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Abstract This chapter serves as an introduction to the supercomputing works carried
out at CAS-IPE following the strategy of structural consistency among the physics
in the simulated systems, mathematical model, computational software expressing
the numerical methods and algorithms, and finally architecture of the computer
hardware (Li et al., From multiscale modeling to Meso-science—a chemical engi-
neering perspective, 2012; Li et al., Meso-scale phenomena from compromise—a
common challenge, not only for chemical engineering, 2009; Ge et al., Chem Eng
Sci 66:4426–4458, 2011). Multi-scale simulation of gas-solid flow in continuum-
discrete approaches and molecular dynamics simulation of crystalline silicon are
taken as examples, both making full use of CPU-GPU hybrid supercomputers. This
strategy is demonstrated to be effective and critical for achieving good scalability
and efficiency in such simulations. The software and hardware systems thus designed
have found wide applications in process engineering.

8.1 Background

Process engineering is a collective term covering a wide range of industries and
disciplines, from traditional chemical, metallurgical and mineral domains, to the
fast-growing material, biological, pharmaceutical and cosmetic areas. Despites their
apparent diversity, they do share some general activities such as the transformation
and utilization of energies and resources, which are fundamental and critical for the
whole society. A more intrinsic similarity underlying these activities is the vast scale
gap between the products and production equipments in these industries and the
multi-scale dynamic structures spanning this gap. For example, the properties and
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quality of the gasoline we use for our cars is determined by the molecular structures
and fractions of its compositions, which is at the scale of 10−10 –10−9 m, while the
reactors for refining gasoline from crude oil, such as the Fluid Catalytic Cracking
(FCC) facilities, are typically 50–80 m high.

Therefore, it is not surprising that simulation of such processes has become one
of the most demanding area for high performance computing. However, the actual
performance of traditional simulation softwares on general purpose supercomputers
is, as a whole, not impressive, and sometimes even very frustrating. In some com-
putational fluid dynamics (CFD) simulations on commercial multi-phase reactors,
the scalability is limited to dozens of CPU cores albeit more than a quarter million
cores are available in modern high-end supercomputers. Even for these cores, the
sustainable performance is about 10–20 % of the corresponding peak values.

In principle, this situation is not ascribed to the status of the technology for ele-
mental components at the hardware level, but to the lack of coordination among the
models, algorithms and hardwares involved in the simulations. In short, the physical
world features multi-scale structures and the computer hardwares are most easily
and efficiently organized in a multi-scale manner (at least in terms of their logical
architecture). However, the mathematical model and numerical algorithms in tradi-
tional simulations only discretize and partition the physical system at a single scale,
which incurs excessive long-range and global correlations in the model, and hence
data dependence in the algorithm and communications among hardware components
in execution. This is the main reason for the low efficiency and poor scalability of
traditional simulation softwares in process engineering.

Based on this understanding, systematic multi-scale simulation approaches, from
mathematical model to computer hardware, are implemented for gas-solid flow and
crystalline silicon. All implementations have reflected the consistency among the
physics, model, algorithm and hardware, which are summarized, in a more general
sense, by the so-called EMMS Paradigm (Li et al. 2009, 2013; Ge et al. 2011).

Currently, the mainstream simulation method for gas-solid flow is the two-fluid model
(TFM, Anderson and Jackson 1967; Gidaspow 1994), which treats both the gas and
solid phases as continuum. It is considered advantageous for industrial simulations
as its computational cost is not necessarily linked to the scale of the system, but to
the number of numerical cells which is determined flexibly by the desired resolution.
However, due to the intrinsic discrete nature of the solid phase, its constitutive laws
as a continuum are not easily obtained, and may not exist at all. Especially, the meso-
scale heterogeneity presents below the numerical grid scale proposed great challenges
to quantify its statistical behavior and hence the constitutive laws. Therefore, the
accuracy of TFM is not satisfactory for engineering purpose in general. On the other
hand, direct discrete presentation of the solid phase, though more reasonable and
simple, is far beyond the capability of current computing technology, just imaging
that an industrial gas-solid reactor may contain trillions of interacting particles and
advancing one particle for one time step, typically below milliseconds, may cost
hundreds to thousands of flops.
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Table 8.1 Specifications of the Mole-8.5 system (Wang et al. 2010, 2012; Ge et al. 2011) (adapted
from Li et al. (2013), Dubitzky et al. (2012), Ge et al. (2011))

Peak performance in single precision 2.206 Petaflop/s
Peak performance in double precision 1.103 Petaflop/s
Linpack sustained performance 496.5 Teraflop/s (on 320 nodes)
Megaflop/s per Watt 963.7 (Linpack)
Number of nodes/Number of GPU’s (Type) 362/2088 (Tesla C2050)
Top layer 2/0
Middle layer 18/36 (Tesla C2050)
Bottom layer 342/2052 (Tesla C2050)
Total RAM 17.8 Terabyte
Total VRAM 6.5 Terabyte
Total hard disk space 720 Terabyte
Management communication H3C Gigabit Ethernet
Message passing communication Mellanox infiniband quad data rate
Occupied area 150 sq.m.
Weight 12.6 ton
Max power 600 kW (computing) + 200 kW (cooling)
Operating system CentOS 5.4, PBS
Monitor Ganglia, GPU monitoring
Programming languages C, C++, CUDA

