
Chapter 26
A Geometric Multigrid Solver on GPU Clusters

Harald Koestler, Daniel Ritter and Christian Feichtinger

Abstract Recently, more and more GPU HPC clusters are installed and thus there
is a need to adapt existing software design concepts to multi-GPU environments.
We have developed a modular and easily extensible software framework called
WaLBerla that covers a wide range of applications ranging from particulate flows
over free surface flows to nano fluids coupled with temperature simulations. In this
article we report on our experiences to extend WaLBerla in order to support geomet-
ric multigrid algorithms for the numerical solution of partial differential equations
(PDEs) on multi-GPU clusters. We discuss the object-oriented software and perfor-
mance engineering concepts necessary to integrate efficient compute kernels into
our WaLBerla framework and show that a large fraction of the high computational
performance offered by current heterogeneous HPC clusters can be sustained for
geometric multigrid algorithms.

Keywords MPI parallelization · GPGPU · CUDA · Multigrid solver

26.1 Introduction

The multi-disciplinary field of computational science and engineering (CSE) deals
with large scale computer simulations and optimization of mathematical models.
CSE is used successfully, e.g. by aerospace, automotive, and processing industries,
as well as in medical technology. In order to obtain physically meaningful results,
many of these simulation tasks can only be done on HPC clusters due to the high
memory and compute power requirements. Therefore, software development in CSE
is dominated by the need for efficient and scalable codes on current compute clusters.

H. Koestler (B) · D. Ritter · C. Feichtinger
System Simulation Group, University of Erlangen-Nuremberg,Erlangen, Germany
e-mail: harald.koestler@informatik.uni-erlangen.de
http://www10.informatik.uni-erlangen.de

D. A. Yuen et al. (eds.), GPU Solutions to Multi-scale Problems in Science and Engineering, 407
Lecture Notes in Earth System Sciences, DOI: 10.1007/978-3-642-16405-7_26,
© Springer-Verlag Berlin Heidelberg 2013

http://www10.informatik.uni-erlangen.de

408 H. Koestler et al.

Graphics processing units (GPUs) typically offer hundreds of specialized compute
units operating on dedicated memory. In this way they reach outstanding compute
and memory performance and are more and more used for compute-intensive appli-
cations, often called general purpose programming on graphics processing units
(GPGPU). GPUs are best suitable for massively-data parallel algorithms, inade-
quate problems, that e.g. require a high degree of synchronization or provide only
limited parallelism, are left to the host CPU. Recently, GPUs are more and more
used to build up heterogeneous multi-GPU HPC clusters. In the current Top 500
list1 of the fastest machines world-wide there are three of these clusters amongst
the Top 5.

In order to achieve good performance on these GPU clusters, software develop-
ment has to adapt to the new needs of the massively parallel hardware. As a starting
point, GPU vendors offer proprietary environments for GPGPU. NVIDIA, e.g., pro-
vides the possibility to write single-source programs that execute kernels written
in a subset of C and C++ on their Compute Unified Device Architecture (CUDA)
(NVIDIA 2010). Since we are exclusively working on NVIDIA GPUs in this article
we have done our implementations in CUDA. An alternative would have been to
use the Open Compute Language (OpenCL).2 Within OpenCL one can write code
that runs in principle on many different hardware platforms, but to achieve good
performance the implementation has to be adapted to the specific features of the
hardware. Both CUDA and OpenCL are low-level languages. To make code devel-
opment more efficient, one either has to provide wrappers for high-level languages
like e.g. OpenMP (Ohshima et al. 2010) and PyCUDA (Klöckner et al. 2009) or easy
to use frameworks.

Our contributions in this article are that we first discuss the concepts neces-
sary to integrate efficient GPU compute kernels into our software framework called
WaLBerla and second that we show scaling results for an exemplary multigrid solver
on multi-GPU clusters.

Various other implementations of different multigrid algorithms on GPU exist
(e.g. Bolz et al. 2003; Goddeke et al. 2008; Haase et al. 2010), and multigrid is also
incorporated in software packages like OpenCurrent (Cohen 2011) or PETSc (Balay
et al. 2009).

