyzed using tail inequal-

ities for the binomial distribution. It can be shown that this detector has false

positive and negative rates which tend to zero as n → ∞ as long as γ
√

n → ∞.

For (2), the Kullback-Leibler divergence between the distribution of the obser-

vations when γ = 0 and γ = γ1 > 0 is computed: it can be shown that this tends

to zero as long as γ1
√

n → 0, which means that any hypothesis test for γ = 0

against γ > 0 must have power tending to size (i.e. the error rate tends to that

of a purely random decision).

Some of the apparent limitations in this result can be avoided. First, we have

stated it here in the context of binary alphabets, but this is not essential and

the same is true for arbitrary finite alphabets [13], for a reason we shall discuss

in Subsect. 4.2. Second, the symbols in the cover must be independent. This is a

severe condition not likely to be satisfied by real cover media. However, the result

still holds when there is non-pathological dependence between the symbols [6].

A square root relationship between cover size and capacity has been verified

empirically, for contemporary steganography and steganalysis methods, in [15].

Finally, the theorem does not address the critical case when γ = c/
√

n, in which

case the value of c determines a maximum possible detection accuracy. This is

arguably the most important situation because it gives the embedder a genuine

“secure” capacity for their embedding; this is related to Steganographic Fisher

Information which has recently been examined in [12, 5]. One other minor limi-

tation is that formalising the embedding as affecting each symbol independently

with probability γ is not quite right for embedding a fixed-length message; this

is addressed in [13].

However there is one limitation that remains: the opponent is assumed to have

knowledge of p. They do not need to know q or γ: the detector constructed for

(1) does not depend on these quantities, and the bound in (2) applies even if

we grant the detector this knowledge anyway. But if we wish to prove a similar

result for a stegosystem with imperfect information, as described in Sect. 2, the

detector must not know p, instead learning something about its value through a

limited number of observations of true cover bits from an oracle.

There is no great difficulty in adapting part (1) of Th. 1 to such a situation.

But part (2) is simply untrue, because there does exist a detector which distin-

guishes cover and stego objects, with the same condition on γ as in Th. 1 (2)

and without using the oracle at all: it is simply the detector which makes use

of a fixed value of p “hardwired” into it, in the case when it just happens to

have the correct p. It is difficult to use Kullback-Leibler divergence to bound the

performance of a detector subject to the constraint that the detector does not
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know a certain piece of information: an accurate detector does exist, even if it

requires a very lucky guess to pick the right value of p to begin with.

Inspired by the idea of a “lucky guess,” we tried to model the true value

of p as random, uniformly on [0, 1]: placing a uniform prior on unknown pa-

rameters seems a reasonable way to reflect absence of information about them.

Unfortunately this model does not function as desired because the probability

of observing a “1” in stego sequences is p + γ(q − p) which is not uniformly

distributed: it is biased towards either q (if q is known) or 1/2 (if q is also given

a uniform prior). Computing the KL divergence between the cover and stego

sequences when p has a uniform prior is algebraically challenging because, un-

conditionally, the bits are no longer independent; the calculations are far too

long to include here but the author has outlined them in a technical report [14].

It turns out that this KL divergence is always positive, even when the cover

oracle is completely absent – but the detector was supposed to have no knowl-

edge of the cover source! This means that the stego signal leaks information

about the presence of payload even when the cover oracle is disregarded. Sadly,

placing a uniform prior on p did not properly reflect a lack of knowledge of p,

and, crucially, did not allow us to use Kullback-Leibler divergence to bound the

accuracy of ignorant detectors. For more details of this argument, see [14].

Instead, we seek to rule out those detectors which have knowledge of p, using

the statistical concept of unbiasedness. A test for the null hypothesis class H0 :

θ ∈ Θ0 against an alternative class H1 : θ ∈ Θ1 is called unbiased if, whenever

the true value of θ is in Θ1, the probability of rejection of H0 is never less than

the probability of rejection of H0 when θ ∈ Θ0. In the language of detectors, this

is to say that the probability of a true positive is always at least the probability

of a false positive.

There is comprehensive information about the theory and application of un-

biased hypothesis tests in [16, Chs. 4-5]: it is popular to restrict attention to

unbiased tests for many reasons, including the existence of uniformly most pow-

erful (UMP) tests within this class when general UMP tests do not exist. In

the application we consider in this paper, we can justify restricting attention to

unbiased detectors for two reasons. First, any detector with more false positives

than true positives is not going to be much use in practice. Second, forbidding

a test biased towards any particular value of p reflects a lack of knowledge of

p, without even placing a prior distribution on it, which was exactly our aim.

Having restricted to unbiased tests, the detector with a “hardwired” value of p is

inadmissible because it is too likely to give a false negative when the true value

of q is actually the hardwired value of p. We can then make use of literature

on UMP unbiased tests for exponential families to prove a modified square root

law. It links secure embedding rates with both the cover size and the level of

imperfect cover information at the detector, defined in terms of a number of true

cover samples which the detector receives from an oracle.

We will retain the simplicity of Theorem 1 in that the covers will still be

independent bit strings; when the detector learns about the cover source through
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mn bits from a cover oracle (we would expect that mn is an increasing function

of n), and if restricted to unbiased detectors, we then have the following result.

Theorem 2. Suppose that cover objects consist of sequences of symbols which
are Bernoulli random variables with parameter p; we exclude the pathological
cases p = 0, 1. Suppose that the embedder replaces a randomly-selected proportion
γ of the cover symbols by stego symbols which are Bernoulli with parameter q �= p.
Let n be size of the cover, i.e. the number of symbols.

The steganalyst wishes to distinguish the cases γ = 0 and γ > 0, but they have
no knowledge of p or q, instead they have access to mn independently-generated
cover symbols from which they may learn about the cover source.

(1) If
γ√

1
mn

+ 1
n

→ ∞

as n → ∞ then, for sufficiently large n, the steganalyst can create an arbi-
trarily accurate detector.

(2) If
γ√

1
mn

+ 1
n

→ 0

as n → ∞ then, for sufficiently large n, every unbiased detector has arbi-
trarily low accuracy.

The proof follows. We will interpret the result in Subsect. 4.1, and consider its

limitations, paralleling those of Th. 1, in Subsect. 4.2.

3.1 Proof of Theorem 2 (1)

This half of the proof is the easier, using techniques similar to that of Th. 1 (1).

Write X for the number of 1 bits in the cover stream, and Y for the number in

the object to be classified. Then X ∼ Bi(mn, p) and Y ∼ Bi(n, p + γ(q − p));

under the null hypothesis that the object is a cover, γ = 0, otherwise γ > 0.

A suitably asymptotically powerful detector can be constructed, without

knowledge of p, q, or γ, using the obvious statistic which measures the difference

in proportion of ones between the unknown signal and the cover bits:

T =
X

mn
− Y

n
(1)

and we will reject the null hypothesis, giving a positive detection of steganogra-

phy, if |T | exceeds a critical threshold c
√

1
mn

+ 1
n for some positive constant

c.
The variance of a binomial distribution Bi(k, p) is bounded by 1

4k, regardless

of p, so

Var[T ] ≤ 1

4

(
1

mn
+

1

n

)
.
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Under the null hypothesis, when the unknown object is a cover, E[T ] = 0, so the

probability of a false positive α satisfies

α = Pr

(∣∣T − E[T ]
∣∣ > c

√
1

mn
+ 1

n

)
≤ Var[T ]

c2
(

1
mn

+ 1
n

) ≤ 1

4c2

(the first inequality is Chebyshev’s). This can be made arbitrarily small by suit-

able choice of c.
Under the alternative hypothesis, when the unknown object is a stego object,

E[T ] = γr where r = p− q �= 0, so the probability of missed detection β satisfies

β = Pr

(∣∣T − E[T ] + γr| ≤ c
√

1
mn

+ 1
n

)
≤ Pr

(∣∣T − E[T ]
∣∣ > ∣∣∣γ|r| − c

√
1

mn
+ 1

n

∣∣∣)
≤

1
4 ( 1

mn
+ 1

n )

γ2r2 − 2γ|r|c
√

1
mn

+ 1
n + c2

(
1

mn
+ 1

n

)
→ 0

as n → ∞, for any positive c, because of the assumption that γ√
1

mn
+ 1

n

→ ∞ and

again using Chebyshev’s inequality. We have shown that, for sufficiently large n,

T distinguishes cover and stego objects with arbitrarily high accuracy.

3.2 Proof of Theorem 2 (2)

For simplicity we will omit the subscript in mn. The condition

γ√
1

mn
+ 1

n

→ 0

is equivalent to

γ2 mn

m + n
→ 0 . (2)

Let X and Y be as in the previous subsection. A test of whether γ = 0 or γ > 0

amounts to a hypothesis test for whether the probability parameter, in the two

binomial distributions X ∼ Bi(m, p) and Y ∼ Bi(n, p + γ(q − p)), is equal or

not. The problem of comparing two binomials has been studied in the statistics

literature and an optimal (UMP) unbiased test can be found in [16]. To sum-

marise the result in [16, §4.5], the optimal unbiased critical region (i.e. values

for which we reject the null hypothesis and give a positive detection) is given by

Y /∈ [C1(X + Y ), C2(X + Y )] , where C1 and C2 are functions which, for each

value of X + Y , give the desired size (lead to the desired false positive rate).

We can imagine a suite of detectors, one for each observed value of X + Y , each
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optimal in the sense of the Neyman-Pearson Lemma and giving a positive result

for too-large or too-small values of Y . As long as these detectors all have the

same false positive probability then collectively they form an optimal unbiased

detector: for any given false positive rate, the false negative rate will be minimal

amongst all unbiased detectors.

It is simple to verify that Y /∈ [c1, c2], for constants c1 and c2, is the optimal

unbiased detector, given that X + Y = t for some fixed t, by using the result

in [16, §4.2]. But the apparently simple conclusion is quite deep because, in

general, one cannot expect that optimal conditional tests will together form an

optimal unconditional test. It holds in this case because the joint distribution of

X and Y forms an exponential family with p as the nuisance parameter, and by

applying Th. 4.4.1 from [16]. Moreover, this optimal unbiased detector is not easy

to construct in practice because all the conditional tests must have exactly the

same false positive rate for their combination to be optimal, yet the underlying

distribution is discrete and unlikely to oblige with such exact probabilities; we

may require randomisation at the detector.

Thankfully, none of these details need concern us. We now know that, for the

lowest possible false negative rate at any given false positive rate, the optimal

unbiased detector depends only on the value of Y , conditional on X + Y . So we

can analyze its behaviour using Kullback-Leibler divergence. All we need to do

is to show that the KL divergence, between the cases γ = 0 and otherwise, tends

to zero under assumption (2), although the analysis is rather tricky.

Let P (y; γ) be the conditional distribution of Y , given X + Y = t. We have

P (y; γ) =
Pr(Y = y ∧ X = t − y)∑t

y′=0 Pr(Y = y′ ∧ X = t − y′)
=

ρ(γ)y
(

m
t−y

)(
n
y

)∑t
y′=0 ρ(γ)y′( m

t−y′
)(

n
y′
)

where ρ(γ) is the odds ratio between the events in Y and X ,

ρ(γ) =

(
p + γ(q − p)

)
/
(
1 − p − γ(q − p)

)
p/(1 − p)

=
1 + γ( q−p

p )

1 − γ( q−p
1−p )

.

Without loss of generality we may assume that q > p, so that ρ(γ) ≥ 1 with

equality at γ = 0. Furthermore, ρ′(γ) = (q − p)(1 − p)/p
(
1 − p − γ(q − p)

)2
, a

bounded function, so by the mean value theorem

0 ≤ ρ(γ) − 1 ≤ Cγ , (3)

where C is a positive constant. When γ = 0, the conditional distribution of Y
is hypergeometric, therefore

P (y; 0)

P (y; γ)
=

∑t
y′=0 ρ(γ)y′( m

t−y′
)(

n
y′
)
/
(
m+n

t

)
ρ(γ)y

;



154 A.D. Ker

where the numerator is the expectation of ρ(γ)Y when Y has a hypergeometric

distribution. Taking the expectation over a random variable Y with this distri-

bution, we have

0 ≤ DKL(P (y; 0) ‖P (y; γ))

= EY

[
log

(
P (Y ; 0)

P (Y ; γ)

)]
= E

[
log
(
E
[
ρ(γ)Y

])
− log ρ(γ)Y

]
= log

(
E
[
(1 + ρ(γ)−1)Y

])
− E[Y ] log ρ(γ)

(a)
= log

(
n∑

k=0

(ρ(γ)−1)k E[Y k]

k!

)
− E[Y ] log ρ(γ)

(b)
= log

(
n∑

k=0

(ρ(γ)−1)k nk tk

(m + n)k k!

)
− nt

m + n
log ρ(γ)

(c)

≤ log

(
t∑

k=0

(
n

m+n (ρ(γ)−1)
)k tk

k!

)
− nt

m + n
log ρ(γ)

(d)
= t

(
log
(
1 + n

m+n (ρ(γ)−1)
)
− n

m + n
log ρ(γ)

)
(e)

≤ tnm

2(n + m)2
(ρ(γ) − 1)2

(f)

≤ nm

2(n + m)
C2γ2

→ 0 .

We justify the steps as follows. (a) is the binomial expansion; note that we may

take the sum to n because Y is an integer, so any summand with k > Y will be

zero. (b) is from the following property of the hypergeometric distribution:

E[Y k] =

n∑
i=k

ik
(
n
i

)(
m

t−i

)
/
(
m+n

t

)
=

n∑
i=k

nk
(

n−k
i−k

)(
m

(t−k)−(i−k)

)
tk/(m + n)k

(
m+n−k

t−k

)
=

nk tk

(m + n)k
.

(c) is because nk/(m + n)k ≤ (n/(m + n))k; we may take the sum to t because

the summands are zero when k > n or k > t. (d) is another binomial expansion.

(e) follows from

log(1 + ax) − a log(1 + x) ≤ 1
2a(1 − a)x2

for a ∈ [0, 1] and x ≥ 0, which may easily be verified by differentiating the

difference. (f) is because t ≤ m + n, and using (3). The final limit is just (2).
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Since the Kullback-Leibler divergence tends to zero, the information process-

ing theorem [4] implies that the performance of any decision based on Y given

X +Y = t must tend to that of a purely random decision. This is true whatever

the value of t so the same holds for the collection of detectors, one for each value

of X +Y , which together form the optimal unbiased detector: no other unbiased

detector can do better. Therefore every unbiased detector has asymptotically

random output: in the language of Cachin [3], the system is ε-secure, for ar-

bitrarily small ε, if n is large enough; in terms of detectors, the false positive

probability α tends to 1 − β, the true positive probability.

4 Discussion

We conclude with a discussion of the significance of the result as regards secure

payload size, its limitations, how it might be extended, and briefly consider the

case when the embedder also learns about the cover source through an oracle.

4.1 Interpretation

We consider the consequences of Th. 2 as regards secure embedding capacities.

Let us first assume that the embedder requires a fixed average number of changes

per bit of payload conveyed (for example in the simplest case of overwriting

pseudorandomly-selected locations in the cover with payload bits, whether or not

the payload is compressed prior to embedding). Then the payload transmitted

M is proportional to γn and we can deduce the following corollaries to Th. 2.

Corollary 1. If mn = Ω(n) then the situation, up to asymptotic order, is the
same as in the perfect knowledge case: M = o(

√
n) for asymptotically perfect

security.

The classical square root exponent cannot be reduced, no matter how large mn.

We know this because, of course, the classical Square Root Law tells us that

the square root cannot be beaten even when the detector has perfect knowledge

of p. We also now know that a linear number of accesses to the cover oracle is

sufficient for the detector: more accesses might reduce the secure capacity by a

constant multiple, but do not affect its order of growth.

Corollary 2. If mn = o(n) then M = o(n/
√

mn) and the classical square root
rate can be beaten. For example, if mn ∼ ne with 0 ≤ e < 1, then M = o(n1−e/2)

for asymptotically perfect security.

This tells us that a linear number of cover examples is necessary for the detector,

otherwise their knowledge about the cover source grows too slowly and their

opponent can exceed the square root law. In particular,

Corollary 3. If mn = O(1) then the embedder can achieve any sublinear pay-
load rate M = o(n) with asymptotically perfect security.
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In the case when the detector only has finitely much information about the cover

source, i.e. their information does not grow with the cover size, they will always

have some uncertainty about the true value of p. By decreasing the embedding

rate, no matter how slowly, the embedder can ensure that the perturbation to

the frequency of 0s and 1s falls within this uncertainty.

In fact, of course, all that is required is for γ to be sufficiently small to ensure

that the risk of detection is sufficiently low. Quantifying this, over and above the

asymptotic relationship, is a problem related to Steganographic Fisher Informa-

tion (SFI) [12,5], and a direction for future research. It should not be infeasible

to estimate the SFI and hence find a concrete capacity bound, in terms of mn

and p, given a KL divergence limit on the risk of detection.

Finally, we turn to the case when the steganographer uses not a simple sub-

stitution but an adaptive source-coding at the embedding stage, e.g. matrix

embedding [7]. Effectively, the location of the changes, as well as their content,

conveys information to the recipient, allowing the payload transmitted to be

(slightly) superlinear in γ.

Corollary 4. With optimal source coding, the payload size M is bounded by
M = O(γn log(1/γ)), which is achievable (asymptotically) using simple syn-
dromes from the Hamming code.

If mn = Ω(n) then M = o(
√

n log n), otherwise M = o(log mnn/
√

mn), for
asymptotic perfect security.

Care must be taken to ensure that the embedding locations remain unpredictable

by the detector, and that the code does not introduce predictable dependencies

between the symbols embedded. This could be achieved by using a random
codebook, but the secret key parameterising it might need to be large (note a

parallel result in [13]). The equivalent problem for the perfect knowledge detector

is examined in [11], where it is shown that the dependencies introduced by

a certain type of matrix embedding do not grant, asymptotically, any extra

evidence. It is for further work to consider the imperfect information case.

4.2 Limitations and Extensions

Theorem 2 shares the limitations of Th. 1: the version proved applies only to

an abstract mathematical structure which is not a good model for any realistic

digital medium.

One limitation can be removed immediately: we can extend the binary i.i.d.

case to any finite alphabet i.i.d. case by the following argument. If the alphabet

is Σ = {z1, . . . , zN} then we can consider the N binary hypothesis tests which,

for each i, count only zi against all other symbols. If stego objects perturb the

frequency of any one of those symbols, one of the hypothesis tests has asymptot-

ically negligible error, and the combination of N hypothesis tests (with the rule

that rejecting one leads to rejecting the ensemble) will have asymptotic error a

factor of N higher, but still tending to zero. For the converse, it can be shown

that whenever the KL divergence between all pairs tends to zero, so does the

KL divergence of the entire set.
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The most obvious avenue for future research is to remove the i.i.d. condition,

for example extending to Markov chains as in [6]. But an involved analysis was

required to prove that result, and the difficulty will be compounded by existence

of a cover oracle. And we would prefer to go even further, to properly two

dimensional objects with arbitrary correlation structures. Perhaps the method

just described, which lifts results from the binary to arbitrary finite symbol

case, can provide a simplification. Whether the technique we used to prove the

main result of this paper can be adapted to more complex cover models depends

on whether a sufficiently simple UMP unbiased detector exists. Some of our

current research indicates that a square root law can hold even in the case of

nonstationary cover sources (perhaps contrary to intuition), and there may be

further extensions for an imperfect knowledge detector.

Another direction for further research is to compute concrete capacities in

the case when γ ∼ c
√

1
mn

+ 1
n . The definition of capacity, in the context of a

restriction to unbiased detectors, needs some care, but in principle it should not

be too difficult to compute a Steganographic Fisher Information quantity for the

model of Th. 2.

It is, of course, important that the steganalyst’s cover oracle matches exactly

the distribution of the covers used by the embedder. Even the smallest deviation

means that the detector will give false positive results with asymptotic prob-

ability one. And notice that the detector constructed in Subsect. 3.1 does not

need to know q. This is analogous to a steganalyst who is not sure of the embed-

ding method used by their adversary. They require that p �= q – the embedding

method does change the distribution of covers – and if not then their detector

will produce asymptotically no false positives, but no true positives either. A

further extension to the information model is considered next.

4.3 Embedding with Learning

Our imperfect information stegosystem was not “fair” to the steganographer: we

assumed that the embedding method was fixed, causing an alteration to the bit

probabilities in a stego object, whereas we allowed the detector access to a cover

oracle to learn about the distribution of covers. Briefly, we examine the situation

when both embedder and detector have access to cover oracles, and both adapt

their behaviour according to the information they learn.

First, how does the embedder make use of the oracle? Assuming that the

embedder is still constrained to overwrite symbols in the cover, their optimal

behaviour is to estimate the symbol distribution and then adjust their embedding

so that the overwritten symbols have the same distribution. We will not concern

ourselves with how this is achieved, but note that it is fairly simple, at least

in the i.i.d. cover bit scenario, to do using a randomised arithmetic coding (a

similar idea appears in [17]).

We have yet to prove a general counterpart to Th. 2, but can make a strong

conjecture. Suppose that the embedder has ln accesses to cover oracle bits, of

which Z turn out to take value 1. They estimate p from the ratio Z/ln – here

Z ∼ Bi(ln, p) – so that the conditional distribution of Y given Z is Bi(n, p +
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γ(Z/ln − p)). If T is as in (1), one can compute Var[T ] ∼ ln( 1
mn

+ 1
n ). On

the other hand, the constant C in (3) is proportional to Z/ln − p, so C2 is of

average order 1/ln, so the KL divergence in Subsect. 3.2 probably tends to zero if
nm

(n+m)ln
γ2 → 0 (this is a long way from a proper proof!). Together these suggest:

Conjecture 3. In the i.i.d. binary sequence model of Th. 2, in the case when the
embedder estimates the distribution of covers from ln cover symbols generated in-
dependently of the detector’s information, the critical rate of γ is

√
ln( 1

mn
+ 1

n ).

We mean “critical rate” in the sense that if γ exceeds it asymptotically this gives

eventual certain detection, and below it gives asymptotic perfect security.

Although the conjecture has yet to be proved, we can deal with a special

case, although lack of space prevents the inclusion of the proof here. Since the

embedder already has a source of covers – the one they embed in – they can

use this for linearly many examples. (Note that, if ln = Ω(n), mn would be

irrelevant.) Even accounting for the dependencies thus introduced,

Theorem 4. In the i.i.d. binary sequence model of Th. 2, if the embedder learns
from the cover they embed in and replaces cover symbols with bits distributed
according to their estimate of p, even if the detector has exact knowledge of p,
the critical rate of γ is 1 in the sense that, if γ → 0 as n → ∞, the embedding
is asymptotically perfectly secure.

It appears that the embedder “wins” this contest, since they can learn enough

information about the covers to keep the detector uncertain, no matter how

slowly their embedding rate tends to zero. (Of more interest is the case when γ is

constant, and the consequential bounds on detection accuracy. This is for further

research.) It makes the square root law redundant. But, although it seems fair

to allow both embedder and detector to learn about the cover source, this is not

what happens in practice: steganalysts constantly refine their cover models, but

current steganography algorithms are not sophisticated enough to learn about

the cover source2. It remains to be seen whether the same results hold in more

realistic cover models where dependence between symbols is permitted.

5 Conclusions

We have proved a result which shows, amongst other things, that linearly many

accesses to a cover oracle suffice for the detector to restrict the embedder to a

square root capacity law; this is a significantly weaker condition than the perfect

information required for the standard square root law. We have illustrated the

difficulty in reasoning about a lack of knowledge on the part of the detector:

placing a uniform prior on the unknown parameters is not the same as having

2 Although some embedding methods try to preserve statistical properties of the indi-

vidual cover object used for embedding, they do not use information from any larger

sample of covers and so cannot reduce learning error asymptotically.
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no knowledge. The statistical property of unbiasedness has provided the solution

in this case, and the literature on UMP unbiased hypothesis tests has been a

useful resource.

We also briefly considered the case when the embedder learns from a cover

oracle. Although we omitted the proof of the technical result, we can show that

an adaptive embedder who learns from the cover source can come arbitrarily close

to a linear law of capacity, even if their opponent is granted complete knowledge

of the cover source. All results, however, are in the context of a highly simplified

cover model with i.i.d. bits and there remains much further research to expand

them to, at least, correlated cover symbols.

What both these results emphasise, however, is that the epistemology of steg-

anography needs more study. Indeed, the situation is more complex than the

simple classification of stegosystems into perfect and imperfect information: to

say that “the detector needs linearly many cover examples to restrict their op-

ponent to a square root law” is not quite the whole story. What matters is that

the embedder knows that the detector has, or might have, linearly many cover

examples. In a similar vein, for the classical square root law the detector knows
that the embedder does not know all the statistics of the cover source, and once

the embedder knows that the detector knows this they are forced to a square root

capacity law. In a similar vein, if the detector’s cover oracle has a slightly dif-

ferent distribution to the true covers used by the embedder then it is practically

useless and a linear law is recovered, but it requires the embedder to know that
the detector has faulty information about the covers.

These considerations once again illustrate that steganography requires a more

subtle information asymmetry than cryptography, and Kerckhoffs’ Principle is

not suitable to provide the whole framework. We expect that there will be a

number of different applications which drive problems all currently named “steg-

anography”, with different capacities and solutions, depending on different levels

of knowledge amongst the actors.
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Abstract. This paper presents a complete methodology for designing
practical and highly-undetectable stegosystems for real digital media.
The main design principle is to minimize a suitably-defined distortion
by means of efficient coding algorithm. The distortion is defined as a
weighted difference of extended state-of-the-art feature vectors already
used in steganalysis. This allows us to “preserve” the model used by ste-
ganalyst and thus be undetectable even for large payloads. This frame-
work can be efficiently implemented even when the dimensionality of the
feature set used by the embedder is larger than 107. The high dimen-
sional model is necessary to avoid known security weaknesses. Although
high-dimensional models might be problem in steganalysis, we explain,
why they are acceptable in steganography. As an example, we introduce
HUGO, a new embedding algorithm for spatial-domain digital images
and we contrast its performance with LSB matching. On the BOWS2
image database and in contrast with LSB matching, HUGO allows the
embedder to hide 7× longer message with the same level of security level.

1 Introduction

The main goal of a passive-warden steganographic channel [10] (stegosystem)
between Alice and Bob is to transmit a secret message hidden in an innocuously
looking object without any possibility for the warden Eve to detect such com-
munication. A stegosystem is called perfectly secure [2] if the cover distribution
exactly matches the stego distribution. Although this problem has been solved
by the so-called “cover generation” [1,29,24], this solution requires exact knowl-
edge of the probability distribution on cover objects, which is hard (if possible
at all) to obtain for real digital media in practice. The most common practical
solution is to hide the message by making small perturbations with the hope
that these perturbations will be covered by image noise.

One of the most popular embedding methods used with digital images is the
Least Significant Bit (LSB) replacement, where the LSBs of individual cover
elements are replaced with message bits. It has been quickly realized that the
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c© Springer-Verlag Berlin Heidelberg 2010



162 T. Pevný, T. Filler, and P. Bas

asymmetry in the embedding operation1 is a potential weakness opening doors
to the development of highly accurate targeted steganalyzers (see [17] and ref-
erences therein) pushing the secure payload almost to zero.

A trivial modification of the LSB replacement method is LSB matching (of-
ten called ±1 embedding). This algorithm randomly modulates pixel values by
±1 so that the LSBs of pixels match the communicated message. Despite the
similarity to LSB replacement, LSB matching is much harder to detect, because
the embedding operation is no longer unbalanced. In fact, LSB matching has
been shown to be near optimal [5] when only information from a single pixel
can be utilized. The biggest weakness of LSB matching is the assumption that
image noise is independent from pixel to pixel. It has been shown that this is not
true in natural images, which was in different ways exploited by LSB matching
detectors [16,14,22].

From the short overview of spatial domain steganography above, it is clearly
seen that the embedding algorithms are not secure. This is mainly because their
image model is not general enough and some marginal or joint image statistics
are not preserved. In this paper, we propose a novel method for designing new
steganographic algorithms allowing to use very general and high-dimensional
models covering various dependencies in natural images in order to create more
secure steganographic algorithms. The method follows and extends the best prin-
ciples known in steganography and steganalysis so far.

The proposed method relies on the principle of minimal impact embedding [11],
which is revisited in Section 2. This principle allows decomposition of the design
of steganographic algorithms into the design of the image model and the coder. By
virtue of this principle, steganographic algorithms can be improved either by using
a better coder, or by using a better model. Thus, the image model becomes one of
the most important parts of the design. Section 3 is devoted to this problem. We
explain why steganalytic features can be used as a good start to design a stegano-
graphicmodel, if they are extended to avoid overfitting to aparticular steganalyzer.
Although such steganographic models can be very large (we give an example of a
model with dimension 107), we argue that for steganographic purposes such large
dimension does not pose a problem. In Section 4, we practically demonstrate the
presented method by constructing a new steganographic algorithm for the spatial
domain based on the SPAM (Subtractive Pixel Adjacency Matrix) features [22].
The security of the proposed scheme and the effect of individual design elements
on the security is experimentally verified. The paper is concluded in Section 5.

The ideas presented in this paper can been seen in prior art. (a) Virtually all
steganographic algorithms aim to minimize distortion to preserve some image
model. The image model is derived either from the image itself (e.g., F5 algo-
rithm [30] and its improvement [13], Model Based Steganography [26], etc.), or
the distortion is defined by means of error introduced by quantization. The lat-
ter class of algorithms (MMX [19] and its improvement [25], PQ [12], etc.) uses
“side information” in the form of a higher quality image, which is not available
to the recipient (and Eve). (b) Many algorithms (F5 [30], nsF5 [13], MMX [19],

1 Even cover elements are never decreased whereas odd ones are never increased.
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and [25]) already utilized various coding schemes (matrix embedding) to mini-
mize the distortion. While early schemes (e.g., F5 or LSB matching) used coding
to minimize the number of embedding changes, a significant departure was pro-
posed in MMX, which allowed more embedding changes than optimal (with given
coding), in order to decrease the overall distortion. Thus, MMX can be inter-
preted as making local content-adaptive embedding by means of coding, which
is close to the proposed scheme.

With respect to the above prior work, the main contributions of this work are
as follows. (a) We promote and advocate the use of high-dimensional image mod-
els in steganography that cannot be used in steganalysis (yet). (b) We separate
the image model from coding, which allows simulating optimal coding and thus
comparing image models without the effect of coding. Moreover, the message
can be hidden in parts of the image difficult for steganalysis while considering
all pixels simultaneously during the embedding.

Although the proposed steganographic scheme might be considered as an adap-
tive, it is not adaptive in the usuall approach, when first good pixels are selected
[14,9,8] (e.g. pixels in noisy and textured areas) and than the message is inserted in
the image while modifying only the selected pixels (e.g by using wet paper codes).
Our scheme always uses all pixels for the embedding, but it changes them with
probability inversely proportional to the detectability of their change.

In the rest, we use the following notation. Small-case boldface symbols are
used for vectors and capital-case boldface symbols for matrices and possibly
tensors. Symbols X = (xij) ∈ X = {0, . . . , 255}n1×n2 and Y = (yij) ∈ X are
exclusively used to represent intensities of n = n1n2-pixel cover and stego image.
For the sake of simplicity, we sometimes index the pixels with a single number,
X = (xi)

n
i=1 and similarly for stego image Y = (yi)

n
i=1.

2 Minimizing Embedding Impact

Virtually all practical steganographic algorithms for digital media strive to min-
imize an ad hoc embedding impact [11,6], which, if properly defined, is correlated
with detectability. In its simplest form, embedding impact is simply the number
of changes (known as matrix embedding). However, more general ways, as al-
ready suggested by Crandal [4], should be considered. In general, the embedding
impact is captured by a non-negative distortion measure D : X × X → [0,∞].
During embedding, the algorithm should find a stego image Y, which (a) com-
municates a given message and (b) achieves minimal value of D(X,Y). Unfor-
tunately, this problem is generally very difficult in practice.