In recent years, however, developments in many-core computing and coarse-grained
discrete modeling begin to show the feasibility of industrial scale discrete solid phase
simulation (Xu et al. 2012). Similar to pseudo-particle modeling (Ge and Li 1996,
2003), real solid particles can be presented by much less number of computational
particles, whose properties can be measured in simulations and mapped physically
to the solid phase (Zhou et al. 2010), which expresses the consistency among the
simulated system, the physical model and the numerical method. Evolution of the
computational particles features additive and localized operations which are best
carried out by many-core processors, such as GPUs, in the highly parallel mode of
single-instruction multi-data (SIMD). The gas flow can be solved either by tradi-
tional finite difference (FD) or finite volume (FV) methods, or by LBM methods,
at scales either above or below the particle scale, which are suitable for CPUs or
GPUs, respectively. Thus, the consistency among the Four Elements is presented, as
summarized in Table 8.5, and the EMMS Paradigm can thus be implemented, with
a preliminary version found in Ge et al. (2011).

8.2 Physical Model

Although we will focus on the algorithmic and computational aspects of the EMMS
Paradigm, it is helpful to briefly revisit its physical background and models first.
Most gas-solid systems in industries are confined in certain geometries, usually
equipment walls, and are operated under steady conditions. The time-averaged steady
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state distribution of the flow variables, such as gas and fluid flow velocities and
solids concentration, can be predicted with reasonable accuracy by some macro-
scale models, such as the global EMMS model (at the reactor level) with some
empiric correlations (Ge et al. 2011; Liu et al. 2011). These distributions are then
served as the initial conditions for simulating the spatio-temporal evolution of the
flow structures in the systems, which basically constitutes the descriptions for the
gas phase, the solid phase and their interactions, as introduced below.

The gas phase model below the particle scale is similar to single phase flow, which
can be well described by the classical Navier-Stokes (N-S) equation except additional
boundary conditions at particle surfaces. Above the particle scale, however, the flow
structure induced by the embedded particle may cause the deviation of its effective
properties (e.g., viscosity and pressure), from pure gas, and significant nonlinearity
is found. Correlations for these properties can be obtained in direct numerical sim-
ulations (DNS) based on the N-S equation or Boltzmann equation. Coarse-grained
LBM may provide another basis for the modeling of the gas phase, where the partial
occupation of the solid phase and different permeabilities are allowed (Wang et al.
2012). With the introduction of multi-relaxation time (MRT) and large-eddy simu-
lation (LES), and proper smoothing of the boundary configuration, the method may
sustain high velocity and pressure different for the lab-scale reactor simulation (Yu
et al. 2006). In all these attempts, the compressibility of gas phase can be increased
to facilitate the numerical methods without affecting the accuracy very much.

The solid phase can be described either as a continuum or a discrete material. For
higher resolution, the discrete description is preferred, and in order to reduce com-
putational cost, coarse-graining of the real solid particles or description of their
collective behavior is desirable. Several approaches are followed for this purpose:

Coarse-grained particles: In this approach, we try to simulate a much smaller number
of elements to present the same statistical behavior of a huge number of real parti-
cles. To achieve this equivalence, the simulated particles will be, in general, more
dissipative (with lower restitution) as compared to real particles, so as to maintain the
energy balance, and more elastic to accommodate deformability, and less frictional
to keep fluidity. The time step for these coarse-grained particles can be much larger
than real solids, which further improve its efficiency. Usually, number dependence
of the constitutive laws sets in when the particle number is small enough, which caps
the extent of such coarse-graining.

Particle parcels: On the other hand, we may try to approximate the behavior of
a swarm of particles as a single one, vividly called a parcel. Such parcels have
continuous interactions with their neighbors, in a manner much more complicated
than single particles, so as to account for the deformation and the exchanges of
mass and momentum between the parcels. Smoothed particle hydrodynamics for the
solid phase (Xiong et al. 2011) may present a framework model for the parcels with
rational basis, but adjustments to its particle properties are necessary.

Particle clusters: In gas-solid systems, the particle distribution is very heterogeneous.
Most particles aggregate to form islands in the gas flow field with few particles (the
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so-called dilute phase). Such particle clusters can be taken as natural discrete entities
for simulation purpose, and it can be larger than the coarse-grained particles or
particle parcels discussed above. However, the shapes of clusters are usually very
complicated and deformable, which have to be simplified drastically. The energy-
minimization multi-scale (EMMS) model (Li et al. 1988; Li and Kwauk 1994), from
which the EMMS paradigm is developed, can be employed as a rational basis for
determining the effective size of the clusters.