The paper is organized as follows: In Sect. 26.2 we briefly describe the multigrid
algorithm and its parallelization on GPUs. Section 26.3 summarizes the MPI-parallel
WaLBerla framework that easily enables us to extend our code to multi-GPUs, and
in Sect. 26.4 we present performance results for different CPU and GPU platforms
before concluding the paper in Sect. 26.5.

1 http://www.top500.org
2 see http://www.khronos.org/opencl/

http://www.top500.org
http://www.khronos.org/opencl/

26 A Geometric Multigrid Solver on GPU Clusters 409

26.2 Parallel Multigrid

26.2.1 Multigrid Algorithm

Multigrid is not a single algorithm, but a general approach to solve problems by using
several levels or resolutions (Brandt 1977; Hackbusch 1985). We restrict ourselves to
geometric multigrid (MG) in this article that identifies each level with a (structured)
grid.

Typically, multigrid is used as an iterative solver for large linear systems of equa-
tions that have a certain structure, e.g. that arise from the discretization of PDEs and
lead to sparse and symmetric positive definite system matrices. The main advan-
tage of multigrid solvers compared to other solvers like Conjugate Gradients (CG)
is that multigrid can reach an asymptotically optimal complexity of O(N), where
N is the number of unknowns in the system. For good introductions and a compre-
hensive overview on multigrid methods, we, e.g., refer to Briggs et al. (2000) and
Trottenberg et al. (2001), for details on efficient multigrid implementations see
Douglas et al. (2000), Hülsemann et al. (2005), Stürmer et al. (2008) and Köstler
(2008).

We assume that we want to solve the PDE

−∇c∇u + αu = f in Ω (26.1a)

〈∇u, n〉 = 0 on ∂Ω (26.1b)

with α > 0, smoothly varying or constant coefficients c : R
3 → R

+, solution
u : R

3 → R, right hand side (RHS) f : R
3 → R, and (natural) Neumann boundary

conditions on a rectangular domain Ω ⊂ R
3. Equation 26.1 is discretized by finite

volumes on a structured grid. This results in a linear system

Ahuh = f h,
∑

j∈Ωh

ah
i j u

h
j = f h

i , i ∈ Ωh (26.2)

with system matrix Ah ∈ R
N×N , unknown vector uh ∈ R

N and right hand side
(RHS) vector f h ∈ R

N on a discrete grid Ωh with mesh size h.
In order to solve the above linear system, we note that during the iteration the

algebraic error eh = uh∗ − uh is defined to be the difference between the exact
solution uh∗ of Eq. 26.2 and the approximate solution uh . With the residual equation
rh = f h − Ahuh we obtain there so-called error equation

Aheh = rh . (26.3)

The multigrid idea is now based on two principles:

Smoothing Property: Classical iterative solvers like red-black Gauß-Seidel (RBGS)
are able to smooth the error after very few steps. That means the high frequency

410 H. Koestler et al.

components of the error are removed well by these methods. But they have little
effect on the low frequency components. Therefore, the convergence rate of classical
iterative methods is good in the first few steps and decreases considerably afterwards.
Coarse Grid Principle: A smooth function on a fine grid can be approximated sat-
isfactorily on a grid with less discretization points, whereas oscillating functions
would disappear. Furthermore, a procedure on a coarse grid is less expensive than
on a fine grid. The idea is now to approximate the low frequency error components
on a coarse grid.

Multigrid now combines these two principles into one iterative solver. The
smoother reduces the high frequency error components first, and then the low fre-
quency error components are approximated on coarser grids, interpolated back to
the finer grids and eliminated there. In other words on the finest grid Eq. 26.1 is first
solved approximately by a few smoothing steps and then an approximation to the
error equation is computed on the coarser grids. This leads to recursive algorithms
which traverse between fine and coarse grids in a grid hierarchy. Two successive grid
levels Ωh and Ω H typically have fine mesh size h and coarse mesh size H = 2h.