From this reason, we constrain ourselves to a well-studied special (but still
powerful enough) case assuming (a) binary embedding changes2, i.e., |xi−yi| ≤ 1,
i ∈ {1, . . . , n}, and (b) additive distortion measure in the form

D(X,Y) =

n∑
i=1

ρi|xi − yi|. (1)

2 Extensions to ternary case can be done by the “e+1” construction described in [31].



164 T. Pevný, T. Filler, and P. Bas

The constants 0 ≤ ρi ≤ ∞ are fixed parameters expressing costs of (or distortion
caused by) pixel changes. The case ρi = ∞ corresponds to the so-called wet
pixel not allowed to be modified during embedding. Notice that the additivity
of the distortion function D implies that that the embedding changes do not
interact between each other. This is a reasonable assumption, especially if we
assume low embedding rates and embedding changes being far from each other.
Unfortunately, there are cases of important distortion measures which cannot be
written in this form. One such case will be introduced in Section 4.

For additive distortion functions (1), the following theorem taken from [11]
gives the minimal expected distortion obtained by hiding m bits in an n-pixel
cover object.

Theorem 1. Let ρ = (ρi)
n
i=1, 0 ≤ ρi < ∞, be the set of constants defining

the additive distortion measure (1) for i ∈ {1, . . . , n}. Let 0 ≤ m ≤ n be the
number of bits we want to communicate by using a binary embedding operation.
The minimal expected distortion has the following form

Dmin(m, n, ρ) =

n∑
i=1

piρi,

where

pi =
e−λρi

1 + e−λρi
(2)

is the probability of changing the ith pixel. The parameter λ is obtained by solving

−
n∑

i=1

(
pi log2 pi + (1 − pi) log2(1 − pi)

)
= m. (3)

The importance of Theorem 1 is in the separation of the image model (needed
for calculating constants ρi) and the coding algorithm used in a practical imple-
mentation. By virtue of this separation, better steganographic algorithms can be
derived by using better coding or by using a better image model. One important
consequence is that, in order to study the effect of the image model on stegano-
graphic security, no coding algorithm is needed at all! The optimal coding can
be simulated by flipping each pixel with probability pi as defined in (2).

We use this separation principle in Section 4 to find a good image model used
to derive the costs ρi. The study of the loss introduced by a practical coding
method is also included.

3 From Steganalysis to Steganography

Almost all state-of-the-art statistical steganalyzers (with the exception of ste-
ganalyzers for LSB replacement) are based on a combination of steganalytic fea-
tures and pattern recognition algorithms. In steganalysis, steganalytic features
are used to reduce the dimension of a space of all cover objects, so that the pat-
tern recognition algorithms can learn (if possible) the difference between cover
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and stego objects in this reduced feature space. Using such a low-dimensional
model for designing steganography usually leads to overtraining to a particular
feature set (this issue of feature set completeness is discussed in [20,27]). Keeping
this in mind, we believe that the features can serve as a good precursor of the
image model to determine the embedding costs ρi. Although we show this tran-
sition from steganalytic features to a steganographic model on spatial domain
steganography, we believe that the ideas and tools presented here can be used
in other domains and with other steganalytic features as well.

We start by reviewing the recently proposed SPAM features [22] proposed
to detect steganographic algorithms in spatial and transformed domains. Then,
we discuss the problem of overfitting the steganographic model to steganalytic
features as well as the remedy by expanding the model beyond the capabilities
of contemporary pattern recognition algorithm. Finally, we propose a simple
method to identify parts of the model that are more important for steganalysis.

3.1 SPAM Features

It is well known that values of neighboring pixels in natural images are not
independent. This is not only caused by the inherent smoothness of natural
images, but also by the image processing (de-mosaicking, sharpening, etc.) in the
image acquisition device. This processing makes the noise, which is independent
in the raw sensor output, dependent in the final image. The latter source of
dependencies is very important for steganalysis because steganographic changes
try to hide themselves within the image noise.

The SPAM [22] features model dependencies between neighboring pixels by
means of higher-order Markov chains. They have been designed to provide a low-
dimensional model of image noise that can be used for steganalytic purposes. The
calculation of differences can be viewed as an application of high-pass filtering,
which effectively suppresses the image content and exposes the noise. The success
of SPAM features in detecting wide range of steganographic algorithms [21]
suggests this model to be reasonable for steganalysis and steganography.

The SPAM features model transition probabilities between neighboring pix-
els along 8 directions {←,→, ↓, ↑,↖,↘,↙,↗}. Below, the calculation of the
features is explained on horizontal left-to-right direction, because for the other
directions the calculations differ only by different indexing. All direction-specific
variables are denoted by a superscript showing the direction.

Let I ∈ X be an image of size n1 × n2. The calculation starts by computing
the difference array D•, which is for a horizontal left-to-right direction

D→
ij = Iij − Ii,j+1,

for i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2 − 1}. Depending on the desired order of the
features, either the first-order Markov process is used,

M→
d1d2

= Pr(D→
i,j+1 = d1|D→

ij = d2), (4)

or the second-order Markov process is used,

M→
d1d2d3

= Pr(D→
i,j+2 = d1|D→

i,j+1 = d2,D→
ij = d3), (5)
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where di ∈ {−T, . . . , T}. The calculation of the features is finished by separate
averaging of the horizontal and vertical matrices and the diagonal matrices to
form the final feature sets. With a slight abuse of notation, this averaging can
be written as

F•
1,...,k =

1

4

[
M→

• + M←
• + M↓

• + M↑
•
]
,

F•
k+1,...,2k =

1

4

[
M↘

• + M↖
• + M↙

• + M↗
•
]
, (6)

where k = (2T + 1)2 for the first-order features and k = (2T + 1)3 for the
second-order features. In [22], the authors used T = 4 for the first-order features
(leading to 162 features) and T = 3 for the second-order features (leading to 686

features).

3.2 Decomposing SPAM Features

Although the second-order SPAM features use conditional probabilities to model
pixel differences, their essential components are actually co-occurrence matrices

C→
d1d2

= Pr(D→
ij = d1,D→

i,j+1 = d2), (7)

C→
d1d2d3

= Pr(D→
ij = d1,D→

i,j+1 = d2,D→
i,j+2 = d3). (8)

It is easy to show that the second order SPAM features with T = 3 can be directly
obtained3 from the set {Ck

d1d2
,Ck

d1d2d3
|k ∈ {→, ↑,↖,↗},−3 ≤ di ≤ 3}. In fact,

we observed that this set of 4×(343+49) = 1568 co-occurrence features has only
slightly inferior performance in detecting LSB matching, which we attribute to
a smaller ratio of training samples per dimension (known as curse of dimension-
ality). From this point of view, the distortion measure used to derive embed-
ding costs ρi should be designed to preserve the co-occurrence matrices (7) and
(8), because their preservation implies the preservation of second-order SPAM
features.

Although the idea of preservation of SPAM features is tempting, the distor-
tion measure would not be general enough. The new scheme would be so tied to
a particular steganalytic method that it can be expected to be detectable by a
slight modification of the features. This problem of “overfitting” the distortion
measure to a particular steganalytic method together with the need for a com-
plete feature set has been already described [20,27] for the DCT domain. Here,
we propose to resolve the issue of overfitting to a particular model by expanding
it beyond practical limits of steganalysis (for this model). This can be easily
done in the case of co-occurrence matrices by increasing the range of covered
differences T.

At this point, it is important to clarify the difference between the effects ofmodel
dimensionality for steganography and for steganalysis.The high-dimensionalmod-
els in steganalysis present a serious problem for subsequent machine learning due
3 Observe that C→

d1d2d3 = C←
−d3,−d2,−d1 , and M→

d1d2d3 = C→
d3d2d1/C→

d2d1 .
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to the curse of dimensionality and related overfitting. Although the actual ratio
between the number of training samples and the model dimensionality depends
on the used machine learning algorithm and the problem, the rule of thumb is to
have ten times more samples than the model dimensionality (number of features).
These drawbacks prevent the use of high-dimensional models in steganalysis. By
contrast, high-dimensional models in steganography do not cause problems, be-
cause there is no statistical learning involved. The cover image provides the exact
model to be preserved and, consequently, there is no curse of dimensionality, which
justifies the use of high-dimensional models in steganography.

An additional important practical detail is that updating the co-occurrence
matrices to reflect one pixel change is much easier than updating the conditional
probabilities (the former involves only addition and subtraction of a few items
of the matrices, while the latter involves division of the large part of the ma-
trices). The efficient update of co-occurrence matrices enables modeling a wide
range of differences between pixels (the use of large T ) resulting in modeling
most differences (and pixels) in the image (and better preservation of the SPAM
features).

3.3 Identification of Detectable Parts of the Models

Unfortunately, the ideal case, when the image model is fully preserved during the
embedding, is virtually impossible to realize in practice. It is therefore important
to identify parts of the model important for steganalysis and set appropriate costs
of pixel changes ρi.

The association of costs ρi to the modification of the model is in general very
difficult because we do not know which parts of the model are important. Here,
we suggest to evaluate the individual elements of the model independently of
each other (any method for feature ranking can be used [15]) and set the costs
ρi to reflect this ranking. The advantage of individual evaluation is that it can
be done quickly even for a large number of features. On the other hand, the indi-
vidual evaluation of the model elements is certainly not optimal, especially from
the machine learning point of view. However, we believe (and our experiments
confirm that) that the costs derived this way can be used as a good starting
point. There is no doubt that other (and better) methods of deriving costs ρi

exist.
Our approach works as follows. First, we create a set of images embedded with

a simulated maximum payload by a given embedding operation (in our case of
spatial domain steganography, this amounts to randomly increase or decrease
the pixel value by one with probability 50%). Then, we use the criteria opti-
mized in Fisher Linear Discriminant (FLD criteria) (9) to evaluate, how good
are individual features for detecting given embedding changes. The values of
FLD criteria (9) of individual elements may be either used directly to set the
costs of embedding changes ρi, which might be dangerous due to the already dis-
cussed problem of overfitting. Alternatively, they can be used to obtain insight
into the problem and set the costs heuristically, which is recommended. In the
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d1d2 over the set of cover images from the BOWS2 database.

rest of this section, we use the analysis of the FLD criteria to identify parts of
the co-occurrence model that can be used for embedding.

For co-occurrence matrices introduced in the previous subsection, the values
of FLD criteria for a single feature C→

d1d2
(for fixed d1 and d2) can be written as(

E[CX,→
d1d2

] − E[CY,→
d1d2

]
)2

E
[
CX,→

d1d2
− E[CX,→

d1d2
]
]2

+ E
[
CY,→

d1d2
− E[CY,→

d1d2
]
]2 , (9)

where E[·] stands for the empirical mean (obtained in our case over all images
in the BOWS24 image database), and CX,→

d1d2
, CY,→

d1d2
stand for a single element

of the co-occurrence matrix C→
d1d2

calculated from the cover and stego image,
respectively. The higher the value, the better the feature when used alone for
detecting the LSB matching algorithm. Figure 1 shows the values estimated
from cover and stego images obtained by embedding a full payload with LSB
matching. We can see that the most influential features are C→−2,2 and C→

2,−2

corresponding to regions containing noisy pixels in a smooth area. Also, it is
interesting to see that regions having the same color (such as saturated pixels)
represented by C→

0,0, or pixels in smooth transitions represented by C→
d,d, do not

constitute a good single feature. This is most probably caused by their high
variance, which makes features C→

−2,2 and C→
2,−2 more stable and more suitable

for steganalysis. Although not easy to visualize, similar results and interpretation
can be obtained from higher-order co-occurrence matrices C•

d1d2d3
.

This analysis shows which parts of the image model should be preserved. We
stress again that this analysis was performed from the evaluation of a single
feature and its direct application may lead to overtraining. As was already men-
tioned above, we consider this analysis as a good guide to derive heuristics to
build the embedding costs ρi.

4 See http://bows2.gipsa-lab.inpg.fr/BOWS2OrigEp3.tgz

http://bows2.gipsa-lab.inpg.fr/BOWS2OrigEp3.tgz
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4 From Theory to Practice

In this section, all pieces and ideas presented above are put together, in order to
give life to a new steganographic algorithm called HUGO (Highly Undetectable
steGO). The individual steps of this algorithm are depicted in Figure 2.

4.1 Evaluation Setting

The scheme was assessed using the BOWS2 image database, containing approx-
imately 10800 images of fixed size 512×512. Thanks to the fixed size, all images
have the same number of usable elements, which means that we do not have to
take the Square Root Law [18,7] into the account. Prior to all experiments, the
images were divided into two sets of equal size, one used exclusively for training,
the other exclusively for evaluation of the accuracy. The chosen accuracy mea-
sure is the minimal average decision error under equal probability of cover and
stego images, defined as

PE = min
1

2

(
PFp + PFn

)
,

where PFp and PFn stand for the probability of false alarm or false positive (de-
tecting cover as stego) and probability of missed detection (false negative). To
observe the effect of over-fitting for a particular feature set, we create blind ste-
ganalyzers employing four different feature sets (first- and second-order SPAM
features [22] with T = 4 and T = 3 respectively, WAM [14], and recently pro-
posed Cross Domain Features5 (CDF) [21]).

All steganalyzers were realized as soft-margin SVMs [28] with Gaussian kernel6,
k(x, y) = exp(−γ ‖x − y‖2

). The parameters γ and C were set to values corre-
sponding to the least error estimated by five-fold cross-validation on the training
set on the grid (C, γ) ∈

{
(10k, 2j)|k ∈ {−3, . . . , 4}, j ∈ {−d− 3,−d + 3}

}
, where

d is the logarithm at the base 2 of the number of features.
Besides the SVM-based blind steganalyzers, we also use the Maximum Mean

Discrepancy [23] (MMD) to quickly compare the security of different versions of
the algorithm.
5 CDF combines second-order SPAM features (T = 3) and cartesian calibrated fea-

tures proposed originally for DCT domain. To extract the DCT domain features, we
compressed the image with quality factor 100.

6 We did some experiments with linear SVMs and never obtained better results. For
a discussion related to linear SVMs, see [22].
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4.2 Co-occurrence Model in Steganography

Section 3.2 motivated the use of co-occurrence matrices (SPAM features) as a
reliable model for steganography and explained, why the distortion function D
(not just constants ρi) is derived directly from them. In order to stress those
parts of the co-occurrence matrices that are more important for steganalysis,
the distortion function D is defined as a weighted sum of differences

D(X,Y) =

T∑
d1,d2,d3=−T

⎡⎣w(d1, d2, d3)

∣∣∣∣∣∣
∑

k∈{→,←,↑,↓}
CX,k

d1d2d3
− CY,k

d1d2d3

∣∣∣∣∣∣+
+w(d1, d2, d3)

∣∣∣∣∣∣
∑

k∈{↘,↖,↙,↗}
CX,k

d1,d2,d3
− CY,k

d1,d2,d3

∣∣∣∣∣∣
⎤⎦ , (10)

where w(d1, d2, d3) is a weight function quantifying the detectability of the
change in the co-occurrence matrix7. The weight function w(d1, d2, d3) has the
following simple form

w(d1, d2, d3) =
1[√

d2
1 + d2

2 + d2
3 + σ

]γ , (11)

where σ, γ > 0 are parameters that can be tuned in order to minimize the de-
tectability. This very conservative choice mimics the average number of samples
available to Eve to estimate the individual features C•

d1d2d3
from a single im-

age (see the right part of Figure 1). Motivated by the analysis performed in
Section 3.3, the rationale of this choice is simple: the more samples Eve has,
the better estimate of individual feature she can obtain and the more she can
utilize it for steganalysis. By penalizing highly-populated features (in this case
features extracted from pixels with low differences d1, d2, and d3), we drive the
algorithm to hide the message into parts of the image difficult for Eve to model.
In practice, our choice of w(d1, d2, d3) correlates the distribution of the message
bits with the local texture of the image.

Note that the distortion measure (10) is not additive in the sense of (1). This is
a significant deviation from the assumptions of Theorem 1, because for this more
general case near-optimal practical algorithms for minimizing such embedding
impact do not exist yet. To make this measure additive, we approximate the
costs of embedding change as

ρi,j = D(X,Yi,j), (12)

where Yi,j is the stego image obtained by changing the (i, j)th pixel of cover
image X. As will be seen later, this approximation has a crucial impact on the
detectability of the scheme.
7 If the w(d1, d2, d3) = 1 for all di and T = 255, then all ρi would be the same and

the whole scheme would just minimize the number of embedding changes.
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Fig. 3. Pseudo-code of the HUGO embedding algorithm as described in Section 4.3

4.3 Implementation Details of HUGO

Figure 3 shows the pseudo-code of our implementation. On lines 1–5, the algo-
rithm calculates distortions corresponding to modifying each pixel by ±1 and
sets the embedding cost of pixel change (ρi,j) to the minimum of these two
numbers (for saturated pixels, there is only one choice).

Once the positions of pixel changes are determined (either by simulating the
embedding by virtue of Theorem 1, or by using a practical algorithm, such as
the syndrome-trellis codes [6], (function minimize_emb_impact on line 6 of the
code)), there are two ways to ensure that the pixel’s LSB communicates the
message.

Without model correction: This version assumes that the assumption of the
Theorem 1 holds, which means that we cannot do any better than change pixels
to values determined in lines 1–5 (line 13 of the pseudo-code). The order in which
the pixels are changed does not matter.

With model correction (MC): Since our distortion measure D (10) does not
satisfy the assumptions of Theorem 1, we can further decrease the distortion by
changing pixels to values (remember that there are two ways to match pixels’
LSB to the desired bit) minimizing the overall distortion D(X,Yi), where Yi

denotes the cover image X after changing the ith pixel (see lines 10–11 in the
pseudo-code). As will be seen in the experimental part below, the impact of
model correction on the security is significant. In this case of model correction,
the order in which the pixels requiring change of LSB are processed is important.
In the next subsection, we experimentally evaluate the following strategies: (S1)
top left to bottom right, (S2) from highest ρi,j to lowest ρi,j , (S3) from lowest
ρi,j to highest ρi,j , (S4) random order.
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Finally we note that our implementation of HUGO in C++ with T = 90, the
model correction step, and practical Syndrome-Trellis Code (STC) embeds mes-
sage with relative length 0.25bpp to image of size 512 × 512 in approximately
5s on Intel Core 2 Duo 2.8 GHz processor. We consider this time more than
suitable for real applications. In practice, the algorithm may need to communi-
cate a small number of parameters in order to be able to decode the message
correctly. In HUGO, we need to communicate the size of the message in order
to construct the same STC code at the receiver side. This is usually done by
reserving a small portion of the image based on the stego key, where a known
code is used for embedding.

4.4 HUGO’s Maturing

The HUGO algorithm has several parameters: the range of modeled differences
T, the parameters of the weight function γ and σ, and utilization of the model
correction step. All these parameters need to be set before the actual use of
the algorithm. Since we are not aware of any general guidance, we set them
experimentally while comparing different versions of the algorithm by blind ste-
ganalysis. Although it can be argued that the parameters will be tied to the
database, we prefer to see this step as tuning the algorithm to image source used
by Alice and Bob.

The parameter setting proceeds as follows: (a) set the parameter T, (b) find
suitable values of σ and γ in (11), (c) set the the strategy of pixel visits. In
all experiments aimed to tune HUGO, the coding was simulated by virtue of
Theorem 1.

The parameter T was set to T = 90 (the model has more then 107 features),
causing more than 99% of the co-occurrences in the typical image to be covered
by the model. By this choice of T , we strongly believe that the detectability
of HUGO by SPAM features cannot be improved by increasing the range of
modeled differences. In fact, our experiments showed that the increase of the
range of modeled differences was not followed by a decrease of the classifier error
(most probably due to the curse of dimensionality).

The search for suitable parameters of the weight function (11) was performed
on a grid (σ, γ) ∈

{
(10k, 2j)|k ∈ {−3, . . . , 1}, j ∈ {−1, 2}

}
for both versions of

the algorithm (with and without MC). The embedding payload was fixed to
0.25bpp. In order to reduce the complexity of the search, the detectability was
evaluated by means of the Maximum Mean Discrepancy [23]. Figure 4 shows
the MMD values for HUGO with the MC step and S1 visiting strategy. Due to
space constraints, we report graphs only for SPAM and WAM features with MC
step S1. All other graphs even for the case of Hugo without MC step were of
similar shape suggesting the choice parameters γ and σ to be reasonable. For all
experiments presented in the rest of this section, we chose γ = 4 and σ = 10.

As we have already mentioned, the effect of the model correction on the se-
curity is substantial. For fixed classification error PE = 40% of an SVM-based
steganalyzer utilizing second-order SPAM features, HUGO with model correc-
tion step increases the secure payload from 0.25bpp to 0.4bpp. This difference
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Fig. 4. Value of MMD (lower is better) plotted against parameters γ and σ for HUGO
with model correction and S1 visiting strategy. Results for other features and even
when MC step was not used were similar and are omitted due to space constraints.

is entirely due to the fact that our distortion measure is not additive. Since we
do not know yet how to do optimal coding for non-additive measures, the model
correction step is in this case a reasonably good remedy.

Finally, we have compared the strategies of pixel visits S1–S4 in the model
correction step by training SVM-based steganalyzer utilizing second order SPAM
features. From Figure 5 (a), strategy S2 seems to be the most secure wrt the
SPAM features. Model correction strategies S3 and S4 were performing slightly
worse than S2 and are not displayed. These results show that the model cor-
rection step should perform embedding changes from pixels causing the largest
distortion to pixels causing the least distortion.

4.5 HUGO’s Security

Figure 5 (a) compares the security of HUGO with simulated optimal coding
utilizing different model correction strategies. For S2, which seems to be the
best, we also report its practical implementation using syndrome-trellis code
with constraint height h = 10 (STC) [6]. All algorithms are compared to ordi-
nary LSB matching with optimal (simulated) ternary matrix embedding. The
reported quantity PE is the error of SVM-based steganalyzers. We did not com-
pared HUGO to adaptive ternary LSB matching [14], or to MPSteg [3], because
the reported improvement in the security of both schemes over standard LSB
matching were not significant.

The impact of switching from the optimal (simulated) coding to the STC coder
(STC) on the detectability of HUGO is also interesting and interpretable. Ideally,
we would like to have code which would change each pixel with probability (2).
To compare the effect of a practical coder for fixed distortion d, we evaluate the
coding loss l(d) = (αOPT − αACT)/αOPT, where αOPT is the payload embedded
by the optimal coder and αACT is the payload embedded by a practical algorithm
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Fig. 5. (a) Comparison of security of different versions of HUGO by means of error
PE of steganalyzers utilizing second-order SPAM features with T = 3. (b) Comparison
of different steganalytic features for detecting ordinary LSB matching with optimal
ternary coding and HUGO with MC step S2. All steganalyzers are targeted to a given
algorithm and message length.

while both of them achieve the same distortion d. Coding loss 0 ≤ l(d) ≤ 1 tells
us what portion of the ideal payload we are loosing due to practical embedding
algorithm. For STCs, l(d) was often around 3%−7% depending on ρ and h. This
finding is consistent with Figure 5 (a).

According to Figure 5 (b), HUGO offers very high security. Even for payloads
as large as 0.30bpp, the error of all four steganalyzers targeted to detect HUGO
with optimal coding and MC step is above 40%. It is expected that secure payload
may be higher for cover sources without such strong pixel dependencies as present
in BOWS2 database from scaling the original images.

Even though the improvement obtained from CDF features is significant when
compared to second-order SPAM, the relative payload for which the scheme
remains undetectable stays essentialy the same. This threshold may point to
amount of pixels that are not modeled by either feature set (SPAM or DCT
based). However, including such pixels in the steganalytic model may not be
as beneficial as including them into steganographic model due to the statistical
learning problem. Such pixels are expected to be part of very noisy end textured
areas which will be challenging for steganalysis.

Last, but not least, if we compare HUGO with MC step S2 to the state-of-the-
art LSB matching with optimal ternary coding, we can see that by using HUGO,
Alice gains more than 700% of the capacity at PE = 40% on the BOWS2 database.

5 Conclusion

This paper presented a complete method for designing practical and secure
steganographic schemes for real digital media. The main design principle is to
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minimize a suitably-defined distortion caused by the embedding. Since the dis-
tortion function is an essential input of the method, a large part of the paper was
devoted to its design. We recommended to use weighted difference of extended
state-of-the-art feature vectors already used in steganalysis. The extension of
the feature sets, which can contain even 107 features, is important to avoid
overfitting to a particular steganalyzer. The use of such large feature sets was
justified by explaining the fundamental difference of their role in steganography
and steganalysis.

The whole approach was demonstrated by designing a new steganographic al-
gorithm for spatial domain (called HUGO), where the image model was derived
from SPAM features. Parts of the model, i.e., the weights, responsible for detec-
tion of LSB matching were identified using criteria optimized in Fisher Linear
Discriminant, which motivated the construction of an ad hoc distortion measure.
The coding itself was performed using the syndrome-trellis codes which enable
very fast implementation of the scheme in practice for arbitrary set of embedding
costs ρ.

The security of HUGO was verified and compared to prior art (LSB matching)
on a wide range of payloads for four different features sets. In contrast with LSB
matching, HUGO allows the embedder to hide 7× longer message with the same
level of security level. By concrete numbers, the payload of HUGO at detection
error 40% is 0.3bpp, while for LSB matching it is 0.04bpp.
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Abstract. This paper focuses on modifying the decoder module for an

active steganographic scheme to increase the effective data-rate with-

out affecting the embedding module. Three techniques are suggested

to improve the error correction framework of an active steganographic

scheme. The first involves puncturing where the code-length is increased

by adding a suitable number of additional erasures. The second technique

involves channel modeling and soft-decision decoding which is adaptive

to the embeddable image coefficient. The third method adjusts the era-

sure threshold depending on the design hiding quantizer so as to achieve

a higher data-rate. Combining these techniques, the effective data-rate is

increased by 10%-50% for Yet Another Steganographic Scheme (YASS),

a popular active steganographic scheme.

Keywords: data hiding, error correcting codes, puncturing, log-likelihood

ratio, erasure rate, steganography.

1 Introduction

Steganography is the art of secure communication where the existence of the

communication itself cannot be detected by an external agent. The art of detect-

ing such secret communication is known as steganalysis. Covert communication

is typically enabled by embedding the secret message into an innocuous looking

host or cover signal to form a composite or stego signal. The task of an adversary,

the steganalyst (the “warden”), is to discover the presence of covert communica-

tion, which requires use of statistical and/or perceptual analysis to distinguish

between plain cover and stego signals. This is the scenario of passive steganaly-

sis, wherein, the steganalyst can observe the communication but cannot modify

the covers. In many cases, an adversary can simply thwart any covert commu-

nication by mildly modifying the signals being communicated without needing

to know whether they are cover or stego, leading to what is commonly known

R. Böhme, P.W.L. Fong, and R. Safavi-Naini (Eds.): IH 2010, LNCS 6387, pp. 178–192, 2010.
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as active steganography [3, 7, 12]. An active warden has a limited attack budget

so as not to significantly affect innocent users, who typically are the majority.

The past decade has seen great strides being made in these competing fields of

steganography and steganalysis. Images are, arguably, the most popular host me-

dia, which is evident from the vast amount of literature in image steganography

and steganalysis. Blind steganalysis schemes, employing powerful machine learn-

ing algorithms and specifically designed image features that capture changes due

to data hiding, are quite successful in detecting the presence of very low rate

covert communication in image hosts [8, 16, 10].

In this paper we focus on practical aspects of active steganographic schemes,

which has received relatively less attention in the literature so far. An active

steganographic system can be modeled as a communication channel, wherein,

both the data hider and the attacker have limited distortion budgets to modify

the host signal. This is in addition to the statistical security that the underlying

data hiding scheme must provide. Thus, an important component of a data hid-

ing method that can survive attacks is the use of error correcting codes (ECC).

This paper focuses entirely on the error correction aspects of a stego scheme to

provide noticeable improvement in the operating point for the rate-detectability

trade-off. We utilize a better modeling of the underlying data hiding channel

(scalar quantization index modulation (QIM) [5] based hiding) to compute more

accurate likelihood ratios, erasure thresholds, and code rates. In this paper, we

consider a benign attack scenario (JPEG compression) for the channel attack.

We employ a popular active steganographic scheme, Yet Another Stegano-

graphic Scheme (YASS) [17], as a platform to demonstrate the improvements.

YASS involves data embedding in the discrete cosine transform (DCT) domain of

randomly chosen block locations. The error correction framework is provided by

serial concatenated turbo codes (repeat accumulate codes [6]). The noise channel

consists of the JPEG compression attack and our steganalysis framework com-

prises of a collection of calibrated and uncalibrated features, which was shown

to be effective for detecting YASS-based hiding in [9].

Although much of the discussion in the paper is specific to YASS, we must

note that if a proper model for the channel attack can be obtained, i.e., if it

is possible to reliably estimate a suitable transition probability matrix for the

given channel, the methods proposed in the paper can be applied. We do not

change the embedder and thus the detectability against steganalysis remains

unchanged. However, by better channel modeling and appropriate modifications
to the decoder, the effective data-rate can be increased, without compromising on
the undetectability and robustness, which forms the crux of this paper.

Paper Outline: The problem formulation and main contributions are presented

in Sec. 2, followed by a brief overview of the YASS methodology in Sec. 3. A

brief description of the composite data hiding channel is presented in Sec. 4. The

puncturing scheme and its implications are explained in Sec. 5. Suitable channel

modeling for the soft-decision decoding are discussed in Sec. 6. In Sec. 7, we

explain how the erasure rate can be suitably varied to maximize the effective
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data-rate. Experimental results and overall performance improvements over the

previous decoding methods are presented in Sec. 8.

2 Problem Setup

QIM-based Hiding Framework: The hiding is performed using quantiza-

tion index modulation [5]. An embeddable coefficient is converted to the nearest

even/odd integer depending on whether the bit to be embedded is 0/1, respec-

tively. For perceptual transparency, we do not use quantized AC DCT coefficients

in [-0.5,0.5] for hiding; a DCT coefficient in this range is converted to zero and

the corresponding bit is assumed to be “erased”. An erasure is denoted as e in

the paper. A list of commonly used acronyms is presented in Table 1.

Table 1. Commonly used Acronyms

Acronym Full form

QIM Quantization Index Modulation (a commonly used embedding method)

RA code Repeat Accumulate code (a coding scheme for providing error resilience)

QF quality factor (determines extent of JPEG compression)

ECC Error Correction Coding (adds redundant bits to survive channel attacks)

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

LLR log-likelihood ratio which denotes the soft confidence level in an embeddable

coefficient while decoding

B big-block size used in the YASS framework

λ the number of top AC DCT coefficients, encountered during zigzag scan,

used for hiding per 8×8 block

λ′ for a puncturing scheme, the hiding band, per 8×8 block, has λ′ (> λ)

coefficients

QFh the design quality factor used for hiding

QFa the output quality factor at which the stego image is JPEG compressed

qopt the minimum RA code redundancy factor which allows successful decoding

[x] rounded off value of x

δdec at the decoder side, coefficients in [−δdec, δdec] are assumed to be erasures

Nc fraction of the embeddable DCT coefficients in the range [c − 0.5, c + 0.5]

N[a,b] fraction of the embeddable DCT coefficients in the range [a, b]

Turbo codes have shown the most powerful performance for the additive white

Gaussian noise (AWGN) and the erasures channels, among many specific channel

models. Our approach is practical and the techniques are backed by experimental

results and improvements. The following aspects are considered.