Grid based approaches: Some (partially) grid-based approaches also possess partic-
ulate nature and can be used for the simulation of the solid phase. Particle in cell
(PIC, Harlow 1988) methods is a hybrid Euler-Lagrange description of fluid flow,
where fluid is tracked as a collection of mass carriers, statistics on these carriers are
then performed via a Eulerian grid, and the continuum equations are solved on the
grid numerically with the statistical data, which give the flow field. The velocities of
the mass carriers are then interpolated from the grid values and their positions are
updated individually, and so forth. As the solid phase is intrinsically discrete, PIC for
the solids may be proven to be more reasonable (Li et al. 2012). In fact, PIC is similar
to SPH expect it is partly grid-based. That means, similar difficulties will be faced,
such as the collapse of particles at high concentration gradient. Insertion of a DEM
core may also be helpful for this method, or otherwise, the method can be switched to
DEM or parcel based methods when certain concentration or concentration gradient
limits are met.

Note that, we have also listed in Table 8.5 a continuum model for the solid phase, that
is, considering the solid phase as highly compressible gas with collisional cooling.
However, as the numerical method for simulating such gas is explicit and lattice-
based, it is algorithmically similar to particle methods with fix neighborhood. There-
fore, the whole framework of the implementation is still of the continuum-particle
type. The high non-linearity of the state equation of the solid phase, that is, the
dramatic increase of the solid phase stress near minimum fluidization voidage, may
present a difficulty.

The gas and the solid phases are coupled by the interfacial forces, mainly the drag
between them. For uniform suspension of the particles, the drag can be well predicted
by semi-empirical correlations, such as the Wen and Yu (1966) equation linking
the drag with local slip velocity and particle concentration. Under more general
conditions, the EMMS model or similar approaches (Xu et al. 2007) should be used
to account for the effect of non-uniformity in the gas and/or solid phases.

8.3 Numerical Methods and Algorithm

For the physical models described above, the corresponding numerical methods can
be selected or developed, and then software algorithms are designed for these meth-
ods with considerations to the computing hardware available. We will discuss the



148 W. Ge et al.

numerical methods for the gas and solid phases, respectively, and then the major
types of algorithms they can share.

8.3.1 Gas Phase Simulation

Accurate numerical methods must reflect the nature of the physical model. The gas
phase in most gas-solid systems is nearly incompressible, that means flow at one
location is affected by other locations simultaneously. Implicit methods are, there-
fore, more accurate for the gas phase because it can reflect this global dependence.
However, this dependence is also expressed in its algorithm, which is boiled down
to the solving of linear equation sets featuring sparse matrixes. Low computation
to data accessing rate, global data dependence and hence poor scalability are the
major challenges for efficient implementation of this method on massive parallel
computers. Multi-core CPUs with large shared memory coupled with message pass-
ing interface (MPI) is suitable for these algorithms as explicit data communication
can be minimized. But as the communication inevitably increases non-linearly with
the number of CPUs involved, it is desirable to use coarse grid for the gas phase, so
as to reduce the computational cost. In this regard, meso-scale models considering
the distribution of gas flow in the grids and the appropriate drag law is critical for
maintaining reasonable accuracy.

When high resolution of the gas phase is required, explicit methods may become
more favorable, since no global data dependence and iterations are involved, and
updating of the data at each grid point requires only data in neighboring grids, which
allows virtually unlimited weak scalability and hence spatial scale. But this is at the
price of much finer grid and time step to recovery the physical global dependence at
larger spatial-temporal scales. Weak compressibility is assumed in the model, which
may introduce further errors to the model, especially for the pressure distribution.
These prices are paid off only when the system is large enough. Therefore, LBM
and explicit FD or FV methods are more suitable for resolving the gas phase at
the scale comparable or smaller than the solid entities (particles, parcels or clusters).
One get-around may be provided by a modification to the physical picture of flow. At
relatively high particle concentration (e.g., above 1 %), the mass of the flow is mainly
carried by the solid phase, and hence the actual density distribution of the gas phase
becomes less important to the flow of the mixture, as long as they provides a similar
flow distribution and drag force. In this case, the compressibility of the gas phase
can be increased artificially, bring the Mach number to the range of about 0.3–0.5, to
validate the use of explicit numerical schemes for compressible flow. Adjustments to
the drag coefficients are required to maintain the same level of inter-phase frictions.
These explicit methods are intrinsically suitable to GPUs or other single-instruction
multi-data (SIMD) manycore processors, which are highly parallel in computation
and largely localized in memory access.
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For implementation of these methods, open source or commercial software, such
as Fluent (http://www.ansys.com) can be used besides development from scratch.
With its user interface, we can exchange particle data with the cells of the software
through files. To speedup the process, we may start multiple Fluent processes in a
domain-decomposition mode, which also communicate through files. To accelerate
file reading and writing, virtual disks can be installed in the memory. And most
importantly, the amount of data exchanged between the solid and gas phase should
be minimized. In principle, only cell averaged voidages and velocities should be
included.