One multigrid iteration, here the so-called V-cycle, is summarized in algorithm 1.
Note that in general the operator Ah has to be computed on each grid level. This
is either done by rediscretization of the PDE or by Galerkin coarsening, where
AH = R Ah P .

In our cell-based multigrid solver we use the following components:

• A RBGS smoother Sν1
h ,Sν2

h with ν1 pre- and ν2 postsmoothing steps.
• The restriction operator R from fine to coarse grid is simple averaging over the

neighboring cells.
• We apply a nearest neighbor interpolation operator P for the error.
• The coarse grid problem is solved by a sufficient number of RBGS steps.
• The discretization of the Laplacian was done via the standard 7-point stencil (case

c = 1 in Eq. 26.1).
• For varying c we apply Galerkin coarsening with a variable 7-point stencil on each

grid level.

26 A Geometric Multigrid Solver on GPU Clusters 411

26.2.2 GPU Implementation

To implement the multigrid algorithm on GPU we have to parallelize it and write
kernels for smoothing, computation of the residual, restriction, and interpolation
together with coarse grid correction. In the following, we choose the RBGS kernel
as an example and discuss it in more detail. Algorithm 25.2 shows the source code
of the CUDA kernel. It is called from Algorithm 25.3.

The kernel can handle arbitrary variable seven-point stencils. The GET3D_tex
and GET3D_ST_tex functions are macros that provide access to the solution resp.
stencil field that is stored in global or texture GPU memory. Due to the splitting in
red and black points within the RBGS to enable parallelization, only every second
solution value is written back, whereas the whole solution vector is processed. Note
that the outer if statement to check if the point is not a boundary point can be dropped
on the new Fermi GPUs since they are much less sensitive to data alignment than
older GPUs.

The distributed memory parallelization is simply done by decomposing the finest
grid into several smaller sub-grids and introducing a layer of ghost cells between
them. Now the sub-grids can be distributed to different MPI processes and only the
ghost cells have to be communicated to neighboring sub-grids. In case of multi-
GPU processing, the function calling this kernel (shown in Algorithm 25.3) has to
handle the ghost cells. The solution values at the borders of the sub-grids have to be
initialized with the values that were already communicated via MPI. This transfer

412 H. Koestler et al.

from the MPI buffer in main memory to the memory of the GPU is the only part of
communication that is not done implicitly by the WaLBerla framework. After that,
the stencil, solution and right-hand side values are put to texture arrays to have a
more efficient read access to them later. This is not necessary for the new NVIDIA
Fermi GPUs, since they offer a built-in cache for the global GPU memory. Now, the
actual red and the black sweep are done. After the sweeps, the Neumann boundary
conditions are set by copying the border values to a ghost layer. Finally, the values
to be communicated are transferred again to the MPI buffers, before the mapping of
the texture objects is released.

26.3 WaLBerla

WaLBerla is a massively parallel multi-physics software framework developed
for HPC applications on block-structured domains (Feichtinger et al. 2010). It
has been successfully used in many simulation tasks ranging from free surface
flows (Donath et al. 2009) to particulate flows (Götz et al. 2010) and fluctuating lattice
Boltzmann (Dünweg et al. 2007) for nano fluids.

The main design goals of the WaLBerla framework are to provide excellent appli-
cation performance across a wide range of computing platforms and the easy inte-
gration of new algorithms. The current version WaLBerla 2.0 is capable of running

26 A Geometric Multigrid Solver on GPU Clusters 413

heterogeneous simulations on CPUs and GPUs with static load balancing (Feichtinger
et al. 2010).

26.3.1 Patch, Block, and Sweep Concept

A fundamental design concept of WaLBerla is to rely on block-structured grids, what
we call our Patch and Block data structure. We restrict ourselves to block-structured
grids in order to support efficient massively parallel simulations.