(i) Puncturing: After encoding the data-bits using a given ECC of known re-

dundancy, the code-length can be further increased by placing erasures at

certain locations. Puncturing has long been known to improve the perfor-

mance of turbo codes [2,1]. It helps the encoding process in two ways: (i) it
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allows finer choice of embedding rates (rather than 1/q where q is a positive

integer redundancy factor), and (ii) it allows the use of large codewords, a

key factor contributing to the near-capacity performance of turbolike codes.

We provide experimental evidence that puncturing increases the effective

hiding rate for certain channels .
(ii) Soft-decision decoding with coefficient-based LLR Allocation:

When the channel model is known a priori, the use of soft-decision de-

coding invariably improves the convergence probability and accuracy of an

ECC decoder. We conduct experimental channel modeling to compute soft

confidence values to be set for the log-likelihood ratio (LLR) to be used by

the decoder (a sum-product algorithm).
(iii) Varying erasure rate: In the QIM-erasure data hiding channel considered

in the paper, the decoder canvary a threshold to control the erasure rate. Such

a control may not be available in conventional communication channels. We

provide simple analysis to compute the optimal value of the threshold δdec (co-

efficients in the range [−δdec, δdec] are assumed to be erased) that maximizes

the data hiding rate, given the QIM quantizer (for JPEG case, the quality

factor QFh). These are verified by experiments with real image datasets.

Since the statistical security is demonstrated for the YASS [17] framework, we

now provide a brief description of the YASS stego scheme.

3 Brief Overview of YASS

The security of YASS can be attributed to the randomized choice of hiding

locations. The idea of YASS was conceived keeping in mind the fact that the

steganalysis features (for JPEG images) mainly consist of block-based features,

i.e. computed on the 8×8 block. If the hiding is performed using a block-based

approach which is not aligned with the JPEG-based blocks, the steganalysis

features will be out-of-sync with the features that are modified by the hiding.

For hiding in randomly chosen block locations, the image needs to be converted

from the compressed domain (if a JPEG image is the input) to the pixel domain.

YASS Framework: The input image is decompressed if it is in JPEG format

and then divided into blocks of size B×B (B > 8), where B is called the big-

block size. For each big-block, a 8×8 sub-block is pseudo-randomly chosen to

hide data. The encoder and decoder share the same key by which they can access
the same set of 8×8 blocks. For every sub-block, its 2D DCT is computed and

then divided by a JPEG quantization matrix at a design quality factor (QF),

denoted by QFh. A band of λ AC DCT coefficients lying in the low and mid-

frequency range is used for hiding. After data embedding, the resultant image is

JPEG compressed at a QF of QF a.

To emphasize the role of YASS, it decides the hiding locations (pseudo-

randomly chosen block locations) and the hiding coefficients (AC DCT coef-

ficients belonging to the hiding band for the randomly chosen blocks). Unless

otherwise mentioned, the data-rate computation experiments use B=9, QFa=75,

for the YASS framework.
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4 Brief Description of the Hiding Channel

The effective data-hiding channel and the ECC framework used are shown in
Fig. 1. We use a repeat accumulate (RA) code [6] as the ECC framework due to
the high erasure rate associated with quantized DCT-domain hiding channels.

Composite Hiding Channel: The RA coding framework determines how u,
a sequence of N ′ bits, is mapped to the encoded sequence c, a sequence of N ′q
bits, assuming the ECC to have a redundancy factor of q. The conversion from u
to c is explained in Fig. 1. After RA-encoding, this sequence c acts as the input
sequence for QIM-based embedding. For the coefficients in the erasure zone, the
code-bits get mapped to e (erasures); for the remaining coefficients, the code-bits
get properly embedded. The ternary sequence (with symbols {0, 1, e}) obtained
after embedding is denoted by z. Then, the stego image is JPEG compressed
(other global noise attacks are also possible) and the same set of embeddable
coefficients (as identified at the encoder) is identified at the decoder. The ternary
sequence, derived at the decoder side, is denoted by ĉ. Thus, the effective hiding
channel is represented by a 2×3 mapping, from c to ĉ.

Repeat

q times
1/(1+D)

Channel

u1u2…uN

r1r2...rN q =

u1u2...uN

repeated

q times

x1x2…xN q c1c2…cN q

Interleaver Accumulator

(binary) (binary) (binary) (binary)

ternary sequence derived from 
the LLRs

ENCODER

Use QIM based embedding to embed
{c1c2…cN q} in image

0

0

0

111

e e e

c z ĉ
Effective
channel model 
from c to ĉ

c1c2…cN q
^ ^ ^

data bits
RA code bits

z1z2…zN q(ternary symbols obtained after 
QIM based embedding)

Fig. 1. The mapping between c, the binary RA code-bit sequence to ĉ, the ternary

sequence obtained from the LLRs at the decoder output, is shown here for the QIM-RA

framework - the “channel” between z and ĉ refers to the JPEG compression channel

that introduces errors and erasures in the mapping from z to ĉ

Numerical Examples: Some examples of the mapping between c and z ({0, 1}
→ {0, 1, e}, denoted by a 2×3 matrix Pc,z), z and ĉ ({0, 1, e} → {0, 1, e}, de-
noted by a 3×3 matrix Pz,ĉ), c and ĉ ({0, 1} → {0, 1, e}, denoted by a 2×3
matrix Pc,ĉ), are presented below in Table 2. Since the modifications to the de-
coding framework require a thorough understanding of the channel transition
probability matrices, we present these numerical examples.

The effective 2×3 mapping from c to ĉ is used to compute the channel capacity
C by maximizing the mutual information I(c, ĉ) between the sequences c and ĉ
(1) - a discrete memoryless channel is assumed.

Cc,ĉ = max
p(c)

I(c, ĉ) = max
p(c)

∑
c∈{0,1}

∑
ĉ∈{0,1,e}

p(c, ĉ) log
(

p(c|ĉ)
p(c)

)
(1)
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Table 2. Using B=9, QFa=75 for YASS, the transition probability matrices are com-

puted for different hiding conditions. The results are averaged over 250 images.

Hiding Setup Pc,z Pz,ĉ Pc,ĉ

QFh=30, λ=6

[
0.23 0.00 0.77
0.00 0.37 0.63

] ⎡⎣ 0.998 0.002 0.000
0.001 0.999 0.000
0.000 0.001 0.999

⎤⎦ [
0.23 0.00 0.77
0.00 0.37 0.63

]

QFh=75, λ=8

[
0.43 0.00 0.57
0.00 0.61 0.39

] ⎡⎣ 0.833 0.167 0.000
0.096 0.888 0.016
0.000 0.079 0.921

⎤⎦ [
0.36 0.13 0.51
0.06 0.55 0.39

]

Given an image, is it possible to obtain these transition probability matrices
without actually simulating the entire channel? We now express these matrices
in terms of N[a,b], the fraction of embeddable quantized DCT coefficients in [a, b].

Table 3. Expression for a 2×3 transition probability matrix Pc,z

p0,0 = 1 − p0,e p0,1 = 0 p0,e =
(N[−0.5,0.5] + N(0.5,1) + N(−1,−0.5))

2

p1,0 = 0 p1,1 = 1 − p1,e p1,e =
(N[−0.5,0.5])

2

Explaining Pc,z: (as shown in Table 2) When a lower QFh is used, the quan-
tization applied to the DCT coefficients is coarser and hence, the fraction of
embeddable DCT coefficients that lies in the erasure zone increases. Therefore,
the (1, 3)th (0 → e mapping) and (2, 3)th (1 → e mapping) elements in Pc,z are
higher for QFh of 30 (coarser JPEG quantization) than when QFh = 75 (finer
JPEG quantization), as seen from Table 3.

Why is Pc,z(1, 1) < Pc,z(2, 2) (i.e. p0,0 < p1,1) ? All quantized DCT coefficients
in the range [-0.5,0.5] get mapped to erasures. For a coefficient in [-0.5,0.5], it is
equally likely for the input bit to be 0 or 1. For DCT coefficients in the range
(0.5,1) and (-0.5,-1), the coefficients get mapped to 1 and -1, respectively, when
1 is to be embedded; however, these coefficients are mapped to zero (erasures)
when 0 is to embedded. Hence, p1,1 > p0,0.

We now express the transition probability terms in Pz,ĉ in terms of the noise
distribution Pr(n) (n is the noise signal that affects the mapping from z to ĉ)
and the decoder-side erasure cutoff δ.

p0,0 = ∀k �=0,k∈Z

2k+0.5∑
x=2k

Nx.P r(n ≤ ([x] + 0.5 − x))+

∀k �=0,k∈Z

2k∑
x=2k−0.5

Nx.P r(n ≥ ([x] − 0.5 − x)), p0,1 = 1 − p0,0, p0,e = 0
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p1,1 = ∀k �=0,k∈Z

2k−0.5∑
x=2k−1

Nx.P r(n ≤ ([x] + 0.5 − x))+

∀k �=0,k∈Z

2k+1∑
x=2k+0.5

Nx.P r(n ≥ ([x] − 0.5 − x))

+
1∑

0.5

Nx.P r(n ≥ (δ − x)) +
−0.5∑
−1

Nx.P r(n ≤ (−δ − x))

p1,e =
1.5∑
0.5

Nx.P r(n ≤ (δ − x)) +
−0.5∑
−1.5

Nx.P r(n ≥ (−δ − x))

p1,0 = 1 − (p1,1 + p1,e)

pe,e =
0.5∑
0

Nx.P r(n ≤ (δ − x)) +
0∑

−0.5

Nx.P r(n ≥ (−δ − x))

pe,1 = 1 − pe,e, pe,0 = 0

Explaining Pz,ĉ: (as shown in Table 2) Focussing now on Pz,ĉ, the question
comes up as why this matrix is asymmetric? It is observed that pe,1 > pe,0, and
p0,1 > p1,0. For coefficients in the range [-0.5, 0.5], channel noise can result in
the coefficients being rounded off to ±1. Therefore, pe,1 > pe,0 (the noise value
should be significantly high to shift a coefficient from the range [-0.5,0.5] to a
range (1.5,2.5) or (-1.5,-2.5)).

For a coefficient to be mapped from 1 → 0, coefficients in the range [0.5,1.5]
(or [-1.5,0.5]) can get mapped to (1.5,2.5) (or (-2.5,-1.5)). When a coefficient
corresponds to a 0 → 1 mapping, a coefficient in the range [1.5,2.5] (or [-2.5,-
1.5]) can get mapped to [0.5,1.5] or [2.5,3.5] (or [-1.5,0.5] or [-3.5,-2.5]). There is
very low probability of a ‘0’ getting mapped to an erasure, i.e. to the [-0.5,0.5]
zone. On the other hand, it is more likely for a 1 → e mapping to occur. This
happens when a coefficient in [0.5,1.5] (or [-1.5,-0.5]) gets mapped to (-0.5,0.5).

5 Puncturing for Better Performance

Puncturing is a technique used to obtain a m
n code from a “basic” rate 1

2 code.
Puncturing (code bit deletions) effectively decreases the code-length. E.g. when
we have a RA codeword of 200 bits and the optimal redundancy factor qopt is
4, we can embed 200/4 = 50 data-bits. The effective codeword length is now
increased to 300; the extra 300-200=100 bits are assumed to be erasures. With
respect to puncturing, the input is a 300-bit code-word and 100 bits are deleted
from it, leaving a 200-bit code-word. If the new value of the optimal redundancy
factor ≤ 5, the new data rate will be increased as �300/5� > 50. When puncturing
is done, the number of additional erasures needs to be decided; it is seen that the
effective data-rate is increased for a certain range of additional erasures. Simply
put, puncturing allows us to choose a finer embedding rate for a given setup.
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Fig. 2. The variation of the performance with λ and QFh is computed over 250 im-

ages. Here, “I-LLR” and “C-LLR” refer to the “image-dependent” and “coefficient-

dependent” LLR allocation methods, respectively.

The hiding band consists of λ AC DCT coefficients per 8×8 block. Let the
number of B × B blocks used for hiding be NB. Thus, the total number of
coefficients available for hiding N = λ.NB. While puncturing, it is assumed that
the hiding band consists of λ′ (λ′ > λ) coefficients per 8×8 block.

We empirically observe that for more noisy channels, performance improvement
is not obtained on using a higher number of erasures. The experimentally com-
puted qopt using RA codes is significantly higher than the redundancy factor for
an ideal channel code, � 1

Cc,ĉ
	 (1). The average value of (qopt−� 1

Cc,ĉ
	), computed for

250 images, is reported in Fig. 2. It is seen that the RA code performs closer to ca-
pacity ((qopt −� 1

Cc,ĉ
	) becomes smaller) for larger λ, i.e. for longer code-lengths. It

is seen that the RA code is most away from capacity for channels with very high er-
ror rates (when QFh=75) or very high erasure rates (when QFh=30). In Fig. 2, “I-
LLR” and “C-LLR” refer to the “image-dependent” and “coefficient-dependent”
LLR allocation methods, explained later in Sec. 6.1 and Sec. 6.2, respectively.

To vary the effective noise level in the channel (this affects the 3×3 transition
probability matrix that denotes the mapping between z and ĉ), the design quality
factor used for hiding, QFh, is varied. With a fixed value of QFa, the output
JPEG quality factor, the effective channel noise increases as QFh is increased.
Why does the effective noise increase as QFh approaches QFa? As QFh increases,
the DCT coefficients are divided element-wise by a finer quantization matrix (the
elements in the JPEG quantization matrix become smaller). For a quantization
matrix coefficient of Δ, the noise should exceed Δ

2 to cause a decoding error.
Therefore, as QFh ⇑ =⇒ Δ ⇑ =⇒ noise robustness ⇓.

The bpnc improvements on using varying degrees of additional erasures for
different hiding conditions are shown in Tables 4 and 5. For QFh=70 and 75,
the bpnc starts to decrease as λ′ > λ, and hence, the corresponding bpnc results
after erasure addition are not reported.
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Table 4. The average bpnc values are computed over 250 images using the QIM-RA

framework and puncturing. Here, (2, 6) denotes that λ=2 and λ′=6. The %-gain is

expressed as
maxλ′≥λ bpnc(λ, λ′) − bpnc(λ, λ)

bpnc(λ, λ)
. We use B=9, δdec=0.5 and QFa=75.

QFh = 30 QFh = 40

(2,2) (2,3) (2,4) (2,5) %-gain (2,2) (2,3) (2,4) (2,5) %-gain

0.032 0.038 0.043 0.042 30.50 0.053 0.063 0.064 0.063 22.43

(4,4) (4,5) (4,6) (4,7) %-gain (4,4) (4,5) (4,6) (4,7) %-gain

0.059 0.069 0.073 0.070 24.91 0.089 0.097 0.100 0.099 12.88

(8,8) (8,9) (8,10) (8,12) %-gain (8,8) (8,9) (8,10) (8,12) %-gain

0.117 0.119 0.121 0.120 3.76 0.139 0.140 0.142 0.145 4.24

(12,12) (12,13) (12,14) (12,15) %-gain (12,12) (12,13) (12,14) (12,15) %-gain

0.138 0.139 0.140 0.139 1.01 0.164 0.167 0.169 0.168 2.80

Table 5. The same experiments, as in Table 4, are now shown for QFh of 50 and 60

QFh = 50 QFh = 60

(2,2) (2,3) (2,4) (2,5) %-gain (2,2) (2,3) (2,4) (2,5) %-gain

0.0508 0.0609 0.0630 0.0607 24.02 0.0427 0.0446 0.0421 0.0367 4.45

(4,4) (4,5) (4,6) (4,7) %-gain (4,4) (4,5) (4,6) (4,7) %-gain

0.0932 0.1016 0.1040 0.1032 11.59 0.0865 0.0908 0.0937 0.0917 8.32

(8,8) (8,9) (8,10) (8,12) %-gain (8,8) (8,9) (8,10) (8,12) %-gain

0.1485 0.1508 0.1540 0.1536 3.70 0.1427 0.1438 0.1464 0.1415 2.59

(12,12) (12,13) (12,14) (12,15) %-gain (12,12) (12,13) (12,14) (12,15) %-gain

0.1748 0.1772 0.1792 0.1811 3.60 0.1738 0.1739 0.1740 0.1738 0.12

6 Suitable LLR Allocation for Soft Decision Decoding

RA codes are an example of serial concatenated turbo codes, where the com-
ponent decoders are based on the BCJR algorithm [4]. The BCJR algorithm
takes as input the a-posteriori probability of each code-bit, which is used to
compute the log-likelihood ratio (LLR) at each code-bit location, as defined in
(2). The forward and backward Viterbi-decoding algorithms running through
the trellis depend on the initial estimates of the posterior probabilities which
decide the LLR values. We have consolidated upon a recently proposed method
to suitably initialize the LLR estimates at the decoder locations [15]. It has been
experimentally observed that proper initialization of LLR values leads to faster
convergence at the decoder, i.e. convergence using a lower redundancy factor.
For a given image and an attack channel, the LLR values belonged to the 3-
tuple, (α,−α, 0), corresponding to 0, 1, and e, respectively, where α is a soft
confidence value decided based on the composite channel parameters (Pc,ĉ). We
repeat the discussion from [15] in Sec. 6.1 for ease of understanding. This LLR
allocation scheme works well, except for very noisy channels. For such channels,
we present a per-coefficient based, instead of a per-image based, LLR allocation
method in Sec. 6.2.
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6.1 Image-Based LLR Allocation

Let a certain image coefficient be equal to y and the corresponding embedded bit
be b. The LLR value LLR(y) denotes the logarithm of the ratio of the likelihood
that a 0 was transmitted through that coefficient (Pr(b = 0|y)) to the likelihood
that a 1 was transmitted (Pr(b = 1|y)).

LLR(y) = log
(

Pr(b = 0|y)
Pr(b = 1|y)

)
(2)

Let pe denote the effective error probability in the channel (mapping from c
to ĉ) and Nc denotes the fraction of embeddable DCT coefficients whose value
changes to c on rounding. In [15], the LLR value is estimated as follows:

LLR(y|[y] = c, c 
= 0) = ± log
(

(Nc + Nc−1/2 + Nc+1/2)(1 − pe)
(Nc + Nc−1 + Nc+1 + Nc−2/2 + Nc+2/2)pe/2

)
,

(3)

where the ± signs are for c = even/odd, respectively, and
LLR(y) is kept at 0 when [y] = 0.

The distribution of the AC DCT coefficients has been approximated as Laplacian
[11, 14]. Always, Nc−1 > Nc > Nc+1 holds, for c ≥ 1, and Nc ≈ N−c, by
symmetry. If we assume Nc ≈ (Nc−1 + Nc+1)/2, then LLR(y) reduces to:

LLR(y|[y] = c, c 
= 0) = ± log
(

1
pe

− 1
)

(4)

It is experimentally observed that the LLR allocation methods using (3) and
(4) result in similar embedding rates. Hence, in subsequent experiments, the
image-dependent LLR is computed using the relatively simpler expression (4).
The next issue is computing pe for a given image and noise channel. In [15], it is
seen that knowledge of the image histogram (that governs Pc,z) and the output
JPEG QF (that governs Pz,ĉ) helps in accurate estimation of pe.

6.2 Coefficient-Based LLR Allocation

This LLR allocation provides the same 3-tuple of LLR values
{
± log

(
1
pe

− 1
)

, 0
}

for all the embeddable coefficients in a certain image. For very noisy channels, we
observe that qopt (the minimum RA-code redundancy factor for a given image and

a hiding channel) is far-off from the � 1
Cc,ĉ

	. The solution is to perform a more in-

depth analysis of the LLR allocation. We decide whether a 0/1 is embedded based
on the fact that a certain image coefficient rounds off to an even/odd integer. E.g.
if a coefficient in the received image is valued at 4, we are “more confident” that
it corresponds to a 0-embedding than if the coefficient were valued at 3.6 or 4.4.
Denoting the JPEG compression introduced noise signal by n, for the coefficient
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valued at 4 to correspond to a bit-error, the noise should exceed (4-3.5)=0.5 in
magnitude. When the corresponding coefficients equal 3.6 (or 4.4), a bit-error can
be caused when the noise exceeds 0.1 in magnitude. Due to the highly Laplacian-
like pdf of n, Pr(n > 0.5) is significantly less likely than Pr(n > 0.1). We have
experimentally observed that using a per-coefficient LLR allocation scheme is more
advantageous than using a per-image LLR allocation.

Let y be the received DCT coefficient, (x − 1) be an even integer and [y] =
(x−1). For a decoding error to occur, the noise signal should exceed ((x−0.5)−y);
then y would get mapped to x. It is assumed, due to the Laplacian pdf, that the
value of the noise signal n is generally limited to [-1,1].

LLR(y) = ± log
(

Pr(b = 0|y)
Pr(b = 1|y)

)
= ± log

(
1 − Pr(n > (x − 0.5 − y))

Pr(n > (x − 0.5 − y))

)
(5)

where [y] = (x − 1), the ± signs are for (x − 1) being an even/odd integer,
respectively, and LLR(y) is 0 when round(y) = 0.

When [y] = x and x is an even integer, then LLR(y) is expressed as:

LLR(y) = ± log
(

Pr(b = 0|y)
Pr(b = 1|y)

)
= ± log

(
1 − Pr(n < ((x − 0.5) − y))

Pr(n < ((x − 0.5) − y))

)
(6)

where the ± signs are for x being an even/odd integer, respectively.

7 Variation of the Erasure Rate

Erasures are used to better account for symbols where the probability of a bit-
error is quite high. By increasing the erasure threshold, the erasure rate is in-
creased and the error rate is decreased - the flip-side is that the rate of correctly
mapped symbols also decreases. It is experimentally observed that if the erasure
rate is suitably adjusted, the decrease in the rate of correctly mapped symbols
is offset by the decrease in the error rate, and the hiding rate is increased.

This method results in increased hiding rates for channels where the effec-
tive error rate is high, i.e. it dominates over the erasure probability term. It is
experimentally observed that for channels with high error rates (e.g. channels
with QFh of 50-75), using an increased erasure rate results in a higher effective
hiding rate. For channels with low error rates (e.g. channels with QFh ≤ 30),
decreasing the erasure rate increases the hiding rate.

We now show an example of how the effective mapping Pc,ĉ changes as
the erasure cutoff (δdec) increases. As δdec is increased from 0.5 (assume that
δdec ≤ 1), coefficients in the range [0.5, δdec] get mapped to erasures now, and
these were mapped to 1 (bit ‘1’ is embedded) when δdec = 0.5. Thus, p1,1 de-
creases and p1,e increases. Similarly, as the erasure range is increased (from
(0.5,0.5) to (−δdec, δdec)), pe,e increases while pe,1 decreases. From (1), it is seen
that Cc,ĉ depends on the transition probability matrix Pc,ĉ, whose parameters are
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Table 6. The average values for Pz,ĉ, Pc,ĉ and Cc,ĉ are computed over 250 images,

using B=9, QFh=75, QFa=75 and λ=8

δdec Pz,ĉ Pc,ĉ Cc,ĉ

0.5

⎡⎣ 0.8333 0.1673 0.0000
0.0963 0.8880 0.0157
0.0000 0.0792 0.9208

⎤⎦ [
0.3557 0.1317 0.5126
0.0602 0.5503 0.3895

]
0.1910

0.6

⎡⎣ 0.8333 0.1673 0.0000
0.0963 0.8570 0.0467
0.0000 0.0378 0.9622

⎤⎦ [
0.3557 0.1009 0.5434
0.0602 0.5258 0.4140

]
0.2050

0.7

⎡⎣ 0.8333 0.1673 0.0000
0.0963 0.8092 0.0944
0.0000 0.0163 0.9837

⎤⎦ [
0.3557 0.0834 0.5609
0.0602 0.4967 0.4431

]
0.2074

0.8

⎡⎣ 0.8333 0.1673 0.0000
0.0963 0.7465 0.1572
0.0000 0.0061 0.9939

⎤⎦ [
0.3557 0.0745 0.5697
0.0602 0.4599 0.4799

]
0.1986

expressed in terms of N[a,b], Pn and δdec. Thus, for a given distribution of the
image DCT coefficients and an assumed noise distribution for fixed values of λ,
QFh and QFa, the capacity can be expressed as a function of δdec.

We empirically show the best cutoffs to use for different values of QFh in
Fig. 3. The 2×3 mapping between c and z is image-dependent and is unaffected
by δdec. Table 6 shows how the channel capacity varies with the erasure cutoff
δdec, where the embedder side hiding parameters are left unchanged.
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Fig. 3. Variation in bpnc with change in δdec for different choices of QFh - the best

choices for δdec are 0.3, 0.6, 0.6 and 0.7 for QFh of 30, 50, 60 and 75, respectively
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Table 7. The average bpnc results are presented for different hiding conditions. Here,

I-LLR refers to the use of image-dependent LLR for decoding. “Puncture” refers to the

use of the best combination (λ, λ′) for a given λ that maximizes the bpnc. “Erasure”

refers to the use of the best choice of δdec, the decoder cutoff, for a given QFh, after

puncturing. “C-LLR” refers to the use of the coefficient-dependent LLR, after punc-

turing and using best choice of δdec. Here, %-gain refers to the fractional gain obtained

after using (puncture + erasure + C-LLR), as compared to using only I-LLR. It is
to be emphasized that Pd is unchanged as bpnc is increased for the same
hiding parameters by varying the decoder module.

QFh λ I-LLR puncture Erasure C-LLR %-gain

30 2 0.0318 0.0425 0.0570 0.0578 81.76

30 4 0.0586 0.0732 0.0833 0.0846 44.37

30 8 0.1169 0.1213 0.1226 0.1245 6.50

30 12 0.1387 0.1401 0.1420 0.1440 3.82

50 2 0.0508 0.0630 0.0640 0.0650 27.95

50 4 0.0932 0.1040 0.1064 0.1070 14.81

50 8 0.1485 0.1540 0.1555 0.1580 6.40

50 12 0.1748 0.1811 0.1839 0.1880 7.55

60 2 0.0427 0.0446 0.0476 0.0519 21.55

60 4 0.0865 0.0937 0.0972 0.1034 18.38

60 8 0.1427 0.1464 0.1537 0.1615 13.17

60 12 0.1738 0.1745 0.1858 0.1957 12.60

70 2 0.0230 0.0230 0.0257 0.0278 20.87

70 4 0.0644 0.0644 0.0701 0.0768 19.25

70 8 0.1132 0.1132 0.1241 0.1345 18.82

70 12 0.1379 0.1379 0.1555 0.1719 24.66

8 Results

We show how the effective hiding rate is increased by a combination of the
three factors. The %-age improvement in the bpnc is shown for different hiding
parameters in Table 7.

For steganalysis, we use a set of 3400 high-quality JPEG images which were
originally at a QF of 95 and they were JPEG compressed at a QF of 75 for the
experiments. For the experiments, we crop out the central 512×512 region inside
each image - the cropping is done for both the cover and stego images.

Steganalysis Feature Used: KF-548 - To improve upon the 274-dimensional
calibrated feature [13], Kodovský and Fridrich [9] proposed the use of a 548-
dimensional feature set KF-548 which accounts for both calibrated and un-
calibrated features. Here, the reference feature is used as an additional feature
instead of being subtracted from the original feature.

Half of the images are used for training and the other half for testing. We use a
support vector machine (SVM) based classifier for steganalysis, where the SVM
is trained using the KF-548 feature. The probability of classifying a test image
correctly as cover or stego - the detection accuracy Pd (Pd=50% implies unde-
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Table 8. The steganalysis results are reported using KF-548. Pd refers to the detection

accuracy. “I-LLR” refers to the bpnc obtained using image-dependent LLRs while

“final” refers to the bpnc obtained after using all the three proposed techniques -

puncturing, suitably varied erasure cutoff, and coefficient-based LLRs.

Hiding Setup Pd(%) I-LLR final %-gain

QFh=50, λ=2 65.00 0.0508 0.0650 27.95

QFh=50, λ=3 69.00 0.0710 0.0860 21.13

QFh=60, λ=3 65.80 0.0665 0.0795 19.55

QFh=60, λ=4 70.06 0.0865 0.1034 19.54

QFh=75, λ=4 55.00 0.0445 0.0564 26.74

QFh=75, λ=6 60.40 0.0680 0.0849 24.85

QFh=75, λ=8 68.00 0.0882 0.1099 24.60

tectable hiding, and as the detectability improves, Pd increases towards 100%) is
obtained using KF-548. The steganalysis results are reported in Table 8. Based
on the hiding parameters, it is seen that a higher QFh gives better bpnc-vs-Pd

trade-off, i.e. higher bpnc for similar Pd values. E.g. a bpnc of about 0.11 is
obtained at a Pd of 0.68 at QFh=75, while similar Pd values result in bpnc of
0.086 and 0.103 at QFh = 50 and 60, respectively.

9 Conclusions

In this paper, we have demonstrated three simple methods to increase the effec-
tive data-rate at the decoder side without affecting the embedder process. These
methods have been tested on the YASS framework where they have produced
10%-40% improvement in the hiding rate, without affecting the detectability.
The methods have been based on the repeat accumulate code based framework,
which has been shown to be close to capacity achieving for most hiding condi-
tions. The only hiding condition where the RA code is still somewhat away from
being capacity-achieving is for small code-lengths with channels having high
error-rates or high erasure rates, and that leaves scope for further improvement.
The decoding techniques proposed here are generic and can be incorporated in
other steganographic schemes, which involve different methods for hiding coeffi-
cient selection, different transform domains for embedding, and different iterative
decoding frameworks.
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Abstract. Steganographic timing channels exploit inter-packet delays in net-
work traffic to transmit secret messages. The two most important design goals
are undetectability and robustness. In previous proposals undetectability has been
validated only against a set of known statistical methods, leaving the resistance
against possible future attacks unclear. Moreover, many existing schemes do not
provide any robustness at all. In this paper, we introduce a steganographic tim-
ing channel that is both robust and provably undetectable for network traffic with
independent and identically distributed (i.i.d.) inter-packet delays. I.i.d. traffic
models are very useful because they are simple to analyze, and constitute essen-
tial elements of many advanced network traffic models. In contrast to previous
work on i.i.d. traffic we do not rely on any strong assumptions, e.g., bounded
jitter, but require only the existence of a cryptographically secure pseudorandom
generator. We verify the effectiveness of our approach by conducting a series of
experiments on Telnet traffic and discuss the trade off between various encoding
and modulation parameters.

1 Introduction

Steganographic channels aim at establishing a communication channel hidden from
any outsider. There is a large body of literature on steganographic channels in computer
networks that exploit open overt communication (such as certain network protocols)
as the carrier medium to transmit secret messages [1]. A specific class of stegano-
graphic channels concerns timing channels which exploit timing information and pre-
dominantly inter-packet delays to transmit messages [2, 3]. Most existing methods to
establish steganographic timing channels have been successfully defeated using statis-
tical tests [2, 4, 3] or entropy-based approaches [5].

Recent research have started to incorporate traffic models into the timing channel
design process to evade detection [6, 7, 8]. However, these solutions have deficiencies
regarding various aspects such as the required resources (e.g., to update and periodi-
cally transmit the system model parameters) [7], the underlying assumptions (e.g., of
bounded jitter) [6] or the limited adversary model (e.g., to offer security only against
specific statistical tests) [7, 8]. To the best of our knowledge, none of the existing solu-
tions to steganographic timing channels provide a scheme that is both provably unde-
tectable and robust. Here, undetectability refers to the incapability of the adversary to

R. Böhme, P.W.L. Fong, and R. Safavi-Naini (Eds.): IH 2010, LNCS 6387, pp. 193–207, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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detect the steganographic channel by distinguishing between steganographic and overt
communications. Robustness means that the steganographic message can be correctly
decoded, even in the presence of (possibly maliciously added) additive noise. Note that
advanced traffic obfuscation schemes such as traffic shaping can defeat any stegano-
graphic timing channel. However, since certain regular traffic patterns may be artifi-
cially generated by the obfuscation, the two communication parties may be aware that
the communication has been compromised. In addition, for underlying traffic that is
generated from applications that have real-time constraints or are interactive, the per-
formance may be impacted as a result of changing the nature of the traffic pattern. The
goal of robustness is to deal with inherent network noise (without any assumption of
the underlying channel) and with additive noise that is introduced by a jamming device,
which tries to defeat steganographic communication.