8.3.2 Solid Phase Simulation

Particle methods can be employed for solid phase on different coarse-graining lev-
els with similar numerical methods and algorithms. The interactions between the
particles are processed as the numerical integration of the forces between neigh-
boring particles, which is pairwise additive and explicit, and the interactions are
organized through a neighbor detecting process and followed by the updating of the
particle positions. Though interactions may present the most time-consuming part
of the algorithm, neighbor detection is usually the most complicated part and is crit-
ical to the efficiency of the algorithm. Cell-list and neighbor-list algorithms are the
two mainstream approaches for this part, which are suitable for fast changing and
more stable neighborhood, respectively. All procedures of the particle methods can
be implemented on GPUs with higher speed as compared to CPUs, but extensive
optimizations is necessary to reach best performance.

Note that, explicit numerical methods for continuum models are computationally a
simplified form of the particles methods, where the complicated neighbor detecting
process is not needed anymore. Highest performance can be achieved on GPUs with
these methods, if the operations on the grid data are computationally intensive. As
the solid phase is highly compressible, continuum description solved by explicit FD
or discrete kinetic method (DKM) can be most efficient, though not the most accurate
in general, and it is still fit well into the continuum-particle implementation of the
EMMS Paradigm. On the other hand, the PIC method presents a hybrid continuum-
particle method, where particles do not interact pairwisely, but collectively via the
grids, which is also applicable to this implementation.

8.3.3 General-Purpose Particle Simulator

As we know from the discussions above, discrete particle simulation can be employed
in different forms for both gas and solid phases. In a more general background, it also
covers a variety of systems and processes, such as granular flow (Liu et al. 2008),

http://www.ansys.com
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emulsions (Gao et al. 2005), polymers (Xu et al. 2010) and proteins (Ren et al. 2011),
foams (Sun et al. 2007), micro-/nano-flows (Chen et al. 2008), crystals (Hou et al.
2012) and reaction-diffusion processes. The efficiency and scalability of discrete
simulation was demonstrated repeatedly in these works, and the common nature of
discrete methods that leads to these advantages, namely additivity and locality, is
also recognized (Ge et al. 2011; Ge and Li 2000, 2002). Here additivity refers to the
interactions between the particles which can be processed independently at the same
time and then sum up to give the resultant force on a particle. It ensures that parallel
computing can be carried out at a very fundamental level of the algorithm, that is,
fine-grain parallelism. On the other hand, the locality refers to the fast decay of the
strength of such interactions, so that only local interactions should be considered
rigorously. It provides the parallelism at a larger scale and the weak scalability of
the algorithm.

This common nature enables us to develop a general-purpose platform for parti-
cle methods at different coarse-graining levels (Ge and Li 2000, 2002; Tang et al.
2004; Wang et al. 2005), from atoms and molecules at micro-scale to boulders at
macro-scale, and from real particles to more complicated discrete entities represent-
ing particle clusters. With these methods, the full range of phenomena in process
engineering, from atoms to apparatus, can be simulated, the general structure, main
modules and functions of the platform are summarized in Fig. 8.1.

8.3.4 GPU Implementation of the Particle Simulator

This platform for particle simulation was originally developed for CPU-based mas-
sive parallel systems. With the development of GPGPU and its programming envi-
ronment, the time is ripe for transplanting the platform to CPU+GPU hybrid systems.
Although other approaches, like the implicit PDE solver for the gas, have been tried
with encouraging success (Wang et al. 2010), particle simulation is, in a broader
sense, more suitable for GPU implementation. As detailed in Ge et al. (2011), the
cell-list and neighbor-list schemes are combined in our GPU implementation, where
cell list is employed to traverse all elements and find their interacting neighbors
which are then put into their neighbor list. When putting the particles into cells, one
thread is preferably assigned with one particle. Thanks to the atomic functions sup-
ported by Nvidia C2050 GPUs, one cell can contain several particles, but the write
conflict, occurred when multiple threads write to the global memory can be avoided.
The neighbor list thus generated for each particle is stored in a two dimensional
array in the global memory of the GPU. In this way, although memory redundancy
is unavoidable, coalesced global memory access is achieved. When generating the
neighbor list, one block corresponds to one cell with each particle in it assigned to a
different thread to speedup the computation. The particle information of the local and
neighboring cells are buffered in the shared memory to reduce the global memory
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Fig. 8.1 General algorithmic platform for discrete simulation (Tang et al. 2004)

access. The overall flow chat for the general algorithm is show in Fig. 8.2 reproduced
from Ge et al. (2011).