In our case a Patch denotes a cuboid describing a region in the simulation that is
discretized with the same resolution. This Patch is further subdivided into a Cartesian
grid of Blocks consisting of cells. The actual simulation data is located on these cells.
In parallel one or more Blocks can be assigned to each process in order to support
load balancing strategies. Furthermore, we may specify for each Block, on which
hardware it is executed. Of course, this requires also to be able to choose different
implementations that run on a certain Block, what is realized by our functionality
management.

The functionality management in WaLBerla 2.0 controls the program flow. It
allows to select different functionality (e.g. kernels, communication functions) for
different granularities, e.g. for the whole simulation, for individual processes, and
for individual Blocks.

When the simulation runs, all tasks are broken down into several basic steps, so-
called Sweeps. A Sweep consists of two parts: a communication step fulfilling the
boundary conditions for parallel simulations by nearest neighbor communication
and a communication independent work step traversing the process-local Blocks
and performing operations on all cells. The work step usually consists of a kernel
call, which is realized for instance by a function object or a function pointer. As for
each work step there may exist a list of possible (hardware dependent) kernels, the
executed kernel is selected by our functionality management.

26.3.2 MPI Parallelization

The parallelization of WaLBerla can be broken down into three steps:

1. a data extraction step,
2. a MPI communication step, and
3. a data insertion step.

During the data extraction step, the data that has to be communicated is copied from
the simulation data structures of the corresponding Blocks. Therefore, we distin-
guish between process-local communication for Blocks lying on the same and MPI
communication for those on different processes.

414 H. Koestler et al.

Fig. 26.1 Communication concept within WaLBerla (Feichtinger et al. 2010)

Local communication directly copies from the sending Block to the receiving
Block, whereas for the MPI communication the data has first to be copied into
buffers. For each process to which data has to be sent, one buffer is allocated. Thus,
all messages from Blocks on the same process to another process are serialized.

To extract the data to be communicated from the simulation data, extraction
function objects are used that are again selected via the functionality management.
The data insertion step is similar to the data extraction, besides that we traverse the
block messages in the communication buffers instead of the Blocks.

26.3.3 Multi-GPU Implementation

For parallel simulations on GPUs, the boundary data of the GPU has first to be copied
by a PCIe transfer to the CPU and then be communicated via MPI routines. Therefore,
we need buffers on GPU and CPU in order to achieve fast PCIe transfers. In addition,
on-GPU copy kernels are added to fill these buffers. The whole communication
concept is depicted in Fig. 26.1.

The only difference between parallel CPU and GPU implementation is that we
need to adapt the extraction and insertion functions. For the local communication
they simply swap the GPU buffers, whereas for the MPI communication the function
cudaMemcpy is used to copy the data directly from the GPU buffers into the MPI
buffers and vice versa.

To support heterogeneous simulations on GPUs and CPUs, we execute different
kernels on CPU and GPU and also define a common interface for the communication
buffers, so that an abstraction from the hardware is possible. Additionally, the work
load of the CPU and the GPU processes can be balanced e.g. by allocating several
Blocks on each GPU and only one on each CPU-only process.

26 A Geometric Multigrid Solver on GPU Clusters 415

Table 26.1 Technical hardware specifications

Xeon 5550 Tesla M1060 Tesla C2070

Processor frequency 2.66 GHz 1.3 GHz 1.15 GHz
Memory frequency 1.3 GHz 800 MHz 1.5 GHz
Memory size 12 GB 4 GB 6 GB
Streaming units/cores 4 240 448
Floating-point performance (SP) 85.1 GFLOP/s 933 GFLOP/s 1030 GFLOP/s
Floating-point performance (DP) 42.6 GFLOP/s 78 GFLOP/s 515 GFLOP/s
Memory bandwidth 32 GB/s 102 GB/s 144 GB/s

26.4 Performance Results

The main focus within this article is put on parallel efficiency of our multigrid
implementation on multi-GPU clusters. As a baseline we also evaluate the single
GPU runtime and identify the performance bottlenecks.

