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Preface

The 5th China International Conference on Information Security and Cryptology
(Inscrypt 2009) was co-organized by the State Key Laboratory of Information
Security and by the Chinese Association for Cryptologic Research in cooperation
with the International Association for Cryptologic Research (IACR). The con-
ference was held in Beijing, China, in the middle of December, and was further
sponsored by the Institute of Software, the Graduate University of the Chinese
Academy of Sciences and the National Natural Science Foundations of China.
The conference is a leading annual international event in the area of cryptogra-
phy and information security taking place in China. The scientific program of
the conference covered all areas of current research in the field, with sessions
on central areas of cryptographic research and on many important areas of in-
formation security. The conference continues to get the support of the entire
international community, reflecting on the fact that the research areas covered
by Inscrypt are important to modern computing, where increased security, trust,
safety and reliability are required.

The international Program Committee of Inscrypt 2009 received a total of
147 submissions from more than 20 countries and regions, from which only 32
submissions were selected for presentation, 22 of which in the regular papers
track and 10 submissions in the short papers track. All anonymous submissions
were reviewed by experts in the relevant areas and based on their ranking, tech-
nical remarks and strict selection criteria the papers were chosen for the various
tracks. The selection to both tracks was a highly competitive process. We fur-
ther note that due to the conference format, many good papers were regrettably
not accepted. Besides the contributed papers, the program also included three
invited presentations by Xiaoyun Wang, Roberts Deng and Moti Yung. The pro-
gram also hosted two additional special tracks with presentations that are not
included in these proceedings: one on White-Box Cryptography and Software
Protection, and one on Post-Quantum Cryptography.

Inscrypt 2009 was made possible by the joint efforts of numerous people
and organizations worldwide. We take this opportunity to thank the Program
Committee members and the external experts they employed for their invaluable
help in producing the conference program. We further thank the conference
Organizing Committee, the various sponsors and the conference attendees. Last
but not least, we express our great gratitude to all the authors who submitted
papers to the conference, the invited speakers, the contributors to the special
tracks and the Session Chairs.

December 2009 Feng Bao
Moti Yung
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Integral Cryptanalysis of ARIA

Ping Li1, Bing Sun1, and Chao Li1,2
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Abstract. This paper studies the security of the block cipher ARIA

against integral attack. The designers believe that determining whether

any given byte position is balanced or not after 3 rounds of encryption

is not possible. However, by determining the times that each element of

the output of the second round appears is an even integer, we find some

3-round integral distinguishers of ARIA in this paper, which may lead

to possible attacks on 4, 5 and 6-round ARIA. Both the data and time

complexities of 4-round attack are 225; the data and time complexities of

5-round attack are 227.2 and 276.7, respectively; the data and time com-

plexities of 6-round attack are 2124.4 and 2172.4, respectively. Moreover,

the 4 and 5-round attacks have the lowest data and time complexities

compared to existing attacks on ARIA. Our results also show that the

choice of S-box and different order of S-boxes do have influence on inte-

gral attacks.

Keywords: block cipher,ARIA, integral cryptanalysis, countingmethod.

1 Introduction

SQUARE attack, proposed by Daemen et al. in ref.[8], considers the propagation
of sums of (many) ciphertexts with special inputs. In ref.[9], Lucks first applied
SQUARE attack to Feistel cipher, which he called saturation attack. In ref.[10],
Biryukov and Shamir proposed the multiset attack by which one can break a
4-round SPN cipher even if the S-box is unknown.

In ref.[11], a more generalized attack, namely integral attack, was proposed
by Knudsen. The integral of f(x) over some subset V is defined as follows:∫

V

f =
∑
x∈V

f(x),

then in FSE 2009, Sun et al. generalized the concept of integral and proposed
the higher degree integral defined as follows[13]:∫

V

(f, i) =
∑
x∈V

xif(x).

F. Bao et al. (Eds.): Inscrypt 2009, LNCS 6151, pp. 1–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 P. Li, B. Sun, and C. Li

In ref.[14], by using the algebraic method, Sun et al. studied the mathematical
foundation of integral attack, and they pointed out that if the algebraic degree of
the round function of a Feistel cipher is too low, the integral attack may not be
able to recover the round keys even if there do exist some integral distinguishers
and they proved that if a cipher is not resilient to integral attack, it is not
resilient to interpolation attack either.

Integrals have many interesting features. They are especially well-suited in
analyzing ciphers designed with primarily bijective components. Moreover, they
exploit the simultaneous relationship between many encryptions, in contrast to
differential cryptanalysis where only pairs of encryptions are considered. Conse-
quently, integrals apply to a lot of ciphers which are not vulnerable to differential
and linear cryptanalysis. These features have made integral an increasingly pop-
ular tool in recent cryptanalysis work. However, these integrals only applies to
byte(word)-oriented ciphers, thus in FSE 2008, Z’aba et al. proposed the bit-
pattern integral attacks which can be applied to bit-oriented ciphers. In fact,
the bit-pattern integral is a counting method: if different element of some set
A ⊆ F2n appears for even times, then

∑
x∈A x = 0.

ARIA[1] is a 128-bit block cipher designed by a group of Korean experts in
2003. Its design adopts the same idea(wide trail strategy) of the Advanced En-
cryption Standard(AES)[16]. It was later established as a Korean Standard by
the Ministry of Commerce, Industry and Energy in 2004. ARIA supports key
length of 128/192/256 bits, and the most interesting characteristic is its involu-
tion based on the special usage of neighboring confusion layer and involutional
diffusion layer[2].

The security of ARIA was initially analyzed by its designers, including both
differential cryptanalysis, linear cryptanalysis, and some other known attacks[1].
Later Biryukov et al. performed an evaluation of ARIA, however, they focused
mostly on truncated differential cryptanalysis and dedicated linear cryptanalysis
[3]. In ref.[5], Wu et al. firstly found some non-trivial 4-round impossible differen-
tials which lead to a 6-round attack of ARIA requiring about 2121 chosen plaintexts
and about 2112 encryptions. Li et al. presented an algorithm to find 4-round impos-
sible differentials which can also lead to 6-round attack[6]. And recently,
Fleischmann et al. evaluated its security against boomerang attack which has the
lowest memory requirements up to now[7].

Since the branch number of linear permutation ARIA used is 8 which is larger
than that of AES, the designers of ARIA believe that no any 3-round integral
distinguisher exists and one can construct only 2-round integral distinguishers[1].
In ref.[3], it is said that the fast diffusion does not allow a 3-round distinguisher
as in Rijndael. However, in this paper, by counting the times that some ele-
ments appears before it passes the S-box, we find some 3-round distinguishers
which lead to 4, 5 and 6-round integral attack. Besides, we find a new type of
distinguishers which doesn’t determine whether a given byte is active, balanced
or constant, but adopts the relation between sum of different bytes. Note that
in some papers, integrals are regarded as higher order differentials[15]. In this
paper, we use integrals instead of higher order differentials.
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The rest of this paper is organized as follows. In Section 2 we give a brief
description of ARIA. In Section 3 we give a 3-round integral distinguisher. In
Section 4, we present the integral attack on 4, 5 and 6-round ARIA, respectively.
Finally, Section 5 summarizes this paper.

2 Description of ARIA

ARIA is a 128-bit SPN block cipher accepting keys of 128, 192, and 256-bit,
which adopts an involutional binary 16×16 matrix over F2 in its diffusion layer.
The substitution layer consists of sixteen 8×8-bit S-boxes based on the inversion
in F28 . The number of rounds is 12, 14, or 16, depending on the key length[4].
The plaintext/ciphertext, as well as the input and output of the round function,
are treated as vectors over GF (28)16 and we call them states.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

For convenience, sometimes we will treat the vectors as 4 × 4 matrices with
elements in GF (28), depicted as follows.

x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

The round function of ARIA firstly applies a Round Key Addition, then a
Substitution Layer and at last a Diffusion Layer subsequently. An N -round ARIA
iterates the round function N −1 times; and in the last round the diffusion layer
is replaced by the Round Key Addition. The 3 operations are defined as follows:

Round Key Addition(RKA). The 128-bit round key is simply XORed to
the state. The round keys are derived from the cipher key by means of the key
schedule.

Substitution Layer(SL). A non-linear byte substitution operates on each byte
of the state independently which is implemented by two S-boxes S1 and S2. ARIA
has two types of S-Box layers for odd and even rounds as shown in Fig.1. Type
1 is used in the odd rounds and type 2 is used in the even rounds.

1
1S

1
2S1S 2S

1
1S

1
2S1S 2S

1
1S

1
2S1S 2S

1
1S

1
2S1S 2S 1S 2S1

1S
1

2S 1S 2S
1

1S
1

2S 1S 2S
1

1S
1

2S 1S 2S
1

1S
1

2S

S-Box layer type 1

S-Box layer type 2

1
1S

1
2S1S 2S

1
1S

1
2S1S 2S

1
1S

1
2S1S 2S

1
1S

1
2S1S 2S 1S 2S

1
1S

1
2S1S 2S

1
1S

1
2S1S 2S

1
1S

1
2S1S 2S

1
1S

1
2S

Fig. 1. The two types of S-Box layers
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Diffusion Layer(DL). A linear transformation P : F16
28 → F16

28 with branch
number 8 was selected to improve the diffusion effect and increase efficiency in
both hardware and software implementations[2]. P is given by

(x0, x1, . . . , x15) �→ (y0, y1, . . . , y15),

where

y0 = x3 ⊕ x4 ⊕ x6 ⊕ x8 ⊕ x9 ⊕ x13 ⊕ x14, y8 = x0 ⊕ x1 ⊕ x4 ⊕ x7 ⊕ x10 ⊕ x13 ⊕ x15,

y1 = x2 ⊕ x5 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x12 ⊕ x15, y9 = x0 ⊕ x1 ⊕ x5 ⊕ x6 ⊕ x11 ⊕ x12 ⊕ x14,

y2 = x1 ⊕ x4 ⊕ x6 ⊕ x10 ⊕ x11 ⊕ x12 ⊕ x15, y10 = x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x8 ⊕ x13 ⊕ x15,

y3 = x0 ⊕ x5 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x13 ⊕ x14, y11 = x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x9 ⊕ x12 ⊕ x14,

y4 = x0 ⊕ x2 ⊕ x5 ⊕ x8 ⊕ x11 ⊕ x14 ⊕ x15, y12 = x1 ⊕ x2 ⊕ x6 ⊕ x7 ⊕ x9 ⊕ x11 ⊕ x12,

y5 = x1 ⊕ x3 ⊕ x4 ⊕ x9 ⊕ x10 ⊕ x14 ⊕ x15, y13 = x0 ⊕ x3 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x10 ⊕ x13,

y6 = x0 ⊕ x2 ⊕ x7 ⊕ x9 ⊕ x10 ⊕ x12 ⊕ x13, y14 = x0 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x9 ⊕ x11 ⊕ x14,

y7 = x1 ⊕ x3 ⊕ x6 ⊕ x8 ⊕ x11 ⊕ x12 ⊕ x13, y15 = x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x8 ⊕ x10 ⊕ x15.

The Key Schedule of ARIA is omitted and we refer to ref.[1] for more details.

3 3-Round Integral Distinguishers of ARIA

Previous results show that there exists 2-round distinguishers of ARIA and it
is hardly to construct a 3-round one. However, in this section, we describe how
to construct 3-round integral distinguisher of ARIA by using counting method
combined with some algebraic techniques.

3.1 Integral Cryptanalysis

The following definitions are essential when applying an integral attack:

Definition 1. A set {ai|ai ∈ F2n , 0 ≤ i ≤ 2n − 1} is active, if for any 0 ≤ i <
j ≤ 2n − 1, ai �= aj.

Definition 2. A set {ai|ai ∈ F2n , 0 ≤ i ≤ 2n − 1} is passive, if for any 0 < i ≤
2n − 1, ai = a0.

Definition 3. A set {ai|ai ∈ F2n , 0 ≤ i ≤ 2n − 1} is balanced, if the sum of all
element of the set is 0, that is

∑2n−1
i=0 ai = 0.

The following principles are needed in order to find an integral distinguisher:
(1) An active set remains active after passing a bijective transform.
(2) The linear combination of several active/balanced sets is a balanced set.
(3) The property of a balanced set after passing through a nonlinear trans-

formation is unknown.
Obviously, the third one is the bottleneck of integral attacks. And if we can
determine the property of a balanced set after it passes a nonlinear transfor-
mation, new integral distinguisher with more rounds can be found. In the rest
of this paper, we will determine whether a set is balanced or not by using a
counting method.
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3.2 2.5-Round Integral Distinguishers of ARIA

In the following paper, C always denote some constant value but not necessarily
equal to each other at different positions.

Lemma 1. Let the input of ARIA be B = (B0, B1, . . . , B15), the i-th round key
be ki = (ki,0, ki,1, . . . , ki,15), and the outputs of S-Box layer and P layer of the i-th
round be Zi = (Zi,0, Zi,1, . . . , Zi,15) and Yi = (Yi,0, Yi,1, . . . , Yi,15), respectively.
If B0 takes all values of F28 and Bis are constants where 1 ≤ i ≤ 15, then Z3,6,
Z3,9 and Z3,15 are balanced.