For simpler cases of fixed neighbors and for processing the interactions after the
neighbors are listed, similar algorithms can be shared, also with explicit finite differ-
ence or finite volume methods, lattice-based methods and MD methods for condensed
materials at low temperature. They are usually very efficient for GPUs, due to their
spatial locality, natural parallelism and explicit schemes.

Though extensive optimizations are required to implement the various interactions
between the discrete elements on GPUs, our emphasis has been on the effective
use of the device memory bandwidth, since it is common to most methods, and
it is especially important for methods with low ratios of computational operations
to memory access. For best performance, the data in registers and local memories
should be reused as much as possible, and storing and loading of the data to global
memory should aligned and coalesces. LBM may serve as a typical example for
memory bounded applications on GPUs and interesting readers are referred to our
recent publications (Ge et al. 2011; Xiong et al. 2012; Li et al. 2012).
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Fig. 8.2 General purpose
particle simulation algorithm
on multiple GPUs (adopted
from Ge et al. 2011)

8.4 Hardware Development

With the development and extension of the EMMS model to different areas and
the expression of the common nature of different discrete methods under the same
algorithmic framework, a general multi-scale computing mode was established
(Chen et al. 2009; Ge et al. 2011; Li et al. 2012) for typical complex system
in process engineering. In this mode, the system is discretized on different lev-
els. On the top and middle levels, long range interactions or correlations are
treated by imposing stability conditions, which gives the global and local dis-
tribution of variables at the statistically steady state with relatively low compu-
tational cost; While on the middle and bottom levels, local interactions among
the discrete elements are treated explicitly based on these distributions, reproduc-
ing the dynamic evolution of the system in detail. Taking advantage of the fast
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Fig. 8.3 The Mole-8.5 system at IPE, CAS (Photo by Xianfeng He) (adopted from Li et al. 2013;
Ge et al. 2011; Dubitzky et al. 2012)

distribution process, development of system behavior from the artificial initial con-
dition to the steady state, which is of little interest to engineering practice, can
be bypassed almost completely, and hence speedup the simulation considerably
(Ge et al. 2011; Liu et al. 2011, 2012).

However, with traditional CPU-based supercomputers, no significant advantage of
this computing mode can be demonstrated because the interactions and motion of
the particles are processed with very limited parallelism as compared to its full
potential. The advent of GPU computing, facilitated by CUDATM, introduced new
means to implement this mode. As GPUs typically contain hundreds of relatively
simple stream processors operated in the SIMD mode, they have a good balance, for
discrete simulation, between the complexity of the arithmetic or logic operations that
can be carried out by a stream processor and the number of parallel threads they can
run. The communication among multiple GPUs may present an imperfection, as for
the moment it has to resort to the PCIE bus and CPUs, or even the inter-node network,
with limited bandwidth and considerable latency. However, weak scalability is still
warranted for most discrete simulations.

The Mole-8.5 system (Wang et al. 2010, 2012; Ge et al. 2011; Li et al. 2013) at
IPE, pictured in Fig. 8.3, is the first supercomputer using NVIDIA Tesla C2050 GPU
boards in the world, reaching 1PFlops peak performance in double-precision. It was
established to provide a customized hardware that can taking full advantage of the
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Fig. 8.4 Snapshot from the
simulation of the industrial
scale rotary drum (adapted
from Xu et al. 2011)

CPU-GPU hybrid architecture to implement the multi-scale computing mode based
on EMMS model and discrete simulations. It features a three-layer structure with
increasing number of GPUs per node at lower layers, as specified in Table 8.1. We
demonstrate that this design is economically profitable for most discrete simulations
though it may not give good results for Linpack tests.

8.5 Applications

The multi-scale computing mode introduced above has been applied to a wide
range of processes in chemical and metallurgical engineering, molecular biology
and renewable energy, either for industrial designing and optimization, or for purely
scientific exploration. Even a full H1N1 viron in vivo can be simulated on the mole-
cular level at a speed of 0.77 ns per day (Xu et al. 2011). We will give some further
examples below.

8.5.1 Quasi-Realtime Simulation of Rotating Drums

To demonstrate how discrete particle simulation can be accelerated by GPU or many-
core computing, we carried out a DEM simulation on the granular flow in rotating
drums which are widely used in process industries (Xu et al. 2011a). When a simple
interaction model for smooth particles is used, each C2050 GPU can process at most
about 90 million particle updates per second, about two orders faster than the serial
code on CPUs. And when an industrial scale rotating drum, 13.5 m long and 1.5 m in
diameter with nearly 10 million centimeter particles (a segment of the drum is show
in Fig. 8.4) are simulated on 270 GPUs with message passing interface (MPI), nearly
realtime speed can be achieved (Xu et al. 2011a) even when a more comprehensive
tangential interaction model was added.
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Table 8.2 Outline of the multi-scale approach to DNS of gas-solid suspension

System Physical Numerical Software Hardware
components model method algorithm

Gas phase Continuum
(Boltzmann
equation)