As recently proposed in [6], we consider legitimate traffic generated by applications
for which the inter-packet delays are independent and identically distributed (i.i.d.).
Among the set of possible traffic models, i.i.d. traffic models are extensively used in ex-
isting network analysis [9,10]. Although there are only a limited number of real traffics
that are strictly i.i.d., it is an essential element in many advanced traffic models and the
methodology can be readily extended to other more general traffic models with reason-
able analytical adjustments. For example, most multimedia applications, such as Voice
over IP (VOIP) [11], can be modeled as Markov Renewal Processes. Typically, such
models may consist of a multiple-state Markov chain with each state corresponding to a
different i.i.d. traffic source. For more general scenarios, recent research [12] has shown
that a Batch Renewal Process (BRP) with i.i.d. batch size and i.i.d. inter-batch time can
be used to model traffic sources that have correlated inter-packet delays. Our proposed
approach works for i.i.d inter-packet delays with any arbitrary distribution. When mod-
eling network traffic, packet arrivals and connection requests are often assumed to fol-
low a Poisson process because of its attractive theoretical properties [9]. However, as
shown in [10], the Telnet traffic exhibits self-similar behavior. Consequently, the i.i.d.
negative exponential distribution (i.e., a Poisson process) cannot be used to accurately
model Telnet inter-packet delays while a Pareto-based i.i.d. can well capture the long
range dependencies of the traffic. Therefore, in this paper, we evaluate the proposed
steganographic timing channel using real Telnet trace samples as the legitimate traffic.
We also examine the effectiveness of i.i.d. Pareto model to emulate the distribution of
inter-packet delays of the real Telnet traffic.

Contribution and outline. In this paper, we propose a steganographic timing channel
that is both provably undetectable and robust for any legitimate traffic whose inter-
packet delays are i.i.d. following an arbitrary distribution. Toward this goal, in Section
4, we adopt the idea of spreading codes in the encoding process to mitigate the impact
of transmission noise. Compared to the existing work [8] where the distribution of the
steganographic traffic is only an approximation of the legitimate one and undetectability
was only guaranteed with respect to two commonly used statistical tests, in Section 5,
we design a modulation scheme for an i.i.d. traffic model to achieve undetectability
against any (efficiently computable) statistical test. We will call this security property
polynomial undetectability in the sequel. In Section 6, through an experimental study
using different types of noise and noise power levels, we verify the effectiveness of
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our robust encoding scheme and compare our results to the most recently proposed
steganographic timing channel [6]. The latter, to the best of our knowledge, is the only
steganographic timing channel that is known to achieve polynomial undetectability for
i.i.d. traffic. We show that our scheme improves the robustness of the steganographic
communication and achieves true undetectability without relying on strong bounded
jitters assumption required in [6]. Furthermore, we demonstrate the tradeoff between
robustness and attainable transmission rate (by adjusting the encoding and modulation
parameters) and validate the approach using Telnet traffic.

2 Related Work

Our work focuses on steganographic timing channels that involve modulating the packet
transmission of legitimate traffic to embed secret information (the steganographic mes-
sage) into packet arrival patterns. The simplest form of this class of steganographic tim-
ing channel is implemented by a binary on-off transmission scheme [13,2]: in a specific
time interval, a packet arrival indicates the bit 1 and an absence indicates the bit 0. How-
ever, the inter-packet delays of such a steganographic traffic will be very regular and can
be easily differentiated from legitimate traffic [2]. To avoid detection, [14] extended the
idea by adding noise to the channel in an attempt to conceal the steganographic com-
munication. Nonetheless, its security is only experimentally verified against regularity
tests [4] that check the variance of inter-packet delays.

A more advanced type of steganographic timing channel encodes the steganographic
message directly in the inter-packet delays. In the interval-time-replay scheme proposed
in [15], the empirical range of the inter-packet delays of legitimate traffic is partitioned
into two equal subsets, corresponding to “small-delays” and “large-delays”. Then, a
bit-1 of the steganographic message is sent by randomly replaying a large delay and
a bit-0 by using a small delay. The keyboard JitterBug [3] exploits inter-packet delays
of an existing interactive session to exfiltrate secret message. Specifically, small delays
are added between key-presses to encode the steganographic message. Compared to the
on-off schemes [13, 2], the design of these steganographic timing channels must take
into account some of the characteristics of the legitimate traffic. Specifically, the shape
of the distribution of the inter-packet delays of legitimate traffic is generally retained by
the steganographic traffic. However, some statistical attribute of the inter-packet delays
such as the distribution [2], the correlation [4], or the entropy [5], is altered by embed-
ding the steganographic message, which can be exploited to detect the steganographic
channel. Recently, a model-based steganographic timing channel was proposed in [7]
to thwart these detection methods. The scheme first derives a filter model based on the
statistics of the observed legitimate inter-packet delays and uses this model to generate
the steganographic traffic. In order to adaptively fit a non-stationary traffic, however,
this scheme requires frequent transmission of the model parameters to the decoder,
which results in a considerable system overhead.

A powerful measure against steganographic timing channels is to actively disrupt the
communication channel. For example, the study in [16] proposes to add random delays
to the traffic using a jamming device and shows that the throughput of the stegano-
graphic information can be made vanishingly small in practice. Although jammers may
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also reduce the performance of the legitimate traffic at the same time, they introduce
the requirement of robustness to steganographic timing channel design. Most existing
steganographic timing channels only address the issue of detectability and the transmis-
sion efficiency in terms of channel robustness has only been considered under limited
conditions. One of the earliest study to characterize the capacity of a steganographic
timing channel was presented in [17]. Subsequently, a number of studies [18, 19, 20, 6]
have investigated low complexity code design to achieve the desired capacity. Partic-
ularly, in [6], the authors proposed an encoding scheme that achieves near optimal
data rate under normal network conditions. Based on this scheme, a timing channel
was introduced to generate i.i.d. traffic undetectable for a polynomial time adversary.
However, these schemes are limited by strong assumptions on traffic pattern modifica-
tions that are introduced during transmission. For example, the additive jitter must be
bounded within a certain range [6]. Hence, security is only guaranteed under this con-
dition and the robustness is not sufficient against noisy channels or a malicious jammer.
Previous work [8] has shown that spreading codes can effectively increase the robust-
ness against various intentional and/or unintentional channel distortions. In particular,
the authors present a method to modulate the (encoded) secret message to mimic the
distribution of the inter-packet delays of a non-stationary legitimate traffic. Nonethe-
less, only two commonly used classes of statistical tests were applied to validate the
undetectability aspect. Moreover, the distribution of the steganographic traffic is only
an approximation of the legitimate one and thus it may not provide security against
future more sophisticated detection methods.

3 System Model and Design Criteria

3.1 Preliminaries

We will use the terms steganographic communication and overt communication, respec-
tively, to refer to a communication with and without embedded steganographic channel
and use steganographic traffic and legitimate traffic to refer to the packet stream asso-
ciated with these two different channels.

We also introduce some basic definitions that we use later. A function f : N → R

is called negligible if for any j′ ∈ N there exists a polynomial p(z) over N such that
|f(j)| < |1/p(j)| for all j ≥ j′. For a probability distribution D, the expression z ← D

denotes the event that an element z has been sampled according to D. A distinguisher D
is a (possibly probabilistic) algorithm that aims for distinguishing between two different
distributions D and D

′ over the same space. More precisely, D receives a value z that is
either sampled according to D or D

′ and outputs a bit b ∈ {0, 1}. The advantage of D
is defined by

AdvD(D, D′) := |Pr[D(z) = 1|z ← D] − Pr[D(z) = 1|z ← D
′]| (1)

Definition 1 (CSPRNG). Let R denote a range of values and G a pseudorandom num-
ber generator that produces a sequence of values in R depending on a (secret) seed
s ∈ {0, 1}σ. For a positive integer N ≥ 1, we consider two distributions on RN : UN ,
the uniform distribution, and GN , the distribution of N outputs by G.
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G is called a cryptographically secure pseudorandom generator (CSPRNG) with re-
spect to the size σ of the seed if it holds for any integer N ≥ 1 that is polynomial in σ
and for any distinguisher D between UN and GN with a runtime polynomial in σ that
AdvD(UN , GN ) is negligible in σ.

3.2 System Model

We define the sender (S) and the receiver (R) entities as the two ends of a stegano-
graphic communication. S has access to some sensitive information (steganographic
message) to be transmitted to R. To achieve this, S embeds the steganographic infor-
mation into a legitimate packet stream. Here, we consider an active steganographic
timing channel [5], where the sender generates the traffic and embeds steganographic
information. He can therefore perfectly control inter-packet delays (and increase and
decrease them at will). We consider a binary channel, where the steganographic mes-
sage is coded as a binary sequence over the alphabet {−1, +1}. The steganographic
message is {b1, b2, b3, . . .}, where bi is the i-th information bit. The information bits
are encoded to produce code symbols {s(1), s(2), s(3), . . .}, which are finally modu-
lated in the inter-packet delays {d(1), d(2), d(3), . . .} of a packet stream due to channel
noise, the receiver obtains a slightly different stream {d̂(1), d̂(2), d̂(3), . . .}. To decode
the steganographic message correctly, a secret key is shared between S and R prior to
the steganographic transmission; this key may be used to derive a shared codebook (i.e.,
a set of common random codewords).

Adversary Model. The adversary (e.g., a timing channel jammer or an intrusion detec-
tion system) can monitor or manipulate the transmission between S and R. A passive
adversary aims only at detecting and/or deciphering the steganographic timing channel
without interfering with the transmission, while an active adversary aims at detecting
and disrupting the communication by manipulating an ongoing steganographic commu-
nication. Our system is designed to resist active adversaries.

We assume that an adversary has access to (different) samples of both legitimate and
steganographic traffic and can easily derive some characteristics (such as the distribu-
tion of the inter-packet delays). The adversary also has knowledge of the structure and
the modulation algorithm of the steganographic timing channel. However, the adversary
has no access to the shared key (and any information derived therefrom). Observe that
in our system model, no backward channel exists from R to S. Thus, the embedding of
the secret message is independent of any disruption in the communication.

3.3 Design Criteria

Undetectability. On a high level, undetectability means that no efficient algorithm can
distinguish between inter-packet delays of the legitimate traffic and steganographic traf-
fic. We define a sequence of N inter-packet delays which stems from the stegano-
graphic traffic as d = (d(1), d(2), . . . , d(N)) and from the legitimate traffic as d̃ =

(d̃(1), d̃(2), . . . , d̃(N)). We denote their corresponding distributions by DN and D̃N ,
respectively. Next we define our notion of undetectability.
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Definition 2 (Polynomial Undetectability). A steganographic timing channel is called
polynomially undetectable with respect to a security parameter σ if it holds for any
distinguisher D with a runtime polynomial in σ and for any N that is polynomial in σ
that AdvD(DN , D̃N ) is negligible in σ.

Robustness. The robustness can be measured as the capability to achieve a decoding
bit error rate (BER) Pe ≤ ε under a given robustness requirement ε ∈ R

+. Pe is
inversely proportional to the Signal-to-Noise Ratio (SNR) Es/Ex [21], where Es is the
signal power and Ex is the noise power. Considering that there is a one-to-one mapping
between BER and SNR, a given robustness requirement measured by ε can be achieved
by increasing the SNR. Hence we define the robustness as follows:

Definition 3 (Robustness). A steganographic timing channel is called γ-gain robust if
the SNR after performing the encoding and modulation process is γ times greater than
the original SNR, where γ ∈ R

+ (we call γ the robustness gain).

4 Robust Encoding with Spreading Codes

It was shown in [8] that encoding the message using spreading codes can efficiently in-
crease the robustness of steganographic timing channels. Any arbitrarily strong additive
noise can be mitigated by selecting a sufficiently large spreading factor. In this section,
we briefly review the general concept of spreading codes and then show how to utilize
spreading codes for steganographic timing channel design.

In the simplest case each bit bk ∈ {+1,−1} of the steganographic message {b1, b2,
. . .} is encoded into sk = bk · c, where c = (c1, c2, . . . cN ) ∈ {±1}N is an arbitrary
code word. Hence a code word c of length N will be used to convey just one information
bit bk. The transmission rate Rt, which measures the transmission efficiency of each bit
by the number of packets, after applying the spread encoding process decreases to 1/N
bit per packet (bpp)1. To encode multiple bits at once, K code words c1, . . . , cK can
be used to carry K information bits b1, . . . , bK over K parallel channels. The symbols
from all K channels are combined to a single sequence

s = (s(1), s(2), . . . , s(N)) =

K∑
k=1

sk =

K∑
k=1

bk · ck, (2)

with s(i) ∈ [−K, K], for transmission. To differentiate the transmitted bits for each
channel, the spreading codes must be orthogonal to each other, i.e., 〈ci, cj〉 equals N if
i = j and 0 otherwise.

Assuming additive noise, the received symbols can be expressed as ŝ = s + x. Here
x is the process noise after demodulation; s and ŝ are N -dimensional vectors. To decode
the k-th information bit, we apply a threshold rule to the inner product of the received
code symbols and the code word ck:

b̂k =
1

N
〈̂s, ck〉 =

K∑
i=1

bi

N
〈ci, ck〉 +

1

N
〈x, ck〉 = bk +

1

N
〈x, ck〉. (3)

1 Directly transmitting binary information bits per packet can achieve 1 bpp.
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If x and ck are uncorrelated, b̂k is equal to bk and can be recovered by choosing a
proper threshold (e.g., 0 for a binary sequence). Since N is the length of the spreading
code and the maximum number of orthogonal channels, K must be less or equal to N .
Therefore, for a binary channel, the maximum transmission rate Rt we can achieve is 1

bpp in the case of K = N .
We assume that the input steganographic message is composed of random binary

bits. This is always achievable, as the steganographic message can be encrypted under
a semantically secure cipher or compressed. In addition, a good spreading code should
have the properties of a pseudo random sequence, such as balance (i.e., on average the
same number of 1’s and −1’s) and short run length (low average number of consecutive
1’s or −1’s). Therefore, the code symbol in each channel can be regarded as a random
binary sequence with equal probability, that is, Pr[sk(n) = 1] = Pr[sk(n) = −1] =

1/2. For simplicity, we omit the code symbol index n in the following. Let k1 be the
number of channels with the code value sk = 1 and k2 be the one with the code value
sk = −1; k1 and k2 are random variables with 0 ≤ k1 ≤ K , 0 ≤ k2 ≤ K and k1, k2 ∈
N. As there are K channel in total, we have K = k1+k2. From Eq. (2), the code symbol
s is the sum of encoded symbols at each channel. Then we have s = k1 − k2. Since
each channel carries an independent bit of the input binary sequence, the probability
mass distribution (PMF) of code symbol s is given by

Ps(l) = Pr[k2 =
K − l

2
] =

⎧⎨⎩
(

K
K−l

2

)
(
1

2
)K K − l even (4a)

0 otherwise, (4b)

where −K ≤ l ≤ K and l ∈ Z.

5 Construction

For legitimate traffic whose inter-packet delays {d̃(1), d̃(2), . . .} are i.i.d. random vari-
ables, the inter-packet delays are fully determined by their probability distribution, e.g.,
the cumulative distribution function (CDF) Fd̃(·). Therefore, the goal of undetectability
is to provide an efficient generator of random inter-packet delays {d(1), d(2), . . .} that
follow the specific known distribution, but encode a steganographic message.

5.1 Modulation

Since the transformation of a code symbol s(n) to the inter-packet delay d(n) must be
invertible, we consider a one-to-one mapping:

d(n) := T (s(n)), n = 1, 2, . . . , (5)

where T (·) is an invertible function. The demodulation at the receiver is done by:

ŝ(n) := T−1(d̂(n)), n = 1, 2, . . . , (6)

where d̂(n) and ŝ(n) are the received inter-packet delays and demodulated code sym-
bols, respectively, at time n. In the following, we show how to obtain T (·) and T−1(·).
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Fig. 1. An example of the mapping process (a) from s(n) = lm to (Fs(lm−1), Fs(lm)], (b) from
(Fs(lm−1), Fs(lm)] to u(n) and (c) from u(n) to d(n)

After the encoding process, the amplitude of the code symbol s(n) is a discrete
random variable with a cumulative density function (CDF) denoted by Fs(·). Here Fs(·)
can be calculated by accumulating the PMF of the code symbols (see Eq. (4)) as

Fs(l) = Pr[s ≤ l] =
∑
lm≤l

Pr[s = lm] =
∑
lm≤l

Ps(lm). (7)

Here, lm are the unique values of code symbols sorted in ascending order.
To generate steganographic inter-packet delays following the distribution of the given

i.i.d. traffic, we employ the commonly used inverse transform technique [22] (shown in
Figure 1). In particular, a code symbol s(n) = lm (1 ≤ m ≤ M ) is first input into the
function Fs(·) to obtain its cumulative density Fs(lm). Since the CDF is monotonic, this
is a 1-to-1 mapping between s(n) and Fs(lm). Second, with the help of a CSPRNG, we
generate a uniform random number v(n) in the range (0, 1] to achieve the randomness
of the inputs for the next step. Particularly, we construct u(n) by linear interpolation:

u(n) = Fs(lm−1) + [Fs(lm) − Fs(lm−1)] · v(n), (8)

where Fs(l0) = 0. It is easy to see that the overall sequence {u(1), u(2), . . .} con-
sists of pseudo random numbers with a uniform distribution over (0, 1]. Now, by letting
d(n) = F−1

d̃
(u(n)), we obtain a random variable d(n) with the CDF Fd̃(·). The result-

ing values {d(1), d(2), . . .} are used as modulated inter-packet delays for the stegano-
graphic message {b1, b2, . . .}.

At the receiver, the received inter-packet delay d̂(n) passes through the CDF of the
legitimate traffic Fd̃(·) and generates û(n) = Fd̃(d̂(n)). To decode, we set ŝ(n) = lm
if û(n) ∈ (Fs(lm−1), Fs(lm)]. Hence the key used by CSPRNG to generate a uniform
random number v(n) does not need to be shared between the sender and receiver for
demodulation. Finally, the information bits can be recovered by applying the decoding
process of Eq. (3).

5.2 Proof of Undetectability

Theorem 1. Consider the proposed steganographic timing channel mechanism and let
G denote the deployed CSPRNG. If G is cryptographically secure with respect to a
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security parameter σ, then the generated steganographic timing channel is undetectable
(cf. Def. 2) with respect to σ as well.

Proof. Let N ≥ 1 be an integer that is polynomial in σ and let DN and D̃N denote
the distribution of N inter-packet delays that stem from legitimate and steganographic
traffic, respectively. According to Definition 2, we have to show that AdvD(DN , D̃N)

is negligible for any distinguisher D with a run-time polynomial in σ. By (8), if the
values v(n) are uniformly random in the range [0, 1], then the values u(n) are uniformly
distributed in the range [Fs(lm−1), Fs(lm)]. Let UN denote the uniform distribution on
RN (with R being the range of G) and GN the distribution on RN induced by G. We
will prove that

max
D

AdvD(DN , D̃N , ) ≤ max
D′

AdvD′(UN , GN ) (9)

where the maximum is taken over the set of all possible distinguishersD andD′, respec-
tively, and where Adv is defined as in Eq. (1). By assumption, G is cryptographically
secure for any integer N ≥ 1 that is polynomial in σ. Hence, the right-hand side of (9)
is negligible by definition. Consequently, the left-hand side is negligible as well, being
exactly the condition for undetectability.

Let D denote an arbitrary distinguisher between DN and D̃N with a run-time poly-
nomial in σ. We use D to construct a distinguisher D′ for UN and GN that has the same
efficiency and advantage as D and effectively the same run-time as D. That is, it holds
that

AdvD(DN , D̃N ) = AdvD′(UN , GN ). (10)

In particular, this proves Eq. (9) as D was an arbitrary (appropriate) distinguisher. D′ is
defined as follows. By definition, D′ receives some values u = (u(1), u(2), . . . , u(N))

with either u ← UN or u ← GN and has to tell apart both cases. The distinguisher D′

uses this input to create some steganographic traffic as described in Section 5. Observe
that according to the system model (Sec. 3.2), the inter-packet delays of the legitimate
traffic can be increased or decreased at wish. This results in some inter-packet delays
d = (d(1), d(2), . . . , d(N)) that are handed to D. Distinguisher D′ receives a bit output
b ∈ {0, 1} from D and uses it as its own output.

Now observe that if u ← GN , i.e., is a CSPRNG-sequence, then D′ has correctly
generated steganographic traffic and it holds that d ← D̃N . On the other hand, if
u ← UN , i.e., the sequence is truly random, then the generated traffic is truly i.i.d.
as in the legitimate traffic, i.e., d ← DN . Therefore, D′ has the same advantage for
distinguishing between UN and GN as D has for deciding between DN and D̃N and
almost the same run-time. This shows (10). ��

5.3 Determining Encoding Parameters

According to the Definition 3, the system robustness is measured by the ratio of SNR
before and after performing the encoding and modulation process. To generate unde-
tectable steganographic traffic, the core idea is to generate random numbers uniformly
distributed in the range [0, 1]. Beside the above encoding process to convert code sym-
bol s(n) into u(n), the other method is to direct map the original information bit into the



202 Y. Liu et al.

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

K

γ

Fig. 2. The impact of K on the parameter γ
(N = 128)

0

50

100 0
5

10
15

20

0

0.2

0.4

0.6

0.8

1

γK

R
t

Fig. 3. Transmission rate Rt vs. the number of
orthogonal channels K, and robustness gain γ

a number u1(n), which is uniformity distributed in the range (0, 1/2] and (1/2, 1], for
the bit-0 and bit-1, respectively. The robustness gain is equivalent to the signal power
ratio between u(n) or u1(n) for the same information bits, provided the noise are the
same for both the cases. Given Definition 3 and the spreading factor N from the encod-
ing process, the robustness gain can be calculated by γ = N ·EK/E1, where EK is the
power of the random variable u(n) when K channels are used and E1 is the power of
the u1(n). Since there are M different possible ranges for u(n) with equal probability,
the total robustness gain γ is given by

γ =
N

M

M∑
m=1

[Fs(lm) − Fs(lm−1)]
2

(1
2 )2

=
4N

M

M∑
m=1

[Ps(lm)]2. (11)

Given the distribution of s(n) in Eq.(4) and M = K + 1, we rewrite Eq. (11) as:

γ =
4N

M

M∑
m=1,−K≤lm≤K

(
K

K−lm
2

)2

(
1

2
)2K = N · 1

K + 1
(
1

4
)K−1

K∑
k=0

(
K

k

)2

. (12)

The effect of K on the gain γ is illustrated in Figure 2. With N fixed, it is easy to verify
that γ is monotonically decreasing with K . At the same time, since γ is a linearly
increasing function of N , one can achieve a higher robustness by decreasing K and
increasing N . Therefore, any given gain requirement γ0 can be achieved by choosing
appropriate values for K and N . A reasonable choice of K and N is to maximize the
data transmission rate Rt = K/N . Next we present a solution to achieve this goal.

Eq. (12) can be expressed as γ = N · q(K) with q(K) = 1
K+1 (1

4 )K−1
∑K

k=0

(
K
k

)2
.

To achieve a desired robustness gain requirement γ0, we choose N = �γ0/q(K)�, the
smallest value that satisfies the robustness requirement. Finally, we choose the best K
to maximize Rt = K/�γ0/q(K)�. Figure 3 shows Rt as a function of K and γ0. It
shows that the best K for all values of γ occurs when K = 1. This also corresponds
to the maximum robust gain γ, as mentioned above. From Eq. (12), γ = N and the
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Algorithm 5.1: INTERPACKETDELAYGENERATOR(γ0, Fd̃)

Input : robust gain γ0, distribution of legitimate inter-packet delays Fd̃(·)
Output : steganographic inter-packet delays d

N ← �γ0� // estimate spreading ratio with given robustness gain
for each information bit b

do

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

generate a pseudorandom code word c using the shared key
(s(1), . . . , s(N)) ← b · c //encoding
generate (v(1), . . . , v(N)) ∈R Uniform(0, 1]
u(n) ← Fs(s(n)) − 1

2
+ 1

2
v(n) //modulation s to u

d(n) ← F−1

d̃
(u(n)) //modulation u to d

d := (d(1), d(2), . . . , d(N))

transmission rate Rt becomes 1/N . Therefore, by setting K = 1 and N = �γ0�, our
system can achieve a desired robustness requirement γ0, corresponding to a specific
BER Pe.

5.4 Algorithm Summary

The function InterPacketDelayGenerator(γ0, Fd̃) in Algorithm 5.1 describes how to
generate the steganographic inter-packet delays d under given robustness and security
requirements. Since K = 1, that is, only one code word is used to transmit stegano-
graphic message at any time, the random code word c is dynamically generated based
on the shared key between the sender and receiver. At the same time, the resulting code
symbol s(n) is also binary and its CDF must satisfy Fs(−1) = 1

2 and Fs(1) = 1.
Equivalently, we have Fs(s(n)) = 1

2 + 1
4 (1 + s(n)).

6 Experimental Results

6.1 Experimental Setup

Our testbed consists of a server and a client which act as the sender and the receiver of
both the steganographic and the overt communication. We insert the inter-packet delays
for steganographic channel modulation or additional noise using hooks in the Linux
network stack at the sender. The receiver passively collects the inter-packet delays using
tcpdump and decodes them with a shared key.

Test Scenarios. Two test scenarios are considered in our experimental evaluation. The
first scenario is in a LAN environment in the campus network of UC Davis; client and
server are hosted at two different departments. The second scenario is in the WAN
environment to represent worldwide Round Trip Times (RTTs) between sender and
receiver. The sender is hosted in the UC Davis and the receiver in Ruhr University. The
network attributes of the two experimental scenarios are summarized in Table 1. Here
the packet retransmission rate is measured using the ping command. We compute the
jitter statistics based on the difference of delays between packets leaving the source and
arriving at the destination.
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Table 1. The network conditions for each test
scenario

LAN WAN
Physical distance (miles) 1.5 5352

Packet retransmission rate (%) 0.60 1.03

Jitter(std) (ms) 12.6814 25.4023

Jitter(mean)(ms) 0.0550 0.10274 0 0.5 1 1.5 2
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Fig. 4. Q-Q plot of d(n) vs. d̃(n)

Dataset. To test our steganographic channel, we consider the Telnet traffic which uses
TCP as the transport layer protocol. The legitimate samples that we use for our ex-
periments are from the online MAWI working group traffic archive dataset [23]. They
consist of traffic traces generated by tcpdump and in total of 32376 Telnet packets.
Based on the trace samples, we derive an i.i.d. Pareto model to generate the stegano-
graphic traffic for our system. Specifically, the CDF of legitimate samples is modeled

as, Fd̃(s) = 1−
(

α
s

)β
, where s > α. Here, α ∈ R

+ is a scale parameter and β ∈ R
+ is

a shift shift parameter and they are set α = 49 ms and β = 0.93 respectively to emulate
the statistics of the real traffic.

6.2 Performance Analysis

In our experiments, we generate a sequence of steganographic packets to carry 100, 000

random information bits. The time to transmit the steganographic message is deter-
mined by the transmission rate Rt (see Section 4) and the inter-packet delay of the
traffic source. In our application, the average inter-packet delay of legitimate traffic is
about 286 ms. The channel undetectability, robustness, and the transmission tradeoff
are discussed below.

Undetectability. In addition to the rigorous proof that our i.i.d. based steganographic
timing channel is undetectable against any polynomial distinguisher (see Section 5.2),
we use the Quantile-Quantile (Q-Q) plot to visually examine the statistical similarity of
inter-packet delays between the steganographic traffic based on our proposed method
and the legitimate traffic from the trace database. Specifically, Figure 4 compares the
real traffic d̃(n) with artificially generated steganographic traffic d(n) . In a Q-Q plot,
if the two sets have the same distribution, the points should fall approximately along a
reference line. The results indicate that our steganographic traffic closely matches the
legitimate one in terms of the distribution.

Robustness. To evaluate the robustness of the proposed algorithm, we consider three
different types of noise during the transmission process. The first type represents the
inherent network noise due to packet loss, delay, and jitter. The second and the third
types of noise are jamming noises with different distributions which may be injected by
an active adversary. Specifically, we use noise with a normal distribution with zero mean
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Table 2. Summary of the bit error rate Pe(%) for the timing channel experiments

Test Encoding Channel Gaussian σ(ms) Uniform Δ(ms)
scenario scheme noise 20 50 100 150 10 20 50 100

LAN
γ0 spreading

1 0 5.37 11.90 16.63 20.37 1.87 5.30 13.63 28.33
5 0 0 0.43 1.03 1.13 0 0.03 0.77 9.07

10 0 0 0 0.01 0.06 0 0 0 2.13

(L, n) encoding
(1, 1) 0 3.90 11.65 15.72 16.66 0 4.20 13.85 28.30
(8, 2) 0 13.43 16.75 19.38 19.79 15.74 24.33 32.85 37.67

WAN
γ0 spreading

1 0.02 6.22 15.43 18.04 21.24 2.83 6.71 18.61 30.62
5 0.005 0.01 0.55 1.20 4.04 0.001 0.05 2.23 9.66

10 0 0 0.002 0.03 0.10 0 0 0.002 3.08

(L, n) encoding
(1, 1) 0.01 4.75 12.38 17.40 19.60 0 5.15 15.63 30.50
(8, 2) 0.06 11.27 14.16 18.50 23.13 18.75 25.53 33.94 39.25

and variance σ2 as the second type of noise. A uniformly distributed noise represents the
worst case scenario in terms of the steganographic channel capacity [24]. This follows
from the fact that a random variable with uniform distribution has maximum entropy
among all random variables over a fixed range. Therefore, we choose the third type of
noise to be uniformly distributed in the range [0, Δ]. Note that, as long as the spreading
codes used in the encoding process are orthogonal to (1, 1, . . . , 1), the mean of the noise
does not impact the demodulation.

Table 2 summarizes the robustness results. In each experiment, steganographic inter-
packet delays are generated with a given robustness requirement. This requirement is
defined by the robustness gain γ0. In our test, we set γ0 as 1, 5, and 10 to model the ef-
fect of an absent, a moderate, and a strong spreading factor, respectively. In addition, we
compare the robustness of our scheme to that of the (L, n) undetectable steganographic
timing channel of [6]. Particularly, we choose the (8, 2) scheme due to its high trans-
mission rate. We also select the (1, 1) scheme which is the most robust (L, n) scheme as
a result of the largest range of each code symbol (the total range for all code symbols is
fixed in the range [0, 1]), which ensures the largest signal power, so as the system SNR.

