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Preface

The past several years have witnessed a great transformative scenario occurring in
the computational science by the extremely rapid incursion made by GPU and
many-core architecture into the arena of high-performance computing (HPC). At
the Supercomputing 2009 meeting in Portland, a group of us (X. Chi, D. A. Yuen,
and H. Tufo from University of Colorado) gathered together and formulated plans
for a GPU conference to be held in China. First, it was supposed to be held in
Shanghai as proposed by Jifeng Yao from Shanghai Supercomputing Center, but
because of the EXPO 2010, we had to move it to Harbin, which turns out to be a
more delightful locale during the summer. Our timing for this conference was
quite propitious, as the platforms armed with GPU and fast networking carried the
day and captured three out of the top five slots of the TOP-500 list in Super-
computing 2010 in New Orleans. This auspicious event justified our thinking back
in 2009 about the potential importance of GPU computing.

The first International Workshop of GPU Solutions to Multiscale Problems in
Science and Engineering (GMP-SMP2010) kicked off July 26, 2010 in Harbin, the
capital of Heilongjiang province in Northeast (Dongbei) China. The workshop was
organized by the Supercomputing Center of Computer Network Information
Center, Chinese Academy of Sciences (CAS) in Beijing, the Graduate University
of CAS, and the Chinese Society of Theoretical and Applied Mechanics. Nearly
100 computational experts and scholars from the world’s well-known universities
and institutes such as the University of Houston, the National Astronomical
Observatory of Japan, Hong Kong Baptist University, the University of Chicago,
the Tokyo Institute of Technology, Japan, Brown University, the University of
Amsterdam, the University of Erlangen-Nuremberg, National Center of Atmo-
spheric Center, University of Minnesota, Macalester College, University of Bonn,
the Chinese Academy of Science, Tsinghua University, Peking University, Fudan
University, China, University of Science and Technology of China (USTC),
attended this international workshop.

The leadoff talk was given by Professor Xuebin Chi, the Director of the
Supercomputing Center of CNIC, CAS. He stressed strongly that a revolutionary
change is brewing in the field of technologies and applications of high-
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performance computing due to the rapid development of GPU and many-core
technology. He further expressed the hope that the discussion on GPU applications
to multiscale problems in science and engineering be extremely fruitful. Following
Professor Chi’s speech, Professor David Yuen from University of Minnesota also
gave an exciting opening talk, encouraging strongly vigorous participation by the
students from China and the international contingent.

During the two-day workshop period, the attendees discussed topics on GPU
solutions to multiscale problems in science and engineering. The workshop con-
sisted of three sessions, the keynote lecture session, the invited lecture session, and
the student and poster session. The keynote lectures are ‘‘Development and
application of a HPC system for multiscale discrete simulation Mole-8.5’’ given
by Professor Wei Ge from IPE, CAS, ‘‘Acceleration for energy efficient, cost
effective HPC’’ given by Professor Lennart Johnsson from the University of
Houston, USA, ‘‘Practical Random Linear Network Coding on GPUs’’ given by
Professor Xiaowen Chu from the Hong Kong Baptist University, China and
‘‘GRAPE and GRAPE-DR’’ given by Professor Jun Makino from the National
Astronomical Observatory of Japan, Japan. In the subsequent talks, issues on
seeking GPU solutions to multiscale problems were addressed from different
viewpoints, such as focusing on high-performance computing methods and algo-
rithms, efficient software implementation techniques, the construction of scientific
computing environment, the mainstream development trends, as well as other
GPU-related issues in scientific computing and visualization technology. In the
second afternoon students, both graduates and undergraduates from USA and
China, gave a bulk of the presentations as well as interesting posters.

In the closing banquet, Professor David Yuen, on behalf of the organizing
committee, announced that the conference proceedings will be published soon and
the workshop will be held again in 2011, and Lanzhou was mentioned as a
potential place. Plans for a book from the workshop were also laid out at the
closing banquet on July 28.

As far as we are aware of, the few extant books on GPU and multi-core
computing (e.g., Kirk and Hwu 2010; Kurzak et al. 2011) are written by computer
scientists. Thus, there is now a dire need for a book with a strong applicational
bent in order to encourage more people to join the GPU game.

Our papers are divided into two types: long expository papers with ample
illustrations and examples and short contributions with a particular applicational
focus in mind. The book is divided into eight sections. In section 1 we begin with
this preface. Then we follow with an article by Matt Knepley and David Yuen -
which addresses the reasons why scientists and engineers should be considering
GPU. This is followed by a chapter by Lang, Wang, and Yuen offering photos of
the workshop itself. This book is rather unique at this time has articles, spanning
many different areas in science and engineering, which show the health of this
burgeoning field. This book is to be contrasted with the recent book edited by
Kurzak et al. (2011), which focused mainly on hardware and algorithms and is
devoted to a computer science audience rather than people in computational
science.
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This book covers aspects of hardware and green computing in section 2. We
discuss in section 3 software libraries from both China and the USA., namely
PARRAY by Chen Yifeng and PETSc by the group at Argonne. In section 4 we
shows the industrial applications on GPU. There Wei Ge’s group performed an
outstanding job in getting a super performance from a GPU–CPU system using
thousands of GPU. In section 5, we shows the inroads made by GPU in density-
functional theory and electronic structures. Section 6 deals with geophysical and
fluid dynamical applications. We see the 145 Tflop performance on a weather code
from the Japanese group at Tokyo Institute of Technology. There is also appli-
cation of GPU on 3D elastic-wave propagation by Taro Okamoto and also by S.
Song and his colleagues. In section 7, on algorithms and solvers have a thorough
discussion of multigrid solver as applied to industrial problems by H. Koestler
from Germany. In the final section on visualization, we present a variety of
application on imaging and microtomography using GPU.

We plan to communicate broadly about the potential of GPU and many-core
computing to the scientific and engineering community out there and not restricted
to computer scientists. We hope this book will give the future perspectives of GPU
to scientists and engineers and will stimulate further growth in this field. We thank
both the Chinese Academy of Sciences and the OCI program of National Science
Foundation for their generous support. We are very grateful for the help provided
by Xianyu Lang, Qing Zhao, and Yichen Zhou in preparation of this volume.

Minnesota, USA David A. Yuen
Beijing, China Long Wang

Xuebin Chi
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Chapter 1
Why Do Scientists and Engineers
Need GPU’s Today?

Matthew G. Knepley and David A. Yuen

Abstract Recently, a paradigm shift in computer architecture has offered
computational science the prospect of a vast increase in capability at relatively little
cost. The tremendous computational power of graphics processors (GPU) provides
a great opportunity for those willing to rethink algorithms and rewrite existing sim-
ulation codes. In this introduction, we give a brief survey of GPU computing, and its
potential capabilities, intended for the general scientific and engineering audience.
We will also review some challenges facing the users in adapting the large tool-
box of scientific computing to these changes in computer architecture, and what the
community can expect in the near future.

1.1 Introduction

In the past 4 years, the tremendous progress made by GPU-based computers has
been revolutionary. In November 2010, the Tianhe 1A (see Fig. 1.1), which is a
hybrid massively parallel computer consisting of thousands Intel Westmeres and
Nvidia Fermi boards, assumed the No.1 position in the Top-500 list (Meuer et al.
2011), signaling a paradigm shift. That this machine, together with 3 more out of
the first 5 places, were CPU-GPU machines based in Asia has come as a surprise
to the computational community at large, particularly at Supercomputing 2010 in
New Orleans. We would like to briefly review some successes of GPU computing

M. G. Knepley (B)
Computation Institute, University of Chicago,
Chicago, IL 60637, USA
e-mail: knepley@ci.uchicago.edu

D. A. Yuen
Department of Earth Sciences and Minnesota Supercomputing Institute,
University of Minnesota, Minneapolis, MN 55455, USA
e-mail: daveyuen@gmail.com
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4 M. G. Knepley and D. A. Yuen

Fig. 1.1 The Tianhe-1A couples massively parallel GPUs with multi-core CPUs, employing 7,168
NVIDIA Tesla M2050 GPUs and 14,336 CPUs. It is a 2.507 Petaflop system consuming only
4.04 MW

solutions for scientists and engineers, and motivate them to explore further using the
in-depth articles in this volume.

From the point of view of a computational scientist, a GPU is a massively parallel
processor with large memory bandwidth. Its memory is organized hierarchically, into
small local processor memories, slightly larger shared memories for vector processor
groups, and global memories close to generic CPU sizes (see Fig. 1.2). Movement
between the various memory levels is explicitly organized by the programmer. Volkov
(2008) has given a lucid explanation of achievable performance with this memory
organization based upon the classical Little’s Law (Little 1961) from queuing theory,
namely that the parallelism required to achieve peak performance is equal to the total
throughput multiplied by the latency, as shown in Fig. 1.3. Thus, we can quantify the
concurrency needed to take full advantage of this new devices. Moreover, early gen-
erations of GPUs had large gaps between single and double precision performance,
but this is no longer true with the introduction of the Fermi (NVIDIA 2009), which
puts the gap between single and double-precision at only a factor of two.

1.2 Why Move to the GPU?

The GPU platform can enable desktop computational science. For a modest invest-
ment, around $2000 at the time of writing, individual scientist can harness one teraflop
that can be plugged into a common wall outlet. GPUs deliver exceptional performance
both per watt and per dollar. Four of the top ten computing installations in the Green
500 use GPUs, including the third ranked system, the DEGIMA cluster in Nagasaki.
The theme of green computing is addressed further in this volume in the chapter by
Lennart Johnsson.



1 Why Do Scientists and Engineers Need GPU’s Today? 5

(a) (b)

Fig. 1.2 Comparison between a a standard CPU core layout, and b the higher throughput GPU
core. Image credit: Kayvon Fatahalian from Carnegie Mellon University

Needed parallelism = Latency x Throughput

Fig. 1.3 Pictorial representation of the throughput on an example many-core machine. Since there
is a 3 cycle latency and 24 operations can be in flight at once, 8-way parallelism is required to
achieve peak performance. Image credit: Vasily Volkov from University of California Berkeley

Since the GPU can be easily combined with a common workstation, management
of the system is also very easy. The bureaucracy and lengthy wait times of large
computing centers are bypassed for all but the largest problems, and development
costs are greatly reduced. Moreover, the GPU packages visualization along with the
computation. This allows for immediate examination of the results and exploration
through visual interactivity, which drives science and engineering innovation.

There are many good reasons for computational researchers to examine GPUs,
but the most compelling is that increases in the number of cores is now inevitable.
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Due to power limitations, the clock frequency of processors has stagnated. Future
increases in performance will come almost entirely from increases in core count.
In fact, Intel and AMD currently sell more multicore than single-core processors.
GPUs are not as flexible as the Intel Sandy Bridge (2011) or AMD Magny Cours
(2011) architectures, but represent a large increase in both flops per watt and flops
per dollar.

1.3 Migration to the GPU

Migration of existing applications to a many-core platform can incur significant cost.
In this section, we review pieces of software technology that can make this process
as efficient as possible. Three broad categories of tools can be distinguished: support
for GPU kernel development, high level libraries, and automated compiler solutions.
Tools of this type have existed for quite some time on CPUs, however changing
requirements dictate a shift in implementation strategies and goals. The memory
latency penalty when changing levels in the memory hierarchy is even more severe
on a GPU. The latency for global memory transactions on the new Fermi 2070 from
NVIDIA is more than 100 times greater than a transaction to a register or shared
memory. Moreover, the hardware provides very little help to the programmer since
most “caches”, such as shared memory or textures, are explicitly managed, and the
recently introduced caches in the Fermi architecture are very small (16 K) compared
to 12 MB on the Intel i7-970.

At the lowest level, application developers will want to produce kernels, using
either CUDA or OpenCL, which will execute on the accelerator. The PyCUDA
Klöckner (2011a) and PyOpenCL Klöckner (2011b) packages from Andreas Klöck-
ner present an innovative way to develop and test kernels. CUDA or OpenCL source is
handled as a Python string, and compiled modules become Python objects. They can
be easily executed with different thread configurations using only a Python function
call. Sophisticated Python string manipulation and templating packages can be used
to easily generate a range of kernel variants. Another key component of development
is debugging. NVIDIA has recently released the cuda-gdb program, which allows
seamless debugging between CPU and GPU, switching between thread blocks, and
examination of local state on the thread block.

There are several excellent library packages for linear algebra, both dense and
sparse, on the GPU. NVIDIA alone supports CUBLAS (NVIDIA 2010), the Thrust
libraries of STL-like iterators (Bell and Hoberock 2011), Cusp (Bell and Garland
2011) and CUDASPARSE (NVIDIA 2010) for sparse matrix multiplication, and
OpenCurrent (Cohen 2011) which handles structured geometric multigrid. More
advanced dense factorizations, such as QR and SVD, are also available in the
FLAME (Quintana-Orti et al. 2003; Zee 2009) package from UT Austin and the
Magma (Dongarra et al. 2011) package from UT Knoxville. FFT packages are
available from NVIDIA (CUFFT (2007)), and Peking University (Parray) which is
detailed in the chapter by Yifeng Chen. The CUDA Data Parallel Primitives library
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(Owens et al. 2011) from UC Davis is similar to Thrust, but provides more graph-
based algorithms. There are notable holes in library support, such as the lack of an
efficient sparse triangular solve, needed both for direct factorization and multigrid
preconditioners, but overall potential users have a rich set of linear algebra support
to choose from.

At a higher level, the PETSc package (Balay et al. 1997, 2011) provides linear
and nonlinear algebraic solvers, by building on the serial linear algebra cited above.
PETSc handles parallel communication through MPI, and can hook together a host
of accelerators. Moreover, algorithms in PETSc, such as Krylov solvers, the Newton
iteration, or Implicit-Explicit (IMEX) time-stepping solvers (Kennedy and Carpenter
2003; Hairer and Wanner 1996), all handle logic on the CPU, but algebraic compu-
tation on GPU. Vectors and matrices reside on the GPU throughout the algorithm,
so that costly communication is avoided, resulting in complete reuse of algorithmic
structure of the CPU versions. This same strategy allows parallel sparse eigenvalue
problems to be solved on the GPU through the SLEPc package. The PETSc imple-
mentation is detailed in the chapter by Minden, et al. in this volume.

In the past, accessing GPU resources required code development on the part of the
user. However, now one can substantially accelerate some application codes using
fully automated approaches. The Jacket system from Accelereyes (2011) is able to
take sections of standard Matlab code and convert them to CUDA kernels. It executes
these kernels on the GPU and returns the results, which are seamlessly integrated into
the running Matlab program. In a similar vein, the PGI compiler (Portland Group Inc
2011) is able to take small code sections with custom annotations, similar to OpenMP,
and compile them as CUDA kernels. The compiler handles all the necessary glue
code to launch kernels and transfer input and output data. While not appropriate
for the most complex procedures, if small kernels can be isolated, these approaches
provide a very user-friendly avenue to use GPUs, and has had signal successes shown
in the chapter by Zhang et al.

1.4 Example Applications

PyClaw (Mandli et al. 2011; Alghamdi et al. 2011) is a Python-based structured
grid solver for general systems of hyperbolic PDEs. PyClaw provides a powerful
and intuitive interface to the algorithms of the existing Fortran codes Clawpack and
SharpClaw. Due to efficient interfacing tools and design, this incurs very little perfor-
mance cost while dramatically simplifying code development and use. PyClaw also
incorporates the PETSc library, enabling massive parallelism and scalable solvers.
The package is further augmented by use of PyWENO Emmett (2011) for generation
of efficient high-order WENO code. The combination of these tools interconnected
through their Python bindings allows for the efficient solution of a wide range of prob-
lems through application of numerical tools that heretofore have never been brought
together. It has both an extension for scalable distributed-memory parallelism, and
for Riemann solvers and limiters on the GPU, which work together seamlessly.
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The GeoClaw (George 2011; Berger et al. 2011) package specializes PyClaw for
geophysical simulation, notably tsunami investigation. With a GTX580, PyClaw can
achieve 10 Gflops in double precision for the entire run, which by comparison is
almost by two orders of magnitude faster than the same run on an intel i9 processor.

Hammond and DePrince have implemented the quantum many-body method
coupled-cluster theory on GPUs using CUDA and associated math libraries (DePrince
and Hammond 2011). This code is fully hybrid in that it uses threaded kernels on
the CPU that overlap with streaming GPU calls, and also uses both task and data
parallelism. Moreover, this coupled-cluster iterative solver runs an order of magni-
tude faster than the best CPU-only codes, such as Molpro. This is the first step in
developing a coupled-cluster code for GPU-based supercomputers, such as the Cray
Titan to be delivered to ORNL in 2012.

In this volume, Sanchez et al. from the University of Minnesota have reported on
their implementation of two- and three-dimensional Rayleigh-Bénard thermal con-
vection with infinite Prandtl number on Nvidia GPUs using a 2nd-order finite differ-
ence method together with a discrete-Fourier transform (see Fig. 1.4). By exploiting
the massive parallelism of GPU using both CUDA for C and optimized CUBLAS
routines, they have run simulations of Rayleigh number up to 6 · 1010 in two dimen-
sions and up to 107 in three dimensions on a single Fermi GPU. On a single Nvidia
Tesla C2070 GPU, the implementation have single-precision performance of 535 and
100 Gflop/s respectively. Andreas Klöckner of New York University has developed
an unstructured, high-order, parallel Discontinuous Galerkin code, Hedge, for the
simulation of electrodynamics and incompressible fluid dynamics. In the results
shown in the included chapter, he is able to realize 250 GF on a single NVIDIA
GTX 280 for the entire simulation, and nearly 4 TF on a network on 16 GPUs. The
ASUCA weather forecasting program, a research code from the Japan Meteorologi-
cal Agency, is examined in the chapter by Prof. Aoki of Tokyo Institute of Technol-

Fig. 1.4 A visualization of the global mantle circulation from Sanchez et al. for Rayleigh number
Ra = 6 · 1010 on 2D 20002 grid. They use a nonlinear color map of the temperature field, where
blue represents colder material, red and yellow represent hot, and green represents a temperature
with ±2.5 % of the center of the normalized temperature scale. Refer to the chapter for details of
the calculation
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ogy. The dynamical core uses a flux form non-hydrostatic compressible form for the
equations and is third order accurate in space and time. It achieves 50 GF on a single
NVIDIA M2050 node of TSUBAME 2.0 which represents a speedup of twelve times
over the Xeon X5670. The code also scales up to the entire machine, computing at
a sustained 145 TF in single precision on almost 4,000 GPUs. In the chapter by Taro
Okamoto from Titech, large-scale 3D seismic wave propagation using domains up
to 10003 has reported performance exceeding several hundreds of Gflops.

1.5 Future Perspectives

With the advent of Tianhe-1A, with more than 7,000 GPUs, and TSUBAME2, with
over 4,200, supercomputing has clearly begun to embrace manycore and hybrid
architectures. As power efficiency requirements become more stringent, this trend
toward GPUs should only increase. Although the issue of the stability of the entire
computing system remain murky, as the likelihood of failure of some core increases
with the number of cores and runtime, the articles in this volume demonstrate that
practical science and engineering calculation is possible on the GPU, and that a solid
foundation of software infrastructure is currently being constructed to support this.
In the future, we hope to see a focus on aspects of the problem which have to date
remained largely unexplored.

For many algorithms, particularly those of linear algebra and algebraic solvers,
memory bandwidth is the critical resource. This provides another powerful reason to
employ single precision floating computation, since it consumes half the bandwidth
of double precision. However, single precision cannot be used naively in most solvers
due to the sensitivity to roundoff error. Exploration of mixed precision algorithms,
and conceptual frameworks for their construction and analysis are sorely needed for
modern GPU computing.

As the number of independent functional units, or cores, increases, so does the
penalty for synchronization across the computing ensemble. Synchronization is
required for any global reduction, such as those required for norms used in con-
vergence tests or dot products necessary for orthogonalization. There are also many
source of process jitter, such as OS noise, overlap of multiple kernels, communication
between CPU and GPU, scheduling problems, and even excessive heat. Formerly, on
machines with fewer than 1,000 cores, these operations were rarely a major factor in
runtime. However, at several thousand cores, a Krylov solver can spend a third of its
time waiting to synchronize processes. Now with a thousand cores on a single GPU
board, synchronization reduction is the next great hurdle for scientific software.

Lastly, GPU and many-core CPU manufacturers, such as Nvidia and Intel, do not
have nearly as much experience in massive integration as CPU manufactures, such
as IBM, Cray, and Fujitsu. It will most likely take a partnership in this area to bring
about truly reliable large scale machines which incorporate GPUs and/or many-core
CPUs. The interplay between chips such as the Intel Many Integrated Core (MIC)
and NVidia Kepler will present both architectural and programming challenges.
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Chapter 2
Happenings at the GPU Conference

Xian-yu Lang, Long Wang and David A. Yuen

The following pages should convey the lively convivial atmosphere at the GPU
conference in nice surroundings of Harbin in China’s Dongbei region.

1. July 26th: Registration Day

Harbin HANLIN HYATT Hotel Registration

The conference was held in Harbin HANLIN HYATT Hotel at XueFu Road No. 56,
NanGang, Harbin, Heilongjiang, China. July 26th is the registration day, in which
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almost 100 computational experts and scholars from the world’s well-known univer-
sities and institutes arrived.
2. July 27th: The First Day

The Group Photo of attendees from the conference

At the beginning, Prof. Xuebin Chi, the director of the Supercomputing Center
of CNIC, Chinese Academy of Sciences and Prof. David Yuen from the Univer-
sity of Minnesota gave the exciting opening speeches. Prof. Chi pointed out that a
revolutionary change is brewing in the field of technologies and applications of high
performance computing due to the rapid development of GPU technology. He further
expressed the hope that the discussion on GPU applications to multi-scale problems
in science and engineering be fruitful.

Prof. Chi Xuebin, the director of the Supercomputing Center of CNIC, CAS gave
the Opening Speech
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Prof. Dave A. Yuen from University of Minnesota gave a Second Opening Speech

Mr. John Xie, NVIDIA, China PSG Sr. Sales Manager Spoke on �TESLA GPU
Computing Update�

Prof. Wei Ge, IPECAS, China spoke on�Development and application of a HPC
system for multi-scale discrete simulation—Mole-8.5�
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Prof. Lennart Johnsson, University of Houston, USA �Acceleration for energy
efficient, cost effective HPC�

Dr. Matthew Knepley, University of Chicago, USA�Fast Multiple Solvers for Vor-
tex Method on GPU�

Prof. Wei Ge, IPECAS, China spoke on�Development and application of a HPC
system for multi-scale discrete simulation—Mole-8.5�
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Dr. Peng Wang, NVIDIA, USA �GPU Best Practices for HPC Applications at
Industry Scale�

Dr. Taro Okamoto, Tokyo Institute of Technology, Japan�GPU-Accelerated Sim-
ulation of Seismic Wave Propagation�

Prof. Hong Liu, IGGCAS, China �Accelerating RTM on CUDA platform of
CPU/GPU�
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Prof. Yangdong Deng, Tsinghua University, China �Accelerating Simulation of
Seismic Wave Propagation by Multi GPUs and 3D Decomposition�

Prof. Takayuki Aoki, Tokyo Institute of Technology, Japan �Large-scale CFD
Applications on GPU-based Supercomputer at Tokyo Institute of Technology�

Prof. Yunquan Zhang, ISCAS, China �Accelerating Linpack Performance with
Mixed Precision Algorithm on CPU+GPGPU Heterogeneous Cluster�
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Prof. Yifeng Chen, Peking University, China �Towards Developing Portable FFT
Library for GPU Clusters�

Dr. Junjie Peng, Shanghai University, China�Parallel Lattice Boltzmann Method
on CUDA Architecture�

Dr. Thomas Geenen, University of Amsterdam, the Netherlands�Iterative deblur-
ring of large 3D datasets from Cryomicrotome imaging using an array of GPUs�
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Dr. Ying Liu, GUCAS, China�Some GPU Statistical Applications in SCCAS�

Dr. Xianfeng He, IPECAS, China�Parallel Visualization of Multi-scale simulation:
GPU implement and application in Mole-8.5�

Dr. Long Wang, SCCAS, CNIC, China�Some GPU Applications in SCCAS�
Eighteen talks on GPU solutions to multi-scale problems in science and engineer-
ing were given on the first day of the conference. The banquet was held in PORT-
MAN Russian type restaurant, which is located on Central Avenue, the evening was
extremely beautiful.
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Banquet PORTMAN Russian Type Restaurant

Holy Sophia Cathedral in the night

3. July 28th: The Second Day

Mr. Rob M. Weiss, Macalester College, USA�WebViz�
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Prof. Xiaowen Chu, Hong Kong Baptist University, China�Practical Random Lin-
ear Network Coding on GPUs�. Prof. Jun Makino, National Astronomical Obser-
vatory of Japan, Japan�GRAPE and GRAPE-DR�

Dr. Andreas Kloeckner, Brown University, USA �High-Order Discontinuous
Galerkin Methods by GPU Metaprogramming�

Dr. Harald Koestler, University of Erlangen-Nuremberg, Germany�Software and
Performance Engineering for numerical codes on GPU clusters�
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Prof. Xisheng Luo, USTC, China�GPU accelerated CESE Method for 1D shock
tube problems�

Dr. Rory Kelly, NCAR, Boulder, USA�GPU application to Large Numerical sim-
ulations in Atmospheres�

Prof. Wensheng Bian, ICCAS, China�Multi-scale Simulation of Hydrogen-oriented
Chemical Reactions�
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Prof. Dongsheng Xu, IMRCAS, China�Nucleation and reaction of dislocations in
some metals and intermetallic compound TiAl�

Dr. Shuxia Zhang, University of Minnesota, USA �High Throughput Computing
and Interactive Visualization on a Desktop Supercomputer�

Dr. Gaojin Wen, SIAT, CAS, China�Parallelized Binomial Option Pricing on Het-
erogeneous Supercomputer�
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Dr. Ying Xu, SSC, China�Fully-resolved direct numerical simulation of particle-
laden turbulent flow using GPUs�

Dr. Yanbin Yang, BAO, CAS, China�Accelerating Multi-Scale Astrophysical Par-
ticle Simulations with Many-Core Hardware�

Dr. Bojing Zhu, GUCAS, China �Correlation of Zipingpu reservoir and 2008
Wenchuan earthquake by fluid flow driven pore-network crack mode�
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Mr. Sen Li, SCCAS, CNIC, China �GPU Computing On Computational Fluid
Dynamics�

Mr. David Sanchez, University of Minnesota, USA �High Rayleigh Number 3D
Mantle Convection on GPU�

Mr. Liang Zheng, University of Chinese Academy of Sciences, China�GPU Appli-
cations to Multigrid Solver for Stokes Equations�
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Mr. Robin Weiss, Macalester College, USA�GPU-Accelerated Swarm Intelligence
Algorithms for Data Mining�

Ms. Zhoujun Liu, IACAS, China �Particle-based Simulation of sand-ripples and
Interaction with Obstacle using GPU technique�

Ms. Xiaohua Wan, ICTCAS, China�Three-dimensional reconstruction of electron
tomography using graphic processing units (GPUs)�
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Mr. Weile Jia, SCCAS, CNIC, China�N-body simulation on GPU cluster�

Mr. Boris Galvan, Bonn University, German�GPU simulation of evolving fracture
networks in a poro-elastoplastic medium with pressure-dependent permeability�

Posters

4. July 29th: Sightseeing

On the last day we went touring at three sites around greater Harbin, which included
the tiger zoo, Russian Church and had Natural park on Sun Island by the river.

In all, the participants enjoyed a convivial atmosphere in which many ideas were
exchanged and new friendships were forged.
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Sun Island adjacent to the river

Siberian Tiger Artificial Propagation Center

Central Avenue in downtown Harbin
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Holy Sophia Cathedral
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Chapter 3
Efficiency, Energy Efficiency and Programming
of Accelerated HPC Servers: Highlights
of PRACE Studies

Lennart Johnsson

Abstract During the last few years the convergence in architecture for
High-Performance Computing systems that took place for over a decade has been
replaced by a divergence. The divergence is driven by the quest for performance,
cost-performance and in the last few years also energy consumption that during the
life-time of a system have come to exceed the HPC system cost in many cases. Mass
market, specialized processors, such as the Cell Broadband Engine (CBE) and Graph-
ics Processors, have received particular attention, the latter especially after hardware
support for double-precision floating-point arithmetic was introduced about three
years ago. The recent support of Error Correcting Code (ECC) for memory and
significantly enhanced performance for double-precision arithmetic in the current
generation of Graphic Processing Units (GPUs) have further solidified the interest
in GPUs for HPC. In order to assess the issues involved in potentially deploying
clusters with nodes consisting of commodity microprocessors with some type of
specialized processor for enhanced performance or enhanced energy efficiency or
both for science and engineering workloads, PRACE, the Partnership for Advanced
Computing in Europe, undertook a study that included three types of accelerators, the
CBE, GPUs and ClearSpeed, and tools for their programming. The study focused on
assessing performance, efficiency, power efficiency for double-precision arithmetic
and programmer productivity. Four kernels, matrix multiplication, sparse matrix-
vector multiplication, FFT, random number generation were used for the assessment
together with High-Performance Linpack (HPL) and a few application codes. We
report here on the results from the kernels and HPL for GPU and ClearSpeed accel-
erated systems. The GPU performed surprisingly significantly better than the CPU
on the sparse matrix-vector multiplication on which the ClearSpeed performed sur-
prisingly poorly. For matrix-multiplication, HPL and FFT the ClearSpeed accelerator
was by far the most energy efficient device.
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3.1 Introduction

3.1.1 Architecture and Performance Evolution

High-Performance Computing (HPC) has traditionally driven high innovation in
both computer architecture and algorithms. Like many other areas of computing
it has also challenged established approaches to software design and development.
Many innovations have been responses to opportunities offered by the exponential
improvements of capabilities of silicon based technologies, as predicted by “Moore’s
Law” (Moore 1965), and constraints imposed by the technology as well as packag-
ing constraints. Taking full advantage of computer system capabilities require archi-
tecture aware algorithm and software design, and, of course, problems for which
algorithms can be found that can take advantage of the architecture at hand. Con-
versely, architectures have historically been targeted for certain workloads. In the
early days of electronic computers, even at the time transistor technologies replaced
vacuum tubes in computer systems, scientific and engineering applications were
predominantly based on highly structured decomposition of physical domains and
algorithms based on local approximations of continuous operators. Global solutions
were achieved through a mixture of local or global steps depending on algorithm
selected (e.g., explicit vs. implicit methods, integral vs. differential methods). In
most cases methods allowed computations to be organized into similar operations
on large parts of the domains and data accessed in a highly regular fashion. This fact
was exploited by vector architectures, such as the very successful Cray-1 (Cray-1
Computer System 1976), and highly parallel designs such as the Illiac IV (1976)
(ILLIAC IV 1972, 2011a,b; Thelen 2005), the Goodyear MPP (Massively Parallel
Processor) (1983) (Goodyear MPP 2011) with 16,896 processors, the Connection
Machine (Cray-1 Computer System 1976; Hills 1989; Thelen 2003) CM-1 (1986)
with 65,536 processors and the CM-2 (1987) with 2048 floating-point accelerators,
These machines all were of the SIMD (Single Instruction Multiple Data) (Cell 2011),
data-parallel, or vector type, thus amortizing instruction fetch and decode over sev-
eral, preferably large number of operands. The memory systems were designed for
high bandwidth, which in the case of the Cray-1 (Cray-1 Computer System 1976)
and the Control Data Corp. 6600 (Thornton 1963, 1970) was achieved by optimizing
it for access of streams of data (long vectors), and in the case of MPPs through very
wide memory systems. The parallel machines with large numbers of processors had
very simple processors, indeed only 1-bit processors. (It is interesting to note that the
data parallel programming model is the basis for Intel’s recently developed Ct tech-
nology (Ghuloum et al. 2007a,b) and was also the basis for RapidMind (RapidMind
2011) acquired by Intel in 2009).

The emergence of the microprocessor with a complete CPU on a single chip
(Single Chip 4-Bit P-Channel Microprocessor 1987; Intel 4004 2011a,b; Kanel-
los 2001) targeted for a broad market and produced in very high volumes offered
large cost advantages over high-performance computers designed for the scientific
and engineering market and led to a convergence in architectures also for scientific
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Table 3.1 June 1993 Top 500 list by process architecture (Top500 2011)

Processor architecture Count Share (%) Rmax sum (GF) Rpeak sum (GF) Processor sum

Vector 334 66.80 650 792 1,242
Scalar 131 26.20 408 859 15,606
SIMD 35 7.00 64 135 54,272
Totals 500 100 1,122.84 1,786.21 71,120

computation. According to the first Top500 (Top500 2011) list from June 1993, 369
out of 500 systems (73.8 %) were either “Vector” or “SIMD”, while by November
2010 only one Vector system appears on the list, and no SIMD system. Since vector
and SIMD architectures were specifically targeting scientific and engineering appli-
cations whereas microprocessors were, and still are, designed for a broad market,
it is interesting to understand the efficiencies, measured as fraction of peak per-
formance, achieved for scientific and engineering applications on the two types of
platforms. The most readily available data on efficiencies, but not necessarily the
most relevant, is the performance measures reported on the Top500 lists based on
High-Performance Linpack (HPL) (Petitet et al. 2008) that solves dense linear sys-
tems of equations by Gaussian elimination. The computations are highly structured
and good algorithms exhibit a high degree of locality of reference. For this bench-
mark, the average floating-point rate as a fraction of peak for all vector systems was
82 % in 1993, Table 3.1, with the single vector system on the 2010 list having an
efficiency of over 93 %, Table 3.2. The average HPL efficiency in 1993 for “Scalar”
systems was 47.5 %, but improved significantly to 67.5 % in 2010. The microproces-
sors, being targeted for a broad market with applications that do not exhibit much
potential for “vectorization”, focused on cache based architectures enabling appli-
cations with high locality in space and time to achieve good efficiency, despite weak
memory systems compared to the traditional vector architectures. Thus, it is not all
that surprising that microprocessor based systems compare relatively well in case of
the HPL benchmark. The enhanced efficiency over time for microprocessor based
systems is in part due to increased on-chip memory in the form of three levels of
cache in current microprocessors, and many added features to improve performance,
such as, e.g., pipelining, pre-fetching and out-of-order execution that add complexity
and power consumption of the CPU, and improved processor interconnection tech-
nologies. Compiler technology has also evolved to make more efficient use of cache
based architectures for many application codes.

Table 3.2 November 2010 Top500 list by processor architecture (Top500 2011)

Processor architecture Count Share (%) Rmax sum (GF) Rpeak sum (GF) Processor sum

Vector 1 0.20 122,400 131,072 1,280
Scalar 497 99.40 43,477,293 64,375,959 6,459,463
N/A 2 0.40 73,400 148280 11,584
Totals 500 100 43,673,092.54 64,655,310.70 6,472,327
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The scientific and engineering market also had a need for good visualization of
simulated complex physical phenomena, or visualization of large complex data sets
as occurring for instance in petroleum exploration. Specialized processor designs,
like the LDS-1 from Evans & Sutherland (Evans and Sutherland 2011a,b) that ini-
tially targeted training simulators, evolved to also cover the emerging digital cinema
market as well as engineering and scientific applications. As in the case of standard
processors, semiconductor technology evolved to a point where much of the perfor-
mance critical processing could be integrated on a single chip, such as the Geometry
Engine (Clark 1980, 1982) by Jim Clark who founded Silicon Graphics Inc (Silicon
Graphics 2011) that came to dominate the graphics market until complete Graphics
Processing Units (GPUs) could be integrated onto a single chip (1999) (GeForce 256
2011; Graphics Processing Unit 2011) at which time the cost had become sufficiently
low that the evolution became largely driven by graphics for gaming with 432 mil-
lion such units shipped in 2010 (Jon Peddie Research 2011) (compared to about 350
million PCs (Pettey 2011) and 9 million servers (Pettey and Stevens 2011) according
to the Gartner group). Thus, since in the server market two socket servers are most
common, but four and even 8-socket servers are available as well, the volumes of
discrete GPUs (as opposed to GPUs integrated with CPUs, e.g. for the mobile mar-
ket) and CPUs for PCs and servers are almost identical. Today, GPUs are as much
of a mass market product as microprocessors are, and prices are comparable (from
about a hundred dollars to about two thousand dollars depending on features).

With their design target having been efficient processing for computer graphics
GPUs lend themselves to vector/stream processing. As in the case of the vector
machines for scientific and engineering applications GPUs are optimized for applying
the same operation to large amounts of (structured) data and have memory systems
that support high execution rates. Over time GPUs have enhanced their floating-
point arithmetic performance significantly and since 2008 also incorporated hardware
support for double-precision floating-point operations and moved towards support of
the IEEE floating-point standard. Double-precision floating-point performance and
compliance with the IEEE floating-point standard are critical for many scientific and
engineering applications. The evolution of GPU floating-point performance since
2002 is shown in Fig. 3.1 (Introduction to Parallel GPU Computing 2010).

As seen in Fig. 3.1, in 2003 the GPU single-precision floating-point performance
was only modestly higher than that of common IA-32 (IA-32 2011) microprocessors
by, e.g., AMD and Intel, and there was no hardware support for double-precision
floating-point arithmetic, so many application developers in science and engineering
did not find the benefits of porting codes to GPUs sufficiently large to warrant the
effort to do so. However, as is also apparent from the figure, the performance trajec-
tories for GPUs have been quite different from those of CPUs, so that today a GPU
may have 10–30 times higher single-precision performance than a CPU, with the
AMD/ATI Radeon HD5870 (ATI Radeo HD 5870 Graphics 2011; Comparison of
AMD Graphics Processing Units 2011) having a peak single-precision performance
of 2.7 TF (1012 flops/s (floating-point operations per second)). Moreover, today
GPUs not only support double-precision arithmetic, but the performance advantage
compared to a CPU may be a factor of five or more.
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Fig. 3.1 Performance growth of GPUs and CPUs 2002–2010 (Introduction to Parallel GPU Com-
puting 2010)

Good application performance also requires high memory bandwidth. Today, the
memory bandwidth for high-end GPUs is about 150 GB/s (ATI Radeo HD 5870
Graphics 2011; Comparison of AMD Graphics Processing Units 2011; Comparison
of Nvidia Graphics Processing Units 2011; Tesla C2050/C2070 GPU Computing
Processor 2010), which compares very favorably with that of IA-32 microprocessors
by AMD and Intel that today has a memory bandwidth of 25 to 30+GB/s. (The Intel
Westmere-EP 6-core CPU has three memory channels each with a peak data rate
of 10.8 GB/s (32.4 GB/s total with DDR3 1.333 GHz DIMMs (Intel 56XX 2011),
whereas the AMD Magny-Cours 8- and 12-core CPUs have a peak memory data rate
of 28.8 GB/s across four channels for DDR3 1.333 GHz DIMMs due to limitations
in the North Bridge (Gelas 2010). Observed Stream (McCalpin 2011) benchmark
numbers are 20.5 GB/s (HP Challenge Benchmark Record 2011) and 17.9 GB/s
(Gelas 2010) for the Intel Westmere-EP CPU and 27.5 GB/s (Memory Bandwidth
(STREAM)—Two-Socket Servers 2011), 24.7 GB/s (Gelas 2010) and 19.4 GB/s
(HPC Challenge Benchmark Record 2011) for the AMD Magny-Cours CPU (on a
per CPU basis).

Thus, today GPUs offer about five times the memory bandwidth and about a
factor of five higher peak double-precision floating-point performance than IA-32
microprocessors, and the cost is comparable. For instance, nVidia’s Tesla C2050
lists for about $2,500, and the ATI FirePro 3D V9800 is priced similarly, compared
to a list price of $1,663 for the top-of-the line Intel Westmere-EP CPU (3.46 GHz,
6-cores, 12 MB L3 cache) (Intel 56XX 2011) whereas the top-of-the line AMD
Magny-Cours CPU has a list price of $1,514 (2.5 GHz, 12-cores, 12GB L3 cache)
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Fig. 3.2 Evolution of US power and cooling costs for a standard IA-32 server (Belady 2007)

(Ghuloum et al. 2007a). The lowest costs versions of CPUs may cost as little as
20 % of the top-of-the line CPUs, comparable to the GPUs targeted for the low end
consumer market.

3.1.2 Energy Efficiency

Performance and cost-performance are the traditional measures affecting choice of
technology and platforms for high-performance scientific and engineering applica-
tions. In recent years energy efficiency in computation has become another important
and sometimes deciding factor in the choice of platform. Since a few years ago the
life-time energy cost including cooling of servers has exceeded the cost of the server
itself, Fig. 3.2 (Belady 2007).

For microprocessors a large contribution to the performance gain from one gen-
eration to the next was increased clock frequency, until about a decade ago. The first
microprocessor, the Intel 4004 (Single Chip 4-Bit P-Channel Microprocessor 1987;
Intel 4004 2011a,b; Kanellos 2001) introduced in 1971 had a clock frequency of 0.74
MHz. By the end of 2002, Intel introduced a Pentium 4 clocked at 3.06 GHz using
its Northwood core (Pentium 4 2011). The clock frequency was further increased to
3.4 GHz in a version available in early 2004 and further to 3.8 GHz in the Prescott
core introduced later that year. (The 3.8 GHz Prescott Pentium 4 is the highest clock
frequency ever used in an Intel CPU.) Thus, over a period of about 30 years clock
frequencies for Intel microprocessors increased by a factor of about 5,000, followed
by a slight decline since its peak in 2004, Fig. 3.3. The evolution is similar for CPUs
from AMD, though traditionally AMD CPUs have operated at somewhat lower clock
rates, as shown in Fig. 3.4, and lower power consumption.

The reason for the apparent limit on clock frequency is that, for CMOS technology,
the dominating technology for microprocessors, the dynamic switching power P
depends on voltage and clock frequency as P ∝ cV2f. This relationship is due
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Fig. 3.3 Intel CPU clock rates 1971–2007 (Intel Processor 2011)

Fig. 3.4 AMD and Intel CPU clock rates, 1993–2005 (Team TsG 2005)

to the fact that CMOS is a charge transfer technology in which charges on gates
of transistors effectively acting as capacitors are drained and restored in switching
transistors on or off. The energy stored on a capacitor (gate) is ∝cV2. Furthermore,
for CMOS the clock frequency f∝V. Hence, the power dissipation increases very
rapidly with the clock frequency. In fact, even though V typically has been reduced
form one chip generation to the next, the power density for Intel CPUs doubled for
each generation as shown in Fig. 3.5. The evolution of the power consumption for
AMD CPUs (Team TsG 2005) has been similar, Fig. 3.6. In 1999 Fred Pollack of
Intel stated in his keynote at Micro 32 that “We are on the Wrong side of a Square
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Fig. 3.5 Heat density of Intel CPUs, source Shekhar Borkar, Intel

Fig. 3.6 Comparison of the power consumption of AMD and Intel IA-32 CPUs (Team TsG 2005)

Law” (Pollack 1999) and concluded with a new goal for CPU design: “Double Valued
Performance every 18 months, at the same power level”, something that the industry
has largely adhered to since almost a decade ago.

The energy per instruction for a range of Intel CPUs (Grochowski and Annavaram
2006) is shown in Table 3.3. The approach taken to achieve “Double valued perfor-
mance every 18 months, at the same power level” has been to introduce multi-core
CPUs exploiting reduced feature sizes in CPU manufacturing, and slightly reducing
the maximum clock frequencies. This approach has enabled “double valued perfor-
mance” to continue for applications that can take advantage of parallelism, but at
a cost in application porting and development, and a challenge for compiler devel-
opers. High parallelism is becoming main stream, not only by increased core count
per chip, but also by increased number of operations a core can perform in a single
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Table 3.3 Energy per instruction for Intel CPUs (Grochowski and Annavaram 2006)

Product Normalized
performance

Normalized
power

EPI on 65 nm
at 1.33 V (nJ)

i486 1.0 1.0 10
Pentium 2.0 2.7 14
Pentium Pro 3.6 9 24
Pentium 4 (Willamette) 6.0 23 38
Pentium 4 (Cedarmill) 7.9 38 48
Pentium M (Dothan) 5.4 7 15
Core Duo (Yonah) 7.7 8 11

clock cycle, from one floating-point operation per cycle about a decade ago for IA-32
designs to currently four and in the next generation eight, resulting in a capability
to currently carry out 48 floating-point operations per cycle in the case of the AMD
12-core chip.

The power consumption of CMOS processors, as mentioned above, raises steeply
with the clock frequency, and of course the number of transistors. The most recent
IA-32 CPU by Intel, the 6-core Westmere-EP CPU, (3.46 GHz, 1.17 billion transis-
tors, 240 mm2 in 32 nm technology) (Shimpi 2010) and by AMD, the 8- and 12-core
Magny-Cours CPU (2.5 GHz, 2 billion transistors, 692 mm2 in 45 nm technology)
(Gelas 2010) both dissipates up to 130–140 W in their highest clock rate versions,
while the current generation GPUs from AMD/ATI (0.825 GHz, 2.15 billion tran-
sistors, 334 mm2 in 40nm technology) (Comparison of AMD Graphics Processing
Units 2011; Bell 2009) and nVidia (0.575 GHz, 3 billion transistors, 550 mm2 also in
40 nm technology) (Comparison of Nvidia Graphics Processing Units 2011; Valich
2010) both have a maximum power rating of 225 W. But, since the GPUs have a peak
double-precision performance about five times higher than that of the IA-32 CPUs,
the GPUs still may deliver higher energy efficiency for applications. We summarize
this information in Table 3.4.

Estimates of the peak double-precision floating-point rate per W at the chip level
is shown in Table 3.5 (Johnsson 2011) for a few processors. The table shows an
advantage by a factor of 2.5 to about 4 of GPUs over CPUs. Thus, GPUs in addition

Table 3.4 Some chip characteristics for CPU and GPU processors

nm Trans. Die Cores Memory I/O BW GF W
(Billions) (mm2) BW (GB/s) (GB/s) DP

Nehalem-EP 45 0.731 263 4 3× 10.8 2× 25.6 53.3 130
Westmere-EP 32 1.17 240 6 3× 10.8 2× 25.6 83.0 130
AMD Magny-Cour 45 2 692 12 4× 10.8a 4× 25.6 120.0 137
Tesla C1060 65 1.4 576 240 102.4 8 77.8 188
Tesla C2050 40 3 550 448 144 8 515.2 225
ATI HD5870 40 2.15 334 1600 153.6 8 544 225
aLimited to 28.8 GB/s by the Northbridge
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to offering potentially higher performance and lower cost-performance in regards
to hardware cost, GPUs also have the potential to offer a further cost advantage by
being more energy efficient and more environmentally friendly despite their higher
power rating.

The potential for higher energy efficiency than that of IA-32 CPUs is indeed real
as demonstrated by measurements for HPL. The Green500 list ranks systems on
the Top500 list based on their HPL energy efficiency. On the November 2010 list
eight of the ten most energy efficient systems use some form of accelerator, with
five using GPUs and three using the Cell Broadband Engine (CBE) (Cell 2011;
Cell Project at IBM Research 2001; Chen et al. 2005). Systems using GPUs ranked
2nd, 3rd, 8th, 9th, and 10th. The IBM Blue Gene/Q to be delivered late in 2011 or
2012 ranked 1st with an energy efficiency of 1,684 MF/W. Compared to the Blue
Gene/P, its predecessor, the BG/Q has double the execution width of each core,
and twice the number of cores per node. Few details are available at this time. The
most energy efficient GPU accelerated system achieved an efficiency of 958 MF/W,
while the most energy efficient system using the CBE for acceleration achieved 773
MF/W (Homberg 2009). This system used an experimental interconnection network
connecting nodes via the CBE internal high-speed bus. Non-accelerated systems
using the latest generation IA-32 CPUs achieved an energy efficiency of about 350–
400 MF/W for HPL (Fig. 3.7).

3.1.3 GPU Integration and Programming

Programming and code generation for both CPUs and GPUs today requires effective
exploitation of parallelism for high efficiency. IA-32 CPUs support common pro-
gramming languages, such as C, C++, Fortran, etc with a choice of mature compilers

Fig. 3.7 The 10 most energy efficient system on the November 2010 Top 500 list (Intel 4004 2011b)
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that generate efficient code. GPUs on the other hand with a quite different memory
architecture and different instruction set have traditionally required specialized and
sometimes proprietary languages and compilers. This fact, and the lack of archi-
tectural support for many operations commonly used in science and engineering
applications have been a limiting factor on their wide-spread adoption. However,
the hardware support for general purpose use of GPUs is improving rapidly, thus
lowering the barrier towards wide adoption. The good double-precision arithmetic
performance and support for IEEE arithmetic are also important factors in today’s
strong interest in GPUs. However, GPUs are not stand-alone processors and requires
a host, which typically for HPC applications is a common microprocessor. GPUs are
“add-on” units typically integrated into the system using the I/O bus of the CPU. This
bus can be a performance bottleneck in many cases since data needs to move between
the CPU memory and the smaller but faster GPU memory for many applications.
As GPUs become integrated onto CPU chips this bottleneck will disappear, but at
least initially the GPUs integrated with CPUs on the same chip will not have their
own high bandwidth memory system one of the key advantages of today’s GPUs. In
future generation CPUs the role of GPUs or stream processors may very well change
for the scientific and engineering market and stream or vector architectures taking
on the primary role, as in the case of Intel’s Many Integrated Core (MIC) CPUs
(Introducing Intel many Integrated Core Architecture 2011).

To alleviate some of the programming issues associated with having to pro-
duce code for both CPUs and GPUs in a heterogeneous node the Open Comput-
ing Language (OpenCL 2011), OpenCL, was conceived with version 1.0 published
in December 2008 and version 1.1 in September 2010 (OpenCL 2010). OpenCL
has been developed by the Khronos Group that also developed OpenGL. Because
of the potential benefits of being an Open Standard, OpenCL was included in the
assessment despite the fact that only prerelease compilers were available.

3.1.4 Concurrency Comparison Between CPUs and GPUs

On-chip parallelism is increasing rapidly for both CPUs and GPUs. The current gen-
eration CPUs can carry out up to about 50 double-precision floating-point operations
concurrently (48 for the AMD 12 core Magny-Cours CPUs) whereas GPUs can carry
out in the order of 500–600 double-precision floating-point operations concurrently
(640 for the AMD/ATI HD5870 and FirePro 3D V9800GPUs). Though the con-
currency for GPUs is about 10 times higher than for CPUs, the peak performance
difference is smaller because the GPUs operate at lower clock frequency (e.g. max 2.5
GHz for the AMD 12-core CPU versus max 0.825 GHz for the AMD/ATI GPU). As
silicon technologies evolve to allow for smaller feature sizes enabling more transis-
tors to be put on the same die, chip designers so far has used the increased capability
for additional cores, increased on-chip memory, and less often for execution units
of increased width. However, for CPUs the next generation from both AMD and
Intel will double the width of the execution units as well as increase the number of
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cores, thus significantly increasing the peak capabilities, and bringing the parallelism
required for peak performance of a IA-32 chip to a level of 100 operations or more.
Over about a decade the number of floating-point operations per cycle per core will
have increased from one to eight. Hence, though there will be a difference in the
degree of parallelism to be expressed and managed, both CPUs and GPUs will have
comparable challenges in regards to concurrency. In regards to the viability of GPUs
for “general purpose” scientific and engineering computations Shalf et al. at LBNL
(John et al. 2006) made the interesting observation that only 80 instructions out of
the close to 300 instructions on IA-32 platforms were used across a broad range
of codes.

3.2 Highlights of a PRACE Study of Accelerated
IA-32 Servers

3.2.1 Background

The potential performance, cost/performance and energy efficiency advantages of
GPUs are significant, but the programming, and in particular the code porting chal-
lenges, are also quite significant. In order to assess the benefits and the code porting
challenges PRACE, the Partnership for Advanced Computing in Europe (PRACE
2009), undertook an evaluation of GPU accelerated servers during the second half
of 2008 and 2009. The evaluation was made from a data center perspective, i.e., the
perspective that codes to be run on a GPU accelerated system could largely only
be ported with modest effort using tools targeting heterogeneous node architectures,
and not be completely rewritten or hand optimized. Furthermore, the focus was on
double-precision arithmetic performance since the intent was to evaluate the merits
of GPU accelerated nodes across “all” codes used at partner centers. The tools evalu-
ated were HMPP (Hybrid Multi-core Parallel Programming) (HMPP Open Standard
2011; Hybrid Multi-Core Parallel Programming Workbench 2011) from CAPS (Bell
2009), RapidMind (RapidMind 2011; Writing Applications for the GPU Using the
RapidMind™ Development Platform 2006) and to a lesser degree the Portland Group
Inc’s (PGIs) Accelerator Compilers (PGI Accelerator Programming Model for For-
tran and C 2010; Portland Group Inc 2011) because the PGI products were not
available at the time this evaluation started, and OpenCL, as already mentioned. For
the GPU test systems the results were compared with nVidia’s CUDA (CUDA 2011;
NVIDIA Corporation 2011) whenever possible. In addition to nVidia C1060 accel-
erated servers, ClearSpeed (ClearSpeed 2011) CSX700 (CSX700 Processor 2011)
accelerated systems were also assessed, as were systems with CBEs. However, since
IBM has decided not to continue with the CBE we do not include results related to it.

The reference platform for the evaluations was a dual socket server equipped
with Intel Nehalem 2.53 GHz quad-core CPUs and 3GB DDR3 memory per core.
The theoretical peak performance per core of this reference platform thus was 10.12
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Fig. 3.8 November 2009
Top500 (Cray-1 Computer
System 1976) processor fam-
ily statistics

GF/s. The choice of the Nehalem CPU for the reference platform was motivated by
the dominance of Intel EM64T on the November 2009 Top500 (Top500 2011) list
on which this processor family accounted for 79 % of the CPUs, see Fig. 3.8, and
the Nehalem CPU being the most recent EM64T CPU from Intel at the time of this
evaluation.

GPU evaluations were made on dual socket, quad-core 2.8 GHz Intel Harpertown
servers with two nVidia Tesla servers for each node and two C1060 cards for each
Tesla server. The Tesla servers were connected to the hosts over PCI Express Gen2
16x (8 GB/s) for each node. The C1060 has 30 stream processors each with eight
single-precision (SP) Floating-Point Units (FPUs) and one double-precision (DP)
FPU. The peak SP performance is 624 GF and the peak DP performance is 78 GF.

ClearSpeed results were obtained from two platforms; (1) dual socket 2.53 GHz
Intel Nehalem servers with 4 GB/core with a ClearSpeed-Petapath e710 unit for each
server connected via PCI express Gen2 16x (PRACE 2011; Sagar et al. 2010)., (2)
dual socket 2.67 GHz Nehalem servers with 3 GB/core and ClearSpeed-Petapath
e740 and e780 units, one per CPU socket, connected via PCI express Gen 2 16×
(PRACE 2011; Sagar et al. 2010). The ClearSpeed-Petapath units use 1, 4 or 8
ClearSpeed CSX700 units, each with a peak double-precision arithmetic performance
of 96 GF. A ClearSpeed CSX700 is in turn made up of two Multi-Threaded Array
Processors (MTAPs) (CSX700 Datasheet 2011), each with a peak performance of
48 GF, double-precision.

The benchmarks used for the evaluations were a few kernels common in scientific
and engineering applications: dense matrix multiplication, solution of dense systems
of linear equations (HPL), sparse matrix-vector multiplication, FFT and random
number generation. This selection was based on a study of application codes used at
PRACE partner sites (Alan et al. 2008). These kernels also represent a subset of Phil
Colella’s well known “Seven Dwarf’s” (Colella 2004) described in Asanovic et al.
(2006). The benchmark software used for these functions was EuroBen (EuroBen
Benchmark 2011), except for the linear system solution for which High-Performance
Linpack (HPL) (Petitet et al. 2008) was used. The EuroBen routines used were

• mod2am for dense matrix-matrix multiplication C = A × B
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• mod2as for sparse matrix-vector multiplication c = A × b with the matrix in
Compressed Sparse Row (CSR) format
• mod2f for 1-D complex-to-complex Fast Fourier Transform using a radix-4 algo-

rithm
• mod2h for random number generation.
• All benchmarks were based on C codes.

3.2.2 Results for the Reference Platform

For the reference platform we report both single core and eight core results. The
memory system supports a single core well, but not fully all four cores on a CPU
for memory intensive applications. Furthermore, a node has NUMA (Non-Uniform
Memory Access) (Non-Uniform Memory Access 2011) characteristics in that in a
node each CPU with four cores has its own memory not directly accessible by the
cores on the other CPU in a two socket system.

3.2.2.1 Single Core Results

Matrix Multiplication

The single core dense matrix multiplication using mod2am calling Intel’s Math
Kernel Library (MKL) (Intel Math Kernel Library 2011) is shown in Fig. 3.9. The
peak achieved performance is 9.387 GF, 92.8 % of peak (Sagar et al. 2010).

Fig. 3.9 Mod2am results on a single Nehalem 2.53 GHz core (Sagar et al. 2010)
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Fig. 3.10 Mod2as results on a single Nehalem 2.53 GHz core (Sagar et al. 2010)

Sparse Matrix-Vector Multiplication

The single core sparse matrix-vector results (Sagar et al. 2010) are shown on Fig. 3.10.
As expected the performance is much lower. Sparse matrix-vector multiplication
using compressed formats has a relatively low number of floating-point operations
compared to integer operations for address calculations and, for randomly gener-
ated sparse matrices, a random memory access pattern that tend to result in poor
cache behavior. The peak observed performance is about 13.6 % of theoretical peak
(10.12 GF). Due to the randomness of the matrix sparsity the performance as a func-
tion of matrix size does not follow a smooth progression unlike the case for dense
matrix multiplication. The sparse matrix was filled to 15 % in all cases.

FFT

The single core FFT results (Sagar et al. 2010) are shown in Fig. 3.11. The peak
achieved performance was 2.778 GF, 27.5 % of peak. Unlike matrix multiplica-
tion and matrix-vector multiplication complex-to-complex FFT computations do
not have a balanced number of additions and multiplications. Thus, for this type
of FFT the peak core performance of 10.12 GF is never attainable. Complex mul-
tiplication requires 4 real multiplications and 2 real additions. A radix-4 computa-
tion requires 3 complex multiplications and 4 complex additions/subtractions. In a
straightforward organization of the complex operations the complex multiplication
results at best in 6 arithmetic operations out of 8 potential hardware arithmetic oper-
ations, i.e. 75 % utilization, and a complex addition results in 2 out of four potential
operations, or 50 % utilization. FFTs also have a somewhat complex memory refer-
ence patterns using strided access with different strides for different phases of the
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Fig. 3.11 Mod2f radix-4 complex-to-complex 1-D FFT on a single Nehalem 2.53 GHz core (Sagar
et al. 2010)

algorithm. The strided access can result in poor cache behavior. In Ali et al. (2007) and
Mirkovic et al. (2000), a performance difference by more than a factor of 10 was
observed for different strides for a few different processors.

Random Number Generation

The single core random number results (Sagar et al. 2010) are shown in Fig. 3.12.
Since the random number generator use very few floating-point operations the

Fig. 3.12 Mod2h random number generation results on a single Nehalem 2.53 GHz core (Sagar et
al. 2010)
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Fig. 3.13 Mod2am results on a dual socket, 8-core Intel Nehalem 2.53 GHz node with 24 GB
memory (Sagar et al. 2010)

performance is measured in operations/s. The MKL library does not include a random
number generator so results are reported for a C code.

3.2.2.2 Node Results

The reference node has two sockets each with a quad-core 2.53 GHz Intel Nehalem
CPU. Thus, eight threads can be run concurrently on the reference platform, 16 with
hyper-threading (Intel HT Technology 2011) with two threads per core. In our tests
we did not enable hyper-threading since it is known to reduce performance in compute
intensive cases. Results for 1, 2, 4 and 8 threads are shown in Figs. 3.13, 3.14, 3.15
and 3.16. The MKL version used for the benchmarks supported multi-threading for
dense matrix-matrix and sparse matrix-vector multiplication, but not for the FFT.
Thus, for the FFT MPI was used to in effect create multiple threads on a reference
node. However, at this time MKL does have multi-threaded FFT support (Petrov and
Fedorov 2010). For the random number generator multiple instances were run since
neither an MPI nor an OpenMP version did exist, and was not developed.

Matrix Multiplication

The peak matrix multiplication performance achieved on eight cores using the MKL
was 76 GF, which is 93.9 % of theoretical peak.
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Fig. 3.14 Mod2as results on a dual socket, 8-core Intel Nehalem 2.53 GHz node with 24 GB
memory (Sagar et al. 2010)

Fig. 3.15 Mod2f results for on a dual socket, 8-core Intel Nehalem 2.53 GHz node with 24 GB
memory (Sagar et al. 2010)

Sparse Matrix-Vector Multiplication

For sparse matrix-vector multiplication the performance is highly variable as can
be expected due to the randomness of the problem, with a performance peak for
four threads of close to 5 % of theoretical peak performance. For eight threads the
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Fig. 3.16 Performance for Intel’s recently released multi-threaded MKL FFT on a 2.8 GHz dual
socket Nehalem platform (Petrov and Fedorov 2010)

performance is less variable and increases fairly monotonically with matrix size to
a peak efficiency of about 3 %, Fig. 3.14.

FFT

From Fig. 3.15 it is apparent that the single node MPI code for the FFT is performing
poorly. Indeed the performance is much worse than the single thread code regardless
of the number of MPI processes on a node. Since these benchmarks were carried out
Intel has released a multi-threaded MKL FFT code (Petrov and Fedorov 2010) with
much improved performance also for a single thread. The results reported for a 2.8
GHz dual socket Nehalem are shown in Fig. 3.16. The single thread performance is
about twice what we observed for the MKL version we used, and the multi-threaded
version using one thread per core has a peak performance about six times higher
than the single thread performance we measured. Using hyper-threading with two
threads per core results in a performance boost that for some sizes may exceed 30 %
and result in an efficiency of up to about 25 % for the node, similar to our observed
single core performance without hyper-threading.

Random Number Generation

For the random number generator the aggregate performance increases almost in
proportion to the number of instances run, as seen in Fig. 3.17.
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Fig. 3.17 Mod2h results on a dual socket, 8-core Intel Nehalem 2.53 GHz node with 24 GB memory
(Sagar et al. 2010)

HPL

For HPL a best single node efficiency of close to 87 % has been reported for the Intel
Nehalem, see e.g. (Feldman 2009; Gelas 2008). The measurements performed on
the reference platform are in line with these results.

3.2.2.3 Energy Efficiency

In regards to energy efficiency matrix multiplication is known to exercise the CPU
heavily and hence result in high power consumption. The HPL benchmark that is used
for the Green500 (The Green500 2010) list depends heavily on matrix multiplication.
For the reference platform we measured a maximum power consumption of 303 W
for matrix multiplication (Sagar et al. 2010), resulting in 251MF/W at the achieved
76 GF. For HPL a power efficiency of 230 MF/W was observed (Sagar et al. 2010),
which is in line with the expected power efficiency given the difference in efficiencies
of matrix multiplication and HPL using the MKL. No power measurements were
carried out for the sparse matrix-vector multiplication, the FFT and the random
number generation. The FFT is fairly floating-point intensive, but not as intensive as
matrix multiplication, but relatively more memory reference intensive. On this basis
we estimate the maximum power consumption to about 250 W for the FFT resulting
in an estimated power efficiency of 50–80 MF/W for the performance reported in
Fig. 3.16.
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3.2.3 nVidia C1060 GPUs

Matrix Multiplication

For matrix multiplication on the C1060 nVidia’s CUBLAS was used in analogy
with using MKL on the reference platform. Since in many applications the data set
on which the computations are performed is allocated to the memory of the host
processor, subsets of data on which computations are to be performed need to be
transferred to the GPU memory and results transferred back. Thus, performance was
measured both for the computations on the GPU itself with data fetched and stored
in its local memory and for the situation when data needs to be fetched from the
CPU memory and results stored in it. Figure 3.18 shows the results, with the lower
performance curve including the pre and post computation data transfers between
CPU memory and the GPU. Since matrix multiplication requires 2N3operations but
only 3N2 data elements need to be transferred, the data transfer time decreases in
significance as N increases. The peak of the on GPU performance with CUBLAS is
about 82 %, which drops to a peak of about 76 % if data transfers are included. These
results are in agreement with the results reported in Phillips and Fatica (2010).

Sparse Matrix-Vector Multiplication

For sparse matrix-vector multiplication the results are shown in Fig. 3.19. It is inter-
esting to note that with the data on the GPU the peak observed performance is about
9 GF, or about 11.5 % of peak, a higher fraction of peak than on the CPU. This result

Fig. 3.18 Mod2am results on nVidia C1060 GPU with 78 GF peak performance (PRACE 2011)
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Fig. 3.19 Mod2as results on nVidia C1060 GPU with 78 GF peak performance (PRACE 2011)

is in line with the results in Matsuoka and Dongarra (TESLA GPU computint). How-
ever, if data needs to be fetched from CPU memory and results transferred back, then
the data transfer time dominates and the efficiency drops to about 1 %. For sparse
matrix-vector multiplication both operation count and data transfer is of order O(N).

FFT

The FFT performance on the C1060 is shown in Fig. 3.20. At the time of the bench-
mark there was no double-precision CUDA FFT available so a complete port of the
mod2f FFT to CUDA was necessary resulting in a CUDA code with about 3,000
lines. The peak performance achieved including data transfers to the CPU memory
was about 4 GF, about 5 % of peak. At this time the nVidia CUFFT is available and is
reported to achieve close to 30 GF on a C1060 (CUDA Case Studies 2009) excluding
data transfer. For FFT the operations count is O(NlogN), and thus the impact of the
data transfer expected to be less significant than for sparse matrix-vector multiplica-
tion but more significant than for matrix multiplication. The peak efficiency of the
single core Nehalem FFT is about 25 %. The recently released multi-threaded MKL
FFT (Petrov and Fedorov 2010) has an improved single thread performance that is
estimated to about 5.4 GF for a single core of the reference platform and about 20 GF
for 16 threads on the reference platform, scaling the results in Petrov and Fedorov
(2010) with the ratios of the clock frequencies of the reference platform and the
platform in Petrov and Fedorov (2010) (the MKL hyper-threaded version performs
better than the single thread per core version). Thus, the recent MKL release achieves
about 54 % efficiency on a single core and a peak of about 25 % on the node, while
CUFFT achieves a peak efficiency of about 38 % on the C1060.
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Fig. 3.20 Mod2f results in hand coded CUDA on nVidia C1060 GPU with 78 GF peak performance
(PRACE 2011)

HPL

For HPL a peak efficiency for one Nehalem core and one C1060 GPU was measured
to be 59.5 GF, 68 %, whereas the efficiency dropped to 52.5 % using all 8 cores of
the host and four C1060 GPUs (Sagar et al. 2010). The peak power efficiency was
270 MF/W. The single C1060 results are in line with what is reported in Phillips and
Fatica (2010).

Energy Efficiency

GPUs draw significant power with the C1060 having a specified max power of 188
W (Tesla C1060 Computing Processor Board Specification 2010) and an estimated
typical power consumption of 160 W. The Intel Nehalem CPU used for the reference
platform has a maximum power dissipation of 80 W (Intel Xeon Processor E5540
2011).

For the reference platform during maximum load for matrix multiplication the
CPUs account for about 50 % of the power consumption of the reference platform.
With the C1060 reaching close to 60 GF for matrix multiplication, Fig. 3.18, and
assuming the maximum specified power consumption for this case, the GPU power
efficiency is estimated at 300 MF/W. Similarly, for the CPUs alone, the achieved
performance using MKL was 76 GF and assuming the maximum CPU power con-
sumption the CPU power efficiency is estimated to be 475 MF/W. The fact that the
GPU in case of HPL improves the combined energy efficiency is due to the fact that
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Fig. 3.21 Mod2am results
on one MTAP with a peak
performance of 48 GF (Sagar
et al. 2010)

the power consumption by the memory, fans, power supplies, motherboard etc is
already accounted for in the reference platform power efficiency (that is about half
of the CPU power efficiency).

3.2.4 ClearSpeed CSX700

Matrix Multiplication

Matrix multiplication carried out on a single Multi-Threaded Array Processor
(MTAP) (CSX700 Datasheet 2011) of which there are two on a CSX700 is shown
in Fig. 3.21. For the CSX700 the peak observed performance was 85 GF (PRACE
2011), or 88.5 % of peak. For the e780 with 8 CSX700 units the peak observed
performance was 520 GF (PRACE 2011), 68 % of peak.

As is clear from Fig. 3.21 the ClearSpeed performance is not significant in com-
parison with the host CPU until the matrix dimensions are in the order of a few
thousands. The library (CXSL User Guide 2010) that comes with the ClearSpeed
hardware recognize this and leaves the multiplication of the matrices to be performed
on the host for small matrices. In fact, the software allows for load sharing between
the host and the ClearSpeed board. Figure 3.22 shows the aggregate performance for
matrix multiplication as a function of the host assist. The choice of matrix dimen-
sions for the benchmark was compliant with the CSX700 unit working with tiles that
for M and N are multiples of 192 and for K a multiple of 288, for multiplication of
an M × K matrix by a K ×M matrix. For other matrix shapes the CSX700 library
partitions the matrices into tiles compliant with these restrictions and has the host
execute the remaining matrix parts for a correct result. For the matrix shapes studied
in this benchmark the maximum performance exceeds 130 GF at 42 % host assist
for the largest M = N. The combined peak performance represents 71 % of the
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DGEMM performance on Ambre (K=1152)
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Fig. 3.22 Mod2am results on the reference platform equipped with a ClearSpeed CSX700 accel-
erator as a function of the host assist percentage. Peak host performance 80.96 GF, peak CSX700
performance 96 GF (Sagar et al. 2010)

Fig. 3.23 Mod2as results
on one MTAP with a peak
performance of 48 GF (Sagar
et al. 2010)

combined theoretical peak performance. This is lower than the peak efficiency for
the CSX700 card (88.5 %) and the host (93.9 %), but the matrices chosen for this
experiment did not maximize performance for either.

Sparse Matrix-Vector Multiplication

The sparse matrix-vector performance is shown in Fig. 3.23. The performance is
exceedingly poor with a peak performance of only close to 30 MF, or less than 0.1 %
of the peak performance. The MTAP has an architecture that favors streams, like
GPUs, but clearly its performance for random memory accesses is very poor.
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Table 3.6 Mordf results on
the CSX700 with peak
performance of 96 GF (48 GF
per MTAP) (Sagar et al.
2010)

Size 1 MTAP 2 MTAP

256 2.8 5.7
512 3.4 6.7
1024 3.8 7.4
2048 4.2 9.4
4096 5.0 9.9
8192 3.7 7.9

FFT

For complex-to-complex 1-D FFTs the results are shown in Table 3.6. The best
observed performance was 9.9 GF, 10.3 % of peak. Comparing to the MKL per-
formance reported in Petrov and Fedorov (2010) the reference node performs better
than the CSX700, but a CSX700 delivers a peak performance about twice that of a
single core of the reference platform.

Random Number Generation

The performance for random number generation is shown in Fig. 3.24 for a single
MTAP. The MTAP performance is about 10 % lower than the performance of a single
core of the reference platform.

HPL

For HPL that depends heavily on matrix multiplication the CSX700 contributed
43.75 GF at 42 % host assist, yielding an overall efficiency of 63 % (Sagar et al.

Fig. 3.24 Mod2h results on 1 MTAP (Sagar et al. 2010)
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2010). The results on the manufacturer web site indicates a peak HPL performance
of 56.1 GF (Linpack, ClearSpeed 2010) corresponding to an efficiency of 58.4 %.

Energy Efficiency

In regards to energy efficiency the CSX700 was observed to consume about 10 W
in idle state (9.5–10.5 W observed) (Sagar et al. 2010) and about 16 W performing
matrix multiplication (Sagar et al. 2010). Thus, with a peak matrix multiplication
performance of 85 GF the power efficiency is about 5300 MF/W for the CSX700,
while for HPL our results yield in excess of 2700 MF/W for the CSX700 alone at a
delivered rate of 43.75 GF and a combined power efficiency of 350 MF/W for the
reference platform with one CSX700.

For FFT the peak measured performance was 9.9 GF. The power consumption
for the FFT was not measured, but it clearly must be in the 10–16 W range (Sagar
et al. 2010) resulting in a power efficiency in the 600–1000 MF/W range. For the
reference platform the idle power was measured to be about 140 W and the peak
power 303 W (Sagar et al. 2010) resulting in a power efficiency range of 70–150
MF/W. Thus, though the absolute performance for the CSX700 is inferior to the MKL
multi-threaded reference platform performance, the energy efficiency is a factor 6–8
times better.

For random number generation the aggregate performance for the reference
platform is about 4 times higher than the CSX700 performance, but the power con-
sumption is estimated to be 10–20 times higher and hence the CSX700 considerably
more power efficient.

3.2.5 Performance Comparison

Figure 3.25 summarizes the performance results for matrix multiplication
normalized to the reference platform. The C1060 has slightly lower theoretical peak
double-precision performance (78 GF) and the CSX700 has slightly higher theoret-
ical peak performance (96 GF) than the reference platform (81 GF). The combined
peak performance of the reference platform and a CSX700 is close to 2.2 times that
of the reference platform itself, while adding a C1060 results in a node with 1.96
times the performance of the reference platform.

For sparse matrix-vector multiplication both the C1060 and CSX70 do not offer
any performance advantage, Fig. 3.26.

For the complex-to-complex 1-D radix-4 FFT the relative results we observed
are shown in Fig. 3.27. However, since our measurements were made, a new version
of the MKL library has been released that improved the reference platform perfor-
mance with up to more than 7 times thus making the reference platform performance
superior to the CSX700. nVidia has also released a CUFFT version that supports
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Fig. 3.25 Mod2am performance on the nVidia C1060 GPU and ClearSpeed CSX700 relative to
the reference platform (Sagar et al. 2010)

Fig. 3.26 Mod2as performance on the nVidia C1060 GPU and ClearSpeed CSX700 relative to the
reference platform (Sagar et al. 2010)

double-precision arithmetic and that achieves about 50 % better performance than
that of MKL on the reference platform.

For random number generation a single CSX700 MTAP has a performance com-
parable to a single core of the reference platform. No random number generator was
available for the C1060 at the time of the benchmark.

For HPL, a single core of the reference platform in combination with one C1060
GPU was measured to yield 59.5 GF (Sagar et al. 2010) corresponding to 68 %
efficiency while all eight cores together with four C1060 resulted in a peak node
performance of 206 GF out of a possible 393 GF corresponding to 52.5 % efficiency.

We summarize our own measurements and some from the literature in Table 3.7
in order to compare efficiencies of the selected benchmarks on the different archi-
tectures, and the energy efficiencies of the devices in isolation and together as an
integrated system.

For the CSX700 the HPL performance is derived from Linpack, ClearSpeed
(2010). This estimate compares fairly well with estimating the performance from
the CSX600 performance reported in Kozin (2008) by scaling the performance with
the ratio of the peak performances of the CSX700 and CSX600 units, thus assuming
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Fig. 3.27 Mod2f relative performance using MKL version 10.1 on the reference platform alone
and with nVidia C1060 GPU or ClearSpeed CSX700 acceleration (Sagar et al. 2010). MKL release
10.2 having a multi-threaded version of the FFT and improved single core performance has resulted
in the reference platform achieving about twice the performance of the CSX700, and a new release
of the CUFFT has resulted in the C1060 achieving a peak performance about 50 % higher than the
reference platform

the same efficiency for the units. For the host plus CSX700 HPL performance the
number is estimated from the measured performance of an eight node system with
four CSX700 per node (Sagar et al. 2010). The performance of one such node was
measured at 206.25 GF with 43.75 GF contributed by each CSX700. Thus, in this
in this configuration the four CSX units in a node contributed 175 GF to the node
performance and the host 31.25 GF.

In regards to efficiency we notice that for matrix multiplication all three archi-
tectures do well, as expected, with the host having a slight advantage. For sparse
matrix-vector multiplication none does well, with the CSX700 performing by far the
worst. Surprisingly the C1060 perfromed better than the host, but in combination
with the host the C1060 is not efficient due to the low computational intensity of
sparse matrix-vector multiplication (computations and data transfer are both of order
O(N)).

For the FFT the C1060 offers the best efficiency using the optimized CUFFT
from nVidia which has about 50 % higher efficiency than the optimized MKL for the
reference platform (38.5 vs. 24.7 %). The CSX700 efficiency is less than half of that
of the reference platform and about 25 % of the efficiency of the C1060.

The HPL performance as expected is somewhat lower than that of matrix multi-
plication on which it depends heavily, and the relative merits of the host, the C1060
and the CSX700 are about the same with the CSX700 however ending up with an
efficiency about the same as that of the C1060.
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Table 3.8 Power efficiency of the configurations evaluated

Host Host + C1060 Host + CSX700
GF W GF/W GF W GF/W GF W GF/W

Mod2am 76 303 0.251 130a 490a 0.265a 130 315a 0.410a

Mod2f 20a (Pettey 2011) 250a 0.080a 40a 420a 0.095a 25a 260a 0.096a

HPL 69a 303a 0.230 0.270 75a 315a 0.238a

aEstimated values

3.2.6 Power Efficiency Comparison

As previously mentioned the peak performances of the reference platform, the C1060
and the CSX700 are fairly comparable, but the efficiencies achieved on the platforms
are quite different and the maximum power consumption is also quite different. We
did not have the opportunity to carry out power measurements for all benchmarks.
The results are summarized in Table 3.8.

Adding a CSX700 to a node increases its maximum power consumption by about
5 %, while the C1060 increases it with more than 60 %. For matrix multiplication the
CSX700 resulted in a total node performance of 130 GF in our tests and hence the
power efficiency increased from about 250 MF/W to about 410 MF/W. The power
efficiency for the CSX700 itself is about 5.3 GF/W (85 GF, 16 W) whereas for the
Nehalem itself is about 0.475 GF/W (76 GF, 160 W).

The power estimates for the FFT assumes about 80 % (250 W) of maximum
power for the reference platform. The C1060 in itself has a power efficiency of about
0.175 GF/W (30 GF, 170 W) whereas the Nehalem itself has a power efficiency of
about 0.155 GF/W (10 GF, 65 W). The CSX700 itself has significantly higher power
efficiency; about 0.700 GF/W (10 GF, 14 W)

For HPL the power efficiency improves for a host with accelerator compared to
the host itself, as expected from the results for matrix multiplication. The marginal
improvement for a host with CSX700 is surprising. Considering the CPU itself it has
a power efficiency of about 0.440 GF/W (35 GF, 80 W), whereas the C1060 itself is
estimated to 0.265 GF/W (50 GF, 190 W) and the CSX700 is estimated to 3 GF/W
(45 GF, 15 W).

The power efficiency of the CSX700 is a factor of 4–10 higher than that of the CPU
itself for matrix multiplication, FFT and HPL, but unfortunately for FFT and HPL
the relatively low fraction of peak realized cause the total platform power efficiency
to increase only marginally for a host combined with a single CSX700. The C1060
power efficiency for matrix multiplication, 0.34 GF/W (64 GF, 190 W) is less than
that of the Nehalem, which is also the case for HPL, but the power efficiency is
slightly higher for the FFT.
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Fig. 3.28 The architecture of the HMPP preprocessor (Hybrid Multi-Core Parallel Programming
Workbench 2011)

3.3 Programming Tools Assessment

3.3.1 HMPP (Hybrid Multi-Core Parallel Programming)

The Hybrid Multi-core Parallel Programming (HMPP) preprocessor by CAPS
(Dolbeau et al. 2007; HMPP Open Standard 2011; Hybrid Multi-Core Parallel Pro-
gramming Workbench 2011) use directives inserted into the source code to control
code generation. The directives have the form of special comments in Fortran and
pragmas in C. Using the directives the HMPP preprocessor directs the code gener-
ation to be made for the desired device by a compiler for that device. The HMPP
preprocessor generates the code necessary to manage the data transfers between the
host and accelerators and seeks to optimize it. By using directives an annotated code
can be compiled by any compiler for any desired platform and hence the annotated
code is as portable as the original code. The HMPP preprocessor has a fallback
mechanism should an executable code fail to be generated for a particular target
accelerator. Should that be the case code is generated for the host by the compiler
used for it. The HMPP directives are designed to target functions (codelets) that can
be executed on accelerators and for optimizing the data transfers between the host
and accelerators.

The architecture of the preprocessor is shown in Fig. 3.28 in which two back-ends
of current interest are shown. The HMPP memory model is illustrated in Fig. 3.29.
Our focus was on the CUDA back-end because the OpenCL specification was just
released at the time of this study. Our target was the nVidia C1060 GPU as accelerator
for IA-32 servers. The test platform had dual socket quad-core 2.8 GHz Intel Harper-
town CPUs. Initially the HMPP Workbench 1.5.3 was used, later release 2.1.0sp1
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Fig. 3.29 The HMPP memory model (HWA = HardWare Accelerator) (HMPP Open Standard
2011)

when it became available. For the host the Intel compiler version 11.1 was used and
for the C1060 the CUDA 2.3 environment.

An example of the use of the HMPP directives is shown in Fig. 3.30.
The result of using HMPP for matrix multiplication for the C1060 is shown in

Fig. 3.31 and for sparse matrix-vector multiplication in Fig. 3.33. These two routines
were the only two ported during the course of this study. For matrix multiplication the
CUDA code generated by HMPP for a “simple” port has a performance of 60–75 %
of the CUBLAS performance as seen by comparing Figs. 3.31 and 3.18, which is
a very good result for a small effort. However, after code optimization using good
knowledge of the target architecture and HMPP performance comparable to, or even
better than, that of CUBLAS was obtained, as seen in Fig. 3.32.

The lessons learned from the limited use of HMPP are Sagar et al. (2010).
Modifying a code to use HMPP to generate a functional code for a GPU is simple.

The resulting performance may be quite good for a modest effort, or fairly poor
depending on the nature of the computations. For “optimal” performance on a GPU
the original code is likely to require modification, unless designed to work well on a
streaming architecture.
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// simple codelet declara-
tion

#pragma hmpp Hmxm codelet, 
args[a;b].io=in, 
args[c].io=out, 
args[a].size={m,l}, 
args[b].size={l,n}, 
args[c].size={m,n}, TARGET=CUDA

void mxm(int m, int l, int 
n, const double a[m][l], const 
double b[l][n],              
double c[m][n])

{    int i, j, k;
for (i = 0; i < m; i++) 

{
for (j = 0; j < n; 

j++) {
c[i][j] = 0.0;}}

for (i = 0; i < m; i++) 
{

for (k = 0; k < n; 
k++) {

for (j = 0; j < 
l; j++) {

c[i][k] = 
c[i][k] + a[i][j] * b[j][k];}}}

// usage of the codelet
#pragma hmpp Hmxm advancedload, 

args[a;b], args[a].size={m,l}, 
args[b].size={l,n}

for (i = 0; i < nrep; i++) {
#pragma hmpp Hmxm callsite,

args[a;b].advancedload=true
#pragma hmpp Hmxm callsite

mxm(m, l, n, (double 
(*)[m]) a, (double (*)[n]) b, 
(double (*)[n]) c);

}
#pragma hmpp Hmxm delegatedstore, 

args[c]

Fig. 3.30 Illustration of use of HMPP pragma’s for definition and use of codelets (Sagar et al.
2010)
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Fig. 3.31 Mod2am performance on the C1060 using HMPP (Sagar et al. 2010)

• Some constructions (such as reductions) are difficult to parallelize and do not
perform well on GPUs (or many other highly parallel architectures, some of which
have special hardware for reduction operations).
• Producing optimized code for heterogeneous node architectures requires in-depth

knowledge of the hardware (not specific to HMPP or GPUs).
• Astute directives for code generation (such as loop reordering, loop fusion, etc.)

are a great help to boost performance.
• The performance of codes generated by using HMPP can be equal to or better than

that offered by vendor libraries, which is very encouraging.
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Fig. 3.32 Optimized performance of matrix multiplication using HMPP compared to CUBLAS
for the C1060 (PRACE 2011)
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3.3.2 RapidMind

The RapidMind Multi-Core Development Platform (McCool 2007, 2008) was
designed for application code portability across platforms, including multi-core
CPUs, GPUs and the CBE (Chen et al. 2005). About a year after this study was
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initiated RapidMind was acquired by Intel and the RapidMind technology integrated
with Intel’s Ct technology (Ghuloum et al. 2007a,b; McCool 2007; Productivity
benefits of Intel Ct Technology 2010) and some of it recently released as part of
Intel’s Array Building Blocks (ArBB) (Intel(R) Array Building Blocks for Linux
OS, User’s Guide 2011; Intel(R) Array Building Blocks Virtual Machine, Specifica-
tion 2011; Sophisticated Library for Vector Parallelism 2011). RapidMind targeted
a data parallel programming model (as did Ct) but did support task-parallel opera-
tions. RapidMind added special types and functions to C++ enabling a programmer
to define operations (functions) on streams (special arrays). By the freedom to define
array operations RapidMind supported more powerful array operations than, e.g.,
those available in Fortran. Data dependencies and data workflows could be easily
described and information necessary for an efficient parallelization included. The
compiler and the runtime environment had sufficient information to decide how to
auto-parallelize code.

We report results using RapidMind to generate code for the C1060 for matrix mul-
tiplication, Fig. 3.34, sparse matrix-vector multiplication, Fig. 3.35, and the radix-4
complex-to-complex 1-D FFT, Fig. 3.36. As can be seen from Fig. 3.34 RapidMind
only achieves about 25 % of the performance of CUBLAS. The “simple” version was
created by adding 20 lines of RapidMind code to the mod2am code from EuroBen.
The GPU-optimized code made use of code downloaded from the RapidMnd devel-
oper web site. For sparse matrix-vector multiplication RapidMind again achieved
about a quarter of the performance of CUBLAS, and for the FFT it achieved about
20 % of the performance of our CUDA code. Using RapidMind a first executable
was fairly easy to generate, but to achieve good performance significant work and
insight into RapidMind and the target architectures was necessary. A more in-depth
discussion of the RapidMind porting effort can be found in Christadler and Weinberg
(2010).

Fig. 3.34 Mod2am results using RapidMind compared to using CUDA on the C1060 and MKL
on the reference platform (Sagar et al. 2010)
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Fig. 3.35 Mod2as results using RapidMind compared to CUDA on the C1060 and MKL on the
reference platform (Sagar et al. 2010)

Fig. 3.36 Mod2f results using RapidMind compared to CUDA on the C1060 and MKL with one
thread on the reference platform (Sagar et al. 2010)

3.3.3 PGI Accelerator Compilers

PGI in 2009 released enhanced versions of their C and Fortran compilers that use
directives to control code generation for specialized hardware (Portland Group Inc
2011; PGI Accelerator Programming Model for Fortran and C 2010) like GPUs using
a similar approach to the one used for the HMPP preprocessor. We investigated the
PGI accelerator compiler capabilities on the matrix multiplication and sparse matrix-
vector multiplication EuroBen codes. The results are shown in Figs. 3.37 and 3.38.
For matrix multiplication the generated code achieved a peak performance slightly
in excess of 8 GF, or 11 % of the peak C1060 performance. On the host platform the
PGI compiler generated code achieved at best 17 % of theoretical peak. For the sparse
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Fig. 3.37 Mod2am results
using the PGI Accelerator C
compiler for the C1060 (Sagar
et al. 2010)

Fig. 3.38 Mod2as results
using the PGI Accelerator C
compiler for the C1060 (Sagar
et al. 2010)

matrix-vector multiplication it is interesting to note that he PGI compiler generated
code achieves a performance comparable to that of MKL. However, on the GPU
the performance of the PGI generated code is significantly lower than that of the
CUBLAS, see Fig. 3.19.
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3.3.4 Programming Tools Comparison

The CAPS HMPP preprocessor as well as the PGI Accelerator Compiler and Rapid-
Mind were immature tools at the time of this study. OpenCL was also included but
the beta compilers available during this effort were buggy and the porting efforts
had significant problems. For matrix multiplication, which is ideal for many archi-
tectures, including GPUs, and a function for which many compilers perform well,
the GPU codes generated by RapidMind and the PGI Accelerator Compiler were not
good. The performance achieved was at best about 20 and 11 % of peak, respectively.
The CAPS HMPP preprocessor did better and after an optimization effort generated
code that performed comparable to the CUBLAS, a very good result. For sparse
matrix-vector multiplication all tools generated poor code for the C1060 with a peak
performance of much less than 1 % of peak and a factor 5–10 worse than CUBLAS.
The PGI Accelerator Compiler generated good code though for the host (comparable
in performance to MKL).

Clearly, producing code that performs well is a very important aspect of a pro-
gramming tool for HPC. However, ease of use including debugging is also important
for productivity (Kennedy et al. 2004) as determined in the DARPA High Productiv-
ity Computing Systems program (Dongarra et al. 2008). Measuring productivity is
difficult since many hard to measure factors may influence the outcome, such as the
programmers experience with similar programming tasks, familiarity with the tools,
platform etc, and the extent to which code needs to be modified or entirely redesigned,
rewritten and debugged. Though the number of lines of code is a debated measure
it is generally agreed that error rates and debugging time are likely to increases with
increased code size, and that fewer lines of code is an indication of the expressiveness
and quality of a language. Thus, for the porting efforts undertaken the number of lines
of code was measured, and so was the time to produce and debug the code, and in
some cases optimize it. Though there is much uncertainty in the data it nevertheless
appears true that languages and programming models targeting expressiveness do
result in shorter codes (Erbacci et al. 2009).

Table 3.9 shows a sample of the measurements. The lines of codes reported are
true but unfortunately misleading in that the HMPP code includes several versions
that were produced in attempting to get good performance (Sagar et al. 2010). But
the code size for one version is nevertheless larger than for RapidMind. The reported
time for RapidMind, which include learning the tool, does show that the learning
curve can be significant for new tools that address a complex programming situation.

Table 3.9 Programmer productivity measurements for mod2am and mod2as using CAPS HMPP
and RapidMind

Lines of code Development time Performance (% of peak)
Mod2am Mod2as Mod2am Mod2as Mod2am Mod2as

CAPS HMPP 976 979 5 0.5 78.99 0.09
RapidMind 30 27 18.5 12 19.85 0.29
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3.4 Conclusions

Though double-precision arithmetic performance was not a strong point for GPU
at the time of the evaluation, the expected evolution of GPU performance and pro-
grammability and potential advantage in energy efficiency made it interesting for
PRACE to evaluate GPUs as accelerators for future HPC systems, in particular from
a programming and energy efficiency point of view. The programming issues associ-
ated with heterogeneous node architectures and the streaming architecture of GPUs
are likely to remain as support for double-precision arithmetic and programming
flexibility in future generations of GPUs improve. This expectation has already been
realized to some degree since our study was undertaken.

In regards to the fraction of peak performance achieved for the Nehalem CPU,
and the C1060 and the CSX700 by themselves, the Nehalem performed the best for
matrix multiplication with an efficiency of 93.9 %, with the CSX700 being second at
88.5 % and the C1060 being third at 82.1 %. From an energy perspective the CSX700
outperformed the CPU by a factor of more than 11 and the C1060 by an estimated
factor of more than 15. For HPL the differences were somewhat less dramatic with
the CSX700 having a power efficiency about 7 times higher than the Nehalem CPU
and a power efficiency more than 10 times that of the C1060. For FFT, the C1060
with a good library implementation achieved a peak efficiency of close to 40 %, about
50 % better than the CPU. The CSX700 did not perform well and only achieved 25 %
efficiency. However, because it only consumes less than 10 % of the power of the
C1060, it still had the best power efficiency, estimated at more than three times that
of the C1060. The estimated power efficiency of the Nehalem for FFT was about half
of that of the C1060, but the Nehalem CPU itself has comparable power efficiency.
The C1060 performed surprisingly well on the sparse matrix-vector multiplication
benchmark and indeed performed significantly better than the CPU, and should also,
despite its high power consumption have a power efficiency much better than the
CPU. The CSX700 performed very poorly on the sparse matrix-vector multiplication.

In regards to an integrated system as expected the data transfers between the CPU
memory and the accelerators have a significant impact on the benefit for less compute
intensive tasks, such as FFT and in particular sparse matrix-vector multiplication.
For compute intensive tasks such as matrix multiplication and HPL the accelerators
offers both a performance boost and improved power efficiency, while for computa-
tions such as FFT the performance improvement may be less but a power efficiency
improvement may still be possible because “shared infrastructure”, such as memory,
is included in the host measures.

For all the power efficiency measurements and estimate we caution that results
can easily be misleading depending on the intended objective. Measuring total power
consumption and performance is fairly straightforward, but in attempting to assess
what to expect for future generation systems it is necessary to have observations
for the various components themselves, since the components are likely to change
in different ways. Component energy measurements are difficult and may require
hardware modification, in particular for current measurements.
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The programming tools that were evaluated were all immature, with OpenCL
being so immature that reliable results were not obtained. For HMPP and RapidMind
creating a usable code was quite simple and only required a modest learning effort,
but creating an efficient code required a measurable effort requiring good knowledge
of both the tool and the architecture of the target devices.
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Chapter 4
GRAPE and GRAPE-DR

Junichiro Makino

Abstract We describe the architecture and performance of GRAPE-DR (Greatly
Reduced Array of Processor Elements with Data Reduction). It operates as an accel-
erator attached to general-purpose PCs or x86-based servers. The processor chip of
a GRAPE-DR board have 512 cores operating at the clock frequency of 400 MHz.
The peak speed of a processor chip is 410 Gflops (single precision) or 205 Gflops
(double precision). A GRAPE-DR board consists of four GRAPE-DR chips, each
with its own local memory of 256 MB. Thus, a GRAPE-DR board has the theoret-
ical peak speed of 1.64 SP and 0.82 DP Tflops. Its power consumption is around
200 W. The application area of GRAPE-DR covers particle-based simulations such as
astrophysical many-body simulations and molecular-dynamics simulations, quantum
chemistry calculations, various applications which requires dense matrix operations,
and many other compute-intensive applications. The architecture of GRAPE-DR is
in many ways similar to those of modern GPUs, since the evolutionary tracks are
rather similar. GPUs have evolved from specialized hardwired logic for specific oper-
ations to a more general-purpose computing engine, in order to meet the perform
complex shading and other operations. The predecessor of GRAPE-DR is GRAPE
(GRAvity PipE), which is a specialized pipeline processor for gravitational N -body
simulations. We have changed the architecture to extend the range of applications.
There are two main differences between GRAPE-DR and GPGPU. One is the tran-
sistor and power efficiency. With 90 nm technology and 400M transistors, we have
integrated 512 processor cores and achieved the speed of 400 Gflops at 400 MHz
clock and 50 W. A Fermi processor from NVIDIA integrates 448 processors with
3B transistors and achieved the speed of 1.03 Tflops at 1.15 GHz and 247 W. Thus,
Fermi achieved 2.5 times higher speed compared to GRAPE-DR, with 2.9 times
higher clock, 8 times more transistors, and 5 times more power consumption. The
other is the external memory bandwidth. GPUs typically have the memory bandwidth
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of around 100 GB/s, while our GRAPE-DR card, with 4 chips, have only 16 GB/s.
Thus, the range of application is somewhat limited, but for suitable applications, the
performance and performance per watt of GRAPE-DR is quite good. The single-card
performance of HPL benchmark is 480 Gflops for matrix size of t 48 k, and for 81
cards 37 Tflops.

4.1 Introduction

In many simulations in astrophysics, it is necessary to solve gravitational N -body
problems. To solve the gravitational N -body problem, we need to evaluate the grav-
itational force on each particle (body) in the system from all other particles in the
system. If relatively low accuracy is sufficient, we can use fast solvers such as the
Barnes-Hut tree algorithm (Barnes and Hut 1986) or FMM (Greengard and Rokhlin
1987). If high accuracy is required, the direct summation is still the most practical
approach. In both cases, the calculation of the gravitational interactions between
particles is the most time-consuming part of the calculation.

We can, therefore, greatly speed up the entire simulation, just by accelerating the
speed of the calculation of particle-particle interactions. This is the basic idea behind
GRAPE computers, as shown in Fig. 4.1. The system consists of a host computer and
special-purpose hardware, and the special-purpose hardware handles the calculation
of gravitational interactions between particles. The host computer performs other
calculations such as the time integration of particles, I/O, and diagnostics.

4.2 History of GRAPE Systems

Figure 4.2 shows the evolution of GRAPE systems and general-purpose parallel com-
puters. GRAPE Project was started in 1988. The first machine we completed, the
GRAPE-1 (Ito et al. 1990), was a single-card unit on which around 100 IC and LSI
chips were mounted and wire-wrapped. The pipeline unit of GRAPE-1 was imple-
mented with commercially available IC and LSI chips. The design of the pipeline unit
of GRAPE-1 is rather unusual. The position vectors are expressed in a 16-bit fixed-
point format, and subtraction was done using 16-bit ALU chips. After the subtraction,
the result is converted to an 8-bit (1 sign and 7 magnitude bits) logarithmic format,
with effective mantissa of 3 bits. This conversion was done by a single EPROM chip.

Fig. 4.1 Basic structure
of a GRAPE system

Host
Computer

GRAPE
position, mass

acceleration,
potential
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Fig. 4.2 The evolution of GRAPE and general-purpose parallel computers. The peak speed is plot-
ted against the year of delivery. Open circles, crosses and stars denote GRAPEs, vector processors,
and parallel processors, respectively

For all operations between two 8-bit words, EPROM chips were used. Thus, we could
greatly simplify the hardware design. One EPROM chip can calculate dx2 + dy2

from dx and dy, and another EPROM chip can calculate dx/dr3 from dx and dr2.
The accumulation of the force was done in a 48-bit fixed-point format, so that forces
from distant particles do not cause underflow.

One might think the effective mantissa of 3 bits must be too short. We have
performed theoretical and experimental analysis of error propagation (Makino et al.
1990) and confirmed that this accuracy is sufficient for at least a certain class of
important problems.

GRAPE-2 was similar to GRAPE-1A, but with much higher numerical accuracy.
In order to achieve higher accuracy, commercial LSI chips for floating-point arith-
metic operations such as TI SN74ACT8847 and Analog Devices ADSP3201/3202
were used. The pipeline of GRAPE-2 processes the three components of the interac-
tion sequentially. So it accumulates one interaction in every three clock cycles. This
approach was adopted to reduce the circuit size. Its speed was around 40 Mflops, but
it is still much faster than workstations or minicomputers at that time.

After GRAPE-2, we started to design custom LSI chips. GRAPE-3 (completed
in 1992) and GRAPE-5 (Kawai et al. 2000) are low-accuracy machines similar to
GRAPE-1, but with much faster speed. GRAPE-4 (Makino et al. 1997) and 6 (Makino
et al. 2003) are high-accuracy machines.

Table 4.1 summarizes the history of GRAPE project. In 1992, we completed
GRAPE-2A (Ito et al. 1993), an enhanced version of GRAPE-2 designed to be
used for molecular dynamics simulations. MD-GRAPE system (Fukushige et al
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Table 4.1 History of GRAPE project

GRAPE-1 (89/4–89/10) 310 Mflops, low accuracy
GRAPE-2 (89/8–90/5) 50 Mflops, high accuracy (32 bit/64 bit)
GRAPE-3 (90/9–91/9) 18 Gflops, high accuracy
GRAPE-4 (92/7–95/7) 1 Tflops, high accuracy
GRAPE-5 (96/4–99/8) 5 Gflops/chip, low accuracy
GRAPE-6 (97/8–02/3) 64 Tflops, high accuracy

1996) with custom LSI design followed GRAPE-2A, and the latest machine, Protein
Explorer, Taiji et al. (2003) have reached the peak speed of 1 Pflops in 2006.

We can see that GRAPE and MD-GRAPE systems achieved very high speed.
Since the total development cost of each GRAPE system was less than 5 M USD
(except for Protein Explorer), they typically achieved the price performance two
orders of magnitude better than that of typical general-purpose supercomputers of
the same time. GRAPE systems were also extremely power efficient. For example,
GRAPE-6, with the peak speed of 64 Tflops, consumed roughly 30 kW. The Earth
Simulator, with the peak speed of 40 Tflops, consumed 6 MW. Thus, GRAPE-6 is
300 times more power efficient than the Earth Simulator. Even in 2010, latest x86
processors still require around 2 W per Gflops. So GRAPE-6 is more power-efficient
than microprocessors of year 2010 by a factor of 4 or more.

4.3 “Problem” with GRAPE Approach

We have seen that GRAPE systems have achieved price-performance and power
efficiency roughly two orders of magnitude better than general-purpose computers
of the same time. This success comes from the simple fact that within one GRAPE
processor chip, almost all transistors are used for the pipeline processors which per-
form the evaluation of particle-particle interactions. Thus, the number of arithmetic
units in a GRAPE-6 chip exceeds 300, and the number of transistors per arithmetic
unit is around 30,000. The Fermi processor from NVIDIA integrates 512 arithmetic
unit (adder and multiplier) with 3 billion transistors. Thus, it uses around 3,000,000
transistors per arithmetic unit. The difference between GRAPE-6 and Fermi is about
a factor of 100. If we compare GRAPE-6 with latest x86 microprocessors, this ratio
is close to 1,000.

For the last two decades, microprocessors has been evolving to more and more
complex design, and thus the number of transistors per arithmetic unit has been
increasing. The move from CPU to GPU resulted in roughly a factor of 10 reduction
in the number of transistors per arithmetic unit, or a factor of 10 increase in the
number of arithmetic units in a chip, but they are still less efficient compared to
microprocessors 20 years ago, which in turn was already less efficient compared to
GRAPE-6 chip by a factor of 30.
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If we were to make the follow-up of GRAPE-6 processor using today’s 45 nm
technology, we could make a chip with 200 pipelines (12,000 arithmetic units) oper-
ating at the clock speed of 700 MHz or so, resulting in the speed of around 10 Tflops
and power consumption of around 50 W.

However, there is one economical factor. The initial design cost of a custom LSI
chip has been increasing exponentially for the last two decades. In 1990, the initial
cost for a custom chip was around 100 K USD. By the end of the 1990s, it has become
higher than 1 M USD. By 2010, the initial cost of a custom chip is around 10 M USD.
Thus, it has become difficult to get a budget large enough to make a custom chip,
which has a rather limited range of applications.

One way to reduce the initial design cost is to use FPGA (Field-Programmable
Gate Array) chips. An FPGA chip consists of a number of “programmable” logic
blocks and also “programmable” interconnection network. A logic block is essen-
tially a small lookup table implemented using static RAM cells, which can implement
any combinatorial logic for the input data. Interconnection network is used to imple-
ment more complex logic. Recent FPGA chips have more complex design, with
larger SRAM blocks and also many small (typically 9 bit) multipliers.

It is possible to implement pipeline processors to FPGA chips. However, because
of the programmable design, FPGAs are much more inefficient in transistor usage
than full-custom chips. Several successful approaches have been reported (Hamada
et al. 1999; Kawai and Fukushige 2006). However, if higher accuracy is necessary,
the advantage of FPGA chips becomes small.

One could also use so-called structured ASIC chips, which fall in between FPGAs
and full-custom chips. Typically, a chip based on the structured ASIC technology
can integrate three to five times more logics compared to fairly large FPGA chips,
for much lower replication cost (but with much higher initial cost). Again, it is ideal
for low-accuracy pipeline.

The use of GPUs is an obvious alternative by now, but when we started planning
the followup project for GRAPE-6 in 2002, it was not clear to which direction GPUs
were going, and as we’ve seen above, GPUs are still quite inefficient in the use of
transistors.

4.4 GRAPE-DR

A very different solution for the problem of the high initial cost is to widen the
application range by some way to justify the high initial cost. With the GRAPE-DR
project (Makino et al. 2007), we followed this approach.

With GRAPE-DR, the hardwired pipeline processor of previous GRAPE systems
were replaced by a collection of simple SIMD programmable processors. The internal
network and external memory interface was designed so that it could emulate GRAPE
processor efficiently and could be used for several other important applications,
including the multiplication of dense matrices.
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Fig. 4.3 The GRAPE-DR processor board

GRAPE-DR is an acronym of “Greatly Reduced Array of Processor Elements
with Data Reduction”. The last part, “Data Reduction”, means that it has an on-chip
tree network which can do various reduction operations such as summation, max/min
and logical and/or.

The GRAPE-DR project was started in FY 2004, and finished in FY 2008. The
GRAPE-DR processor chip consists of 512 simple processors, which can operate at
the clock cycle of 500 MHz, for the 512 Gflops of single precision peak performance
(256 Gflops double precision). It was fabricated with TSMC 90 nm process and the
size is around 300 mm2. The peak power consumption is around 60 W. The GRAPE-
DR processor board (Fig. 4.3) houses 4 GRAPE-DR chips, each with its own local
DRAM chips. The memory bandwidth to DRAM is 4 GB/s per chip, when the clock
frequency is 400 MHz. It communicates with the host computer through Gen1 16-lane
PCI-Express interface.

If we compare the GRAPE-DR chip with latest (as of 2010) GPU chips, the
number of processors are rather similar (both GRAPE-DR and NVIDIA Fermi have
512 processors), and performance is also rather close (256 DP peak for GRAPE-DR
and 515 DP peak for Fermi), though latest GPUs use semiconductor technology
two and half generation advanced (90 nm for GRAPE-DR and 40 nm for Fermi)
and more than 10 times more transistors. Compared to GRAPE-6, GRAPE-DR is
roughly a factor of 10 less efficient in transistor usage, but even so it is a factor of 10
more efficient than GPUs. The reason for this difference with GPU is that GRAPE-
DR is designed as a collection of simple processors with small register files and
local memory, connected with simple networks, so that the arithmetic units occupy
a significant fraction of silicone real estate. Thus, the design of GRAPE-DR is not
very far from the theoretical limit for the number of transistors per double-precision
arithmetic unit (within a factor of five).
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Fig. 4.4 The performance of individual-timestep scheme on single-card GRAPE-DR in Gflops,
plotted as a function of the number of particles

This card gives the theoretical peak performance of 819 Gflops (in double preci-
sion) at the clock speed of 400 MHz. The actual performance numbers are 740 Gflops
for matrix–matrix multiplication, 480 Gflops for LU-decomposition, and 500 Gflops
for direct N -body simulation with individual timesteps (Fig. 4.4). These numbers
are roughly a factor of two or more better than the best performance number so far
reported with GPGPUs of year 2010.

In the case of parallel LU decomposition, the measured performance was 37.44
Tflops on 81-board, 81-node system (Fig. 4.5). The power consumption of this system
during the calculation, measured following the rule of Green 500 list, was 25.4 KW,
and thus performance per Watt is 1474 Mflops/W. This number is listed as No. 2 in
the Green 500 list of Nov 2010. Also, a calculation on 64-node system was listed as
No. 1 in the June 2010 “Little” list. The machine which outperformed GRAPE-DR
in Nov 2010 list is the prototype of IBM BlueGene/Q. Its first commercial delivery is
scheduled to the end of year 2011. Thus, in terms of the power efficiency, GRAPE-
DR achieved the world’s best performance for the machine in the production use in
the year of 2010, with the 90 nm technology which is at least two generations older
than what is used on other machines, including GPGPUs.

Thus, from a technical point of view, we believe GRAPE-DR project is highly
successful, in making multi-purpose computers with the highest single-card perfor-
mance and the highest performance per watt.



86 J. Makino

Fig. 4.5 The GRAPE-DR cluster

4.5 Future Directions

Whether or not GRAPE-DR will be competitive with other approaches, in particular
GPGPUs, is another question. Though GRAPE-DR is significantly more efficient in
transistor usage, the price of GPUs is much lower than that of GRAPE-DR, partly
because of much larger production quantities and partly because the pricing strategy
of GPU companies. Currently, GPU companies sell GPU cards with huge chips
for incredibly low price, and that is the reason why they are attractive to the HPC
community. If GPGPUs were designed specifically for HPC applications, its market
would be much smaller and thus its per-chip price need to be much higher. Even
now, NVIDIA Tesla cards are sold for the price much higher than that of equivalent
graphic cards.

Thus, if we or someone else would continue the development of machines similar
to GRAPE-DR, they will be able to compete with other HPC platforms such as
x86 CPUs and GPGPUs, even if the production volume is much smaller and silicon
technology is one or two generations behind.

Another important factor is that with current GPUs, the price of electricity is
already higher than the hardware cost. Very roughly, in Japan, the continuous use of
one Watt for one year costs one USD. If we use a GPU card with 250 W of power
consumption for five years, it would cost 1250 USD, and if we include the cost of
air conditioning, it might approach 2000 USD. Thus, whether the price of the card
is 500 or 1000 USD does not matter. If something else can provide the performance
same as that of GPU for, say, 50 W, even if it costs 2000 USD, the total cost would
be less.
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If we were to design a followup machine for GRAPE-DR, using 28 nm technology,
we can integrate 10 times more arithmetic units than what we have in the current 90 nm
chip. We can improve the throughput of double-precision floating-point operations by
another factor of two by replacing 25×50 bit multiplier of GRAPE-DR by full 50×50
bit multipliers, without significantly increasing the chip size. With the clock speed
kept low (for example 700 MHz), a single chip deliver the peak double-precision
performance of 7 Tflops, for the power consumption of around 100 W.
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Chapter 5
PARRAY: A Unifying Array Representation
for Heterogeneous Parallelism

Yifeng Chen, Xiang Cui and Hong Mei

Abstract This paper introduces a programming interface called Parray
(or Parallelizing ARRAYs) that supports system-level succinct programming for
heterogeneous parallel systems like GPU clusters. The current practice of software
development requires combining several low-level libraries like Pthread, OpenMP,
CUDA and MPI. Achieving productivity and portability is hard with different num-
bers and models of GPUs. Parray extends mainstream C programming with novel
array types of the following features: (1) the dimensions of an array type are nested in
a tree structure, conceptually reflecting the memory hierarchy; (2) the definition of an
array type may contain references to other array types, allowing sophisticated array
types to be created for parallelization; (3) threads also form arrays that allow program-
ming in a Single-Program-Multiple-Codeblock (SPMC) style to unify various sophis-
ticated communication patterns. This leads to shorter, more portable and maintainable
parallel codes, while the programmer still has control over performance-related fea-
tures necessary for deep manual optimization. Although the source-to-source code
generator only faithfully generates low-level library calls according to the type infor-
mation, higher-level programming and automatic performance optimization are still
possible through building libraries of sub-programs on top of Parray. The case
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study on cluster FFT illustrates a simple 30-line code that 2×-outperforms Intel
Cluster MKL on the Tianhe-1A system with 7168 Fermi GPUs and 14336 CPUs.

Categories and Subject Descriptors D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming · D.3.3 [Programming Languages]:
Language Constructs and Features—Concurrent programming structures · D.3.4
[Programming Languages]: Processors—Code generation

General Terms Languages · Performance · Theory

Keywords Parallel programming · Array representation · Heterogeneous
paralelism · GPU clusters

5.1 Introduction

Driven by the demand for higher performance and lower hardware and energy costs,
emerging supercomputers are becoming more and more heterogeneous and massively
parallel. Several GPU-accelerated systems are now ranked among the top 20 fastest
supercomputers. Despite the rapid progress in hardware, programming for optimized
performance is hard.

The existing programming models are designed for specific forms of parallelism:
Pthread and OpenMP for multicore parallelism, CUDA and OpenCL for manycore
parallelism, and MPI for clustering. A simple combination of these low-level inter-
faces does not provide enough support for software productivity and portability
across different GPU clusters with varied numbers/models of GPUs on each node.
A current common practice is to combine MPI and CUDA. However on a cluster
of GPU-accelerated multicore nodes, the number of MPI processes cannot be the
number of CPU cores (to use the CPU cores) and the number of GPUs (to use GPUs)
at the same time. A seemingly obvious solution is to use the number of GPUs for MPI
processes and use OpenMP to control CPU cores, but the complexity of programming
with all MPI, CUDA and OpenMP will discourage most application developers.

Such difficulties have led to a variety of new ideas on programming languages
(more detailed comparisons in Sect. 5.5). Language design is a tradeoff between
abstraction and performance. For high-performance applications, the concern of per-
formance is paramount. We hence ask ourselves a question:

how abstractly can we program heterogeneous parallel systems without introducing
noticeable compromises in performance?

The design of Parray follows the approach of bottom-up abstraction. That means
if a basic operation’s algorithm or implementation is not unique (with considerable
performance differences), the inclination is to provide more basic operations at a
lower level. Our purpose is not to solve all the programmability issues but to pro-
vide a bottom level of abstraction on which performance-minded programmers can
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directly write succinct high-performance code and on which higher-level language
features can be implemented without unnecessary performance overheads. This kind
of “performance transparency” allows other software layers to be built on top of this
layer, and the implementation will not be performance-wise penalized because of
choosing Parray instead of using low-level libraries directly. A programmer can
then choose the right programming level to work with.

A common means to achieve abstraction is to adopt a unifying communication
mechanism, e.g. synchronous message passing in process algebra (Hoare 1985), dis-
tributed memory sharing or Partitioned Global Address Space (PGAS). However,
heterogeneous parallel systems are often equipped with different kinds of hardware-
based communication mechanisms such as sequentially-consistent shared memory
for multicore parallelism, asynchronous message-passing or RDMA for clustering,
inconsistent shared memory (with explicit but expensive consistency-enforcing syn-
chronization) for manycore parallelism, as well as PCI data transfer between servers
and their accelerators. These mechanisms exhibit significantly different bandwidth,
latency and optimal communication granularity (i.e. the size of contiguous data
segments).

Encoding all data-transfer operations of a source program into a unified commu-
nication pattern does not always yield efficient code. For example, programs with
assumption of a global-address space (either Distributed Shared Memory or PGAS)
tend to issue data-transfer commands when data are needed for computation, but
a better strategy may instead use prefetching to better overlap communication and
computation. Another challenge is to maximize communication granularity. Shared-
memory programs tend to issue individual data-access commands in the actual code
for computation, but communication channels such as PCI (between CPU and GPU)
and Infiniband (among nodes) require granularity to reach a certain level to achieve
peak bandwidths. The source-program information about granularity is easily lost
with global-address accesses. Compile-time and runtime optimization alleviates the
issues but it remains to be seen to what extent such lost source information is recov-
erable automatically.

In this paper, we take a different perspective and do not attempt to devise any
unifying memory model. Instead we invent novel types that unify the representation
of different communication mechanisms. It allows programmers to specify what
needs to be done in a communicating operation, and the compiler will then generate
the corresponding library calls. This is not restricted to generating hardware-based
communication calls. If the required data transfer is one-sided and there exists a well
optimized PGAS protocol, the compiler simply generates PGAS calls (Nieplocha
et al. 1996) instead.

How can we uniformly represent such a diverse variety of communication
mechanisms?

The answer is to identify their common unifying mathematical structure. To get a
glimpse of the intended representational unification, consider an example to partition
a 4096×4096 row-major array in the main host memory (hmem) to two 2048×4096
blocks, each being copied to a GPU device memory via PCI. Experiments show that
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the overall bandwidth of two parallel PCI transfers is 1.6x of single PCI transfers. The
two CPU multicore threads that control GPUs are therefore programmed to invoke
cudaMemcpy simultaneously, followed by inter-thread synchronization. Interest-
ingly similar communication patterns arise elsewhere e.g. in collective communica-
tion MPI_Scatter that scatters the two-block source array to two MPI processes.
This is illustrated in the following figures.

GPU0

GPU1

cudaMemcpyHostToDevice

4096 2048
2048

Proc0

Proc1

MPI_Scatter

PCI

network

Although the two seemingly disparate communication patterns describe data trans-
fers of different library calls (CUDA and MPI), via different media and to different
memory devices, they do share the same logical pattern of data partition, distribution
and correlation. Such similarities motivate us to unify them as one communication
primitive and treat the data layouts of communication’s origin and destination as
typing parameters.

There have been a large body of research on arrays (e.g. HTA (Ganesh et al. 2006)),
but the existing array notations are not expressive and flexible enough to reflect
the complex memory hierarchy of heterogeneous parallel systems, control various
system-level features, unify sophisticated communication patterns including dimen-
sional transposition, noncontiguous transfer, uncommon internode connections etc.,
and convey enough source information to the compiler to generate performance-
optimal code. The solution is to increase representational expressiveness.

Parray adopts a new array type system that allows the programmer to express
additional information about parallelization that can guide the compiler to generate
low-level library calls. The following features are claimed to be original contributions
not seen in other array notations that we know about:

1. Dimension tree
The dimensions of an array type are nested in a tree, conceptually reflecting
the memory hierarchy. Unlike HTA’s dimension layers that have default memory
types, Parray’s dimension tree is logical and independent of any specific system
architecture. The memory-type information is specifiable for each sub-dimension.
Such flexibility allows dimensions to form a hierarchy within individual memory
devices.

2. Array-type references
The definition of an array type may contain references to other array types’ defini-
tions. This allows sophisticated array types to be created for transposition, partition,
distribution and distortion. Such types form an algebraic system with a complete
set of algebraic properties (see Sect. ??).



5 Parray: A Unifying Array Representation for Heterogeneous Parallelism 95

3. Thread arrays
Threads also form arrays. A thread array type indicates the kind of processor
on which the threads are created, invoked and synchronized. The SPMD codes
of different thread arrays are compacted in a nested-loop-like syntactical context
(Single-Program Multiple-Codeblocks or SPMC) so that the order of commands
in the nested context directly reflects that of the computing task. An array type
may consist of a mixture of dimensions that refer to data and thread array types
and represent the distribution of array elements over multiple memory devices. A
communication pattern is represented as the pairing between such types.

Parray essentially organizes various array types in a unifying mathematical frame-
work, but:

how do we know to what extent the basic framework’s design is already expressive
enough and unnecessary to be extended for future applications and architectural
changes?

The answer derives from a theoretical analysis showing that any location-indexing
expression (called offset expression) for array elements is representable with Parray
types, as long as it just consists of integer (independent) expressions, multiplication,
division and modulo operators, and additions and compositions between expressions.
Such level of expressiveness is not seen in any existing array notations.

Parray is implemented as a preprocessing compiler that translates directives into
C code and macros. As the array types already convey detailed information about the
intended communication patterns, the code generation is straightforward and faith-
ful in the sense that the compiler need not second-guess the programmer’s intention,
and hence little runtime optimization is required. The compiler does generate various
conditional-compilation commands, which are usually optimized by the underlying
C compiler without causing performance overheads. In a sense, the Parray’s data-
transfer command is like an extremely general MPI collective that invokes the actual
communication libraries according to the type parameters. Little overhead-inducing
code is generated before or after the invocations. Paradoxically, by not relying on run-
time optimization, Parray can guarantee performance (for well-coded programs)
and form a performance-transparent portable layer of abstraction.

Section 5.2 introduces Parray notation. Section ?? studies the mathematical
foundation of Parray; Sect. 5.3 explains the rationale behind the implementation
including the concept of SPMC; Sect. 5.4 investigates into a case study on large-scale
FFT; Sect. 5.5 reviews previous works.

5.2 Parallelizing Array Types

This section introduces the Parray type notation on which the actual programming
syntax is based.
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5.2.1 Dimension Tree

Let us first look at a simple definition:

A =̂ pinned float[[3][2]][4].

The type describes 3× 2× 4 = 24 floating-point elements in three dimensions, but
it is also a two-dimensional array type with 6 × 4 floats and or a one-dimensional
array type with 24 floats. The indicated memory type is “pinned” which denotes
the main host memory allocated by CUDA for fast DMA with GPU.

Note that in the actual code generation, the size of a dimension can be any arbitrary
integer expression of C.

As slightly simplified code generation, the compiler translates the offset expression
(i.e. mapping from indices to element offsets) A[[x][y]][z] into a C expression x ∗
8 + y ∗ 4 + z, A[x][y] into expression x ∗ 4 + y, and A[x] into the index x itself.
Such offset expressions are used for row-major element accesses in program.

Let the partial array type A0 denote the left subtree of A, i.e. a 2D type of size
3 × 2, and A1 denote the right 1D subtree of size 4. The compiler will translate
A0[x][y] into x ∗ 8+ y ∗ 4 (instead of x ∗ 2+ y)!

5.2.2 Type Reference

A dimtree may contain references to other array types. The following device-memory
(or dmem) array type

B =̂ dmem float[[# A01][# A00]][# A1]

contains references to A with the sub-dimensions of the left subtree transposed. Their
offset expressions satisfy an equation:

B[[x][y]][z] = A[[y][x]][z].

Unlike the elements of A, those of type B are not contiguously laid out in memory:
neither row-major as C convention nor column-major as Fortran. Many sophisticated
array layout patterns correspond to the combined uses of dimtree and type references.

5.2.3 Data Transfer

To represent data transfer from an array of type A to an array of type B, we use the
following notation:
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B ⇔ A.

The data transfer involves two real array objects in an actual program and describes
the operation to copy every element of a type-A array at location A[i] to an element
of a type-B array at B[i]. In practice, as the source array is located in hmem and the
target array in dmem, the compiler will generate:

cudaMemcpy(...,cudaMemcpyHostToDevice)

according to the memory types. Other low-level data transfers such as memcpy of
C, message passing MPI_Send/MPI_Recv, collectives MPI_Alltoall and so
on are generated if the memory types and the dimensions conform to other pairing
patterns.

As the offset expressions A[i] and B[i] are not equal, the copying cannot be
achieved in a single cudaMemcpy. A loop is hence needed to cudaMemcpy every
4 contiguous elements from the starting location A0[i] in the host memory to the
starting location B0[i] in GPU’s device memory as a partially contiguous transfer.

Whether the compiler generates one Memcpy command or a loop of Memcpys
depends on the array type’s contiguity, which the compiler will generate extra code
to check.

5.2.4 Threads Arrays

The following type describes two (Pthread) CPU threads:

P =̂ pthd[2].

Here pthd is called a thread type. No element type is required. Other possible thread
types include mpi for MPI processes and cuda for GPU threads. For example, the
type

M =̂ mpi[2]

describes two MPI processes. A GPU thread array type is two-dimensional: the
column dimension indicates the blocks in a grid, while the row dimension indicates
the threads in every block. For example, the following array type

C =̂ cuda[N/256][256]

describes N GPU threads of which every 256 threads form a CUDA block. Here
N can be any C expression (possibly including runtime variables). The compiler
will generate code that lexically includes the size expressions. CUDA thread-array
dimensions may contain sub-dimensions just like CUDA’s grids and blocks.



98 Y. Chen et al.

5.2.5 Distributed Array Types

If an array type has memory or thread type, its references to other array types only
affect the offset expressions, but if that is absent, it becomes mixed or distributed
and are often useful in collective data transfers. Consider an array type in ordinary
paged memory:

H =̂ paged float[2][[2048][4096]]

and another type half of its size in device memory D =̂ dmem float2 #H1. The
mixed type

[#P][#D]

logically has the same number of elements as H but does not describe array stored
in a single memory device. Instead it is distributed over the threads of P and stored
in the GPU device memory associated with each CPU control thread.

5.2.6 PCI Scattering

The communication pattern characterized by the type pairing

[#P][#D] ⇔ H

describes data copying from every element at location H [i][ j] in ordinary paged
hmem to the element at location D[ j] in the dmem of the GPU that is associated
with the control thread P[i]. The above communication pattern uses two parallel
CPU threads to scatter hmem data to the dmem of two GPUs.

5.2.7 MPI Scattering

The following communication pattern, on the other hand, collectively scatters the
source data to two MPI processes:

[#M][#H1] ⇔ H.

In practice, a communication pattern may generate different code for synchronous,
asynchronous, or one-sided communications.

The communication’s mode is determined by the programmer. If that is one-sided,
the compiler can generate PGAS code and take advantage of any available runtime
optimization (Nieplocha et al. 1996).
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5.2.8 Other MPI Collectives

Other MPI collective communications such as Alltoall and Gather have similar a type
representation. For example, the following communication pattern describes MPI’s
Alltoall collective:

[[#H0][#M]][#H1] ⇔ [[#M][#H0]][#H1]

where each element at location H [ j][k] on process M[i] is copied to the location
H [i][k] on process M[ j]. It effectively swaps the column dimension of H with the
distributed “virtual” dimension M . The compiler detects this pattern and generates
the MPI_Alltoall command based on the fact that the array type H is contiguous
and conforms to the semantics of the MPI command.

Unsurprisingly, MPI gathering accords with the converse communication pattern
of MPI scattering:

H ⇔ [#M][#H1].

5.2.9 Non-MPI Collectives

Some Parray communication patterns do not correspond to any single standard
MPI collective. Consider 2x2 four MPI processes:

M ′ =̂ mpi[2][2]

The following pairing of types describes two separate groups of MPI processes
performing Alltoall within each individual group:

[[#M ′0][#H0][#M ′1]][#H1] ⇔ [[#M ′0][#M ′1][#H0]][#H1].

The pid row dimension M ′1 and the data column dimension H0 are swapped by the
communication.

What gives rise to non-MPI collectives includes not only non-standard inter-
process connectivity but also discontiguity in process-to-process communication. In
the large-scale 3D FFT algorithm (Chen et al. 2010) developed for turbulence simu-
lation, a distributed array of size up to 143363 is transposed over the entire Tianhe-1A
GPU cluster with 7168 nodes (see Sect. 5.4). The algorithmic optimization requires
discontiguous data transfer between processes to adjust the displacements of elements
during communication so that main-memory transposition can then be avoided. The
data array of complex numbers (float2) on every node has the following type:

G =̂ pinned float2 [2][[7168][2]][14336].
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The array type for 7168 MPI processes is defined:

L =̂ mpi[7168].

The required discontiguous Alltoall communication pattern (with adjusted displace-
ments) corresponds to the following pairing types:

[[#G1][#L][#G0]][#G2] ⇔ [[#L][#G0][#G1]][#G2]. (5.1)

The types have two dimensions. Only the row dimensions are contiguous. The dimen-
sion L is swapped with G1 instead of G0. That means the starting locations of
communicated data are different from those of the standard Alltoall. As the commu-
nication granularity i.e. the size of G2 already reaches 14 × 8 KB, its performance
should be very close to that of a standard Alltoall, despite the fact that no such
displacement-adjusting collective exists.1

The above examples have illustrated the advantage of adopting a unifying rep-
resentational framework such that the communication library need not keep adding
ad hoc collectives to suit originally unforeseen communication patterns that arise
from new applications and emerging architectures.

Because all necessary information has been represented in the types, the generated
code is as efficient as the underlying MPI implementation. It is also possible to skip the
MPI layer and directly generate Infiniband’s IB/verbs invocation with less overheads.

5.2.10 Detecting Contiguity

How does the compiler know a communication pattern corresponds to MPI’s Alltoall
collective or any other sub-routines? This is achieved by checking the memory/thread
types of the dimensions and generating C boolean expressions that can check whether
the concerned dimensions are contiguous in the sense that the offsets of such a
dimension are linearly ordered in memory and located adjacently to each other.
Usually contiguity-checking expressions are determined in compile-time and induce
no performance overheads. Details of this question are beyond our agenda.

5.2.11 Syntax

Let e, e0, e1, · · · denote index expressions in C (variables allowed), the symbols
U, U0, U1, · · · denote array types, S, S0, · · · be multi-dimensional types. Array types
have the following simple syntax:

1 This communication pattern is equivalent to a loop of asynchronous Alltoallv collectives fol-
lowed by a global synchronization. Such implementation is possible owing to more recent MPI
development (Kandalla et al. 2011).
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S :: = [U0] · · · [Un−1]
U :: = e | disp e | S | U#U | U s | func(x) e.

where s is a path sequence of dimension indices to refer a sub-dimension deep in
a dimension tree, and (U s1)s2 is considered the same as U s1s2 . A C expression e
describes a 1D array type of size e. The displacement type (disp e) describes a
dimension of size 1 with offset e. A dimension may have multiple (up to 10 in
practice) sub-dimensions. The dimension size of a type reference U#V coincides
with that of U , while V refers to another type that describes the offset expression. A
functional offset expressionfunc(x) e describes a dimension of size 1 with a C offset
macro. Functional expressions, as user-defined offset mappings, further strengthen
expressiveness but will not be considered in our theoretical analysis.

5.2.12 Informal Rules

Every array-access expression can be decomposed into unary offset expressions
called offset functions. For example:

A[[x][y]][z] = A00[x] + A01[y] + A1[z]
= 8(x mod 3)+ 4(y mod 2)+ (z mod 4).

That means we only need the definition for every offset function. Another such exam-
ple is A0[x] = 4(x mod 6). The above semantic definition uses modulo operator.
In the actual implementation the programmer is required to ensure a safe range for
every index expression, and the modulo operators are not always generated.