Proof. Let the input be

B =

⎛⎜⎜⎝
x C C C
C C C C
C C C C
C C C C

⎞⎟⎟⎠ ,

and y = S1(x ⊕ k1,0), then according to the definition of ARIA, the output of
the first round is

Y1 =

⎛⎜⎜⎝
C y ⊕ β4 y ⊕ β8 C
C C y ⊕ β9 y ⊕ β13

C y ⊕ β6 C y ⊕ β14

y ⊕ β3 C C C

⎞⎟⎟⎠ .

Let γi = βi ⊕ k2,i, then

Z2 =

⎛⎜⎜⎝
C S−1

1 (y ⊕ γ4) S−1
1 (y ⊕ γ8) C

C C S−1
2 (y ⊕ γ9) S−1

2 (y ⊕ γ13)
C S1(y ⊕ γ6) C S1(y ⊕ γ14)

S2(y ⊕ γ3) C C C

⎞⎟⎟⎠ ,

thus ⎧⎪⎨⎪⎩
Y2,6 = S−1

2 (y ⊕ γ9) ⊕ S−1
2 (y ⊕ γ13) ⊕ C1

Y2,9 = S1(y ⊕ γ6) ⊕ S1(y ⊕ γ14) ⊕ C2

Y2,15 = S−1
1 (y ⊕ γ4) ⊕ S−1

1 (y ⊕ γ8) ⊕ C3

where Ci are some constants. Now let’s take Y2,6 as an example. If γ9 = γ13,
then Y2,6 = C1; if γ9 �= γ13, then S−1

2 (y ⊕ γ9) ⊕ S−1
2 (y ⊕ γ13) ⊕ C1 = S−1

2 (y∗ ⊕
γ9)⊕S−1

2 (y∗ ⊕ γ13)⊕C1, where y∗ = y⊕ γ9 ⊕ γ13 �= y. In both cases, each value
of Y2,6 appears even times. Thus each value of Z3,6 appears even times, which
implies that Z3,6 is balanced. This ends our proof. �

The distinguisher shown in Lemma 1 can be simply denoted by [0, (6, 9, 15)].
Table 1 lists all possible values for [a, (b, c, d)] which means that if only the a-th
byte of input takes all values of F28 and other bytes are constants, then Z3,b, Z3,c

and Z3,d are balanced:
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Table 1. 2.5-Round Integral Distinguishers of ARIA

Active byte Balanced bytes Active byte Balanced bytes

0 6, 9, 15 8 1, 7, 14

1 7, 8, 14 9 0, 6, 15

2 4, 11, 13 10 3, 5, 12

3 5, 10, 12 11 2, 4, 13

4 2, 11, 13 12 3, 5, 10

5 3, 10, 12 13 2, 4, 11

6 0, 9, 15 14 1, 7, 8

7 1, 8, 14 15 0, 6, 9

3.3 3-Round Integral Distinguishers of ARIA

Theorem 1. Let the input of ARIA be B = (B0, B1, . . . , B15), the i-th round
key be ki = (ki,0, ki,1, . . . , ki,15), and the outputs of S layer and P layer of the i-th
round be Zi = (Zi,0, Zi,1, . . . , Zi,15) and Yi = (Yi,0, Yi,1, . . . , Yi,15), respectively.
If (B0, B5, B8) takes all values of F3

28 and Bis are constants where i �= 0, 5, 8,
then Y3,2, Y3,5, Y3,11 and Y3,12 are balanced.

Proof. Since⎧⎪⎪⎪⎨⎪⎪⎪⎩
Y3,2 = Z3,1 ⊕ Z3,4 ⊕ Z3,6 ⊕ Z3,10 ⊕ Z3,11 ⊕ Z3,12 ⊕ Z3,15,

Y3,5 = Z3,1 ⊕ Z3,3 ⊕ Z3,4 ⊕ Z3,9 ⊕ Z3,10 ⊕ Z3,14 ⊕ Z3,15,

Y3,11 = Z3,2 ⊕ Z3,3 ⊕ Z3,4 ⊕ Z3,7 ⊕ Z3,9 ⊕ Z3,12 ⊕ Z3,14,

Y3,12 = Z3,1 ⊕ Z3,2 ⊕ Z3,6 ⊕ Z3,7 ⊕ Z3,9 ⊕ Z3,11 ⊕ Z3,12.

From Table 1, we have the following 2.5-round distinguishers:

[0, (6, 9, 15)], [5, (3, 10, 12)], [8, (1, 7, 14)],

thus when (B0, B5, B8) takes all values of F
3
28 , the bytes Z3,1, Z3,3, Z3,6, Z3,7,

Z3,9, Z3,10, Z3,12, Z3,14 and Z3,15 are balanced. So we check whether Z3,2, Z3,4

and Z3,11 are balanced.
Let the input be

B =

⎛⎜⎜⎝
x C z C
C y C C
C C C C
C C C C

⎞⎟⎟⎠ ,

and x∗ = S1(x ⊕ k1,0), y∗ = S2(y ⊕ k1,5), z∗ = S1(z ⊕ k1,8), then the output of
the first round is

Y1 =

⎛⎜⎜⎝
z∗ ⊕ C0 x∗ ⊕ y∗ ⊕ z∗ ⊕ C4 x∗ ⊕ C8 C

y∗ ⊕ z∗ ⊕ C1 C x∗ ⊕ y∗ ⊕ C9 x∗ ⊕ z∗ ⊕ C13

C x∗ ⊕ C6 y∗ ⊕ z∗ ⊕ C10 x∗ ⊕ y∗ ⊕ C14

x∗ ⊕ y∗ ⊕ C3 z∗ ⊕ C7 C y∗ ⊕ z∗ ⊕ C15

⎞⎟⎟⎠
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Let y∗ ⊕ z∗ = m and γi = Ci ⊕ k2,i, then

Y2,2 = S−1
2 (m ⊕ γ1) ⊕ S−1

1 (x∗ ⊕ m ⊕ γ4) ⊕ S1(x∗ ⊕ γ6)
⊕ S1(m ⊕ γ10) ⊕ S2(m ⊕ γ15) ⊕ C∗

Since there are 256 different values (y∗, z∗) such that y∗ ⊕ z∗ = m, thus each
value of Y2,2 appears for 256×N times where N is an integer which implies that
Z3,2 is balanced.

On the other hand, we have

Y2,4 = S−1
1 (z∗ ⊕ γ0) ⊕ S−1

1 (x∗ ⊕ γ8) ⊕ S1(x∗ ⊕ y∗ ⊕ γ14)
⊕ S2(y∗ ⊕ z∗ ⊕ γ15) ⊕ C

Let x∗ ⊕ y∗ = m and z∗ ⊕ y∗ = n, then

Y2,4 = S−1
1 (y∗ ⊕ (n ⊕ γ0)) ⊕ S−1

1 (y∗ ⊕ (m ⊕ γ8))
⊕ S1(m ⊕ γ14) ⊕ S2(n ⊕ γ15) ⊕ C

According to the proof of Lemma 1, each value of Y2,4 appears for even times
thus Z2,4 is balanced.

Let x∗ ⊕ y∗ = m, then

Y2,11 = S2(m ⊕ γ3) ⊕ S−1
1 (m ⊕ z∗ ⊕ γ4) ⊕ S2(z∗ ⊕ γ7)

⊕ S−1
2 (m ⊕ γ9) ⊕ S1(m ⊕ γ14) ⊕ C

Since there are 256 different values (x∗, y∗) such that x∗ ⊕ y∗ = m, thus each
value of Y2,11 appears 256 × N times where N is an integer which implies that
Z3,11 is balanced.

Since Z3,2, Z3,4 and Z3,11 are balanced, and take Lemma 1 into consideration,
Y3,2, Y3,5, Y3,11 and Y3,12 are balanced. �
Corollary 1. Let the input of ARIA be B = (B0, B1, . . . , B15), the i-th round
key be ki = (ki,0, ki,1, . . . , ki,15), and the outputs of S layer and P layer of the i-th
round be Zi = (Zi,0, Zi,1, . . . , Zi,15) and Yi = (Yi,0, Yi,1, . . . , Yi,15), respectively.
If (B0, B5, B8) takes all values of F3

28 and Bis are constants where i �= 0, 5, 8,
then

∑
B0,B5,B8

Y3,0 =
∑

B0,B5,B8
Y3,7 =

∑
B0,B5,B8

Y3,10.

In previous integral distinguishers, we adopt the fact that the integral of the
ciphertexts over some subset is 0. However, Corollary 1 adopts the fact that the
sums of different bytes are equal.

4 Integral Attacks on Round-Reduced ARIA

Let the plaintext and ciphertext of ARIA be PT = (PT0, PT1, . . . , PT15) and
CT = (CT0, CT1, . . . , CT15), respectively; the round key, the outputs of S-
Box layer and P layer of the i-th round be ki = (ki,0, ki,1, . . . , ki,15), Zi =
(Zi,0, Zi,1, . . . , Zi,15) and Yi = (Yi,0, Yi,1, . . . , Yi,15), respectively. According to
Theorem 1, we can mount integral attacks on 4, 5 and 6-round ARIA. We present
the attack only on the third byte of the outputs of the 3-round distinguisher de-
scribed in Theorem 1. Note that the diffusion layer is replaced by the round key
addition in the last round of ARIA.
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4.1 Integral Attack on 4-Round ARIA

In this subsection, we describe an integral attack on 4-round ARIA. The attack
is based on the above 3-round integral distinguishers with additional one round
at the end as shown in Fig.2.

x z
y

3-round Integral Distinguisher

1( 2)S layer
5k4k

the 4th round

: active bytes : balanced  bytes : attacked  bytes

Fig. 2. Integral Attack on 4-Round ARIA

Step 1. Choose a structure of plaintexts of the following form:

PT (x, y, z) =

⎛⎜⎜⎝
x C z C
C y C C
C C C C
C C C C

⎞⎟⎟⎠ ,

where (x, y, z) takes all values of F3
28 and C denotes some constant. Set 256

counters, for each value of the third byte of ciphertexts CT2(x, y, z), the corre-
sponding counter plus one.

Step 2. Let V = {i|count[i] is odd, i = 0, 1, . . . , 255}. Guess a value for k5,2, say
k∗, and check whether the following equation holds:∑

t∈V

S−1
1 (t ⊕ k∗) = 0. (1)

If Equ.(1) holds, then k∗ might be a candidate of k5,2, otherwise, it is a wrong
guess.

Step 3. Repeat Step 1 and Step 2 until k5,2 is uniquely determined.
For a wrong key, the probability that it can pass Equ.(1) is 2−8, thus after

analyzing a structure, the number of wrong keys that can pass Equ.(1) is (28 −
1)×2−8 ≈ 1, thus to uniquely determine k5,2, we need to analyze two structures.
In Step 2, for each k∗, it needs no more than 28 × 28 = 216 table lookups.

Accordingly, the data complexity of the attack is about 225 chosen plaintexts;
the time complexity is 225 + 216/(4 × 16) ≈ 225; and the attack needs 28 bytes
to store 256 counters.
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x z
y

1P1( 2)S layer

3-round Integral Distinguisher

1( 1)S layer
6k5k

4k

the 5th round

: active bytes : balanced  bytes : attacked  bytes

Fig. 3. Integral Attack on 5-Round ARIA

4.2 Integral Attack on 5-Round ARIA

In this subsection, we describe an integral attack on 5-round ARIA. The attack
is based on the above 3-round integral distinguishers with additional two rounds
at the end as shown in Fig.3.

Step 1. Choose a structure of plaintexts of the following form:

PT (x, y, z) =

⎛⎜⎜⎝
x C z C
C y C C
C C C C
C C C C

⎞⎟⎟⎠ ,

where (x, y, z) takes all values of F3
28 and C denotes some constant.

Step 2. Guess k6,1, k6,4, k6,6, k6,10, k6,11, k6,12 and k6,15, then compute

T1 = S−1
2 (CT1 ⊕ k6,1) ⊕ S−1

1 (CT4 ⊕ k6,4) ⊕ S1(CT6 ⊕ k6,6) ⊕ S1(CT10 ⊕ k6,10)
⊕ S2(CT11 ⊕ k6,11) ⊕ S1(CT12 ⊕ k6,12) ⊕ S2(CT15 ⊕ k6,15).

Set 256 counters, and for each value of T1, the corresponding counter plus one.

Step 3. Let k∗ = k5,1 ⊕ k5,4 ⊕ k5,6 ⊕ k5,10 ⊕ k5,11 ⊕ k5,12 ⊕ k5,15, and V =
{i|count[i] is odd, i = 0, 1, . . . , 255}, then guess a value for k∗ and check whether
the following equation holds:∑

t∈V

S−1
1 (t ⊕ k∗) = 0. (2)

If Equ.(2) doesn’t hold, the combination of previous guessed value for the first
round, the last round and a linear combination of the fifth round is a wrong guess.
Step 4. Repeat Step 1 to 3 until the combination of the 8 bytes is uniquely
determined.
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Since the probability that a wrong key can pass the check is 2−8 and there are
altogether 8 bytes to guess, thus data complexity of the attack is 9×224 ≈ 227.2.