From these results we observe that when there is no jamming noise, there are no bit
errors in the LAN scenario. When there is no spread encoding (N = 1), Gaussian noise
with σ = 20 ms can result in more than 5.37% errors. When the noise is uniformly
distributed in the range [0, 20] ms, the bit error rate is 5.30%. These results are very
similar to the performance of the (1, 1) encoding scheme, which determines the upper
bound of the robustness of the (L, n) encoding scheme. However, when the robustness
gain γ0 is increased to 5, the correct bit rate (1−Pe) achieved by our proposed algorithm
is more than 90.34% for both the LAN and WAN tests even with a jamming noise
uniformly distributed in the range [0, 100] ms. When γ0 increases to 10, the correct bit
rate is more than 99.90% for additive Gaussian noise with σ = 150 ms. Even when
the upper limit of uniform noise is increased to 100 ms, we can still correctly transmit
more than 96.92% of the total bits. These results show dramatic BER improvements
compared to the (8, 2) encoding scheme, which can achieve a good data rate.
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Fig. 5. Trade-off between the transmission rate Rt and the bit error rate Pe under (a) Gaussian
and (b) uniform noise

Trade-off. By analyzing the results obtained in the LAN and WAN scenarios and com-
paring them to the (L, n) encoding scheme [6], we have shown that increasing the
spreading ratio N can significantly reduce the BER Pe. However, this also requires
more number of inter-packet delays to deliver one information bit which in turn re-
duces the transmission rate Rt. To investigate this relationship, Figure 5 plots the trans-
mission rate Rt versus Pe under different noise scenarios in the LAN environment. It
clearly shows that there is a trade-off between the transmission rate Rt and the robust-
ness. In particular, the bit error rate increases monotonically with the transmission rate.
This property can easily be verified by examining the definition of Rt, which is 1/N ,
and the measure of robustness gain N . Therefore, our system provides a solution for
balancing the system robustness and transmission rate. At the same time, we note that
the achieved security level is independent of transmission rates and robustness.

7 Conclusion and Future Work

We propose a method to modulate a steganographic timing channel on network traffic
with independent and identically distributed (i.i.d.) inter-packet delays. Our stegano-
graphic timing channel is both robust and provably undetectable. We discussed the
choice for i.i.d. traffic and validated the theoretical results through experimental analy-
sis using real Telnet traffic. Since i.i.d traffic models are building blocks of more com-
plex traffic models, a natural open question is the extension of our approach for real
applications such as video streaming or Voice over IP (VOIP).
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Abstract. Translation-Based Steganography is a secure text stegano-

graphic algorithm. In this paper, we present a novel statistical algorithm

for steganalysis of Translation-Based Steganography (STBS). We first

show that there are fewer high-frequency words in stegotexts than in

normal texts. We then design a preprocessor to refine all the given texts

to expand the frequency differences between normal texts and stego-

texts. 12 dimensional feature vectors sensitive to frequency are derived

from the refined texts. We finally use a SVM classifier to classify given

texts to normal texts and stegotexts. A series of experiments is given to

demonstrate the performance of STBS.

Keywords: steganalysis, natural language steganography, translation-

based steganography, text, SVM, STBS.

1 Introduction

Text-based information, like web pages, academic papers, emails, e-books and

so on, exchanged or distributed on Internet plays an important role in peo-

ple’s daily life. Because there are a huge number of texts available in which

to hide information, a covert means of communication which is known as lin-

guistic steganography [1] attracts more and more people’s attention. Linguistic

steganography makes use of writing natural language to conceal secret messages.

Traditional linguistic steganography has used syntactically-correct text gen-

eration and semantically-equivalent word substitutions within a cover text as a

medium in which to hide messages [2]. TEXTO [3] is an early linguistic steganog-

raphy program. It works just like a simple substitution cipher, with each of the

64 ASCII symbols or uuencode from secret data replaced by an English word.

Wayner [4] introduced a method which uses precomputed context-free grammars

to generate steganographic text without sacrificing syntactic and semantic cor-

rectness. Chapman and Davida [5] gave another steganographic method called

NICETEXT. The texts generated by NICETEXT not only had syntactic and

lexical variation, but whose consistent register and “style” could potentially pass

a casual reading by a human observer.

For detecting the above linguistic steganography, some steganalytic algorithms

have been proposed. Taskiran et al. [6] used a universal steganalytic method

R. Böhme, P.W.L. Fong, and R. Safavi-Naini (Eds.): IH 2010, LNCS 6387, pp. 208–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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based on language models and support vector machines to differentiate sentences

modified by a lexical steganography algorithm from unmodified sentences. Chen

et al. [7] used the statistical characteristics of correlations between the general

service words gathered in a dictionary to classify given text segments into ste-

gotexts and normal texts. This method can accurately detect NICETEXT and

TEXTO systems. The paper [8] also brought forward a detection method for

NICETEXT, which took advantage of distribution of words. Another effective

linguistic steganography detection method [9] uses an information entropy-like

statistical variable of words together with its variance as two features to classify

text segments.

Traditional linguistic steganography is relatively easy for a human to de-

tect. Translation-Based Steganography (TBS) [2,10,11] which was introduced by

Grothoff et al. is a novel method, which embeds information in the “noise” cre-

ated by automatic translation of natural language texts. The key idea of TBS is:

“When translating a non-trivial text between a pair of natural languages, there

are typically many possible translations. Selecting one of these translations can

be used to encode information” [2]. Because legitimate automatic translated

texts have frequent errors, it is difficult for humans as well as for computers to

distinguish the variations or even additional errors inserted by an information

hiding mechanism from the normal noise associated with translation. The goal

of this paper is to devise methods that can distinguish the inaccuracies caused

by the use of steganography from the inaccuracies caused by deficiencies of the

translation software.

We have previously introduced a steganalytic method [12] on TBS, but the

method needs to know the Machine Translator (MT) set and the source text

for the cover. Because the source text and the translator set may be part of the

private secret of the sender [10], our previous method cannot be used in general

to detect TBS. Also, the detection process of the method has to translate the

given text two times by every translators of TBS, which may be too expensive

for large-scale deployment.

Motivated by the challenge of detection TBS and based on our previous work,

we present a novel statistical algorithm for steganalysis of TBS (STBS) in this

paper. Our new method no longer needs to use the MT translation engines used

by the TBS encoder during steganalysis and the cover source text is no longer

used at all. We first show that there are fewer high-frequency words in stegotexts

than in normal texts. For example, suppose the words “A1” and “A2” are the

translation results of the word “A” by different machine translators, and “A”

appears 5 times in the source text. For normal translation, there will be 5 “A1”

or 5 “A2” occurrences in the translated text. But in TBS translated text, “A”

may be translated twice to A1 and three times to A2 because sentences of the

stegotext can come from different translators. As a result a high-frequency word

in the cover text thus has a reasonable chance of becoming two or more low-

frequency words in the stegotext.

We then design a preprocessor to refine all the test texts to expand the fre-

quency differences between normal texts and stegotexts. 12 dimensional feature
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vectors sensitive to word frequency are derived from the refined texts. We finally

use an SVM classifier to classify the test texts. A series of experiments is given

to demonstrate the performance of STBS.

The organization of the paper is as follows: Section 2 briefly covers the basic

operations of the TBS algorithm. Section 3 focuses on the statistical analysis of

TBS, and gives a method to expand the word and 2-gram frequency difference

between normal texts and stegotexts. Section 4 describes the process of stegana-

lytic feature generation. In Section 5 we present the results of our steganography

detection experiments. We give some discussions about STBS in Section 6. Fi-

nally, conclusions are presented in Section 7.

2 Translation-Based Steganography

In this section, we will briefly review the translation-based steganography pro-

tocol which our analysis tries to detect. Our work focuses on the “Lost in Just

the Translation (LiJtT)” method [10] which extends the original Lost in Trans-

lation (Lit) [2] into one which allows the sender to only transmit the stegotext.

In LiJtT, the source text and the MT systems are both private secrets of the

sender.

Conceptually, TBS works as follows: The sender first needs to obtain a cover

text in the source language. The cover text could be a secret of the sender

or could have been obtained from public sources — for example, a news web-

site. The sender then translates the sentences in the source text into the target

language using many different translators. Because a sentence translated by a

different translator may generate different translation results, the sender essen-

tially creates multiple translations for each sentence and ultimately selects one

of these to encode bits from the hidden message.

The protocol of LiJtT specifically works as follows: After generating multiple

translations for a given cover text, the sender uses the secret key (which is shared

cover source
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��
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�����������

���������
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Fig. 1. Illustration of the basic protocol (from [10]). The adversary can observe the

message between Alice and Bob containing the selected translation.
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between the sender and receiver) to hash the individual translated sentences into

bit strings. The lowest h bits of the hash strings, referred to as header bits, are

interpreted as an integer b ≥ 0. Then the sentence whose lowest [h + 1, h + b]
bits corresponds to the bit-sequence that is to be encoded is selected.

When the receiver receives a translation which contains a hidden message, he

first breaks this received text into sentences. Then he applies a keyed hash to

each received sentence. The lowest [h + 1, h + b] bits in this hash contain the

next b bits of the hidden message. Figure 1 illustrates the protocol.

3 Statistical Analysis of TBS

In this paper, natural language texts and ordinary translated texts are consid-

ered as normal texts, and stegotexts refer in particular to texts generated by

TBS. Our work is to classify given texts to normal texts and stegotexts. In this

section, we show the n-gram (n adjacent words, 1-gram equals to a word) fre-

quency characteristic of different type texts. We mainly focus on word (1-gram)

frequency differences between normal texts and stegotexts.

3.1 The Number of Words in Each Frequency

Normal texts have many inherent statistical characteristics which cannot be pro-

vided by stegotexts. In normal texts, there are a few high-frequency words (words

that appear many times in a text), a middling number of medium-frequency

words and many low-frequency words (words that appear only a few times in a

text).

Because a word translated by different translators may generate different re-

sults and every sentence of the stegotext comes from different translators, a

high-frequency word in the cover text may become two or more low-frequency

words in the stegotext. For example, to translate from German to English using

Google [13] and Systran [14] translators, the results of the German word “Un-

ternehmen” are “Company” and “Enterprise” respectively. So in a German cover

text which is talking about “Unternehmen”, the German word “ Unternehmen”

will be a high-frequency word in the text, but in the stegotext, the word “Un-

ternehmen” may be translated to two different words “Enterprise” and “Com-

pany”. So compared with normal texts, stegotexts have fewer high-frequency

words.

To present the word frequency difference between normal texts and stegotexts,

for more than 1000 different types of texts, we counted the average number of

words in each frequency, the rank of which is from 1 to 15. The texts contain

natural language texts, stegotexts and translated texts by the Google, Systran

and Promt [15] translators. Figure 2 shows the average number of words for

each frequency when the text size is 20k bytes. We can find from Figure 2

that stegotexts have fewer high-frequency words than normal texts. The lines in

Figure 2 are called word-frequency line in this paper.
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Fig. 2. The number of words for each frequency for 20kb texts

Fig. 3. The number of words for each frequency without one-to-one words
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3.2 The Method to Expand Word Frequency Difference

Though stegotexts have fewer high-frequency words than normal texts, this sta-

tistical characteristic of word frequency is not adequate to accurately classify the

given texts into stegotexts and normal texts. The word-frequency lines of small

texts are volatile. Randomly selecting two normal texts, their word-frequency

lines may be very different. To accurately classify short normal texts and stego-

texts, we need to expand the word frequency difference between them.

We give two concepts before we describe our method to expand the word

frequency difference:

One-to-one word: A word which is translated by different machine translators

and always yields the same result is called a one-to-one word. If a word is a

one-to-one word in the source language (cover text language), its translation in

the destination language (stegotext language) is also called a one-to-one word.

One-to-many word: Words which are translated by different machine trans-

lators and generate different results are called one-to-many-words.

The word frequency difference between normal texts and stegotexts is caused

by one-to-many words. Because some high-frequency one-to-many words in the

cover text are translated to two or more low-frequency words in the stegotexts,

stegotexts have fewer high-frequency words.

Our research shows most of words of the cover texts are one-to-one words, so

the word-frequency lines of normal texts and stegotexts are close. If we delete

all the one-to-one words in the cover text, then all the words in the refined cover

text will be one-to-many words, and most of the high-frequency words in the

refined cover text will be translated to two or more low-frequency words in the

stegotexts. As a result, the word frequency difference between the refined cover

text and stegotext will be expanded.

3.3 One-to-One Word Generation

For our experiments, we used a simple method to create a list of one-to-one

words: The German texts from Europarl corpus were translated to English by

Google, Systran and Promt translators sentence by sentence. Every sentence

generated three translation results. The words which appeared in all the three

translation sentences simultaneously were collected as one-to-one words. About

5M bytes German texts were processed in his method, yielding a total of 9784

one-to-one words.

For more than 1000 different type texts which contain natural language texts,

stegotexts and translated texts by Google, Systran and Promt machine trans-

lators, we count the average number of words in each frequency after deleting

one-to-one words. Figure 3 shows the word-frequency lines of refined normal texts

and stegotexts. We find the word frequency difference between normal texts and

stetotexts is greater than it is in Figure 2.

It should be noted that this method uses part of the secret key of the sender

to collect one-to-one words: the MT translators, which technically may not be
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available to the adversary (especially if the sender uses human translators). We

attempted other methods for generating one-to-one word lists, such as using a

different language pair as TBS’ or using certain high frequency words such as

“a”, “the”, “an”, “this” and “that”. However, these methods have so far not

been successful at achieving satisfactory detection results.

3.4 N-gram Frequency Difference between Normal Texts and
Stegotexts

There exists not only word (1-gram) frequency differences between normal texts

and stegotexts, but also 2-gram (two adjacent words) frequency differences be-

tween them, which is similar as word frequency characteristic. Deleting one-to-

one 2-grams (one-to-one 2-grams can be similarly defined as one-to-one words)

from both normal texts and stegotext also expands the 2-gram frequency differ-

ence between them. We can use the same method as one-to-one word to get the

one-to-one 2-gram.

For n-grams where, when n is bigger than 2, there are too few high-frequency

n-grams, especially when the text size is smaller than 40k bytes. As a result,

there do not exist significant n-gram frequency differences between normal texts

and stegotexts.

4 Features Generation

Our detection schema is an instance of two-class pattern recognition. A given

text needs to be classified as either a stegotext (with hidden data) or as nor-

mal text (without hidden data). Therefore features generation is important in

steganalysis.

Firstly, for a copy of the given text, we delete all the one-to-one words from
it. Suppose the highest word frequency is m1 in the refined text, we formalize

the refined text as

T 1 =
{
n1

1, n
1
2, ..., n

1
m1

}
, (1)

where n1
i , 1 ≤ i ≤ m1 represents the number of different words whose frequency

is i.
For example, given a text segment: “If a word is one to one word in the source

language, its translation in the destination language is also called one to one

word”.

The text segment’s word frequency is as follows:

8 words appear one time: If, a, source, its, translation, destination, also, called.

5 words appear two times: to, language, in, the, is.

1 word appears three times: word.

1 word appears four times: one.

So the text can be formalized to (refining process is omitted): T 1 = {8, 5, 1, 1}
Secondly, for another copy of the given text, we delete all the one-to-one 2-

grams from it. Because every word of a sentence except the first and the last
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one can constitute two 2-grams with its previous and following word, we cannot

delete the one-to-one 2-grams directly from the given texts. We should first break

the text down into a collection of 2-grams, then delete all the one-to-one 2-grams

from the collection. We formalize the refined collection as:

T 2 =
{
n2

1, n
2
2, ..., n

2
m2

}
, (2)

where m2 represents the highest 2-gram frequency, and n2
i , 1 ≤ i ≤ m2 represents

the number of different 2-grams whose frequency is i.
For example, the above text segment’s 2-gram frequency is as follows:

15 2-grams appear one time: If a, a word, word is, is one, word in, the source,

source language, its translation, translation in, the destination, destination lan-

guage, language is, is also, also called, called one.

4 2-grams appear two times: one to, to one, one word, in the.

So the text can be formalize to(refining process is omitted): T 2 = {15, 4}
The features we extracted are defined as:

F a
b,c =

mb∑
i=c

(nb
i ∗ ia) (3)

a = {0, 1, 2} ; b = {1, 2} ; c = {1, 5}

We choose [F 0
1,1, F

1
1,1, F

2
1,1, F

0
1,5, F

1
1,5, F

2
1,5, F

0
2,1, F

1
2,1, F

2
2,1, F

0
2,5, F

1
2,5, F

2
2,5] as the

feature vector of the classifier. The first 6 features are generated from 1-gram
(word) information of the given text and the last 6 features are generated from
2-gram information. We give the meanings of some features:

F 0
1,1: The number of different words, or in other words, the number of word

types that appear in the refined text.

F 1
1,1: The number of word tokens in the refined text.

F 0
1,5: The number of different words whose frequency is bigger than 4 in the

refined text.

F 1
1,5: The number of word tokens whose frequency is bigger than 4 in the

refined text.

After computing the 12-dimensional features of a given text, we use a Support

Vector Machine (SVM) Classifier to classify it as either normal text or stego-

text. SVM is a popular technique for classification [16]. Our choice of the SVM

classifier was motivated by the facts that they were previously used successfully

for text classification [12]. In this paper, we use an existent SVM classifier [16]

to classify our experiment texts.

5 Experiments and Results Analysis

In our experiment, the translator set of TBS contains Systran, Google and Promt

translators. The texts were translated from German to English using the LiT

prototype, with no semantic substitution, no article and preposition replacement

enabled, and no “badness threshhold” [2].
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Fig. 4. Flow of STBS procedure

We built a training corpus and a testing corpus in our experiment. The text of

both corpora contains: natural language texts, translated texts, and stegotexts.

Translated texts were generated by Systran, Promt and Google translators. Both

the natural language texts (English) and German language texts (used as cover

text and the source language text of translated text) in our experiment come

from the Europarl corpus [17].

Figure 4 shows the flow of the STBS procedure. The real line arrowhead

represents the flow of data, while the dashed line arrowhead represents data

transferred only when SVM classifier is training. The thick dashed rectangle

indicates the whole detection system. Obviously, there are two key flows in the

system: training and testing. The training process is always required before the

testing process. But once the training process is completed, it does not not need

to be repeated in each subsequent.

First, we used STBS to classify natural language texts, translated texts and

stegotexts without deleting one-to-one words and 2-grams. Translated texts were

generated from German to English by Google, Systran and Promt machine trans-

lators. Texts with size of 10k, 20k and 40k bytes were tested respectively. The

detection results are listed in Table 1.

Second, we used STBS to classify natural language texts, stegotexts and trans-

lated texts with deleting one-to-one words and 2-grams. In the experiment, we

collected 9784 one-to-one words and 39638 one-to-one 2-grams with the method

described in Subsection 3.3. The detection results are listed in Table 2.
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Table 1. Detection results without deleting one-to-one words and 2-grams

Text Size (byte) Class Train Test Non-stego (%) Stego (%)

10k

Natural 0 985 91.1 8.9

Promt 50 490 64.9 35.1

Google 50 439 72.9 27.1

Systran 50 489 57.5 42.5

Stego 150 372 17.7 82.3

20k

Natural 0 493 98.2 1.2

Promt 50 220 88.2 11.8

Google 50 194 91.8 8.2

Systran 50 219 65.3 34.7

Stego 150 633 13.9 86.1

40k

Natural 0 246 100 0

Promt 50 170 95.3 4.7

Google 50 144 91.7 8.3

Systran 50 168 58.3 41.7

Stego 150 242 7.8 92.2

Finally, we used another language pair different from TBS’ to get the one-to-

one words and 2-grams. About 7M bytes French language texts from Europarl

corpus were translated to English by Google, Systran and Promt translators

sentence by sentence. In total, we collected 11897 one-to-one words and 57001

one-to-one 2-grams. The detection results are listed in Table 3.

6 Discussion

The data of Table 1 and Table 2 shows our method can effectively used to clas-

sify stegotexts and normal texts, and most of the time, the detection accuracy

increases as the text size increases. Because machine translated texts are very

noisy, even people cannot accurately distinguish stegotexts from machine trans-

lated texts, the detection accuracy on translated texts is not high when text size

is smaller than 20k bytes.

In our experiment, we have used a simple and approximative method to get

the one-to-one words and 2-grams. It needs to be emphasized that this method

used the translator set and language pair of TBS. This information sometimes

is not available to the adversary. Without this knowledge, we can use STBS

without deleting one-to-one words and 2-grams.

We leave it to future work to determine other methods for finding good one-

to-one words that give good detection accuracy without using the “secret” MT

systems of the sender. Table 3 shows that this is not a trivial problem. When we

use a language pair different from TBS’ to get the one-to-one words and 2-grams,

we get a worse detection result compared to not deleting any words.

To counter STBS, a clever steganographer might try to ensure that one word

is always translated to the same word for all instances. We think STBS can

still detect this method since it can not only consider word frequency differences
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Table 2. Detection results of using the same language pair as TBS’ to get the one-to-

one words and 2-grams

Text Size (byte) Class Train Test Non-stego (%) Stego (%)

10k

Natural 0 985 99.4 0.6

Promt 50 490 68.0 32.0

Google 50 439 57.7 42.3

Systran 50 489 76.5 23.5

Stego 150 372 12.3 87.7

20k

Natural 0 493 100 0

Promt 50 220 80.9 19.1

Google 50 194 71.1 28.9

Systran 50 219 79.5 20.5

Stego 150 633 10.7 89.3

40k

Natural 0 246 100 0

Promt 50 170 98.8 1.2

Google 50 144 84.7 15.3

Systran 50 168 95.2 4.8

Stego 150 242 5.4 94.6

Table 3. Detection results of using a language pair different from TBS’ to get the

one-to-one words and 2-grams

Text Size (byte) Class Train Test Non-stego (%) Stego (%)

10k

Natural 0 985 58.1 41.9

Promt 50 490 64.1 35.9

Google 50 439 19.1 80.9

Systran 50 489 70.6 29.4

Stego 150 372 16.4 83.6

20k

Natural 0 493 71.8 28.2

Promt 50 220 75.5 24.5

Google 50 194 23.7 76.3

Systran 50 219 74.9 25.1

Stego 150 633 15.6 84.4

40k

Natural 0 246 71.5 28.5

Promt 50 170 75.3 24.7

Google 50 144 19.4 80.6

Systran 50 168 85.7 14.3

Stego 150 242 15.7 84.3

between normal texts and stegotexts but also consider n-gram frequency differ-

ences. Furthermore, any attempt to normalize word (or n-gram) distributions

by the steganographer reduces the number of translations available for hiding

information and hence results in the generation of longer cover texts — which

in turn makes detection easier.
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7 Conclusion

In this paper, we presented a statistical algorithm for steganalysis of Translation-

Based Steganography (STBS). Our contributions are summarized as follows:

1) We have found a weakness in TBS: there are fewer high-frequency words

in TBS generated stegotexts.

2) Based on the weakness we found, we designed a method to expand the

word and 2-gram frequency difference between normal texts and stegotexts.

3) We have proposed to use a two-class SVM classifier to discriminate between

normal texts and stegotexts. The detection accuracy is increases as the text size

increases.

Stegotexts generated by TBS basically preserve the syntactic correctness and

semantic coherence of the original translations, making it comparatively diffi-

culty to detect this method. The accuracy of detection TBS also depends on

many factors such as how many translators TBS used, which translators, the

source language and the target language. However, we believe that our initial

results show that STBS is a promising approach for the steganalysis of TBS.
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Abstract. Statistical disclosure is a well-studied technique that an at-

tacker can use to uncover relations between users in mix-based anonymity

systems. Prior work has focused on finding the receivers to whom a given

targeted user sends. In this paper, we investigate the effectiveness of sta-

tistical disclosure in finding all of a users’ contacts, including those from

whom she receives messages. To this end, we propose a new attack called

the Reverse Statistical Disclosure Attack (RSDA). RSDA uses observa-

tions of all users sending patterns to estimate both the targeted user’s

sending pattern and her receiving pattern. The estimated patterns are

combined to find a set of the targeted user’s most likely contacts. We

study the performance of RSDA in simulation using different mix net-

work configurations and also study the effectiveness of cover traffic as a

countermeasure. Our results show that that RSDA outperforms the tra-

ditional SDA in finding the user’s contacts, particularly as the amounts

of user traffic and cover traffic rise.

1 Introduction

Mix-based anonymity systems [1] provide privacy by keeping eavesdroppers from
linking communicating parties. Long term intersection attacks are particularly

effective in reducing user anonymity in such systems. The most well known

practical traffic-confirmation attack on mix systems is the Statistical Dislosure

Attack [2] in which the attacker targets a single user with the aim of exposing

the user’s communication partners.

In the traditional form of this attack, the attacker eavesdrops on messages

from senders to the mix and messages from the mix to receivers. The attacker

uses the frequency of communication between parties to expose links between

participating users. The aim of the attacker is to expose the contacts of a target

user. Replies and other traffic sent to the targeted user is not considered. In

reality, much of the communication in the Internet is two-way. The attacker,

often assumed to be a global eavesdropper that can see all messages, would likely

attempt to extract information from the patterns of traffic sent to the targeted

user to learn more about her behavior.

1.1 Contributions

In this paper, we explore how the attacker could extract information from other

users’ sending patterns to learn more about the target user and her contacts. In

R. Böhme, P.W.L. Fong, and R. Safavi-Naini (Eds.): IH 2010, LNCS 6387, pp. 221–234, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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particular, we introduce a new attack called the Reverse Statistical Disclosure

Attack (RSDA) (§4). In the RSDA, the attacker simply applies the SDA to

each user who sends messages. Some of the contacts of the targeted user —

henceforth, we will refer to her as Alice — can be guessed based on the SDA

applied to Alice. Additionally contacts of Alice can be guessed by examining the

SDA results of other users. Let us consider Alice’s friend Bob, who have replies

regularly to Alice’s messages or may simply send new messages to Alice. The

attacker applies the SDA to Bob, and may be able to guess that Alice is one of

his receivers. The RSDA leverages this information to note that Bob is a likely

contact of Alice, even if the SDA did not allow the attacker to identify Bob as

a receiver of Alice.

Note that the RSDA has a different model of what the attacker is interested

in (§2), compared with the SDA. In the SDA, the attacker is only interested in

the receivers to whom Alice sends. In the RSDA, the attacker wants to know all

of the contacts with whom Alice communicates, whether sending or receiving.

We believe that this is more realistic; traffic analysis is not generally confined to

finding relationships in one direction.

The way RSDA uses information gained about other senders to learn about

Alice is unique. In particular, we know of two other approaches that use similar

information: the Two-Sided SDA (TS-SDA) [3] and the Perfect Matching Dis-

closure Attack (PMDA) [7]. We discuss these in more detail in §3, but briefly

point out the key differences here. The TS-SDA assumes that the attacker is

only interested in receivers to whom Alice initiates a message and attempts to

filter out the statistical influence of Alice’s replies on her SDA values. This is the

opposite assumption from the RSDA model, in which the attacker is interested

in any contacts of Alice, whether Alice initiates messages to them or not. The

PMDA compares Alice’s sending behavior to other senders’ behavior with the

intention of matching the senders to their most likely receivers in each batch of

messages. PMDA is not looking for senders to Alice; RSDA is.

We use detailed simulation (§5) to study RSDA using different mix network

configurations. Cover traffic has been recognized as an effective way to counter

Statistical Disclosure Attacks [6,5]. Hence, we also study the effectiveness of

cover traffic, including background cover and receiver-bound cover, as a coun-

termeasure. Our results (§6) show that RSDA outperforms SDA particularly as

the amounts of user traffic and cover traffic increase. Cover traffic from Alice

affects SDA adversely and increases the time to 900 rounds; an increase of over

three times compared with no cover. RSDA is extremely resilient to user cover

and succeeds in only 250 rounds with cover and 100 rounds when no cover is

present. We also found that as the total number of messages mixed in each

round increases, both SDA and RSDA need more time to succeed. However,

RSDA takes close to half the number of rounds compared to SDA as the mix

batch size increases from 100 to 500 messages. When a binomial mix, having a

more complex mixing strategy than the threshold mix is used, RSDA still proves

to be a much faster attack compared to SDA. Furthermore, in the presence of

increasing Alice cover, RSDA increases from 1000 rounds to only 1800 rounds
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while the increase in time for SDA is almost four times more going from 3000

to 6000 rounds with increasing Alice cover. RSDA is also affected very little in

the presence of receiver-bound cover traffic. We conclude that RSDA is a much

speedier attack than the traditional SDA. It shows a sizeable improvement over

SDA and achieves high performance even in the presence of counter-measures

like user and receiver-bound cover traffic.

2 Model

We now describe a model for our study of RSDA. We start by describing how

we model mixes and users’ communication patterns, and then we discuss our

attacker model.

2.1 Mixes

We investigate statistical disclosure attacks against a simplified model of mixes.

We use the term mix to refer to the entire mix network or mix cascade and

abstract away details such as the number of mixes and their configuration. All

users send their messages and cover traffic to the mix, and the mix sends messages

on to all the receiving users.

We investigate RSDA’s effectiveness against two types of mixes:

Threshold Mix. The threshold mix [1] collects a fixed number B (the batch

size) of input messages before relaying the messages in a random order en route

to their destinations. Each cycle of input and output together is called a round.

Binomial Mix. In a binomial mix [4], each incoming message is subject to a bi-

ased coin toss to decide whether the message leaves the mix in the current round

or is delayed until a later round. The mix uses Pdelay as the delay probability to

bias the decision.

2.2 Communication Patterns

As we study the effectiveness of statistical attacks based on profiling users, the

communication patterns of the users are critical to our evaluation. The three

main features of the model are contacts (who sends to whom), sending behavior

(how often does each user send to each of her contacts), and cover traffic.

We assume that there are N users, and we use a uniform model for establish-

ing contacts between them. Specifically, each user, including Alice, has a fixed

number of receivers m. The receivers are chosen uniformly at random from the

set of other users. Unlike prior work in statistical disclosure attacks [6,3,7], we

do not have separate sets of senders and receivers. Rather, each user will be a

receiver for some of the other users. All of the users that communicate with a

given user are included in that user’s contacts. The total number of contacts per

node will vary, but will be 2m on average.

Since the attacker focuses on a targeted user, Alice, we distinguish between

Alice’s behavior and other users’ behavior. Alice sends nA messages in a given
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round. nA is a random variable selected from a Poission distribution with average

rate λA. Alice chooses the recipients of her messages uniformly from her set of

contacts. Users other than Alice are called background senders. When the mix

uses a fixed batch size as in the case of a threshold mix, background senders

together send nB = B−nA messages. If the batch size is variable, as in the case

of a binomial mix, background senders together send nB messages, where nB is

chosen from a normal distribution with mean μ.

Cover traffic consists of fake messages called dummy messages that are in-

serted into the network along with real messages. Dummy messages are meant

to look like real messages and cannot easily be distinguished from real messages.

Usually, this means that the content of real messages that would be encrypted is

replaced with random bits. The receiver of the dummy messages can recognize

that they are fake, as they do not decrypt properly, and drops such messages on

arrival. In our model, we use two types of cover traffic for the simulations. Alice
cover consists of dummy messages that Alice sends to the mix. These messages

are dropped at the mix. In each round in which Alice participates, she inserts

zero or more dummy messages along with real messages. Alice may send dummy

messages with no real messages in some rounds. Receiver-bound cover (RBC)

consists of dummy messages from the mix to receivers. See [5] for details on how

RBC is used to counter SDA.

2.3 Attacker Model

We model the attacker as a global eavesdropper who can observe all links from
senders to the mix and all links from the mix to recipients. The target of the

adversary is Alice and the adversary’s aim is to determine with whom Alice

communicates, i.e. to identify her contacts. The attacker observes all commu-

nications into and out of the mix during a number of rounds, including rounds

with and without Alice’s participation . The attacker observes only the incoming

and outgoing links from the mix and does not observe activity inside the mix.

This assumption is for the simplicity of the model, as there are many configura-

tions for a mix network, but also because SDA and RSDA are effective without

observations of activity inside the mix network.

3 Statistical Disclosure Attacks

In this section, we describe the Statistical Disclosure Attack, which is central

to the function of RSDA and which we use as a basis for comparison. We also

describe the Two-Sided Statistical Disclosure Attack and the Perfect Matching

Disclosure Attack, both of which use observations about other senders to inform
their method. RSDA uses these observations in a very different way from these

existing techniques.