Consider a type E =̂ [2][2]A0. The array size is 2×2, but the offset function of E
follows that of A0. The offset function of E0 is derivable top-down from that of A0:

E0[x] = A0[2(x mod 2)] = 8(x mod 2). (5.2)

Then consider the previous example B0. As its sub-dimensions B00 and B01 refer to
A01 and A00 respectively, the offset of B0 is computed bottom-up by decomposing
the index into separate indices of its sub-dimensions:

B0[x] = A01[x div 3] + A00[x] (5.3)

= 4((x div 3) mod 2)+ 8(x mod 3).

The above two cases are intuitive and common in practice. The general array repre-
sentation, however, allows more sophisticated cases where a dimension itself does
not refer to other types but both its parent dimension and some sub-dimensions con-
tain type references. The adopted rule is to first compute top-down according to
case (5.2), and then bottom-up according to case (5.3).



102 Y. Chen et al.

5.2.13 Displacement and Index Range

Displacement is a type notation not mentioned in the previous section. It is useful to
shift an offset function. In practice we often use (n..m) =̂ (m − n + 1) # (disp n)

to represent a dimension with a range of indices.
The case study in Sect. 5.4 partitions the 3D data in hmem into two-dimensional

slices and use GPU to compute the FFT for every slice separately. The type for a
slice in dmem is characterized as

Q =̂ dmem float2 [N ][N ],

while one of the slices with displacement in hmem is typed as

F =̂ pinned float2 [disp i][N ][N ].

Then the type pairing Q ⇔ F describes contiguous data transfer of size N 2 from
hmem to dmem. The starting location of transfer in hmem is (N 2 ∗ i). We may also
declare a smaller two-dimensional “window” in the middle of Q:

[4..(N − 5) # Q0][4..(N − 5) # Q1].

Such window types are useful in stencil computation. Cyclic displacement is also
easily representable.

5.3 Implementation

This section describes how Parray is implemented and the rationale behind it.

5.3.1 Data Array Types

Parray is implemented as a C preprocessor that generates CUDA, MPI, and Pthread
code and a basic library of sub-programs including the general DataTransfer
command. The preprocessor is detached from the C compiler to maximize cross-
platform compatibility and insensitivity to the constant upgrades of hardware
and system-level software. That means only directive errors are caught by the
preprocessor. C compilation errors are only detectable in the generated code. The
following table compares Parray notation and the corresponding program syntax.

The following example shows how an array a is declared, created, initialized,
accessed and freed in the end:
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Notation Program Syntax

A01 A_0_1
〈A〉 $dim(A)$
A[5][2] $A[5][2]$
A =̂ pinned # parray {pinned

float[[3][2]][4] float[[3][2]][4]} A
⇔ DataTransfer

#parray {pinned float[[3][2]][4]} A
float* a;
#create A(a)
printf("array access: %d\n", a[$A[5][2]$]);
#destroy A(a)

It first declares an array type A in pinned memory. The command #create A(a)
then allocates the pinned memory to the pointer. Note that #parray only defines an
array type. An actual array is a C pointer that allows multiple typing views as long
as the array is a pointer of the element type.

Other memory types include paged memory that is managed by the operating
system only reaching about 60 % the bandwidth of pinned memory for data transfer
with GPU device memory (which is denoted by the keyword dmem). The keyword
smem stands for shared memory in GPU, rmem for GPU registers (allocated as
direct array declaration in GPU kernels), and mpimem for MPI-allocated page-lock
DMA-able buffer memory. Mellanox and Nvidia’s GPU-Direct technology makes
pinned and mpimem interoperable.

The following table lists the actual library calls for memory allocation. Thread
types will be explained in Sect. 3.2.

#create #destroy Library

paged malloc free C/Pthread
pinned cudaMallocHost cudaFreeHost CUDA
mpimem MPI_Alloc_mem MPI_Free_mem MPI
dmem cudaMalloc cudaFree CUDA
smem --shared-- CUDA
rmem CUDA

It is recommended that all index expressions and data transfers should use array
notation (instead of native C notation) so that when an array type is modified, all
corresponding expressions and library calls will be updated automatically by the
compiler over the entire program. The following code declares a type B in dmem by
referring to A’s dimensions and transfers data between their arrays:

#parray {dmem float[[#A_0_1][#A_0_0]][#A_1]} B
float* b;
#create B(b)

http://dx.doi.org/10.1007/978-3-642-16405-7_3
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#insert DataTransfer(b, B, a, A){}

The sub-program DataTransfer automatically detects that the dimensions A_1
and B_1 are contiguous, and cudaMemcpy data from the main memory to GPU
device memory in a loop of 6 segments, each with 4 floats.

The following table lists the library calls used between memory types. hmem
refers to paged, pinned and mpimem all in the main memory but allocated for
different purposes. Data transfer from or to GPU’s shared memory smem or GPU’s
registers rmem is always performed element-by-element within a loop.

from\to hmem dmem smem/rmem

hmem memcpy cudaMemcpy
dmem cudaMemcpy cudaMemcpy C loop
smem/rmem C loop C loop

5.3.2 Thread Array Types

SPMD is adopted by a wide range of parallel languages. The idea of SPMD pro-
gramming is that one code is executed on multiple homogeneous parallel threads
(or processes), though at any time different threads may be executing different com-
mands of the code.

SPMD alone does not work for heterogeneous parallelism. For example, FFT on
a GPU cluster starts multiple MPI process, each of which initiates several threads to
control GPUs on that node, and each thread then launches thousands of GPU threads.
Another example is GPU-cluster’s Linpack code (Fatica et al. 2009), which performs
DGEMM on CPU and GPU threads at the same time.

In the existing explicitly parallel languages, the code segments for different
processes are declared separately. The interaction between such code segments
requires explicit matching synchronization command. The codeblocks of thread
arrays, however, are statically nested in the same program context. The control flow
may deviate from one thread array whose code is in an outer codeblock to another
thread array whose code is in its immediate inner block and return after the execution
of the inner block. The compiler will later extract the codeblocks and sequentially
stack those from the same thread array to form a separate SPMD code in which match-
ing synchronization and communication commands are automatically inserted. Thus
SPMC (or Single Program Multiple Codeblocks) is like a compile-time RPC: the con-
trol flows travel across different thread arrays. The purpose is to imply the dynamic
control flow as much as possible through the static structure of code and helps the
programmer “visualize” the interactive pattern of the control flows among different
thread arrays. Each thread array is a SPMD unit consisting of multiple homogeneous
processes sharing the same code. A SPMC program may consist of multiple thread
arrays, each as an array of homogenous threads sharing the same codeblock. The
codeblocks of different thread arrays are nested in “one single program”.
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The following example declares and creates an array of 2 CPU threads and then
triggers them to run.

#parray {pthd[2]} P
#detour P {printf("thread id %d\n", $tid$);}

The expression $tid$ returns the thread id of the current running thread. The
following table lists the actual library calls for creating and freeing thread arrays.
The code inside a detour can access global variables as it is generated as a global C
function or CUDA kernel in the global context.

#create #destroy Library

pthd pthread_create pthread_join Pthread
mpi MPI_Comm_split MPI_Intercomm_merge MPI
cuda CUDA

The callee codeblock will be extracted by the compiler separately. If in a program
there are two detour commands to the same type of thread array, the callee codeblocks
as well as the inserted synchronization commands will be statically piled up in the
generated C function according to their syntactical order in the source program.

5.3.3 Sub-Programming

A sub-program is like a general C macro function in which array types as well as
program codes can be passed as arguments, sometimes achieving surprising flexi-
bility. The following simple code, despite its appearance, directly corresponds to a
CUDA kernel that performs general copying within the device memory of a GPU.

#subprog GPUDataTransfer(t, T, s, S)
#parray {cuda($elm(T)$* t,$elm(S)$* s)

[$dim(S)$/256][256] } C
#detour C(t,s){ t[$T[$tid$]$]=s[$S[$tid$]$]; }

#end

The arguments T and S are input types assumed to have an equal (possibly variable)
size that is a multiple of 256. The expressions $elm(T)$ and $elm(S)$ extract
the element types from the input types. The CUDA thread array C declares as many
threads as the elements with every 256 threads forming a block. The overall thread
id $tid$ here combines CUDA block id and thread id. The inputs t and s are
passed as actual arguments into the CUDA kernel. Every thread copies an element
of array s at the location $S[$tid$]$ to the location $T[$tid$]$ of array t.
A sub-program is invoked by the command #insert. For example the following
code declares and creates two arrays of type Q in dmem and contiguously copies
elements of array s to array t .
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#parray {dmem float[N][N]} Q
float* s; #create Q(s)
float* t; #create Q(t)
#insert GPUDataTransfer(t,Q,s,Q)){}

This sub-program’ effect is the same as

cudaMemcpy(, , ,cudaMemcpyDeviceToDevice)

as both input types T and S of the sub-program are contiguous.
With different input types, the sub-program GPUDataTransfer may perform

a different operation with entirely different generated kernel codes. For example, the
following added code effectively performs an out-place array transposition with the
row and column dimensions swapped.

#parray {dmem float[#Q_1][#Q_0]} R
float* u; #create R(u)
#insert GPUDataTransfer(u,R,s,Q)){}

Both data copying and transposition share the same Parray code. No existing array
representation supports this kind of code reuse. Parray sub-programs are insensi-
tive to the layout of the input and output arrays as long as the layout information is
described correctly in the declared types. In comparison, a typical function SGEMM
for matrix multiplication in the basic math library BLAS has a rather clumsy signa-
ture:

void sgemm(char transa, char transb,
int m, int n, int k, ......);

where transa (or transb) is either ’n’ indicating the first array to be row-major
or ’t’ being column-major. Other memory layouts are not representable with the
BLAS signature. Parray’s sub-programming mechanism is therefore more flexible
than C functions. Like C macros, the price paid for such flexibility is to re-compile a
sub-program on every insertion and generate code according to the type arguments.

In fact the general DataTransfer command is also a sub-program with the
same signature as GPUDataTransfer. Its implementation is a series of compile-
time conditionals that check the type arguments for structure, memory type and
dimension contiguity . The conditional branches eventually lead to various special-
ized sub-programs like GPUDataTransfer.
GPUDataTransfer itself too is subject to more specialized optimization. For

example, for GPU transposition from Q to R with contiguous column R_0 and
discontiguousR_1, shared memory can be used to coalesce both read and write. Other
well-known optimization techniques from the CUDA SDK can further minimize bank
conflict within shared memory and dmem.
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5.4 Case Study: Large-Scale FFT

For small-scale FFTs whose data are held entirely on a GPU device, their computation
benefits from the high device-memory bandwidth (CUFFT Library Version 2000;
Akira and Satoshi 2009; Govindaraju et al. 2008; Nukada et al. 2008; Volkov and
Kazian 2008). This conforms to an application scenario where the main data are
located on dmem, and FFT is performed many times. Then the overheads of PCI
transfers between hmem and dmem are overwhelmed by the computation time.

If the data size is too large for a GPU device or must be transferred from/to dmem
every time that FFT is performed, then the PCI bandwidth becomes a bottleneck. The
time to compute FFT on a GPU will likely be overwhelmed by data transfers via PCIs.
This is the scenario for large-scale FFTs on a GPU cluster where all the data are moved
around the entire cluster and between hmem and dmem on every node. Compared to
a single node, a cluster will provide multiplied memory capacity and bandwidth. The
performance bottleneck for a GPU cluster will likely be either the PCI between hmem
and dmem or the network between nodes—whichever has the narrower bandwidth.
The fact that GPUs can accelerate large-scale FFTs is surprising, as FFT is extremely
bandwidth-intensive, but GPUs do not increase network bandwidth.

In our previous work (Chen et al. 2010), we proposed a new FFT algorithm called
PKUFFT for GPU clusters. The original implementation uses CUDA, Pthread, MPI
and even the low-level infiniband library IB/verbs for performance optimization. That
implementation is unportable and specific to a 16-node cluster with dual infiniband
cards and dual Tesla C1060 GPUs on each node. To port that code to Tianhe-1A,
we first rewrite the code in Parray and then re-compile it on the target machine,
drastically reducing its length (from 400 lines to 30 lines) while preserving the
same depth of optimization. 3D PKUFFT has been deployed to support large-scale
turbulence simulation.

Two factors have contributed to the acceleration of FFT with GPUs. Firstly dmem
like a giant programmable cache is much larger than CPU cache and hence allows
larger sub-tasks to be processed in whole and reduces repeated data transfers between
memory and processors. Secondly one major operation of the algorithm requires
transposing the entire array, which usually involves main-memory transposition
within every node and Alltoall cluster communication. The main optimization of
the algorithm (Chen et al. 2010) is to re-arrange and decompose the operation into
small-scale GPU-accelerated transposition, large-scale Alltoall communication and
middle-scale data-displacement adjustment that is performed during communica-
tions. Then the main-memory transposition is no longer needed! The price paid is to
use a non-standard Alltoall with discontiguous process-to-process communications
(see Sect. 5.2.9).

At source level, porting code from one platform to another platform is straightfor-
ward. For simplicity of presentation, the following code is fixed for N -cubic 3D FFTs
and requires the GPU-Direct technology (which was not available originally) to use
pinned memory as a communication buffer. Without GPU-Direct, the main data
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and mpimem communication buffer cannot share the same addresses. The variable
K is the number of MPI processes.

#parray {mpi[K]} L
#detour L(){
#parray {pinned float2 [N/K][N][N]} G
#parray {pinned float2 [disp i][N][N]} F
#parray {dmem float2 [N][N]} Q
#parray {dmem float2 [#Q_1][#Q_0]} R
#parray {[[#L][#G_0][#G_1]][#G_2]} S
#parray {[[#G_1][#L][#G_0]][#G_2]} T
float2* g; #create G(g)
float2* gbuf; #create G(gbuf)
float2* q; #create Q(q)
float2* qbuf; #create Q(qbuf)
cufftHandle plan2d;
cufftPlan2d(&plan2d,N,N,CUFFT_C2C);
for(int i=0; i<N/K; i++) {
#insert DataTransfer(q,Q, g,F){}
cufftExecC2C(plan2d,q,q,CUFFT_FORWARD);
#insert DataTransfer(gbuf,F, q,Q){}
}
#insert DataTransfer(g,T, gbuf,S){}
cufftHandle plan1d;
cufftPlan1d(&plan1d,N,CUFFT_C2C,N);
for(int i=0; i<N/K; i++) {
#insert DataTransfer(q,Q, g,F){}
#insert DataTransfer(qbuf,R, q,Q){}
cufftExecC2C(plan1d,qbuf,qbuf,CUFFT_FORWARD);
#insert DataTransfer(q,Q, qbuf,R){}
#insert DataTransfer(gbuf,F, q,Q){}
}
#insert DataTransfer(g,S, gbuf,T){}
cufftDestroy(plan2d);
cufftDestroy(plan1d);
#destroy G(g) #destroy G(gbuf)
#destroy Q(q) #destroy Q(qbuf)
}

This code consists of a series of data-transfer operations that we already studied
in previous sections. The main 3D complex data are stored in array g of type G.
Another array gbuf acts as a buffer. The inner dimension G_2 is contiguous; G_1 is
the middle dimension; the outer dimension is a combination of thread dimension L
and G_0. Each MPI processes in L contains N/K pages of size N*N. In the first step,
every page (with middle and inner dimensions) is transferred to the dmem array q for
2D FFT computation (by calling CUDA library) with results transferred back into
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qbuf. The following communication over the entire network is the non-standard
discontiguous Alltoall communication pattern (5.1) that we studied in Sect. 5.2.9.
The communication effectively swaps the outer and middle dimensions, so that the
middle dimension is aggregated on each MPI process. Every 2D page of the middle
and inner dimensions is transferred to dmem again. Before performing batched 1D
FFT on the new middle dimension, we use GPU transposition (see Sect. 5.3.3) to
swap the middle and inner dimensions to make the middle dimension contiguous.
The original positions of the data are restored after FFT by GPU transposition and
communication.

In Fig. 5.1 FFT code is tested on Tianhe-1A using up to 7168 nodes, each with
24 GB main memory, two 6-core Intel Processors and one Tesla Fermi 448-core GPU.
The special customized network has 80 Gb/s bandwidth for each node and a fat tree
structure for switching. CUDA version is 3.0; CUFFT version is 3.1. For comparison,
Intel Cluster MKL (or CMKL) 10.3.1.048 is used on the same cluster but does not
use GPU. CMKL is already highly optimized because of the heavy communication
load of very-large FFTs. The tests are performed for 3D FFT of different sizes
for single-precision C2C forward (with returning communication that restores the
data to their original positions). Double-precision FFTs perform at the half speed
of single precision (on Fermi as well as data transfers). Figure 5.2 (tested for best
supported array sizes) shows that on a large GPU cluster, the GPU-based algorithm
significantly outperforms CMKL which does not use GPU. GPU-accelerated FFT
also scales better than CPU-based FFT. Figure 5.2 illustrates the scalability in more
details. Note that we do not swap the outer and inner dimensions directly, as that will
affect the granularity of network communication.

Some FFT algorithms (Pekurovsky 2009) adopt two-dimensional decomposition.
This is no longer necessary using Parray. On a traditional CPU cluster, the number
of MPI processes is usually the number of cores so that MPI utilizes multicore
parallelism without the need for OpenMP. That leads to a large number of MPI

Fig. 5.1 PKUFFT versus intel cluster MKL on Tianhe-1A
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Fig. 5.2 Detailed comparisons of scalability

processes exceeding FFT’s dimension size. As we can program each node’s internal
(multicore and manycore) parallelism, there is no need for over-decomposition that
reduces message sizes and performance.

We mainly develop R2C and C2R single-precision 3D FFTs, which are used for
large direct numerical simulation of turbulent flows up to the scale of 14336 3D on
Tianhe-1A.

5.5 Literature Survey

In this section, we compare our design with other parallel programming interfaces in
a table where, for example, “Global” and “Local” denote addressing. The languages
considered for comparisons include Chapel (Chamberlain et al. 2007), Co-Array
Fortran (CAF) (Numerich and Reid 1998), HMPP (Francois 2010), Hierarchically
Tiled Arrays (HTA) (Ganesh et al. 2006), Titanium (Yelick et al. 1998), Stanford
PPL (Brown et al. 2011; Chafi et al. 2011), UPC (Zheng et al. 2010), X10 (Charles
et al. 2005), ZPL (Chamberlain et al. 2004), Global Arrays (Nieplocha et al. 1996)
etc (Fig. 5.3).

These programming interfaces as well as some parallel functional languages
(Hains and Mullin 1993) all support some kind of (array) domains. Common dimen-
sional features include Block, Cyclicity, Replication (i.e. indices mapped to replicated
value) etc. Such domains are special cases of Parray types. CAF also represents
multiple cooperating instances of an SPMD program (known as images) through a
new type of array dimension called a co-array. Titanium adds several features includ-
ing multidimensional arrays supporting iterators, subarrays, and copying to Java.
ZPL uses a series of array operators to express different access patterns including
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Language Library Global Local Cluster Multicore Manycore Dimtree/Type Reference
PARRAY

Chapel
CAF
HPF

HMPP
HTA

MPI/PVM
PPL

Titanium
UPC
X10
ZPL

Fig. 5.3 Comparisons among parallel programming languages and libraries

translation, broadcast, reduction, parallel prefix operations, and gathers/scatters. In
UPC a shared array variable has elements distributed among program instances (or
threads). X10 also supports multi-dimensional arrays that can be distributed among
cluster nodes.

Parray does not directly offer numerical operations between arrays. An operation
as simple as matrix multiplication may have different algorithms and implementa-
tions on a heterogeneous parallel system. Parray is intended to be a performance-
transparent layer of abstraction. All effort to lift programming level and hide
algorithmic decisions is left to library development of sub-programs.

Among the existing language designs, HTA is perhaps the closest. The claimed
points of novelty (1) dimension tree, (2) type references, and (3) thread arrays are not
supported by HTA. The improvement is mainly the fact that the array representation in
Parray is more expressive. The theory part shows a certain algebraic completeness
of the representation. Hierarchical tiles arrays assume several default levels (for
multicore/cluster parallelism). On the other hand, Parray’s dimension trees are
logical. We believe that hierarchical structure is so important that it should be general
and not tied to a specific memory structure.

A large class of languages are PGAS languages. PGAS expects the programmer
to think about locality but supports random accesses like shared memory regardless
the underlying communication mechanism—essentially something between mes-
sage passing and variable sharing. Parray is not based on any unifying mem-
ory model. Instead it is designed to support a variety of communication mech-
anisms. However, if there exists a well-optimized PGAS library such as Global
Arrays, Parray can generate code to invoke that library. If the low-level libraries
offer both two-sided and one-sided communications, the programmer can use com-
mands GetDataTransfer and PutDataTransfer to generate one-sided code
explicitly.
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5.6 Conclusions and Future Work

Our array representation is proposed to unify three forms of parallelism: multicore,
manycore and clustering. Other programming ideas often focus on two of them. An
advantage of our array representation is its simplicity of semantics and implemen-
tation. The source-to-source translation and code generator reach only 2000 lines
of C++ code. Basic forms of new data types are intuitive and easy to understand,
though some sophisticated types may require more mathematical intuition to han-
dle the inherent complexity of some communication patterns (e.g. the non-standard
Alltoall).

Our code generator has been tested on a wide range of other program examples
such as matrix operations and stencil computation. In particular we have used FFT in
direct numeral simulation of turbulent flows scalable up to 143363 single precision.
This ongoing experiment (to be reported elsewhere) requires 12 arrays of this size
and has reached 36Tflops on Tianhe-1A. Porting the original MPI code to Parray
for Tianhe-1A took us only five days.

Parray only provides abstraction for regular data structures like arrays. Irregular
data structures such as trees and graphs must be encoded as arrays to benefit from
Parray’s integrated code generation. The encoding is left to the user or any higher-
level software layers/libraries. Parray’s performance transparency makes sure that
any higher-level layers implemented on top of Parray will not be performance-wise
penalized because of using Parray instead of the low-level libraries of its generated
code.

The most important thing for a new programming interface is to encourage user
acceptance. Training courses have been carried out. Trainees especially those with
background in computational sciences respond remarkably well to the new notation.
Unlike computer engineers who are more used to language mechanisms like pointer
arithmetic, application programmers (e.g. those from oil industry) seem to be more
conformable with matrix notation and even find those advanced forms of array types
intuitive. For example in stencil computation, a window within a two-dimensional
array can be accessed either by moving the pointer to the starting address or using
dimensional displacement. Programmers in CS background often prefer pointer arith-
metic while many with science backgrounds prefer displacement type. The nature of
this interesting difference is perhaps due to their different programming familiarity
with C and Fortran, different earlier mathematical education or a combination of the
two factors.

In future, Parray will support other accelerator devices such as FPGA and Intel
MIC and lower-level communication libraries like IB/Verbs. We do not foresee obvi-
ous technological hurdles.
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Chapter 6
Practical Random Linear Network Coding
on GPUs

Xiaowen Chu and Kaiyong Zhao

Abstract Recently, random linear network coding has been widely applied in peer-
to-peer network applications. Instead of sharing the raw data with each other, peers in
the network produce and send encoded data to each other. As a result, the communi-
cation protocols have been greatly simplified, and the applications experience higher
end-to-end throughput and better robustness to network churns. Since it is difficult to
verify the integrity of the encoded data, such systems can suffer from the famous pol-
lution attack, in which a malicious node can send bad encoded blocks that consist of
bogus data. Consequently, the bogus data will be propagated into the whole network
at an exponential rate. Homomorphic hash functions (HHFs) have been designed to
defend systems from such pollution attacks, but with a new challenge: HHFs require
that network coding must be performed in GF(q), where q is a very large prime num-
ber. This greatly increases the computational cost of network coding, in addition to
the already computational expensive HHFs. This chapter exploits the potential of the
huge computing power of Graphic Processing Units (GPUs) to reduce the computa-
tional cost of network coding and homomorphic hashing. With our network coding
and HHF implementation on GPU, we observed significant computational speedup
in comparison with the best CPU implementation. This implementation can lead to
a practical solution for defending the pollution attacks in distributed systems.
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6.1 Introduction

In recent years, peer-to-peer (P2P) content distribution applications (e.g., BitTorrent)
and video streaming applications (e.g., ppLive) have become popular and constitute
more than 30 % of today’s Internet traffic. The new coding technique, random linear
network coding, is recently adopted by P2P applications (Ahlswede et al. 2000; Koet-
ter and Medard 2003; Ho et al. 2003; Li et al. 2003; Gkantsidis and Rodriguez 2005;
Dimakis et al. 2007; Wang and Li 2007), leading to simpler communication proto-
cols, higher throughput, better resilience to network churns, and many more benefits
to be discovered. With network coding, the source segments the to-be-distributed
content into n data blocks of equal size. Each peer (including the source) sends out
encoded data blocks, each of which is a linear combination of the original data blocks.
After receiving n linearly independent encoded data blocks, a peer is able to decode
the original data blocks by solving n linear equations with n variables. Since it is
difficult to verify the integrity of the encoded data, such systems can suffer from the
famous pollution attack, in which a malicious node can send bad encoded blocks that
consist of bogus data. Consequently, the bogus data will be propagated into the whole
network at an exponential rate (Chu and Jiang 2010). To defend against such attacks,
homomorphic hash functions (HHFs) have been proposed to provide a mechanism
for verifying the integrity of the encoded data blocks received from the network. In
a nutshell, HHFs offer a nice property that the hash value of any encoded data block
can be derived from the hash values of the original data blocks, based on which we
can identify the bad encoded data blocks without decoding them (Gkantsidis and
Rodriguez 2006; Li et al. 2006). Hence, it can effectively prevent the propagation of
the bogus data blocks.

The theoretical property of HHFs is very attractive to practical P2P applications.
Unfortunately, the computational complexity posed by HHF is the stumbling stone
to this realization. First, HHF itself is computationally expensive. On a contempo-
rary CPU, say 3.0 GHz Pentium 4 PC, we can only hash hundreds of kilobit per
second (Krohn et al. 2004). Second, homomorphic hashing requires extensive mod-
ular exponentiation operations over a very larger prime modulus p (e.g., 1024 bit).
This requires that the data must be encoded in large finite field, GF(q), where q is a
large prime number (e.g., 257 bit). This greatly increases the computational cost of
network coding, nearly impractical on CPUs. Our imperative goal is to remove the
barrier by reducing the computational cost. The key enabling technologies here are
the modern GPUs and the CUDA programming model for non-graphical application
development on GPUs.

On the hardware level, recent advances in GPUs open a new era of GPU com-
puting (Owens et al. 2008). For instance, NVIDIA’s GTX 280 can achieve 933
GFLOPS of computing power, about 8 times faster than the Intel Harpertown 3.2
GHz CPU. However, using GPU for non-graphic applications has been considered
very difficult, mostly due to the limited API support. Nonetheless, the introduction of
CUDA programming model makes it easier for software developers to develop non-
graphic applications on GPUs (NVIDIA CUDA 2008). In CUDA, GPU is treated as a
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dedicated coprocessor to the CPU, and multiple threads based on the same code can
run simultaneously on the GPU, working on different data set. With supports from
CUDA, it is now possible to implement network coding and HHFs on GPUs. In this
chapter, we propose to use GPU to accelerate random linear network coding as well
as homomorphic hashing. We designed and developed massively parallel network
encoding and decoding algorithms and homomorphic hashing. By carefully applying
optimization techniques, we successfully achieved a significant performance boost:
95× speedup for network encoding, 33× speedup for network decoding, and 38×
speedup for homomorphic hashing on a contemporary GPU. This makes network
coding and HHF a practical solution for pollution attacks in P2P systems.

The rest of the chapter is organized as follows. Section 6.2 provides background
information on network coding, homomorphic hashing, the GPU architecture, and
the CUDA programming model. Section 6.3 presents the parallel algorithms for ran-
dom linear network coding in GF(q). Section 6.4 presents the parallel homomorphic
hash algorithm. Our experimental results are presented in Sect. 6.5, followed by the
conclusions in Sect. 6.6.

6.2 Background and Related Work

This section provides the necessary background knowledge of network coding,
homomorphic hash function, the GPU architecture, and the CUDA programming
model.

6.2.1 Network Coding

Network coding has been originally proposed in information theory to achieve the
optimal throughput in a multicast session (Ahlswede et al. 2000). Since then, it has
been applied in various communication networks for better throughput and robustness
to network dynamics. The essence of network coding is a paradigm shift to allow
coding at intermediate nodes between the source and the receivers in one or multiple
communication sessions. The seminal work of network coding has been studied
in Ahlswede et al. (2000), Koetter and Medard (2003) and Li et al. (2003), which
has shown that a multicast session can achieve the data rate of multicast upper
bound if network nodes are allowed to perform coding. The framework of random
network coding was proposed in Ho et al. (2003), which makes network coding theory
applicable to practical applications. Since then, there are quite a number of proposals
to apply network coding in practical systems for performance enhancement. The
Avalanche project by Microsoft Research applied random linear network coding in
a P2P content distribution application (Gkantsidis and Rodriguez 2005). Similarly,
Lava incorporates random linear network coding into a live multimedia streaming
system (Wang and Li 2007). Network coding has also been applied in other fields,
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such as distributed storage systems (Dimakis et al. 2007) and wireless networks
(Katti et al. 2008).

In network coding, each data block is treated as a vector of elements in the finite
field, and an encoded block is simply a vector representing the linear combination
of a set of data blocks (vectors) with randomly generated coefficients in the finite
field. The network coding operations, encoding and decoding, are implemented in
finite fields, i.e., prime fields GF(q) or extension fields GF(qr ), where q is a prime
number and r is a positive integer. The computational performance of random linear
network coding in GF(2r ) has been previously studied in Shojania and Li (2007). In
Chu et al. (2008) and Shojania et al. (2009), GPUs have been used to accelerate the
performance of network coding in GF(2r ). To the best of our knowledge, this is the
first work studying the computational performance of random linear network coding
in prime field GF(q), which has a much higher demand of computing power than
that of network coding in GF(2r ) (Chu et al. 2009).

6.2.2 Homomorphic Hashing

As discussed in Sect. 6.1, network coding enabled P2P applications are prone to the
pollution attacks, in which a malicious peer can easily inject bogus data blocks into
an encoded block without being noticed. When network coding is not deployed, peers
will receive original data blocks from each other. Hence it is possible to use normal
hash functions, such as SHA1, to verify the correctness of a data block by comparing
the hash of each received data block to the corresponding hash provided by the
source. With network coding, the effect of pollution attack becomes more serious
and harder to detect (Gkantsidis and Rodriguez 2006; Li et al. 2006; Yu et al. 2008)
for two reasons: First, each bogus block can be encoded with regular data blocks
before being propagated in the network. Second, the traditional hash functions, e.g.,
SHA1, are no longer practical since the encoded blocks received by each peer cannot
be predetermined by the source. Some workarounds have been proposed to address
these issues. In Gkantsidis and Rodriguez (2006), a cooperative scheme is proposed,
in which peers perform probabilistically block verification and inform others when
a malicious node has been identified. However, this scheme cannot detect the bogus
blocks at the earliest stage and could potentially have false alarms.

To this end, homomorphic hash functions (HHFs) are currently the best solution
to address this security issue with network coding. HHFs have the property that the
hash value of an encoded block can be constructed by the hash values of the orig-
inal blocks. In other words, a peer only need to get the hash values of the original
blocks from the source, it then can easily verify the integrity of an encoded block
immediately after receiving the encoded block. Although the HHFs can theoretically
resolve the pollution attack problem, it is technically not practical on today’s desktop
CPUs. A 3 GHz Pentium 4 CPU can only achieve around a few hundred Kbps of
hashing throughput (Krohn et al. 2004). Furthermore, it requires network coding
to be performed in GF(q) with large value for q, which makes it computationally
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expensive. We have shown that HHFs can be efficiently implemented on contem-
porary GPUs with data rate of more than 10 Mbps (Chu et al. 2009; Zhao et al.
2009).

6.2.3 GPU Computing and CUDA

GPUs are dedicated hardware for manipulating computer graphics. Due to the huge
demand for computing for real-time applications and high-definition 3D graphics,
GPUs have been evolved into highly paralleled multi-core processors. The NVIDIA
GeForce GTX260 has 24 Streaming Multiprocessors (SMs), and each SM has 8
Scalar Processors (SPs). At any given clock cycle, all SPs of the same SM must
execute the same instruction, but can operate on different data. Each SM has four
different types of on-chip memory: constant cache, texture cache, registers, and
shared memory. The properties of the different types of memories have been sum-
marized in NVIDIA CUDA (2008) and Ryoo et al. (2008). A general optimization
principle is that registers and shared memory should be carefully utilized to amortize
the global memory latency cost.

The exceptional GPU computing power is very attractive to general-purpose sys-
tem development. The first generation of GPU computing (namely GPGPU) requires
that non-graphics application must be mapped through the graphics application pro-
gramming interfaces, which is very challenging. In early 2007, one of the major GPU
vendors, NVIDIA, announced a new general-purpose parallel programming model,
Compute Unified Device Architecture (CUDA) (NVIDIA CUDA 2008), which
extends the C programming language for general-purpose application development.
Meanwhile, another GPU vendor AMD introduced Close To Metal (CTM) program-
ming model that provides an assembly language for application development (AMD
2006). Intel is also planning to release Larrabee (Seiler et al. 2008), a new multi-
core GPU architecture specially designed for GPU computing. Currently, CUDA is
the best available programming model, and is the most well accepted model by the
research and development community. Since the release of CUDA, it has been used
for speeding up a large number of applications (Chu et al. 2008, 2009; Ryoo et al.
2008; Owens et al. 2008; Shojania et al. 2009; Volkov and Demmel 2008; Zhao et
al. 2009). For these reasons, we chose to use CUDA in our research. Nevertheless,
out algorithms can be easily implemented on other GPU computing models.

In the CUDA model, the GPU is regarded as a coprocessor capable of executing
a great number of threads in parallel. A single program consists of host code to
be executed on CPU and kernel code to be executed on GPU. The kernel code
is usually computational-intensive, data-parallel and multi-threaded. Threads are
organized into thread blocks, where each block is associated with one SM. Threads
belonging to the same thread block can share data through the shared memory and can
perform barrier synchronization. CUDA does not provide any direct synchronization
methods between threads that belong to different thread blocks, however. When a
thread block terminates, a new thread block can be launched on the vacant SM.
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6.3 Parallel Network Coding on GPUs

To facilitate the development of network coding, we have implemented a set of
library functions of multiple-precision modular arithmetic on the CUDA platform.
These library functions simplify the development of the network coding system
and homomorphic hash functions. Our multiple-precision library includes the fol-
lowing functions: comparison, subtraction, modular addition, modular subtraction,
multiplication, division, multiplicative inversion, Montgomery reduction, Mont-
gomery multiplication.

Assume the original data to be distributed is divided into n equally sized data
blocks (b1, b2, . . . , bn), where each data block bi contains m codewords bi,k ,
k ∈ {1, . . . ,m}. An encoded block ej is a linear combination of the n original
blocks and it also contains m codewords ej,k , k ∈ {1, . . . ,m}. The linear relation-
ship between ej and the original n blocks is described by e j ’s global coefficient
vector (c j,1, c j,2, . . . , c j,n): e j,k = ∑n

i=1 c j,i · bi,k , k ∈ {1, . . . ,m}. Obviously the
encoding process is a vector-matrix multiplication. A peer can decode the origi-
nal n data blocks as soon as it has received n linearly independent encoded data
blocks (e1, e2, . . . , en), by solving the set of linear equations e j,k =∑n

i=1 c j,i · bi,k,

k ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. In a P2P application with network coding, a peer
receives encoded data blocks from upstream peers, and also creates new encoded
data blocks by randomly and linearly combining its received encoded blocks, and
then disseminates the new encoded blocks to its downstream peers.

6.3.1 Network Encoding in GF(q)

When network coding is performed in GF(q) where q is a predefined large prime
number, the encoding process will creates a sequence of encoded blocks e j , each
of which contains m codewords e j,k . e j is generated based on a random coefficient
vector c j = (c j,1, c j,2, . . . , c j,n): e j,k = ∑n

i=1 c j,i · bi,k mod q, k ∈ {1, . . . ,m}.
Here c j,i are positive 32-bit integers. The encoding process includes two steps:
(1) generating the coefficient vector c j ; (2) modular vector-matrix multiplication.
The CUDA library provides a very high efficient random number generator using
Mersenne Twister method, which can generate tens of millions of random numbers
per second using GPU. As the time of generating n random numbers are negligible as
compared with the encoding time, we will focus on the vector-matrix multiplication
operation, as shown in Fig. 6.1a. We implement the computing of each codeword e j,k

by a CUDA thread. Hence encoding a single block requires m threads. Each thread
computes a dot product and then performs a modular operation, using our multiple-
precision CUDA library. In order to fully exploit the computing power of GPUs,
thousands of threads are a normal requirement. Therefore we propose a batched
encoding approach for small values of m, which encodes K blocks simultaneously,
as shown in Fig. 6.1b. In this case, the number of threads equals mK.
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Fig. 6.1 Encoding. a Encode a single block. b Encode multiple blocks in a batch

6.3.2 Network Decoding in GF(q)

The decoding process includes two steps: (1) matrix inversion; and (2) matrix mul-
tiplication. Matrix inversion for floating-point numbers on GPU has been recently
studied in Volkov and Demmel (2008). Our problem is very different because we are
operating in GF(q). We use Gauss-Jordan elimination for the matrix inversion, which
brings a matrix to its reduced row echelon form. There is no stability issue because
we are operating in finite field. To overcome the synchronization challenge, our par-
allel matrix inversion algorithm uses both CPU and GPU, as shown in Table 6.1.
The non-parallel parts, e.g., finding the multiplicative inverse, are done by the CPU,
whilst the parallel parts, e.g., reducing to row echelon form, are done by GPU.

The matrix multiplication can be implemented in a similar way as the vector-
matrix multiplication. Each element in the output matrix is computed by one thread;
hence the total number of threads is n2, which is sufficient to fill the GPU cores since
n is normally no less than 64 in practice. Difference from the encoding process,
the integer multiplications here are performed between two large integers, since the
corresponding values of the coefficients grow as the blocks are being re-encoded
at each peer. In this case, a straightforward parallel implementation cannot achieve
satisfactory performance due to the global memory latency. GPU’s on-chip shared
memory can be exploited to amortize the global memory latency, and we propose
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Table 6.1 Algorithm of matrix inversion in GF(q)

Algorithm 1 Matrix Inversion in GF(q) 
INPUT: An n x n non-singular matrix M, an n x n unit matrix U 
OUTPUT: the inverse of M 
1:    lead ←  0;  
2:    row ←  n; col ←  n; 
3:    for ( r = 0 to row - 1) 
4:        i ←  r; 
5:        while M[i, lead] equals 0 
6:             i++; 
7:        Swap rows i and r of M and U; 
8:        t ← multiplicative inverse of M[r, r];  /* on CPU */ 
9:        Multiply row r of M and U by t;            /* on GPU */ 
10:      for all rows j except row r of M and U 
11:          For M, subtract M[j, lead] multiplied by row r from row j; /* on GPU */ 
12:          For U, subtract M[j, lead] multiplied by row r from row j; /* on GPU */ 
13:      end for 
14:      lead++; 
15:  end for 
16:  return U 

k tile size

n m

n

n

E
T

B
sub

Bcoefficient matrix

Fig. 6.2 Decoding: tiled matrix multiplication

to use a titled version of matrix multiplication, in which the matrix is divided into
a number of sub-blocks (NVIDIA CUDA 2008; Ryoo et al. 2008). As illustrated
in Fig. 6.2, the computing of sub-block Bsub is done by a thread block. The threads
in this block cooperatively load the data from the two tiles in coefficient matrix
and ET into shared memory. These threads compute the partial dot product in shared
memory, and then continue with the next tile. The size of the tile should be controlled
such that two tiles can be accommodated by the shared memory of a SM.
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Table 6.2 Homomorphic hash function parameters

Name Description Typical value

λp Discrete log security parameter 1024 bit
λq Discrete log security parameter 257 bit
p, q Random primes, |p| = λp ,|q| = λq , q|p − 1
m Number of codewords per data block 512
n Number of data blocks 128

6.4 Parallel Homomorphic Hashing on GPUs

The homomorphic hash function, h(·), proposed in Krohn et al. (2004) requires a set
of hash parameters G = (p, q, g). The parameters p and q are large prime numbers
of order λp and λq chosen such that q|p − 1. The parameter g is a vector of m
numbers, each of which can be written as x (p−1)/qmod p where x ∈ Zq and x �= 1.
The method of creating the parameter set can be found in Krohn et al. (2004). Typical
values of the parameters are summarized in Table 6.2. The homomorphic hash of a

data block bi is then calculated as h(bi ) = ∏m
k=1 g

bi,k
k mod p. The hash values of

the original data blocks (b1, b2, . . . , bn) are h(b1), h(b2), . . . , h(bn), respectively.
Given an encoded data block e j with global coefficient vector (c j,1, c j,2, . . . , c j,n),
the homomorphic hash function h(·) can be shown to satisfy the following condition:
h(e j ) = ∏n

i=1 hc j,i (bi )mod p. This property can be used to verify the integrity of
an encoded block, as illustrated in Fig. 6.3. The content publisher first calculates
the homomorphic hash values for each of the data blocks. The downloaders need
to download a copy of these hash values for the purpose of verifying every single
encoded data block.

Homomorphic hashing involves m modular exponentiations and m-1 modular
multiplications. The m-1 modular multiplications can be easily parallelized by a reg-
ular reduction process. The m modular exponentiations can be very time consuming.
We distribute the m modular exponentiations to the GPU processing cores. The chal-
lenge is to implement modular exponentiation on GPU in the most efficient way. On
the current CUDA platform, integer division and modulo operations are very costly.
Therefore we choose to use the Montgomery exponentiation algorithm (as shown in
Table 6.3) which can decrease the number of division operations significantly.

We notice that, when applying HHF in network coding enabled P2P applications,
the same HHF (i.e., with the same set of parameters), will be used for a large data
set such as a whole file or a video streaming session. Under this circumstance, it is
possible to speed up the modular exponentiations by precomputation. We extend the
existing method by integrating precomputation with Montgomery multiplications,
and implement it on CUDA.

To calculate ge,we first represent the exponent e using radix b = 2k : e =∑n−1
i=0

ai bi , where 0 ≤ ai < b and an−1 �= 0. It is easy to see that n = ⌈

(
⌊

log2 e
⌋+ 1)/k

⌉

.

Our algorithm requires the precomputation of Rg2ki
mod m for 0 ≤ i ≤ n− 1 where
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Fig. 6.3 Data verification using homomorphic hashing in network coded P2P applications

Table 6.3 Algorithm of multiple-precision Montgomery exponentiation

Algorithm 2 Multiple-precision Montgomery Exponentiation 

INPUT: integer m with n radix b digits and gcd(m, b) = 1,  nbR = , positive integer x with 
n radix b digits and mx < , and positive integer e = 20 )( ee ...t  . 

OUTPUT: ex  mod m. 

1:    
2∼ ( , )x Mont x R  mod m← ;  

2:    RA ←  mod m; 
3:    for ( i from n down to 0) 
4:        ( , )A Mont A  A← ; 

5:        if 1==ie   

6:        then ( , )A Mont A  x← ; 
7:    end for 
8:   ( , 1)A Mont A  ← ; 
9:    return A; 

∼

R = bn . Afterwards, we can use the following algorithm to calculate ge mod m
efficiently (Table 6.4).

The above algorithm takes n + b − 3 multiplications. For e with 257-bit, the
optimal value of b is 16, which takes only 78 multiplications in the worst case, as
compared with 512 multiplications required by the binary method used in Algorithm
2. In theory, we can expect a speedup of 6.5 by using this algorithm.
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Table 6.4 Algorithm of multiple-precision Montgomery exponentiation with precomputation

Algorithm 3 Exponentiation with Precomputation 

INPUT: integers m, g, 
1

0

n i

ii
e a b

−

=
= ∑ ,  nbR = , and 2ki

ix Rg= mod m for 1 1i n≤ ≤ −  

OUTPUT: 
eg  mod m. 

1:    ,A R  B R← ← ; 

2:    for ( j from 1b −  down to 1) 
3:        for i from 0 to 1n −  

4:            if 
i

a j==  then ( , )iB Mont B x← ; 

5:        end for 
6:       ( , )A Mont A B← ; 
7:    end for 
8:   ( ,1)A Mont A← ; 
9:    return A; 

6.5 Experimental Results

We have implemented the proposed network encoding/decoding and parallel homo-
morphic hashing algorithms using CUDA. For comparison purpose, we also imple-
mented network coding and homomorphic hash function for CPU in C language,
by utilizing the GNU MP arithmetic library, version 4.2.3 (GNU MP 2010). These
implementations are running on an Intel Core2 CPU 1.6 GHz. In this study, we
only utilize a single core of CPU for comparison. Higher CPU performance can be
achieved if all CPU cores are fully utilized. We tested all our algorithms on XFX
GTX280 graphic card with an NVIDIA GeForce GTX280, which has 240 processing
cores. On GTX280, there are 30 Streaming Multiprocessors (SMs), and each SM has
8 Scalar Processors (SPs), 16384 32-bit registers and 16 KB shared memory.

6.5.1 Performance of Encoding in GF(q)

The throughput of encoding process is shown in Fig. 6.4a in log-scale. In theory, the
encoding time complexity is linear to the size of n. This is in accordance with our
experimental results. The throughput of network encoding on CPU is very poor: only
10.3 Mbps for n = 128. The GPU performance is very impressive: around 800 Mbps
can be achieved for n = 128 with a small batch size K of 32. We observe that larger
batch sizes can lead to better performance, until some threshold value has been met.
In our testing environment, K = 128 is the optimal setting. The speedup on GPU
over CPU has been plotted in Fig. 6.4b, for different batch sizes and n. With a batch
size larger than 32, the speedup is greater than 66×. The highest speedup of 95× is
obtained when n = 128 and K = 128.



126 X. Chu and K. Zhao

1

10

100

1000

10000

64 128 256

n

T
hr

ou
gh

pu
t (

M
bp

s)
CPU GPU (K=128)

0

20

40

60

80

100

1 16 32 64 128

batch size K

Sp
ee

du
p

n = 256 n = 128 n = 64

`

(a) (b)

Fig. 6.4 Performance of encoding. a Encoding throughput. b Speedup over CPU

1

10

100

1000

10000

100000

64 128 256
n

tim
e 

(m
s)

CPU GPU

0

5

10

15

20

25

30

64 128 256

n

Sp
ee

du
p

(a) (b)

Fig. 6.5 Performance of matrix inversion. a Matrix inversion time in ms. b Speedup over CPU

6.5.2 Performance of Decoding

As mentioned before, the decoding process includes two steps: (1) matrix inversion;
(2) matrix multiplication. The time used for matrix inversion is shown in Fig. 6.5a
using log-scale, and the speedups on GPU over CPU are plotted in Fig. 6.5b. It is
a well known fact that matrix inverse using Gauss-Jordan elimination has a time
complexity of O(n3). Our experimental results on CPU follow this pattern as well.
The performance of parallel matrix inversion on GPU is a bit more complicated due
to the kernel loading overhead and communication overhead between the CPU and
GPU. Figure 6.5b shows that the speedup on GPU grows as the number of blocks,
n, increase: 17 for n = 128 and 24 for n = 256. This is where the benefit of GPU
manifests itself, i.e., the overheads are amortized by the increasing parallelism in the
computation.

The performance of the matrix multiplication process is shown in Fig. 6.6. As
expected, the throughput is much slower than the encoding process. Even so, the
GPU can achieve 243 Mbps of throughput for n = 128. The speedup on GPU over
CPU ranges from 64× to 75× for n = 64, 128, 256 respectively.

The performance of the whole decoding process is shown in Fig. 6.7, for m =
512. Since the speedup of matrix multiplication is much larger than the speedup
of matrix inversion, the speedup of the overall decoding process is limited by the
performance of matrix inversion. The overall decoding throughput when n = 128 is
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Fig. 6.7 Performance of decoding. a Throughput of decoding. b Speedup over CPU

58 Mbps which includes the matrix inversion and matrix multiplication. The decoding
performance can be further enhanced by using a larger value of m, because the same
matrix inverse operation is now used for a larger data volume. The speedup ranges
from 15× to 33× for different values of n.

6.5.3 Performance of Homomorphic Hashing

Our CPU version of homomorphic hashing achieved 130 Kbps of throughput, which
is relatively lower than the results reported by Krohn et al. (2004) and Gkantsidis
and Rodriguez (2006) due to our relatively lower CPU frequency.

The parallel homomorphic hashing uses Algorithm 2 (without precomputation)
and Algorithm 3 (with precomputation) to calculate exponentiations. The CUDA
architecture requires a large number of threads to hide the memory latency and to
fully utilize the computing power. The number of threads per thread block (denoted by
TB), and also the number of thread blocks (denoted by NB), are the two main factors
that affect the hashing throughput. We plot the throughput for different configurations
in Figs. 6.8 and 6.9 for Algorithm 2 and Algorithm 3, respectively. It is easy to
observe that more threads per block can generally achieve better throughput. When
the number of threads per block is fixed, the throughput can be improved by creating
more thread blocks, until some threshold has been reached. Since our GPU has 30
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Fig. 6.9 Throughput of homomorphic hashing on GPU with precomputation

SMs, the number of thread blocks should be a multiple of 30. Better throughput can be
achieved if the following conditions are satisfied: (1) TB is a multiple of 32 (i.e., the
warp size (NVIDIA CUDA 2008; Ryoo et al. 2008)). In CUDA, a warp is formed by
32 parallel threads and is the scheduling unit of each SM. If the number of threads in
a block is not a multiple of warp size, the remaining instruction cycles will be wasted.
(2) NB is a multiple of 30 (i.e., the number of SMs). Without precomputation, the
highest throughput of 1.9 Mbps is obtained when TB = 128 and NB = 90. With
precomputation, we can achieve 11.6 Mbps of throughput, which is in fact more than
38 times of the fastest single core CPU results.

6.6 Conclusions

Network coding has been shown as a powerful technique to enhance the through-
put and robustness of P2P systems; and homomorphic hash functions are a supple-
mentary tool for defending the pollution attack. The remaining challenges are the
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computational requirement of network coding in prime field and the homomorphic
hashing. This chapter demonstrates a practical parallel implementation of network
coding and homomorphic hashing using GPUs. Our experimental results show that
the computational obstacle of network coding and homomorphic hashing can be
overcome by designing efficient parallel algorithms and fully exploiting the com-
puting power of contemporary GPUs that are widely available on today’s desktop
PCs.
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Chapter 7
Preliminary Implementation of PETSc
Using GPUs

Victor Minden, Barry Smith and Matthew G. Knepley

Abstract PETSc is a scalable solver library for the solution of algebraic equations
arising from the discretization of partial differential equations and related problems.
PETSc is organized as a class library with classes for vectors, matrices, Krylov
methods, preconditioners, nonlinear solvers, and differential equation integrators.
A new subclass of the vector class has been introduced that performs its operations
on NVIDIA GPU processors. In addition, a new sparse matrix subclass that performs
matrix-vector products on the GPU was introduced. The Krylov methods, nonlinear
solvers, and integrators in PETSc run unchanged in parallel using these new sub-
classes. These can be used transparently from existing PETSc application codes in
C, C++, Fortran, or Python. The implementation is done with the Thrust and Cusp
C++ packages from NVIDIA.
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7.1 Introduction

PETSc (Balay et al. 1997, 2011) is a scalable solver library for the solution of
algebraic equations arising from the discretization of partial differential equations
and related problems. The goal of the project reported here is to allow PETSc solvers
to utilize GPUs with as little change as possible to the basic design of PETSc.
Specifically, a new subclass of the vector class has been introduced that performs its
operation on NVIDIA GPU processors. In addition, a new sparse matrix subclass that
performs matrix-vector products on the GPU was introduced. The Krylov methods,
nonlinear solvers, and integrators in PETSc run unchanged in parallel using these
new subclasses. These can be used transparently from existing PETSc application
codes in C, C++, Fortran, or Python. The implementation uses the Thrust1 (Bell and
Hoberock 2010) and Cusp2 (Bell and Garland 2010) C++ packages from NVIDIA.

Numerous groups have experimented with sparse matrix iterative solvers on
GPUs, for example, Bolz et al. (2003), Feng and Li (2008), Buatois et al. (2007),
Cevahir et al. (2009), Bell and Garland (2008, 2009), Baskaran and Bordawekar
(2009). The Trilinos package (Baker et al. 2010; Heroux et al. 2005, 2009) already
has support for NVIDIA GPUs through its Kokkos package, also using Thrust.

7.2 Sequential Implementation

PETSc consists of a small number of abstract classes: Vec and Mat primarily encap-
sulate data structures while PC, KSP, SNES, and TS represent algorithmic strategies.
By abstract, we mean that each class is defined by a set of operations on the class
object, while any data associated with the class object is encapsulated within the
object and not directly accessible outside the class. The Vec class is used for repre-
senting field values, discrete solutions to PDEs, right-hand sides of linear systems,
and so forth. PETSc provides a default implementation of Vec that stores the vec-
tor entries in a simple, one-dimensional array in memory. Vec uses BLAS 1 for
local vectorizable operations when possible and MPI for reduction operations across
processes. The Mat and PC classes do not directly access the underlying array in
the vector; instead they call

or

to access the local (on process) values of the vector. In general, the KSP, SNES,
and TS classes never access Vec or Mat data directly; rather, they call methods

1 Thrust is a CUDA library of parallel algorithms with an interface resembling the C++ Standard
Template Library (STL). Thrust provides a flexible high-level interface for GPU programming that
greatly enhances developer productivity.
2 Cusp is a library for sparse linear algebra and graph computations on CUDA that uses Thrust.
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Table 7.1 Flags used to indicate the memory state of a PETSc CUDA Vec object

PETSC_CUDA_UNALLOCATED Memory not allocated on the GPU
PETSC_CUDA_GPU Values on GPU are current
PETSC_CUDA_CPU Values on CPU are current
PETSC_CUDA_BOTH Values on both devices are current

on the Vec and Mat objects in order to perform operations on the data. The PC
class is somewhat special in that many preconditioners are data structure specific.
Thus, many PC implementations directly access matrix data structures, which in
C++ would correspond to a friend class.

For this initial implementation of PETSc on GPUs, we have used the following
model. PETSc runs in parallel with MPI for communication; and each PETSc process
has access to a single GPU, which has its own memory, generally several gigabytes.
We introduce a new Vec implementation, which we will call a CUDA Vec. Each object
of this new Vec class must potentially manage two copies of the vector data: one in
the CPU memory and one in the GPU memory. (We note that on some integrated
graphics systems the GPU actually uses the usual CPU memory as its memory; we
ignore this for our preliminary work). In order to manage memory coherence, each
CUDA Vec has a flag that indicates whether space in the GPU memory has been
allocated and whether the memory in the GPU, in the CPU, or in both contains the
most recent values. The possible flag values are given in Table 7.1. The flag is the
only change to the base Vec class in PETSc. This was added to the base class rather
than the derived GPU-specific Vec class because we want to be able to check whether
the memory copy is needed, without requiring the extra clock cycles of accessing
the derived class for each check.

Two routines are provided,

that copy vector data down to the GPU memory or up to the CPU memory
based on the flag. For example, the method VecGetArray() for the CUDA
Vec copies the values up from the GPU if the flag is PETSC_CUDA_GPU, and
sets the flag to PETSC_CUDA_CPU since the user is free to change the vector
values. The VecGetArrayRead() still performs the copy but sets the flag to
PETSC_CUDA_BOTH since the user cannot change the values in the array. For all
vector operations performed on the GPU, such as VecAXPY(), data will be copied
down from the CPU if the flag is PETSC_CUDA_CPU and will be both allocated
and copied if it is PETSC_CUDA_UNALLOCATED.

Implementations of the basic vector operations is straightforward. For example,
the VecAXPY() code is given by the following.
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For more sophisticated Vec methods, such as VecMAXPY(), y = y + ∑

i αi xi , and
VecMDot(), αi = yT xi , the code is more complicated. We unroll loops in order to
reuse entries in the y vector. For example, we unroll the outer loop for four vectors.
The multiple inner product code, written by using Thrust calls, is given below.
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The CUDA kernel of this operation is given by the following.

Note that often the VecCUDACopyToGPU() calls simply verify that the vector’s
flag is PETSC_CUDA_GPU and do not need to copy the data down to the GPU. This
is the case during a Krylov solve, where only the results of norm and inner product
calls are shipped back to the CPU.

The NVIDIA Cusp software provides a data structure and matrix-vector product
operation for sparse matrices in Compressed Sparse Row (CSR) and several other
formats. Our initial CUDA Mat implementation simply uses the code provided by
Cusp. The matrix-vector product code in PETSc then is given by the following.
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Our primary design goal in this initial implementation was to enable the vector and
matrix data to reside on the GPU throughout an entire Krylov solve, requiring no slow
copying of data between the two memories.This is now supported for all but one of
the Krylov methods in PETSc, including GMRES, Bi-CG-stab, and CG, and several
preconditioners including Jacobi and the Cusp Smoothed-Aggregation Algebraic
Multigrid. The excluded Krylov method, a variant of Bi-CG-stab that requires only
one global synchronization per iteration, actually accesses the vectors directly rather
than through the Vec class methods (since it requires many operations not supported
by the class methods) and hence would need to be rewritten directly in CUDA.

7.3 Parallel Implementation

In the parallel case, there must be communication of vector entries between processes
during the computation of the sparse matrix-vector product. In PETSc, for the built-
in parallel sparse matrix formats the parallel matrix is stored in two parts: the
“on-diagonal” portion of the matrix, Ad , with all the columns associated with the
rows of the vector “owned” by the given process, xd , and the “off-diagonal” por-
tion, Ao, associated with all the other columns (whose vector values are “owned”
by other processes, xo). The sparse matrix-vector product is computed in two steps:
yd = Ad xd , then yd = yd + Aoxo. Of course, since Ao has few columns with nonzero
entries, most of xo do not need to be communicated to the given process.

PETSc manages all communication of vector entries between processes via the
VecScatter object. For the sparse matrix-vector product vector communication, this
object is created with a list of global indices indicating from where in the source
vector entries are to come from and another list of indices indicating where they
are to be stored into a local work vector. The vector communication itself is done
in two stages: first a VecScatterBegin() copies the vector entries that need to
be sent into message buffers, and posts nonblocking MPI receives and sends; then
VecScatterEnd() waits on the receives and copies the results from the message
buffers into the local work vector. If we let Âo denote the nonzero columns of Ao

and let x̂o denote the corresponding rows of xo, then the parallel matrix-vector code
is as follows.
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This same code can be used automatically when the Ad and Âo matrices are CUDA
matrices. The difference from the standard case is that the VecScatterBegin()
triggers a VecCUDACopyFromGPU() of the xd vector (so that its entries are
available in the CPU memory to be packed into the message buffers) and the
MatMultAdd() triggers a VecCUDACopyToGPU() of the vector x̂o (to move
the values that have arrived from other processes down to the GPU memory). Initial
profiling indicated that the needed VecCUDACopyFromGPU() was taking sub-
stantial time. But most entries of the xd vector are not actually needed by the vector
scatter routines, only those values that are destined for other processes that will gen-
erally be only a few percent of the values. Thus we have added the following routine,
which copies only the needed values.

There are two sets of identical indices, one that resides in the CPU memory and
one that lives on the GPU memory, since it would be inefficient to copy the indices
between the two memories on each invocation. The constructor for the VecScatter
determines the required indices and sets them in the two memories. With the addition
of this new code the required copy time decreased significantly in the parallel matrix-
vector product. This change required a small amount of additional GPU-specific code
in the VecScatter constructor and VecScatterBegin().

To monitor the movement of data between the two memories, we provided two
additional PetscEvents, one that tracks the counts and times of copies from the
GPU and one for copies to the GPU. This information can be accessed with the usual
PETSc-log_summaryoption. Because CUDA calls are, by default, asynchronous,
meaning the function calls in the CPU return before the GPU completes the operation,
we provide a global flag that forces a wait after each CUDA call until the operation
is complete. This is necessary whenever one wants accurate times of the individual
phases of the computation. Forcing synchronization appears to cost a few percent of
the runtime; in production runs this option is not needed.
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7.4 Conclusion and Future Work

We can now run parallel linear solves (with very simple preconditioners) that utilize
the GPU for all vector and the matrix-vector product operation. The only vector
entries that need to be passed, during the linear solve, between GPU memory and
CPU memory are those destined for other processes.

This is preliminary work. Important additional work is needed in several areas.

• Performance evaluation and optimization. We have verified correctness and basic
performance of the new code that utilizes the GPUs, but we have not yet done
comprehensive studies.

• Matrices with structure. Many applications result in sparse matrices with particular
structure, for example, adjacent rows with the same nonzero structure (called
i-nodes in PETSc) or made up of small (say, three by three) blocks (here PETSc
offers the BAIJ storage format). PETSc has special code that takes advantage of this
structure to deliver higher performance. Another format that may be appropriate
for GPUs is storage by diagonals. We need to investigate whether any of this
structure be utilized on the GPU also to obtain higher performance?

• GPU-based preconditioners. The NVIDIA group is actively developing several
of these, and they are easily added as new preconditioners in PETSc by simply
deriving new PC subclasses that utilize the NVIDIA code.

• GPU-based nonlinear function evaluations. We have a simple, one-dimensional
finite difference problem on a structured grid

$PETSC_DIR/src/snes/examples/tutorials/ex47cu.cu

that uses the Thrust zip_iterator to apply a stencil operation. As with the parallel
matrix-vector product, the VecScatter class is used to manage the communication
of ghost point values between processes. More work is needed so that copies of
vectors between unghosted and ghosted representations require as few memory
copies as possible between GPU and CPU. Various groups are in the process of
developing or have already developed implementations of finite-element function
evaluations for GPUs (Yokota et al. 2011; Klöckner et al. 2009; Wu and Heng
2004; Komatitsch and Vilotte 1998; Liu and Li 2000; Taylor et al. 2007; Keunings
1995; Abedi et al. 2006; Joldes et al. 2010). These could be used within a PETSc
code.

• GPU-based Jacobian evaluations. With GPU-based Jacobian evaluations the entire
nonlinear solution process (and hence also ODE integration) could be performed
on GPUs without requiring any vector or matrix copies between CPU and GPU
memory besides those entries required to move data between processes. This is
a difficult task because the sparse matrix data structure is nontrivial and hence
the efficient application of the equivalent of MatSetValues() on the GPU is
nontrivial.

We note that because of the object-oriented design of PETSc it is possible to intro-
duce additional vector and matrix classes ... distinctly different from those discussed



7 Preliminary Implementation of PETSc Using GPUs 139

in this paper, that also use the NVIDIA GPUs. In fact, we hope there will be additional
implementations to determine those that produce the highest performance.

When considering sparse matrix iterative solvers on GPUs, one must bear in
mind that these algorithms are almost always memory-bandwidth limited. That is,
the speed of the implementation does not depend strongly on the speed or number of
the processor cores but rather on the speed of the memory. Since the best GPU systems
have higher memory bandwidth than do conventional processors, one expects (and
actually does see) higher floating-point rates with GPU systems; but since the memory
bandwidths of GPU systems are only several times faster than those of conventional
processors, a sparse matrix iterative solver converted from CPUs to GPUs will be
at most only several times faster. Speedups of 100 or more are simply not possible.
Additional perspectives on this issue are available in Vuduc et al. (2010).
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Chapter 8
Multi-scale Continuum-Particle Simulation
on CPU–GPU Hybrid Supercomputer

Wei Ge, Ji Xu, Qingang Xiong, Xiaowei Wang, Feiguo Chen,
Limin Wang, Chaofeng Hou, Ming Xu and Jinghai Li

Abstract This chapter serves as an introduction to the supercomputing works carried
out at CAS-IPE following the strategy of structural consistency among the physics
in the simulated systems, mathematical model, computational software expressing
the numerical methods and algorithms, and finally architecture of the computer
hardware (Li et al., From multiscale modeling to Meso-science—a chemical engi-
neering perspective, 2012; Li et al., Meso-scale phenomena from compromise—a
common challenge, not only for chemical engineering, 2009; Ge et al., Chem Eng
Sci 66:4426–4458, 2011). Multi-scale simulation of gas-solid flow in continuum-
discrete approaches and molecular dynamics simulation of crystalline silicon are
taken as examples, both making full use of CPU-GPU hybrid supercomputers. This
strategy is demonstrated to be effective and critical for achieving good scalability
and efficiency in such simulations. The software and hardware systems thus designed
have found wide applications in process engineering.

8.1 Background

Process engineering is a collective term covering a wide range of industries and
disciplines, from traditional chemical, metallurgical and mineral domains, to the
fast-growing material, biological, pharmaceutical and cosmetic areas. Despites their
apparent diversity, they do share some general activities such as the transformation
and utilization of energies and resources, which are fundamental and critical for the
whole society. A more intrinsic similarity underlying these activities is the vast scale
gap between the products and production equipments in these industries and the
multi-scale dynamic structures spanning this gap. For example, the properties and
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quality of the gasoline we use for our cars is determined by the molecular structures
and fractions of its compositions, which is at the scale of 10−10 –10−9 m, while the
reactors for refining gasoline from crude oil, such as the Fluid Catalytic Cracking
(FCC) facilities, are typically 50–80 m high.

Therefore, it is not surprising that simulation of such processes has become one
of the most demanding area for high performance computing. However, the actual
performance of traditional simulation softwares on general purpose supercomputers
is, as a whole, not impressive, and sometimes even very frustrating. In some com-
putational fluid dynamics (CFD) simulations on commercial multi-phase reactors,
the scalability is limited to dozens of CPU cores albeit more than a quarter million
cores are available in modern high-end supercomputers. Even for these cores, the
sustainable performance is about 10–20 % of the corresponding peak values.

In principle, this situation is not ascribed to the status of the technology for ele-
mental components at the hardware level, but to the lack of coordination among the
models, algorithms and hardwares involved in the simulations. In short, the physical
world features multi-scale structures and the computer hardwares are most easily
and efficiently organized in a multi-scale manner (at least in terms of their logical
architecture). However, the mathematical model and numerical algorithms in tradi-
tional simulations only discretize and partition the physical system at a single scale,
which incurs excessive long-range and global correlations in the model, and hence
data dependence in the algorithm and communications among hardware components
in execution. This is the main reason for the low efficiency and poor scalability of
traditional simulation softwares in process engineering.

Based on this understanding, systematic multi-scale simulation approaches, from
mathematical model to computer hardware, are implemented for gas-solid flow and
crystalline silicon. All implementations have reflected the consistency among the
physics, model, algorithm and hardware, which are summarized, in a more general
sense, by the so-called EMMS Paradigm (Li et al. 2009, 2013; Ge et al. 2011).

Currently, the mainstream simulation method for gas-solid flow is the two-fluid model
(TFM, Anderson and Jackson 1967; Gidaspow 1994), which treats both the gas and
solid phases as continuum. It is considered advantageous for industrial simulations
as its computational cost is not necessarily linked to the scale of the system, but to
the number of numerical cells which is determined flexibly by the desired resolution.
However, due to the intrinsic discrete nature of the solid phase, its constitutive laws
as a continuum are not easily obtained, and may not exist at all. Especially, the meso-
scale heterogeneity presents below the numerical grid scale proposed great challenges
to quantify its statistical behavior and hence the constitutive laws. Therefore, the
accuracy of TFM is not satisfactory for engineering purpose in general. On the other
hand, direct discrete presentation of the solid phase, though more reasonable and
simple, is far beyond the capability of current computing technology, just imaging
that an industrial gas-solid reactor may contain trillions of interacting particles and
advancing one particle for one time step, typically below milliseconds, may cost
hundreds to thousands of flops.
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Table 8.1 Specifications of the Mole-8.5 system (Wang et al. 2010, 2012; Ge et al. 2011) (adapted
from Li et al. (2013), Dubitzky et al. (2012), Ge et al. (2011))

Peak performance in single precision 2.206 Petaflop/s
Peak performance in double precision 1.103 Petaflop/s
Linpack sustained performance 496.5 Teraflop/s (on 320 nodes)
Megaflop/s per Watt 963.7 (Linpack)
Number of nodes/Number of GPU’s (Type) 362/2088 (Tesla C2050)
Top layer 2/0
Middle layer 18/36 (Tesla C2050)
Bottom layer 342/2052 (Tesla C2050)
Total RAM 17.8 Terabyte
Total VRAM 6.5 Terabyte
Total hard disk space 720 Terabyte
Management communication H3C Gigabit Ethernet
Message passing communication Mellanox infiniband quad data rate
Occupied area 150 sq.m.
Weight 12.6 ton
Max power 600 kW (computing) + 200 kW (cooling)
Operating system CentOS 5.4, PBS
Monitor Ganglia, GPU monitoring
Programming languages C, C++, CUDA

In recent years, however, developments in many-core computing and coarse-grained
discrete modeling begin to show the feasibility of industrial scale discrete solid phase
simulation (Xu et al. 2012). Similar to pseudo-particle modeling (Ge and Li 1996,
2003), real solid particles can be presented by much less number of computational
particles, whose properties can be measured in simulations and mapped physically
to the solid phase (Zhou et al. 2010), which expresses the consistency among the
simulated system, the physical model and the numerical method. Evolution of the
computational particles features additive and localized operations which are best
carried out by many-core processors, such as GPUs, in the highly parallel mode of
single-instruction multi-data (SIMD). The gas flow can be solved either by tradi-
tional finite difference (FD) or finite volume (FV) methods, or by LBM methods,
at scales either above or below the particle scale, which are suitable for CPUs or
GPUs, respectively. Thus, the consistency among the Four Elements is presented, as
summarized in Table 8.5, and the EMMS Paradigm can thus be implemented, with
a preliminary version found in Ge et al. (2011).

8.2 Physical Model

Although we will focus on the algorithmic and computational aspects of the EMMS
Paradigm, it is helpful to briefly revisit its physical background and models first.
Most gas-solid systems in industries are confined in certain geometries, usually
equipment walls, and are operated under steady conditions. The time-averaged steady
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state distribution of the flow variables, such as gas and fluid flow velocities and
solids concentration, can be predicted with reasonable accuracy by some macro-
scale models, such as the global EMMS model (at the reactor level) with some
empiric correlations (Ge et al. 2011; Liu et al. 2011). These distributions are then
served as the initial conditions for simulating the spatio-temporal evolution of the
flow structures in the systems, which basically constitutes the descriptions for the
gas phase, the solid phase and their interactions, as introduced below.

The gas phase model below the particle scale is similar to single phase flow, which
can be well described by the classical Navier-Stokes (N-S) equation except additional
boundary conditions at particle surfaces. Above the particle scale, however, the flow
structure induced by the embedded particle may cause the deviation of its effective
properties (e.g., viscosity and pressure), from pure gas, and significant nonlinearity
is found. Correlations for these properties can be obtained in direct numerical sim-
ulations (DNS) based on the N-S equation or Boltzmann equation. Coarse-grained
LBM may provide another basis for the modeling of the gas phase, where the partial
occupation of the solid phase and different permeabilities are allowed (Wang et al.
2012). With the introduction of multi-relaxation time (MRT) and large-eddy simu-
lation (LES), and proper smoothing of the boundary configuration, the method may
sustain high velocity and pressure different for the lab-scale reactor simulation (Yu
et al. 2006). In all these attempts, the compressibility of gas phase can be increased
to facilitate the numerical methods without affecting the accuracy very much.

The solid phase can be described either as a continuum or a discrete material. For
higher resolution, the discrete description is preferred, and in order to reduce com-
putational cost, coarse-graining of the real solid particles or description of their
collective behavior is desirable. Several approaches are followed for this purpose:

Coarse-grained particles: In this approach, we try to simulate a much smaller number
of elements to present the same statistical behavior of a huge number of real parti-
cles. To achieve this equivalence, the simulated particles will be, in general, more
dissipative (with lower restitution) as compared to real particles, so as to maintain the
energy balance, and more elastic to accommodate deformability, and less frictional
to keep fluidity. The time step for these coarse-grained particles can be much larger
than real solids, which further improve its efficiency. Usually, number dependence
of the constitutive laws sets in when the particle number is small enough, which caps
the extent of such coarse-graining.

Particle parcels: On the other hand, we may try to approximate the behavior of
a swarm of particles as a single one, vividly called a parcel. Such parcels have
continuous interactions with their neighbors, in a manner much more complicated
than single particles, so as to account for the deformation and the exchanges of
mass and momentum between the parcels. Smoothed particle hydrodynamics for the
solid phase (Xiong et al. 2011) may present a framework model for the parcels with
rational basis, but adjustments to its particle properties are necessary.

Particle clusters: In gas-solid systems, the particle distribution is very heterogeneous.
Most particles aggregate to form islands in the gas flow field with few particles (the
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so-called dilute phase). Such particle clusters can be taken as natural discrete entities
for simulation purpose, and it can be larger than the coarse-grained particles or
particle parcels discussed above. However, the shapes of clusters are usually very
complicated and deformable, which have to be simplified drastically. The energy-
minimization multi-scale (EMMS) model (Li et al. 1988; Li and Kwauk 1994), from
which the EMMS paradigm is developed, can be employed as a rational basis for
determining the effective size of the clusters.

Grid based approaches: Some (partially) grid-based approaches also possess partic-
ulate nature and can be used for the simulation of the solid phase. Particle in cell
(PIC, Harlow 1988) methods is a hybrid Euler-Lagrange description of fluid flow,
where fluid is tracked as a collection of mass carriers, statistics on these carriers are
then performed via a Eulerian grid, and the continuum equations are solved on the
grid numerically with the statistical data, which give the flow field. The velocities of
the mass carriers are then interpolated from the grid values and their positions are
updated individually, and so forth. As the solid phase is intrinsically discrete, PIC for
the solids may be proven to be more reasonable (Li et al. 2012). In fact, PIC is similar
to SPH expect it is partly grid-based. That means, similar difficulties will be faced,
such as the collapse of particles at high concentration gradient. Insertion of a DEM
core may also be helpful for this method, or otherwise, the method can be switched to
DEM or parcel based methods when certain concentration or concentration gradient
limits are met.

Note that, we have also listed in Table 8.5 a continuum model for the solid phase, that
is, considering the solid phase as highly compressible gas with collisional cooling.
However, as the numerical method for simulating such gas is explicit and lattice-
based, it is algorithmically similar to particle methods with fix neighborhood. There-
fore, the whole framework of the implementation is still of the continuum-particle
type. The high non-linearity of the state equation of the solid phase, that is, the
dramatic increase of the solid phase stress near minimum fluidization voidage, may
present a difficulty.

The gas and the solid phases are coupled by the interfacial forces, mainly the drag
between them. For uniform suspension of the particles, the drag can be well predicted
by semi-empirical correlations, such as the Wen and Yu (1966) equation linking
the drag with local slip velocity and particle concentration. Under more general
conditions, the EMMS model or similar approaches (Xu et al. 2007) should be used
to account for the effect of non-uniformity in the gas and/or solid phases.

8.3 Numerical Methods and Algorithm

For the physical models described above, the corresponding numerical methods can
be selected or developed, and then software algorithms are designed for these meth-
ods with considerations to the computing hardware available. We will discuss the
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numerical methods for the gas and solid phases, respectively, and then the major
types of algorithms they can share.

8.3.1 Gas Phase Simulation

Accurate numerical methods must reflect the nature of the physical model. The gas
phase in most gas-solid systems is nearly incompressible, that means flow at one
location is affected by other locations simultaneously. Implicit methods are, there-
fore, more accurate for the gas phase because it can reflect this global dependence.
However, this dependence is also expressed in its algorithm, which is boiled down
to the solving of linear equation sets featuring sparse matrixes. Low computation
to data accessing rate, global data dependence and hence poor scalability are the
major challenges for efficient implementation of this method on massive parallel
computers. Multi-core CPUs with large shared memory coupled with message pass-
ing interface (MPI) is suitable for these algorithms as explicit data communication
can be minimized. But as the communication inevitably increases non-linearly with
the number of CPUs involved, it is desirable to use coarse grid for the gas phase, so
as to reduce the computational cost. In this regard, meso-scale models considering
the distribution of gas flow in the grids and the appropriate drag law is critical for
maintaining reasonable accuracy.

When high resolution of the gas phase is required, explicit methods may become
more favorable, since no global data dependence and iterations are involved, and
updating of the data at each grid point requires only data in neighboring grids, which
allows virtually unlimited weak scalability and hence spatial scale. But this is at the
price of much finer grid and time step to recovery the physical global dependence at
larger spatial-temporal scales. Weak compressibility is assumed in the model, which
may introduce further errors to the model, especially for the pressure distribution.
These prices are paid off only when the system is large enough. Therefore, LBM
and explicit FD or FV methods are more suitable for resolving the gas phase at
the scale comparable or smaller than the solid entities (particles, parcels or clusters).
One get-around may be provided by a modification to the physical picture of flow. At
relatively high particle concentration (e.g., above 1 %), the mass of the flow is mainly
carried by the solid phase, and hence the actual density distribution of the gas phase
becomes less important to the flow of the mixture, as long as they provides a similar
flow distribution and drag force. In this case, the compressibility of the gas phase
can be increased artificially, bring the Mach number to the range of about 0.3–0.5, to
validate the use of explicit numerical schemes for compressible flow. Adjustments to
the drag coefficients are required to maintain the same level of inter-phase frictions.
These explicit methods are intrinsically suitable to GPUs or other single-instruction
multi-data (SIMD) manycore processors, which are highly parallel in computation
and largely localized in memory access.
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For implementation of these methods, open source or commercial software, such
as Fluent (http://www.ansys.com) can be used besides development from scratch.
With its user interface, we can exchange particle data with the cells of the software
through files. To speedup the process, we may start multiple Fluent processes in a
domain-decomposition mode, which also communicate through files. To accelerate
file reading and writing, virtual disks can be installed in the memory. And most
importantly, the amount of data exchanged between the solid and gas phase should
be minimized. In principle, only cell averaged voidages and velocities should be
included.

8.3.2 Solid Phase Simulation

Particle methods can be employed for solid phase on different coarse-graining lev-
els with similar numerical methods and algorithms. The interactions between the
particles are processed as the numerical integration of the forces between neigh-
boring particles, which is pairwise additive and explicit, and the interactions are
organized through a neighbor detecting process and followed by the updating of the
particle positions. Though interactions may present the most time-consuming part
of the algorithm, neighbor detection is usually the most complicated part and is crit-
ical to the efficiency of the algorithm. Cell-list and neighbor-list algorithms are the
two mainstream approaches for this part, which are suitable for fast changing and
more stable neighborhood, respectively. All procedures of the particle methods can
be implemented on GPUs with higher speed as compared to CPUs, but extensive
optimizations is necessary to reach best performance.

Note that, explicit numerical methods for continuum models are computationally a
simplified form of the particles methods, where the complicated neighbor detecting
process is not needed anymore. Highest performance can be achieved on GPUs with
these methods, if the operations on the grid data are computationally intensive. As
the solid phase is highly compressible, continuum description solved by explicit FD
or discrete kinetic method (DKM) can be most efficient, though not the most accurate
in general, and it is still fit well into the continuum-particle implementation of the
EMMS Paradigm. On the other hand, the PIC method presents a hybrid continuum-
particle method, where particles do not interact pairwisely, but collectively via the
grids, which is also applicable to this implementation.

8.3.3 General-Purpose Particle Simulator

As we know from the discussions above, discrete particle simulation can be employed
in different forms for both gas and solid phases. In a more general background, it also
covers a variety of systems and processes, such as granular flow (Liu et al. 2008),

http://www.ansys.com
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emulsions (Gao et al. 2005), polymers (Xu et al. 2010) and proteins (Ren et al. 2011),
foams (Sun et al. 2007), micro-/nano-flows (Chen et al. 2008), crystals (Hou et al.
2012) and reaction-diffusion processes. The efficiency and scalability of discrete
simulation was demonstrated repeatedly in these works, and the common nature of
discrete methods that leads to these advantages, namely additivity and locality, is
also recognized (Ge et al. 2011; Ge and Li 2000, 2002). Here additivity refers to the
interactions between the particles which can be processed independently at the same
time and then sum up to give the resultant force on a particle. It ensures that parallel
computing can be carried out at a very fundamental level of the algorithm, that is,
fine-grain parallelism. On the other hand, the locality refers to the fast decay of the
strength of such interactions, so that only local interactions should be considered
rigorously. It provides the parallelism at a larger scale and the weak scalability of
the algorithm.

This common nature enables us to develop a general-purpose platform for parti-
cle methods at different coarse-graining levels (Ge and Li 2000, 2002; Tang et al.
2004; Wang et al. 2005), from atoms and molecules at micro-scale to boulders at
macro-scale, and from real particles to more complicated discrete entities represent-
ing particle clusters. With these methods, the full range of phenomena in process
engineering, from atoms to apparatus, can be simulated, the general structure, main
modules and functions of the platform are summarized in Fig. 8.1.

8.3.4 GPU Implementation of the Particle Simulator

This platform for particle simulation was originally developed for CPU-based mas-
sive parallel systems. With the development of GPGPU and its programming envi-
ronment, the time is ripe for transplanting the platform to CPU+GPU hybrid systems.
Although other approaches, like the implicit PDE solver for the gas, have been tried
with encouraging success (Wang et al. 2010), particle simulation is, in a broader
sense, more suitable for GPU implementation. As detailed in Ge et al. (2011), the
cell-list and neighbor-list schemes are combined in our GPU implementation, where
cell list is employed to traverse all elements and find their interacting neighbors
which are then put into their neighbor list. When putting the particles into cells, one
thread is preferably assigned with one particle. Thanks to the atomic functions sup-
ported by Nvidia C2050 GPUs, one cell can contain several particles, but the write
conflict, occurred when multiple threads write to the global memory can be avoided.
The neighbor list thus generated for each particle is stored in a two dimensional
array in the global memory of the GPU. In this way, although memory redundancy
is unavoidable, coalesced global memory access is achieved. When generating the
neighbor list, one block corresponds to one cell with each particle in it assigned to a
different thread to speedup the computation. The particle information of the local and
neighboring cells are buffered in the shared memory to reduce the global memory



8 Multi-scale Continuum-Particle Simulation on CPU–GPU Hybrid Supercomputer 151

………PPM DPDSPH
C

om
putation and C

om
m

unication
DEM MaPPM

Particle

Potential
Data 

Structure

Link Cell Neighbor List

Space Decomposion

Dynamic Load Balance

Communication Scheme

Organizer

Communicator

Assistant

Algorithm

…………

Boundary

MPI STL LokiAUTOCAD

CAD Drawing 
Conversion

Boundary Disposal

Particle Generation

Uniform Domain

Uniform Load

Preprocess

MD
Particle 
Method

Data 
Partition

Configuration

Fig. 8.1 General algorithmic platform for discrete simulation (Tang et al. 2004)

access. The overall flow chat for the general algorithm is show in Fig. 8.2 reproduced
from Ge et al. (2011).

For simpler cases of fixed neighbors and for processing the interactions after the
neighbors are listed, similar algorithms can be shared, also with explicit finite differ-
ence or finite volume methods, lattice-based methods and MD methods for condensed
materials at low temperature. They are usually very efficient for GPUs, due to their
spatial locality, natural parallelism and explicit schemes.

Though extensive optimizations are required to implement the various interactions
between the discrete elements on GPUs, our emphasis has been on the effective
use of the device memory bandwidth, since it is common to most methods, and
it is especially important for methods with low ratios of computational operations
to memory access. For best performance, the data in registers and local memories
should be reused as much as possible, and storing and loading of the data to global
memory should aligned and coalesces. LBM may serve as a typical example for
memory bounded applications on GPUs and interesting readers are referred to our
recent publications (Ge et al. 2011; Xiong et al. 2012; Li et al. 2012).



152 W. Ge et al.

Fig. 8.2 General purpose
particle simulation algorithm
on multiple GPUs (adopted
from Ge et al. 2011)

8.4 Hardware Development

With the development and extension of the EMMS model to different areas and
the expression of the common nature of different discrete methods under the same
algorithmic framework, a general multi-scale computing mode was established
(Chen et al. 2009; Ge et al. 2011; Li et al. 2012) for typical complex system
in process engineering. In this mode, the system is discretized on different lev-
els. On the top and middle levels, long range interactions or correlations are
treated by imposing stability conditions, which gives the global and local dis-
tribution of variables at the statistically steady state with relatively low compu-
tational cost; While on the middle and bottom levels, local interactions among
the discrete elements are treated explicitly based on these distributions, reproduc-
ing the dynamic evolution of the system in detail. Taking advantage of the fast
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Fig. 8.3 The Mole-8.5 system at IPE, CAS (Photo by Xianfeng He) (adopted from Li et al. 2013;
Ge et al. 2011; Dubitzky et al. 2012)

distribution process, development of system behavior from the artificial initial con-
dition to the steady state, which is of little interest to engineering practice, can
be bypassed almost completely, and hence speedup the simulation considerably
(Ge et al. 2011; Liu et al. 2011, 2012).

However, with traditional CPU-based supercomputers, no significant advantage of
this computing mode can be demonstrated because the interactions and motion of
the particles are processed with very limited parallelism as compared to its full
potential. The advent of GPU computing, facilitated by CUDATM, introduced new
means to implement this mode. As GPUs typically contain hundreds of relatively
simple stream processors operated in the SIMD mode, they have a good balance, for
discrete simulation, between the complexity of the arithmetic or logic operations that
can be carried out by a stream processor and the number of parallel threads they can
run. The communication among multiple GPUs may present an imperfection, as for
the moment it has to resort to the PCIE bus and CPUs, or even the inter-node network,
with limited bandwidth and considerable latency. However, weak scalability is still
warranted for most discrete simulations.

The Mole-8.5 system (Wang et al. 2010, 2012; Ge et al. 2011; Li et al. 2013) at
IPE, pictured in Fig. 8.3, is the first supercomputer using NVIDIA Tesla C2050 GPU
boards in the world, reaching 1PFlops peak performance in double-precision. It was
established to provide a customized hardware that can taking full advantage of the
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Fig. 8.4 Snapshot from the
simulation of the industrial
scale rotary drum (adapted
from Xu et al. 2011)

CPU-GPU hybrid architecture to implement the multi-scale computing mode based
on EMMS model and discrete simulations. It features a three-layer structure with
increasing number of GPUs per node at lower layers, as specified in Table 8.1. We
demonstrate that this design is economically profitable for most discrete simulations
though it may not give good results for Linpack tests.

8.5 Applications

The multi-scale computing mode introduced above has been applied to a wide
range of processes in chemical and metallurgical engineering, molecular biology
and renewable energy, either for industrial designing and optimization, or for purely
scientific exploration. Even a full H1N1 viron in vivo can be simulated on the mole-
cular level at a speed of 0.77 ns per day (Xu et al. 2011). We will give some further
examples below.

8.5.1 Quasi-Realtime Simulation of Rotating Drums

To demonstrate how discrete particle simulation can be accelerated by GPU or many-
core computing, we carried out a DEM simulation on the granular flow in rotating
drums which are widely used in process industries (Xu et al. 2011a). When a simple
interaction model for smooth particles is used, each C2050 GPU can process at most
about 90 million particle updates per second, about two orders faster than the serial
code on CPUs. And when an industrial scale rotating drum, 13.5 m long and 1.5 m in
diameter with nearly 10 million centimeter particles (a segment of the drum is show
in Fig. 8.4) are simulated on 270 GPUs with message passing interface (MPI), nearly
realtime speed can be achieved (Xu et al. 2011a) even when a more comprehensive
tangential interaction model was added.
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Table 8.2 Outline of the multi-scale approach to DNS of gas-solid suspension

System Physical Numerical Software Hardware
components model method algorithm

Gas phase Continuum
(Boltzmann
equation)

Lattice
Boltzmann
(fine grid)

Regular, explicit
& local lattice
operations

Linked
many-core
(e.g. GPU)

Solid phase Discrete particles
(Newton)

Integration of
ordinary
differential
equations

List & arithmetic
operations

Shared
memory
multi-core
(e.g. CPU)

8.5.2 Direct Numerical Simulation of Gas-Solid Suspension

When gas-solid systems are simulated, the multi-scale computing mode can be fully
exemplified (Ge et al. 2011; Xiong et al. 2012). For DNS, the consistency from the
simulated system to computing hardware is detailed in Table 8.2. In this method, we
have carried out the largest scale DNS of gas-solid systems so far (Ge et al. 2011;
Xiong et al. 2012), which contains more than 1 million solid particles with 1 billion
lattices for the gas phase in 2D, and 100 thousand particle with 500 million lattices
in 3D. Some of the results are shown in Figs. 8.5 and 8.6. Some 20–60 folds speedup
is obtained when comparing one GPU with one CPU core.

8.5.3 Euler-Lagrangian Simulation of Gas-Solid Fluidization

DNS of gas-solid flow has revealed unprecedented details of the flow field which is
important for the establishing larger scale models for industrial applications (Xu et
al. 2012). However, its direct application in industry is very limited. Most industrial
simulations have employed TFM which treat both gas and solid phases as contin-
uum and follows a Euler-Euler frame of description. This is certainly insufficient in
terms of accuracy but was previously the only feasible method due to computational
cost. Now with our multi-scale computing mode, a Euler-Lagranian method with
less computation than DNS and higher resolution than TFM can be employed for
industrial simulations (Xu et al. 2012). As detailed in Table 8.3, the solid particles
(either real or coarse-grained) are still tracked one by one as in DNS, which is the
Lagrangian part, but the gas flow is resolved at a scale much larger than the solid par-
ticles using continuum-based finite volume method, which constitutes the Eulerian
part. With GPU computing for the Lagrangian part, its speed can be comparable to
traditional TFM simulation on CPUs (Xu et al. 2012).
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Fig. 8.5 Snapshot from 2D DNS of gas-solid suspension (adopted from Ge et al. 2011; Xiong et
al. 2012)

Fig. 8.6 Snapshot from 2D DNS of gas-solid suspension (adopted from Ge et al. 2011; Xiong et
al. 2012)
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Table 8.3 Outline of the multi-scale approach to Euler-Lagrangian simulation of gas-solid flow

System Physical Numerical Software Hardware
components model method algorithm architecture

Solid phase Particles ODE integration List & arithmetic Linked many-core
(Newton) operations (e.g., GPU)

Gas phase Continuum PDE solver Sparse matrix Shared memory
(N-S) (Simple) operations multi-core (e.g., CPU)

Table 8.4 Outline of the multi-scale approach to atomistic simulation of crystalline silicon

System Physical Software Hardware
components model algorithm architecture

Bulk atoms
(majority)

Regular
lattices with
fixed
neighbors

Massive and
intensive
computing in
SIMD-style,
single precision
allowed

Shared memory
many-core (e.g.,
GPU)

Interface/defects/
dopants
(minority)

Irregular
lattices with
dynamic
neighbors

Less but more
complicated
computing in
MIMD-style,
double precision
required

Linked
multi-core (e.g.,
CPU)

8.5.4 Atomistic Simulation of Crystalline Silicon

The multi-scale computing mode can be used in areas other than multi-phase flow.
One example is the atomistic simulation of crystalline silicon and its surface recon-
struction (Hou and Ge 2011; Hou et al. 2012), which is of special interest to the
photovoltaic and IC industrials (Hou et al. 2012). As explained in Table 8.4, the fea-
tures of CPUs and GPUs, respectively, are best utilized in this mode. As a result, for
bulk simulation, we have obtained 1.87 Petaflops (single precision) sustained per-
formance on the Tianhe1A supercomputer (www.Top500.org/lists/2010/11), which
has 7168 Nvidia M2050 GPUs. That is, the simulation using the multi-body Tersoff
potential has reached 25.3 % of its peak performance. In fact, the instruction through-
put and memory throughput on a single GPU approached 80 %. When coupled with
86016 CPU cores, the more complicated simulation on surface reconstruction also
reached Petaflops sustainable performance (1.17 Petaflops in single precision plus
92 Teraflops in double precision). More than 1000 billion atoms were simulated in
this case, which links atomistic behavior with macro-scale material properties.

www.Top500.org/lists/2010/11
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8.6 Conclusions

In summary, structural consistency among the hardware, software, model and the
system to be simulated is critical for the high efficiency of supercomputing. The
continuum-discrete implementation of the so-called EMMS paradigm can take full
advantage of the CPU-GPU hybrid computing mode and unprecedented simulation
results on multi-phase systems or even beyond have been or can be obtained in
this paradigm. The prospects of simulating industrial scale multi-phase systems at
almost realtime with reasonable accuracy and resolution, or in short, virtual process
engineering is not remote considering the dramatic development of both the hybrid
computing mode and its hardware developments.
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Chapter 9
GPU Best Practices for HPC Applications
at Industry Scale

Peng Wang and Stan Posey

Abstract Current trends in high performance computing (HPC) are moving towards
the availability of several cores on the same chip of contemporary processors in
order to achieve speed-up through exploiting the potential of fine-grain parallelism
in applications. The trend is led by graphics processing units (GPUs) which have
recently been developed exclusively for computational tasks as massively-parallel
co-processors to conventional x86 CPUs. Since the introduction in 2006 of the
NVIDIA Tesla GPU and CUDA programming environment, the HPC community
has achieved noted performance gains across a broad range of application software.
In particular, various scientific research disciplines within computational physics
and chemistry have reported performance levels as high as two orders of magnitude
over current quad-core CPUs. During 2010 an extensive set of new HPC architec-
tural features were offered in the third generation Tesla and CUDA (codenamed
Fermi), giving engineering disciplines a similar opportunity to expand use of GPUs
for applications relevant to industry modeling and simulation. Similar to the scien-
tific research community, practical applications in industry observe constant growth
in model fidelity, but parallel efficiency of commercial software and job completion
times also become important factors behind decisions on model size and scale, and
level of physics features to include. This work examines algorithmic development
best practices, and performance results of application software for the Tesla Fermi
architecture in modelling and simulation examples relevant to industry-scale HPC
practice. Included are GPU implementations of computational structural mechanics
(CSM) and computational fluid dynamics (CFD) software that support mechanical
product design in manufacturing industries. Specifically, the critical requirements of
memory optimization and storage formats are discussed for grid-based direct solvers
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that appear in CSM and for highly irregular sparse matrices that require iterative
solver schemes in CFD.

9.1 Introduction

The continual increase in CPU speeds is limited due to power and thermal constraints
for processors with multiple CPU cores. To achieve boosts in performance without
increasing clock speeds parallelism must be developed. This parallelism can come
in the form of task parallelism, data parallelism, or even a combination of the two.
Common methods for implementing parallelism are explicit message-passing using
an MPI library for either distributed or shared memory systems, and OpenMP for
shared memory systems. A hybrid method is also possible with OpenMP used on
multi-core and multiprocessor nodes and MPI used among the nodes.

Although parallel applications that use multiple cores are a well established tech-
nology in computational science and engineering (CSE), a recent trend towards the
use of GPUs to accelerate CPU computations is now common. In this heteroge-
neous computing model the GPU serves as a co-processor to the CPU. The need for
high performance and the parallel nature of CSE problems has led GPU designers
to create current designs with hundreds of cores. Today GPUs and software devel-
opment tools are available for implementing more general applications that use the
GPU for applications such as CSM, CFD and others where computations are needed
to be completed as fast as possible.

Much work has recently been focused on GPUs as devices that can produce a very
high FLOPS (floating-point operations per second) rate if an algorithm is well-suited
for the device. There have been several studies illustrating the performance gains that
are possible by using GPUs, but a modest number of commercial CSM and CFD
software has yet to make full use of them, and those that have demonstrate nominal
overall gains of 2× to 3× over multi-core CPUs. This is mostly due to the current
focus of linear equation solvers for GPUs rather than complete implementations,
which will come in progressive stages.

The GPU was originally designed for graphics and the majority of this computa-
tion involves computing the individual color for each pixel on a screen. If we consider
each pixel as similar to a quadrilateral element or cell, computing the pixel colors will
be similar to the computations on a structured mesh. There is a very regular, orderly
data access pattern with neighbors easily computed by simple offsets of indices.
However, the majority of commercial CSM and CFD software use some form of an
unstructured mesh often with hexahedrals and tetrahedrals in 3D. These meshes lead
to an irregular and somewhat disorderly data access pattern which is not particularly
well suited to the memory system of a GPU.

Through a careful process of analyzing the relation between finite elements and
and/or finite volumes and vertices, and taking advantage of the large amount of
available processor performance on a GPU, techniques can be applied that partitions
and sorts the mesh in such a way that the data access pattern becomes much more
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regular and well-ordered. The pre-processing of the mesh connectivity is a one-
time step performed just before the main computation begins and can require a
negligible amount of compute time while significantly increasing the performance
of the equation solver.

Shared memory is an important feature of the GPU and is used to avoid redundant
global memory access among threads within a block. The GPU does not automatically
make use of shared memory, and it is up to the software to explicitly specify how
shared memory should be used. Thus, information must be made available to specify
which global memory access can be shared by multiple threads within a block.
For structured grid based solvers, this information is known up-front due to the
fixed memory access pattern of such solvers, whereas the memory access pattern of
unstructured grid based solvers is data-dependent.

Algorithm design for optimizing memory access is further complicated by the
number of different memory spaces the application must take into consideration.
Unlike a CPU the memory accesses are under the full and manual control of the
developer. There are several memory spaces on the GPU which in turn is connected
to the CPU memory. Different memory spaces have different scope and access char-
acteristics: some are read-only, some are optimized for particular access patterns.
Significant gains (or losses) in performance are possible depending on the choice of
memory utilization.

Another issue to be considered for GPU implementation is that of data transfers
across the PCI-Express bus which bridges the CPU and GPU memory spaces. The
PCI-Express bus has a theoretical maximum bandwidth of 4–8 GB/s depending on
whether it is of generation 1 or 2. When this number is compared to the bandwidth
between the GPU’s on-board GDDR5 memory and the GPU multi-processors (up
to 141.7 GB/s), it becomes clear that an algorithm that requires a large amount of
continuous data transfer between the CPU and GPU will unlikely achieve good
performance.

For a CSM or CFD solver, the obvious solution is to limit the size of the domain
that can be calculated so that all of the necessary data can be stored in the GPU’s main
memory. Using this approach, it is only necessary to perform large transfers across
the PCI-Express bus at the start of the computation (geometry) and at the end (final
solution). High-end NVIDIA GPUs offer up to 6 GB of main memory, sufficient to
store all the data needed by most commercial parallel engineering software, so this
restriction is not a significant limitation.

Over the past 10 years, CSM and CFD software has become increasingly reliant
on clusters of multiprocessors to enable more detailed simulations within design time
frames. For this reason, the scalability of a solver across multiple servers is equally
important as its single-processor performance. A potential problem with increasing
single-processor performance by an order of magnitude is that the multi-processor
performance suffers since the time required to exchange boundary information
remains roughly constant. When operating in parallel across multiple GPUs, some
boundary information must be transferred across the PCI-Express bus at the end of
each time step. However, with implementation of a low surface-to-volume ratio in
mesh partitioning, this data transfer need not be a bottle-neck.
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The relative performance of processors versus memory over the past few decades
has extended to more than three orders of magnitude. CPUs have gone to great
lengths to bridge the gap between processor and memory performance by introducing
instruction and data caches, instruction level parallelism, and so forth. And although
GPUs offer a different approach in terms of hiding memory latency because of their
specialization to inherently parallel problems, the fact remains that processor perfor-
mance will continue to advance at a much greater rate than memory performance.
If we extrapolate out, without any fundamental changes in memory, processors will
become infinitely fast relative to memory, and performance optimization will become
solely an exercise in optimizing data movement.

9.2 Direct Sparse Solvers

Direct sparse solvers are widely used in the discipline of computational structural
mechanics (CSM) for simulations that deploy implicit schemes. Multi-frontal direct
sparse solver techniques are the most common algorithms for commercial software.
In a multi-frontal solver, an assembly tree is built for the sparse matrix, whose nodes
are dense matrices. The factorization of the sparse matrix is based on the factorization
of those dense matrices (fronts) and their assembly into super-nodes. Most of the
runtime of a direct sparse solver is spent in the factorization of the frontal matrices
and their assembly.

The typical strategy of developing a direct sparse solver for the GPU is to offload
those dense matrix operations to the GPU, which typically can be very efficient for
a massively parallel GPU architecture. Other solver operations such as the matrix
assembly, tree transversal, and forward/backward solve can all stay on CPU, since
they are difficult to parallelize on the GPU and typically require only a small fraction
of the total solution time.

For application to a symmetric matrix, one requirement is that the matrix is stored
in a packed format but high performance GPU kernels like DGEMM (double preci-
sion matrix-matrix multiply) require a regular 2D data layout. There are in general
two approaches to manage this requirement. First, one can perform a data format
transformation to transfer the packed format to a block data structure, and the dense
matrix GPU kernels can then be applied to each block. Since dense matrix GPU
kernel are of O(n3) operations and format transformations of O(n2), there would not
be significant overhead.

As a second approach, one could rewrite the dense matrix GPU kernels to handle a
packed data format directly. The complexity for this would require an understanding
of the correct index mapping for this packed storage format, otherwise the kernel
would behave largely the same as in the first approach.

Since matrix fronts are copied to the GPU one-by-one for computation and then
copied back to the CPU afterwards, there are two potential performance bottlenecks.
First, for finite element models with many “holes” and/or thin shells, the fraction of
runtime for small fronts will increase. Generally, a GPU requires a dense matrix to
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be larger than ∼1K to reach peak performance. For many small matrices, this could
require a significant fraction of the factorization phase and the overall performance
could be well below the peak GPU performance.

The solution to a more general direct solver GPU approach that could benefit a
broader range of model geometries is to use the concurrent kernel feature introduced
in the Fermi architecture. Since the matrix fronts on the same assembly tree level can
be processed independently, their GPU kernels can run concurrently on the GPU,
and thereby fully utilizing the hardware for peak performance. Another potential
problem is overhead associated with CPU-GPU data transfers. Knowing that fronts
on the same assembly tree level can be processed independently, one could overlap
CPU-GPU data transfer of one front with the kernel computation of another front,
which is a supported feature on Fermi GPUs.

9.2.1 Example: LS-DYNA Direct Solver

An example of a GPU-accelerated direct solver for CSM is provided with LS-DYNA
commercial software based on the finite element method and developed by Liver-
more Software Technology Corporation, with headquarters in Livermore, CA, USA.
LS-DYNA is a multi-purpose structural and fluid analysis software for high-transient,
short duration structural dynamics, and other multiphysics applications. Considered
one the most advanced nonlinear finite element programs available today, LS-DYNA
has proved an invaluable simulation tool for industry and research organizations who
develop products for automotive, aerospace, power-generation, consumer products,
and defense applications, among others. Complexities arise from simulations in these
industries since they often require predictions of surface contact and penetration,
models for loading and material behavior, and accurate failure assessment.

Performance and parallel efficiency for LS-DYNA is dependent upon many ele-
ments of a system’s architecture and the geometry and conditions of the simulation.
Structural simulations in LS-DYNA often contain a mix of materials and finite ele-
ments that can exhibit substantial variations in computational expense, which may
create load-balance complexities. The ability to efficiently scale to a large number
of processors is highly sensitive to load balance quality of computations. This study
of LS-DYNA performance does not yet consider multi-node distributed parallel, and
instead investigates the parallel efficiency that GPUs can provide for single node
computations.

GPU development of LS-DYNA has been limited to implicit modeling at the
time of this paper, and specifically the use of a multi-frontal sparse direct solver
that usually requires out-of-memory solution processing. This occurs because the
stiffness matrix that must be factorized is typically much larger than the allowable
memory for a particular server or set of cluster nodes. The model for the study
however is small enough to reside in-memory and is comprised of more than 500 K
DOFs. The geometry is a set of concentric cylinders and a description of the model
and conditions is provided in Fig. 9.1.
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Fig. 9.1 Description of the LS-DYNA model for GPU performance tests

Fig. 9.2 Performance results of LS-DYNA wall time for model CYLOP5E6

The system used for the study contained an Intel Xeon 5500 Nehalem based CPU
with dual sockets of 4 cores each for a total of 8 cores, and a Tesla C2050 GPU with
448 cores and 3 GB of main GPU memory. For the CYLOP5E6 model the matrix
is symmetric with a rank of 760320, and its diagonal and lower triangle contain
29213357 non-zero entries. After reordering with METIS, it required 7.104E+12
operations to factor the matrix, and the resulting factored matrix contains 1.28E+09
entries.

The total time required for LS-DYNA including factorization of the matrix is
shown in Fig. 9.2, as a function of the number of cores employed, both with and
without the GPU. The dual socket Nehalem host sustains 10.3 GFLOPS when using
one core, and 59.7 GFLOPS when using all eight. When the GPU is used, the bench-
mark performs 6.57E+12 operations or 92 % of the total required and sustained 98.1
GFlop/s peak. Overall performance with the GPU improves to 61.2 GFLOPS when
one core is used, and 79.8 GFLOPS with all 8.

The results demonstrate that a GPU could substantially accelerate LS-DYNA
when comparing wall clock times. In the case of 1 core operating with the GPU, the
speedup is nearly 5×, but note that the optimal use of the combined CPU + GPU
solution is at 4 cores of the CPU. At this level the acceleration is 2.4× and provides
a total job time of just 240 s. This time can be lowered slightly to 215 s with the use
of the 4 remaining cores, but is not an optimal use.
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9.3 Iterative Sparse Solvers

Iterative sparse solvers are widely used in the discipline of computational fluid
dynamics (CFD) for simulations that deploy implicit schemes. For CFD iterative
solvers are most commonly owing to their computational and storage efficiency.
Implementation of an iterative solver such as a conjugate gradient method on GPU
would consist mainly of a sparse-matrix-vector-multiply (SpMV) kernel, and a few
additional BLAS-1 kernels.

Because of an SpMV kernel’s low arithmetic intensity, it is highly memory-
bound, and therefore optimization of the memory access pattern to achieve peak
GPU memory-bandwidth is the primary consideration. Even though the data access
pattern is irregular for general SpMV, with careful re-design of data structures for
the sparse matrices, it is possible for the SpMV kernel to run very close to the peak
of the GPU memory bandwidth.

Currently a very successful GPU data structure for sparse matrix is the Ellpack
format (ELL). For the ELL format, one uses a 2D regular storage space for the
matrix nonzero elements and their column indices and the row size of the 2D storage
would just be the matrix row size. For the column size, because of the regular storage
requirement, the size would be that of the largest number of nonzero row elements for
the matrix. With the ELL format, the GPU kernel would use one thread per row. In this
way, the 2D regular storage enables fully coalesced access to the matrix elements. In
addition, since neighboring rows have generally a good chance of reusing the same
vector elements, binding the vector to texture cache has been shown to lead to up to
a 30 % performance increase.

These techniques for SpMV on a GPU can reach very close to the memory-peak,
which would deliver ∼15 GFLOPS Tesla C2050 GPU. For each SpMV operation
using ELL format, the flop count is 2 (1 add and 1 multiply), and gives an arithmetic
intensity 0.1 when divided by the number of 20 bytes loaded, (8 bytes for matrix ele-
ments, 8 bytes for vector elements, and 4 bytes for column indices). Therefore when
SpMV is computing at close to the memory bandwidth peak of around 150 GB/s for
the Tesla C2050 (with ECC turned off), the flop rate would be 150*0.1 or 15 GFLOPS.

One possible concern with the ELL format is that its column size needs to be the
largest row size in the matrix. This could potentially lead to a large waste of storage
space. The solution to this problem is to use a hybrid (HYB) format. The idea of
the HYB format is to simply set the size of the ELL format column to be the typical
number of non-zero rows in the matrix. This technique also requires use of another
addition storage format, such as the coordinate (COO) format, in order to store the
exceptional elements in rows that exceed the typical number of non-zeros.

For the HYB technique, most of the matrix elements will be in ELL format, so the
use of COO format would not reduce performance significantly. The HYB format
with carefully chosen parameters, can achieve a good balance between performance
and storage efficiency. The additional parameters in HYB looks like an additional
complication, but in its implementation, one could design it in a way to request the
HYB format parameters at runtime.
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With an efficient SpMV kernel, an iterative method such as a conjugate gradient
can be implemented fully on a GPU, however preconditioners are usually required.
All contemporary CFD iterative solvers use a preconditioner to speed-up the con-
vergence rate of a solver, and this would also need to be implemented on the GPU
for overall performance. The difficulty of this implementation varies significantly
depending on the specific preconditioner used. For example, a GPU-efficient Jacobi
preconditioner would be very simple to implement, however a highly sequential pre-
conditioner such as an incomplete Cholesky scheme, would be difficult for good
parallel efficiency. This trade-off may motivate a redesign of a particular precondi-
toner in order to run massively parallel on a GPU.

9.3.1 Example: AcuSolve Iterative Solver

An example of GPU-accelerated iterative solver for CFD is provided with AcuSolve
commercial software based on the finite element method and developed by ACUSIM,
with headquarters in Mountain View, CA, USA. AcuSolve is based on the Galerkin
Least-Squares (GLS) finite element method. GLS is a higher-order accurate, yet sta-
ble formulation that uses equal order nodal interpolation for all variables, including
pressure. The method is specifically designed to maintain local and global conser-
vation of relevant quantities under all operating conditions and for all unstructured
mesh types. AcuSolve utilizes an efficient iterative solver for fully coupled pressure-
velocity equation systems which like most commercial CFD has sparse matrix-vector
(SpMV) multiplies as its primary operation.

SpMV is of singular importance in sparse linear algebra. In contrast to the uniform
regularity of dense linear algebra, sparse operations encounter a broad spectrum of
matrices ranging from the regular to the highly irregular. Exploiting the tremendous
potential of throughput-oriented GPU processors for sparse operations requires that
a solver expose substantial fine-grained parallelism and impose sufficient regular-
ity on execution paths and memory access patterns. Optimizing SpMV for GPUs
is qualitatively different than SpMV on latency-oriented multi-cores. Whereas a
multi-core SpMV kernel needs to develop 4 or more threads of execution, a many-
core implementation must distribute work among thousands or tens of thousands of
threads. Many-core GPUs will often demand a high degree of fine-grained parallelism
because, instead of using large sophisticated caches to avoid memory latency, they
use hardware multithreading to hide the latency of memory accesses.

The linear equation solver in AcuSolve was examined for GPU acceleration for a
relatively simple case of 80,000 elements for an S-Duct geometry. AcuSolve utilizes
a hybrid parallel MPI/OpenMP approach with an iterative GMRES solver. An exe-
cution profile of AcuSolve for the S-Duct case appears in Fig. 9.3 and demonstrates
the dominant feature of SpMV operations as 57 % of the total execution time. As
described in a previous section, even a complete port of SpMV to the GPU will still
leave 43 % of execution time on the CPU and limit the overall effective speed-up to
∼2×.
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Fig. 9.3 Execution profile of AcuSolve and the S-Duct case of 80,000 DOF

Fig. 9.4 Results for AcuSolve 1.8 on multi-GPUs versus Quad Core Xeon CPU

Performance results for the S-Duct case are shown in Fig. 9.4 and feature a com-
parison between a quad-core Xeon 5500 series CPU (Nehalem) and a single NVIDIA
Tesla C2050 (Fermi). The speed-up of the 1 core + GPU is ∼2× and this improves
to 3.3× with the use of 2 GPUs owing to the distributed memory parallel implemen-
tation in AcuSolve. ACUSIM has additional GPU development projects underway
to improve the performance for future releases.

9.4 Conclusion

Increased levels of parallel processing for industry-relevant software by utilizing
GPUs in an HPC environment is enabling much larger and complex simulations
to be addressed in product development workflows. As CSM and CFD simulation
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requirements continue to grow such as the need for transients, high-resolution, and
multi-scale simulations that are all heavy in numerical operations, hybrid parallel
systems of CPUs and GPUs will become an essential HPC technology.

The heterogeneous nature of such high fidelity simulations and their HPC resource
usage will continue to grow the requirements for balanced GPU-based server nodes
within distributed memory clusters. It was demonstrated that substantial CSM and
CFD performance gains can be achieved by using the latest GPU technology, the
NVIDIA Tesla 20-series by acceleration of applications on CPUs. Based on these
trends, we can expect that GPU acceleration will be a meaningful HPC trend in the
future of scientific computing and the future of scientific computing and engineering
modeling and practice.
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Chapter 10
Simulation of 1D Condensing Flows
with CESE Method on GPU Cluster

Wei Ran, Wan Cheng, Fenghua Qin and Xisheng Luo

Abstract We realized the space-time Conservation Element and Solution Element
method (CESE) on GPU and applied it to condensation problem in a 1D infinite
length shock tube. In the present work, the CESE Method has been implemented
on a graphics card 9800GT successfully with the overlapping scheme. Then the
condensation problem in 1D infinite shock tube was investigated using the scheme.
The speedup of the condensation problem with the overlapping schemes is 71×
(9800GT to E7300). The influence of different meshes on the asymptotic solution
in an infinite shock tube with condensation was studied by using the single GPU
and GPU cluster. It is found that the asymptotic solution is trustable and is mesh-
insensitive when the grid size is fine enough to resolve the condensation process. It
is worth to mention that the peak value of computing reaches 0.88 TFLOPS when
the GPU cluster with 8 GPUs is employed.

Keywords GPU cluster · CESE method · Shock tube · Condensation

10.1 Introduction

Historically, the CFD has apace developed due to the rapid increase of CPU perfor-
mance and the swift reduction of the hardware price. However, with the limitation
of physics, the CPU’s performance can’t be improved easily by raising clock fre-
quency as ever (Kish 2002). To increase the computational ability of CPU, a large
and expensive cache is integrated and many-core system has been employed (Geer
2005). The small scale problems of CFD can be fulfilled by a PC of multi-core
CPU with shared memory. For a large scale problem, however, a PC with a few
cores can’t offer enough computational capability and the cluster with many CPU
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cores is needed. Nevertheless, the memory bottleneck, which appears in the form
of bandwidth limitation and fetching latency, has restricted the performance of the
many-core system. At the meantime, graphics process unit (GPU), having recently
turned into general-purpose programmable units, is the first to abandon expensive
caches and combat latency by massive parallelism instead (Kirk and Hwu 2010),
(NVIDIA 2009). Now, the GPU has widely used in many fields of scientific comput-
ing. Preis et al. has implemented GPU accelerated Monte Carlo simulation of the 2D
and 3D Ising model (Preis et al. 2009). Klöckner et al. has used CUDA to accelerate
discontinuous Galerkin methods (Klöckner et al. 2009). Corrigan et al. realized CFD
solvers on GPU using an unstructured grid (Corrigan et al. 2009).

We will present the work of implementation of the space-time Conservation
Element and Solution Element (CESE) (Chang 1995) method on GPU and GPU
cluster with CUDA. The space-time CESE method, originally proposed by Chang
(1995), has many unique features comparing with conventional methods such as
finite volume, finite difference and finite element. It offers a new approach to solve
conservation laws like Navier-Stokes or Euler equations. It can obtain highly accu-
rate numerical solutions for flow problems involving discontinuities (e.g. shocks and
contact surfaces), vortices, acoustic waves, boundary layers and chemical reactions
(Yu et al. 2009), (Cheng et al. 2010). To accurately calculate a complex flow field, a
fine mesh with enormous grid points is employed normally, which demands a large
amount of computing resource. The requirement of huge computing resource is not
only needed in 2D or 3D problems, but also in some 1D problems for example the
simulation of the asymptotic behavior in an infinite shock tube with homogeneous
condensation (Cheng et al. 2010). It is expected that the GPU accelerated CESE
method developed here could greatly reduce the calculating time and, therefore,
meet the requirement of huge computing resource in these problems.

The rest of this paper is organized as follows: Sect. 10.2 is the overview of the
CESE method. The implementation of the CESE method on GPU and GPU cluster
will be dedicated in Sect. 10.3. Section 10.4 will present the simulation results and
the computational performance. Finally conclusions are summarized in Sect. 10.5.

10.2 Overview of the Method

According to Yu and Chang (1997), the explicitly treatment of stiff source terms
is easily achieved. First, the governing equation is a little different from the Euler
equation. A source term vector is appended in it, which can be expressed as:

∂U
∂t

+ ∂F
∂x

= S.
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U, F and S are:
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where Q0, Q1 and Q2 stand for finite numbers of moments of the size distribution
function which describe the conservation of the liquid phase. g is the liquid mass
fraction. is the density of liquid water. J is the nucleation rate. rc is the critical radius

and dr
dt is the averaged droplet growth/shrinkage rate. Here we used the liquid mass

fraction g that is directly related to the third-order moment Q3, g = 4πρl Q3/3 (Luo
et al. 2007).

With the explicit treatment of source terms, the governing equation is first divided
into a homogeneous and an inhomogeneous part (Yu and Chang 1997) as:

∂Uhom

∂t + ∂F
∂x = 0,

∂U
∂t = S(Uhom),

where Uhom is the solution of the homogeneous part. The homogeneous part is an
Euler equation which can be calculated by the CESE Method. The governing equation
solved by the CESE method can be written to the difference form as:

umt + fmx = 0.

Define that:

A = ∂ fm

∂uk
,

the intermediate variable fm and its time derivative fmt at time n and point j are
given as:

( fm)
n
j = An

j (um)
n
j ,

( fmt)nj = An
j ( fm)

n
j .

The a-α scheme of the CESE method is:

(um)
n
j = 1

2
[(um)

n−1/2
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n−1/2
j+1/2 + (cm)

n−1/2
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j+1/2],

(umx )
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j |αvxln
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where

(cm)
n
j = dx

4
(umx )

n
j + dt

dx
( fm)

n
j + (dt)2

4dx
( fmt )

n
j ,

vxln
j = − (um)

n−1/2
j−1/2 − (um)

n
j + (dt/2)(umt )

n−1/2
j−1/2

dx/2
,

vxrn
j = + (um)

n−1/2
j+1/2 − (um)

n
j + (dt/2)(umt )

n−1/2
j+1/2

dx/2
,

with dt and dx being the time and the space step, respectively. (cm)
n
j is an intermediate

variable. vxln
j and vxrn

j are the left and right gradients of (um)
n
j respectively.

The explicit treatment of source terms is simple and its computation is local reliant.
The physical model is given in Smolders (1992).

10.3 Implementation

As described above, the simple interdependency of the difference scheme makes
the CESE method be easily parallel implemented. Consider a problem with a total
number of grid points of N G. N G also represents the total threads in a Grid. Let
N T denote the number of Threads in a Block with N T = 2T , 0 < T < 9 (usually,
T = 7), then the number of Blocks N B can be determined by N B = N G/N T .

10.3.1 The Overlapping Scheme

The number of threads in a Block in the overlapping scheme is one more than that the
grid points needed. This method is based on a principle similar to cache. Cache reads
more data nearby than that the program actual needs in memory. As shown in Fig. 10.1
and Algorithm 1, total number of threads is N T + 1 which means Shared Memory
will read N T + 1 vectors of (um)

n−1/2
j and (umx )

n−1/2
j from Device Memory. Then

N T +1 of ( fm)
n−1/2
j , ( fmx )

n−1/2
j and (cm)

n−1/2
j are calculated. With these N T +1

of (um)
n−1/2
j and (cm)

n−1/2
j , 2n of (um)

n
j and (umx )

n
j can be calculated. This scheme

avoids the communication between Blocks apparently. In fact, the communication
has finished before calculation, where the overlapping corresponds between two
adjacent Blocks. The source code of the kernel function is listed in Appendix A.
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Fig. 10.1 Main computation procedures of the overlapping scheme for the CESE Method

10.3.2 Implementation on GPU Cluster

For a large scale problem, computational ability of single GPU is not enough. Thus
GPU cluster is considered. Implementation of CESE method on GPU cluster is also
achieved in our study by using the MPI. As depicted in Fig. 10.2, in the application
of GPU cluster, MPI threads are used to start and control Devices. The calculation
on each Device is the same as the single GPU application. What’s difference is the
communication between Devices, which must be processed to ensure the correctness
of results.

In the application of GPU cluster, bandwidth between Devices is relatively low.
Bandwidth in Device is above 100 GB/s (coalescence accessing), and 8 GB/s between
Device and Host (PCIE-X16), while between Devices is 10 GB/s (RAM) or 1.25 GB/s
(InfiniBand). It is obvious that the bottleneck is in the communication between
Devices. To tackle this bottleneck problem, the frequency of communication between
Devices must be limited. Two methods are employed to reduce the frequency through
low bandwidth channel. First one is packing and unpacking data in Device. With this
method, packing and unpacking time of data is less than doing it on Host because
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the bandwidth on Device is much higher than it on Host. This method also reduces
frequency of communication between Device and Host. The second method is setting
a large size buffer to reduce the frequency of communication between Devices.

Algorithm. 1. Algorithm of overlapping scheme for the CESE Method
As implied above, the overlapping scheme can gain higher computing perfor-

mance. Here we use the multiple threads’ overlapping scheme to set the buffer. With

Fig. 10.2 MPI based CUDA, one MPI thread controls one CUDA Device
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Fig. 10.3 Multiple threads’ overlap: effective point decrease as time step accumulating

Fig. 10.4 The shock tube with both ends opened. The tube is infinite long and is divided into the
HPS and the LPS by the diaphragm D

this method, if we set 1 times more size of buffer, the frequency of communication
between Devices will decrease to a half. However, multiple threads’ overlap will
reduce the effective points, which is shown in Fig. 10.3. Thus, the balance between
data loss and communication frequency reducing should be well considered. The
best situation is that the buffer size is 1/8 of total data size in our test.

10.4 Example and Results

Condensation problem in an infinite length shock tube is simulated in this section.
Initially a shock tube is equally divided into a high pressure section (HPS) and a low
pressure section (LPS) by a diaphragm D, as shown in Fig. 10.4.

The initial pressure is 1.0 bar in the HPS and 0.3 bar in the LPS, respectively. The
initial temperatures of both HPS and LPS are 295 K. The gas in the tube is humid
nitrogen with an initial saturation ratio of 0.8. An initial mesh with dx = 0.05 mm
and a time step dt = 0.2 µs are set.

The problem of condensation in an infinite length shock tube has an asymptotic
solution after an infinitely long time (Cheng et al. 2010). Now, GPU is applied to
prove the numerical solution implied in Smolders (1992) is mesh-independence. The
overlapping scheme is chosen for the following computation because it is fast. The
calculation method is to double the space step and time step when the shock transmits
to the end of tube and then the length of shock tube is doubled (Cheng et al. 2010).
With the method of doubling dx and dt , 5 different scales of grid ranging from 212

to 216 are employed in calculation.
The result in global view is presented in Fig. 10.5a. As depicted in Fig. 10.5b, all

the results are nearly the same at 20 years and approach to the theoretical solution.
Although the space step is expanded ranging from 108 to 107 meters, the changes of
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(a) (b)

Fig. 10.5 Condensation problem in an infinite shock tube at t = 20 years (single card). a Density
evolution, Grid(N G) = 214. b Asymptotic solution with different grids at the time 20 years

(a) (b)

Fig. 10.6 Condensation problem in an infinite shock tube at t = 20 years, Grid(N G) = 217

(multi-card). a Density evolution. b Asymptotic solution with different grids at the time 20 years

space step’s length have little effect on the final results at the same evolution time.
So we put forward that the theoretical solution is mesh-independence.

The acceleration ratio of single card computing is 71. The GPU used is the
NVIDIA graphics card 9800GT and the CPU is Intel CPU Core Dual E7300. The
peak value of GPU is about 75 GFLOPS. Both the CPU and GPU’s key parameter
are listed in Appendix B.

For a large scale problem, computational ability of single GPU is not enough.
Thus GPU cluster is considered. Implementation of CESE method on GPU cluster
is also achieved in our study.

Here we present the results of condensation problem in an infinite shock tube
which is computed on GPU cluster. Figure 10.6a shows the global view of the density
evolution at t = 20 years. Figure 10.6b illustrates the platform in the asymptotic
solution.
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For this case, the peak value of GPU cluster is 0.88 TFLOPS (using 8 C1060
GPU cards), and the time consumed on communication between Devices is lower
than 0.1 %.

10.5 Conclusion

We presented a GPU accelerated version of the CESE method and the explicit treat-
ment of source terms. The new approach of GPU acceleration with CUDA was
applied and we have gained good computational performance increase with an old
fashion graphics card 9800GT which only supports singe precision float number.
To optimize the code performance, Shared Memory is employed—the overlapping
scheme computes with Shared Memory. The principle of Overlapping scheme can
be used in other similar algorithm. The scheme also achieved good acceleration ratio
in the problem of condensation in shock tube which is 71. We have also implemented
the CESE method on GPU cluster and gained peak value of 0.88 TFLOPS (using
8 C1060 GPU cards). With the simulation results of single GPU and GPU cluster,
we proved that the asymptotic solution of condensation problem in an infinite length
shock tube is mesh-independence. In the future work, we will use the GPU and
CUDA to solve 2 and 3D problems with the CESE Method.

Acknowledgments This research was carried out with the support of the National Natural Science
Foundation of China under grant 10972214.
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Appendix A

Here we list out the code of kernel function:
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Appendix B

Table B.1 Key facts of Intel
CPU Core Dual E7300:

Intel CPU Core Dual
E7300

Number of cores 2
L2 Cache 2 MB
Clock rate 2.66 GHz
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Table B.2 Key facts of
NVIDIA graphics card
9800GT:

NVIDIA graphics
card 9800GT

Number of streaming multiprocessors 14
Number of streaming processors 112
Global memory 1 GB
Shared memory per multiprocessor 16 KB
Register memory per multiprocessor 8192*4 B
Clock rate 1.50 GHz
Compute capability 1.1

Table B.3 Key facts of
NVIDIA computing card
Tesla C1060:

NVIDIA computing
card Tesla C1060

Number of streaming multiprocessors 30
Number of streaming processors 240
Size of global memory 4 GB
Shared memory per multiprocessor 16 KB
Register memory per multiprocessor 16384*4 B
Clock rate 1.296 GHz
Compute capability 1.3
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Chapter 11
Two-Way Coupled Sprays and Liquid
Surface: A GPU-Based Multi-Scale Fluid
Animation Method

Guijuan Zhang, Gaojin Wen and Shengzhong Feng

Abstract GPU-based fluid animation is a hot topic in many applications such as
films, cartoons and games. As the flow phenomena contain highly complex behaviors
and rich visual details, it is necessary to explore the intrinsic multi-scale property in
fluid animation. In this paper, we present a multi-scale fluid animation method on
GPU. Our method is designed to animate fluid details of grid and sub-grid scale with
high efficiency. In our method, the motion of liquid surface is obtained by solving
Navier-Stokes equations and Level Set equation while the dynamics of fluid sprays
are dominated by SPH solution. The interaction between liquid surface and sprays
is modeled by a two-way coupling algorithm which can be executed efficiently on
GPU. From the results of the experiments, we can reach the conclusion that the
proposed GPU based acceleration method can improve the processing speed of the
multi-scale fluid animation significantly while getting interesting details.

Keywords GPU · Fluid animation · Two-way coupling ·Multi-scale

11.1 Introduction

Fluid animation is one of the most desirable techniques in computer graphics since
it is widely used in films and real-time computer games. These applications often
require that the fluid animation results have high degree of realism and can be gener-
ated efficiently. In fact, it is rather difficult to achieve such a goal only by a single fluid
model. Therefore, exploring the multi-scale property of fluid motion and modeling
it on GPU architecture is of great importance.
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In fluid animation world, researchers often use physically-based methods to cap-
ture full 3D fluid details (Enright et al. 2002; Losasso et al. 2008; Wojtan et al. 2010;
Brochu et al. 2010). Provided with nice results, these methods suffer from the dis-
advantage of huge memory usage and long computation time. Although GPU-based
methods (Li et al. 2003; Liu et al. 2004; Zhao 2008) can improve the efficiency
significantly, they scarcely model the multi-scale features in fluid motion.

In this paper, we present a GPU-based multi-scale fluid animation method. Our
method can animate liquid details of grid and sub-grid scale with high efficiency. We
use 3D Navier-Stokes equations to compute fluid velocity field, and adopt the Level
set equation to model free surface motion. The dynamics of sprays are dominated
by SPH solution. We also provide an efficient two way coupling method on GPU to
describe the interaction between liquid surface and sprays. Experiments show that
our method can improve the efficiency while exhibiting visual pleasing animation
results.