For each structure(224 plaintexts), it seems that we must guess 8 bytes, how-
ever, since in Step 3, the counter have eliminated a large part of states, thus
complexity of this step can be omitted compared with previous steps. Therefore
for each structure, it only needs to guess 7 bytes, and the time complexity of
this attack is 224 × 256 × 8/(5 × 16) ≈ 276.7 encryptions.

4.3 Integral Attack on 6-Round ARIA

In this subsection, we describe an integral attack on 6-round ARIA. The attack
is based on the above 3-round integral distinguishers with additional one round
at the beginning and two rounds at the end as shown in Fig.4.

x z
y

1P1( 1)S layer

3-round Integral Distinguisher

1( 2)S layer
7k6k

1k
5k

the 6th round

the 1st round

: active bytes : balanced  bytes : attacked  bytes

Fig. 4. Integral Attack on 6-Round ARIA

Step 1. Let

B(x, y, z) =

⎛⎜⎜⎝
S−1

1 (z) S−1
1 (x ⊕ y ⊕ z) S−1

1 (x) C
S−1

2 (y ⊕ z) C S−1
2 (x ⊕ y) S−1

2 (x ⊕ z)
C S1(x) S1(y ⊕ z) S1(x ⊕ y)

S2(x ⊕ y) S2(z) C S2(y ⊕ z)

⎞⎟⎟⎠ ,

guess k1,0, k1,1, k1,3, k1,4, k1,6, k1,7, k1,8, k1,9, k1,10, k1,13, k1,14, k1,15, and let

K =

⎛⎜⎜⎝
k1,0 k1,4 k1,8 0
k1,1 0 k1,9 k1,13

0 k1,6 k1,10 k1,14

k1,3 k1,7 0 k1,15

⎞⎟⎟⎠ .

Then, choose a structure of plaintexts of the following form:

PT (x, y, z) = B(x, y, z) ⊕ K,

the corresponding ciphertexts are denoted by CT (x, y, z).
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Step 2. Guess k7,1, k7,4, k7,6, k7,10, k7,11, k7,12 and k7,15, then compute

T1 = S2(CT1 ⊕ k7,1) ⊕ S1(CT4 ⊕ k7,4) ⊕ S−1
1 (CT6 ⊕ k7,6) ⊕ S−1

1 (CT10 ⊕ k7,10)
⊕ S−1

2 (CT11 ⊕ k7,11) ⊕ S1(CT12 ⊕ k7,12) ⊕ S−1
2 (CT15 ⊕ k7,15).

Set 256 counters, and for each value of T1, the corresponding counter plus one.

Step 3. Let k∗ = k6,1 ⊕ k6,4 ⊕ k6,6 ⊕ k6,10 ⊕ k6,11 ⊕ k6,12 ⊕ k6,15, and V =
{i|count[i] is odd, i = 0, 1, . . . , 255}, then guess a value for k∗ and check whether
the following equation holds:

∑
t∈V

S1(t ⊕ k∗) = 0. (3)

If Equ.(3) doesn’t hold, the combination of previous guessed value for the first
round, the last round and a linear combination of the fifth round is a wrong
guess.

Step 4. Repeat Step 1, Step 2 and Step 3 until the combination of the 20 bytes
is uniquely determined.

Since the probability that a wrong key can pass the check is 2−8 and there
are altogether 20 bytes to guess, thus data complexity of the attack is 21×224×
28×12 ≈ 2124.4.

For each structure(224 plaintexts), if the subkeys of the first round are correct,
the input of the second round is the same as to the 3-round integral distinguisher,
thus the correct subkeys of the last two rounds must pass Equ.(3).

In the last two rounds, it seems that we must guess 8 bytes, however, since in
Step 3, the counter have eliminated a large part of states, thus complexity of this
step can be omitted. Therefore for each structure, it only needs to guess 7 bytes,
and the time complexity of this attack is 296 × 224 × 256 × 8/(6 × 16) ≈ 2172.4

encryptions.

Table 2. Comparison of Attacks on ARIA

Attack Rounds Data Time Source

Integral Attack 4 225 225 Sec.4.1

Impossible Differential 5 271.3 271.6 [6]

Boomerang Attack 5 257 2115.5 [7]

Integral Attack 5 227.2 276.7 Sec.4.2

Impossible Differential 6 2121 2112 [5]

Impossible Differential 6 2120.5 2104.5 [6]

Impossible Differential 6 2113 2121.6 [6]

Boomerang Attack 6 257 2171.2 [7]

Integral Attack 6 2124.4 2172.4 Sec.4.3

Truncated Differential 7 281 281 [3]

Dedicated Linear Attack 10 2119 288 [3]
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Table 3. 3-Round Optimal Integral Distinguishers of ARIA

Active Balanced Active Balanced Active Balanced
0 1 10 0, 1,10,11 1 10 13 1, 4,11,14 4 5 14 6, 7,12,13
0 1 11 0, 1,10,11 1 11 14 9 4 5 15 6, 7,12,13
0 2 5 0, 2, 5, 7 1 11 15 0, 6,11,13 4 7 9 4, 7, 9,10
0 2 7 0, 2, 5, 7 1 12 15 0, 3,13,14 4 7 10 4, 7, 9,10
0 3 13 1, 2,12,15 2 3 8 2, 3, 8, 9 4 8 15 3, 6, 9,12
0 3 14 1, 2,12,15 2 3 9 2, 3, 8, 9 4 9 10 4, 7, 9,10
0 4 10 1, 7,10,12 2 4 9 11 4 9 12 3, 4,10,13
0 4 14 1, 7,10,12 2 4 15 15 4 9 15 5
0 5 7 0, 2, 5, 7 2 5 7 0, 2, 5, 7 4 10 13 8
0 5 8 2, 5,11,12 2 5 9 2, 7, 8,13 4 10 14 1, 7,10,12
0 5 10 3 2 5 11 4 4 11 14 14
0 5 13 2, 5,11,12 2 5 12 1 4 14 15 6, 7,12,13
0 5 15 4 2 5 14 2, 7, 8,13 5 6 8 5, 6, 8,11
0 6 11 9 2 6 8 3, 5, 8,14 5 6 11 5, 6, 8,11
0 6 13 13 2 6 12 3, 5, 8,14 5 8 11 5, 6, 8,11
0 7 9 6 2 7 8 1 5 8 13 2, 5,11,12
0 7 11 0, 5,10,15 2 7 10 0, 7, 9,14 5 8 14 4
0 7 12 0, 5,10,15 2 7 13 6 5 9 14 2, 7, 8,13
0 7 14 3 2 7 15 0, 7, 9,14 5 10 15 15
0 8 13 2, 5,11,12 2 8 9 2, 3, 8, 9 5 11 12 9
0 9 14 14 2 8 12 3, 5, 8,14 5 11 15 0, 6,11,13
0 10 11 0, 1,10,11 2 8 13 10 5 14 15 6, 7,12,13
0 10 14 1, 7,10,12 2 9 14 2, 7, 8,13 6 7 12 4, 5,14,15
0 10 15 8 2 9 15 1 6 7 13 4, 5,14,15
0 11 12 0, 5,10,15 2 10 15 0, 7, 9,14 6 8 11 5, 6, 8,11
0 11 13 3 2 11 12 12 6 8 12 3, 5, 8,14
0 13 14 1, 2,12,15 2 12 15 0, 3,13,14 6 8 15 10
1 2 12 0, 3,13,14 3 4 6 1, 3, 4, 6 6 9 12 12
1 2 15 0, 3,13,14 3 4 8 3, 6, 9,12 6 10 13 1, 4,11,14
1 3 4 1, 3, 4, 6 3 4 10 5 6 11 13 7
1 3 6 1, 3, 4, 6 3 4 13 0 6 11 14 1, 6, 8,15
1 4 6 1, 3, 4, 6 3 4 15 3, 6, 9,12 6 12 13 4, 5,14,15
1 4 9 3, 4,10,13 3 5 8 10 7 8 13 13
1 4 11 2 3 5 14 14 7 9 10 4, 7, 9,10
1 4 12 3, 4,10,13 3 6 9 0 7 9 13 2, 4, 9,15
1 4 14 5 3 6 11 1, 6, 8,15 7 9 14 11
1 5 11 0, 6,11,13 3 6 12 7 7 10 12 6
1 5 15 0, 6,11,13 3 6 14 1, 6, 8,15 7 10 15 0, 7, 9,14
1 6 8 7 3 7 9 2, 4, 9,15 7 11 12 0, 5,10,15
1 6 10 1, 4,11,14 3 7 13 2, 4, 9,15 7 12 13 4, 5,14,15
1 6 13 1, 4,11,14 3 8 9 2, 3, 8, 9 8 10 13 9,11,12,14
1 6 15 2 3 8 14 0 8 10 15 9,11,12,14
1 7 10 8 3 8 15 3, 6, 9,12 8 13 15 9,11,12,14
1 7 12 12 3 9 12 11 9 11 12 8,10,13,15
1 8 15 15 3 9 13 2, 4, 9,15 9 11 14 8,10,13,15
1 9 12 3, 4,10,13 3 10 13 13 9 12 14 8,10,13,15
1 10 11 0, 1,10,11 3 11 14 1, 6, 8,15 10 13 15 9,11,12,14
1 10 12 2 3 13 14 1, 2,12,15 11 12 14 8,10,13,15
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5 Conclusion

When applying integral attack on AES, we can use the Higher Order Integrals,
thus we do not need to guess the subkeys of the first round. However, it is
not suitable for the 6-round attack on ARIA, since if we want to apply the
higher order integrals, there should be some subset A of Fm

2n such that the linear
transform is also a permutation on A. For example, the MixColumn operation
of AES round transformation is a permutation on each column of the matrix.
Since the P layer of ARIA doesn’t have this property, higher order integral is
invalid for ARIA.

We have implemented the 4-round attack on personal computer and all the
round keys of the last round can be recovered in a few seconds. To the best of
our knowledge, this is the first result that can attack 4-round ARIA in a real
world. Table 2 lists some known cryptanalysis results on ARIA, from which one
can find that the 5-round attack presented in this paper has the lowest data
complexity and time complexity comparing to the known results.

In previous integral distinguishers, we determine whether some given bytes
are active, balanced or constant. However, in this paper, we find a integral dis-
tinguisher which is neither active, balanced nor constant, see Corollary 1. How
to apply this type of distinguishers to other ciphers is under study.

In our analysis, we also find many other 3-round distinguishers, all of which
have three active positions, thus they have no difference in attacking 4 and 5-
round ARIAs. However, when applying 6-round attack, for some distinguishers
one should guess at least 12 bytes(in this case, we call the corresponding distin-
guisher optimal distinguisher) and for others more than 12. Table 3 lists all the
optimal 3-round integral distinguishers of ARIA. Besides, our experiments find
that instead of using 4 S-boxes, if ARIA adopts only one S-box, the conclusion of
Theorem 1 becomes that all the bytes of Y3 are balanced; if the order of S-boxes
is changed, the distinguishers changes accordingly. Thus it shows that the choice
of S-box and different order of S-boxes do have influence on integral attacks.

Since 6-round ARIA is not immune to integral attack, according to ref.[14],
6-round ARIA is not immune to interpolation attack either.
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1 Introduction

Recent attacks by Wang et al. on the widely used hash functions MD4 [17],
MD5 [18], RIPEMD [17] and SHA-1 [19], as well as other hash functions, show
that collisions for these hash functions can be found much faster than expected
by the birthday paradox [16].

In search for a new secure hash function standard, NIST announced the SHA-
3 hash function competition [13]. The ESSENCE family of cryptographic hash
functions, designed by Martin [9], advanced to the first round of this competition.
It is a family of block cipher-based hash functions using the Merkle-Damg̊ard
mode of operation. The ESSENCE family uses simple algorithms that are easily
parallelizable and well-established mathematical principles. ESSENCE comes
with a proof of security against linear and differential cryptanalysis, that until
this paper remained unchallenged.

First, we describe several undesired properties of the ESSENCE L function.
These can be used to build a semi-free-start collision attack [12, pp. 371–372] on
31 out of 32 rounds of the ESSENCE-512 compression function using a differ-
ential characteristic. This directly invalidates the design claim that at least 24
rounds of ESSENCE are resistant against differential cryptanalysis [9]. To build
our attack, we describe a novel technique to satisfy the conditions imposed by
the characteristic in the first nine rounds. We do not know of a similar technique
in existing literature.

Then, we find that the ESSENCE compression functions use a non-linear
feedback function F that is unbalanced. We first exploit this to build efficient
distinguishers on 14-round versions of the ESSENCE block ciphers as well as
the compression functions. These distinguishers require only 217 output bits.
We then show how to use these results to recover the key with a few known
plaintexts and a computational effort less than that of exhaustive search. We
also show that, under some circumstances, the attacks on 14-round ESSENCE
could be extended to the full 32-round block cipher and compression function.

Following this, we observe that the omission of round constants in ESSENCE
leads to several attacks that cannot be prevented by increasing the number of
rounds. A slide attack can be applied to any number of rounds of the ESSENCE
compression function. We also find fixed points for any number of rounds of the
ESSENCE block cipher, that lead to a compression function output of zero.