3.1 The (Original) Statistical Disclosure Attack

The Statistical Disclosure Attack (SDA) is a statistical technique for finding the

receivers of a single targeted user Alice based on observed inputs to and output
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from the mix network. The attacker makes observations in a number of rounds,
i.e. periods during which Alice participates. In each round of observation, the

attacker records three pieces of information: nA, the number of messages sent

by Alice; nB the number of messages sent by senders other than Alice; and −→o
the distribution of messages received by receivers in that round. The attacker

records the behavior of senders other than Alice, known as the background, by

recording their activity when Alice does not participate. Vector −→u captures the

distribution of messages from background senders to receivers in each round in

which Alice is not present. The attacker sums −→u values over a large number of

observations to obtain U which represents the sending behavior of background

senders. The attacker sums −→o values over a large number of observations to ob-

tain O. Since −→o is recorded when both Alice and background senders participate,

it represents their combined sending behavior. Thus, O represents the combined

sending behavior of both Alice and the background during the observed rounds,

and this can be written as:

O = nA.DA + nB.DN (1)

Here nA and nB are the total number of messages sent by Alice and the back-

ground, respectively, during the attacker’s observation period. DA is a vector

that represents Alice sending behavior. For receiver i, who is Alice’s contact,

0 < DA[i] < 1, and for receiver j who is not Alice’s contact, DA[j] = 0. DN rep-

resents the sending behavior of background senders and is obtained by observing

rounds in which Alice does not participate i.e. DN = U/nB. If the attacker is

unable to collect background statistics before Alice begins communicating, DN

can be approximated as DN [i] = 1
N ∀ i, meaning that the background sends

in a uniform manner to all receivers. Alice’s most likely set of contacts are de-

termined by solving for DA in equation (1) and picking m receivers with the

highest DA[i] values.

Mathewson and Dingledine developed a simulation, including the use of a

binomial mix (called a pool mix in their paper), to investigate the effect of a

number of parameters on the performance of SDA [6]. They found that as the

number of Alice’s contacts grew, the rounds of observation to expose her full

contact list correspondingly increased. They also found that cover traffic from
Alice was effective in slowing, but not preventing, SDA. Cover traffic from Alice

was found to be more effective when the delay probability of the binomial mix

was increased. Increasing the mix delay spreads out the incoming traffic over a

number of outgoing rounds, making it more difficult for the attacker to estimate

which set of receivers might have gotten the messages from Alice.

3.2 Two-Sided Statistical Disclosure Attack

When Alice sends a message, she may be initiating the message or she may be

replying to a message initiated by another user. If the attacker is only interested

in knowing to whom Alice initiates messages, the SDA may have problems, as

it is not designed to distinguish replies from initiated messages. The Two-sided
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Statistical Disclosure Attack (TS-SDA) [3] extends the original SDA with obser-

vations of messages sent to Alice. TS-SDA uses these additional observations to

estimate the likelihood that a given message from Alice is a reply to a previously

received message and discounts possible replies accordingly.

As we note in Section 1, TS-SDA is based on very different assumptions from
the RSDA. In particular, the assumption that the attacker is only interested in

receivers of Alice’s initiated messages leads TS-SDA to filter out the statistical

influence of possible replies. In the current work, we assume that the attacker

is interested in all of Alice’s contacts, whether Alice initates the communication

or not. TS-SDA would thus be worse than SDA in our model.

3.3 Perfect Matching Disclosure Attack

In the Perfect Matching Disclosure Attack (PMDA) [7], the attacker attempts

to improve on SDA by using the insight that only one sender could have sent a

particular message. This is best explained by a simple example in the threshold

mix setting. Suppose that Alice and Bob are senders and Carol and Dave are

receivers. In a given round, suppose that Alice and Bob each send one message

and Carol and Dave each receive one message. Based on prior observations (pro-

filing using SDA), both Alice and Bob are more likely to have sent to Carol than

Dave. Since only one of them sent to Carol, however, PMDA finds the most

likely matching of senders to receviers with, say, Alice sending to Carol and Bob

sending to Dave. This matching is used to inform the profile of each sender and

improve the attacker’s chances of finding Alice’s contacts.

This use of other senders’ profiles is used in an entirely different way from
RSDA. In particular, Alice is never a receiver and messages received by senders

are never used in the profiling. We believe that the traffic analysis improvement

in PMDA is therefore largely orthogonal to RSDA. Since both techniques require

profiling of the users, however, combining the insights of PMDA with those of

RSDA is challenging and we leave this for future work.

4 Reverse Statistical Disclosure Attack

In the Reverse Statistical Disclosure Attack (RSDA), the attacker first applies

the SDA (as described in Section 3.1) to all N users. The attacker learns two

pieces of information from this step. First, the attacker applies the SDA to Alice

to learn about to whom Alice sends messages. Second, by applying the SDA to

other users, he can determine which of them send to Alice. The attacker then

combines this information to find the most likely contacts of Alice.

We break up the attack into three parts: (1) forward observation, or observa-

tions of Alice’s sending behavior; (2) reverse observation, observations of other

users’ sending behavior; and (3), combining forward and reverse observations.

Forward Observation. In each round of observation the attacker records informa-

tion in the forward direction as described in Section 3.1. This allows the attacker

to calculate DA, a set of scores representing Alice’s estimated sending behavior.
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Reverse Observation. In each round of observation the attacker also records

information in the reverse direction. For a user X , the attacker records nX , the

number of messages sent by X , nB, the number of messages sent by other users,

and −→o , the distribution of messages received by users in rounds that X sends.

The eavesdropper also records DX
N , the distribution of of messages received by

users in rounds that X does not send. Using these observations, the eavesdropper

does the SDA on X by using the following equation:

O = nX .DX + nB.DX
N (2)

With these observations, the attacker can apply Eqn. 2 to estimate DX , the

scores representing X ’s sending behavior.

Now let DX [A] represent the attacker’s estimate of user X ’s sending behavior

to Alice. We create a new vector DR, such that DR[X ] = DX [A]. In other words,

DR represents the estimated sending behavior of all other users with respect to

Alice.

Combining Observations. The RSDA estimate of Alice’s most likely contacts,

D̂A, can be determined by combining DA and DR calculated from the forward

and reverse observations, respectively. DA and DR are combined by first nor-

malizing and then obtaining a weighted mean of the two distributions. If vf is

the volume of traffic observed in the forward direction and vr is the volume of

traffic in the reverse direction, then we obtain:

D̂A =
vf .DA + vr.DR

vf + vr
(3)

Note that we could keep the information separate and simply determine Alice’s

receivers and those who send to Alice in isolation of each other. However, Alice’s

receivers will reply to her and vice versa. Since we assume that the attacker is

interested in all of Alice’s contacts, combining the information helps him learn

more.

To see this, let us consider two users, Bob and Carol. Bob is a contact of Alice

who occasionally sends to Alice and receives replies, while Carol is not Alice’s

contact. Over a very large number of rounds, the SDA alone will distinguish

between Bob and Carol with respect their contact with Alice. In fewer rounds,

however, Bob and Carol may have very similar statistical links to Alice. Since

Alice replies to Bob, combining their SDA observations should provide better

evidence that they are contacts. On the other hand, since Alice never sends to

Carol, combining their SDA observations will likely weaken the evidence for them
being contacts. Thus, combining scores should improve the relative evidence for

real contacts.

5 Simulation Setup

We simulated the process of sending and receiving messages via a mix network

according to the model described in Section 2. The parameters used in our
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Table 1. Simulation parameter values

Parameter Value Description

N 100 Number of users in the system

m 10 Number of Alice’s contacts

B 100 to 500 Batchsize of threshold mix

Pdelay 0.1 to 0.9 Probability of delay of binomial mix

Preply 0.5 User’s reply probability

λA 5.0
Alice message initiation rate i.e.

messages/round

λU 1.0 to 10.0
User message initiation rate i.e.

messages/round per user

λAd
1.0 to 10.0

Alice dummy initiation rate per

round

RBCV OL
10%to100% RBC volume as per cent of real

messages/round

CUTOFF
105 Simulation cutoff, Threshold Mix

106 Simulation cutoff, Binomial Mix

simulations are discussed in this section and summarized in Table 1. The number

of users in the system N is set to 100. The number of contacts for Alice is m = 20.

The simulations were carried out for the two attacks that we are comparing: SDA

and RSDA.

5.1 Mix Behavior

– Threshold Mix: For the threshold mix we set the batch size B = 200 mes-

sages a round.

– Binomial Mix: For the binomial mix, the probability that an incoming mes-

sage is delayed is set to Pdelay = 0.2.

5.2 Message Generation

– Alice Initiation: The number of messages Alice initiates is based on a poisson

distribution with an average rate of λA = 5.0 messages per round.

– Other Users Initiation: The number of messages sent by users apart from
Alice is based on a poisson distribution with an average rate of λU = 5.0
messages per round.

– User Reply Behavior: Users, including Alice, reply to messages they receive

from other users with a probability of Preply = 0.5. If users decide to reply,

they do so in the very next round.

5.3 Cover Traffic

– Alice cover: The number of dummy messages per round is determined using a

Poisson distribution with rate λAd
, which is varied from 1.0 to 10.0 messages

per round for our simulations.
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– Receiver-bound Cover: For the threshold mix simulations, the volume of

receiver-bound cover is set to RBCV OL = 100%. This means the number

of dummy messages sent from the mix to users per round is 100% of the

number of real outgoing messages from the mix to users in that round. For

the binomial mix simulations, the volume of receiver-bound cover is set varied

from RBCV OL = 10% to RBCV OL = 90%.

5.4 Measuring Attacker Success

The attacker eavesdrops on communications between users over a period of time

that is divided into rounds. We use the median number of rounds for the at-

tacker to find 50% of Alice’s recipients as a measure of the attacker’s success.

In [5] we discuss why exposing a fraction and not all of Alice’s contacts suffi-

ciently degrades her anonymity. The number of rounds of attacker observation

is bounded by a CUTOFF value, so that the simulation can end in finite time

when the attack does not converge. The observation CUTOFF is set to 105 when

the median rounds to identify Alice’s contacts is lower than 50000 rounds. The

CUTOFF is set to 106 rounds when the median rounds is higher. Generally, we

observed lower median rounds for the threshold mix and higher median rounds

for the binomial mix.

6 Results

In this section we discuss the results of our simulations. Please note the use of a

logarithmic y-axis in some graphs.

6.1 Simple Threshold Mix

No Cover Traffic. We ran multiple simulations to compare the performances

of SDA and RSDA. We studied the effectiveness of the attacks for different batch

sizes ranging from = 100 to 500. Alice sends at a rate of λA = 5.0 messages per

round. The results are shown in Figure 1. We see that when a threshold mix is

used, RSDA outperforms SDA especially for higher batch sizes.

Alice Cover. For the next simulation we fixed Alice’s message initiation rate

and other user’s message intiation rate at, λA = λU = 5.0 messages/round.

Alice sends cover traffic increasing from 1.0 to 10.0 messages/round. Figure 2

compares the performance of SDA and RSDA in the presence of increasing cover

traffic from Alice. For 10.0 messages/round of Alice cover, the number of rounds

for SDA increases by a factor of three to 900 rounds. RSDA on the other hand

is able to perform well even when Alice cover twice her real message rate and

remains below well 250 rounds.
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Receiver-bound Cover. In addition to Alice cover we added receiver-bound

cover with RBCV OL = 100% and compared the performance of SDA and

RSDA. The results are shown in Figure 3. The median rounds for attacker

success with SDA goes to about 1800 rounds when Alice cover is λAd
= 10.0

messages/round. In the presence of RBC and high volume of Alice cover, RSDA

is still able to expose 50% of Alice’s contacts within about 300 rounds which is

6 times lesser than SDA.

We also studied the performance of RSDA when Alice cover is not used and

only the mix sends RBC to users. The results of this scenario is shown in Figure

4. SDA and RSDA are compared for increasing values of mix batch size.

6.2 Binomial Mix

Only Alice Cover Traffic. In our next simulation we compared the perfor-

mance of SDA and RSDA using a binomial mix. The results are shown in Figure

5. We see that, like in the threshold case, RSDA outperforms SDA. When Alice

sends one dummy message/round, RSDA succeeds in a third of the time taken

for SDA to succeed. At higher volumes of Alice cover, RSDA continues to succeed

faster than SDA.

Alice and Receiver-bound Cover. In this simulation we show the impact of

introducing RBCVOL=20% along with increasing Alice cover. We compare the

performance of both the attacks when the mix does and does not send receiver-

bound cover. The results are shown in Figure 6. We see that the time needed for

SDA more than doubles in the presence of 20% RBC. RSDA on the other hand

is not affected by RBC to the same degree as SDA.
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Only Receiver-bound Cover. We study whether higher amounts of RBC

affect the performance of RSDA and compare the results with the performance

of SDA. In order to understand how RBC affects RSDA, we set Alice cover to zero

and increased the volume of RBC generated by the mix from RBCV OL = 10%

to RBCV OL = 90%. The results are shown in Figure 7. We see that as the

amount of RBC increases the taken for SDA dramatically increases from 2816

rounds to over a million rounds. RSDA shows a ten-fold increase from about

1000 rounds to 10000 rounds of observation when RBC is increased from 10%

to 90%. However, compared to SDA, RSDA is significantly more tolerant to

receiver-bound cover traffic.

7 Conclusions

In this paper, we have described and evaluated RSDA. RSDA is based on the

assumption that the attacker is interested in all of Alice’s contacts, not just the

people to whom she initiates messages. We believe that this is a more realistic

representation of the attacker’s goals. In this model, we showed that taking other

users’ sending behavior into account, the attacker could better identify Alice’s

contacts than when just using SDA.
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Abstract. Watermarking security has captured great attention from re-

searchers in recent years. The security of watermarking is determined by

the difficulty of estimating the secret key used in embedding/detecting

schemes. As a widely used scheme, Improved Spread-Spectrum (ISS) wa-

termarking performs better than Additive Spread-Spectrum (Add-SS)

and is able to include Add-SS watermarking as a specialized case. Be-

cause of its popularity, the investigation on the security of ISS water-

marking has been reported. Previous works on evaluating the security

of ISS watermarking mainly focus on the assumption of Gaussian host

and ignore the effects from the non-Gaussian characteristics of natural

images. This paper analyzes the security of ISS watermarking from the

viewpoint of Shannon information theory by using Gaussian Scale Mix-

ture (GSM) model to characterize the natural scene statistics and reveals

the relationship between the security and its related factors. Theoretical

analysis and simulation results show that the security of ISS watermark-

ing with the Gaussian host assumption is over-stated in previous work.

Keywords: Watermarking security, Improved Spread-Spectrum Water-

marking, Gaussian Scale Mixture Model.

1 Introduction

In recent years, great attention has been paid on the research of watermarking

security, which is defined as the difficulty to estimate the secret key used in

embedding/ detecting schemes [1],[2]. The research on watermarking security

tries to reveal the relationship between the security level and relative factors [3].

And relevant work in this field is expected to contribute to the development of

a new generation of robust and secure watermarking schemes.

Security analysis on Spread-Spectrum based watermarking has been reported

in the literatures [1],[3]-[5]. Cayre et al. firstly differentiated security from ro-

bustness and investigated the security of Additive Spread-Spectrum (Add-SS)
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watermarking with the help of Fisher Information [3]. Comesaña et al. analyzed

the security issue of Add-SS watermarking from the viewpoint of Shannon infor-

mation theory under the assumption of Gaussian host [4]. Ni and Zhang et al.
presented the security analysis on Add-SS watermarking by incorporating a Nat-

ural Scene Statistics model - GSM (Gaussian Scale Mixture)[5],[6]. Pérez-Freire

et al. discussed the security of Improved Spread-Spectrum (ISS) watermarking

under the assumption of Gaussian host for the convenience of mathematical

manipulations [7].

Compared with Add-SS watermarking, ISS watermarking adapts embedding

with host and attenuates embedding strength to reduce the influence of host [7].

ISS watermarking is widely accepted because it has better performance in terms

of robustness with constrained distortion than Add-SS and is able to include

Add-SS as a specialized case. The security of ISS watermarking is affected not

only by the spread-spectrum sequence, which is used as a secret carrier, but

also by the distribution of its host as well. Consequently, it is critical to charac-

terize the host distribution accurately in security analysis. In the development

of practical watermarking system, the wavelet coefficients of natural images are

widely employed as hosts. Since natural images exhibit strong non-Gaussian be-

haviors in wavelet domain, e.g. sharp peak and heavy tails, Gaussian model is

not capable of describing the statistics of the natural image host.

To our best knowledge, security analysis on ISS watermarking was only re-

ported in [7], where the Gaussian host assumption was employed. This paper

uses Gaussian Scale Mixture (GSM) [8],[9] to characterize the statistics of nat-

ural images, and investigates the security of ISS watermarking from Shannon

information theoretic point of view [10]. By using the properties of projection

matrix, this paper obtains information theoretical security measures in closed

form under the assumption of GSM host. Compared with the results based on the

assumption of Gaussian host, this paper obtains more accurate security bound

with the help of GSM.

The remainder of the paper is organized as follows. Section 2 presents the

model of ISS watermarking incorporating GSM. After the Shannon information

theoretic approach for watermarking security is introduced in Section 3, Sec-

tion 4 analyses the security of ISS watermarking with the assumption of GSM

host. Simulation results and discussion are included in Section 5. Section 6 gives

concluding remarks at the end of this paper.

2 Model of ISS Watermarking Incorporating GSM

The embedding function of ISS watermarking can be expressed as

Yj = Xj + μ(Xj , Mj)Z, (1)

where, Xj and Yj are denoted as the host and the watermarked signal in the

jth observation, respectively [7]. Z denotes the secret carrier. The host and the

secret carrier are assumed to have the same length, Nv. For the convenience of

description and without loss of generality, the situation with one embedded bit is
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considered. Mj is the embedded message in the jth observation. The embedding

is determined by host and secret carrier, and expressed as μ(Xj , Mj). Without

introducing other noise, Yj is the observed signal in the detection end. Com-

pared with Add-SS watermarking, the embedding function of ISS watermarking

is dependent on the host and is regarded as an informed embedding. Practically,

most schemes of ISS watermarking restrict μ(·) to be a linear function such that

Eq.(1) is simplified into

Yj = Xj + (−1)Mj νZ − λ
XT

j Z
‖Z‖2

Z, (2)

where ν is a parameter to control the embedding distortion and λ(0 ≤ λ ≤ 1)

is a host-rejection parameter [2],[7]. It can be seen that ISS watermarking is

fundamentally different from Add-SS watermarking in that ISS attenuates the

host only in the direction of secret carrier, thus minimizes embedding distortion

and improves the performance of ISS in terms of robustness.

In this paper, the wavelet coefficients of natural image host in one sub-band are

modeled as a GSM random field, X. It is formulated as the product of a Gaussian

random field and a random scaling variable S, i.e. X = S · U = {si · ui, i ∈ I},
where I is the index of location, and U ∼ N(0,Q) is a Gaussian random field

with zero mean and covariance Q. S is a positive random scalar and independent

of U. For natural image, S = s can be estimated by Maximum Likelihood method

[8],[9]. Conditioned on s, X is Gaussian with the probability density expressed

as

pX|S(x|s) =
1

(2π)
N
2 |s2Q| 12

exp

(
−xTQ−1x

2s2

)
. (3)

A simplified relationship can be obtained for a scalar model of GSM. With a

scalar GSM model, when si is given, Xi distributes as Gaussian pXi|Si
(xi|si) ∼

N(0, s2
i σ

2
u) [4]. Without loss of generality, σ2

u can be assumed to be unity and

Xi is independent of Xj for different i and j.
A scalar GSM model is used in this paper to model the statistics of natural im-

age host. XNo = (X1,X2, · · · ,XNo) and YNo = (Y1,Y2, · · · ,YNo) denote the

No hosts and No watermarked signals, respectively. MNo = (M1, M2, · · · , MNo)

are the corresponding messages in the No observations. It is assumed that Mi

takes 0 and 1 with the same probability. The secret carrier, Z, is an i.i.d. Gaus-

sain random vector, that is Z ∼ N(0, σ2
zINv).

It can be seen from Formula (2) that the embedding distortion in the jth

observation for ISS watermarking is

Dw =
1

Nv
E
[
‖Yj − Xj‖2|S = s

]
= ν2σ2

z +
λ2

N2
v

Nv∑
i=1

s2
j,iσ

2
u. (4)

where sj,i is the ith scale parameter of the jth observation. So the Document

to Watermark Ratio is defined as DWR = 10 log10

(
σ2

x

Dw

)
, in which σ2

x =

1
Nv

∑Nv

i=1 s2
j,iσ

2
u is the average power of the host.
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3 Method for Measuring Watermarking Security

According to Kerckhoff’s principle [11], the security of a watermarking system
depends only on the secret key [1]. The security of watermarking can be evaluated

by the information leakage of secret key in the communication or the residual

uncertainty of the secret key after the communication [3]. The lower information

leakage or higher residual uncertainty implies that less information about secret

key could be acquired by the attacker and hence provides higher security level

for the watermarking system.

In the scheme of ISS watermarking, the secret key is the secret carrier [6][7].

h(Z) denotes the differential entropy of secrete carrier. h(Z|YNo) is the residual

entropy of secret carrier given No watermarked images, and I(Z;YNo ) is the

mutual information between secret carrier and watermarked image. Taking into

account the definition of mutual information [10], we have

h(Z|YNo) = h(Z) − I(Z;YNo), (5)

I(Z;YNo) = h(YNo) − h(YNo |Z), (6)

inwhichh(YNo) is the differential entropy ofNo watermarked image andh(YNo|Z)

is the entropy of watermarked image conditioned the secret carrier is known. It is

clear to see that h(Z|YNo) represents the uncertainty of the secret key given the

No watermarked images and I(Z;YNo) measures the information leakage of se-

cret key during the communication. The larger the h(Z|YNo) or the smaller the

I(Z;YNo) is, the higher security level the watermarking scheme will have.

4 Security Analysis on ISS Watermarking

Based on the knowledge available to the attacker, three different attacks are

defined, i.e. Known Message Attack (KMA), Known Original Attack (KOA),

and Watermarked Only Attack (WOA) [1],[2]. KMA is the situation the attacker

has the access to watermarked images and corresponding secret messages. KOA

implies the attacker can access both the watermarked images and the original

host images. Under WOA situation, the attacker has only watermarked images.

In this section, by modeling the natural image host with GSM, the security

analysis is performed for ISS watermarking based on Shannon information the-

ory. Only results for the cases of KMA and WOA are investigated in this paper.

Although GSM model is considered, the result for KOA is similar to the work

presented in [7].

4.1 Case under KMA

Since the scale parameter S can be estimated by the observation when the host

is modeled by GSM, taking into account the embedded message is independent

of secret carrier and host, the residual entropy of secret carrier and the mutual
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information between the observations and secret carrier under KMA situation

are expressed as Eq.(7) and Eq.(8), respectively.

h(Z|YNo ,SNo , MNo) = h(Z) − I(Z;YNo |SNo , MNo), (7)

I(Z;YNo |SNo , MNo) = h(YNo |SNo , MNo) − h(YNo |Z,SNo , MNo). (8)

With the Gaussian assumption, the differential entropy of the secret carrier is

calculated as

h(Z) =
Nv

2
log(2πeσ2

z), (9)

in which the logarithm is based on e [10].

In order to derive the value of h(YNo |Z,SNo , MNo), incorporating GSM model,

a projection matrix is introduced to simplify the calculation [12]. The detailed

derivation is attached in Appendix A by which we obtain h(YNo |Z,SNo , MNo) as

Eq. (10).

h(YNo |Z,SNo , MNo) =
1

2

No∑
j=1

log

[
(2πe)Nv(1 − λ)2σ2Nv

u

Nv∏
i=1

s2
j,i

]
. (10)

In the calculation of h(YNo |SNo , MNo), two situations are considered. When

only one observation is available, that is No = 1, we have

h(Y|S, M) =
1

2

Nv∑
l=1

log 2πe{s2
i σ

2
u + ν2σ2

Z

+
σ2

u

Nv(Nv + 2)

[
−2λs2

i (Nv + 2) + 2λ2s2
i + λ2

Nv∑
l=1

s2
l

]
}. (11)

For the case of No > 1, considering the inequality

h(YNo |SNo , MNo)

≤
Nv∑
i=1

E [h(Y1,i, · · · , YNo,i|S1,i = s1,i, · · · , SNo,i = sNo,i, M1 = m1, · · · , MNo = mNo)]

≤ 1

2

Nv∑
i=1

E
[
log

(
(2πe)No |ΣYi |

)]
, (12)

where Y1,i, Y2,i, · · · , YNo,i are the ith component of each watermarked image,
ΣYi is the covariance matrix of (Y1,i, Y2,i, · · · , YNo,i), and |ΣYi | denotes the
determinant of ΣYi . We have

h(YNo |SNo , MNo) ≤ 1

2

Nv∑
i=1

log

[
(2πe)No

(
1 +

No∑
j=1

ν2σ2
Z

s2
j,iσ

2
u + Tj,i

)
No∏
j=1

(
s2

j,iσ
2
u + Tj,i

)]
.

(13)
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where

Tj,i =
σ2

u

Nv(Nv + 2)
[−2λs2

j,i(Nv + 2) + 2λ2s2
j,i + λ2

Nv∑
l=1

s2
j,l].

The derivation of h(YNo |SNo , MNo) is included in Appendix B.

By taking into account the results of h(YNo |SNo , MNo) and h(YNo |Z,SNo ,
MNo), the information leakage about the secret carrier under KMA situation

can be obtained.

For the case No = 1, with the results of Formula (10) and (11), we have

I(Y;Z|S, M) =
1

2

Nv∑
i=1

log{s2
i σ

2
u + ν2σ2

Z

+
σ2

u

Nv(Nv + 2)

[
−2λs2

i (Nv + 2) + 2λ2s2
i + λ2

Nv∑
l=1

s2
l

]
}

− 1

2
log

(
(1 − λ)2σ2Nv

u

Nv∏
i=1

s2
i

)
. (14)

For the case No > 1, according to the results of Formula (12) and (13), it can

be obtained that

I(Z;YNo |SNo , MNo)

≤ 1

2

Nv∑
i=1

log[(2πe)No

⎛⎝1 +

No∑
j=1

ν2σ2
Z

s2
j,iσ

2
u + Tj,i

⎞⎠ ·
No∏
j=1

(
s2

j,iσ
2
u + Tj,i

)
]

− 1

2

No∑
j=1

log

[
(2πe)Nv (1 − λ)2σ2Nv

u

Nv∏
i=1

s2
j,i

]
. (15)

4.2 Case under WOA

Under WOA situation, the attacker has the access to No observations of the

watermarked images. By modeling host image with GSM, the residual entropy

of secret carrier under WOA is expressed as (16).

h(Z|SNo ,YNo) = h(Z|SNo) − I(Z;YNo |SNo) = h(Z) − I(Z;YNo |SNo), (16)

where

I(Z;YNo |SNo) = h(YNo |SNo) − h(YNo |SNo ,Z). (17)

When only one observation is available, the mutual information between the

secret carrier and watermarked image is

I(Z;Y|S) = h(Y|S) − h(Y|S,Z)

= h(Y|S, M = 0) − h(Y|S,Z, M) − I(Y; M |S,Z)

≥ h(Y|S, M = 0) − h(Y|S,Z, M) − log 2. (18)
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We achieve the result because h(Y|S) = h(Y|S, M = 0) and M is assumed

taking 0 or 1 with equal probability. Recall that each component of X distributes

as Xi ∼ N(0, s2
i σ

2
u) with GSM and each component of Z follows Zi ∼ N(0, σ2

Z).

No matter what value M takes, the distribution of Y has the same expression,

i.e. p(Y|S, M = 1) = p(Y|S, M = 0). So, we have

h(Y|S) = −E[log p(Y|S, M = 0)]

= h(Y|S, M = 0), (19)

and

I(Z;Y|S, M) ≥ I(Z;Y|S)

= I(Z;Y|S, M) − I(Y; M |S,Z)

≥ I(Z;Y|S, M) − log 2. (20)

From Formula (20), the information leakage of secret carrier under WOA situ-

ation is not larger than that under KMA situation. The maximum gap is log2

nat, which is due to the uncertainty of the embedded message.

4.3 Connection with the Result Based on Gaussian Host Assumption

The security of ISS watermarking given in [7] is based on the assumption of

Gaussian host and can be regarded as a special case of the results derived in this

paper. If each wavelet coefficient of host has the same variance, σ2
x, the GSM

model degrades to the Gaussian model. This simplification leads to

s2
j,iσ

2
u = σ2

x (21)

By substituting Formula (21) into Eq. (10), Eq. (11), and Eq. (13), we have

h(YNo |Z,SNo , MNo) =
No

2
log[(2πe)Nv(1 − λ)2σ2Nv

x ] (22)

h(Y|S, M) =
Nv

2
log(2πe) +

Nv

2
log[σ2

x + ν2σ2
Z + σ2

x

λ(λ − 2)

Nv
]

( for No = 1) (23)

and

h(YNo |SNo , MNo)

≤ Nv

2
log[(2πe)No(σ2

x)No(1 +
λ(λ − 2)

Nv
)No(1 +

Noν
2σ2

Z

σ2
x(1 +

λ(λ−2)
Nv

)
)]

( for No > 1) (24)

which are the same as h(YNo |Z, MNo) and h(YNo |MNo) given in [7].
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Fig. 1. Relationship between the information leakage of secret carrier and the host-

rejection parameter

5 Simulation Results and Discussion

Based on the theoretical analysis above, the security of ISS watermarking was

simulated with the assumption of GSM hosts. An i.i.d. Gaussian vector was

used as secret carrier, i.e. Z ∼ N(0, σ2
zINv ), according to the assumption in

Section 4. By using eight natural images, with different texture characteristics,

including aerial, baboon, barb, boat, f16, lena, peppers and sailboat, as hosts, the

information leakage of secret carrier were calculated. Bi-orthogonal 9/7 wavelet

was used to decompose these images into 2 layers. Coefficients from HL2, LH2

and HH2 were randomly selected as hosts.

Fig. 1 shows the relationship between the information leakage of the secret

carrier and the host-rejection parameter λ with No = 1 , Nv = 512 and DWR =

25dB. The value of λ ranges from 0 to 1. The solid line with circles and the dashed

line with squares correspond to the information leakages with GSM model and

Gaussian model under KMA situation, respectively. The dotted line shows the

lower bound of information leakage under WOA with GSM. With the increase of

the value of λ, information leakage increases for both GSM and Gaussian models.

Note that λ = 0 means not rejection exerted on host such that ISS watermarking

degrades to Add-SS watermarking. Although ISS watermarking performs better

in robustness than Add-SS watermarking, the security is degraded as shown in

Fig. 1. Compared with the results based on Gaussian, GSM based results show

more information leakage of the secret carrier in ISS watermarking with the

reason that GSM characterizes natural image more accurately and enables the

attacker to improve his estimations on secret carrier.

The information leakage against the number of observations is shown in Fig.

2 when the length of secret carrier was fixed at 512, λ at 0.5 and DWR at 25dB.

It is observed that the information leakage of the secret carrier increases with
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Fig. 2. Relationship between the upper bound of the information leakage of secret

carrier and the number of observations

the accumulation of observations. The attacker could improve his knowledge

about the secret carrier by increasing the number of observations. Due to the

correlation among observations, the information leakage of secret carrier grows

non-linearly against the number of observations for both GSM based method

and Gaussian based method.

Fig. 3 shows the information leakage of secret carrier per-dimension against

the length of carrier ranging from 128 to 512 when DWR and λ were respectively

fixed at 25dB and 0.5 under KMA situation. Note the information leakage per-

dimension decreases with the increase of the length of carrier. Results in this

figure indicate that using longer secret carrier will provide higher security to ISS

watermarking.