Lattice
Boltzmann
(fine grid)

Regular, explicit
& local lattice
operations

Linked
many-core
(e.g. GPU)

Solid phase Discrete particles
(Newton)

Integration of
ordinary
differential
equations

List & arithmetic
operations

Shared
memory
multi-core
(e.g. CPU)

8.5.2 Direct Numerical Simulation of Gas-Solid Suspension

When gas-solid systems are simulated, the multi-scale computing mode can be fully
exemplified (Ge et al. 2011; Xiong et al. 2012). For DNS, the consistency from the
simulated system to computing hardware is detailed in Table 8.2. In this method, we
have carried out the largest scale DNS of gas-solid systems so far (Ge et al. 2011;
Xiong et al. 2012), which contains more than 1 million solid particles with 1 billion
lattices for the gas phase in 2D, and 100 thousand particle with 500 million lattices
in 3D. Some of the results are shown in Figs. 8.5 and 8.6. Some 20–60 folds speedup
is obtained when comparing one GPU with one CPU core.

8.5.3 Euler-Lagrangian Simulation of Gas-Solid Fluidization

DNS of gas-solid flow has revealed unprecedented details of the flow field which is
important for the establishing larger scale models for industrial applications (Xu et
al. 2012). However, its direct application in industry is very limited. Most industrial
simulations have employed TFM which treat both gas and solid phases as contin-
uum and follows a Euler-Euler frame of description. This is certainly insufficient in
terms of accuracy but was previously the only feasible method due to computational
cost. Now with our multi-scale computing mode, a Euler-Lagranian method with
less computation than DNS and higher resolution than TFM can be employed for
industrial simulations (Xu et al. 2012). As detailed in Table 8.3, the solid particles
(either real or coarse-grained) are still tracked one by one as in DNS, which is the
Lagrangian part, but the gas flow is resolved at a scale much larger than the solid par-
ticles using continuum-based finite volume method, which constitutes the Eulerian
part. With GPU computing for the Lagrangian part, its speed can be comparable to
traditional TFM simulation on CPUs (Xu et al. 2012).
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Fig. 8.5 Snapshot from 2D DNS of gas-solid suspension (adopted from Ge et al. 2011; Xiong et
al. 2012)

Fig. 8.6 Snapshot from 2D DNS of gas-solid suspension (adopted from Ge et al. 2011; Xiong et
al. 2012)
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Table 8.3 Outline of the multi-scale approach to Euler-Lagrangian simulation of gas-solid flow

System Physical Numerical Software Hardware
components model method algorithm architecture

Solid phase Particles ODE integration List & arithmetic Linked many-core
(Newton) operations (e.g., GPU)

Gas phase Continuum PDE solver Sparse matrix Shared memory
(N-S) (Simple) operations multi-core (e.g., CPU)

Table 8.4 Outline of the multi-scale approach to atomistic simulation of crystalline silicon

System Physical Software Hardware
components model algorithm architecture

Bulk atoms
(majority)

Regular
lattices with
fixed
neighbors

Massive and
intensive
computing in
SIMD-style,
single precision
allowed

Shared memory
many-core (e.g.,
GPU)

Interface/defects/
dopants
(minority)

Irregular
lattices with
dynamic
neighbors

Less but more
complicated
computing in
MIMD-style,
double precision
required

Linked
multi-core (e.g.,
CPU)

8.5.4 Atomistic Simulation of Crystalline Silicon

The multi-scale computing mode can be used in areas other than multi-phase flow.
One example is the atomistic simulation of crystalline silicon and its surface recon-
struction (Hou and Ge 2011; Hou et al. 2012), which is of special interest to the
photovoltaic and IC industrials (Hou et al. 2012). As explained in Table 8.4, the fea-
tures of CPUs and GPUs, respectively, are best utilized in this mode. As a result, for
bulk simulation, we have obtained 1.87 Petaflops (single precision) sustained per-
formance on the Tianhe1A supercomputer (www.Top500.org/lists/2010/11), which
has 7168 Nvidia M2050 GPUs. That is, the simulation using the multi-body Tersoff
potential has reached 25.3 % of its peak performance. In fact, the instruction through-
put and memory throughput on a single GPU approached 80 %. When coupled with
86016 CPU cores, the more complicated simulation on surface reconstruction also
reached Petaflops sustainable performance (1.17 Petaflops in single precision plus
92 Teraflops in double precision). More than 1000 billion atoms were simulated in
this case, which links atomistic behavior with macro-scale material properties.

www.Top500.org/lists/2010/11
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8.6 Conclusions

In summary, structural consistency among the hardware, software, model and the
system to be simulated is critical for the high efficiency of supercomputing. The
continuum-discrete implementation of the so-called EMMS paradigm can take full
advantage of the CPU-GPU hybrid computing mode and unprecedented simulation
results on multi-phase systems or even beyond have been or can be obtained in
this paradigm. The prospects of simulating industrial scale multi-phase systems at
almost realtime with reasonable accuracy and resolution, or in short, virtual process
engineering is not remote considering the dramatic development of both the hybrid
computing mode and its hardware developments.