ESSENCE was not qualified to the second round of the SHA-3 competition;
however, its appealing features (like design simplicity and hardware efficiency)
make any effort on tweaking it appear worthwhile. Therefore, in this paper, we
also suggest some countermeasures to thwart the aforesaid attacks.

In later work, Naya-Plasencia et al. [14] present different results on ESSENCE.
Our paper presents not only differential cryptanalysis but also distinguishing
attacks and slide attacks. Furthermore, some of our techniques can easily be
generalized to other block ciphers and hash functions.

The paper is organized as follows. Section 2 describes the compression function
of ESSENCE. In Sect. 3, we define and calculate the branching number of the
linear L function for both linear and differential cryptanalysis. As the branching
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number turns out to be quite low, we use this observation to build a semi-free-
start collision attack for 31 out of 32 rounds in Sect. 4. To satisfy the first nine
rounds of the differential characteristic of the semi-free-start collision attack, we
develop a technique in Sect. 5. Our distinguishers that exploit the weakness of
F function are presented in Sect. 6. In the same section, we also show how our
distinguishing attacks can be converted into key-recovery attacks on the block
ciphers. Following this, we show how the omission of round constants allows us
to find slid pairs (Sect. 7) and fixed points (Sect. 8) for any number of rounds.
Finally, Sect. 9 enlists our countermeasures and Sect. 10 concludes the paper.

2 Description of the Compression Function of ESSENCE

The inputs to the compression function of ESSENCE are an eight-word chaining
value and an eight-word message block, where each word is 32 or 64 bits in length,
for ESSENCE-224/256 and ESSENCE-384/512 respectively. The compression
function uses a permutation E, that in turn uses a nonlinear feedback function
F , a linear transformation L, some XORs and word shifts.

The message block m = (m0, . . . , m7) forms the initial value of an eight-
word state k = (k0, . . . , k7). In the case of the block cipher, m is the key
k = (k0, . . . , k7). Similarly, the chaining value c = (c0, . . . , c7) is the initial
chaining value of an eight-word state r = (r0, . . . , r7). In the case of the block
cipher, c is the plaintext. Both states are iterated N times. The designer rec-
ommends N to be a multiple of 8, N ≥ 24 for resistance to differential and
linear cryptanalysis and N = 32 as a measure of caution [9]. Figure 1 il-
lustrates one round of ESSENCE. The compression function uses a Davies-
Meyer feed-forward (see Fig. 2). That is, at the end of N rounds, the value
r7||r6||r5||r4||r3||r2||r1||r0 is XORed with the initial chaining value. The result
is the r7||r6||r5||r4||r3||r2||r1||r0 for the next iteration.

� � � � � � �

�
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� ��

L
�

F
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�

�������

� ��

L
�

F

�
�� �r7 r6 r5 r4 r3 r2 r1 r0 k7 k6 k5 k4 k3 k2 k1 k0

Fig. 1. One round of ESSENCE; each rn and kn (n = 0, . . . , 7) is a 32- or 64-bit word

3 Branching Number of the L Function

The L function of ESSENCE is a linear transformation from 32 (or 64) bits to
32 (or 64) bits and it is the only component that causes diffusion between the
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�

k

�rini rfin

Fig. 2. The compression function of ESSENCE; E is the round function of ESSENCE

when iterated N times, k denotes the message block, rini denotes the initial value of

r7||r6||r5||r4||r3||r2||r1||r0 and rfin denotes the value of r for the next iteration

different bit positions of a word. Therefore, its properties are very important for
both linear and differential cryptanalysis.

In this section, we focus on the branching number of the L function for both
linear and differential cryptanalysis. Let the branching number for differential
cryptanalysis be the minimum number of non-zero input and output differences
for the L function. These branching numbers are 10 and 16 for the 32-bit and
64-bit L functions respectively. If we were to consider only one-bit differences
at either the input or the output of L, these numbers would be 14 and 27
respectively.

The branching number for linear cryptanalysis can be defined as the (non-
zero) minimum number of terms in a linear equation relating the input and
output bits of the L function. These branching numbers are 10 and 17 for the 32-
bit and 64-bit L function respectively. Considering linear relations that involve
only one bit at the input or one bit at the output, we would find branching
numbers of 12 and 26 respectively.

Although one-bit differences are spread out well by the L function, this is
clearly not the case for differences in multiple bits. This problem is most severe
with the 64-bit L function. In the next section, we will show how this property
can be used to build narrow trails for all digest sizes of ESSENCE.

4 A 31-Round Semi-Free-Start Collision Attack For
ESSENCE-512

In this section, we will focus only on ESSENCE-512 for the sake of brevity and
clarity. As the strategy is not specific to any particular digest size, these results
can easily be generalized to all digest sizes of ESSENCE.

Although the ESSENCE L function spreads out one-bit differences very well,
the previous section showed that this is not the case for differences in multiple
bits. We therefore propose to use the differential characteristic of Table 1, to
obtain 31-round semi-free-start collisions for ESSENCE-512.

To construct narrow trails, we use the non-zero difference A with the
lowest possible Hamming weight. For this difference, we impose the condition
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(¬A)∧L(A) = 0, where ¬ represents the negation operation and all logical oper-
ations are to be performed bitwise. This can be formulated as follows: if there is a
difference at the output of the L function at a particular bit position, there must
be a difference at the input of L at this bit position as well. This requirement
is necessary, as the F function can absorb or propagate an input difference at
the output, but if no input difference is present, then there won’t be an output
difference either at this particular bit position. This places a restriction on the
output difference of the L function for this bit position.

There exist exactly 8 differences A with a weight of 17 and lower weight
differences A do not exist. These differences are available in Appendix A, along
with a method to calculate them efficiently.

The last two columns of Table 1 provide an estimate of the probability that
the characteristic is satisfied for every round. For these, we have assumed that
the F function propagates or absorbs an input difference with equal probability.
An more accurate calculation of these probabilities takes into account that the
shift register causes input values of the F function to be reused.

We find that this probability is different for bit positions where A and L(A)
both contain a difference, and for bit positions where only A contains a difference.
As such, of all differences A with weight 17, we select the difference that has
the highest weight of L(A). Five such differences exist, and we arbitrarily select
the difference with the smallest absolute value, A = 0A001021903036C3. The
corresponding L(A) = 0200100180301283 has weight 11. As such, we find that
rounds 10 to 16 of the key schedule, and rounds 18 to 24 of the compression
function, each have a probability of 2−8.415·6−8·11 = 2−138.49. For rounds 18 to
23 of the key schedule, we find a probability of 2−7.193·6−7·11 = 2−120.16.

To find semi-free-start collisions, we first search for a message pair that sat-
isfies the key expansion characteristic, and then afterwards search for a chain-
ing value pair that satisfies the compression function characteristic. These two
searches can be decoupled, as the chaining value does not influence the key
schedule. As such, the probabilities for the message pairs and IV pairs can be
summed up instead of multiplied.

As will be shown in the next section, only two round function calls are re-
quired to find a message (or IV) that satisfies the first nine rounds of the key
expansion (or compression function). To find a pair of messages (or IVs) that
satisfy the differential characteristic, we use the same depth-first search algo-
rithm that was introduced for SHA-1 in [2]. The memory requirements of this
search algorithm are negligible. We assume that the cost of visiting a node in
this search tree is equivalent to one round function call, or 2−5 compression
function calls. The complexity calculation of [2] then shows that a 31-round
semi-free-start collision can be found using the characteristic of Table 1 after
2138.49+120.16+1−5 + 2138.49+1−5 = 2254.65 equivalent compression function calls.
This is faster than a generic birthday attack, which requires about 2256 com-
pression function evaluations.
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Table 1. A 31-round semi-free-start collision differential characteristic for the

ESSENCE-512 compression function; differences from R to Y are arbitrary, 0 rep-

resents the zero difference, A = 0A001021903036C3

Round Register R Register K Pr for CV Pr for m

0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 A 1 1

2 0 0 0 0 0 0 A 0 0 0 0 0 0 0 A 0 2−17 2−17

3 0 0 0 0 0 A 0 0 0 0 0 0 0 A 0 0 2−17 2−17

4 0 0 0 0 A 0 0 0 0 0 0 0 A 0 0 0 2−17 2−17

5 0 0 0 A 0 0 0 0 0 0 0 A 0 0 0 0 2−17 2−17

6 0 0 A 0 0 0 0 0 0 0 A 0 0 0 0 0 2−17 2−17

7 0 A 0 0 0 0 0 0 0 A 0 0 0 0 0 0 2−17 2−17

8 A 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 2−17 2−17

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 1 1

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 0 1 2−17

11 0 0 0 0 0 0 0 0 0 0 0 0 0 A 0 0 1 2−17

12 0 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 1 2−17

13 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 0 1 2−17

14 0 0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 1 2−17

15 0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0 1 2−17

16 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 1 2−17

17 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 A 1 1

18 0 0 0 0 0 0 A 0 0 0 0 0 0 0 A 0 2−17 2−17

19 0 0 0 0 0 A 0 0 0 0 0 0 0 A 0 0 2−17 2−17

20 0 0 0 0 A 0 0 0 0 0 0 0 A 0 0 0 2−17 2−17

21 0 0 0 A 0 0 0 0 0 0 0 A 0 0 0 0 2−17 2−17

22 0 0 A 0 0 0 0 0 0 0 A 0 0 0 0 0 2−17 2−17

23 0 A 0 0 0 0 0 0 0 A 0 0 0 0 0 0 2−17 2−17

24 A 0 0 0 0 0 0 0 A 0 0 0 0 0 0 R 2−17 1

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R S 1 1

26 0 0 0 0 0 0 0 0 0 0 0 0 0 R S T 1 1

27 0 0 0 0 0 0 0 0 0 0 0 0 R S T U 1 1

28 0 0 0 0 0 0 0 0 0 0 0 R S T U V 1 1

29 0 0 0 0 0 0 0 0 0 0 R S T U V W 1 1

30 0 0 0 0 0 0 0 0 0 R S T U V W X 1 1

31 0 0 0 0 0 0 0 0 R S T U V W X Y 1 1

5 Finding Message Pairs for the First Nine Rounds

To find messages that satisfy the first few rounds of the characteristic, single-
message modification [18] cannot be used. This is because the entire message
is loaded into the r-registers before the round function is applied, instead of
injecting one message word every round. We therefore propose to use another
technique, that turns out to be even more efficient than single-message modifi-
cation. This concept is explained for the key schedule only, as it is completely
analogous for the compression function.



Cryptanalysis of the ESSENCE Family of Hash Functions 21

In this section, we will adopt a stream-based notation for the round function.
Denote the initial eight-word state (k7, k6, k5, k4, k3, k2, k1, k0) as (x−2, x−1, x0,
x1, x2, x3, x4, x5). After clocking one for one round, the value of the register k0 is
represented by x6, and so on. In this text, we will not make a distinction between
linear and affine equations, and use the term “linear equation” for any equation
that contains no monomials of a degree more than one.

Finding a pair of messages that satisfy the characteristic, can be seen as
solving a set of non-linear equations defined by the round function. Solving a
set of non-linear equations is a difficult problem in general. This is even more
the case as we are not looking for a single solution, but for a very large set of
solutions.

What we can do, however, is impose linear conditions on the variables x0 to
x12, in such a way that the round function behaves as a linear function. We
then obtain a set of linear equations, of which every solution corresponds to a
message pair that follows the first nine rounds of the characteristic. Enumerating
the solutions of this linear space has a negligible computation cost compared to
a round function evaluation.

For every solution, we have to apply the round function twice to obtain x13

and x14. These are guaranteed to follow the characteristic as well. They serve
as a starting point to satisfy the conditions of the remaining characteristic in
a probabilistic way. After reaching round 31, we can calculate x−2 and x−1

by applying two inverse round functions. These values will always satisfy the
characteristic.

Let A[j] denote the j-th significant bit (j = 0 denotes the least significant
bit or LSB) of A. The only non-linear function of ESSENCE is the F function.
As the F function operates on every bit in parallel, the linear conditions that
have to be added, depend on the values A[j] and L(A)[j] at every bit position j.
The equations we use are given in Appendix B. Note that for bit positions j
where A[j] = 0, it is not a problem if x0[j] or x12[j] are represented by a non-
linear expression, as these bits are not involved in any of the linear conditions
anyway.

As the equations in Appendix B show, we need to add 10 equations for every
bit position j where A[j] = 1, and 6 equations if A[j] = 0. Also, to represent the
64-bit values x8 to x12 resulting from the round function, we need to add 5 · 64
additional equations for outputs of the round function. In total, we obtain a set
of 10 · 17 + 6 · (64 − 17) + 5 · 64 = 772 linear equations in 13 · 64 = 832 binary
variables.