The relationship between the information leakage of secret carrier and DWR

is shown in Fig. 4 when just one observation is available. The length of carrier

and the value of λ were fixed at 512 and 0.5, respectively. Both GSM based and

Gaussian based results were shown under KMA situation. The lower bound of

information leakage was also drawn by dotted line. It can be seen from this figure

that the information leakage of secret carrier decreases against the increasing

of DWR. Since DWR is the power ratio between host and watermark, higher

DWR implies lower strength has been embedded and thus corresponds to less

information leakage of the secret carrier. So, the security level will be improved

by increasing the value of DWR.

In all the aforementioned situations, the information leakage of the secret

carries with GSM host is consistently greater than that with Gaussian host,

which shows the over-estimated security level of ISS watermarking when the

host is characterized with Gaussian.
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6 Conclusions

This paper presents a theoretical analysis on the security of ISS watermarking

by taking advantage of the GSM model. Compared with the Gaussian model, the

GSM model characterizes the statistics of natural images more accurately and

thus reduces the uncertainty of host description. The results of the paper show

the security level of ISS watermarking was over-estimated with the Gaussian

model. The work of this paper is expected to contribute to the development of

a new generation of robust watermarking schemes with improved security.
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Appendix

A. The Calculation of h(YNo|Z, SNo , MNo)

Taking into account the host is independent of each other conditioned on the

scale parameter S, each observation is conditionally independent given the se-

cret carrier and secret message. Thus, h(YNo |Z,SNo , MNo) is the sum of the

conditional entropies of each observation.

h(YNo |Z,SNo , MNo) =

No∑
j=1

h(Yj |Z,Sj , Mj) (25)
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It can be seen from Formula (2) that a watermarked image is composed of the

host, the secret carrier modulated by secret message, and the projection of host

in the direction of the secret carrier. For the convenience of analysis, Pv � ZZT

‖Z‖2

is denoted as a matrix which projects a vector onto the direction of secret carrier,

Z. So we have

λ
XT Z
‖ Z ‖2

Z = λPvX (26)

It can be proved that Pv has the following features [12]. (i) Pv is symmetrical,

(ii) Pv is an idempotent matrix, i.e. P2
v = Pv, (iii) the eigenvalue of Pv is either

1 or 0, and (iv) the rank of Pv equals to the trace of Pv. According to the

assumption of Z, the trace of Pv can be calculated as Formula (27).

tr(Pv) = tr(
ZZT

‖ Z ‖2
) =

1

‖ Z ‖2
tr(ZZT ) = 1 (27)

So Pv has only one eigenvalue that equals to 1. The determinant of Pv is |Pv| = 0

for Nv > 1 or |Pv| = 1 for Nv = 1.

Recalling that the host distributes as Gaussian given the scale parameter in

GSM model, and
XT

j Z

‖Z‖2 Z projects the host onto the secret carrier, we have the

jth observation is Gaussian with mean (−1)Mj νZ and covariance as (28), given

corresponding embedded message and secret carrier.

Σj |Z=z,S=sj ,M=mj � E[(Xj − λ
XT

j z
‖ z ‖2

z)(Xj − λ
XT

j z
‖ z ‖2

z)T ]

= E[(Xj − λPvXj)(Xj − λPvXj)
T ] (28)

Considering that Pv can be factorized as UΓνUT with an orthogonal U and an

eigenvalue matrix Γν , the determinant of the above covariance matrix can be

calculated by

|Σj |Z=z,S=sj ,M=mj = |[(I − λPν)E(XjXT
j )(I − λPν)|z, sj , mj]|

= [|CXj ||(I − λΓν)|2|z, sj , mj ]

= (1 − λ)2σ2Nv
u

Nv∏
i=1

s2
j,i (29)

in which Γν =

⎡⎢⎢⎢⎣
1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤⎥⎥⎥⎦. Note that the result of (29) is independent of mj , we

have

h(Yj |Z,Sj , Mj) =
1

2
log[(2πe)Nv(1 − λ)2σ2Nv

u

Nv∏
i=1

s2
j,i] (30)
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and

h(YNo |Z,SNo , MNo) =
1

2

No∑
j=1

log[(2πe)Nv(1 − λ)2σ2Nv
u

Nv∏
i=1

s2
j,i)] (31)

B. The Calculation of h(YNo|SNo , MNo)

According to the embedding function in Formula (2), given the scale parameter

S under KMA situation, the jth observation is the sum of an i.i.d. Gaussian Z
and another Gaussian whose covariance matrix depends on Z. The watermarked

signal is still Gaussian [7].

1. Case No = 1

When only one observation is available, each component of the observation is

independent, conditioned on the embedded message and the scale parameter,

Given the embedded message, the entropy of the observation is

h(YNo |SNo , MNo) = h(Y|S, M) =

Nv∑
i=1

E[h(Yi|S = s, M = m)] (32)

where Yi is the ith component of the observation. Since the component of Xi is

zero-mean, it is easy to see that E[Yi|S = s, M = m] = 0. The variance of Yi

conditioned S and M is given by

E[Y 2
i |S = s, M = m] = s2

i σ
2
u − 2λs2

i σ
2
uE[

Z2
i

‖ Z ‖2
]

+ λ2s2
i σ

2
uE[

Z4
i

‖ Z ‖4
] + λ2σ2

uE[

Nv∑
l=1,l �=i

s2
l Z

2
l Z2

i

‖ Z ‖4
] + ν2σ2

Z (33)

As Z is an Nv− dimensional Gaussian vector with i.i.d. components, Z
‖Z‖ is

uniformly distributed on the surface of the Nv dimensional sphere of unit ra-

dius. Zi

‖Z‖ is the marginal distribution of Z
‖Z‖ . E[

Z2
i

‖Z‖2 ], E[
Z4

i

‖Z‖4 ] and E[
Z2

l Z2
i

‖Z‖4 ] are

respectively the 2nd-order moment about origin, 4th-order moment about origin

and 4th-order mixed moment. Taking into account the results in statistics for a

uniformly distributed vector on the surface of an Nv dimensional sphere with

unit radius [13], Formula (33) can be written as (34).

E[Y 2
i |S = s, M = m]

= s2
i σ

2
u +

σ2
u

Nv(Nv + 2)
[2λ2s2

i − 2λs2
i (Nv + 2) + λ2

Nv∑
l=1

s2
l ] + ν2σ2

Z (34)
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Note that the embedded message takes value by 1 and 0 with equal probability

and the result of (34) is independent of M , so we have

h(Y|S, M)

=
1

2

Nv∑
i=1

log 2πe[s2
i σ

2
u +

σ2
u

Nv(Nv + 2)
(2λ2s2

i − 2λs2
i (Nv + 2) + λ2

Nv∑
l=1

s2
l )

+ ν2σ2
Z ] (35)

2. Case No > 1

In Formula (12), each component of ΣYi can be calculated by (36).

ΣYi(j, k) = E[Yj,iYk,i|S1,i = s1,i, . . . , SNo,i = sNo,i, M1 = m1, . . . , MNo = mNo ]

=

{
s2

j,iσ
2
u + Tj,i + ν2σ2

z if j = k
(−1)mj+mkν2σ2

Z if j �= k
(36)

where Tj,i =
σ2

u

Nv(Nv+2) [−2λs2
j,i(Nv + 2) + 2λ2s2

j,i + λ2
∑Nv

l=1 s2
j,l]. The |ΣYi | and

the upper bound in Formula (12) can be derived in (37) and (38), respectively.

|ΣYi | = (1 +

No∑
j=1

ν2σ2
Z

s2
j,iσ

2
u + Tj,i

)

No∏
j=1

(s2
j,iσ

2
u + Tj,i) (37)

h(YNo |SNo , MNo) ≤ 1

2

Nv∑
i=1

log[(2πe)No(1 +

No∑
j=1

ν2σ2
Z

s2
j,iσ

2
u + Tj,i

)

No∏
j=1

(s2
j,iσ

2
u + Tj,i)]

(38)
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Abstract. This paper firstly defines the concept of security classes for

spread-spectrum watermarking schemes in a Known Message Attack

(KMA) framework. In particular, we define three security classes, namely,

by order of increasing security: insecurity, key-security and subspace-

security. Then, we present three new spread spectrum watermarking

schemes, namely, independent natural watermarking (INW), robust inde-

pendent natural watermarking (Robust-INW) and independent circular

watermarking (ICW). All these new watermarking schemes build on the

uniformly distributed random orthogonal matrix which can be estimated

by the decoder. And all these schemes (i.e., INW, Robust-INW and ICW)

are secure against carriers estimation in the KMA framework.

Keywords: Known message attack, spread spectrum watermarking, wa-

termarking security.

1 Introduction

Watermarking security has become a major concern in the past several years

and the basis of cryptanalysis has been cast to watermarking for establishing

the concept of watermarking security [5],[8],[1]. Watermarking security refers to

the inability by unauthorized users to have access to the raw watermarking chan-
nel [4] and builds on Kerckhoffs’ principle [3]. Kerckhoffs’ principle states that

all details of a watermarking scheme are publicly known except the secret key

of the embedding and decoding processes. Attacks to security are those aimed at
gaining knowledge about the secret key[8]. In [5], following the Diffie and Hell-

man methodology, the authors propose a classification of the attacking scenarios.

Among them, KMA (known message attack) refers to these attacking scenarios

where the attacker both owns several watermarked signals and knows their as-

sociated embedded messages. This paper only focuses on the KMA framework

unless otherwise stated.

In the case of a spread-spectrum watermarking scheme, the secret key is equiv-

alent to the secret carriers. From an attacker’s point of view, the security of a

spread-spectrum watermarking scheme is made up of two parts. The first part is

R. Böhme, P.W.L. Fong, and R. Safavi-Naini (Eds.): IH 2010, LNCS 6387, pp. 249–261, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the embedding subspace spanned by the secret carriers, and the second is the se-

cret carriers. If the attacker can estimate this subspace, he can remove watermark

with low distortion. In [5], for instance, the authors present a method for remov-

ing the watermark with low distortion by nullifying the watermarked signal’s

projection in this subspace. By contrast, the secret carriers have more precise

information. If the attacker discloses the secret carriers, he has a full access to

the watermarking channel and can carry out various malicious attacks, includ-

ing unauthorized embedding, unauthorized detection and unauthorized removal

attack. Classical spread-spectrum modulations, such as additive spread spec-

trum (SS)[6] and improved spread spectrum (ISS)[7], have already been shown

to be insecure against carriers estimation [5]. Recently, two new spread-spectrum
modulations were proposed in a watermarked only attack (WOA) framework,

which implies that the attacker only owns several watermarked signals. One is

called natural watermarking (NW)[11], [10] and is secure against the embedding

subspace estimation in the WOA [8] framework. The other is called circular ex-

tension of ISS (CW-ISS)[10] ,[9]) and is secure against carriers estimation in the

WOA framework. However, as we will see in this paper, both NW and CW-

ISS are insecure in the KMA framework. The main flaw of CW-ISS and NW

in terms of security is that the watermarked signal’s projections in the embed-

ding subspace has a circular distribution (i.e., a distribution invariant under

rotations) only under the assumption that the messages are supposed to be in-

dependently drawn to a uniform distribution. However, to achieve the security

against carriers estimation in a KMA framework, it is necessary that all condi-

tional distributions of the watermarked signal’s projections given the messages

are circular. Otherwise, there exists a message such that the conditional distri-

bution of the watermarked signal’s projections given this message is not circular.

It implies that it is possible to estimate the secret carriers when the embedded

message is this message.

In this paper, after defining the concept of security classes, we present three

new spread spectrum watermarking schemes, namely, independent natural wa-

termarking (INW), robust independent natural watermarking (Robust-INW)

and independent circular watermarking (ICW). In this context, independent was

named after our proposed schemes’ ability that independent of the embedded

messages, all conditional distributions of the watermarked signal’s projections

(in the embedding subspace) are circular. All our proposed schemes build on a

uniformly distributed random orthogonal matrix that can be estimated by the

decoder. This random orthogonal matrix make it possible to randomly use car-

riers alternating among orthogonal bases of the embedding subspace spanned

by the secret carriers. As shown in the paper, ICW, INW and Robust-INW are

secure against carriers estimation. Moreover, INW has an interesting property

that all conditional distributions of the watermarked signal’s projections given

the messages are the same as the distribution of the host signal’s projections (in

the embedding subspace).
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The remainder of the paper is organized as follows. Section 2 firstly defines the

embedding security classes, then, presents a method for generating a uniformly

distributed orthogonal matrix that can be estimated by the decoder without

error under the attack-free context. Section 3 illustrates how to use our proposed

random orthogonal matrix to design a spread spectrum watermarking scheme

called INW. Section 4 illustrates another two SS-based watermarking schemes

called ICW and Robust-INW. Finally, Sect. 5 presents experiment results about

the security and robustness of the proposed schemes.

2 Embedding Security Classes and Uniformly Distributed
Random Orthogonal Matrix

In this section, we firstly define the concept of security classes for spread-

spectrum watermarking schemes. Then, we present a method for generating a

uniformly distributed orthogonal matrix that under the attack-free context, can

be estimated by the decoder without error.

2.1 Notations

In order to embed an Nc-bits message m = {−1, +1}Nc into a host signal x ∈
RNv , we need Nc secret carriers {ui} to achieve an orthogonal basis of the

embedding subspace:

uHu = INc , (1)

where INc is the identity matrix of size Nc × Nc. We obtain the watermarked

signal s as follows:

s = x + w , (2)

where w denotes the watermark signal. The distortion is assessed by watermark-

to-content power ratio (WCR):

WCR = 10 log

(
σ2

w

σ2
x

)
. (3)

The robustness attacks are modeled as additive noise:

y = s + n , (4)

where we assume attack noise n from an uncorrelated white Gaussian random
process, i.e., n ∼ N (0, σ2

nINv ). The attack strength is accessed by means of the

signal-to-noise ratio (SNR):

SNR = 10 log

(
σ2

x

σ2
n

)
. (5)

Let m̂ denote the decoded message, then we measure decoding performance with

bit error rate (BER):

BER =
1

Nc

Nc∑
i=1

E[m(i) �= m̂(i)] . (6)



252 J. Cao and J. Huang

The goal of the security attacks is to gain the knowledge about the secret car-

riers {ui}. Let No denote the number of observations, which, of course, are

watermarked with the same secret carriers. Because the attacker can model the

conditional distribution of the watermarked signals given the keys and the the

messages, security attack is actually an optimization problem as follows:

û = argmax
u

P (S|u,M) , (7)

where S = {S1,S2, . . . ,SNo} denotes No watermarked signals and M their as-

sociated messages.

2.2 Embedding Security Classes of SS-Based Watermarking
Schemes

Since difficult applications maybe have a very difficult security requirements, we

devise accordingly three security classes for the embedding function. Let U be

the set of Nv × Nc matrices u with uHu = INc .

Definition 1. (Insecurity): An embedding function is insecure iff (if and only
if): ∃M ∈ M, we have

∀v ∈ U , v �= u, p(S|v,M) �= p(S|u,M) . (8)

An embedding function is then called insecure if there exists a message M such

that there exists an unique key whose associated conditional distribution of wa-

termarked signals given this key matches the distribution of the observations. It

implies that there exists a message such that the maximum likelihood estimation

of the secret carriers is possible. As we will see in the paper, almost all existing

spread-spectrum watermarking schemes are insecure according to this definition.

Definition 2. (Key-security): An embedding function is key-secure iff (if and
only if): ∀M ∈ M, we have

∀v ∈ Su, p(S|v,M) = p(S|u,M) , (9)

where Su represents the subset of the key space U which does not modify the

probabilistic model of the watermarked signals. Key-security implies that what-

ever the embedded messages are, it is impossible to estimate the secret carriers.

However, it is possible to estimate the invariant subset Su and to reduce the

uncertainly of the secret carriers. As we will see in the paper, INW, Robust-

INW and ICW enable to achieve key-security and the invariant subset is the

set of all orthogonal bases of the embedding subspace spanned by the secret

carriers {ui}.

Definition 3. (Subspace-security): An embedding function is subspace-secure iff
(if and only if): ∀M ∈ M, we have

∀v ∈ U , p(S|v,M) = p(S|u,M) . (10)



Provably Secure Spread-Spectrum Watermarking Schemes 253

By definition, subspace-security implies that there exists no information leakage

between the watermarked signals and the secret carriers given the embedded

messages.

Subspace-security ⇔ I(S;u|M) = 0 . (11)

In the WOA framework, the concept of security classes has been already pro-

posed by Cayre [10]. A watermarking scheme, which is secure in the WOA frame-

work, is not necessarily secure in the KMA framework. For example, as we will

know, NW and CW-ISS is secure against carriers estimation in the WOA frame-

work but is insecure in the KMA framework.

2.3 Uniformly Distributed Random Orthogonal Matrix of Size
Nc × Nc

Let u+ be a matrix such that {u+,u} is an orthogonal matrix. In other words, u+

is an orthogonal basis of the orthogonal complement of the embedding subspace.

This paper assumes that the embedder and decoder share both the secret carriers

{ui} and the matrix u+. This subsection presents a method for generating a

uniformly distributed random orthogonal matrix Q only depending on both the

secret carriers and the projection xHu+. In this context, uniform is defined in

terms of Haar measure, which essentially requires the distribution not change

if multiplied by any freely chosen orthogonal matrix. Firstly, we present some

background material:

Remark 1. In the case of spread spectrum watermarking schemes, the projection

of xHu+ will remain invariant during embedding. In other words, the embedder

alters the host only in the embedding subspace to embed a watermark:

sHu+ = xHu+ . (12)

Remark 2. Take a Nc ×Nc matrix A whose elements are independent and iden-

tically distributed (i.i.d.) Gaussian variables with zero mean. Let A1, . . . ,ANc

be the columns of A and Q be random matrix whose Nc columns are obtained

by applying a Gram-Schmidt orthogonalization procedure to A1, . . . ,ANc , then

Q has a uniform distribution on the orthogonal group of size Nc × Nc.

Now, it is time to show how to generate a uniformly distributed random or-

thogonal matrix only depending on both the secret carriers and the projection

xHu+. It is easy to show that projection xHu+ is Gaussian, i.e.,

xHu+ ∼ N (0, σ2
xINv−Nc) . (13)

Then, we choose first Nc×Nc components of the projection xHu+ as the elements

of the matrix A, i.e.,

A(i, j) = xHu+ ((i − 1) × Nc + j) . (14)

According to Remark.2, we can obtain a uniformly distributed random orthog-

onal matrix Q by applying a Gram-Schmidt orthogonalization procedure to

A1, . . . ,ANc .
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For our proposed schemes, namely, INW, Robust-INW and ICW, the decoder

needs to estimate the orthogonal matrix used by the embedder. The process

of estimating this orthogonal matrix is the same as the process of generating it

except replacing the projection xHu+ by the projection yHu+, where y denotes a

potentially degraded version of s. According to Remark.1, it is easy to show that

this uniformly distributed random orthogonal matrix Q used by the embedder,

in the attack-free context, can be estimated by the decoder without error.

3 Independent Natural Watermarking

This section presents a method for building a spread spectrum watermarking

scheme in such a way that all conditional distributions of sHu given the messages

are the same as the distribution of the host signal’s projections in the embedding

subspace.

3.1 Embedding and Decoding

It is easy to show that the projection xHu is Gaussian, i.e.,

p(xHu) =
1

(σx

√
2π)

Nc
exp

(
− ρ2

2σ2
x

)
, (15)

where ρ =
√

xHu1 + xHu2 + · · · + xHuNc . Hence, the projection xHu has a

distribution invariant under rotations. The goal of INW is to design the embed-

ding in such a way that all conditional distributions of sHu given the messages

are the same as the the distribution of the host signal’s projections in the em-

bedding subspace, that is to say, P (sHu|M) = P (xHu) for any messages M.

The embedding function is given by:

s = x +

Nc∑
i=1

(
1√
Nc

‖xHv‖m(i) − xHvi

)
vi , (16)

where ‖xHv‖ =
√

xHv1 + xHv2 + · · · + xHvNc and v = uQ. This random or-

thogonal matrix Q is generated by the method proposed in Sect.2. Equation

(16) states that this embedding rule preserves Euclidean distance between the

projection and the origin, i.e., ‖sHu‖ = ‖xHu‖. This embedding rule is depicted

in Fig.1. We can see in this figure that even when the messages M are given, the

conditional distribution of the watermarked signal’s projections in the embed-

ding subspace is still the same as the distribution of the host signal’s projections.

The decoding rule of INW is given by:

m̂(i) =

{
+1 if yH(uQ̂)i > 0 ,

−1 if yH(uQ̂)i < 0 ,
(17)

where Q̂ denotes the estimation of the orthogonal matrix Q used by the em-

bedder. The way of estimating this random orthogonal matrix is given in Sect.2.

As shown in Sect.2, in the attack-free attack context, this random orthogonal

matrix can be estimated by the decoder without error.
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Fig. 1. INW for m = (1, 1) (Nc = 2). (a) is for Q = INc , (b) is for a random chosen

orthogonal matrix Q.

3.2 Distortion

The WCR (Watermark-to-Content Ratio) measures the embedding distortion

and the first point is to get the variance of the watermark:

σ2
w =

1

Nv
E[(s− x)H(s− x)] . (18)

Considering the embedding rule of INW, we have:

Nvσ
2
w = 2Ncσ

2
x . (19)

Finally, the WCR is as follows:

WCR[dB] = 10 log10

(
2Nc

Nv

)
. (20)

3.3 Security

The goal of this section is to prove that all conditional distributions of the

projection sHu (given the messages) after INW embedding are the same as

the distribution of the projection xHu. The embedding formula of INW can be

rewritten as:

s = (INv − uuH)x + uQE . (21)

where E(i) = 1√
Nc

‖xHu‖m(i), 1 ≤ i ≤ Nc. It is easy to show that sHu = QE.

Theorem 1. All conditional distributions of sHu given the messages are the
same as the distribution of xHu. That is to say, the random vector QE has a
Gaussian distribution with mean 0 and covariance matrix σ2

xINc , i.e., QE ∼
N (0, σ2

xINc).
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Proof. Notice that the random vector QE ∈ RNc can be expressed by means of

its norm and an Nc-dimensional unit vector collinear to QE, that is, we consider

a coordinate change:

QE → q.r , (22)

where r = ‖xHu‖ and q = 1√
Nc

Qm. Here, m is seen as a column vector.

It is clear that the random variables r and q are mutually independent and
r

σx
is distributed according to the chi distribution with Nc degrees of freedom.

Meanwhile, we have ‖q‖ = 1, and for any orthogonal matrix T, we have:

p(Tq) = p(TQ
1√
Nc

m)

= p(q) . (23)

Equation 23 follows from the fact that Q have a uniformly distribution over

the orthogonal group. Equation 23 shows that the random vector q is uniformly

distributed over the surface of the unit-radius hypersphere. Hence, considering

the transform (q, r) → q.r, which is a coordinate change, we can deduce that

the random vector QE is Gaussian vector with mean 0 and covariance matrix

σ2
xINc . This completes the proof of this theorem.

4 Independent Circular Watermarking

Independent circular watermarking was named after its ability that indepen-

dent of the messages, all conditional distribution of sHu (given the messages)

are circular and symmetric. It is consistent with the definition of key-security.

In particular, all orthogonal bases of the embedded subspace are identical from
point of view of the attacker. In other words, if the matrix Q is an orthogonal

matrix of size Nc×Nc, we have p(S|u,M) = p(S|uQ,M) for any given messages

M. In this case, it is impossible to exactly estimate the secret carriers used to

prevent the attacker from reading, writing and removing the embedded message.

The uniformly distributed random orthogonal matrix Q generated by the way

proposed in Sect. 2 leaves much room for devising a secure watermarking scheme

in the KMA framework. In this paper, we present two implementations of in-

dependent circular watermarking. One solution to devise independent circular

watermarking is to build on the well-known ISS modulation. For the sake of

simplicity, we will refer to this implementation as ICW in the sequel. The other

solution to devise independent circular watermarking is to increase the variance

of the watermarked signal’s projections in the embedding subspace after INW

embedding. For the sake of simplicity, we will refer to this implementation as

Robust-INW in the sequel.

4.1 ICW and Robust-INW

ICW: ICW is constructed using randomization over the set of all orthogonal

bases of the embedding subspace spanned by the secret carriers {ui}. The em-

bedding function of ICW is given by:
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s = x +

Nc∑
i=1

(
αm(i) − λxHvi

)
vi . (24)

where v = uQ. ICW requires exactly the same computations as ISS for param-

eters α and λ.

Robust-INW: The new modulation for Robust-INW is given by:

s = x +

Nc∑
i=1

(
λ√
Nc

‖xHv‖m(i) − xHvi

)
vi , (25)

and the conditional distribution of the projection sHu now follows the distribu-

tion sHu ∼ N (0, λ2σ2
xINc). If λ = 1, the embedding rule corresponds to INW,

and as the parameter λ increases, the robustness also increases and this leads to

Robust-INW. The expression of the WCR becomes:

WCRdB = 10 log10

(
(λ2 + 1)Nc

Nv

)
. (26)

The decoding rules of ICW and Robust-INW are the same as the decoding rule of

INW. Using ICW and Robust-INW leads also to another important consequence.

Since the conditional distribution of the watermarked signal’s projections in the

embedding subspace is now distinct from distributions of the watermarked sig-

nal’s projections in other subspaces, it is then possible to estimate the embedding

subspace, for example, using principal component analysis (PCA). However, if

Nc > 1, it is still not possible to estimate the secret carriers because all con-

ditional distributions of the watermarked signal’s projections in the embedding

subspace are circular.

5 Experiment Results and Analysis

The aim of this section is to assess the security and robustness of various water-

marking schemes, namely, NW, CW-ISS, INW, Robust-INW and ICW.

5.1 Security

To assess the security of a spread-spectrum watermarking scheme, we have de-

cided to adopt the following methodology:

1. We generate 5000 observations of watermarked signals using the secret car-

riers {ui} and generate the matrix of observations S, where i-th column of

S is i-th observation (Si).

2. We project these observations into various Nc-dimensional subspaces.

Then, we can obtain the main tuition about the security of a spread-spectrum
watermarking scheme by observing how the empirical distribution of the
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Fig. 2. Empirical distribution of the projection SH
i b for NW, CW-ISS, ICW and INW

(from top to bottom). No=5000, Nc = 2, Nv = 512, ∀i,Mi = (1, 1) and WCR=-21dB.

The projections in (a) is for b = u, in (b) is for b = uQ where Q is randomly chosen

orthogonal matrix of size Nc ×Nc, and the projections in (c) is for a randomly chosen

matrix of size Nv × Nc with vHv = INc .



Provably Secure Spread-Spectrum Watermarking Schemes 259

10 12 14 16 18 20 22 24 26 28 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

SNR (dB)

B
E

R

 

 

NW
INW

Fig. 3. Comparison of BER for NW and INW. Nv=512, Nc=2.
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Fig. 4. Comparison of BER for CW-ISS, ICW and Robust-INW. Nv = 512, Nc = 2.

observation’s projections varies with projected subspaces (or more precisely, the

basis of subspace). In this paper, we consider two difficult types of subspaces.

One is the embedding subspace. The other is the random chosen subspace (hence,

approximately orthogonal to the embedding subspace). The conclusion of this

security attack is the following:

1. Let b denote a random chosen orthogonal basis of the embedding subspace.

If the empirical distribution of the observation’s projections SH
i b is not the

same as the empirical distribution of the observation’s projections SH
i u, it

is possible to estimate the secret carriers.
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2. Let b denote a random chosen orthogonal basis of the embedding subspace

and t an orthogonal basis of random chosen subspace. If the empirical dis-

tribution of the observation’s projections SH
i b is the same as the empirical

distribution of the observation’s projections SH
i u but the empirical distri-

bution of the observation’s projections SH
i t is not the same as the empirical

distribution of the observation’s projections SH
i u, it is possible to estimate

the embedding subspace but it is impossible to estimate the secret carriers.
3. Let t denote an orthogonal basis of random chosen subspace. If the empirical

distribution of the observation’s projections SH
i t is the same as the empirical

distribution of the observation’s projections SH
i u , it is impossible to estimate

the embedding subspace.

Figure. 2 depicts the empirical distributions of the observation’s projections on

various subspaces for NW, CW-ISS, ICW and INW when all the embedded

messages are same and Mi = {1, 1}. We can see that according to conclusion

1, there exists practical algorithm to estimate the secret carriers for NW and

CW-ISS. In other words, NW and CW-ISS are insecure in the KMA framework.

In the case of ICW, there exists practical algorithm to estimate the embedding

subspace.

5.2 Robustness

Figure 3 compares the robustness of INW and NW against AWGN addition

for the same hidden channel rate (the same Nc and same Nv) and the same

embedding distortion. We can see in this figure that INW has roughly the same

robustness as NW for low noise power. Figure 4 compares the robustness of CW-

ISS, ICW and Robust-INW against AWGN attack. We believe this figure point

out what is the true cost of security for SS-based watermarking techniques.

6 Conclusions

We firstly define three security classes in the Known Message Attack (KMA)

framework. The first one is insecurity, which implies that there exists a mes-

sage such that it is possible to estimate the secret carriers. The second one is

key-security, which implies that it is impossible to estimate the secret carriers.

the third one is subspace-security, which implies that it is impossible to esti-

mate both the secret carriers and the embedding subspace. Then, we present a

method for generating a uniformly distributed orthogonal matrix only depend-

ing on both the secret carriers and the host signal’s projection in the orthogonal

complement of the embedding subspace. This random orthogonal matrix can be

estimated by the decoder without error under a attack-free context. Based on

this random orthogonal matrix, we present three watermarking schemes, namely,

INW, Robust-INW and ICW. All these watermarking schemes are secure against

carriers estimation. However, the price to obtain the security against carriers es-

timation is the relative weak robustness in comparison with NW and CW-ISS.

We would like to propose a practical implementation of INW, ICW and

Robust-INW for real-life contents such as images or sounds.
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Abstract. To achieve a trade-off between robustness and security in the

Watermarked Only Attack (WOA) framework, we propose a novel spread

spectrum watermarking scheme called natural watermarking-normalized

circular watermarking (NW-NCW). Our scheme builds on two spread

spectrum watermarking schemes. One is natural watermarking (NW),

and has an advantage in security; the other is a novel circular water-

marking scheme called normalized circular watermarking (NCW), and

has an advantage in robustness. We show that in most typical scenarios,

NW-NCW is more suitable for the tradeoff between robustness and se-

curity than the existing secure watermarking schemes such as NW and

CW-ISS (circular extension of ISS).

Keywords: Circular watermarking, natural watermarking, spread spec-

trum watermarking, watermarking security, WOA.

1 Introduction

In general, designing a watermarking scheme always involves a trade-off among

several conflicting objectives, especially robustness, distortion and security. The

notions of security and robustness are very different in essence. According to

the definitions proposed in [1], attacks to robustness are those whose target is

to increase the probability of error of the watermarking channel, while attacks

to security are those whose target is to gain knowledge about the secret key of

the embedding and decoding processes. However, the notions of security and ro-

bustness are also close in that the attacker can design more powerful robustness

attack as long as he can gain enough knowledge about the secret key. Water-

marking security builds on Kerckhoffs’ principle [2]. It implies that all details of

the watermarking scheme are publicly known except the secret key of the embed-

ding and decoding processes. In [4], following the Diffie-Hellman’s methodology,

the authors proposed a classification of the attacking scenarios. Among them,

the Watermarked Only Attack (WOA) framework refers to those attacking sce-

narios where the attacker only owns several watermarked contents, i.e., he knows

neither corresponding original versions nor corresponding hidden messages. This

paper only considers the WOA framework unless otherwise stated.