Acknowledgments We thank all members of the EMMS group at IPE for their long term collab-
oration and support on this work. This work is sponsored by National Natural Science Foundation
of China under the Grant no. 20821092, Ministry of Finance under the Grant no. ZDYZ2008-2,
Chinese Academy of Sciences under the Grants nos. KGCX2-YW-124 and KGCX2-YW-222. We
also thank Nvidia for sponsoring the CUDA Center of Excellence (CCOE) at IPE.

References

Anderson TB, Jackson R (1967) A fluid mechanical description of fluidized beds: equations of
motion. Ind Eng Chem Fundam 6:527–539

Chen F, Ge W, Wang L, Li J (2008) Numerical study on gas-liquid nano-flows with pseudo-particle
modeling and soft-particle molecular dynamics simulation. Microfluid Nanofluid 5:639–653

Chen F, Ge W, Guo L, He X, Li B, Li J, Li X, Wang X, Yuan X (2009) Multi-scale HPC system for
multi-scale discrete simulation-development and application of a supercomputer with 1 Petaflops
peak performance in single precision. Particuology 7:332–335

Dubitzky (2012) Large-scale computing techniques for complex system simulations. Wiley
Gao J, Ge W, Hu G, Li J (2005) From homogeneous dispersion to MicellesA molecular dynamics

simulation on the compromise of the hydrophilic and hydrophobic effects of sodium dodecyl
sulfate in aqueous solution. Langmuir 21:5223–5229

Ge W, Li J (1996) Pseudo-particle approach to hydrodynamics of gas-solid two-phase flow. In:
Kwauk M, Li J (eds) Proceedings of the 5th international conference on circulating fluidized bed.
Science Press, Beijing, pp 260–265

Ge W, Li J (2000) Conceptual model for massive parallel computing of discrete systems with local
interactions. Comput Appl Chem 17(5): 385–388. (Chinese)

Ge W, Li J (2002) General approach for discrete simulation of complex systems. Chin Sci Bull
47(14):1172–1175

Ge W, Li J (2003) Macro-scale phenomena reproduced in microscopic systems: pseudo particle
modeling of fluidization. Chem Eng Sci 58:1565–1585

Ge W, Wang W, Yang N, Li J, Kwauk M, Chen F, Chen J, Fang X, Guo L, He X, Liu X, Liu Y,
Lu B, Wang J, Wang J, Wang L, Wang X, Xiong Q, Xu M, Deng L, Han Y, Hou C, Hua L,
Huang W, Li B, Li C, Li F, Ren Y, Xu J, Zhang N, Zhang Y, Zhou G, Zhou G (2011) Meso-scale
oriented simulation towards virtual process engineering (VPE)-The EMMS paradigm. Chem Eng
Sci 66(19):4426–4458

Gidaspow D (1994) Multiphase flow and fluidization: continuum and kinetic theory description.
Academic Press, Boston

Harlow FH (1988) PIC and its progeny. Comput Phys Comm 48:1–10



160 W. Ge et al.

Hou C, Xu J, Wang P, Huang W, Wang X, Shen G, Ge W, He X, Guo L, Li J (2012) Petaflops
molecular dynamics simulation of crystalline silicon on Tianhe-1A. Int J High Perform Comput
(In print) Doi:10-1177/1094342012456047

Hou C, Xu J, Ge W, Wang P, Huang W, Wang X (2012) Efficient GPU-accelerated molecular
dynamics simulation of solid covalent crystals. Comput Phys Comm Accepted

Hou C, Ge W (2011) GPU-accelerated molecular dynamics simulation of solid covalent crystals.
Mol Simul 38(1):8–15

Li J, Kwauk M (1994) Particle-fluid two-phase flow: the energy-minimization multi-scale method.
Metallurgical Industry Press, Beijing, P. R. China

Li J, Tung Y, Kwauk M (1988) Multi-scale modeling and method of energy minimization in particle-
fluid two-phase flow. In: Basu P, Large JF (eds) Circulating fluidized bed technology II. Pergamon
Press, Toronto, pp 89–103

Li F, Song F, Benyahia S, Wang W, Li J (2012) MP-PIC simulation of CFB riser with EMMS- based
drag model. Chem Eng Sci 82(12):104–113

Li J, Ge W, Kwauk M (2009) Meso-scale phenomena from compromise - a common challenge, not
only for, chemical engineering arXiv:0912.5407

Li J, Ge W, Wang W, Yang N, Liu X, Wang L, He X, Wang X, Wang J, Kwauk M (2013) From
multiscale modeling to Meso-science - a chemical engineering perspective. Springer (In print),
Berlin