11.2 Related Work

In the literature of fluid animation, researchers often use grid-based methods to
capture the details of liquid surface (Enright et al. 2002). Based on the basic frame-
work presented in Enright et al. (2002), researchers modeled solid-fluid coupling
(Carlson et al. 2004), multiphase flow (Losasso et al. 2006), surface tension (Wang
et al. 2005) and so on. However, the numerical dissipation in these methods dam-
ages fluid details obviously. To combat numerical dissipation and maintain as much
details as possible, explicit method that uses mesh-models to represent liquid surface
is developed (Wojtan et al. 2010; Brochu et al. 2010). Because both the implicit and
explicit methods are grid-based, the final results crucially depend on grid resolution.

Another group method to animate fluid is using particles. In general, particle
methods can be classified into two categories: simple particle system and particle-
interaction system. Reeves (1983) presented a simple particle system for animating
smoke. To model the interaction between particles, Moving Particle Semi-implicit
method (MPS) as well as Smoothed Particle Hydrodynamics (SPH) are introduced
into fluid animation community. In MPS method, Premoze et al. ensured incompress-
ibility by solving the Poisson equation on particles (Premoze et al. 2003). Müller et al.
applied SPH model to animate fluid surfaces interactively (Müller et al. 2003). To
reduce the number of particles during animation process, Adams et al. (2007) pre-
sented an adaptive sampling algorithm for SPH model. In Losasso et al. (2008),
Losasso et al. coupled SPH and PLS to obtain fluid details of both liquid surface and
water sprays.

With the support of the latest graphics card, Crane et al. (2007) animated various
fluid phenomena including smoke, water and fire in real-time. Geiss (2007) presented
a GPU-based Marching Cube algorithm that could be used to extract liquid surface in
fluid simulation. In addition, GPU-based SPH fluid simulation is also studied (Amada
et al. 2004). To exploit the massive computational power of GPUs, Harada et al.
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presented a method that can search for neighboring particles on GPUs efficiently
(HARADA et al. 2007). The demo “Cascades” (Lin 2007) used a particle system to
simulate a real-time waterfall entirely on GPU. Zhang et al. (2008) also developed
an adaptive SPH method on GPU to speed up computation.

11.3 Overview

The goal of our method is to produce multi-scale fluid details efficiently given the
initial and boundary conditions. To achieve this goal, we present a framework that
consists of three parts. As illustrated in Fig. 11.1, the first part captures fluid surface
motion using PLS method while the second part animates liquid sprays according to
SPH model. As for the third part, we present a two way coupling algorithm on GPU
to compute fluid velocity field for both liquid surface and water sprays. We will give
the details of each part in the following sections.

11.4 Physically-Based Surface and Sprays Simulation

11.4.1 Free Surface Motion

In water animation, the most visually interesting part is the liquid surface. Since the
surface undergoes frequent topological changes, we use particle level set method
(PLS) (Enright et al. 2002) in this paper. The method represents the motion of liquid
surface according to level set equation and corrects the numerical errors by particles.

In PLS method, the water surface is defined as the zero iso-surface of a signed
distance function φ implicitly. It evolves under the level set equation

φt + u·∇φ = 0, (11.1)

where u is the fluid velocity field. Eq. (11.1) can be solved by semi-Lagrange method
[ELF05].

Fluid Velocity

PLS SPH
GPU-based Two Way 
Coupling Algorithm

Liquid 
Surface

Water Sprays

Fig. 11.1 The framework of our method
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Besides the evolution ofφ, two sets particles that located near the water surface are
used to detect and correct numerical errors. These particles are passively advected by

dx p

dt
= up,

where x p is the particle position and up is the fluid velocity interpolated at x p.
When particles escape to the other side of interface, errors are detected. The local
level set function of the escaped particle is then defined as

φp (x) = sp
(

rp −
∣

∣x − x p
∣

∣

)

,

where sp denotes the particle’s sign and rp is the particle’s radius.

11.4.2 Particle-Based Sprays Animation

We use SPH model to simulate water sprays. In SPH model, field quantities can be
computed according to the values carrying by particles. For example, the quantity X
at location x can be interpolated by all its neighboring particles

X (x) =
∑

p

m p
X p

ρp
W (x, h),

where p iterates over all particles, m p represents mass, ρp is the density and X p

is the value at particle position x p. The function W (r, h) is a smoothed, radically-
symmetric kernel function with core radius h. It is often defined as

W (x, h) =
{

c
(

1− ∥

∥x − x p
∥

∥

2
/r2

p

)

when
∥

∥x − x p
∥

∥

2 ≤ r2
p

0 otherwise
,

where c is the normalization constant, rp is radius. Figure 11.2 gives the basic frame-
work of sprays animation algorithm in this paper. Note that the Possion equation in
step 4 is built upon two way coupling method that will be detailed in the following
sections.

11.5 Two-Way Coupling Method on GPU

In physically-based liquid animation, the most time-consuming step is to obtain fluid
velocity field via solving inviscid form of the Navier-Stokes equations

∇·u = 0 (11.2)
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Fig. 11.2 Sprays animation using SPH model

ut = −u· (∇u)− 1

ρ
∇ p + f , (11.3)

where u is the fluid velocity field, ρ is the density, p denotes pressure and f is the
external force field. Since both the models of liquid surface and water sprays allow
for the enforcement of incompressibility and targeting particle number density, we
couple the two pressure solver into a single Poisson equation similar to (Losasso et
al. 2008). As a result, the mass conservation equation is modified as

1

nr

Dnr

Dt
+∇·u = 0, (11.4)

where D/Dt = ∂/∂t + u·∇a, nr denotes the number of particles per region.
According to the two-way coupling method, we compute a unified velocity field

for both liquid surface and spray model. We also implement this part on GPU to
improve efficiency.

11.5.1 Two-Way Coupled Velocity Solution

Suppose the velocity un has already been resolved at time t and we will compute the
fluid velocity un+1 at a later time t +�t . The process of solving fluid velocity field
can be divided into three steps: adding force, advection and projection.

For the first step, we add external force (e.g., gravity) to the velocity field: u1 =
un + �t f . The next step solves for the effect of the advection term −u· (∇u). We
adopt Stam’s Semi-Lagrange advection method here. It requires two steps to compute
the intermediate velocity field u∗ (x). First, tracking each fluid cell in the grid back
in time to get its previous position; second, copying the corresponding velocity value
at previous location to u∗ (x).

After obtaining u∗ (x), we will compute the final velocity field un+1 at time t+�t
by a two-way coupling method. According to Eq. (11.3), we get
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un+1 = u∗ − �t

ρ
∇ p. (11.5)

Taking divergence of both sides of Eq. (11.5) and substituting∇·un+1 from Eq. (11.4)
yields

∇2 p = ρ

�t
∇·u∗ + 1

nr

Dnr

Dt
, (11.6)

where 1
nr

Dnr
Dt can be approximated by 1

nk+1
r

(

nk+1
r −nk

r
�t

)

. Equation (11.6) is a Possion

equation for pressure p and can be converted into a linear system finally. After solving
p, un+1 can be computed by Eq. (11.5).

11.5.2 Implementation and Performance Considerations

We implement the three steps on GPU. The data storage and boundary conditions
are also considered. Corresponding kernel functions are given in the appendix.

11.5.2.1 Data Structure

When solving for un+1, nine 3D arrays are required: velocity field un ,un+1,
pressurep, particle number nr and external force field f . To save as much mem-
ory as possible, we reuse one velocity array as temporary storage for p and let f
be the constant gravity field. Therefore, only seven 3D arrays are required in global
memory. To achieve high global memory access efficiency, we consider the memory
coalescing by converting a 3D array into a 1D array. A cell (x, y, z) has an index
x + N X (y + zNY ) where N X and NY are the size of 3D arrays in x and y dimen-
sion respectively. Since a grid in CUDA is organized as a two dimensional array of
blocks, each block process all slices of 3D arrays in z direction.

11.5.2.2 Boundary Conditions

Boundary conditions are very important for fluid animation because they provide
a reasonable means to handle the interaction among liquid, solid and the air. Let
u = uN + uT , where uN is the velocity along the normal direction of solid wall and

uT is the tangential velocity. We set uN = usolid ·�n in order to prevent the liquid
flowing into solid. The tangential velocity uses free slip boundary condition so that
uT maintains unchanged. As for pressure term, we set Newmann boundary condition
for solid cells and p = 0 for all air cells. Figure 11.3 shows an example.

To implement this section on CUDA, we also need a 3D array tag to record the
cell type. We use a single type for internal solid cells, liquid cells, and air cells
respectively. In addition, cells at different side of solid surface such as left, right,
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Fig. 11.3 Boundary condi-
tions

B

L R

T

I , , 1, ,2 solid
i j k i j ku u u −= −

, , 1, ,i j k i j kp p −=

bottom, top, back, and front also have different type values. Similar to the other 3D
arrays, tag is also converted to 1D array for memory coalescing. We give a CUDA
example of setting boundary condition for pressure term in the appendix. It can be
extended to velocity term easily.

11.5.2.3 Velocity Update

As introduced in Sect. 11.5.1, three steps are required to get the final velocity field:
adding force, advection and projection. Implementing the first two steps on CUDA
is straightforward that we only need to consider how to locate liquid cells according
to block ID and thread ID as shown in the appendix. Here, we detailed the third step
only.

The projection step involves solving the Possion Eq. (11.6) at first and computing
the final fluid velocity field according to Eq. (11.5). We use CUDA-based Jacobi’s
iterative method to solve the Possion equation. As for Eq. (11.6), we get

− pi−1, j,k − pi, j−1,k − pi, j,k−1 + 6pi, j,k − pi+1, j,k − pi, j+1,k − pi, j,k+1

= −�x
ρ

�t

(

ui+1, j,k − ui, j,k + vi, j+1,k − vi, j,k + wi, j,k+1 − wi, j,k
)

(11.7)

+ 1

nk+1
r

(

nk+1
r − nk

r

�t

)

.

The right side of Eq. (11.7) is a known value so it finally forms a linear system
A p = b. The coefficient matrix A is a symmetric, positive definite and sparse matrix.
There are no more than six non-zero elements in each row of A. Given the initial
solution p0 = (0, · · · , 0), the Jacobi method obtains the solution after n+1 iterations
as

pn+1
i = 1

aii

⎛

⎝bi −
∑

j �=i

ai j pn
j

⎞

⎠ ,

where pn+1
i is the ith component of the solution p, bi is the ith component of b, and

ai j is an element of matrix A.
We use one block to process all slices of p in z direction. Since the Jacobi method

will take several iterations, we defined a shared memory variable to store the temporal
values of p. The iteration will stop until
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max
1≤i≤n p

∣

∣

∣pk
i − pk−1

i

∣

∣

∣ ≤ ε,

where ε is a small positive number which equals to 1e−6 in this paper. After solving
p , we compute the final fluid velocity according to Eq. (11.5).

11.6 Results

We have applied our fluid animation method to produce interesting fluid behaviors.
Our experiment is separated into two parts: testing the performance of fluid velocity
solution and exhibiting the fluid animation results. All the results are gathered on a PC
with 2.6 GHz Intel Core 2 Duo CPU, 2 GB memory, and GeForce 8800 GT graphics
card. We use CUDA 2.0 for the implementation. The results show that our approach
can produce desirable fluid behaviors while improving the efficiency significantly.

11.6.1 Performance Analysis

In this experiment, the grid size is 128×51×128. The number of fluid cells increases
while adding water source during this process. We sample 300 frames and record the
computational time of both CPU and GPU based version as shown in Fig. 11.4. From
the Fig. 11.4a, b, we can see that the CUDA-based version improves the efficiency
significantly. Figure 11.4c shows the speedup gained from the example. The speedup
of CUDA based version increases when the number of fluid cells grows. The maximal
speedup in the sampled frames is 33.0.

In general, the efficiency of both CPU and GPU based version may fluctuate
due to many factors. For example, when we use different scene-models and initial
conditions for fluid animation, the results are far from each other. In our experiments,
we find that different efficiency stems from two main reasons. First, the efficiency
varies according to the number of liquid cells during animation. Second, the Possion
equation is often ill-conditioned and requires more iteration steps in some frames.
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Fig. 11.5 A sequence of fluid animation result

11.6.2 Animation Results

Figure 11.5 shows a sequence of fluid animation results. In this example, the water is
poured into a tank whose size is 1× 1× 0.4. In order to exhibit as much fluid details
as possible, we put 25 cylinders in the tank. The height of each cylinder is 0.1 while
the radius equals to 0.05. The water source is positioned at (0.1, 0.175, 0.5) and the
source velocity is set to (−2.4,−2.0, 0). From Fig. 11.5, we can see the liquid surface
and water sprays apparently near the cylinders.

11.7 Discussion and Conclusions

We have developed a GPU-based two way coupling method for fluid animation in
this paper. The method solves for fluid motion with details of grid and sub-grid
scale efficiently. We use physically-based liquid animation model and solves for
fluid velocity field according to two-way coupling method. Since it is the most time-
consuming process, we also implement the two way coupling algorithm on GPU.
Experiments show that the proposed GPU based acceleration method can improve
the efficiency of multi-scale fluid animation significantly.

This paper only implements the most time-consuming step of fluid animation on
GPU. In fact, physically-based fluid animation method is a very complex model that
includes many equations and algorithms such as the Level Set equation, SPH model,
Fast Marching algorithm and Marching Cubes et al. So as for future work, we would
like to extend the above algorithms on GPU to further improve the efficiency. In
addition, optimizing the method presented in this paper according to the hardware
properties of GPU card is another meaningful work.
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Chapter 12
High Performance Implementation of Binomial
Option Pricing Using CUDA

Yechen Gui, Shenzhong Feng, Gaojin Wen, Guijuan Zhang,
Yanyi Wan and Tao Liu

Abstract Binomial tree model is often used for option pricing in the financial
market. According to this method, it is rather expensive to obtain high accurate
option price. Although existing methods running on CPU clusters have improved the
efficiency significantly, there is still a great gap between the real performance and
the desired. In this paper, we parallelize this model on CUDA to further improve
the efficiency. We optimize our method according to principles of memory hierarchy
and extend it to support multiple GPUs. Experiments on single Tesla C1060 GPU
chip show an average of 285× speedup compared to the result on single CPU node.
Furthermore, for the data size of 64 K, GPU performance has reached 315 Gflops,
which outperforms the earlier version on the Sun station by a factor of about 100×.
The maximum performance reached with 108 GPU nodes is 30 Tflops.

Keywords Binomial tree · Option pricing · CUDA · GPU

12.1 Introduction

Binomial tree model is a commonly used method for valuing options in the financial
market (Hull 2005). The model is efficient when the number of involved options
is small. In general, only a few milliseconds are needed for computing the price
of a single option on modern CPU. However, if the number of options grows, the
computation becomes very expensive. This issue often occurs when revaluing a large
number of real-time options with live data-feeds, or embedding pricing models into a
Monte-Carlo simulation. Therefore, improving the efficiency of binomial tree model
is crucial.
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Related work focuses on implementing the binomial tree model on CPU clusters.
Although they show hundreds times speedup, the overall efficiency is still unsatisfied
(Gerbessiotis 2004; Thulasiram 2002). For example, when computing a single option
with 32 K time steps, the algorithm proposed by Gerbessiotis (2004) only achieves
1.5 % of peak performance on a single node of Pentium cluster. This ratio degrades
to 0.8 % on 16 nodes. The method proposed by Zubair and Mukkamala (John and
Mohammad 2010; Mohammad 2008) achieved 1484 Mflops for 64 K time steps on
8 UltraSPARCIIIi processors by considering the memory hierarchy. Note that it is
not necessary to keep 64 k time steps since the binomial model has sustained good
convergence when the time step is larger than 1 k (Mehmet 2007). Also, the CPU
clusters are very expensive to build and it is inconvenient to optimize corresponding
methods.

Another group method adopts programmable GPUs to compute option price. For
example, GPU gemsIII shows how to implement Monte Carlo methods on Geforce
8800 (http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html). In Matthew and
Jike (2009), the authors proposed a GPU-based market value-at-risk estimation algo-
rithm. In addition, Mehmet (2007) and Qiwei and David (2009) also provided GPU-
based solution for binomial option pricing. However, the former method can only
process small-scale Europe options while the latter doesn’t optimize for high effi-
ciency.

In this paper, we propose an algorithm based on CUDA architecture for large-
scale real-time pricing. Our method outperformed the algorithm running on sun
station (John and Mohammad 2010) by a factor of about 100 and also outperformed
the algorithm in Qiwei and David (2009) by a factor of 4.

The rest of paper is organized as follows: Sect. 12.2 reviews the binomial model
for American option pricing; Sect. 12.3 discusses how to parallelize the model on
GPU and introduced some optimizations; Sect. 12.4 presents the results and analysis.
Finally, we give our conclusion in Sect. 12.5.

12.2 The Binomial Option Pricing Model

An option contract is a financial instrument that gives its holder the right to buy or sell
a financial asset at a specified price (which is referred to as strike price) on or before
the expiration date. Under certain simplifying assumptions, we can statistically model
the asset’s future price fluctuations and estimate the value of option using the asset’s
current price and its volatility by establishing a binomial tree. This tree model derives
the value of an option at time t = 0 (that is, now) by stepping “backward” from time
t = T in a discrete number of time steps N, where T is the expiration date (Fig. 12.2).

Without loss of generality, we consider in particular the pricing of an American
put option. We adopt the standard notations for describing the option, i.e. denoting
the current price of the underlying asset by S, its strike price by K, its expiration time
by T, and the volatility of the asset by v. In addition, let the interest rate be r, and the

http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html
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Fig. 12.1 Asset price fluctua-
tions in a three-step tree
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Fi,j=max((k – Si,j),0)
fi,j= max(p*VI+1,j+1+(1-p)*Vi+1,j)
Vi,j=max(Fi,j, fi,j)

Vi,j
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smallest time interval for the value-variation in the model be �t . The computation
process is described below:

1. Establish a binomial tree of length n = T/�t to trace the fluctuations of the
asset price S. We identify the jth node at time step i by the index (i, j) where
0 < j < i, 0 < i < n, and set step 0 as the root node. The asset price S(i, j) at each
node during iteration is given by Eq. (2.1), in which u and d indicate the fraction
by which this asset price can go up or down respectively during one time interval
�t . Figure 12.1 shows this process by a three-step tree.

Si, j = S0ui− j d j = S0ui−2 j 0 ≤ j ≤ i (2.1)
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2. Iteratively compute option prices Vi, j at time step i by using the value pricing at
time step i+1 by Eqs. (2.2)–(2.4). Note that Eqs. (2.3) and (2.4) are computed for
the consideration of early exercise while pricing an American option, in which
Fi, j is the option payoff at the current step.

fi, j = e−r�t [pVi+1, j+1 + (1− p)Vi+1, j ] (2.2)

Fi, j = max(k − Si, j , 0) (2.3)

Vi, j = max(Fi, j , fi, j ) (2.4)

Also, the pseudo probabilities p in Eq. (2.2) is given by Cox et al. (1979) as
Eq. (2.5).

u = eσ
√
�t

d = e−σ
√
�t (2.5)

p = e(r−q)�t − d

u − d

12.3 GPU Implementation Using CUDA

12.3.1 A Brief Description of GPU

The new generation of GPUs adopts the unified shader architecture CUDA and
has evolved into a highly multithreaded, many-core processors with tremendous
computational power.

Taking Telsa C1060 illustrated in Fig. 12.3 as an example. The GPU is composed
of 30 multiprocessor units (indicated by gray box) with 8 processors in each unit
(indicated by small orange boxes). Each multiprocessor unit can process parallel
groups of threads concurrently, called warps, and the whole device has a parallel
data cache memory of 16 KB size that can be shared within the multiprocessor unit.
All the processors can be driven by CUDA API (http://developer.nvidia.com/object/
cuda_3_2_toolkit_rc.html), by which a GPU kernel can be launched, and the grid of
a thread block and threads can be allocated.

12.3.2 GPU Implementation Using CUDA

Since GPU runs on Single-Instruction, Multiple-thread (SIMT) execution mode
(Nvidia 2009), and pricing for one option do not interfere with the pricing for other
options, we set our kernel grid as a two-dimension grid, in which each block will

http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html
http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html
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Fig. 12.3 GPU architecture, the thread processors is indicated in orange (http://developer.nvidia.
com/object/cuda_3_2_toolkit_rc.html)

process a single binomial tree and price for an option, while the number of thread
blocks is the same as that of options. That is, every thread has only to address two
data elements and then process the operation explained in Eq. (2.5) at each time step.

As accessing shared memory is around 300–400 times faster than accessing the
global memory (http://www.mcs.anl.gov/research/projects/mpi/) on a GPU chip, the
straightforward approach is to fit the whole tree into the shared memory and fit all
local variables into the register file. However, this approach is not efficient and valid
for two reasons:

1. The CUDA architecture introduced the term warps for a multiprocessor to man-
age and schedule the large amount of threads. A warp is a group of 32 threads
that run concurrently on GPU and get scheduled by a warp scheduler for execu-
tion. When one step function of accessing the same memory address is executed
between different warps, the order of threads scheduling might cause read-after-
write hazards as shown in Fig. 12.4, where data V(i,j) in the array which depends
on the valuation of V(i − 1, j − 1) in warps: k’ has been updated to V(i − 1, j)
by warps: k, leading the step function executed by thread: j − 1 in warps: k to
generate the wrong result.

2. The size of the shared memory on a GPU chip is only 16 KB and the maximum
dimension of one thread block is 512, loading all nodes at one time step into
the shared memory for reduction is impractical, especially when the binomial
tree is very large and other extra memory usage is needed. Meanwhile, overly
reliance on the extra shared memory can act as a constraint on GPU occupancy
(Matthew and Jike 2009) and might results in fewer active blocks shared by
different multiprocessors, which forces some multiprocessors to be idle during
thread synchronization and during device memory read/write.

http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html
http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html
http://www.mcs.anl.gov/research/projects/mpi/
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To address the first problem, we use double-buffering in the shared memory. We
introduce two indexes, pIn and pOut, to record the current process. They are initialized
to 1 and 0, respectively, and swap their values every round for later iterations.

For the second problem, we partition the whole tree into several sub-parts. It can
be seen from Fig. 12.5 that if we need to reduce k steps from D[0] to D[n − k] , an
extra of k elements from D[n − k] must be loaded in. Therefore, for all the nodes
residing in global memory, we could first load an sub-binomial tree of cache size
into the shared memory and then reduce them by k steps just as Fig. 12.6 shows,
then repeat this process for the next sub tree until all the nodes at the same step has
been reduced. Next we perform synchronization and put the results into the global
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Fig. 12.6 The reducing procedure of the whole tree

Fig. 12.7 Theretical multiproccessor warp occupancy of Telsa C1060 (Resource usage is indicated
by the gray triangle on the graph, which is 1024)

memory. We iteratively carry out the described procedure for the next k steps until
reaching D[0] at time step t = 0.
Further optimizations:

1. By using CUDA GPU Occupancy Calculator (http://developer.nvidia.com/object/
cuda_3_2_toolkit_rc.html), we can trace the GPU occupancy which is the the-
oretical ratio of active warps to the maximum number of warps supported on
a multiprocessor of the GPU. This ratio is determined by GPU resource usage
such as shared memory used per block and register per thread. Our final choice
and theoretical GPU Warp Occupancy is indicated in the Fig. 12.7. Besides, this

http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html
http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html
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calculator can also help to cover latency during global memory loads that are
followed by a__syncthreads() in one block.

2. Once the parameters u, d, p indicated by Eq. (2.4) have been computed on the
device, we load them into GPU constant memory for higher efficiency since
constant memory is cached and these variables need not be updated during the
whole computation.

12.3.3 Multi-GPU Implementation

Since GPU kernel must be launched through CPU, We use MPI (http://www.mcs.anl.
gov/research/projects/mpi/) to activate multi-CPU threads so that this approach could
be mapped onto multi-GPUs. To exploit the efficient utilization of GPU resources
on other nodes, we make three assumptions:

1. The amount of the options is proportional to the number of nodes, and when the
number of nodes is 108, the total amount of the option to be valued is 108* 16 K.

2. All request for option valuations are received simultaneously.
3. For every option, we price it from the expiration date to three months later with

the time interval 0.0027, which approximates one day.

12.4 Experimental Results

The performance results are summarized in Sects. 12.4.1 and 12.4.2, respectively.
We use the performance of the algorithm on CPU as the comparison benchmark.

12.4.1 GPU Implementation on Single Node

Our GPU implementation on singe node is run on a Tesla C1060 chip with 16 KB
shared memory. The implementation on CPU runs on Intel 2.2 GHz Core2Due
processor. The overall performance is shown in Table 12.1, where option/second
represent the number of option priced per second and the speedup is the ratio com-
puted by CPU_time divided by GPU time. In particular, Fig. 12.8 indicates that the
GPU implementation offers an 143–370 times acceleration as the number of option
increases. Not surprisingly, the GPU performance roars up from 122.5 Gflops with
1024 options to 315.10 Gflops with 64 K options since more active blocks will be
activated and computation became more intensive. However, when Peak (%) is taken
into consideration, we find that even when the number of options has reached up as
65535, the GPU peak performance has only got up to 33.8 %, which might due to
the frequent data transfer between shared memory and global memory every k steps

http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
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Table 12.1 Performance on Tesla C1060(options/second is options being priced in every second,
the total number of time steps is 1024 )

Options 1024 2048 4096 8192 16384 32768 65535

CPU_time (s) 25.20 50.53 101.10 202.2 404.3 805.88 1615.9
GPU_time (s) 0.18 0.24 0.37 0.64 1.17 2.24 4.38
Speed up 143.8 211.7 271.70 316.10 345.3 360.6 369.2
Options/second 5848 8580 11004 12808 13958 14621 14980
Gflops 122.53 180.43 234.43 269.36 293.5 307.5 315.10
Peak (%) 13.2 19.3 24.8 28.9 31.5 33.0 33.8
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Fig. 12.8 Speedup ratio obtained by GPU

mentioned before. In general, 8580 options/second for the data size of 2 K has already
satisfied the requirements of real-time business processing engine (Fig. 12.9).

We have also conducted experiments to see the impact of the size of shared
memory on the performance. The result is shown in Table 12.2, where the total time
step was set as 4 k to ensure that GPU performance is of high sensibility to the
communication delay. We have observed a maximum performance of the theoretical
peak for the shared memory size of about 1024, which is about 38 % no matter how
many time steps (indicated as step_iter in the table) are reduced once. This satisfies
the result simulated by the GPU Occupancy Calculator and as explained before,
proper usage of shared memory might help overlapping between data load latency
and time cost by synchronizing inside the thread block.

Furthermore, since binomial model is a numerical approximation method, we
investigate its precision as well as the variation of GPU performance with different
number of steps. The result is shown in Table 12.3. In this table, we find that as
the step number increases, GPU performance also increases substantially because of
more parallelization. At the same time, precision has also been improved. In reality,
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Table 12.2 The influence of shared_data_size upon the peak performance (%) of GPU (the amount
of options is 64 k, the total time steps is 4 k, step_iter is the time steps reduced in the cache each
time)

Shared_data_size (bytes) 256 (%) 512 (%) 1024 (%) 2048 (%)

Step_iter=8 33.5 35.8 36.4 33.2
Step_iter=16 30.3 35.2 37.3 35
Step_iter=32 21.1 31.4 36.1 35.3

Table 12.3 The influence of the number of time steps upon the GPU performance and the accuracy
(the cache_data size is 1 k, the total options are 64 k)

Time_steps 128 256 512 1024 2048 4096

Gflops 109.51 199.04 279.76 321.56 340.06 348.20
Peak (%) 11.7 21.3 30 34.4 36.4 37.3
Precision (10−6) 2.91 5.93 11.9 18.1 18.2 18.2

it is very rare for step number to be greater than 1024, and there is a trade-off between
the time cost and the precision. Note that precision is computed compared with CPU
like follows, where vi is the price computed on GPU, ri is the price computed on
CPU:

MeanError =
n

∑

i=1

|vi − ri | /ri
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Table 12.4 Multi-GPUs
performance for American
option pricing

GPU cards Performance (Gflops)

4 1425.48
8 2835.30

16 5617.84
32 11023.93
60 17738.67
84 24308.71
96 27793.77

108 30930.97

12.4.2 Multi-GPU Implementation

The overall result of multi-GPU implementation is shown in Table12.4. As data size
increases, GPU performance has raised from 1425.48 Gflops on 4 Tesla C1060 to
30930.97 Gflops on 108 Tesla C1060s, which demonstrates a fairly good scalability
on multi-GPUs.

12.5 Conclusion

This paper describes a parallel binomial tree model for valuing American options
based on GPUs. The key features include using GPU memory hierarchy and binomial
tree partitioning. The implementation on single GPU runs 300 times faster than its
corresponding result running on CPU for the 8 k data size and the GPU performance
has reached up to 315 Gflops for 64 k data size. Besides, it also presents a good
scalability when it is mapped on multi-GPUs.

For the future work, we want study the GPU implementations with higher uti-
lization ratio of GPU resources, as compared with the current value of around 38 %.
Task Scheduling can be studied to enhance performance. In addition, we can extend
the binomial tree models to trinomial tree models.
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Chapter 13
Research of Acceleration MS-Alignment
Identifying Post-Translational Modifications
on GPU

Zhai Yantang, Tu Qiang, Lang Xianyu, Lu Zhonghua and Chi Xuebin

Abstract MS-Alignment is an unrestrictive post-translational modification (PTM)
search algorithm with an advantage of searching for all types of PTMs at once in a
blind mode. However, it is time-consuming, and thus it could not well meet the chal-
lenge of large-scale protein database and spectra. We use Graphic Processor Unit
(GPU) to accelerate MS-Alignment for reducing identification time to meet time
requirement. The work mainly includes two parts. (1) The step of Database search
and Candidate generation (DC) consumes most of the time in MS-Alignment. We
propose an algorithm of DC on GPU based on CUDA (DCGPU). The data paral-
lelism way is partitioning protein sequences. We adopt several methods to optimize
DCGPU implementation. (2) For further acceleration, we propose an algorithm of
MS-Alignment on GPU cluster based on MPI and CUDA (MC_MS-A). The com-
parison experiments show that the average speedup ratio could be above 26 in the
model of at most one modification and above 41 in the model of at most two modifi-
cations. The experimental results show that MC_MS-A on GPU Cluster could reduce
the time of identifying 31173 spectra from about 2.853 months predicted to 0.606 h.
Accelerating MS-Alignment on GPU is applicable for large-scale data requiring for
high-speed processing.
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13.1 Introduction

Reliable identification of post-translational modifications (PTMs) is key to under-
standing biological functions of proteins (Dekel et al. 2005; Seungjin et al. 2008;
Stephen et al. 2005). Most MS/MS database search algorithms perform a restrictive
search that can only take into account a few types of PTMs and ignore all others.
Dekel Tsur etc. proposed an unrestrictive PTM search algorithm MS-Alignment, one
advantage of which is its searching for all types of PTMs at once in a blind mode
(Dekel et al. 2005; Seungjin et al. 2008). However, it has high time complexity and
low identification speed, and thus it couldn’t meet the demand of processing even
large-scale protein database and spectra in a short time.

The development of high performance computing (HPC) makes a significant con-
tribution to accelerating scientific computing. The programmable Graphic Processor
Unit (GPU) has evolved into a highly parallel, multithreaded, many-core proces-
sor with tremendous computational horsepower and very high memory bandwidth
(NVIDIA 2009). GPU is especially well-suited to address problems that can be
expressed as data-parallel computations with high arithmetic intensity (NVIDIA
2009). GPU well speeds up many applications that process large datasets in the
field of image rendering. With enhancing programmability on GPU, it is applied to
general-purpose computing breaking through the field of image rendering (John et al.
2007). With the development of GPU, general-purpose computing on GPU evolves
as a studying focus in recent years (John et al. 2007; Wu 2004). That GPU-based
HPC is applied to computational biology also becomes a development trend and
many GPU-based algorithms and softwares in bioinformatics come into being (Liu
et al. 2009; Lukasz and Witold 2009; Michael et al. 2007; Svetlin and Giorgio 2008).

NVIDIA introduces Compute Unified Device Architecture (CUDA) which is a
general-purpose parallel computing architecture with a new parallel programming
model and instruction set architecture. CUDA leverages the parallel compute engine
in NVIDIA GPUs to solve many complex computational problems in a more effi-
cient way than on a CPU (NVIDIA 2009). With the CUDA programming model that
focuses on data parallelism, one can achieve both high-performance and high-
reliability in their applications (David and Hwu 2010).

13.2 Research of MS-Alignment Algorithm

13.2.1 Description of MS-Alignment

Modified Protein Identification Problem (Dekel et al. 2005)
Input: A database of proteins DB, an experimental spectrum S, and a parameter k
capping the number of modifications.
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Output: A modified peptide with the best match Match(S, PB) to the spectrum S
that is at most k modifications away from a peptide P that appears in the database
(namely, P is a substring of some protein in the database).

MS-Alignment mainly has the following steps: Preprocessing, Tag Generation,
Database Search and Candidate Generation (DC), P-value Computation, of which DC
is the key step. Computing match score of any candidate to the spectrum S (hereinafter
“computing match score”) is a significant part of DC. MS-Alignment includes two
program modules: the module with k equaling one (hereinafter “Mod = 1”) and the
module with k equaling two (hereinafter “Mod = 2”), and the methods of the two
modules are different.

1. The Method of Computing Match Score in Mod = 1 (Zhai 2010; Zhai et al.
2010b)

The match score Match(S, Pi,i ′) of candidate Pi,i ′ = pi . . . p̂ j . . . pi ′ to S consists
of three parts: score of a prefix, score of a PTM and score of a suffix (see Eq. 13.1).

Match(S, Pi, i ′) =
PrefixScore(i, j − 1)+ PTMScore(�, p j )+ SuffixScore( j + 1, i ′)

(13.1)

where i ≤ j ≤ i ′,

PrefixScore(i, j − 1) =
{

∑ j−1
l=i MassScore(mass(pi . . . pl)) if j > i

0 if j = i

SuffixScore( j + 1, i ′) =
{

∑i ′
l= j+1 MassScore(PM(S)−mass(pl . . . pi

′)) if j < i ′
0 if j = i ′

PM(S) is the mass of the spectrum, which is equal to the mass of the peptide that
generated the spectrum. PTMScore(�, p j ) ≤0 is a penalty for having a modification
� on the amino acid p j . MassScore (v) is a scoring function for every mass v.

2. The Method of Computing Match Score in Mod = 2 (Zhai 2010; Zhai et al.
2010a,b).

A database peptide P = p1 . . . pn is a sequence of amino acids and F = f1 . . . fm

is the set of spectral peaks. Define a product P⊗F as pn× fm two-dimensional matrix
D, and define directed graphs with vertices corresponding to elements in the matrix
and edges corresponding to pairs of vertices (i, j) and (i ′, j ′)with i ≤ i ′ and j ≤ j ′.
The score of a vertex is the score of the path ending with this vertex. A vertex (i, j) to
be scored will be directed by the vertex (i prev, jprev) having be scored with an edge
which has the top score. A peptide can be formed by the sequence of amino acids
corresponding to a path in the matrix as a prefix and the following sequence of amino
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acids as a suffix, whose match score is the sum of scores of the path, the suffix and
PTM. Peptides whose scores are greater than a threshold are marked as candidates.
Equation 13.2 illustrates match score of peptide Pi ′, j = pi

′ . . . p j (i ′ ≤ i ≤ j) to a
spectrum S.

Match(S, Pi ′, j ) =
D(pi ′ , fk)+ SuffixScore(pi+1, p j )+ PTMScore(�, pi+1)

(13.2)

where pi ∈ P and fk ∈ F .
MS-Alignment computed elements in D by row using dynamic programming.

The recursion formula is illustrated in Eq. 13.3.

D(pi , fk) = MassScore(mass( fk))+max{
StartScore(pi );
max{D(pi−1, fb)+ score(e)|

e ∈ {edges that end with fk and whose masses equal mass(pi )},
fb is the starting point of e};

max{D(pi−2, fb)+MassScore(1/2mass(e))+ score(e)|
e ∈ {edges that end with fk and whose masses equal mass(pi−1 pi )},
fb is the starting point of e};

max{D(pi−3, fb)+
MassScore(1/3mass(e))+MassScore(2/3mass(e))+ score(e)|
e ∈ {edges that end with fk and whose masses equal mass(pi−2 pi−1 pi )},
fb is the starting point of e};

max{D(pi ′ , f0)+ PrefixScore(pi ′ , pi )|0 < i ′ ≤ i};
max{D(pi ′ , f0)+ PrefixScore(pi ′ , pi )+ PTMScore(�, pi )|0 < i ′ ≤ i};
}

(13.3)

13.2.2 Performance Analysis of MS-Alignment

Let Ns be the number of spectra, let Np be the number of peptides of protein database,
let m p be the number of amino acids of a peptide, let ms be the number of spectral
peaks, let L be the length of a candidate and let Md be the number of PTM types
at an amino acid. We conclude that the average time complexity of Mod = 1 is
O(Ns · Np · m p · L · Md) and the average time complexity of Mod = 2 is O(Ns ·
Np · m p · ms · L · Md) (Zhai 2010; Zhai et al. 2010a,b).

The parent mass of a spectrum is an important factor of convergence, which L
is closely related to. In general, the larger L the higher the parent mass whereas
the smaller L the lower the parent mass. Computation time of MS-Alignment is
proportional to the number of spectra, the size of database, and the parent mass of a
spectrum. That of MS-Alignment(Mod = 2) is proportional to the number of spectral
peaks additionally (Zhai 2010; Zhai et al. 2010a,b)
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Fig. 13.1 a The identification time of MS-Alignment(Mod = 1) by the number of spectra. b The
identification time of MS-Alignment(Mod = 2) by the number of spectra

We use the following computing environment CE1: CPU: Intel Xeon E5410
2.33 GHz, Memory: 8 GB, moreover, we use the following MS/MS and protein data-
bases.

• MS/MS: HISTONE2H_1D provided by PhD Sheng Quanhu in Shanghai Institutes
for Biological Sciences (SIBS) of Chinese Academy of Sciences (CAS).
• Protein databases: ipi.MOUSE.v3.29.REVERSED and Yeast_19mix_uni.

REVERSED are provided by Sheng Quanhu; ipi.ARATH.v3.51, ipi.HUMAN.
v3.53 and uniprot_sprot are downloaded at European Molecular Biology
Laboratory-European Bioinformatics Institute (EMBL-EBI).

We get the computation time of MS-Alignment by inputting different number of
spectra and different databases, and we get statistics by computing the average of N
results (see Eq. 13.4).

T = 1

N

N
∑

i=1

ti (13.4)

Figure 13.1a, b respectively illustrate the computation time of MS-Alignment in
Mod = 1 and Mod = 2 in CE1 (Zhai 2010; Zhai et al. 2010b). The average parent
mass of the spectra used to test Mod = 1 is 1125.826 Da and that of the spectra used
to test Mod = 2 is 1130.808 Da. According to the growth trend in the above figures,
we forecast the computation time of MS-Alignment identifying another 31173 mass
spectra whose average parent mass is 1409.374 Da (see Table 13.1) (Zhai et al.
2010b). It can be concluded that MS-Alignment is time-consuming and it could not
well meet the challenge of large-scale data.

Using the same statistic method as Eq. 13.4 we get that the computation time of
the step of DC accounts for more than 99 % of the total time of MS-Alignment.
Therefore, we could improve the cost performance of MS-Alignment by reducing
the time of DC.



220 Z. Yantang et al.

Table 13.1 The predicted computation time of MS-Alignment identifying 31173 mass spectra

Algorithm Protein database Predicted time

MS-Alignment(Mod = 1)) ipi.MOUSE.v3.29.REVERSED 26.074 days
uniprot_sprot 2.853 months

MS-Alignment(Mod = 2) ipi.MOUSE.v3.29.REVERSED 2.370 years
uniprot_sprot 9.074 years

13.3 Research and Implementation of DCGPU Algorithm

13.3.1 DCGPU Algorithm Design

GPU is only co-processor not central processing unit now. Explicitly transferring
data across the PCI Express bus between host memory and device memory similar to
the “ping-pong” operation is most frequently used, although zero-copy is available.

Referring to InsPecT (Stephen et al. 2005) implementing the MS-Alignment
algorithm, we propose the DCGPU (DC on GPU based on CUDA) algorithm imple-
menting the step of DC on single GPU. Data partition method is as follows:

• Denote the protein database as a single sequence Q.
• Partition Q into equal-length sequences (QG) to serially compute on GPU, since

Qis too long to compute on GPU in one time.
• Partition QG into equal-length sequences (QB) in blocks.
• Partition QB into shorter sequences in threads and share some amino acids between

threads.

DCGPU includes two different algorithms: DCGPUM1 (DCGPU for Mod = 1)
and DCGPUM2 (DCGPU for Mod = 2) since Mod = 1 and Mod = 2 are different.
The following describes them:
1. DCGPUM1 Algorithm (Zhai 2010; Zhai et al. 2010b)

Let BS be the number of threads per block and let GS be the number of blocks
per grid. The length of a sequence computed in a thread is set to 32 based on the
statistics in (Ari 2008; Sheng et al. 2000) and features of CUDA programming.

• Host Site:

(1) Initialize;
(2) Add 31 asterisks in front of Q (asterisk denotes separator in protein database,

whose mass is positive infinite); set ReadP which is read pointer to Q to zero;
(3) Transfer GS*BS+32 length of sequence begging with ReadP from host memory

to device memory;
(4) Call GPU kernels to compute and then transfer candidates from device memory

to host memory;
(5) Update read pointer: ReadP+ =GS*BS; if ReadP isn’t larger than the length of

Q, loop back to (3), otherwise go on;
(6) Get and output best matches; free resources and finish.
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• GPU Site:

(1) The first kernel kernel1 computes mass and score of every prefix of every peptide
in Q. One-dimensional block and one-dimensional thread are specified. Let tx
be threadIdx.x that refers to the x-index of a thread and let bx be blockIdx.x
that refers to the x-index of a block. For simplicity, we will refer to a thread
as Threadt x and a block as Blockbx since y-index is zero. Every block loads
BS + 30 length of sequence from global memory to shared memory. Blockbx
reads the sequence from bx*BS to (bx + 1)*BS + 29. Therefore, a grid needs
GS*BS + 30 length of sequence from global memory. Using Eq. 13.5, a thread
computes mass and score of every prefix Ppre f i x of peptide P = pi . . . pi+30
begging with amino acid pi in Q, and Ppre f i x also begins with pi . Store results
to global memory.

{

PrefixMass(pi , p j ) = PrefixMass(pi , p j−1)+mass(p j )

PrefixScore(pi , p j ) = PrefixScore(pi , p j−1)+MassScore(PrefixMass(pi , p j ))

(13.5)

(2) The second kernel kernel2 computes mass of every suffix of every peptide in Q
and computes match score of peptides to spectrum S. One-dimensional block
and one-dimensional thread is specified as well. Every block load BS+31 length
of sequence from global memory to shared memory. Blockbx reads the sequence
from bx*BS to (bx + 1)*BS + 30. Hence, a grid needs GS*BS + 31 length
of sequence from global memory. Using Eq. 13.6, a thread computes mass and
score of every suffix Psuffix of peptide P = p j ′−31 . . . p j ′ ending with amino acid
p j ′ , and Psuffix also ends with p j ′ .

{

SuffixMass(pi ′ , p j ′) = SuffixMass(pi ′+1, p j ′)−mass(pi ′ )
SuffixScore(pi ′ , p j ′) = SuffixScore(pi ′+1, p j ′)+MassScore(SuffixMass(pi ′ , p j ′))

(13.6)

Then we can get match score of a peptide to S by summing previous prefix
score, PTM score and suffix score (see Eq. 13.1). Store candidates and matches
to global memory.

2. DCGPUM2 Algorithm (Zhai 2010; Zhai et al. 2010a,b)

• Method in host site is similar to that of DCGPUM1.
• GPU Site:

(1) The first kernel kernel1 computes mass and score of every prefix of every peptide
in Q, which is similar to that of DCGPUM1.

(2) The second kernel kernel2 computes mass and score of every suffix of every
peptide in Q, which is similar to that of DCGPUM1. Every block loads BS+30
length of sequence from global memory to shared memory. Blockbx reads the
sequence from bx*BS to (bx + 1)*BS + 29. Therefore, a grid needs GS*BS+30
length of sequence. Every thread computes mass and score of every suffix Psuffix

of peptide P = p j ′−30 . . . p j ′ ending with amino acid p j ′ using Eq. 13.6, and
Psuffix also ends with p j ′ . Store results to global memory.



222 Z. Yantang et al.

(3) The third kernel kernel3 fills D using Eq. 13.3. D could be taken as a two-
dimensional table, where top left coordinates are smaller than lower right
coordinates. MS-Alignment memorizes the solutions to sub problems in D and
fills it by rows like other dynamic programming algorithms. MS-Alignment also
uses a “two-dimensional” table PT to memorize paths. Rows in D correspond
to amino acids in a sequence while columns correspond to peaks of a spectrum.
However, the data access pattern to fulfill global memory coalescing requirement
is not natural. Traversing one thread per column is needed and the data accessed
by threads in a half-warp need to be adjacent to one another in the horizon-
tal direction, not vertical (Sain-Zee et al. 2008). Therefore, D is transposed in
global memory, where rows correspond to peaks of a spectrum while columns
correspond to amino acids in a sequence. While filling a column, to compute an
element, a thread needs masses and scores of prefixes computed in kernel1 and
some top left elements in D. The element has data dependency on those in the
top left of D. Thus, data dependency not only occurs within a block but also
occurs among different blocks. Global barrier synchronization is needed after an
element is computed. D and PT are all in global memory.

(4) The fourth kernel kernel4 traverses D, computes match scores and gets candi-
dates. A thread traverses in a column and computes match score of a peptide
to S using Eq. 13.2. While an element is traversed, a PTM at this amino acid
corresponding to the element is taken into account and masses and scores of
suffixes computed in kernel2are needed. Store candidates and matches to global
memory.

13.3.2 Optimization Implementation of DCGPU

Hardworking optimization could give performance boost to CUDA programs and
there are multiple methods for CUDA programming optimization. However, some
trade off is needed in optimization.

Memory bandwidth may be bottleneck of CUDA program performance. The
effective bandwidth can vary by an order of magnitude depending on access pat-
tern for each type of memory (NVIDIA 2009).

We use multiple methods to optimize implementation of DCGPU as follows (Zhai
2010; Zhai et al. 2010a,b):
1. Coalesced global memory access

• Amino acids of a sequence are orderly stored in global memory in the type of char
which accounts for one byte. Threadt x access the tx-th amino acid.
• Using the type of struct to store mass and score of a prefix/suffix, and use the

alignment specifier __align__(8) for the compiler to enforce the size and alignment
requirements. Thus, mass and score are stored in an 8-byte word in global memory
which can be read in a single instruction. Mass and score can also be stored in the
type of the built-in vector type int2.
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• DCGPUM2 needs to use address value which accounts for 64 bits in 64-bit com-
puter. We use the built-in vector type uint2 to store the right 32 bits and the left
32 bits.
• If one-dimensional arrays in global memory are taken as two-dimensional tables,

one thread traverses per column and threads access data adjacent to one another
in the horizontal direction.

2. Using page-locked host memory
One of benefits to use page-locked host memory is that bandwidth between host

memory and device memory is higher. Although the bandwidth is even higher if in
addition host memory is allocated as write-combining, reading from write-combining
memory is prohibitively slow (NVIDIA 2009). Therefore, we use page-locked host
memory not write-combining host memory.

We use it to store peptide sequences, candidates and other data, which account
for about 25 MB in total. The codes using page-locked host memory are as follows:

cudaMallocHost( (void **)&h_BufferChar, size_BufferChar );
cudaFreeHost( h_BufferChar );
The performance of using page-locked host memory in DCGPUM2 has about

32.37 % improvement. While not using it, the bandwidth from host memory to device
memory is 1.63 GB/s and the bandwidth from device memory to host memory is
1.94 GB/s. However, while using it, the two bandwidths respectively increase to 2.47
and 5.11 GB/s.

But page-locked host memory is a scarce resource. In addition, by reducing the
amount of physical memory available to the operating system for paging, allocat-
ing too much page-locked host memory will reduce overall system performance
(NVIDIA 2009).
3. Using texture memory

Some read-only tables are searched in kernels, which texture memory is fit for.
In DCGPUM2, kernels randomly access the tables of edges in D. These tables have
the form of a sparse matrix and then are stored in texture in the representation of
Compressed Row Storage. Masses of amino acids are also stored in tow-dimensional
texture memory bound to CUDA array supporting the clamp addressing mode. The
codes using texture memory are as follows:

// storing edges in D
// texture reference declaration
texture<BackEdge_Two,1,cudaReadModeElementType>
texRef_BackEdge_Buffer_;
// bind texture to global memory
cudaMalloc((void **)&d_BackEdge_Buffer_, size );
cudaMemcpy(d_BackEdge_Buffer_,h_BackEdge_Buffer_,size,
cudaMemcpyHostToDevice);
cudaBindTexture(0, texRef_BackEdge_Buffer_, d_BackEdge_Buffer_);
// fetch texture element
BackEdge_Two edge = tex1Dfetch(texRef_BackEdge_Buffer_, edgeIndex);
// unbind texture



224 Z. Yantang et al.

cudaUnbindTexture(texRef_BackEdge_Buffer_);
cudaFree(d_BackEdge_Buffer_);
d_BackEdge_Buffer_ = NULL;
// storing masses of amino acids
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0,

cudaChannelFormatKindSigned);
cudaMallocArray(&cuArray_AminoMass, &channelDesc, width, height);
cudaMemcpyToArray(cuArray_AminoMass, 0, 0, PeptideMass+64, sizeof(int)

*27, cudaMemcpyHostToDevice);
texRef_AminoMass.addressMode[0] = cudaAddressModeClamp;
cudaBindTextureToArray(texRef_AminoMass, cuArray_AminoMass, channel

Desc);
The performance of using texture memory in DCGPUM2 has about 30.94 %

improvement. The disadvantages of using it are: it does not support triple types
(such as float3) and user-defined struct, and the components of texture elements
should equal those of return values of texture references (Zhang 2009).
4. Using shared memory and avoiding bank conflicts

Some data in global memory is shared among threads in the kernels of DCGPU.
We use shared memory to load and store the data shared among threads, thus avoiding
frequently global memory access. The types in shared memory account for four bytes
and thread ID corresponds to access index, which can avoid bank conflicts. The
performance of using texture memory in DCGPUM2 has about 4.9 % improvement.
However, shared memory is a scarce resource. If there are not enough registers or
shared memory available per multiprocessor to process at least one block, the kernel
will fail to launch. Therefore, shared memory should be used at the key point.
5. Reducing data transfer from device memory to host memory

Optimization should minimize data transfer between host memory and device
memory. DCGPUM1 transfers candidates from global memory to host memory and
transferring all candidates is inadvisable. Instead, to decrease data transfer, DCGPU
adopts the way like reduction which compares candidates of two threads and keeps
the one having higher match score. In addition, a thread compares to the thread
beyond a certain stride instead of the adjacent thread, which is for bank conflict-free
in shared memory. The comparing codes are as follows:

if(tx<256 && PeptideScore[tx]<PeptideScore[index = tx+256])
{ … }
__syncthreads();
if(tx<128 && PeptideScore[tx]<PeptideScore[index = tx+128])
{ … }
__syncthreads();
…
if(tx<8 && PeptideScore[tx]<PeptideScore[index = tx+64])
{ … }
__syncthreads();
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6. Using kernel launch for global barrier synchronization
The kernel3 of DCGPUM2 has data dependency and needs global barrier synchro-

nization. CUDA has three barrier functions: __syncthreads(), __threadfence_block()
and __threadfence(). The first two can be used to coordinate communication between
the threads of the same block while the third one can be used to coordinate com-
munication between all threads of a grid. Kernel launch can also be used for global
barrier. These two ways can all be used in DCGPUM2:

(1) Loop in the kernel and use __threadfence() at the end of the loop as follows:

__global__ void d_SeekMatch2PTM_k_FillDTable(…)
{

for(NodeIndex=0; NodeIndex<NodeCount; NodeIndex++)
{
DTable[CellIndex] = final_DTable;
__threadfence();
}

}

(2) Loop outside the kernel and use kernel launch as follows:

for(NodeIndex=0; NodeIndex<NodeCount; NodeIndex++)
{

kernel<<<GRID_SIZE, BLOCK_SIZE>>> (…);
}
The performance of the latter is 8.46 % better than that of the former.

7. Reducing the use of control flow instructions
Any flow control instruction (if, switch, do, for, while) can significantly impact

the effective instruction throughput by causing threads of the same warp to diverge,
that is, to follow different execution paths (NVIDIA 2009). For complete search,
any sequence of not longer than 32 is computed in DCGPU. The sequences got
by the threads from 1 to 31 aren’t longer than 32 initially: the sequence p1 ending
with p1 is assigned to thread1, the sequence p1 p2 ending with p2 is assigned to
thread2 …and the sequence p1 p2 . . . p30 p31 ending with p31 is assigned to thread31.
It will make threads load unbalance and needs control instruction such as if to
diverge different conditions. Therefore, we add 31 asterisks in front of Q to form the
sequence p′1 p′2 . . . p′30 p′31. Then, the sequence p′1 p′2 . . . p′30 p′31 p1 is assigned
to thread1, the sequence p′2 p′3 . . . p′31 p1 p2 is assigned to thread2 . . . and the
sequence p′31 p1 . . . p30 p31 is assigned to thread31. Similarly, we append asterisks
after Q if the final sequence is not long enough.
8. Merging kernels

DCGPUM1 could have three kernels: kernel1 computes masses and scores of pre-
fixes, kernel2 computes masses and scores of suffixes and kernel3 computes match
scores and generates candidates. If so, masses and scores of suffixes computed by
kernel2 should be stored in global memory and then they are read from global mem-
ory by kernel3. Data-reusing is bad, global memory is needed to transfer data and
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kernel launch causing synchronization doesn’t facilitate thread concurrent execution.
Therefore, we merge the latter two kernels to one kernel kernel2.

13.4 Research of MC_MS-A Algorithm

Two kinds of data can be partitioned in MS-Alignment: spectrum partition is the way
of coarse-grained data parallelism while sequence partition is the way of fine-grained
data parallelism. We will further accelerate MS-Alignment by spectrum partition on
GPU cluster and sequence partition on GPU.

P_InsPecT parallels MS-Alignment using MPI on CPU cluster (Tu 2009). Based
on it and DCGPU algorithm, we propose the MC_MS-A (MS-Alignment on GPU
cluster based on MPI and CUDA) algorithm implementing MS-Alignment on GPU
cluster. The algorithm description is as follows (Zhai 2010; Zhai et al. 2010b):

1. Spectra are identified independently, thus are partitioned in MPI processes to
identify, which calls DCGPU to compute the step of DC. Master-slave model
is adopted. The master process mainly scatters and gathers data while slave
processes mainly compute cooperating with GPUs.

2. The main flow of a slave process:

(1) Preprocess data.
(2) Get an available GPU:

(a) Split MPI_COMM_WORLD into sub communicators by host names.
(b) Compute the number of available GPUs which are NVIDIA GPUs with not

less than compute capability 1.3 (The GPUs showing compute
capability 9999.9999 don’t support CUDA and thus are kicked out).

(c) Get an available GPU by sub process ID in the sub communicator.
A process gets only one GPU. For the sake of simplicity, we let the process
having top ID be the master process. If a process ID is larger than the total
number of available GPUs, it couldn’t acquire an available GPU and couldn’t
compute using GPU. We will refer to a process acquiring an available GPU
as computing process.

(3) Computing process identifies the spectrum received from the master process.
If the spectrum index received from the master process is larger than the total
number of spectra, the computing process exits.

(4) Computing process sends results to the master process. Loop to (3).

3. The main flow of the master process:

(1) Preprocess data; sort spectra indices by mass in descending order.
(2) Send a spectrum index to every computing process.
(3) Receive results from a computing process and then send a spectrum index to the

computing process.
(4) Loop to (3) if spectra are not computed completely, otherwise go on.
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(5) Compute P-values of spectra.
(6) Output the final results and then exit.

13.5 Performance Analysis of GPU Accelerated Algorithm

13.5.1 Performance of DCGPU Algorithm

We refer to MS-Alignment algorithm on single GPU as CUDA_MS-A (MS-Alig-
nment based on CUDA). We test CUDA_MS-A using the experimental data and
statistic method in 2.2 and using the following computing environment: CPU: Intel
Xeon E5410 2.33 GHz, Memory: 8 GB, GPU: NVIDIA Tesla C1060 1.44 GHz and
CUDA Compiler: nvcc 2.3.

We get the speedup ratio of the step of DC in Mod = 1 on single GPU versus
single CPU and the speedup ratio of the whole flow of MS-Alignment in Mod = 1
on single GPU versus single CPU (see Fig. 13.2) (Zhai 2010; Zhai et al. 2010b).
Inputting different number of spectra or different scale database, the speedup ratios
of Mod = 1 are different. The speedup ratio of the step of DC is a little larger
than that of the whole flow. While inputting more spectra and larger database, the
performance improvement is apparent. The speedup ratio of DC is above 28 and that
of the whole flow is above 26, and the identifying power in Mod = 1 of a Tesla
C1060 GPU can be equivalent to that of 26 2.33 GHz CPUs.

We also get the two kinds of speedup ratios in Mod = 2, which are respectively
illustrated in Fig. 13.3 (Zhai 2010; Zhai et al. 2010a,b). Inputting different number
of spectra or different scale database, the two speedup ratios of Mod = 2 are also
different and the former speedup ratio is larger than the latter speedup ratio. The
speedup ratios are more than 30 and they are above 41 while larger database is
inputted. The identifying power in Mod = 2 of a Tesla C1060 GPU can be equivalent
to that of 41 2.33 GHz CPUs.

The average time complexity of CUDA_MS-A is the same as that of MS-
Alignment. Data parallelism is primary cause of performance improvement of
CUDA_MS-A.

The computation time of DC is directly proportional to the number of spectra
and the computation time of DCGPU is also directly proportional to the number of
spectra. Thus, the ratio of the former time to the latter time—the speedup ratio of the
step of DC on single GPU versus single CPU—isn’t directly related by the number
of spectra. Similarly, the speedup ratio of the whole flow on single GPU versus single
CPU isn’t directly related by the number of spectra.

Similarly, the two kinds of speedup ratios are not directly influenced by database
size.

We predict the time of CUDA_MS-A identifying 31173 spectra (see Table 13.2)
(Zhai 2010).
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Fig. 13.2 a The average speedup ratio of the step of Database search and Candidate generation
in Mod = 1 on single GPU versus single CPU. b The average speedup ratio of the whole flow of
MS-Alignment in Mod = 1 on single GPU versus single CPU
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Fig. 13.3 a The average speedup ratio of the step of Database search and Candidate generation
in Mod = 2 on single GPU versus single CPU. b The average speedup ratio of the whole flow of
MS-Alignment in Mod = 2 on single GPU versus single CPU

Table 13.2 The predicted computation time of CUDA_MS-A identifying 31173 mass spectra

Algorithm Protein database Predicted time

CUDA_MS-A(Mod = 1) ipi.MOUSE.v3.29.REVERSED 0.998 days
uniprot_sprot 3.161 days

CUDA_MS-A(Mod = 2) ipi.MOUSE.v3.29.REVERSED 0.810 months
uniprot_sprot 2.726 months

13.5.2 Performance of MC_MS-A

We test the performance of MC_MS-A on the GPU Cluster of Supercomputing
Center of CAS (SCCAS). The hardware collocation of computing nodes of the GPU
Cluster is illustrated in Table 13.3. Every node connects with each other by 4×DDR
InfiniBand and Gigabit Ethernet.

The time of MC_MS-A identifying 31173 spectra in the GPU Cluster is illus-
trated in Table 13.4 and the change trend by the number of GPUs is illustrated in
Fig. 13.4 (Zhai 2010; Zhai et al. 2010b). It can be seen that the identification time is
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Fig. 13.4 a The time of MC_MS-A(Mod = 1) identifying the 31173 mass spectra on the GPU
Cluster by the number of GPUs. b The time of MC_MS-A(Mod = 2) identifying the 31173 mass
spectra on the GPU Cluster by the number of GPUs

Table 13.3 The hardware collocation of computing nodes of the GPU Cluster of SCCAS

Computing nodes Hardware collocation

AMD node CPU AMD Phenom 9850 Quad-core 2.5 GHz, L2: 4*256 KB, L3: 4 MB
(number: 18) GPU 3 Tesla C1060 1.30 GHz

Memory 8 GB
Intel node CPU Intel Xeon E5410 Quad-core 2.33 GHz, L2: 2*6 MB
(number: 72) GPU 2 Tesla C1060 1.44 GHz

Memory 8 GB

Table 13.4 The time of MC_MS-A identifying the 31173 spectra on the GPU Cluster

Algorithm Protein database GPU number Time (h)

MC_MS-A(Mod = 1) ipi.MOUSE.v3.29.REVERSED 139 0.210
uniprot_sprot 139 0.606

MC_MS-A(Mod = 2) ipi.MOUSE.v3.29.REVERSED 166 10.556
uniprot_sprot 149 37.188

roughly inversely proportional to the number of GPUs if their computing powers are
approximately equal.

The real computation time of MS-Alignment or CUDA_MS-A identifying many
spectra will be very long (see Tables 13.1 and 13.2), so it’s hard to test. Thus, we
couldn’t get the speedup ratio or efficiency in further of MC_MS-A identifying a
few orders of magnitude spectra.

We indirectly analyze the efficiency of MC_MS-A identifying a few orders of
magnitude spectra (Zhai 2010; Zhai et al. 2010b). Table 13.5 illustrates the time
proportion of DCGPU to MC_MS-A and the time proportion of MPI communication
to MC_MS-A. We compute the proportions of the time difference of the master
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Table 13.5 The time proportions of MC_MS-A

Algorithm Protein database Prop1(%) Prop2(%) Prop3(%)

MC_MS-A(Mod = 1) mouse 83.836 7.745 1.014
sprot 91.068 2.639 0.599

MC_MS-A(Mod = 2) mouse 98.567 0.175 0.516
sprot 99.339 0.039 0.463

mouse ipi.MOUSE.v3.29.REVERSED, sprot uniprot_sprot
Prop1 the time proportion of DCGPU to MC_MS-A
Prop2 the time proportion of MPI communication to MC_MS-A
Prop3 the maximum proportion of the time difference of the master process and computing processes
to the time of the master process

process and computing processes to the time of the master process, whose maximums
are illustrated in Table 13.5. It can be seen that in executing time, GPU computing
is in the majority while communication and waiting is in the minority, and the time
difference of the master process and computing processes is small. Therefore, we
conclude that MC_MS-A has good efficiency while identifying a few or even more
orders of magnitude spectra.

13.6 Conclusions

We firstly analyzed MS-Alignment algorithm and concluded that it could not well
meet the identification time requirement of large-scale spectra and protein database
although it has an advantage of blind search. Another feature of MS-Alignment is
that different spectra and peptide sequences do the same tasks, which makes data
parallelism possible. We then proposed the DCGPU algorithm implementing the step
of DC on single GPU. Based on P_InsPecT and DCGPU algorithm, we proposed the
MC_MS-A algorithm implementing MS-Alignment on GPU cluster. Experimental
results show that DCGPU algorithm can greatly accelerate MS-Alignment algorithm
and MC_MS-A on GPU cluster can reduce identification time very much and can
meet the speed requirement of identifying large-scale data.

We adopted several methods to optimize implementation of DCGPU. However,
the algorithms based on GPU aren’t optimized sufficiently. We try to further optimize
them as follows. Streams could make data transfer and kernel execution concurrently
and thus could keep overall time down (NVIDIA 2009). Transfer data in block and
enlarge the amount of data transferred at a time. With respect to the GPU Cluster, the
processes getting no GPU could get involved in computation using MS-Alignment
algorithm as well as the computing processes, which will implement heterogeneous
parallel computing.

MS-Alignment algorithm is a method of database search via mass spectrometry.
Thus, using GPU-based HPC to accelerate MS-Alignment brings a new thought to
mass data processing in Computational Proteomics based on MS/MS.
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GPU is specialized for compute-intensive, highly parallel computation. CUDA’s
parallel programming model could make the many cores of GPU bring into full play
and could maintain a low learning curve for programmers familiar with standard
programming language such as C. However, CUDA has disadvantages. CUDA could
only be used on NVIDIA GPUs. CUDA programs need hardworking optimizations
and some factors need to be traded off in optimizations. CUDA couldn’t deal with
complex data dependency well, which may degrade performance.
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Chapter 14
GPU Tuning for First-Principle Electronic
Structure Simulations

Yue Wu, Weile Jia, Lin-Wang Wang, Weiguo Gao, Long Wang
and Xuebin Chi

Abstract With increasing demands on hardware in quantum chemistry
calculations, modern Graphical Processing Units (GPUs) have great potential meet-
ing the resources of high performance computing. In this paper we investigate the
possibility to accelerate the planewave pseudopotential code PEtot on CUDA archi-
tecture. In particular, we execute two most time consuming steps, i.e., the nonlocal
projections and FFT transformations on GPU with careful implementations to reduce
the data exchanges between the CPU and the GPU. Our experience for the molecule
with as many as 512 atoms is also shown.

14.1 Introduction

Ab initio electronic structure calculations based on density functional theory (DFT)
(Kohn and Sham 1965) has become the work horst for many material science sim-
ulations. Recently, it has also become the major tool in quantum chemistry calcu-
lations. In large computer centers where the statistics data are available, the DFT
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based calculations accounts for 75 % of all the computer times allocated to material
science simulations (Wang 2006). While, there are many different numerical meth-
ods to carry out the DFT calculations, including the atomic basis set method, the
Muffin-tin method, real space grid method, and the plane wave basis set method,
the most mature and widely used method is the plane wave (PW) method. The PW
method expands the single particle electron wave functions in PW basis set, with a
kinetic energy cut off Ecut to select the PW basis functions. It uses pseudopotentials
(Kleinman and Bylander 1982) to soft the potential and the wave functions, hence the
need of the number of basis functions. Compared to other methods, it has the advan-
tages of having a single parameters Ecut to control the accuracy of the calculation,
and the variational principle of the total energy with regard to the PW coefficients.
The modern PW-DFT codes use iterative methods to diagonalize the single particle
Hamiltonian H by repeated applications of Hψi which can be written as:

Hψi =
{

− 1

2
∇2 + V (r)+

∑

R,l

|φR,l〉〈φR,l |
}

ψi . (14.1)

Here ψi is the wave function, the {φR,l} are the nonlocal potential projection oper-
ators which for each atom R and angular moment l, the potential V (r) consists of
the Hartree potential, the local pseudopotential and exchange-correlation potential
(Martin 2004)

V (r) = VHartree(r)+ Vloc(r)+ Vxc(r).

Taking the advantage of the fact that the kinetic energy operator is diagonal in recip-
rocal space (the planewave coefficient space) while the potential V (r) is diagonal in
real space, the codes use inverse FFT to transform the wave function from the recip-
rocal space to real space, multiply the potential, then a forward FFT to transform the
wave function back to reciprocal space to carry out Hψ, see Fig. 14.1.

One of the challenges of PW-DFT calculation is to speed up the simulation for a
given system. This is particularly true for ab initio molecular dynamics (MD) simu-
lations, where hundreds of thousands of steps are needed to simulate the dynamics
of the system for hundreds of picoseconds. The current state of the art PW-DFT
(e.g., by the VASP code) can typically reach 1 min per 1–2 fs MD step. Due to
the stagnation of the CPU clock speed, this is reached by parallelization in three
levels: the parallelization in planewave coefficients (also to be called parallelization
in reciprocal Q-space) with NQ processors; parallelization in the wave function {ψi }
index i with Nb processor groups; the parallelization in the k-point with Nk proces-
sor groups. Thus the total number of processors are Np = NQ Nb Nk . However, for

Nonlocal projection iFFT Local potential FFT Kinetic

Fig. 14.1 Application of single particle Hamiltonian to the wave functions
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Fig. 14.2 Three-level parallelization of the wavefunctions

systems with a few hundred to a thousand atoms, numerical tests for the parallel
codes implemented under MPU indicate that the maximum number of processor N
is about a thousand, and it fails to scale beyond that. This set the above limit of 1 min
per MD step. It makes ab initio MD simulation beyond a few ps extremely difficult.

In recently years, the merge of graphic processing unit (GPU) for scientific
computing has attracted great attention in the scientific community. GPU can offer
hundred times speed up compared with CPU while maintaining low electricity con-
sumption (Volkov and Demmel 2008). The GPU has been proved successful for
many material science simulations (Ufimtsev and Martinez 2008), including the clas-
sical MD, the quantum Monte Carlo simulations. However, its applicability to the
PW-DFT calculation is still under intensive study. The important issues are the over-
all strategy of the GPU acceleration, e.g., which parts can be calculated by GPU, and
which parts to be kept in CPU calculation; the data structure and memory manipula-
tion, which part to be stored in CPU memory, and which part to be transferred into the
GPU global memory. In this paper, we will take the PEtot code (http://hpcrd.lbl.gov/
~linwang/PEtot/PEtot.html), which is a planewave pseudopotential code, and test dif-
ferent GPU strategies to accelerate the calculation. The PEtot code has the aforemen-
tioned three level parallelizations, it has both the norm conserving pseudopotential
and ultrasoft pseudopotential, and it can move the atoms for structure optimization.
In the current paper, we will use the norm conserving pseudopotential, and focus
on the wave function iteration subroutine which uses the all-band (block) conjugate
gradient algorithm to improve the accuracy of the wave functions {ψi } for a given
Hamiltonian H . The wave function ψi is kept in reciprocal space as the coefficients
{Ci (G)}:

ψi (r) =
∑

G

Ci (G) exp(−iG · r) (14.2)

http://hpcrd.lbl.gov/~linwang/PEtot/PEtot.html
http://hpcrd.lbl.gov/~linwang/PEtot/PEtot.html
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Table 14.1 Pure floating
point computation time of
zgemm and
cublas_zgemm

Computational time

zgemm 37s
cublas_zgemm 4.3s

The projection operator {φR,l} can be represented in real space r or reciprocal
space G. In the current test, we keep them in reciprocal space (Fig. 14.2).

There are two major steps which consume a lot of time. The first is the nonlocal
projection to {φR,l}. For large system, this is a O(N 3) operation. Since we are using
block version of the conjugate gradient, the Eq. 14.1 is carried out for many wave
functions {ψi } simultaneously. As a result, the nonlocal potential projection calcu-
lation is a matrix to matrix multiplication, which can be calculated using BLAS-3
library. One of our test in this paper is to used BLAS-3 library of the GPU to carry out
this calculation. The second step is the FFT. In a G-parallelized version (NG > 1), the
wave function coefficients Ci (G) are distributed among different CPUs and nodes.
During the FFT, the data has to be transferred among those CPUs. It will be extremely
difficult to speed up such FFT using GPU with fragmented data pieces to be com-
municated with MPI among different CPU, then to be transferred to GPU. In the
current paper, we will test the calculation with NG = 1, but Nb � 1. Doing this,
we can do all a single 3D FFT within one GPU, and take the advantage of the GPU
FFT library. The issue here is how to transfer the data into the GPU global memory,
and match the data structure of the Ci (G), which is within a sphere, to the GPU FFT
data structure which is a full 3D grid (Table 14.1).

The rest of this paper is organized as follows. In Sect. 14.2, we avoid redundant
data communication by placing the nonlocal projector into the GPU in the entire
diagonalization step. Then in Sect. 14.3, we introduce the strategy of packing the big
box data into small box which substantially reduces the data exchange between the
CPU and the GPU. We show the performance test in Sect. 14.4 and make conclusion
remarks in Sect. 14.5.

14.2 Nonlocal Projector Implementation

14.2.1 Using GPU BLAS-3

The level-3 BLAS computation is an extremely time consuming part in the nonlocal
projector implementation. Especially, the routine zgemm (matrix-matrix multiplica-
tion on complex data) is called frequently. More specifically, the zgemm called by
the routine computing Hψi takes nearly 50 % of the total computating time. Driven
by the motivation to accelerate the computing speed of this part, we replaced the
original level-3 blas routines with GPU implementations (Table 14.2).
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Table 14.2 Total computation time using different mx

Total computational time mx = 20 (s) mx = 200 (s) mx = 500 (s)

CPU BLAS 18.12 77.9 224.5
PEtot CUBLAS 12.8 34.2 74.2

Table 14.3 FFT Performance of grid size 128*128*128

Time (s) Percentage of total (%)

CPU mapping 0.05006 57.094
Memcpy (CPU to GPU) 0.006431 7.335
Expansion 0.004605 5.252
Inverse FFT 0.008892 10.142
Multiply with V (r) 0.001075 1.226
Forward FFT 0.008631 9.844
Fetch small cube 0.001484 1.693
Memcpy (GPU to CPU) 0.006501 7.415
Total 0.087679

The Compute Unified Device Architecture (CUDA) (http://developer.nvidia.com/
object/cuda.html) has huge computation power and can be highly efficient in per-
forming data-parallel tasks. CUBLAS is a BLAS library on CUDA architecture.
Reports from NVIDIA illustrate that CUBLAS has significant floating point arith-
metic speed up over the general BLAS library. Thus we tried using the power of
CUBLAS in the PEtot codes and got quite a bit speed up (Table 14.3).

14.2.2 Placing the Projection Wave Functions Inside the GPU

What all the programmer should take into consideration when developing GPU pro-
grams is to avoid the memory communication between CPU and GPU as much as
possible, since this step is time consuming and will definitely do harm to the total
computing efficiency.

The standard flow of calling a CUBLAS routine contains the following five steps:

1. Alloc GPU memory.
2. Copy the data stored in the CPU memory to the GPU memory.
3. Call the BLAS routine to do the computation.
4. Copy the data stored in the GPU memory back to the CPU memory.
5. Free the GPU memory.

The memory communication consuming part is Steps 2 and 4. If we replace all
the CPU BLAS routines with the above standard flow, too much unnecessary copy
will take place. There are two strategies we adopt in practice. Firstly, we avoid

http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
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unnecessary copy in Steps 2 and 4. Before calling a cublas_zegemm routine, we
only initialize the data of the multiplier matrix, and after computation, only the result
matrix is transferred to the CPU memory. Secondly, the data copy in Step 2 can be
further reduced if a matrix is frequently used as a multiplier but there is no change
to be done on it. Thus we just do initialization on this kind of matrix once, then
it is used to compute matrix-matrix multiplication from begin to end. In our case,
after we initialize the projection wave function in the CPU at the very beginning,
we do one GPU alloc and set matrix to GPU memory, then we place the projection
wave function inside the GPU all the time and it doesn’t affect the computation of
cublas_zgemm at all. In this way we save much computing time.

14.3 FFT Implementation

14.3.1 Spherical FFT

In the plane wave pseudopotential calculation, we carry out different operations
in reciprocal space and real space. This dual-space representation requires us to
do frequent FFT between them to construct the charge density and transform the
potential terms. It is due to the FFT algorithm, the plane wave calculation becomes
attractive. Generally the ratio of calculations to communications in FFT is the order
of log N where N is the grid dimension, which makes it critical to PW-DFT code.
A scalable FFT is implemented for the PW-DFT code (Canning 2008).

The PEtot FFT is different from the standard FFT in that a sphere of points instead
of a standard grid is used in the reciprocal space. It is consisted of three sets of 1d
FFT in the x, y, z direction with two transposition of data between each 1d FFT. In
order to save communication, PEtot FFT takes advantage of the fact that diameter
of sphere is usually half the size of the real space grid, and performs 1d FFTs only
on non-zero part of the sphere data. This greatly reduces the amount of computation
and data communication. In the GPU FFT implementation, we have derived this
methodology and made further effort to make FFT run more efficiently on GPU.

14.3.2 Sphere to Small Box

Excellent accelerations are achievable for computational intensive tasks and band-
width intensive tasks with data locality on CUDA device. However, the complex
memory hierarchy places many difficulties for communication intensive tasks in
using many-core parallel systems. For communication intensive tasks such as FFT,
CUDA acceleration is hard because the bottleneck lies in the PCI-express between
main memory and GPU device memory. CUFFT is an Nvidia FFT library on CUDA
architecture. According to our test, 20 times speedup can be achieved compared to
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FFTW without counting the CPU and GPU communication time. However, if we
take CPU and GPU communication time into account, the speedup is quite limited.
Our test on Tesla C1060 shows that more than 60 % of total time is consumed at data
transfer between CPU and GPU (see Fig. 14.3). For double precision FFT, CUFFT
has less than 2 times of speedup compared with FFTW.

The PEtot FFT is a special FFT. Its data in the reciprocal space is a sphere and
expand into a big box of data in the real space. Then the real space data will multiply
with potential V (r) to construct the charge density and transform from real space back
to reciprocal space. By moving charge density construction and forward FFT into
the CUDA device, computation inside GPU was increased over data communication
between CPU and GPU. The grid size in the real space is usually two times of the
diameter of the sphere in the reciprocal space, so we take advantage of this fact by
sending non-zero data into the GPU global memory. However, a sphere data is hard
for inside GPU expansion. Thus a small box of data is used on the CPU. The original
sphere data in reciprocal space is periodic and the center is (1, 1, 1) in the CPU. We
need to map the data into small box like Fig. 14.4.

After 3d inverse FFT, multiply with potential V (r) and forward FFT, we need to
map the data back from small box of data into big box of data. Potential V (r) is not
changed during all FFT calculations, thus we only need to transfer it from CPU to
GPU before the first FFT.

14.3.3 GPU FFT Implementation

For large scale FFT on GPU cluster, a substantial speedup can be achieved with
sustained high GPU bandwidth, processing larger subtasks and matrix transposition
during data transfer (Chen et al. 2010; Maimaitijiang et al. 2009). PEtot FFT scale,
which is usually like 128×128×128, is rather small for multiple-GPU solution. Deep
memory hierarchy and data transfer limit of PCI-express makes FFT hard to speed
up on CUDA device. In the PEtot FFT GPU implementation, two factors contribute
to better performance: firstly data transfer of only the non-zero data reduced the data

Fig. 14.3 Ratio of CUFFT
computation time and com-
munication time
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Fig. 14.4 Mapping from big box of data to small box of data

transfer time between CPU and GPU; secondly moving more computation into the
GPU device for one memory copy between CPU and GPU.

The details of each step in our GPU PEtot FFT are (see Fig. 14.5):

1. The CPU processor pad out the ends of each of the z-column of g vector for form
a small box, which will contain all the non-zero coefficients of the reciprocal
space data.

2. The small box of data is transferred from main memory to GPU global memory.
3. Allocate space for a large box of data and initialize big box data all zeros. Expand

the small box of data into each corner of the big box to make it exactly like PEtot
FFT.

4. Perform a 3d inverse FFT on the big box of data using double precision CUFFT
to transform from reciprocal space to real space.

5. Construct the charge density by multiplying the V (r) data with each point of the
big box. The V (r) data was transferred into the GPU global memory only once
because V (r) is read-only data.

6. Perform a 3d forward FFT on the big box of data with double precision CUFFT
to transform from real space to reciprocal space.

7. Fetch the data from each corner of the big box to build a small box of data.
8. Copy the small box of data from GPU global memory to main memory.
9. The CPU processor maps the small box of data to the sphere data.

In the total 9 steps of the GPU PEtot FFT, the expansion and mapping back between
real space data and reciprocal space data are limited only on the effective data. The
first and the last steps are performed on the CPU. These steps are avoidable in the
future if we use small box of data instead of sphere data on the CPU.
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Fig. 14.5 Data mapping in the GPU PEtot FFT

Fig. 14.6 512-atom CdSe quantum dot

14.4 Performance Test

To evaluate the accelerated PEtot, we ran the PEtot code on the Tesla GPU cluster
at Supercomputing Center of Chinese Academy of Sciences (SCCAS). Each node is
equipped with one Intel Xeon E5410, 8 Gigabyte of main memory and two C1060
Tesla GPU card. Firstly we tested the performance of PEtot calling CUBLAS. We
ran a CdSe system of 512 atoms in the diamond structure (Fig. 14.6) on 8 nodes using
16 CPUs and 16 GPUs. In this case we set NQ = 16, Nb = 1, Nk = 1.
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Firstly, we tested pure floating point computational time of zgemm and cublas_
zgemm, i.e. regardless of the time spent on transferring data between GPU and CPU.
In this test case we were to multiply a 3072× 500 matrix with a 500× 28685 matrix
in the Hψi function.

From the above we can conclude that compared with CPU, GPU has extremely
significant speed up in floating point arithmetic.

In the next stage, we tested the overall performance improvement usingcublas_
zgemm. We embedded the routine into the PEtot codes according to the strategies
described in the previous section. Except for the zgemm in Hψi , we also replace
the zgemm in other routines such as dot_product which is used to compute the
dot-product of the wave function. Here we list the total computation time. We tested
three cases with mx = 20, mx = 200, and mx = 500. Here the parameter mx
decides the number of states to be calculated. We ran the system on 32 nodes using
64 CPUs and 64 GPUs.

It is showed that for large mx we can save two-thirds of the total computing
time. We also find that the speed up ratio grows with the dimension of the problem.
This may because that considering the trade-off between accelerating floating point
arithmetic and consuming time in communication between nodes, dealing with large
scale of data use GPU gets to better performance. It sounds good because in the field
of HPC the ability to handle large scale of data is one of the main issues.

Then we tested the performance of PEtot FFT. We set NQ = 1, Nb = 16, Nk = 1.
The test case is the same 512 atoms system. In this test case, 128× 128× 128 size
FFT is used. The GPU PEtot FFT has 4 times of overall speedup compared with
original PEtot FFT. It has 6.3 times of speedup compared with FFTW standard grid
FFT.

In the PEtot GPU FFT, it takes 57 % of total time to map between sphere data
and small box of data on CPU. In the future, the CPU mapping part can be avoided
by using small box of data, which means that 8 times of speedup can be achieved
compared with PEtot FFT.

14.5 Conclusion Remarks and Future Work

With different settings, we showed that both nonlocal projection and FFT transfor-
mation can be speeded up by a factor about 4. However, in the setting of NQ = 1,
each node keeps the whole nonlocal projection operators {φR,l} which leads to high
memory demand. There is also a lot of communication when forming the Gram
matrix in the diagonalization step in this case. We will address these issues in the
future.

Finally, there is an issue we have not touched in the current paper, but will be
tackled later is the orthogonalization, and diagonalization among {ψi } and the pro-
jection of the conjugate gradient search direction Pi = Hψi − 〈ψi |H |ψi 〉ψi from
{ψi }. All these require the cross product operation like Pi |ψ j 〉, which is particularly
challenging for a Nb � 1 parallelization, because the wave functions of different
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i are resided in different CPU processors and nodes. Calculation of this part might
not be able to use GPU, but careful CPU implementations of such operations are
necessary, and algorithms which minimize the use of such steps will be beneficial.

A. CUDA Source Code for CUBLAS

c Etotalcalc.f
........................
call cublas_alloc(nref_tot*mg_nx, 16, cu_wqmask)
call cublas_set_matrix(mg_nx, nref_tot, 16,
& wqmask, mg_nx, cu_wqmask, mg_nx)
........................
call CG_AllBand(...,cu_wqmask)
........................
call cublas_free(cu_wqmask)
........................

c CG_Allband.f
........................
do 3000 nint2=1,nline

.....................
call Hpsi_comp_AllBandBP(pg_m,pgh_m,

& nblock_band_mx,ilocal,vr,workr_n,kpt,1,
& spg_m,sumdum_m,iislda,cu_wqmask)

.....................
3000 continue

........................

c Hpsi_comp_AllBandBP.f
........................
call cublas_alloc(nblock*mg_nx, 16, cu_wg)
call cublas_alloc(nblock*nref_tot, 16, cu_sumy_m)
call cublas_set_matrix (mg_nx, nblock, 16, wg,
& mg_nx, cu_wg, mg_nx)
call cublas_zgemm(’c’, ’n’, nref_tot, nblock, ng_n, cc1, cu_wqmask,
& mg_nx, cu_wg, mg_nx, cc0, cu_sumy_m, nref_tot)
call cublas_get_matrix (nref_tot, nblock, 16, cu_sumy_m,
& nref_tot, sumy_m, nref_tot)
call cublas_free(cu_wg)
call cublas_free(cu_sumy_m)
........................

B. CUDA Source Code of Data Mapping for CUFFT

__global__ void fetchCube(cufftDoubleComplex* odata,cufftDoubleComplex* idata,
int diff, int half, int longedge, int shortedge)
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{
/* fetch the small cube from the big box of data. */
__shared__ cufftDoubleComplex tile[LEN];

int index_out = blockIdx.x * shortedge + threadIdx.x;
int xNew = threadIdx.x + ( threadIdx.x / half ) * diff;
int yNew = blockIdx.x + ( blockIdx.x / half ) * diff;
int index_in = xNew + yNew * longedge;

tile[threadIdx.x] = idata[index_in];
__syncthreads();

odata[index_out] = tile[threadIdx.x];
}
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Chapter 15
Nucleation and Reaction of Dislocations
in Some Metals and Intermetallic
Compound TiAl

D. S. Xu, H. Wang and R. Yang

Abstract The shear deformation in selected metals and intermetallic compound
TiAl under different conditions was investigated using molecular dynamics (MD)
simulation with many-body interatomic potentials. The atomic-scale details of the
dislocation nucleation were simulated with the GPU implementation of our Para
MD program. For the homogeneous nucleation in perfect lattice, as the lattice strain
increases, strain localization occurs during which the strain condenses gradually
on a few lattice planes where the nucleation is finally achieved. The dislocations
on different slip planes in the same slip system can react with each other if the
slip planes are only a few interplanar-spacings apart, forming a variety of defects
including vacancies, interstitial atoms and their clusters, small dislocation loops,
etc., depending on the distance between the slip planes and the characteristics of the
reacting dislocations. It was shown that the C1060 GPU has a substantial acceleration
on MD simulation compared with conventional CPU, indicating therefore a method to
reduce the total cost of MD simulations; however, for ultra-large atomic systems, the
relatively small memory capacity on C1060 hinders further increase of the simulation
size beyond a few million atoms, therefore expansion of the GPU memory, which
meanwhile reduces the communication burden given the same simulation size, rather
than the number of cores is more important for such simulations.

15.1 Introduction

Advanced technology needs better materials, for example, designing of jet engine
with higher efficiency needs materials working at higher temperature and with good
reliability and long life. TiAl intermetallic alloys are promising materials for the
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turbine blades in jet engine, due to its high strength to weight ratio and retention
of strength and modulus at high temperature. However, in the last few decades, the
room temperature brittleness hinders their applications (Clemens and Kestler 2000;
Xu et al. 2008). It is believed that the ductility and plastic deformation of metallic
materials are mainly governed by dislocation nucleation, movement and reactions
among themselves and with other obstacles. In the last 60 years, large amount of
work has been done to investigate the dislocation behavior with the help of surface
trace analysis and transmission electron microscopy (Nabarro 1997; Xu et al. 2009).
However, due to the limitation of temporal and spatial resolution of the various
experimental methods, the atomic details as to how the dislocations were nucleated
and how the dislocations reacted when they are in close contact are still lacking.

In addition to the mobility of single dislocations, the interaction between disloca-
tions is believed to have strong effect on the deformation behavior and therefore the
mechanical properties. Among the various dislocation structures, the dipolar con-
figuration is one of the most important classes and needs atomic detail simulation,
since the strain field around a dislocation was largely canceled by the dislocation
with opposite sign in a dipole. TEM observation is not appropriate for this problem
because both the contrast and the spatial resolution is not high enough; in effect, the
dislocation dipole can not be discerned as the height of the dipole reduces to a few
nanometers. Further more, due to the complication of the strain field around the core
of dislocation dipole, the detailed core structure can not be revealed due to the image
shift around the core of dipole (Veyssiere 2006). In terms of dislocation mechanism
it is not well understood why the compound TiAl formed from two ductile metals Ti
and Al shows very strong room temperature brittleness.

In the last 10 years, MD simulation has been employed as an effective means of
understanding the atomic behavior of the dislocation in a controlled deformation
mode (Bulatov and Cai 2006). Due to the atomic resolution and the small time steps
of the simulation, the length and time scales for the MD simulation are limited,
and large-system simulation for a longer time is always desired by investigators, but
needs both computer power and time. As the simulation box increases in size, large
scale parallel method has to be used, and this will incur the cost of a large number
of CPU cores and associated power consumption, to the effect that simulation of a
short process may even cost more than a TEM session of experimental observation.
Acceleration of the MD simulation process using a GPU is one of the viable options
to reduce computing costs.

In this paper, different fcc metals such as Al and Cu, as well as TiAl, an ordered
intermetallic compound based on the fcc structure, are investigated and the nucleation
and reaction behaviors of dislocations are compared to gain fundamental understand-
ing of the dislocation movement and defect formation by dislocation reaction during
deformation.
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15.2 GPU Implementation and Deformation Simulation

15.2.1 GPU Implementation of ParaMD

In order to exploit the computing power provided by the new type GPU, the Parallel
Molecular Dynamics program, ParaMD, developed in the authors’ group was modi-
fied so that it can be used for large-scale and relatively longer time atomic simulations
of the deformation behavior of metallic materials. ParaMD is operative on both CPU
and GPU, with the main program structure shown in Fig 15.1.

GPU implementation is realized with the cutting-edge feature provided by the PGI
compiler to translate the CPU-oriented Fortran codes into GPU programs through
direct use of the acceleration directives. A segment of the code from the potential
subroutine is shown in Fig. 15.2, exemplifying the use of the directives.

15.2.2 Evaluation of ParaMD with GPU Support

The performance of ParaMD on GPUs is evaluated and compared with three other
popular MD codes, namely Amber, NAMD and LAMMPS. ParaMD tests are
launched on Opteron 2431 CPUs with six cores each. The machines are intercon-
nected by a 20G InfiniBand switch. The condition for ParaMD is specifically 20,000
atoms in each core and 800 atoms across the boundary under spatial decomposition;
for the other MD codes cited here the readers are referred to the corresponding web-
pages. As shown in Fig. 15.3a, 4 C1060 GPUs run at a satisfactory acceleration ratio
of 3.72, very close to that of 16 Opteron2431 CPUs. Such a conclusion is compa-
rable to that from NAMD (Fig. 15.3c), while LAMMPS does generate better result
(Fig. 15.3d). In the present case, the data exchange between CPU and GPU in the
same machine is still frequent, hence slowing down the calculations.

Fig. 15.1 Schematic of the main flow chart of ParaMD
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Fig. 15.2 Part of the potential subroutine with the acceleration directives

15.2.3 MD Simulation Setup

Molecular dynamics simulations are carried out for the constant strain-rate loading
and high temperature annealing situation using EAM type interatomic potentials for
Al (Mishin et al. 1999), Cu (Mishin et al. 2001) and TiAl (Mishin et al. 2001; Zope and
Mishin 2003). Simulation cells containing up to 1.5 million atoms were employed,
with periodic boundary condition in all three directions. Shear deformation was
imposed along 〈110〉 direction on {111} planes for both perfect and dislocation
containing crystals. The simulations were carried out at different temperatures, from
100 K to close to the melting point of each material. The shear strain rate ranged
from 106 to 5× 1010 s−1.

15.3 Simulation Results and Discussion

15.3.1 Homogeneous Nucleation of Dislocations

15.3.1.1 Dislocation Nucleation in Al and Cu

Shear deformation of Al, Cu and TiAl was carried out at different strain rates ranging
from 106 to 5× 1010 s−1, at temperatures from 100 to 600 K, on (111) plane, along
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(a)
(b)

(c)
(d)

Fig. 15.3 Acceleration of ParaMD and three other MD codes over different numbers of CPU cores

the [110] direction for fcc metals and [101] and [101] directions in TiAl for the
superdislocation nucleation. Multiple nucleations appeared in high speed shearing.
Dozens of loops formed in the simulation box at a shearing rate of 5×1010 s−1, each
being a single partial dislocation with very limited range of movement, since the
distance between the different loop nuclei is very small, which limited the motion of
each partial. Due to the high density of nuclei, limited strain is available for each loop,
and only single partial can be generated at such an ultra-high speed deformation. The
Burgers vector of the Shockley partial is 1/6[121].

At the strain rate of 5× 109 s−1, fewer loops formed at the same time, and most
of the loops are full dislocations with Burgers vector of 1/2[110] in Al, a snapshot
from the simulation being shown in Fig. 15.4a. It can be seen the second partial loop
is nucleated when the first partial loop grows up to about 4 to 5 nm in size. The
partial separation width ranges from 1 to 3 nm depending on the character of the
segment of the dislocation. When the shear strain rate is below 108 s−1, only one
loop is formed in each simulation. Its long axis is oriented along the 30◦ direction,
parallel to the Burgers vector of the first partial. As the loop grows, the difference
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(a) (b)

Fig. 15.4 Dislocation loop nucleation in Al sheared along [110] direction on the (111) plane at
strain rate of a 5 × 109 s−1 and b 108 s−1. The AtomEye is used for the display of the atomic
configuration, with atoms colored according their local coordination number; atoms with normal
coordination number 12 are made invisible (Li 2003)

between the widths of the stacking faults, i.e., the partial separation along different
direction, increases, with that along the 30◦ dislocation the smallest, while that in
the 120◦ direction is the largest.

As for Cu, the nucleation shows a similar trend, with the separation between the
two partials much larger than in Al, due to the lower stacking fault energy of the Cu
from the interatomic potential. Apart from that, the orientations of the inner loop and
the outer loop show some difference, especially at the initial stage of the nucleation.

15.3.1.2 Asymmetry of Superdislocation Nucleation in TiAl

TiAl is a compound with an L10 structure ordered on the basis of fcc metals. It is
face centered tetragonal having alternate layers of Ti and Al atoms along c direction.
Due to the L10 ordering, the three 〈110〉 directions are no longer equivalent, and
the shear deformation along the different 〈110〉 directions will result in different
dislocation structure. Along any 〈110] direction (here the notation introduced in
Hug et al. (1988) is used), the shear will produce ordinary dislocations, while along
any 〈101] will cause the so called superdislocation to nucleate. Our simulations show
that, the superdislocation shear is not symmetric when shearing in the two opposite
senses; the dissociations decomposed differently depending on the sense of the shear
stress. Figure 15.5 shows the nucleation and growth process when sheared along two
different senses. It can be observed that each superdislocation is composed of four
partials (only 2 shown in Fig. 15.5a), therefore the Burgers vectors are twice that of the
ordinary dislocations, which will cause different lattice friction for the dislocation
movement; due to the correlated movement of the four partials, larger stress can
be imposed on the nearby dislocations, and more reactions between dislocations
can be achieved when dislocations from different sources meet. Further more, after
nucleation, due to the difference in the fault energy on different atomic planes, the
dislocation may undergo different reconfiguration and cross slip partially. This would
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(a) (b)

Fig. 15.5 Super-dislocation loop nucleation and growth in TiAl when sheared along a [101] and b
[101] direction on the (111) plane. In both cases the superdislocation decomposed into four partials,
but with different separations between each partial when sheared along different directions, only
two partials being shown in a

increase the work hardening rate of TiAl and will exhaust the dislocation source
sooner, and therefore is considered one of the factors influencing the anomalous
increase in strength at high temperature and the room temperature brittleness of the
compound (Hug et al. 1988).

15.3.2 Reaction Between Dipolar Dislocation and Debris
Formation

15.3.2.1 Dislocation Reaction and Defect Formation During Shear
Deformation

The nucleated dislocation loops expand upon further shear, and they interact with
each other when coming closer, forming various structures depending on the relative
positions of the approaching loops. The loops on the same slip plane would simply
annihilate when they meet, since the meeting segments should have the opposite sign,
while those from different slip planes would form dipoles of different heights, and
further reaction may happen generating many vacancy tubes, mostly at 60◦ angle
to the shearing direction. Although transformed dipoles of various heights were
observed ranging from 1d to 3d, the major type of defects are due to the 1d dipole
transformation, most often forming vacancy tubes. Due to the high density of nuclei
at the beginning, the density of the vacancy tube is much higher for faster shearing
compared with shearing at lower rate. There are also similar numbers of interstitial
type dipoles forming small interstitial loops. These loops are very mobile in the
lattice and have a high probability of annihilation with vacancy tubes if they meet on
the same or nearby slip planes; otherwise, the interstitial loop may be pinned by the
vacancy tube and vibrate around it. More details can be found in Xu et al. (2009).

These loops or vacancy rods can also react with mobile dislocations passing by on
the nearby slip planes. As a result of the reactions, the dislocation becomes jogged at
different points along the dislocation line, making the movement of the dislocation
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(b)(a)

Fig. 15.6 a Various defects formed after different reactions. The short bars in green are the vacancy
rows, while rings marked blue are interstitial loops. The long dislocation with two partials is heavily
jogged after reaction. b Formation process of the vacancy tube by the movement of dislocations
dragging two jogs

increasingly difficult, especially at locations with the presence of the debris. For the
debris with large mobility, such as interstitial dipole loop, the moving dislocation
can react with it if they are on the same slip plane; otherwise the moving dislocation
may sweep the small loops in the wake of the dislocation motion, and make a clean
channel for the future dislocation motion.

For the formation of vacancy rows and interstitial loops from dislocations in Al
when sheared along the [110] direction, two types of mechanisms are observed in
our simulation: one is the two-dislocation mechanism by which the two dislocations
meet and form a vacancy row, as shown in our former MD simulation (Xu et al. 2009);
the other is concerns the movement of a jog-containing dislocation, the dragging of
jogs in one direction would form vacancy rows, while the opposite motion create
interstitial clusters, the former being shown as green rods and the latter as blue loops
in Fig. 15.6.

15.3.2.2 Formation of SFT and Other Debris from Dipole at High
Temperature

Dislocation dipole is a type of configuration frequently found in metals and inter-
metallic compounds. Due to the attraction between the dislocations with the opposite
signs, some stable configurations can be formed when two dislocations come from
different slip planes meet. At high temperature, a dipole may undergo further trans-
formation even without shearing. Figure 15.7 shows the different kind of defects
formed after high temperature annealing of the dipoles with their height from 1 to 4
d111. Our MD simulations show that the migration barrier for vacancy along the line
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(a) (b) (c) (d)

Fig. 15.7 Transformation of dipoles with different height: a 1d; b 2d; c 3d and d 4d

of the dipole cores is greatly reduced, the atoms can move quickly and the local diffu-
sion promotes the formation of small stacking fault tetrahedron (SFT). The smallest
SFT containing only three vacancies can move via shape change. It can grow by
absorbing single vacancy, vacancy cluster, via a ledge mechanism, the details of
which have been published recently as a series of papers (Wang et al. 2011a, b, c).
SFT may influence dislocation motion either by long range elastic interaction, or,
most strongly, by their reactions with mobile dislocations forming various defects
along the dislocation line.

The stability of the debris formed was estimated by defect energy calculation after
static relaxation. The energy of the faulted dipole, SFT and dipoles along various
directions were compared; as shown in our recent work, the faulted dipole and SFT
both have lower energy than the dipole, showing the stability of these kinds of
defect at ambient temperature (Wang et al. 2008, 2009). This is in agreement with
the experimental results of SFT formation at room temperature, high strain rate
deformation in Al (Kiritani et al. 1999), and the stable perfect SFT found in Au, Ni,
Cu (Singh et al. 2004).

15.3.3 Implications to Mechanical Properties

15.3.3.1 Breaking of Dipole by Shear Deformation

For edge dipoles, the 45◦ configuration is the low energy stable configuration. Shear-
ing of a dipole-containing crystal may break the dipole into independent dislocations,
the critical stress for this being called breaking stress, which is a function of the dipole
height. Figure 15.8 shows the results of our MD calculation and the estimation from
elasticity theory. The interaction of dislocations in a dipole is strongly dependent
on the height and distance; below a certain height, dipole can react directly upon
shear deformation, forming complicated structure which will not only change their
mobility, but also hinder the motion of other dislocations. Typical debris may include
faulted dipole, the combination of differently oriented faulted dipole, smaller dislo-
cation loops of different types, etc.
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Fig. 15.8 Comparison of MD and elastic estimation of breaking stress. The breaking stress calcu-
lated from MD is much higher for 1d to 5d

15.3.3.2 Dipole Transformation by Shear Straining

Dipoles with different character may have different energies (Wang et al. 2009);
therefore their stability varies, and they behave differently under shear straining.
The pure screw dipole is usually easy to be cross annihilated, while the edge type
may change their character upon shearing. Along 60◦, the dipoles are prone to trans-
forming to faulted dipole in fcc systems. The breaking stress depends strongly on
the structure of the dipole; as is shown in Fig. 15.9, the edge type dipole is easily
broken by shear, while after multi-passage shear by the dislocations in the dipole,
the originally straight dipole becomes curved and finally transforms into a zigzagged
configuration with each segment being a faulted dipole, as shown in Figs. 15.9b, c.
The breaking of such a transformed dipole needs much larger stress, as shown in
Fig. 15.9a.

In a deformed metal, especially fatigue deformed one, the patches of dislocation
may finally turn into a dislocation wall, which mostly contains dipolar dislocations.
In such a case, detailed understanding of the behavior of the dipole would enrich our
knowledge of the crack formation and fracture of the materials.

15.3.3.3 Critical Height for Dipole Annihilation

It was generally believed that dipoles lower than a certain height will simply annihi-
late and disappear in the lattice and will not affect further deformation. Most models
for dislocation dynamics simulation have just deleted the dislocation segment when
a low-height dipole was formed in order to reduce the amount of calculation. Our
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(a) (b)

Fig. 15.9 a Stress-strain curve of a dipole during shear deformation. The dipole breaking stress
increased after several passages. The configuration after several passage shear (b) transformed into
c when the breaking stress increased

recent MD simulation shows that there exists no critical height below which small-
height edge dislocations and 60◦ dipoles would annihilate and their debris simply
disappears. Various structures can result from shearing dipoles under an applied
stress including faulted dipoles and zigzagged structures containing 60◦ dipole seg-
ments connected by junctions. These defect structures are believed to contribute
to work hardening and to act as nucleation sites for dislocation entanglement and
self-patterning under single slip (Wang et al. 2008).

15.4 Conclusions

(1) MD simulation on GPU now exhibits a substantial acceleration, with a speed
boost of >10 times compared to a core of the advanced CPU.

(2) Dislocation or superdislocation nucleates homogeneously in fcc metal and TiAl
by shearing in 〈110] or 〈101] direction, and the core structures are identified.

(3) MD simulation shows that during shear deformation dislocation debris in the
form of point defects such as vacancies, self-interstitial rows and independent
dipole loops can be formed by reaction of dislocations within the same slip
system.

(4) With increasing temperature, edge dipoles transform into a series of complex
structures, including zigzagged faulted dipoles and truncated and perfect SFTs,
which may form obstacles to dislocation motion and affect the ductility of metals.
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Chapter 16
Large-Scale Numerical Weather Prediction
on GPU Supercomputer

145.0 TFlops with 3990 GPUs on TSUBAME 2.0

Takayuki Aoki and Takashi Shimokawabe

Abstract In order to drastically shorten the runtime of a weather prediction code
ASUCA developed by the JMA (Japan Meteorological Agency) for the purpose of
the next-generation weather forecasting service, the entire parts of the huge code
are re-written for GPU computing from scratch. By introducing many optimization
techniques and several new algorithms, very high performance of 145 TFlops has
been achieved with 3990 GPUs on the TSUBAME 2.0 supercomputer. It is quite
meaningful to show that the GPU supercomputing is really available for one of the
major applications in the HPC field.

16.1 Introduction

Weather forecasting is an indispensable parts in our daily lives and business
activities, needless to say, for natural disaster preventions. The atmosphere has a
very thin thickness to compare with the Earth diameter. In the previous atmosphere
code, the force balance between the gravity and the pressure gradient in the vertical
direction and we call them hydrostatic models. Recently it is widely recognized that
the vertical dynamical processes of the water vapor should be taken into consid-
eration in cloud formations. Three-dimensional non-hydrostatic model describing
up-and-down movement of air have been developed in the weather research.

For the weather simulations, initial data are produced by the data assimila-
tion dealing with many kinds of observed data and simulation results based on
four-dimensional variational principle. Since the weather phenomena are chaotic,
a predictable duration is less than several days for one set of the initial data and the
jobs run sequentially by updating the initial data.
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In recent years, it is highly demanded to forecast detailed weathers such as unex-
pected local heavy rain, and the high resolution non-hydrostatic models is desired to
be carried out with fine-grained grids.

16.2 GPU Computing for Weather Simulations

The computational heavy load is required to run the high-resolution weather mod-
els. A next-generation atmosphere simulation model WRF (Weather Research and
Forecasting) is a world standard code developed at the NCAR (National Center for
Atmospheric Research), UCAR (University Corporation for Atmospheric Research)
and so on in the United States and supported by worldwide researchers. The WRF
has been scored 50 TFlops on the current fastest supercomputer in the world.

Numerical weather models consist of a dynamical core and physical processes.
In the dynamical core, forecast variables such as winds, atmospheric pressure and
humidity are calculated by solving fluid dynamics equations. The physical processes
strongly depend on parametrizations related to such microphysics as condensation
of water vapor, cloud physics, and rain. In the computation of dynamics core, mem-
ory access time is a major part of the elapsed time to compare with floating point
calculations and it is hard to get close to the peak performance in any computers. On
the other hand, the physical processes include some computationally intensive parts
demanding high performance of floating point calculations.

Graphics Processing Units (GPUs) have been developed for the rendering pur-
pose of computer graphics. The request for high-level computer visualization makes
the GPUs to have high performance of floating point calculation and wide memory
bandwidth. Recently, exploiting GPUs for general-purpose computing, i.e. GPGPU,
has emerged as an effective technique to accelerate many applications. After CUDA
(CUDA 2010) was released by NVIDIA as the GPGPU-programming framework in
2006, it allows us to use the GPU easily as an accelerator. In the area of high perfor-
mance computing (HPC), it has been reported that a lot of successful applications
in Computational Fluid Dynamics (CFD), Fast Fourier Transform (FFT), molecular
dynamics, astrophysics, bio-informatics and so on ran on GPUs dozens time faster
than on a conventional CPU.

In the numerical weather prediction, it was reported that a computationally expen-
sive module of the WRF model was accelerated by means of a GPU (Michalakes
and Vachharajani 2008; Linford et al. 2009). These efforts, however, only result
in a minor improvement (e.g., 1.3 × in Michalakes and Vachharajani 2008) in the
overall application time due to the partial GPU porting of the entire code. Since the
other functions (subroutines) run on the CPU and all the variables were allocated
on the CPU main memory, it is necessary to transfer the data between the host CPU
memory and the GPU video memory through the PCI Express bus every GPU kernel-
function call. They reported that the acceleration for the microphysics module itself
achieved a twenty-fold speedup. While physical processes are composed of small and
relatively independent modules and able to be easily replaced with other mudules,
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a dynamical core computes time integration of interdependent forecast variables.
Thus, GPU porting of parts of the dynamical core does not contribute improvement
of performance.

As the successor to TSUBAME 1.2, the TSUBAME 2.0 supercomputer, which
is equipped with more than 4000 GPUs, has started operating in November 2010
and has become the first petascale supercomputer in Japan. Since TSUBAME 2.0
provides most part of its computing performance by GPUs, it is a key issue to achieve
high performance on GPU in many applications. In the article, we show the process
porting an operational weather prediction code to the GPU on TSUBAME 2.0 and
demonstrate the performance for a practical operation size.

16.3 Next-Generation Weather Prediction Code ASUCA

ASUCA (Asuca is a System based on a Unified Concept for Atmosphere) is a next-
generation high resolution mesoscale atmospheric model being developed by the
Japan Meteorological Agency (JMA)(Ishida et al. 2010). The ASUCA succeeds the
Japan Meteorological Agency Non- Hydrostatic Model (JMA-NHM) as an opera-
tional non-hydrostatic regional model at the JMA.

First, we have implemented the dynamical core as the first step toward developing
the full GPU version of the ASUCA. In the ASUCA, a generalized coordinate and
flux-form non-hydrostatic balanced equations are used for the dynamical core. The
time integration is carried out by a fractional step method with the horizontally
explicit and vertically implicit (HE-VI) scheme (Skamarock and Klemp 1994). One
time step consists of short time sub-steps and a long time step. The horizontal prop-
agation of sound waves and the gravity waves with implicit treatment for the vertical
propagation are computed in the short time step with the second-order Runge-Kutta
scheme. The long time step is used for the advection of the momentum, the density,
the potential temperature and the water substances, the Coriolis force, the diffusion
and other effects by physical processes with the third-order Runge-Kutta method. The
above matters are almost same as those employed in the WRF model. In the present
ASUCA, the physical core is still being developed and a Kessler-type warm-rain
model has been implemented for the cloud-microphysics parameterization describ-
ing the water vapor, cloud water, and rain drops.

16.4 Single GPU Implementation and Performance

Although our final destination is to develop the multi-GPU version of ASUCA, we
start from the single GPU implementation and show its performance. Figure 16.1
illustrates the computational flow diagram. In the beginning of the execution, the
host CPU reads the initial data from the input files onto the host memory, and then
transfers them to the video memory on the GPU board. The GPU carries out all the
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Fig. 16.1 Computational flow diagram of the ASUCA. All the modules inside the short time-step
and the long time-step loops are executed on the GPU

computational modules inside the short time-step and long time-step loops. When
the forecast data are completed on the GPU, the minimal data are transferred to the
host CPU memory to reduce the communication between CPU and GPU.

16.4.1 Optimizations

In order to improve the performance on the GPU, we have introduced several opti-
mizations in implementing the code in CUDA. We focus on two components as exam-
ples: (a) the advection computation (b) the 1-dimensional Helmholtz-type equation
for the pressure.

(a) Implementation of the advection computational modules

The 3-dimensional advection computation is strongly memory bound and it is
very effective to reduce the access to the video memory (called global memory in
CUDA) in order to improve the performance. We make use of the shared memory as
a software-managed cache, which is shared among threads in a block in the CUDA
programming. For a given grid size (nx, ny, nz) of the computational domain, the
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Fig. 16.2 Configuration of the CUDA blocks and marching directions of the threads. a Advection
computation and b Helmholtz-type pressure equation

GPU kernel function is invoked with (nx/64, nz/4, 1) blocks with (64, 4, 1) threads.
The z direction in physical space is mapped to the y direction in the CUDA code.
Each thread specifies a point (x, z) and calculate the advection equation on the grid
point from j = 0 to j = ny − 1 marching in the y direction as shown in Fig. 16.2a.
The block size of (64, 4, 1) threads is derived from the performance optimization.

The discretization of the advection equation has a four-point stencil in each direc-
tion on the mesh. Each block holds an array of (64 + 3) × (4 + 3) elements on the
shared memory. When a block computes a xy plane of the computational domain,
the variable data on the global memory copied to the shared memory to be shared
among threads in the block. On the other hand, the stencil access in the y-direction
is closed in the thread by marching the computation in the y-direction. The variable
data of the global memory are stored in the registers (temporal variables). When we
compute the j+1-th plane, the data have been already stored in the registers from the
global memory in computing j-th plane. In our implementation, we copy the data
in the registers to the shared memory and reuse them without same accesses to the
global memory (Fig. 16.3).

(b) Implementation of the Helmholtz-type pressure equation

Due to the HE-VI splitting, the pressure equation reduces to 1-dimensional Helmholtz-
type elliptic equation in the vertical (z) direction. The discretization of the equation
is expressed by a tri-diagonal matrix. It is possible to apply the TDMA algorithm
to solve the matrix; however we have to calculate the elements sequentially in the
z-direction. Figure 16.2b shows the data parallel by marching the sequential calcu-
lation in the z-direction.

16.4.2 Performance

Since the ASUCA is being developed in FORTRAN language at the JMA, the GPU
code has to be developed from scratch in CUDA. Before implementing the ASUCA
on GPU, we re-wrote the Fortran ASUCA code to C/C++ language because we
change the element order of the 3-dimensional array to improve the memory access
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Fig. 16.3 Usage of the shared memory and the register to reduce the access to the global memory

performance of the GPU computing. In order to measure the performance of floating-
point operations on a GPU, we count the number of floating-point operations of the
CPU-based ASUCA by running it on a CPU with a performance counter provided
by PAPI (Performance API) (Browne et al. 2000). By using the counts and the GPU
elapsed time, the performance of the GPU computing is evaluated.

In all the cases, we fixed the grid number nx = 256 and nz = 48 of the computa-
tional domain and varied the number ny 32 to 208. The performance was measured
in both single- and double- precision floating-point calculation using a NVIDIA
Tesla M2050 in TSUBAME 2.0. The results of the GPU performance are shown in
Fig. 16.4. We achieved 49.1 GFlops in single precision for 256×208×48 mesh on a
single GPU. In the double precision, the performance has about half the single preci-
sion. As references, the performances on the Intel CPU (Xeon X5670 (Westmere-EP)
2.93 GHz 6 core x2: total 12 cores and 1 core) are plotted on the same graph. The
original FORTRAN code was compiled by the Intel ifort compiler. It is found that the
single GPU performance achieved a six-fold speedups in comparison with 2 sockets
of the CPU performance of the Intel Xeon X5670 in double precision.

16.5 Multi-GPU Computing

The GPU Tesla M2050 card on TSUBAME 2.0 has only 3-GB on-board video
memory, which can hold up to a grid of size 256 × 208 × 48 in running the ASUCA.
For large-size problems, it is necessary to use multiple GPUs beyond the video
memory on a single GPU. The current operation for the weather forecast at the JMA
utilizes the grid of size 721 × 577 × 50.
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Fig. 16.4 Single GPU performance on a NVIDIA Tesla M2050 of TSUBAME 2.0 and CPU
performance of the Intel Xeon X5670

We decompose the given computational domain in both the x- and y-directions
(2-D decomposition) and allocate the sub domain to each GPU since the z-directional
mesh size is relatively small. Because GPUs cannot directly access to the data stored
on the global memory of other GPUs, the host CPUs are used to bridge GPUs for the
exchange of the boundary data between the neighbor GPUs. The process is composed
of the following three steps: (1) the data transfer from GPU to CPU using the CUDA
runtime library, (2) the data exchange between nodes with the MPI library, and (3) the
data transfer back from CPU to GPU with the CUDA runtime library.

In the case of multi-GPU computing, the data communication time with the neigh-
bor GPUs is not ignored in the total execution time. The overlapping technique with
the computation is available to hide the communication costs and achieves better
performance with a large number of GPUs (Shimokawabe et al. 2010).

16.5.1 Performance of Multi-GPU Computing

Each node of TSUBAME 2.0 has three NVIDIA GPU Tesla M2050 attached to
the PCI Express bus 2.0 × 16, two QDR Infiniband and two sockets of the Intel
CPU Xeon X5670 (Westmere-EP) 2.93 GHz 6-core. The nodes are connected to the
fat-tree interconnection with 200 Tbps bi-section bandwidth. Each GPU handles the
domain of 256×108×48 in double precision and 256×208×48 in single precision,
respectively.

The multi-GPU performance of ASUCA on TSUBAME 2.0 is shown in Fig. 16.5.
Using 3990 GPUs, we achieved an extremely high performance of 145.0 Tflops
for the domain of 14368 × 14284 × 48 in single precision. The double precision
performance is 76.1 for the domain of 10336×9988×48. It is confirmed to maintain
a good weak scalability. To compare with the CPU performance, the performance of
3990 is compatible with 3990 × 50 CPU cores.
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Fig. 16.5 Multi-GPU performance of ASUCA on TSUBAME 2.0 comparing with the CPU

Figure 16.6 demonstrates the real case of the ASUCA operation with both the
real initial and the boundary data used for the current weather forecast at the JMA.
This simulation was performed with a 4792 × 4696 × 48 mesh with horizontal mesh
resolution of 500 m using 437 GPUs of TSUBAME 2.0 in single precision.

Fig. 16.6 ASUCA real operation to describe a typhoon with 4792 × 4696 × 48 mesh using 437
GPUs of TSUBAME 2.0
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16.6 Summary

The full GPU implementation of the next-generation, production weather code
ASUCA was carried out on the TSUBAME 2.0 supercomputer in the Tokyo Institute
of Technology. The GPU offers not only extremely huge computational performance
but also big advantages in respect of the cost and power consumption. It is really
meaningful that the numerical weather prediction, one of the typical applications for
a practical purpose, is provided as a successful example of the GPU supercomput-
ing. In China and other countries, large-scale GPU computing on supercomputers is
about to begin. TSUBAME 2.0 in the Tokyo Tech Global Scientific Information and
Computing Center (GSIC) is the first over-petaflops supercomputer in Japan. In the
GPU supercomputing era, it is expected that research communities becomes large
and active to achieve great outcomes on GPU supercomputers.
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Chapter 17
Targeting Atmospheric Simulation Algorithms
for Large, Distributed-Memory,
GPU-Accelerated Computers

Matthew R. Norman

Abstract Computing platforms are increasingly moving to accelerated architec-
tures, and here we deal particularly with GPUs. In Norman et al. (2011), a method
was developed for atmospheric simulation to improve efficiency on large, distributed-
memory machines by reducing communication demand and increasing the time step.
Here, we improve upon this method to further target GPU-accelerated platforms by
reducing GPU memory accesses, removing a synchronization point, and clustering
computations. The modified code ran more than two times faster than the original in
some cases even though more computations were required, demonstrating the impor-
tance of improving memory handling on the GPU. Furthermore, we discovered that
the modification also has a near 100 % hit rate in fast, on-chip L1 cache and discuss
the reasons for this. Finally, we remark on further potential improvements to GPU
efficiency.

17.1 Introduction

17.1.1 Multi-Scale Aspects of Atmospheric Models

The numerical integration of a set of conservation laws for mass, momentum, and
energy forms the dynamical core (hereafter, dycore) of an atmospheric model. Along-
side the dycore are physics packages representing phenomena that either fall below
truncation scales after discretization or are otherwise absent from the conservation
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laws. The dycore is also responsible for transporting variables used by the physics,
a challenging task when many species are involved. A coupling determines inter-
actions between the dycore and physics, much of which is multi-scale (Williamson
2007). The dycore typically dominates run time for larger problem sizes, sets the
grid spacing for physics packages (with notable exceptions, e.g., Khairoutdinov et
al. 2005), and sets the stage for overall parallel efficiency. This is even more the case
because physics routines currently operate only in vertical columns which are not
currently parallelized in a distributed memory manner.

The notion of multi-scale applies to dycore computations both spatially and
temporally. Temporally, all atmospheric dycores must respect the coupling of fast
and slow dynamics. Acoustic velocity in the lower atmosphere is roughly 350 ms−1

while wind speed maximizes at roughly 100 ms−1 in mid-latitude jet streaks. The
more normative wind speed is really only order 10 ms−1. Respecting the influence
of fast modes while simulating on the temporal scale of slower modes is non-trivial.
Ideally, a Newton–Krylov (NK) implicit method (Evans et al. 2009; Knoll and Keyes
2004) would be preferred as it achieves non-linearly convergent coupling of all scales.
At the core of a NK method is the linear Krylov solver, containing a series of domain-
spanning matrix-vector multiplies. These, however, require significant data move-
ment between separate memory spaces in a distributed memory environment—both
between system nodes and between GPU and main memories within nodes. Thus,
such methods often exhibit insufficient parallel efficiency to warrant using the order
104 nodes available on modern computers. One may use a smaller node count, but
then the throughput is not up to standard with needs of climate. Implicit methods with
a sufficiently effective preconditioner may prove useful for some weather applica-
tions, which require a much lower simulation throughput. But for now, we simulate
time-explicitly, resolving at least nominally all temporal modes of dynamics captured
by the spatial grid.

Explicit integration methods (e.g. Durran 1991; Klemp et al. 2007; Lin and Rood
1997) can operate with only local communication in parallel, allowing for much
better parallel efficiency. However, they must use restricted time steps to respect fast
modes, increasing the time to solution. Also, explicit coupling of fast and slow scales
is rarely high-order and usually zeroth-order. A common method of handling fast
modes for atmospheric models at current is to linearize and cycle the terms rele-
vant to acoustic propagation multiple times in a time step with cheap methods while
the more significant terms are handled to high-order accuracy on a larger time step
(a philosophy usually called split-explicit sub-cycling in atmospheric modeling). In
explicit methods, the manner in which fast modes are incorporated into the over-
all integration must respect computational efficiency as well as accuracy. This was
the main purpose of Norman et al. (2011) (hereafter, NNS11): resolving fast waves
faithfully in an explicit model while improving parallel efficiency by reducing com-
munication burden. Since jet streaks and sound waves only differ by at most a factor
of 4 in velocity for global models, the situation is not considered particularly stiff.
Therefore, the acoustic time step is used, and a focus on improved parallel efficiency
marks the study in NNS11. Here, we continue the efforts of NNS11 with particular
emphasis on GPUs and report current experiences.
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17.1.2 Efficiency on Distributed-Memory, GPU-Accelerated
Machines

Traditionally, large time steps and low computation give optimal efficiency. At low
to moderate levels of parallelism, semi-implicit semi-Lagrangian algorithms (Stan-
iforth and Cote 1991) are designed toward this end. On large machines, however,
parallel efficiency can be difficult to achieve due to communication burden. In many
applications, the problem size is increased for implicit methods to give a good
computation-to-communication ratio. The time to solution for realistic atmospheric
simulations, however, is infeasibly large at these sizes. For larger distributed memory
computers, split-explicit integration techniques improve parallel efficiency via local
communication (Cullen and Davies 1991; Gassmann 2005; Klemp et al. 2007). (Note
that we are not comparing overall run time or accuracy but only parallel efficiency.)
Split-explicit methods still suffer from frequent synchronization and communication
points interrupting relatively small pockets of computation, and they likewise cannot
scale to a large number of processes.

GPU acceleration gives additional efficiency constraints, mostly having to do with
memory handling. Data transfers between host memory (that is, main system mem-
ory) and device memory (that is, GPU memory) suffer lower bandwidth than those
within GPU memory. Thus, transfers between host and device memories must be
minimized and/or overlapped with computation. Second, within a kernel (a function
specifying the work of an arbitrary GPU thread), slow global memory (GPU DRAM)
accesses must be minimized and reused. Also, accesses should be organized such
that the compiler can coalesce transfers for efficient bus usage, transporting as much
data at a time as possible. The general efficiency paradigm for using global memory
is to store data in local fast reservoirs of on-chip memory and reuse it.

Another dominant issue is so-called device occupancy. Kernels should be frugal
enough with local (on chip, per multiprocessor) resources that hundreds of threads
can share a multiprocessor. This aids in hiding memory accesses by switching threads
while one is waiting on memory. The number of threads should be set to a multiple
of the available hardware resources to ensure that the entire GPU is not waiting on a
single multiprocessor or thread to finish. The parallelism must also be sufficiently fine
grained so as to specify enough threads to fill the entire device. Another constraint
to balance in is register pressure. The fewer the registers available per thread, the
slower the application. There are also other efficiency issues beyond these such as
reads and writes accessing the same shared memory banks.

17.1.3 Targeting Algorithms to the Hardware

In this paper, we discuss our experiences with modifying a new explicit method
to improve efficiency on GPUs. We also encourage the reader to reconsider their
computational path toward scientific goals even from the point of the numerical
algorithm, giving hardware utilization and numerical assumptions equal weight. For
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instance, less accurate algorithms that improve hardware utilization can allow refine-
ment in the discretization, potentially leading to a superior solution when refined.
While there are large costs involved in changing the core of most codes, the reach of
simulation capabilities at petascale and exascale likely outweighs development cost.
Also, many of the algorithmic choices one would make numerically to respect GPU
efficiency constraints also improve efficiency on distributed memory architectures
(e.g., infrequent synchronization, clustered computation).

As mentioned earlier, though split-explicit finite volume methods promise locality
and improved parallel efficiency, the communication burden has much room for
improvement. This is one reason for recent investment into low communication
Galerkin methods (Giraldo and Restelli 2008; Taylor et al. 2007; Nair et al. 2009;
Taylor et al. 1997) which offer potential to span order 104 separate memory spaces
efficiently, giving a better time to solution for large problem sizes. Algorithms with
excessive memory accesses and synchronization with relatively little computation
in between do not play to the strengths of a GPU device either. In NNS11, a new
finite volume approach was investigated to allow larger time steps while reducing
the typical finite volume communication frequency. Here, we give an example of
tailoring that algorithm specifically for GPU-accelerated hardware. Our goals are
keep the large time steps and reduced communication of NNS11 while increasing
compute intensity and data reuse.

17.2 Numerical Methods

17.2.1 Equation Set

In NNS11, a two-dimensional, compressible, non-hydrostatic model is used
(essentially the Euler system of equations) which explicitly conserves mass, momen-
tum, and a thermodynamic variable of meteorological relevance called potential tem-
perature. A Cartesian rectangular grid is used for spatial discretization. The equation
set is as follows:
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where ρ is the density, u is the horizontal wind, w is the vertical wind, p is the
pressure, and θ is the potential temperature which is related to the actual tempera-
ture, T , by θ = T

(

p0/p
)Rd/cp . The equation set is closed by the equation of state:

p = C0
(

ρθ
)γ where the constant C0 is defined by: C0 = Rγd p−Rd/cv

0 . The constants
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are γ = cp/cv ≈ 1.4, Rd = 287 J kg−1 K−1, cp = 1004 J kg−1 K−1, cv =
717 J kg−1 K−1,and p0 = 105 Pa. Note that when reduced to primitive form (i.e.,
conserving ρ, u, w, and p), this is identical to the traditional Euler system that con-
serves energy. Thus, these are equivalent in continuous form. This equation set allows
one to simulate the horizontal-vertical interactions in the atmosphere in a simpler
2-D Cartesian setting with test cases that are relevant to atmospheric interests and
also offering a numerically challenging testbed for new methods.

17.2.2 Numerical Discretization

We use an explicit finite volume method to solve these equations because we found
its flexibility in time discretization and spatial reconstruction to be conducive to our
goals. In the finite volume method, the set of conservation laws is first integrated
in space over an arbitrary cell domain (the union of cell domains fills the physical
domain). Then, the Gauss divergence theorem is applied to the flux divergence inte-
grals, removing the need for spatial derivatives of the fluxes to exist. In the final
form, the local time evolution of cell-averaged state variables depends on the flux
vectors specified at cell boundaries. Integrating directly in time places the equation
set in fully discrete form in which the state variables are updated from time step
to time step based on the time-averaged flux through bounding interfaces. It is this
time-averaged flux over a time step that forms the central computation of the NNS11
method.

To compute the time-averaged fluxes in an explicit manner, a generalized Riemann
solver that allows time steps larger than CFL = 1 is used. The CFL (or Courant-
Friedrichs-Lewy) number is C F L = cmaxΔt

(

Δx
)−1 where cmax is the maximum

wave speed admitted by the equation set, Δt is the time step, and Δx is the grid
spacing. Most time-explicit methods cannot simulate stably beyond CFL = 1. This
solver could be thought of as a flux vector analog of the solver presented in Ahmad and
Linderman (2007), itself being an adaptation of the f-waves solver in Leveque (2002).
It can stably simulate at larger time steps though the maximum stable time step past
CFL = 1 still depends on the flux Jacobian gradient. Any spatial reconstruction can
be used with the method as well. We used the WENO (Weighted Essentially Non-
Oscillatory) interpolation method of Capdeville (2008), and because of its expense
we pre-computed the reconstructions, sampling them when an interpolation was
needed. The choice to pre-compute turned out to be a suboptimal choice for both
CPUs and GPUs, which will be demonstrated in the next section. For details on the
integration method, please see NNS11.

17.2.3 Reducing Memory Accesses and Synchronization

Here we create a rough map of the memory dependence in updating the state variables
in a cell in one direction. Consider n to be the number of variables per cell, and c to
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be the ceiling of the CFL number. For a single cell, 5n floats (floating point values)
are retrieved from main memory to compute the WENO reconstructions (because of
a 5-cell stencil), and 5n floats are then written back to memory (five moments per
reconstruction). Next, for an interface, 5nc floats are read in from memory to compute
the flux from reconstructions, and n floats are then written to memory. Finally, to
update a cell, 2n values (fluxes from bounding interfaces) are read from memory,
and n values per cell back to memory. Thus the volume of memory accesses (reads
and writes) needed by one cell is roughly

(

14+ 5c
)

n per cell in a given direction.
We propose a modification of the method in NNS11 which would reduce the vol-

ume of memory accesses. Suppose the WENO reconstructions are not pre-computed,
and instead standard polynomial interpolation is computed on-the-fly. Hyperdiffu-
sion (even-ordered derivatives of fourth order and above) could be applied after the
fact to damp oscillations. We would then need

(

4+ c
)

n values read in from memory
to compute the fluxes with n values written back out to memory. Then, 2n values are
read in to compute the update, and n values are written back out in the update. For
sixth-order hyperdiffusion or lower, 7n cells must be read in, and then n cells must
be written back to update state variables. This gives total memory requirements of
(

16+ c
)

n per cell per direction.
For CFL values of 1, 2, and 3, the modification reduces memory accesses per cell

by 11 %, 15 %, and 34 %, respectively. Without the post-hoc hyperdiffusion (e.g.,
WENO reconstructions are pre-computed on a per-block basis), for CFL values of 1,
2, and 3, memory accesses would be reduced by 53 %, 58 %, and 62 %, respectively.