26.4.1 Platforms for Tests

The numerical tests were performed on three different platforms provided by our
local computing center,3 an Intel Core i7 CPU (Xeon 5550), an NVIDIA G80 (Tesla
M1060) and an NVIDIA Fermi (Tesla C2070) platform. The detailed hardware spec-
ifications are depicted in Table 26.1.

The cluster for our test is the TinyGPU cluster of the RRZE. It consists of 8
dual-socket nodes, hosting two Xeon 5500 processors and two Tesla M1060 boards.
The nodes are connected via Infiniband. Additionally, we had access to one of those
nodes with two Tesla C2070 GPUs instead of the M1060.

All numerical tests run with double floating-point precision.

26.4.2 Scaling Experiments

In the following, we show how the runtime code behaves with increasing problem
size on one or several compute nodes. Baseline is the performance on one node, i.e.
two Teslas resp. two Xeons.

We distinguish two types of experiments: Weak scaling relates to experiments
were the problem size is increased linearly with the number of involved devices,
whereas the term strong scaling implies that we have a constant global problem
size and vary only the number of processes. Assuming a perfect parallelization, we

3 http://www.rrze.de

http://www.rrze.de

416 H. Koestler et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1283 256x1282 2562x128 2563

ru
nt

im
e

[s
]

Number of unknowns

Tesla M1060
Xeon 5550

Fig. 26.2 Single node (i.e. two Teslas resp. two Xeons) performance of one multigrid V(2, 2)-cycle

expect the runtime to be constant in weak scaling experiments, while we expect the
runtime to be reciprocally proportional to the number of parallel processes in strong
scaling experiments. We measure the runtime of one V(2,2)-cycle (i.e. a V-cycle
with 2 RBGS iterations for pre- and postsmoothing each) on four grid levels with
parameters from Sect. 26.2. On the coarsest grid 50 RBGS steps are performed to
obtain a solution.

Single-node performance Here, the problem sizes vary between 1283 = 2,097,152
and 2563 = 16,777,216 unknowns and the runtimes for one V(2, 2)-cycle on Xeon
5550 and Tesla M1060 machines are depicted in Fig. 26.2.

Since the performance of the multigrid algorithm is memory-bandwidth bounded
and there is roughly a factor of three in theoretical peak memory bandwidth between
CPU and GPU we expect the same factor in the runtime of both platforms. Indeed,
the GPU shows a speedup factor of about three for larger problem sizes. For smaller
problems this factor shrinks down due to several reasons: first, the GPU overhead
e.g. for CUDA kernel calls becomes visible and there is not enough work to be done
in parallel, especially on the coarse grids. Furthermore, the CPU can profit from its
big caches.

Weak scaling Figure 26.3 shows the weak scaling behavior of the code for problem
size 2563. On the Xeon—having eight physical cores per node on two sockets—tests
are performed with four and eight MPI instances per node. We did not pin the MPI
processes to fixed cores and thus the runtimes slightly vary between 0.6 and 0.9
seconds for one V(2, 2)-cycle. In average the results do not differ much for four and
eight MPI instances per node. In case of the Tesla we have only two MPI instances
per node and the runtime is quite stable. However, it increases by approximately 20 %
for eight nodes compared to the baseline performance. This slightly worse scaling
factor on GPU is mainly due to the effect of additional intra-node memory transfers
of ghost layers between CPU and GPU.

26 A Geometric Multigrid Solver on GPU Clusters 417

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8

ru
nt

im
e

[s
]

Number of nodes

Xeon 5550, 4 thr./node
Xeon 5550, 8 thr./node

Tesla M1060

Fig. 26.3 Weak scaling behavior per computer node of one multigrid V(2, 2)-cycle

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8

ru
nt

im
e

[s
]

Number of nodes

Xeon 5550, 8 thr./node
Tesla M1060

Fig. 26.4 Strong scaling behavior of one multigrid V(2, 2)-cycle with 2563 unknowns

Table 26.2 Speedup factors
for strong scaling experiment
in Fig. 26.4

#Nodes 2 4 8

Tesla M1060 1.79 3.21 5.56
Xeon 5550 2.06 3.52 7.71

Strong scaling Next, we scale the number of involved processing units, but leave
the total problem size, i.e. the number of unknowns, constant. Figure 26.4 shows the
runtimes on the Xeon and the Tesla for 2 · 2563 unknowns are shown for one to eight
nodes of the cluster and Table 26.2 the corresponding relative speedup factors.