We build this system of equations by successively adding 10+5 = 15 or 6+5 =
11 more equations for every bit position j. With some small probability, the
system of equations becomes inconsistent. If this happens, we add a different set
of linear equations for this bit position. Even this may fail with some probability,
in which case we add a linearization of the F function using 7 + 5 instead of
6 + 5 equations for this particular bit position. This may or may not decrease
the number of solutions slightly, but it allows us to avoid backtracking.
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For one particular run, using only the equations mentioned in Appendix C,
we find a consistent system of 772 linear equations in 832 binary variables. The
number of linearly independent equations turns out to be 771. As such, we have
found 2832−771/2 = 260 pairs of messages that satisfy the first 9 rounds. We
divide by two to avoid counting the same pair twice. If more than 260 pairs of
messages needed, we can simply run this program again to find the next set of
messages. As including these 771 equations would use up a lot of space, we give
only one of the 260 message pairs in Table 6.

This technique is very similar to the techniques of multi-message modifica-
tion [18], tunneling [8], neutral bits [1] and the amplified boomerang attack [7].
These 260 messages correspond to 60 auxiliary differential paths for the amplified
boomerang attack. No results are known to us where these auxiliary differential
paths were also obtained in a fully automated way.

6 Distinguishing Attacks

Our motivational observation is that the non-linear feedback function F is unbal-
anced. Exploiting this, we first construct distinguishers on 14-round ESSENCE
(both the block cipher and the compression function) and then for the full 32-
round ESSENCE. Towards the end of this section, we present key-recovery at-
tacks on the ESSENCE family of block ciphers. These attacks can be seen as an
immediate consequence of our distinguishing attacks.

6.1 Weakness in the Feedback Function of ESSENCE

In [9], the designer notes that the security of the algorithms is heavily dependent
on F , as it is the only nonlinear function in ESSENCE. This gave us some
motivation to study the properties of F . The function F takes seven 32-bit or
64-bit words (say, a, . . . , g) as inputs and produces a 32-bit or 64-bit word as
the output. The function works in a bitsliced manner. The exact description of
F is largely irrelevant to our analysis; hence, we refer the interested reader to
Appendix D.

Let F (a, b, c, d, e, f, g)[j] denote the j-th significant bit (j = 0 denotes the
LSB) of F (a, b, c, d, e, f, g). Our motivational observation is the following (con-
firmed both experimentally and from the tables in Appendix D of [9]).

Observation 1: If a, . . . , g are uniformly distributed, then

Pr[F (a, b, c, d, e, f, g)[j] = 0] =
1
2

+
1
27

. (1)

6.2 Distinguishers on 14-Round ESSENCE

In this section, we use Observation 1 to build distinguishers on 14 rounds of
ESSENCE. First, we consider the block cipher, then the compression function.
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Let kn[j], rn[j] and L(rn)[j] respectively denote the j-th significant bits (j = 0
denotes the LSB) of kn, rn and L(rn). In the beginning, suppose the key k and
the initial value r are such that k0[0] = r0[0]. Then, after 7 rounds, k7[0] = r7[0].
Now, if after the 7th round, L(r0)[0] = 0 and F (r6, r5, r4, r3, r2, r1, r0)[0] = 0
(from Observation 1, this occurs with 0.5+ 2−7 probability1), then after the 8th
round, we will have r0[0] = 0. Note that the condition L(r0)[0] = 0 after the 7th
round is the same as the condition L(r1)[0] = 0 after the 8th round. Therefore,
when the key and the plaintext are initially related in the form k0[0] = r0[0], and
when the outputs after 8 rounds satisfy the condition L(r1)[0] = 0 (this occurs
with probability 1/2), then Pr[r0[0] = 0] = 1/2 + 2−7. Now, r0 and r1 after the
8th round are respectively equal to r6 and r7 after the 14th round. Hence, when
the key and the plaintext are related in the form k0[0] = r0[0], and when the
outputs after 14 rounds satisfy the condition L(r7)[0] = 0, then

Pr[r6[0] = 0] =
1
2

+
1
27

. (2)

6.3 The Distinguisher

A distinguisher is an algorithm that distinguishes one probability distribution
from another. In cryptography, a distinguisher is an algorithm that distinguishes
a stream of bits from a stream of bits uniformly distributed at random (i.e.,
bitstream generated by an ideal cipher).

Our distinguisher on ESSENCE is constructed by collecting n outputs r6[0],
after 14 rounds, generated by as many keys (so that the n samples are indepen-
dent) such that k0[0] = r0[0] initially. Let D0 and D1 denote the distributions of
the outputs from 14-round ESSENCE block cipher and a random permutation,
respectively. Given L(r7)[0] = 0, let p0 and p1 respectively denote the probability
that r6[0] = 0 holds given the outputs are collected from 14-round ESSENCE
and the probability that r6[0] = 0 holds given the outputs are generated by
a random source. That is, p0 = 1/2 + 2−7 (from (2)) and p1 = 1/2. Then,
μ0 = n · p0 and μ1 = n · p1 are the respective means of D0 and D1. Similarly,
σ0 =

√
n · p0 · (1 − p0) and σ1 =

√
n · p1 · (1 − p1) denote the respective stan-

dard deviations of D0 and D1. When n is large, both these binomial distributions
can be approximated with the normal distribution. Now, if |μ0−μ1| > 2(σ0+σ1),
i.e., n > 216, the output of the cipher can be distinguished from a random per-
mutation with a success probability of 0.9772 (since the cumulative distribution
function of the normal distribution gives the value 0.9772 at μ + 2σ) provided
L(r7)[0] = 0. To test whether n is large enough for the normal approximation to
the binomial distribution to hold, we use a commonly employed rule of thumb:
n · p > 5 and n · (1− p) > 5, where p ∈ {p0, p1}. A simple calculation proves that
both the above inequalities hold when n = 216. Since the condition L(r7)[0] = 0
1 The bit L(r0)[0] is the XOR-sum of r0[0] and several other bits of r0. We as-

sume that all r0[j] are independent and uniformly distributed. Then the con-

dition L(r0)[0] = 0 does not affect Pr[r0[0] = 0] and therefore the bias in

Pr[F (r6, r5, r4, r3, r2, r1, r0)[0] = 0] is also unaffected.



24 N. Mouha et al.

holds with 0.5 probability, we need to generate 2 ·216 = 217 samples of r6[0] from
as many keys (such that k0[0] = r0[0] initially) to build the distinguisher with a
success probability of 0.9772. Our simulations support this result.

6.4 Distinguishers Using Biases in Other Bits

Since the function F operates on its input bits in a bitsliced manner, it is easy
to see that the distinguisher presented for the LSB of r6 also works for more
significant bits. In other words, if initially k0[j] = r0[j], for any j in {0, . . . , 31},
then with 216 samples of r6[j] at the the end of 14 rounds, it is possible to
distinguish 14-round ESSENCE block cipher from a random permutation with
a success probability of 0.9772.

6.5 Distinguishers for the Compression Function

The ESSENCE compression function is a Davies-Meyer construction in which
the output of the block cipher is XORed with the initial chaining value. In other
words, the output of the compression function is the XOR-sum of the values
of r7||r6||r5||r4||r3||r2||r1||r0 before and after applying the permutation E. This
XOR-sum is the chaining value r7||r6||r5||r4||r3|| r2||r1||r0 for the next iteration.
As we assume that an attacker can observe both the chaining value input and the
compression function output, it is trivial to undo the Davies-Meyer feedforward
and apply the distinguishers of the 14-round block cipher.

These observations are extended to 32-round ESSENCE in Appendix E.

6.6 Key-Recovery Attacks

In this section, we show that the distinguishing attacks on the ESSENCE family
of block ciphers can be converted into key-recovery attacks.

Let us say that we have n known plaintexts. Considering that the plaintexts
are initially loaded directly into the r-registers [10], we expect n/2 plaintexts
to have r0[j] = 0. Without loss of generality, let us consider this partition of
the plaintext space where r0[j] = 0. Now, from our analysis in Sect. 6.2, we
can collect statistics on L(r7)[j] ⊕ r6[j] at the end of the 14 rounds and observe
its tendency for sufficiently large n — if L(r7)[j] ⊕ r6[j] = 0 more often, then
the key bit k0[j] = 0; likewise, if L(r7)[j] ⊕ r6[j] = 1 more often, then the
key bit k0[j] = 1 (the results are swapped if we begin with plaintexts in which
r0[j] = 1).

Using a similar analysis, we can recover the rest of the key bits in k0. The
number of known plaintexts required is 215. This is obtained as follows, using
standard linear cryptanalysis [11]. We are interested in finding whether, after 14
rounds, the number of times that L(r7)[j]⊕ r6[j] = 0 holds is greater than n/4.
Accordingly, we determine the key bit k0[j]. Unlike in the distinguishing attacks,
a confidence interval for the uniform distribution is not required. From [11]
we obtain that the success probability of this method is 0.9772 when n/2 =
|p−1/2|−2, where p is the probability that L(r7)[j]⊕r6[j] = 0 (or 1). Substituting
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p = 1/2 ± 2−7 in the above formula for n, we get n = 215. It follows that the
probability that this recovered key word (k0) is correct is (0.9772)32 ≈ 0.48. The
other 224 bits of the key can be exhaustively searched. Thereby, we expect that
2224/0.48 ≈ 2225.1 keys have to be tested before the correct key is obtained with
guaranteed success. This key-recovery attack can also be applied on the block
cipher of ESSENCE-224 (which is identical to the block cipher of ESSENCE-
256) with the same complexities. For the block ciphers of ESSENCE-384/512,
we require 215 known plaintexts and a computational effort equivalent to testing
2448/(0.9772)64 ≈ 2450.1 keys (where exhaustive search requires testing 2512 keys)
for guaranteed success.

These observations are extended to 32-round ESSENCE in Appendix F.

7 Slide Attack

In this part of the study, we provide an efficient method to find two inputs
(c, m) and (c′, m′) such that their output (after feed-forward) r and r′ are shifted
versions of each other; i.e., if ri = r′i+1 for 0 ≤ i < 7.

The necessary conditions on (c, m) and (c′, m′) are

1. ci = c′i+1 for 0 ≤ i ≤ 7 ,
2. c′0 = m7 ⊕ c7 ⊕ F (c6, . . . , c0) ⊕ L(c0) ,
3. mi = m′

i+1 for 0 ≤ i ≤ 7 ,
4. m′

0 = m7 ⊕ F (m6, . . . , m0) ⊕ L(m0) .

If these conditions hold, then after 32 rounds (and XORing with the initial
value), the output of the compression function satisfies ri = r′i+1 for 0 ≤ i < 7.

As an example, let mi = 0 for all i. Then we must choose m′
i = 0 for all i > 0,

and m′
0 = 1n where 1n represents the 32-bit or 64-bit unsigned integer of which

all bits are set. Let ci = 0 for all i, let c′i = 0 for all i > 0, and let c′0 = 1n. Then,
the two outputs of the compression function (with N = 32) are:

c 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

c′ FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

m 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

m′ FFFFFFFF 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R 6B202EF2 BB610A07 97E43146 9BD34AE3 C8BC7CBF B8EE4A3C B6118DC5 775F7BBF

R′ C07ABCFA 6B202EF2 BB610A07 97E43146 9BD34AE3 C8BC7CBF B8EE4A3C B6118DC5

For every choice of (c, m), an input (c′, m′) such that this property on the
compression function outputs is obtained can be found in time equivalent to
about one compression function evaluation. Hence, in total about 2512 pairs of
inputs producing slid pairs can be found by the above method. This observation
can easily be extended to slide the output by 2, 3, . . . , 7 steps.
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7.1 Slid Pairs with Identical Chaining Values

It is also possible to find slid pairs with c = c′. Let the initial state of the register
R be of the form (c0, c0, . . . , c0), where c0 is selected randomly. For a message
block m of the form (m0, m1, . . . , m7) where m7 = F (c0, . . . , c0)⊕L(c0) and the
rest of the mi’s are selected arbitrarily, select m′ as (m′

0, m
′
1, . . . , m

′
7), such that

m′
i+1 = mi for i = 0, 1, 2, . . . , 6 and m′

0 = m7 ⊕ F (m6, . . . , m0) ⊕ L(m0). Then,
the outputs of the compression function for m and m′ also satisfy ri = r′i+1 for
0 ≤ i < 7. It is possible to select c in 232 different ways, and for each selected
c, we can choose 27·32 different message blocks, therefore the number of such
slid pairs is 2256. As an example, assume c0 = 243f6a88, which is the truncated
fractional part of π, and all “free” message words are zero.

c, c′ 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88 243F6A88

m 00000000 00000000 00000000 00000000 00000000 00000000 00000000 F6B1EB63

m′ 094E149C 00000000 00000000 00000000 00000000 00000000 00000000 00000000

R BE31AA01 EB6E9F07 EAD99889 6FE79B44 391CCD35 67FDB8B6 FC3AA0F6 6E80148E

R′ F86D77C6 BE31AA01 EB6E9F07 EAD99889 6FE79B44 391CCD35 67FDB8B6 FC3AA0F6

8 Fixed Points for the ESSENCE Block Cipher

If a fixed point for one round of the ESSENCE block cipher can be found, this
automatically leads to a fixed point for all 32 steps of the block cipher. After ap-
plying the Davies-Meyer feed-forward, the resulting compression function output
will then be zero.

If two different fixed points are found, this would lead to a free-start collision.
This free-start collision is preserved after the output padding is applied.

For a fixed point for one round, c0 = c1 = . . . = c7 and m0 = m1 = . . . = m7

should hold. This is obvious: after one step, all register values move one place,
but must have the same value as in the previous step to form a fixed point.
Moreover, the round update functions should satisfy the following equations.