Though this analysis is not exactly representative of true memory access counts,
it demonstrates how a minor modification in the algorithm reduces memory depen-
dence. In addition, this modification removes the synchronization point between
the reconstruction and flux kernel launches, clustering more computation between
memory accesses.

17.3 Results

We refer to the method of NNS11 as the “Original” formulation and the modification
to reduce memory accesses given in Sect. 17.2.3 as the “Modified” formulation. We
use only the rising thermal test case of NNS11 herein and focus only on computational
aspects, leaving accuracy to future publication. For specification of these test cases
and for results from the Original formulation, please refer to NNS11.

17.3.1 Implementing the Multi-GPU Code

In coding for GPUs, we chose the CUDA for C language by Nvidia. The principal
efficiency constraint for memory handling with GPUs on current architectures is that
data should be communicated between main memory and GPU memory as little as
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possible. For this reason, all resident data (reconstructions, fluxes, and state variables)
remains in the GPU memory at all times. Data is transferred between system and
GPU memory spaces only for file I/O and halo exchanges. Halo exchange consume
negligible run time because the data volume is small.

There were five functions in the Original formulation’s C code that required con-
version to CUDA kernels: reconstruction of state variables, computation of interface
fluxes, updating of cell-mean state variable based on fluxes, application of the gravity
source term, and maintenance of boundary values. Note that even if a kernel gains
little to no speedup, conversion is still worthwhile to avoid memory transfers over
the PCI Express bus. We show C code from one of our simpler functions in Listing
1 and corresponding CUDA code in Listing 2 to illustrate the simplest loop trans-
formation guaranteeing all of the work will be done regardless of the kernel launch
specifications. This transformation does not permit efficient use of shared memory
in general because there is no longer a guaranteed unique thread-to-cell mapping.
This means that one cannot know a priori in writing the kernel how to manage the
layout of data from global memory into shared memory.

Listing 3 gives an alternative CUDA kernel that gives a better context for using
shared memory since there must be a unique cell-to-thread mapping for it to work
properly. This kernel, however, requires that the block and grid dimensions specified
during kernel launch be large enough to ensure that there are enough threads to span
all of the cells. We do not make use of shared memory at the moment because of
complications when the block size is not an exact multiple of the cells or interfaces.

On the machine used to run tests for this study, there are two Nvidia GTX 480 cards
with the GF100 architecture containing 16 streaming multiprocessors (SMs) with 32
streaming processors each. The GTX 480 disables one of the multi-processors to
give 480 cores total per card. Each card has 1.5 GB of DRAM aided by a 768 kB L2
cache. Each SM has 32 × 210 registers available to spread among resident threads
and 64 kB of on-chip memory which can be partitioned either into 16 kB of L1 cache
and 48 kB of shared memory or 48 kB of shared memory and 16 kB of L1 cache. We
currently give preference to the L1 cache since we are not yet using shared memory.

To spread the problem over two GPUs on the same machine with CUDA, one
must map one GPU per host (CPU) code thread. This leaves two options for host
parallelization: OpenMP and MPI. An OpenMP code usually parallelizes only the
dense sections of computation which would benefit from threading. Because of the
unique host thread to GPU device mapping required by CUDA, however, it is not
yet clear to us how to handle this among multiple parallel sections in the code except
to place the entire code in a single OpenMP parallel section. Since the code will
need to be spread across nodes anyway, we consider using only MPI to give the most
benefit for development effort. There are overheads associated with using MPI to
partition work within a single node, which we accept. Due to using only two GPUs,
we currently decompose the domain only in the x-direction, as it contains the most
cells in the tests cases herein.
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Listing 17.1 C function to update cell means based on interface fluxes in the x-direction.
STATE and FLUX are function macros. GS is the number of so called ghost cells which
maintain boundary conditions

1 void update_x() {
2 int i, j, k;
3 for (i = GS; i < NXC+GS; i++)
4 for (j = GS; j < NZC+GS; j++)
5 for (k = 0; k < 4; k++)
6 STATE(i,j,k) -= DT / DX * (FLUX(i+1-GS,j-GS,k) -
7 FLUX(i -GS,j-GS,k));
8 }

Listing 17.2 CUDA kernel to update cell means based on interface fluxes in the x-direction
that guarantees all work is done regardless of kernel launch specifications. STATE and FLUX
are function macros. GS is the number of so called ghost cells which maintain boundary
conditions

1 _ _global_ _ void update_x(fpprec *state, fpprec *flux, int numx) {
2 int i, j, k, ii, jj;
3 ii = blockIdx.x*blockDim.x+threadIdx.x;
4 jj = blockIdx.y*blockDim.y+threadIdx.y;
5 for (i = GS+ii; i < NXC+GS; i+=gridDim.x*blockDim.x)
6 for (j = GS+jj; j < NZC+GS; j+=gridDim.y*blockDim.y)
7 for (k = 0; k < 4; k++)
8 STATE(i,j,k) -= DT / DX * (FLUX(i+1-GS,j-GS,k) -
9 FLUX(i -GS,j-GS,k));
10 }

Listing 17.3 CUDA kernel to update cell means based on interface fluxes in the x-direction
which allows efficient use of shared memory. STATE and FLUX are function macros. GS is
the number of so called ghost cells which maintain boundary conditions

1 _ _global_ _ void update_x(fpprec *state, fpprec *flux, int numx) {
2 int i, j, k, ii, jj;
3 ii = blockIdx.x*blockDim.x+threadIdx.x;
4 jj = blockIdx.y*blockDim.y+threadIdx.y;
5 i = GS+ii;
6 j = GS+jj;
7 if (i >= NXC+GS || j >= NZC+GS) return;
8 for (k = 0; k < 4; k++)
9 STATE(i,j,k) -= DT / DX * (FLUX(i+1-GS,j-GS,k) -
10 FLUX(i -GS,j-GS,k));
11 }

17.3.2 Run Time Comparison

The Modified code differs from the Original code in two places. First, reconstruction
is changed to standard fifth-order polynomials and is included within the flux routine,
computed on the fly. Second, a hyperdiffusion kernel was added to damp oscillations.
Counting operations in the reconstruction and hyperdiffusion portions of the code
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Table 17.1 Run times in seconds of the Original and Modified codes in simulating the convective
thermal test case for 100 s for three CFL values, two problem sizes (640×320 cells and 1280×640
cells), and several computational setups

Max. CFL 640× 320 1280× 640
Double precision Single precision Double precision Single precision
CPU GPU 2×GPU GPU 2×GPU CPU GPU 2×GPU GPU 2×GPU
Original Original

1 138.94 30.64 16.73 21.73 11.71 1114.67 240.31 124.90 164.55 84.82
2 101.33 20.19 10.97 13.28 7.20 819.32 157.18 81.15 100.39 51.94
3 88.90 16.97 9.09 10.67 5.75 721.83 131.54 67.18 80.54 41.15

Modified Modified

1 102.06 16.91 9.27 9.54 5.46 861.48 128.08 66.56 68.75 36.03
2 84.60 12.73 7.04 7.01 4.03 708.07 97.75 50.44 50.59 26.28
3 81.27 11.97 6.53 6.63 3.73 676.92 91.01 46.82 48.86 25.48

The GPUs are Nvidia GTX 480 cards, and the CPU is an Intel Core i7 960 (quad-core 3.2 GHz)

only, the Modified formulation has 18 % fewer operations for CFL ≤ 1, 42 % more
for 1 < CFL ≤ 2, and 96 % more for 2 < CFL ≤ 3. The run times will not
follow these percentages because of compilation optimizations, memory fetching
time, instruction level parallelism, and that the counts are only for reconstruction and
hyperdiffusion portions of the code. Considering only the amount of computation, the
Modified version should only run modestly faster for CFL ≤ 1, and for larger time
steps, it should run significantly slower. We hypothesize that reducing the number
of memory accesses will outweigh additional computation.

Table 17.1 shows run time results for the Original and Modified codes running a
convective thermal test case for 100 model seconds over a variety of CFL numbers
and computational setups. No file I/O is performed during these runs. The CPU
code was parallelized with OpenMP using the 8 threads available on the Intel i7 960
processor with full optimizations and SSE enabled on Intel’s icc version 11.1.073
compiler for a fair CPU-GPU comparison. There is a 1.07× to 1.36× speed-up even
on the CPU associated with the modification (Original run time/Modified run time)
with the larger speed-ups for lower CFL values. For GPUs, speed-up associated with
the modification is 1.45× to 1.81× in double precision and 1.65× to 2.28× in single
precision.

For the 640× 320 cell problem size, the Original code gave speed-ups associated
with going from CPU to GPU of 4.53× to 5.24×with the larger speed-ups for higher
CFL values (all double precision). This follows a pattern we have observed in the
past: the more the work, the greater the speed-up in going from CPU to GPU. For the
modified version, the speed-ups in going from CPU to GPU were 6.04× to 6.79×.
For the larger problem size, the Original code speed-ups were 4.64× to 5.49×, and
the Modified code speed-ups were 6.72× to 7.44× (all double precision for 1 GPU).

In going from double precision to single precision, the associated speed-ups vary
between 1.46× and 1.93× and without any obvious pattern for this small sample
size. Speed-ups were, however, larger and less variable for the Modified code. Also,
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the speed-up associated in going to from one GPU to two GPUs ranges from 1.74×
to 1.96× largely depending upon problem size (i.e., computation to communication
ratio). Speed-ups would probably be larger with an OpenMP implementation, but
we chose MPI for the development effort and flexibility. Another factor preventing
these speed-ups from reaching the optimal 2× is that when split, there is less work
per GPU. Overall speed-ups in going from the CPU to single precision on one GPU
ranged from 6.39× to 8.96× for the Original code and 10.70× to 14.00× for the
Modified code. Please note that these results use very large problem sizes per GPU,
and therefore, these form a sort of upper bound on what would be expected with these
kernel implementations. In reality, especially for high-throughput climate codes, the
problem size per GPU will be lower, meaning that speed-ups are expected to be lower
because computation-to-communication ratio is lower.

17.3.3 GPU Profiling Results

We profiled the Original and Modified codes for CFL ≤ 1 using the Nvidia Compute
Visual Profiler tool. The flux and reconstruction kernels together took up 92 % of the
overall GPU run time for the Original code and the flux and hyperdiffusion kernels
took up 89 % of run time for the Modified code. We will therefore restrict profiling
discussion to these largest portions of the code. Both codes had a 60–65 % hit rate
in the L2 cache when reading from global memory. What is alarming, however, is
that the Modified code had a hit rate of 99.2 % in fast on-chip L1 cache for read
requests while the Original code had a hit rate of only 57.4 %. This means that as is,
there is less merit in using shared memory explicitly for the Modified code because
nearly all values are coming from on-chip memory anyway. This does not address
potential banking conflicts for the on-chip L1 accesses, however, but coding for
shared memory also requires more development cost.

When blocks of threads are first mapped onto a SM during kernel execution, there
are inevitably cold-read misses on the L1 cache as values are read in for the first
time. Then, given the cache is not overflowed for local data reuse, data will hit the
cache each time afterward. Paying attention to three things should help the L1 hit
rate increase. First, if the volume of data read in by a kernel from main GPU DRAM
fits into L1 cache in a given block, the hit rate will be high after the round of cold
misses. Second, if successive threads in a warp reuse the same data, overall data
requirements of the block are greatly reduced. Even if data does not fit into L1 cache
across the block, threads reusing successive data increases the chance of an L1 cache
hit due to temporal locality. Third, global synchronization (separate kernel launches)
forces a round of cold misses, reducing the L1 hit rate.

In the Modified code, we specify a 16×16 block dimension for flux computations,
and there is a halo of three cells past the boundary interfaces for CFL ≤ 1 in one
dimension. Therefore, we need

(

15 + 3 × 2
) × 16 = 336 (15 cells within the 16

interfaces and two 3-cell halo regions on either side) state variable vectors per CUDA
thread block. With 4 variables per cell in double precision (8 bytes per float), and



17 Targeting Atmospheric Simulation Algorithms 281

laying 2 blocks on each SM, the Modified code requires 21504 bytes of state variable
data which easily fits into the 48 kB of L1 cache (since we specify an L1 cache
preference). Therefore, after the round of cold misses, each subsequent read request
should hit L1 cache, resulting in the over 99 % L1 hit rate for read requests. The
Modified flux kernel (which takes up over 80 % of the total runtime) ran at 25 % of
the aggregate compute throughput in both single and double precision, neglecting
kernel launch overheads. Given the 99 % L1 cache hit rate on global memory loads,
we attribute this mainly to banking conflicts. Given that the code development effort
is significantly reduced by using L1 cache rather than tedious and bug-prone shared
memory optimizations, we consider this an acceptable throughput.

17.4 Conclusions

We have modified the finite volume non-hydrostatic atmospheric solver from NNS11
to achieve better efficiency on GPUs. Specifically, we removed the pre-computation
of spatial reconstructions in favor of using cheaper reconstructions on the fly, thus
reducing the volume of memory being accessed and eliminating a synchronization
point, enabling better clustering of computations. In Sect. 17.3.2, we demonstrated a
consistent improvement in run time with the Modified code over the Original code,
by more than a factor of two in some cases. Given that the Modified code required
more computation at CFL ≥ 2, the merit of improving memory handling is evident.

We began this study with a running list of constraints for GPU efficiency, and
we ended with several more, specifically regarding the L1 per-SM cache. We were
surprised by the extremely high hit rate on L1 cache for read requests in the Modified
code, and we hypothesize that the reasons include the reduction in synchronization;
the local thread-to-thread reuse of data within a block; and the low volume of data
required for computing a flux, allowing it to fit entirely into the L1 cache. We are
therefore led to believe that the development effort might be greatly simplified con-
cerning memory optimizations if one abides by these constraints, allowing the L1
cache to do all of the work itself. This approach may not be applicable to every
kernel, but when it is, the development effort will be minimal.

In the future, we wish to remove the need for hyperdiffusion for several reasons.
First, it requires a synchronization. Second, for steady-state test cases, hyperdiffusion
will usually destroy geophysical balances even when the coefficients are small, mak-
ing it difficult to test the viability of the method in simplified frameworks. Finally,
hyperdiffusion does not distinguish between smooth and non-smooth regions of the
flow, damping all with the same coefficient of diffusion. WENO, which is adaptive
in nature to the flow smoothness, is a better alternative. We propose, in the future,
pre-computing the WENO reconstructions on a per-block basis to keep the memory
access counts low.
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Chapter 18
Investigation of Solving 3D Navier–Stokes
Equations with Hybrid Spectral Scheme
Using GPU

Ying Xu, Lei Xu, D. D. Zhang and J. F. Yao

Abstract The approach of accelerating application with GPUs already delivers
impressive computational performance compared to the traditional CPU. The hard-
ware architecture of GPU is a significant departure from CPUs, hence the redesign and
validation of the numerical algorithm are necessary. The spectral-finite-difference
schemes usually used in the direction numerical simulation (DNS) for turbulent
channel flows are studied here. In order to validate the numerical accuracy, the scalar
diffusion equation is first solved with this scheme, and the results from GPU and CPU
are validated with the analytical solution. The major computational kernels of the
scheme are the fast Fourier transfer (FFT) and the linear equation solver, which are
both implemented on GPU. The performance study of the scalar diffusion equation
shows at least 20× speedup. For 3D Navier-Stokes equation, the performance on a
single Nvidia S2050 card shows 25 times speedup.

18.1 Introduction

Modern graphic cards (GPUs) are very powerful processors, where the peak compu-
tational capabilities of the latest GPUs are much higher than the multi-core high-end
CPUs. Three out of the top 5 supercomputers in the Nov. 2011s Top 500 List (2012)
used GPUs as computational accelerators, such as Tianhe-1A, Nebula, and SUBAME
2.0. Besides GPUs’ excellent raw computing power, GPUs also have very attractive
metrics for performance per dollar and performance per watt.
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GPUs and also the many-core CPUs use the shared instruction multiple data
(SIMD) paradigm to allow up to hundreds of float point units to operate simulta-
neously. However not all algorithms can be implemented efficiently using SIMD
paradigm, and with the trend of computing hardware, it is expected that sci-
entific application will focus on migrating to parallel multi-core hardware. The
programming model GPGPU (general purpose computing on GPU) has risen as
a break-through for the large scale numerical computing, and the parallel computing
architecture CUDA of NVIDIA (2008) and the parallel programming industry stan-
dard OpenCL (Khronos 2009) are both used for various scientific applications, such
as physics, cosmology, molecular dynamics.

In this study, we investigate the possibility of accelerating the direct numerical
simulations (DNS) for turbulent flows using GPUs. The turbulence DNS has bene-
fited from the development of HPC systems over the past 30 years, but it still remains
as a major challenge (Cant 2002). The current state of applying GPUs to compu-
tational fluid dynamics (CFD) problem is either simulations for the real time fluid
effects where the speed and appearance weight over the numerical accuracy (Stam
1999; Harris et al. 2003; Liu et al. 2004; Crane et al. 2007), or 2D geometries sim-
ulations with simple numerical scheme which are not suited for engineering and
scientific purposes (Zhao 2008; Li et al. 2003; Kuznik et al. 2010; Obrecht et al.
2010; Goodnight et al. 2003; Bolz et al. 2003). Here we review some previous works
of CFD simulations on GPUs.

In the computer graphics where accuracy is not as important as the speed, the
method of Stam (1999) are very popular for fluid simulations. Stam’s method uses
a semi-Lagrangian method which doesn’t require very small time steps to solve the
Navier-Stokes equation and also shows numerical stability with very large time-steps.
This method suffers from too much “numerical dissipation” and hence is not accurate
enough for engineering purposes. Many researchers (Harris et al. 2003; Liu et al.
2004; Crane et al. 2007) implemented this method on GPUs. The Lattice-Boltzmann
method (LBM) falls in the category of embarrassingly parallel problems, and is
simple to implement on both serial and parallel machines. This method also requires
significant computational resources, and hence GPUs could greatly accelerate the
LBM simulations (Zhao 2008; Li et al. 2003; Kuznik et al. 2010; Obrecht et al.
2010), with the raw computational capability.

The previous works on the acceleration of engineering and scientific CFD on GPUs
are not as many as those in Stam’s method and LBM. The early works (Goodnight
et al. 2003; Bolz et al. 2003) are related to implementing linear operation kernel
on GPUs and applying these kernels to solve conjugate gradient method, multi-grid
method, and more complex problems like the Navier-Stokes equation. The most
notable work of engineering importance is the work of Brandvik and Pullan (2008)
who solved an Euler flow in 3D geometry. Elsen et al. (1982) also reported large
calculation of flow over hypersonic vehicle on GPUs, where the steady solution of
the compressible Euler equations is obtained. The measured speedups are at least
15× relative to the CPU implementation in Elsen’s work.

In this study, we focus on using the spectral-finite-difference method to solve
three-dimensional Navier-Stokes equations (Moin and Kim 1982; Cortese and
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Balachandar 1994; Garg et al. 1997), where the method is often used to simulate
the turbulent channel flows. In this method, the second order finite difference is used
in the direction orthogonal to the walls, and the Fourier transform is used in the direc-
tion horizontal to the wall. The main computational kernels of this problem include
the sparse linear equation solver and fast Fourier transform, and both kernels have
been implemented on GPUs (NVIDIA 2010; Bell and Garland 2008).

Producing identical results in CPU and GPU implementations of an algorithm and
evaluating the accuracy of numerical scheme on GPU are not a simple issue. Even
as the exact same sequence of instructions is executed on CPU and GPU processors,
it is quite possible for the results to be different (Elsen et al. 1982). To validate
results from GPUs with the existing benchmark results, a certain number of grid
points are required for 3D Navier-Stokes equations and the memory requirement
of this problem often exceeds the amount of memory a single GPU could provide.
In this study, we will discuss and implement the main computational kernel of the
spectral-finite difference method for 3D Navier-Stokes equations. For the verification
of the numerical accuracy, we solve a scalar diffusion problem and compare with
the analytical solution to the PDE. This approach will provide us an opportunity to
report the numerical errors on GPUs in a quantitative manner.

In Sect. 18.2 we describe the physical problems and the basic equation. The basic
implementation of this problem is discussed in Sect. 18.3. The numerical accuracy
and performance results are discussed in Sect. 18.4. The conclusion is presented in
Sect. 18.5.

18.2 Basic Equations and Numerical Algorithms

The governing equations of motion for an incompressible fluid are shown as follows
in a non-dimensional form:

∂ui

∂xi
= 0 (18.1a)

∂ui

∂t
+ ∂

(

uiuj
)

∂xj
= − ∂p

∂xi
+ 1

Re

∂2ui

∂x2
j

(18.1b)

where ui is the instantaneous velocity, p is the pressure, and Re is the Reynolds
number. All the primitive variables are non-dimensionalized by the half width of
the channel and the steady state centerline velocity, which are the characteristic
length and velocity respectively. The flow field is homogeneous along the horizontal
direction (x and y), and Fourier transforming Eq. (18.1b):

∂ ũ

∂t
+ ιkx ũu + ιky ũv + ∂ ũw

∂z
= −ιkxp̃− 1

Re
κ2̃u+ 1

Re

∂ 2̃u

∂z2 (18.2a)
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= −∂ p̃

∂z
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∂2w̃

∂z2 (18.2c)

Here ˜(·) denotes the primitive variables in Fourier space and κ2
x + κ2

x = κ2. The
second-order Crank-Nicolson schemes are employed for the spatial derivatives in
the non-homogeneous direction (here z- direction). The aliasing error arising in the
pseudo-spectral treatment of non-linear terms are removed using the 2/3 rule. The
RK3 method is applied to the calculation of the convective term and the horizontal
diffusion term. To ensure the flow field divergence free, the pressure Poisson equation
is solved as follows:

∂˜�

∂z2 − κ2
˜� = ιkxũ ∗ + ιkyṽ ∗ + ∂w̃∗

∂z
(18.3)

where ũ ∗, ṽ ∗, w̃∗ is the velocity field solved from Eq. 18.2. The velocity after diver-
gence correction is

ũ = ũ ∗ − ι κx˜�, (18.4a)

ṽ = ṽ ∗ − ι κy˜�, (18.4b)

w̃ = w∗ − ∂˜�
∂z
. (18.4c)

The pressure Poisson equation is solved with implicit Euler scheme and the incom-
pressible constraint can be enforced at the new time step.

To solve the 3D Navier-Stokes equation, the memory requirement is huge and
usually requires a distributed memory machine. To validate the numerical accu-
racy, a certain number of grid points must be maintained. For example, the DNS
results of early works used 192× 160× 192 grids Kim et al. (1987), and the largest
simulation size of the isotropic turbulence is 143363 (http://www.nscc-tj.gov.cn/
example/example_12.asp (2012/05)). NVIDIA’s Fermi S2050 offers 2.6 GB mem-
ory for computation. To investigate the numerical accuracy of this scheme on GPU,
a simpler case is studied first. We choose to solve a scalar diffusion equation using
the spectral-finite-difference scheme. The analytical solution exists for this type of
PDE with certain boundary conditions and initial conditions, which can be used to
assess the numerical accuracy of GPU implementation. With the convective terms
absorbed in the source terms, the 3D scalar diffusion problem can be discretized to
a set of sparse linear equation systems which are similar to the discretized equations
of Eqs. 18.2, 18.3.

The scalar diffusion equation is defined as follows

∂�

∂t
= −�∇2�+ g (x, y, z, t) (18.5)

http://www.nscc-tj.gov.cn/example/example_12.asp
http://www.nscc-tj.gov.cn/example/example_12.asp
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where � is the diffusion coefficient. Using fast Fourier transfer (FFT) on x and y
directions Eq. 18.5 results in:

∂˜�

∂t
= −�κ2�+ �∂

2
˜�

∂z2 + g
(

κx, κy, z, t
)

(18.6)

Using the second central difference scheme and Crank-Nicolson second-order
implicit method for Eq. 18.6 becomes:
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(18.7)

where�n is the value at nth time step. With periodic boundary condition imposed on
all three directions, Eq. 18.7 can be reduced to a set of five-banded equations for each
pair of

(

κx, κy
)

, where the linear equations are of size Nz (number of grid points
along z direction. For the temporal integration, RK3 is used.

With certain boundary and initial conditions, the analytical solution exists for
Eq. 18.6. In this study, the problem described below is chosen as the test problem,
and the analytical solution to the PDF is used to verify the numerical accuracy on
both GPU and CPU. The three-dimensional computational domain is set as a cubic
box with each side as 2π. The source g(x, t) in Eq. 18.5 is set to be zero. The initial
condition of the scalar field is set as

F (x) = 1
(

2πσ2
)3/2 exp

[

−||x− xc||2
2σ2

]

, (18.8)

where σ is a constant and xc is set at the center of the domain. With the initial
condition function prescribed in Eq. 18.8, the analytical solution can be derived from
the general solution of Eq. 18.6 with respect to the prescribed initial condition:

F (x, t) = 1

π
(

4�t+ 2σ2
) 3

2

exp

[

−||x− xc||2
4�t+ 2σ2

]

. (18.9)

18.3 Implementation of Numerical Solver on GPU

To map the algorithm on GPUs it is necessary to classify algorithm into compu-
tational kernels and the data dependence of the computational kernels. The major
computational kernels of the spectral-finite-difference scheme are:

1. two dimensional fast Fourier transform (FFT),
2. sparse linear equation solver.
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The five-banded sparse linear equations are often of size O (

102∼104
)

and diag-
onal dominant. In this study, two linear equation solvers are implemented: (i) Gauss-
Seidel method (referred as GS method hereafter), and (ii) conjugate gradient (CG)
method (referred as CG method). The GS method is inherently sequential, where
each iteration result depends on the previous iteration, and hence it is not suitable to
be parallelized using SIMD paradigm. The CG method is more adapted to the shared
memory machine, where the data communication only occurs at the neighboring
threads. LU decomposition as a general method to solve linear equation is not used
here. This is because the equations solved here are sparse, the operation account
of LU method is of order O (

N3
z

)

while the iteration methods, such as GS and CG
methods, have the operation account of order O (Nz).

The spectral-finite-difference scheme has a special data parallelism, where the
total of Nx×

(

Ny + 2
)

linear equation system is independent from each other for each
(

κx, κy
)

wavenumber pair. The most efficient way to use GPU threads in parallel is to
solve the linear equation for each

(

κx, κy
)

pair at the same time. According to CUDA
memory and programming paradigm, each GPU thread has its own local register and
memory. GPU threads are grouped in to block, where the shared memory is available
to all the threads in that block. The GPU thread blocks are organized into grids, where
each thread can access the global memory on GPU. The coefficients of the sparse
linear equation systems are generated on the local memory and register attached
to each GPU thread with wavenumber module κ2 as the input coefficient, and then
Gauss-Seidel method is used to solve the linear equation system. This implementation
method utilizes the data parallelism of the algorithm and the CUDA memory model
and programming paradigm to a full extend. However the restriction is that the local
data required by the kernel function need to be fitted in the local storage space on
GPU threads (16 KB for NVIDIA S2050). It is found that the size of the linear
equation system should be less than 256 on NVIDIA S2050 for the GS method. In
this study, the Gauss-Seidel method is implemented on GPUs using the parallelism
method discussed above, which is referred as “Implementation I” in Sect. 18.4.

We could also apply the parallelism discussed above to CG method. Due to the
multiple auxiliary variables used in the CG method, the size of the linear equation
system that can be solved on a single GPU thread is found to be much smaller than
that of the GS method. From the performance profiling of the CG method on CPU, the
sparse matrix vector multiplications take up most of the computational time. To map
CG method to GPU, we choose to accelerate the performance by using CUSPARSE
library from NVIDIA (2010). This implementation is referred as “Implementation II”
in Sect. 18.4.

18.4 Numerical Accuracy and Performance Results

In this section, the validation of numerical accuracy for the scalar diffusion equation
Eq. 18.5 is presented first. The performance study of 3D Navier-Stokes equation is
analyzed in details. All the tests are executed on the quad-core AMD Barcelona
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Table 18.1 The numerical accuracy and performance results for Eq. 18.6 on CPU

Problem size FFT (s) Linear equation solver (s) Total time (s) Maximum error

643 1.52× 10−2 3.85× 10−2 0.0534 2.408× 10−4

963 2.34× 10−2 0.131 0.154 1.079× 10−4

1283 0.135 0.301 0.436 6.089× 10−5

160 3 0.276 0.545 0.821 3.902× 10−5

1923 0.464 0.938 1.403 2.712× 10−5

2403 0.950 1.699 2.649 1.737× 10−6

CPU at 1.9 GHz and the tests on CPU have been built with 64-bits PGI FORTRAN
compiler 8.0-5 with basic optimization –O turned on. The GPU platform is NVIDIA
Tesla S2050 GPU blade server, and the host CPUs are also quad-core AMD Barcelona
CPU. CUDA version is 4.1.

We now compare the scalar diffusion test case on a single CPU core and one
GPU card. Table 18.1 presents the results on CPU as the reference for numerical
accuracy and performance. It is observed that maximum error ‖ · ‖∞ on CPU is
around 10−6−10−4 for six problem sizes when compared with the analytical solution
Eq. 18.9. The numerical results are computed after 100 steps of iterations. For the
largest grid size 2403, the maximum error is around 10−6, As the grid resolution
increases, the numerical error also decreases correspondingly. However the error is
still high compared to the analytical solution. This is because the Green function used
in the general solution for Eq. 18.5 is actually for the infinite computation domain
with zero boundary conditions. With the Fourier transforms imposed in x and y
directions, the periodic boundary conditions are imposed to simulate the infinite
computational domain. Since the boundary conditions of the analytical solution are
different from the numerical solver imposed, the errors in Table 18.1 are considered
to be in a reasonable range. If the L2 norm is used, the numerical error compared
with the analytical solution is around 10−8.

The total computational time in Table 18.1 is measured for each simulation time
step, which includes Nz forward FFTs, Nz backward FFTs and the linear equation
of size Nz solved Nx × (Ny + 2) times. A total of 100 steps are performed and the
average is taken for the measured time. Since the iteration methods, GS and CG, are
used here, even with the same convergence criteria, the numbers of iteration for these
two methods might vary, and the total floating point operations cannot be counted
exactly. In this study, we only compare the computational time measured for each
time step.

In Sect. 18.3 two implementation methods for solving linear equation systems
are discussed. One is to use Nx × (Ny + 2) GPU threads to solve the linear equa-
tion system in parallel (“Implementation I”). The other is to solve the equation with
conjugate-gradient method using CUSPARSE library (“Implementation II”). The
numerical error and the wall time for computational kernels are listed in Tables 18.2
and 18.3. Since CUFFT library is used for forward and backward FFT in the algo-
rithm, the wall time for FFT in Tables 18.2 and 18.3 (second column) is almost the
same.
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Table 18.2 The numerical error and computational time for “Implementation I” on NVIDIA S2050

Problem
size

FFT (s) Linear
equation
solver (s)

Total time (s) Speedup Max error
compared with
analytical
results

Max error
compared with
CPU results

643 3.23× 10−3 3.96× 10−3 7.20× 10−3 7.46 2.407× 10−4 3.797× 10−14

963 6.19× 10−3 7.85× 10−3 1.40× 10−2 16.68 1.079× 10−4 5.018× 10−14

1283 6.42× 10−3 1.60× 10−2 2.25× 10−3 18.77 6.089× 10−5 8.127× 10−14

1603 9.68× 10−3 3.07× 10−2 4.04× 10−3 17.77 3.902× 10−5 5.240× 10−14

1923 1.60× 10−2 4.78× 10−2 6.38× 10−3 19.60 2.712× 10−5 7.127× 10−14

2403 3.01× 10−2 9.66× 10−2 0 .127 17.59 1.736× 10−6 4.996× 10−14

Table 18.3 The numerical error and computational time for “Implementation II” on NVIDIA
S2050

Problem
size

FFT (s) Linear equation
solver (s)

Total time (s) Speedup Max error
compared with
analytical results

643 3.35× 10−3

4.06
4.07 1.33× 10−2 2.408× 10−4

963 7.09× 10−3

6.60
6.61 2.81× 10−2 1.053× 10−4

1283 6.32× 10−3 10.55 10.55 4.13× 10−2 6.092× 10−5

160 3 1.02× 10−3 16.21 16.21 5.06× 10−2 3.915× 10−5

1923 1.55× 10−2 22.15 22.16 6.32× 10−2 2.658× 10−5

240 3 2.94× 10−2 30.33 30.36 8.73× 10−2 2.011× 10−6

For “Implementation I”, Gauss-Seidel method is executed in parallel on multiple
GPU threads, and the measured time for linear equation solver is around 10−2 (as
seen in Table 18.2 column 3), which takes up 33 % of the total computational time.
For grid size 1923, “Implementation I” for the scalar diffusion problem shows 19.6
times speedup when compared with CPU time. Even for grid size 963, the speedup
is found to be 9.4 for “Implementation I”.

The wall time for GPU “Implementation II” is larger than that from CPU wall time
for all six problem size tested, as seen in Table 18.3. If splitting the total computational
time into two parts, it is found the CUFFT library speeds up the computational time
2 to 5 times on GPU. The CG algorithm with CUSPARSE library takes up more than
95 % of the total wall time, and the GPU wall time is much larger compared to the CPU
wall time. The reasons for no speedup with GPU Implementation II are: (i) the size of
the linear equation system tested here is of order 102. With CUSPARSE library used, it
is found that GPU Implementation II has better performance for larger problem size
(∼106); (ii) GPU “Implementation II” solves the multiple linear equation system
sequentially, and doesn’t take the advantage of the parallelism embedded in the
algorithm.
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Table 18.4 The performance results for 3D Navier-Stokes equations Eq. 18.2, 18.3 (problem size
128 × 128 × 224)

FFT (s) Linear equation solver (s) Total time (s) Speedup

GPU 0.129 0.101 0.231 25.8
CPU 3.91 2.05 5.96 1

The GPU implementation I use the same method to solve linear equations, and
hence the maximum errors compared with CPU results are found to have 14 signif-
icant digits. Compared with the analytical solution, the maximum errors from GPU
Implementation I and II are of order 10−6−10−4, and shows slight difference.

After verifying the numerical accuracy and performance of the scalar diffusion
equation on GPU, the 3D Navier-Stokes equation with the spectral-finite-difference
scheme is implemented on a single GPU. The problem size chosen here is 128× 128
× 224, where the memory requirement is around 1GB total. To solve Eqs. 18.2 and
18.3 the “Implementation I” with the Gauss-Seidel method are employed and the
performance results are listed in Table 18.4. The speedup for this problem is found
to be around 25.8. However the problem size of Gauss-Seidel is limited to the local
memory size on each thread, and in this case Nz is found to be less than 224. The
calculation of the convective terms on the left-hand-side of Eq. 18.1 takes up around
40% of the computational time on CPU. The convective terms are formed in real
space and then transformed to the phase space, where the expensive convolution on
can be avoided.

It is also noted that for smaller problem size, all the data required in the compu-
tation could be stored on NVIDIA S2050 GPU, thus the data copy between host and
GPU memory could be easily avoided. The synchronization of GPU threads is only
required at the end of the time step. If the data copy between host and GPU memory,
or data storage on the disk, is required, the speedup will be found to be much lower
than that reported in this study.

18.5 Conclusions

In this study, we implemented the spectral-finite-difference scheme on GPU and
solved the scalar diffusion equation and the three-dimensional Navier-Stokes equa-
tion. The scalar diffusion equation is studied here to validate the numerical accuracy
of the scheme, since the analytical solution exists for specific boundary conditions.
We also investigate the possibility of mapping 3D full Navier-Stokes equations with
the GPGPU programming model.

For the scalar diffusion equation, two different types of implementation are stud-
ied. One is with Gauss-Seidel kernel executed on GPU threads in parallel, and the
other method is to use the conjugate gradient method. It is observed these two
implementations have numerical errors of order 10−6−10−4 when compared with
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the analytical solution and the error is around 10−14 compared with CPU results.
The implementation with Gauss-Seidel method on GPU has speedup around 20 for
six different problem sizes, while the implementation with the conjugate gradient
method on GPU doesn’t accelerate the performance. The performance regression for
the CG method is because this implementation only accelerates the performance on
GPU for large problem size. Although the implementation with Gauss-Seidel method
on GPU accelerates the calculation 20 times, this way of mapping the computational
kernels on GPU is not suitable for large size problems. As this method uses the mem-
ory local to each thread, the problem size solved should be less than 256. The set of
linear equation systems is solved independently on GPU threads. This parallelization
scheme fully utilizes the characteristics of the spectral-finite-difference algorithm,
and the CUDA programming and memory model.

The three-dimensional Navier-Stokes equation with the spectral finite-difference
scheme is solved on GPU. For relative smaller problem size 128 × 128 × 224, the
implementation on GPU achieves the speedup of 26 times under the condition that
the data transfer between main memory and the GPU memory is minimized. This
study demonstrates the use of GPUs for fluid dynamics simulations. It proposes
an interesting way of mapping computational kernels onto GPUs and reveals the
difficulties of extending to larger problem sizes.
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Chapter 19
Correlation of Reservoir and Earthquake
by Multi Temporal-Spatial Scale Flow Driven
Pore-Network Crack Model in Parallel CPU
and GPU Platform

B. J. Zhu, C. Liu, Y. L. Shi and D. A. Yuen

Abstract Coulomb failure assumptions. Jaeger and Cook (Fundamentals of rock
mechanics. Methuen, New York, 1969) is used to evaluate the earthquake trigger,
and pore pressure (Biot, J Appl Phys 12:155, 1941; 26:182, 1955; 78:91, 1956; J
Geophys Res 78:4924, 1973) parts reflect the effect of reservoir which closed to the
earthquake slip. Fluid flow driven pore-network crack model (Zhu and Shi, Theor
Appl Fract Mech 53:9, 2010) is use to study the reservoir and earthquake. Based on
the parallel CPU computation and GPU visualization technology, the relationship
between the water-drainage sluice process of the Zipingpu reservoir, stress triggers
and shadows of 2008 Wenchuan Ms 8.0 earthquake and porosity variability of Long-
menshan slip zone have been analyzed and the flow-solid coupled facture mechanism
of Longmenshan coseismic fault slip is obtained.
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19.1 Introduction

A number of factors may contribute to the generation or absence of post-impounding
seismicity. Increased vertical stress due to the load of the reservoir and decreased
effective stress due to increased pore pressure can modify the stress regime in the
reservoir region. The combined effect of increased vertical load and increased pore
pressure will have the greatest tendency to increase activity in regions where the
maximum compressive stress is vertical (Simpson 1976). Gupta et al. (1972) studied
the behavior of earthquakes associated with over a dozen artificial lakes and found
that the tremors were initiated or their frequency increased considerably following
the lake filling and that their epicenters were mostly located within a distance of
25 km from the lakes.

Zipingpu Key Water Control (2009) project is one of the most complex engi-
neering projects in the world for its located on the most complex earthquake fault
slips zone in the world (Maximum acceleration value of seismic oscillation is equal
to 0.20 g). Zipingpu reservoir is located on the Longmenshan earthquake fault slip
(below 2 km) and the distance between the reservoir and the 2008 Wenchuan Ms 8.0
earthquake initial source within 17 km (Fig. 19.1).

Longmenshan fault slip of 2008 Wenchuan Ms 8.0 earthquake is obtained by GPS
& InSAR inversion technique. Shen et al. (2008) (Fig. 19.2), it composed with two
slips and cross-wised Zipingpu reservoir zone. The relationship between the pore
stress accumulation of Zipingpu reservoir and the trigging and propagation of the
Longmenshan coseismic fault slip because very important for it direction effect the
dynamic real-time security evaluation and monitor of Zipingpu key water control
project.

Fig. 19.1 Relatively position between Zipingpu reservoir and Earthquake source of Wenchuan
Ms 8.0 earthquake (Zipingpu reservoir E103◦30′18" to E103◦34′48"; N31◦00′36" to E31◦03′00"];
Yingxiu[N30◦59′58.56"; E103◦29′21.12"])
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Fig. 19.2 Relatively position between Zipingpu reservoir and Longmenshan fault slip of (Long-
menshan fault slip zone [E103.45◦ to E103.5767◦; N30.975◦ to E31.105◦])

Some researches have study 2D coulomb stress caused by reservoir and its effect
on the Longmenshan fault (Ge et al. 2008). But the natural problem is rather complex
than one scale 2D model, and little research about the 3D coulomb stress analysis
under different scale has been done because of the current limitations both practical
(computing time) and theoretical (3D flow driven pore-crack network theory (Zhu
and Shi 2010), multiple scale fracture mechanics/physics theory (Sih 2006; Sih and
Jones 2003; Sih and Tang 2004, 2006, 2008; Sih and Zuo 2000)) aspect.

In this paper, based on the previous work (Zhu and Shi 2010), the relationship
between the pore stress accumulation on Zipingpu reservoir and the trigging and prop-
agation mechanism of the Longmenshan coseismic fault slip on scale I and II [Scale I:
30.976E_31.105E, 103.45N_103.577N; Scale II:30.7E_31.3E,103.05N_103.76N;
Scale III:29E_33E,101N_105N; Scale IV: IN plate and EU plate] have been stud-
ied (Fig. 19.3), and the correlation of Zipingpu reservoir and 2008 Wenchuan Ms 8.0
earthquake by fluid flow driven pore-network crack model had been studied.

19.2 Basic Equation

In the present paper, summation from 1 to 3 over repeated lowercase, and of 1–7 in
uppercase, basic strain equation for strain porous elastic media can be defined as

εi J = 1

2G

{

σi J − v

1+ v
δi Jσkk + 3(vu − v)

B(1+ v)(1+ vu)
δi J p

}
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(a) (b)

(c) (d)

Fig. 19.3 Multiple Scale virtual model of Zipingpu reservoir/Longmenshan coseismic fault slip
(a) Scale I; b Scale II; c Scale III; d Relatively position reservoir/slip)

m − m0 =
[

3ρ0(vu − v)

2G B(1+ v)(1+ vu)

] (

σkk + 3p

B

)

ql = −ρ0κ∂p

∂xl

where σi J , p, εi J and m are represent as the total stress, pore pressure, total strain
and fluid mass per unit volume of the medium. The parameters G, v, vu , m0, ρ0, ql ,
κ , B are represent as the elastic shear modulus (same for drained (p = constant) and
undrained (m = constant) condition), drained condition Poisson’s ratio, undrained
condition Poisson’s ratio, the fluid mass content in the unstressed state, mass density
of the pore fluid, the mass flux rate per unit area, the permeability and constant which
related to drained and undrained status, respectively.

The equations of motion for a homogeneous, linear elastic and isotropic medium
can be defined as

(c2
P − c2

S)ui,i j + c2
Su j,i i + f j

ρ
− ü j = 0

Gi j (P, Q, t) = Pi j (P, Q, t)+ Si j (P, Q, t)+ P Pi j (P, Q, t)

+ SSi j (P, Q, t)+ P Si j (P, Q, t)+ S Pi j (P, Q, t)
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where Gi j (P, Q, t) denote the i component of the displacement at point P due to
unite impulsive force at position Q acting j direction at time t .

19.3 Physical Model

As shown in Fig. 19.4, Zipingpu key water control project is located on the upstream
of Minjiang river, the maximum reservoir storage capacity is 11 × 109 m3, the
adjustable reservoir storage capacity is 8 × 109 m3, the normal impounded level
is 877 m, the dam top altitude is 894 m and the dam bottom altitude is 728 m. The
key water control project began March 3, 2001, stop flow time is November 1, 2002,
storage time is December 1, 2004 and completed at December 1, 2006. The total pore
stress accumulation time before Wenchuan Ms 8.0 earthquake (May 12, 2008) is 3–4
years. In our physical model, we use the 15000 time steps (10 ts/day) to describe
the effect of pore stress of reservoir to the Longmenshan fault slip. From the GPS &
InSAR inversion technology, the Longmenshan earthquake fault slip is divided into
673 parts.

(a)

(c)

(b)

(d)

Fig. 19.4 Physical Model Zipingpu reservoir and Longmenshan coseismic fault slip a Mesh grid
of Zipingpu reservoir; b Physical model of Zipingpu reservoir c Physical model of Longmenshan
fault slip; d Detail description of Longmenshan fault slip (composed of 673 parts)
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(a) (b) (c)

(d)

(g) (h) (i)

(e) (f)

Fig. 19.5 Extended pore strain and stress on Zipingpu reservoir and Longmenshan coseismic fault
slip on Scale I a Reservoir pore strain in x direction; b Reservoir pore strain in y direction; c
Reservoir pore strain in z direction; d Fault slip pore strain in x direction e Fault slip pore strain in
y direction; f Fault slip pore strain in z direction; g Fault slip pore stress; h Fault slip flow stream
trace; i Fault slip flow marks

19.4 Numerical Process and Discussion

Figure 19.5 shows that the relationship between extended pore strain and stress on
Zipingpu reservoir and Longmenshan coseismic fault slip on Scale I under 20000 ts.
The pore stress accumulation value level is 0.3 Mp.

The relationship between extended pore strain and stress on Zipingpu reservoir and
Longmenshan coseismic fault slip on Scale II under 20000 ts is shown in Fig. 19.6.
In these scale, we can obtained that in the penetration process, if we defined the fault
slip as a fluid-saturated elastic porous media, then the vadose energy (caused by pore
pressure and can flow to the fault slip tip) is variable with the undrained or drained
zone, more energy is released under drained zone than undrained zone; If the fault
slip is a stable creep rupturing process, the criteria energy (strain energy function
factors) must increase with the speed of faults spreading.

When penetrate reach a stable stage, the fluid flow pore-network crack function
became domain, with the time scale increasing, the micro solid-fluid interface will
became weak and blur, the macro phenomenon is the porosity become larger, the
strain energy can be released to the faults process decreased with the drained spread-
ing increasing.
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(a) (b)

(c) (d)

(e) (f)

Fig. 19.6 Extended pore strain and stress on Zipingpu reservoir and Longmenshan coseismic fault
slip on scale II

The reservoir loading and earthquake trigger relationship is depending on fault
slip geometry and character, porosity variability of surrounding geological structure
and time and size scale. To Zipingpu reservoir and 2008 Wenchuan earthquake case,
porosity and time scale are the key factors.

19.5 Future Work

Because the problem of correlation of reservoir and earthquake is so complex that we
can’t give a general definite conclusion for all kind of cases by analyze this special
case under little changed physical domain scales (Scale I and II) and time domain
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Fig. 19.7 Extended pore strain and stress on Zipingpu reservoir and Longmenshan coseismic fault
slip on scale III

Fig. 19.8 Extended pore strain and stress on Zipingpu reservoir and Longmenshan coseismic fault
slip on scale IV
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scales (20000 ts). More analysis should be done on multiple physical domain scales
and time domain scales. The future work will focus on two things.

Using extended coulomb stress to analyze the flow-solid coupled facture mecha-
nism of Longmenshan coseismic fault slip under larger scale (Figs. 19.7, 19.8). This
can provide a combined evaluation of the different effects that can influence reser-
voir/slip system, and can be further explored to compare the results with other results
that have led to negative results (Ge et al. 2008).
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Chapter 20
A Full GPU Simulation of Evolving
Fracture Networks in a Heterogeneous
Poro-Elasto-Plastic Medium with
Effective-Stress-Dependent Permeability

Boris Galvan and Stephen Miller

Abstract The wide range of timescales and underlying physics associated with
simulating poro-elasto-plastic media present significant computational challenges.
GPU technology is particularly advantageous to overcome these problems because
even though the physics are the same, computational times are orders of magnitude
faster. Poro-elasticity could be implemented in GPU, however GPU implementation
of plastic stresses pose problems because branching is introduced into the program
and thus introduces efficiency penalties. In general any element by element evaluation
to deal with branching in GPU is very inefficient. In this paper, we describe fracture
evolution in a poro-elasto-plastic medium and use a switch-on/switch-off function to
avoid branching, allowing efficient computation of plasticity in GPU. We benchmark
for the elasto-plastic part by investigating the angles of developed shear bands, and
benchmark the non-linear diffusion part of the code using the method of manufactured
solutions. Model results are presented for fluid pressure propagation through an
elasto-plastic matrix subjected to compression, and another for extension. The results
demonstrate how fluid flow is restricted in the compression case because of the load-
induced low permeability, while fluid flow is encouraged in the extensional case
because of the extension-induced high permeability. Code performance is excellent
in GPU, and we are able to runs months of simulation using time steps of a few
seconds within a few hours. With this new algorithm, many problems of couple fluid
flow and the mechanical response can be efficiently simulated at very high resolution.

20.1 Introduction

Triggering of earthquakes by high pressure fluids is well documented in enhanced
geothermal systems (Häring et al. 2008; Shapiro and Dinske 2009; Audin et al. 2002)
and natural environments (Miller et al. 2004; Bols and Nur 2002; Ohtake 1974).
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Injection of over-pressurized fluids into fault zones reduces the frictional resistance,
thus lowering of the shear stress necessary to failure (Terzaghi 1923; Nur 1971).
Documented cases of fluid-triggered or fluid-assisted earthquake sequences include
the Mw = 6.3 1997 Colfiorito (Miller et al. 2004) and Mw = 6.3 L’Aquila (Terakawa
et al. 2010) earthquake sequences in Italy, and the 2004 Mw = 6.8 Niigata earthquake
in Japan (Sibson 2007). Observations of direct fluid generated by earthquake slip
have been reported for the 1995 Mw = 7.2 Kobe (Japan) earthquake (Famin et
al. 2008) where large volumes of CO2 were produced from temperature-induced
decarbonation.

Although fluids and faulting have long been known to be an important part of
the earthquake process, modeling the spatio-temporal evolution of such systems is
computationally challenging primarily through the dynamical property of intrinsic
permeability. Namely, permeability can change by orders of magnitude over short
timescales because of the switch to high permeability at the onset of slip (Miller
and Nur 2000). Here we take a modeling approach that combines poro-elasto-plastic
model of Rozhko et. al. (2007) with a non-linear diffusion model (Rice 1992; Miller
et al. 2004), where the non-linearity arises through an effective-stress dependence of
the permeability. The solid deformation is modeled using the FLAC (Fast Lagrangian
Analysis of Continua) algorithm with density scaling (Cundall 1982), which is cou-
pled to the non-linear diffusion model using an explicit finite difference algorithm
with adaptive time-stepping.

In general, simulations over time scales of months (relevant for modeling fluid-
driven aftershock sequences) takes many hours to days of computation time. Reduc-
ing the numerical resolution is the typical strategy to reduce the computational time,
but in our case this would mean introducing unrealistically large intrinsic length
scales for the fractures. More importantly, natural fracture networks occur over a
wide range of size scales, from centimeters to kilometers, so reduced resolution is
not an affordable sacrifice. The advantage of Graphics Processor Unit (GPU) technol-
ogy is that it allows much faster computations due to its inherent parallel architecture,
allowing much shorter computational times while also increasing numerical resolu-
tion. GPUs are particularly powerful for solving governing equations that can be
formulated into explicit finite difference algorithms, like for example our full GPU
poro-elasto-plastic model with adaptive time stepping discussed below.

20.2 Materials and Methods

20.2.1 Physics Equations

Different studies (Rice 1992; Miller et al. 2004) show that diffusion fluid pore pres-
sure in the crust can be modeled using a nonlinear equation with permeability being
an exponential function of stresses (Zhang et al. 1999; David et al. 1994) of the form
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∂Pf

∂t
= 1

φ(β f + βφ)

⎡

⎣∇ κo · exp

(

− σ̄n
σ∗

)

η
∇Pf + Γ̇ (Pf , T )

⎤

⎦ (20.1)

where σ̄n is the effective normal stress given by

σ̄n = σ1 + σ3 − 2(Pf + � f gz)

2
+ σ1 − σ3

2
· cos(2θ) (20.2)

and Pf is the fluid overpressure, κo is the permeability at zero normal stress, σ∗
is a constant related to the degree of fracturing of the rock, ρ f is the fluid density,
η is the viscosity, φ is the porosity, β f is the fluid compressibility, βφ is the pore
compressibility and Γ̇ (P,T) is the source term.

The elastodynamic equations in their velocity-stress form describe the elastic
response of the rock skeleton

∂Vx

∂t
= 1

ρ

(

∂σxx

∂x
+ ∂σxy

∂y

)

(20.3)

∂Vy

∂t
= 1

ρ

(

∂σyy

∂y
+ ∂σxy

∂x

)

+ ρg (20.4)

∂σxx

∂t
= (λ+ 2μ)

∂Vx

∂x
+ λ∂Vy

∂y
(20.5)

∂σyy

∂t
= λ∂Vx

∂x
+ (λ+ 2μ)

∂Vy

∂y
(20.6)

∂τxy

∂t
= μ

(

∂Vx

∂x
+ ∂Vy

∂y

)

(20.7)

with μ and λ are the Lamé constants, ρ is the density, vx and vz is the velocity vector
and σxx , σzz , τxz is the stress tensor. In saturated porous rock, where the pores form
a connected network, deformation is controlled by the Terzaghi effective stress

σ
e f f
i j = σi j − Pδi j . (20.8)

Plastic deformation of rocks is modeled using Mohr-Coulomb and Griffith criteria

Ftension = τ − σm − σt (20.9)

Fshear = τ − σm · sin(ϕ)− C · cos(ϕ) (20.10)

F = max(Ftension, Fshear)) (20.11)

where F is the yield function,ϕ is the internal frictional angle, τ is the stress deviator,
σm is the mean stress, σt is the tensile strength of the rock. The plastic strain rates
are given by
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ε̇
pl
i j = 0 for F < 0 or F = 0 and Ḟ < 0 (20.12)

ε̇
pl
i j = λ

∂q

∂σi j
for F = 0 and Ḟ = 0.) (20.13)

We use non-associative plastic flow rules (Vermeer and Borst 1984)

qtension = τ − σm (20.14)

qshear = τ − σm · sin(ψ). (20.15)

In this report the dilatancy angle is ψ = 0. From linear theory of poroelasticity the
full strain tensor is given by

ε̇i j = ε̇pe
i j + ε̇pl

i j (20.16)

where ε̇el
i j is the poroelastic strain tensor. The poroelastic stress tensor is given by

σi j = 2Gεpe
i j + 2Gεpe

kk
ν

1− 2ν
δi j + αPf δi j (20.17)

where α is the Biot-Willis constant, G is the shear modulus and ν is Poisson’s ratio
(Jaeger et al. 2007; Detournay and Cheng 1993).

20.2.2 GPU Implementation

Since its introduction in 1999, Graphics Processor Units (GPU) have been success-
fully applied to accelerate non-graphical computations due to it highly parallel archi-
tecture. GPU implementations have been reported, to name a few, in fluid dynamics
(Griebel and Zaspel 2010; Zaspel and Griebel 2011), medical sciences (Nageswarana
et al. 2009; Sorensen and Mosegaard 2006), geophysics (Michéa and Komatitsch
2010; Lastra et al. 2009), quantum chemistry (Vogt et al. 2008), molecular dynamics
(Yang et al. 2007) and biology (Stivala et al. 2010). The CUDA programming lan-
guage, develop by NVIDIA and based in a C-like programming model, facilitates
GPU usage in physical modeling (?).
GPU programs written with CUDA will run part of the code in the CPU and parts
in the GPU. The CUDA functions that run in the GPU, called kernels, admit only a
limited number of parameters. To avoid reaching this limit, the initial data matrices
(stresses, velocities, rheological properties, hydraulic properties, etc.) of size nx×nz,
are grouped together into large one-dimensional vectors of size number of matrices
·nz · nx to be passed to GPU. To access correctly different data segments within the
GPU matrices, we use the index expression:

index = x + z ∗ nx + (position of the matrix in the large vector − 1) ∗ nz ∗ nx
(20.18)
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(a)

(b)

Fig. 20.1 Initial data matrices (a) of size nx × nz, are grouped together in large one dimensional
vectors (b) of size number of matrices ·nz · nx to be passed to GPU

where x = 0 to nx − 1 and z = 0 to nz − 1.
Figure 20.1 shows and sketch of this procedure.

We divide the problem in four main steps:

• solution of the nonlinear diffusion equation (20.1),
• computation of the effective stresses (20.8),
• solution of the velocities equations (20.3, 20.4) and
• computation of the total stresses (20.5–20.7).
• evaluation of the yield function (20.9–20.11) and computation of plastic stresses

using (20.12–20.13).

GPU Nonlinear Diffusion Implementation

We use a first order in time, fourth order in space finite difference scheme to solve
the nonlinear diffusion equation. Boundary conditions are zero flux boundary condi-
tions at the left, right and bottom edges and Dirichlet boundary conditions at the top,
Pf = 0. We compute the solution of the nonlinear diffusion equation using shared
memory for the center of the domain and global memory for the boundary condi-
tions. Two kernels perform the computation of the nonlinear diffusion: non_lin_diff
and fluid_diff_write. First, nonlinear permeability is computed using Eq. (20.2) and
the new permeability is written to global and shared memories to be used in the
Eq. (20.17). The inner part of the fluid pressure solution is computed using shared
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memory and the boundary conditions using global memory. The new fluid pressure
profile solution is written to a new position on the large GPU global memory matrices.
We call this vector Pfnew. If we try to write the result directly to the initial position, let
us call it Pfinit , errors appears due to the fact that GPU tries to read and write the same
memory address at the same time. For that reason, a second kernel fluid_diff_write
writes the solution back to the initial row vector Pfinit . A pseudocode of the kernels
non_lin_diff and fluid_diff_write is presented in Algorithms 19.1 and 19.2.

Algorithm 20.1: non_lin_diff
Copy Pfold , k f o, θ, η,σ

∗, φ, σxx and σzz on shared memory
Use shared memory variables to compute k f and save in global memory
Save new value of k f in shared memory
Use shared memory variables to compute Pfnew for the center of the domain and save in
global memory
Compute Pfnew at the boundaries using global memory

Algorithm 20.2: fluid_diff_write
Copy Pfnew in global memory to Pfold in global memory

At the end of every iteration, porosity, σ∗, bulk modulus and Poisson’s ratio are
updated to be used in the next time step. We assume drained values of the rheological
properties (bulk modulus, Poisson ratio) if Pf = hydrostatic, and undrained values
for Pf = maximum overpressure. For intermediate values of Pf , we use a linear
function to update rheological properties. The same procedure is used to update
porosity and σ∗: porosity is maximum and σ∗ is minimum if Pf is maximum and
porosity is minimum and σ∗ maximum if Pf equal to hydrostatic.

GPU Elasto-Plasticity Implementation

Solutions of elasto-dynamic equations using standard staggered grids introduce insta-
bilities when the domain contains heterogeneities, e.g. cracks, density or rheology
changes. To overcome this we use a staggered grid scheme with centered cells.
Stresses were located in the cell centers and velocities on its corners. In the program,
stresses have a size (nx + 1)∗ (nz+ 1) and velocities nx ∗ nz. However, all matrices
are rearranged in the GPU to have size (nx + 1) ∗ (nz + 1) by filling extra positions
with zeros. Boundary conditions for stresses are zero slip at the right, left and bottom
edges and free surface boundary condition at the top. Velocity boundary conditions
are vx = V and vz = 0 at the right edge, vx = −V and vz = 0 at the left edge and
vz = 0 at the bottom.



20 A Full GPU Simulation of Evolving Fracture Networks 311

The kernel effective_stresses computes Eq. (20.8). As in the case of the diffusion, the
central part of the effective stress matrices is computed using shared memory and
boundary conditions using global memory. Algorithm 19.3 present the pseudocode
of this kernel. Velocities are computed in the kernel velocity_computation using the

Algorithm 20.3: effective_stresses
Copy Pfnew, σzz and σxx on shared memory
Perform Eq. (20.3) using shared memory variables and save results on global memory
Apply boundary conditions using global memory

same procedure. Algorithm 19.4 shows the pseudocode for this kernel.

Algorithm 20.4: velocity_computation

Copy effective stresses σe f f
zz , σe f f

xx , σe f f
xz , velocities vx , vz and displacements Ux , Uz on

shared memory
Compute Eq. (20.8) for the central part of the effective stresses matrices using
shared memory variables and save results on global memory
Apply boundary conditions using global memory

Elastic and plastic stresses are computed in the kernel elasto_plasticity_
computation. Plastic stresses are applied in the specific points where conditions
(20.12) are fulfilled. This step introduces program branching, which is a major prob-
lem for the GPU implementation. CPU can easily perform an element by element
search and testing using the if or else logical controllers. Although GPU can compile
these logical controllers, program branching introduces a performance penalty due
to its inherent parallel architecture. In NVIDIA GPUs, threads within a block are
grouped in 32 elements called warps. Within a warp, all threads perform the same
instruction at the same time. If warp divergence occurs some threads will take one
branch and others the other branch. The first threads to finish the computation must
wait until all threads from all different branches finish their computations, thus sig-
nificantly decreasing the overall performance. In general, GPU will be much slower
than CPU when performing element by element operations.
There are different techniques to deal with branching in GPU (Harris and Buck
2005), and we developed a new and easy technique, called switch functions, to
handle GPU branching. The details of this implementation will be presented in future
communications.
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20.3 Results

20.3.1 Nonlinear Diffusion Benching

The nonlinear diffusion algorithm was benched using the Method of Manufactured
Solutions (MMS) (Salari and Knupp 2000). The MMS has been applied to different
problems of computational fluid dynamics (Bond et al. 2004; Roy et al. 2004; Shunn
and Ham 2007). In this method, an artificial solution G is proposed. This solution
does not need to be physically meaningful but it must be smooth enough to be
differentiable within the domain at the higher order of the differential equation. The
function G must not be a trivial solution of the differential equation and it must be
complicated enough to test the accuracy of the numerical solution. Using symbolic
calculus software, we can apply the differential operator to this manufactured solution
to compare to our numerical solution.
In our case we choose the following functions:

Pf = exp

(

−
(

(x−a)2
b + (z−a)2

b

))

(20.19)

k f o =
(

0.1−1−2 · z) · exp

(

− 0.5(σxx+σzz−2·P f )+0.5(σxx−σzz)cos(2·θ)
σ∗

)

(20.20)

with a = 5, b = 25,σxx = σzz = 10 · z, σ∗ = 20 and θ = 60◦ and the domain of
the function is � = x × z for x = [0, 10] and z = [0, 10]. These two functions are
smooth and their derivatives are continuous over this domain. We use the MATLAB
symbolic calculus toolbox to compute the derivatives. We evaluate the equation

∇ κo · exp

(

− σ̄n
σ∗

)

η
= RHS (20.21)

with η = 1, using the MATLAB symbolic calculus toolbox a CPU implementation
and the GPU implementation. We measured the global error between the analytical,
MATLAB symbolic solution, and numerical RHS using the L2 norm. For all com-
putational experiments grid points in X direction where equaled to grid points in Z ,
i.e. n = nx = nz. We vary the grid points number per axis n from 100 to 2000.
Figure 20.2 shows the results. Both implementations, CPU and GPU, converge to the
analytical solution in the same way when the numerical resolution is increased.

20.3.2 Elasto-Plastic Benching

We validate our elasto-plastic model by checking the formation of localized shear
zones, shear bands, with the correct angle. There are three different theories that
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Fig. 20.2 log10(L2) versus grid points per axis. Numerical resolution is grid points per axis squared,
i.e. nx = nz. L2 error norm decrease when the number of grid points is increased. GPU results
correspond to CPU ones

describe the orientation of the shear bands; Coulomb, Roscoe and Arthur (Arthur et al.
1977; Bardet 1990). For a material with frictional angleϕ and dilation angleψ, shear
bands form with dip angles θ between Rosco-Coulomb range, 45◦−ϕ

2 < θ < 45◦−ψ
2

(Kaus 2010; Poliakov et al. 1994).
We perform extension and compaction experiments. The domain is a 100 km2 crust
square with free surface boundary condition at the top, zero tangential velocity at
the bottom and Dirichlet boundary conditions for the X direction velocity at the
sides accounting for extension or compression. To improve shear band formation,
we use a high vx velocity at the sides of 1 m/year. We varied internal frictional angles,
ϕ = 20◦, 30◦ and 40◦.
Figures 20.3 and 20.4 show the second invariant of the strain tensor for compressional
and extensional cases, respectively. Compressional experiments show dip angle val-
ues very close to Coulomb angles. Kaus (2010) and Popov and Sobolev (2008)
reported similar results for elasto-visco-plastic rheology materials and Hansen et. al.
reported dip angles near to Coulomb values for elasto-plastic rheology using a mesh-
free finite elements method (Hansen 2003). For the extensional cases, the upper part
of the domain shows effects due to boundary conditions where tensile failure seems
to play a principal role. The reason for the long tensile fractures is the fast extensional
velocity. In the bottom part clear shear bands are present at angles that lie between
Roscoe and Coulomb angles for all cases.
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(a) (b)

(c)

Fig. 20.3 Second invariant of strain tensor (si) showing shear bands formation and dip angles θ
for elastoplastic media under compression with internal frictional angles (a) ϕ = 20◦, (b) ϕ = 30◦
and (c) ϕ = 40◦. For all numerical experiments dilation angle was set equal to zero, ψ = 0. Pink
lines are the Coulomb angles and green lines are Rosco angles. In all cases θ is very close to the
Coulomb value. Numerical resolution: 300× 300

20.3.3 Poro-Elasto-Plastic Modeling

We consider a section of crust of 10×10 km under compression or extension with an
over-pressurized region at 6 km depth, with model parameters listed in Table 20.1.
The fluid overpressure is 100 MPa. First, we apply a fast compression/extension to
create a system of fractures and avoid any artificial introduction of fractures using,
for example, stochastic methods. Fractures are created in response to the regional
stress field. The frictional angles are normally random distributed around 30◦.

During fracture network formation, cohesion of failed points is set to zero. If the
point fails in tensile mode the permeability is set to two orders of magnitude higher
than the overpressure intrinsic permeability. In case of shear fracturing, permeability
increases one order of magnitude from the overpressure layer permeability. Follow-
ing this fast compression or extension time, we set the edges velocities to zero and
we let the system relax until steady state is achieved. During this relaxation time,
energy is released by fracturing and deformation, thus allowing further growth of the
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Table 20.1 Model parameters

Parameter Hydrostatic pressure layer Overpressurized layer

Cohesion (MPa) 20 20
Poisson ratio 0.27 0.3
Bulk modulus (GPa) 35 41
Porosity φ 0.01 0.10
Intrinsic permeability κo (m2/s) 10−17 10−16

σ∗ (MPa) 33 35
Pore compressibility βφ (Pa−1) 10−8 10−8

Fluid compressibility β f (Pa−1) 10−10 10−10

(a) (b)

(c)

Fig. 20.4 Shear band formation and dip angles θ for elastoplastic media under extension cases.
Dilation angle ψ = 0 and frictional angles (a) ϕ = 20◦, (b) ϕ = 30◦ and (c) ϕ = 40◦. For all cases,
dip angle θ lays between Roscoe (green line) and Coulomb (pink line) angles. In the upper part of
the domain tensile fracturing is appreciated. Numerical resolution: 300× 300

network, and relaxing much of the localized stressed points. When stress relaxation
is complete, cohesion of the failed points is set to a value lower than the background
cohesion to simulate healing of the fractures. In our numerical experiments we set the
cohesion of the cracks after relaxation to a fourth of the background cohesion. Time
is set to zero and diffusion is initiated. Figures 20.5 and 20.6 show the permeability,
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(a) (b)

(c)

Fig. 20.5 Permeability (a), yield function (b) and fluid pressure profile (c) at time = 180 days
after the diffusion release for the compressional case. Beside shear bands, non-localized tensile
fractures can be appreciated. Maximum values of the fractures permeability is around 1e−8 m/s2

in the overpressurized layer. However, permeability drops in the hydrostatic layer locking the fluid
pressure. Numerical resolution: 300× 300

yield function and fluid pressure at time = 180 days after the onset of diffusion for
compressional and extensional cases respectively. In the compressional case, fluids
are locked in the over-pressured layer because of the reduced permeability under high
normal stress. In the extensional case fluid pressure propagates through the previ-
ously created fractures because of reduced normal (thus increased permeability). An
extended discussion of this results and its geodynamic implications will be discussed
in future communications.

20.4 Conclusions

We developed a poro-elasto-plastic model coupled to non-linear diffusion and imple-
mented in GPU. The model is completely explicit so its computation is very
efficient using the GPU architecture. GPU-based modeling offers significant



20 A Full GPU Simulation of Evolving Fracture Networks 317

(a) (b)

(c)

Fig. 20.6 Permeability (a) and yield function (b) and fluid pressure profile (c) at time = 180 days
after the diffusion release for the extensional case. Beside shear bands, non-localized tensile frac-
tures can be appreciated. Extension enhance fluid pressure migration through the fractures on the
hydrostatic pressurized layer. Numerical resolution: 300× 300

advantages and allows fast, high resolution simulations of the underlying process.
Nonlinear diffusion equations and elasto-plastic equations have been implemented
with von-Neumann and Dirichlet boundary conditions. The introduction of switch
functions allows implementing plasticity in GPU and, in general, to handle program
branching in a GPU efficient way. We presented examples of bench marks that are
in accordance with previous studies. The results of the dip angles of shear bands of
our model agrees with other numerical models. The Method of Manufactured Solu-
tions (MMS) was used to bench the nonlinear diffusion equation giving accordance
between CPU and GPU double precision implementations. The case of the full poro-
elasto-plastic system under extension and compression were presented. This model
can be used in different problems in geodynamics, e.g. effect of earthquakes on per-
meability and fluid migration, hydrofracturing in engineering applications such as
geothermal reservoirs or oil and gas reservoir simulations. To the best of our knowl-
edge, this is the first implementation of poro-elasticity or plastic rheology in GPU.
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Due to complexity of our system its correct implementation in GPU architecture
opens by itself a new area of application for GPU based modeling. Developments
of a 3D implementation of our model using GPU clusters will be presented in the
future.
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Chapter 21
GPU Implementation of Multigrid Solver
for Stokes Equation with Strongly Variable
Viscosity

Liang Zheng, Taras Gerya, Matthew Knepley, David A. Yuen,
Huai Zhang and Yaolin Shi

Abstract Solving Stokes flow problem is commonplace for numerical modeling of
geodynamic processes, because the lithosphere and mantle can be always regarded
as incompressible flow for long geological time scales. For Stokes flow, the Reynold
Number is effectively zero so that one can ignore the advective transport of momen-
tum equation thus resulting in the slowly creeping flow. Because of the ill-conditioned
matrix due to the saddle points problem that coupling mass and momentum partial
differential equations together, it is still extremely to efficiently solve this elliptic PDE
system, especially with the strongly variable coefficients due to rheological structure
of the earth. However, since NVIDIA issued the CUDA programming framework
in 2007, scientists can use commodity CPU-GPU system to do such geodynamic
simulation efficiently with the advantage of CPU and GPU respectively. In this
paper, we try to implement a GPU solver for Stokes Equations with variable vis-
cosity based on CUDA using geometric multigrid methods on the staggered grids.
For 2D version, we used a mixture of Jacobi and Gauss-Seidel iteration with conser-
vative finite difference as the smoother. For 3D version, we called the GPU smoother
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which is rewritten with the Red-Black Gauss-Seidel updating method to avoid the
problem of disordered threads with Matlab 2010b.

21.1 Introduction to Stokes Equations and GPU Applications
in Geophysics and Geodynamics

21.1.1 Stokes Flow in Geodynamics

The solid earth deforms slowly, and behaves as viscous fluid over geological time.
So geoscientists can study the earth using fluid dynamic methods with the basic
principles of mass, momentum and energy conservation. The continuity equation
which describes the mass conservation is:

∂ui

∂xi
= 0 (21.1)

The momentum conservation equation connects forces and deformation, which is
derived from Newton’s second law, can be described under Eulerian form:

∂σi j

∂x j
+ ρgi = ρ

(

∂ui

∂t
+ u j

∂ui

∂x j

)

(21.2)

where the right hand side of Eq. (21.2) is the inertia force. From the hydrostatic stress
state we can define the deviatoric stress σ

′
i j as

σ
′
i j = σi j + Pδi j , (21.3)

where δi j is Kronecker delta. Then we can obtain the Navier-Stokes equation from
Eqs. (21.2) and (21.3) which describes the conservation of momentum for the fluid
with gravity:

∂σ
′
i j

∂x j
− ∂P

∂xi
+ ρgi = ρ

(

∂ui

∂t
+ u j

∂ui

∂x j

)

(21.4)

Consider the Renolds number

Re = ρul

μ
= ul

ν
(21.5)

whereμ is the dynamic viscosity and ν is the kinematic viscosity that ν = μ
ρ

. u is the

mean fluid velocity while l is characteristic length. In fact, the ρu2

l represents inertia
force while μu

l2 represents viscous force. So the Renolds number Re is the ratio of
inertia force and viscous force. When the viscous force is very large compared with
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inertia force we can ignore the inertia force so that Re � 1 or just simplifies to
Re = 0, that means we can rewrite the Eq. (21.4) as:

∂σ
′
i j

∂x j
− ∂P

∂xi
+ ρgi = 0 (21.6)

Equation (21.6) is the Stokes equation which describes the Stokes flow problem
coupled with mass conservation equation who has a lot of applications in geodynamic
processes.

Solving stokes problem is very important in Geodynamics because we need to
study the viscous fluid behavior of the solid earth, which appears to be folded on
long geological time scales. We can take mantle convection for example. The process
of mantle convection is believed to be the main driven force of the movement of
lithospheric plates. Although the mantle indeed can be regarded as elastic material
on short time, the movement of the plates which we can observe need long time
to accumulate. For long time scales (such as million years), the mantle’s dynamic
properties behave like viscous creeping fluid. Some other geodynamic processes can
also be described as Stokes flow problems including the lava flow, rock deformation,
subduction zone and so on (Turcotte and Schubert 2012; Alik and Tackley 2010;
Gerya 2010; Trompert and Hansen 1996).

21.1.2 Stokes Equations with Strongly Variable Viscosity

In most situations, the fluid-like solid earth is incompressible so the viscous con-
stitutive relationship can be simplified to:

σ
′
i j = 2μ

.
εi j (21.7)

where
.
εi j is the strain rate that can be defined as:

.
εi j = 1

2

(

∂ui

∂x j
+ ∂u j

∂xi

)

(21.8)

According to Eqs. (21.6–21.8) we can rewrite Eq. (21.6) coupled with the mass con-
servation Eq. (21.1) as:

{∇ · (μ(∇u+ (∇u)T))+ f = ∇ p
∇ · u = 0

(21.9)

From experimental data, the effective viscosity of rocks is as following:

μe f f ∝ exp
(

Ea+Va P
n RT

)

where Ea is activation energy, Va is activation volume,

R is gas constant, P is pressure and T is temperature. That means the effective
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viscosity may vary many orders of magnitudes even with small changes of en-
vironmental properties like temperature or pressure. These strongly variable vis-
cosity phenomenons are commonplace in geodynamic processes. For example the
contrast of viscosity of surface conditions of the earth and upper mantle reaches
μ1
μ0
∼ 1039 for the huge difference of temperature (Gerya 2010; Deubelbeiss and

Kaus 2008).

21.1.3 GPU Applications in Geophysics and Geodynamics

Recent years the computing capacity of GPU (Graphics Processing Units)
increased rapidly. With the many-core structure, the energy consume and speedup
rate of single GPU are both better than traditional CPU based PC cluster for par-
allel computing. Since NVIDIA issued CUDA (Compute Unified Device Architec-
ture) framework in 2007, programming on GPGPU (General-Purpose computations
on Graphics Processing Units) became easy going for scientific computation. So
scientists including geophysicists and geodynamicists start turning to commodate
CPU-GPU hybrid platform for solving large scale problems.

Normally there are three classes of partial differential equations which are studied
by geophysicists and mathematicians. Parabolic equations and hyperbolic equations
are first been devised on GPU, such as heat diffusion equations and seismic wave
propagation. Taking seismic wave propagation problem for example Walsha et al.
(2009) and Komatitsch et al. (2010) implemented the high order spectral-finite-
element codes separately and Michéa (2010) worked out the finite difference codes.
In addition, some other computational methods in geophysics have been translated
into CUDA for GPU computing, among which the Lattice-Boltzmann code appeared
earlier (Walsha et al. 2009; Tolke and Krafczyk 2008; Tolke et al. 2010). What we
want to solve here is elliptic equation which also has many applications in geody-
namics.

21.2 Strategies for Solving Stokes Equations

21.2.1 Methods Used on CPU

A lot of numerical methods have been applied to solve Stokes equations on CPU
before the birth of GPU, including finite difference, finite volume and finite ele-
ment method. Coupled with the mass equation, the Stokes equation becomes the
saddle problem that some special iterative methods are there for solving it such as
the multigrid method and preconditioned Krylov subspace methods, etc. Multigrid
method can speed up the iteration because of the fast convergence for the longer
wavelength residuals. Generally speaking, the multigrid method can be used as a
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Fig. 21.1 V-cycle mulgrid

Fig. 21.2 Red-Black updat-
ing method

preconditioner as krylov subspace method which we want to implement later (May
and Moresi 2008; Gerya 2010; LeVeque 2010).

21.2.2 Strategies on GPU

On GPU we used geometric multigrid (GMG) coupled with Red-Black updat-
ing method to solve the Stokes equations. Geometric multigrid method is suitable
for finite difference method, because we don’t need to build the coefficient matrix
explicitly. The V-cycle GMG is showing as Fig. 21.1 which has two part: 1.‘–’ rep-
resents the restriction; 2.‘-.’ represents the prolongation. Using Red-Black Gauss-
Seidel (RBGS) iteration technology (Wallin et al. 2006) for the smoother can avoid
the disordered threads when executing the GPU kernels. Figure 21.2 shows the RBGS
technology which can be divided into two parts: 1. Set the boundary condition and
ghost points around the nodal points (blue points); 2. Update the red and black points
in different kernels (red and blue points).
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Fig. 21.3 Testing model
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Fig. 21.4 Comparison of iterations on CPU and GPU

21.3 Implementation of the GPU Solver

We set a testing model showing as Fig. 21.3 to check the solver’s ability of dealing
with variable viscosity, in which the viscosity has a contrast of 106. All the boundary
nodes are set with free slip velocity so the force of this model is only gravity. 2D and
3D codes are implemented on GPU to compute the result of the testing model.

21.3.1 2D Version

The 2D version codes were first translated into CUDA from Taras Gerya’s mat-
lab codes (Gerya 2010) for experiment to test the GPU’s ability and compare the
compute capacity of different GPU platform. Conservative finite difference meth-
ods and staggered stencil are used. We have not noticed the disordered threads for
the 2D version so the smoother’s performance is actually between the Jacobi and
Gauss-Seidel iteration. Restriction and prolongation processes are also implemented
on GPU. To check if the multigrid is effective, we compare the codes without multi-
grid and the 2-level grids under 128*128 resolution showing as Fig. 21.4 that we
can find GPU codes need much more iterations than CPU as we mentioned before
the smoother’s performance on GPU is much worse than CPU for the problem of
disordered threads. However, in 3D version we improved the smoother using Red-
Black updating method to avoid this problem. Even that using 2-grid can still reduce
the iterations on GPU as the same as CPU. We also compared the running time on
different GPUs including Tesla 1060c (GT200) and GTX 480 (Fermi) architecture
with the same cycles (105 iterations) showing as Table 21.1.
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Table 21.1 Comparison of
different platforms with
different precision

Platform Single precision (s) Double precision (s)

GPU(Tesla 1060C) 303 619
GPU(GTX 480) 160 245

21.3.2 3D Version

The real earth and real geodynamic problems always need the 3D description, so
that we also implemented the 3D version codes. By now 3D version is very primitive
that we only rewrote the smoother codes by CUDA and called it by Matlab 2010b
(released on Oct. 2010) which is a good numerical test bed that supports CUDA
programming by calling the PTX (Parallel Thread Execution) instructions compiled
by NVCC. We used 6-level grids and each levels iteration numbers are: 5, 10, 20, 40,
80, 160. From 2D to 3D the programming will be much more complex especially
with the staggered grid because of the different index systems for different variables.
So we are giving the detailed discrete finite difference scheme here.We rewrite the
Eq. (21.6) in 3D condition as:
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(21.10)

Combined with rheology constitutive Eq. (21.8) and mass conservation Eq. (21.1) we
can obtain:
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In the staggered grid one-nodal viscosity should be set in different indexes to satisfy
the different systems of variables. Taking x-stokes equation for example we can get
the staggered discrete equation as:

(
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�x j+1/2
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The discrete equation for mass conservation is :

ux(i+1, j+1,l+1) − ux(i+1, j,l+1)

�x j+1/2
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�zl+1/2
= 0 (21.13)

In 3D version codes we apply two order coloring updating method to accelerate
the smoother using the RBGS (Red-Black Gauss-Seidel) iteration mentioned before.
In order to keep the same style of Taras’ matlab codes (to reuse the discrete finite
difference format) and avoid the index problem, we define a series of macros as
following:

#define vx( i , j ,k) vx[( i−1)+(j−1) ∗ (ynum+1)+(k−1) ∗ (xnum) ∗ (ynum+1)]
#define RX( i , j ,k) RX[( i−1)+(j−1) ∗ (ynum+1)+(k−1) ∗ (xnum) ∗ (ynum+1)]
#define vy( i , j ,k) vy[( i−1)+(j−1) ∗ (ynum)+(k−1) ∗ (xnum+1) ∗ (ynum) ]
#define RY( i , j ,k) RY[( i−1)+(j−1) ∗ (ynum)+(k−1) ∗ (xnum+1) ∗ (ynum) ]
#define vz( i , j ,k) vz[( i−1)+(j−1) ∗ (ynum+1)+(k−1) ∗ (xnum+1) ∗ (ynum+1)]
#define RZ( i , j ,k) RZ[( i−1)+(j−1) ∗ (ynum+1)+(k−1) ∗ (xnum+1) ∗ (ynum+1)]
#define pr( i , j ,k) pr [( i−1)+(j−1) ∗ (ynum−1)+(k−1) ∗ (xnum−1) ∗ (ynum−1)]
#define RC( i , j ,k) RC[( i−1)+(j−1) ∗ (ynum−1)+(k−1) ∗ (xnum−1) ∗ (ynum−1)]
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Reducing the logic operations in the CUDA kernel is the main strategy, because
NVIDIA’s GPU architecture at present has one logic unit in one SM (Streaming
Multiprocessor) which means if you use the ‘if’ in incorrect way (not for the GPU’s)
the logic operations may run 16 times (half wrap). To avoid this situation we imple-
mented the codes by dividing the smoother function into different parts in different
CUDA kernels for 3D version. This way has another benefit that we can use as fewer
variables as possible in one kernel that most variables can be put on the registers not
the local memory. Another thing we should notice is the index of array is ordered by
column-major in matlab and starts from 1, so we need to use the definition of macro
as we have mentioned before and modify the index in the kernels.Taking x-direction
velocity in red points for example, the codes are showed as following:

#include "Index .h"

__global__ void rb_vx_r( . . . ) {
int i = blockIdx .x;
int j = blockIdx .y;
int k = threadIdx .x;

i+=2;j+=2;k+=2;
/ /+2 means star t from 1 and skip the boundary points
i f (( i+j+k)%2!=0) return ;
/ / decide i f i t ’s the red nodes

double resxcur , kfxcur ;

resxcur = RX( i , j ,k)+(pr( i−1,j ,k−1)−pr( i−1,j−1,k−1)) / xstp ;
resxcur = resxcur−(xkf2∗(etan( i−1,j ,k−1)∗(vx( i , j+1,k)−vx( i , j ,k) )−etan( i−1,j
−1,k−1)∗(vx( i , j ,k)−vx( i , j−1,k) ) ) ) ;

resxcur = resxcur−(etaxy( i , j ,k−1)∗(ykf∗(vx( i+1,j ,k)−vx( i , j ,k) )+xykf∗(vy( i , j
+1,k)−vy( i , j ,k) ) )−etaxy( i−1,j ,k−1)∗(ykf∗(vx( i , j ,k)−vx( i−1,j ,k) )+xykf∗(vy
( i−1,j+1,k)−vy( i−1,j ,k) ) ) ) ;

resxcur = resxcur−(etaxz( i−1,j ,k)∗(zkf∗(vx( i , j ,k+1)−vx( i , j ,k) )+xzkf∗(vz( i , j
+1,k)−vz( i , j ,k) ) )−etaxz( i−1,j ,k−1)∗(zkf∗(vx( i , j ,k)−vx( i , j ,k−1))+xzkf∗(vz
( i , j+1,k−1)−vz( i , j ,k−1)) ) ) ;

kfxcur =−xkf2∗(etan( i−1,j ,k−1)+etan( i−1,j−1,k−1))−ykf∗(etaxy( i , j ,k−1)+etaxy(
i−1,j ,k−1))−zkf∗(etaxz( i−1,j ,k)+etaxz( i−1,j ,k−1)) ;

vx( i , j ,k) = vx( i , j ,k)+resxcur /kfxcur∗krelaxs ;
}
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Figures 21.5, 21.6, 21.7, 21.8 show the result of the 3D codes. (Y direction points
to the inner earth.) Table 21.2 is the comparison of time and iterations under differ-
ent platforms (CPU:Xeon 5520 GPU:Tesla 1060C) using double precision. It shows
using Red-Black iteration technology does not need much more iterations than tra-
ditional GS (Gauss-Seidel) method. In fact with higher resolution the iteration times
are less that the GS method. Compared with Table 21.3, we found that the smoother
itself gets a better speedup than the whole process which means the sequential part
takes too much time.

Fig. 21.5 Velocity-X unit: m/s

Fig. 21.6 Velocity-Y unit: m/s
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Fig. 21.7 Velocity-Z unit: m/s

Fig. 21.8 Pressure unit: Pa

Table 21.2 Comparison of time and iterations on different platforms

Platform Model: 32*32*32 Model: 64*64*64

CPU iterations 85 141
GPU iterations 148 106
CPU time (min) 10 96
GPU time (min) 8 31
Speedup 1.2× 3.1×
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Table 21.3 Comparison of
speedup on different models

Model CPU Time(s) GPU time(s) Speedup

32*32*32 1.2 0.3 4.0×
64*64*64 10.5 2.2 4.8×
128*128*128 101.6 21.4 4.7×
256*256*256 787.3 202.8 3.9×

21.4 Conclusion and Future

We have finished the preliminary implementation of GPU based multigrid solver
for Stokes equation with strongly variable viscosity. It has increased the performance
of the Matlab codes on CPU. But it’s only a start and we still need to apply some
technologies to improve the codes. Next we are considering deploying it as a precon-
ditioner using in PETSc (URL: http://www.mcs.anl.gov/petsc/petsc-as/index.html)
and trying to run it with MPI on GPU cluster.
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Chapter 22
High Rayleigh Number Mantle
Convection on GPU

David A. Sanchez, Christopher Gonzalez, David A. Yuen,
Grady B. Wright and Gregory A. Barnett

Abstract We implemented two- and three-dimensional Rayleigh–Benard convection
on Nvidia GPUs by utilizing a 2nd-order finite difference method. By exploiting the
massive parallelism of GPU using both CUDA for C and optimized CUBLAS rou-
tines, we have on a single Fermi GPU run simulations of Rayleigh number up to
6 × 1010 (on a mesh of 2000 × 4000 uniform grid points) in two dimensions and
up to 107 (on a mesh of 450 × 450 × 225 uniform grid points) for three dimen-
sions. On Nvidia Tesla C2070 GPUs, these implementations enjoy single-precision
performance of 535 GFLOP/s and 100 GFLOP/s respectively, and double-precision
performance of 230 GFLOP/s and 70 GFLOP/s respectively.

22.1 Introduction

While a host of fluid mechanical models, such as incompressible Navier–Stokes
(Cohen and Molemaker 2009; Thibault and Senocak 2009) have already been
approached and solved on GPU, there is a certain need for clear and meaningful
problems that are straightforward to implement on this new architecture. By virtue
of their simplicity, such examples are well-suited to tutorial. In order to explore the
application of CUDA programming techniques in general, and CUBLAS in partic-
ular, we investigate such a problem—the simulation of two and three dimensional
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Rayleigh–Benard thermal convection, in the context of mantle convection, using a
second-order finite difference method. Naturally, this class of examples is constantly
increasing. For example, Cohen has since released the incompressible Navier–Stokes
code under his OpenCurrent project (http://code.google.com/p/opencurrent/wiki/
OpenCurrent).

In this model we take the limit of the Prandtl number to infinity and in so doing
reduce the number of parameters to a solitary quantity: the Rayleigh number (Ra).
Although we have to assure our grid mesh is sufficient to resolve the increasing
convection velocities associated with a higher Ra, it is this number alone that governs
the physics of our model.

22.2 Model

We model a constant-density, constant-viscosity fluid of infinite Prandtl number. We
also assume the Boussinesq approximation (Guyon et al. 2001).

22.2.1 Two Dimensions

In two dimensions, coordinates are given by x and z (pointing vertically downward).
This yields the following equations, which describe conservation of momentum,
energy, and mass:

∂T

∂t
= ∇2T − v · ∇T (1a)

∇2ω = Ra
∂T

∂x
(2a)

∇2ψ = −ω (3a)

where Ra is the Rayleigh number, T is non-dimensional temperature, V is velocity
(its x-, z-components are u and v), and the vorticity ω is defined as ∇ × V (which
we note is a vector pointing out of the plane). The streamfunction ψ is given by:

u = −∂ψ
∂z
, v = ∂ψ

∂x
. (4a)

22.2.2 Three Dimensions

In three dimensions, our coordinates are x, y, and z. Our physical assumptions yield
the energy equation:

http://code.google.com/p/opencurrent/wiki/OpenCurrent
http://code.google.com/p/opencurrent/wiki/OpenCurrent
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∂T

∂t
= ∇2T − v · ∇T, (1b)

and the 3-D momentum equation:

∇2Ω = Ra T (2b)

∇2ψ = Ω. (3b)

Ω is not vorticity as it was in two-dimensions, but rather is a scalar function analogous
to the vorticity. ψ is the scalar function associated with the poloidal vector of the
Helmholtz decomposition of an arbitrary three-dimensional vector. Time t is non-
dimensionalized according to the time it takes for heat to diffuse along the height of
the box. ψ also satisfies the following relationship with the components of V :

u = ∂2�

∂x∂z
, v = ∂2�

∂y∂z
,w = −

(

∂2�

∂x2 +
∂2�

∂y2

)

. (4b)

As for the boundary conditions, we wish to have the no-slip condition (no outward-
pointing velocity component at the face) on all but the top and bottom faces. On the
top face, we wish to have constant temperature 0. On the bottom face, we wish to
have constant temperature of 1 (Larsen et al. 1997).

22.3 Numerical Solution

We wish to approximate the solution of this system by discretizing space using a
second order finite difference scheme and time by a third-order Runge–Kutta method
(RK3). We apply this same method to both the 2-D and 3-D cases, resulting in very
similar numerical solutions. We describe the 3-D solution in detail and mention where
and how the 2-D solution differs in several places (Fig. 22.1).

At every timestep k, g (defined below) is called with Tk as its input and the result
is named q1. Next, we compute q2 = g(T+ �t

3 q1) and then q3 = g(T+ 2 �t
3 q2). The

final step defines the temperature matrix for the next timestep Tk+1 as Tk + �t
4 (q1+

3q2). These steps correspond to the phases of RK3.
Adopting the subscript notation for partial derivatives, g is given by:

g(T) = TXX + TYY + TZZ −�ZX·∗TX −�ZY·∗TY + (�XX +�ZZ)·∗TZ,

where ψ is the same scalar field from (3b) and (4b), found by applying the appropri-
ate method—in this case, application of the proper DCT (described in more detail
below)—to the xy- sheets (by “sheet” we mean the xy-, xz- and yz- subspaces of the
uniformly discretized space the model inhabits) of T. The operation A.∗B denotes ele-
mentwise multiplication of A and B. Our finite-difference method allows us to phrase
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Fig. 22.1 3-D numerical
solution flowchart for an
arbitrary timestep k with
temperature Tk and timestep
width �t

Table 22.1 Peak
performance on a single Tesla
C2070 in GFLOP/s

2-D 3-D

Single precision 535 100

these first- and second-derivatives as sheetwise scalar multiplications followed by
sheet-sheet additions.

In the 2-D case, g takes on the form:

g(T) = TXX + TZZ − ψZ·∗TX − ψY·∗TZ.

Analogously to the 3-D caseψ is the matrix T with the Hockney method (described
below) applied to it and the ·∗ operator is representative of elementwise multiplica-
tion, as before.

In the 3-D scenario we have a pair of coupled Poisson equations which can be
solved generically with a discrete Fourier transform (DFT). This is often imple-
mented by utilizing a fast Fourier transform (FFT). We employ a direct method
based on a DFT (Van Loan 1992). This method involves performing two matrix–
matrix multiplies per Poisson equation. A few other methods were also attempted
and investigated. We summarize these methods in the table below (method A was
the fastest) Table 22.1.

While remaining almost computationally identical to the 3-D method, the 2-D
method employed a slightly different approach for solving the pair of coupled Poisson
equations. We solved these equations using the Hockney method—a technique which
predates FFT (Hockney 1965). This method utilizes DSTs, which we implement as
matrix–matrix multiplications (Fig. 22.2).

Examining the definitions for g, we can see the dominating computational aspect
is matrix–matrix multiplication (specifically, in determining � and ψ). While this
may be cause for some initial celebration—after all, matrix–matrix multiplication
is considered to be fast on GPU—it may be the case that there is a lower-FLOP/s
algorithm which advances through some equivalent measure of non-dimensional
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Fig. 22.2 Algorithmic comparison of various solutions for our coupled Poisson equations for the
3-D case. In addition to the aforementioned DCT, discrete sine transforms (DST), Fourier cosine
transforms (FCT), and Fourier sine transforms (FST) were used

time more rapidly. This would be especially true if we were to implement the same
problem on CPU and should be considered whenever a new attempt is made on
different hardware architecture.

22.4 Implementation

22.4.1 CUBLAS

We make a few notes on CUBLAS conventions in order to clarify later decisions. First
and foremost, CUBLAS inherits the legacy of BLAS (Basic Linear Algebra System),
a library of dense linear algebra routines originally crafted for Fortran. CUBLAS uses
column-major order for arrays and begins its arrays with 1 (contrasting with CUDA’s
adherence to C-like, 0-indexed row-major order). Accordingly, there is some risk of
creating confusion when transitioning into and out of CUBLAS routines in one’s
code.

This can become especially troublesome when utilizing GEMM (Generalized
Matrix-Matrix Multiply) routines, as arrays defined outside of CUBLAS will be
interpreted as their transpose. Fortunately, many CUBLAS BLAS-3 (the BLAS level
associated with matrix–matrix operations) routines can perform their tasks on the
transpose as well as normal matrices. Since we can also rephrase the operation
(AB)Tas BTAT (where the superscripted T denotes matrix transposition of rows with
columns) for matrices A and B, it is also possible to retain a degree of row-major
thinking in CUBLAS’ column-major world.

To make this explicit, we provide an example from our code. Consider two matri-
ces, an m×m matrix A and an m×n B. We have initialized these matrices according
to typical C convention (row-major order), but now we would like to compute the
matrix–matrix product AB from CUBLAS. The generic GEMM convention is to
perform C ←− αAB + βC, so regardless of our data’s orientation in memory, we
know is equal to one and β is equal to zero. Although GEMM accepts arguments
telling it to perform the operation on AT and BT, it will always write C in column-
major order. However, if we compute BTAT instead of AB, the array put in C will
be (AB)T. This is ideal because converting arrays between row- and column-major
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orders is the same as performing a matrix transpose. It is worthwhile to note that C
cannot occupy the same memory location as A or B, otherwise the values in these
latter matrices will be overwritten during the computation, thoroughly corrupting the
entire operation. While a more complete discussion of GEMM inputs and conven-
tions is beyond the scope of this article, we reproduce below our code for performing
the above operation on the double-precision arrays A and B described above. Below
is some code making use of this observation to perform a DST.

/* Solving Poisson equations on GPU. Single precision, two dimensions.
** Author: David A. Sanchez, 2011
** Description: This code segment illustrates how various components of
** our code fit together to solve a set of two coupled Poisson equations.
** Please refer to the article for a more complete exposition of what
** these equations are and what they do. Also refer to Hockney 1965 for
** technical details of the solution method (exact reference in article).
**
** Mainly, we use four matrix--matrix multiplications and an element-wise
** multiplication to perform the solution. The two components of the
** matrix--matrix multiplications are always one matrix whose contents we
** don’t know a priori (upon which we perform the DST) and another matrix,
** dsr or dsc which performs the transform on the rows or columns,
** respectively.
*/

/* We define some arrays on the device-side in order to compute the
** elements for dsr and dsc:
** dsc: a discrete sine transform to the columns, when applied as a
** matrix--matrix multiplication to an array.
** dsr: a discrete sine transform of the rows.
** lambda, mu: intermediate arrays for defining ei
** ei: an array we perform an elementwise multiply with.
**
** Since T, temperature, has its top and bottom rows fixed for all time,
** it is not necessary for us to compute them. Accordingly, while the
** entire grid has dimensions of M and N, T as an array has dimensions of
** (M-2)xN.
**
**========================================================================

HOST-SIDE COMPONENT
**======================================================================*/
// 2-D arrays
float* h_dsc = (float*)malloc((M-2)*(M-2)*sizeof(float));
float* h_dsr = (float*)malloc((N-2)*(N-2)*sizeof(float));
float* h_ei = (float*)malloc((M-2)*(N-2)*sizeof(float));

// Vectors
float* h_lambda = (float*)malloc((M-2)*sizeof(float));
float* h_mu = (float*)malloc((N-2)*sizeof(float));

// Define a discrete sine transform of the columns, as in Hockney 1965
for(int i = 0; i < M-2; i++) {

for(int j = 0; j < M-2; j++) {
h_dsc[(M-2)*i+j]=sqrt(2.0/(M-1.0))*sin((i+1.0)*(j+1.0)*PI/(M-1.0));

}
}
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// Define a discrete sine transform of the rows, also as in Hockney 1965
for(int i = 0; i < N-2; i++) {

for(int j = 0; j < N-2; j++) {
h_dsr[(N-2)*i+j]=sqrt(2.0/(N-1.0))*sin((i+1.0)*(j+1.0)*PI/(N-1.0));

}
}

// Initialize lambda and mu, which are used to compute ei.
for(int i = 0; i < M-2; i++) {

h_lambda[i] = 2.0*cos((i + 1.0)*PI/(M - 1.0)) - 2.0;
}
for(int i = 0; i < N-2; i++) {

h_mu[i] = 2.0*cos((i + 1.0)*PI/(N - 1.0)) - 2.0;
}

/* Compute ei from lambda and mu.
** The elements of ei are saved in reciprocal form on the last step.
** Normally, these elements would participate in an elementwise division
** between matrices, but since we perform this operation three times per
** timestep it pays to perform the division one extra time now so we can
** perform multiplications instead in the future.
*/

for(int i = 0; i < M-2; i++) {
for(int j = 0; j < N-2; j++) {

h_ei[(N-2)*i + j] = h_lambda[i] + h_mu[j];
h_ei[(N-2)*i + j] = (h_ei[(N-2)*i + j])*(h_ei[(N-2)*i + j]);
h_ei[(N-2)*i + j] = 1/(h_ei[(N-2)*i + j]);

}
}

/* Now we allocate device-side room for the arrays omega, psi, dsc, dsr,
** and ei. These arrays all have the same shapes as their host-side
** counterparts.
** Note that d_omega was not defined in any way on the device-side.
*/
float* d_omega;
custat = cublasAlloc((M-2)*(N-2), sizeof(float), (void**)&d_omega);
if(custat != CUBLAS_STATUS_SUCCESS) printf("Could not allocate memory\n");

float* d_dsc;
custat = cublasAlloc((M-2)*(M-2), sizeof(float), (void**)&d_dsc);
if(custat != CUBLAS_STATUS_SUCCESS) printf("Could not allocate memory\n");

float* d_dsr;
custat = cublasAlloc((N-2)*(N-2), sizeof(float), (void**)&d_dsr);
if(custat != CUBLAS_STATUS_SUCCESS) printf("Could not allocate memory\n");

float* d_ei;
custat = cublasAlloc((N-2)*(M-2), sizeof(float), (void**)&d_ei);
if(custat != CUBLAS_STATUS_SUCCESS) printf("Could not allocate memory\n");

// Copy the completed data over.
cublasSetVector((M-2)*(M-2), sizeof(float), h_dsc, 1, d_dsc, 1);
cublasSetVector((N-2)*(N-2), sizeof(float), h_dsr, 1, d_dsr, 1);
cublasSetVector((M-2)*(N-2), sizeof(float), h_ei, 1, d_ei, 1);
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/*========================================================================
GPU-SIDE COMPONENT

**======================================================================*/

/* Although these manipulations are all being called from the CPU, the
** actual operations are being done on GPU. This is a syntactic
** convenience due to CUBLAS.
**
** In this section, we take a device-side temperature array T and subject
** it to some manipulations which will transform it into omega, the
** vorticity array.
*/

// Define omega to be the interior columns of DxT. T is currently stored
// in f so its value isn’t overwritten throughout the various RK3 phases.
// DxOmega is a special routine which applies Dx only to the interior
// columns of the first argument, saving the result to the second argument
// (which is assumed to be the correct shape, as is omega).
DxOmega(f, DxT);

/* Perform some matrix multiplications. cublas assumes everything is in
** column-major, so while we want to perform:
**
** omega = dsc*omega
** omega = omega*dsr
** omega = omega.*ei
** omega = dsc*omega
** omega = omega*dsr
**
** we observe that Transpose(A*B) = Transpose(B)*Transpose(A) to perform
** these same manipulations while preserving row-major storage.
** Omega has dimensions (M-2)x(N-2), but cublas thinks this is (N-2)x(M-2)
** dsc and dsr are square, so cublas agrees with us on the dimensions,
** thought it may still disagree about the contents.
** Perform Transpose(omega) = Transpose(omega)*Transpose(dsc):
**
** ld below means "leading dimension," which is the row or column size,
** depending on whether row- or column- major order is chosen
**
** _M-2_
** | |
** M-2 | dsc |
** |_____| ld = M-2
**
** _M-2_ _M-2_
** | | | |
** | | | |
** | | | new |
** N-2|omega | N-2|omega |
** | | | |
** |ld=N-2| |ld=N-2|
** |______| |______|
** The call for cublasSgemm is (’n’, ’n’, m, n, k, alpha, A, lda, B, ldb,
** beta, C, ldc), where A is m-by-k, B is k-by-n, and C is m-by-n.
** Since A = C, k = n, so B is k-by-k. B = dsc, so k=n=M-2 and m = N-2.
*/
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/* We save into a universal temperature-shaped buffer, Tbuff, even if it
** is not quite the right shape for our result--that’s fine. We can’t
** write directly into omega, otherwise it will be overwitten during the
** operation, leading to the corruption of its values.
*/
cublasSgemm(’n’,’n’,N-2, M-2, M-2,1.0,omega,N-2,dsc,M-2, 0.0,Tbuff,N-2);
// Now put Tbuff into omega.
cublasScopy((N-2)*(M-2), Tbuff, 1, omega, 1);

// Perform Tranpose(dsr)*Transpose(omega), store in omega.
// _M-2_
// | |
// | |
// | |
// N-2|omega|
// | |
// |ld=N-2
// |_____|
//
// __N-2__ _M-2_
// | | | |
// | | | |
// | | | new |
// N-2| dsr | N-2|omega|
// | | | |
// | ld=N-2| |ld=N-2
// |_______| |_____|
// since A is square, M = k = N-2, so n must be M-2.
cublasSgemm(’n’,’n’,N-2, M-2, N-2, 1.0, dsr, N-2,omega,N-2,0.0,Tbuff,N-2);
cublasScopy((N-2)*(M-2), Tbuff, 1, omega, 1);

/* Now perform elementwise matrix multiply, storing the result in omega.
** This is an example of a GPU kernel call. grid and block were defined
** previously to the appropriate values. ElemMultOmega doesn’t call into
** a generic library, we wrote it ourselves.
*/
ElemMultOmega<<<grid, block>>>(omega, ei);

// This is the exact same operation as the Transpose(omega)*Transpose(dsc)
// computation we performed previously.
cublasSgemm(’n’,’n’,N-2, M-2, M-2, 1.0, omega, N-2,dsc,M-2,0.0,Tbuff,N-2);
cublasScopy((N-2)*(M-2), Tbuff, 1, omega, 1);
// This is the exact same operation as the Transpose(dsr)*Transpose(omega)
// computation we performed previously.
cublasSgemm(’n’,’n’,N-2, M-2, N-2, 1.0, dsr, N-2,omega,N-2,0.0,Tbuff,N-2);
cublasScopy((N-2)*(M-2), Tbuff, 1, omega, 1);
/* To finish the algorithm, omega is scaled by a constant. This is part of
** the method. DX and RA are \#define’d to the mesh spacing and Ra number
** respectively.
*/
cublasSscal((N-2)*(M-2), (DX*DX*DX*DX)*(RA), omega, 1);

However, not all indexing conventions can be waved away. For these cases, it is
possible to simplify code by creating C macros that will convert one type of index
to the other. Employment of such macros improves code readability with no loss of
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performance. For example, in a 2-D array with leading dimension ld, the following
macro will rewrite conventional C-language indices into Fortran-style indices:

#define C2F (i,j,ld) ((((j)-1)*(ld))+((i)-1))

However, since one-dimensional arrays (vectors) are stored the same way in both
row- and column-major ordering, our solution was to rephrase as many matrix oper-
ations as possible into vector operations. This has the additional advantage of expos-
ing the position of data in linear memory, allowing us to keep coalescing in mind.
Although such a choice also carries the risk of obscuring the underlying mathematics,
we consider this a risk worth taking.

22.4.2 Routines

Our first step was to determine which operations should be done on GPU and which
should be moved to (or shared by) CPU. We could have adopted a hybrid computing
approach and allowed the CPU to participate in the main computation loop, but we
opted to limit the CPU activities to memory initialization and file I/O. This allowed
us to reliably benchmark GPU performance alone and simplify host/device memory
transfer for later, multi-device development.

Because of our finite-difference scheme, we have a class of operations that look
like the accumulation of adjacent xy-, xz-, or yz-sheets of the temperature array. As
mentioned, we would like to treat this as a class of vector operations in order to
expose the arrangement of matrix elements in linear memory. Clearly, this will have
to be done differently for all three orientations of 2-D arrays within the grid.

For example, the second-order finite-difference approximation to the first deriv-
ative in x is defined for each x-slice Xi (yz-sheet) in the interior of the matrix as
(Xi )x = Xi+1 − Xi−1. The obvious way of trying to implement this in code is to
simply iterate through the interior Xi , performing this accumulation as we go. Due
to the way these slices are arranged in linear memory, each Xi is going to look like
some vector with a large stride (separation between its elements). In hardware, if the
3-D index (i, j, k) is on an array of dimensions n, m, and p, then the corresponding
1D index is of the form ((kn + i)m + j).

Since GPU is best at trying to access contiguous arrays in memory, a better way of
performing this operation is by realizing the accumulation on an element-by-element
basis, instead of a sheet-by-sheet one. Specifically, since we wish to iterate through
the Xi of the array, a practical alternative is to iterate through the Z’i (where each
Z’i is a Zi missing its first and last rows, because this derivative is only defined on the
interior x-slices), moving elements within the plane instead of moving perpendicular
to it. This method enjoys much greater efficiency. For an input matrix f and output y
with x-y-z dimensions given by N, M, and P respectively, we implement this operation
as follows:
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// First second-order derivative with respect to x.
// X\_i = X\_i+1 -- X\_i-1.
void Dx(double* f, double* y) \{

for(int k = 0; k $<$ P-2; k++) \{
// Notice that these vectors have a stride of 1,

which is our
// best-case scenario!
cublasDcopy((M-2)*N, f+k*M*N+2*M, 1, y+k*M*N+M, 1);
cublasDaxpy((M-2)*N, -1.0, f+k*M*N, 1, y+k*M*N+M, 1);

}
// Scale everything by 1/(2*DX), for mesh-spacing DX, to
finish the // derivative.
cublasDscal(M*N*(P-2),REC2-DX,y,1);
return;

}

22.5 Performance

While our analysis and visualization used data from double-precision runs exclu-
sively, we also timed single-precision code for both two and three dimensional cases.
Best-case performance was achieved for all cases on aspect 1:1 or 1:1:1 grids, and
tabulated below. These figures were obtained by running the code on a single Tesla
C2070. We note that the 2-D single-precision performance approaches the GPU’s
maximum matrix–matrix multiply capability.

If a plot is made of the 2-D performance on a square aspect ratio, with data points
taken when a side length is a multiple of 4, a staggered pattern develops. This appears
for a number of reasons. Many threads remain unused during the matrix–matrix
multiply if the blocks they inhabit are asked to compute fewer than sixteen elements
at the end of a vector. Additionally, memory transactions are optimal only when a
multiple of the pipeline width is fetched or stored, also introducing a new degree of
memory latency to these edge cases. While one may think a suitable alternative is to
have these unused threads compute the elements of the next vector, it turns out that
the latency of global memory makes this an unattractive option. These innocuous
details seem trivial, but added together they can account for fluctuations on the order
of 50 GFLOP/s in the breadth of only a few array elements. For this reason, it may
be economical to perform a slightly larger problem than intended, particularly if
it forces the various computational elements to align into the proper multiples of
sixteen.

On the other hand, 3-D single-precision performance has a different characteristic.
Despite its similar computational nature, its performance is markedly lower than that
of the 2-D code. Generically one may attribute this to sloppy coding—for a wide
range of problems the 3-D case is considered more computationally efficient than 2-D,
since proper utilization of fast (or otherwise cached) memory allows computational
saturation to improve far beyond what is possible in the 2-D case. Unfortunately,
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Fig. 22.3 2-D single-precision performance on a square grid, where length of side is a multiple
of 4

this observation is not universal. Since the 3-D problem looks like the 2-D problem
stacked up on itself, there is not enough memory available to make the size of each
matrix–matrix multiply very large. While we can consider matrices with dimensions
on the order of 3500 × 3500 in the 2-D case, we are reduced to dimensions of
450 × 450 for 3-D. This is insufficient for properly saturating the GPU, forcing us
to live with suboptimal performance (Fig. 22.3).

22.5.1 Accelerated GPU Code

Previously, we had implemented this code on GPU by accelerating it from Matlab
with AccelerEyes Jacket (Barnett et al. 2009). In this context, the 3-D CPU (Intel
Core i7 960, running at 2.93 GHz) code could simulate 400× 400× 200 grid points
in slightly less than 44 s per timestep, while the Jacked-accelerated code on a Fermi
GPU could perform the same computation in about 10 s. On the other hand, the 3-D
CUDA code on a Fermi GPU can simulate these 400 × 400 × 200 grid points in
about 5.18 s per timestep. Another benefit in hand-crafting the code was a greatly
reduced memory signature, allowing us to utilize the same GPU hardware for even
larger runs. Matlab and AccelerEyes have since improved their GPU offering, which
may necessitate a renewed investigation at a later time (Fig. 22.4).



22 High Rayleigh Number Mantle Convection on GPU 347

Fig. 22.4 3-D single-precision performance on a cubic grid

22.5.2 Application

The major application of our model was to simulate flow in a primitive Earth’s mantle.
The mantle today is approximately 2,850 km thick and varies greatly both chemically
and physically with depth. Flow in the mantle is a solid-state flow influenced by
subductive processes from plate tectonics and chemically distinct regions. Heat that
drives convection in the mantle is generated by the radioactive decay of unstable
isotopes and as well as heat transfer from the core-mantle boundary.

The primitive mantle differed greatly compared to the present day mantle in
several respects. Generally, the primitive mantle is believed to have been much less
chemically mature with higher overall convective velocities (Solomatov 2007). Addi-
tionally, Earth was undergoing massive bombardment by large bodied planetesimals
leftover from the formation of the solar system during its accretion period (Melosh
and Tonks 1993). This period of Earth’s history is called the accretion period and
was an extremely hostile environment. The impacts generated enough energy that a
significant portion of the Earth’s mantle became molten (Melosh and Tonks 1993).
The impacts, together with heat being generated from radioactive decay and gravita-
tional coalescing of the inner Earth, resulted in a mantle with an enormous amount
of thermal energy.

This excess thermal energy influenced the overall mantle viscosity. The viscosity
was much lower than the contemporary motion and as a result fast amounts of magma
began pond at the surface of the planet. This pooling of magma earned the phrase
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Fig. 22.5 Boss transition of the temperature field in 3-D, using isosurfaces at Ra = 107. When
temperature is normalized to the interval between zero and one, red displays a temperature of 0.9,
yellow a temperature of 0.75, green a temperature of 0.25, and blue a temperature of 0.1. The left half
of the figure is the visualization at initial condition, while the right half is a time shortly thereafter

“magma ocean” to describe the situation (Melosh and Tonks 1993). Our model
aimed to investigate this style of turbulent convection and its characteristics right
after a planet’s formation, but just prior to any crystallization that occurred shortly
after.

The behavior of our model is governed by the single dimensionless quantity known
as the Rayleigh number (Ra) (Breuer and Hansen 2009). It has been suggested that
convective motion begins at Ra ∼ 103. To compare, the present mantle is thought to
have Ra on the order of 105–107 (Karato 2003). On the other hand, computations
indicate magma oceans have Ra around 1028–1029 (Solomatov 2007). It is interesting
to note a convective feature of our model known as the Boss transition. This transition
occurs as a result of our initial conditions (which is a linear temperature profile with
its cold side near the top), which the model reacts to by inverting the temperature
column to facilitate more rapid transport of heat.

Our model utilized Ra as high as 6× 1010. By doing so, we were looking for two
characteristics that commonly frequent thermal turbulent convection—hard turbu-
lence and flow reversals (Fig. 22.5).

Hard turbulence is a convective motion in which the entire system flows in an
organized fashion (Solomatov 2007). This turbulent characteristic of whole-mantle
convection has been thought to arise under various conditions. One particular view
advanced by numerical studies suggests that global circulation is the result of convec-
tive rolls in which the wave number increases with higher Rayleigh numbers (Breuer
and Hansen 2009).
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Fig. 22.6 Global circulation at Ra = 6 × 1010. Visualization is a nonlinear color map of the
temperature field, where blue represents cold, red and yellow represent hot, and green represents a
temperature close to average

Flow reversals are concerned with organization of a different kind. Specifically,
flow taking place in the convective system is only temporarily stable. As such, the
orientation and the direction of the flow constantly shifts and changes (Breuer and
Hansen 2009). When these changes occur, a change in the overall structure of the
flow takes place (Fig. 22.6). The flow will begin to stagnate and if the conditions are
right, the orientation of the flow will reverse 180◦. This reversal is only temporary
and the overall global circulation will remain approximately constant once the flow
reverses again to its original orientation (Breuer and Hansen 2009).

There are several mechanical characterizations of flow that result in reversals;
however the phenomenon of the flow reversal itself and the reorganization of the
flow are poorly understood in the realm of Rayleigh–Benard convection. Regardless
of this poor understanding relating to flow reversals in both the present day mantle
and a primitive mantle, empirical evidence suggests that flow reversals may be at the
heart of a rapid shifting in the tectonic plates (Ghiaz and Jarvis 2007). A perfect case
of this is seen in the rapid shifting of the Hawaiian-Emperor sea mount chain.

Another important convective feature of the model is a scalar quantity known as
the Nusselt number (Nu). Nu is a dimensionless number which is defined as the ratio
between convective and conductive heat transfer. Because faster convection transfers
more heat, it is particularly useful for describing the intensity of the convection at
a given point in the system’s evolution (Fig. 22.7). For example, a run with Ra =
3×1010 suddenly being perturbed mid-run to Ra = 6×1010 results in a corresponding
increase in Nu. A following figure captures this information in histogram form. This
number was also useful for us as a diagnostic measure of our model’s numerical
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Fig. 22.7 The evolution of a flow-reversal, counter-clockwise. Ra = 6× 1010, temperature field

correctness. Specifically, we found agreement with published results (Zhong 2005)
on a wide range of cases in 3-D (Fig. 22.8).

22.6 Conclusion

We enjoyed a practical benefit from implementing our code on GPU using CUDA
and CUBLAS. Achieving a maximum of 535 GFLOP/s in single-precision for the
2-D code on a Fermi GPU, we utilized over half of the theoretical performance of
the hardware. In addition, use of standard libraries makes the software very modular,
allowing us to easily use systems such as MPI to scale our code to multiple GPUs in
the future. In particular, we are working towards implementing this 3-D code on the
full 360-GPU body of the NSF’s new Keeneland GPU cluster (Fig. 22.9).
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Fig. 22.8 Nu over time. Note that at 300,000, Ra doubles from 3× 1010 to 6× 1010

Fig. 22.9 Nu histogram corresponding to the data in (Fig. 22.3). Ra 3×1010 is in blue and 6×1010

is in purple



352 D. A. Sanchez et al.

Acknowledgments We thank Matt Knepley for stimulating discussions on GPU. This research
has been supported by NSF CMG grant.

References

Breuer M, Hansen U (2009) Turbulent convection in the zero Reynolds number limit. EPL
86(2):3024–3027

Cohen JM, Molemaker MJ (2009) A fast double precision CFD code using CUDA. Proceedings of
parallel CFD 2009

Ghiaz S, Jarvis G (2007) Mantle flow reversals in cylindrical earth models, phys Earth Planet.
Interiors 165(3–4):194–207

Guyon E, Hulin JP, Petit L, Mitescu CD (2001) Physical hydrodynamics. Oxford University Press,
Oxford, p 505

Hockney RW (1965) A fast direct solution of Poisson’s equation using Fourier analysis. J ACM
12(1):95–113

Karato S (2003) The dynamic structure of the deep earth: an interdisciplinary approach. Princeton
University Press, Chichester

Larsen TB, Yuen DA, Moser JM, Fornberg B (1997) A high-order finite-difference method applied
to large Rayleigh number mantle convection. Geophys. and Astrophys. Fluid Dyn 84:53–83

Solomatov VS (2007) Magma oceans and primordial mantle differentiation. In: Schubert G (ed)
Treatise on Geophysics, vol 9. Elsevier, Oxford, pp 91–120

Thibault JC, Senocak I (2009) CUDA implementation of a Navier-Stokes Solver on multi-GPU
desktop platforms for incompressible flows. 47th AIAA Aerospace Sciences Meeting, paper no:
AIAA-2009-758, 2009

Tonks WB, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Res
98:5319–5333

Van Loan C (1992) computational frameworks for the fast fourier transform. SIAM Publications,
Philadelphia

Barnett GA, Wright GB, Yuen DA (2009) GPU implementation for three-dimensional mantle con-
vection at high Rayleigh number. AGU Fall Meeting. San Francisco, CA, December 14–18, 2009.
Contributed. ID DI31A-1602

Zhong S (2005) Dynamics of thermal plumes in three-dimensional isoviscous thermal convection.
Geophys J Int 162:289–300



Chapter 23
High-Order Discontinuous Galerkin Methods
by GPU Metaprogramming

Andreas Klöckner, Timothy Warburton and Jan S. Hesthaven

Abstract Discontinuous Galerkin (DG) methods for the numerical solution of
partial differential equations have enjoyed considerable success because they are
both flexible and robust: They allow arbitrary unstructured geometries and easy con-
trol of accuracy without compromising simulation stability. In a recent publication,
we have shown that DG methods also adapt readily to execution on modern, mas-
sively parallel graphics processors (GPUs). A number of qualities of the method
contribute to this suitability, reaching from locality of reference, through regularity
of access patterns, to high arithmetic intensity. In this article, we illuminate a few of
the more practical aspects of bringing DG onto a GPU, including the use of a Python-
based metaprogramming infrastructure that was created specifically to support DG,
but has found many uses across all disciplines of computational science.

23.1 Introduction

Discontinuous Galerkin methods (Reed and Hill 1973; Lesaint and Raviart 1974;
Cockburn et al. 1990; Hesthaven and Warburton 2007) are, at first glance, a rather
curious combination of ideas from Finite-Volume and Spectral Element methods. Up
close, they are very much high-order methods by design. But instead of perpetuating
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the order increase like conventional global methods, at a certain level of detail, they
switch over to a decomposition into computational elements and couple these ele-
ments using Finite-Volume-like surface Riemann solvers. This hybrid, dual-layer
design allows DG to combine advantages from both of its ancestors. But it adds
a third advantage: By adding a movable boundary between its two halves, it gives
implementers an added degree of flexibility when bringing it onto computing hard-
ware.

Using graphics processors for computational tasks is by no means a new idea.
In fact, even in the days of marginally programmable fixed-function hardware,
some (especially particle-based) methods obtained large performance gains from
running on early GPUs (e.g., Li et al. 2003). In the domain of solvers for partial
differential equations, Finite-Difference Time-Domain (FDTD) methods are a nat-
ural fit to graphics processors and obtained high performance with relative ease
(e.g., Krakiwsky et al. 2004). Finite Element solvers were also brought onto GPUs
relatively early on (e.g., Göddeke et al. 2005), but often failed to reach the same
impressive speed gains observed for the simpler FD methods. In the last few years,
high-level abstractions such as Brook and Brook for GPUs (Buck et al. 2004) have
enabled more and more complex computations on streaming hardware. Building on
this work, Barth and Knight (2005) already predicted promising performance for two-
dimensional DG on a simulation of the Stanford Merrimac streaming architecture
(Dally et al. 2003). Nowadays, compute abstractions are becoming less encumbered
by their graphics heritage (Lindholm et al. 2008; Nvidia Corporation 2009). This has
helped bring algorithms of ever higher complexity onto the GPU. Taking advantage
of these advances, our paper (Klöckner et al. 2009) presented, to the best of our
knowledge, the first implementation of a discontinuous Galerkin method on a sin-
gle real-world consumer graphics processor. Now, a few years after the publication
of the original paper, interest in GPUs and their use for solving partial differential
equations continues unabated. A few implementers have followed in our footsteps
and brought their versions of DG onto GPUs.

Let us briefly place this text within the sequence of articles on GPU-DG we have
authored. The first one (Klöckner et al. 2009) is rather technical and introduces all
the tricks and details needed to make the method go fast. The second one (Klöckner
et al. 2011a) serves as an introduction to be read by a larger, somewhat non-technical
audience. This latest one addresses some of the software challenges involved in
achieving fast execution of GPU-based discontinuous Galerkin methods.

The article is structured as follows: In Sect. 23.2, we review the details of the
discontinuous Galerkin method and its implementation in general, followed by a
discussion of considerations required by its implementation on GPUs specifically in
Sect. 23.3. Responding to the challenges of this section, we introduce the motivation
and implementation details of our Python-based infrastructure for run-time code
generation (RTCG) in Sect. 23.4. We then discuss the specifics of RTCG in the context
of DG in Section and confirm the success of the method through experimental results
in Sect. 23.5. In closing and summing up what was achieved, we outline avenues for
future work in Sect. 23.6.
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23.2 The Discontinuous Galerkin Method

By their design and origins, DG methods are particularly suited to approximating
the solution of a hyperbolic system of conservation laws

ut + ∇ · F(u) = 0. (23.1)

Initial boundary value problems for PDEs that can be cast in the form (23.1) as well as
slight generalizations thereof, include Maxwell’s equations, Euler’s equations of gas
dynamics, the Navier-Stokes equations, equations arising from Lattice-Boltzmann
models, the equations of magnetohydrodynamics, or the shallow-water equations. In
summary, a wide variety of physical phenomena in the time domain can be modeled
using this type of equation.

Equation (23.1) is to be solved on a domain Ω = ⊎K
k=1 Dk ⊂ R

d consisting of
disjoint, face-conforming tetrahedra Dk with boundary conditions

u|Γi (x, t) = gi (u(x, t), x, t), i = 1, . . . , b,

at inflow boundaries
⊎

Γi ⊆ ∂Ω . As stated, we will assume the flux function F to
be linear. We find a weak form of (23.1) on each element Dk :

0 =
∫

Dk

utϕ+ [∇ · F(u)]ϕ dx

=
∫

Dk

utϕ− F(u) · ∇ϕ dx +
∫

∂Dk

(n̂ · F)∗ϕ dSx ,

where ϕ is a test function, and (n̂ · F)∗ is a suitably chosen numerical flux in the unit
normal direction n̂. Following Hesthaven and Warburton (2007), we find a ‘strong’-
DG form of this system as

0 =
∫

Dk

utϕ+ [∇ · F(u)]ϕ dx −
∫

∂Dk

[n̂ · F − (n̂ · F)∗]ϕ dSx . (23.2)

We seek to find a numerical vector solution uk := uN |Dk from the space Pn
N (Dk) of

local polynomials of maximum total degree N on each element. We choose the scalar
test function ϕ ∈ PN (Dk) from the same space and represent both by expansion in
a basis of Np := dim PN (Dk) Lagrange polynomials li with respect to a set of
interpolation nodes (Warburton 2006). We define the mass, stiffness, differentiation,
and face mass matrices

Mk
i j :=

∫

Dk

li l j dx, (23.3a)

Sk,∂v
i j :=

∫

Dk

li∂xvl j dx, (23.3b)
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Mk,A1

Mk,A2

Mk,A3

Mk,A4

(Mk)−1 ·=Lk Np

Nf p

Fig. 23.1 Construction of the lifting matrix Lk

Dk,∂v := (Mk)−1Sk,∂v, (23.3c)

Mk,A
i j :=

∫

A⊂∂Dk

li l j dSx . (23.3d)

Using these matrices, we rewrite (23.2) as

0 = Mk∂t u
k +

∑

v

Sk,∂v [F(uk)] −
∑

F⊂∂Dk

Mk,A[n̂ · F − (n̂ · F)∗],

∂t u
k = −

∑

v

Dk,∂v [F(uk)] + Lk[n̂ · F − (n̂ · F)∗]|A⊂∂Dk . (23.4)

The matrix Lk used in (23.4) deserves a little more explanation. It acts on vectors
of the shape [uk |A1, . . . , uk |A4 ]T , where uk |Ai is the vector of facial degrees of
freedom on face i . For these vectors, Lk combines the effect of applying each face’s
mass matrix, embedding the resulting facial values back into a volume vector, and
applying the inverse volume mass matrix. Since it “lifts” facial contributions to
volume contributions, it is called the lifting matrix. Its construction is shown in
Fig. 23.1.

It deserves explicit mention at this point that the left multiplication by the inverse
of the mass matrix that yields the explicit semidiscrete scheme (23.4) is an element-
wise operation and therefore feasible without global communication. This strongly
distinguishes DG from other finite element methods. It enables the use of explicit
(e.g., Runge-Kutta) time stepping and greatly simplifies parallel implementation
efforts such as this one.

23.2.1 Implementing DG

DG decomposes very naturally into four stages, as visualized in Fig. 23.2. This clean
decomposition of tasks stems from the fact that the discrete DG operator (23.4) has
two additive terms, one involving an element volume integral, the other an element
surface integral. The surface integral term then decomposes further into a ‘gather’
stage that computes the term
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uk

Flux Gather Flux Lifting

F (uk) Local Differentiation

∂t uk

Fig. 23.2 Decomposition of a DG operator into subtasks. Element-local operations are highlighted
with a bold outline

[n̂ · F(u−N )− (n̂ · F)∗(u−N , u+N )]|A⊂∂Dk , (23.5)

and a subsequent lifting stage. The notation u−N indicates the value of uN on the face
A of element Dk , u+N the value of uN on the face opposite to A.

As is apparent from the use of a Lagrange basis, we employ a nodal version of
DG, in which the stored degrees of freedom (“DOFs”) represent the values of uN

at a set of interpolation nodes. This representation allows us to find the facial values
used in (23.5) by picking the facial nodes from the volume field. (This contrasts with
a modal implementation in which DOFs represent expansion coefficients in a non-
Lagrange basis. Finding the facial information to compute (23.5) requires a different
approach in these schemes.)