For the Xeon tests the parallel efficiency is relatively high: The speedup factor
on 8 nodes of 7.71 stays only slightly below the ideal one, which is linear with the

418 H. Koestler et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1283 256x1282 2562x128 2563

ru
nt

im
e

[s
]

Number of unknowns

Tesla M1060, const.st.
Tesla M1060, var.st.

Tesla C2070, const.st.
Tesla C2070, var.st.

Fig. 26.5 Performance comparison of constant and variable 7-point stencil within one multigrid
V(2, 2)-cycle

number of nodes and thus 8. For two nodes even super-linear scaling is reached with
the CPU code, this could be caused for example by cache effects.

The speedup on the Tesla is just 5.56, which is a result of different factors: on the
one hand the problems for small size mentioned when discussing the single-node
performance and on the other hand the communication overhead addressed within
the weak scaling experiments.

26.4.3 CUDA Compute Capability 1.3 Versus 2.0

Next we evaluate the performance of a newer NVIDIA Fermi Tesla C2070 graphics
board that implements CUDA compute capability 2.0. Its technical specifications are
listed in Table 26.1 and the difference to the previous generation (CUDA compute
capability 1.3) is, beneath a higher bandwidth, a tremendous increase in double-
precision floating-point performance and real caches. Furthermore, it is easier to
program: Alignment requirements are weakened and C++ support is enabled.

We now test also variable 7-point stencils, i.e. c from Eq. 26.1 is no more constant
within the domain Ω . In this case we have in contrast to the constant coefficient stencil
to store additionally the stencil at each grid point. We then use the RBGS smoother
as sketched in Algorithm 25.2. The runtimes for constant and variable stencils are
shown in Fig. 26.5 on both GPU platforms. With the constant stencil the C2070 is 2.2
times faster than the M1060, whereas for the variable stencil the speedup factor is 1.9.
The performance gain cannot be a single effect of the increased memory bandwidth.
In addition to that we also profit from the new features of the Fermi, especially from
the cache and the weaker alignment requirements.

26 A Geometric Multigrid Solver on GPU Clusters 419

Pre-
smoothing

36%

Residual
8%

Restriction
2%

Coarse
Grid
16%

Inter-
polation

2%

Post-
smoothing

36%

(a)

Pre-
smoothing

34%

Residual
7%

Restriction
4%

Coarse
Grid
19%

Inter-
polation

2%

Post-
smoothing

34%

(b)

Pre-
smoothing

35%

Residual
6%

Restriction
2%

Coarse
Grid
19%

Inter-
polation

3%

Post-
smoothing

35%

(c)

Fig. 26.6 Runtime percentage for different components on a one and b eight Tesla M1060 and
c one Tesla C2070 (problem size 2563, constant stencil)

26.4.4 Runtime of Components

In this section we try to give more insight in the runtime behavior of the different
parts of the multigrid solver in order to identify the performance bottlenecks.

Therefore, Fig. 26.6 shows the portion of runtime spent in different components
of a V(2, 2)-cycle on one resp. eight Tesla M1060 and one Tesla C2070. Since the
overall performance of the multigrid solver is bounded by the memory bandwidth it
is not astonishing that in each case smoothing on the finest grid takes around 70 %
of the runtime. The problem size shrinks by a factor of 8 for each grid level, thus

420 H. Koestler et al.

RBGS
69%

Residual
7%

Restriction
2%

Boundary
16%

Inter-
polation

3%

Array Init
3%

(a)

RBGS
79%

Residual
8%

Restriction
2%

Boundary
5%

Inter-
polation

4%

Array Init
2%

(b)