F (c0, c0, c0, c0, c0, c0, c0) ⊕ c0 ⊕ L(c0) ⊕ m0 = c0 ,

F (m0, m0, m0, m0, m0, m0, m0) ⊕ m0 ⊕ L(m0) = m0 .

Solving the equations, one gets the following values for ESSENCE-256 and
ESSENCE-512:

ESSENCE-256 ESSENCE-512
c0 993AE9B9 D5B330380561ECF7
m0 307A380C 10AD290AFFB19779

Using similar methods, we have found that the only fixed points for two,
three or four rounds is the same fixed point for one round applied two, three
or four times respectively. We have not been able to extend this result for more
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rounds. As such, we have not been able to find a free-start collisions using this
technique. Depending how the compression function is used, however, it might
be undesirable that we can easily find inputs that fix the compression function
output to zero.

9 Measures to Improve the Security of ESSENCE

From the analysis in Sect. 3–6, it is clear that ESSENCE has weaknesses in L
and F .

The concatenation of both the input and output of the L function can be
seen as an error-correcting code with [n, k] = [64, 32] or [128, 64]. The branching
number is then equal to the error-correcting code of these dimensions with the
highest minimum weight. Best known results from coding theory [6] can be used
to construct an L function with a branching number for both linear and differ-
ential cryptanalysis of 12 or 22 respectively. Better codes may exist according
to currently known upper bounds for the minimum weight, but have so far not
been found.

A search can be made for variants of these codes (possibly with a slightly lower
branching number) that satisfy all design criteria for the L function. Although
the resulting function will always be linear, it may however not be possible to
implement it as an LFSR.

In (5), the function F is in algebraic normal form (ANF). We know that the
coefficient of the maximum degree monomial in this ANF is equal to the XOR-
sum of all the entries in the truth table of F . To thwart the attacks in Sect. 6
and Appendix F, it is necessary that F is balanced. Discarding the maximum
degree monomial is a possible solution.

Other countermeasures include increasing the number of rounds and adding
round constants. In Sect. 7 and Sect. 8, we saw how the omission of round
constants allowed slid pairs and fixed points to be found. Increasing the number
of rounds does not thwart these attacks, but it increases the security margin
against the semi-free-start collision attacks of this paper.

10 Conclusions and Open Problems

In this paper, we first presented a semi-free-start collision attack on 31 out of 32
rounds with a complexity of 2254.65 compression function evaluations. We find
messages that satisfy the first nine rounds of the differential characteristic of the
semi-free-start collision attack as the solution of a large set of linear equations.
We found that six linear input conditions are sufficient to make F behave as a
linear function in Table 5. It is an open problem if solutions using fewer equations
exist.

We also presented a set of distinguishers on 14-round ESSENCE. The distin-
guishers can be applied to the block cipher as well as the compression function.
Each of the distinguishers on 14-round ESSENCE requires 217 output bits. The



28 N. Mouha et al.

distinguishers work on all digest sizes of ESSENCE with the same complex-
ity. It has also been shown how the distinguishing attacks can be turned into
key-recovery attacks.

We then showed how the omission of round constants allowed slid pairs and
fixed points to be found. This cannot be prevented by increasing the number of
rounds.

Finally, we suggested some measures to improve the security of ESSENCE.
These suggestions are rather preliminary and need to be worked on further in
order to obtain a more secure family of hash functions.
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guarantees that M is invertible, as L is not allowed to have any eigenvalues in
the ground field.

First step: We enumerate all x where hw(x) ≤ w0. After calculating A =
L−1(x), we check (3) and (4).

Second step: We enumerate all y where hw(y) ≤ w1. After calculating A =
M−1(y), we check if (3) and (4).

Equation (3) implies that the bit positions where L(A) is 1, is always a subset
of bit positions where A is 1. Therefore, we only have to consider two cases:
the case where the set of bit positions where L(A) is 1 contains no more than
w0 elements, and the case where the set bit positions where L(A) is 0 and A
is 1 contains not more than w1 elements. As w0 + w1 = w, these two steps are
guaranteed to find all A that satisfy (3) and (4). If no solution is found, we
increase w by one and perform the two steps again, enumerating only the new
values of x and y.

The total complexity of this search is
(∑w0

i=0 C64
i

)
+

(∑w1
j=0 C64

j

)
. As we find

w=17 here, the total number of 64-bit linear function evaluations is
(∑8

i=0 C64
i

)
+(∑9

j=0 C64
j

)
≈ 235. This calculation can be performed in less than a minute on a

recent desktop computer. The solutions are shown in Table 2.

Table 2. All differences A with hw(A) = 17 that satisfy (3); there are no solutions

where hw(A) < 17 and (3)

A

2461822430680025

48C3044860D0004A

91860890C1A00094

0A001021903036C3

1400204320606D86

2800408640C0DB0C

5000810C8181B618

A001021903036C30

B Making F Behave as a Linear Transformation

We consider three separate cases, depending on the values of A and L(A) for a
particular bit position j.

If A[j] = 1, we can enumerate all possible input conditions, such that F be-
haves linearly and has the required differential behavior. Because we enumerate
all possibilities, we obtain an optimal result: it is not possible to add fewer than
10 linear equations. All existing solutions where 10 linear equations are added,
are shown in Table 3 (for L(A)[j] = 1) and Table 4 (for L(A)[j] = 0).

If A[j] = 0: the differential behavior is always satisfied: if there is no input
difference, there will not be an output difference either. We found that adding
6 equations is sufficient. We do not rule out the possibility that fewer than 6
equations are sufficient. The solutions we found are given in Table 4.
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Table 3. Making F linear and imposing the required differential behavior for position

j where A[j] = L(A)[j] = 1 can be done by adding no more than 10 linear equations;

exactly four such solutions exist

Solution 1 Solution 2 Solution 3 Solution 4

x0 ⊕ x2 = 1 x1 = 1 x1 = 1 x1 = 1

x1 = 0 x2 ⊕ x5 = 0 x2 ⊕ x5 = 0 x2 = 1

x3 = 1 x2 ⊕ x7 = 1 x2 ⊕ x7 = 1 x3 = 0

x4 = 1 x2 ⊕ x8 = 0 x2 ⊕ x8 = 0 x4 = 1

x5 = 1 x2 ⊕ x9 = 0 x2 ⊕ x9 = 0 x5 = 1

x7 = 0 x2 ⊕ x12 = 1 x3 = 0 x7 = 0

x8 = 1 x3 = 0 x4 = 1 x8 = 1

x9 = 0 x4 = 1 x10 = 0 x9 = 1

x10 = 0 x10 = 0 x11 = 0 x10 = 0

x12 = 1 x11 = 0 x12 = 1 x11 = 0

F (x0, . . . , x6) = x6 ⊕ 1 x0 ⊕ x6 x0 ⊕ x6 x0 ⊕ x6

F (x1, . . . , x7) = x2 ⊕ 1 x2 ⊕ 1 x2 ⊕ 1 0

F (x2, . . . , x8) = 0 x2 ⊕ 1 x2 ⊕ 1 0

F (x3, . . . , x9) = 0 x5 x5 1

F (x4, . . . , x10) = 1 1 1 1

F (x5, . . . , x11) = 1 0 0 0

F (x6, . . . , x12) = 0 x7 ⊕ 1 0 x12 ⊕ 1

Table 4. Making F linear and imposing the required differential behavior for position

j where A[j] = 1 and L(A)[j] = 0 can be done by adding no more than 10 linear

equations; exactly one such solution exists

Solution 1

x0 ⊕ x2 = 0

x1 = 0

x3 = 1

x4 = 1

x5 = 1

x7 = 0

x8 = 1

x9 = 0

x10 = 0

x12 = 1

F (x0, . . . , x6) = 1

F (x1, . . . , x7) = x2 ⊕ 1

F (x2, . . . , x8) = 0

F (x3, . . . , x9) = 0

F (x4, . . . , x10) = 1

F (x5, . . . , x11) = 1

F (x6, . . . , x12) = 0

We will omit the index j, so that x0 to x12 represent one-bit variables. The
expressions F (x0, . . . , x6) and F (x6, . . . , x12) are not added to the system of
linear equations of the attack, as this is not necessary. They are only mentioned
to show that their differential behavior is correct.
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Table 5. Making F linear for position j where A[j] = L(A)[j] = 0 can be done by

adding no more than 6 linear equations; at least six such solutions exist

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6

x3 = 0 x3 = 0 x3 = 1 x4 = 0 x4 = 0 x4 = 0
x4 = 0 x4 = 0 x4 = 1 x5 = 1 x5 = 1 x5 = 1
x5 = 1 x5 = 1 x5 = 1 x6 = 1 x6 = 1 x6 = 1
x6 = 0 x6 = 1 x6 = 1 x7 = 0 x7 = 0 x7 = 0
x7 = 1 x7 = 1 x7 = 1 x8 = 1 x8 = 1 x8 = 1
x9 = 1 x8 = 1 x8 = 1 x9 = 0 x10 = 0 x11 = 1

F (x1, . . . , x7) = x1 ⊕ 1 x2 x1 x1 ⊕ x2 ⊕ 1 x1 ⊕ x2 ⊕ 1 x1 ⊕ x2 ⊕ 1
F (x2, . . . , x8) = x2 ⊕ x8 ⊕ 1 x2 ⊕ 1 x2 x3 ⊕ 1 x3 ⊕ 1 x3 ⊕ 1
F (x3, . . . , x9) = x8 ⊕ 1 x9 ⊕ 1 x9 0 x9 x9

F (x4, . . . , x10) = x8 0 x9 ⊕ x10 ⊕ 1 x10 ⊕ 1 x9 ⊕ 1 x9 ⊕ x10 ⊕ 1
F (x5, . . . , x11) = x8 ⊕ x10 ⊕ 1 x10 ⊕ x11 ⊕ 1 x10 ⊕ x11 ⊕ 1 x10 ⊕ 1 x9 ⊕ 1 x9 ⊕ x10 ⊕ 1

Table 6. A message pair satisfying the first 9 rounds of the characteristic of Table 1

i mi m′
i mi ⊕ m′

i

0 FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF 0000000000000000

1 1A001021983836CB 1A001021983836CB 0000000000000000

2 5809832A1DEA2458 5809832A1DEA2458 0000000000000000

3 8AEF5FEBEB9FDAAB 8AEF5FEBEB9FDAAB 0000000000000000

4 32F9D8578015D297 32F9D8578015D297 0000000000000000

5 0D031372423B91AC 0D031372423B91AC 0000000000000000

6 B804AC08CD97E348 B804AC08CD97E348 0000000000000000

7 E8BB8E649DC3B35F E2BB9E450DF3859C 0A001021903036C3

C A Message Pair for the First Nine Rounds

We give a message pair that satisfies the first 9 rounds of the characteristic of
Table 1 in Table 6.

D The Feedback Function F

We denote the field of two elements by F2. The nonlinear feedback function,
F , of ESSENCE-224/256 (respectively ESSENCE-384/512) takes seven 32-bit
(respectively 64-bit) input words and outputs a single 32-bit (respectively 64-bit)
word as follows:

F (a, b, c, d, e, f, g) = abcdefg + abcdef + abcefg + acdefg +
abceg + abdef + abdeg + abefg +
acdef + acdfg + acefg + adefg +
bcdfg + bdefg + cdefg +
abcf + abcg + abdg + acdf + adef +
adeg + adfg + bcde + bceg + bdeg + cdef +



Cryptanalysis of the ESSENCE Family of Hash Functions 33

abc + abe + abf + abg + acg + adf +
adg + aef + aeg + bcf + bcg + bde +
bdf + beg + bfg + cde + cdf + def +
deg + dfg +
ad + ae + bc + bd + cd +
ce + df + dg + ef + fg +
a + b + c + f + 1 , (5)

where the multiplication and addition are taken in F2 (i.e., they are the same as
bitwise XOR and bitwise AND, respectively).

E Distinguishing Attacks on the Full 32-Round
ESSENCE-256

The attacks described in Sect. 6.2 can be easily extended to the full ESSENCE-
256 block cipher. Let us suppose the key k and the plaintext are related such
that after 18 rounds, r0[0] = k0[0]. Given this, using similar arguments as those
used to derive (2), we obtain that at the end of 32 rounds, if L(r7)[0] = 0, then

Pr[r6[0] = 0] =
1
2

+
1
27

. (6)

We can thus construct a distinguisher by collecting 217 outputs r6[0], after 32
rounds, generated by as many keys (so that the samples are independent) given
that after 18 rounds, k0[0] = r0[0]. In other words, the adversary first tests
whether k0[0] = r0[0] after 18 rounds. If this condition is satisfied, she collects
the output r6[0] after 32 rounds provided L(r7)[0] = 0. Therefore, this consti-
tutes a known-key distinguishing attack which one may view as an attack on a
large set of weak keys. Alternatively, the attack scenario may be such that two
bits of the internal state after 18 rounds are leaked to the adversary. A similar
assumption was made in [4], as a model for certain side-channel attacks. More
generally, this scenario is captured by the notion of leakage resilience [5,15],
i.e., security when “even a bounded amount of arbitrary (adversarially chosen)
information on the internal state (. . .) is leaked during computation” [5]. Al-
though this assumption leads to trivial attacks (e.g., observe the full internal
state of AES at the penultimate rounds), it assists to evaluate security against a
wider range of adversaries, and to better understand the resilience of algorithms
against “extreme” adversaries.