Liu X, Ge W, Li J (2008) Non-equilibrium phase transitions in suspensions of oppositely driven
inertial particles. Powder Technol 184:224–231

Liu Y, Chen J, Ge W, Wang J, Wang W (2011) Acceleration of CFD simulation of gas-solid flow
by coupling macro-/meso-scale EMMS model. Powder Technol 212:289–295

Liu X, Guo L, Xia Z, Lu B, Zhao M, Meng F, Li Z, Li J (2012) Harnessing the power of virtual
reality. Chem Eng Prog 108(7):28–33

Ren Y, Gao J, Xu J, Ge Wei, Li Jinghai (2011) Key factors in chaperonin-assisted protein folding.
Particuology 10(1):105–116

Sun Q, Ge W, Huang J (2007) Influence of gravity on narrow input forced drainage in 2D liquid
foams. Chin Sci Bull 52:423–427

Tang D, Ge W, Wang X, Ma J, Guo L, Li J (2004) Parallelizing of macro-scale pseudo-particle
modeling for particle-fluid systems. Sci China Ser B Chem 47(5):434–442

Wang X, Ge W, He X (2010) Development and application of a HPC system for multi-scale discrete
simulation-Mole-8.5. In: International supercomputing conference. Hamburg, Germany

Wang X, Ge W (2012) The Mole-8.5 supercomputing system. In: Vetter JS (ed) Contemporary high
performance computing: from petascale toward exascale. Taylor and Francis, Boca Raton

Wang X, Guo L, Ge W, Tang D, Ma J, Yang Z, Li J (2005) Parallel implementation of macro-scale
pseudo-particle simulation for particle-fluid systems. Comput Chem Eng 29:1543–1553

Wang J, Xu M, Ge W, Li J (2010) GPU accelerated direct numerical simulation with SIMPLE
arithmetic for single-phase flow. Chin Sci Bulletin 55:1979–1986

Wang L, Zhang B, Wang X, Ge W, Li J (2012) Lattice Boltzmann based discrete simulation of
gas-solid fluidization. Chin Sci Bull, Accepted

Wen CY, Yu YH (1966) Mechanics of fluidization. Chem Eng Progr Symp Ser 62:100–111
Xiong Q, Deng L, Wang W, Ge W (2011) SPH method for two-fluid modeling of particle-fluid

fluidization. Chem Eng Sci 66:1859–1865
Xiong Q, Li B, Zhou G, Fang X, Xu J, Wang J, He X, Wang X, Wang L, Li J (2012) Large-scale

DNS of gas-solid flows on Mole-8.5. Chem Eng Sci 71:422–430
Xu M, Ge W, Li J (2007) A discrete particle model for particle-fluid flows with considerations of

sub-grid structures. Chem Eng Sci 62:2302–2308
Xu J, Ren Y, Ge W, Yu X, Yang X, Li J (2010) Molecular dynamics simulation of macromolecules

using graphics processing unit. Mol Simul 36:1131–1140
Xu J, Wang X, He X, Ren Y, Ge W, Li J (2011) Application of the Mole-8.5 supercomputer: probing

the whole influenza virion at the atomic level. Chin Sci Bull 56(20):2114–2118



8 Multi-scale Continuum-Particle Simulation on CPU–GPU Hybrid Supercomputer 161

Xu J, Qi H, Fang X, Lu L, Ge W, Wang X, Xu M, Chen F, He X, Li J (2011a) Quasi-real-time simula-
tion of rotating drum using discrete element method with parallel GPU computing. Particuology
9:446–450

Xu M, Chen F, Liu X, Ge W, Li J (2012) Discrete particle simulation of gas-solid two-phase flows
with multi-scale CPU-GPU hybrid computation. Chem Eng J 207–208:746–757

Yu H, Luo L-S, Girimaji SS (2006) LES of turbulent square jet flow using an MRT lattice Boltzmann
model. Comput Fluids 35:957–965

Zhou G, Ge W, Li J (2010) Smoothed particles as a non-Newtonian fluid: a case study in Couette
flow. Chem Eng Sci 65:2258–2262


	8 Multi-scale Continuum-Particle Simulation  on CPU--GPU Hybrid Supercomputer
	8.1 Background
	8.2 Physical Model
	8.3 Numerical Methods and Algorithm
	8.3.1 Gas Phase Simulation
	8.3.2 Solid Phase Simulation
	8.3.3 General-Purpose Particle Simulator
	8.3.4 GPU Implementation of the Particle Simulator

	8.4 Hardware Development
	8.5 Applications
	8.5.1 Quasi-Realtime Simulation of Rotating Drums
	8.5.2 Direct Numerical Simulation of Gas-Solid Suspension
	8.5.3 Euler-Lagrangian Simulation of Gas-Solid Fluidization
	8.5.4 Atomistic Simulation of Crystalline Silicon

	8.6 Conclusions
	References