R. Böhme, P.W.L. Fong, and R. Safavi-Naini (Eds.): IH 2010, LNCS 6387, pp. 262–276, 2010.
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The security of a spread spectrum watermarking scheme is made up of two

layers. The first layer is the embedding subspace spanned by the secret carriers,

and the second is the secret carriers. If the attacker can disclose the embedding

subspace, he can remove the watermark with low distortion. In [4], for instance,

the authors presented a method for removing the watermark with low distortion

by nullifying the watermarked signal’s projection in the estimated embedding

subspace. By contrast, the secret carriers have more precise information. If the

attacker can disclose the secret carriers, he has the capacity for full access to the

watermarking channel. Hence, to resist unauthorized embedding or extraction

attack, ensuring that estimation of the secret carriers is impossible is a basic

requirement. Classical spread spectrum watermarking schemes, such as additive

spread spectrum (SS)[5] and improved spread spectrum (ISS)[6], have already

been shown to be insecure against carriers estimation in [4].

Recently, two spread spectrum embedding functions which are secure against

carriers estimation have already been proposed by other authors in [7],[8] and

[9]. These two embedding functions have their own advantages and disadvan-

tages. One embedding function is called natural watermarking (NW), and has

an advantage in security. For example, there exists a embedding parameter set-

ting such that NW is stego-security, i.e., it is impossible to make the difference

between cover and stego contents. Stego-security also implies that it is impos-

sible to estimate the embedding subspace. The disadvantage of NW is that its

robustness is relatively poor. The other embedding function is based on the well-

known ISS modulation, is called circular extension of ISS (CW-ISS) and has an

advantage in robustness. The disadvantage of CW-ISS is that it cannot achieve

Stego-security. Actually, it is also impossible to achieve subspace security for

CW-ISS. In other words, there exists no the embedding parameters setting such

that it is impossible to estimate the embedding subspace. Consequently, neither

NW nor CW-ISS is very suitable for the tradeoff between robustness and security.

The goal of this paper is to present a new spread spectrum watermarking scheme

for the tradeoff between robustness and security. Specifically, we hope that our

watermarking scheme has the following three properties. The first one is that it

is secure against carriers estimation for any freely chosen embedding parameters.

The second one is that there exists a embedding parameters setting such that

it is stego-security. The third one is that there exists a embedding parameters

setting such that it can achieve roughly the same robustness as CW-ISS. To-

ward this end, we firstly present a new circular watermarking called normalized

circular watermarking (NCW). NCW has an advantage in robustness and an in-

teresting property that CW-ISS does not have, i.e, NCW keeps the watermarked

signal’s projection (in the embedding subspace) in the same orientation as NW.

The property is important to design our new watermarking scheme called nat-

ural watermarking-normalized circular watermarking (NW-NCW). As shown in

the paper, in most typical scenarios NW-NCW is more suitable for the trade-

off between robustness and security than existing secure watermarking schemes,

namely, NW and CW-ISS.
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This paper is organized as follows: Section 2 gives a brief description of exist-

ing secure spread spectrum watermarking schemes, namely, NW and CW-ISS.

Furthermore, Sect. 2 also analyzes the robustness of NW and CW-ISS against

the Additive White Gaussian Noise (AWGN) attack, obtaining corresponding

expressions of the bit error rate (BER). And in the Sect. 3, we firstly propose

a novel circular watermarking called NCW, and then propose our novel wa-

termarking scheme called NW-NCW. The robustness and distortion related to

NW-NCW are also presented. Finally, we analyze and compare the performances

of various secure SS-based watermarking schemes in Sect. 4.

2 Analysis of Robustness of NW and CW-ISS

This section reviews the principles of NW and CW-ISS and also analyzes the

robustness of NW and CW-ISS.

2.1 Spread Spectrum Watermarking

Let m ∈ {−1, +1}Nc denote an Nc-bits message to be embedded in a host signal

x with Nv coefficients. It is assumed that the coefficients, xi : i = 1, 2, . . . , Nv

are independent and identically distributed (i.i.d.) Gaussian variables with zero

mean and variance σ2
x. Further, we need a secret key used to initialize a PRNG

(Pseudo-Random Number Generator) in order to provide Nc secret carriers {ui},
and use a Gram-Schmidt procedure to achieve an orthogonal basis of the em-

bedding subspace:

uTu = INc , (1)

where uT denotes the transpose of the matrix u, and INc denotes the identity

matrix of size Nc × Nc. We obtain the watermarked signal s as follows:

s = x + w , (2)

where

w =

Nc∑
i=1

μ(uT x,m(i))ui . (3)

where w denotes the watermark signal. The distortion is assessed by watermark-

to-content power ratio (WCR):

WCR = 10 log

(
σ2

w

σ2
x

)
. (4)

The robustness attacks are modeled as additive noise:

y = s + n , (5)
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where we assume attack noise n from an uncorrelated white Gaussian random
process, i.e., n ∼ N (0, σ2

nINv ). The attack strength is accessed by means of the

Watermark to Noise ratio (WNR):

WNR = 10 log

(
σ2

w

σ2
n

)
. (6)

The decoded message is denoted by m̂. It is estimated from y, a potentially

degraded version of s. The decoding rule for spread spectrum watermarking

schemes is given by:

m̂(i) =

{
+1 if yT ui > 0 ,

−1 if yT ui < 0 .
(7)

We measure decoding performance with bit error rate (BER):

BER =
1

Nc

Nc∑
i=1

E[m(i) �= m̂(i)] . (8)

2.2 Natural Watermarking and Its Robustness

The embedding function of NW (α ≥ 1) is given by:

s = x +

Nc∑
i=1

[[
−1 + αm(i)sign

(
xTui

)]
xTui

]
ui . (9)

NW presents two interesting properties. One is that NW can achieve stego-

security by setting α = 1 since in this case the distribution of xHu remains

invariant before and after embedding, i.e., sHu ∼ xHu. The other is that NW

is secure against carriers estimation for any freely chosen parameter α since the

projection sHu after NW embedding has a distribution invariant under rotations.

When α = 1, NW achieves its best security, that is, stego-security. As the

embedding parameter α increases, the robustness of NW increases but its secu-

rity decreases. When α =

√
Nv10WCR/10

Nc
− 1 , NW achieves its best robustness.

The main disadvantage of NW is the fact that the best robustness that NW can

achieve is not very good. Hence, NW is not very suitable for the tradeoff between

robustness and security.

Robustness of NW: In [8], the expression of the BER is computed only for

α = 1. We will deduce the expression of the BER for any chosen embedding

parameter α. The i-th bit of the embedded message is estimated by:

m̂(i) = sign(yTui) , (10)

where

yTui = αm(i)sign(xTui)xT ui + nTui . (11)
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In particular, let us consider the case when m(i) = 1. Then, an error occurs

when yTui < 0, and therefore the BER for NW is given by:

Pe = Pr{yT ui < 0|m(i) = 1} (12)

=

∫ 0

−∞
g(z)dz , (13)

with

g(z) =
1√

2π(σ2
n + (ασx)2)

exp

(
− z2

2(σ2
n + (ασx)2)

)
erfc

(
− ασxz√

2(σ2
n + (ασx)2)σn

)
.

where erfc(.) is the complementary error function. The same BER is obtained

under the assumption that m(i) = −1.

2.3 Circular Extension of ISS and Its Robustness

The embedding function of CW-ISS is given by:

s = x +

Nc∑
i=1

(√
Ncαm(i)

|gi|
‖g‖ − λ xTui

)
ui . (14)

The vector g is distributed according to Gaussian variables, g ∼ N (0, INc), and

will be independently drawn at each embedding. When compared with NW, CW-

ISS can achieve better robustness ( see [7] and [8]). However, the disadvantage

of CW-ISS is that there exists no the embedding parameters setting such that

it is stego-security or subspace security. Hence, CW-ISS is not applicable for the

tradeoff between robustness and security either.

Robustness of CW-ISS: The expression of the BER for CW-ISS is given only

for Nc = 2 in [8], and no explicit formula is given. In the rest of this subsection,

we will show how to deduce the expression of the BER for CW-ISS.

In particular, let us consider the case when m(i) = 1. The projection of the

attacked watermarked signal y on the i-th secret carrier ui can be rewritten as:

yTui = (1 − λ)xTui +
√

Ncα
|gi|
‖g‖ + nTui . (15)

It is easy to show that both xT ui and nTui are Gaussian, i.e.,

xT ui ∼ N (0, σ2
x), nTui ∼ N (0, σ2

n) . (16)

Then, (1 − λ)xTui + nTui is also Gaussian, i.e.,

(1 − λ)xT ui + nTui ∼ N
(
0, (1 − λ)2σ2

x + σ2
n

)
. (17)
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Let di =
gi

‖g‖ , 1 ≤ i ≤ Nc. In [10], the marginal probability density function of

one component di was computed by integrating the probability density function

of d over the surface of an (Nc − 1)-dimensional sphere with radius
√

1 − (di)2,

resulting in:

f(di) =
Γ (Nc

2 )
√

πΓ (Nc−1
2 )

(1 − d2
i )

Nc−3
2 , di ∈ [−1, 1]. (18)

where Γ (.) denotes the complete Gamma function. Then, it is easy to show that

the marginal probability density function of random variable
√

Ncα|di| is

f(z) =

{
2Γ (Nc/2)(Ncα2−z2)

Nc−3
2√

πΓ ((Nc−1)/2)(
√

Ncα)Nc−2 , ifz ∈ [0, α),

0, otherwise,
(19)

which follows from the fact that if we let Y = aX , then fY (y) = 1
|a|fXfX(y

a ).

Applying (15),(17) and (19), the BER can be expressed as follows:

Pe = Pr{yHui < 0|m(i) = 1} ,

=

∫ √
Ncα

0

h(t)erfc(
t√

2
√

(1 − λ)2σ2
x + σ2

n

)dt , (20)

with

h(t) =
Γ (Nc/2)(Ncα

2 − t2)
Nc−3

2

√
πΓ ((Nc − 1)/2) (

√
Ncα)Nc−2

.

3 NW-NCW

The robustness of CW-ISS is much better than the robustness of NW in the

case of low security, while the robustness of CW-ISS is much worse than the

robustness of NW in the case of high security. In other words, CW-ISS is suitable

only for low security, and NW is suitable only for high security. As a result,

neither NW nor CW-ISS is suitable for the tradeoff between robustness and

security. This section shows how to devise a new SS-based watermarking scheme

in such a way that it is suitable for any level of security. Before introducing our

new watermarking scheme which is suitable for robustness-security tradeoffs, we

firstly present a new circular watermarking called NCW.

3.1 NCW

It is easy to show that the projection xTu is Gaussian, that is,

xT u ∼ N (0, σ2
xINc) . (21)

Note that xTu is indeed isotropically distributed (i.e., with its probability den-

sity function invariant under rotations). So random vector xT u
‖xT u‖ is uniformly
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distributed on the surface of the Nc-dimensional sphere of unit radius. The

embedding process of normalized CW is as follows:

sT ui = αm(i)
|xT ui|
‖xTu‖ = αm(i)

sign(xTui)xT ui

‖xTu‖ , (22)

which means that the embedding function of normalized CW is given by:

s = x +

Nc∑
i=1

(
αm(i)

sign(xTui)xT ui

‖xTu‖ − xTui

)
ui . (23)

where ‖xT u‖ =

√∑Nc

i=1(xTui)2 . It is easy to show NCW is a special case

of circular watermarking. That is, the projection sTu after NCW embedding

has a distribution invariant under rotations. In addition, NCW has an property

that CW-ISS does not have, that is, the watermarked signal’s projection sTu(in

the embedding space) after NCW embedding is in the same direction as that

projection after NW embedding. The property of NCW is important to design

our watermarking scheme called NW-NCW.

3.2 NW-NCW

Embedding using NW(α = 1), we have:

sT
NWui = m(i)sign(xTui)xTui . (24)

Embedding using NCW, we have:

sT
NCWui = αm(i)

sign(xTui)xT ui

‖xT u‖ . (25)

It is easy to see that sT
NWu and sT

NCWu are in the same direction. It is important

for us to design a spread spectrum watermarking scheme for the tradeoff between

robustness and security in this paper. Now, let us introduce a parameter η. In

particular, the projection sT u after NW-NCW is given by:

sTu = (1 − η)sT
NWu + ηsT

NCWu . (26)

where 0 ≤ η ≤ 1. The embedding function of NW-NCW is given by:

s = x +

Nc∑
i=1

(
sTui − xTui

)
ui . (27)

This embedding rule is depicted in Fig. 1. The parameter η controls the trade-

off between security and robustness. When η = 0, NW-NCW achieves its best

security , this is, stego-security. When η = 1, NW-NCW achieves its best ro-

bustness in most typical scenarios (see Fig. 3). By changing the parameter η,

the watermarker can choose an appropriate security for a specific application.
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0

0

xTu sT
NW

u

sT
NCW

u

sTu for η=0

sTu for η=1

sTu for η=0.5

Fig. 1. NW-NCW for m = {1, 1} (Nc = 2)

Distortion of NW-NCW: Considering the embedding rule of NW-NCW, we

can deduce the watermark signal w as follows:

w =

Nc∑
i=1

((
(1 − η) +

αη

‖xT u‖

)
m(i)sign(xTui)xTui − xT ui

)
ui . (28)

Then, the expectation of wTw is the following:

E[wT w] =

Nc∑
i=1

E[(xTui)
2]

+

Nc∑
i=1

E

[
−2

(
(1 − η) +

αη

‖xTu‖

)
m(i)sign(xT ui)(xTui)

2

]

+

Nc∑
i=1

E

[((
(1 − η) +

αη

‖xT u‖

)
m(i)sign(xTui)xTui

)2
]

. (29)

which follows from uTu = INc . It is easy to show that the first and second terms

of (29) are:

Nc∑
i=1

E[(xT ui)
2] = Ncσ

2
x . (30)

Nc∑
i=1

E[−2

(
(1 − η) +

αη

‖xTu‖

)
m(i)sign(xT ui)(xT ui)

2] = 0 . (31)
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Then, we compute the third term of (29):

Nc∑
i=1

E

[((
(1 − η) +

αη

‖xTu‖

)
m(i)sign(xTui)xT ui

)2
]

=

Nc∑
i=1

E[(1 − η)2(xTui)
2] + 2αη(1 − η)E[‖xTu‖] + (αη)

2
,

= (1 − η)2Ncσ
2
x + 2αη(1 − η)σx

√
2
Γ ((Nc + 1)/2)

Γ (Nc/2)
+ (αη)

2 . (32)

where (32) follows from the fact that 1
σx

‖xT u‖ is distributed according to the

chi distribution with Nc degrees of freedom. The WCR is expressed as follows:

WCRdB = 10 log10

((
1 + (1 − η)2

)
Ncσ

2
x + 2αη(1 − η)σx

√
2

Γ ((Nc+1)/2)
Γ (Nc/2)

+ (αη)
2

Nvσ2
x

)
(33)

We confirm in Fig.2 that there is no difference between this theoretical expression

and the practical measurements. Practical WCR tests are made with 10000 host

Gaussian signals.
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Fig. 2. Comparison between theoretical and practical WCR. σ2
x = 1.

If one wants to specify a target average WCR, the parameter α has the fol-

lowing expression:

α =
1

η

√
Nvσ2

x10WCR/10 + 2σ2
x(1 − η)2(

Γ ((Nc + 1)/2)

Γ (Nc/2)
)2 − (1 + (1 − η)2)Ncσ2

x

−
√

2(1 − η)Γ ((Nc + 1)/2)

ηΓ (Nc/2)
σx . (34)
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Robustness of NW-NCW (0 < η < 1): Decoding is performed by:

m̂(i) = sign(yTui) , (35)

with

yTui = (1 − η)m(i)sign(xT ui)xTui +
αη

‖xT u‖m(i)sign
(
xTui

)
xTui + nT ui .

(36)

In particular, let us consider the case of m(i) = 1. An error occurs when yTui <
0. Therefore, the BER is given by:

p = Pr{yTui < 0|m(i) = 1} . (37)

Given (1− η)sign(xT ui)xTui = t, the conditional pdf of αη
‖xT u‖ sign

(
xTui

)
xTui

is:

f(v) =
2(αη)2tNc−1((αη)2 − v2)(Nc−3)/2

2(Nc−1)/2Γ ((Nc − 1)/2)(1 − η)NcvNc
exp(− t2((αη)2 − v2)

2(1 − η)2v2
), v ∈ [0, αη] .

(38)

It is easy to show that the random variable (1 − η)sign(xT ui)xTui is half-

Gaussian:

f(t) =

{
2√

2π(1−η)σx
exp(− t2

2(1−η)2σ2
x
), if t > 0,

0, otherwise .
(39)

and the random variable nTui is Gaussian:

nT ui ∼ N (0, σ2
n) . (40)

Finally, the BER is the following:

p =

∫ ∞

0

2√
2π(1 − η)σx

exp(− t2

2(1 − η)2σ2
x

)

∫ αη

0

1

2
f(v)erfc(

t + v√
2σn

)dvdt . (41)

Robustness of NW-NCW (η = 0): Remember that NW-NCW (η = 0)

corresponds to NW (α = 1). Thereby, the BER of NW-NCW (η = 0) is:

p =

∫ 0

−∞
g(z)dz , (42)

with

g(z) =
1√

2π(σ2
n + σ2

x)
exp

(
− z2

2(σ2
n + σ2

x)

)
erfc(− σxz√

2(σ2
n + σ2

x)σn

) .



272 J. Cao, J. Huang, and J. Ni

Robustness of NW-NCW (η = 1): NW-NCW (η = 1) corresponds to NCW.

In this case, the correlation of the attacked watermarked signal y with the i-th
carrier is:

yT ui =
αη

‖xTu‖m(i)sign
(
xT ui

)
xTui + nTui . (43)

In particular, let us consider the case when m(i) = 1. An error occurs when

yT ui < 0. Therefore, the BER is given by:

p = Pr{yTui < 0|m(i) = 1} . (44)

It is clear that the random variable
sign(xT ui)xT ui

‖xT u‖ has the same distribution as

the random variable
|gi|
‖g‖ . Hence, the probability density function of the random

variable α
sign(xT ui)xT ui

‖xT u‖ is:

f(t) =
2Γ (Nc/2)(α2 − t2)

Nc−3
2

√
πΓ ((Nc − 1)/2) (α)Nc−2

, t ∈ [0, α] . (45)

Now, it is easy to show that the BER is:

p =
1

2

∫ α

0

f(t)erfc(
t√
2σn

)dt . (46)

Fig.3 shows no difference between this theoretical expression and the practical

measurements, where practical tests are made with 10000 host Gaussian signals.

Security of NW-NCW: Figure 4 shows the distribution of the projections

xT u and the distribution of the projections sTu after NW-NCW embedding for

Nc = 2, where security tests are made with 10000 host Gaussian signals. As

we can see, when η = 0, the distribution of the projections sT u is the same as

the distribution of the host signal’s projections in the embedding subspace , and
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Fig. 3. Comparison of theoretical and practical BER. Nv = 512, Nc = 2.
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Fig. 4. The distribution of the projections xT u(top-left) and the distributions of the

projections sT u after NW-NCW embedding for various η. Nv = 512, Nc = 2 and

WCR=-21dB.

for the other parameter, η, the distribution of the projections sT u is circular

(i.e., invariant under rotations) but is not the same as the distribution of the

projections xTu. These results imply that when η = 0, NW-NCW achieves stego-

security, and when η �= 0, NW-NCW does not achieve stego-security but is still

secure against carriers estimation.

4 Simulation Results and Analysis

In this section, we will access how the robustness and security of NW-NCW

vary with the parameter η, and compare the performance of NW, CW-ISS and

NW-NCW from the point of the view of the tradeoff.

4.1 Security-Robustness Tradeoff Analysis for NW-NCW

In the last section, we have shown that in most typical scenarios, the robustness

of NW-NCW increases with the parameter η (see Fig. 3). Next, we will ana-

lyze how the security of NW-NCW varies with the parameter η. The security

of NW-NCW, since it is circular watermarking for any freely chosen embedding

parameters, is equivalent to the difficulty of estimating the embedding subspace

spanned by the secret carriers {ui}. To access the difficulty of subspace esti-

mation, we decide to adopt the methodology called PCA (principal component

analysis), and we resort to the chordal distance [11] to measure the distance be-

tween the embedding subspace u and the estimated subspace û. PCA involves
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Fig. 5. Chordal distance between the estimated subspace and the original one for NW-

NCW. Nc = 2, Nv = 512.

the calculation of the eigenvalue decomposition of the covariance matrix of wa-

termarked contents S (taken column-wise). In this context, the estimated base

of the embedding subspace û is the set of Nc eigenvectors of the covariance ma-

trix S corresponding to Nc biggest eigenvalues. The chordal distance is defined

as dc(u, û) = 1√
2
‖uuT − ûûT ‖F , where ‖.‖F denotes the Frobenius norm for

matrices. The chordal distance achieves it maximum,
√

Nc, when the two sub-

spaces are perfectly orthogonal, and it equals 0 when both matrices generate

the same subspace. The chordal distance close to
√

Nc illustrates the fact that

the subspace estimation is impossible. Figure 5 presents the chordal distance

between the estimated subspace and the real one after NW-NCW embedding

for 100 experiments. As expected, NW-NCW is secure against the embedding

subspace estimation only in the case of η = 0.

4.2 Comparison of NW, CW-ISS and NW-NCW

We only consider the case when the attacker obtains enough observations. In

this context, there exist only two security requirements, that is, ensuring it is

impossible to estimate the embedding subspace (subspace-security) or ensuring

it is impossible to estimate the secret carriers (key-security).

Subspace-security: Remember that NW is a special case of NW-NCW. Hence,

NW-NCW can achieve this security requirement. In this case, it is easy to show

the robustness of NW-NCW is the same as the robustness of NW. However,

CW-ISS cannot achieve this security requirement.

Key-security: We choose the parameter η = 1 for NW-NCW . This is because

the robustness of NW-NCW is best when η = 1 in most typical scenarios. Figure

6 compares the robustness of the various proposed watermarking schemes to

AWGN addition for the same hidden channel rate (the same Nc and the same



A New Spread Spectrum Watermarking Scheme 275

−10 −5 0 5 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

WNR (dB)

B
E

R
WCR=−21 dB

 

 

NW−NCW(η=1)
NW
CW−ISS

−10 −5 0 5 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
WCR=−15dB

WNR (dB)
B

E
R

 

 

NW−NCW(η=1)
NW
CW−ISS

Fig. 6. Comparison of BER for NW, CW-ISS and NW-NCW (η = 1). Nc = 2, Nv = 512.

Nv). Formulas for NW and CW-ISS are given in Sect.2 and NW-NCW is given

in Sect.3. We can see in this figure that NW-NCW achieves roughly the same

robustness as CW-ISS and has a better robustness than NW.

5 Conclusion and Future Works

This paper has presented a spread spectrum watermarking scheme called NW-

NCW to provide a framework for the tradeoff between robustness and security.

NW-NCW presents three interesting properties. The first one is that NW-NCW

can achieve stego-security, which implies that it is impossible to make the dif-

ference between the cover and stego contents. Stego-security also implies that

it is impossible to estimate both the secret carriers and the embedding sub-

space. The second one is that NW-NCW can achieve roughly the same robust-

ness as CW-ISS and has a better robustness than NW. The third one is that

for any freely chosen embedding parameters, since it is circular watermarking,

NW-NCW is secure against carriers estimation. Furthermore, in order to de-

sign the NW-NCW, another new circular watermarking called NCW is also

proposed in this paper. Finally, in order to compare the robustness of vari-

ous presented watermarking schemes, the expressions of BER for NW, CW-

ISS and NW-NCW are also computed. Our future works will concentrate on

tradeoff analysis for NW-NCW. In particular, we will compute a close expres-

sion for the security of NW-NCW from an information-theoretic point of view

by means of the equivocation about the secret carriers. In the case of NW-

NCW, the equivocation measures the difficulty of estimating the embedding

subspace.
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Wright, Matthew 221

Yang, Wei 208

Zeng, Qiping 235

Zhang, Dong 235


	Title
	Preface
	Organization
	Table of Contents
	FPGA Time-Bounded Unclonable Authentication
	Introduction
	Related Work
	Delay Signature Extraction
	Signature Extraction System
	Parameter Extraction
	Challenge Configuration

	Authentication
	Classic Authentication
	Time-Bounded FPGA Authentication Using Reconfigurability
	Attacks and Countermeasures

	Robustness
	Experimental Evaluations
	Conclusions
	References

	A Unified Submodular Framework for Multimodal IC Trojan Detection
	Introduction
	Related Work
	Preliminaries
	Unimodal Trojan Detection
	Gate Profiling
	Unimodal Detection
	Calibration

	Multimodal Trojan Detection
	Experimental Evaluations
	Evaluation Set-Up
	Unimodal Trojan Detection

	Conclusion
	References

	A Secure and Robust Approach to Software Tamper Resistance
	Introduction and Overview
	Threat Model
	Protection Model
	Guards
	Encryption
	Flushing

	Evaluation
	Run-Time Protection
	Flushing
	Performance Overhead

	Security Discussion
	Circular Protection
	Effectiveness against Static and Dynamic Analysis
	Effectiveness against OS and VM attacks
	Effectiveness against Skype Attack 

	Related Work
	Conclusions
	References

	Security with Noisy Data
	References

	Detection of Copy-Rotate-Move Forgery Using Zernike Moments
	Introduction
	Zernike Moments
	Definition
	Rotational Invariance of Zernike Moments

	Copy-Rotate-Move (CRM) Forgery Detection
	Complexity Analysis

	Experimental Results
	Measuring the Forgery
	Experimental Setup
	Test for CRM Forgery
	Test for Intended Distortions
	Test for Combined Manipulation

	Conclusion
	References

	Scene Illumination as an Indicator of Image Manipulation
	Introduction
	Overview of the Method
	Estimation of the Illuminant Color
	Inverse-Intensity Chromaticity Space
	Local Analysis of Pixel Distributions

	Illuminant Color for Image Forensics
	Detecting Inconsistencies in Illumination
	Caveats and Workarounds

	Experiments
	Evaluation on Benchmark Databases
	Exposing Digital Forgeries

	Conclusion
	References

	Capacity of Collusion Secure Fingerprinting — A Trade off between Rate and Efficiency
	The Model
	History of Results
	Comparison of the Techniques
	Further Research Directions
	References

	Short Collusion-Secure Fingerprint Codes against Three Pirates
	Introduction
	Background and Related Works
	Our Contribution
	Notations
	Organization of the Article

	Collusion-Secure Fingerprint Codes
	Our 3-Secure Codes
	Security Proof
	On Implementation of the Tracing Algorithm
	Conclusion
	References
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6

	Tardos’s Fingerprinting Code over AWGN Channel
	Introduction
	Preliminaries
	Tardos Code
	Relaxation of Marking Assumption

	Performance of Tracing Algorithm
	Channel Model
	Hard and Soft Decision
	Numerical Comparison

	Proposed Tracing Algorithm
	Channel Estimation
	Adaptive Tracing Algorithm

	Experimental Results
	Conclusion
	References

	Steganalysis Using Partially Ordered Markov Models
	Introduction
	Partially Ordered Markov Models
	POMMS for Steganalysis
	Intrablock Features
	Interblock Features

	Experiments
	Discussion of Results
	Conclusion
	References

	The Influence of the Image Basison Modeling and Steganalys is Performance
	Introduction
	Lyu and Farid's Algorithm and Modifications
	Comparison between Wavelet and Laplacian Basis
	Image Modeling Performance
	Steganalysis Performance

	Discussion
	Conclusion
	References

	The Square Root Law in Stegosystems with Imperfect Information
	Introduction
	Stegosystems with Imperfect Information
	The Square Root Law for Imperfect Detectors
	Proof of Theorem 2 (1)
	Proof of Theorem 2 (2)

	Discussion
	Interpretation
	Limitations and Extensions
	Embedding with Learning

	Conclusions
	References

	Using High-Dimensional Image Models to Perform Highly Undetectable Steganography
	Introduction
	Minimizing Embedding Impact
	From Steganalysis to Steganography
	SPAM Features
	Decomposing SPAM Features
	Identification of Detectable Parts of the Models

	From Theory to Practice
	Evaluation Setting
	Co-occurrence Model in Steganography
	Implementation Details of HUGO
	HUGO's Maturing
	HUGO's Security

	Conclusion
	References

	Obtaining Higher Rates for Steganographic Schemes While Maintaining the Same Detectability
	Introduction
	Problem Setup
	Brief Overview of YASS
	Brief Description of the Hiding Channel
	Puncturing for Better Performance
	Suitable LLR Allocation for Soft Decision Decoding
	Image-Based LLR Allocation
	Coefficient-Based LLR Allocation

	Variation of the Erasure Rate
	Results
	Conclusions
	References

	Robust and Undetectable Steganographic Timing Channels for i.i.d. Traffic
	Introduction
	Related Work
	System Model and Design Criteria
	Preliminaries
	System Model
	Design Criteria

	Robust Encoding with Spreading Codes
	Construction
	Modulation
	Proof of Undetectability
	Determining Encoding Parameters
	Algorithm Summary

	Experimental Results
	Experimental Setup
	Performance Analysis

	Conclusion and Future Work
	References

	STBS: A Statistical Algorithm for Steganalysis of Translation-Based Steganography
	Introduction
	Translation-Based Steganography
	Statistical Analysis of TBS
	The Number of Words in Each Frequency
	The Method to Expand Word Frequency Difference
	One-to-One Word Generation
	N-gram Frequency Difference between Normal Texts and Stegotexts

	Features Generation
	Experiments and Results Analysis
	Discussion
	Conclusion
	References

	The Reverse Statistical Disclosure Attack
	Introduction
	Contributions

	Model
	Mixes
	Communication Patterns
	Attacker Model

	Statistical Disclosure Attacks
	The (Original) Statistical Disclosure Attack
	Two-Sided Statistical Disclosure Attack
	Perfect Matching Disclosure Attack

	Reverse Statistical Disclosure Attack
	Simulation Setup
	Mix Behavior
	Message Generation
	Cover Traffic
	Measuring Attacker Success

	Results
	Simple Threshold Mix
	Binomial Mix

	Conclusions
	References

	Security Analysis of ISS Watermarking Using Natural Scene Statistics
	Introduction
	Model of ISS Watermarking Incorporating GSM
	Method for Measuring Watermarking Security
	Security Analysis on ISS Watermarking
	Case under KMA 
	Case under WOA 
	=.28em plus .1em minus .1em Connection with the Result Based on Gaussian Host Assumption

	Simulation Results and Discussion
	Conclusions
	References
	The Calculation of h($Y^No |Z, S^No,M^No$ )
	The Calculation of h($Y^No |S^No,M^No )

	Provably Secure Spread-Spectrum Watermarking Schemes in the Known Message Attack Framework
	Introduction
	Embedding Security Classes and Uniformly Distributed Random Orthogonal Matrix 
	Notations
	Embedding Security Classes of SS-Based Watermarking Schemes
	Uniformly Distributed Random Orthogonal Matrix of Size Nc Nc

	Independent Natural Watermarking
	Embedding and Decoding
	Distortion
	Security 

	Independent Circular Watermarking
	ICW and Robust-INW

	Experiment Results and Analysis
	Security
	Robustness

	Conclusions
	References

	A New Spread Spectrum Watermarking Scheme to Achieve a Trade-Off between Security and Robustness
	Introduction
	Analysis of Robustness of NW and CW-ISS
	Spread Spectrum Watermarking
	Natural Watermarking and Its Robustness
	Circular Extension of ISS and Its Robustness

	NW-NCW 
	NCW
	NW-NCW

	Simulation Results and Analysis
	Security-Robustness Tradeoff Analysis for NW-NCW
	Comparison of NW, CW-ISS and NW-NCW

	Conclusion and Future Works
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