Observe that most of DG’s stages are element-local in the sense that they do not use
information from neighboring elements. Moreover, these local operations are often
efficiently represented by a dense matrix-vector multiplication on each element.

It is worth noting that since simplicial elements only require affine transformations
Ψk from reference to global element, the global matrices can easily be expressed in
terms of reference matrices that are the same for each element, combined with scaling
or linear combination, for example

Mk
i j =

∣

∣

∣

∣

det
dΨk

dr

∣

∣

∣

∣

︸ ︷︷ ︸

Jk :=

∫

I
li l j dx

︸ ︷︷ ︸

Mi j :=

, (23.6a)

Sk,∂v
i j = Jk

∑

μ

∂Ψv

∂rμ

∫

I
li∂rμl j dx

︸ ︷︷ ︸

S∂μi j :=

, (23.6b)

where I = Ψ−1
k (Dk) is a reference element. We define the remaining reference

matrices D, M A, and L in an analogous fashion.
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23.3 GPU-DG: Motivation and Challenges

As we begin our study of bringing DG methods onto GPU-like architectures, we
should first establish what we intend to achieve in doing so. Our main motivation
is a gain in performance available from a desk-side workstations. We believe that
the amount of computing power easily available to an engineer often determines the
amount of computing power used in a given engineering challenge. Remote resources
such as big clusters provide large amounts of power quite readily, but their use also
implies a complexity burden in management, cost, and access. Nonetheless, good
performance on clusters and large machines is clearly a secondary goal. Next, we
would like to be able to apply the technology under discussion to a wide range of
partial differential equations. While DG methods are designed for and best suited
to hyperbolic PDEs, there is no conceptual restriction to this type of PDE—and our
GPU-DG technology is not restricted in this way, either. A tertiary goal of ours is to
make the technology not just worthwhile on a desk-side workstation, but also simple
enough to apply that an engineer can easily manage his or her own computations.
While this is partially a software design issue beyond the scope of this article, some
prerequisites at the GPU computation level must be met to accommodate the desired
ease of use. In particular, no knowledge of GPU computing is necessary to manage
a computation.

The discontinuous Galerkin method further allows considerable user choice at the
level of the reference discretization. It is not practical to support all such choices,
and thus we introduce the following (fairly non-restrictive) stipulations:

• We will specialize to straight-sided simplices, as we perceive the required volume
mesh generation machinery to be the most mature for this type of element. The
restriction to straight-sidedness is comparatively easy to lift (Warburton 2010).
• We will optimize for (but not specialize to) the three-dimensional case, i.e. tetra-

hedral elements, as it bears both the most relevance to application problems and
the greatest computational complexity.
• We will further optimize for “medium” order (N = 3, . . . , 5) polynomial spaces,

as those maintain the DG time step restriction (Δt ∼ Δx/N 2, see Hesthaven and
Warburton (2007)) at a reasonable level.

Next, we consider what possible obstacles our effort to bring DG to the GPU may
face. Perhaps the first challenge that comes to mind is that of data movement. As
in any matrix-product-type workload, there is much data reuse in DG, but matrices
grow rapidly as N increases. In terms of data reuse, that is good—however it does
compete with the limited size of on-chip memories that are needed to realize the
possible reuse. Further, while on-chip memories are growing at a moderate pace and
management of these memories becomes more automatic, it should be noted that even
CPU-based matrix-matrix multiplies benefit from explicit management of their L1
caches (Bilmes et al. 1997; Whaley et al. 2001) in matrix-based workloads. Strongly
interwoven with the challenge of having to manage on-chip memories is that of
accommodating hardware granularities, such as memory sizes, memory bus widths,
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Fig. 23.3 Workload size characterization for element-local linear operators. Left element-local
differentiation. Right lifting from flux values along element faces into volume data. In each case,
matrix sizes are given in terms of the quantities of Sect. 23.2

SIMD widths, workgroup sizes, and so on. In addition, discontinuous Galerkin meth-
ods have their own preferred granularities, such as the number of degrees of freedom
in each element, the number of dimensions, or the number of degrees of freedom
on an element’s face. Unfortunately, while machine-related granularities have a ten-
dency to be powers of two, the exact opposite is true of those related to the numerical
method. Another challenge posed by GPU computing is the necessity to map the
computation onto a two-level, grid-based parallel execution structure, with the first
level corresponding to parallelization across cores, and the second to paralleliza-
tion across SIMD lanes within a core. While a coarse-grain structure may often be
immediate, various finer details of this choice require careful tuning.

We will now discuss how these challenges are met by our approach, through a few
representative examples, beginning with the question of data movement for element-
local linear operators such as lifting and elementwise differentiation. Figure 23.3
illustrates the type and size of data that these procedures operate on. The figure also
makes it obvious that while the method primarily relies on matrix-vector products,
it is profitable to view the field vectors in aggregate as a matrix, thereby giving rise
to a matrix-matrix computation, albeit with very off-balance matrix dimensions. An
obvious first approach would be to use vendor-supplied BLAS matrix libraries for
such a task, however it turns out that these are often tuned for large, square matrices
and rarely deal well with the matrix sizes occurring in DG. One is therefore left to
build a home-grown algorithm. Given that, depending on the local polynomial order
N , only a limited amount of this data can fit onto the chip, the implementer is faced
with a decision of which data to store locally and which data to stream onto the chip.
In particular, one might consider the following alternatives:

• Store the matrices, stream the vector data. This seems like an obvious choice—
however the matrices are often too large, and vector data is much more easily
partitioned.
• Store part of a matrix. This complicates the access logic, but can often profitably

be done—especially by using row-wise partitions.
• Store only field data. If streaming of the matrix is achieved through a cached data

path, this can also be an attractive option.
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Fig. 23.4 Choices for the amount of work done by a workgroup in an element-local (differentiation,
lift) operation

• Store parts of the matrix and the field vector. While this could, in theory, provide the
best balance of data reuse, we were unable to turn this approach into competitive
code.

This is a choice that an implementer needs to make, however we have found no
universally valid heuristic that might provide guidance on which alternative to choose,
especially given that the optimality of each option strongly depends on the hardware
being used.

For the same workload of elementwise local differentiation and lifting, there is also
the question of which work decomposition to use, where the work decomposition
is given (in vendor-neutral OpenCL terminology) by the number of workgroups
and their sizes. Each of these quantities can further be decomposed into a three-
component vector. Order in this three-component vector matters, as it determines
which work items execute memory accesses at the same time, and which branches
may require serialization.

Abstractly, the workload under consideration consists of an (optional) preparatory
step that preloads matrix data into on-chip memory, followed by dot products for each
matrix row and all the columns (field vectors). The most immediate choice would
be to have each workgroup deal with one such matrix-vector product, leading to a
one-to-one mapping between workgroups and DG elements. While this is certainly
straightforward, it has a number of drawbacks. For the polynomial orders N targeted
in this work, these workgroup sizes are unable to fill the (32- or 64-) wide SIMD
architectures exhibited by today’s GPUs—at least not efficiently, and not without
leaving unused ‘gaps’ in the SIMD vector. Further, one also typically adds padding
to conform to a device’s memory alignment, and this choice leads to a maximum
number of gaps in the data, thereby wasting a considerable amount of (typically
precious) GPU memory. In addition to that, if one workgroup only performs one
matrix-vector product, any preparation steps would be poorly amortized.
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Fig. 23.5 Multiple granularities for inter-element flux computation. Obviously, larger blocks lead
to more data reuse as fewer face pairs are split

Irrespective of more advanced blocking options (as described in Klöckner et al.
2009), there are three basic, orthogonal (i.e. arbitrarily combinable) possibilities of
remedying this situation, outlined in Fig. 23.4. Two of these choices are entirely
obvious, the third slightly less so. The obvious choices include letting a workgroup
do more things in sequence and in parallel. The former of these leads to better
amortization of preparation steps, while the latter does that, and in addition increases
utilization of parallel processing resources. The third choice, called in-line parallel
in Fig. 23.4, occupies a middle-ground between the two by accomplishing a number
of dot products along with each other within a single work item. This exploits the
fact that, in order for the matrix to be operated on, its components must be resident
within the GPU’s register file—but once they are there, it is economical to use them
not just once, but multiple times. All of these strategies are specific forms of work
item coarsening. How many elements are worked on in each of these fashions is
captured by the numbers ws,wi and wp.

Obviously, regardless of the choices for these numbers, the same amount of work
is begin done—it is just the partitioning that differs. Nonetheless, in Sect. 23.5, we
will observe fairly significant performance differences between such partitionings.

We have just seen that a question of granularities arises even in a simple situation
like that of the element-local operations. There is an even more important concern
of this nature in the only inter-element communication operation within DG, the
computation of surface fluxes. Since the computation of each surface flux refers
to data from two opposite element faces, there is definite savings potential if data
for a number of such faces is brought onto the chip at the same time and reused
(Fig. 23.5). Obviously, this leads to a decrease in the amount of parallelism available,
but for large enough problems (which are the main driver for the application of GPU
technology), this becomes a non-issue. The amount of parallelism is however limited
by two sets of data that need to be fit onto the chip, namely the metadata indicating
which faces with what geometry data need to be processed, and the output buffer
used to write vectors of face data that can then be processed in the lifting stage of
the computation. Both of these could theoretically be accomplished in streaming
mode without on-chip storage, however we have found that buffering them improves
performance measurably. Once a granularity has been found that suitably balances
these factors with data reuse, the computational mesh needs to be partitioned in
a way that maximizes the number of interior faces in each partition. Fortunately,
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Fig. 23.6 Element storage
in “microblock” format as
described in the text. An small,
integer number of elements is
followed by enough padding
to satisfy device alignment
requirements. Other com-
putation granularities are
specified as integer numbers
of microblocks
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we have found that performance is somewhat insensitive to the absolute quality of
this partition, and a simple greedy algorithm, as outlined in Klöckner et al. (2009),
suffices.

Overall, we have seen a few examples of computations requiring that the imple-
menter select a granularity entirely unrelated to the computation itself. Each of these
granularities is bound to want to manifest itself somehow in the in-memory data stor-
age format, likely through coalescing/alignment concerns. On the other hand, it is not
likely that a single data storage format can satisfy all restrictions of all parts of the
computation. A compromise therefore needs to be made. In calling the granularities
of each of the computations “blocks” (related to the Nvidia term for workgroups), we
arrived at the idea of an intermediate granularity consisting of an integer number of
elements and just big enough to satisfy the device’s basic alignment preference, but
not necessarily conforming to any particular computation. This would then be called
a “microblock” (illustrated in Fig. 23.6), and we would demand that all the actual
computation granularities be integer multiples of a microblock. A similar technique
was independently discovered in Filipovič and Fousek (2010). Seemingly, this just
introduces yet another semi-arbitrary number to be chosen before the computation
can begin, but nonetheless its introduction does some good by relieving the tension
over the data storage format between different parts of the computation.

As we conclude our overview of a few of the challenges of bringing discontinuous
Galerkin methods onto the GPU, we observe that there is a common theme uniting
many of them—the answers are strongly hardware-dependent. This has a number of
important consequences:

• The questions themselves are difficult to answer. Modern processor hardware tends
to be very complicated, with many clock domains, bandwidth figures, possibilities
for resource contention, and so on.
• Published information on hardware provides insufficient heuristics to make well-

founded decisions on any of these.
• Even if a good answer to these questions existed, then it would not necessarily have

any lasting value. Software tends to have a much longer shelf life than hardware,
as new hardware revisions with programmer-visible changes to microarchitecture
(in both the GPU and CPU markets) appear at a rate of about one every two years.
Some things (such as the OpenCL programming model) are expected to be durable
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for at least some time, but the fine features determining tuning decisions such as
those outlined above are subject to frequent change.

One obvious solution to this tuning dilemma stems from the realization that computer
cycles are cheap—and that it is thus reasonable to let a computer help as much as
possible in solving these challenges. If that means letting the machine try out a large
number of possible combinations of parameter settings, that is acceptable—computer
time is less expensive than human time, and this trend will almost certainly continue.
Furthermore, this shifts two aspects of GPU programming in the right direction.
First, it shifts the programmer’s role from caring about tuning results to coming
up with tuning ideas—and letting the computer determine to what extent those are
effective. Second, it decreases the amount of detailed hardware knowledge necessary
to come up with a high-performance program. Arguably, both of these represent
steps in the right direction. In the next section, we will present ideas on the concrete
implementation of automated tuning.

23.4 Run-Time Code Generation

The capability to do automated tuning, i.e. to do an automated benchmark of a large
number of variants of a program turns out to be a special case of a much more general
facility—that of Run-Time Code Generation (“RTCG”).

This phrase has two parts, ‘code generation’ and ‘run-time’. In itself, the genera-
tion of source code is merely a text processing task of which most modern program-
ming languages are more than capable. What is being discussed here is thus not the
actual generation of the code (which is just a piece of ASCII text), but rather the
ability to compile and run this code in-process, at run-time. Figure 23.7 shows the
basic operating principle of RTCG.

GPU programming environments such Nvidia’s CUDA “runtime” interface make
this difficult because they insist that all code be compiled ahead of time and into one
final binary. In such a setting, all possible tuning variants must already be precompiled
into the application binary. This restriction can of course be worked around using
dynamic linking and/or shell scripting, but none of these lead to particularly elegant
or robust solutions.

We aim to demonstrate in this article that scripting languages make a very hos-
pitable environment for run-time code generation, especially when using interfaces
such as OpenCL or the Nvidia CUDA “driver” interface which facilitate RTCG more
easily. Scripting languages usually have no need for a user- or developer-visible com-
pilation step, and thus everything they do is, by definition, done at run time.

Even beyond what was discussed so far, there are many good reasons to ask for
the ability to do run-time code generation:

• Automated Tuning, as discussed. (This is also done, although in a variety of ways
accommodating ahead-of-time compilation, by packages such as ATLAS (Whaley
et al. 2001), FFTW (Frigo and Johnson 2005), or PHiPAC (Bilmes et al. 1997)).
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Fig. 23.7 Operating principle of GPU code generation

• The ability to vary data types at run time. This might include the ability to run
in double or single precision, with complex- or real-valued data, or even more
complicated variants, such as interval arithmetic. Templates (in C++) partially
address this need in the ahead-of-time-compiled world, however, they also incur
the overhead of having to compile each possible variant into the executed binary,
as there is no possibility for compilation at run time.
• From the perspective of a library writer, another attractive possibility opened up by

RTCG is the possibility to specialize code for a user-given problem. While many
rather complicated systems involving C++ metaprogramming strive to achieve this
goal, they cannot match the simplicity (and performance) of textually pasting a
fragment of purpose-specific C code into an overall code framework. Also note
that this benefit is really not specific to library writers at all. At some level, every
programmer strives to write code that is general and covers a wide variety of use
cases. RTCG opens up a very simple and high-performance avenue towards this
goal.
• Lastly, it should be observed that constants faster than variables. This can be

easily understood from the standpoint of register pressure—where space in the
register file is just one of many resources that are scarce in a GPU, and less
contention means that some trade-off does not need to be made, which usually
results in higher performance. Another specific example of this is loop unrolling.
Loops with unknown trip counts necessarily come with fixed overhead in the form
of end-of-loop tests and branching instructions, in addition to loop-related state
being kept in the register file. If the loop trip count is known at run-time, then this
overhead is easily done away with.

All of these arguments in favor of RTCG rest on a simple fact: More information is
available to a code generator and compiler at run time than at any time before that.
And unsurprisingly, the more information is available to the code generator and the
compiler, the better the code it is able to generate. Also observe that in this picture, the
code generator and the compiler start to merge together conceptually, and the repre-
sentation in which they exchange data (often a variant of C, for now) moves towards
being an implementation detail. This is a good thing, as it makes it expedient for
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programmers to develop representations that best serve their application. Interfaces
like CorePy (Mueller et al. 2007) and LLVM (Lattner and Adve 2004) demonstrate
that C is not the only possible intermediate representation.

As we discuss the advantages of RTCG, we should likely also mention the (in our
opinion few and minor) disadvantages. First, RTCG obviously adds more moving
parts (such as a compiler and a just-in-time execution environment) to a program,
which introduces more possible sources of issues. Second, as generated code must
be compiled, there is often a noticeable delay before a piece of code is first executed.
However, caching and parallel compilation are effective remedies for this.

Despite these perceived drawbacks, the creators of the OpenCL specification
seem to agree with our point of view and have made RTCG a standard part of the
OpenCL interface—which, in our opinion, is one of the most interesting contribu-
tions OpenCL makes to the high-performance computing arena. When OpenCL is
compared to CUDA, one drawback that is often cited is OpenCL’s lack of support
for C++ templates. This is a moot point, in our opinion, as RTCG is strictly more
powerful than C++ templates.

Next, we would like to continue to argue that RTCG is most effective when
practiced from a scripting language. Scripting languages are in many ways polar
opposites to GPUs. GPUs are highly parallel, subject to hardware subtleties, and
designed for maximum throughput. On the other hand, scripting languages (such
as Python (van Rossum et al. 1994)) favor ease of use over computational speed,
are largely hardware-agnostic, and do not generally emphasize parallelism. We have
created two packages, PyOpenCL and PyCUDA (Klöckner et al. 2009), that join
GPUs and scripting languages in one programming environment.

Before we move on, however, let us comment on a practicality: In today’s GPU
programming environments (OpenCL, CUDA), all the host computer is required to
do is submit work to the compute device at a certain rate, typically around 1000 Hz.
As long as the scripting-based host program can maintain this rate, there is no loss
in performance.

PyOpenCL and PyCUDA can be used in a large number of roles, for example
as a prototyping and exploration tool, to help with optimization, as a bridge to the
GPU for existing legacy codes (in Fortran, C, or other languages), or, perhaps most
excitingly, to support an unconventional hybrid way of writing high-performance
codes, in which a high-level controller generates and supervises the execution of
low-level (but high-performance) computation tasks to be carried out on varied CPU
or GPU-based computational infrastructure.

Scripting languages already excel at text processing and are routinely used for this
task at extreme scales, as exemplified by their use in the generation of HTML pages.
This already makes them a good choice for the textual part of code generation. A
number of further points contribute to making the programming environment created
by joining GPUs and scripting greater than just the sum of its two parts. First, scripting
languages lend themselves to very clean programming interfaces, with seamless (but
invisible) error reporting and automatic resource management. In addition, scripting
languages are very suited to creating abstractions, and Python especially follows a
“batteries included” approach that puts many of these abstractions directly within
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a user’s reach. PyOpenCL and PyCUDA strive to make ideal use of these charac-
teristics. They are fully documented, and also come with “batteries included”—for
instance, users do not have to reinvent vectors, arrays, reductions or prefix sums. Both
packages also cache compiler output, to support RTCG and retain the development
“feel” of a scripting language.

The Python programming language (van Rossum et al. 1994) is well-suited for
such packages for a number of reasons:

• The existence of a mature array abstraction (numpy (Oliphant 2006)) facilitating
(in-process) transport and manipulation of bulk numerical data.
• The large ecosystem of software that has sprung up around numpy.
• Its main-stream syntax and language-features, which make the language easy to

learn while not impeding more advanced use.

Other languages may certainly be just as suitable.
In concluding this argument for GPUs, scripting and RTCG, let us remark that the

packages introduced here are distributed under the liberal MIT license and are avail-
able at the URLs http://mathema.tician.de/software/pyopencl (or http://mathema.
tician.de/software/pycuda). A mailing list, a wiki, and a number of contributed
computational add-on packages are available. Both packages are routinely used on
Windows, OS X, and Linux.

23.5 Results: RTCG for Discontinuous Galerkin

Having introduced run-time code generation as a way of addressing the challenges
encountered in Sect. 23.3, we will refocus on some of the specific benefits that RTCG
brings in the context of a discontinuous Galerkin solver and discuss a few of the
achieved results. For definiteness, we will be discussing results obtained using the
solver “hedge”, which was built to explore and develop the ideas in this article.

The first example emphasizes the impact of RTCG on the ability to write main-
tainable software with reasonable user interfaces. In particular, we will demonstrate
the user interface that our DG solver code uses to specify numerical flux terms—the
terms (n · F∗) in (23.2). Figure 23.8 shows three representations of a (partial) numer-
ical flux for the Maxwell equation. First, Fig. 23.8a shows the mathematical nota-
tion as one might find in a scientific article. Next, Fig. 23.8b shows the Python
code that a user might need to write to capture the numerical flux expression of
Fig. 23.8a in our solver. The final part of Fig. 23.8c shows a fraction of the gen-
erated code. What this seeks to demonstrate is that a high-performance, low-level,
scalar C-language representation can easily be generated from a high-level, vectorial
statement in a scripting language. It is obvious that the code in Fig. 23.8b is much
easier to check for correctness than the resulting C code. Nonetheless, even text-
books such as (Hesthaven and Warburton 2007) contain code like that of Fig. 23.8c
for demonstration purposes. By using RTCG, in many situations it becomes a rather
easy proposition to enable the user to write maintainable, transparent code, and still

http://mathema.tician.de/software/pyopencl
http://mathema.tician.de/software/pycuda
http://mathema.tician.de/software/pycuda
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(a)

(b)

(c)

Fig. 23.8 Three representations of a (partial) numerical flux for the Maxwell equations. (a) Shows
the mathematical specification as first given in Mohammadian et al. (1991). (b) Shows the Python
code used to instruct the solver. (c) Shows a fraction (about one sixth) of the C code ultimately
generated by the solver to implement the flux in (a)

Fig. 23.9 Sample tuning study for local differentiation on fourth-order elements with microblock-
ing enabled, showing time spent for a constant amount of work depending on the values ws ,wp and
wi introduced in Sect. 23.3

obtain all the performance of a program that would have previously required a rather
large amount of manual labor and checking.

Further, our solver obviously makes extensive use of automated tuning. Figure 23.9
shows results from a particular tuning run attempting to optimize the parameters
ws,wp and wi introduced in Sect. 23.3 for element-local differentiation. The vertical
axis of the plot shows timing information, and each of the dots in the plot represents
a particular timing run. The same amount of numerical work was done for each of
the dots, yet surprisingly, the final performance varied by more than a factor of 2
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Fig. 23.10 Floating point performance in GFlops/s achieved by our auto-tuning solver on a large
3D Maxwell problem in single precision on an Nvidia GTX 280. Performance is calculated by
measuring wall time from one time step to the next and dividing the number of flops performed
(including timestepping) by this value

depending on parameter choice. In addition, there is little observable regularity in
the graph, which seems to limit the amount of success that any given heuristic might
have in predicting this behavior. There is almost no other option besides automated
tuning to find an at least somewhat optimal combination within this parameter space.
Also note that any performance gain in this part of the operator has a rather large
impact on the performance of the method as a whole—element-local differentiation
is the asymptotically most work-intensive part of a DG operator.

In addition to this application of automated tuning in the determination of a
parallel work decomposition, our solver also applies this technique in finding memory
layouts and flux gather granularities. Further, by virtue of code generation, it naturally
benefits from being able to “hard-code” certain variable values such as matrix sizes,
polynomial degrees, or loop trip counts.

In the following, we will present a number of overall performance results for our
solver on an Nvidia GTX 280, to confirm that a high-performance solver can be
written using the techniques described. Unless otherwise specified, all performance
numbers are based on the wall clock time from the beginning of one time step to the
beginning of the next, including RK4 timestepping. Timings were averaged over a
run of 100 (CPU) or several hundred (GPU) time steps to minimize the influence of
timing transients. Timings were observed to be consistent across runs, even when
using automated tuning.

Figure 23.10 shows overall performance expressed in billions of floating point
operations per second (GFlops/s), measured by counting flops over a time step and
dividing by the duration of that same time step. This is a reasonable (and reproducible)
measurement, because unlike for many other numerical methods, the number of flops
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Fig. 23.11 Memory bandwidths in GB/s achieved by each part of the DG operator on an Nvidia GTX
280. The peak memory bandwidth published by the manufacturer is 141.7 GB/s. Values exceeding
peak bandwidth are believed to be due to the presence of a texture cache

required for simplicial DG is relatively uniquely determined. Note that because the
measurement corresponds to an average, individual components of the method (such
as element-local differentiation/lift) achieve significantly higher flop rates. Since the
elementwise dense linear operators asymptotically (as N → ∞) determine the run
time, it may be reasonable to relate the measured performance to that achieved by
dense matrix-matrix multiplies on this architecture. The best results achieved on
an SGEMM workload on large, square matrices hover around 350 GFlops/s. It is
therefore remarkable that our method achieves 250 GFlops/s on much less benignly
shaped matrices, also taking into account that the method does much more varied
work than simple matrix-matrix multiplies.

We would also like to comment on the progression of performance results as we
vary N in Fig. 23.10, and in particular the rapid rise in performance from N = 1
to N = 3. We mentioned earlier that optimal results for N = 3, . . . , 5 were an
explicit goal of this work. Many of the finer tuning points of past sections (such
as microblocking and work item coarsening) become rather unnecessary at N ≥ 6
(because matrix sizes have grown significantly, and therefore enough work is avail-
able within each element). Compared to a simpler code (such as the one described
in Klöckner et al. 2011a), it is precisely these optimizations that lead to large gains
at N = 3, . . . , 5.

It is interesting to correlate the achieved floating point bandwidth from Fig. 23.10
with the bandwidth reached for transfers between the processing cores and global
memory, shown in Fig. 23.11. We have obtained these numbers by counting the
number of bytes fetched from global memory either directly or through a texture unit
in each component of the method. The published theoretical peak memory bandwidth
of the card on which this experiment was performed is 141.7 GB/s, shown as a
black horizontal line. Perhaps the most striking feature here is that the calculated
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memory bandwidth sometimes transcends this theoretical peak. We attribute this
phenomenon to the presence of various levels of texture cache. Its occurrence is
especially pronounced in the case of flux lifting, and it should perhaps be sobering
that the other parts of the DG operator do not manage the same feat. In any case, flux
lifting uses the fields-on-chip strategy, and therefore fetches and re-fetches the rather
small matrix L , making large amounts of data reuse a plausible proposition. Aside
from this surprising behavior of flux lifting, it is both interesting and encouraging to
see how close to peak the memory bandwidth for element-local differentiation gets.
As a converse to the above, this makes it likely that the operation does not get much
use out of the texture cache in most situations. It does imply, however, that rather
impressive work was done by Nvidia’s hardware designers: The theoretical peak
global memory bandwidth can very nearly be attained in real-world computations.
Next, the fact that the flux-gather part of the operator achieves rather low memory
throughput is not too surprising—the access pattern is (and, for a general grid, has to
be) rather scattered, decreasing the achievable bandwidth. Lastly, operator assembly,
which computes linear combination of vectors, consists mainly of global memory
fetches and stores. It seems likely that ancillary operations such as index calculations,
loop overhead and bounds checks drive this component’s shortfall from peak memory
bandwidth.

It is worth noting that one would not initially expect a matrix-matrix workload
like DG to be memory-bound, at least at high polynomial degrees N . After all,
such workloads do offer large amounts of arithmetic intensity to keep floating point
units busy. On the other hand, it is worth keeping in mind that there is simply so
much floating point power available on GPU-like chips that it is quite unlikely that
a code like DG might get to the point of actually being limited by it. As such, it is
reasonable, in our view, to expect that for the foreseeable future, the limiting factor
for most DG-like algorithms will in fact remain memory bandwidth, as evidenced
by Fig. 23.11.

Another issue that frequently draws questions is that of the support of double
precision within GPU-like devices. Marketing pressure in this area has led GPU
manufactures to increase the ratios of the number of double precision (DP) units to
the number of single precision (SP) units. Current high-end offerings hover between
a factor of 1/2 and 1/4, where this feature is often used to differentiate between
‘consumer-grade’ and ‘professional-grade’ hardware. We would like to remark that
in bandwidth-bound applications, there is no reason to expect a DP code to go any
faster than half as fast as an equivalent SP code, for the simple reason that DP
numbers are exactly twice as big as SP numbers, and therefore require twice as
much memory bandwidth. In addition, DP requires twice as much on-chip mem-
ory to obtain equivalent levels of data reuse—an amount that simply might not be
available. With respect to DG, we observe that at low N (e.g., N = 1, 2), the ratio
(DP GFlops/s)/(SP GFlops/s) is about a factor 1/2, as the algorithm is completely
bandwidth bound. As N increases, it approaches the above-mentioned ratio of (avail-
able DP units)/(available SP units), which further substantiates the conjecture made
above that the code is “underway” to being compute-bound.
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Fig. 23.12 Floating point performance in GFlops/s achieved by our auto-tuning solver on a very
large 3D Maxwell problem on 16 Nvidia T10 GPUs (parts of an Nvidia S1070 compute server) in
single precision. Performance is calculated by measuring wall time from one time step to the next
and dividing the number of flops performed (including timestepping) by this value

Lastly, we would like to comment on Fig. 23.12, which illustrates the perfor-
mance of our solver in GFlops/s at various polynomial orders N on a cluster of
16 Nvidia Tesla T10 GPUs. Two features of this plot are immediately noteworthy.
First, computational performance approaches 25 % of the overall machine peak at
N = 9 with nearly four teraflops/s. It is remarkable that such performance is achiev-
able on a cluster that costs a small fraction of the large machines whose hallmark
such performance was previously. Second, it is also obvious where the distributed-
memory inter-node communication (via MPI in this case) is taking its toll, as one
may, in principle, directly compare the shape of Fig. 23.10 with that of Fig. 23.12.
It is obvious that there is a much steeper performance dropoff in the parallel run as
N decreases than there is in the sequential performance data. This is owed to the
fact that high orders are significantly heavier on element-local volume work (which
scales as N 3), than on communication-heavy work dominated by degrees of freedom
on faces (which scales as N 2). Thus, as there is more communication work compared
to local compute work, the method incurs larger communication overhead. This is
(in our opinion) quite expected, and it should be noted that even at N = 5, our code
nearly achieves a still very respectable 2 teraflops/s on this cluster. This also contains
an important message about the parallelization of DG, which holds true at both the
distributed-memory and the shared-memory scale: High polynomial orders N , along
with all their other benefits, also much improve the parallelizability of the method.
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23.6 Conclusions

In this article, we have shown that high-order DG methods can reach double-digit
percentages of published theoretical peak performance values for the hardware under
consideration. This speed increase translates directly into an increase of the size of
the problem that can be treated using these methods. A single compute device can
now do work that previously required a roomful of computing hardware. Alterna-
tively, a cluster of machines equipped with these cards can run simulations that were
previously outside the reach of all but the largest supercomputers. This lets the size
and complexity of simulations that researchers can afford on a given hardware budget
jump significantly.

We find that GPU-DG is far more economical to run at medium to large scales
than CPU-DG. In our opinion, this is due to the fact that the computational structure
of the method, with its two levels of “element” and “individual degree of freedom”,
is very well-suited to the GPU a priori—better even than finite-difference methods,
which are often cited as a “GPU poster child”. Through the use of the auto-tuning
technology described in this article along with a number of further tricks discussed
in detail in Klöckner et al. (2009), we have shown that rather good performance and
machine utilization can be achieved by GPUs in DG-like workloads.

In addition to highlighting our work on GPU-DG, this article also serves to intro-
duce the reader to the idea that scripting languages and GPUs are a good combination.
Beyond the core benefit of enabling run-time code generation, they also facilitate a
clear separation of the code into ‘administrative’ and ‘computational’ parts. Such a
separation contributes to code clarity and helps make code more maintainable.

As we continue to explore the benefits of GPUs for DG and DG-like workloads,
we will be focusing on areas such as adaptivity in both space and time, nonlinear
equations, and the use of curvilinear geometries, as well as much larger scaling of
GPU-DG. Initial work on these matters can be found in the articles (Klöckner et al.
2011b; Burstedde et al. 2010; Warburton 2010).

We believe that GPU-DG will have a bright future, with many more applications
benefiting from the ease with which large-scale time-domain simulations can be
performed using DG, and we hope that our work has helped and will help application
scientists use DG computations in their role as part of the ‘third pillar of science’.
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Chapter 24
Accelerating Large-Scale Simulation of Seismic
Wave Propagation by Multi-GPUs and
Three-Dimensional Domain Decomposition

Taro Okamoto, Hiroshi Takenaka, Takeshi Nakamura and Takayuki Aoki

Abstract We adopted the GPU (graphics processing unit) to accelerate the
large-scale finite-difference simulation of seismic wave propagation. We describe the
main part of our implementation: the memory optimization, the three-dimensional
domain decomposition, and overlapping communication and computation. With our
GPU program, we achieved a very high single-precision performance of about 61
TFlops by using 1,200 GPUs and 1.5 TB of total memory, and a scalability nearly
proportional to the number of GPUs on TSUBAME–2.0, the recently installed GPU
supercomputer in Tokyo Institute of Technology, Japan. In a realistic application
by using 400 GPUs, only a wall clock time of 2,068 s (including the times for the
overhead of snapshot output) was required for a complex structure model with more
than 13 billion unit cells and 20,000 time steps. We therefore conclude that GPU
computing for large-scale simulation of seismic wave propagation is a promising
approach.

T. Okamoto(B)
Department of Earth and Planetary Sciences,
Tokyo Institute of Technology, Tokyo, Japan
e-mail: okamoto.t.ad@m.titech.ac.jp

H. Takenaka
Department of Earth and Planetary Sciences,
Kyushu University, Fukuoka, Japan

T. Nakamura
Earthquake and Tsunami Research Project for Disaster Prevention,
Japan Agency for Marine-Earth Science and Technology,
Yokosuka, Japan

T. Aoki
Global Scientific Information and Computing Center,
Tokyo Institute of Technology,
Tokyo, Japan

D. A. Yuen et al. (eds.), GPU Solutions to Multi-scale Problems in Science and Engineering, 375
Lecture Notes in Earth System Sciences, DOI: 10.1007/978-3-642-16405-7_24,
© Springer-Verlag Berlin Heidelberg 2013



376 T. Okamoto et al.

24.1 Introduction

The seismic wave signals that propagate through the planets’ interior are essential
data in geoscience: they are used to probe the Earth’s and other planets’ interiors,
to study earthquake sources, and to evaluate strong ground motions due to earth-
quakes. Simulating the seismic wave propagation in complex media is necessary for
interpreting those signals as the irregular topography, irregular internal discontinu-
ities and heterogeneity in the Earth and planets all affect the propagation of seismic
waves. For the large-scale simulations efficient numerical methods are required as
more than one billion of grid points are required in real applications e.g., Olsen et
al. (2008); Furumura (2009).

GPU (Graphics Processing Unit) is a highly parallel processor that executes the
arithmetic instructions on more-than-one-hundred processing units (Fig. 24.1). It
delivers extremely high computing performance at a reduced power and cost com-
pared to conventional CPUs (Central Processing Units): the performance of recent
GPUs exceeds 1 TFlops in single-precision arithmetic. Because of its many-core
architecture, large acceleration can be expected in the case of compute intensive
applications.

The simulation of continuum mechanics such as the computational fluid dynam-
ics and the simulation of seismic wave propagation is memory intensive applications
which is characterized by large amount of data transfer and small amount of com-
putation. Nevertheless, these problems can still benefit from GPU because of GPU’s
high memory bandwidth (e.g., Aoki (2009)). Thus, several approaches to adopt GPUs
to the simulation of seismic wave propagation have been proposed recently (e.g.,
Abdelkhalek et al. (2009); Aoi et al. (2009); Komatitsch et al. (2009, 2010); Michéa
and Komatitsch (2010); Micikevicius (2009); Okamoto et al. (2009, 2010a,b)).

We present here our approach to adopt GPUs to the large-scale simulation
of seismic wave propagation based on the finite-difference method (FDM). After
brief descriptions on the finite-difference method (Sect. 24.2) and on the GPU
system (Sect. 24.3), we describe the main part of our implementation: the memory
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Fig. 24.1 A simplified diagram of a GPU (M2050) used in this study (modified from Okamoto
et al. 2010b). A single GPU has 14 processors called multiprocessors. One multiprocessor has 32
processor cores so that 448 processor cores are integrated in a GPU. The size of the global memory
is 3 GB (giga-byte)
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optimization (Sect. 24.4.1), the three-dimensional domain decomposition
(Sect. 24.4.2), and overlapping communication and computation (Sect. 24.4.3). Then
in Sect. 24.5 we discuss the block size optimization and the scalability, and show an
example of the simulation for realistically complex structure model.

24.2 Finite-Difference Method

We apply the time-domain, staggered-grid, three dimensional (3D) finite-difference
scheme (e.g., Graves (1996); see Fig. 24.2). This FDM scheme is one of the standard
methods in seismology because of its good numerical dispersion behavior and of its
stability in treating highly complex media (e.g., Virieux (1986); Levander (1988)).

In this scheme the basic equations for isotropic and elastic material split in two
systems for particle velocity (Eq. 24.1) with force term fi and stress (Eq. 24.2),
respectively: we use components of particle velocity (vi : three components) and
stress (τi j : six components) as the field variables. Three material parameters (density
ρ and Lamé coefficients, λ andμ, withμ the rigidity) are also required so that twelve
variables are assigned to a unit cell. That is, we apply a heterogeneous formulation
to treat complex media.

ρ
∂vi

∂t
= ∂τxi

∂x
+ ∂τyi

∂y
+ ∂τzi

∂z
+ fi (24.1)

∂τi j

∂t
= λ δi j

(

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)

+ μ
(

∂v j

∂xi
+ ∂vi

∂x j

)

(i, j = x, y, z) (24.2)

(In Eq. 24.2, xi and xj also denote one of x, y, and z, respectively.)
The precision of finite-difference operator is fourth-order in space and second-

order in time. We apply the absorbing boundary condition (Cerjan et al. 1985) near

Fig. 24.2 Schematic illus-
tration of the staggered grid
(from Okamoto et al. 2010b).
A single unit cell is shown.
Open symbols denote the
variables that belong to the
neighboring cells
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y z
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Table 24.1 An outline of TSUBAME–2.0 supercomputer (GPU cluster) used in this study

GPU GPUs/node Total GPUs Host CPU Cores/node PCIe Infiniband/node

NVIDIA M2050 3 4224 Xeon X5670 ×2 12 2.0×16 40 Gbps×2

“PCIe” is an abbreviation of PCI Express. The bandwidth of PCIe 2.0×16 is 8 GB/s at maximum

the side and the bottom boundaries, and the A1 absorbing condition of Clayton
and Engquist (1977) at the bottom. A periodic condition is imposed on the side
boundaries.

Note that a staggered-grid scheme similar to that employed here has been widely
used in the electromagnetic simulations (e.g., Yee (1966)). Therefore, GPU imple-
mentations described in this paper would be also applicable to the electromagnetic
problems.

24.3 GPU System

We use TSUBAME–2.0 supercomputer in Global Scientific Information and Com-
puting Center, Tokyo Institute of Technology (Table 24.1). TSUBAME–2.0 has been
operational since November 2010, and is ranked as world fourth fastest supercom-
puter in the November 2010 TOP-500 list (www.top500.org).

The data for computation, such as the velocity and stress field at each finite-
difference grid point, are stored in the global memory (Fig. 24.1) because we apply
the “full GPU” computing. The bandwidth of the global memory, 148 GB/s, is much
faster than those of the conventional CPUs (e.g., it is 32 GB/s at maximum per a
processor socket in the case of Intel Xeon X5670). This is the reason that GPU is
effective for the memory-intensive problems.

However, 400 to 600 clock cycles of memory latency still occurs in transferring
the data between the global memory and the multiprocessors. Thus reducing the
amount of data transfer from and to the global memory is the key in improving the
performance.

Therefore, we use the fast (but small) memories in the multiprocessors, the regis-
ters and the shared memory, as software managed cache memories. This is typically
done by copying the data in a small block of FDM domain stored in the global mem-
ory to the shared memory and registers, and subsequently by reusing the data stored
there (e.g., Aoki (2009); see Fig. 24.3). Note the difference that the shared memory is
accessible from all the processing units (threads) assigned to a block, while the reg-
isters are local to each processing unit (see NVIDIA CUDA C Programming Guide
(NVIDIA Corporation 2010) for detail). We exploit this difference in our program
as described below.

www.top500.org
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Fig. 24.3 Schematic illustra-
tion of a small block made of
the shared memory and regis-
ters. The ghost zones attached
to the shared memory are
omitted

Global Memory
(400-600 Cycles of Latency)

Reuse

Copy/Restore
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Units

Fig. 24.4 Example of two-
dimensional block assigned
to the shared memory. Each
circle corresponds to a unit
cell. A case of 16×8 is shown
(red circles). For fourth order
finite-difference, two points
of ghost zones (blue) are also
required to be assigned in the
shared memory
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24.4 GPU Implementations

24.4.1 Memory Optimization

In the seismic wave problem the number of variables in a unit cell is large, while the
size of the shared memory is small (16 or 48 kB in the case of M2050). Thus, assigning
three-dimensional block(s) in the shared memory of the GPU is not practical because
only block(s) of very small size can be assigned.

Therefore, we store the variables belonging to the unit cells on a chosen level into
the two-dimensional (2D) blocks assigned in the shared memory (Fig. 24.3 and 24.4).
Then we assign a single thread to each unit cell: the thread computes the Eqs 24.1 and
24.2 only for the assigned cell. To the variables not on the plane, only “vertical” finite-
differences are operated so that the variables are not required to be shared among
threads. Thus we store them into the registers. As the computation loop proceeds to
the next level, the data in the register are moved to the shared memory and vice versa:
for this movement no data access to the global memory occur (Fig. 24.5). The use of
the shared memory and registers as described has been applied by Abdelkhalek et
al. (2009) and Micikevicius (2009) for acoustic case, and by Michéa and Komatitsch
(2010) and Okamoto et al. (2010a,b) for elastic case.

Also, we define the material parameters only at the center of the unit cell. The
material parameters at the grid points for particle velocities and shear stresses are
computed by using the values defined at the center of the unit cells at every time steps
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Fig. 24.5 Example of the use of the shared memory and registers for the integration of components
of velocity (from Okamoto et al. 2010b). Values on red points are stored in the shared memory and
those on black point in the registers. In the computations for k-th level the stress component τxz is
stored in the register. For the next level the value in the register is moved to the shared memory to
reduce the data transfer from the global memory

to reduce the access to the global memory. In computing the material parameters,
we apply a method proposed by Takenaka et al. (2009) (see Sect. 24.5.3 for detail).

24.4.2 3D Domain Decomposition

Decomposing the FDM domain is necessary for large-scale GPU computing because
the size of the global memory of GPU is not large (e.g., 3 GB for M2050). We here
divide the FDM domain into subdomains, and allocate computation for a single sub-
domain to a single GPU by using MPI library (i.e., a MPI only parallel programming
model).

In the parallel computing we need to exchange the data in the ghost zones
(Fig. 24.6) between the neighboring subdomains. We adopt the three-dimensional
(3D) domain decomposition (Fig. 24.6): the domain can be extended in all three Carte-
sian directions, and the communication time decreases with the increasing number
of the subdomain (for a fixed total domain). The latter is because the communica-
tion time is proportional to the surface area which decreases with the size of the
subdomain. On the other hand, with one-dimensional (1D) domain decomposition
(e.g., Micikevicius (2009)), the domain can be extended only along one direction,
and the communication time does not decrease with the size (or the thickness) of
the subdomain because of fixed size of the ghost zones (Fig. 24.6). Therefore the
scalability is limited in 1D decomposition (Ogawa et al. 2010).

It is possible to extend the memory array of the internal grid points to cover the
ghost zones on the side faces of the subdomain (Fig. 24.7a). However, we found that
it took quite a long time to separately send the resultant non-contiguous data from
GPU to the host node by repeated calls of memory transfer function. (Note that direct
communication between GPUs is not available. The data must be sent from GPU to
the host node in order that the data be exchanged with the other nodes (Fig. 24.1)).
Thus, we prepare contiguous memory buffers for ghost zones (Fig. 24.7b) so that
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1D Domain Decomposition 3D Domain Decomposition

Fig. 24.6 Schematic illustration of 1D and 3D decomposition (from Okamoto et al. 2010b). Blue
region indicates the ghost grids

ghost zone

(a)

ghost zone

(b)

Fig. 24.7 Schematic illustration of ghost zone of a subdomain. Arrows denote the memory align-
ment. a Non-contiguous memory alignment in the ghost zone (red arrows). The memory array of
the internal grid is extended to cover the ghost grid. b Contiguous memory alignment. A memory
buffer separate from that of the internal domain is used

we are able to copy the data from GPU to the host node by a single call of memory
transfer function.

24.4.3 Overlapping

We overlap the communication and the computation to reduce the total processing
time (see e.g., Abdelkhalek et al. (2009); Aoki (2010); Ogawa et al. (2010) for meth-
ods for overlapping). The overlapped procedures are indicated in the flowchart of our
program (Fig. 24.8). We use separate GPU kernels for time-integrations of the veloc-
ity and of the stress, respectively (Eqs. 24.1 and 24.2). We further prepare different
kernels, one for inner blocks and the other for outermost side blocks, respectively, in
both integrations. With these kernels, we first compute for the outermost side blocks
that contain the ghost zones. Second we start the computation for the inner blocks
and the communication simultaneously (Fig. 24.9).
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Fig. 24.8 Simplified flowchart of the GPU program. Blue items denote the procedures processed
by host CPUs. Pink items denote the GPU kernels that processed by GPUs. Items circled by red
broken lines are the overlapped procedures

Figure 24.9 shows the relevant functions used for overlapping computation and
communication: CUDA asynchronous memory copy function
(cudaMemcpyAsync) and non-blocking MPI functions (MPI_Isend,
MPI_Irecv). For cudaMemcpyAsync we need the page-locked host memory
that can be allocated by a CUDA function cudaMallocHost. Note that the copy-
ing procedure between the GPU and the host memory must be also treated as one of
the communication procedures, and be processed concurrently with the computation
for inner blocks.

In the present program the data in the page-locked memory is copied to a (usual)
memory buffer (“memcpy” in Figs.24.1 and 24.9) and the memory buffer is then
used for MPI. In the future work we will test the recently released technology (called
“GPUdirect”) that can eliminate the “memcpy” procedures.

24.5 Examples of Simulation

As mentioned previously, we use NVIDIA CUDA C (NVIDIA Corporation 2010)
and the MPI library for our multi-GPU program. Single precision arithmetic is used
in all the results presented in this paper both for GPU and CPU. In Sects. 24.5.1 and
24.5.2 we use a structure model of homogeneous media with flat free surface.
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Fig. 24.9 Diagram showing the relevant functions used for overlapping communication and
computation

24.5.1 Block Size Optimization

The block size described in Sect. 24.4.1 has large effect on the performance. The
edge lengths of around 8 to 64 are usually used because the threads that are assigned
to each unit cell are executed simultaneously as a group of 32 threads (a warp). We
here determine the optimum block size experimentally.

Table 24.2 shows the performance of the multi-GPU program for different block
sizes executed on a single-GPU. For Flops (floating point number operations per
second) we count the number of floating point operations in the source code including
those for the computation of the material parameters, and divide the number of
operations by the time required for the time-step loop. Since we align the memory in
x-major order, better performance is observed for longer edge length in x-direction
(BX). The best performance is obtained for a block size of 64× 4. We however use
the block size of 32×8 in the examples presented later in this paper because parallel
computing with the latter (32× 8) block size provides better performance in multi-
GPU case. (Note that the larger inner blocks are better in hiding the communication,
and the inner blocks for block size of 32 × 8 are larger than those for block size of
64× 4.)

As a comparison we show the performance of a FDM program executed on the
host CPU in Table 24.3. Note that this example for CPU does not involve MPI inter-
node communications as the program is parallelized with OpenMP and executed
on a single node. For these programs, the performance of a single GPU is roughly
three-fold faster than that of a single node (12 cores).
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Table 24.2 Single-GPU performance in GFlops

BX
BY 4 8 16 32 64

4 16.4 28.5 52.3 73.2 73.9
8 — 26.7 49.2 73.3 —
16 — — 47.2 — —

BX and BY denote the edge lengths of the block (Fig. 24.4). A FDM domain of 320 × 320 × 320
is used. In the case of the block size of 32 × 8, the computation time is 24.7 s for 300 time steps
(i.e., 2.5 ms per 106 unit cells per a time step). Note that we imposed a condition of BY≤BX. Also,
the size of the shared memory (16 kB for nvcc option “sm_13”) limits the available block size

Table 24.3 Performance of CPU program in GFlops

Domain Size 1 core 12 cores

320× 320× 320 4.8 24.2
320× 320× 3840 4.2 25.0

On CPUs we parallelized a Fortran source code by using OpenMP with 1D domain decomposition,
compiled it by PGI Fortran compiler with -fastsse option, and executed the program on a single
host node with 12 cores in total

Fig. 24.10 Weak scaling
curve of Multi-GPU case
on TSUBAME–2.0. The
subdomain size was fixed
to 320 × 320 × 320. The
total number of subdomains
is equal to the number of
used GPUs. The experiments
were performed with 2 GPUs
per a node, except in the
case of 1200 GPUs that was
performed with 3 GPUs per a
node  100
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24.5.2 Scalability

In Fig. 24.10 we show the weak scaling curve of the performance of our multi-GPU
program. The performance of our multi-GPU program scales well with the number
of GPUs. A very high performance of about 50 TFlops is achieved in the case of 800
GPUs (400 nodes), and even higher performance of about 61 TFlops is achieved in
the case of 1200 GPUs (400 nodes). These values are about 85 % and about 69 %,
respectively, of those for complete scalability (i.e., values proportional to the number
of GPUs). In the case of 1200 GPUs the performance is slightly degraded because
we used 3 GPUs per a node only in this case: increased communication among
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Table 24.4 Material parameters of the assumed model used in Sect. 24.5.3

Layer VP VS ρ

(km/s) (km/s) (g/cm3)

Ocean 1.5 0.0 1.00
Sediment 3.0 1.5 2.25
Upper Crust 5.5 3.2 2.65

VP and VS denote P- and S-wave velocities, respectively

the nodes decreased the total performance. Improving the communication procedure
and/or modifying the parallelization model would be necessary for our GPU program
in the future study to improve the performance in similar situations with many GPUs
on a node.

24.5.3 Application

Recent studies have been revealing the effects of land topography and oceanic layer
on the seismic ground motions (e.g., Nakamura et al (2009)). Thus the effects of
the land-ocean topography need be incorporated in the simulations and be studied
further for better understanding of the ground motions. As mentioned previously in
Sect. 24.4.1, we have recently proposed an approach to model structures with both the
land and ocean topography in 3D seismic modeling with the finite-difference method
(Takenaka et al., 2009). The approach unifies the implementation for irregular free-
surface (i.e., the land topography) proposed by Ohminato and Chouet (1997), and
that for irregular water-solid interface (e.g., ocean bottom) proposed by Okamoto and
Takenaka (2005) and subsequently extended to 3D case by Nakamura et al. (2011).
The water-solid interface scheme satisfies the physically required boundary condi-
tions with an accuracy of O(h) where h being the space increment, provided that
(1) the boundary (i.e. zero rigidity) is placed through the shear stress grid points and
(2) the standard second-order centered equation with averaged density is applied to
the normal velocity component at the grid points on the boundary. The second con-
dition imposes second-order operators instead of the fourth-order ones only near the
interface. The same conditions must be imposed on the free-surface. In the method
of Takenaka et al. (2009) the material parameters at the center of the cell are first
defined. Second, in order that the above conditions for material parameters be auto-
matically satisfied, the arithmetic average values of the densities of two adjoining
cells are used for effective values on the faces of the cell, and the harmonic average
values of the rigidities of four adjoining cells are used for effective value on the
edges.

We here show an example of seismic wave propagation through a simplified
model with land-ocean topography for Kanto area, Japan. Figure 24.11 shows several
snapshots of the wave propagation computed by using 400 GPUs. Different modes of
wave propagation are clearly observed in land and ocean area: in oceanic area large
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Height (m)
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Fig. 24.11 Snapshots of the wave propagation through the Kanto area, Japan. The wavefield
recorded on the land-ocean surface are shown. a Japanese islands. Red rectangle denote the study
area. b Land-ocean topography of the study area. Red solid circle denote the epicenter. c Snapshot
at 2 s. Vertical component of the particle velocity is plotted with color scale. Blue and red color
denote upward and downward motions, respectively. d Snapshot at 6 s. White arrow indicates the
wave front of P-wave. e Snapshot at 14 s. White arrows indicate the wave trains of surface waves and
scattered waves, respectively. For this simulation we used source parameters of a real earthquake by
using the location, depth and moment tensor of the Global CMT solution (www.globalcmt.org). The
selected event occurred on April 20, 2006, (Mw 5.6). The centroid location is (34.92N, 139.20E)
and centroid depth is 12.0 km. We used three layer model structure (Table 24.4). In assuming the
model, the ETOPO1 model (Amante and Eakins 2009) and a part of the structure model developed
by The Headquarters for Earthquake Research Promotion (2009) are used for topography and inter-
nal structure, respectively. The number of unit cells is 3200 × 3200 × 1280 (i.e., 13.1 billion of
unit cells). The size of the subdomain is 320× 320× 320 and 400 GPUs (2 GPUs/node) are used
in parallel. The grid spacing is 50 m and the time step is 0.002 s. The source term (i.e., moment
tensor) is applied using the stress components (Okamoto 1994; Olsen 1995). A wall clock time of
2068 s, including the times for the overhead of snapshot output, was required for a 20000 time steps
of integrations with single precision arithmetic. The total performance is 23.5 TFlops

www.globalcmt.org
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amplitude surface waves develop because of the ocean and sedimentary layer with
low seismic wave velocities, and in land area scattering effect due to topography is
observed. Such GPU-accelerated simulations will enable us to incorporate fine scale
topography and internal structures to study and predict the mode of wave propagation
in realistically complex media (eg., Okamoto et al., (2012)).

24.6 Conclusion

We adopted the GPU to accelerate the large-scale finite-difference simulation of
seismic wave propagation. We described the main part of our implementation: the
memory optimization, the three-dimensional domain decomposition, and overlap-
ping communication and computation. With our GPU program, we achieved a very
high single-precision performance of about 61 TFlops by using 1200 GPUs and
1.5 TB of total memory on TSUBAME–2.0, the GPU supercomputer in Tokyo
Institute of Technology. Near ideal scalability was achieved by our GPU program:
that is, the weak scaling was nearly proportional to the number of GPUs. We also
showed that practical simulation of wave propagation in realistically complex media
is possible by using our multi-GPU program. We therefore conclude that GPU
computing for large-scale simulation of seismic wave propagation is a promising
approach.
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Chapter 25
Support Operator Rupture Dynamics on GPU

Shenyi Song, Yichen Zhou, Tingxing Dong and David A. Yuen

Abstract The method of Support Operator (SOM) is a numerical method to simulate
seismic wave propagation by solving the three dimension viscoelastic equations. Its
implementation, the Support Operator Rupture Dynamics (SORD) has been proved to
be highly scalable in large-scale multi-processors calculations. This paper discusses
accelerating SORD using on GPU using NVIDIA CUDA C. Compared to its original
version on CPU, we have acrhieved a maximum 12.8X speed-up.
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25.1 Introduction

25.1.1 The Method of Support Operator

The method of Support Operator is a generalized finite difference method intro-
duced by Samarskii et al. (1981) and Shashkov (1996). SOM is a general scheme
for discretizing the differential form of partial differential equations. The Support
Operator Rupture Dynamics (SORD), an application of this method in the simulation
of earthquake rupture dynamics is developed by Ely et al. (2008). This application
uses single-precision floating-point Support Operator Method. SORD can be used to
investigate idealized wave propagation and rupture dynamics problems and to simu-
late potential future earthquakes with realistic fault and basin models. One example
is the simulation of Mw 7.6 earthquake scenarios on the southern San Andreas fault
(Ely et al. 2010).

25.1.2 Solving Partial Differential Equations on GPU

A variety of applications require solving partial differential equations (PDE), such
as Laplace equation in image denoising, Poisson equation in image editing and mesh
editing and Navier-Stocks equations in fluid simulation, etc. Numerical simulation
of the PDEs usually requires high-intensity computation and large consumption of
computational resources (Zhao 2008).

As a multiple SIMD processing unit, GPU has inherent parallelism, which is
suited for explicit and lattice-based computations. Solid-earth geophysics remains
one of the last bastions to have resisted the use of GPUs, especially in geodynamics.

GPU programming on NVIDIA graphics cards has become significantly eas-
ier with the introduction at the end of 2006 of the CUDA C programming lan-
guage, which is relatively easy to learn because its syntax is similar to C (NVIDIA
2009).

25.2 Support Operator Rupture Dynamics

25.2.1 Theoretical Formulation

The governing equations of wave propagating in 3D, isotropic viscoelastic medium
are

gi j = ∂ j (ui + γ vi ), (25.1)
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σi j = λδi j gkk + μ(gi j + g ji ), (25.2)

ai = (1/ρ)∂ jσi j , (25.3)

v̇i = ai , (25.4)

u̇i = vi . (25.5)

where σ is the stress tensor, u and v are displacement and velocity vectors, ρ is
density, λ and μ are elastic moduli, and γ is viscosity.

25.2.2 Numerical Method

Finite Difference Method (FDM) is widely used in modeling three dimensional
seismic wave propagation and rupture dynamics problems (Michea and Komatitsch
2010). We apply the Support Operator Method (SOM). Many simple FDMs are
special cases of SOM. The approach constructs discrete analogs of continuum deriv-
ative operators that satisfy important integral identities, such as the adjoint relation
between gradient and divergence. SOM brings to an FDM-type formulation the FEM
advantage that energy is conserved in the semi-discrete equations.

The scheme is explicit in time, and discretized on a hexahedral, logically rectan-
gular mesh. On the mesh we define the space of nodal function H N consisting of the
hexahedra vertices, and the space of cell HC consisting of the hexahedra volumes.
If we do a difference to a variable in H N , we can get a variable in HC , and if we
do a difference to a variable in HC , we can get a variable in H N . So we define two
discrete difference operators (Ely et al 2009).

Di : H N → HC and Di : HC → H N (25.6)

On the nodes we have (ρ, γ, β, u,v,a) ∈ H N , and on the cells we have (λ, μ, y, σ, g)
∈ HC . Using the two operators we can obtain a variable in H N through variables
in HC and vice versa. In this case Di is called the natural operator and Di is called
the support operator. As for time, we adopt a centered difference in second-order
accuracy. So the discretized difference equations are:

gi j = D j
(

un
i + γ vn−1/2

i

)

, (25.7)

σi j = �δi j gkk + M
(

gi j + g ji
)

, (25.8)

ai = RD jσi j −Qk yQk
(

un
i + βvn−1/2

i

)

, (25.9)
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vn+1/2
i = vn−1/2

i +
tai , (25.10)

un+1
i = un

i +
tn+1/2
i . (25.11)

The material variable incorporate the cell volumes V C and the node volumes V N :

� = λ/V C (25.12)

M = μ/V C (25.13)

R = 1/ρV N (25.14)

Viscous as well as stiffness hourglass control may be used, for which we define
the viscosity β, and stiffness

y = μ(λ+ μ)/ [6(λ+ 2μ)] (25.15)

The form we choose for hourglass stiffness y is based on the approximate analysis
of Kosloff (1978). Instabilities in the numerical method due to non-uniform stress
modes are corrected for by hourglass operators:

Qk : H N → HC and Qk : HC → H N (25.16)

25.3 Implement on GPU Using CUDA

25.3.1 Algorithm: Thread Strategy

As a finite differential method on structured grid, SORD scales well on GPU. We
develop the GPU code based on David Wang’s (McQuinn and Wang 2009) work.
Use CUDA instead of Fortran to imply the program on NVIDIA GPU device. The
program performs as Fig. 25.1.

C++ class is used for the data store in CPU. Ely’s Fortran code uses some multi-
dimensional arrays. We use class of C++ to implement multidimensional arrays.

We define a class floatnd include some basic operations such as add, multiply
and copy, and some classes float3d, float4d and float5d inherited from floatnd, these
classes have operations such as idx, set and get. The data can be stored in 1D array,
and operated by the operations in class.
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Data is stored as 1D array in Memory and in GPU. So we can use 1D blocks and
1D threads of CUDA. For the data on GPU, we define another function to operate.
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Setup GPU device and allocate data array

Generate compute grid

Initialize material, PML and source

Compute velocity and Displacement

Read input data and initialize output files

CUDA memory copy

Output

Compute Stress

Compute acceleration

timestep < t ?

Stop

FALSE

TRUE

Initialize

Loop: 

timestep++

I/O files

Fig. 25.1 Program flowchart of SORD on GPU
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25.3.2 Data Structure: Memory Strategy

We implement 3 kinds of kernels:

1. Directly access global memory without shared memory.
Store all of the data in global memory and register, but accessing data in global
memory will take about 500 cycles.

2. Through shared memory.
First copy data from global memory into shared memory. The shared memory has
very short access latency. But there is very little shared memory in one streaming
multiprocessor, and the copying from global memory to shared memory will also
cost about 500 cycles.

3. Directly access global memory and use texture memory.
The texture memory space is read only and resides in device memory, but it is
cached, so a texture fetch costs one memory read from device memory only on
a cache miss, otherwise it just costs one read from texture cache.

We compared the performance of the kernel with directly accessing global mem-
ory and the one using shared memory.

In this case, the shared memory is not very useful. In the seven cases of Table 25.1,
the kernel using shared memory did not have obvious advantages. That’s because
the shared memory is too small, and the data copied to shared memory is takes too
much times. So we use the kernels directly accessing global memory.

Reading device memory through texture fetching gives some benefits that can
make it an advantageous alternative to reading device memory from global memory.
In the SORD on CUDA, we have a five dimension vector to be stored, and after first
calculated, it is read-only. So it can be stored in texture memory. Table 25.2 shows
the speedup by texture memory.

Table 25.1 The performance of the kernel with directly accessing global memory and the one
using shared memory

Data zone Global memory (ms) Shared memory (ms) Speedup

61× 61× 61 78.3 120 0.652
73× 73× 73 135 152 0.889
85× 85× 85 213 205 1.04
97× 97× 97 315 290 1.09
109× 109× 109 433 372 1.16
121× 121× 121 601 733 0.820
133× 133× 133 800 854 0.937
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Table 25.2 Speedup by texture memory

Data zone Accessing global memory Accessing global memory Speedup
without texture memory (ms) with texture memory (ms)

101× 101× 161 100 97.8 1.02
131× 131× 161 181 160 1.13

25.3.3 PML Absorbing Boundary Condition on GPU

PML sets up an absorbing layer where waves are exponentially attenuated and the
reflection coefficient at the layer interface is nearly zero for all angles of incidence.
The modified formulation is where d(x j ) is the damping profile, and x j is the distance
measured from the node to cell location to the PML interface along the x , y or z
direction. For the interior of the model, not in the PML, d(x j ) = 0, and the equations
reduce to the elastic wave equations.

ġi j + d(x j )gi j = ∂ j vi (25.17)

σi j = λδi j

∑

k

gkk + μ(gi j + g ji ) (25.18)

ṗi j + d(x j )pi j = ∂ jσi j (25.19)

ai = (1/ρ)
∑

j

ṗi j (25.20)

v̇i = ai (25.21)

u̇i = vi (25.22)

We define a new structure to store PML information and use this structure to compute
the data in PML region. In interior and PML region, we use different GPU codes.

25.4 Layered Model Test

To test SORD on GPU, we reproduce the double-couple point source test LOH.1
of Day and Bradley (2001). The model diagrammed in Fig. 25.1, consists of an
underlying layer of 7 km and a layer of 1 km over the underlying layer. In the surface
layer Vx = 2, 000 m/s, Vp = 4, 000 m/s, and density ρ = 2, 600 kg/m3, and in the
underlying layer Vx = 3, 464 m/s, Vp = 6, 000 m/s, and density ρ = 2, 700 kg/m3.
A double-coupled point source is located at 2 km depth lasts 0.1 s to produce seismic
waves which then propagate across the whole space.

We do the calculations with a rectangular mesh of node spacing
x = 50 m, and
the grid size is 161 × 161 × 161. The point source is at (0, 0, 41). This case is run
for 1000 steps with a time step of 
t = 0.004.
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Table 25.3 Compare the performances of CPU and GPU (time for one step)

Data zone Data size CPU performance GPU performance Speedup
(×103) (ms) (ms)

81× 81× 161 1056 1530 120 12.8
101× 101× 161 1642 2141 171 12.5
121× 121× 161 2357 3141 255 12.3
141× 141× 161 3201 4209 343 12.3
161× 161× 161 4173 4482 409 11.0
181× 181× 161 5275 5681 584 9.73
201× 201× 161 6505 6514 606 10.7
221× 221× 161 7863 7333 718 10.2
241× 241× 161 9351 7906 845 9.36

Fig. 25.2 Perspective view of the layer. The layer is 1 km thick the source is located on 2 km depth

The Table 25.3 lists the performance of the test. The baseline, single-thread CPU
performance is measured on an Intel XEON E5410 system running at 2.33 GHz with
8 GB main memory. The CPU code is serial written by FORTRAN. The CUDA C
code is based on a Tesla C1060 with 240 stream processors running at 1.296 GHz
and 4 GB global memory.

Figure 25.2 shows the simulation of seismic wave propagation by GPU. We use
CPU and GPU to compute different grid sizes. The CPU time of one step is shown
in Table 25.3.

Figure 25.3 shows the performance of CPU and GPU, and the speedup data is in
Fig. 25.4. The speedup ranges from 9.36 to 12.8 X. The maximum speedup is 12.8 X
on the data size of 81×81×161. We find when the data size increases the execution
time varies almost linearly, that is, scaling is very good (Fig. 25.5).
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Fig. 25.3 Seismic wave propagate in the layers. Simulated ground velocity in different time. a
t = 0.2 s, b t = 0.6 s, c t = 1.2 s, d t = 2 s, e t = 2.66 s, f t = 3.2 s

25.5 Conclusion and Future Work

We present a method of Support Operator on GPU using CUDA. We optimize the
code using many threads to hide latency, and use texture memory to accelerate.
Compared to CPU, GPU has over 9 X speedups.

Memory access bandwidth is small, need a high efficiency data structure. The
global memory of single GPU is not enough for further large scale data size. We
need use many GPUs to parallelize the code with MPI. We have tested a hybrid
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Fig. 25.4 Performance of
CPU and GPU. When the
data size increases, the time
spent by GPU increases, too.
Scaling is almost linear

Fig. 25.5 The speedup of GPU compared to CPU

programming strategy of FORTRAN+CUDA, that is, MPI FORTRAN is used for
inter-CPU communication and CUDA kernels are called on each GPU. The code is
tested on both Tesla cards in single precision. 4 Tesla C1060 runs 11 times faster than
4 Intel Xeon E5410 cores when the mesh size is 501×501×501. But host and device
(GPU and CPU) data transfers usually hurt performance, because the bandwidth of
PCI-E bus is smaller than the GPU bandwidth.

Appendix A: Hourglass Control from Node to Cell

This is the CUDA C code of hourglass operator Qk . We use a modified form of
the hourglass control scheme described by Flanagan & Belytschko. Flanagan and
Belytschko (1981) and more recently by Day et al. Day et al (2005). and Ma & Liu.
Ma and Liu (2006). As Equations (16), the code is used for transforming the node
variables to cell variables.

(Q1 F)000 = F000 + F011 − F101 − F110 + F111 + F100 − F010 − F001 (25.23)

(Q2 F)000 = F000 + F101 − F110 − F011 + F111 + F101 − F001 − F100 (25.24)

(Q3 F)000 = F000 + F110 − F011 − F101 + F111 + F001 − F100 − F010 (25.25)

(Q4 F)000 = F000 + F011 + F101 + F110 − F111 − F100 − F010 − F001 (25.26)
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Chapter 26
A Geometric Multigrid Solver on GPU Clusters

Harald Koestler, Daniel Ritter and Christian Feichtinger

Abstract Recently, more and more GPU HPC clusters are installed and thus there
is a need to adapt existing software design concepts to multi-GPU environments.
We have developed a modular and easily extensible software framework called
WaLBerla that covers a wide range of applications ranging from particulate flows
over free surface flows to nano fluids coupled with temperature simulations. In this
article we report on our experiences to extend WaLBerla in order to support geomet-
ric multigrid algorithms for the numerical solution of partial differential equations
(PDEs) on multi-GPU clusters. We discuss the object-oriented software and perfor-
mance engineering concepts necessary to integrate efficient compute kernels into
our WaLBerla framework and show that a large fraction of the high computational
performance offered by current heterogeneous HPC clusters can be sustained for
geometric multigrid algorithms.

Keywords MPI parallelization · GPGPU · CUDA ·Multigrid solver

26.1 Introduction

The multi-disciplinary field of computational science and engineering (CSE) deals
with large scale computer simulations and optimization of mathematical models.
CSE is used successfully, e.g. by aerospace, automotive, and processing industries,
as well as in medical technology. In order to obtain physically meaningful results,
many of these simulation tasks can only be done on HPC clusters due to the high
memory and compute power requirements. Therefore, software development in CSE
is dominated by the need for efficient and scalable codes on current compute clusters.
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Graphics processing units (GPUs) typically offer hundreds of specialized compute
units operating on dedicated memory. In this way they reach outstanding compute
and memory performance and are more and more used for compute-intensive appli-
cations, often called general purpose programming on graphics processing units
(GPGPU). GPUs are best suitable for massively-data parallel algorithms, inade-
quate problems, that e.g. require a high degree of synchronization or provide only
limited parallelism, are left to the host CPU. Recently, GPUs are more and more
used to build up heterogeneous multi-GPU HPC clusters. In the current Top 500
list1 of the fastest machines world-wide there are three of these clusters amongst
the Top 5.

In order to achieve good performance on these GPU clusters, software develop-
ment has to adapt to the new needs of the massively parallel hardware. As a starting
point, GPU vendors offer proprietary environments for GPGPU. NVIDIA, e.g., pro-
vides the possibility to write single-source programs that execute kernels written
in a subset of C and C++ on their Compute Unified Device Architecture (CUDA)
(NVIDIA 2010). Since we are exclusively working on NVIDIA GPUs in this article
we have done our implementations in CUDA. An alternative would have been to
use the Open Compute Language (OpenCL).2 Within OpenCL one can write code
that runs in principle on many different hardware platforms, but to achieve good
performance the implementation has to be adapted to the specific features of the
hardware. Both CUDA and OpenCL are low-level languages. To make code devel-
opment more efficient, one either has to provide wrappers for high-level languages
like e.g. OpenMP (Ohshima et al. 2010) and PyCUDA (Klöckner et al. 2009) or easy
to use frameworks.

Our contributions in this article are that we first discuss the concepts neces-
sary to integrate efficient GPU compute kernels into our software framework called
WaLBerla and second that we show scaling results for an exemplary multigrid solver
on multi-GPU clusters.

Various other implementations of different multigrid algorithms on GPU exist
(e.g. Bolz et al. 2003; Goddeke et al. 2008; Haase et al. 2010), and multigrid is also
incorporated in software packages like OpenCurrent (Cohen 2011) or PETSc (Balay
et al. 2009).

The paper is organized as follows: In Sect. 26.2 we briefly describe the multigrid
algorithm and its parallelization on GPUs. Section 26.3 summarizes the MPI-parallel
WaLBerla framework that easily enables us to extend our code to multi-GPUs, and
in Sect. 26.4 we present performance results for different CPU and GPU platforms
before concluding the paper in Sect. 26.5.

1 http://www.top500.org
2 see http://www.khronos.org/opencl/

http://www.top500.org
http://www.khronos.org/opencl/
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26.2 Parallel Multigrid

26.2.1 Multigrid Algorithm

Multigrid is not a single algorithm, but a general approach to solve problems by using
several levels or resolutions (Brandt 1977; Hackbusch 1985). We restrict ourselves to
geometric multigrid (MG) in this article that identifies each level with a (structured)
grid.

Typically, multigrid is used as an iterative solver for large linear systems of equa-
tions that have a certain structure, e.g. that arise from the discretization of PDEs and
lead to sparse and symmetric positive definite system matrices. The main advan-
tage of multigrid solvers compared to other solvers like Conjugate Gradients (CG)
is that multigrid can reach an asymptotically optimal complexity of O(N ), where
N is the number of unknowns in the system. For good introductions and a compre-
hensive overview on multigrid methods, we, e.g., refer to Briggs et al. (2000) and
Trottenberg et al. (2001), for details on efficient multigrid implementations see
Douglas et al. (2000), Hülsemann et al. (2005), Stürmer et al. (2008) and Köstler
(2008).

We assume that we want to solve the PDE

−∇c∇u + αu = f in Ω (26.1a)

〈∇u, n〉 = 0 on ∂Ω (26.1b)

with α > 0, smoothly varying or constant coefficients c : R
3 → R

+, solution
u : R3 → R, right hand side (RHS) f : R3 → R, and (natural) Neumann boundary
conditions on a rectangular domain Ω ⊂ R

3. Equation 26.1 is discretized by finite
volumes on a structured grid. This results in a linear system

Ahuh = f h,
∑

j∈Ωh

ah
i j u

h
j = f h

i , i ∈ Ωh (26.2)

with system matrix Ah ∈ R
N×N , unknown vector uh ∈ R

N and right hand side
(RHS) vector f h ∈ R

N on a discrete grid Ωh with mesh size h.
In order to solve the above linear system, we note that during the iteration the

algebraic error eh = uh∗ − uh is defined to be the difference between the exact
solution uh∗ of Eq. 26.2 and the approximate solution uh . With the residual equation
rh = f h − Ahuh we obtain there so-called error equation

Aheh = rh . (26.3)

The multigrid idea is now based on two principles:

Smoothing Property: Classical iterative solvers like red-black Gauß-Seidel (RBGS)
are able to smooth the error after very few steps. That means the high frequency
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components of the error are removed well by these methods. But they have little
effect on the low frequency components. Therefore, the convergence rate of classical
iterative methods is good in the first few steps and decreases considerably afterwards.
Coarse Grid Principle: A smooth function on a fine grid can be approximated sat-
isfactorily on a grid with less discretization points, whereas oscillating functions
would disappear. Furthermore, a procedure on a coarse grid is less expensive than
on a fine grid. The idea is now to approximate the low frequency error components
on a coarse grid.

Multigrid now combines these two principles into one iterative solver. The
smoother reduces the high frequency error components first, and then the low fre-
quency error components are approximated on coarser grids, interpolated back to
the finer grids and eliminated there. In other words on the finest grid Eq. 26.1 is first
solved approximately by a few smoothing steps and then an approximation to the
error equation is computed on the coarser grids. This leads to recursive algorithms
which traverse between fine and coarse grids in a grid hierarchy. Two successive grid
levels Ωh and ΩH typically have fine mesh size h and coarse mesh size H = 2h.

One multigrid iteration, here the so-called V-cycle, is summarized in algorithm 1.
Note that in general the operator Ah has to be computed on each grid level. This
is either done by rediscretization of the PDE or by Galerkin coarsening, where
AH = R Ah P .

In our cell-based multigrid solver we use the following components:

• A RBGS smoother Sν1
h ,Sν2

h with ν1 pre- and ν2 postsmoothing steps.
• The restriction operator R from fine to coarse grid is simple averaging over the

neighboring cells.
• We apply a nearest neighbor interpolation operator P for the error.
• The coarse grid problem is solved by a sufficient number of RBGS steps.
• The discretization of the Laplacian was done via the standard 7-point stencil (case

c = 1 in Eq. 26.1).
• For varying c we apply Galerkin coarsening with a variable 7-point stencil on each

grid level.
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26.2.2 GPU Implementation

To implement the multigrid algorithm on GPU we have to parallelize it and write
kernels for smoothing, computation of the residual, restriction, and interpolation
together with coarse grid correction. In the following, we choose the RBGS kernel
as an example and discuss it in more detail. Algorithm 25.2 shows the source code
of the CUDA kernel. It is called from Algorithm 25.3.

The kernel can handle arbitrary variable seven-point stencils. The GET3D_tex
and GET3D_ST_tex functions are macros that provide access to the solution resp.
stencil field that is stored in global or texture GPU memory. Due to the splitting in
red and black points within the RBGS to enable parallelization, only every second
solution value is written back, whereas the whole solution vector is processed. Note
that the outer if statement to check if the point is not a boundary point can be dropped
on the new Fermi GPUs since they are much less sensitive to data alignment than
older GPUs.

The distributed memory parallelization is simply done by decomposing the finest
grid into several smaller sub-grids and introducing a layer of ghost cells between
them. Now the sub-grids can be distributed to different MPI processes and only the
ghost cells have to be communicated to neighboring sub-grids. In case of multi-
GPU processing, the function calling this kernel (shown in Algorithm 25.3) has to
handle the ghost cells. The solution values at the borders of the sub-grids have to be
initialized with the values that were already communicated via MPI. This transfer
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from the MPI buffer in main memory to the memory of the GPU is the only part of
communication that is not done implicitly by the WaLBerla framework. After that,
the stencil, solution and right-hand side values are put to texture arrays to have a
more efficient read access to them later. This is not necessary for the new NVIDIA
Fermi GPUs, since they offer a built-in cache for the global GPU memory. Now, the
actual red and the black sweep are done. After the sweeps, the Neumann boundary
conditions are set by copying the border values to a ghost layer. Finally, the values
to be communicated are transferred again to the MPI buffers, before the mapping of
the texture objects is released.

26.3 WaLBerla

WaLBerla is a massively parallel multi-physics software framework developed
for HPC applications on block-structured domains (Feichtinger et al. 2010). It
has been successfully used in many simulation tasks ranging from free surface
flows (Donath et al. 2009) to particulate flows (Götz et al. 2010) and fluctuating lattice
Boltzmann (Dünweg et al. 2007) for nano fluids.

The main design goals of the WaLBerla framework are to provide excellent appli-
cation performance across a wide range of computing platforms and the easy inte-
gration of new algorithms. The current version WaLBerla 2.0 is capable of running
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heterogeneous simulations on CPUs and GPUs with static load balancing (Feichtinger
et al. 2010).

26.3.1 Patch, Block, and Sweep Concept

A fundamental design concept of WaLBerla is to rely on block-structured grids, what
we call our Patch and Block data structure. We restrict ourselves to block-structured
grids in order to support efficient massively parallel simulations.

In our case a Patch denotes a cuboid describing a region in the simulation that is
discretized with the same resolution. This Patch is further subdivided into a Cartesian
grid of Blocks consisting of cells. The actual simulation data is located on these cells.
In parallel one or more Blocks can be assigned to each process in order to support
load balancing strategies. Furthermore, we may specify for each Block, on which
hardware it is executed. Of course, this requires also to be able to choose different
implementations that run on a certain Block, what is realized by our functionality
management.

The functionality management in WaLBerla 2.0 controls the program flow. It
allows to select different functionality (e.g. kernels, communication functions) for
different granularities, e.g. for the whole simulation, for individual processes, and
for individual Blocks.

When the simulation runs, all tasks are broken down into several basic steps, so-
called Sweeps. A Sweep consists of two parts: a communication step fulfilling the
boundary conditions for parallel simulations by nearest neighbor communication
and a communication independent work step traversing the process-local Blocks
and performing operations on all cells. The work step usually consists of a kernel
call, which is realized for instance by a function object or a function pointer. As for
each work step there may exist a list of possible (hardware dependent) kernels, the
executed kernel is selected by our functionality management.

26.3.2 MPI Parallelization

The parallelization of WaLBerla can be broken down into three steps:

1. a data extraction step,
2. a MPI communication step, and
3. a data insertion step.

During the data extraction step, the data that has to be communicated is copied from
the simulation data structures of the corresponding Blocks. Therefore, we distin-
guish between process-local communication for Blocks lying on the same and MPI
communication for those on different processes.
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Fig. 26.1 Communication concept within WaLBerla (Feichtinger et al. 2010)

Local communication directly copies from the sending Block to the receiving
Block, whereas for the MPI communication the data has first to be copied into
buffers. For each process to which data has to be sent, one buffer is allocated. Thus,
all messages from Blocks on the same process to another process are serialized.

To extract the data to be communicated from the simulation data, extraction
function objects are used that are again selected via the functionality management.
The data insertion step is similar to the data extraction, besides that we traverse the
block messages in the communication buffers instead of the Blocks.

26.3.3 Multi-GPU Implementation

For parallel simulations on GPUs, the boundary data of the GPU has first to be copied
by a PCIe transfer to the CPU and then be communicated via MPI routines. Therefore,
we need buffers on GPU and CPU in order to achieve fast PCIe transfers. In addition,
on-GPU copy kernels are added to fill these buffers. The whole communication
concept is depicted in Fig. 26.1.

The only difference between parallel CPU and GPU implementation is that we
need to adapt the extraction and insertion functions. For the local communication
they simply swap the GPU buffers, whereas for the MPI communication the function
cudaMemcpy is used to copy the data directly from the GPU buffers into the MPI
buffers and vice versa.

To support heterogeneous simulations on GPUs and CPUs, we execute different
kernels on CPU and GPU and also define a common interface for the communication
buffers, so that an abstraction from the hardware is possible. Additionally, the work
load of the CPU and the GPU processes can be balanced e.g. by allocating several
Blocks on each GPU and only one on each CPU-only process.
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Table 26.1 Technical hardware specifications

Xeon 5550 Tesla M1060 Tesla C2070

Processor frequency 2.66 GHz 1.3 GHz 1.15 GHz
Memory frequency 1.3 GHz 800 MHz 1.5 GHz
Memory size 12 GB 4 GB 6 GB
# Streaming units/cores 4 240 448
Floating-point performance (SP) 85.1 GFLOP/s 933 GFLOP/s 1030 GFLOP/s
Floating-point performance (DP) 42.6 GFLOP/s 78 GFLOP/s 515 GFLOP/s
Memory bandwidth 32 GB/s 102 GB/s 144 GB/s

26.4 Performance Results

The main focus within this article is put on parallel efficiency of our multigrid
implementation on multi-GPU clusters. As a baseline we also evaluate the single
GPU runtime and identify the performance bottlenecks.

26.4.1 Platforms for Tests

The numerical tests were performed on three different platforms provided by our
local computing center,3 an Intel Core i7 CPU (Xeon 5550), an NVIDIA G80 (Tesla
M1060) and an NVIDIA Fermi (Tesla C2070) platform. The detailed hardware spec-
ifications are depicted in Table 26.1.

The cluster for our test is the TinyGPU cluster of the RRZE. It consists of 8
dual-socket nodes, hosting two Xeon 5500 processors and two Tesla M1060 boards.
The nodes are connected via Infiniband. Additionally, we had access to one of those
nodes with two Tesla C2070 GPUs instead of the M1060.

All numerical tests run with double floating-point precision.

26.4.2 Scaling Experiments

In the following, we show how the runtime code behaves with increasing problem
size on one or several compute nodes. Baseline is the performance on one node, i.e.
two Teslas resp. two Xeons.

We distinguish two types of experiments: Weak scaling relates to experiments
were the problem size is increased linearly with the number of involved devices,
whereas the term strong scaling implies that we have a constant global problem
size and vary only the number of processes. Assuming a perfect parallelization, we

3 http://www.rrze.de

http://www.rrze.de
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Fig. 26.2 Single node (i.e. two Teslas resp. two Xeons) performance of one multigrid V(2, 2)-cycle

expect the runtime to be constant in weak scaling experiments, while we expect the
runtime to be reciprocally proportional to the number of parallel processes in strong
scaling experiments. We measure the runtime of one V(2,2)-cycle (i.e. a V-cycle
with 2 RBGS iterations for pre- and postsmoothing each) on four grid levels with
parameters from Sect. 26.2. On the coarsest grid 50 RBGS steps are performed to
obtain a solution.

Single-node performance Here, the problem sizes vary between 1283 = 2,097,152
and 2563 = 16,777,216 unknowns and the runtimes for one V(2, 2)-cycle on Xeon
5550 and Tesla M1060 machines are depicted in Fig. 26.2.

Since the performance of the multigrid algorithm is memory-bandwidth bounded
and there is roughly a factor of three in theoretical peak memory bandwidth between
CPU and GPU we expect the same factor in the runtime of both platforms. Indeed,
the GPU shows a speedup factor of about three for larger problem sizes. For smaller
problems this factor shrinks down due to several reasons: first, the GPU overhead
e.g. for CUDA kernel calls becomes visible and there is not enough work to be done
in parallel, especially on the coarse grids. Furthermore, the CPU can profit from its
big caches.

Weak scaling Figure 26.3 shows the weak scaling behavior of the code for problem
size 2563. On the Xeon—having eight physical cores per node on two sockets—tests
are performed with four and eight MPI instances per node. We did not pin the MPI
processes to fixed cores and thus the runtimes slightly vary between 0.6 and 0.9
seconds for one V(2, 2)-cycle. In average the results do not differ much for four and
eight MPI instances per node. In case of the Tesla we have only two MPI instances
per node and the runtime is quite stable. However, it increases by approximately 20 %
for eight nodes compared to the baseline performance. This slightly worse scaling
factor on GPU is mainly due to the effect of additional intra-node memory transfers
of ghost layers between CPU and GPU.
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Fig. 26.4 Strong scaling behavior of one multigrid V(2, 2)-cycle with 2563 unknowns

Table 26.2 Speedup factors
for strong scaling experiment
in Fig. 26.4

#Nodes 2 4 8

Tesla M1060 1.79 3.21 5.56
Xeon 5550 2.06 3.52 7.71

Strong scaling Next, we scale the number of involved processing units, but leave
the total problem size, i.e. the number of unknowns, constant. Figure 26.4 shows the
runtimes on the Xeon and the Tesla for 2 ·2563 unknowns are shown for one to eight
nodes of the cluster and Table 26.2 the corresponding relative speedup factors.

For the Xeon tests the parallel efficiency is relatively high: The speedup factor
on 8 nodes of 7.71 stays only slightly below the ideal one, which is linear with the
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Fig. 26.5 Performance comparison of constant and variable 7-point stencil within one multigrid
V(2, 2)-cycle

number of nodes and thus 8. For two nodes even super-linear scaling is reached with
the CPU code, this could be caused for example by cache effects.

The speedup on the Tesla is just 5.56, which is a result of different factors: on the
one hand the problems for small size mentioned when discussing the single-node
performance and on the other hand the communication overhead addressed within
the weak scaling experiments.

26.4.3 CUDA Compute Capability 1.3 Versus 2.0

Next we evaluate the performance of a newer NVIDIA Fermi Tesla C2070 graphics
board that implements CUDA compute capability 2.0. Its technical specifications are
listed in Table 26.1 and the difference to the previous generation (CUDA compute
capability 1.3) is, beneath a higher bandwidth, a tremendous increase in double-
precision floating-point performance and real caches. Furthermore, it is easier to
program: Alignment requirements are weakened and C++ support is enabled.

We now test also variable 7-point stencils, i.e. c from Eq. 26.1 is no more constant
within the domainΩ . In this case we have in contrast to the constant coefficient stencil
to store additionally the stencil at each grid point. We then use the RBGS smoother
as sketched in Algorithm 25.2. The runtimes for constant and variable stencils are
shown in Fig. 26.5 on both GPU platforms. With the constant stencil the C2070 is 2.2
times faster than the M1060, whereas for the variable stencil the speedup factor is 1.9.
The performance gain cannot be a single effect of the increased memory bandwidth.
In addition to that we also profit from the new features of the Fermi, especially from
the cache and the weaker alignment requirements.
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Fig. 26.6 Runtime percentage for different components on a one and b eight Tesla M1060 and
c one Tesla C2070 (problem size 2563, constant stencil)

26.4.4 Runtime of Components

In this section we try to give more insight in the runtime behavior of the different
parts of the multigrid solver in order to identify the performance bottlenecks.

Therefore, Fig. 26.6 shows the portion of runtime spent in different components
of a V(2, 2)-cycle on one resp. eight Tesla M1060 and one Tesla C2070. Since the
overall performance of the multigrid solver is bounded by the memory bandwidth it
is not astonishing that in each case smoothing on the finest grid takes around 70 %
of the runtime. The problem size shrinks by a factor of 8 for each grid level, thus
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Fig. 26.7 Runtime percentage of different CUDA kernels on one Tesla C2070 for problem size
a 1283 and b 2563 (constant stencil)

one expects the coarse grid (this includes all the previous components on all three
coarser grids plus solving the problem on the coarsest grid with 50 RBGS iterations)
to require about 1/8 of the runtime. This lies a little bit higher especially for the Tesla
C2070, because the smaller sizes are not very efficient on the GPU as seen before.
In the multi-GPU case the cost for the communication between the single processes
is an important issue. In contrast to the calculations that are simply distributed, the
communication has to be done extra when switching from sequential to parallel
code. Therefore, it has to be ensured that this extra work does only consume little
time and does not dominate the whole runtime. Within the multigrid algorithm the
communication is part of pre- and postsmoothing, where the solution ghost layer
has to be communicated to the neighboring processes, and of the restriction, where
the residual ghost layer has to be distributed. In Fig. 26.6 the communication effects
are an increase of the restriction runtime including the residual ghost layer transfer
and the increase of the portion spent on the coarser grids, because of the worse
ratio between local points and ghost layer points there and the bigger influence of
latencies in case of smaller transfers. Altogether, runtime distribution in the one-GPU
and multi-GPU case looks quite similar. To explain this, note that the difference in
runtimes on one and eight Tesla M1060 is 37 ms or 13 % of the total runtime (for
2563 unknowns per GPU and a constant stencil). This means, at least for that number
of GPUs, the communication does not have a dominating effect on the runtime.

To provide another point of view we also measured the performance of our CUDA
kernels for the same setting as above on one Tesla C2070 with the profiler com-
puteprof provided by NVIDIA. The results are summarized in Fig. 26.7. In contrast
to the previous measurements these do not contain the overhead from thread creation
and cleanup. Additionally, they show more details since some of the components in
Fig. 26.6 call more than one CUDA kernel. In total, we observe that the RBGS kernel



26 A Geometric Multigrid Solver on GPU Clusters 421

dominates the calculation. For 2563 unknowns it requires almost 80 % of the runtime
and for 1283 unknowns still almost 70 %. For the small problem size the boundary
treatment, which is included in the smoothing in Fig. 26.6, plays quite a role with
15 % of the total runtime.

26.5 Conclusions and Future Work

We have implemented a geometric multigrid solver for Eq. 26.1 on GPU and inte-
grated it into the WaLBerla framework. We observed that the runtimes decrease on
the current NVIDIA Fermi architecture due to its new hardware features like an
incorporated memory cache. The speedup factor between CPU and GPU implemen-
tations of our multigrid algorithm corresponds roughly to the ratio of their memory
bandwidths in the single-node case. Our experiments on a small compute cluster
showed good scaling behavior for CPUs and slightly worse for GPUs.

Next steps would be a performance optimization of our code and a comparison of
CUDA and OpenCL. One obvious improvement would be to use an optimized data
layout, by splitting the red and black grid points into two separate fields. Finally, we
currently investigate further applications for the parallel multigrid solver within the
WaLBerla framework.
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Chapter 27
Accelerating 2-Dimensional CFD
on Multi-GPU Supercomputer

Sen Li, Xinliang Li, Long Wang, Zhonghua Lu and Xuebin Chi

Abstract In this paper, we describe the domain decomposing strategy of
finite-difference to implement and optimize GPU codes in solving 2-D N-S equa-
tions. To satisfy GPU architecture, our algorithms emphasize on the decomposition
strategy and the maximum of exploiting the GPU memory hierarchy so that high rate
of speedup can be expected. Tests on two CFD cases, respectively being cavity flow
and aerofoil RAE 2822, are used. For cavity flow, we ran our simulation both on
CUDA and OpenCL platform and witnessed 30–60x speedup. In aerofoil, we used
6–60 GPU devices and get speedup of 5–29 times depending on the grid size and
number of devices used.

Keywords CUDA · OpenCL · Cavity flow · Aerofoil · CFD

27.1 Introduction

In recent years, Graphic Processing Units (GPUs) are becoming a compelling solution
in the high performance computing field. Driven by many cores inside its architec-
ture, GPU outperforms the performance of traditional CPU in terms of computational
power with a very attractive cost/performance ratio. With the release of Compute
Unified Device Architecture (CUDA) by Nvidia and OpenCL by Khronos, GPU
has opened an era for general purpose computation. Greatly increased by program-
mability and specially designed for scientific computing, GPUs are now employed
in a wide variety of fields such as physics, bioinformatics, finance, astronomy and
numerical calculation. In this paper, we focused on the use of GPU to accelerate two
cases in computational fluid dynamics area.
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Traditionally, the numerical simulation of CFD has been studied over a long
period of time. But results are often limited to high demand of computing power
each simulation required. Traditional approaches to solve CFD were based on CPU
and thus always appeared to be time consuming and only calculated a small grid
size. To satisfy performance requirements, strong devices are required. GPUs, with
extraordinary computing power, are exactly the one to meet that need.

In fact, efforts to exploit the GPU for higher performance in CFD have already
been underway. For example, Dennis (2009) studied the issues in accelerating a well-
known CFD code, Overflow, on the GPU; T. Brandvik and Pullan (2007) accelerated
a 2-dimensional Euler flow solver using commodity graphics hardware. But all these
studies have two defects. First, with the innovation of new GPU technology, the
performance test on the latest GPU platform is not included. Typically, OpenCL is
one technology being ignored. Second, solutions are based on single GPU. Though
speedups are gained, they are not scalable to large problem size.

Based on previous work, we port cavity flow problem on OpenCL platform and
RAE 2822 codes on multi-GPUs clusters to further verify the GPU performance in
CFD area. Normally, a single GPU hardware contains hundreds of processing units
and utilizes single instruction multiple thread (SIMT) mode. Threads are dispatched
to different processing units and execute at the same time. In hybrid paradigm, by
containing both message passing and GPU, we expect a tremendous increment in
performance. Our codes are written in C and run on Nvidia C1060 and ATI 9270
GPU clusters with MPI for data exchange.

27.2 The Governing Equations and Finite-Difference
Discretization

27.2.1 The Cavity Flow Equation

The governing equations of the cavity flow are the incompressible Navier-Stokes
equations as:
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where ρ, u, v, p are density, x, y-direction velocity components and pressure respec-
tively. Re represents the Reynolds number based on the velocity of the up-boundary
and the cavity’s width. Since the flow is laminar, no turbulence model is used. The 3rd
order Quick method is used to solve the equations numerically.
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27.2.2 The Flow Over a RAE2822 Aerofoil

The governing equations are compressible aerofoil RAE2822 N-S equations as:

∂

∂t
U + ∂

∂x
f1 + ∂

∂y
f2 = ∂

∂x
V1 + ∂

∂y
V2 (27.4)

where U is the solution vector, V1 and V2 are viscous fluxes, f1 and f2 are the
Cartesian components of the convective fluxes that
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⎢

⎢
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ρ

ρu
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E

⎤
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⎦
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⎣

ρv
ρvu
ρv2 + p
v(E + p)

⎤

⎥

⎥

⎦

(27.5)

In above equations, ρ represents the fluid density, u and v are the x and y compo-
nents of fluid velocity, E the total energy, and p is the pressure which can be calculated
from the equation of state of a perfect gas.

To simulate the flow over RAE2822 aerofoil, we use a two-layer algebraic
0-equation Baldwin-Lomax turbulence model, which gives the eddy viscosity,μt , as
a function of the local boundary layer velocity profile. The Baldwin-Lomax model
is suitable for high-speed flows with thin attached boundary layers, and aerofoil is
one of such typical application. In this paper, we focus on the GPU solution not the
formulae themselves, thus the detail of BL turbulence model equations, inner region
of the Prandtl-Van Driest formula and outer region can refer to B.S. Baldwin and
H. Lomax (1978).

In spatial point of view, we concerned the numerical method that replaces the
continuous problem by the Partial Differential Equations (PDEs) by a finite set of
discrete values. In practice, we used finite difference approach to regards these values
as point values defined at grid points. A five orders upwind scheme is used to deal
with those PDEs with equation as:

f ′j = (−2 f j−3 + 15 f j−2 − 60 f j−1 + 20 f j + 30 f j+1 − 3 f j+2)/60h (27.6)

where f ′j is the grid point we need to calculate.
A distinguishing feature of upwind method tells that the discretization of the

equations on a mesh is performed according to the direction of propagation of infor-
mation on that mesh. So salient features of the physical phenomena modeled by
the equations are incorporated into the discretization schemes and we can use flux
vector splitting method to identify upwind directions. In our experiment, by decom-
posing the coefficient matrix into a positive component and a negative component,
we employed Steger-Warming splitting approach as seen in Eleuterio F. Toro (1999).
On the discretization of time step, we used three-order Runge-Kutta approach that
let ∂U

∂t = f , then:
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U (1) = α1U n + β1 f n�t (27.7)

U (2) = α2U n + β2(U
(1) + f (1)�t)

U (3) = α3U n + β3(U
(2) + f (2)�t)

U n+1 = U (3)

where
α1 = 1, β1 = 1, α2 = 3/4, β2 = 1/4, α3 = 1/3, β3 = 2/3

27.3 Implementation on GPUs

27.3.1 Brief Introduction of GPU Architecture

The prevailing GPU tools available for scientific world are CUDA and OpenCL, with
the latter less popular since it is just released last year and regarded as API instead
of real hardware architecture. Regardless of software being used, most GPU devices
include a unified shader pipeline, allowing each ALU on the chip to be marshaled by
a program intending to perform general-purpose computations. CUDA uses thread
hierarchy to describe the problem yet to be solved. The entire space are divided into
several blocks with each block contains several threads as illustrated by Fig. 27.1.
The number of thread blocks in a grid is usually dictated by the size of the data being
processed or the number of processor in the system. Inside this model, threadIdx is a
three component vector so that each thread can be identified. All the threads within
a block are expected to reside on the same multi-processor core and must share the
limited memory resources of that core. On the memory hierarchy, CUDA threads
can access data from multiple memory space during their execution. Each thread has

Fig. 27.1 Element-to-thread mapping, block & ghost cell
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private local memory. Each block has shared memory visible to all threads in the
block and all threads can access the same global memory, which has a high latency
compared to shared memory and constant memory.

Open Computing Language (OpenCL) released last year is the first truly open
and royalty-free programming standard for general-purpose computations on het-
erogeneous systems. Though it has special framework of runtime, logically its pro-
gramming model, i.e. the basic idea of solving problems and the memory hierarchy
is very similar to CUDA. They both use domain decomposition strategy of blocks
and threads defined by different names. Due to the above reason, in this paper we
mainly describe how to solve Cavity flow and aerofoil simulations using CUDA. The
corresponding strategy for OpenCL can be easily derived.

To run both CUDA and OpenCL, the code, program involves running code on
two different platforms concurrently: a host part with one of more CPUs to control
the program flow, and one or more GPU devices for intensive computing task. When
calling a kernel function, the runtime system takes care of any complexity introduced
by the parameters needed to get from the host to the device.

27.3.2 GPU Solution for CFD Using Finite-Difference

As described in the second section, we used finite-difference method to deal with
both cavity flow and aerofoil RAE 2822 problems. To solve NS Eqs. (27.1), (27.1)–
(27.5) by (27.6), traditional CPU needs to calculate the problem domain stencils
one by one. Two-dimension needs a two layer loop, which three-dimension needs
a three-layer loop. For simplicity, we cite NS equation with 5-point stencil as an
example to describe how CFD solver is implemented on GPU. The procedure can
be illustrated in the four steps below:

1. Decomposing domain and Mapping thread. For structured grid applications like
the two above tests, a natural way is to split the domain into smaller parts which
can fit into the thread block.Thread computes the updated variables of one element
at time t + 1 using the information at time t within each of the smaller parts in
a straightforward way. For example, the classical aerofoil domain is 369*65. As
we can use 16*16 threads inside a thread block, there are 369/16+1 = 24 blocks
in the x axis, and 65/16+ 1 = 5 blocks in the y axis. All the blocks except the
last one on each axis are responsible for computing each stencil’s information in
the problem domain. The last one block on each axis only uses part of threads for
computing with the rest padding with trivial information. Note that currently the
maximum number of achievable threads per block is 512 on Tesla architecture
regardless of the dimension, we have to carefully set the number of threads in the
block in order to achieve efficiency.

2. Memory Access manipulation. The algorithm dictates the complexity of the sten-
cil. Consider a straightforward 2D 5-point stencil (like central difference, upwind
can also implemented in this way) as shown in Fig. 27.2. To update the element
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Fig. 27.2 5-point stencil

(i, j), thread (i, j) needs to read its four neighbors. That means that data of each
point will be loaded at least four times from global memory to GPU register.
It procedure appeared to be too expensive. In GPU memory hierarchy, shared
memory and register is much faster than global memory. So an efficient way is
to copy data within one block from DRAM into shared memory, which serves as
cache where threads read directly. The use of shared memory can reduce global
memory access redundancy and maximize bandwidth.

3. Shared Memory Padding. Because threads on the block boundary has only three
neighbors in the same thread block, Shared memory has to be padded with ghost
cells before computing.

4. Execution. Each thread is identified with a unique ID in the whole grid, and
the kernel executed across these parallel threads in the gird. A synchronization
instruction is usually required after loading data form DRAM into Shared Mem-
ory. Host functions are in charge of controlling the programming flow, inden-
tifying when to compute inviscous and viscous terms, when to advance a time
step. The kernel function running on the GPU is responsible for computing the
finite-difference algorithm.

27.3.3 Optimization of Single GPU Codes

GPU codes must be optimized after it was developed. In these cases, we optimized
our code based on the considerations below:

1. Detecting hotspots. Use timer to time each function on the kernel. Try to optimize
the most time-consuming functions first if possible according to other optimiza-
tion principles. Several tools can be employed in this step, like Intel VTune and
clock timer programmed by our own.

2. Reduce divergence. GPU runs in SIMT mode. The stream multiprocessor’s SIMT
multi-threaded instruction unit creates, manages, schedules, and executes threads
in groups of 32 parallel threads called warps. 32 consecutive threads are grouped
into a warp following the same instructions. To minimize divergence in one warp,
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size of the thread block is better to be arranged as a multiple of 32. However,
when it comes to add number domain like 369*65 in the simulation of aerofoil,
we arrange extra threads to cover the entire domain, say a grid of 384*80 threads
with16*16 threads per block (consequently, the total number of blocks is 120 in
this example).

3. Minimize non-coalescing memory by using texture memory. When half warp-size
consecutive threads access global memory, it coalesced into a single transaction
if the addresses fall in the same block and meet alignment criteria. Coalescing
memory greatly improves bandwidth and boost performance significantly over
separate requests. However, when accessing ghost cell it is very hard to achieve
memory coalescing because the address does not meet alignment requirements.
For simple stencil like the second order central finite difference scheme, this
penalty is minor because there is only one layer of ghost cell in a side. But for
high order of accuracy numerical methods with complex stencil, such as 6th
order central scheme in the aerofoil simulation where computing one point needs
6 neighbors resulting a high ghost and inner cell ratio of 12:16. This will lead
to high memory non-coalescing. In this case, we use texture when it is related
to sophisticated stencil differencing. Texture is a read-only space of DRAM and
cached, thus can minimize the penalty of ghost cell.

4. Minimize data transfer between GPU and CPU across PCI-Express bus. Because
bandwidth of PCI-E is merely 8GB/s which lag far behind bandwidth between
GPU’ DRAM and processor. Therefore if possible, try full implementation of
GPU to ensure data transfer across GPU and CPU only occurs at the start and the
end.

27.3.4 Acceleration of CFD on Multi-GPUs

Currently GPU has limit physical memory space. For example, the wildly used Tesla
C1060 has 4 gigabyte of physical memory. All the memory is used for program
running and storing data. To small CFD problem such as cavity flow, a single GPU
can deal with at most 5120*5120 grid size of domain. As the problem becomes
more complicated with increasing number of variables, the 4 GB memory will be not
enough to use. The same problem occurs if we intent to enlarge our grid solution. To
deal with it, multi-GPUs strategy must be developed.

From hardware aspect, in most circumstance, GPU cluster are built in this way:
every computing node is equipped with one or more GPU cards, all the GPU on a
single node are scheduled by the central CPU and all computing nodes are connected
by network. To maximize the computing power of this system, we employed a MPI+
CUDA strategy to solve CFD problem in the following 3steps:

1. Allocating GPUs to processes. The pseudo code is shown in Appendix A. The
programmer and MPI environment must take responsibility for deciding how
many processes are invoked on each computing node. The number of processes
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on each node should be equal to the number of GPUs on this node. Otherwise,
at least on process cannot manipulate GPU computing, thus an error should be
raised. In real case, software of resource management and job scheduling system
can be employed (In our experiment, Torque and Maui are used). To assign each
GPU to process, we first sort the processes with MPI hostnames and then spilt
them into different sub-common world according to hostname, so that processes
on the same node must belong to the same sub-common world. After that, we
assigned the GPUs on the same node to each process on this specific node so that
each GPU can be labeled with order.

2. Decomposing process domain and GPU domain. It looks the same as we discussed
in the first step when only single GPU is used. But here, the entire domain is first
divide into process-computing domain, and each process domain is then divided
into GPU-computing domain. As each process is in charge of one GPU card, the
total number of GPU cards used in program decides the split number. In this step,
as we know that GPU only outperforms CPU where there is large bulk of data
to be preceded, so we must control the process number to let GPU fully used to
achieve high efficiency.

3. Reducing communication between CPU to CPU and GPU to CPU. As in Fig. 27.2
when we deal with a central difference, the central point needs to read its four
neighbors. In single GPU solution, all the data are on the GPU memory and
we won’t need any communication. But in Multi-GPU solution, the neighbors
needed by the elements on the boundary of each process are computed on another
process. Thus we must copy data from GPU to CPU and communicate between
surrounding process and copy back the newly received data to GPU for further
computing. To reduce communication cost, only the elements needed should be
copy out and do communication. An alternative way to reduce to cost is to do
asynchronous computing by first compute the elements to be communicated and
then compute the other elements while taking communication at the same time.
But to do this, we must carefully design data structure to match GPU memory
friendly.

27.4 Experiment Results

To test our algorithm of solving CFD using GPUs, we implemented GPU code for
both cavity flow and aerofoil RAE 2822 simulations. The detail description of the
problems we solved and numerical methods used are listed in Table 27.1.

We ran cavity flow problem on both CUDA and OpenCL GPU platform. From
hardware aspect, CPU platforms are Intel Xeon E5450 at 3.00 Hz on Lenovo 7000
and AMD Operton 2220 at 2.8 GHz with Intel Fortran and C compiler; the GPU
platforms are Tesla C1060 with NVCC complier and ATI 9270.

Figure 27.3 shows the streamlines for the cavity flow (test 1), and Fig. 27.4 shows
the plot of the pressure coefficients on the aerofoil (test 2). It shows that both CPU’s
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Table 27.1 Descriptions of numerical test

Descriptions Equations Numerical
methods

Grid solution

2D cavity flow Incompressible N-S 3rd order quick
method; laminar

512*512-5120*5120

2D flow over a RAE
2822 aerofoil

Compressible N-S 5th order upwind
scheme for
inviscousterm; 6th
order central
scheme for viscous
term; 3rd
Runge-Kutta; B-L
model; 1st for
boundary 2d for
sub-boundary

369*65-7380*1300

This table shows the numerical methods and equations used in the experiments

Fig. 27.3 Streamlines for the cavity flow with Re = 100

result and GPU’s agreed well with the experimental data, though there is still a little
difference between CPU’s result and GPU’s one.

From the speedup aspect, the time of program for cavity flow is shown in
Table 27.2. According to Amdahl’s law, the speedup of a program using multiple
processors in parallel computing is limited by the time needed for the sequential
fraction of the program. When the grid size is small, a lot of time is spent on the
sequential part and CPU-GPU data transformation thus the speedup is not that signif-
icant. As the size increases, the program is limited to the heavy burden of computing.
GPU is so good at computing, and accelerated the program for 30–60 times. We also
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Fig. 27.4 Plot of the pressure coefficients on the aerofoil

Table 27.2 OpenCL simulation speedup for cavity flow problem

Grid solution Serial Openmp(4 cores) OpenCL(Nvidia) OpenCL(ATI) CUDA

512 * 512 13.9844 9.406 2.975 7.588 1.34
1024 * 1024 70.83 52.2614 9.213 24.785 4.81
2048 * 2048 281.4307 217.9449 32.651 91.246 17.54
4096 * 4096 3823.8038 1515.912 124.742 XX 66.91
5120 * 5120 6843.9784 2378.9607 196.625 XX 108.3499

This table shows the time in second of cavity flow simulation on both CUDA and OpenCL platform,
with OpenCL ran both on Nvidia card and ATI card. The simulation stopped at time step = 1000.
we see that GPU speedup increases as the grid solution scale increases

witness a 2–3 times faster of CUDA code compared with OpenCL code, since the
latter is a specific GPU device and the former is a general GPU API.

Similar result can be drawn in the aerofoil case. To test GPU performance on
aerofoil RAE 2822, we both developed single-GPU and multi-GPU solutions. From
hardware aspect, we totally used 30 GPU computing nodes with each node equipped
with 2 Tesla C1060 4 GB memory. As we see in Table 27.3, when the grid solution is
small, CPU outperforms GPU. This certainly makes sense since the scale is so small
that the time of GPU solution was dragged down by large fraction of non-computing
functions. As the grid size became larger, GPU gradually ran faster than CPUs and
reached about 29x speedup. In our experiment, the fact that our 60 cores GPU can
not beat 6cores may due to the heavy amount of swapping data among processors
that costs a lot of time.
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Table 27.3 MPI+ GPU simulation speedup for aerofoil problem

Grid solution CPU(6 cores) GPU(6 cores) Speedup CPU(60 cores) GPU(60 cores) Speedup

369*65 9.22 30.92 0.30 2.82 19.44 0.14
1845*325 381.64 59.52 6.41 24.64 40.77 0.60
3690*650 1723.37 110.66 15.57 136.19 55.11 2.47
5535*975 3739.71 196.07 19.07 354.82 88.37 4.02
7380*1300 6568.57 225.38 29.14 643.69 114.66 5.6

This table shows the time in second of simulation of aerofoil running on CPU and GPU platforms
at time step = 1000. We see as the the grid solution increases, GPU outperforms the CPU from
0.30 to 29x speedup

27.5 Conclusions

In this paper, we further tested GPU performance for solving CFD problems. For
single GPU solution, by decompose the problem and optimize the code in a GPU
friendly way. We see both CUDA and OpenCL are able to accelerate program in high
speedup though OpenCL ran a little slower than CUDA. For multi-GPUs solution,
we focused on how to reduce the communication between CPU to CPU and CPU
to GPU. The experiments have demonstrated that a substantial performance gain is
achieved by using graphic hardware devices.

Future works focus on two aspects. Firstly, as we see in multi-GPUs solution,
performances are lower when GPU devices are more used. It partly due to the small
grid size, partly because communication increases as processor number increases.
How to minimize communication cost is one essential problem we need to solve.
Secondly, performance in term of double precision is less pronounced on present
architecture. Recently, the next generation Fermi released by NVIDIA designed
with much higher double precision performance and cache around SM. We hope
to observe a leap improvement of existing codes of double precision on this new
platform.

Appendix A

In this appendix, the code shows how GPU devices are assigned to different MPI
processors. To implement domain decomposition strategy, GPU devices must be
assigned in continuous numbers in x and y axis so that we can dispatch tasks according
to their position.
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Chapter 28
Efficient Rendering of Order Independent
Transparency on the GPUs

Fang Liu

Abstract Order independent transparency refers to the problem of rendering scenes
using alpha blending equations, which requires the primitives in the scenes to be ren-
dered according to their distances to the viewer. It is one of the key rendering effects
in many graphics applications, thus has been extensively studied. Various techniques
and systems have been proposed to render order independent transparency. These
techniques can be classified into three categories based on their underlying method-
ologies: the primitive level methods, the fragment level methods, and the screen-door
methods.This article provides a comprehensive review of these existing methods,
with an emphasis on the advanced techniques that have been recently developed.
The background of order independent transparency is introduced at the beginning
of this review. Key contributions, advantages as well as limitations of each method
are summarized in three following parts, respectively. The first part focuses on the
primitive level methods, which tries to solve the problem by pre-sorting primitives,
then rendering them from back to front using alpha blending equations. The sec-
ond part reviews the fragment level methods, which performs fragment sorting and
blending on the fly, or captures all the fragments per pixel and sort fragments in post-
processing before blending. The performance and memory consumption analysis is
presented as a comparison between these methods. The third part introduces another
catalog of methods which approximates the rendering results using screen-door tech-
niques, which is quite practical while rendering scenes with high depth complexities,
such as grass and hair. Finally, a simple conclusion is given at the end of the review,
indicating the direction of the future development of order independent transparency.
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28.1 Background

Efficient rendering of order independent transparency have long been a challenging
problem in 3D computer graphics. Correct rendering of semi-transparent geometry
requires multiple layers of scenes to be sorted and blended in depth order. The
alpha-blending function provided by current graphics hardware can only blend the
fragments on the same pixel location in submission order, rather than the depth
order. However, the fragments on the GPUs are processed in parallel in an undefined
submission order which is always not consistent with the depth order, thus will
generate obvious artifacts during rendering.

There are two ways to perform correct alpha blending in depth order. The most
intuitive way is to composite fragments from back to front. For a certain pixel location,
suppose the backmost fragment with color (C1, A1) is blended over the second
backmost fragment with color (C2, A2) over a background color C0, generating the
following intermediate color C′2:

C′1 = A1
∗C1 + (1− A1)

∗C0

C′2 = A2
∗C2 + (1− A2)

∗C′1 (28.1)

= A2
∗C2 + (1− A2)

∗(A1
∗C1 + (1− A1)

∗C0)

From above equations we can summarize that fragments can be blended in front-to
back order with the following over-blending equation:

C′dst = Asrc
∗Csrc + (1− Asrc)

∗Cdst (28.2)

where (Csrc, Asrc) represents the incoming source fragment color while Cdst repre-
sents current color stored on the destination color buffer, and C′dst is the result color
after blending. This process will iterate for each incoming fragment from the back to
front until all the fragments on that pixel location have been captured, and the final
result will be stored on the color buffer.

The above method does not use the alpha channel of the destination color buffer.
When peeling and compositing fragments on the same pixel location from the front
to back, the alpha blending equations in (Eq. 28.1) must be modified to the following
equations:

C′1 = A1
∗C1 + (1− A1)

∗C0

C′2 = A2
∗C2 + (1− A2)

∗C′1 (28.3)

= A2
∗C2 + (1− A2)

∗(A1
∗C1 + (1− A1)

∗C0)

= A2
∗C2 + (1− A2)

∗A1
∗C1 + (1− A2)

∗(1− A1)
∗C0
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It can be easily deduced from above equations that fragments can be blended from
the front to back according to the following under-blending equations:

C′dst = Cdst + Adst
∗(Asrc

∗Csrc) (28.4)

A′dst = (1− Asrc)
∗Adst

where Adst is initialized to 1.0. The blending process can be performed on the GPUs
by pre-multiplying Csrc by Asrc in a fragment shader using separate blending equa-
tions for RGB and alpha channels. In the end, the blended fragments are composited
with the opaque background Cbg with the final blending equation:

C′dst = Cdst + Adst
∗Cbg (28.5)

Both above methods are quite easy to understand but hard to be directly imple-
mented on the GPUs. The main reason is that in both methods fragments are processed
in depth order, either from front to back or from back to front. It implicitly requires
depth-sorted traversal of the input scenes and the triangles should not be intersecting
with each other.

However, most objects in the scenes are complex and have different transformation
hierarchies. Thus most natural order of scene traversal rarely satisfies the above
requirements since triangles of the scenes are rasterized on the GPUs in parallel
and the generated fragments are always processed in undefined order. Therefore it
becomes quite intractable to guarantee the fragments on the same pixel location to
arrive in the same order as the pre-sorted primitives. In addition, new primitives might
be generated in geometry shaders on advanced GPUs and inserted to the graphics
pipeline, making it more difficult to keep the depth order of fragments per pixel along
with the pre-sorted primitives while rasterization.

Therefore there comes out three catalogs of methods trying to sort the geometry
on the primitive level or on the fragment level. The primitive level methods pre-
sorts the primitives in a back-to-front order. Then the furthest layers are drawn first
and each successive transparent layer will be blended over the previous one. It is
intuitive that pre-sorting of primitives can help to assure the fragments per pixel
to be blended consequently in depth order. In contract, the fragment level methods
directly rasterize the scenes without pre-sorting and try to capture and sort all the
fragments per pixel. The fragments will be blended on the fly or in an additional
post-processing pass. The third catalog of screen-door methods approximate order
independent transparency using a set of pixels that are fully on or off. The sub-pixel
variation of the technique encodes alpha information by implicitly turning samples
on or off. All these methods have been well developed in recent decades and many
great accomplishments have been achieved. We will give details to these methods in
detail in the following sections, respectively.
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28.2 Primitive Level Methods

The most intuitive catalog of solutions to order-independent transparency works at
the primitive level. The main idea is to pre-sort the geometries according to the
distances from there centers to the viewers. Then the geometries are rendered in a
back-to-front order. There have developed in the past several methods as detailed
below.

28.2.1 The Painter’s Algorithm

The most typical primitive level method is the painter’s algorithm, which is also
known as a priority fill. It was first used to solve the visibility problem in 3D computer
graphics: when projecting geometries from 3D object space onto a 2D screen plane,
it is necessary to decide which parts are visible, and which are hidden while painting.
The painter’s algorithm derives ideas from the way a painter employed to create a
painting. It starts by sorting geometries in the scenes from back to front as viewed
from the camera. The furthest surfaces are rendered first on the screen, and each
successive layer will paint over the previous invisible parts. The strategy can solve
the visibility problem at the cost of having painted redundant areas of distant objects.
The algorithm can be easily extended to solve the problem of order independent
transparency. The primitives can be pre-sorted and blended over each other according
to their alpha values from furthest to nearest to assure the correct depth order.

The algorithm is simple to implement but might fail in some special cases, includ-
ing cyclic overlap or piercing primitives. In the former case of cyclic overlap, the
primitives overlap each other. The resulting cycle makes it impossible to determine
which primitive is above the others. Numerous methods in the field of computational
geometry have been proposed to solve this problem. One of the existing solutions is to
cut the primitives to assure an unique depth order, as first proposed in Newell’s algo-
rithm (Newell and Simon 1972). The algorithm performs a series of tests between
two primitives in order of increasing computational difficulty. If all the results of
the tests are false, one of the primitives must be split into halves along the line of
intersection with the other one. The algorithm will continue to be performed on other
pairs of primitives until all of them have passed the tests. In the latter case of piercing
primitives when one primitive intersects another, the problem may also be resolved
by cutting the offending polygons in the same way as used for cyclic overlap.

Besides above limitations, the painter’s algorithm might be inefficient in basic
implementations. It forces the graphics pipeline to repaint a pixel when it is coved
by more than one primitive, even if the primitive is occluded by others in the finished
scene. This means that, for scenes with rich details, the computer hardware has
to waste much time on these unnecessary computations. Thus a reverse painter’s
algorithm can be used to alleviate this problem. The objects nearest to the viewer are
painted first and the latter paint must never be applied those areas that are already
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painted. This strategy can be very efficient for rendering pipeline since it helps to
avoid unnecessary calculations for shading on invisible pixels on the finished scene,
such as lighting or texturing.

Though the reverse algorithm suffers from the same problems as the standard
version, it gave a hint to the early development of Z-buffer techniques. The Z-buffer
techniques can be considered as an extension to the painter’s algorithm. It resolves the
visibility problem on the fragment level using a fixed-precision Z-buffer (i.e., depth-
buffer) implemented in hardware. A typical usage of depth buffer starts by clearing
the buffer to the maximum depth value. During rasterization, only the front-most
layer are kept on the frame buffer since it will pass all the depth tests. The technique
helps to resolve the visibility problem and avoids unnecessary update to the frame
buffer. Even more, the unnecessary computing for pixel shading and texturing of the
invisible fragments could also be avoided using the recently developed early-Z culling
technique. However, the algorithm cannot be directly used for order independent
transparency unless rendering the scenes multiple times using a state-of-art method
namely depth peeling, as will be detailed in the next section.

28.2.2 The Vis-sort Algorithm

The vis-sort algorithm (Govindaraju et al. 2005) accelerates the painter’s algorithm in
complex and dynamic environments by exploiting the temporal coherence between
successive frames. It assumes that there are no cyclic overlap or piercing primitives
among the input objects, and there is an unique sorting order among them for any
viewport.

The algorithm starts by rearranging the primitives in depth order from a starting
viewpoint. In many interactive applications, the depth values as well as the relative
order of the primitives often do not vary much due to the spatial and temporal coherent
motion of the viewer or primitives. If the primitives are ordered in one frame, the
next frame often needs to perform sorting on a nearly-sorted sequences of primitives.
Therefore, the authors described a sorting algorithm to exploit the coherency between
successive frames. It can be well mapped onto the GPUs and exhibits linear-time
performance in environments with high coherence.

The 1D version of the sorting algorithm starts with an unsorted sequence of
1D elements and an empty set for the output sequence. During each iteration, the
algorithm operates on the unsorted input list and computes a sequence of consecutive
quantiles beginning with the minimum of the input. These sorted values are appended
to the ordered sequence in the output set. The process iterates on the remaining data
values until the input data set is left empty. 3D sorting is a variation of the 1D version
though a bit more intricate with two overlap constraints.

The sorting algorithm can be well mapped to the commodity graphics hardware.
The comparisons of data elements are performed using the depth test functionality
of the GPUs and the resulting minimum value is kept in the depth buffer. Our sorting
algorithm has a best-case run-time complexity of O(N) but a worst-case run-time
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complexity of O(N2) for reverse sequences. Fortunately, the performance could be
improved by using a multi-stage ordering approach to avoid the worst case scenarios
with low coherence. Meanwhile, the cyclic primitives could be detected and the
visibility order could be resolved using this approach.

The vis-sort algorithm can generate transparency effects interactively for complex
models in dynamic environments. During each frame, the algorithm computes an
initial back-to-front order of the primitives in the scene and uses the sorted sequence in
the previous frame as an input for the current frame. In most interactive applications,
it operates on nearly-sorted lists and exhibits linear-time performance. However, the
algorithm has one major limitation: it makes assumptions that the input objects are
non-overlapping and there is a sorting order among them. The cyclic primitives can
only be detected but not solved unless exploiting other existing solutions.

28.2.3 Coherent Layer Peeling

The coherent layer peeling algorithm (Carr et al. 2008) also exploits the property of
sorted coherency between successive frames for transparent high-depth-complexity
scenes. But it successfully solves the overlapping problem using a multi-pass
approach. In each iteration, the algorithm efficiently detects and renders a sub-
sequence of fragments that have been in order for a given pixel using the depth
test combined with the stencil test on the GPUs.

For each frame, the algorithm starts by a simple bucket sort of triangle centroids
to pre-sort the primitives in linear-time performance. Suppose the opaque surfaces
are separated from the scenes and rendered first, generating a depth map called
opaque_depth. The first surface following the last peeled layer sc is denoted as sn
with a depth value D(sn), respectively. The iteration to render the transparency effects
can be broken down into three steps with 2 passes each as described below.

In the first step, the algorithm render the scene twice to find the nearest out-of-
order surface z_min_prev within the depth range (D(sn);∞] which comes before sn
in the list but has a greater depth value than sn. It works as a threshold to discard all
the further fragments which are definitely out-of-order, thus can narrow down the
fragments in order into a loose range within [D(sn); z_min_prev). The second step
also uses two passes to find the nearest out-of-order surface z_min_post in the depth
range [D(sn); min(z_min_prev; opaque_depth) that follows sn in sequence. Similarly,
fragments further than this threshold are also out-of-order and should be discarded.
The two steps above are composed to a tight bound on the peel range given by:
(D(sn); min(z_min_prev; z_min_post; opaque_depth)]. The surfaces that lie in the
above interval are guaranteed to be in a coherent depth order, thus can be composed
into the final image in step 3 by a standard composing pass. Note the surface at the
upper bound of the peel range may be out of order, thus can be individually captured
using a z equals test in an additional pass. This three-step process repeats until all
the layers have been peeled which can be detected using occlusion queries on the
GPUs.
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The 3-steps process described above can generate correct result only in a single
iteration with 6 passes in the best case when the data is perfectly sorted. It gains great
speedup especially for moderate-sized scenes with quite high depth complexities.
However, for the worst case of reserve order, the algorithm can peel away two layers
per iteration, making it less efficient. In addition, the sort of triangle centroids per
frame will degrade the performance of the algorithm especially for large irregular
scenes. Though the authors have proposed an ideal system to reduce the number of
geometry passes per iteration down to two, it needs some modifications to current
graphics hardware, leaving an open problem in the future.

28.3 Fragment Level Methods

The second catalog of solutions to order independent transparency works at the
fragment level. These methods always need no pre-sorting of the primitives as the
primitive level methods. Fragments on the same pixel location are sorted and com-
posed on the fly during rasterizaiton. In another way, the fragments can be captured
and stored on the GPU memory, and post-sorted before blending in a full-screen
pass. The details of each method will be described in the following subsections as
below.

28.3.1 Depth Peeling

The depth peeling algorithm is a simple and robust fragment-level technique that
makes order independent transparency possible on commodity graphics hardware. It
was first described by Abraham Mammen using virtual pixel maps (Mammen 1989)
and by Paul Diefenbach using a dual depth buffer (Deefenbach 1996). The technique
was first implemented on the graphics hardware by Cass Everitt (Everitt et al. 2001),
which was an multi-pass extension of aforementioned Z-buffer technique. The stan-
dard depth test function on the GPUs peels off the nearest fragment at each pixel
without imposing any ordering restrictions. However, for multi-layered scenes, the
second nearest or further surfaces will be discarded and cannot be captured in a single
pass. The depth peeling technique solve this problem by exploiting the depth test
function on the GPUs in a really straightforward way. It can peel away the front-most
n layers in depth order with n passes over a scene.

The algorithm starts by rendering the scene in a normal procedure in the first pass,
and the nearest surface is captured and stored in the depth buffer. Meanwhile, the
color attribute of the nearest layer would be simultaneously captured and stored in a
color buffer. In the second pass, the depth layer peeled away in the previous pass is
bound to the fragment shader as a texture parameter. For each incoming fragment,
the fragment shader would sample the input texture and fetch the depth value of the
nearest layer stored on that pixel location. The value would be used as a reference,
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and all the fragments with a depth value less than or equal to the reference would be
discarded at the beginning of the shader. Those fragments that pass this test would
be shaded and the output fragment will generate a second depth buffer if it passes the
following depth test. Meanwhile, the color attribute of this layer could be blended
into the previously captured layer stored in the color buffer on the fly using the
front-to-back blending Eq. 28.2. Similarly, the second nearest depth layer will be
used in the third pass as a reference to delaminate both the first and second nearest
surfaces that have been captured in the previous two passes. The pattern described
above is fairly simple but needs dual depth tests per fragment each pass. The first test
is performed in the fragment shader while the second one is supported by the built-in
depth test function unit on the GPUs. This procedure continues and the previously
nearest layer captured in pass i will be used as the reference texture in pass i + 1
and the fragments that pass the dual depth tests will be blended into the current
color buffer. The algorithm will terminate until all the fragments have been captured
which can be detected by occlusion query on current GPUs. The final result can be
generated by blending with the background layer in an additional composing pass.
The reverse depth peeling could also be performed using the back-to-front blending
Eq. 28.4 as described in (Thibieroz 2007).

The technique presented above is a straightforward and robust way to render
scenes that contain transparent objects. It makes good use of graphics hardware and
has no requirement for the scene to be rendered in pre-sorted depth order. The algo-
rithm works fairly well for simple scenes, but for large scenes with high complexity,
multiple rasterizations of the geometry will become a performance bottleneck.

Theoretical Extensions to depth peeling include the A-buffer (Carpenter 1984),
the R-buffer (Wittenbrink 2001), and the Z3 algorithm (Jouppi and Chang 1999).
Unfortunately, all of these extensions need hardware modifications. The F-Buffer
(Mark and Proudfoot 2001) maintains FIFO buffers to hold fragments in between
rendering passes and need additional post-sort passes, with implementations avail-
able on ATI’s graphics hardware (Houston et al. 2005).

28.3.2 Dual Depth Peeling

A practical extension to the depth peeling technique namely dual depth peeling
was recently proposed by Bavoil and Myers (2008). It succeeds to capture both the
nearest and furthest layers each pass, making the theoretical acceleration to classical
depth peeling as a factor of two. The depth peeling process is interleaved with alpha
blending of the two layers, thus can avoid additional memory consumption to store
the captured layers.