Since the condition k0[0] = r0[0] (after 18 rounds) holds with 0.5 probability,
the attacker would need to examine with 217 · 2 = 218 randomly generated keys
to mount the distinguishing attack with a success probability of 0.9772.

It is easy to see that distinguishers of the same complexity can be built by
collecting any other bit of r6 (after 32 rounds) because F operates in a bitsliced
manner. As in Sect. 6.5, when the attacker can observe both the chaining value
input and the compression function output, the above distinguishers can be
applied onto the compression function as well.
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F Key-Recovery Attacks on 32-Round ESSENCE

In Appendix E, we extended the distinguisher on 14-round ESSENCE-256 to 32
rounds by selecting plaintexts based upon the intermediate value of r0[j] and
k0[j] at round 18. This result may be viewed in terms of a known plaintext key-
recovery attack against a vulnerable implementation of the ESSENCE-256 block
cipher. Let us say that we are attacking such an implementation of the 32-round
ESSENCE-256 block cipher where through some means (side-channel analysis,
cache pollution, etc.) we can read bit j of r0 after 18 rounds. Like in Sect. 6.6, we
focus on a subset of 214 plaintexts where r0[j] = 0 (or 1) for all 214 texts after 18
rounds. Applying the same analysis as in Sect. 6.6 to the remaining 14 rounds
gives us the value of k0[j] at round 18. If our vulnerable implementation allows
us to read all the bit positions of r0, then with probability 0.48, we can recover
the full key-word k0 at round 18. Since the key schedule is a bijection (and easily
invertible) we can recover the original key with minimal effort. Again, a similar
analysis can be applied to the other members of the ESSENCE family of block
ciphers.



Differential-Multiple Linear Cryptanalysis

Zhiqiang Liu1,�, Dawu Gu1, Jing Zhang1, and Wei Li2

1 Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai 200240, P.R. China

{ilu zq,dwgu,diandian}@sjtu.edu.cn
2 School of Computer Science and Technology,

Donghua University, Shanghai 201620, P.R.China

liwei.cs.cn@gmail.com

Abstract. Differential-linear cryptanalysis was introduced by Langford

et al in 1994. After that, Biham et al proposed an enhanced differential-

linear cryptanalysis in 2002. In this paper, we present an extension to

the enhanced differential-linear cryptanalysis, called differential-multiple

linear cryptanalysis, in which a differential characteristic can be concate-

nated with multiple linear characteristics to derive a differential-multiple

linear distinguisher. Furthermore, we introduce a technique about how

to find a differential-multiple linear distinguisher based on a differential-

linear distinguisher for Feistel and SPN block ciphers. For illustration,

this extension is applied to describe a differential-multiple linear distin-

guisher for 7-round DES, and then the best-known key recovery attack

on 9-round DES is presented based on the differential-multiple linear dis-

tinguisher. As a matter of fact, our work is a new attempt to concatenate

a differential characteristic with multiple linear characteristics to derive

a new cryptanalytic tool which may be helpful to analyze a variety of

block ciphers including Feistel and SPN schemes.

Keywords: Differential cryptanalysis, Multiple linear cryptanalysis,

Differential-Linear cryptanalysis, Differential-Multiple linear cryptanal-

ysis, DES.

1 Introduction

Differential cryptanalysis [5], introduced by Biham et al in 1990, is one of the
most powerful chosen plaintext attacks against modern cryptosystems. After
that, it has been used effectively to analyze many well-known ciphers and some
variants of this attack have been presented such as higher order differential
attack [11], truncated differential attack [11], impossible differential attack [2],
boomerang attack [15], rectangle attack [3], and so on.

Linear cryptanalysis [13], proposed by Matsui in 1993, is another one of the
most powerful known plaintext attacks against modern block ciphers. Based
on this technique, Kaliski et al [10] proposed the idea of generalizing linear
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cryptanalysis using multiple linear approximations (the original approach given
by Matsui considered only the best linear approximation) in 1994. However,
their method imposed a strict constraint as it requires to use approximations
deriving the same parity bit of the secret key, which restricted at the same time
the number and the quality of the approximations available. As a result, an
approach removing the constraint was proposed by Biryukov et al in 2004 [7].

Differential-Linear cryptanalysis [12], presented by Langford et al in 1994,
showed that differential and linear cryptanalysis can be combined together to
formulate a more effective attack on modern block ciphers. After that, this tech-
nique has been successfully applied to analyze the reduced round DES [12] and
reduced round IDEA [8,9]. Furthermore, this attack can be regarded as an ex-
ample for constructing the distinguisher used in cryptanalysis on modern block
ciphers by combining two much shorter and simpler parts. As we know, modern
block ciphers are devised to avoid good long differential and linear characteristics
in order to resist traditional attacks such as differential and linear cryptanalysis,
but usually good short ones still exist. By using the technique given in [12], an
adversary can construct two consecutive good short differential or linear char-
acteristics, and then combine them to obtain a long distinguisher so that the
adversary can mount an effective attack on a block cipher with more rounds.
Except for the combination of a differential characteristic and a linear approxi-
mation described in [12], similar combinations were later developed and used in
other kinds of cryptanalysis such as cryptanalysis using impossible differentials
[2,1], boomerang attack, and rectangle attack, which use combinations of shorter
and simpler differential characteristics. In 2002, Biham et al [4] proposed an en-
hanced differential-linear cryptanalysis to generalize the cryptanalytic tool so as
to make it more powerful.

In this paper, we present an extension to the enhanced differential-linear
cryptanalysis, called differential-multiple linear cryptanalysis, in which a
differential characteristic can be concatenated with multiple linear character-
istics to derive a differential-multiple linear distinguisher. Furthermore, we
introduce a technique about how to find a differential-multiple linear distin-
guisher based on a differential-linear distinguisher for Feistel and SPN block
ciphers. For illustration, we mount a key recovery attack on 9-round DES by
using this extension.

The rest of the paper is structured as follows. Section 2 introduces the nota-
tions used throughout this paper and describes the method of multiple
linear cryptanalysis and enhanced differential-linear cryptanalysis. Section 3
presents our extension to the enhanced differential-linear cryptanalysis, that is,
differential-multiple linear cryptanalysis. Section 4 proposes a technique about
how to find a differential-multiple linear distinguisher based on a differential-
linear distinguisher for Feistel and SPN block ciphers. Section 5 applies our ex-
tension to describe a differential-multiple linear distinguisher on 7-round DES,
from which a key recovery attack can be mounted on 9-round DES. Finally,
Section 6 summarizes the paper.
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2 Preliminaries

The following notations are used throughout the paper.
– ⊕ denotes bitwise exclusive OR (XOR).
– · denotes bitwise inner product.
– ‖ denotes concatenation operation.
– |x| denotes the absolute value of a real number x.
– ◦ denotes the composition operation.
– 0x denotes the hexadecimal notation.

2.1 Multiple Linear Cryptanalysis

Linear cryptanalysis [13] analyzes a block cipher E by investigating a correlation
between the inputs and outputs of E and then obtains a linear approximation
(also called linear characteristic and denoted as (ΓP → ΓC) of E with following
type:

ΓP · P ⊕ ΓC · C = ΓK · K, (1)

where P, C and K denote plaintext, ciphertext, and secret key respectively,
ΓP , ΓC and ΓK stand for the mask of plaintext P , ciphertext C, and secret
key respectively.

If equation (1) holds with probability p �= 1/2, we call it an effective linear
approximation of the block cipher E, and the linear approximation can be used
to distinguish E from a random permutation since equation (1) holds with prob-
ability 1/2 for a random permutation. Let ε = p − 1/2 be the bias of a linear
approximation on E, then the greater |ε| is, the more effective the corresponding
linear approximation will be.

In 1994, Kaliski et al [10] proposed the idea of generalizing linear cryptanaly-
sis using multiple linear approximations. However, their method imposed a strict
constraint as it requires to use approximations deriving the same parity bit of
the secret key, which restricted the number and the quality of the approxima-
tions available simultaneously. As a result, an approach removing the constraint
was proposed in 2004 [7]. An important consequence of the work in [7] is that
the theoretical data complexity of the generalized multiple linear cryptanalysis
decreases comparing with the original linear cryptanalysis.

Suppose that one has access to m approximations on E of the following form:

Γ i
P · P ⊕ Γ i

C · C = Γ i
K · K (1 ≤ i ≤ m). (2)

Let εi, ci = 2εi be the bias and the imbalance of the i-th linear approximation
respectively. According to [7], the number of plaintext-ciphertext pairs required
in the multiple linear cryptanalysis is inversely proportional to the capacity of
the system (i.e., equations (2)) that is defined as:

C
2

=
m∑

i=1

c2
i = 4 ×

m∑
i=1

ε2
i . (3)
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Therefore, one can reduce the number of necessary plaintext-ciphertext pairs
for a successful key recovery attack by increasing the capacity when using the
multiple linear cryptanalytic tool.

2.2 Enhanced Differential-Linear Cryptanalysis

Let E be a block cipher and decompose the cipher into E = E1 ◦ E0, where
E0 represents the first part of the cipher and E1 represents the last part. Let
�, ∇ be the input and output differences of a differential characteristic, and
ΓP , ΓC be the input and output masks of a linear characteristic. The main
idea of differential-linear cryptanalysis on block cipher E given in [12] is to
concatenate a truncated differential � → ∇ for E0 with probability 1 with a
linear approximation ΓP → ΓC with probability 1/2 + ε (or with bias ε) for E1,
where the bits of the intermediate encryption data masked in ΓP have a zero
difference in ∇.

Suppose that a pair of plaintexts P1 and P2 satisfying the above condition,
then we have P1 ⊕ P2 = �, and ΓP · E0(P1) ⊕ ΓP · E0(P2) = 0. Moreover, for
the linear approximation ΓP → ΓC with probability 1/2 + ε for E1 (that is, the
equation ΓP ·P ⊕ΓC ·C = ΓK ·K holds with probability 1/2+ε for E1), we have
ΓP · E0(P1) ⊕ ΓC · C1 = ΓK · K and ΓP · E0(P2) ⊕ ΓC · C2 = ΓK · K both hold
with probability 1/2 + ε, where C1 and C2 are the corresponding ciphertexts of
P1 and P2 respectively (i.e., Ci = E1(E0(Pi)) ). Then we immediately obtain
the following equation:

ΓC · C1 ⊕ ΓC · C2 = 0, (4)

which holds with probability 1/2+2ε2 (Assume that ΓP ·E0(P1)⊕ΓC ·C1 = ΓK ·K
and ΓP · E0(P2) ⊕ ΓC · C2 = ΓK · K are uncorrelated). As a consequence, the
differential-linear distinguisher by checking the parity of ΓC · C1 ⊕ ΓC · C2 can
be used to distinguish E from a random permutation since equation (4) holds
with probability 1/2 for a random permutation.

The enhanced differential-linear cryptanalysis [4], proposed in 2002, is to deal
with truncated differential � → ∇ for E0 with probability p in the above
differential-linear distinguisher. In the case that the truncated differential for
E0 is satisfied (with probability p), the above analysis keeps valid, hence the
probability that equation (4) holds is p(1/2 + 2ε2). While in the case that the
truncated differential for E0 is not satisfied (with probability 1− p), we assume
that a random parity of ΓC · C1 ⊕ ΓC · C2 happens, therefore, the probabil-
ity that equation (4) holds in this case is (1 − p)/2. Then the probability that
a pair of plaintexts P1 and P2 with input difference � satisfy equation (4) is
p(1/2 + 2ε2) + (1 − p)/2 = 1/2 + 2pε2. Moreover, it was also indicated in [4]
that the technique can still work if ΓP · ∇ remains constant. If ΓP · ∇ = 0, we
can get the same analysis result as above. Similarly, for the case ΓP · ∇ = 1,
the probability that a pair of plaintexts P1 and P2 with input difference � meet
ΓC · C1 ⊕ ΓC · C2 = 1 is 1/2 + 2pε2.
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3 Differential-Multiple Linear Cryptanalysis

We now present an extension to the enhanced differential-linear cryptanalysis,
called differential-multiple linear cryptanalysis, in which we concatenate a differ-
ential characteristic with multiple linear characteristics to derive a differential-
multiple linear distinguisher.

Let E be a block cipher and decompose the cipher into E = E1 ◦ E0, where
E0 represents the first part of the cipher and E1 represents the last part. We
will use a truncated differential characteristic � → ∇ for E0 with probability p,
as well as multiple linear characteristics Γ i

P → Γ i
C (1 ≤ i ≤ m) with probability

1/2 + εi for E1 which can be expressed as Γ i
P · P ⊕ Γ i

C · C = Γ i
K · K.