Fig. 26.7 Runtime percentage of different CUDA kernels on one Tesla C2070 for problem size
a 1283 and b 2563 (constant stencil)

one expects the coarse grid (this includes all the previous components on all three
coarser grids plus solving the problem on the coarsest grid with 50 RBGS iterations)
to require about 1/8 of the runtime. This lies a little bit higher especially for the Tesla
C2070, because the smaller sizes are not very efficient on the GPU as seen before.
In the multi-GPU case the cost for the communication between the single processes
is an important issue. In contrast to the calculations that are simply distributed, the
communication has to be done extra when switching from sequential to parallel
code. Therefore, it has to be ensured that this extra work does only consume little
time and does not dominate the whole runtime. Within the multigrid algorithm the
communication is part of pre- and postsmoothing, where the solution ghost layer
has to be communicated to the neighboring processes, and of the restriction, where
the residual ghost layer has to be distributed. In Fig. 26.6 the communication effects
are an increase of the restriction runtime including the residual ghost layer transfer
and the increase of the portion spent on the coarser grids, because of the worse
ratio between local points and ghost layer points there and the bigger influence of
latencies in case of smaller transfers. Altogether, runtime distribution in the one-GPU
and multi-GPU case looks quite similar. To explain this, note that the difference in
runtimes on one and eight Tesla M1060 is 37 ms or 13 % of the total runtime (for
2563 unknowns per GPU and a constant stencil). This means, at least for that number
of GPUs, the communication does not have a dominating effect on the runtime.

To provide another point of view we also measured the performance of our CUDA
kernels for the same setting as above on one Tesla C2070 with the profiler com-
puteprof provided by NVIDIA. The results are summarized in Fig. 26.7. In contrast
to the previous measurements these do not contain the overhead from thread creation
and cleanup. Additionally, they show more details since some of the components in
Fig. 26.6 call more than one CUDA kernel. In total, we observe that the RBGS kernel

26 A Geometric Multigrid Solver on GPU Clusters 421

dominates the calculation. For 2563 unknowns it requires almost 80 % of the runtime
and for 1283 unknowns still almost 70 %. For the small problem size the boundary
treatment, which is included in the smoothing in Fig. 26.6, plays quite a role with
15 % of the total runtime.

26.5 Conclusions and Future Work

We have implemented a geometric multigrid solver for Eq. 26.1 on GPU and inte-
grated it into the WaLBerla framework. We observed that the runtimes decrease on
the current NVIDIA Fermi architecture due to its new hardware features like an
incorporated memory cache. The speedup factor between CPU and GPU implemen-
tations of our multigrid algorithm corresponds roughly to the ratio of their memory
bandwidths in the single-node case. Our experiments on a small compute cluster
showed good scaling behavior for CPUs and slightly worse for GPUs.

Next steps would be a performance optimization of our code and a comparison of
CUDA and OpenCL. One obvious improvement would be to use an optimized data
layout, by splitting the red and black grid points into two separate fields. Finally, we
currently investigate further applications for the parallel multigrid solver within the
WaLBerla framework.

References

Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Smith BF, Zhang H
(2009) PETSc web page. http://www.mcs.anl.gov/petsc

Bolz J, Farmer I, Grinspun E, Schröder P (2003) Sparse matrix solvers on the GPU: conjugate
gradients and multigrid. In: ACM SIGGRAPH 2003 papers, pp 917–924

Brandt A (1977) Multi-level adaptive solutions to boundary-value problems. Math. Comput.
31(138):333–390

Briggs W, Henson V, McCormick S (2000) A multigrid tutorial, 2nd edn. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia

Cohen J (2011) OpenCurrent. NVIDIA research. http://code.google.com/p/opencurrent/
Donath S, Feichtinger C, Pohl T, Götz J, Rüde U, (2009) Localized parallel algorithm for bubble

coalescence in free surface lattice-Boltzmann method. In: Sips H, Epema D, Lin H-X (eds)
Euro-Par, (2009) Lecture notes in computer science, vol 5704. Springer, Berlin, pp 735–746