Conceptually, dual depth peeling peels away two layers at a time each pass and
blend them in both back-to-front and front-to back directions using a min–max depth
buffer with an RG32F color texture. The min–max depth test is performed to cap-
ture both the nearest and furthest layers using the 32-bit floating point MAX/MIN
blending functions supported by GeForce 8. Take the MAX blending as an example,
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the min–max depth buffer is cleared to (−1,−1), and the MAX blending is turned
on in substitution for the read-modify-write part of the min–max depth test. Each
incoming fragment will update the buffer with a float2(depth,−depth) in the shader.
After the first pass, the maximum depth layer will be captured and stored in the first
channel of the min–max depth buffer as it always win the comparison in MAX blend-
ing. Meanwhile, the minimum one can be resorted by negating the value inside the
second channel. Afterwards the min–max depth values will be used as two references
in the following geometry pass to capture the second nearest and furthest layers in a
similar way as depth peeling. At the same time, the peeled fragments from the front
and back layers in the previous pass are blended into two separate color buffers using
the under-blending and over-blending equations, respectively. The process contin-
ues until the front and back advancing fronts meet, and the middle fragment may be
processed as either front or back one. The final result is composed of both images in
two directions using under-blending. This method can generate correct results.

For a scenes with N layers, the depth peeling algorithm needs N passes, while
dual depth peeling reduces the number to N/2+ 1, which means a two-time speedup
at most for geometry bound applications. The authors also describe a weight-average
method to approximate order independent transparency with a single geometry pass.
The method simplifies the alpha blending equation using a per-pixel weighted average
over the pixel to replace the RGBA color. It can render plausible transparent effect
in a single geometry pass only for scenes with nearly uniform distributed colors, i.e.
the color of each pixel is close to the final average.

28.3.3 K-Buffer and its Multi-Pass Extension

K-buffer (Bavoil et al. 2007; Liu et al. 2006) presents another extension to the Z-buffer
technique. The algorithm exploits multiple render target (MRT) buffers as a read-
modify-write pool of k entries, namely k-buffer, that makes it possible to efficiently
capture up to k fragments in a single pass. The concept of k-buffer was first proposed
by Callahan et al. (2005). It is defined as a fixed size buffer of fragments per pixel
that is maintained in GPU memory and is effective for sorting and compositing
fragments in the special case of direct volume rendering on current GPUs. The
definition can be generalized to be a pool of fragments per pixel that allows fragments
to be compared, ordered, blended, and discarded in a streaming manner. The order
independent transparency can take this advantage to be rendered in a single geometry
pass.

The k-buffer is firstly cleared to set all the elements in the k-buffer to zero or
one. For each incoming fragment, the algorithm takes three steps in fragment shader
for dynamic sorting. The first step loads all the elements on the corresponding pixel
location in the k-buffer into a temporary local array. Then the current fragment is
inserted into the local array by insertion sort algorithm in ascending or descending
order of their depth values. Finally, the local array containing the current fragment is
written back to the k-buffer on the GPU memory. The color attribute of the fragments
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will be captured and sorted together with the depth value for transparency. The
final result can be composed by either over-blending or under-blending equations in
post-processing.

The theoretical acceleration rate of the algorithm is k times in comparison to
depth peeling. However, multiple fragments might simultaneously update the same
pixel location on k-buffer due to the parallel execution of the fragment program, thus
results in read-modify-write (RMW) hazards on the k-buffer. The problem could
be improved by dynamic pre-sorting of geometries, or triangle batches as proposed
by the authors (Bavoil et al. 2007). Both modifications dramatically slow down the
algorithm since the former one needs pre-sorting of triangles each frame and the
latter one will break the pipeline. Liu et al. (2009) tries to alleviate the RMW hazards
by multi-pass approach. The k-buffer is first cleared to the maximum depth values.
Each fragment will load the elements to a local array and choose the first entry with
the maximum depth value of the array for storage. The modifications guarantees at
least one fragment be captured when collision happens. The discarded fragments
will be captured in the following passes using the previous captured fragments as
references. The strategy solve the RMW hazards at the cost of multi-passes. As the
depth complexity of the scenes increases, the RMW hazards will also increase and
the performance of the algorithm will degrade rapidly, which quite limits the utility
of the algorithm. In addition, the benefit from the development of GPU is limited
since the RMW hazards will also increase as the parallel degree of GPU increases,
thus leads to more extra passes.

28.3.4 Stencil-Routed A-Buffer

The stencil routed a-buffer (Myers and Bavoil 2007) algorithm uses multisampling
anti-aliasing (MSAA) buffers to store a vector of elements per pixel. This is accom-
plished by rendering the scene in aliased mode, in which all sub-pixel fragments
would receive the same value computed for that pixel. The sub-pixel stencil routing
(Purcell et al. 2003) is first introduced to route the fragments into sub-pixels of the
MSAA buffer at the sample level according to the D3D10 specification.

At the beginning, the stencil test is set to D3D10_COMPARISON_EQUAL and
the stencil operation is D3D10 STENCIL_OP_DECR_SAT. The 8 sub-pixels of the
stencil buffer is first initialized to 2–9 respectively as a stencil mask for a single
pixel, and the reference value in the stencil test is set to 2. For a certain pixel, the
first incoming fragment will only update one unique sub-pixels whose current stencil
values equals to the reference value, i.e. the fragment is routed to the sub-pixel with
a stencil value equals to 2. The stencil values of all sub-pixels will decrease after the
update, and the next fragment will update a new sub-pixel whose stencil value is just
decreased to 2. The process continues until an overflow occurs after 8 fragments have
hit the same pixel. It can be detected in an additional fullscreen pass using occlusion
query and stencil test to check whether any values of the last sub-pixel has been
decrease to 0. The above procedure can capture up to eight layers in one geometry
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pass. For complex scenes with more layers, the multi-pass can also be exploited to
capture all the layers. In post-processing for transparency, fragments will be sorted
in the fragment shader using the Load intrinsic to read each individual samples from
the MSAA buffer. Afterwards a bitonic sort can be used in the shader before all the
fragments are finally blended into the final image.

The algorithm completely avoids the RMW hazards that occurs in the k-buffer
algorithm. And it gains 8 times speedup in comparison to depth peeling, which
is limited by the maximum number of MSAA samples in current GPUs. It can
capture at most 254 fragments per pixel due to the low resolution of the 8-bit stencil
buffer. Another limitation is that the implementation requires hardware multisample
antialiasing (MSAA) to be disabled while rendering. For scenes with high depth
complexity, the non-linear bitonic sort in post-processing might be expensive, and it
has to capture all the layers before post-sorting, that might cause memory exhaustion
before post-sorting.

28.3.5 Bucket Depth Peeling

The bucket depth peeling algorithm (Liu et al. 2009) exploits the same feature of
MAX/MIN blending on Geforce 8 as dual depth peeling. It succeeds to capture
up to 32 fragments in a single geometry pass using bucket sort on MRT buffers.
The potential fragment collisions can be alleviated by an additional pass or more.
The algorithm gains significant speed improvement over depth peeling and the result
is plausible for uniform distributed scenes. An adaptive scheme with a preprocessing
pass is also introduced to substantially reduce the collisions.

The basic idea of the algorithm is to perform a bucket sort on the fragment level.
The MRT buffers are exploited as a bucket array for each pixel location, and each
bucket is capable of holding only one fragment. All the buckets can be concurrently
updated using MAX/MIN blending, which assures atomic update of a specific chan-
nel of MRT while keeping the others unchanged. Take MAX blending as example, a
bounding volume or a coarse visual hull is first rendered to get the approximate depth
range of each pixel location. While rendering the scene, the depth range is divided
into consecutive subintervals uniformly and all the MRT buffers are cleared. In the
geometry pass, a linear bucket sort is performed on the pixel shader, i.e., fragments
within each subinterval will be routed into the corresponding buckets. Meanwhile,
the rest buckets will be updated by the default zeros in order to keep unchanged. In a
following fullscreen pass, the bucket array per pixel can be sequentially accessed to
get the sorted fragments for post-processing. When multiple fragments are routed
to the same bucket, i.e. a collision happens, the bucket will only hold the maximum
one and the rest will be discarded, and artifacts will arise. A multi-pass extension
can alleviate the problem as depth peeling or dual depth peeling. However, only one
more pass might be supported most of time due to the limited memory on current
graphics hardware.
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Inspired by the image histogram equalization, the authors have also developed
a two-pass approach to further reduce the collisions, namely adaptive bucket depth
peeling. After the initial pass to render the bounding volume of the scenes, the depth
range is divided into 1024 uniform subintervals. A depth histogram is defined as an
auxiliary array with each entry indicating the number of fragments falling into the
corresponding depth subinterval, thus is a probability distribution of the geometry.
It is constructed using MRT buffers with pixel format GL_RGBA32UI_EXT. In the
first geometry pass, an incoming fragment within the kth subinterval will set the kth
bit of the depth histogram to 1 using the OpenGL’s 32-bit logic operation GR_OR.
After the first pass, each bit of the histogram will indicate the presence of fragments
in that subinterval or not. The depth histogram is equalized in a following fullscreen
pass to ensure the one-to-one correspondence between fragments and subintervals.
Therefore in the second geometry pass, there will be only one fragment routed into
each bucket, and collisions will be reduced substantially. We perform the bucket
sort in the second geometry pass. The equalized histogram is passed to the pixel
shader as input textures and the upper bounds in the input equalized histogram
will redivide the depth range into non-uniform subintervals with almost one-to-one
correspondence between fragments and subintervals. As a result, there will be only
one fragment falling into each bucket on most occasions, thus collisions can be
reduced substantially.

The bucket depth peeling algorithm has a linear-time performance and produces
a great speedup to the classic depth peeling especially for large scenes. It turns out
to be a good approximation when performance is preferred to the visual quality.
The adaptive extension of the algorithm substantially improves the rendering results
but needs a non-trivial memory overhead for depth histogram, especially for applica-
tions with high screen resolutions. Meanwhile, the performance will be halved due
to the additional pass for histogram equalization.

28.3.6 The FreePipe System for Transparency

Order-independent transparency is difficult to be solved in a single geometry pass
because it requires programmability on the blending stage. The FreePipe system was
first proposed as a programmable parallel rendering architecture (Liu et al. 2010)
implemented in CUDA (NVIDIA 2008). It can run entirely on current graphics hard-
ware while having performance comparable with the traditional graphics pipeline.
Within the framework, two efficient schemes namely multi-depth test scheme and
fixed-size A-buffer scheme are proposed to render transparency in a single geome-
try pass by modifying the blending stage. Both schemes have achieved significant
speedups compared to the aforementioned methods that are based on traditional
graphics pipelines.

The multi-depth test scheme performs fragment sorting on the GPU using a novel
sorting algorithm for unpredictable data via CUDA atomicMin operation. The algo-
rithm begins by allocating a fixed size integer array per pixel as storage in global
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memory and initialized to the maximum integer. Each incoming fragment will loop
through the pixel array at corresponding pixel locations and store the depth value to
the first empty entry via atomicMin operation. For a non-empty entry, if its value is
smaller than the current depth value, the entry will be left unchanged and the frag-
ment will continue to test the next entry. Otherwise, atomicMin operation assures
the current depth value to be stored into that entry and the returned source value
will be used to test the next entry. This operation loops until the fragment is stored
into the first empty entry. Otherwise, it will be discarded at the end of the array. In
post-processing, the sorted depth array per pixel can be passed to a following CUDA
kernel for post-processing. The results can be rendered into a pixel buffer object and
directly drawn onto the screen using texture mapping. The strategy can store the
front most N layers tightly thus is memory efficient. It performs fragment sorting
in global memory in a time complexity of O(N2), therefore will suffer from high
memory latency for complex scenes.

The fixed-size A-buffer scheme allocates a struct array per pixel in global memory.
A fragment counter is set up for each pixel location and initialized to 0. Each incoming
fragment will first increase the corresponding counter by 1 using the atomicInc
operation. In other words, the kth incoming fragment of a pixel will atomically
increase the counter to k + 1 and return the source value k. Then the depth value
and the additional attributes of the kth fragment can be stored into the kth entry
of the array in submission order without read-modify-write hazards. The captured
fragments will be sent to a post-sort CUDA kernel, with each thread handling only
one pixel. All fragments per pixel will be loaded into an array allocated in the
registers of that thread and sorted by insert sort or bitonic sort. The results then can
be directly accessed in correct depth order for deferred shading in post-processing.
The fragment sorting is performed at the register level without memory latency, that
is more efficient for scenes with high depth complexity. However, the memory might
exhaust to capture all the layers for those applications that only need several front
most layers, such as shadow mapping (Bavoil et al. 2008).

The rasterization strategy used in FreePipe system is only efficient when input
triangles occupy a small number of pixels. When the scene contains large triangles,
each thread will loop through a large number of covered pixels, thus will result in
heavy serialization. In addition, when scene geometry contains fewer triangles, the
performance will degrade rapidly. Thirdly, both schemes for transparency will result
in serious performance bottleneck and memory consumption while handling geome-
tries with too many layers, such as hair, grass and transparent particle effects. Despite
above limitations, the system gives a promising direction to solve transparency in a
single pass in the future.

28.3.7 Linked List for Transparency on DX11

The per-pixel linked list on DX11 (Hensley 2010) is a break-through for order inde-
pendent transparency on the GPUs. All the fragments can be captured in a single
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geometry pass provided enough memory for storage. The algorithm requires two
buffers to construct the fragment linked list. Both buffers are allocated as UAV
buffers (RWStructuredBuffer) on the GPUs on DX11. The first kind the screen sized
head pointer buffer, which stores the start addresses of the last node written for every
pixel location, and is initialized to end-of-list value. The other kind is the node buffer,
i.e., the linked list, which contains data and links for all visible transparent fragments.
It must be large enough to accommodate all the transparent fragments.

The algorithm starts by rendering the opaque scene objects as usual. When the
transparent scene objects are rendered, each shader thread will retrieve and increase
a global counter value to allocate a new node in the linked lists. The operation calls
the standard IncrementCounter() memory function to atomically update the counter
so that each incoming fragment could be allocated an unique offset in the node
buffer. The offset works as the pointer to the current last fragment on that pixel
location. It is exchanged into the corresponding head pointer buffer using a standard
InterlockedExchange() function, and the previous offset in the head buffer is returned.
Then a new node will be constructed by the depth and color attribute of the fragment,
together with the returned pointer as a link to the second last fragment. Finally, the
node will be added into the node buffer at a linear address computed by the global
counter value. In post-processing, the algorithm draws a screen quad to sort and
resolve the associated per-pixel linked list, and composite it with background for the
final output.

The algorithm is kind of similar to the A-buffer scheme in FreePipe system []
but with a much tighter memory layout. The implementation on DX11 shows great
speedup to depth peeling algorithm. However, the fragment sorting in post-processing
still requires a fixed-size array per pixel, which imposes the same “max overdraw”
limitation as in the A-buffer scheme.

28.3.8 Evaluations

The performance and memory consumption of the above fragment level methods can
be evaluated by on a set of typical models. All the scenes are rendered in a 512×512
viewport and the frame rates are taken on a commodity PC of Intel Duo Core 2.4 GHz
with 3 GB memory, and NVIDIA Geforce 280 GTX (compute capability 1.3) with
Windows XP Pro SP2 32-bit and CUDA version 2.1(181.20). In the experiment, the
k-buffer algorithm and its multi-pass extention (Liu)[], bucket depth peeling (BDP),
the multi-depth test scheme(MDTS) and the A-buffer(ABS) scheme in FreePipe
system, the stencil-routed A-buffer (SRAB) and dual depth peeling (DDP) are chosen
in comparison to the classical depth peeling(DP).

For a scene with depth complexity N, suppose the vertex rasterization needs time
Tv for each geometry pass, and the fragment shader in these methods costs Tf , the
accelerate rate can be computed by:

K = N∗Tv

Tv + T f
(28.6)
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According to the above Eq. 28.5, the classical depth peeling needs N passes to peel off
all the N layers. While in contrast, the MDTS and ABS methods in FreePipe system
only need one pass thus can gain an accelerate rate of about N times compared to depth
peeling, especially for large scenes (See Table 28.1). The k-buffer and bucket depth
peeling have similar speedup but the former suffers from severe read-modify-write
hazards while the latter is subject to fragment collisions. The multi-pass extension
of k-buffer assures correct results at the cost of extra geometry passes, thus the
performance is substantially degraded. For simple scenes where the extra cost Tf
on fragment shader cannot be ignored, such as bunny model, the aforementioned
methods may not perform as efficiently as for large scenes, even slower than DP.
The SRAB method captures 8 layers each pass on current graphics hardware, so the
speedup is up to N/8 times in comparison to depth peeling. The dual depth peeling
peels two layers simultaneously, and the theoretical speedup is two times.

For memory analysis in above experiment, only the memory for fragment storage
are taken into consideration for simplicity. Suppose the depth information (32 FP) of
each layer needs P MB memory. As for the scenes in the experiment, P equals to 1 MB
at a 512× 512 viewpoint. Each layer also needs P MB for color attribute (RGBA8).
The depth peeling algorithm only needs 4*P MB memory for the nearest layer in the
previous pass and the current pass to store both the color and depth information. The
dual depth peeling doubles the performance of depth peeling at the cost of double
memory consumption, which is 8*P MB for both the nearest and furthest layers. The
memory consumption of above two methods is independent on the depth complexity
thus is efficient. Suppose the maximum depth complexity is N, which is not more
than 16 for above scenes. Both k-buffer and its extension needs 2*N*P MB memory
for fragment storage, which is acceptable on current graphics hardware. The stencil-
routed A-buffer needs the same amount as k-buffer since all the layers have to be
captured before composition. In FreePipe system, the memory consumption of the
render target array by multi-depth test scheme is 2*N*P MB. A-buffer scheme only
requires P MB extra memory for the fragment counter per pixel. The bucket depth
peeling algorithm needs as much memory as possible to alleviate collisions, thus
will consume 32*P MB memory on current graphics hardware due to the massive
usage of MRTs. Note the depth information is no longer stored in bucket depth
peeling since the fragments are naturally in order when stored into the buckets. In

Table 28.1 Comparison of frame rates (fps) by different methods

Model Tri. No. K-buffer Liu BDP MDTS FABS SRAB DDP DP N
(fps) (fps) (fps) (fps) (fps) (fps) (fps) (fps)

Bunny 70 K 875 183 645 455 616 334 160 141 8
Armadillo 349 K 294 46 258 339 422 168 41 20 13
Dragon 871 K 262 60 256 244 316 106 40 29 10
Buddha 1.0 M 248 42 253 208 275 89 34 24 10
Lion 1.3 M 163 15 183 152 209 42 21 11 16
Lucy 2.0 M 149 20 160 152 98 49 23 18 12
Neptune 4.0 M 46 6 47 87 105 21 8 5 8
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summary, the fragment level methods except depth peeling are a trade-off between
memory consumption and performance. For high definition resolutions and irregular
distributed scenes, these methods may have a huge memory consumption in render
targets that is a big memory overhead.

28.4 Screen-Door Transparency

A third catalog the algorithm tries to approximate order independent transparency
using a screen-door technique (Fuchs et al. 1985). The algorithm replaces transparent
surfaces with a set of pixels that are fully on or off. The sub-pixel variation of the algo-
rithm has been implemented in hardware as the alpha-to-coverage technique, which
implicitly encodes alpha information by turning samples on or off. However, the
fixed dithering pattern makes the layers occluding each other rather than blending in
depth order, leading to serious noise and visual artifacts. Because alpha-to-coverage
uses a fixed dithering pattern, multiple layers occlude each other instead of blending
correctly, leading to visual artifacts. The object-level analogy to screen-door trans-
parency drops triangles can be dropped from a mesh in proportion to transparency
(Sen et al. 2003), but requires dynamic tessellation for scalable objects in the scene.
In order to keep rendering times in proportion to screen size, Callahan et al. (2005)
drop some polygons and increase the opacity of the remaining ones.

Stochastic transparency (Eenderton et al. 2010) is a simple extension to screen-
door transparency using a randomized sub-pixel stipple pattern to reduce noise
substantially. The basic algorithm with alpha correction starts by rendering the
opaque background into a multi-sampled z-buffer. In the first geometry pass, the
total alpha is rendered into a separate multi-sampled buffer. And the transparent
primitives are rendered into a separate multi-sampled buffer in a following second
pass. The samples are culled by the opaque z-buffer, and discarded by stochastic
alpha-to-coverage. In the final compositing pass, the opaque background is first
dimmed by one minus total alpha at each sample. Then the filtered transparent color
is read and corrected to the filtered total alpha, and blended over the filtered, dimmed
background. The alpha correction used above can eliminate noise to zero in areas
where all layers have an unique color, but might do more harm than good for scenes
with varying colors.

The authors also proposed a depth-based stochastic transparency which is more
accurate in complex regions. The visibility of each ray is encoded using the ratio of
samples that have passed the multi-sampled depth test. The algorithm also starts by
rendering the opaque background and gets the total alpha in the first geometry pass.
In the second pass, the transparent primitives are rendered, discarding samples by
stochastic alpha-to-coverage, but only the depth values of the remained samples are
stored. Then the transparent primitives are rendered once again into a separate multi-
sampled color buffer in additive blending mode, only accumulating those samples
that have smaller depth values than the corresponding one in the combined z-buffer
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from the previous step. Finally, the filtered accumulated sum is corrected and blended
over the filtered, dimmed background.

Stochastic transparency provides an excellent solution to order independent trans-
parency. The algorithm avoids read-modify-write loops which is common in tradi-
tional z-buffer based methods, making it quite practical for modern GPU hardware.

Conclusions and Future Work

There are also other methods for order-independent transparency on other platforms
such the ray tracing and REYES systems. They always have more photorealistic
rendering results, such as described in Wexler et al. (2005) and Zhou et al. (2009).
Though these methods can generate high quality rendering results, the performance
is still not satisfactory for real time applications. Recently, Intel has announced
Larrabee (Seiler et al. 2008), a highly parallel model that makes the rendering pipeline
completely programmable. The blending stage would be open to programmers thus
can be optimized for transparency.

Though efficient rendering of order independent transparency is still a changeling
problem on graphics applications. We are sure there are other new possible solutions
that have not been thought of. More efficient sorting algorithms might be designed
and implemented on the GPUs for primitive sorting before blending. The linked-list
method on DX11 gives the most advanced fragment level method which has a very
tight memory layout. However, it will consume a huge amount of memory for scenes
with high depth complexity. The future trend is to develop the screen-door techniques
to give a better approximation and reasonable correction for complex scenes.

Hopefully this review article can provide a good basis for those wanting to develop
new unforeseen methods for transparency or new desirable applications using these
methods. As the fast evolvement of the graphics hardware, it is promising that order
independent transparency could be well solved on the GPUs in the near future.
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Chapter 29
Performance Evaluation of Fast Fourier
Transform Application on Heterogeneous
Platforms
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Abstract Heterogeneous platforms, integrating SMPs, clusters, GPUs, FPGAs, etc.
are becoming the most popular architectures of supercomputers. Achieving high per-
formance on CPUs or GPUs requires careful consideration of their different archi-
tectures, which challenges the capability and skills of programmers. In order to
overcome the portability problem, OpenCL, a free cross-platform programming stan-
dard, is proposed by Khronos Compute Working Group. However, the performance
of OpenCL-based programs has not been thoroughly studied yet. Therefore, in this
paper, we first design OpenFFT-Bench, an FFT application with OpenCL-based FFT
and OpenGL-based real-time spectrum visualization as the benchmark. We evalu-
ate its performance on four OpenCL programming platforms including NVIDIA
CUDA, ATI Stream (GPU), ATI Stream (CPU), and Intel OpenCL. Characteris-
tics of OpenFFT-Bench are investigated with varied FFT size. Experimental results
show that OpenCL and OpenGL-based applications can not only run on multiple het-
erogeneous platforms, but also achieve relatively high performance on GPU-based
platforms.
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29.1 Introduction

High-performance computing is currently undergoing a period of rapid revolution.
Multi-core processors were established as the most popular CPU architecture, and
since then, we are witnessing a rapid transition to many-core systems. Many-core
Graphics Processing Units (GPUs) offer a tremendous computing power that is an
order of magnitude larger than the fastest multi-core CPUs. They are becoming
the most attractive platforms for high performance computing due to their high
performance/cost ratios.

In 2006, NVIDIA released the Compute Unified Device Architecture (CUDA)
for its GPUs, which specifies extensions of C programming language for writing
program kernels directly targeting GPUs. CUDA enhances the viability of GPUs as
a general-purpose computing platform by providing a straightforward programming
model and language. In the same year, AMD released its ATI Stream architecture.
Since then, many promising applications have been implemented on GPUs in almost
all domains and applications.

With the prosperity of GPUs, nowadays, the architectures of the world’s top super-
computers are becoming heterogeneous platforms, usually integrating SMPs, clus-
ters, GPUs, FPGAs. Heterogeneous platform is obviously the developing trend in
the next decades. However, achieving high performance on CPUs or GPUs requires
careful consideration of their architectures and rigorous optimization efforts. A more
serious problem is that the programming specification on CPUs and GPUs are so
different that programs running on one platform may not be compatible with another
platform. Therefore, programmers may have to re-write the code to meet its tar-
geting platform, which will incur tremendous amount of challenging, tedious and
boring work. This serous weakness will eventually hinder the development of high
performance computing on heterogeneous platforms.

In order to overcome the above portability problem, Open computing language
(OpenCL) is proposed by Khronos Compute Working Group. OpenCL is designed
for parallel computing cross heterogeneous platforms consisting of CPUs, GPUs
or other processors. It supplies API library to manage the platform and defines a
language based on C99 for writing kernels executed on OpenCL processors. It sup-
ports both task-based and data-based parallelism and specifies OpenCL devices’
memory hierarchy. People can write high performance algorithms running on all
OpenCL platforms without knowing their original programming language model,
such as CUDA, TBB, Brook++, etc. However, performance study of OpenCL-based
programs has not seen yet. A benchmark that measures the performance of different
OpenCL programming platforms is in demand.

Fast Fourier Transform (FFT) is one of the most widely used algorithms for engi-
neering and scientific computation. FFTs are of great significance to a broad variety
of applications, including signal processing, electronic measurement, image analy-
sis, biological sequence analysis, etc. Therefore, in this paper, we try to investigate
an FFT application with real-time visualization and its characteristics on a serial of
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heterogeneous high performance computing platforms. Specifically, in this paper we
make the following contributions:

(1) We first propose OpenFFT-Bench, an FFT application which includes OpenCL-
based FFT and OpenGL-based spectrum visualization;

(2) We measure the characteristics of OpenFFT-Bench on multiple programming
platforms;

(3) We analyze the architectural properties of different platforms and highlight
important bottlenecks.

Floating-point computation capability (GFLOPS), overall execution time and
frame rate are measured in our experiments. OpenCL + OpenGL make sure
OpenFFT-Bench run across multiple platforms without any effort of re-writing the
code. The experimental results show that the performance of OpenFFT-Bench on
GPUs is always higher than that on CPUs, although CUFFT outperforms OpenCL-
based FFT on GPUs due to its customized optimization on specific hardware.
NVIDIA CUDA OpenCL platform outperforms other platforms in all aspects. It indi-
cates that OpenCL and OpenGL cross-platform specifications not only contribute to
portability, but also provide relatively high performance.

The rest of this paper is organized as follows. In Sect. 29.2, we briefly intro-
duce some benchmarks on parallel computing platforms. Section 29.3 describes the
background knowledge of this paper. In Sect. 29.4, we present the details of our
application. In Sect. 29.5, we present the detailed setups of our evaluation platforms
and report our experimental results. In Sect. 29.6, we conclude our work.

29.2 Related Work

The NAS Parallel Benchmarks (NPB) (Baliley et al. 1991) are a set of benchmarks
targeting highly parallel supercomputers. They are developed and maintained by
the NASA Advanced Supercomputing (NAS) Division. The LINPACK Benchmarks
(Dongarra 1988a,b) are a measure of the floating point computing power of a system
introduced by Jack Dongarra. The perfect club benchmarks (Berry et al. 1989) are
also well-known performance evaluation suits on supercomputer. They represent
codes in a number of engineering applications and computational research.

Shane proposed optimization principles and evaluated a multithreaded GPU
(Geforce 8800) using CUDA (Ryoo et al. 2008). Barrachina evaluated and tuned
Level 3 CUBLAS on CUDA (Barrachina et al. 2008). Vasily presented the performance
of dense linear algebra on multiple GPUs including GeForece GTX280, GeForce
9800 GTX, GeForce 8800 GTX, and GeForce 8600 GTS (Volkov and Demmel
2008).

Up to now, as far as to our knowledge, there is no such benchmark suite evaluating
the performance of various OpenCL programming platforms. Therefore, in this paper,
we propose a 1D FFT application, OpenFFT-Bench, to evaluate the performance of
multiple programming platforms.
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29.3 Background Knowledge

29.3.1 Parallel Computing

Parallel computing is a form of computation where many calculations are carried out
simultaneously, operating on the principle that large problems can often be divided
into smaller ones, which are then solved concurrently. The parallel computer archi-
tecture has rapidly changed since the past decades.

29.3.1.1 Conventional Parallel Computing Architecture

Conventional parallel computer architectures include SMP, MPP, clusters, etc. A sym-
metric multiprocessor (SMP) is a computer system with multiple identical processors
that share memory via a bus and I/O devices. A massively parallel processor (MPP)
is a single computer with many networked processors. A cluster is a group of loosely
coupled computers that work together closely, so that they can be regarded as a single
computer in some respects. Clusters consist of multiple standalone machines con-
nected by a network. There are still other conventional parallel computers, such as
distributed memory multiprocessor (DSM), parallel vector processors (PVP), etc.

29.3.1.2 General Purpose Computing Graphic Processing Units

Tesla C1060 is a typical NVIDIA GPU, which consists of 30 stream multiprocessors.
Each stream multiprocessor contains 8 stream processors, 2 special function units,
32 KB shared memory, control unit registers, etc., Memory hierarchy consists of
shared memory, texture memory, constant memory and device memory, where all
memory is physically in the device memory except that shared memory is on die.

ATI GPU consists of several stream processors (5 in ATI Radeon 3870). Each-
stream processor consists of groups of SIMD engines (4 in ATI Radeon 3870). Each
SIMD engine has numerous thread processors (16 in Radeon 3870) for executing
kernels, each on a different stream. A thread processor is arranged as a five-way very
long instruction word processor. Up to 5 scalar operations can be co-issued in VLIW
instruction. Stream cores can execute integer or single-precision floating operations.
One of the five stream cores can handle transcendental operations.

29.3.1.3 OpenCL Standard

OpenCL (Open Computing Language) is an open royalty-free standard for gen-
eral purpose parallel programming across CPUs, GPUs and other processors, giving
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software developers portable and efficient access to the power of these heterogeneous
processing platforms (OpenCL, version 1.0). OpenCL supports both task parallelism
and data parallelism. OpenCL standards include a subset of C99 language with exten-
sions for parallelism, a configuration profile for handheld and embedded devices, a
requirement on numerical number based on IEEE 754, solution to efficiently inter-
operate with OpenGL, OpenGL ES and other graphics APIs.

OpenCL platforms consist of a host connected to one or more OpenCL compute
devices. Each compute device consists of several compute units and each compute
unit has numerous processing elements. Tasks to be processed by OpenCL device
are submitted to a command queue maintained by OpenCL.

The basic element of OpenCL parallelism is kernel function. Instances of kernel
functions are executed concurrently on multiple processors on different part of a data
stream. An instance is called a work item with a unique identifier. Work items are
organized into work groups, providing a more coarse-gained parallelism. OpenCL
specification defines OpenCL devices’ memory hierarchy, including private memory,
local memory, global memory, constant memory, as in Fig. 29.1. Private memory is
owned by a unique work item. Local memory belongs to a work group, which can
be used for communication and synchronization. Global memory can be read and
written by work items in all work groups. Constant memory is a special region of
global memory where data cannot be modified.

Fig. 29.1 OpenCL memory hierarchy
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29.3.2 Overview of Fast Fourier Transform (FFT)

29.3.2.1 FFT

The forward Discrete Fourier Transform (DFT) of a complex sequence x =
x0, x1 · · · xN−1 is an N-point complex sequence, X = X0, X1, · · · X N−1, where

Xk =
N−1
∑

j=0
x j e−2π i jk/N . A naïve implementation of DFT requires O(N 2) operations

and can be expensive. FFT algorithms compute the DFT in O(N log N ) operations.
Sorensen and Burrus compiled a database of over 3400 entries on efficient algorithms
for FFT (Sorensen and Burrus 1995).

Cooley-Turkey FFT (Cooley and Tukey 1965) is a commonly used FFT algorithm.
It expresses the discrete Fourier transform (DFT) of an arbitrary composite size
N = N1 N2 in terms of smaller DFTs of sizes N1 and N2. Radix-2 is the simplest and
most common form of it. The Pseudo Code of Cooley-Turkey FFT is in Fig. 29.2.

29.3.2.2 Parallel FFT on CPUs

Franz Franchetti et al. presented a parallel FFT program generator for shared mem-
ory parallel machines, such as SMPs and multi-core CPU systems (Franchetti et
al. 2006). It offers perfect load-balance and avoids false sharing. Both Intel MKL
libraries and Intel IPP libraries provide FFT applications, which are highly optimized
on Intel hardware. Intel MKL FFT is for engineering and scientific applications and
Intel IPP FFT is for media and communication applications. Only IA-32 and IA-64
CPU architectures are supported by Intel libraries. In addition, a great deal of work
related to parallel FFT implementations has been done on IBM cell processors (Bader
and Agarwal 2007; Williams et al. 2006; Frigo and Johnson 2007). Other FFT imple-
mentations on CPUs include Dmitruk et al. (2001), Li et al. (2003) using MPI, and
Goedecker et al. (2003) using combined OpenMP and MPI, etc.

29.3.2.3 Parallel FFT on GPUs

Naga K. Govindaraju et al. presented novel algorithms for computing discrete Fourier
transforms on CUDA GPUs (Govindaraju et al. 2008). With tricky skills and tuning
the application to memory hierarchy, it achieves 2–4× speedup to CUFFT and 8–40×
speedup to Intel MKL FFT on different FFT sizes. Cleomar Pereira da Silva et al.
implemented a three-dimensional FFT using multiple GPUs (da Silva et al. 2010).
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Fig. 29.2 Pseudo Code of Cooley-Turkey FFT

29.3.3 Overview of OpenGL for High Performance Graphics

Visualization has ever-expanding applications in science, education, engineering
(e.g. product visualization), interactive multimedia, medicine, etc. The supporting
technique of visualization is computer graphics. However, in early days, the devel-
opment of computer graphics is hindered due to the lack of graphics power. With
the emergence of Graphics Processing Units (GPUs), computer graphics has been
undergoing a revolutionary progress.

In addition to support general purpose computing, GPU is a specialized micro-
processor that offloads and accelerates graphics rendering from the central processor.
GPU implements a number of graphics primitive operations in a way that makes run-
ning them much faster than drawing directly to the screen with the host CPU. GPUs
are mainly used for playing 3D games or high-end 3D rendering.
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Fig. 29.3 Order of operations in OpenGL

OpenGL (Open Graphics Library) is a standard specification defining a cross-
language, cross-platform API for writing applications that produce 2D and 3D
computer graphics. The interface consists of over 250 different function calls which
can be used to draw complex three-dimensional scenes from simple primitives.
OpenGL was developed by Silicon Graphics Inc. (SGI) in 1992 and is successfully
and widely used in CAD, virtual reality, scientific visualization, flight simulation,
video games, etc.

Most implementations of OpenGL have a similar order of operations, a series
of processing stages called the OpenGL rendering pipeline. This ordering is not a
strict rule about how OpenGL is implemented, but it provides a reliable guide for
predicting what OpenGL will do. Figure 29.3 shows how OpenGL processes data.
Geometric data (vertices, lines, and polygons) follow the path through the row of
boxes that includes evaluators and per-vertex operations, while pixel data (pixels,
images, and bitmaps) are treated differently for part of the process. Both types of
data undergo the same final steps (rasterization and per-fragment operations) before
the final pixel data is written into the framebuffer.

OpenGL maintains the vertex data in vertex buffer, which locates in GPU global
memory. The vertex buffer is optimized to exchange data with host memory and
interoperate with OpenCL, then, the vertex data is rasterized into pixels or fragments.
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29.3.4 Benefits of OpenCL Plus OpenGL for Visualization

OpenCL standard supports OpenGL extensions which allow OpenCL applications to
use OpenGL buffer, texture objects, rend buffer objects as OpenCL memory objects.
Thus, when data is located in the global memory of GPU, it is not necessary to
interrupt the host CPU when GPU transfers data. This mechanism contributes to
achieve high performance when OpenCL applications run on GPUs, etc.

29.4 Application

In this paper, we propose OpenFFT-Bench. It is an FFT application, consisting
of OpenCL-based FFT part and OpenGL-based real-time spectrum visualization
part. Section 29.4.1 presents the details of the OpenCL-based FFT and Sect. 29.4.2
describes efficient visualization method we proposed.

29.4.1 Parallel FFT Using OpenCL

Little research has been done on OpenCL-based FFT. There are only two implemen-
tations available: Apple OpenCL FFT implementation (https://developer.apple.com/
library/mac/#samplecode/OpenCL_FFT/Introduction/Intro.html) and bealto OpenCL
FFT implementation (Bainville 2010). Due to the robustness of Apple OpenCL FFT
implementation, we choose it as the FFT solution of OpenFFT-Bench.

In Apple OpenCL FFT implementation, for any N points, it decomposes N into
the product of several factors. Factors are sorted such that the first one is the largest.
It determines the size of local memory used by each work item. Products of the
remaining factors determine the number of work items needed per group. For exam-
ple, assuming N = 1024, it is decomposed into 1024 = 16×16×4. It needs 64 work
items per group and each work item needs 16×2× size of(float) local memory. The
first kernel performs 64 length-16 FFTs with 64 work times working in parallel, and
then transposes the result in local memory. Then, it performs another 64 length-16
FFTs and transposes, followed by 256 length-4 FFTs (https://developer.apple.com/
library/mac/#samplecode/OpenCL_FFT/Listings/fft_kernelstring_cpp.html).

29.4.2 Visualization

29.4.2.1 3D Display Mode

In our application, the screen is divided into three parts. The 3D view of 1D FFT
dynamical spectrums are presented on the left part of the screen, where x-axis denotes

https://developer.apple.com/library/mac/#samplecode/OpenCL_FFT/Introduction/Intro.html
https://developer.apple.com/library/mac/#samplecode/OpenCL_FFT/Introduction/Intro.html
https://developer.apple.com/library/mac/#samplecode/OpenCL_FFT/Listings/fft_kernelstring_cpp.html
https://developer.apple.com/library/mac/#samplecode/OpenCL_FFT/Listings/fft_kernelstring_cpp.html
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Fig. 29.4 Visualization of 1D-FFT spectrums

the order of the points in a single period, y-axis denotes the amplitude of every point
in this period, and z-axis denotes time, that is, different periods. Linear interpolation
of blue, green and red is used to shade along the positive direction of y-axis. The
viewport at the top right corner of the screen presents the source signal data. The
one at the lower right corner presents the 2D view of the given 1D FFT spectrum.
A screenshot is shown in Fig. 29.4.

29.4.2.2 Vertex Shader for Color Shading on y Axis

Along the positive direction of y-axis, there is a gradual color change from blue to
green, then to red. In order to achieve this feature, we only need to support vertex
shader, because OpenGL shading pipeline provides linear interpolation between two
vertices. The code for vertex shader is presented in Fig. 29.5. To be convenient, the
max value on y-axis is fixed at 250.

29.4.3 OpenCL and OpenGL Interoperability

29.4.3.1 Shared Buffer for Computing and Visualization

A new mechanism is provided by OpenCL that a buffer, up to 768 KB, can be shared
between OpenCL and OpenGL. In our application, by utilizing the shared buffer,
64 × 1024 points to be visualized (x, y, z coordinates) are stored at any given time.
1024 points are retrieved and plotted on the screen each time. Whenever a new period
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Fig. 29.5 Code for vertex shader for coloring

of points (1024 points) is generated by OpenCL FFT, it is pushed into the shared
buffer and the oldest period in the buffer is deleted.

29.4.3.2 Points Reduction

Since the resolution of a typical screen is 1280 × 1024, there is no way to plot
more than 1024 points even if FFT size exceeds 1024, such as 2048, 4096, or 32768.
Therefore, we have to reduce the number of points to be plotted at a given time to 1024.
When FFT size exceeds 1024, we divide the points into 1024 groups consecutively
and take the sum of the amplitude of the points within a group as the value on y-axis.

29.5 Performance Evaluation

29.5.1 Evaluation Methodology

29.5.1.1 Experimental Data

In our experiments, a sine signal is generated as the source signal. Whenever a
sine signal is generated, it is transformed by OpenCL FFT on the devices, and the
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corresponding spectrum will be displayed on the screen in real time. The computation
is expensive in complexity because N sine calculations are required to generate one
sine signal.

29.5.1.2 Timing

Although OpenCL standards provide a timing tool, it can only be applied in limited
environment. Here, we need a timing tool which can be used in all environments on
all platforms. So, we choose the Windows timing tool, QueryPerformanceCounter,
which retrieves the current value of high-resolution performance counter on CPU.
The resolution is in microseconds.

29.5.1.3 Parameters

We will evaluate two parameters on each platform: GFLOPS and frame rate.
GFLOPS represents billions of floating-point operations per second, that is, the
computing capability of each platform under OpenCL framework. Frame rate is
the number of frames or images that are projected or displayed per second on the
screen, which reflects the efficiency of our visualization solution on each platform.

29.5.2 Hardware Platforms

We will evaluate the parameters on two computers, an Intel i7 920 CPU with a
NVIDIA GPU card, referred as C1, an Intel i7 860 CPU with an ATI GPU card,
referred as C2. The setups of C1 and C2 are listed in Table 29.1.

29.5.3 Benchmark Characteristics

In this section, we analyze several characteristics of our proposed benchmark. For
each characteristic, we analyze how the results vary when we change the input data.

Table 29.1 Setups of our hardware platforms

Computer CPU CPU Operating GPU GPU SDK
memory system

C1 i7 920, 6 GB Windows 7 NVIDIA CUDA
4 cores 64-bit Tesla C2050 SDK 3.2
2.67 GHz

C2 i7 860, 4 GB Windows 7 ATI HD5870 Stream
4 cores 64-bit SDK V2.2
2.8 GHz
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Fig. 29.6 OpenCL FFT floating-point computation capability (GFLOPS) on different programming
platforms with varying FFT size

Our measures of interest include GFLOPS of the OpenCL FFT part, the overall
execution time, and the frame rate of the visualization part.

To evaluate the performance of the OpenCL FFT part of OpenFFT-Bench, four
programming platforms are used: (1) NVIDIA CUDA (2) ATI Stream (GPU) (3)
ATI Stream (X86 CPU) (4) Intel OpenCL. Note: The executable code generated by
programming platforms will be run on hardware platforms, C1 and C2.

29.5.3.1 Floating-Point Computation Capability (GFLOPS)

GFLOPS of the OpenCL FFT part of OpenFFT-Bench is measured as follows: First
of all, 256 MB data is allocated into OpenCL device memory; secondly, Fast Fourier
Transform is performed on the data, varying FFT size from 128 to 16777216. To
calculate GFLOPS, formula 5∗N∗ log2(N )/T is used where N denotes FFT size and
T denotes the execution time.

Figure 29.6 presents GFLOPS of OpenCL FFT of OpenFFT-Bench. The cor-
responding programming platforms and hardware platforms are: platform (1) on
NVIDIA Tesla C2050 GPU card, platform (2) on ATI HD 5870 GPU card, platform
(3) on Intel i7 920 CPU, platform (4) on Intel i7 920 CPU. x denotes FFT size and y
denotes GFLOPS. GFLOPS of CUFFT and MKL FFT are also measured.

From Fig. 29.6 we can see that NVIDIA Tesla C2050 outperforms ATI HD5870
in terms of GFLOPS, where the peak GFLOPS value, 280, is observed at FFT size
512.

It is also observed that GFLOPS of NVIDIA CUFFT is even higher than that of
OpenCL FFT on NVIDIA Tesla C2050. This is not surprising, because in order to be
a cross-platform programming model, OpenCL does not optimize the usage of some
specific resources on specific hardwares, such as on-die shared memory, registers,
etc., while CUFFT is highly optimized to NVIDIA device.
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Table 29.2 Overall execution time (in millisecond) on four programming platforms

Programming platforms 1024 points 32768 points 1048576 points

NVIDIA CUDA 1.68 3.37 7.94
ATI Stream (GPU) 9.09 9.35 12.99
ATI Stream (CPU) 17.86 20.00 250.00
Intel OpenCL 3.12 8.77 142.86

GFLOPS of OpenCL FFT on Intel OpenCL is 1–3× higher than that on ATI stream
(CPU) because Intel fully utilizes the computation resources of its own product.
GFLOPS of MKL is 2–10× higher than that of OpenCL on the same CPU. This is
not surprising either, because MKL uses more customized optimization techniques
on Intel hardware, such as optimization on L1 cache, L2 cache, etc.

Our experimental results show that computation capability of OpenCL on GPU
always outperforms CPU-based platforms, for example, on Tesla C2050 GPU,
GFLOPS is 25–170× higher than that on Intel i7 920 including Intel MKL run-
ning on Intel CPU. This observation indicates that the cross-platform portability of
OpenCL standard is valuable in high performance computing on heterogeneous plat-
forms because higher GFLOPS can be achieved without any effort of rewriting code
when an application is transplanted from one platform to another.

29.5.3.2 Overall Execution Time

The overall execution time of our benchmark consists of time for signal generation,
FFT, points reduction, and visualization. The overall time measured in milliseconds
is listed in Table 29.2.

From Table 29.2, we can see OpenFFT-Bench consumes the longest time on ATI
Stream (X86 CPU). When we transplant it to other programming platforms, NVIDIA
CUDA, ATI stream (GPU), or Intel OpenGL, much less time is consumed, where
NVIDIA CUDA platform consumes the least time. Again, this observation indi-
cates that the portability of OpenCL and OpenGL is valubale in high performance
computing on hetergenourous platforms.

29.5.3.3 Frame Rate

Frame rate is measured as follows: First of all, a complex signal is generated using
OpenCL on i7 920 CPU, NVIDIA Tesla C2050 GPU card or ATI HD 5870 GPU
card depending on which is being evaluated; secondly, calculate its correspond-
ing coordinates on the screen, transform the signal and calculate the corresponding
signal’s spectrum. We reduce the number of points to 1024 due to the limitation of
the resolution of the screen when FFT size is larger than 1024. A new period of
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Fig. 29.7 Frame rate on four programming platforms with varying FFT size

points are plotted to replace the points currently displayed on the screen. Figure 29.7
presents the frame rate of the visualization part of OpenFFT-Bench on four different
programming platforms.

From Fig. 29.7, we can see that the frame rate of OpenFFT-Bench on NVIDIA
Tesla C2050 GPU is 1–7× higher than that on ATI HD 5870 GPU where the peak
value, 685 frames per second, is observed at FFT size 128. There is little difference
between all the platforms when FFT size is over 1048756. Frame rate on Intel OpenCL
platform is 1–7× higher than that on ATI stream (CPU).

Frame rate of OpenFFT-Bench on ATI Stream (GPU) is higher than that on CPU
in most cases except Intel OpenCL platform with FFT size less than 32768. Again,
it verifies that the portability of OpenCL and OpenGL are valuable in computing on
heterogeneous platforms.

29.6 Conclusion

In this paper, we proposed a cross-platform benchmark application, OpenFFT-Bench.
It consists of OpenCL-based FFT and OpenGL-based real-time spectrum visualiza-
tion. Performance of OpenFFT-Bench were evaluated on four OpenCL programming
platforms including NVIDIA CUDA, ATI Stream (GPU), ATI Stream (CPU), Intel
OpenCL, where two computers were used as the hardware platforms, an Intel i7 920
CPU with NVIDIA GPU, and an Intel i7 860 CPU with ATI GPU. Overall execution
time, GFLOPS and frame rate were measured on the four OpenCL programming
platforms. Experimental results show that NVIDIA CUDA OpenCL platform out-
performs other platforms in all aspects, where the peak GFLOPS value, 280, is
observed at FFT size 512, and 685 frames per second is observed at FFT size 128.
Intel OpenCL outperforms ATI stream (CPU) in all aspects too. The performance
of OpenFFT-Bench on ATI stream (GPU) is higher than that on CPU in most cases
except Intel OpenCL platform with FFT size less than 32768. Our results indicate



472 X. Li et al.

that OpenCL and OpenGL-based applications can not only run on multiple hetero-
generous platforms, but also achieve relatively high performance. Its portability and
efficiency will definitely release programmers from rigorous optimization on each
individual platform. The efficiency of programmers and the robustness of programs
will benefit from these cross-platform specifications as well. OpenCL and OpenGL
specifications will contribute to the success of the development of high performance
heterogeneous platforms.

Appendix

1. OpenCL parallel FFT code

//OpenCL FFT code(128 points)

#ifndef M_PI

#define M_PI 0x1.921fb54442d18p+1

#endif

#define complexMul(a,b) ((float2)(mad(-(a).y, (b).y, (a).x * (b).x), mad((a).y,(b).x,
(a).x * (b).y)))

#define conj(a) ((float2)((a).x, -(a).y))

#define conjTransp(a) ((float2)(-(a).y, (a).x))

#define fftKernel2(a,dir) \
{ \

float2 c = (a)[0]; \
(a)[0] = c + (a)[1]; \
(a)[1] = c - (a)[1]; \

}

#define fftKernel2S(d1,d2,dir) \
{ \

float2 c = (d1); \
(d1) = c + (d2); \
(d2) = c - (d2); \

}

#define fftKernel4(a,dir) \
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{ \
fftKernel2S((a)[0], (a)[2], dir); \
fftKernel2S((a)[1], (a)[3], dir); \
fftKernel2S((a)[0], (a)[1], dir); \
(a)[3] = (float2)(dir)*(conjTransp((a)[3])); \
fftKernel2S((a)[2], (a)[3], dir); \
float2 c = (a)[1]; \
(a)[1] = (a)[2]; \
(a)[2] = c; \

}

#define fftKernel4s(a0,a1,a2,a3,dir) \
{ \

fftKernel2S((a0), (a2), dir); \
fftKernel2S((a1), (a3), dir); \
fftKernel2S((a0), (a1), dir); \
(a3) = (float2)(dir)*(conjTransp((a3))); \
fftKernel2S((a2), (a3), dir); \
float2 c = (a1); \
(a1) = (a2); \
(a2) = c; \

}

#define bitreverse8(a) \
{ \

float2 c; \
c = (a)[1]; \
(a)[1] = (a)[4]; \
(a)[4] = c; \
c = (a)[3]; \
(a)[3] = (a)[6]; \
(a)[6] = c; \

}

#define fftKernel8(a,dir) \
{ \
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const float2 w1 = (float2)(0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f); \
const float2 w3 = (float2)(-0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f); \
float2 c; \
fftKernel2S((a)[0], (a)[4], dir); \
fftKernel2S((a)[1], (a)[5], dir); \
fftKernel2S((a)[2], (a)[6], dir); \
fftKernel2S((a)[3], (a)[7], dir); \
(a)[5] = complexMul(w1, (a)[5]); \
(a)[6] = (float2)(dir)*(conjTransp((a)[6])); \
(a)[7] = complexMul(w3, (a)[7]); \
fftKernel2S((a)[0], (a)[2], dir); \
fftKernel2S((a)[1], (a)[3], dir); \
fftKernel2S((a)[4], (a)[6], dir); \
fftKernel2S((a)[5], (a)[7], dir); \
(a)[3] = (float2)(dir)*(conjTransp((a)[3])); \
(a)[7] = (float2)(dir)*(conjTransp((a)[7])); \
fftKernel2S((a)[0], (a)[1], dir); \
fftKernel2S((a)[2], (a)[3], dir); \
fftKernel2S((a)[4], (a)[5], dir); \
fftKernel2S((a)[6], (a)[7], dir); \
bitreverse8((a)); \
}

#define bitreverse4x4(a) \
{ \
float2 c; \
c = (a)[1]; (a)[1] = (a)[4]; (a)[4] = c; \
c = (a)[2]; (a)[2] = (a)[8]; (a)[8] = c; \
c = (a)[3]; (a)[3] = (a)[12]; (a)[12] = c; \
c = (a)[6]; (a)[6] = (a)[9]; (a)[9] = c; \
c = (a)[7]; (a)[7] = (a)[13]; (a)[13] = c; \
c = (a)[11]; (a)[11] = (a)[14]; (a)[14] = c; \
}

#define fftKernel16(a,dir) \
{ \
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const float w0 = 0x1.d906bcp-1f; \
const float w1 = 0x1.87de2ap-2f; \
const float w2 = 0x1.6a09e6p-1f; \
fftKernel4s((a)[0], (a)[4], (a)[8], (a)[12], dir); \
fftKernel4s((a)[1], (a)[5], (a)[9], (a)[13], dir); \
fftKernel4s((a)[2], (a)[6], (a)[10], (a)[14], dir); \
fftKernel4s((a)[3], (a)[7], (a)[11], (a)[15], dir); \
(a)[5] = complexMul((a)[5], (float2)(w0, dir*w1)); \
(a)[6] = complexMul((a)[6], (float2)(w2, dir*w2)); \
(a)[7] = complexMul((a)[7], (float2)(w1, dir*w0)); \
(a)[9] = complexMul((a)[9], (float2)(w2, dir*w2)); \
(a)[10] = (float2)(dir)*(conjTransp((a)[10])); \
(a)[11] = complexMul((a)[11], (float2)(-w2, dir*w2)); \
(a)[13] = complexMul((a)[13], (float2)(w1, dir*w0)); \
(a)[14] = complexMul((a)[14], (float2)(-w2, dir*w2)); \
(a)[15] = complexMul((a)[15], (float2)(-w0, dir*-w1)); \
fftKernel4((a), dir); \
fftKernel4((a) + 4, dir); \
fftKernel4((a) + 8, dir); \
fftKernel4((a) + 12, dir); \
bitreverse4x4((a)); \

}

#define bitreverse32(a) \
{ \
float2 c1, c2; \
c1 = (a)[2]; (a)[2] = (a)[1]; c2 = (a)[4]; (a)[4] = c1; c1 = (a)[8]; (a)[8] = c2; c2 =

(a)[16]; (a)[16] = c1; (a)[1] = c2; \
c1 = (a)[6]; (a)[6] = (a)[3]; c2 = (a)[12]; (a)[12] = c1; c1 = (a)[24]; (a)[24] = c2;

c2 = (a)[17]; (a)[17] = c1; (a)[3] = c2; \
c1 = (a)[10]; (a)[10] = (a)[5]; c2 = (a)[20]; (a)[20] = c1; c1 = (a)[9]; (a)[9] = c2;

c2 = (a)[18]; (a)[18] = c1; (a)[5] = c2; \
c1 = (a)[14]; (a)[14] = (a)[7]; c2 = (a)[28]; (a)[28] = c1; c1 = (a)[25]; (a)[25] =

c2; c2 = (a)[19]; (a)[19] = c1; (a)[7] = c2; \
c1 = (a)[22]; (a)[22] = (a)[11]; c2 = (a)[13]; (a)[13] = c1; c1 = (a)[26]; (a)[26] =

c2; c2 = (a)[21]; (a)[21] = c1; (a)[11] = c2; \
c1 = (a)[30]; (a)[30] = (a)[15]; c2 = (a)[29]; (a)[29] = c1; c1 = (a)[27]; (a)[27] =
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c2; c2 = (a)[23]; (a)[23] = c1; (a)[15] = c2; \
}

#define fftKernel32(a,dir) \
{ \

fftKernel2S((a)[0], (a)[16], dir); \
fftKernel2S((a)[1], (a)[17], dir); \
fftKernel2S((a)[2], (a)[18], dir); \
fftKernel2S((a)[3], (a)[19], dir); \
fftKernel2S((a)[4], (a)[20], dir); \
fftKernel2S((a)[5], (a)[21], dir); \
fftKernel2S((a)[6], (a)[22], dir); \
fftKernel2S((a)[7], (a)[23], dir); \
fftKernel2S((a)[8], (a)[24], dir); \
fftKernel2S((a)[9], (a)[25], dir); \
fftKernel2S((a)[10], (a)[26], dir); \
fftKernel2S((a)[11], (a)[27], dir); \
fftKernel2S((a)[12], (a)[28], dir); \
fftKernel2S((a)[13], (a)[29], dir); \
fftKernel2S((a)[14], (a)[30], dir); \
fftKernel2S((a)[15], (a)[31], dir); \
(a)[17] = complexMul((a)[17], (float2)(0x1.f6297cp-1f, dir*0x1.8f8b84p-3f));

\
(a)[18] = complexMul((a)[18], (float2)(0x1.d906bcp-1f, dir*0x1.87de2ap-2f));

\
(a)[19] = complexMul((a)[19], (float2)(0x1.a9b662p-1f, dir*0x1.1c73b4p-1f));

\
(a)[20] = complexMul((a)[20], (float2)(0x1.6a09e6p-1f, dir*0x1.6a09e6p-1f));

\
(a)[21] = complexMul((a)[21], (float2)(0x1.1c73b4p-1f, dir*0x1.a9b662p-1f));

\
(a)[22] = complexMul((a)[22], (float2)(0x1.87de2ap-2f, dir*0x1.d906bcp-1f));

\
(a)[23] = complexMul((a)[23], (float2)(0x1.8f8b84p-3f, dir*0x1.f6297cp-1f));

\
(a)[24] = complexMul((a)[24], (float2)(0x0p+0f, dir*0x1p+0f)); \
(a)[25] = complexMul((a)[25], (float2)(-0x1.8f8b84p-3f, dir*0x1.f6297cp-

1f)); \
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(a)[26] = complexMul((a)[26], (float2)(-0x1.87de2ap-2f, dir*0x1.d906bcp-
1f)); \

(a)[27] = complexMul((a)[27], (float2)(-0x1.1c73b4p-1f, dir*0x1.a9b662p-
1f)); \

(a)[28] = complexMul((a)[28], (float2)(-0x1.6a09e6p-1f, dir*0x1.6a09e6p-
1f)); \

(a)[29] = complexMul((a)[29], (float2)(-0x1.a9b662p-1f, dir*0x1.1c73b4p-
1f)); \

(a)[30] = complexMul((a)[30], (float2)(-0x1.d906bcp-1f, dir*0x1.87de2ap-
2f)); \

(a)[31] = complexMul((a)[31], (float2)(-0x1.f6297cp-1f, dir*0x1.8f8b84p-
3f)); \

fftKernel16((a), dir); \
fftKernel16((a) + 16, dir); \
bitreverse32((a)); \

}

__kernel void fft0(__global float *in_real, __global float *in_imag, __global float
*out_real, __global float *out_imag, int dir, int S)

{

__local float sMem[640];

int i, j, r, indexIn, indexOut, index, tid, bNum, xNum, k, l;

int s, ii, jj, offset;

float2 w;

float ang, angf, ang1;

__local float *lMemStore, *lMemLoad;

float2 a[8];

int lId = get_local_id( 0 );

int groupId = get_group_id( 0 );

s = S & 3;

ii = lId & 15;

jj = lId >> 4;

if( !s || (groupId < get_num_groups(0)-1) || (jj < s) ) {

offset = mad24( mad24(groupId, 4, jj), 128, ii );

in_real += offset;

in_imag += offset;

out_real += offset;

out_imag += offset;
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a[0].x = in_real[0];

a[0].y = in_imag[0];

a[1].x = in_real[16];

a[1].y = in_imag[16];

a[2].x = in_real[32];

a[2].y = in_imag[32];

a[3].x = in_real[48];

a[3].y = in_imag[48];

a[4].x = in_real[64];

a[4].y = in_imag[64];

a[5].x = in_real[80];

a[5].y = in_imag[80];

a[6].x = in_real[96];

a[6].y = in_imag[96];

a[7].x = in_real[112];

a[7].y = in_imag[112];

}

fftKernel8(a+0, dir);

angf = (float) ii;

ang = dir * ( 2.0f * M_PI * 1.0f / 128.0f ) * angf;

w = (float2)(native_cos(ang), native_sin(ang));

a[1] = complexMul(a[1], w);

ang = dir * ( 2.0f * M_PI * 2.0f / 128.0f ) * angf;

w = (float2)(native_cos(ang), native_sin(ang));

a[2] = complexMul(a[2], w);

ang = dir * ( 2.0f * M_PI * 3.0f / 128.0f ) * angf;

w = (float2)(native_cos(ang), native_sin(ang));

a[3] = complexMul(a[3], w);

ang = dir * ( 2.0f * M_PI * 4.0f / 128.0f ) * angf;

w = (float2)(native_cos(ang), native_sin(ang));

a[4] = complexMul(a[4], w);

ang = dir * ( 2.0f * M_PI * 5.0f / 128.0f ) * angf;

w = (float2)(native_cos(ang), native_sin(ang));

a[5] = complexMul(a[5], w);

ang = dir * ( 2.0f * M_PI * 6.0f / 128.0f ) * angf;

w = (float2)(native_cos(ang), native_sin(ang));



29 Performance Evaluation of Fast Fourier Transform Application 479

a[6] = complexMul(a[6], w);

ang = dir * ( 2.0f * M_PI * 7.0f / 128.0f ) * angf;

w = (float2)(native_cos(ang), native_sin(ang));

a[7] = complexMul(a[7], w);

lMemStore = sMem + mad24(jj, 144, ii);

j = ii & 7;

i = ii >> 3;

i = mad24(jj, 144, i);

lMemLoad = sMem + mad24(j, 18, i);

lMemStore[0] = a[0].x;

lMemStore[18] = a[1].x;

lMemStore[36] = a[2].x;

lMemStore[54] = a[3].x;

lMemStore[72] = a[4].x;

lMemStore[90] = a[5].x;

lMemStore[108] = a[6].x;

lMemStore[126] = a[7].x;

barrier(CLK_LOCAL_MEM_FENCE);

a[0].x = lMemLoad[0];

a[1].x = lMemLoad[4];

a[2].x = lMemLoad[8];

a[3].x = lMemLoad[12];

a[4].x = lMemLoad[2];

a[5].x = lMemLoad[6];

a[6].x = lMemLoad[10];

a[7].x = lMemLoad[14];

barrier(CLK_LOCAL_MEM_FENCE);

lMemStore[0] = a[0].y;

lMemStore[18] = a[1].y;

lMemStore[36] = a[2].y;

lMemStore[54] = a[3].y;

lMemStore[72] = a[4].y;

lMemStore[90] = a[5].y;

lMemStore[108] = a[6].y;

lMemStore[126] = a[7].y;

barrier(CLK_LOCAL_MEM_FENCE);
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a[0].y = lMemLoad[0];

a[1].y = lMemLoad[4];

a[2].y = lMemLoad[8];

a[3].y = lMemLoad[12];

a[4].y = lMemLoad[2];

a[5].y = lMemLoad[6];

a[6].y = lMemLoad[10];

a[7].y = lMemLoad[14];

barrier(CLK_LOCAL_MEM_FENCE);

fftKernel4(a+0, dir);

fftKernel4(a+4, dir);

angf = (float) (ii >> 3);

ang = dir * ( 2.0f * M_PI * 1.0f / 16.0f ) * angf;

w = (float2)(native_cos(ang), native_sin(ang));

a[1] = complexMul(a[1], w);

ang = dir * ( 2.0f * M_PI * 2.0f / 16.0f ) * angf;

w = (float2)(native_cos(ang), native_sin(ang));

a[2] = complexMul(a[2], w);

ang = dir * ( 2.0f * M_PI * 3.0f / 16.0f ) * angf;

w = (float2)(native_cos(ang), native_sin(ang));

a[3] = complexMul(a[3], w);

angf = (float) ((16 + ii) >>3);

ang = dir * ( 2.0f * M_PI * 1.0f / 16.0f ) * angf;

w = (float2)(native_cos(ang), native_sin(ang));

a[5] = complexMul(a[5], w);

ang = dir * ( 2.0f * M_PI * 2.0f / 16.0f ) * angf;

w = (float2)(native_cos(ang), native_sin(ang));

a[6] = complexMul(a[6], w);

ang = dir * ( 2.0f * M_PI * 3.0f / 16.0f ) * angf;

w = (float2)(native_cos(ang), native_sin(ang));

a[7] = complexMul(a[7], w);

lMemStore = sMem + mad24(jj, 160, ii);

j = ii >> 3;

i = ii & 7;

i = mad24(jj, 160, i);

lMemLoad = sMem + mad24(j, 40, i);
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lMemStore[0] = a[0].x;

lMemStore[40] = a[1].x;

lMemStore[80] = a[2].x;

lMemStore[120] = a[3].x;

lMemStore[16] = a[4].x;

lMemStore[56] = a[5].x;

lMemStore[96] = a[6].x;

lMemStore[136] = a[7].x;

barrier(CLK_LOCAL_MEM_FENCE);

a[0].x = lMemLoad[0];

a[1].x = lMemLoad[8];

a[2].x = lMemLoad[16];

a[3].x = lMemLoad[24];

a[4].x = lMemLoad[80];

a[5].x = lMemLoad[88];

a[6].x = lMemLoad[96];

a[7].x = lMemLoad[104];

barrier(CLK_LOCAL_MEM_FENCE);

lMemStore[0] = a[0].y;

lMemStore[40] = a[1].y;

lMemStore[80] = a[2].y;

lMemStore[120] = a[3].y;

lMemStore[16] = a[4].y;

lMemStore[56] = a[5].y;

lMemStore[96] = a[6].y;

lMemStore[136] = a[7].y;

barrier(CLK_LOCAL_MEM_FENCE);

a[0].y = lMemLoad[0];

a[1].y = lMemLoad[8];

a[2].y = lMemLoad[16];

a[3].y = lMemLoad[24];

a[4].y = lMemLoad[80];

a[5].y = lMemLoad[88];

a[6].y = lMemLoad[96];

a[7].y = lMemLoad[104];

barrier(CLK_LOCAL_MEM_FENCE);
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fftKernel4(a+0, dir);

fftKernel4(a+4, dir);

if( !s || (groupId < get_num_groups(0)-1) || (jj < s) ) {

out_real[0] = a[0].x;

out_imag[0] = a[0].y;

out_real[16] = a[4].x;

out_imag[16] = a[4].y;

out_real[32] = a[1].x;

out_imag[32] = a[1].y;

out_real[48] = a[5].x;

out_imag[48] = a[5].y;

out_real[64] = a[2].x;

out_imag[64] = a[2].y;

out_real[80] = a[6].x;

out_imag[80] = a[6].y;

out_real[96] = a[3].x;

out_imag[96] = a[3].y;

out_real[112] = a[7].x;

out_imag[112] = a[7].y;

}

}

2. FFT Rendering code

// OpenGL vertex buffers interoprated with OpenCL

GLuint buffer;

GLuint bufferSource;

// OpenCL bind the two buffers

resbuffer = clCreateFromGLBuffer(context, CL_MEM_READ_WRITE, buffer,
&errcode);

signalbuffer = clCreateFromGLBuffer(context, CL_MEM_READ_WRITE,
bufferSource, &errcode);

// GLUT call back function

void display(){

// do FFT on next period of data in OpenCL

err = clEnqueueAcquireGLObjects(queue, 2, mem_objects, 0, NULL,
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NULL);

err = clSetKernelArg(fftsinkernel, 2, sizeof(int), &rnd);

err = clEnqueueNDRangeKernel(queue, fftsinkernel, 1,0, globalwork-
size, localworksize, 0, NULL, NULL);

err = clEnqueueNDRangeKernel(queue, extractkernel, 1, 0, globalwork-
size, localworksize, 0, NULL, NULL);

err = clEnqueueNDRangeKernel(queue, signalkernel, 1, 0, localwork-
size, localworksize, 0, NULL, NULL);

clEnqueueReadBuffer(queue, signalbuffer, 1, 0, 3 * 1024 * sizeof(float),
res, 0, NULL, NULL);

clFFT_ExecutePlannar(queue, fft_plan, batchSize, dir, realbuffer, imag-
buffer, realbuffer, imagbuffer, 0, NULL, NULL);

err = clEnqueueNDRangeKernel(queue, modulekernel, 1, 0, globalwork-
size, localworksize, 0, NULL, NULL);

err = clEnqueueNDRangeKernel(queue, normkernel, 1, 0, globalwork-
size, localworksize, 0, NULL, NULL);

err = clEnqueueNDRangeKernel(queue, transferkernel, 1, 0, localwork-
size, localworksize, 0, NULL, NULL);

clEnqueueReleaseGLObjects(queue, 2, mem_objects, 0, NULL, NULL);

// Clear the color buffer and depth buffer

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// Set the state of OpenGL to display

glViewport(0, 0, SCREEN_WIDTH * 3 / 4, SCREEN_HEIGHT);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glFrustum(-0.01, 0.01, 0 - 0.01 * SCREEN_HEIGHT /
SCREEN_WIDTH, 0.01 * SCREEN_HEIGHT / SCREEN_WIDTH, 0.01, 100);

gluLookAt(EYE.x, EYE.y, EYE.z, CENTER.x, CENTER.y, CENTER.z,

UP.x, UP.y, UP.z);

glScalef(3.0, 0.01, 5.0);

// Display FFT spectrums in 3D mode

if (drawPoints){
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glColor3f(0.0, 0.0, 0.0);

glBindBuffer(GL_ARRAY_BUFFER, buffer);

glEnableClientState(GL_VERTEX_ARRAY);

glVertexPointer(DIM, GL_FLOAT, 0, BUFFER_OFFSET(0));

glDrawArrays(GL_POINTS, 0, REDUCE_NUM * DATA_NUM);

}

else {

shader->useProgram();

glBindBuffer(GL_ARRAY_BUFFER, buffer);

glEnableClientState(GL_VERTEX_ARRAY);

glVertexPointer(DIM, GL_FLOAT, 0, BUFFER_OFFSET(0));

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer);

glEnableClientState(GL_INDEX_ARRAY);

glIndexPointer(GL_FLOAT, 0, BUFFER_OFFSET(0));

glDrawElements(GL_TRIANGLE_STRIP, ((REDUCE_NUM *
2) + 2) * (DATA_NUM - 1), GL_UNSIGNED_INT, 0);

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

glDisableClientState(GL_INDEX_ARRAY);

shader->cancelProgram();

}

// Display FFT spectrum in 2D mode

glViewport(SCREEN_WIDTH * 3 / 4, 0, SCREEN_WIDTH / 4,

SCREEN_HEIGHT / 2);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluOrtho2D(-0.2, 2.0, -0.7, 2.8);

glScalef(1.8, 0.007, 1.0);

if (drawPoints){

glDrawArrays(GL_POINTS, 0, REDUCE_NUM);

}

else {

shader->useProgram();
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glLineWidth(1.0);

glDrawArrays(GL_LINES, 0, REDUCE_NUM);

shader->cancelProgram();

}

// Display source signal data in 2D mode

glViewport(SCREEN_WIDTH * 3 / 4, SCREEN_HEIGHT / 2,
SCREEN_WIDTH / 4, SCREEN_HEIGHT / 2);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluOrtho2D(-0.5, 5.5, -1.5, 1.5);

glScalef(5.0, 100.0, 1.0);

glColor3f(0.0, 0.0, 0.0);

glBindBuffer(GL_ARRAY_BUFFER, bufferSource);

glEnableClientState(GL_VERTEX_ARRAY);

glVertexPointer(DIM, GL_FLOAT, 0, BUFFER_OFFSET(0));

if (drawPoints){

glDrawArrays(GL_POINTS, 0, REDUCE_NUM);

}

else {

glLineWidth(1.0);

glDrawArrays(GL_LINE_STRIP, 0, REDUCE_NUM);

}

// Double buffer swap

glutSwapBuffers();

}
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Chapter 30
Accurate Evaluation of Local Averages
on GPGPUs

Dmitry A. Karpeev, Matthew G. Knepley and Peter R. Brune

Abstract We discuss fast and accurate evaluation of local averages on GPGPU.
This work was motivated by the need to calculate reference fluid densities in the
classical density functional theory (DFT) of electrolytes proposed in Gillespie et
al. (2002). In Knepley et al. (2010) we developed efficient algorithms for the
minimization of three-dimensional DFT models of biological ion channel perme-
ation and selectivity. One of the essential bottlenecks of 3D DFT models is the
evaluation of local screening averages of the chemical species’ densities. But the
problem has wider applicability and fast evaluation of averages over the local spher-
ical screening neighborhood of every grid point are typically inaccurate due to the
use of collocation approximations of densities on Cartesian grids. Accurate evalu-
ations based spectral quadrature were proposed and used in Knepley et al. (2010),
but they are significantly more computationally expensive because of their non-
local nature in the Fourier space. Here we show that the passage to the Fourier
space can, in fact, make the averaging calculation much more amenable to efficient
implementation on GPGPU architectures. This allows us to take advantage of both
improved accuracy and hardware acceleration to arrive at a fast and accurate screening
calculations.
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30.1 Introduction

The problem of fast and accurate evaluation of local averages is ubiquitous in com-
putational science. One such calculation arises in computational physical chemistry:
repeated evaluation of reference fluid densities in the classical density functional
theory (DFT) of electrolytes (see Gillespie et al. 2002 for details). However, this
type of calculation arises in many contexts whenever a density ρ, piecewise constant
over the cells of a regular grid, needs to be averaged over a small ball Bi about each
grid cell i . This is a discrete version of the following continuous mapping ρ �→ ρ:

ρ(x) = 1

|Bx
Rx
|
∫

Bx
Rx

ρ( y)dy =
∫

ρ( y)χ x
Rx
(y)dy =

∫

ρ( y)χRx ( y − x)d y.

(30.1)

The notation in the above equation is as follows: Bx
Rx
= { y : | y − x| < Rx} is

an averaging ball of radius Rx about x, |Bx
Rx
| is the volume of the ball, and χ x

Rx

denotes the normalized1 characteristic function of this averaging ball, while χRx is
the normalized characteristic function of a ball of the same size at the origin BRx .
We can write χRx explicitly as follows:

χRx =
θ(Rx − |x|)

4
3 R3

x

, (30.2)

where θ(x) is the Heaviside step function (http://en.wikipedia.org/wiki/Heaviside_
step_function), which is the characteristic function of the set {x > 1} ⊂ R, equal to
1 for x > 0 and to 0 otherwise.

The integral in Eq. (30.1) is a convolution, but only if Rx = R ≡ const. Many
efficient computational techniques are available for calculating convolutions, most
notably, the Fast Fourier Transform (FFT) algorithm (Cooley and Tukey 2000). In
many applications, however, Rx can vary substantially from point to point, so other
approaches are necessary for an accurate numerical evaluation of (30.1).

30.2 Discrete Averaging Problem

Here we define a discrete averaging calculation by applying (30.1) to a piecewise
constant density defined on a regular grid with N cells. This can be easily gener-
alized to other discretizations of ρ. Schematically discrete averaging is illustrated
in Fig. 30.1: the piecewise constant density is averaged over a ball about cell i and
the average is assigned to i . This calculation amounts to an application of a sparse
matrix A = (Aij) to the vector ρ = (

ρi
)

of cell density values:

1
∫

χ x
Rx

dx = 1.

http://en.wikipedia.org/wiki/Heaviside_step_function
http://en.wikipedia.org/wiki/Heaviside_step_function
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Fig. 30.1 Averaging of piecewise constant cell values over a ball about i

ρi =
∑

j

Aijρ j . (30.3)

30.2.1 Runtime Complexity

The elements the i th row of A constitute quadrature weights approximating integral
(30.1) at the i th cell center xi over the ball Bi = Bxi

Rxi
using cell density values ρ. For

a piecewise constant ρ each element Aij is the volume of a spherical segment—the
intersection of Bi with grid cell j . We assume that the averaging ball radius Ri = Rxi

is small compared to the size of the computational grid, so the averaging is a local
operation and A is sparse. In particular, the bandwidth of the matrix is determined
by the number of grid cells intersecting the largest averaging ball Bi (Fig. 30.2). If
the maximal averaging radius supx Rx is small and bounded independently of the
problem size N (the number of grid points), the averaging operation (30.3) will be a
sparse matrix-vector product (SpMV) and will have an optimal asymptotic complex-
ity O(N ). In the end, however, it is the wallclock time of the calculation that matters,
not the theoretical complexity. It is well-known that on modern hardware architec-
tures SpMV rarely achieves more than 10 % of the peak hardware performance and is
limited by the memory bandwidth (Vuduc et al. 2005). This is because the arithmetic
intensity—the ratio of arithmetic operations to load/store operations—is rather low
for SpMV and most of the time is spent waiting on the data to travel from the memory
to the CPU. Thus, alternative approaches to SpMV should be explored, even if they
result in a higher theoretical complexity. Indeed, the higher asymptotic complexity
can be potentially offset by the higher peak performance of the alternative averaging
method.

One approach to improving the overall wallclock time could be hardware accelera-
tion, for example, using a (general purpose) graphics processing unit, (GP)GPU. Here
we specifically consider the NVIDIA GPU architecture and their CUDA program-
ming model (http://developer.nvidia.com/cuda-gpus), and assume the reader has a
basic familiarity with them. The memory bandwidth bottleneck affects calculations
on the GPU just as well as on the CPU: each streaming processor (SP) running a
thread from a given block will have to spend most of the time waiting for the data

http://developer.nvidia.com/cuda-gpus
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Fig. 30.2 Schematic structure of the averaging matrix with (top) and without (bottom) a constant
averaging radius; • represents nonzero matrix entries

to be delivered. Paralleling the computation, which is essentially free compared to
the memory load/store time, will result in a modest improvement at best. Even with
O(N ) SPs the calculation will still take O(N ) time, instead of O(1), since there is
only one memory bus and most of the time is spent on its delivery of data.

Convolution averaging. Another stumbling block on the way to an efficient
deployment of GPUs is the irregular sparsity pattern of the matrix rows (see Fig. 30.2
(bottom)). Indeed, assume each CUDA thread is responsible for the calculation of
a single output entry ρi —a single inner product between the i th row of A and ρ.
Different matrix rows have different numbers of nonzero elements, hence, different
amounts of work, but the calculation in a block is limited by the thread executing
the longest inner product, while the other threads waste SP cycles. One scenario, in
which the sparsity pattern is constant for all rows is the case of Rx = R ≡ const
(see Fig. 30.2 (top)). Here (30.1) becomes a convolution and there are efficient ways
of carrying out its discrete version without even forming matrix A. In fact, averaging
is best done in the Fourier space using the convolution theorem:

ρ = ρ � χR =
(

ρ∨χ∨R
)∧
, (30.4)

where f ∧ is the Fourier transform of f and f ∨ is the inverse Fourier trans-
form; in particular, f = f ∧∨ = f ∨∧. This version of the averaging calcula-
tion is essentially a dense reformulation of the SpMV algorithm (30.3). Its total
time and storage complexity of (30.4) is O(N log N ) and O(N ) respectively, but it
can be carried out on a GPU efficiently using CUFFT, a CUDA implementation
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Fig. 30.3 Cell segments
cut out from the grid by an
averaging ball about cell i

of the FFT algorithm (http://developer.download.nvidia.com/compute/cuda/3_1/
toolkit/docs/CUFFT_Library_3.1.pdf). This is the first indication of how we might
achieve high performance of the averaging operation on a GPU: reformulating the
problem as a dense linear algebra operation and utilizing the full hardware power of
a GPU.

30.2.2 Accuracy

Before matrix A can be applied, however, its entries must be accurately calculated,
since this will impact the accuracy of the overall discrete averaging computation.
Having a fast but an inaccurate averaging operation is of little value, and for some
applications, such as the DFT reference density calculation, it is entirely worthless,
as we will indicate below. How can Aij be computed accurately?

Spherical segments. Depending on the radius Ri of the i th averaging ball, the
spherical segments resulting from its intersections with grid cells can have different
shapes (see Fig. 30.3). To compute the volume of each spherical segment we must
determine which grid planes intersect the averaging ball Bi , which requires accurate
evaluation of geometric predicates (e.g., deciding whether a point lies on one side
of the plane or the other). Then, for each grid cell intersecting the averaging ball
the shape of the resulting spherical segment must be determined and its volume
calculated. Typically, the volume calculation can will lead to a many expensive
evaluations of trigonometric functions. Overall, the calculation of spherical segments
of different shapes will take a lot of floating point arithmetic and logic to implement
the shape-dependent flow control. If the averaging operation with the same radii
R = (Ri ) needs to be applied many times, the relatively expensive calculation of
Aij can be amortized over the many matrix-vector multiplications. In the case of a
sparse A, precomputing and storing the matrix can be an acceptable solution, despite
complex and error-prone nature of the direct calculation algorithm. In the problems
we are mostly interested in, in particular in the DFT problem described below, the
averaging radii change in the course of the overall calculation: it may be helpful to
think about Rx as being time dependent and averaging occurring every timestep.
Then the calculations of the spherical segment volumes have to be carried out every
iteration.

http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/CUFFT_Library_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/CUFFT_Library_3.1.pdf
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Fig. 30.4 Pixelized ball approximation on an increasingly fine grid

Pixelized balls. As we mentioned above, the accuracy of averaging takes prece-
dence over the speed, so we must compute A accurately, before it can be applied to
ρ. One approach that avoid most of the complexities of spherical segment volume
calculations is to approximate each averaging ball Bi by a “pixelized ball”—the
set of all grid cells meeting Bi (see Fig. 30.3). Since whole cells and not spherical
segments are included in the calculation, the algorithm becomes simpler and much
more robust, but diminishes in accuracy. To remedy that the grid could be refined
to include N > N points to improve the approximation of the Bi by pixelized balls
(see Fig. 30.4). This will result in a larger matrix A with an much higher number of
nonzeros, since for a fixed Ri the number of nonzeros in the i th row grows as O(N )
(see Fig. 30.5).

Fig. 30.5 Schematic structure of the averaging matrix and its change under grid refinement. • rep-
resents nonzero matrix entries. Refinement of the grid by a factor of 2 in each direction results in
the quadrupling of the matrix storage (bottom) relative to the unrefined grid (top)
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This results in a denser calculation, so the use of GPU can be considered again.
The trade off between accuracy and speed remains poor, however: the accuracy of A
improves roughly as O(1/N ), while the computational complexity grows as O(N 2

).
The accuracy return on refinement saturates near N = O(N 2), since at that point
the error in the approximation of Bi by a pixelized ball will become dominated by
the error in the discrete approximation of ρ by ρ: indeed, grid refinement does not
improve the quality of ρ initially given on a grid of size N . Finally, the irregular
nature of the calculation and memory access in Eq. (30.3) are still detrimental to
its deployment on GPUs: while the calculation becomes denser, it does not become
more regular. In particular, the matrix-free approach of (30.4) is still out of reach.

30.3 Spectral Quadrature

The idea of our approach to averaging is to combine the improvements in accuracy
with the improvements in the structure of the algorithm that favor its deployment on
GPUs, even at the expense of some increase in asymptotic complexity. After all, the
algorithms discussed above, while sufficiently accurate are either too fragile and error
prone (calculation of A by spherical segment volumes), or have effective complexity
much higher than O(N ) (pixelized ball approximation on a refined grid N � N ).
Neither one is particularly suitable for an efficient deployment on a GPU. Instead, we
propose a reformulation inspired by the Fourier space approach to averaging (30.4).

30.3.1 Convolution by Spectral Quadrature

Observe that in the application of (30.4) the issue of the accuracy of the spherical
segment volumes was sidestepped altogether: the quadrature was replaced by an inner
product of ρ̂, the discrete Fourier transform of ρ, with χ̂R =

(

χ̂R(ki )
)

, the discretized
Fourier transform of χR . Unlike ρ̂, we can obtain χ̂R by computing χ̂R exactly and
then discretizing it, rather than applying FFT to χR =

(

χR(xi )
)

, a discretization of
χR . This is possible because an analytic form of χ̂R can be obtained as follows:

χ̂R(k) = 1

(2π)
3
2

∫

R3
χR( y)e−i k· ydy = 3

4π
(

R
√

2π
)3

∫

R3
θ(R − | y|)e−i k· ydy.

This integral can be evaluated noting that the integrand depends only on the absolute
values k = |k| and r = | y|, and the angle θ between k and y. Passing to the spherical
coordinates with k as the axis (see Fig. 30.6) and φ the azimuthal angle in the plane
orthogonal to k, we compute as follows:



494 D. A. Karpeev et al.

Fig. 30.6 Spherical coor-
dinates relative to the axis
through k

χ̂R(k) = 3

4π
(

R
√

2π
)3

∫ 2π

0
dφ

∫ π

0
sin θdθ

∫

R

θ(R − r)r2e−ikr cos θdr

= 6π

4π
(

R
√

2π
)3

∫ R

0
r2dr

∫ π

0
e−ikr cos θ sin θdθ

= 3

2
(

R
√

2π
)3

∫ R

0
r2dr

∫ 1

−1
eikrudu

= 3

2
(

R
√

2π
)3

∫ R

0

2r

k
sin krdr

where we used a change of coordinates u = cos θ .The last integral can be easing
evaluated using integration by parts:

∫ R

0
r sin krdr =

[r

k
cos kr

]0

R
+ 1

k

∫ R

0
cos krdr = − R cos k R

k
+ sin k R

k2 .

Putting it all together we obtain an analytic expression for χ̂R

χ̂R(k) = 3
(√

2π
)3

(

−cos k R

k2 R2 +
sin k R

k3 R3

)

(30.5)

which allows us to compute χ̂R to machine precision by evaluating it at the Fourier
grid cell centers ki . In fact, χ̂R need not be precomputed or stored: each χ̂R = χ̂R(k j )

can be computed on the fly while evaluating the inner product with ρ̂ using only j ,
h (grid cell size) and R, effectively halving the required bandwidth to the memory.
An evaluation of (30.3) by discretizing (30.4) can be viewed as spectral quadrature
of (30.1).
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Fig. 30.7 Algorithm refor-
mulation to improve accuracy
at the expense of arithmetic
complexity, offsetting the lat-
ter by better accelerability

We can think of the Fourier transform as a software accelerator that speeds up
the actual performance of the averaging algorithm (30.4). Here is the general scheme

we want to apply to the general averaging procedure: replace algorithm of low
accuracy but also low computational complexity and low amenability to acceleration,

with algorithm of higher accuracy, but possibly higher complexity, which is offset
by accelerating the algorithm using software or hardware (see Fig. 30.7).

30.3.2 General Averaging by Spectral Quadrature

In the convolution case Fourier methods were used to both improve the accuracy of
the quadrature, and to enable a software acceleration method of the matrix-vector
product. Passing to the Fourier space and using a discretization of the analytic Fourier
transform of χ̂R pushed the accuracy essentially to its natural limit, but replaced a
sparse and local (relative to the grid) matrix calculation (30.3) with a dense and global
calculation—the Fourier transform. Unlike grid refinement for example, the Fourier-
based “densification” has a regular computational structure that could be exploited by
the accelerator—the FFT algorithm. In the general averaging case something similar
happens: a dense spectral quadrature calculation replaces (30.3), but, since it does
not have enough regularity, FFT cannot be used. Still, enough regularity exists in the
computation that it can be effectively accelerated by hardware—GPU.

In order to derive the spectral quadrature in the general case we no longer appeal
to the convolution theorem, but, rather, to more a pair of more basic results: (1) the
L2-isometry property of the Fourier transform, and (2) the multiplicative action of
the shift on the Fourier image.2 The first result is more fundamental and states that
the L2 inner product of two functions is equal to the L2 inner product of their Fourier
images. Using the second equality in Eq. (30.1) we then obtain

ρ =
∫

ρ( y)χ x
Rx
( y) =

∫

χ̂ x
Rx
(k)ρ̂(k). (30.6)

This is the essence of spectral quadrature.

2 The convolution theorem can be derived from these two results.
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The second result allows us to reduce the calculation of χ̂ x
Rx

to that of χR as
follows:

χ̂ x
Rx
(k) = 1

(2π)
3
2

∫

χ x
Rx
( y)e−i k· ydy = 1

(2π)
3
2

∫

χRx (x − y)e−i k· ydy

= ei k·x

(2π)
3
2

∫

χRx ( y)e−i k· ydy = ei x·k

(2π)
3
2

χ̂Rx , (30.7)

where χ̂Rx has form (30.5), since that expression is insensitive to the dependence of
R on x. Putting together a discrete version of (30.6) now we obtain

ρi =
∑

j

ei xi ·k j

(2π)
3
2

χ̂Ri (k j )ρ̂ j , or ρ = Lρ̂, (30.8)

where matrix L has elements Lij = ei xi ·k j

(2π)
3
2
χ̂Ri (k j ), ρ̂ = Fρ and F is the matrix of

the discrete Fourier transform operator with the elements Fij = ei xi ·k j

(2π)
3
2

.

How does this compare to the case Rx = R ≡ const? In this case R = Ri

and equation (30.8) can be factored using a diagonal matrix K̂ with the elements
K̂ij = δijχ̂R(k j ):

ρ = FT K̂ ρ̂ = FT K̂Fρ. (30.9)

This is a discrete version of the convolution theorem, as expected. Since K̂ is diago-
nal, it is cheap to apply—O(N ), while F and FT have enough structure to make their
application relatively fast using the FFT algorithm—O(N log N ). When Ri 
≡ const
such a factorization is impossible and the combined matrix L is dense and has no
particular structure to enable a fast matrix-vector product algorithm. This matrix,
however, can be apply in the matrix-free manner since all of its matrix elements can
be computed on the fly using only O(N ) data R = (Ri ), significantly reducing the
memory bandwidth requirement. Furthermore, for the total memory access require-
ment in Eq. (30.8), which is O(N ) both for R and ρ̂, we have O(N 2) flops, as in any
dense matrix-vector product. Finally, each inner product between ρ̂ and a row of L
can be efficiently parallelized on a GPU.

30.4 CUDA Spectral Quadrature

In this section we present a method for evaluating (30.8) on GPU that can be easily
implemented in CUDA. The main bottleneck in computing (30.8) from ρ is in the
application of L, since, as mentioned above, ρ̂ can be obtained in O(N log N ) using
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CUDAFFT (http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/
CUFFT_Library_3.1.pdf). While (30.8) increases the complexity to O(N 2), this is
essentially unavoidable for accuracy reasons. The question now is how to best uti-
lize the GPU hardware to offset this increase in complexity (see Fig. 30.7); in other
words, how can we increase the accelerability of the algorithm. We first present the
algorithm, and then illustrate its speedup by comparing a GPU calculation to a CPU
calculation.

30.4.1 Algorithm

The algorithm we present is reminiscent of the standard CUDA parallelization of
the matrix-matrix product. In particular, it achieves a similar reuse of the local data.
We use a simple, yet generic illustration in Fig. 30.8. The complete algorithm starts
with ρ and R in the CPU memory, and ends up with ρ in the CPU memory. The
Fourier space density ρ̂ is computed first. It can be done on the CPU using any of the
standard FFT implementations and transferred to the GPU, or the transform itself
can be done on the GPU, leaving ρ̂ in the GPU’s main memory; R is transferred to
the GPU main memory in either case. We now discuss the core part of the algorithm
corresponding to Eq. (30.8)—the calculation of ρ from ρ̂ and R on the GPU.

Using shared memory. The averaged density ρ is computed one block ρs at a
time; the whole GPU participates in computing ρs . The calculation is carried out by
an array of B thread blocks running concurrently on the GPU. On an NVIDIA GPU,
each thread block runs on a single streaming multiprocessor (SM), which consists
of a number (e.g., 8) of streaming processors (SP) illustrated by yellow squares in
Fig. 30.8. The typical number of threads per block is 32. Each SM has fast but small
local shared memory (shmem in Fig. 30.8), which can be accessed within about a
single clock cycle by all of the threads within the block. The strategy is to minimize
the number of accesses to the global GPU memory and keep most of the threads busy
with the data in shmem. Since the calculation of ρs requires the averaging radii Rs

supported on the same grid block s, each thread block loads Rs into its own shmem
(the gray rectangles inside shmem in Fig. 30.8). The reading is done concurrently
by all of the threads (Fig. 30.8 indicates the thread responsible for producing the
corresponding shmem value—by loading from global memory or via a calculation).

Subdomain calculation. Once Rs is in shmem, ρs can be computed. Each ρ̂ j

contributes to each ρsi
, si ∈ s, but this calculation—the sum on j in Eq. (30.8)—will

be broken up into partial sums with j varying over small subdomains a, b, c, d, . . .
of the Fourier grid. The subdomains are made small enough to fit into a single thread
block’s shmem and distributed to the thread blocks in a round robin fashion (colored
rectangles inside shmem in Fig. 30.8). Each thread t of the thread block owning
a calculates the contribution from ρ̂a to a single ρst

by carrying out the sum in

Eq. (30.8) for j ∈ a. Observe that the matrix elements χ̂
xst
Rst
(k j ) = ei xst ·k j

(2π)
3
2
χ̂Rst

(k j )

never need to be stored, but can be calculated on the fly, once by each thread t from

http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/CUFFT_Library_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/CUFFT_Library_3.1.pdf
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Fig. 30.8 Illustration of the averaging algorithm on a 3D domain. Arrows denote data flow,
colors label different GPU thread blocks (t1 . . . t32), with 32 typically being the largest number
of simultaneously running threads per SM that the hardware can support
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Fig. 30.9 Illustration of the data and work decomposition of the matrix form of quadrature
(Eq. (30.8)). Filled circles represent grid points, unfilled circles represent padding to complete
the thread blocks

st , Rst and j . Thus, the block achieves about β|a| flops per |a| + |s| loads from
memory. The prefactor β is the cost of calculating each matrix element χ̂

xst
Rst
(k j ),

which can be significant, since each such calculation involves evaluation of trigono-
metric functions (see Eqs. (30.5, 30.7)). Most importantly, these calculations can be
performed concurrently by the hundreds of available SPs. The result is B partial sum
contributions to ρs : ρs,a, ρs,b, ρs,c, ρs,d , . . . .

Reduction and accumulation. The partial sums must be added to ρs , which is
initially 0. This operation of an array summation is known as a reduction and is
well-documented along with several of its GPU implementations (see, e.g., http://
developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc
/reduction.pdf). The reduction is carried out by a different set of thread blocks.
For that the partial sums are copied from shmem to the GPU global memory (brown
cubes in Fig. 30.8). Then a separate GPU calculation is carried out to sum up the
partial sums down to a single block ρ̃s . Notation ρ̃s refers to the fact that the result of
this reduction is not necessarily all of ρs , but only the contribution from the B blocks
a, b, c, d, . . . processed in one iteration. This contribution is added to ρ in GPUs
global memory, and the process repeated with the same real space grid block s until
all of Fourier space grid blocks have been processed and, thus, all of ρs has been
computed. After that the calculation moves on to other real space blocks t, u, v, . . . ,
until the whole real space grid has been covered.

Before concluding the description of the algorithm, we briefly illustrate its matrix
interpretation in Fig. 30.9. In effect, the columns of matrix L are partitioned and dis-
tributed to different thread blocks—corresponding to the partitioning of the Fourier
space grid into subdomains a, b, c, d, . . . .These columns are applied to small blocks
of row values ρ̂ corresponding to the real space grid subdomains s, t, u, v, . . . . The
partial output vectors ρs,a, ρs,b, ρs,c, ρs,d , . . . correspondingto the application of
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the column blocks to ρ̂ are summed up to produce ρs . Finally, the values of the
partitioned matrix are never stored by are computed on the fly from the element
indices (i, j) and the averaging radius values Ri .

30.5 Results and Discussion

To test our algorithm we draw on a previously mentioned problem from physical
chemistry—the calculation of the screened density of ions in a solution (Gillespie
et al. 2002). A numerical approach to this problem was developed in Knepley et al.
(2010), in which the authors discovered that a repeated application of the averaging
operator is the main bottleneck in the calculation of the equilibrium ionic density ρ.
In that algorithm the averaged density ρ is used as an important, but intermediate
calculation in a large iterative solution loop. Certain approximations to ρ turn out
to be permissible, while maintaining the convergence rate of the iterative procedure.
Other approximations, however, badly reduce the convergence rate. In particular,
approximating screening balls with cubes (e.g., Fig. 30.4 (left)) is not allowed, but
it is permissible to carry out the averaging procedure in single precision, while the
rest of the calculation is done in double precision.

Since the timing of the algorithm depends only on the size of the domain and is
completely independent of the numerical values of ρ or R, we carry out our tests on
the case of constant R. We carry out the same summation corresponding to Eq. (30.8)
on the GPU using the developed algorithm (in single precision), and on the CPU (in
double precision). The total number of grid points in our test is N = 323.

For the test we used a computer with a Intel Core 2 Duo E8400 3.0 GHz CPU and
4 GB of RAM. The GPU was an NVIDIA GTX285 (http://www.nvidia.com/object/
product_geforce_gtx_285_us.html) with 1 GB of global memory and 240 SP cores
organized into SMs of 8 cores with 16k of shared memory between them.

The GPU implementation of the averaging algorithm was done using
NVIDIA’s CUDA programming environment. In particular, we used PyCuda (http://
mathema.tician.de/software/pycuda), a Python wrapper for the CUDA language
(http://developer.nvidia.com/cuda-gpus) that has a large number of built-in utilities
for basic operations and program setup, allowing for easy prototyping of the algo-
rithm. The reference CPU implementation of the averaging algorithm was written
using the PETSc numerical linear algebra library (http://www.mcs.anl.gov/petsc).

To demonstrate the effectiveness of our approach to averaging on GPU we car-
ried out a simple numerical study on cubic grids of varying size N = n3, where
n is the number of grid points in one dimension. The results are summarized in
Table 30.1. The CUDA implementations show a speedup in excess of 300× over the
CPU implementation for our test cases. In fact, CPU runtime was so prohibitively
slow for n = 64, 80, 96 that the calculation was aborted (indicated by — in the table).
Still, a 300× speedup is somewhat nonintuitive, as the number of SP cores is 240,
suggesting a 240× speedup possible at the most. Recall, however, that the GPU com-
putation is done in single precision, affording a further 2× to 4×-fold speedup over
the CPU calculation. With the more recent NVIDIA GPUs more double-precision

http://www.nvidia.com/object/product_geforce_gtx_285_us.html
http://www.nvidia.com/object/product_geforce_gtx_285_us.html
http://mathema.tician.de/software/pycuda
http://mathema.tician.de/software/pycuda
http://developer.nvidia.com/cuda-gpus
http://www.mcs.anl.gov/petsc
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Table 30.1 Runtime results of the averaging algorithm

n N = n3 GPU (s) CPU (s)

16 4096 0.1 6.3
32 32768 1.5 448.4
48 110592 14.9 4481.7
64 262144 76.2 —
80 512000 297.2 —
96 884736 870.3 —

Here n is the linear of the cubic computational grid, and N = n3 is total number of grid points

units are available per SM, so that the same calculation can be carried out on the
GPU in double precision. We do not expect that this modification would alter the
results significantly.

How far is our algorithm from the full utilization of the GPU hardware? Using a
benchmark calculation we estimated that the evaluation of the trigonometric functions
sin() and cos() takes about 24 floating point operations (flops) on the GPU we used.
This is the main component of the core averaging algorithm described in the previous
section. From this and the clock speed of NVIDIA GTX285 we estimate that the
averaging algorithm achieves a rate of about 124 Gigaflop/s (GF/s), while the GPU
card has a theoretical peak (neglecting the special function unit) of approximately
660 GF.

Clearly, there is room for improvement for our averaging algorithm. Even so,
we show that by reformulating the problem in a way that simultaneously increases
accuracy and accelerability (Fig. 30.7), we can beat the increased computational
complexity of the algorithm. In fact, any sufficiently accurate algorithm would have
computational complexity comparable to our parallel algorithm—a manifestation of
the well-known dictum that the best parallel algorithm is also a best serial algorithm.
From all of the equally best serial algorithms (consider, for example, an equally
accurate and expensive refinement algorithm in Fig. 30.4) however, we must select
the one that affords the most concurrency and, therefore, the most accelerability by
GPU hardware.

Using the massive parallelism available on commodity GPU hardware, we were
able to accelerate the averaging calculation by more than 300×. In particular, for the
biological problem in (Knepley et al. 2010) this results in the acceleration of a key
component in the simulation of biological ion channels, making possible simulations
of realistic channels that were previously out of reach.
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Chapter 31
Accelerating Swarm Intelligence Algorithms
with GPU-Computing

Robin M. Weiss

Abstract Swarm intelligence describes the ability of groups of social animals and
insects to exhibit highly organized and complex problem-solving behaviors that allow
the group as a whole to accomplish tasks which are beyond the capabilities of any
individual. This phenomenon found in nature is the inspiration for swarm intelligence
algorithms—systems that utilize the emergent patterns found in natural swarms to
solve computational problems. In this paper, we will show that due to their implicitly
parallel structure, swarm intelligence algorithms of all sorts can benefit from GPU-
based implementations. To this end, we present the ClusterFlockGPU algorithm, a
swarm intelligence data mining algorithm for partitional cluster analysis based on the
flocking behaviors of birds and implemented with CUDA. Our results indicate that
ClusterFlockGPU is competitive with other swarm intelligence and traditional clus-
tering methods. Furthermore, the algorithm exhibits a nearly linear time complexity
with respect to the number of data points being analyzed and running time is not
affected by the dimensionality of the data being clustered, thus making it well-suited
for high-dimensional data sets. With the GPU-based implementation adopted here,
we find that ClusterFlockGPU is up to 55x times faster than a sequential implemen-
tation and its time complexity is significantly reduced to nearly O(n).
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31.1 Introduction

Swarm intelligence describes the phenomenon of self-organization that emerges in
groups of decentralized agents. In nature, swarm behavior allows colonies of ants to
efficiently locate and gather food, flocks of birds to coordinate their movements and
herds to evade predators. These highly organized global-behaviors exhibited by the
group as a whole emerge from the actions of individuals (local-behaviors) and direct
and indirect communication between swarm members. So-called swarm intelligence
algorithms use virtual swarms to reproduce these swarm behaviors with the goal of
solving computational problems.

In the past decade, the field of swarm intelligence has become a hot topic in the
areas of computer science, collective intelligence, and robotics. Swarm intelligence
algorithms based on the behaviors of ant colonies have been shown to be able to
tackle a wide range of hard optimization problems including the Traveling Salesman,
Quadratic Assignment, and Network Routing Problems (Dorigo and Caro 1999;
Dorigo and Stützle 1999, 2004). Bird-flocking algorithms have been successfully
applied in the areas of computer graphics, data mining, and distributed vehicle control
(Veenhuis and Köppen 2006; Olfati-Saber 2004).

There have been a number of publications regarding the application of swarm
intelligence to data mining problems. These algorithms have been shown to pro-
duce results that are competitive with traditional techniques (Palathingal et al. 2005;
Parpinelli et al. 2001; Merwe and Engelbrecht 2003; Cui and Potok 2006; Zhang et
al. 2011), and some even provide useful features not found in other methods (Grosan
et al. 2006; Charles et al. 2007). We have found that with the exception of Charles
et al. (2007) and Zhang et al. (2011), none of these algorithms have multi-threaded
let alone GPU-based implementations.

Swarm intelligence systems are characterized by groups of independent agents
collectively working to solve some problem and, as such, contain a large amount of
implicit parallelism which we believe is a good match for the GPU computing model.
To demonstrate, we present our ClusterFlockGPU algorithm, a GPU-based flocking
algorithm for partitional cluster analysis. The goal of partitional cluster analysis is
to partition a collection of data points into “clusters” where data points in one cluster
exhibit maximal similarity to data points in that cluster, while exhibiting minimal
similarity to data points in every other cluster.

The ClusterFlockGPU algorithm is a synthesis of the flock-based MSF and DSC
clustering algorithms proposed in Cui and Potok (2006) and Veenhuis and Köppen
(2006), respectively. These algorithms all capitalize on the “birds of a feather flock
together” effect to achieve a partitional clustering of data points. In ClusterFlockGPU,
a flock of boids is generated where each boid represents a single data point from the
input data set. The natural flocking behaviors of the boids eventually lead to the
formation of sub-flocks where boids in a given sub-flock are similar to one another,
and dissimilar to those in all other sub-flocks. Then, by using a reverse look up to
map each boid back to the data point it represents, the clusters in the data set can be
identified.
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The primary advantage of a flock-based approach to partitional clustering is that
the number of clusters does not need to be known at runtime (a major limitation
of the k-means and other algorithms). With flock-based clustering, the number of
clusters simply appears from the interactions of the flock agents. Additionally, we
show that the ClusterFlockGPU algorithm is not affected by the dimensionality of
the data being analyzed making it well suited for high-dimensional data sets.

The focus of this paper is solely a GPU-based approach for bird flocking algo-
rithms. However, we wish to underscore that the GPU architecture is well-suited for
swarm intelligence algorithms of all sorts. For an in-depth analysis of a GPU-based
ant colony algorithm for rule-based classification, the reader is referred to Weiss
(2011).

31.2 Flock Algorithms

The term “flock algorithm” refers to any algorithm that models the collective behav-
iors exhibited by flocks of birds, schools of fish, or herds of animals in nature. The
basis for nearly all flock algorithms is derived from the work of Craig Reynolds and
his seminal work “Flocks, Herds, and Schools: A Distributed Behavioral Model”
(Reynolds 1987). In Reynolds (1987), Reynolds proposes that the global behaviors
of a flock of birds can be achieved in a virtual environment by having each bird agent
(or “boid”) adhere to three rules as it flies. These are:

1. Collision Avoidance: Boids steer away from any nearby boid that is within some
threshold distance.

2. Velocity Matching: Boids modify their velocities to match the average velocity
of their k-nearest flockmates.

3. Flock Centering: Boids steer toward the centroid of their k-nearest flockmates.

Reynolds shows that by repeatedly applying these three flocking rules to each boid
in the flock, a realistic flocking behavior of the swarm as a whole can be achieved.
The overall flocking algorithm can be summarized as follows:

Listing 1: Pseudocode of the generalized flocking algorithm

In the above algorithm, c1, c2 and c3 are constants that weight the relative
influence of the three components of each boids’ velocity updating. Although not
depicted above, also note that in most implementations the magnitude of each boids’
velocity is limited to some maximum to prevent chaotic and out-of-control behavior.
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31.3 Swarm Intelligence and GPU Computing

This project proposes that swarm intelligence systems are well-suited for implemen-
tation on GPU devices. With a sequential implementation, the population of a swarm
has a direct and often very large impact on overall running time as each swarm agent’s
“thought process” occurs one after the next on the CPU. This makes algorithms that
require very large populations of swarm agents unacceptable due to the associated
complexity. We propose that the massive multi-threading capabilities of GPU devices
can be used to achieve much larger populations of swarm agents without severely
degrading running time.

There is clearly a large amount of implicit parallelism in the algorithm from
Listing 1. In particular, all N boid agents must complete the same calculations in each
iteration based on the characteristics of their neighbors (as dictated by Reynold’s
flocking rules). Because of this, we can easily fit this algorithm into the SPMD
execution pattern of CUDA.

A straightforward way of parallelizing the algorithm from Listing 1 is to allocate
one GPU thread for each of the N agents. This allows us to unroll the for-loop
and significantly “flatten” the algorithm. In such an implementation, each agent
concurrently calculates it’s flocking rules and updates its velocity and position. With
this approach the complexity of the flock algorithm is significantly reduced.

Furthermore, because all boid agents in flock algorithms operate on local data
(the properties of the boids in each boid’s local neighborhood), an intelligent nearest-
neighbor algorithm can be used to reduce the number of boids that each boid must
consider in each iteration of the algorithm. As noted in CUDA documentation, mem-
ory latency is often the largest bottleneck with GPU-based algorithms. Since each
boid only needs to consider it neighbors, the impact of the long-latency DRAM
memory operations on the GPU can be mitigated.

31.4 ClusterFlockGPU

ClusterFlockGPU is a synthesis of the MSF and DSC algorithms presented in Cui
and Potok (2006) and Veenhuis and Köppen (2006). Like these methods, the Cluster-
FlockGPU algorithm introduces the notion of similarity into Reynolds’ algorithm to
achieve a partitional clustering effect. With each boid representing a data point from
the input data set, we repeatedly apply the following rules to determine the motion
of each boid in a 2-dimensional virtual environment:

1. Avoidance: Each boid attempts to move away from the most dissimilar boid in
its vicinity with the magnitude of this force proportional to how dissimilar the
boids are.

2. Velocity Matching: Each boid modifies its velocity to match the velocity of the
boid which it is most similar to.
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(a) (b) (c)

Fig. 31.1 The three flocking rules each boid adheres to as it moves. a Shows the avoidance force,
b the alignment force, and c the flock centering force

3. Flock Centering: Each boid moves toward the centroid of its k most similar other
boids with a force proportional to the similarity between the boid and the most
similar boid of the k most similar other boids in its neighborhood.

In Fig. 31.1 we show how a given boid (the large boid in the center of each
sub-figure) will update its velocity based on these rules and the characteristics of
its neighbors. The black vectors emanating from each boid shows that boid’s cur-
rent velocity. The green vector emanating from the large boid shows the vector
which satisfies the given flocking rule. Keep in mind that each boid will calcu-
late these three flocking rules for itself and based on its own and its neighbors
characteristics.

The ClusterFlockGPU algorithm works by first generating a population of boids,
each representing one of the input data points. The input data itself is loaded into
the GPU and based on the data, a similarity value between each pair of boids is
calculated via the application of some similarity metric. ClusterFlockGPU is com-
patible with any similarity metric sim(boidA, boidB) given that sim produces
a real-valued result in the range [0,1] where 0 signifies the data points represented
by boidA and boidB are completely opposite, and 1 indicates boidA is identical
to boidB.

The similarity values between all boids are computed in the very first stage of the
algorithm and are based on the data points that each boid represents. Because the
later stages of the algorithm depend only on this similarity value and not on the data
that was used to calculate it, the dimensionality of data being clustered has no impact
on the bulk of the algorithm. Furthermore, after pair-wise similarity is computed, the
data itself can be unloaded from GPU memory as only the similarity values need be
referenced.

For some predefined number of iterations, the flocking rules presented above are
applied to each boid. When the number of completed iterations is greater than the
parameter � (usually set to 30 % of the maximum number of iterations), the envi-
ronment of the boids is shrunk by 2 % each iteration until the environment is just
2 % larger in the x- and y-directions than the threshold distance which defines the
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boids’ local neighborhood. In this way, nearly all of the boids are brought into the
immediate neighborhoods of each other. This facilitates a more complete intermix-
ing of sub-flocks and helps prevent the situation where multiple clusters of what
should be the same one form by forcing more boids into each others’ immediate
neighborhood.

When the maximum number of iterations has been reached, boids will have sep-
arated into discernible sub-flocks which can be interpreted as clusters. We then use
a simple agglomerative algorithm to extract cluster membership from the positions
of boids in their virtual environment.

Starting with a randomly chosen boid not assigned to a cluster, a new cluster
label, Ci is created and all boids whose euclidean distance from the selected boid is
less than some threshold distance, Tc, are grouped into Ci . This process continues
by randomly selecting another unassigned boid and grouping all boids within the
threshold distance into Ci+1, and so on.

There is an obvious weakness in this grouping strategy as the situation can arise
where depending on which boid is selected as the “center” boid, clusters may be
split into multiple clusters, or boids which belong in one cluster are grouped with
another. Figure 31.2 shows how this situation can occur. Notice that two of the boids
which should be grouped in cluster 1 have been grouped into cluster 2. Because the
selection of “center” boids in the cluster extraction scheme is random, this erroneous
situation is both possible and unpredictable. An improved cluster extraction method
would benefit the ClutserFlockGPU algorithm and represents a distinct area for
improvement.

Fig. 31.2 Erroneous cluster extraction due to random “center” boid selection. Boids from cluster
1 are grouped with cluster 2
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Fig. 31.3 Control flow of the ClusterFlockGPU algorithm

Listing 2 gives a pseudocode overview of the GPU implementation of the Clus-
terFlockGPU algorithm. We use the notation (C/G—threadCount) to indicate where
the step takes place (CPU or GPU) and how many concurrent threads are used.
Figure 31.3 depicts the control flow of ClusterFlockGPU diagrammatically.
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31.5 Implementation Notes

The overall implementation strategy for ClusterFlockGPU is very straightforward.
We use an array of boid structs to hold the data associated with each boid in
the flock as shown below.

Since the relevant characteristics of each boid are its position and velocity in the
x- and y-directions, each boid struct can be neatly aligned to 16-byte boundaries in
global memory. This allows for efficient access to these data structures from global
memory where they must be stored. The array of boid structs is initialized by the
CPU and copied to the GPU in the first step of the algorithm.

The similarity value between each boid is calculated by a single kernel function,
computeSimMat, which is called once before the main loop of the algorithm is
entered. A __device__ function getSimilarity is used to apply a similarity
metric based on the data represented by each boid.
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Following this step, two GPU kernels, getDisSim and stepTime, are repeat-
edly called in each iteration to advance positions of the boids in the flock.
getDisSim conducts an all-to-all calculation between all boids to determine
which boids are in each’s neighborhood and which of them is the most dissimilar.
The methods calcMatching, calcCentering, and calcAvoidance in
stepTime are __device__ functions and implement each of the above detailed
flocking rules.

31.6 Results and Analysis

We begin our analysis of the performance of ClusterFlockGPU by assessing its
running time on data sets of varying sizes and dimensionality. To this end, we run the
algorithm on differently sized synthetic data sets of randomly generated data points.
Running ClusterFlockGPU on these random data sets serves two purposes. First, it
allows us to generate data sets of arbitrary size such that we can compare the effect
of both data count and dimensionality on performance. Second, if the algorithm is
performing a true clustering, no distinct clusters should emerge from the random
data as we assume no strong groupings of data points to be present. Our results for
this experiment are shown in Fig. 31.4a, b.
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(a) (b)

Fig. 31.4 Performance analysis of the ClusterFlockGPU algorithm. Graph a illustrates the impact
of data size on overall running time. Graph b shows the effect of dimensionality on overall running
time

The test platform used for the results given below is a was a desktop PC equipped
with a 2.4 GHz Intel Core 2 Quad processor and 3 GB of DDR3 memory. The GPU
device used was an NVIDIA Tesla C1060.

We see in Fig. 31.4a that the running time of the ClusterFlockGPU algorithm
scales in a nearly linear fashion with the size of the input data set. A profile of the
algorithm reveals that running time is dominated by the time spent identifying the
nearest neighbors of each boid as needed for calculating the avoidance force. This
step is completed by having every boid calculate its distance to every other boid and
those within some threshold distance are taken to be “nearby.”

The neighbor detection step has complexity O(n2) when performed sequentially
but is carried out in roughly linear time in our implementation because we use
n concurrent threads. This is an admittedly naive implementation strategy and a
more intelligent nearest-neighbor detection method that does not require this type of
all-to-all comparison approach would benefit the ClusterFlockGPU algorithm greatly.

Figure 31.4b shows that running time for ClusterFlockGPU is constant with
respect to dimensionality. The reason for this is that after the pair-wise similarity
values are computed in the early phase of the algorithm, the input data set is dis-
carded. Therefore, the dimensionality of the input data set has no bearing on the later
stages of the algorithm as only these similarity values are used later on.

To assess the speedup achieved by this GPU-based implementation, we created a
sequential CPU-based version of ClusterFlockGPU and ran it on the same machine
used to test our GPU version. Once again we use randomly generated 8-dimensional
data sets for testing purposes. Timing data gathered from the CPU-based version
along with the GPU-implementation is given in Fig. 31.5a, b.

We find a marked improvement in running time of the GPU version over the CPU
implementation. Figure 31.6 shows the speedup achieved by the GPU implementation
for varying sized data sets. The speedup begins to decrease the datasets increase
in size. While we have not conducted an extensive study into the cause of this
slowing behavior, we hypothesize that this is being caused by the latency in accessing
the global memory locations where the boids’ positions and velocities are being
stored. As the number of boids increases, as does the number of required memory
transactions and thus greater latency is introduced.
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(a) (b)

Fig. 31.5 Timing comparison of GPU and CPU implementations of ClusterFlockGPU

Fig. 31.6 The speedup with respect to data set size of the GPU-based implementation of
ClusterFlockGPU over the CPU implementation

Fig. 31.7 The number of clusters found by ClusterFlockGPU in synthetic data sets of randomly
generated 8-dimensional data

Figure 31.7 shows the number of clusters that are formed when ClusterFlockGPU
is run on random synthetic data sets of varying size. We find that the number of
clusters is large in each instance showing that no strong clusters are found in the data
sets which indicates false clusters are not being found.

To compare the performance of ClusterFlockGPU to other partitional clustering
algorithms we use the F-Measure, a commonly used measure of accuracy in the
machine learning and information retrieval literature. Because ClusterFlockGPU is
a stochastic algorithm, results can vary from run to run. For this reason, the values
presented in Figs. 31.8 and 31.9 are averages over 10 independent runs on the given
data set. Comparison values for the swarm intelligence based PSO, Ant-Based, and
DSC clustering algorithms are taken from Merwe and Engelbrecht (2003), Handl
et al. (2003), and Veenhuis and Köppen (2006) respectively. Results for k-means
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Fig. 31.8 Comparison of F-Measure for the Iris data set with various clustering methods. Com-
parison data is taken from Merwe and Engelbrecht (2003), Handl et al. (2003), and Veenhuis and
Köppen (2006)

Fig. 31.9 Comparison of F-Measure for the WBC data set with various clustering methods. Com-
parison data is taken from Merwe and Engelbrecht (2003), Handl et al. (2003), and Veenhuis and
Köppen (2006)

were generated with the WEKA software package. Because Merwe and Engelbrecht
(2003), Handl et al. (2003), and Veenhuis and Köppen (2006) all provide results
for the performance of their respective algorithms on the Iris and Wisconsin Breast
Cancer (WBC) data sets, these are the data sets adopted for testing here. Both data
sets were downloaded from the UCI Machine Learning Repository (Irvine 2010).

ClusterFlockGPU proves to be a very competitive method for clustering the Iris
data set. We see however that on the WBC data set, the ClusterFlockGPU suffers
from the same weakness that the DSC algorithm has, namely that too many clusters
are formed. Also, we note that the performance of both ClusterFlockGPU and DSC
is poor for the WBC data set. The reason for this is unknown but we posit that there
is some characteristic of the “shape” of the WBC data set that makes it poorly suited
for flock-based clustering.

31.7 Conclusion

In this work we explored the features of swarm intelligence systems that make them
well-suited for GPU-based computing and presented our ClusterFlockGPU algorithm
for partitional cluster analysis. The ClusterFlockGPU algorithm is able to produce
slightly better results than the DSC algorithm on which it is based and achieves
a nearly linear time complexity. Furthermore, we show that the algorithm is not
affected by the dimensionality of the data being clustered making is well-suited for
high-dimensional data sets.
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The prospect of using GPU devices as the compute platform for swarm intelligence
applications is indeed quite promising. By utilizing the massive multi-threading
capabilities of GPU devices, swarm intelligence algorithms can feasibly achieve very
large populations of agents. This aspect is particularly important for particle swarm
and ant-colony swarm intelligence systems as these algorithms require a large number
of explorations of solution space (and an equally large number of swarm agents) to
achieve good results. With GPU-based implementations, ant-colony systems can
support significantly larger ant populations and can theoretically achieve greater
accuracy while also decreasing running time. An examination of the GPU-based
approach to ant-colony optimization algorithms is provided in Weiss (2011).

Finally, we would like to point out that by allocating one or more threads per
agent in a swarm intelligence system leads to an implementation that can more
accurately reproduce the asynchronous nature of the systems which are the inspiration
for swarm algorithms. The implications of being able to very accurately simulate large
distributed and self-organizing systems are far reaching and deserving of further
study.
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Chapter 32
Asynchronous Parallel Logic Simulation
on Modern Graphics Processors

Yangdong Deng, Yuhao Zhu and Wang Bo

Logic simulation has become the bottleneck of today’s integrated circuit (IC) design
projects (Rashinkar et al. 2000). For instance, over 80 % of the IC design turn-around
time of NVIDIA is spent on logic simulation even with NVIDIA’s proprietary super-
computing facility (Huang 2010). It is thus essential to develop parallel simulation
solutions to maintain the momentum of increasing IC integration capacity. Inspired
by the supreme parallel computing power of modern GPUs (Blythe 2008), in this
chapter we reported our recent work on using GPU to accelerate the time-consuming
IC verification process by developing a massively parallel gate-level logical simula-
tor. To the best of authors’ knowledge, this work is the first one to leverage the power
of the modern GPUs to successfully unleash the massive parallelism of a conserva-
tive discrete event driven algorithm, CMB algorithm (Chandy and Misra 1979, 1981;
Chandy et al. 1979). Based on a novel data-parallel algorithmic mapping strategy,
both the data structure and processing flow of the CMB protocol are re-designed
to better exploit the potential of modern GPUs. A dynamic memory management
mechanism is developed to efficiently utilize the relatively limited GPU memory
resource. Experimental results prove that our GPU based simulator outperforms a
CPU baseline event-driven simulator by a factor of 47.4X on average. This work
demonstrates that the CMB algorithm can be efficiently and effectively deployed on
GPUs without the performance overhead that had hindered its successful applications
on previous parallel architectures.
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32.1 Introduction

After almost 40 years’ development, integrated circuits already become the most
complex machines that people have made. However, we still see a strong drive for
increasing integration capacity. One example is the recently released NVIDIA graph-
ics processing units (GPUs), Fermi, which consist of 3 billion transistors. In fact, the
pace at which GPU integration complexity increases is even higher than that predicted
by the Moore’s Law (Huang 2010). Since today IC architects depend on electronic
design automation (EDA) tools, an essential requirement for EDA tools is to pro-
vide a scalable computing throughput so that we can maintain the momentum of IC
functionality increasing.

Meanwhile, designing a cutting-edge IC is a time-consuming and thus costly
process. A typical IC design project at the 45 nm technology node would cost around
$20–50 M. Such a prohibitive cost implies that a first-silicon-success, i.e., a working
IC after the first tape-out, is crucial for IC design companies, for most companies
could afford a re-spin of the IC development project. To guarantee a first-silicon-
success, IC designers have to perform intensive verification computations to validate
if a design implementation correctly captures the design intention. In other words,
IC verification engineers want to achieve a higher level of design coverage, although
an exhaustive verification is already impractical.

With the above two factors combined together, verification has become the bottle-
neck of today’s IC design process. Among various verification tools, logic simulation
is the fundamental and indispensible means to evaluate various design options and
verify the correctness of IC designs. The usage model of logic simulation is extremely
simple: IC designers first construct a model of the design implementation usually in
a hardware description language like SystemC and Verilog, apply input patterns to
the primary inputs of the model, and then observe the outputs of the model. If the
outputs have the expected value at proper moments, then the design implementation
is correct (for the given input stimuli). Otherwise, there must be something wrong
and designers have to investigate what causes the mismatch. Despite the simple usage
model, logic simulation can be an extremely time-consuming process because the
number of patterns required for an exhaustive simulation is an exponential function
of the number of internal stages (i.e., number of register bits) plus the number of
input pins. Today we are not pursuing complete simulation coverage, but the number
of patterns to cover all major usage scenarios is still daunting. For instance, the gate
level simulation of NVIDIA’s Fermi GPU would take months even on NVIDIA’s pro-
prietary supercomputing facility (Huang 2010). In addition, the trend of integrating
the whole system with multi-processors into a single chip (MPSoC) makes overall
system verification even more difficult. In fact, logic simulation could take over 70 %
of the total design time in a typical SoC design and 80 % of the NRE cost (Rashinkar
et al. 2000).

A large body of research work has been devoted to accelerate the logic simulation
process (Fujimoto 2000). Besides improving the efficiency of algorithms, parallel
computing has long been widely considered as the essential solution to provide a
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scalable simulation throughput. Unfortunately, logic simulation also has been one of
the most difficult problems for parallelization due to the irregularity of problems and
the hard constraints of maintaining causal relations (Bailey et al. 1994). Today com-
mercial logic simulation tools offer multi-core CPUs and cluster based solutions by
mainly exploiting the task level parallelism. Large simulation farms could consist of
thousands of CPU nodes, which would be expensive and power hungry. Meanwhile,
the communication overhead might finally overweigh the performance improvement
through integration of more machines.

Recently graphics processing units (GPUs) are emerging as a powerful but eco-
nomical high performance computing platform (Blythe 2008). With hundreds of
small cores installed on the same chip, GPUs could sustain both a computing through-
put and a memory bandwidth that are one order of magnitude higher than those
of CPUs. On applications that can be properly mapped to the parallel computing
resources, modern GPUs can outperform CPUs by a factor of up to a few hundreds
(Blythe 2008). Motivated by the success of GPUs in many domains, several research
teams have developed simulation solutions to unleash the power of GPUs for the logic
simulation. Gulati and Khatri first presented a GPU based fault simulator, which used
an oblivious algorithm where all gates are evaluated at every simulation cycle (Gulati
and Khatri 2008). The oblivious simulation has the additional advantage of being
capable to manipulate multiple input patterns in parallel. In Chatterjee et al. (2009a),
an oblivious gate-level logic simulator was built on GPUs and achieved an average
speed-up of tenfolds. The first GPU based event-driven logic simulator was intro-
duced in Chatterjee et al. (2009b). This work utilizes a synchronous approach in
which events happen in the same time step are evaluated in parallel.

Different from previous works using synchronous simulation protocols, we pro-
pose a GPU accelerated logic simulator based on an asynchronous event-driven
algorithm, CMB algorithm, in this paper. We present a fine-grain mapping strategy
to effectively assign simulation activities to the computing elements of GPUs for a
higher level of available data level parallelism. The original CMB algorithm deploys
a priority queue to store events for every gate and such a data structure incurs signif-
icant performance penalty due to the divergent branches. We develop a distributed
data structure so that the events can be separately stored into FIFOs attached on pins.
A dynamic GPU memory management is also proposed for efficient utilization of
the relatively limited GPU memory. We also build a CPU/GPU cooperation mecha-
nism to effectively sustain the computation power of GPUs. By combing the above
techniques, we are able to achieve a speed up of 47.4X on GPUs on average. The
contributions of this paper are summarized as follows.

• To the best of the authors’ knowledge, this is the first GPU-based implementation
of CMB algorithm for logic simulation.
• A dynamic GPU memory management mechanism is proposed for GPU process-

ing. It supports dynamic memory allocation and recycling to guarantee efficient
memory usage in spite of the irregular memory patterns that is inevitable in logic
simulations. It can also be deployed in applications from other domains.
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• We re-designed GPU friendly data structures for the CMB algorithm for efficient
and effective mapping to the data parallel computing model of modern GPUs.
• We presented how the input dependency, logic depth, and type of gates can be

incorporated in the re-ordering mechanism to reduce divergent processing in the
simulation process.
• We described a closely coupled CPU and GPU simulation system in utilizing

asynchronous execution and zero copy mechanisms in CUDA with a low overhead.

The remainder of this paper is organized as follows. Section 32.2 introduces the
background of parallel logic simulation. Section 32.3 presents the basic processing
flow of our GPU based logic simulator. Various optimization techniques that are
essential for simulation throughput are outlined in Sect. 32.4. Section 32.5 presents
the experimental results and detailed analysis. Related works are review in Sect. 32.6.
In Sect. 32.7, we conclude the paper and propose future research directions.

32.2 Preliminaries

In this section, we first briefly present the algorithmic framework of parallel discrete
event-driven simulation with a focus on the CMB algorithm.

Today the event driven simulation algorithm is the workhorse of virtually all real-
world simulation engines (Fujimoto 2000). The event driven simulation algorithm is
built on the basis of the event, which is composed of both a value and a timestamp.
An event indicates that the simulation state would have a transition at the time
of timestamp. Another important notion is the physical time. Different from the
simulation time, the physical time is the time passed in the physical system that is
being simulated. The logic simulation of VLSI circuits can be naturally performed
by an event driven simulator. Generally, a logic simulator would use a global event
queue to store all pending logic transitions. The event queue can be implemented
as a priority queue so that the events are automatically chronologically ordered as
they are inserted into the queue. At every simulation cycle, a logic simulator fetches
the first event in the queue and performs evaluation according to the type of gate at
which the event happens. The evaluation may create new events, which are again
inserted into the event queue. The process is repeated until no events are available
any more.

The event driven logic simulation is a very efficient sequential algorithm. How-
ever, the parallelization of the event driven logic simulation algorithm turns out to
be challenging (Chandy and Misra 1979). In fact, it could not extract sufficient par-
allelism by simply evaluating events happened at the same timestamp (Chandy and
Misra 1979). The concept of distributed time, event driven simulation, was devel-
oped by Chandy and Misra (1979) and Bryant (1977) and designated as the CMB
algorithm. Such an approach is based on the concept of logic processes (LP). In a
parallel simulation process, different modules of a simulated system are abstracted
as logic processes. A LP maintains its local simulation time and could have several
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Fig. 32.1 The basic concept
of CMB simulation algorithm

inputs and an output. At each simulation step, a LP may receive several new events
from its inputs and generate an event at its output. The key idea of CMB algorithm is
that different LPs could independently push forward their evaluation as long as the
causal relations are not violated. Figure 32.1 is an illustration of the CMB algorithm.
In the 3-gate circuit, the gate e has a pending event at 10 ns and this fact is known to
gates f and g. Meanwhile, input pin a has an awaiting event at 9 ns, while input pin d
has one at 7 ns. Obviously, since e would not change until 10 ns, the states of f and g
would be completely determined by a and d before 10 ns. In addition, gates f and g
can be evaluated because a and d are independent. In other words, the safe evaluation
time, Tmin, of gates f and g are 10 ns. After evaluating the events of a and d, the local
time of gates f and g would be 9 and 7 ns, respectively. The CMB simulation could
run into a deadlock due to the distributed time mechanism (Chandy and Misra 1979).
The most commonly used approach to prevent deadlock is through the usage of null
events (Bryant 1977).

The parallel, distributed time simulation algorithms fall into two categories, con-
servative and optimistic. The conservative approach always selects the earliest event
to evaluate, which means that no event with a timestamp smaller than the evaluated
ones would be received in the succeeding simulation. This protocol enforces the
causal relation of the simulation. On the other hand, the optimistic approach may
process events whose timestamps may be larger than those of later events. When a
prior evaluation turns out to be incorrect, a rollback mechanism or a reverse compu-
tation will be initialized to restore the results before the incorrect evaluation. In this
paper, we adopt the conservative approach to avoid the complex flow control of the
optimistic approach that would be inefficient to implement on GPUs.

To avoid deadlock in the CMB algorithm, we adopt the commonly used technique
of null events. When a LP, A, would not generate new events (i.e., logic value remains
the same) after an evaluation, it will instead send a null event with timestamp Tnull .
When another LP, B, receives the null event, its simulation time can then proceed to
Tnull . It can be formally proved that the CMB algorithm can correctly proceed until
completion with the help of null messages (Chandy and Misra 1979).
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32.3 Asynchronous Parallel Logic Simulation

This section explains the details of our GPU-based massively parallel simulator.
First the basic simulation flow is presented. Next we show how to sustain a high
level parallelism through carefully manipulating the communication of messages.
In the section, we propose a novel technique for dynamic memory management on
GPUs and adapt issuing of input pattern according to the memory pages utilization.
They are essential to guarantee a robust and efficient simulation flow for real VLSI
designs.

32.3.1 General Framework

During the process of parallel simulation, the input circuit is converted into an inter-
nal representation, in which every gate is mapped to a logic process (LP). During
simulation, a LP receives events from their inputs, performs logic evaluations, and
then creates and sends events to outputs. In such a manner, the simulation process
proceeds like waves travel forward. In order to handle both internal and I/O signals
of a circuit in a uniform manner, every PI (primary input) is treated as a virtual gate.
The simulation flow is organized as three consecutively executed primitives, extract,
fetch, and evaluate. First, virtual gates extract pending input patterns and insert them
into their corresponding event queues. Logically these stimuli are equivalent to the
outputs of virtual gates. Next, all gates (including virtual gates) send the output events
to the queues of the pins at the succeeding level. This phase can also be regarded as
a fetch primitive from the viewpoint of an input pin. In real designs, we use fetch
rather than send to extract more parallelism, because the number of pins is much
larger than that of gates. Finally, in compliance with timing orderings, the real gates
(i.e., all gates excluding virtual gates) evaluate the inputs to generate new events and
add them into the event queues of the corresponding output pins.

Although the above three primitives exhibit sufficient parallelisms that are suit-
able for GPU implementation, two problems remain to be resolved. First, the work-
load has to be efficiently distributed to the hundred of cores installed on a graphic
processor such that the fine-grained data level parallelism can be effectively exposed.
Second, an efficient memory management mechanism is essential, because GPUs are
only backed up by a limited capacity of memory storage. To address the first prob-
lem, every pin (gate) is assigned to a single thread in the fetch (evaluate) kernel. In
the evaluate kernel, each thread actually serves as a LP. For the second problem, a
dynamic memory management mechanism is indispensable to best utilize the mem-
ory resource. Because the current CUDA releases only offer preliminary support
for flexible memory management, we designed an efficient paging mechanism for
memory allocation and recycling. To further cushion the pressure on the memory
usage, the issuing rate of input stimuli can be determined in an adaptive manner
by considering the memory occupancy. The overall GPU based simulation flow is
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Fig. 32.2 GPU based logic
simulation flow

while completion requirements not meet do

for each PI do 

if memory to allocate is enough

extract the stimuli to the PI output pins

else

issue null message the PI output pins

end for each

for each input pin do 

fetch messages from output pins

end for each

allocate memory if needed

for each gate do 

insert new events from its input pins to the event FIFOs

evaluate the earliest message in its event FIFOs

write evaluation result to the output pin

end for each

release memory if possible

end while 

outlined in Fig. 32.2. The “for each” structure indicates that the following operation
would be executed in parallel.

In Fig. 32.3, the fine-grained mapping mechanism is illustrated with a simple
example circuit consisting of three 2-input NAND gates, g0, g1, and g2. The four
primary inputs are a, b, c, and d. The input pins for a given gate gi are labeled as gi0
and gi1, where i = 0, 1, or 2. The arrows indicate where the processing happens in
each primitive. In the extract primitive, the primary inputs are concurrently handled
by multiple threads labeled as t0–t4. In the fetch primitive, each thread handles a
different input pin. And finally in the evaluate primitive, one thread is assigned to
every gate.

List 1 is the code snippet of the main loop of logic simulation. The three primitives
are repeatedly called until a given number of cycles have been simulated. A dynamic
memory allocation operation is performed before the fetch primitive, while a memory
releasing is called after the evaluate primitive. The dynamic memory operations will
be explained in Sect. 32.3.3. Sample code for each primitive is listed in the appendix.
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Fig. 32.3 Fine-grain mapping of workload. a Extract primitive. b Fetch primitive. c Evaluate
primitive
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32.3.2 Data Structures for Fine-Grained Message Passing

The CMB algorithm is an event-driven algorithm and thus intrinsically suitable for a
message-passing model, such as MPI (2000). However, modern GPUs are based on
a shared memory architecture where several multiprocessors uniformly access the
same global memory. Therefore, we emulate a message passing mechanism in our
simulator through manipulating three arrays, namely output_pin, event_queue and
gate_status. The output_pin array reserves an entry for the output pin of every gate
and stores events generated during gate evaluation. Note that the events for virtual
gates are extracted from the input stimuli in the extract primitive rather than from
evaluation. The event_queue array stores the events to be evaluated by a gate. The
gate_status array records related information for each gate.

Figure 32.4a is a sample circuit whose corresponding data structures are illustrated
in Fig. 32.4b. At the beginning of simulation, the virtual gates, i.e., primary inputs,
extract stimuli into the corresponding portion of output_ pin. Then all events stored
in output_ pin are written into event_queue to emulate one round of message passing.
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(b) The corresponding data structure of the circuit in (a) for parallel logic simulation

Fig. 32.4 Sample circuit and its simulation data structures. a A sample circuit. b The corresponding
data structure of the circuit in (a) for parallel logic simulation
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Finally, the event with the earliest timestamp Tpin is chosen from its event_queue. As
formulated in the original CMB algorithm, if Tpin is smaller than Tmin, that event
could be safely fetched for evaluation.

To maintain the ordering of the events passed to a gate, the event_queue men-
tioned above has to be a priority queue. However, it is extremely challenging to find
an efficient GPU implementation for managing a heap based priority queue due to
the large number of branches incurred by heap operations. To avoid this bottleneck,
we decompose the event_queue of a gate into several FIFOs, with one FIFO for an
input pin. Such FIFOs are designated as input_pin_FIFOs. The advantages of such
an approach are trifold. First, by decomposing the gate-wise priority queue into a
group of light-weight distributed FIFOs, the insertion operation for a priority queue
is much simpler. In fact, those events arriving at a given input pin are naturally
chronological and thus newly arrived events can be safely appended at the end of
the FIFO. Otherwise, the insertion operation of a priority queue would incur seri-
ous performance overhead because different queues would have different structures,
which would inevitably lead to diverse program execution paths would vary. Mean-
while, the distributed FIFO mechanism enhances the potential parallelism because
the insertion operations for different FIFOs are independent. Otherwise, a central-
ized, gate-wise storage would result in resource contention and restrict the maximum
parallelism to be the number of gates. Additionally, if a newly arrived event has the
same event as the latest one in the FIFO, it will be discarded and only the last-come
event timestamp is updated. This mechanism greatly reduces the number of active
events in the simulation and is proved to be essential in the experiments.

32.3.3 Memory Paging Mechanism

The limited GPU memory would pose an obstacle for the simulation of large-scale
circuits. First of all, industry-strength, large-scale circuits would require consid-
erable space to store necessary information. In addition, a significant number of
events would be created and sent in the simulation process. Such events also need
to be buffered in memory before they are processed. Current GPUs do not support
dynamic memory management features such as malloc()/free() in C language and
new()/delete() in C++. Accordingly, a straightforward implementation would allo-
cate a fixed size for the FIFO, i.e., input_ pin_FIFO, for each input. However, there
is no easy way to optimally determine the FIFO size before runtime. A smaller FIFO
size would lead to frequent FIFO overflow, while a larger size suffers low utiliza-
tion of memory storage. To overcome this problem, we introduce a memory paging
mechanism to efficiently manage the GPU memory.

The feasibility and advantage of such a dynamic memory management mechanism
is justified by two basic observations in the CMB based simulation experiments.
First, we found that the numbers of events received at different pins would fluctuate
dramatically. A relatively small number of pins are very “hot” in the sense that
they receive many more events than those “cold” ones by orders of magnitude.
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This fact certainly suggests that a similar non-uniform pattern should be applied to
the allocation of FIFO size on each input pin to avoid both starvations and overflow.
The second key observation is that, in different period, the occupation of a FIFO varies
noticeably. Thus, the management should be able to recycle the memory storages.

Based on these observations, we designed a paging mechanism for dynamic man-
agement. A large bulk of memory MEM_SPACE with MEM_SIZE bytes is allocated
on GPU before the simulation. It is uniformly divided into small memory pages
with a constant size of PAGE_SIZE, each of which can hold up to EVENT_NUM
events. A page is the minimum unit of memory management and each page is
uniquely indexed in a continuous manner. This memory space is reserved for the
input_ pin_FIFO arrays of all the inputs pins. Initially, a specific number of pages,
INIT_PAGE_NUM, are allocated to every FIFO of input pins. Indexes of all remain-
ing pages are inserted into a global FIFO called available_ pages, which is used
to record the index of available pages. As the simulation process moves on, pre-
allocated pages are gradually consumed. As a result, free pages are needed to store
newly created events, while pages storing processed events can be recycled. In our
simulator, we deal with the requests for allocating new pages and releasing useless
pages after every execution of fetch and evaluate primitives, respectively.

The FIFO structure for a pin is defined as Fig. 32.5. The page_queue stores the
indexes of pages that have been allocated to that pin. The events are extracted and
stored in MEM_SPACE according to the FIFO pointers. As illustrated in Fig. 32.6, the
locations of first and last events in the FIFO are pointed by page_queue[head_ page]
* PAGE_SIZE + head_offset andpage_queue[tail_ page] * PAGE_SIZE + tail_offset,
respectively.

A few additional data structures are needed to guarantee the correct working of
the paging mechanism. Two index arrays, page_to_allocate and page_to_release,
are employed to support page release and allocation. Every pin has an entry in both
arrays. Elements in page_to_allocate denote the page indexes that are to be allocated
to corresponding pins, while elements in page_to_release hold the page indexes of
those pins that can be released. When pin i runs out of pages, the GPU kernel fetches
the ith value in page_to_allocate and inserts it into pin i’s page_queue. Similarly,
when events on a page of pin i are all processed, GPU kernel writes the index of that
page to the ith entry of page_to_release, and pops that page index from page_queue.
Because all events information is stored in MEM_SPACE, no explicit copy has to

Fig. 32.5 FIFO data structure
for GPU dynamic memory
management

typedef struct{

unsigned int  size;

unsigned int  *page_queue;

unsigned int  head_page;

unsigned int  head_offset;

unsigned int  tail_page;

unsigned int  tail_offset;

}FIFO_T;
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Fig. 32.6 Illustration of a sample GPU memory layout

be performed for release and allocation. The only overhead is introduced when the
control flow returns to the CPU side. At that time, the host thread would recycle
the pages in page_to_release by inserting them into available_ pages, and designate
pages to be instantly allocable by writing indexes of those pages into related entries
in page_to_allocate. The update of these two arrays to the available_ pages is done
sequentially on the host CPU. Further improvement of this step will be discussed in
the next section.

Finally, in the experiments, we found that under proper conditions, events can be
created at a much higher rate than that of evaluation. Under such circumstance, all
pages in MEM_SPACE may be occupied by events that have not been evaluated. This
would prevent the new input stimuli to be issued due to the lack of memory space.
To attack this problem, we propose an adaptive strategy to control the issuing speed
of input stimuli.

Before issuing stimuli, one host side thread is responsible for checking the number
of allocable pages residing in available_ page. If the number is under a pre-define
threshold, the issue of stimuli is paused. Instead, null events are issued with the same
timestamp as the last valid event. These null events will not be inserted into pin FIFOs
but can push forward the simulation process. Those events ready to be evaluated will
be processed simultaneously and some pages may be released. When the number of
obtainable pages in available_ page is once again above the threshold, normal issue
would continue. In this work, we choose a relatively conservative threshold value
such that it is no smaller than the number of pins since it is possible that all pins
require a page in next simulation iteration.
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32.4 GPU Oriented Performance Optimization

The techniques presented in Sect. 32.4 provide a basic flow for a massively paral-
lel logic simulator. However, performance tuning and optimization are essential to
successfully unleash the computing power of GPUs. For GPUs, major hurdles for
computing performance include divergent program execution paths, communication
overhead between CPU and GPU, as well as un-coalesced memory access. In this
section, we discuss a set of optimizations to improve the simulation throughput.

32.4.1 Gate Reordering

The efficient execution of a GPU program requires the data to be organized with
good locality and predictability. When the threads are organized into warps, ideally
these threads should take the same actions. However, gates in an input circuit are
generally arbitrarily ordered and the ordering is used to assign gates to threads. As
a result, generally threads in a warp would follow different instruction paths when
performing the table lookup for gate delay and logic output value as well as the
calculation of Tpin .

To reduce the divergent paths, we proposed a gate re-ordering heuristic according
to circuit information. The ordering process can be performed prior to simulation.
Gates are sorted and then ordered with regard to gate types and number of fan-ins.
When the gates are sequentially assigned to threads, threads in a warp are very likely
to follow the same execution path in the evaluate primitive. Our experiments show
that this heuristic could enable an additional speedup up to 1.5X on some designs.

32.4.2 Minimizing Divergent Execution Paths

Although hardware techniques like dynamic warp formation (Fung et al. 2007) have
been proposed to minimize the overhead of intra-warp divergent branches, current
off-the-shelf GPUs are still sensitive to flow control instructions such as if, switch
and while. These instructions would potentially lead to a serialization of parallel
threads. As stated in Sect. 32.3.2, the design of the fundamental data structure already
mitigates the divergent path problem by replacing the gate-wise priority queue with
multiple distributed pin-wise FIFOs so as to avoid the insertion of priority queues.

32.4.3 Hiding Host-Device Interaction Overhead

The only interaction between host and device threads during simulation is intro-
duced by the paging mechanism. To dynamically allocate and recycle GPU memory,
it requires explicit copy of data (page_to_allocate and page_to_release) and the
corresponding sequential processing in every iteration. The resultant overhead is
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Fig. 32.7 Illustration of ideal overlap

twofold. First, data transfer between GPU and CPU is through a PCI Express (PCI-
SIG 2010) interface, which usually cannot meet the consumption speed of the GPU
hardware. The second overhead is due to the sequential processing on the CPU. In
fact, Amdahl’s Law (1967) suggests that sequential part of a program could severely
drags down the performance of a parallel program. In fact, the CPU processing might
overweigh the performance gain offered by the massively parallel execution on the
GPU.

Certainly the ideal situation would be to overlap the three parts as illustrated in
Fig. 32.7. Such an overlapping is indeed possible through a careful organization of
the primitives. A key observation is that the fetch primitive that inserts events into
event FIFOs only need to execute the memory allocation operations when the allo-
cated pages for that FIFO are full. In contrast, the evaluate primitive that evaluates
events from FIFOs just requires the memory release operations, because some allo-
cated pages may have be completely processed. Therefore, the CPU processing of
page_to_allocate and the evaluate kernel can be overlapped. The same goes with the
processing of page_to_release and the receive kernel. This can be straightforwardly
realized with the asynchronous execution feature provided in CUDA. We create two
streams and assign fetch/release within one stream, and evaluate/allocate in another.
In this way, the receive primitive is executed on GPUs while the release operation
runs on the CPU host simultaneously. The evaluate primitive and allocation operation
work in the same way. Because the amount of data transferred is relatively small, we
take advantage of a new feature called zero copy NVIDIA (2009) released in CUDA
2.2 and later version. With zero copy technique, data transfer is invoked within GPU
kernels, rather than on the host size. Zero copy has the advantage of avoiding super-
fluous copies since only the request data will be transferred. Another advantage is
that it also schedules those kernel-originated data transfer implicitly along with the
kernel execution, without the need for explicit programmer interventions.

To further overlap CPU computation time with GPU processing time, we propose
a group flag strategy. Every 32 (i.e. the warp size in CUDA) pins are aggregated
into a group. Every group has two flags, one for release, and one for allocation.
During GPU processing, if any pin in the group requires a new page or releases a
useless page, corresponding flags are marked. Therefore, CPU thread only needs to
check those groups of threads whose flags are marked and skip those unmarked ones.
This strategy functions like a skip-list and proves to be important for a high level of
efficiency.
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32.4.4 Enhancing Memory Access Efficiency

As suggested in CUDA Best Practice Guide (NVIDIA 2009), one of the top con-
cerns for CUDA programming is how to guarantee the efficiency of memory access.
Accordingly, we perform extensive optimizations on the memory usage. For instance,
a FIFO has a set of descriptive data organized as a structure with multiple members
such as head pointer, tail pointer, size value, and offset value. To avoid the structure
accesses that are hard to coalesce, we actually use a structure of array (SOA) to store
the data. In addition, we minimize the access to long-latency global memory by
storing read-only data in constant and texture memories, which are both supported
by on-chip cache. The circuit topology related data, which can be determined before
simulation, are loaded into texture memory. Static circuit data structures like truth
table are located in constant memory by declaring them as __constant__. With these
storage patterns, the penalty of irregular memory accessing is significantly reduced.

32.5 Results and Analysis

In this section, we report the experimental results of our GPU based logic simulator.
Starting with the experimental setup, we present experimental observations that jus-
tify our choices of optimization techniques. Then a detailed performance evaluation
is introduced.

32.5.1 Experimental Framework

We choose ten open-source IC designs from OpenCores.org (OpenCores 2010) and
ITC99 Benchmarks (2nd Release) (ITC99 Benchmarks 1999) to test our GPU based
simulator. Critical parameters of these circuits are listed in Table 32.1. Among these
designs, b18 was released as a gate level netlist. The other nine designs were down-
loaded as RTL level Verilog code and then synthesized with Synopsys Design Com-
piler using a 0.13µm TSMC standard cell library. Similar to the common industry
practices, we use two sets of simulation stimuli, deterministic test patterns released
with the design test bench and randomly generated patterns. Usually the determinis-
tic patterns can be used to validate if a circuit delivers the expected behavior, while
the random patterns are used to cover possible design corners. For randomly gener-
ated stimuli, we set the maximum simulation time as 250,000 cycles. Every 5 cycles
would the random generator create a new true or false value so that valid stimuli
actually occupy 50,000 cycles.

To evaluate the performance of our GPU simulator, we also hand-coded a baseline
CPU simulator as a reference for comparison. The baseline simulator uses a clas-
sical event-driven algorithm instead of CMB algorithm, because CMB algorithm is
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Table 32.1 Statistics of simulation benchmarks

Design #Gates #Pins Description

AES 14511 35184 AES encryption core
DES 61203 138419 DES3 encryption core
M1 17700 42139 3-stage pipelined ARM core
SHA1 6212 13913 Secure Hashing algorithm core
R2000 10451 27927 MIPS 2000 CPU core
JPEG 117701 299663 JPEG image encoder
B18 78051 158127 2 Viper processors and 6 80386 processors
NOC 71333 181793 Network-on-chip simulator
LDPC 75035 148022 LDPC encoder
K68 11683 34341 RISC processor

Table 32.2 Distribution of number of events received by pins

#Events AES DES M1 SHA1 R2000 NOC K68 b18

0–99 34444 138317 39708 13591 26106 157202 32669 158086
100–9999 737 102 2431 321 1764 24591 1672 40
≥10000 3 0 0 1 3 0 0 1

intrinsically slower on sequential machines due to the extra work of message passing
and local time maintaining (Soule and Gupta 1991). Our baseline simulator is up to
2X faster than Synopsys VCS simulator (Synopsys 2010), because such commercial
simulators have to handle complex verification computations that incur performance
overhead.

32.5.2 Justification of the Optimization Techniques

We mentioned in Sect. 32.3.3 that there exist significant variations in the events
received by each pins. This fluctuation can be several orders of magnitude across
one specific design. Detailed statistics for a group of benchmark circuits are listed
in Table 32.2. In Table 32.2, pins are grouped into three categories with regard to the
peak number of event that they could receive during a complete run of simulation.
The data are collected after 50,000 simulation cycles using randomly generated input
stimuli. It can be seen from the table that the activity intensities of different pins
are under dramatic deviation, which implies that the dynamic paging mechanism is
imperative.
We also conducted experiments to quantitatively analyze the efficiency of GPU mem-
ory paging. The page recycling algorithm is detailed in Sect. 32.3.3 Here we choose
four circuits to apply deterministic input pattern and five circuits (marked with a
letter ‘R’) to exert randomly generated stimuli. Table 32.3 quantifies the numbers of
pages released and allocated when simulating each circuit. The 4th column is the
ratio of released pages to allocated pages.
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Table 32.3 Memory page recycling

Design Allocated pages Released pages Recycled ratio (%)

AES 145085 51793 35.69
DES 429312 93312 21.74
R2000 27336 1938 7.09
JPEG 1045482 46292 4.43
SHA1 (R) 245596 14355 5.84
M1 (R) 1868242 40075 2.15
b18 (R) 45742 21935 47.95
NOC (R) 2072609 167061 8.06
K68 (R) 1430792 128857 9.00

(a) AES with released stimuli (b) M1 with random stimuli

Fig. 32.8 Page recycling with different configurations of P AG E_SI Z E . a AES with released
stimuli. b M1 with random stimuli

The data in Table 32.3 are collected by configuring that PAGE_SIZE as 32 bytes.
Circuit topology and stimuli pattern would largely affect the progress of simulation,
and thus the consumption of memory pages, therefore some cases may recycle pages
frequently while others exhibit a much inactive behavior. On average, about 14.2 %
pages could be recycled. While the PAGE_SIZE decreases, the number of recycled
pages would increases as illustrated in Fig. 32.8 where the Y axis represents the
number of page. But there is no noteworthy difference in the relative ratio, because
both released and re-allocated pages vary in a similar trend. However, a small page
size means that more pages are need. A larger number of pages in turn results in more
frequent page recycling and would potentially drag down the overall performance.
On the other hand, a large page size enlarges the granularity of the page recycling
process and thus lowers the flexibility of memory management. The extreme situation
would be so large a PAGE_SIZE that every pin can only have one page. Considering
the contradicting impacts, a PAGE_SIZE of 64 offers a balanced solution empirically.
Finally, we justify the overlap of CPU processing, GPU processing, and mem-
ory copy. A decomposition of CPU time consumed by these three components is
illustrated in Fig. 32.9. The most significant observation is that memory copy account
for most of the whole simulation time. This necessitates the use of zero copy to reduce
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Fig. 32.9 Detailed timing
analysis

redundant data copy and overlap computation with communication. Besides, CPU
processing plays a non-trivial role in all designs. In DES, CPU time even outweighs
GPU part. Therefore, we need to not only overlap CPU processing with GPU com-
putation, but also employ the group flag mechanism to further reduce the overhead
on CPU in achieving an optimal performance.

32.5.3 Performance Evaluation

In this section, we compare the performance of our GPU simulator against the CPU
simulator described in Sect. 32.6. The CPU baseline simulator is compiled by gcc
4.2.4 with—O3 optimization. The GPU based simulator reported in this paper is
realized in CUDA 2.2 version. The experiments were conducted on a 2.66 GHz Intel
Core2 Duo server with an NVidia GTX 280 graphics card. We present results on
both deterministic and random stimulus. Table 32.4 reports results of all ten designs
under randomly generated input patterns. Because some designs (K68 and b18) have
no testbench released, and other two designs (LDPC and NOC) are inherently tested
by random patterns. Table 32.5 only reports six designs simulated under the released
deterministic stimuli. Thanks to the highly parallel GPU architecture described in
Sect. 32.2, the GPU simulator attains an average speed of 47.4X on average for
random patterns, and up to 59X speedup for four designs with deterministic patterns.
Meanwhile, there do exist two designs on which the GPU simulator is slower under
deterministic patterns and the reasons will be explained in the next section.

32.5.4 Relation Between Speed-up and Activity Intensity
of Input Patterns

It is worth-noting that GPU based simulator is slightly slower than its CPU coun-
terpart for M1 and SHA1 when applying the deterministic stimuli released to the
designs. However, when applying random patterns, a significant speedup can be
observed. In fact, for all six designs listed in Table 32.5, the speedup on random
stimuli is much more significant. The reasons are twofold. First, we find that the
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Table 32.4 Simulation results with randomly generated stimuli

Design Baseline simulator (s) GPU based simulator (s) Speedup (column 2/column 3)

AES 676.96 9.45 71.64
DES 881.68 16.38 53.83
M1 88.85 8.57 10.37
SHA1 51.48 5.57 9.24
R2000 223.93 8.33 26.89
JPEG 10030.64 37.11 270.29
LDPC 51.91 10.41 4.99
K68 54.46 6.74 8.08
NOC 43.32 9.71 4.46
b18 299.92 21.70 13.82

Table 32.5 Simulation results with officially released stimuli

Design Baseline GPU based Simulated Speedup
simulator (s) simulator (s) cycles (column 2/column 3)

AES 90.50 5.01 42,935,000 18.06
DES 17.38 8.06 307,300,000 2.16
M1 13.56 22.11 99,998,019 0.61
SHA1 0.33 0.42 2,275,000 0.79
R2000 4.594 0.937 5,570,000 4.90
JPEG 2121.71 35.71 2,613,200 59.42

deterministic stimuli are applied in a rather “sparse” manner. For example, with the
deterministic stimuli of M1, input values only receive new values in 176,500 cycles
(total 99,998,019 cycles simulated). In other words, the primary inputs receive new
patterns in about every 500 cycles. On the other hand, new assignments are applied
very frequently in the random patterns (every 5 cycles for the results reported in
Table 32.4). The simulator is thus kept much busier by the random stimuli. Sec-
ond, when the deterministic input patterns are applied, one pin would receive the
same value consecutively. Again taking circuit M1 as an example, a large number
of pins repeatedly receive the same true or false value throughout the simulation. As
described before, events with the same value as the previous one will not be added
into FIFO. So the total number of events that are to be evaluated is actually even more
“sparse”. With randomly generated stimuli, however, pins would randomly receive
a new assignment. As a result, the number of events would be significantly higher.
Considering the above two factors as well as the parallelization overhead, it is not
strange that GPU simulator would be sometimes slower on deterministic patterns,
but still could achieve a dramatic speed-up on random patterns. In other words, the
lack of activities in the deterministic input stimulus for M1 and SHA1 is the major
reason for the insufficient acceleration. In fact, when using a GPU simulator, IC
designers could use high-activity testbenches to extract sufficient parallelism for an
even higher throughput as exemplified in Fig. 32.10. On the benchmark circuits AES,
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Fig. 32.10 Speed-up of our GPU simulator over CPU baseline with varying input activity intensities

SHA1, and M1, we created 3 sets of random test patterns by gradually reducing the
gap between two patterns from 50 to 5 cycles. We normalize the relative speedup to
the 50-cycle one and show them in Fig. 32.10. Clearly, when the input patterns have
a higher level of activity, the GPU would perform better with a larger acceleration
ratio.

32.6 Related Work

There are two major approaches to perform simulations: oblivious and event-driven
(Fujimoto 2000). The oblivious simulator evaluates all gates at every clock cycle,
while the event-driven one only evaluates those whose inputs have changed. Though
oblivious simulation is simple, it is not adopted in practice. Due to the fact that only
a small fraction of gates are active, i.e. the inputs of them change, every clock cycle
in a large design, event-driven approaches are the most appropriate and practical
methods. In fact, most current commercial simulators are based on event-driven
approaches.

Considering the enormous time required for the simulation of large VLSI circuits,
much emphasis has been paid to accelerate logic simulation by leveraging parallel
and distributed computer architectures. Modern parallel logic simulators are typically
based on event driven simulation algorithms, which can be divided into two basic
categories: synchronous algorithms and asynchronous algorithms. In a synchronous
simulator, multiple LPs progress in a step-locked manner as coordinated by a global
clock. The events are stored in a global data structure for shared access. Such syn-
chronous algorithms can be implemented in SIMD architectures (e.g., Bataineh et al.
1992) in a straightforward manner. To extract a higher level of parallelism, an asyn-
chronous simulator like the one implemented in this work assigns every LP with a
local clock. The basic parallel simulation protocol was first proposed by in Chandy
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and Misra (1979) and Bryant (1977), and thus designated as the CMB algorithm.
Each LP asynchronously evaluates its events as long as no causal relations would
be violated. The overall asynchronous flow is amenable to parallel implementations
because the synchronization overhead can be avoided. However, it poses challenges
for a SIMD implementation since LPs tend to follow different execution paths. In
addition, the communication cost of passing messages could be too expensive for
CPUs located on different chips.

Later it was found that the CMB algorithm could lead to deadlock (Chandy et al.
1979). Various techniques such as probe message (Peacock et al. 1979; Holmes 1978),
virtual time (Jefferson 1985), and null message (Bryant 1977) were subsequently
introduced to prevent or recover from deadlock. Our simulator is based on the original
idea of distributed simulation and employs the null message to avoid deadlock.

The emergence of GPU makes it possible to perform massively parallel logic simu-
lation because it provides a large number of scalar processors with fast inter-processor
communication. The work proposed in Gulati and Khatri (2008) use GPU to accel-
erate fault simulation by simulating multiple input patterns in parallel. A GPU-based
simulator, GCS, was presented in Chatterjee et al. (2009a) to carry out high perfor-
mance gate-level logical simulation. It is based on an oblivious algorithm in which
every gate is evaluated at every clock cycle. The authors of Chatterjee et al. (2009b)
proposed a GPU-based logic simulator by synchronously evaluating multiple events
happened simultaneously. Different from the above works, our GPU simulator uti-
lizes the CMB algorithm and does not require a global clock.

Outside the logic simulation domain, there are several related works also using
GPUs for a specific application (e.g., Xu and Bagrodia 2007; Park et al. 2008; Rybacki
et al. 2009), or a general framework (e.g., Perumalla 2006a,b; Park and Fishwick
2009). One early work reported in Xu and Bagrodia (2007) focuses on high fidelity
network modeling and adopts a synchronous event-driven algorithm. In Park et al.
(2008), a discrete-event simulation framework is proposed. Also based on synchro-
nous event-driven algorithm, that paper developed a distributed FEL (Future Event
List) structure to avoid the time-consuming global sorting. We build a different
approach to solve the similar problem in this paper. Basically, the priority queue
of a gate is distributed to the gate inputs such that the sorting no longer necessary.
The mechanism is enhanced with a dynamic memory management mechanism to
overcome the obstacle of a limited GPU memory capacity.

32.7 Conclusion and Future Work

This paper proposes the first CMB based logic simulation algorithm on modern
GPUs. The CMB algorithm is efficiently and effectively mapped to GPUs in a
fine-grain manner. To guarantee a high level of parallelism in the simulation, we
re-designed the fundamental data structures of the CMB algorithm to overcome the
previous obstacle that hinders an efficient implementation on previous shared mem-
ory architectures. A gate reordering heuristic is introduced to improve the data locality
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and reduce the execution divergence on GPUs. To support robust simulation of large
circuits, we developed a dynamic GPU memory allocation mechanism as well as
an adaptive pattern-issuing method. A complete set of optimization techniques were
also proposed to maximize the effective memory bandwidth. Our GPU simulator is
tested on a group of real VLSI designs with both deterministic and random stimuli.
The experimental results show that a speedup of 47.4X could be achieved against a
CPU baseline simulator using a classical event-driven algorithm.

In the future, we plan to extend this work in several directions. First, the simulator
will be enhanced to support RTL. Complex processes would need to be mapped
to computing resources under such a context. A process decomposition mechanism
would be necessary. Second, we will generalize our simulator to perform simulation
in other application domains such network and transportation simulations. Another
interesting topic is to explore the possibility of parallelizing SystemC’s simulation
kernel (IEEE 2005) with our techniques.

Appendix. Sample Code Snippets
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Chapter 33
Implementations of Main Algorithms
for Generalized Symmetric Eigenproblem
on GPU Accelerator

Yonghua Zhao, Fang Liu, Yangang Wang and Xuebin Chi

Abstract To solve a generalized eigensystem problem, we firstly need to transform
the generalized eigenproblem to a standard eigenproblem, and then reduce a matrix
to tridiagonal form. These are based on both blocked Cholesky decomposition and
blocked Householder tridiagonalization method. We present parallel implementa-
tions of standard transformation which combines the Cholesky into the transforma-
tion from generalized to standard form, and reduction of a dense matrix to tridiagonal
form on GPU accelerator using CUBLAS. Experimental results clearly demonstrate
the potential of data-parallel coprocessors for scientific computations. When com-
paring against the CPU implementation, the GPU implementations achieve above
16-fold and 20-fold speedups in double precision respectively.

Keywords Tridiagonalization · Cholesky · Eigenvalue · GPU · Symmetric matrix

33.1 Introduction

Many scientific and engineering applications lead to large symmetric matrix eigen-
value problems. Examples come from computational quantum chemistry, finite
element modeling, multivariate statistics, and density functional theory. With the
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increasing complexity of mathematical models and the availability of various high
performance systems, such as multi-core and general purpose GPU(GPGPU), there
is a growing demand to solve large-scale eigenvalue problem.

Some researches have already been done on the implementation of the different
dense linear algebra algorithms on GPU (Tomov et al. 2010; Barrachina et al. 2009).
Volkov et al. give efficient implementation of the LU, QR and Cholesky factorization
using vector capabilities of the graphic processors (Volkov and Demmel 2008). The
MAGMA (Tomov et al. 2009) project aims to develop a dense linear algebra library
similar to LAPACK but for heterogeneous/hybrid (CPU+GPU) architectures. Sev-
eral important implementations of the linear algebra solutions are developed, like
QR factorization (Agullo et al. 2010) using multiple GPUs, Cholesky factorization
(Ltaief et al. 2009) on multi-core systems with GPU accelerators and Hessenberg
reduction (Tomov et al. 2010) for hybrid GPU-based systems.

Parallel solution on the generalized symmetric eigenproblem relates to five
translations (Anderson et al. 1999), and many researchers have studied the parallel
algorithms on traditional architectures such as single-core machines or distributed
memory parallel machines (Anderson et al. 1999; Blackford et al. 1997). But
the lack of the implementation of the eigenvalue solvers on heterogeneous/hybrid
(CPU+GPU) architectures is still present. Volkov et al. give the bisection algorithm
for finding eigenvalues of symmetric tridiagonal matrices using GPUs (Volkov and
Demmel 2008). Lessig et al. present the MRRR parallel algorithm (Bientinesi et al.
(2005)) for data-parallel coprocessors (Lessig and Bientinesi 2009).

CUBLAS NVIDIA (2008); Igual et al. (2009) is NVIDIAs implementation of the
basic linear algebra algorithms. It includes the BLAS 1, 2 & 3 routines redesigned
using CUDA for execution on the NVIDIA graphic cards. This paper focuses on the
Blocked algorithm from generalized eigenproblem to standard eigenproblem (Cao
et al. 2002) and blocked Householder tridiagonalization method (Bischof and Loan
1985), using the current generation of GPUs and CUBLAS. In algorithm transform-
ing the generalized eigenproblem into standard form, we present a new parallelization
which combines the Cholesky into the transformation from generalized to standard
form.

The rest of the paper is structured as follows: Sect. 33.1 describes generalized
symmetric matrix eigenvalue problem. Section 33.3 gives the blocked algorithms of
standardization combining the Cholesky on CPU and GPU. Section 33.4 describes
the blocked tridiagonalization of a symmetric matrix on CPU and GPU. Section 33.5
gives the comparison performance results on CPU and CPU+GPU. Finally, Sect. 33.6
gives the conclusion.

33.2 Generalized Symmetric Matrix Eigenvalue Problem

We consider the solution of the symmetric matrix eigenvalue problem

AX = �B X (33.1)
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Table 33.1 Five stages for the solution of generalized symmetric eigenproblem

Operation steps Operations

Cholesky decomposition LTL = B
Transformation from generalized eigenproblem to standard form C = L−1 A(L−1)T

Reduction to tridiagonalization QTQT = A
Solve tridiagonalization problem ZDZT = T
Back transformation is applied to the eigenvectors of T Z = QZ
Back transformation is applied to the eigenvectors of C X = L−1 Z

where A ∈ Rn×n is a symmetric matrix and B ∈ Rn×n is symmetric positive definite,
�= diag(λ1, λ2, · · · , λn) ∈ Rn×n is a diagonal matrix containing the eigenvalues of
eigenvalue problem (1), and the j-th column of the orthogonal matrix X ∈ Rn×n is an
eigenvector associated with λ j . Given the matrix A and B, the objective is to compute
its eigenvalues or a subset thereof and, if requested, the associated eigenvectors as
well.

Efficient algorithms for the solution of generalized symmetric eigenvalue prob-
lems usually consist of five stages (Table 33.1) and eigenproblem of a tridiagonal
matrix T. The MR3 algorithm (Dhillon and Parlett 2004) is applied to matrix T to
accurately compute its eigenvalues and, optionally, the associated eigenvectors.

In next several sections, we give the Blocked algorithm from generalized
eigenproblem to standard form Based on Cholesky decomposition and blocked
Householder tridiagonalization method, using the current generation of GPUs and
CUBLAS.

33.3 The Blocked Algorithm Transforming Generalized
Eigenproblem into Standard Form

33.3.1 The Blocked Algorithm Based on Cholesky Decomposition
on CPU

For Generalized symmetric eigenproblem Ax = λBx, since B is symmetric posi-
tive definite, so the Cholesky decomposition of B exists, i.e., there exists an upper
triangular matrix R, such that B = RTR. Let C = RART , and y = Rx. Then the gen-
eralized eigenproblem can be changed into a standard eigenvalue problem Cy = λy.
Algorithm 1 presents the blocked algorithm that combines the Cholesky decompo-
sition into transformation from a generalized eigenproblem to the standardization
eigenproblem.



546 Y. Zhao et al.

Algorithm 1. Blocked algorithm standardization based on Cholesky
decomposition , blocked size is nb .

33.3.2 The Blocked Algorithm Based on Cholesky
Decomposition on GPU

Recent work on the implementation of BLAS and the major factorization routines for
the solution of linear systems has demonstrated the potential of GPUs to yield high
performance on dense linear algebra operations which can be cast in terms of matrix-
matrix products. In this subsection we describe how to exploit the GPU in Algorithm
1, orchestrating the computations carefully to reduce the number of data transfers
between the host and the GPU. During the reduction to standard eigenproblem, in
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general, b will be small so that both computation chol(A11) and sygst(A11, L11) are
likely to be better suited for the CPU, and other operations may be computed on the
GPU using CUBLAS.

Now, assume that the entire matrix resides in the GPU memory initially. Algorithm
2 gives in pseudo-code the GPU algorithm, Prefix ‘d_’, standing for device, before
a matrix denotes that the matrix resides on the GPU memory.

Algorithm 2 Blocking algorithm of tridiagonalization 
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Fig. 33.1 The computations
and communications between
the CPU and GPU

GPU

GPU

GPU

Figure 33.1 illustrates the computations and communications between the CPU
and GPU during the standard transformation. The total communications from CPU to
GPU and from GPU to CPU are about 2n2+2nb and 2nb in algorithm 2 , respectively.

33.4 The Blocked Tridiagonalization of a Symmetric Matrix

33.4.1 The Householder Transformation

Basic operations utilized by the reduction to tridiagonal form are the computation
and application of Householder transformations.

Theorem 1 Given a vector z ∈ Rn, we can find a vector u ∈ Rn and a scalar β ∈ R
such that

(I − βuuT )z = (z1, · · · , zk−1, σk, 0, · · · , 0)T

Where σk = sign(zk) ‖zk+1:n‖2, The scalar β ≡ 2/||u||22 and the reflector vector
u ≡ (0, · · · 0, zk + σk , zk+1, · · · , zn)

T are a pair of quantities which satisfy the
above theorem, and I denotes the identity matrix of appropriate order. The reflection
(I − βuuT )z in Theorem 1 is called Householder transformation. This reflection
does not affect the elements z1, · · · , zk .

Given a symmetric matrix A, we can compute Hj = I − β j u j uT
j ( j =

1, 2, · · · , n − 2) ,where u j ∈ Rn with the first j entries zero, such that T =
Hn−2 H1 AH1 · · · Hn−2 is a tridiagonal symmetric matrix. Applying a both-sided
Householder transformation to A, we can get

(I − βuuT )A(I − βuuT ) = A − uwT − wuT (33.2)
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where w = v − β
2 (v

T u)u, v = βAu. The right side of the Eq. 33.2 is called rank-2
modification of A. In order to exploit the symmetry, only the lower (or the upper)
triangular part of this matrix is updated.

33.4.2 A Blocking Algorithm of Tridiagonalization on CPU

It is known that blocking algorithms are more efficient than a non-blocking algorithm.
The basic principle of the blocking algorithm is to accumulate a certain number of
the vectors u and w into a block update. If we reserve b pairs of vectors u, w, then
we can gather b rank-2 modifications of A to be a rank-2b modification using the
BLAS-3 operation. Here, we suppose the matrix is divided into column panels with
width b, then the operations of the blocking algorithm include �n/p� column panel
reduce steps, and an out-panel matrix modification follows each panel reduction.

Figure 33.2 provides a schematic of the column panel reduction. During the col-
umn panel reduction, the Householder transformation is performed to the part in a
column panel, and reserves vectors w and u produced during the transformation to
form n×b matrices W and U that are used to modify the rest parts A22 of the matrix.
The updating of A22 is performed by running the rank-2b modification

A22 = A22 −U W T −WU T

after panel operations are complete. Subsequently, the same procedure is applied to
the new modified submatrix A22 until the column panel is not existed. The delayed
modification of A22 makes the producing of vector v more complicated because the
elements stored in matrix A22 are not updated in time during the panel transformation.

22A

panel block reduced part unreduced part

pf k pe

Fig. 33.2 Schematic of the column panel reduction
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So when solving w, the computation v = βAu needs to be replaced by

v =(Au −U W T u −WU T u)

where UWT u and WUT u correspond to out-panel corrections of A.
Algorithm 3 gives Blocking algorithm of tridiagonalization. For each reduced

column in the panel, a new column of W is generated. This requires four panel-vector
multiplications and one symmetric matrix-vector multiplication with the submatrix
A22 as operand. The latter operation, computed with the BLAS-2 kernel dsymv, is the
most expensive one, requiring roughly 2(n - j)2b flops. Step 8 also requires 2(n - j)2b
flops, but is entirely performed by the BLAS-3 kernel syr2k for the symmetric rank-
2b update. The overall cost of performing the reduction from A to T in algorithm1 is
therefore 4n3/3 flops provided that b � n.

Algorithm 3 Blocking algorithm of tridiagonalization 
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Note that there is no need to construct the orthogonal factor Q = H1 H2 · · · Hn−2
explicitly. Instead, the vectors u j defining the Householder reflectors H j are stored
in the annihilated entries of A. If the eigenvectors are required, the back-transform
QXT is computed in 2n3 flops without ever forming Q. Using the compact WY
representation (Tomov et al. 2010), this operation can be performed almost entirely
in terms of calls to BLAS-3 kernels.

33.4.3 A Blocking Algorithm of Tridiagonalization on GPU

In this subsection we describe how to exploit the GPU in the reduction of a matrix
to tridiagonalization matrix, orchestrating the computations carefully to reduce the
number of data transfers between the host and the GPU. During the reduction to
tridiagonalization form in algorithm 1, Step 2 and 8 are a natural candidate for being
computed on the GPU, while, due to the kernels involved in step 3, 4, and 5 (mainly
narrow matrix-vector products), these computations are better suited for the CPU.
Step 7 can be performed either on the CPU or the GPU, but in general, b will be
small so that this computation is likely better suited for the CPU.

Now, assume that the entire matrix resides in the GPU memory initially. We can
then proceed to compute the reduced form by repeating the following three steps for
each column block:

(a) Transfer column panel back from GPU memory to main memory. Perform
Operations 1on the CPU.

(b) Transfer Householder vector u from CPU to the GPU. Perform step 2 on GPU.
(c) Transfer z from GPU to CPU. Perform step 3, 4, 5, 6 and 7 on CPU.
(d) Transfer W from main memory to the GPU. Compute Operation 8 on the GPU.
Algorithm 4 gives in pseudo-code the GPU tridiagonalization algorithm, prefix

‘d_’, standing for device, before a matrix denotes that the matrix resides on the GPU
memory.

Algorithm  4 Blocking algorithm of tridiagonalization 
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Figure 33.3 illustrates the communications between the CPU and GPU for inner/
outer iteration during the tridiagonalization of matrix. The total communications
from CPU to GPU and from GPU to CPU are about 3(1+n)*n/2 and (n+1)*n in
algorithm 4, respectively.

33.5 Experimental Results

The performance results that we provide in this section use NVIDIA GeForce Tesla
c1060 GPU and a quad-core Intel Xeon running at 2.33 GHz. On the CPU we use
LAPACK and BLAS from MKL 10.0.0, and on the GPU using CUBLAS 2.3

Table 33.2 gives performance of transformation from generalized eigenproblem
to standard form on CPU and GPU. The basic implementation is for 1 core+ 1GPU,
and uses CUBLAS 2.3. The orders of test matrices are 3,000, 6,000, 8,000, 10,000
and 16,000, respectively. The results show that we achieve an enormous above 21×
speedup compared to the implementation running on 1 core in double precision.

Figure 33.4 shows the performance of the blocked tridiagonalization of symmetric
Matrices on CPU and GPU. The basic implementation is for 1 core + 1GPU, and
uses CUBLAS 2.1. The result shows that we achieve an enormous 16× speedup
compared to the implementation running on 1 core in double precision.
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Fig. 33.3 CPU/GPU communications for tridiagonalization in inner/outer iteration
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Fig. 33.4 Performance of CPU versus GPU about reducing matrix to tridiagonal form

Table 33.2 Performance of CPU versus GPU about transforming generalized eigenproblem to
standard

6000*6000 8000*8000 12000*12000 15000*15000

1 core 106.4 234 640 1604
1core+1 GPU 5.02 10.4 27.12 61.68
Speedup 21.2 22.5 23.6 26.2

33.6 Conclusion

We have evaluated the performance for both blocked transformation algorithm from
generalized eigenproblem to standard eigenproblem based on Cholesky decompo-
sition and the reduction algorithm of a dense matrix to tridiagonal form on GPU.
They are two main transformations for computing the generalized symmetric matrix
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eigenvalue. Experimental results on NVIDIA GeForce Tesla c1060 GPU using
CUBLAS clearly show the potential of data-parallel coprocessors for scientific com-
putations. The GPU acceleration of two algorithms achieves 16-fold and 20-fold
speedups in double precision respectively.

Acknowledgments This work is supported by the National Science Foundation of China (Grant
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Chapter 34
Using Mixed Precision Algorithm
for LINPACK Benchmark on AMD GPU

Xianyi Zhang, Yunquan Zhang and Lei Wang

Abstract LINPACK is a de facto benchmark for supercomputers. Nowadays, the
CPU and GPU heterogenous cluster becomes an important trendy of supercomput-
ers. Because of high performance of mixed precision algorithm, we had developed a
mixed precision high performance LINPACK software package GHPL on NVIDIA
GPU cluster. In this paper, we will introduce the recent work about porting and opti-
mizing GHPL on AMD GPU. On AMD GPU platform, we implemented a hybrid of
CPU and GPU GEMM function by ACML-GPU and GotoBLAS library. According
to our results, the speedup of GHPL over HPL was 3.21. In addition, we would point
out the limitations of ACML-GPU library.

34.1 Introduction

LINPACK is a de facto benchmark for supercomputers. Based on LINPACK bench-
mark, TOP500 website (http://www.top500.org) lists top 500 high performance
computers in whole world every half year. In TOP500 2010 Oct list, because of
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huge computational capacity of GPU, there are many CPU and GPU heterogeneous
supercomputer, for example, NUDT Tianhe-1A, Dawning Nebula and IPE Mole-8.5.

Nowadays, single precision floating operations are usually faster than double pre-
cision on CPU and GPU. Thus, many researchers studied on the mixed precision
algorithm which combined the single precision and double precision operations to
obtain the higher performance with the similar double precision accuracy. For exam-
ple, Moler (1967) and Wilkinson (1965) analyzed the mixed precision approach
which was suitable for many problems in linear algebra. Langou et al. (2006) pre-
sented their results of mixed precision algorithm for systems of dense linear equations
on CPU cluster and IBM CELL processor. Meanwhile, Kurzak and Dongarra (2006)
implemented the mixed precision LINPACK benchmark on IBM CELL processor.

In our previous work (Wang et al. 2010), we implemented the mixed precision
high performance LINPACK software package (GHPL) on CPU and NVIDIA GPU
heterogeneous cluster. In 32 NVIDIA Tesla C1060 GPUs, the average speedup of
GHPL over HPL is 3.06. In this paper, we will present our recent work about porting
and optimizing GHPL package on AMD GPU. The rest of this paper is organized as
follows. In Sect. 34.2 we review the mixed precision algorithm briefly. In Sect. 34.3
we describe our implementation and optimization on AMD GPU. In Sect. 34.4 we
analyze the performance of GHPL and Sect. 34.5 is our conclusions and the future
work.

34.2 Mixed Precision Algorithm for LINPACK
Benchmark

Figure 34.1 shows the mixed precision algorithm to solve the linear system in Langou
et al. (2006), Kurzak and Dongarra (2006), Wang et al. (2010). According to this
algorithm, the LU factorization of coefficient A which needs the most operations is
performed by single precision arithmetic. Moreover, it only requires using double
precision in the residual calculation and the iterative refinement of solution. There-
fore, the operations with time complexity O(n3) are executed in single precision
and the operations with time complexity O(n2) are performed in double precision.
The limitation of the mixed precision algorithm is that the condition number of the
coefficient matrix should not exceed the reciprocal of the accuracy of the single
precision.

34.3 Implementation on AMD GPU

In our previous GHPL (Wang et al. 2010), we already implemented mixed precision
algorithm such as LU factorization in single precision, solving Ly = Pb, iterative
refinement and convergence checking. Thus, we just needed move some computation
workload to AMD GPU.
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1: LU PA (SP )

2:solve Ly Pb (SP )

3:solveUx0 y (SP )

do k = 1, 2, ……..

4: rk b Axk 1 (DP )

5:solve L y P r k (SP )

6:solve U z k y (SP )

7: xk xk 1 zk (DP )

check convergence

done

Fig. 34.1 Mixed precision algorithm for Gaussian elimination. SP stands for single precision and
DP stands for double precision

Fig. 34.2 The hybrid of
CPU and GPU GEMM (The
shadow sub matrix workload
is executed on AMD GPU)
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GEMM subroutine is the bottleneck in both double precision HPL and mixed
precision GHPL software package. Likewise GHPL on NVIDIA GPU, we combined
CPU and AMD GPU to accelerate GEMM function as Fig. 34.2 shown. For example,
we split matrix B to sub matrix BC and sub matrix BG based on ratio R. Then, we
calculated CC on CPU and CG on AMD GPU.

On AMD GPU, we used ACML-GPU library provided by GPU vendor. How-
ever, this library only supported GEMM function running on GPU and other BLAS
subroutines were CPU version. Even worse, those CPU BLAS functions were single
thread. As a result, we cannot sufficiently exploit multi cores on CPU. Thus, we used
other optimized BLAS library GotoBLAS instead of ACML-GPU on CPU. Because
of the conflict of function definition in GotoBLAS and ACML-GPU, we changed
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Table 34.1 The
configuration of test bed

CPU AMD Phenom II X4 940 (3.0 GHz)
Memory 8 GB DDR2
GPU AMD Radeon HD 5850
OS Ubuntu 9.04
Compiler GCC-4.1.3
GPU BLAS library ACML-GPU 1.1
CPU BLAS library GotoBLAS2 1.13
MPI library OpenMPI 1.2.8

the interface of GotoBLAS by adding a postfix to every BLAS subroutine name.
Meanwhile, we modified the calling CPU BLAS codes in GHPL to use GotoBLAS
directly.

Furthermore, GEMM subroutine in ACML-GPU was a blocking function so that
it could not return immediately and called GEMM subroutine in CPU BLAS library.
To achieve GEMM running on CPU and AMD GPU at the same time, we used multi
thread technique to start a helper thread calling CPU GEMM function.

34.4 Performance Evaluation

As Table 34.1 shown, the test bed equipped with AMD quad cores CPU, AMD
Radeon HD 5850 GPU and 8 GB memory. We used GotoBLAS2 1.13 on CPU and
ACML-GPU 1.1 on GPU.

Firstly, we tested our hybrid of CPU and GPU GEMM function with different
ratio R and using different CPU BLAS threads in both single and double precision.
From Fig. 34.3 it can be observed that using 3 CPU threads could reach the best
performance on single and double precision square matrix multiplication. Thus, we
suspected that ACML-GPU library should use 1 CPU core to control GPU. When
we used 4 CPU BLAS threads, there would be a confliction making the performance
low. The optimal ratios of single and double precision were around 10 and 7.5 %,
respectively.

Secondly, we tested hybrid GEMM function with typical matrix multiplication in
LINPACK benchmark, which was multiplying (N −nb) × nb and nb × (N −nb+1)
matrices. In this workload, N presents the problem size and nb means block size.
Figure 34.4 shows us that the performance of calculating typical matrix multiplication
was significant slow than square matrices multiplication in both single precision and
double precision. Because of this issue of ACML-GPU implementation, it would
limit our GHPL performance.

At last, we compared our GHPL to double precision HPL software package which
also called our CPU and GPU hybrid DGEMM function to gain the benefit from AMD
GPU. Then, we tuned the input data file HPL.dat of HPL and GHPL on our CPU
and AMD GPU test platform. According to our results in Table 34.2, the speedup of
GHPL over HPL was about 3.21.
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(a)

(b)

Fig. 34.3 The hybrid of CPU and GPU GEMM performance on square matrices (m = n = k =
4096)

Fig. 34.4 The hybrid of CPU (3 CPU threads) and AMD GPU GEMM performance on typical
matrices of LINPACK benchmark(m = N−nb, n = N−nb+1, k = nb, N = 203040, nb = 1536)
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Table 34.2 Optimal results
of HPL and GHPL

T/V N NB P × Q Gflops

HPL R00R2C8 28160 1536 1 × 1 95.29
GHPL WR00R2R16 23040 1792 1 × 1 306.5

34.5 Conclusions

In this paper, we ported our previous mixed precision high performance LINPACK
software package GHPL to AMD GPU. By the hybrid of CPU and GPU GEMM
function, we could use AMD GPU to accelerate LINPACK benchmark. The speedup
of GHPL over HPL was 3.21 on our test bed. In addition, we analyzed the performance
of ACML-GPU library and figured out the limitation, low performance of multiplying
(N−nb) × nb and nb × (N−nb+1) matrices which was used in updating tail matrix
step in HPL.

In future, we could try other AMD GPU BLAS library such as GATLAS (http://
golem5.org/gatlas/) and AAPPML (http://developer.amd.com/gpu/appmathlibs/
Pages/default.aspx) to improve the performance. Meanwhile, we could apply adap-
tive tuning technique to fine the optimal ratio R based on the variable workload.
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Chapter 35
Parallel Lattice Boltzmann Method
on CUDA Architecture

Weibing Feng, Wu Zhang, Bing He and Kai Wang

Abstract In this article, an implementation of 2D Lattice Boltzmann Method by
CUDA is presented. The simulation has been finished by GPU very well, which has
the latest core Tesla C1060. From the results, the speedup of simulation on GPU is
30 times more than on a CPU, and the summit speedup is 41 times.

Keywords CUDA · Lattice Boltzmann Method

35.1 Introduction

Since 2003, there were many implements of complex computation by GPU. In the
early time, somebody used graphics APIs and Cg language to manipulate the GPU
operator in order to compute the data from memory which had stored in the Video
RAM. From that way, they have gotten 4.6 times faster than their CPU cluster imple-
mentation (Fan et al. 2004). After the CUDA-enable GPU having been designed
by Nvidia Corporation, more and more applications had been finished on this kind
of GPU. Multilevel memory architecture and multi-threads parallel computation
method bring flexible programming ability to us. Somebody have used GPU to get
more than 10 times faster than their CPU implementation in some computation fields.
Such as, Daniel Cederman and Philippas Tsigas had finished the GPU-Quicksort by
CUDA-enable GPU (Daniel Cederman et al. 2008), Gunther etc had shown a method
allowing ray tracing with CUDA (Gunther et al. 2007), Aspuru-Guzik had completed
computational chemistry using GPUs (Leslie Vogt et al. 2008), and so on.

Due to the facts that Lattice Boltzmann Method operate on a finite difference grid,
are explicit in nature and require only next neighbor interaction they are very suitable
for the implementation on GPU. A speedup of at least one order of magnitude could be
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achieved by a GPU compared to an implementation on a CPU. Applications for LBM
simulations in graphics hardware range from real-time ink dispersion in absorbent
paper (Nelson et al. 2005), dispersion simulation and visualization for urban security
(Qiu et al. 2004), simulation for soap bubbles (Wei et al. 2004), melting and flowing in
multiphase environment (Zhao et al. 2006) and visual simulation of heat shimmering
and mirage (Zhao et al. 2007).

This paper is organized as follows: Sect. 35.2 illustrates the architecture of CUDA
and the performance of Tesla C1060 which will be used in the experiments. Sect. 35.3
introduces the Lattice Boltzmann Method and the D2Q9 model. In sect. 35.4, we
detail the simulation algorithm of LBM and the program frame. Sect. 35.5 presents
the experiments’ results and the analysis of them.

35.2 The CUDA of Nvidia

35.2.1 Introduction of CUDA

CUDA, which is short for Compute Unified Device Architecture, has been designed to
complete parallel computation with GPU by Nvidia Corporation. Users can through
a new programming interface to complete computationally intensive applications
with GPU. The parallel computation programs can be strongly simplified by using
the standard C language and some C extension APIs. CUDA Toolkit give users
some complete software development solutions for programming CUDA-enabled
GPU, such as standard FFT and BLAS libraries for GPU. CUDA programs are
transplantable among almost all Operating System, such as Windows, Linux and
Mac OS (Nvidia 2001). We used the version 2.0 for this application.

35.2.2 Efficient Parts in CUDA

CUDA has a lot of APIs for GPU computation, which are all C language extension.
But a small subset of the APIs following needed for our LBM kernel program is
discussed. The GPU is looked as a parallel computation device which can execute a
large number of threads in the same time. The CPU controls the whole program as a
host and calls the GPU to do some computation jobs. After the parallel computation
job being finished, CPU uses the result to do other things. When the GPU is running
the parallel program, CPU can do other things at the same time. Both the host and
the device maintain their own DRAM, named as host memory and device memory,
respectively. Users can transport the data from one DRAM to another, such as host
to host, host to device, device to host or device to device. And one procedure only
needs optimized API calls that utilize the device’s high performance Direct Memory
Access (DMA) engines.

There are two most important design thoughts in CUDA. One is the layout of
threads. Threads in GPU are divided into grids, and every grid is divided into blocks.
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The size of grid and blocks could be set in the front main function of a CUDA
program. Usually, the size of height and width in grid or block are the same, so that
could provide an easy way to calculate the number of threads in a grid or block.
A thread block is a batch of threads that can cooperate together by sharing data in
shared memory. And they are all finish their tasks under the specifying instruction of
synchronization API in the kernel function. Every thread is identified by its thread
ID, which can be calculated from grid ID, block ID and the width and height of
computation area. An application can specify a block as a 2D or 3D array and
identify each thread using a 3-component index. The layout of a block is specified in
a function call to the device by a variable type dim3, which contains three integers
defining the extensions in x, y, z. If the block’s dimension is 2, the component z can
be omitted. There is a limit that a block can contain maximum 512 threads in the
current CUDA version. In the program, we partition the running threads by block
size and run these threads by kernel functions.

The other important role is the multilevel device memory. There are four levels
memory on the chip of GPU. The global type memory is like the CPU DRAM, and
every thread could access data from global memory. There is a special memory for
graphics storage named texture memory, but users only can read data from it. The
shared memory can be used as a faster DRAM in each thread block, and every thread
in this block can access it. Threads in one block can access the same data in shared
memory. In this way, the data in shared memory can be reuse instead of access from
global memory to improve the efficient of computation. There are lots of register for
each thread, these register only prepare for one thread as a local memory. In the kernel
function, the declared variables are stored in the registers to provide the fastest access.

35.3 Lattice Boltzmann Method

Lattice Boltzmann Method is a numerical method to solve the Navier-Stokes equa-
tions, which have a remarkable ability to simulate single and multiphase fluids
(Michael et al. 2006). Lattice Boltzmann models vastly simplify Boltzmann’s orig-
inal positions and microscopic momentums from a continuum to just a handful and
similarly discrete time into distinct steps. Because Lattice Boltzmann Method has
some advantages, such as flexible geometrical characteristic, natural parallel, easy
to be implement and high precision (Guo Zhaoli et al. 2002).

There are equations to describe the method as follow (Guo Zhaoli et al. 2002):

ρ =
8

∑

a=0

fa, (35.1)

u = 1

ρ

8
∑

a=0

faea, (35.2)
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Fig. 35.1 D2Q9 model has 9
velocity directions

stand for the density of fluid and the velocity vector respectively,

fa(x+ ea�t, t +�t) = fa(x, t)− [ fa(x, t)− f eq
a (x, t)]

τ
, (35.3)

is BGK relaxation function for the collision, where [ fa(x,t)− f eq
a (x,t)]

τ
becomes to the

collision item. Though they can be combined in a simple procedure, collision and
propagation steps must be separated when the solid boundary comes up, for the
rebound boundary condition is a separate collision. The balance status distributing
function is as follow:

f (eq)
a = ωaρ

[

1+ ca · u
c2

s
+ (ca · u)2

2c4
s
− u2

2c2
s

]

, (35.4)

In this equation, cs = c/
√

3, ωa stands for the weight coefficient which concerns the
discrete velocity vector.

In our implementation, we use D2Q9 model which has 2 dimensions and contains
9 velocities, as following: (Fig. 35.1)

Each direction has its collision equation and sub-velocity propagation direction.
After finishing each iterative step, there is a formula to calculate the density and
velocity of each lattice. And the density and velocity are used to calculate the equate
equilibrium function, which is for updating the lattice’s status.

35.4 Simulation of 2D Square Cavity Fluid

In our experiments, we choose a classic fluid to simulate which is 2D square cavity
fluid. There is a flow inlet boundary in this model, other three boundaries are solid.
This inlet with a low velocity drives the whole calm fluid in square cavity in order
to change the old condition to the new. When the newer condition has tiny change
from the old one, this fluid could be treated as a stable fluid. In this paper, we are
mainly talking about the speedup of simulation with GPU instead of how to get final
stable fluid. Certainly, the speedup stands for the computation speed a GPU than a
CPU under the precondition of correct result.
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There are four steps in the main stream:

• allocate the memory on CPU and GPU, initial data on CPU and GPU;
• set the grid size and block size;
• simulating the fluid in an iterative procedure;
• get the result from GPU and free the memory on CPU and GPU.

Each iterative procedure can be divided into:

• Collision kernel function;
• copying data on GPU;
• Propagation kernel function;
• storing data as the next step’s initial data.

Because threads in one block running at the same time and transporting the velocity
from one to another will cover the nearby lattice in the propagation step. So we need
allocate two same size memory blocks to store the whole fluid, one block set as the
resource and one set as the destination.

In the Collision kernel function, we need judge the thread ID whether on the
boundary or not in order to set the correspond values to computation equations. In
the solid boundary part, we use the rebound format to exchange the data in opposite
direction.

In the Propagation kernel function, we use the two memories to set as the resource
and the destination. After propagating the velocity, we should copy the data in des-
tination to the resource one to keep they be the same, and set the resource one as the
next collision’s initial data, set the destination one as the next propagation’s target.

35.5 Experiments

35.5.1 Hardware Platform and Software Platform

We use the Tesla C1060 GPU on the HP workstation 8600 to complete this applica-
tion. Tesla C1060 has a GTX280 GPU core of 240 multiprocessors and 4 GB video
memory. The bit width of this device is GDDR3 512bit, the video bandwidth is
102 GB per second and the frequency of memory is 800 MHz (Nvidia 2001).

There are four CPU cores on this workstation, each of them is Xeon E5410
2.66 GHz.

In this experiment, we use CUDA 2.0 Toolkit final vision and CUDA SDK 10
vision under the Linux operating system. The stream line pictures are painted with
ParaView Vision 3.2.

35.5.2 Experiment Results Under GPU Comparing With CPU

There are two pictures to show the same simulation results after 10,000 iterative
steps with grid 256× 256 from CPU and GPU respectively: (Fig. 35.2)
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Fig. 35.2 The left is CPU, the right is GPU, and they are the same (Re = 50)

Table 35.1 Speedup of GPU-CPU after 10,000 iteration steps

GPU-CPU Speedup

Grid size of fluid 256×256 512×512 1024×1024 2048×2048
GPU 4 18.67X 19.17X 14.24X 12.21X
Block 8 26.97X 29.34X 24.89X 19.58X
Size 16 31.15X 41.20X 41.65X 32.11X

There is a table show the partial result from our experiments which include the
fluid grid 256× 256, 512× 512, 1024× 1024. The sizes of grids are the multiple of
16 in order to match the blocks fully which is the best size to be divided the threads’
grid in these experiments. And the block including 256 threads is the nearest size
under maximum limit 512 threads per block. (Table 35.1)

From the tables, we can get the maximum GPU-CPU speedup is 41. And the
speedups of each kind of grid size are the same between different iteration steps.
So we can get the conclusion that the iteration steps can’t impact the speedup, and
the block size 16 is the best to divide the thread grid, and under the block size 16
the speedups are more than 30X. In this way, we can save much time to simulate a
2-dimension fluid.

35.6 Conclusions

In this paper, we have introduced a way to simulate 2D square cavity fluid in Lattice
Boltzmann Method by using CUDA-enabled GPU Tesla C1060. From the results,
we can get well speedup of GPU to CPU. Although our D2Q9 model of LBM
using rebound format to solve the fluid boundary, we believe that computation of
the boundary solution format the more flexible the more speedup of GPU to CPU
we can get. At the end of December of 2008, CUDA had been a part of OpenCL
being established by (KHRONOS 2003) , which is an industry consortium creating
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open standards for the authoring and acceleration of parallel computing, graphics
and dynamic media on a wide variety of platforms and devices. And we believe GPU
will play an important role in parallel computation.

Appendix: The kernel Function of Computing Collision
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Chapter 36
Iterative Deblurring of Large 3D Datasets
from Cryomicrotome Imaging Using an
Array of GPUs

Thomas Geenen, Pepijn van Horssen, Jos A.E. Spaan, Maria Siebes
and Jeroen P.H.M. van den Wijngaard

Abstract The aim was to enhance vessel like features of large 3D datasets (4000×
4000 × 4000 pixels) resulting from cryomicrotome images using a system specific
point spread function (PSF). An iterative (Gauss-Seidel) spatial convolution strategy
for GPU arrays was developed to enhance the vessels. The PSF is small and spatially
invariant and resides in fast constant memory of the GPU while the unfiltered data
reside in slower global memory but are prefetched by blocks of threads in shared
GPU memory. Filtering is achieved by a series of unrolled loops in shared memory.
Between iterations the filtered data is stored to disk using asynchronous MPI-IO
effectively hiding the IO overhead with the kernel execution time. Our implementa-
tion reduces computational time up to 350 times on four GPU’s in parallel compared
to a single core CPU implementation and outperforms FFT based filtering strategies
on GPU’s. Although developed for filtering the complete arterial system of the heart,
the method is general applicable.

36.1 Introduction

Cardiovascular disease, currently one of the leading causes of death in western soci-
ety, attracts a significant amount of research devoted to early diagnosis and further
disease prevention. Coronary artery disease and ensuing myocardial infarction often
result from atherosclerosis which causes gradual narrowing of the vascular lumen.
In case of gradual under-perfusion and development of tissue ischemia, the vascular
architecture of the coronary arterial tree may alter, leading to sprouting and outgrowth
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of new vasculature and growth of coronary collateral vessels connecting areas with
sufficient tissue perfusion with areas that have insufficient perfusion.

To study coronary arterial tree organization, an imaging cryomicrotome was pre-
viously developed at the Department of Biomedical Engineering and Physics of
the Academic Medical Center, University of Amsterdam (Spaan et al. 2005). With
this imaging technique, the full arterial vascular tree of the myocardium can be
imaged up to the arteriolar level. In this procedure, the vascular tree under investiga-
tion is cannulated, flushed with buffered saline and filled with a fluorescent plastic
penetrating the arterial vessels up to approximately 10 µm. Subsequently, using a
dedicated light source equipped with a corresponding excitation filter for the fluo-
rescent replica material and an emission filter for the CCD camera, a thin slice of
preset distance, e.g. 25 µm, is cut from the frozen sample after which a high resolu-
tion image is obtained from the remaining bulk material. These images can then be
recombined as a 3 dimensional stack to represent the coronary arterial architecture.
Since the imaging cryomicrotome has become available, it is possible to study the
coronary circulation with increased resolution and across a variety of scales yielding
high resolution 3 dimensional datasets. Important clinical applications involve the
study of the growth of coronary collaterals in the diseased or failing myocardium
(van den Wijngaard et al. 2010) as well as the perfusion heterogeneity illustrated by
the distribution of fluorescent labeled microspheres (van Horssen et al. 2010).

The cryomicrotome images currently obtained measure 4000×4000 pixels, yield-
ing 25 µm× 25 µm× 25 µm cubic voxels. One dataset, describing an entire pigmy-
ocardium, may therefore comprise about 6.4×1010 voxels. Subsequent data analysis
includes the iterative filtering, dark current removal and the subsequent thinning of
the vascular tree medial lines to obtain vascular centerlines (Palágyi 1998), thereby
obtaining the topologically representative vascular tree skeleton. Currently, the
enhancement and filtering of the uncompressed raw data is a time consuming process,
which may take several days on a designated high end desktop personal computer.

We are able to reduce the end-to-end runtime for these operations to the order of
minutes, a speedup of ca. 350, by using an iterative deblurring filter, implemented
on an a array of GPU’s. The skeletonization is not implemented on GPU hardware
since efficient 3D skeletonization algorithms take already on the order of minutes to
process an image stack (Palágyi 1998) and are typically IO bound, spending most of
the walltime in reading images to and from disk, rendering them unsuitable for GPU
acceleration.

36.2 Method

To filter stacks of images obtained from a cryomicrotome, we propose to use an
iterative deblurring method using the PSF associated with light diffraction in the
sample during imaging of the fluorescent vessels (Rolf et al. 2008). The operation
of the PSF on an image can be written as Ax = b, with x the original image, b the
blurred image and A the filter operator, PSF.
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We obtain b from the cryomicrotome and reconstruct x, the original image, by
applying several Gauss-Seidel type iterations, Eq. 36.1.

xk+1
i = 1

aii

⎛

⎝bi −
∑

j>i

ai j xk
j −

∑

j<i

ai j xk+1
j

⎞

⎠ , i = 1, 2, ..., n (36.1)

By definition aii is one and as a result of the cutting away of slices during the
data acquisition A is asymmetric, effectively reducing the number of operations per
iteration by half. This results in the following iterative scheme, Eq. 36.2.

xk+1
i = 1

aii

⎛

⎝bi −
∑

j>i

ai j xk
j

⎞

⎠ , i = 1, 2, ..., n (36.2)

Since we now no longer have to deal with the case j < 1 we have an iterative method
that can be trivially implemented in parallel. The filter operation can be written as a
matrix vector product, Eq. 36.2, and performed in the spatial domain, or the PSF can
be written as a vector f and the filter operation as a convolution f ∗ x. Convolution
operations are usually executed in the spectral domain since efficient transformation
routines to the spectral domain (FFT) are readily available and the computational
complexity is low, order O((34/9)n · log2(n)) for a filter operation in the spectral
domain (Frigo and Johnson 2005), with n the number of pixels. The computational
complexity of spatial convolution increases with increasing filter size k as order
O(k · n). This renders spatial convolution more expensive when the filter length is
larger than 34/9 · log2(n), usually several tens of entries (Fialka and Cadik 2006).

36.3 Implementation

36.3.1 Iterative Spectral Deconvolution

Deconvolution filters in the spectral domain are known to introduce artifacts in the
filtered data since part of the spectrum that is filtered out was part of the unfiltered
data (Theußl et al. 2000). This is especially relevant when sharp contrasts in intensity
are present in the unfiltered data, since these sharp contrast usually are represented by
a broad spectrum. In the presented case, ringing may occur, leading to false detection
of spurious vessel remnants, Fig. 36.1.

To prevent ringing from occurring, the filter in the spectral domain has to be
supplemented with an anti-ringing filtering step. The latter operation is an additional
step compared to a filter in the spatial domain, since filtering in the spatial domain
does not introduce ringing artifacts.
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Fig. 36.1 Examples of ringing artifact after filtering without anti-ringing operation. The raw cry-
omicrotome data (left panel) display several arteries in crossection with sharp contrasts in intensity.
After filtering in the spectral domain (right panel), ringing artifacts are visible. The lower arrow
points at ringing that results in a breakup of the artery outer boundary. The upper arrow shows a
typical sequence of lighter and darker bands around a sharp pixel value contrast

Apart from an increased computational load due to a more complex filter, there is
an additional computational concern in spectral domain filtering of very large datasets
that do not fit in GPU device memory. Since spectral transformations implicitly
assume periodicity of the dataset, a periodic or reflective expansion of the data subset
is required when this periodicity requirement is not met. In case of a dataset of
4000× 4000× 4000 pixels, represented as floats in the spectral domain, more than
256 GB of data is required. Assuming all operations are performed in place and
mirroring the data will increase the amount of data by a factor of 2 per slice, the data
needs to be divided in 128 slices to fit the 4 GB of device memory per GPU available.
In case the data is divided in blocks, the amount of data increases even 8 fold and
the number of operations will increase up to 2–8 times.

An alternative strategy, common in parallel 3D FFT implementations (Dmitruk
et al. 2001), is to perform a global transformation where first each slice in 2D is
transformed followed by a subsequent 1D transformation in the z-direction. The
downside of this approach, when implemented on GPU’s, is the number of times the
data has to be transported to and from the device. In detail, first the integer pixel data
have to be read from disk, loaded on the device and transformed (2D FFT). Second,
these data have to be copied back to the host and stored to disk. Third, the data have
to be read from disk and loaded back to the device, transposed, transformed in the
z-direction (1D FFT), filtered, copied back to the host and fourth, written to disk.
Per pixel we need therefore four disk IO operations and four host-device transfers,
compared to only two for a spatial convolution. This is even more prohibitive since
the data is of float type during most of the data transfer operations occupying two to
four times more space compared with raw pixel data, stored as 8-bit integers.
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From the literature (Wendykier 2009), it is clear that the amount of time spent in
transferring data to and from the device cannot be masked by the FFT execution
time, especially for higher dimensional transforms. Additional time needed for file
IO, will further increase time consumption, making the filter operation IO bound
thus reducing the speedup potential.
As an alternative we propose a filter operation in the spatial domain that can be
efficiently implemented on GPU hardware and requires a minimal amount of data
transfer operations.

36.3.2 Iterative Spatial Deconvolution

Filtering data in the spatial domain does not introduce the artifacts described in
the previous section. We can therefore implement a straightforward convolution
algorithm on the GPU that will be iterative applied as ai j in Eq. 36.1.
Implementation details The filter operation is illustrated in Fig. 36.2. Stacks of
images are read in the background using MPI-IO and subsequently loaded to the
GPU for filtering.

The filter operation is performed as a series of unrolled loops (Abrash 1989) in
shared memory by blocks of 16×16 threads simultaneously (Podlozhnyuk 2009). The
size of our kernel, number of threads and the requested resources per thread allow
for maximum occupancy of the multiprocessors, Table 36.1. Ensuring maximum
occupancy of the multiprocessors allows the thread scheduler to hide latencies by
activating threads of other blocks (Nguyen 2007).

The PSF is stored in constant memory. The constant memory is a cached part of
global memory of 16 KB, allowing for a considerable PSF size. If threads in a warp
(a group of threads running on the same multiprocessor) access the same constant
memory entry, as is the case in our implementation, it is as fast as accessing a register
(Nguyen 2007).

Blocks of threads load the pixel data to shared memory. Since threads can exchange
data in shared memory, we need only to load part of the pixel dataset per thread to
have access to all pixel data needed during the filtering operation. Finally by having
neighboring threads access neighboring pixels, strided memory access is prevented
(Nguyen 2007).

As is clear from the description of our algorithm, convolution in the spatial domain
allows to take full advantage of the computational resources on GPU hardware.

36.3.3 Asynchronous IO

Dealing with datasets that do not fit in system memory requires efficient disk IO
methods to be implemented. We use asynchronous IO from the MPI-IO library, i.e.
MPI_File_iwrite_at andMPI_File_iread_at. We show in Figs. 36.3 and
36.4 that we can effectively hide the IO with the kernel execution time. Figure 36.2
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Fig. 36.2 The 3D dataset is deblurred in the spatial domain on multiple GPU’s in parallel. Com-
munication between GPU’s is handled with MPI. After the application has been started and MPI
initialized, we read the first stack of 2D images. When these images have been read, the data is
written to the gpu and the next stack of images is read in the background with MPI_File_iread_at.
After each iteration the data is normalized per stack to prevent integer overflow during the filter
operation. In subsequent iterations a global normalization is performed with the global maximum
pixel value. During the first iteration a so called dark current is construct. A dark current captures
artifacts of the imaging system that are consistent features over a large number of slices. These
artifacts are identified during the first iteration. In the next iteration these artifacts are subtracted
from the data. After a stack of images is filtered the filtered data is written to disk in the background
using MPI_File_iwrite_at, thus effectively hiding file IO both during read and write operations
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Table 36.1 Occupancy for our GPU implementation

Threads/B, Registers/T, Shared memory/B, Treads/M, Warps/M, Thread blocks/M

256 16 3272 1024 32 4

The size of our kernel, number of threads and the requested resources per thread allow for maximum
occupancy of the multiprocessors. B Block, T Thread, M Multiprocessor

illustrates that IO is hidden with kernel computing time, by reading and writing
consecutive blocks of data in the background while the GPU kernel is running. This
is further facilitated by the spatial locality of the filter kernel, allowing us to read
contiguous blocks of pixel data from disk.

36.4 Results

Comparing performance characteristics of an application implemented on both GPU
and CPU hardware is easily biased by experimental setup decisions. Notably the
choice of CPU and GPU platform as well as choice of optimization flags and the
effort spent in optimizing the code, can influence relative performance significantly.
We present performance characteristics of our GPU implementation with respect to
an application that we consider representative for a sequential CPU implementation,
Table 36.2.

For the spectral deconvolution we compared our GPU application with an effi-
cient spectral implementation (Wendykier and Nagy 2008) where we considered
only those parts of the application that can be considered part of the filter kernel in
the CPU application. We took this approach since we did not optimize the IO for
the CPU implementation as we did for the GPU implementation. Figures 36.3 and
36.4 illustrate that there is sufficient computational complexity in the filter kernel to
mask the data transfer operations. Scaling characteristics for an increasing number
of GPU’s are presented in Figs. 36.5 and 36.6 showing almost optimal end-to-end
walltime scaling for the application, for different problem sizes. The parallel effi-

Table 36.2 Speedup results for our GPU implementation relative to a CPU based spatial and
spectral filter implementation

Image size CPU spatial CPU spectral GPU (Tesla M1060) GPU (gtx 285/295) Speedup

1002 0.01 0.14 0.629× 10−4 159
8002 0.52 0.86 0.22× 10−2 0.16× 10−2 325
20002 3.32 4.8 0.13× 10−1 0.925× 10−2 359
40002 13.33 0.578× 10−1 0.398× 10−1 334

The CPU experiments were performed on a AMD Phenom II X4 995 CPU at 3.2 GHz. The spatial
convolution was implemented in fortran and compiled with gfortran with optimization flags: -O3
-mtune=athlon64-sse3 –fast-math -unroll-all-loops. For the spectral implementation we refer to
Wendykier and Nagy (2008)



580 T. Geenen et al.

1 42

number of GPU cores

0.02

0.03

0.06

0.12

0.25

0.50

1.00

w
al

lti
m

e 
(s

ec
on

ds
)

GPU kernel execution time
data transfer between host and device
file IO

Fig. 36.3 Relative walltime for GPU kernel execution, data transfer between GPU and motherboard
and file IO, for a stack of 100× 800× 800 pixel images. We show that kernel execution time is by
far the most computational demanding operation if we overlap kernel execution time with file IO.
These experiments were preformed on a TeslaM106 platform
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Fig. 36.4 Relative walltime for GPU kernel execution, data transfer between GPU and motherboard
and file IO, for a stack of 100× 4000× 4000 pixel images. We show that kernel execution time is
by far the most computational demanding operation also for this problem size. These experiments
were preformed on a TeslaM106 platform
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Fig. 36.5 Strong scaling relation for a stack of 100 × 800 × 800 pixel images. We show that our
application scales almost optimal up to four GPU’s in parallel. Both the GPU kernel as well as all
other parts of the filter kernel show near linear scaling, as can be seen from the parallel trend of
the GPU kernel speedup compared to the speedup for a complete Gauss-Seidel iterations. Closed
symbols represent experiments on a TeslaM106, open symbols experiments on gtx-285 type cards.
The parallel efficiency for the experiments on these hardware platforms are 86 and 94 % respectively
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Fig. 36.6 Strong scaling relation for a stack of 100× 4000× 4000 pixel images. Again we show
that parallel scaling is almost optimal both for the GPU kernel as well as for the other parts of the
filter kernel. Closed symbols represent experiments on a TeslaM106, open symbols experiments on
gtx-285 type cards. The parallel efficiency for the experiments on these hardware platforms are 93
and 86 % respectively
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ciency of the GPU kernels are between 86 and 94 %. We define parallel efficiency as
Ep = Ts

Tpn × 100 % (with Ts the walltime for the sequential run, Tp the walltime for
the parallel run and n the number of processing cores).

36.5 Discussion

We showed that a spatial deconvolution algorithm using the PSF can efficiently be
implemented on graphics hardware using Cuda. We ran our application on a number
of GPU’s in parallel using MPI to exchange data between GPU’s but also for the
asynchronous IO methods that are provided by the MPI-IO library. Filtering in the
spatial domain ensures data locality during the filter operations, resulting in a fast
computational kernel. The data locality of the filter kernels allows prefetching data
from disk in the background using asynchronous read and write operations from the
MPI-IO library. In addition, this is effectively hidden by kernel execution time. Data
prefetching can also be employed during the kernel execution on the GPU where
blocks of threads prefetch data to shared memory, used during the filter operation.

We demonstrated that optimal scaling relations with increasing number of GPU’s
result in over 350 times reduction in end-to-end walltime for the filter operation
compared to a single core CPU implementation.

The reduction in walltime allows for the fast reconstruction of the deconvolved
three dimensional vascular bed from cryomicrotome image stacks and the reduction
in computational time from several days to a few minutes allows for filter parameter
optimization. This is especially relevant since a priori information about optimal filter
parameters can be unavailable, requiring a series of filter operations with different
settings to determine optimal filter configuration. Although developed for imaging
the complete arterial system of the heart, the method is general applicable to medical
imaging.

Appendix

We present some code snippets to illustrate the implementation of both the Cuda
kernel and asynchronous MPI-IO. The general structure of the application is given
in Fig. 36.2.
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First we start reading a stack of images in the background.

Asynchronous IO

Then we loop over images in the stack and filter them. After the filter operation,
we scale the images on the GPU to prevent integer overflow from occurring (we
use unsigned chars with an integer addressing space of 255). This operation can be
combined with other simple operations such as the removal of camera imperfections,
i.e. dark current, etc. After the filter operation we write the filtered data to file in the
background. In the mean time we start reading the next stack of images. Before each
filter operation we wait for the file read operations to be finished. Such a sequence
looks in simplified form like:

Main loop

The GPU filter kernels for the Gauss-Seidel deblurring using the PSF is given in
the next source-code snippet. This kernel is given in its full form in contrast to the
more simplified form in which we presented the main loop.
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Spatial convolution kernel
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Chapter 37
WebViz: A Web-Based Collaborative
Interactive Visualization System
for Large-Scale Data Sets

Yichen Zhou, Robin M. Weiss, Elizabeth McArthur, David Sanchez,
Xiang Yao, Dave Yuen, Mike R. Knox and W. Walter Czech

Abstract We have created a web-based system for multi-user collaborative
interactive visualization of large data sets (on the order of terabytes) that allows users
in different locations to simultaneously and collectively perform visualizations over
the Internet. By leveraging an asynchronous java and XML (AJAX) web development
pattern via the Google Web Toolkit (http://code.google.com/webtoolkit/), we are able
to provide remote users a web portal to the University of Minnesota’s Laboratory for
Computational Sciences and Engineering’s large-scale interactive visualization sys-
tem that provides high resolution visualizations to the order of 15 million pixels. Our
web application, known as WebViz (for Web-based Visualization System), provides
visualization services “in the cloud” and is accessible via a range of devices including
netbooks, smartphones, and other web-and JavaScript-enabled mobile devices. This
paper will detail the history of the project as well as the current version of WebViz
including a discussion of its implementation and system architecture. We will also
discuss features, future goals, and our plans for increasing scalability of the system,
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which includes a discussion of the benefits potentially, afforded us by a migration of
server-side components to the Google Application Engine (http://code.google.com/
appengine/).

37.1 Introduction

With the coming of larger and faster multicore and massively parallel computers to
the market, coupled with the introduction of general purpose manycore GPU com-
puting, the amount of data being produced by the scientific community in recent
times and into the future is on a steep rise. We now must face the realities of visual-
izing large amounts of data or being drowned by the sea of unprocessed information.
With a typical 3D simulation of convection in a system of 1000 × 1000 × 1000
grid points yielding several Terabytes of data, the challenge becomes how we can
visualize the output in an efficient and productive manner that allows for communi-
cation and sharing amongst collaborators. The coming challenges are indeed quite
daunting when considering the drive for Petascale computing Dunning et al. (2009).
To successfully visualize such large data sets, as well as to be able to make these
visualizations accessible to the widest possible audience, the traditional methods of
post-processing must be abandoned. For this reason, we have begun exploring the
possibilities of a new approach—real-time interactive visualization. (Woodward et
al. 2007; Damon et al. 2008; Greensky et al. 2008; McLane et al. 2008, 2009)

Our visualization system called WebViz, builds upon existing work done in the
area of large-scale visualization at the Laboratory for Computational Sciences and
Engineering (LCSE) at the University of Minnesota. Over the past 15 years and under
the direction of Professor Paul R. Woodward, LCSE staff has constructed a visual-
ization system consisting of 13 rendering nodes which collectively drive LCSE’s
PowerWall, a rear-projection display system capable of producing an overall reso-
lution of 15 million pixels. Elder et al. (2000) This system runs custom hierarchical
volume rendering software described in Porter (2002) and Porter et al. (2002), and
has been employed primarily for visualizing data from simulations in astrophysics
and geophysical fluid dynamics. The work we have done on WebViz is similar to that
described by Billen et. al. in (2008) regarding the CAVE project which aims to bring
immersive VR visualization to a broader audience by developing software that can be
run on a large variety of platforms. In our case, we utilize a web-based approach for
expanding the user-base of LCSE’s interactive visualization system with the WebViz
web application.

By providing large-scale visualization services “in the cloud”, scientists are able
to leverage LCSE’s visualization system from anywhere in the world. Sotomayor
et al. (2009) Furthermore, being a web-based system built on Java technology, Web-
Viz is almost completely platform-independent and is accessible from any JavaScript
enabled web-browser including those on iPhones and a host of other mobile devices.
The WebViz project fully embraces the “Web 2.0” spirit of user-centric software
design and was developed to not only be a visualization tool, but also a system

http://code.google.com/appengine/
http://code.google.com/appengine/
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for collaboration and information sharing between users. Ubiquitous and collab-
orative interactive visualization is the primary objective of the WebViz project.
Greensky et al. (2008); McLane et al. (2008, 2009)

In the current version of our software, we have implemented a new, highly exten-
sible back-end framework built with Google Web Toolkit (GWT), and HTTP “server
push” technology to provide a rich collaborative environment and a smooth end-user
experience. The current version of the system allows users to (1) launch multiple
visualizations, (2) invite other users to view their visualization in real-time (multiple
observers), (3) delegate control aspects of the visualization session to others (mul-
tiple controllers), and (4) engage in collaborative chat and instant messaging with
other users. These features are all in addition to a full range of essential visualiza-
tion functions including 3-D camera and object orientation/position manipulation,
time-stepping control, and custom color/alpha mapping.

This paper will provide an explanation of how we went about implementing the
WebViz system. In Sect. 37.2 we discuss the hardware that comprises the backbone of
our system. Section 37.3 presents past work, previous versions, and the history of our
project. Section 37.4 details the current version of our software and provides an expla-
nation of the overall manner of operation and implementation. Finally, Sect. 37.5 lists
future improvements and additional features we would like to implement in the sys-
tem, addresses some known issues and limitations, and discusses our effort to make
WebViz a true cloud-computing solution by utilizing the Google Application Engine
cloud-computing framework.

37.2 Review of Hardware

The visualization system in the LCSE was originally developed as a system to
drive the PowerWall display in 1994. This interactive display system consists of 12
projectors which deliver an overall resolution of 15 million pixels to a three panel
semi-immersive rear projection wall Elder et al. (2000). This system is different in
technical objectives from the much larger display system at the San Diego Super-
computer Center, which has the capability of displaying 285 million pixels. Over the
past four years LCSE’s system has been improved and developed under NSF grants
with the intended purpose of providing researchers with an on-demand resource
for interactive computation and simultaneous visualization. A diagram of LCSE’s
system architecture can be seen in Fig. 37.1.

We are currently in the process of developing the interactive computation side of
this visualization system. Over this past year we purchased six IBM Cell processor
Tri-Blades—the same blades which compose the RoadRunner supercomputer at
the Los Alamos National Laboratory. These blades are comprised of two dual Cell
processor blades connected to one dual dual-core AMD Opteron blade. The blades
are interconnected with a DDR Infiniband fabric. We have also purchased 24 dual
quad-core Intel Nehalem processor nodes. These nodes will each have two Nvidia
Tesla GPUs and 12 of the nodes will have 24 TB of locally attached disks, with all
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Fig. 37.1 LCSE system architecture. It should also be noted that there is an Infiniband interconnect
to the local supercomputing system at the University of Minnesota which have a present capability
of around 100 TFlops

of the nodes connected via a QDR Infiniband fabric. When in use, this system can
compute a simulation using a combination of the Tesla GPUs, Intel/AMD CPUs, and
Cell processors. While the simulation is running, the output can be visualized and
analyzed using the PowerWall or the WebViz system. The unique capabilities of this
system give researchers the ability to monitor the progress of their simulation, modify
it if necessary, and quickly find the answers to their questions. When computing
a problem of appropriate size (those that only take a few hours to compute) this
system can be used interactively. We have demonstrated this capability at the several
international Supercomputing conferences over the past three years.

For simulations of higher resolution we have connected the above described
system to the multi-thousand core machines in the Minnesota Supercomputing
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Institute (MSI). While a simulation is running on one of MSI’s large machines the
data can be streamed out of the compute nodes and across a 20 GB/s DDR Infiniband
link to the systems and disks in the LCSE. Once the data has arrived, the machines
in the LCSE can analyze and visualize it. This enables researchers to interact with a
very high resolution computation. Visualizing the output of a simulation as it is run-
ning provides researchers with the ability to ensure that the simulation is proceeding
as intended, and if needed, modify parameters or code to correct it. This saves CPU
time as well as time needed to post-process and visualize data after the simulation
has terminated. MSI implemented a reservation queue which lets a researcher reserve
thousands of CPUs for a specific period of time. This queue allows for planning an
interactive supercomputing session at a time that is convenient for the researches and
their collaborators.

LCSE’s visualization is system has also proven to be valuable for remote inter-
active supercomputing and visualization. Over the past three years, a web interface
(the WebViz System) has been built to interface with LCSE’s machines and enable
remote use. Using WebViz, a researcher is able to visualize their data and monitor the
progress of their simulations using any JavaScript enabled browser and is provided
the full functionality of LCSE’s large-scale visualization system from anywhere
world via the Internet. This ability has been demonstrated at the Supercomputing
2008 conference in Austin, Texas, as well as other international conferences like in
Elm, Switzerland, and is the focus of this paper.

37.3 WebViz Project History

While the current version of WebViz contains many new features and operates on a
different architectural design than its predecessors, we find it important for under-
standing our objective to highlight the history and course of development of the
system. A more thorough analysis of the previous versions of WebViz can be found
in Greensky et al. (2008), McLane et al. (2008, 2009).

37.3.1 Initial Version of WebViz

The first version of WebViz was written as a standalone .NET application. This ver-
sion was limited to use on Windows platforms. The application could take advantage
of the rich .NET UI libraries which allowed for smooth image navigation and a highly
interactive user interface. This initial prototype allowed us to test and more com-
pletely develop our interface to LCSE’s rendering nodes, and to design an interface
module allowing for affine transformations of images. We found however that this
prototype suffered from lack of platform independence and a limited, pre-alpha fea-
ture set. Learning from this first experience, we prepared a set of objectives and goals
for the WebViz application and developed a plan to implement a new version. Since
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we wished to make WebViz platform-independent, collaborative, and available to
the widest possible user-base, we decided to move into web technologies and started
to develop our first web prototype.

37.3.2 Toward a Web-Version of WebViz

Since the LCSE PowerWall offers interactive visualization facilities to a limited
number of users (i.e. those on the University of Minnesota Minneapolis campus),
the WebViz initiative focuses on developing software to allow for a much wider
user-base. To allow for ubiquitous access to large-scale visualization, the Web
appeared to be a clear choice of medium. By designing our system to work as a
web application we allow any authorized user with Internet access to use it. From
the most high-level standpoint, the WebViz system is comprised of the four modules
as shown in Fig. 37.2.

The first step in creating a web application for utilizing the LCSE render cluster
was to create a gateway between whatever server-side code we would later imple-
ment and the actual render cluster. For this reason, Jim Greensky developed the
LCSEWebServices servlet described in Greensky et al. (2008). This servlet works
as an intermediary between our system and the actual render cluster and provides a
level of abstraction over the raw protocol needed to communicate with the render-
ing software at LCSE. The servlet is able to accept an XML document known as
the Key Frame Data (KFD) which specifies rendering parameters, parse the KFD
appropriately, and then generate a properly formated byte stream to be sent to the
render cluster to request an image. The service also has the ability to split up the
requested image into distinct parts to be rendered in parallel by multiple rendering
nodes (Greensky et al. 2008). The LCSEWebServices servlet is still in use in the
current version of WebViz.

The components shown above leverage a combination of Java, Javascript, XML,
SQL, and CSS to allow for a robust and secure system. The WebViz Server compo-
nents are written in Java as a servlet and can be served by most servlet containers, in
our case Apache Tomcat. Client-side code is written in javascript to provide cross-
platform compatibility. On the back-end at LCSE, the render nodes run customized
hierarchical volume rendering software discussed in Porter (2002) and Porter et al.
(2002). A very high-level overview of the method of operation of WebViz can also be
seen in Fig. 37.2. Essentially, the user interface provides a way for the user to generate
input commands (by clicking buttons or setting variable values). These pieces of user
input are sent to the server via an RPC request. There, the server-side WebViz code
generates an XML request (by modifying the visualization session’s nodes return an
image fulfilling the server’s request, and the server then sends that image back to
the user interface for display to the user. This model, roughly, persists to the current
version of WebViz.
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Fig. 37.2 A very high-level
view of the four components
comprising the WebViz sys-
tem and the data-flow between
them

37.3.3 WebViz Client Evolution

The client-side WebViz code has undergone many changes since the inception of
the project. Since the objective of this project is to create a visualization system
accessible from not only desktop computers but also mobile devices and netbooks,
the size of client-side code has always been a major consideration. For this reason
we decided to adopt a design pattern whereby the most intensive computational tasks
would be carried out server-side leaving client-side code to deal with only simple
tasks. With this idea in mind, we created two prototypes using two different web
development technologies.

The first prototype of the web-based version of WebViz was built with the Echo
Java framework. The web development process in Echo looks much like desktop
application development using Swing or AWT, and is therefore well-suited for build-
ing prototypes as the implementation can progress quickly (McLane et al. 2009). The
main advantage of Echo was that it allowed us to write a thin-client web application
that took advantage of its rich set of GUI components—a vital feature in the creation
of modern-looking, interactive web applications.

A second prototype was then developed using GWT. Development with GWT
involves writing all client-side code to handle user interaction in Java, and then
running it through a specially designed compiler to output javascript which can be
embedded in a standard HTML web page. We chose GWT because it allowed for
programming in a familiar and object-oriented programming language (McLane et al.
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Fig. 37.3 A timeline of the history of the WebViz client. Four distinct incarnations can be seen

(2009)). An additional benefit afforded us by GWT is that the compiler can generate
different versions of the web application optimized for various browsers.

Due to the special compiler in GWT development, only a subset of all Java classes
are available for use but as GWT matures there are more and more classes being
supported. In order to work around certain unsupported Java libraries and create the
UI for the WebViz client, the developers created their own library of widgets that
are both extensible and all open source. Some of these custom widgets are still in
use in the current version. The first version of the GWT client exhibited a nearly
identical look and feel as the Echo version which was created to work well on both
regular computers and mobile devices. Upon comparing the features and limitations
of these two web development technologies, the development team selected GWT as
the better of the two options. The current version of WebViz is also built with GWT
(Fig. 37.3).

37.3.4 WebViz Server Evolution

The first version of the server-side WebViz code was a single module HTTP servlet
(see Fig. 37.4) running inside a Tomcat container. Both the Echo and GWT prototypes
worked on a very simple request-response model (McLane et al. 2008, 2009). They
allowed the user to adjust various visualization options such as viewing angle and the
position/orientation of the data being viewed. Based on the user’s input, the WebViz
server would appropriately modify the KFD and send it via HTTP to the LCSE Web
Services servlet where it was parsed and the information passed along to the actual
rendering nodes. Upon completion of the rendering, the service encoded the image
as a Base64 string which was embedded in an XML document that was sent back to
the WebViz server. Once the server had the image, the client would request it and it
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Fig. 37.4 A timeline of the history of the WebViz server

was sent to be displayed to the user. This process would repeat every time the user
generated input during a visualization session.

The main drawback of this single-module approach was its inability to han-
dle client-server communication beyond simple request-response exchanges for
retrieving images. To make a more fully featured visualization application, it
became clear that the client-server architecture would have to change. Therefore we
decided to redesign WebViz server components using a more flexible and extensible
multiple-module design. A detailed description of current architecture is provided in
Section.

37.4 Current Version of WebViz

This section will detail the current version of WebViz. Section 37.4.1 describes the
web application and its features, and Sect. 37.4.2 explains the overall system archi-
tecture and method of implementation.
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37.4.1 Features and Product Tour

The primary function of WebViz is to allow users to launch interactive visualization
sessions from any JavaScript-enabled web browser. The system was designed with
the objectives of so-called “web 2.0” software development in mind. For this reason,
features in the GUI are all geared toward creating a smooth end-user experience
where control elements are intuitive, easy to find, and straight forward to use.

37.4.1.1 Visualization Options and Features

When a user selects “New Visualization” from the main menu, a pop-up window is
generated that displays a list of directories containing data files which are available
for visualization. Also in this pop-up window is a menu to select the color and
alpha map that the user wishes to have applied to the visualization. Clicking OK in
this dialog causes a new visualization tab to appear in the main area of the GUI.
Figure 37.5 shows a screen shot of the WebViz user interface after a visualization
session has been launched.

With a visualization tab open, the user has access to the visualization toolbar across
the top area of the GUI (identified as area 1 in Fig. 37.5). This area is separated

(1)

(2)

(3)

Fig. 37.5 WebViz user interface. Three areas are highlighted: 1 visualization toolbar, 2 image
display area, 3 collaborative chat area
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into three sub-areas representing three classes of actions that can be carried out
by the user. The left-most area contains buttons for camera control. These buttons
provide the user the ability to move the camera or “eye” in every direction in 3-space.
This includes: rotation, pitch and yaw, and distance from object (forward/backward
motion). The middle section of buttons is for controlling the position/orientation of
the object or data being rendered. These buttons represent commands for rotation
either left/right or up/down, and zooming in and out. Finally, the right-most set of
buttons controls time-stepping. WebViz has the ability to successively render and
display files contained in the selected directory in alphabetical/numerical order. The
first two buttons (labeled previous and next) cause WebViz to display the previous or
next time-step respectively. When clicked, the “start” button causes a dialog to pop
up in which the user can initiate an auto-step function. With this, the user can specify
the frequency of stepping (frame rate) they desire, as well as how many time-steps
to skip between each refresh. After clicking OK, the image display area of the GUI
(area 2 in Fig. 37.5) is automatically updated at the specified rate with successive
time-steps found in the directory.

To access color/alpha mapping settings, the user selects the “Color/Alpha Maps”
option from the main menu bar. This causes a color/alpha map editor to appear as in
Fig. 37.6. From this screen, the user can edit the color/alpha map being applied to the
current visualization, as well as save the map to their account for later application to
other visualizations.

As same as many other web-based applications, WebViz can be accessed from any
location on earth with Internet connection. Figure 37.7 shows how it works through
Wi-Fi at JinMao Tower, Shanghai, which is approximate 6745 miles (10855 km) from
University of Minnesota, Minneapolis, where is the LCSE located. All the examples
are calculated on the Fermi C-2070 with 6 GBytes of global memory.

37.4.1.2 Collaborative Features

The features of WebViz that allow for collaborative visualization sessions set this
system apart from other software in the field. With WebViz we are able to connect
together many users in a single visualization session. In a collaborative session, all
users are able to view the data being visualized and as changes occur, an updated
image is displayed in the GUI of all connected users in real time.

With a visualization session open in the GUI, a user (the “share-er”) can invite
others to join by selecting “Share This Session” from the main menu bar. This action
triggers a pop-up window to appear that displays a list of users that the session can
be shared with. After selecting one or more users, a second pop-up window appears
that allows the share-er to specify the level of control they wish to delegate to these
“share-ees.” The share-er can individually allow or deny access to camera control,
object control, time-stepping, and/or color-mapping on a per-user basis. The share-er
can also specify whether or not they wish to give those receiving the invitation the
ability to share the session with yet other users. Once these forms are completed
and the invitation is sent, a pop-up window appears in the GUI of the users that the
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Fig. 37.6 Color/alpha map editor

share-er has elected to share with. The message alerts each share-ee that another
user wishes for them to join their visualization session. If the share-ee accepts the
invitation, a new tab appears in their GUI that displays the visualization. If the user
does not accept the invitation immediately, they can join the session at a later time
by selecting the “View Invitations” option from the main menu bar (Fig. 37.8).

The left side of the visualization GUI (area 3 in Fig. 37.5) contains the collabo-
ration area. Here, a user is able to view a list of other users currently in the session.
Below this display is a chat area where users can type messages to one another.
Messages are delivered to the chat areas of all users currently in the session in real
time. In addition to chat messages from users, the chat area is used by the WebViz
server to deliver notification messages. For example, all users in a shared session are
notified by the server when a new user joins, or a current user disconnects (Fig. 37.9).
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Fig. 37.7 A remote application of the visualization system in Shanghai (JinMao Tower). All visu-
alization results are carried out on the Fermi C-2070 with 6 GB of global memory

37.4.2 Technical Overview

As mentioned in Sect. 37.3.3, the current version of WebViz is built on GWT tech-
nology. To accomplish our goals for the current version, the first obstacle we had to
deal with was the highly dynamic nature of the application. For example, in the case
of visualization functions, user input must be immediately processed server side, and
an image rendered and returned to the user. Also, information such as chat messages
must be simultaneously delivered to potentially many users in a timely fashion. For
this reason, it is clear that an open channel of communication must exist at all times
between the client-side user interface and the WebViz server. Complicating matters
is the fact that WebViz is a web application which operates over HTTP, a protocol
where only the client in a client-server pair can initiate communication.

To side-step this feature of the HTTP protocol, WebViz utilizes the so-called
“HTTP server push” paradigm. The objective of server push over HTTP is to create
the illusion of the server being able to initiate communication with the client and
“push” information to it. This paradigm is well known in the area of web-development
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Fig. 37.8 Collaborative visualization session on Samsung Galaxy and iPhone

Fig. 37.9 Multiple users engaged in collaborative visualization session (PC and iPhone)

and is widely used in web applications to provide real-time client-server communi-
cation.

When implementing WebViz, much care was given to choosing a highly extensible
architecture so that adding features to the system later on would be simple and
straight-forward for the development team. As such, we decided to diverge from
the widely used “model-view controller” (MVC) approach to software design, and
instead adopted a highly “decoupled”, modular design. The main departure from
the MVC approach is in that GUI elements contain pertinent control functions for
the type of information they handle. We also fully embrace the asynchronous nature
of the GWT and allow many objects and GUI elements in the client to initiate
communication with the server.
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At the heart of the client-side architecture is the EventBus. At instantiation, all
GUI elements in the WebViz client are “registered” with the EventBus through a
design pattern known as dependency injection. The EventBus is primarily respon-
sible for receiving updates pushed down from the server and passing them to the
handleUpdate() method of the appropriate GUI element. The receiving GUI element
is then responsible for appropriately processing and/or displaying the contained data.

All communication between client and server is conducted by passing
EventRequest and EventResponse objects between client and server, and server and
client respectively. To make these concepts concrete, let us consider the operations
that occur when a user engaged in a visualization session inputs a command to alter
camera angle. This process is depicted graphically in Fig. 37.10.

The process shown in Fig. 37.10 proceeds as follows:

1. The user clicks the “rotate camera right” button in the visualization toolbar.
2. An EventRequest object is generated and set to EventType IMAGE_MANIPUL-

ATION_INPUT. The payload of this object is a string representing the requested
action (in this case ROTATE_CAMERA_RIGHT). Additional information is also
included in the EventRequest including the unique identifier (UID) of the user’s
visualization session so as to inform the server which session this message pertains
to. This EventRequest object is then passed to the server as the payload of an
RPC request.

3. The UID included in the EventRequest allows the server to retrieve the appropri-
ate visualization session from memory. Then, the EventType IMAGE_MANIPU-
LATION_INPUT triggers the server to retrieve the KFD from that user’s
visualization session and to modify it appropriately (in this case to alter cam-
era orientation values).

Fig. 37.10 A flow chart of the process for handling user input and updating imagery
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4. The server then requests an updated image from the render cluster through the
getImage() method of the LCSEWebServices servlet.

5. The LCSEWebServices servlet parses the KFD and requests an image from the
render cluster.

6. Once the render cluster has generated an updated image based on the values in
the KFD, the image is returned to the LCSEWebServices servlet.

7. The getImage() method called in step 4 then returns with the updated image.
8. The WebViz server now creates a new EventResponse object that is set to Event-

Type IMAGE_UPDATE. The server then retrieves a list of all users in the visual-
ization session that the EventRequest from step 2 pertained to and pushes a copy
of the EventResponse to all connected users via HTTP push.

9. Now client-side, the EventResponse is examined by the EventBus and routed
to the handleUpdate() method of the appropriate visualization tab. Noting that
the EventResponse is of type IMAGE_UPDATE, the visualization tab forwards
the payload (the new image) to the image display area of the GUI where it is
subsequently displayed to the user.

37.4.3 Comparison Between Current and Previous Versions

The most notable differences between the previous and current versions of WebViz
are the tools for collaborative use of the system. While the old system contained
tools to share a session with others, it did not give share-ees the ability to manipulate
visualization controls. The chat system and list of users in the session was also not
present in the older version.

In terms of implementation, the new code architecture and the server push capa-
bility is a new move that we hope will continue to benefit the system as we move
into subsequent versions. The advantage of an implementation such as this lies in its
extensibility. As new features are implemented, any sort of client-server communica-
tion can be accomplished in terms of these EventRequest-EventResponse objects by
simply creating a new EventType and creating the appropriate methods, both server-
and client-side, to handle them.

37.5 Future Research

In this section, we detail new features we wish to implement in the WebViz system,
as well as expose some of the current system’s known issues and limitations. We
also discuss our objective of deploying WebViz to the Google Application Engine
cloud-computing system.
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37.5.1 New Features for Future Versions

37.5.1.1 Mobile Version

While WebViz is accessible from any JavaScript-enabled web browser, including
those on mobile devices, we find the GUI difficult to navigate on small-format screens
(such as iPhones and mobile devices). For this reason, we intend on implementing
a mobile version of WebViz called WebViz-Mobile. Once this system is in place,
if a user connects from a mobile device to the main site, our web-server will auto-
matically re-direct them to the mobile version. In WebViz-mobile, the user will have
the ability to connect to visualization sessions which have been shared with them.
Mobile users will exist solely as “observers” in these sessions whereby they can view
the visualization in progress as well as chat messages amongst users, but will not
have the ability to launch new visualizations or exercise control over the one(s) they
are engaged in. Also, consider mobile devices comparative low processing ability,
WebViz-mobile will lower the resolution of visualization result to improve perfor-
mance. While this system does impose limitations upon functionality for mobile
users, we feel it will give the highest degree of usability. There will however be an
option provided mobile users to access the full-featured WebViz application should
they wish.

37.5.1.2 Direct HPC Integration

In the current version of WebViz, users are only able to visualize files that are already
contained within the file system of the render cluster. However, because of the highly
extensible architecture of the system, it is possible to tie WebViz directly into the
output stream of simulations running on nodes in the LCSE network. We also envision
a customizable interface for users running a simulation to alter the parameters their
simulation is using. This, coupled with the ability to view output in real time will
provide users true real-time interactive visualization over the Internet.

37.5.1.3 Increased Control of Shared Sessions

A major limitation placed upon users the share-er of a session is a lack of control
over their “shares.” For example, once a visualization session is shared with another
user, the share-er has no way of altering permissions delegated to the share-ee. For
this reason, an area is needed that will display who a user has shared their session
with and what degree of control these other users have over the visualization. In this
area there would be a way for the share-er to alter permissions granted to other users,
as well as the ability to “kick” users out of the session.
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37.5.2 Known Issues and Limitations

37.5.2.1 Low Frame Rates

In the current version of the system, there is a significant delay (approximately
350 ms) between when an image is requested by the WebViz client and the image is
delivered to the user.

The bottleneck has been identified as being between the LCSEWebServices servlet
and the LCSE render cluster. For this reason, the development team has decided that
the functionality of the LCSEWebServices servlet should be integrated directly into
the WebViz code base as opposed to having it implemented as a completely separate
module. By directly integrating it into WebViz, there will be a degree of latency
removed by eliminating the need for the WebViz and LCSEWebServices servlets to
communicate with one another. Additionally, we believe there to be some revisions
to the code contained in the LCSEWebServices servlet which could be easily carried
out which would increase performance metrics all around.

37.5.2.2 Scalability

The current version of WebViz runs on a single server. To increase the reliability
of the system and to allow for many users, the system needs to be made scalable.
The largest impediment to this is the highly stateful nature of the server-side com-
ponents. For example, the server keeps track of the current state of all in-progress
visualization sessions in memory. To increase scalability, the server needs to be made
stateless, mainly by offloading the information stored in memory to some sort of data-
base structure. Doing this will also prepare the system for migration to the Google
Application Engine as will be discussed in Sect. 37.5.3.

37.5.2.3 Distributability

There are many aspects of the implementation in the current version that are highly
customized to work with our systems. To make this piece of software into a package
that could be distributed to other institutions and universities, there would have to be
some refactoring performed that would “generalize” the system to allow it to work
on other institution’s networks and with other rendering systems.

37.5.3 Migration to Google Application Engine

First made public in April 2008, the Google Application Engine (GAE) is a hosted
web-server platform that allows developers to deploy web applications in either
Python or Java in Google-managed data centers. When an application is deployed
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to the GAE, it is automatically distributed amongst multiple servers in multiple data
centers. As with other managed deployment solutions, we would expect to see an
increase in reliability by migrating server-side components to the GAE. However,
the potential benefits would not end there. The key benefit of deploying WebViz to
the GAE is that the application becomes virtualized and is deployed across multi-
ple servers in Google’s world-wide infrastructure. Because of this, the server-side
components of WebViz would be located in data centers geographically local to all
world-wide users. This is in opposition to the current system where all resources are
located at the University of Minnesota. To be sure, there would still be communi-
cation necessary between the WebViz server components and the render cluster at
LCSE, however this communication would take place through Google’s high-speed
network backbone and only traverse the public internet on the hop from Google’s
network to the University of Minnesota’s.

Because of the distributed nature of the GAE and the fact that a single application,
once deployed, is hosted from multiple servers, special attention must be given to
making server-side code compatible with this architecture. Most importantly for
developing in an environment such as this is handling the fact that two requests
from one user may very well be delivered to two completely different servers. For
this reason, all server side components must be completely stateless. That is, the
server components must treat each request as an independent transaction that does
not depend on any previous communications that occurred between it and the client,
except for any data storable in a database. As discussed in the previous sub-section,
a great deal of information about user sessions is stored in memory on our server. To
make our system stateless, we would need to leverage Google’s BigTable database
tool, which is offered as the datastore for use with GAE. In addition to providing a
low-level API for direct interaction with the BigTable platform, JDO and JPA are
supported (for the Java side) as a scheme that can run on top of the BigTable to
allow for portability and ease of use. Transitioning our current system into this setup
would be very simple and would turn WebViz into a true cloud-computing system
that better reflects current practices for designing web applications.
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Chapter 38
Interactive Visualization Tool for Planning
Cancer Treatment

R. Wcisło, W. Dzwinel, P. Gosztyla, D. A. Yuen and W. Czech

Abstract We discuss the components and main requirements of the interactive
visualization and simulation system intended for better understanding the dynam-
ics of solid tumor proliferation. The heterogeneous Complex Automata, discrete-
continuum model is used as the simulation engine. It combines Cellular Automata
paradigm, particle dynamics and continuum approaches to model mechanical interac-
tions of tumor with the rest of tissue. We show that to provide interactivity, the system
has to be efficiently implemented on workstations with multiple cores CPUs con-
trolled by OpenMP interface and/or empowered by GPGPU accelerators. Currently,
the computational power of modern CPU and GPU processors enable to simulate the
tumors of a few millimeters in diameter in its both avascular and angiogenic phases.
To validate the results of simulation with real tumors, we plan to integrate the tumor
modeling simulator with the Graph Investigator tool. Then one can validate the
simulation results on the base of topological similarity between the tumor vascular
networks obtained from its direct observation and simulation. The interactive visu-
alization system can have both educational and research aspects. It can be used as a
tool for clinicians and oncologists for educational purposes and, in the nearest future,
in medical in silico labs doing research in anticancer drug design and/or in planning
cancer treatment.
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38.1 Introduction

38.1.1 Motivation

It is widely believed that cancer is responsible for about 20 % of deaths in developed
countries (Jemal et al. 2010). Therefore, it is assumed to be one out of major killers
in the developed world. Despite the enormous financial effort that has been devoted
to research on cancer phenomenon, the most important aspects remain obscure for
clinicians and experimentalists. This is the reason that many of the currently used
therapeutic strategies become not entirely effective.

A better understanding of tumor formation and its proliferation can be expected
from a computer (i.e., quantitative) modeling. Computer models can ultimately
improve the overall clinical outcome by predicting the results of specific types of
medical treatment administered at specific regions of interest and time checkpoints.
During the last decade a great variety of tumor models covering various morphologi-
cal and functional aspects of tumor growth has been developed. These advances have
been recently reviewed (Lowengrub et al. 2010) with a focus on the classification of
mathematical tools and computational algorithms.

As shown in Chaplain (2000), in silico experiments can play the role of angiogenesis
assays. In Stéphanou et al. (2005), the Authors describe a computational tumor
modeling framework to compare dosing schedules based on simulated therapeutic
response. However, till now, despite the existence of scores of various computa-
tional models of cancer growth dynamics, a ready-to-use interactive tool for clinical
application remains a dream of the future. This situation is unjustified knowing that
both technologically and methodologically there is not any obstacles to create, at
least, a toy interactive visualization system which might help in education of young
oncologists and elucidate the fundamental mechanisms of cancer progression. The
system can evolve further to a serious tools aimed to improve the therapeutic tech-
niques currently used, to stimulate the development of new strategies and speed-up
the anticancer drug design process.

In this paper we discuss the main components of a novel interactive visualization
tool for simulation of cancer growth dynamics. We present preliminary results we
have obtained towards development of a framework of such the system. The paper
is focused on the computational model, visualization interface and implementation
issues, which are the main components of such the interactive visualization system.

We present a framework of parallel 3-D model of tumor growth, which bases
on Complex Automata paradigm, which combines particle dynamics with Cellular
Automata and continuum models. To speed up calculations and to make on-line
interactions possible we show the ways to optimize the code for multi-core CPUs and
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GPGPU rather than for massively parallel systems consisting of many heterogeneous
computational nodes.

38.1.2 Modeling Domain

A serious obstacle that must be overcome to simulate cancer dynamics is the intrinsic
multiple scale nature of tumor growth. It involves processes occurring over a vari-
ety of time and length scales: from the tissue scale—e.g. vascular remodeling—to
intracellular processes—e.g., progression through the cell-cycle.

The structure of a solid and vascularized tumor is very dynamic and heteroge-
neous. Its development occurs in five phases: oncogenesis (carcinogenesis), avascular
growth, angiogenesis, vascular growth and metastasis. Oncogenesis is a biological
process occurring on molecular level and characterized by serious disruptions in DNA
reparation system mainly due to numerous mutations. Consequently, the escape of
mutated cell from apoptosis is observed. The avascular stage is the earliest stage the
tumor develops in the absence of blood supply. The tumor grows up to a maximum
size which is limited by the amount of diffusing nutrients and oxygen reaching the
tumor surface. In the third stage, hypoxic cells of this avascular tumor mass pro-
duce and release substances called tumor angiogenic factors (TAFs). They diffuse
throughout the surrounding tissue, and, hitting vasculature, trigger a cascade of events
which eventually lead to vascularisation of the tumor. These phases of tumor growth
are depicted in Fig. 38.1. In vascular stage, tumor has access to virtually unlimited
resources, so it can proliferate beyond any limits. Moreover, in this growth phase
tumor acquires a means of transport for cells that penetrate into the vasculature and
form metastases in any part of the host organism.

The interactive system we propose comprises only two scales of tumor growth:
avascular, angiogenesis and partly vascular phases (see Fig. 38.1). The size of tumor
simulated on-line, depends on the available computational power, 2-D or 3-D version
of the model and its level of details. Approximately, taking into account the power
of nowadays workstations, the maximum size of tumor which can be modeled using
our approach does not exceed the diameter of 1 cm. This scale of interest is extremely
important. Thus, once the tumor becomes vascularized, therapeutic prognoses worsen
dramatically. On the other hand, in that scale, the system can be used in investigations
of the role the various tumor angiogenic factors play and for defining the targets of
antiangiogenic therapies.

38.2 Computational Models of Solid Tumor Growth

The computational paradigm plays a crucial role in development of in silico imple-
mentation of cancer model. In the length scales exceeding centimeters, continuum
methods are acceptable for modeling tumor dynamics. Continuum model parameters
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Fig. 38.1 Angiogenic phase of tumor growth

can be relatively easy to obtain, analyze and control. They may also be accessible
through laboratory experimentation. However, despite they can provide significant
insight into the relative role that different process play in the tumor formation they
fail completely in predicting tumor microstructure. This may be important deficiency
when studying the effect of genetic, cellular and microenvironment characteristics on
overall tumor behavior. Within continuum models, it is not possible to capture such
the important events as repeated sprout branching and the overall dendritic structure
of the vascular network, compartmentalization of the tumor tissue and remodeling
processes due to mechanical interactions (Lowengrub et al. 2010).

Whereas continuum models describe cell populations by means of continuous
fields, discrete models deal with the dynamics of agents. The agents usually repre-
sent individual cells which are tracked and updated according to a specific set of
biophysical rules taken from a discrete and finite space of states and evolve in dis-
crete space and time. Unlike in the continuum models, discrete models can follow
individual cells and can reveal more details about cell dynamics and its interaction
with the tissue. There are, for example, percolation based models (Szczerba et al.
2008), Eden models (Alarcon et al. 2005; Lee et al. 2006), random walk and diffusion
limited aggregation (DLA) models (Amyot et al. 2006), cell based models (Bauer
et al. 2007), lattice gas models and cellular automata (Dormann and Deutsch 2002;
Moreira and Deutsch 2002).

Discrete approach is particularly useful for studying spatial scales of tumor
dynamics below 1 cm such as carcinogenesis, natural selection, genetic instability,
interactions of individual cells with each other and the microenvironment. Analyses
of cell population dynamics have also been employed in order to study biological
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characteristics applying to all cells in a particular population, such as response to
therapy and in studies of immunology.

According to Lowengrub et al. (2010), there are two main types of discrete mod-
els, i.e., lattice based and lattice-free. The former describes the dynamics of discrete
tumor cells as automata on a grid whose states are governed by a set of determin-
istic or probabilistic rules. One of the most popular lattice based paradigm used
for modeling tumor growth are cellular automata (CA) (see the critical overview
(Dormann and Deutsch 2002)). Cellular automata deal with the dynamics of dis-
crete elements populating the nodes of structural grid. The elements take their state
from a discrete—finite or infinite—space of states and evolve in discrete space and
time. The dynamics of the elements is defined in terms of local, either deterministic
or probabilistic, rules. To describe four aspects of tumor growth, namely, avascular
growth, vascular growth, invasion, and angiogenesis, the classical CA models should
be supplied with additional graph structures defined on the top of a regular grid (Topa
et al. 2006). The mechanical interactions between the tumor and healthy tissue are
only partly addressed in Mansury et al. (2002).

The lattice-free approaches describe the motion of discrete cells in arbitrary loca-
tions and their interactions. It is possible to translate detailed biological processes
(e.g. cell life-cycle) into rules influencing both the cell motion and their mutual
interactions. However, the computational cost increases faster than linearly with the
number of modeled cells, limiting these methods to the spatial and temporal scales
defined by the achievable computational power. Moreover, while these models are
capable of describing biophysical processes in significant detail, it may be nontriv-
ial to obtain reliable measurements of model parameters through experiments e.g.,
parameters of cell interaction rules.

An important research domain involves the development of hybrid continuum–
discrete models for tumor growth. These models have the potential to combine the
best properties of both continuum and discrete approaches. They may provide more
realistic coupling of biophysical processes across a wide range of length and time
scales. Discrete models are usually hybridized with continuum approaches in the
sense that both substrate concentrations and blood flow are computed using contin-
uum approaches (i.e. oxygen, glucose, matrix-degrading enzymes concentration by
solving reaction-diffusion equation and blood flow by integrating hydrodynamic
equations) while the cell-based components such as migrating EC tip cells are
discrete.

The oldest hybrid model, simulating two-dimensional spatial distribution of
sprouts, was presented by Stokes and Lauffenburger (1991). It uses a classic Folkman
formulation (Folkman 1971; Folkman and Hochberg 1973). The tumor is located at
the top center of a box of finite volume and the capillary at the bottom. The evo-
lution of molecular species is governed by discretized reaction-diffusion equations.
A stochastic differential equation simulates the migration of endothelial tip cells
employing a particle dynamics in TAF concentration field. This approach is the basis
of many other hybrid models (e.g., Chaplain 2000; Godde and Kurz 2001; Preziozi
2003; Alarcon et al. 2005; Amyot et al. 2006; Milde et al. 2008; Dormann and
Deutsch 2002; Moreira and Deutsch 2002; Topa 2008) which differ in:
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• geometrical properties of the simulation such as: dimensionality (2-D, 3-D), type
of discretization of space and time (on-grid, gridless), structure of vascular network
(rigid, structured, unstructured) etc.
• modeling accuracy—defined e.g. by the number of angiogenic factors and other

subprocesses included in the model,
• methodology of simulation of the process of vascularization and tumor growth

(stochastic, deterministic, cellular automata, lattice-gas, DLA etc.),

The accuracy of the computational model depends on the proper choice of
processes and multiple scales crucial for tumor growth. Because of the complex-
ity of cancer evolution, many models to date focus on single key sub-processes,
disregarding their interactions with others. Many attempts assume either a static
tumor and concentrate on dynamic vascularization in the absence of tumor growth
or a static network topology. Some of them use dynamic network describing hydro-
dynamics of blood flow while neglecting its interaction with concentration fields
and tissue components (Godde and Kurz 2001). There are also many models which
describe only avascular phase of tumor dynamics (Dormann and Deutsch 2002). The
usefulness of these models is strongly constrained. Truly important are the models,
which track coupled tumor growth and tumor-induced neovascularization using a
discrete approach for both.

These hybridized models are the basis for the development of the multiple-scale
approaches which—apart from the tissue scale evolution—include processes from
cellular and molecular scales. They represent the most advanced simulation method-
ologies. Multiple scale models incorporate e.g. cellular heterogeneity, intercellular
phenomena, more complex mechanical laws to describe the response of the tissue to
external forces, blood hydrodynamics and vessel remodeling. Advanced multi-scale
models of tumor progression are presented, e.g., in papers by Bellomo et al. (2003)
and by Alarcon et al. (2005). Rigid geometric constrains which disable realistic
visualization and are the sources of many serious artifacts belongs to the principal
weaknesses of these models (Wcislo et al. 2009).

For challenging high computational demand of discrete approaches in modeling
spatial scales exceeding 1 cm, coupled continuum–discrete descriptions of tumor
cells are realized. It is the second type of hybridized models in which the tumor itself
is described using both continuum and discrete components to reduce computational
complexity of discrete approach. This hybrid modeling is very important as it affords
the possibility of seamlessly up-scaling from the cell-scale to the tumor and tissue
scales. For example, a greater part of the system can be simulated using continuum
approach while some critical regions can be modeled using discrete approach, as
in (Kim et al. 2007; Stolarska et al. 2009). They simulate the motion of separate
(discrete) cells in the outer proliferating rim of an avascular tumor while they use
continuum description of cell dynamics (i.e., density of cells in various states) in the
inner quiescent and necrotic regions of the tumor. On the other hand, both the con-
tinuum and discrete representations of tumor cells can be employed simultaneously
throughout space, subject to mass and momentum conservation laws which incorpo-
rate interactions among the discrete and continuous fields (Bearer et al. 2009). Very
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detailed overview of the recent continuum, discrete, hybrid and multi-scale models of
tumor proliferation, containing almost 600 references, are presented in Lowengrub
et al. (2010).