Douglas C, Hu J, Kowarschik M, Rüde U, Weiß C (2000) Cache optimization for structured and
unstructured grid multigrid. Elect Trans Numer Anal 10:21–40

Dünweg B, Schiller U, Ladd AJC (Sep 2007) Statistical Mechanics of the Fluctuating Lattice
Boltzmann Equation. Phys. Rev. E 76(3):036704

Feichtinger C, Donath S, Köstler H, Götz J, Rüde U (2010) WaLBerla: HPC software design for
computational engineering simulations. J Comput Sci (submitted)

Feichtinger C, Habich J, Köstler H, Hager G, Rüde U, Wellein G (2010) A flexible patch-based lattice
Boltzmann parallelization approach for heterogeneous GPU-CPU clusters. J Parallel Comput.
Arxiv, preprint arXiv:1007.1388 (submitted)

http://www.mcs.anl.gov/petsc
http://code.google.com/p/opencurrent/

422 H. Koestler et al.

Goddeke D, Strzodka R, Mohd-Yusof J, McCormick P, Wobker H, Becker C, Turek S (2008) Using
GPUs to improve multigrid solver performance on a cluster. Int J Comput Sci Eng 4(1):36–55

Götz J, Iglberger K, Feichtinger C, Donath S, Rüde U (2010) Coupling multibody dynamics and
computational fluid dynamics on 8192 processor cores. Parallel Comput 36(2–3):142–151

Haase G, Liebmann M, Douglas C, Plank G (2010) A parallel algebraic multigrid solver on graphics
processing units. In: Zhang W et al (eds) High performance computing and applications. Springer,
Berlin, pp 38–47

Hackbusch W (1985) Multi-grid methods and applications. Springer, Berlin
Hülsemann F, Kowarschik M, Mohr M, Rüde U (2005) Parallel geometric multigrid. In: Bruaset A,

Tveito A (eds) Numerical solution of partial differential equations on parallel computers. Lecture
notes in computational science and engineering, vol 51. Springer, Berlin, pp 165–208

Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A (2009) PyCUDA: GPU run-time code
generation for high-performance computing. Arxiv preprint arXiv 911. http://mathema.tician.de/
software/pycuda

Köstler H (2008) A multigrid framework for variational approaches in medical image processing
and computer vision. Verlag Dr, Hut, München

NVIDIA Cuda Programming Guide 3.2 (2010). http://developer.nvidia.com/object/cuda_3_2_
downloads.html

Ohshima S, Hirasawa S, Honda H (2010) OMPCUDA: OpenMP execution framework for CUDA
based on omni OpenMP compiler. In: Beyond loop level parallelism in OpenMP: accelerators,
tasking and more, pp 161–173

Stürmer M, Wellein G, Hager G, Köstler H, Rüde U, (2008) Challenges and potentials of emerging
multicore architectures. In: Wagner S, Steinmetz M, Bode A, Brehm M (eds) High performance
computing in science and engineering. Garching/Munich, (2007) LRZ. KONWIHR. Springer,
Berlin, pp 551–566

Trottenberg U, Oosterlee C, Schüller A (2001) Multigrid. Academic Press, San Diego

http://mathema.tician.de/software/pycuda
http://mathema.tician.de/software/pycuda
http://developer.nvidia.com/object/cuda_3_2_downloads.html
http://developer.nvidia.com/object/cuda_3_2_downloads.html

	26 A Geometric Multigrid Solver on GPU Clusters
	26.1 Introduction
	26.2 Parallel Multigrid
	26.2.1 Multigrid Algorithm
	26.2.2 GPU Implementation

	26.3 WaLBerla
	26.3.1 Patch, Block, and Sweep Concept
	26.3.2 MPI Parallelization
	26.3.3 Multi-GPU Implementation

	26.4 Performance Results
	26.4.1 Platforms for Tests
	26.4.2 Scaling Experiments
	26.4.3 CUDA Compute Capability 1.3 Versus 2.0
	26.4.4 Runtime of Components

	26.5 Conclusions and Future Work
	References