In macroscopic (>1 cm) and mesoscopic (>1 mm) scales tumor growth is a purely
mechanical phenomenon. Just mechanical interactions influences the most the struc-
ture of vasculature, blood flow, tumor shape and decides about its directional progres-
sion. Due to the lack of computational framework, existing computational paradigms
are not able to reproduce adequately this basic process. This is a serious obstacle
in creation of a truly multi-scale model of tumor dynamics, which enables not only
addition of novel components representing the chemical and biochemical inter and
intracellular processes but allows for realistic tumor visualization in macroscopic
scale as well. Moreover, the lack of computational metaphor which enables realis-
tic visualization of tumor dynamics disables the possibility of creation interactive
tumor growth simulator which allows for its dynamics be observed and modified
directly by oncologist. We propose here the complex automata paradigm (CxA)
based on particle dynamics as a computational framework of the mechanistic tumor
model.

In Fig. 38.2 we present the main processes from various spatio-temporal scales
involved in tumor growth. The microscopic processes such as cell motility and cell
cycle are discrete. The macroscopic scale refers to phenomena which are typical for
continuum systems such as diffusion (of oxygen and TAF), overall tumor condensa-
tion and blood flow. In macroscopic models, microscopic phases can be approximated

Fig. 38.2 Main processes from various spatio-temporal scales involved in tumor proliferation (from
Wcislo et al. 2009)



614 R. Wcisło et al.

by coarse grained models as long as the methodology of multi-scale simulation and
adequate computational resources are lacking. The arrows in Fig. 38.2 show the rela-
tionships between these processes. The particle model presented in the following
sections refers only to the processes shaded in blue.

Complex automata (CxA) are a generalization of cellular automata paradigm.
They represent a scalable hierarchical aggregation of CA and agent-based models
(Hoekstra et al. 2007). Globally, CxA can behave either as the classical CA nodes
on a structural lattice or as interacting particles whose dynamics is described, e.g.,
by the Newtonian laws of motion or other stochastic laws.

In Wcislo and Dzwinel (2008, 2010), Wcislo et al. (2009, 2010) it was shown
that the complex automata paradigm employing both particle dynamics and cellu-
lar automata rules can be used as a robust modeling framework, e.g., for devel-
oping realistic models of tumor growth as a result of emergent behavior of many
interacting cells. This framework represents the spatio-temporal scales involving
mechanical interactions between growing tumor, normal tissue and expanding vas-
cular network. This framework can be easily extended by including both fine grained
processes responsible for tumor creation/proliferation and be coupled with tissue
scale processes modeled by continuum reaction-diffusion and blood hydrodynamics
equations. In the following paragraph we present briefly the assumptions of our CxA
particle model.

38.3 Particle Model as a Framework of the Interactive
Visualization System

38.3.1 Model Description

As shown in Fig. 38.3, in our Complex Automata model a fragment of tissue and vas-
culature is made of particles. The particle is defined as�N = {Oi : O(ri , vi , ai ), i =
1, . . . , N } where: i is the particle index; N—the number of particles, ri , vi , ai —
particle position, velocity and attributes, respectively. We assume additionally that:

• Each particle represents a single cell with a fragment of ECM (extracellular
matrix).
• The vector of attributes ai is defined by:

– the particle type {tumor cell (TC), normal cell (NC), endothelial cell (EC)},
– cell life-cycle phase shown in Fig. 38.4 {newly formed, mature, in hypoxia, after

hypoxia, apoptosis, necrosis},
– other parameters such as: cell size, cell age, hypoxia time, concentrations of

k = TAF (tumor angiogenic factor), or O2 (and other diffusive substances) and
total pressure exerted on particle i from the rest of tumor body and tissue mass.

• The particle system is closed in 3-D computational box under a constant external
pressure.
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Blood VesselsTissue cells

EC-tube cells

Fig. 38.3 Tissue particles and tube-like EC-tube particles made of two spherical “vessel particles”

• The vessel is constructed of tube-like “particles” (called EC-tubes) made of two
particles connected by a spring (see Fig. 38.4).
• We define three types of interactions: particle–particle, particle–tube, and tube–

tube.
• The forces between particles mimic both mechanical repulsion and attraction due

to cell adhesiveness and depletion interactions cause by both ECM matrix and the
cell itself.
• We postulate the particle–particle conservative interaction potential�(dij) defined

as follows:

�(dij) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a1d2
ij, for dij < 0 where a1 > a2

a2d2
ij, for 0 < dij < dcut

a2d2
cut, for dij ≥ dcut

dij = |rij| − (ri + r j )

(38.1)

where |rij| is the distance between particles while ri and r j are their radiuses.
Additional viscosity force, proportional to the particle velocity, simulates dissipative
character of interactions. The cells of all kinds (tumor, normal and EC-tubes) evolve
in discrete time according to Newtonian dynamics in the continuum diffusion fields of
TAF and nutrients. The concentration fields are updated every time-step. We assume
that both the concentrations and hydrodynamic quantities are in steady state in the
time-scale defined by the time-step of numerical integration of equations of motion.
This assumption is justified because diffusion of oxygen and TAFs through the tissue
is many orders of magnitude faster than the process of tumor growth. On the other
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Fig. 38.4 Cell life cycle and various cell stages

hand, the blood circulation is slower than diffusion but still faster than cell-life cycle.
Therefore we used fast approximation procedures for both calculation of blood flow
rates in capillaries and solving reaction-diffusion equation.

As shown in Fig. 38.5 (see http://www.icsr.agh.edu.pl/~wcislo/Angiogeneza/
index.html) we can observe and control both the phase of avascular tumor dynamics
and its proliferation after angiogenic switch.

For example, the section of the tumor spheroid, shown in Fig. 38.5a, displays
a layered structure. We can observe formation of a core zone composed mainly
of necrotic material surrounded by a layer of quiescent tumor cells and an outer
ring of proliferating tumor cells. It is crucial to understand the processes, which are
responsible for the growth of a layered and saturating tumor.

Expanding tumor involves even more factors such as blood dynamics in newly
formed vessels their regression/maturation and remodeling due to complex mutual
interactions of TAF/nutrients/perycites and growing tissue/tumor pressure. Particle
model allows for attacking many important problems influencing angiogenic switch
e.g., if intravenous infusion of pericytes grown ex vivo will stabilize angiogenesis
and slow down tumor growth (e.g., Darland et al. 2003). The snapshots from pilot
simulations using the CxA particle model are presented in Fig. 38.5b.

The newly formed blood vessels due to the process of angiogenesis become func-
tional when they form anastomoses. It allows for blood flow due to pressure gradient
on its ends. Otherwise, we assume that the functional capillaries but without peri-
cyte support dissolve. Moreover, nonfunctional and immature vessels without blood
flow undergo the process of regression. The vessel maturation is controlled by the
density of pericytes. The varying degrees of pericyte recruitment indicate differ-
ences in the functional status of the tumor vasculature. In simulation presented in

http://www.icsr.agh.edu.pl/~wcislo/Angiogeneza/index.html
http://www.icsr.agh.edu.pl/~wcislo/Angiogeneza/index.html
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(a)

(b)

Fig. 38.5 Snapshots from particle based simulations of dynamics of a avascular tumor (necrotic
center is displayed) b vascularization of tumor influenced by pericyties (functional vessels are in
green, the red ones are capillaries under regression)

Fig. 38.5b we assume very simplistic model of vessel maturation. The regression
time depends on the local density of EC tubes assuming constant concentration of
pericytes. If the density is too high regression time is shorter. This model should be
corrected calculating pericyte concentration using the continuum models mentioned
earlier.

38.3.2 Directions of the Model Development

For characterization of e.g. melanoma cell lines, the model should simulate the
migration of cancer cells in normoxic and hypoxic conditions. We show in Wcislo
et al. (2009) that the inward motion of cells from the rim of 3-D tumor globule to
the necrotic center is a purely mechanical effect caused by pressure drop from the
surface towards this center. However, the mechanical effects allowing for cancer cell
motility outward the tumor is more sophisticated phenomena (e.g. Matsumoto et al.
2008).
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To find the mechanical and biological factors enabling tumor cell motility, the
tumor mass dynamics should be modeled in a greater precision than it was done
in Wcislo et al. (2009). In this model we simulate the tumor as a collection of soft
spheres. However, for many types of tumor, the mass can be treated rather as a physical
system with properties on the border between the solid and the liquid. Therefore, to
simulate better the influence of adhesiveness of cells and viscosity for tumor fingering
and compartmentalization we plan to use different model of cell interactions, similar
to that in dissipative particle dynamics and fluid particle dynamics methods (Español
1998; Dzwinel et al. 2002).

The tumor, normal tissue cells and EC-tubes will be defined by its mass, moment
of inertia, translational and angular momenta. Two particles i and j interact with one
another by a collision operator Fij defined as a sum of constituent forces, whose
parameters are dependent on the type of interacting particles. The forces are central
and non-central and consist of conservative FC (see Eq. (38.2)), dissipative FD and
Brownian FB components and:

Fij = FC + FD + FB (38.2)

Fij = −F(rij) · eij − γ · [A(rij)1+ B(rij)eijeij]
◦

[

vij + 1

2
rij × ( �ωi + �ω j )

]

+ F̃B(rij)

where: F(rij)—is a central conservative force, whose formula depends on the types
of interacting particles, γ—is a scaling factor of dissipative forces corresponding to
viscosity, A(rij) and B(rij) are the weighting functions, FB is a random component
representing cell random motion. In original fluid particle method this factor is scaled
by the temperature of the system and expressed in terms of the weighted Wiener
increments. In our model it will define the dissipative properties of the tissue, i.e.,
its softness.

The value of Fij, is equal to 0 if the separation distance between two particles i and
j, rij, exceeds a cut-off radius Rcut . The total force per each particle i is computed as a
sum of forces interacting with particle i within the sphere of the radius equal to Rcut .
The temporal evolution of the particle ensemble obeys the Newtonian equations of
motion with rotation of the particles included,

Ṗi =
∑

j;rij<rcut

Fij(ri , vi , ωi ), ṙi = vi , ω̇i = 1

Ii

∑

j;rij<rcut

Nij(ri , vi , ωi ),

Nij = −1

2
rij × Fij (38.3)

where ri is the position of particle i, Pi is its momentum and ωi angular velocity. We
assume that the interactions between spherical particles and EC-tube particles have
a similar character.
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To enable the simulations of tumor sizes above one centimeter the hybridization of
two models—continuum approach and the CxA based framework—is the principal
methodological goal for the future. It will consist of four steps:

1. Development of continuum mathematical model, which can be use for simulating
tumor larger than 10 cm in diameter.

2. On the base of the wavelet solver (Vasilyev 2003)—extraction of the ROI (regions
of interest) in which the discrete model will be used.

3. Elaboration of bridging procedures between continuum and discrete models.
4. Further development of the discrete particle based model towards, so called,

coarse grained particle models where a particle does not represent a single cell
but a fragment of tissue.

In the rest of this paper we limit our consideration to the particle based framework
presented in Sect. 38.3.1. Our goal is to provide a flexible and fast simulation tool
for interactive visualization which could be used on small but strong stand-alone
workstations by clinicians for both educational and/or research purposes. In the fol-
lowing paragraph we present the implementation issue, which are crucial to achieve
this goal.

38.4 Parallel Implementation of Particle Model

For modeling of tumors of realistic sizes, i.e., a few millimeters of diameter, the
dynamics of 105–107 particles—normal, cancerous and EC-tube cells—have to be
simulated by exploiting the power of nowadays multi-core CPUs, multi-processor
systems and by using optimized N-body parallel codes. The box of the size 3.5 mm
contains about 106 cancer cells—i.e. the approximate number of particles that can be
simulated on a strong laptop in a reasonable computational time. To simulate larger
tumors, the codes should be tuned to current parallel processors.

However, the CxA particle system is very different than standard particle ensem-
bles such as in the short range molecular dynamics. Consequently, the process of code
parallelization is more complicated (Wcislo and Dzwinel 2010; Wcislo et al. 2010).
The cells can proliferate, change their size or annihilate. Moreover, they have addi-
tional attributes, which evolve according to the rules of CA and influence the cells’
dynamics. The attributes, in turn, depend on concentration fields of O2, TAF and
other substances. This requires solving reaction-diffusion equations and calculating
the intensity of blood flow in capillary vessels every time step.

38.4.1 Algorithms and Data Structures

Classical N-body codes, such as molecular dynamics (MD), simulate spatio-temporal
evolution of a particle ensemble confined in a periodic cube by integrating numeri-
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Fig. 38.6 a Domain decomposition used for forces calculation. b Data structures storing spherical
and vessel particles (Wcislo and Dzwinel 2010)

cally Newtonian equations of motion (Haile 1992). Single time-step consists of two
consecutive procedures: computation of forces acting on each particle and moving
them according to the total momentum calculated.

For short-range interactions, the forces can be computed using fast O(N) method
exploiting alternately Hockney or Verlet algorithms [16]. However, both the cal-
culation of forces and approximate procedure used for solving diffusion equation,
require finding all the pairs of particles in the nearest neighborhood. As shown in
Fig. 38.6a, the computational box is divided onto cubic sub-boxes with edges equal
to the interaction range. The particle located in a given sub-box interacts with other
particles located in this sub-box and in adjacent sub-boxes.

As shown in Figs. 38.7 and 38.8, the computation of EC-tube particles interactions
is the most critical component influencing computational efficiency. The length of
EC-tube is considerably greater than its width. It involves considerably larger sizes of
sub-boxes (Fig. 38.6) than those used for spherical particles. Moreover, the tubes can
grow exceeding the size of 5 sub-boxes used for forces calculation between spherical
cells.

To solve this problem we propose using instead of one array of particle positions,
two separate data structures P and V: P for storing spherical particles and V for EC-
tubes, respectively (see Fig. 38.6b). The P data structure is represented by 3-D array
of Hockney sub-boxes (Hockney cells) with tumor and normal particles. The V is
a data structure consisting of the array of pointers to records representing EC-tubes
and the additional 3-D array of sub-boxes used to compute particle-tube and tube-
tube interactions. The sub-boxes in this array correspond to respective sub-boxes
in P. Because vessel particle is long enough to cross several sub-boxes, it cannot
be assigned to a single sub-box, as it is in Hockney algorithm. Instead, EC-tube is
placed in a minimal cuboid composed of all the sub-boxes it crosses. This cuboid is
enlarged then by one sub-box margin in each direction, covering the vessel particle
together with its cut-off radius. We assume that the vessel particle belongs to all the
sub-boxes forming this final cuboid (Fig. 38.9).

Calculation of forces between particles is realized by three separate algorithms:
particle–particle, particle–vessel and vessel–vessel interactions calculation. Particle–
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Fig. 38.7 The main procedures invoked in a single time-step and diagram showing the shares of
computational time used by various procedures of the model (the evolution of 106 particles was
simulated)

Fig. 38.8 Vessel–vessel interactions and vessel growth rule

particle forces are calculated using standard Hockney algorithm (Hockney and
Eastwood 1981). In case of particle-vessel computation, for each corresponding pair
of sub-boxes cp, cv from P and V, respectively, particles from cp are tested against
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Fig. 38.9 Graphical interpre-
tation of relation (4) (Wcislo
and Dzwinel 2010)

vessel particles from cv. If the distance between the pair of particles is shorter then
the cut-off radius, their mutual interaction is calculated.

The algorithm for vessel–vessel computations is constructed knowing that if two
EC-tubes lie in a distance shorter than cut-off radius, there exists at least one sub-
box in V containing both particles. Therefore, all interacting pairs can be found by
iterating throughout all sub-boxes and testing all-to-all distances. The problem is that
a pair of particles representing two interacting EC-tubes can be found in many sub-
boxes while it should be taken only once. To solve it, we introduce ternary relation R
(see Fig. 38.9), which eliminates redundant interactions:

Ec × Ec × C ⊇ R =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(e1, e2, c) : e1, e2 ∈ Ec; c ∈ C;
max(e1.mx, e2.mx) = c.x,

max(e1.my, e2.my) = c.y,

max(e1.mz, e2.mz) = c.z

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(38.4)

where: Ec is the set of EC-tubes, C is the set of sub-boxes in mesh, c.x, c.y, c.z are
coordinates of sub-box c in 3-D array and



38 Interactive Visualization Tool for Planning Cancer Treatment 623

e.mx = min(sub-box(e.p1).x, sub-box(e.p2).x),

e.my = min(sub-box(e.p1).y, sub-box(e.p2).y), (38.5)

e.mz = min(sub-box(e.p1).z, sub-box(e.p2).z),

where: e.p1 and e.p2 are two ends of EC-tube e, sub-box(p) is the sub-box to which
point p belongs to.

To reduce the number of cache misses, the sub-boxes in P do not contain pointers
to particle records but whole records instead. Each sub-box is represented then by an
array of fixed number of objects (see Fig. 38.6b). All the tumor and normal particles
are allocated directly inside corresponding sub-boxes. This guarantees that particles
are always properly ordered in memory according to their positions. However, we
pay the price of greater memory consumption. This is because the sub-boxes have
various numbers of particles and many records are empty. As particles move, they
change the sub-boxes they belong to. Therefore, the arrays P and V are updated after
each time-step. In case of V, the sub-boxes are built from the beginning by using the
array of EC-tube pointers located in V. Whereas for P, because particles are allocated
inside the sub-boxes, changing location from one sub-box to the other means that
the whole particle record must be moved to a different memory location.

This takes longer time in comparison to pointers operation in the standard
approach. However, because of steady nature of particles dynamics in our model,
such the situation does not occur too often. In fact, in our simulations the process
of reordering particles requires less time than standard linked-list procedure. The
reason is, that in the former, the particles which do not change their sub-boxes need
only “read” operation of their coordinates from the memory, while in the latter, for
all the particles there is an additional “write” operation.

During simulation, the number of spherical and EC-tube particles can both
increase due to mitosis and decrease as the result of apoptosis and necrosis. Infor-
mation of newly formed and dead particles must be added and removed from the
data structures. As doing this directly could cause problems with synchronization,
three intermediate data structures are employed: for newborn particles in P, for new
vessel particles in V and for indexes of dying vessel particles in V. Removing objects
from P is done directly as it is sub-box-local operation, which does not impair other
threads operation and never cause data structures to be rebuilt. Moving object from
intermediate structures to P and V and removing object from V is done sequentially
between separate time-steps.

38.4.2 Speedups and Exemplary Results

Our parallel algorithm is constructed for a single shared memory node and is imple-
mented in C++ with OpenMP interface. The timings were obtained for SGI Altix
XE 1300 cluster consisting of 256 SGI Altix XE 300 nodes and SPARC Enterprise
T5120. The single Altix node consists of two four-core processors Intel Xeon 2.66
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Fig. 38.10 The speed-ups obtained for the main procedures of the tumor model during simulation
of 106 particle ensembles on two test machines (Wcislo and Dzwinel (2010))

T=20000ΔΔ tT=0 T=5000Δ t T=10000Δ t

Fig. 38.11 The snapshots showing the time evolution of tumor vasculature. The tissue particles
are invisible

with 16 GB of RAM allowing for maximum 8 threads executed in parallel. The
SPARC computer consists of eight-core 1.2 GHz UltraSPARC T2 CPU capable of
running in parallel eight threads per single core. It gives in total 64 threads per node
executed concurrently on 32 GB of RAM.

We have employed domain decomposition both along one side of the computa-
tional box (each box slice was handled by one thread) and dividing the box onto
sub-boxes of equal sizes (for 8 threads we have 2 × 2 × 2 grid of sub-boxes, while
for 64, 4× 4× 4 grid of sub-boxes).

As shown in Fig. 38.10, the preliminary timings obtained for our parallel code are
very encouraging. We got speed-up of about 7 on 8 threads CPU and about 30 on 64
threads CPU simulating 106 particles. The timings could be better for more realistic
vessel densities much lower than those considered in the test runs.

The snapshots from simulations of tumor vasculature progression obtained for
timing tests are shown in Fig. 38.11. The tests were performed for particle ensembles
of various sizes. The initial scene consists of two straight parallel vessels, the cells
representing normal tissue and a few cancerous cells located between the vessels.
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Because of increasing TAFs concentration, secreted by the tumor cells in hypoxia,
we can observe newborn capillaries sprouting out from the source vessels. The
vasculature expands and is continually remodeled due to tumor growth dynam-
ics. The sprouts can bifurcate and merge creating anastomoses. The blood flow is
stimulated by pressure difference in anastomosing vessels. Only productive vessels
have a chance to survive if the TAFs concentration is sufficiently high. Unproductive
vessels disappear after some time. Well oxygenated cells are colored blue (dark gray)
while the cells in hypoxia are marked by shades of green (light gray). Necrotic cells
are black.

38.4.3 Possible Improvements

To exploit the full power of multiprocessor system, the second level parallelism
could be introduced based on massage-passing MPI interface. However, it would
make the code extremely complicated and rigid for improvements. This could also
extend the time for implementation and tests. Moreover, running the code on the large
number of CPUs is usually restricted by system administrators and consumes much
time and money. So, having in mind the shift in modern chip technology towards
production of multiple-core CPUs (empowered by GPU) we decided to meet this
trend implementing the code open for both future improvements in the model and
technological progress.

Tuning the code for GPU architecture seems to be much better idea. We can
expect that the computations can be considerably accelerated. We have implemented
on Nvidia GPUs in CUDA environment the procedure of calculation of particle–
particle interactions, which exploits brute force algorithm combined with Hockney’s
one. Proposed algorithm was tested on two CUDA-enabled devices: GeForce GT
330M and Tesla C1060. Their technical parameters are summarized in Table 38.1.

In the algorithm used for forces calculations we divide the computational box on
reference boxes in which we calculate interparticle distance arrays using Hockney
algorithm. We apply data structure consisting of independent vectors representing
particles (storing particle position, velocities, forces, and attributes) which number
depends on the average number of particles placed inside a single reference box. We
increase the size of reference boxes to check the algorithm stability, having in mind

Table 38.1 The parameters of GPU devices

Device GeForce GT 330M Tesla C1060

Compute capability 1.2 1.3
Number of multiprocessors (MP) 6 30
Number of CUDA cores (8/MP) 48 240
Global memory (MB) 1023.3 4095.8
Clock frequency (GHz) 1.26 1.296
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Fig. 38.12 Timings obtained for two versions of particle–particle procedure: one optimized in
CUDA and the second in OpenMP environment

that the computation of the vessel–vessel interactions requires larger Hockney sub-
boxes (see Fig. 38.9). The computational time increases with square of the number
of vectors, however, in our model, the number of particles in reference boxes will be
not larger than 200.

As shown in Fig. 38.12, GPU implementations of particle–particle procedure are
order of magnitude faster than their multi-thread CPU counterparts implemented
in OpenMP environment. In Table 38.2 we present the speed-ups obtained for the
particle–particle procedure (in 3-D) implemented in CUDA implementation versus
its MPI four-thread implementation on Intel i5 M 430. We can observe that the speed-
up is very stable and does not depend on the number of the vectors processed, i.e., no
degradation of computational efficiency is observed for increasing size of the cut-off
radius. This result is very encouraging.

However, the comparisons are made for the same algorithm employing in both
environments. The confrontation with the algorithm presented in Sect. 38.4 involves
tuning its GPU version to the requirements of the whole model and real simulation
conditions. We plan to implement soon this algorithm in our CxA model of tumor
dynamics. We expect to obtain the GPU/CPU speed-up at least 10 comparing to the
CPU algorithm presented in Sect. 38.4.1. Such decrease of computational time will
enable to perform interactive simulations and visualizations of same types of tumors
(e.g. melanoma) in angiogenic phase. That is, the tumors of sizes of up to 1 cm in
diameter can be interactively visualized.
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Table 38.2 Speed-up calculated against CPU algorithm employing four threads and running on
Intel i5 M 430

Number of particles GeForce GT 330M Tesla C1060

128 6.42 31.37
3072 6.12 31.77

15360 6.04 31.21

Fig. 38.13 The concept of the interactive tool for visualization of tumor dynamics
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Fig. 38.14 The screenshot of the interactive system interface

38.5 The System Implementation

In Fig. 38.13 we present our vision of a stand-alone system for interactive visualiza-
tion of tumor dynamics. The system consists of the parallel implementation—both
on CPU and GPU—of the CxA based tumor model and a flexible, user-friendly,
interface (see Fig. 38.14).

The simulation program allows several types of tissues to be simulated. Each
type of tissue (soft tissue, bones etc.) can be described by the set of characteristic
features such as hardness, density, average size of cells, the rate of diffusion of
particular substances (oxygen, TAF), oxygen requirements, life span, resistance to
oxygen deficiency, etc. In our system we use predefined sets of data for selected
types of tissues, so it is not necessary to set all the parameters every time. These sets
are prepared earlier by the specialists on the basis of biomedical data.

The interface, displayed in Figs. 38.14 and 38.15, enables to position the tissues
as well as adjust their size, location and space orientation facilitating the creation
of initial simulation scene. For example, we display in Fig. 38.14 a typical situation
when a cancerous tissue is surrounded by healthy cells and the two are interwoven
with the network of blood vessels. Such the operations are mostly performed with
the help of a computer mouse and a few keyboard shortcuts and function keys. The
interface allows to the user both rendering the scene and watching the simulation
from various angles, zoom in and zoom out, rotate etc. Moreover, it makes possible
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Fig. 38.15 Different modes of system run: CPU OpenMP or GPU CUDA

to observe an arbitrary intersection of the evolving tumor and surrounding tissue.
This way the interface allows for observing tissue interior for 3-D simulations.

During both initiation stage and in the course of simulation, each model parameter
can be modified interactively. Moreover, the simulation conditions can be changed
anytime, e.g., some parts of tissue can be removed and/or added. This functionality
is very important for examination the tumor dynamics after surgical intervention.
The modified simulation scenario might also be saved as a template for the following
simulations.

The modeling can be carried out in two or three dimensions. However, though
3-D simulations are more realistic, they are more demanding computationally. It can
be easily estimated that assuming the same number of particles, 3-D simulation will
be at least three times slower than its 2-D counterpart. As soon as the simulation
scenario and initial conditions are defined, the system is ready to run. It might be run
either on a multi-core CPU with the shared memory—then the simulation program
uses the OpenMP libraries—and, in the nearest future, on GPU devices in CUDA
environment. This warrants some degree of sustainability just in case when one
technology appears to be superior over the other. As shown in Fig. 38.15, the proper
version can be selected at the beginning of modeling experiment.

Thanks to parallel realization, the system allows for interactive, fluent visualiza-
tion of tumor dynamics for particle ensembles consisting of hundred of thousands of
particles. If the simulation is performed on-line (Figs. 38.14 and 38.15), the program
displays information about particular tissues (e.g. the number of cells, the number
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of cells in various states, pressure, O2 concentration). Larger models can be also
simulated in batch mode, producing movies and diagrams.

38.6 Validation Tool

The microvascular density (MVD) is the parameter describing structural proper-
ties of blood network used from years as an important descriptor in cancer therapy
(Eberhard et al. 2000). The value of MVD depends on space position, moreover it
gives poor knowledge about the topology of a vasculature . Therefore, it cannot be
used alone as a “fingerprint” describing current state of cancer dynamics. A quantita-
tive understanding of tumor dynamics requires more sophisticated, universal, space
and case invariant descriptors representing the most relevant topological features of
tumor vasculature.

The knowledge about topology of biological networks can play a significant role
in understanding processes taking place in tissue and organs (see e.g. Albert and
Barabasi 2002; Girvan and Newman 2002). As shown in Newman (2003), the study
of network topology using graph descriptors can help in understanding the behavior
of the entire system and also in models validation by comparing results of in-silico
experiments with in-vivo ones. The structure of a network encodes a number of global
and local information, which can be extracted by dedicated measures and used in
further analysis. Quantitative evaluation of such network properties as connectivity,
symmetry, ability to transfer signals or to form node clusters can reveal qualitative
features of underlying complex system. In addition, local information, e.g., vertex
centrality or vertex clustering coefficient enables to find sub-networks playing the
most significant role in the whole system and allows for grouping functionally similar
nodes. The analysis of vertex or edge features distributions can also bring insight
into system-level characteristics. Some general complex network descriptors are
collected in Table 38.3.

In order to evaluate whether vascular networks generated in numerical simula-
tions are really similar to the realistic ones, we plane to validate our model using
complex network descriptors (Newman 2003). This validation can be conducted on
the basis of the comparison between realistic images of tumor vascular networks
from confocal microscopy and computer experiments. As shown in Figs. 38.16 and
38.17 the topology of vasculature can be extracted using skeletonization filter and
consequently transformed to a graph. Subsequently, the graph can be described by
the feature vectors with statistical and/or algebraic descriptors of complex networks
(Newman 2003; Czech 2012) as the feature vector components. Finally, pattern
recognition and machine learning methods can be used for the vector classification
and hypotheses formulation. This situation is sketched in Fig. 38.18.

Promising application of graph matching algorithms arises as far as inter-regional
variation of vasculature in tumor is considered. Quantifying relations between
vascular networks in different types of tumors can also bring valuable conclusions.
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Table 38.3 Selected graph descriptors available in Graph Investigator application

Descriptor Remarks

Randić Connectivity Index χ(G) = ∑

(u,v)∈E
(ku, kv)

1
2 , where ki denotes the degree of a

vertex i . Connectivity measure derived from chemical graph
theory

General Connectivity Index lχ(G) = ∑

Pl⊂G

(

∏

w∈VP

kw

)−1/2

, where Pl denotes path of

length l and VP all vertices that belong to this path
Zagreb Index M1 M1 = ∑

v∈V
(kv)2

Zagreb Index M2 M2 = ∑

s∈E
ws , where ws is a weight of edge e, for unweighted

graphs ws = 1
Modified Zagreb Index (m M1) (m M1) = ∑

u∈V
(kv)−2

Modified Zagreb Index (m M2) (m M2) = ∑

s∈E
(ws)

−1

Total Adjacency Matrix A(G) = ∑

v∈V
(kv) = 2|E |

Modified Total Adjacency
Matrix

(m A(G)) = ∑

v∈V
(k−1
v )

B Index∗ B(G) = ∑

v∈V

kv
dv

, where dv is vertex distance for vertex v

Vertex distance Sum of distances between v and all other vertices from a
graph G. du = ∑

v∈V
d(u, v)

Density of edges den(G) = 2m
n(n−1) , where m = |E |

Information of vertex degrees Ivd = ∑

v∈V
(kv log2 kv) Reflects connectivity and topological

complexity in terms of number of branches, cycles, cliques, etc.
Radius of graph∗ r(G) = minv∈V εv , where εv is eccentricity of vertex v
Vertex eccentricity∗ Maximum distance between vertex v and any of the remaining

graph vertices εv = maxu∈V d(u, v)
Graph diameter∗ diam(G) = maxu,v∈V d(u, v) Reflects density of graph

connections, achieving its maximal value for paths and minimal
for cliques

Total Walk Count Counts all paths of all lengths in the graph and depends on the
size, cyclicity, and branching of the graph quantifying property
called labyrinthicity

Efficiency∗ E(G) = 1
n(n−1)

∑

u,v∈V,u 	=v
1

d(u,v) Measures the traffic capacity

of a network and reflects its parallel-type transfer ability
Heat Content, Heat Content
Coefficients∗

Parameterized descriptors based on heat kernel matrix

Closeness∗ Mean distance to each other vertex
Betweenness Measures relative importance of a vertex in a shortest-path

transfer through graph edges
B-Matrix descriptors∗ Graph B-matrix encodes information about distribution of

l -order degrees of graph vertices. As l -order degree of a
vertex v we understand the size of the set of all vertices located
at distance l from a vertex v

The descriptors denoted by asterisk can be computed efficiently using CUDA kernels
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(a) (b)

Fig. 38.16 The result of skeletonization of a picture displaying a blood network surrounding tumor
mass

Fig. 38.17 The result of skeletonization of a picture displaying a vascular network in healthy
adipose tissue (Parish 2003)

For example, by comparing topologies of blood vessels in different metastatic tumors
of the same type we might test hypothesis about their similarity (Fig. 38.19).

We have recently developed Czech et al. (2011) Graph Investigator—a robust pro-
gramming package—which is capable of capturing topological features of networks
with the use of various descriptors derived from graph theory. The screenshot of user
interface is shown in Fig. 38.20. The set of available graph descriptors includes over
eighty statistical and algebraic measures. It allows for performing both inter-network
comparisons and to analyze global and local structural properties of networks on the
basis of diverse criteria. Furthermore, it allows for quantifying inter-graph similarity
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Fig. 38.18 The diagram showing the process of feature vector generation on the basis of graph
descriptors of tissue vasculature and hypotheses generation using machine learning tools

Fig. 38.19 The main panel of Graph Investigator. The internal windows show visualization and
computational modules of the application

by embedding graph patterns into low-dimensional space or distance measurement
based on feature vectors.

To supply the user with validation tool we plan to integrate Graph Investigator
application with the tumor modeling simulator. The simulator is written in Java and
much of descriptors are computed exploiting CUDA environment on GPGPU Nvidia
devices. Recently, the efficient GPU implementations of BFS (Breadth-First Search)
and all-shortest-paths algorithms were presented (Luo et al. 2010; Tran 2010). We
use CUDA implementation of BFS algorithm to obtain distance matrix for a graph
that form the basis for computation of several graph descriptors such as efficiency
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Fig. 38.20 The comparison of computation times of graph diameter descriptor for Erdős-Rényi
graphs with edge existence probability p = 0.001 and sizes varying from 100 to 1000. The red
line corresponds to CPU execution of BFS algorithm (Intel Core i7-920). The green line—CUDA
implementation of BFS (Nvidia GTX 280)

or graph diameter. The CUDA kernels are invoked form Graph Investigator through
Java Native Interface. The graph descriptors that can be computed with a help of
GPU are marked in Table 38.3 with asterisk. Figure 38.20 displays comparison of
computation times of graph diameter for CPU and GPU implementations. The test
was performed on random Erdős-Rényi graphs with p = 0.001 (probability of edge
existence). The graph density grows with a graph size. The execution times presented
in Fig. 38.20 were averaged over 100 instances. For graphs of size 1000, the GPU
implementation is 8 times faster.

Using both applications i.e., simulator and validation tool, it is be possible to
observe, analyze and control on-line vasculature evolution using network descrip-
tors. The multidimensional feature vector can be visualized using multidimensional
scaling or principal component analysis tools. This way one can control qualita-
tive changes in tumor dynamics (Topa and Dzwinel 2009) and match interactively
modeling parameters to experimental results.

38.7 Summary and Conclusions

We have discussed a general vision of the system for interactive simulation and
visualization of tumor dynamics and its ready-to-use components. It is intended as
educational and research tool for oncologist and clinicians which could be deployed
on a small but strong stand-alone workstations. In the future, such the tool could be
used for planning cancer treatment.
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The system is based on the concept of Complex Automata, which combines parti-
cle method and Cellular Automata modeling techniques. We show that the complex
automata paradigm can be used as a framework for developing realistic models of
tumor growth as a result of emergent behavior of many interacting cells. Successful
and realistic reconstruction of mechanical interactions between proliferating tumor,
healthy tissue, and evolving vascular network is the most important advantage of the
CxA framework over other modeling paradigms.

The CxA model has many limitations. For example, it addresses a limited number
of biological processes. Some of them, such the blood flow, received less atten-
tion than in other approaches. We did this intentionally to reduce the computational
load. On the other hand, CxA model of tumor growth can be easily extended by
implementing more precise sub-models of all the processes—known and unknown—
responsible for tumor proliferation. However, the improvements by including more
detailed processes and developing the particle model on its own (as it is proposed
in Sect. 38.3.2) can be undertaken provided that the efficient parallel version of the
model will be implemented allowing for interactive visualization and simulation.
We have demonstrated that due to parallelization of the model using OpenMP envi-
ronment on modern multiple core CPUs we can improve computational efficiency
almost one order of magnitude. We show that similar factor is achievable using
GPGPU devices. This way, relatively large tumors can be modeled.

We expect that just technological progress simultaneously with improvements in
parallel implementation of the model will allow for increasing of both the size of
tumors simulated and the accuracy of the results obtained. This is the reason that
the system is constantly being tuned to nowadays computational and visualization
facilities allowing for considerable increase of simulation efficiency.

In the paper we also describe the interface that will be employed for setting up
initial conditions and to assure interactive visualization of tumor dynamics. Such the
user-friendly interface is particularly important for preparing the initial simulation
scenario of tumor growth, which requires handling with hundreds of parameters.

The system will be developed in accord to both ICT technology development and
the increasing knowledge about reasons and processes involved to cancer growth.
The following versions of the system will be replenished, on the one hand, with
more and more detailed microscopic and macroscopic processes and, on the other,
its better numerical realization and computer implementation.

To supply the user with validation tool, we will integrate the tumor growth simula-
tor with Graph Investigator—ready-to-use data mining tool for interactive analysis
of topological structure of tumor vasculature. Such an integrated simulation/data
analysis tool would allow to do research on cancer development undoubtedly more
effectively due to faster search of parameters domain and hypothesis verification.
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Chapter 39
High Throughput Heterogeneous Computing
and Interactive Visualization on a Desktop
Supercomputer

S. Zhang, R. Weiss, S. Wang, G. A. Barnett Jr. and D. A. Yuen

Abstract At a cost below $2500, a desktop supercomputer was built from scratch by
assembling the basic parts including a Tesla C1060 card and a GeForce GTX 295 card.
This commodity desktop runs a Linux operating system together with CUDA, MPI
and other needed software. MPI is used not only for distributing and/or transferring
the computing loads among the GPU devices, but also for controlling the process of
visualization. Several applications of heterogeneous computing have been success-
fully run on this desktop. Calculation of long-ranged forces in the n-body problem
with fast multi-pole method can consume more than 85 % of the cycles and generate
480 GFLOPS of throughput. Mixed programming of CUDA-based C and Matlab has
facilitated interactive visualization during simulations. One such MIMD application
is the simulation of an idealized Belousov-Zhabotinsky Reaction (BZR), which is
distributed evenly on three GPU devices (two on GTX 295 and one on Tesla) through
message passing interface (MPI) and visualized at a given frequency displaying the
evolution of the simulated reaction. One additional MPI process is over-subscribed
onto one GPU device for monitoring the thermal status and memory usage of all the
GPU devices as the BZR simulation progresses, further enhancing the throughput.
(Submitted as a part of the paper is a movie capturing the self-organization process of
cellular spirals resembling the Belousov-Zhabotinsky Reaction.) Our test runs have
shown that running multiple applications on one GPU device or running one appli-
cation across multiple GPU devices can be done as conveniently as on traditional
CPUs.
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39.1 Introduction

On the 15th of February 2007, nVIDIA Corporation released to the public the ini-
tial version of Compute United Device Architecture (CUDA) (Wikipedia—CUDA),
starting the successful era of accelerating general-purpose computation by using the
computational resources available on the Graphic Processing Unit (GPU). So far,
many successful stories of superior performance accelerated by CUDA-based GPUs
have been reported (Selected Publications by NVIDIA). At the annual Supercom-
puting conference, general scientific and engineering calculations on GPU or hetero-
geneous computing has become one of the key thrust areas (Conference overview of
SC10). The GPU accelerator movement towards HPC has demonstrated the begin-
ning of accelerator-based computing at a large scale. Many think accelerated HPC
is the primary path to exascale computing for a fixed energy budget (SC10 focuses
on a heterogeneous future).

One common feature of these successful GPU accelerations is that they are being
developed on nearly turn-key machines built by professional vendors. Many of the
publications focus on how to accelerate the calculation of a particular computing
(Takashi et al. 2010). Few papers, however, discuss from the operational perspective
what is needed to enable GPU computing or how to make it work at little additional
cost, or to use an already CUDA-compatible GPU for computing. Individual pieces
of information can be found easily here and there on the internet, for example, about
CUDA GPU computing, but it is difficult to find one that has put the pieces of informa-
tion together to help beginners to start quickly, which motivate us to write this paper.

Our experience with GPU computing was started by a undergraduate student
S. Wang in May of 2009. Subject to a given budget of $2500, he ordered the basic
parts, assembled them into a desktop, installed the needed software and got the
desktop ready for GPU computing. So far we have built three such desktops made
of different generations of the GPU cards. They are named MARK1, MARK2 and
MARK3, together forming a small GPU cluster. Multiple GPU systems, such as the
three Marks, which we have constructed in the past 18 months are regarded as being
the high performance standard because it is cost-efficient and practical. GPU-based
computers allow for high performance computing to be taken out of the data center.
With the GPU-based approach to computing, the performance of 1999 era cluster
systems, such as the SGI 2000 Origin, can be achieved at the deskside as a per-
sonal supercomputer. This allows the immense power and performance capabilities
of a high-performance cluster to be merged with the portability and usability of a
workstation to enable a new era of personal innovation in strategic science, research,
development and visualization.

Our work distinguishes from most of the published ones by the fact that multiple
GPU devices on one desktop are used by multiple users for different kinds of appli-
cations concurrently. The GPU acceleration has gone beyond the single program
multiple data (SPMD)—the dominant paradigm of GPU computing (Takashi et al.
2010). We have extended it to the applications of multiple program multiple data
(MPMD), requiring several pieces of software running together on the GPU devices
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(Wang et al. 2009). One objective of our work is to build a more—user friendly GPU
computing environment on a single desktop and enrich and/or enhance the capabili-
ties of GPU so that users can develop a variety of applications that can benefit from
the GPU acceleration.

In this paper, we would like to share our experience from an operational perspec-
tive regarding how to build a user friendly GPU computing environment, starting
from scratch by assembling hardware parts and integrating individual pieces of sup-
porting software and how to efficiently use the available resources on the devices
and maximize its throughput. Certainly, the technical tactics described in this paper
may not be directly applicable to general desktops because of MARK1’s specific
GPU settings, but the concepts and strategies embedded in the technical tactics, we
believe, are generic and useful for people to enhance the usability of his/her already
existing workstation or even laptop. The tools and the programs we developed can
be ported easily to different GPU settings.

39.2 Hardware

The major pieces of hardware on MARK1 (Fig. 39.1a) consist of one quad-core
CPU (Intel Core 2 Quad Q6600 Kentsfield 2.4 GHz), a motherboard with 2 PCIe slots
(2.0×16 expansion), two GPU cards (nVidia’s GeForce GTX 295 and Tesla C1060),
and a 1200 W power supply. Not much difference in assembling MARK1 was found
from building a normal PC desktop except the end product has more GPU devices
and requires a bigger power supply (Fig. 39.1). Certainly, the assembling is a very
rewarding experience because it helps understand the parts, customizes the machine
and saves some money. Table 39.1 gives a breakdown of the costs of individual parts.

(a) (b)

Fig. 39.1 a Photo of MARK1 assembled from individual parts. b Photo of MARK3 made of 3
Fermi GPUs C-2070 and C-2050 in addition to a 8 core CPU
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Table 39.1 Cost breakdown
to individual parts

Part description Cost(US $)

CPU—Intel C2Q Q6600 2.4 GHz 194.99
MB—ASROCK P45XE-WiFiN 775 124.99
CASE—COOLERMASTER 49.99
RAM—Kingston 2×1 Gb & 2×512 Mb 97.99
PSU—BFG 1200W 249.99
CASE FAN—Generic 120 mm 14.99
CPU FAN—Generic Socket 775 14.99
GPU—GTX 295 Card (1.9 GB Ram) 509.60
GPU—Tesla C1060 Card (4 GB Ram) 1219.99
Total $2477.51

MARK3 shown in Fig. 39.1b is a high end desktop at a cost around $8200. This cost
does not include the 40 Gbits/s Infiniband fabric which is used to connect the three
individual desktops. MARK3 is assembled from the following parts: Asus Rampage
III Extreme motherboard, Intel i7 950 CPU @ 3.07 GHz, and 12 GB DDR3 RAM,
and 3TB of RAID storage. The GPUs in this computer are two Tesla C2070’s and
one Tesla C2050. MARK2 is in between MARK1 and MARK3, or a middle-end
desktop, made of a CPU (Intel i7 920 @ 2.66 GHz processor with 4 cores) and two
GPU devices (Tesla 2050 and GTX 480). MARK2 and MARK3 will be connected
by the Infiniband with 40 Gbit/s capability.

39.3 Supporting Software

MARK1 runs the openSUSE Linux operating. We have used NVIDIA’s CUDA
(Wikipedia—CUDA) technology to enable the GPU computing. In Table 39.2 we
list the major pieces of software installed on MARK1 for a variety of applications.

39.4 Technical Tactics

39.4.1 Selection of GPU Devices

CUDA provides device management functions (see Table 39.3) that can be used for
checking how many GPU devices are available, what the ID number is for each of
the devices, what physical properties are associated with each of the device IDs, and
for selecting a device subject to a certain criterion.

These functions provide the programmers with the useful means to flexibly select
one of the GPU devices to meet a particular need of different applications in the multi-
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Table 39.2 Major piece of software installed for CPU-GPU hybrid computing

Software Version Description

OpenSUSE 11.1 Linux operation system
GNU compiler 4.3.2 The compiler for CUDA and MPI

application
CUDA toolkit 2.2 Parallel computing architecture that
CUBLASCUF 2.3 leverages the parallel compute engine in
FT 3.0 NVIDIA graphics processing units (GPUs)
computeprof 3.2 to solve computational problems
MPICH 2-1.1 Message Passing Interface (MPI) for the use

of multi-GPUs and MIMD applications.
MAGMA 0.2s Matrix Algebra on GPU and Multicore

Architectures.
Lapack & 3.2.1 Matrix algebra library on CPU used for
BLAS benchmarking GPU performance with

MAGMA
MATLAB R2009a For interactive visualization
nvidia-smi 1.1 System Management Interface program

Table 39.3 Device management functions with CUDA

Function name Functionality

cudaGetDeviceCount(&device_count); To tell how many GPU devices are available
0 ≤ ID < device_count The IDs of the available GPU devices
cudaGetDeviceProperties(&deviceProp, ID); To get the device properties for a given ID
cudaSetDevice(ID). To use the device associated with ID
cudaChooseDevice (ID, &deviceProp) To chose a device having the device properties

GPU environment. That is, one can run multiple applications on the same device (e.g.,
Tesla C1060) and one can also let one application run across multiple devices. The
flexibility of selecting GPU devices will be better demonstrated in Sect. 39.4.3 with
MPI through an MPMD application.

39.4.2 Memory Management

The typical CPU-GPU heterogeneous computing involves running code on two dif-
ferent platforms concurrently: a host system with one or more CPUs and one or
more devices with CUDA-enabled NVIDIA GPUS. CUDA C best practices guide
(Cuda, C Best Practices Guide) recommends the amount of memory on the host
system matches that of the GPU devices to maximize the performance and through-
put. But there is a shortcoming on MARK1 due to the budget constraint. The main
memory on the CPU part is 3 GB whereas 5.8 GB of memory is available on the GPU
side (4 GB on Tesla C1060 and 1.8 GB on GTX 295).
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…
cudaMemcpy(d_A, h_A, mem_size_A, cudaMemcpyHostToDevice) );
cudaMemcpy(d_B, h_B, mem_size_B, cudaMemcpyHostToDevice) ) 
… 

// setup execution parameters
dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
dim3 grid(WC / threads.x, HC / threads.y);

// free the memory on CPU
free(h_A);
free(h_B);

// execute the kernel
for (res=0; res <=1; res++) {
matrixMul<<< grid, threads >>>(d_C, d_A, d_B, WA, WB);
} 

// allocate memory on CPU for the output from GPU
float* h_C = (float*) malloc(mem_size_C);

// copy result from device to host
cudaMemcpy(h_C, d_C, mem_size_C, cudaMemcpyDeviceToHost);

… 

Fig. 39.2 Typical procedure for efficient use of the available memory on the host system

We have used the strategy in the code development that frees the CPU memory
allocated for the array initialization after the data are copied onto device, but before
the GPU kernel executes and keeps the data on the GPUs as long as possible. The
memory needed for receiving the output from GPU computing will not be allocated
on CPU until the GPU kernel execution finishes. This strategy works well in reduc-
ing the impact of CPU memory shortage on the performance and maximizing the
throughput of the desktop. The following chart (Fig. 39.2) shows a piece of the code
to demonstrate how to efficiently use the available memory on the host system so
that all the GPUs can be fully used.

39.4.3 Use of nvclock for Monitoring the Thermal Status
of GPU Devices

In the multi-GPU and multi-user environment, more often it is necessary to know
which GPU has been used and/or how much of its memory has been used before
launching a new job to balance the computing loads. Also, it is necessary to check
whether a job is actually running on the selected GPU device. However, there were
no direct ways to get this kind of information on Linux systems before November
of 2010 when CUDA toolkit 3.2 was released. We found that the utility nvclock
provides a means to check the temperature of all GPU devices and that their thermal
status is sensitive to the relative intensiveness of individual device usage.
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Then we developed a tool that can keep track the thermal status of all GPU devices
and report the temperature variations in graphic format indicating which device is idle
or busy and/or show how the thermal status of a particular device corresponds to the
job running status. This tool has two independent graphic interfaces. One interface is
written in java-script and uses html to report thermal status of GPU devices to a web
browser allowing remote users to check the current GPU’s usages. One example of
the online reporting is shown in the left top panel in Fig. 39.5. The other interface
is written in Matlab, which can be coupled into a real application code for the local
users to check the thermal status in the real simulation time. The temperature plots
generated by Matlab are shown in the left lower panel in Fig. 39.5.

It should be noted that as of the release of CUDA 3.2 the nvidia-smi utility is better
used to gain access to relevant GPU statistics. By calling the nvidia-smi executable
with –q –a switches, many valuable GPU statistics can be accessed. This includes
temperature, GPU and Memory utilization percentages, and ECC memory statistics.

39.4.4 Use of All GPU Devices for One MPMD Application
with MPI

As described in previous sections, MARK1 is equipped with two different GPU
cards, whose memory is not the same as the CPU memory. These heterogeneous
characteristics make MARK1 well suitable for MPMD applications that can benefit
from the use of all GPU devices. In this section, we would like to describe the
implementation of a Belousov-Zhabotinsky Reaction (BZR) model on MARK1 and
show how we maximize the throughput.

BZR is a now well-known chemical reaction that was discovered in the 1950s
by Boris Belousov and is a demonstration of an oscillating chemical reaction
(Winfree 1984). While the details of the chemistry behind this reaction are most
certainly beyond the scope of this paper, an unusual and interesting feature of the
reaction is that as it progresses on a two dimensional plate, self-organizing spirals
are formed. Many computer models have been constructed to simulate the evolution
of these spirals. In 1988, Alexander Dewdney proposed a transition rule for a cellular
automaton, which is summarized in Fig. 39.3. The resultant patterns of this cellular
automaton closely match the observed ones from actual BZ reactions (Turner 2009).

Robin Weiss implemented Dewdney’s transition rule in CUDA C as BZR.cu.
The reaction region is divided into three subdomains, each of which is distributed
onto one GPU device for calculating the local cellular automaton. Correspondingly,
three MPI processes have been used. Each of them controls one of the GPU devices by
attaching one MPI rank to one GPU device ID. MPI_Send and MPI_Recv functions
are used to move the necessary data among the GPUs and CPUs. Two critical issues
must be resolved before claiming the success of parallel cellular automaton:
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All cells begin in random state between 0 and maxState
1. let k1, k2, and g be constants
2. if currState == maxState
3. nextState = 0
4. else
5. a = # of neighbors where: (0 < neighbor.value < maxState)
6. b = # of neighbors where: (neighbor.value == maxState)
7. if currState == 0
8. nextState = floor(a/k1) + floor(a/k2)
9. else
10. s = sum of all neighbor states
11. nextState = floor(s / (a + b + 1)) + g

Fig. 39.3 Pseudocode proposed by Dewdney

(1) The spatial continuity of the cellular structures across the edge connecting two
subdomains. A local-grid (or cell on the edge) needs to access the current state
of abutting cells that are located on a different MPI process.

(2) The temporal continuity of the cellular patterns and evolution. A careful design
is needed to handle the race condition that can occur as multiple (over 560,000)
threads attempt to update the local grid with the nextState values of particular
cells. If one of the threads terminates the update for one cell, the computation of
neighboring cells will be invalid.

To maintain the spatial continuity of the cellular structures, at the beginning of
every iteration, each MPI process retrieves the top- and bottom-most row of cells
from their local grid. These two rows are then sent via MPI Send/Recv functions
to the immediate neighbor “above” and “below” the process. Upon receipt of these
rows, the MPI process loads the data onto the GPU so that the GPU kernel function
can access the values.

A buffer is used to handle the race condition. Essentially, each MPI process allo-
cates twice the amount of memory needed for the local grid (or cells) on the GPU.
One of these locations contains the current state of the local grid, call it currGrid, and
the other is used to collect results, the buffer. When the kernel function (BZR.cu) is
called to compute the next state of the cells in the local grid, the threads computing
these values write their results to the buffer. Then, at the beginning of next iteration,
the memory location holding the buffer is considered the currGrid, and the mem-
ory location that was holding currGrid is considered the buffer, having its values
overwritten in this iteration.

The overall procedure of performing the idealized BZR simulation shown in
Fig. 39.4 manifests well the suitability of MARK1 for the MPMD application, in
which three GPU devices are used for computing and one of them picks up addi-
tional work of visualization. This overloaded MPI process is assigned onto the Tesla
C1060 device because it has much more memory than the other two. Furthermore,
one additional MPI process in the BZR simulation is over-subscribed onto one GPU
device (the Tesla C1060), which couples the tool described in Sect. 39.4.3 for mon-
itoring the thermal status of all the GPU devices during the BZR simulation.
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Each MPI Process:

1. Allocate space on GPU for currGrid and buffer

2. Initialize buffer with random values

3. Repeat for temporal evolution

1). Set currGrid = buffer

2). Copy top and bottom rows of currGird off of the GPU and send to adjacent process

3). Receive above- and below-rows and load them onto GPU device

4). Call the BZR.cu to compute the next state of localGrid, writing results into the buffer

5). (Optional) at a given frequency, one MPI process collects the cellular state and displays the 

results over the whole region. 

Fig. 39.4 High-level pseudocode for distributed cellular automaton

Fig. 39.5 A snapshot of graphics appearing on MARK1’s monitor

Figure 39.5 is one snapshot of the graphics on MARK1’s monitor when the BZR
simulation was on. The right panel shows a state of cellular automata over the whole
reaction region. The left upper panel shows the temperature plots generated on the
web browser. The left lower panel shows the temperature plots generated by Matlab.
The legend G1, G2 and G3 stand for GPU devices 1, 2 and 3 respectively. The legend
B1, B2 and B3 stand for boards on which GPU devices 1, 2 and 3 are respectively
attached. The solid curves are the instant temperature reflecting the relative working
load on individual devices. The dashed curves show the temperature when the devices
are idle.
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One can observe that GPU1 and GPU2 (the two devices on GTX 295) remain in
more stable and cooler condition than that of GPU3. That is due to the fact that GPU3
or the Tesla card is assigned more work—showing the pattern evolution of the spirals
and displaying the thermal status of all devices. It is an interesting observation that
when the machine is idle, the temperature of Tesla card is 7 ◦C lower than that of
GTX 295 although exploring the deep causes is beyond the scope of this paper.

39.5 Performance and Throughput

We have focused our attention towards maximizing the throughput of MARK1
through balancing the working loads among the CPU and GPUs. That requires a
good understanding on the capabilities of each GPU device. We have got several
applications running on this commodity desktop. In this section we will describe
what we have learned and the performance achieved with different applications.

One experiment was done to compare the performance of individual GPU device
for conducting a single precision matrix multiplication of A×B with A being a
9600×9600 array and B being a 9600×4800 array. As a reference we also conducted
the same calculation with different OpenMP threads or CPU cores on a Intel(R)
Xeon(R) E5345 workstation. The timing results summarized in Table 39.4 clearly
show the superior acceleration from the GPU devices. When one OpenMP thread is
used for running the matrix application takes 98 s of wall clock time. It shortens to
25 s with four OpenMP threads. The same calculation takes over 14 s on one GPU
device with 150× 300 thread blocks and 32× 32 threads per block.

But GPU3 (or Tesla C1060) yields only a slight better performance than GPU1 or
GPU2. That was a little disappointing at first as we expected much better performance
from Tesla C1060 as it has much bigger memory. A careful comparison of the device
properties depicted by the CUDA driver (Table 39.5) shows that Tesla C1060 has
almost identical subsystems as GTX 295 except C1060 has a slightly higher clock
rate, which account for their minor performance difference shown in Table 39.4.

Another experiment conducted was to concurrently run multiple copies of the
same job as shown in Table 39.4 on Tesla C1060. The interesting finding is that the
time taken to run the 3 copies of the same job concurrently is over 20 % shorter

Table 39.4 Performance comparison of matrix multiplication

GPU1 GPU2 GPU3 CPU

Name G295 G295 C1060 L13a

Clockrate (MHz) 1242 1242 1296 2327
Available memory (MB) 900 900 4096 16439
Used memory (MB) 737 737 737 737
Time on GPU (s) 9.92 9.93 9.49 0
System time (s) 2.48 2.44 2.48 0.48
Wall clock time (s) 14.48 14.48 14.04 25.42
aNote L13 is an Intel(R) Xeon(R) E5345 workstation. 4 OpenMP threads are used for this test
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Table 39.5 Comparison of the subsystems between Tesla 1060 and GTX 295

Device properties GPU1 (GTX 295) GPU3 (Tesla 1060)

Number of multiprocessors 30 30
Number of cores: 240 240
Total amount of constant memory (B) 65536 65536
Total amount of shared memory per block (B) 16384 16384
Total number of registers available per block 16384 16384
Warp size: 32 32
Maximum number of threads per block 512 512
Maximum sizes of each dimension of a block 512× 512× 64 512× 512× 64
Maximum sizes of each dimension of a grid 65535× 65535× 1 65535× 65535× 1
Maximum memory pitch (B) 262144 262144
Texture alignment (B) 256 256
Clock rate (GHz) 1.24 1.30
Concurrent copy and execution Yes Yes
Support host page-locked memory mapping Yes Yes

than that taken to run the job three times one after another. What so? Very likely the
superior performance is from the contribution of the big number of cores combined
with the big amount of memory that Tesla C1060 has, which play the role toward
the throughput in a similar way as the cache on CPU does. Although the actual
mechanism is not clear, this test indicates that running more applications on the
GPU device subject to its available memory may improve the overall throughput.

Matthew Knepley has got his code running on MARK1, which does the calculation
of long-ranged forces in the n-body problem with fast multipole method (FMM).
The FMM simulation consumed 85 % of the cycles of Tesla C1060 or yielded 480
GFLOPS of throughput (Knepley 2009).

Scientific computation more often relies on other basic capabilities including
supportive libraries. We have ported MAGMA—the LPACK library developed at
the University of Tennessee for GPU and Multicore Architectures (LAPACK for
GPUs and Multicore architectures) and made it working on MARK1. The following
chart (Fig. 39.6) shows three GPU devices compute a QR factorization of a matrix
of 6010 in double precision.

./testing_dgeqrf -N 6016 
device 0: GeForce GTX 295, 1242.0 MHz clock, 895.8 MB memory 
device 1: GeForce GTX 295, 1242.0 MHz clock, 895.7 MB memory 
device 2: Tesla C1060, 1296.0 MHz clock, 4095.8 MB memory 

N                 CPU GFlop/s               GPU GFlop/s             ||R||_F   /   ||A||_F 
======================================================== 
6016                         1.14                            44.70                    3.674079e-15

Fig. 39.6 Performance of QR factorization in double precision for a matrix of 6010 × 6010
achieved with MAGMA
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Fig. 39.7 Boss transition with 600×600×300 points, 2nd order method, Ra =10**7, 5 s/time-step
using the Tesla C1060 GPU

G. Barnett Jr. developed a Matlab mantle convection code which implements a
three-dimensional, second-order finite-difference model of Rayleigh-Benard thermal
convection. We have modified this code and accelerated it with a GPU through Jacket
(Jacket—The GPU Acceleration Engine for Matlab). On the Telsa C1060 we ran the
simulation with sufficient resolution (600× 600× 300 gridpoints). 5× speedup was
achieved. One snapshot of the simulation results is shown in Fig. 39.7.

39.6 Concluding Remarks and Future Work

Although we have built up two more workstations (MARK2 and MARK3) with newer
NVIDIA GPU cards such as the Fermi C-2070, these machines start to increase
in price to over eight thousand dollars, which could not be easily classified as
cost-effective supercomputing. In this paper we have focused our presentation on
GPU computing with MARK1 because of the originality of building MARK1. The
lessons learned from this pioneering effort and the accomplishment carried out on
the first desktop have made the work of assembling the following two much eas-
ier. Certainly, our interest of building MARK2 and MARK3 is not just simply to
repeat MARK1, but to meet the new challenges of using multiple GPUs and con-
necting Mark-2 and Mark-3 with a 40 Gb/s Infiniband. They will allow us to get on
to the newer NSF centers in Tennessee, the Keeneland project (Keeneland Success
at SC10), which will house soon 500 Fermis and will have a peak speed close to a
Petaflop.1

1 What does this sentence mean? We are going to be part of the Keeneland project? Or are we saying
that we have a competitive system?
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Our work itself manifests a great success with multi-GPU computing starting from
scratch by assembling parts. We have enabled the simulation of mantle convection
for Rayleigh number of 10**7 on Tesla C1060, which shows a 5× speed up com-
pared the performance on CPU with Matlab. We have achieved a throughput of 480
Gflops with the FMM code in solving the N-Body problem. In the implementation
of BZR simulation, we have used MPI for evenly distributing computing work and
exchanging the data among three GPU devices. The BZR application clearly shows
the tremendous potential embedded in MARK1—the commodity desktop. It can not
only yield high throughput with GPU computing, but also visualize its results during
the simulation. In addition it also keeps track of and displays the thermal status of
all GPU devices corresponding to their usage by the simulation.

Our work also showcases the usefulness of CUDA in managing and connecting
GPUs for various applications. With CUDA one can selectively select one of the
GPU devices for computing and visualization. This functionality is especially useful
for matlab-based visualization to run on Tesla, which has more memory, because
Matlab itself can start only on the GPU card located on the first slot (GTX 295). The
interesting finding is that multiple graphic applications can run simultaneously on
one GPU device (we put them on Tesla because it has 4 GB memory). Our experience
has shown that running multiple (including graphic) applications on one GPU device
(Tesla C1060) or running one application across multiple GPU devices can be done
as conveniently as on CPUs, but their performance can be 5–10 times or even better.

Future work would involve integration with Intel many-core processors such as
the Sandybridge from Intel and Knights Ferry and Knights Corner. A hybrid setup
of Nvidia GPUs and new Intel chips would make a powerful combination. A lot of
this integration would depend on the costs of these new many-core chips, capable of
using traditional compilers, such as Fortran and C.
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Chapter 40
Applications of Microtomography to Multiscale
System Dynamics: Visualisation,
Characterisation and High Performance
Computation

Jie Liu, Klaus Regenauer-Lieb, Chris Hines, Shuxia Zhang, Paul Bourke,
Florian Fusseis and David A. Yuen

Abstract We characterise microstructure over multiple spatial scales for differ-
ent samples utilising a workflow that combines microtomography with computa-
tional analysis. High-resolution microtomographic data are acquired by desktop
and synchrotron X-ray tomography. In some recent 4-dimensional experiments,
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microstructures that are evolving with time are produced and documented in situ.The
microstructures in our materials are characterised by a numerical routine based on
percolation theory. In a pre-processing step, the material of interest is segmented
from the tomographic data. The analytical approach can be applied to any feature
that can be segmented. We characterise a microstructure by its volume fraction,
the specific surface area, the connectivity (percolation) and the anisotropy of the
microstructure. Furthermore, properties such as permeability and elastic parameters
can be calculated. By using the moving window method, scale-dependent properties
are obtained and the size of representative volume element (RVE) is determined.
The fractal dimension of particular microstructural configurations is estimated by
relating the number of particular features to their normalized size. The critical expo-
nent of correlation length can be derived from the probability of percolation of the
microstructure. With these two independent parameters, all other critical exponents
are determined leading to scaling laws for the specific microstructure. These are
used to upscale the microstructural model and properties. Visualisation is one of the
essential tools when performing characterisation. The high performance computa-
tions behind these characterisations include: (1) the Hoshen-Kopelman algorithm
for labelling materials in large datasets; (2) the OpenMP parallelisation of the mov-
ing window method and the performance of stochastic analysis (up to 6403 voxels);
(3) the MPI parallelisation of the moving window method and the performance of
stochastic analysis, which enables the computation to be run on distributed memory
machines and employ massive parallelism; (4) the parallelised MPI version of the
Hoshen-Kopelman algorithm and the moving window method, which allows datasets
of theoretically unlimited size to be analysed.

Keywords Microtomography · Percolation theory ·Hoshen-Kopelman algorithm ·
Multi-scale system ·Quantitative analysis ·OpenMP parallelisation ·MPI paralleli-
sation

40.1 Introduction

Micro computed tomography (micro-CT or microtomography) is a technique devel-
oped from medical CT scans for detecting structures in the interior of objects with
submicron resolution. It has three important characteristics: (1) providing digital
information on 3-D geometries; (2) no destruction of the samples; and (3) offering
high resolution. These advantages motivate a wide range of applications of micro-
tomography for different materials, including rock, bone, ceramic, metal and soft
tissue. When the resolution of microtomography reaches the nano-meter scale, it is
also known as nano-CT or nanotomography.

3-D digital microtomographic data are comprised of a stack of greyscale images
which can be loaded into volume visualisation software packages. Although micro-
CT and visualisation have already provided much qualitative information of the inte-
rior of the object, quantitative analysis can provide additional insights. For example,
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it can give answers to questions such as how large individual entities are and what
are the relationships between different entities. In addition to the characterisation
of individual entities, we are also interested in the statistical characteristics of the
sample. From statistical analysis of the sample a representative volume element
(RVE) can be determined. RVE’s are statistically representative volumes containing
a sufficiently large set of microstructure elements such that their influence on the
average macroscopic property (porosity, elasticity, permeability, etc.) has converged
when a larger volume element is taken. It is important to specify the size of RVE
when estimating the physical properties based on a structured volume. Furthermore,
some scaling parameters can be extracted from the microstructures and this makes
it possible to upscale the properties that were computed at micro-scale. Thus, the
quantitative analysis of microtomography is performed in three levels: characterisa-
tion of individual entities, statistical characteristics and determination of RVE size,
and extraction of scaling parameters for upscaling.

A quantitative analysis requires high performance computing for three reasons.
The first reason is the size of datasets. At present a general micro-CT dataset is
2048 × 2048 pixels per slice, and there are around 2048 slices, this corresponds to
8GB if every pixel is represented by 1 byte. Moving to higher resolutions, 40963

volumes are now possible and it is expected that 81923 volumes will be generated in
the near future. Without high performance computing techniques it is difficult to deal
with datasets of this scale simply because of the memory required to represent the
data. The second issue is that the computation of statistical properties often requires
significant processing power. Thirdly, CT scan experiments in a time series increase
both the volume of data and the computational requirements linearly with the number
of time steps.

Software does exist to perform quantitative microstructural analysis (Lindquist
2005; Nakashima and Kamiya 2007; Ketcham 2005). However, concerning the sto-
chastic analysis, high performance computing, and extraction of scaling parameters,
our strategy (Liu et al. 2009; Liu and Regenauer-Lieb 2010) is unique, more com-
prehensive, and more powerful. The aims of this research are (1) characterisation
of microstructures by visualisation and quantitative analysis; and (2) upscaling of
micro-scale properties by stochastic analysis and percolation theory. In this paper
we emphasise the technical details and the computational methods employed.

40.2 Microtomographic Data

40.2.1 X-Ray CT Theory and Synchrotron CT

In micro-CT experiments, X-rays are created from a high-power source and directed
at a sample. A detector on the opposite side of the sample measures the intensity of
the transmitted X-rays. The sample is rotated step by step, generally in 1◦ steps, and
the detector records an image for every step. The intensity of the X-rays reaching
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the detector depends on the sample path length and the X-ray attenuation coefficient
of the material that it passes though. The longer the path length and the greater
the attenuation coefficient of the material, the greater the number of diffraction and
scattering events, thereby weakening the X-ray signal reaching the detector. Using
reconstruction algorithms (i.e. Fourier transform), the 2-D images are converted to
a complete 3-D map of the sample.

The digital 3-D map of the sample is generally represented by a stack of slices,
each a greyscale image. The brightness of pixels within the images is related to the
atomic number, regions with higher atomic numbers will be brighter than regions with
lower atomic numbers. Pores in the sample are always shown as the darkest regions
and are the easiest to identify. Different minerals in rock samples are recognisable
as long as there is a significant difference in their atomic number.

The principle of synchrotron CT is similar to the general X-ray CT, the differ-
ence lies in the energy source employed. The synchrotron uses the energy from a
particle accelerator in which the magnetic field and the electric field are carefully
synchronised with the travelling particle beam. Generally, synchrotron CT results in
better image quality and fewer artifacts compared to an ordinary X-ray CT. The other
feature of synchrotron CT is that it results in images with a higher dynamic range.
For example, pixels in X-ray CT image are generally 8-bit quantities, whereas pixels
in synchrotron CT image are 32-bit values. Higher dynamic range means regions
with smaller differences in atomic number can be identified.

40.2.2 Pre-Processing of Data

Before quantitative analysis, the 3-D microtomographic data needs pre-processing
to select and label the phase of interest. This target phase can be pores, solid grains
or any kind of material, which can be identified within the volume by its intensity
value. We use the Avizo® software package to load the images. By choosing a suitable
threshold value, the greyscale images are converted to binary images where the black
and white pixels represent different materials, e.g., pores and solids in porous media.
This is referred to as the “segmentation procedure”. The Avizo® software enables
us to build up the 3-D binary model, to display the structures in pores or in solids,
and to export the label-data. The label-data is a binary volumetric data file in which
each voxel that has a value lower than the threshold is labelled as 0 and those greater
than or equal to the threshold are labelled as 1. This label-data volume is used for all
subsequent analysis.

Very often the sample is cylindrical but sometimes they are a more irregular
shape. Our quantitative analysis requires a parallelepiped, thus it is necessary to
crop a parallelepiped volume from the whole 3-D dataset. This additionally removes
regions that contain non-material voxels. This procedure is also implemented within
Avizo®.

It is also possible to execute the segmentation of the target phase from CT scan
data independent of Avizo® software by parsing and processing the image slices
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independently using software tools developed inhouse. We have designed an alter-
native way to pre-process the microtomographic data by (1) reading the greyscale
values directly from image files; (2) cropping the proper parallelepiped by specifying
the boundary position in 3-directions; and then (3) exporting the similar label-data
by comparing the value of each voxel with a user selected threshold value. This
pre-processing stage has the advantage of being able to be run on high performance
computers. Thus it can deal with larger datasets than commercial products and is not
constrained by license requirements.

40.2.3 Examples

In the following we present some examples of microtomography.
Figure 40.1 shows pictures of a strongly deformed rock (mylonite) sample.

Figure 40.1a is the hand specimen and the position of one sub-sample is marked
(a total of 54 sub-samples have been scanned). Figure 40.1b is one slice of the syn-
chrotron CT scan from the marked sub-sample. Each slice has 2048 × 2048 pixels
at a resolution of 1.3µm. The shape is a square in this slice of the sub-sample and
the corners are cut off by a circle. Non-material pixels are those that extend beyond
the overlap of the square and the circle, these should not be included in the exported
label-data that will subsequently be used for quantitative analysis. Using the naked
eye, we can recognise tiny pores, light-grey grains, a medium-grey material, and a
white mineral. These can be identified as the target phase and analysed quantita-
tively. Figure 40.1c is the 3-D binary model of pores in the volume consisting of
1300 × 1300 × 1550 voxels. The visualisation of the pore-structure illustrates how
the pores are distributed in space, they are irregularly distributed and small pores
tend to be are grouped together.

Figure 40.2 is a gypsum sample that is heated from room temperature to 235 ◦C.
The description of the experiment is given in Fusseis et al. (2010b). As it is a labo-
ratory made gypsum sample, it does not contain inner structure such as grains and
pores but it does have some impurities that appear as white specks in the images.
Being heated, the dehydration of gypsum leads to the creation of cracks, and the
cracks propagate from the perimeter to the center of the sample. Figure 40.3 shows
the cracks of the final step in a volume of 400× 800× 300 voxels. Separated cracks
are shown in different colours. We can see that the structure of the cracks is very com-
plex, with thin, curved, and discontinuous features. Through quantitative analysis we
can parameterise the size, shape, and orientation of each crack.

Figure 40.4 is an example of a tree branch. A portion of the CT scan is shown in
Fig. 40.4a. The CT-scan slice is 2048×2048 pixels with a resolution of 2.88 µm. As
can be seen in Fig. 40.4b there are a large number of pores, these are conduits of the
tree branch. Figure 40.4c is a 288 µm3 volume (1003 voxels) and shows some con-
duits that are connected by sideways-connected cells (pit cells). Connected conduits
are denoted by the same colour.
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(a)

(b) (c)

Fig. 40.1 Pictures of a strongly deformed rock (mylonite) sample, hand specimen and the position
of a sub-sample (a), a slice of the sub-sample (b), and the 3-D pore-structure of 1300×1300×1550
volume presented as an iso-surface using Avizo® (c)

Fig. 40.2 A gypsum sample being heated, the same slice is shown at three time steps. Resolution
is the same as in Fig. 40.1

40.3 Methodology

We use percolation theory for the analysis of microtomography. The mathemati-
cal definition of percolation refers to the nature of the connectivity in lattice mod-
els. Percolation theory was developed to analyse the connectivity of sites/bonds of
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Fig. 40.3 3-D visualisation of dehydrated cracks of the gypsum sample in the final step of a volume
of 400× 800× 300 voxels. Separated cracks are shown in different colours

(a)

(b) (c)

Fig. 40.4 A tree branch sample, tree specimen (a), a slice of CT-scan image in inverted colour (b),
and a small volume showing conduits (c)

different lattice models, critical phenomena, and their related quantities (Stauffer
and Aharony 1994). The 3-D binary model after segmentation can be considered as
a simple cubic lattice model in which every cubic cell (or site) is equivalent to a voxel
in a volumetric dataset.
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40.3.1 Basic Output Parameters

The principal parameter of our quantitative analysis is the volume fraction of the
target phase, which is, for example, porosity ϕ in porous media. It is defined as the
ratio of the volume of target phase and the total (or bulk) volume. Both volumes can
be determined from the label-data of the 3-D model. The porosity of a rock is, for
instance, an important quantity for the evaluation of the potential volume of water
or hydrocarbons it may contain.

The specific surface area (SSA) sp is defined as,

sp = Sp/V, (40.1)

where Sp represents the surface area of target phase and V is the total volume. Surface
area is equivalent to the iso-surface of volumetric data processing that separates the
target phase from the matrix. As a voxel in cubic lattice model is recognized as a
hexahedron, the surface area can be directly derived from the label-data. Note here
sp has the unit of a−1 (or 1/a), where a is the lattice constant, i.e. the resolution of
the images. The SSA is a derived quantity that can be used to determine the type
and properties of a material. It has a particular importance in case of adsorption,
heterogeneous catalysis, and reactions on surfaces.

For a granular material the distribution of grain size is called the particle size
distribution (PSD). The PSD of a material can be important in understanding its
physical and chemical properties. It affects the strength and load-bearing properties
of rocks and soils, and the reactivity of solids participating in chemical reactions.
PSD can also be referred to as pore size distribution when the pores are the target
phase. They are obtained on the basis of stereology by choosing arbitrary planes
parallel to x, y and z axis and counting the particles (or pores). For a plane parallel to
x axis, for example, we count the target phase in different sizes in the x direction on
the plane. After counting other planes parallel to x axis, the summations of different
sizes of the target phase and their percentages in the x direction are calculated. A
similar procedure is performed in the y and z directions.

40.3.2 Clusters and Orientations

In the simple cubic lattice model, the nearest-neighbours are voxels with one com-
mon plane. A cluster is a group of nearest-neighbours of the same material that are
connected to each other. Labelling clusters is a process of giving all cells within
the same cluster the same label. The Hoshen-Kopelman algorithm (Hoshen and
Kopelman 1976) is used to reduce the computing time in this procedure. After the
cluster-labelling, each voxel is assigned a value representing the cluster number it
belongs to. The largest cluster (with maximum voxel number) is cluster 1, the sec-
ond largest one is cluster 2, and so on. The dataset is known as cluster-labelled
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data to distinguish it from the binary material-labelled data resulting from the
segmentation.

Percolation of a model can be determined after cluster labelling. Since all clusters
in the model now have their specific label, it is possible to know which labels appear
in the outer boundaries. We define a direction as percolating when one boundary
of the parallelepiped in this direction has the same cluster label with its opposite
boundary. This means the two end boundaries of the direction are connected by the
same cluster and the model is permeable.

The shape and orientation of a cluster can be described by a tensor. The tensor is
obtained by using the star volume distribution method following Ketcham (2005).
For the cluster that consists of a set of n sites (voxels), each site i is considered as
a vector ai = (axi , ayi , azi )

T relative to the center of the cluster. The shape and
orientation of the cluster can be defined by the following matrix

T =
n

∑

i=1

ai aT
i . (40.2)

The matrix T has 3 eigenvalues τ1 < τ2 < τ3 and corresponding eigenvectors
u1, u2, u3. The direction cosines of the eigenvectors describe the orientation of the
cluster. The matrix can be visually represented by an ellipsoidal glyph. Isotropy index
I = τ1/τ3 and elongation index E = 1 − τ2/τ3 describe the shape of the cluster
in a simplified way. For porous media, if we assume that permeability anisotropy is
relevant to the character of the pore structure, then the matrix T denotes the anisotropy
of permeability.

40.3.3 Stochastic Analysis

Stochastic analysis is employed to detect the effect of scale and is computed by
using the extended local porosity theory (Liu et al. 2009; Hilfer 1992, 2002). To
implement the local porosity theory a cubic sub-volume with side-length Lacts as
a moving window (Williams and Baxter 2006) scanning through the whole model.
Each placement of the moving window is denoted as K(x, L), where x is the central
position of the sub-volume. The window offset can be equal to the lattice constant
or an integer multiple of it. For every placement of the sub-volume, porosity (vol-
ume fraction), percolation, and anisotropy of the percolating cluster are calculated.
Statistical results can then be drawn from the calculations of all placements of the
sub-volume.

The statistical results are given by three probabilities.

(1) The local porosity distribution μ(ϕ, L) is defined as

μ(ϕ, L) = 1

m

∑

x
δ(ϕ − ϕ(x, L)), (40.3)
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where δ denotes the Dirac δ-function, ϕ(x, L) is the local porosity in the sub-
volume K(x, L), m is the total number of placements of the moving window.
μ(ϕ, L) is the proportion of the number of placements with the porosity ϕ and
of the sub-volume-size L .

(2) The local percolation probability in the α-direction is defined through

λα(ϕ, L) =
∑

x �α(x, L)δϕ,ϕ(x,L)
∑

x δϕ,ϕ(x,L)
, (40.4)

where

δϕ,ϕ(x,L) =
{

1 if ϕ = ϕ(x, L)
0 otherwise

,

and �α =
{

1 if percolating in α-direction
0 otherwise

,

α= x, y, or z denotes the direction along every axis, and α= 3 represents the
percolation along all three directions. It is the proportion of the percolating
placements of the sub-volume-size L and porosity ϕ.

(3) The local anisotropy distributions are defined as

χ(I, L) = 1

m′
∑

x
δ(I − I (x, L)), (40.5)

where m′ is the total number of percolating sub-volumes, I represents two indices
of anisotropy, the isotropy index I1 = I = τ1(x,L)

τ3(x,L)
and the elongation index

I2 = E = 1− τ2(x,L)
τ3(x,L)

. χ(I, L) gives the proportion of the placements with the
index value Ii and the sub-volume-size L . Here τi (x, L) are three normalised
eigenvalues of the orientation matrix of the percolating cluster in sub-volume
K(x, L) that satisfy

∑3
i=1 τi (x, L) = 1. When more than one cluster is perco-

lating in a sub-volume, only the largest percolating cluster is considered for the
statistical analysis.

The stochastic analysis has two important goals. Firstly, the three probabilities are
scale-dependent, that is, for different scales or sub-volume-sizes L , there are different
distribution functions. When all these probabilities converge at a given scale the size
of RVE is determined. Secondly, combining the probabilities of porosity, percolation
and anisotropy of microtomography with the statistical moment method allows the
generation of derivative models that retain the original material structure. Thus, we
can create digital samples that represent the characteristics of the microstructure.
Digital samples provide another way of upscaling, but it will not be discussed in this
paper.
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40.3.4 Scaling Parameters and Upscaling Scheme

In this section the definition and computation of scaling parameters are given, such
as percolation threshold, critical exponent of correlation length, fractal dimension.
The strategy of upscaling is also explained briefly. A more detailed description and
applications can be found in Liu and Regenauer-Lieb (2010).

40.3.4.1 Percolation Threshold

In percolation theory (Stauffer and Aharony 1994), concentration p is the probability
of a site belonging to the target phase; it is equivalent to volume fraction for the whole
model. The (critical) percolation threshold pcis the minimum concentration at which
percolation would occur in the model. To determine the percolation threshold it is
essential to have models with similar structures but different volume fractions. From
static microtomographic data the percolation threshold is difficult to find for the
specific structure.

We have developed a morphological technique to determine the percolation
threshold of a microstructure by deflating (shrinking) and inflating (expanding) the
target phase. As in 3-D binary models, the target phase is labelled as 0 and the matrix
is labelled as 1. A deflation/inflation operation involves modifying the labels of vox-
els in the model, i.e., deflation changes a label from 0 to 1 for any target-phase-voxel
that has one or more nearest-neighbours belonging to the matrix, inflation changes
label from 1 to 0 for any matrix-voxel when it has one or more nearest-neighbours
belonging to the target phase. Only nearest-neighbours are considered when modify-
ing labels. This is consistent with the definition of clusters in the percolation analysis.
The operations of inflation and deflation are manipulated iteratively from the orig-
inal model to create inflated and deflated models, respectively. In this way a series
of derivative models are created. These models have different volume fractions but
retain structures similar to those in the original sample. By analysing the percolation
of these models the critical model is identified as the percolating model closest to
the non-percolating model. The volume fraction of the critical model is recognized
as percolation threshold (Liu and Regenauer-Lieb 2010).

40.3.4.2 Critical Exponent of Correlation Length

There are several different critical exponents in percolation theory that describe some
quantities that are divergent when concentration p is close to the percolation threshold
pc. The significance of critical exponents is that critical exponents are related to
scaling laws and scaling laws enable up-scaling/down-scaling of the characteristics
identified at a particular scale. Only two critical exponents are independent and in
most cases the critical exponent of correlation length is the easiest to calculate.
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The correlation length ξ defines the average distance between any two sites
belonging to the same cluster (Stauffer and Aharony 1994). It is defined as

ξ2 = 2
∑

s R2
s s2ns

∑

s s2ns
, (40.6)

where s is the number of sites of a cluster, ns is the number of such s-site clusters
per lattice site, Rs defined as

R2
s =

∑s

i=1

(

|xi − x0|2 /s
)

(40.7)

is the radius of a complex cluster of s-site; where x0 =∑s
i=1 (xi/s) is the position

of the centre of mass of the cluster, and xi is the position of the ith site in the cluster.
The correlation length ξ diverges when volume fraction p approaches the percolation
threshold pc, as

ξ ∝ |p − pc|−ν . (40.8)

Here ν is the critical exponent of correlation length (or correlation length exponent).
It can be extracted by a finite-size scaling scheme from the local percolation proba-
bilities λ(p, L) of different sub-volume-size L and different volume fraction p (Liu
et al. 2009; Hilfer 1992, 2002).

40.3.4.3 Fractal Dimension

The fractal dimension D is derived from a power law describing a characteristic
versus a statistical variable. In percolation theory the fractal dimension is included
in scaling laws with critical exponents. The fractal dimension can be found from the
relative size and the number of clusters defined as

D =
log10 N

(

l ≥ R

Rmax

)

log10 l

(

= R

Rmax

) , (40.9)

where the relative size of cluster l is the radius of Eq. (40.7) normalised by the largest
cluster radius, the number of cluster N includes clusters that are equal to or larger
than the normalised relative radius.

40.3.4.4 Strategy of Upscaling

With all above listed parameters defined and extracted from the micro-CT we can
move on to the upscaling scheme.
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The stochastic analysis provides probabilities of porosity, percolation and
anisotropy at different scales (limited to the 3-D microstructure model), and can
be used to determine the size of the RVE. Different numerical simulation meth-
ods, such as finite element, finite difference and lattice-Boltzmann method, can be
used to compute material properties from microstructures. Simulations should be
based on the RVE, since only the RVE can represent the general characteristics.
The upscaling workflow involves (1) cluster analysis using Eq. (40.6) to derive the
fractal dimension D; (2) finite-size scaling scheme using the probability of perco-
lation to derive the critical exponent of correlation length ν; (3) inflation/deflation
of original structure to determine percolation threshold from a series of derivative
models. The critical model with percolation threshold provides independent way to
extract fractal dimension D and the crossover length ξ . The crossover length is a spe-
cial correlation length separating the critical behaviour and non-critical behaviour.
When we obtain the critical exponent of correlation length ν and fractal dimension
D from individual samples, the final derived scaling laws are exact for the specific
structures.

40.4 High Performance Computing

Computationally, the percolation analysis described by Eqs. (40.3)–(40.10) is imple-
mented in Fortran90. Test and validation of the implementation has been reported
in Liu et al. (2009), Liu and Regenauer-Lieb (2010). We have developed two main
codes. One is “PROP” for stochastic analysis. In PROP only the largest percolat-
ing cluster in a sub-volume is analysed concerning the anisotropy in statistics as
described in Sect. 40.3.3. The other code “CTSTA” accomplishes the analysis and
output of all clusters in an entire model. Statistics of individual clusters in a model
provides detailed information of the inner structure and can also be used to cal-
culate the fractal dimension of the microstructure. Both codes are written for high
performance computers.

40.4.1 Parallelisation of Stochastic Analysis

The stochastic analysis of the moving window method in PROP is the most time
consuming computation. For a single volume, the analysis of porosity, percolation
and anisotropy can be calculated on a single CPU in a short amount of time, e.g.,
0.1–0.2 s for a volume of 1 million voxels. However, the total number of sub-volumes
m in a stochastic analysis is given by

m =
3

∏

i=1

(

INT

(

Mi − L

n

)

+ 1

)

, (40.10)
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where Mi is the side-length of the model in units of the lattice constant a, i.e. the
resolution of the images, n represents the moving step in units of the lattice constant.
When n = L , there is a non-overlapping placement of sub-volumes that can lead to
fluctuation in the results. For n < L , there is an overlapping placement and there is
a higher weight given to the central region of the model. For a large data set and a
small n the computing time on a single processor becomes increasingly problematic.
To alleviate this problem, it is necessary to parallelise the calculation.

40.4.1.1 OpenMP Version (PROP_omp)

The probabilities defined in Eqs. (40.3)–(40.5) are dependent only on the summation
of data within a moving window. By using the OpenMP programming techniques it
was possible to quickly and easily augment the DO loops that move this window to
move a series of windows, one for each available CPU. This parallelisation distributes
the most time consuming part of the calculation cross multiple CPUs. As shown in
Liu et al. (2009), the speedup is quite good when fewer than 32 CPUs are used.

The usability of PROP_omp is limited to shared memory processing (SMP) sys-
tems. Subject to the number of cores and physical memory available, PROP_omp
can perform reasonably well only for medium size of sub-volume. Suppose each
voxel in the sub-volume is represented by a 4 byte integer, the maximum theoretical
sub-volume size is around 8123 voxels for 2GB of RAM. In practice it is less than this
as storage is also required for additional data structures, e.g., sub-volume-size can be
from 5003 to 6403 depending on the volume fraction of the target phase. In addition,
large-scale SMP systems consisting of 1000+ cores are becoming available for high
performance computing. However due to limitations of the OpenMP architecture it
is very difficult for PROP_omp to scale to hundreds of cores.

40.4.1.2 MPI Version (PROP_mpi_1)

To address these issues we then have parallelized PROP with message passing inter-
face (MPI) in order to perform the stochastic analysis on larger sub-volumes (in the
order of 10003 voxels) on a distributed memory machine and ensure the analysis
runs in a massively parallel manner. The parallelisation consists of three major tasks:
(1) flexibly assign or distribute the sub-volumes described by Eq. (40.10) onto dif-
ferent computing cores, (2) efficiently deal with input and output and (3) efficiently
collect the statistics of the sub-volumes.

The second and third tasks are relatively straightforward, i.e, the parallel I/O is
achieved through linking the I/O channels to MPI rank ID. The collection of the
statistics over the sub-volumes is achieved with the MPI_Reduce function. The first
task requires a careful design of a mapping topology between the order of sub-
volumes and the number of computing cores. The mapping topology is chosen such
that one can run PROP_mpi_1 with the number of cores being a factor of N3 or
N3× N2, where N3 = 1+ (M3− L)/n and N2 = 1+ (M2− L)/n, assuming there
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are a sufficient number of cores on a massively parallel system. One can also flexibly
run PROP_mpi_1 with any number of MPI processes on a small Linux clusters with
load imbalance minimised if sufficient number of cores are not available.

The results of PROP_mpi_1 have been compared with those generated by
PROP_omp for the same set of data (469 × 657 × 626). Identical results are
obtained (up to 5th digit), indicating the cumulative error associated with the use
of MPI_Reduce is negligible. It is worth mentioning that the use of the MPI_Reduce
function is a global operation and requires all MPI processes to send the data to
the master. The scalability of PROP_mpi_1 with a large number of cores can be
compromised if the statistical variables are not packed optimally or too many calls
of MPI_reduce are used. Scalability tests of PROP have been performed on up to
540 cores, showing a linear speedup.

40.4.2 Parallelisation of Stochastic Analysis
and Hoshen-Kopelman Algorithm (PROP_mpi_2)

The two versions of PROP code discussed above are based on the idea of analysing
one sub-volume per CPU core. The calculation thus requires large physical memory
when the size of sub-volume increases. Processing even larger volumes requires
overcoming the physical memory constraint, we must distribute our analysis of a
single sub-volume across multiple CPU cores. While this is more efficient use of
RAM it is expected to be less efficient from a pure speed point of view as data
dependencies will be introduced necessitating that the CPU cores coordinate their
analysis.

Decomposition of sub-volume data proceeds with a technique commonly used
when dealing with 3D regular grids. That is, if we have two CPUs we split the data
in half along the x axis, 4 CPUs splits both the x and y axis, and 8 CPUs splits the x
y and z axis. A similar process can be applied if more CPUs are available. We also
allocate a “halo” of voxels, so that each CPU can receive information about voxels
on the other side of the split.

The analysis proceeds by applying the Hoshen-Kopelman algorithm to each frag-
ment of the sub-volume individually. Each CPU begins numbering clusters in its
fragment of the sub-volume at “1”. At this point it is not possible to identify if a
cluster on one CPU is the same as a cluster on a neighbouring CPU. Nor is it possible
to identify if two clusters on one CPU are actually joined through a cluster on an
adjacent CPU.

Once the Hoshen-Kopelman algorithm has completed on each CPU, the CPUs
communicate their number of clusters found and clusters are re-labelled to give them
unique cluster labels. That is, if CPU 1 found 10 clusters then CPU 2 will add 10
to each of its cluster labels. If CPU 1 found 10 clusters and CPU 2 found 8 clusters
then CPU 3 will add 18 to each of its cluster labels.



668 J. Liu et al.

Each CPU will now send to its neighbours (defined by the x y and z axes) the cluster
labels associated with voxels on its boundary. In this way each CPU can calculate
which of its clusters are in direct contact with clusters on a neighbouring CPU.
Contact between two clusters is defined by what amounts to an entry in something
similar to a Compressed Sparse Row (CSR) representation of the adjacency matrix
of the graph. That is, an array is allocated of m rows by (number of clusters) columns,
where m is the maximum of number of clusters that are likely to be touching. Each
CPU fills in the columns associated with the clusters it stores locally. The information
in the adjacency matrix is shared between all CPUs by a call to MPI_Allreduce. We
note that the CSR representation is inefficient in RAM when the correlation length is
much less than the side length of the sub-volume fragment. If the correlation length
is short, most clusters will not touch a side of their sub-volume fragment and will be
guaranteed not to have neighbours. In this case, the CSR representation will allocate
space for column with no rows.

Using the computational infrastructure presently available to us we have not run
a calculation large enough to find the upper limit of the code. We predict that as the
sub-volume includes more voxels the CSR representation will the limiting factor in
the calculation size.

Finally we can use a standard Depth First Traversal (DFT) of the graph to create
a mapping between old cluster labels and new cluster labels. A depth first traversal
means that each cluster has a list of neighbours. We pick a cluster and relabel its first
neighbour to point to this cluster. We then relabel the first neighbour’s first neighbour.
If this cluster has no subsequent neighbours we can move up to the first neighbour’s
second neighbour. Eventually we will move onto the subsequent neighbours of our
original node. The same depth first traversal is performed on all CPUs used in the
calculation thus avoiding the cost of communicating the results of the DFT between
all CPUs. Further work on the parallel Hoshen-Kopelman implementation would
involve replacing the CSR representation with a more RAM efficient representation
and performing the graph traversal in parallel.

40.4.3 Calculation of Individual Clusters

To calculate the position, shape and orientation of every cluster might be troublesome
when there are a great number of clusters in a volume. The problem arises from the
large number of clusters and the large differences in cluster sizes. As defined in
Eq. (40.2), to calculate T we firstly need to define arrays to load all the vectors of
ai = (axi , ayi , azi )

T of clusters.
There are two options, either one array loads all clusters or there is one array per

cluster. For the former option no matter how many dimensions of the array we define
the size of the dimension must be sufficient to load the largest cluster. That means
that when the smallest array (1 voxel) is being calculated it is using the same size of
array and the same memory as the largest one. For the later option, as it is impossible
to define millions of arrays in the code loading an uncertain numbers of clusters, we
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can only define a dynamic array to load ai = (axi , ayi , azi )
T for only one cluster at

a time. That means we need to read the 3-D cluster-labelled data each time for every
cluster, which is unacceptably inefficient.

We cope with this problem by grouping the clusters, which is similar to data
decomposition. A certain amount of memory is allocated to load the vectors ai .
Since the dimension-size of the array always fits the largest cluster in the group,
when large clusters are being calculated the group has fewer clusters; then when small
clusters are being processed, the group can include a great number of clusters. This
idea balances memory usage and computing time and results in a high performance
solution.

40.5 Applications

The capabilities of our method have been verified and presented as specific case
studies in Liu et al. (2009), Liu and Regenauer-Lieb (2010). Here we give some
more unpublished examples and expand on the capabilities. Some post-processing
techniques and visualisation are also described in the examples.

The following presents the results of the sample introduced in Fig. 40.1c. The
porosity is 1.23 %; the model is not percolating; the SSA is 0.0327; the pore size
distributions in three directions are shown in Fig. 40.5. It shows that more than 90 %
pores are smaller than 9µm (7 voxels) in all x, y and z directions. The largest pore is
70µm (54 voxels) in z direction and it is the only one (out of the range of x axis of
Fig. 40.5).

There are in total 1,895,341 (∼1.9 million) clusters in the volume. Nearly 1 million
clusters are 1 or 2 voxel-clusters. The distribution of cluster size and the percentage
of each cluster size over all pores are shown in Fig. 40.6. The number of clusters
linearly decreases with increasing cluster size on a double logarithmic plot. Large
clusters are unique and also exhibit a linear distribution along the x axis of Fig. 40.6.
Interestingly, the large number of small clusters and the few large clusters occupy

Fig. 40.5 Pore size distribution of the strongly deformed rock sample



670 J. Liu et al.

Fig. 40.6 Histogram of cluster size of the sample in Fig. 40.1, and the volume percentage of different
cluster-sizes

(a) (b)

Fig. 40.7 Display of clusters in a 100 cube volume of the sample in Fig. 40.1

a high percentage of the volume of all pores; in contrast, middle-size clusters (with
100–10000 voxels) occupy a low proportion of the pores in the model. The largest
cluster occupies less than 4 % space of the porosity.

Visualisation of clusters illustrates the characteristics of each cluster of the target
phase in a model, which provides more information than visualisation of the target
phase itself (as shown in Fig. 40.1c). Figure 40.7a shows the structures of clusters in
a small volume of the same sample using GID®, in which each voxel is presented by
a hexahedron. Different clusters are differentiated by using different colours but all
tiny clusters are presented in one colour. Figure 40.7b illustrates the corresponding
orientation tensors of the 20 largest clusters presented by ellipsoidal glyphs using
Mayavi 2. Glyphs are located in the center of the cluster, and the radii are proportional
to the sizes of the clusters. In this small volume pores are apparently mostly distributed
along a crack but the connectivity of pores is poor and the volume is not percolating.
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Fig. 40.8 Selected clusters of the sample in Fig. 40.1, the 1000 largest clusters (left) and large
strongly anisotropic clusters that index ≤0.1 and cluster size ≥1000 voxels (right)

Although our code can deal with very large datasets the visualisation of large
datasets can be limited by software. Some small post-processing codes were written
to help to maximize the ability to meaningfully visualize the data. For instance, the
orientation of very small clusters, especially 1- or 2-voxel-clusters, is generally not
important, thus we can choose to only include the large clusters. We also can select
which clusters to display according to their positions, size, isotropy index, elongation
index, or combinations of these quantities. Figure 40.8 shows the selected clusters of
the sample in Fig. 40.1, the 1000 largest clusters (left) and large strongly anisotropic
clusters with isotropy index≤0.1 and cluster size≥1000 voxels (right). Both of these
two groups of clusters illustrate the general character of the distribution of pores of
the sample.

The histograms of the isotropy index and elongation index of the same sample are
shown in Fig. 40.9. We can see that the isotropy index of most clusters is less than 0.2
and are more concentrated between 0.03–0.13. The elongation index of most clusters
is larger than 0.5 and peaks at around 0.8. Both these two indices suggest that most
pores in the sample are strongly anisotropic. Note that the statistics in Fig. 40.9 do
not include clusters≤20 voxels. The reason is that the orientation tensor is calculated
by summing the dyadic product of the site vector, see Eq. (40.2). When the cluster is
small each site vector has a major influence on the orientation tensor. The sensitivity
of the site vector to orientation tensor places a lower limit on the cluster size for
the meaningful statistic analysis. For example, there are high counts of 1, 2 and 3
voxel-clusters that generate an extremely high fraction of isotropy index of 1, 0.5,
and 0.33, which should be ignored in the statistics.

For the applications of stochastic analysis the following examples and applica-
tions have been published. (1) Liu et al. (2009) gave a synthetic sandstone sam-
ple as the benchmark. The probabilities of porosity, percolation and anisotropy all
asymptotically converge when the sub-volume-size approaches to 400 voxels (1 mm),
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(a)

(b)

Fig. 40.9 Histogram of isotropy index (a) and elongation index (b) of the sample of Fig. 40.1

thus the size of RVE of this sample was determined. The RVE was later used to cal-
culate the permeability and the result was comparable with experimental laboratory
result (Liu and Regenauer-Lieb 2010). (2) Liu et al. (2010) gave two sub-samples
from the same hand specimen of Fig. 40.1. These two sub-samples showed differ-
ent characteristics from the synthetic sandstone sample and they are different from
each other. As the probabilities of anisotropy showed fluctuation the size of RVE
cannot be determined. (3) Liu and Regenauer-Lieb (2010) also gave some results of
a tree branch sample. This application showed that percolation theory can be used in
analysis of this type of strongly anisotropic model, but the extraction of correlation
length and critical exponent of correlation length are unattainable.

The scaling parameters and upscaling scheme is our latest progress and mostly
presented in Liu and Regenauer-Lieb (2010). It uses the results of PORP and CTSTA
computations and combines some new approaches such as inflation/deflation of
images, calculation of fractal dimension, and supplementary analysis. It is based
on the visualisation, characterisation and high performance computing of microto-
mography and makes it possible to extend the scale from micro-scale to macro-scale.
The relevant discussion is beyond the scope of the present contribution. For a more
detailed description please refer to the aforementioned paper.
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40.6 Conclusion and Discussion

Our method and computer algorithms have achieved (1) computation of major para-
meters, including volume fraction, specific surface area, particle (or pore) size distri-
bution; (2) stochastic analysis and determination of RVE, probabilities of porosity,
percolation, and anisotropy for different scales are computed, when these probabili-
ties are convergent at a scale the size of RVE is determined; (3) extraction of critical
exponent of correlation length, fractal dimension, and percolation threshold, thus
parameters of scaling laws are determined making it possible to scale up properties
from micro-scale to macro-scale. With these three capabilities, our method is unique,
more comprehensive, and more powerful than other commercial/published codes for
the analysis of microtomography.

We are now applying this methodology to routinely derive elastic percolation,
electrical percolation, thermal conductivity and many other properties from CT-scans.
Our analyses showed that for samples with strongly anisotropic structure the critical
exponent of correlation length is not attainable (Liu and Regenauer-Lieb 2010). In
this situation other methods for achieving the upscaling must be used. Our long-
term goal is to establish an integrated methodological system with applications to
multi-scale system dynamics. The progress in this paper is a milestone that not only
provides a tool for detailed analysis of microtomography, but also links the micro-
scale to macro-scale.

Considering the size of microtomographic data and the degree of computation
required, the main code has been progressively parallelised. The first stage of the
parallelisation is based upon OpenMP, which performs very well for most situations.
Limited by the OpenMP architecture the performance does not continue to scale
as more CPUs are used. The development of the second stage of parallelism was
based on MPI. This version removes the limitation of 32 CPUs and the performance
improvement is linear up to at least hundreds of CPUs. However, this version does
not consider the decomposition of data, thus the size of datasets is still a barrier.
To improve this aspect of the code a new version, also based upon MPI, has been
developed which includes data decomposition. By distributing the whole dataset and
sub-volumes into CPUs the size of datasets is no longer a barrier. This third version
has additionally achieved a significant breakthrough by parallelising the Hoshen-
Kopelman algorithm.

Although all the progress and capabilities have been very successful there is still
significant scope for further improvements. We believe the performance of the latest
MPI version can be improved further. It is also acknowledged that GPU computing
has been maturing over the last few years and is showing great advantages in comput-
ing speed and energy efficiency. We expect the algorithms presented here to be suited
to GPU computing and thus significant performance gains should be achievable.
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Chapter 41
Three-Dimensional Reconstruction
of Electron Tomography Using Graphic
Processing Units (GPUs)

Xiaohua Wan, Fa Zhang, Qi Chu and Zhiyong Liu

Abstract Three-dimensional (3D) reconstruction of electron tomography (ET) has
emerged as a leading technique to elucidate the molecular structures of complex
biological specimens. Iterative methods using blob basis functions are advantageous
reconstruction methods due to their good performance especially under noisy and
limited-angle conditions. However, iterative reconstruction algorithms for ET pose
tremendous computational challenges. Graphic processing units (GPUs) offer an
affordable platform to meet these demands. Nevertheless, due to the limited avail-
able memory of GPUs, the weighted matrix involved by iterative methods cannot
be located into GPUs especially for the large images. To meet high computational
demands, we propose a multilevel parallel scheme to perform iterative algorithm
reconstruction using blob on GPUs. In order to address the large memory require-
ments of the weighted matrix, we also present a matrix storage technique, called
blobELL-R, suitable for GPUs. In the storage technique, several geometric related
symmetry relationships have been exploited to significantly reduce the storage space.
Experimental results indicate that the multilevel parallel reconstruction scheme on
GPUs can achieve high and stable speedups. The blobELL-R data structure only
needs nearly 1/16 of the storage space in comparison with ELLPACK-R (ELL-R)
storage structure and yields significant acceleration compared to the standard and
matrix with CRS implementations on CPU.
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41.1 Introduction

In biosciences, three-dimensional (3D) structural information is critical to under-
standing biological specimens. Electron tomography (ET) uniquely enables the study
of complex cellular structures, such as cytoskeletons, organelles, viruses and chromo-
somes (Frank 2006). From a set of projection images taken from a single individual
specimen, 3D structure can be obtained by means of tomographic reconstruction
algorithms. Tomographic reconstruction can be modeled as a least square problem
to be solved by matrix algorithms, where a large sparse weighted matrix is involved
(Herman 2009). These matrix algorithms consist of weighted backprojection (WBP)
(Frank 2006) and iterative schemes (e.g. Simultaneous Algebraic Reconstruction
Technique (SART) and Simultaneous Iterative Reconstruction Technique (SIRT))
(Andersen and Kak 1984; Gilbert 1972a). WBP, as a current standard algorithm, is
firstly formulated as a set of sparse matrix-vector products (SpMV) (Vazquez et al.
2010). Iterative methods have an advantage over WBP due to their good performance
especially under limited-angle and noisy conditions (Frank 2006).

However, the convergence process of iterative methods is generally time-
consuming and the data volume of images in ET increases constantly to fulfill the
resolution needs. These huge computational demands have prevented iterative meth-
ods from being used extensively. The traditional solution to cope with the high
computational cost has been the use of supercomputers and large computer clusters
(Fernandez et al. 2004; Fernandez 2008), but such hardware is expensive and can
also be difficult to use. Graphics processing units (GPUs) offer an attractive alter-
native platform in terms of price and performance. The GPU method proposed by
Castano-Diez et al. can be viewed as a first step towards achieving high-performance
ET (Castano-Diez et al. 2007). Recently, an advanced GPU acceleration framework
has been proposed to allow 3D ET reconstruction to be performed on the order of
minutes (Xu et al. 2010). These methods adopt traditional voxel basis functions. In
the field of 3D reconstruction, the choice of basis functions greatly influences results
to be reconstructed. Spherically symmetric volume elements (blobs) with smooth
transition to zero have been thoroughly investigated as alternatives to voxels due to
their overlapping nature (Lewitt 1992). Accordingly, we present a multilevel parallel
strategy of 3D reconstruction of ET using blob basis functions on GPUs. The parallel
strategy yields smoother reconstructions under noisy conditions.

Furthermore, owing to the large memory requirements and the limited available
memory of GPUs, the weighted matrix is usually computed on the fly in previ-
ously proposed GPU-based ET implementations (Bilbao-Castro et al. 2006). But it
could bring the redundant computations since the weighted matrix has to be com-
puted twice at one iteration. Although the memory available in GPUs today allows
storage of large sparse matrices, sparse matrix data structures must be carefully
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devised to optimize the access to the memory hierarchy. Compressed row storage
(CRS) is the most extended format to store the sparse matrix on CPUs (Bisseling
2004). ELLPACK can be considered as an approach to outperform CRS (John and
Ronald 1985). Vazquez et al. has proved that a variant of the ELLPACK format
called ELLPACK-R (ELL-R) is more suited for the sparse matrix data structure on
GPUs (Vazquez et al. 2009). Nevertheless, as data collection strategies and electron
detectors improve, the memory demand of the weighted matrix rapidly increases.
Storing such a large sparse matrix is extremely difficult for most GPUs and access-
ing the matrix data substantially reduces the efficiency of 3D reconstruction of ET on
GPUs. Facing this problem, we adopt a data structure named blobELL-R with several
symmetry optimization techniques to significantly reduce the storage space of the
weighted matrix. It only needs nearly 1/16 of the storage space in comparison with
the other methods. Furthermore, the blobELL-R matrix storage scheme is adopted
to ensure optimal coalesced global memory access. Thus, the blobELL-R format
allows efficient implementations of 3D-ET reconstruction algorithms on GPUs.

In this work, we present a multilevel parallel strategy for iterative reconstruction
using blob basis functions on GPUs and an optimal data structure blobELL-R, and we
have implemented them on a NVIDIA GeForce GTX 295. Experimental results show
that the parallel strategy using blobELL-R greatly reduces memory requirements and
exhibits a significant acceleration factor compared with the standard implementation.

The rest of the paper is organized as follows: Sect. 41.2 reviews relevant back-
ground both on reconstruction algorithms and on GPU hardware. Section 41.3
presents the multilevel parallel strategy of 3D reconstruction of ET and its paralleliza-
tion on GPUs. Section 41.4 describes blobELL-R data structure and several symmetry
optimization techniques. Section 41.5 shows and analyzes the experimental valida-
tion in detail. Then we summarize the paper and present future work in Sect. 41.6.

41.2 Background

In this section, we give a brief overview of iterative reconstruction algorithms using
blob, describe a kind of iterative method called SIRT, present GPU computational
model and highlight some of the features critical to our algorithm.

41.2.1 Iterative Reconstruction Methods
Using Blob

In ET, projection images are acquired from a specimen through the so-called single-
axis tilt geometry. The specimen is tilted over a range, typically from−60◦ (or−70◦)
to +60◦ (or +70◦) at small tilt increments (1◦ or 2◦). An image of the same object
area is recorded at each tilt angle and then the 3D reconstruction of the specimen is
obtained from a set of projection images with iterative methods.
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Iterative methods represent 3D volume f as a linear combination of a limited set of
known and fixed basis functions b j , with appropriate coefficients x j , as shown in
Eq. 41.1.

f (r) ≈
J

∑

j=1

x j b j (r). (41.1)

During the 1990s, spherically symmetric volume elements (blobs) have been
thoroughly investigated. As a consequence, the use of blob basis functions provides
iterative methods with better resolution-noise performance than traditional voxel
basis functions due to their overlapping nature (Lewitt 1992). Thus, we consider
blob, instead of the traditional voxel, as a basis function. The blob basis function is
constructed with generalized Kaiser-Bessel (KB) window functions:

b(r) =
⎧

⎨

⎩

(√
1−(r/a)2

)m
Im

(

α
√

1−(r/a)2
)

Im (α)
, 0 ≤ r ≤ a

0, otherwise,

where Im(·) denotes the modified Bessel function of the first kind of order m, a is
the radius of the blob, and α is a non-negative real number controlling the shape
of the blob. The choice of the parameters m, a, and α will influence the quality of
the blob-based reconstructions. Since the principles involved by Matej and Lewitt
in selecting particular types of blobs as good basis functions were quite general, we
adopted the basis functions advocated by them in this paper (i.e., a = 2, m = 2 and
α = 3.6) (Matej and Lewitt 1995).

In 3D-ET, the data collection method assumes the model of the image formation
process as the following linear system:

pi ≈
J

∑

j=1

wijx j ,

where pi denotes the ith measured image of f and wij the value of the ith projection
of the jth basis function. Under such a model, the element wij can be calculated (or, at
least, estimated) according to the projecting procedure as follows:

wij = 1− (r fij − int(r fij)), r fij = projected(x j , θi ),

where r fij is the value of the pixel x j projected with an angle θi . It is found that the
weighted matrix involved in every slice is the same since the projections have the
same geometry for all slices. Here, W is defined as a sparse matrix with M rows and
N columns. In general, the demand of the weighted matrix W rapidly increases as
the size of the images increases. It is hard to store the weighted matrix W in GPUs
especially when the number of views and the size of the projections increase.
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41.2.2 Simultaneous Iterative Reconstruction
Technique

Considering the fact that the simultaneous iterative reconstruction technique (SIRT)
shows the best performance under the extremely noisy condition, we adopt SIRT
to perform 3D reconstruction of ET. SIRT, as a classical iterative method, begins
with an arbitrary X (0) and repeats the iterative processes (Gilbert 1972b). Our pre-
vious work has proven that the initial solution X (0) obtained via the back projection
technique (BPT) is much closer to the true value than the arbitrary initial solution
(Xiaohua 2009). In iterations, the residuals, i.e. the differences between the actual
projections P and the computed projections P ′ of the current approximation X (k)

(k is the iterative number, k = 0, 1, . . .), are computed and then X (k) is updated by
the backprojection of these discrepancies. Thus, the algorithm produces a sequence
of N-dimensional column vectors X (k). The SIRT algorithm is typically written by
the following expression:

xk+1
j = xk

j +
1

∑M
i=1 wij

M
∑

i−1

wij(pi −∑N
h=1 wih x (k)h )

∑N
h=1 wih

.

SIRT adopts a global strategy: an approximation is updated simultaneously by all
the projections P. SIRT updates each x j only once per iteration, which means its
updating strategy is pixel-by-pixel. Thus, SIRT is very suitable for parallel computing
on GPUs.

41.2.3 GPU Computation Model

Our algorithm is based on NIVIDIA GPU architecture and compute unified device
architecture (CUDA) programming model. GPUs are a massively multi-threaded
data-parallel architecture, which contains hundreds of processing cores. Eight cores
are grouped into a Streaming Multiprocessor (SM), and cores in the same SM execute
instructions in a Single Instruction Multiple Thread (SIMT) fashion (NVIDIA 2008).
During execution, 32 threads from a continuous section are grouped into a warp,
which is the scheduling unit on each SM.

NVIDIA provides the programming model and software environment of CUDA.
CUDA is an extension to the C programming language. A CUDA program consists
of a host program that runs on CPU and a kernel program that executes on GPU itself.
The host program typically sets up the data and transfers it to and from the GPU,
while the kernel program processes that data. Kernel, as a program on GPUs, consists
of thousands of threads. Threads have a three-level hierarchy: grid, block, thread.
A grid is a set of blocks that execute a kernel, and each block consists of hundreds
of threads. For the execution, each block is assigned to one SM composed by eight
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cores called scalar processors (SPs). CUDA devices use several memory spaces
including global, local, shared, texture, and registers. Of these different memory
spaces, global and texture memory are the most plentiful. Perhaps the single most
important performance consideration in programming for the CUDA architecture is
coalescing global memory accesses. Global memory loads and stores by threads of
a half warp (16 threads) are coalesced by the device in as few as one transaction
(or two transactions in the case of 128-bit words) when certain access requirements
are met. Coalesced memory accesses deliver a much higher efficient bandwidth than
non-coalesced accesses, thus greatly affecting the performance of bandwidth-bound
programs.

NVIDIA GeForce GTX 295 GPU card consists of two GeForce GTX 200 GPUs on
a single card. Each GTX 200 GPU comprises a set of 30 SMs, where each SM consists
of eight SPs clocked at 1242 MHz, meaning 480 SPs in total on GTX 295 GPU. The
on-chip memory for each SM contains 16,384 registers and 16 KB shared memory.
The off-chip memory (or device memory) contains 1792 MB GDDR3 (896 MB per
GPU) global memory.

41.3 Multilevel Parallel Strategy for Iterative
Reconstruction Using Blob

The processing time of 3D reconstruction with iterative methods remains a major
challenge due to large reconstructed data volume in ET. So parallel computing is
becoming paramount to cope with the computational requirement. The use of blob
basis functions makes the single-tilt axis reconstruction relatively more straightfor-
ward to implement on GPUs. We present a multilevel parallel strategy for iterative
reconstruction using blobs and implement it on the OpenMP-CUDA architecture.

41.3.1 Coarse-Grained Parallel Scheme Using OpenMP

In the first level of the multilevel parallel scheme, a coarse-grained parallelization is
straightforward in line with the properties of ET reconstruction that single-tilt axis
geometries allows a data decomposition into slabs equals the number of GPUs, and
each GPU reconstructs its own slab. Consequently, the 3D reconstruction problem
can be decomposed into a set of 3D slabs reconstruction subproblems. However,
due to their overlapping nature, the use of blob basis functions makes the slabs
interdependent. Therefore, each GPU have to communicate with other GPUs through
the memory of CPU.

We have implemented the 3D ET reconstruction based on GeForce GTX 295
which consists of two GeForce GTX 200 GPUs on a single card. Thus the first-level
parallel strategy makes use of two GPUs to perform the coarse-grained parallelization
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slab 0 slab 1

slice 0 slice 1

Fig. 41.1 Coarse-grained parallel scheme using blob

of the reconstruction. The 3D reconstruction parallel scheme allows the 3D volume
data to be halved into two slabs, and a slab contains many slices, as shown in Fig. 41.1.
According to the shape of the blob adopted, four slices are involved in one blob.
Each slab is assigned to and reconstructed on each individual GTX 200 on GTX
295 in parallel. In contrast, all slices in a slab are serially reconstructed. Certainly,
the parallel strategy can be applied on GPU clusters (e.g. Tesla-based cluster). In a
GPU cluster, the number of slabs equals the number of GPUs for the decomposition
described above.

A shared-memory parallel programming scheme (OpenMP) is employed to fork
two threads to control the separated GPU. Each slab is reconstructed by each parallel
thread on each individual GPU. Consequently, the partial results attained by GPUs
are combined to complete the final result of the 3D reconstruction.

41.3.2 Fine-Grained Parallel Scheme Using CUDA

In the second level, 3D reconstruction of one slab, as a fine-grained parallelization,
is implemented with CUDA on each GPU. In the 3D reconstruction of the slab, the
generic iterative process is described as follows:

• Initialization: compute the matrix W and make a initial value for X (0) by BPT;
• Reprojection: estimate the computed projection data P ′ based on the current

approximation X;
• Backprojection: backproject the discrepancy ΔP between the experimental and

calculated projections, and refine the current approximation X by incorporating
the weighted backprojection ΔX .
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Decidemap<<< >>> ;
(1)For i slice in the reconstructed volume
       BPT<<<>>> for every pixel of the ith slice; 
   (2)For t in N iterations of the iTh slice
              Reprojection<<<>>> for each projection;
              Backprojection<<<>>> for every pixel of the ith slice;

Fig. 41.2 Pseduo code for one slab reconstruction based on SIRT

All the stages are compute-intensive tasks and suitable to highly parallel many-core
architecture.

Figure 41.2 shows the pseudo code for the 3D reconstruction by means of the
aforementioned stages. All the slices in the 3D volume are reconstructed sequentially
in loop (1). Before loop (1), the kernel called Decidemap performs the initialization
to compute the weighted matrix W. And at the beginning of loop (2), X (0) is approx-
imated by BPT in the pixel-level parallel kernel called BPT. In each iteration, two
kernels (i.e. Reprojection and Backprojection) perform the next stages including
reprojection and backprojection on GPUs. In Reprojection, P ′ of each projection is
computed by each thread. Thus, reprojection is a projection-level parallel process.
Finally, we invoke a backprojection kernel on GPUs. Each thread of the kernel per-
forms the pixel-based backprojection.

41.4 BlobELL-R Format with Symmetric
Optimization Techniques

On the basis of the voxel basis functions, Vazque et al. presented an optimal data struc-
ture, called ELL-R, for the weighted matrix W on GPUs (Vazquez et?al. 2009, 2010).
ELL-R consists of two arrays, A[] and I[] of dimension N × MaxEntriesbyRows,
and an additional integer array called rl[] of dimension N is included in order to store
the actual number of nonzeroes in each row. With the size and number of projec-
tion images increasing, the memory demands rapidly increase accordingly in general
implementation. Thus the weighted matrix involved is too large to load into most of
GPUs due to the limited available memory, even with the ELL-R data structure.

In our work, we present a data structure named blobELL-R with several geometric
related symmetry relationships. The blobELL-R data structure decreases the memory
requirement and then accelerates the speed of ET reconstruction on GPUs.

41.4.1 General Principle

As shown in Fig. 41.3, the maximum number of the rays related to each pixel is four
on account of the radius of the blob (i.e., a = 2). First, the blobELL-R format stores
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Fig. 41.3 BlobELL-R format. In the blob (the radius a = 2), a projected pixel contributes to four
neighbor projection rays using only one view (left). The nonzeroes of matrix W are stored in a 2D
array A of dimension (4B)× N in blobELL-R (middle). The symmetric optimization technique is
exploited to reduce the storage space of A to almost 1/16 of original size (right)

the sparse matrix W on two 2D arrays, one float A[], to save the entries, and one
integer I[], to save the columns of every entry (see Fig. 41.3 middle). Both arrays
are of dimension (4B) × N, where N is the number of columns of W and 4B is the
maximum number of nonzeroes in the columns (B is the number of the projection
angles). Because the percentage of zeros is low in the blobELL-R data structure, it
is not necessary to store the actual number of nonzeroes in each column.

Although blobELL-R can reduce the storage of the sparse matrix W, the number
of (4B)× N is rather large especially when the number of N increases rapidly. The
optimization takes advantage of the symmetry relationships as follows:

41.4.1.1 Symmetry 1

Assume that the jth column elements of the matrix W in each view are w0 j , w1 j , w2 j

and w3 j . The relationship among the adjacent column elements is:

w0 j = 1+ w1 j ;w2 j = 1− w1 j ;w3 j = 2− w1 j .

So, only w1 j is stored in the blobELL-R structure, whereas the others are easily
computed on the fly. This scheme can reduce the storage spaces of A and I to 25 %.

41.4.1.2 Symmetry 2

Assume that a point (x, y) of a slice is projected to a point r (r = project (x, y, θ))
in the projection corresponding to the tilt angle θ and project (x, y, θ) is shown as
follows:

project(x, y, θ) = x cos θ + y sin θ.
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It is easy to see that the point (−x, −y) of a slice is then projected to a point
r1 (r1 = −r ) in the same tilt angle. Therefore, there is no need to store the weighted
value for almost a half of the points (x, y) in the slice. As a result, the space require-
ments for A and I are further reduced by nearly 50 %.

41.4.1.3 Symmetry 3

In general, the tilt angles used in ET are halved by 0◦. Under the condition, a point
(−x, y) with the tilt angle −θ is projected to a point r2 (r2 = −r). Therefore, the
projection coefficients are shared with the projection of the point (x, y) with the tilt
angle θ . This further reduces the storage spaces of A and I by nearly 50 % again.

With the symmetric optimizations mentioned above, the size of the storage for
two arrays in the blobELL-R format is almost (B/2)×(N/2) reducing to nearly 1/16
of original size.

41.5 Result

In order to demonstrate the applicability of the blobELL-R format to real data, 3D
reconstructions of the sample of the caveolaes from the porcine aorta endothelial
(PAE) cell (Shufeng et al. 2009) have been performed on a CPU based on Intel Core
2 Q8200 at 2.33 GHz, 4 GB RAM and 4MB L2 cache, under Linux, and a NVIDIA
GeForce GTX 295 card including two GPUs, one GPU with 30 SMs of 8 SPs (i.e.
240 SPs) at 1.2 GHz, 896 MB of memory and compute capability 1.3, respectively.
The standard SIRT and the matrix SIRT with CRS are used for the serial program
on the CPU. The standard SIRT denotes that the weighted matrix W is not stored
but computed on the fly in the process of ET reconstruction. However, the weighted
matrix W is pre-computed and stored with a sparse matrix data structure (e.g. CRS,
ELL-R, blobELL-R) in the matrix SIRT. The standard SIRT, the matrix SIRT with
ELL-R and the matrix SIRT with blobELL-R are adopted in the parallel program on
the GPU. And three different experimental datasets are involved (denoted by small,
medium, large) with 56 images of 512×512 pixels, 112 images of 1024×1024 pixels
and 119 images of 2048×2048 pixels to reconstruct tomograms of 512×512×190,
1024× 1024× 310 and 2048× 2048× 430 respectively.

Figure 41.4 shows the memory demanded by the sparse data structure (i.e. CRS on
the CPU, ELL-R and blobELL-R on the GPU respectively). In general, the require-
ments rapidly increase with the dataset size, approaching 3.5 G in the large dataset.
This amount turns out to be not a problem in modern computers, but a limit owing
to the upper boundary imposed by the memory available in most GPUs. However, in
the blobELL-R matrix structure, three symmetry relationships can greatly decrease
the memory demands and make them affordable on GPUs.

Three sets of experimental data have been subjected to tomographic recon-
struction with the standard and matrix SIRT on the CPU and GPU respectively.
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Fig. 41.4 Memory requirements of the different implementations for the datasets. The limit of
896 MB is imposed by the memory available in the GPU used in the work. The implementations
needing higher amounts of memory than the value cannot run on this GPU. However, the use of the
blobELL-R data structure reduces the demands, making most of the problems affordable

Table 41.1 Running times (s)

Datasets Kernels CPU GPU
Standard Matrix Standard Matrix Matrix

(CRS) (ELL-R) (blobELL-R)

512× 512 Decidemap – 0.96 – 0.00141 0.00017
BPT 0.90 0.13 0.00081 0.00069 0.000591
Reprojection 0.95 0.17 0.00399 0.00312 0.00284
Backprojection 0.91 0.14 0.00133 0.00112 0.00101
Reconstruction 1413.12 235.52 16.13 8.96 6.45

1024× 1024 Decidemap – 6.26 – 0.03225 0.00128
BPT 5.91 0.90 0.00464 0.00381 0.00301
Reprojection 6.27 1.21 0.02111 0.01851 0.01714
Backprojection 6.08 1.02 0.00937 0.00767 0.00621
Reconstruction 18708.48 3225.60 185.34 132.11 87.86

2048× 2048 Decidemap – 18.46 – – 0.00369
BPT 17.63 2.74 0.01332 – 0.00984
Reprojection 18.56 3.62 0.06292 – 0.05123
Backprojection 18.02 3.07 0.02364 – 0.01898
Reconstruction 111288.32 19476.48 980.99 – 538.63

The results marked with ‘–’ represent unaffordable cases

Table 41.1 shows the computation times of different kernels (i.e. Decidemap, BPT,
Reprojection, Backprojection) with different methods on the GPU versus CPU for
three datasets. As shown in Table 41.1, the kernel Decidemap is not involved in the
standard SIRT owing to the recomputation of the coefficients. And all the computa-
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Fig. 41.5 Speed-up factors showed by the different matrix SIRT implementations over the standard
SIRT based on recomputation of the coefficients. These factors were obtained on the GPU

tion times of 3D reconstruction are given in the last items of three datasets. For a fair
comparison, the time required for generating the matrix is taken into account though
it is negligible. Furthermore, the matrix SIRT with ELL-R is not implemented on
the GPU for the largest dataset because the memory requirements exceed the upper
boundary imposed by the memory available on GTX 295.

And the acceleration factor is approaching to 2.5× by means of matrix approach
on the GPU in the Fig. 41.5. These results demonstrate that matrix SIRT succeeds in
reducing the computing time required for tomography reconstruction.

Figure 41.6 compares the speed-up of matrix SIRT on the GPU versus CPU. The
GPU exhibits excellent acceleration factors compared with the CPU. In the matrix
SIRT with ELL-R, the speed-up is almost 25× for two datasets. And in the case of
the matrix SIRT with blobELL-R, the acceleration factors increase and reach up to
35× for three experiments.

Finally, in order to estimate the performance of matrix SIRT and GPU computing,
the speed-up factors against the standard SIRT on the CPU are showed in Fig. 41.7.
For comparison, the acceleration factors of the GPU over the CPU on the standard
SIRT are presented. The general rule is that the higher speedup is obtained with the
larger dataset due to multithreaded computation on the GPU. However, the cases
corresponding to the matrix SIRT with ELL-R and blobELL-R cannot fulfill the rule
owing to the memory access delay. And it is clearly seen that the matrix SIRT with
blobELL-R on the GPU yields excellent speed-ups approaching to 220×.
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Fig. 41.6 Speed-up factors of matrix SIRT implementation on the GPU versus CPU
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Fig. 41.7 Speed-up factors derived from the different approaches (the standard based on recompu-
tation and the two matrix approaches) on the GPU compared to the standard approach on the CPU

41.6 Conclusion

ET allows elucidation of the molecular architecture of complex biological specimens.
Iterative methods using blob basis functions yield better results than other methods
extremely under limited-angle and noisy conditions. However, they have not been
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used extensively in ET because of their huge computational demands. GPUs have
emerged as powerful platforms to cope with the computational requirements.

In this work, we present a multilevel parallel iterative reconstruction scheme to
perform the parallelization of ET reconstruction on GPUs. SIRT is adopted as a kind
of effective iterative methods since it shows the best performance under the extremely
noisy condition. The experimental results on NVIDIA GeForce GTX 295 show that
the parallel scheme can achieve high and stable speedups approaching to 220×. The
weighted matrix involved in SIRT, nevertheless, is too large for the memory of most
GPUs especially for the large images. So we also propose a blob-ELLR data storage
format and exploit several geometry related symmetry relationships to reduce the
memory demands. In the storage technique, three geometric related symmetry rela-
tionships have been exploited to significantly reduce the storage space. It only needs
nearly 1/16 of the storage space in comparison with the ELL-R storage structure.
The conjunction of the blobELL-R data structure and GPU computing yields signif-
icant acceleration compared to the standard and matrix with CRS implementations
on CPU.

As for future work, we will further investigate and implement the multilevel
parallel scheme with blobELL-R on cluster of GPUs. We would also like to perform
more experiments and analyze features of different experimental data to enhance the
performance of the method proposed in the paper.
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