We want to cover the following condition:

∇ · Γ i
P = 0 (1 ≤ i ≤ m). (5)

Then we claim that the following equations

Γ i
C · C1 ⊕ Γ i

C · C2 = 0 (1 ≤ i ≤ m) (6)

hold with probability 1/2 + 2pε2
i respectively for any pair of plaintexts P1 and

P2 with input difference �, where C1 and C2 are the corresponding ciphertexts
of P1 and P2 respectively (i.e., Ci = E1(E0(Pi))).

We will examine the above result in two cases. On the one hand, consider
the case that a pair of plaintext P1 and P2 satisfying the truncated differential
characteristic � → ∇ for E0 (with probability p). For the multiple linear char-
acteristics Γ i

P → Γ i
C (1 ≤ i ≤ m) with probability 1/2 + εi for E1, we have that

Γ i
P · E0(P1) ⊕ Γ i

C · C1 = Γ i
K · K and Γ i

P · E0(P2) ⊕ Γ i
C · C2 = Γ i

K · K hold with
probability 1/2 + εi for E1, then we can immediately obtain that

Γ i
P · E0(P1) ⊕ Γ i

P · E0(P2) ⊕ Γ i
C · C1 ⊕ Γ i

C · C2 = 0 (7)

holds with probability 1/2 + 2ε2
i for E1. Combing with the condition that P1

and P2 satisfy the truncated differential characteristic � → ∇ for E0 and the
equations (5), we have

Γ i
P · E0(P1) ⊕ Γ i

P · E0(P2) ⊕ Γ i
C · C1 ⊕ Γ i

C · C2

= Γ i
P · (E0(P1) ⊕ E0(P2)) ⊕ Γ i

C · C1 ⊕ Γ i
C · C2

= Γ i
P · ∇ ⊕ Γ i

C · C1 ⊕ Γ i
C · C2

= Γ i
C · C1 ⊕ Γ i

C · C2,

(8)

thus in this case, the linear equations (6) hold with probability p(1/2 + 2ε2
i ) for

E respectively. On the other hand, consider the case that a pair of plaintext
P1 and P2 with input difference � but not satisfying the truncated differential
characteristic � → ∇ for E0 (with probability 1 − p). In this case, we assume
that a random parity of Γ i

C · C1 ⊕ Γ i
C · C2 happens, therefore, the probability

that each equation in (6) holds is (1 − p)/2. Then the probability that a pair of
plaintexts P1 and P2 with input difference � satisfy the i-th equation in (6) for
E is p(1/2 + 2ε2

i ) + (1 − p)/2 = 1/2 + 2pε2
i .
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The above result allows us to get m linear approximations Γ i
C ·C1 ⊕Γ i

C ·C2 =
0 (1 ≤ i ≤ m) with bias 2pε2

i for the block cipher E. Then by using the technique
proposed in [7], we can construct a differential-multiple linear distinguisher for
E by checking the parities of Γ i

C · C1 ⊕ Γ i
C · C2 (1 ≤ i ≤ m). Moreover, a

key recovery attack based on the differential-multiple linear distinguisher can
be mounted on E′ = E2 ◦ E (where E2 represents the last round of the cipher
E′) using standard technique such as guessing part of the last round subkey,
if for every i (1 ≤ i ≤ m), any plaintext P and its corresponding ciphertext
C, Γ i

C · E(P ) is related to the same subset of bits in the last round subkey,
in other words, Γ i

C · E(P ) can be obtained by performing a partial decryption
of the ciphertext C using the same subset of bits in the last round subkey for
any i (1 ≤ i ≤ m). Thus with the technique introduced in [7], the key recovery
attack for the cipher E′ has the data complexity proportional to 1/C

2
, where

C
2

= 16p2
m∑

i=1

ε4
i , and the exact number of chosen plaintext pairs is a function

of the desired success rate and the number of guessed subkey bits, which can be
approximated by using the measure given in [14].

4 Deriving a Differential-Multiple Linear Distinguisher
from an Existing Differential-Linear Distinguisher

Let E be an n-round DES-like balanced Feistel block cipher and decompose the
cipher into E = E1 ◦E0, where E0 represents the first s rounds of the cipher, E1

represents the last t rounds and n = s+ t. Let the bias of a linear approximation
on the i-th round F -function of E be defined as:

(ΓXi, ΓYi) = δi = Pr{ΓXi · Xi ⊕ ΓYi · Yi = 0} − 1/2, (9)

where Xi and Yi denote the input and output of the i-th round F -function of
E, and ΓXi, ΓYi represent their masks respectively. According to the piling up
lemma in [13], the total bias εtot on n rounds is given by:

εtot = [δ1, δ2, . . . , δn] = 2n−1
n∏

i=1

δi, (10)

and the absolute value of the bias for the best linear approximation on the whole
cipher E is then defined as:

Bn = max
ΓYi=ΓXi−1⊕Γ Yi−2

(3≤i≤n)

|[(ΓX1, ΓY1), (ΓX2, ΓY2), . . . , (ΓXn, ΓYn)]|. (11)

Suppose we have already found a differential-linear distinguisher (denoted as D)
for E: D consists of a truncated differential characteristic � → ∇ for E0 with
probability p, and a linear characteristic ΓP → ΓC with bias ε for E1 such that
∇ · ΓP = 0. Then we can derive a differential-multiple linear distinguisher from
D generally as below:
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• Find all possible quartets Qi = (ΓX i
1, ΓY i

1 , ΓX i
2, ΓY i

2 ) each of which
satisfies ∇ · (ΓY i

1 ‖(ΓX i
1 ⊕ ΓY i

2 )) = 0;
• For all above quartets Qi, search for m best linear characteristics Γ i

P →
Γ i

C (1 ≤ i ≤ m) for E1, each of which is derived from the concatenation of t
one-round linear approximations ΓX i

1 → ΓY i
1 , ΓX i

2 → ΓY i
2 , . . . , ΓX i

t → ΓY i
t

satisfying ΓY i
j = ΓX i

j−1 ⊕ ΓY i
j−2 (3 ≤ j ≤ t), thus we have Γ i

P = ΓY i
1 ‖(ΓX i

1 ⊕
ΓY i

2 ) and Γ i
C = ΓY i

t ‖(ΓX i
t ⊕ ΓY i

t−1);
• Check each of the m linear characteristics and find the ones of which each

Γ i
C corresponds to the same subset of bits in the following round subkey;
• Then we can construct a differential-multiple linear distinguisher by com-

bining the truncated differential characteristic � → ∇ for E0 and the list of
linear characteristics Γ i

P → Γ i
C meeting the above condition.

The algorithm which searches for such kind of linear characteristics is a simple
modification of the branch-and-bound algorithm in [7] by setting the condition
that for each input mask Γ i

P = ΓY i
1‖(ΓX i

1 ⊕ ΓY i
2 ), ∇ · Γ i

P = 0 should be met,
and for each output mask Γ i

C = ΓY i
t ‖(ΓX i

t ⊕ΓY i
t−1), the same subset of bits in

the following round subkey will be influenced.
As for McGuffin-like unbalanced Feistel block ciphers and SPN block ciphers,

similar technique can be applied to derive a differential-multiple linear distin-
guisher from an existing differential-linear distinguisher.

5 Differential-Multiple Linear Attack on 9-Round DES

We now present our differential-multiple linear attack on 9-round DES. In our
attack, a 7-round differential-multiple linear distinguisher for the rounds from
the second round to the eighth round of DES will be constructed firstly, then 12
bits of the subkey of the first round and 6 bits of the subkey of the ninth round
can be retrieved from the attack.

The 7-round differential-multiple linear distinguisher is derived from the 7-
round differential-linear characteristic given in [4] by using the means introduced
in Section 4. The 4-round truncated differential characteristic � → ∇ (from the
second round to the fifth round of DES) used in our attack is expressed in
Fig. 1(The differential characteristic is inherited from [4], and (the right half of
∇)‖(the left half of ∇) is denoted by ∇′). Note that the left half of difference �
(i.e., 0x 00 00 02 02) influences 2 active S-boxes in the first round of DES, that
is, the S-boxes S6 and S8. Moreover, the six 3-round linear characteristics (from
the sixth round to the eighth round of DES) Γ i

P → Γ i
C (1 ≤ i ≤ 6) used in our

attack are described in Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7 respectively
(The six linear characteristics are obtained by applying the technique given in
Section 4), where ∇′ · Γ i

P = 0 and Γ i
C corresponds to the same subset of bits in

the subkey of the ninth round for any i(1 ≤ i ≤ 6). As a matter of fact, the right
half of each Γ i

C influences the same active S-box in the ninth round of DES, that
is, the S-box S1. Thus we have that the following equations

Γ i
C · C1 ⊕ Γ i

C · C2 = 0 (1 ≤ i ≤ 6) (12)
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hold with probability 1/2 + 2 × 12/64 × (25/128)2 ≈ 1/2 + 2−6.13, 1/2 + 2 ×
12/64 × (25/512)2 ≈ 1/2 + 2−10.13, 1/2 + 2 × 12/64 × (9/128)2 ≈ 1/2 + 2−9.07,
1/2 + 2 × 12/64 × (25/512)2 ≈ 1/2 + 2−10.13, 1/2 + 2 × 12/64 × (1/32)2 ≈
1/2 + 2−11.41 and 1/2 + 2 × 12/64 × (49/512)2 ≈ 1/2 + 2−8.19 respectively,
where C1 and C2 are the corresponding ciphertexts of plaintexts P1 and P2

(P1 ⊕ P2 = �) under the 7-round DES (from the second round to the eighth
round of DES) respectively. Then we get a 7-round differential-multiple linear
distinguisher for the rounds from the second round to the eighth round of DES
by checking the parities of Γ i

C · C1 ⊕ Γ i
C · C2 (1 ≤ i ≤ 6).

Following the approach given in Section 3, a key recovery attack can be
mounted on the 9-round DES by applying the above 7-round differential-multiple
linear distinguisher. Since there are 2 active S-boxes in the round before the
differential-multiple linear distinguisher (i.e., the first round of DES) and 1 ac-
tive S-box in the round after the distinguisher (i.e., the ninth round of DES), we
need to perform partial encryptions of all the plaintexts involved in the attack
for each guess of subkey bits in the first round that enters the two active S-boxes
S6 and S8, and find all the plaintext pairs which lead to the difference � at the
entrance to the second round. Then for each of these pairs and each guess of the
subkey bits in the ninth round that enters the active S-box S1, we implement
the partial decryptions of the ciphertexts corresponding to the pair and check
whether the equations (12) hold or not. Thus based on the Attack Algorithm
MK 2 in [7], we can determine the probability that the guessed subkey bits are
correct by exploiting the linear equations (12).

For the linear system consisting of the linear equations (12), the capacity
of the system is about 4 × ((2−6.13)2 + (2−10.13)2 + (2−9.07)2 + (2−10.13)2 +
(2−11.41)2 +(2−8.19)2) ≈ 2−10.14. Thus the necessary number of chosen plaintext
pairs required in our attack is proportional to 210.14. Since 18 subkey bits need
to be retrieved in our attack, according to the Table 2 given in [14], we need to
prepare 213.1 (that is, 22.96 × 210.14) chosen plaintext pairs in the attack so as
to achieve a high success probability of 89% approximately. Following gives the
detailed description of our differential-multiple linear attack on the 9-round DES.

Before the distillation and analysis phase, we will use the structures of chosen
plaintexts proposed in [4] to select plaintexts needed in our attack as below:

1. Select 214.1 plaintexts, consisting of 25.1 structures, and each structure is
generated by selecting:

• Any plaintext P0,
• The plaintexts P1, . . . , P255 which differ from P0 by all the 255 possible

(non-empty) subsets of the eight bits masked by 0x 18 22 28 28 00 00 00 00 (the
eight bits correspond to the output bits of S6 and S8),

• The plaintexts P256, . . . , P511 selected as Pi = Pi−256 ⊕ 0x 40 00 00 00
00 00 02 02.

As a matter of fact, each structure can result in 28 expected plaintext pairs
which have difference � at the entrance to the second round of DES.
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Fig. 1. The 4-round Differential Characteristic (� → ∇) with p = 12/64
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Fig. 2. The 3-round Linear Characteristic (Γ 1
P → Γ 1

C) with p = 1/2 + 25/128

Fig. 3. The 3-round Linear Characteristic (Γ 2
P → Γ 2

C) with p = 1/2 + 25/512
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Fig. 4. The 3-round Linear Characteristic (Γ 3
P → Γ 3

C) with p = 1/2 + 9/128

Fig. 5. The 3-round Linear Characteristic (Γ 4
P → Γ 4

C) with p = 1/2 + 25/512



46 Z. Liu et al.

Fig. 6. The 3-round Linear Characteristic (Γ 5
P → Γ 5

C) with p = 1/2 + 1/32

Fig. 7. The 3-round Linear Characteristic (Γ 6
P → Γ 6

C) with p = 1/2 + 49/512
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2. Request the ciphertexts of these plaintext structures (encrypted under the
unknown key K).

Distillation and analysis phase
1. Initialize a vector T = (Ti,η)1≤i≤6, 0≤η≤26−1 composed of 6 × 26 counters,

where Ti,η corresponds to the i-th linear equation in (12) and the subkey candi-
date η which represents the possible value of the 6 bits of K9 entering the active
S-box S1 in the ninth round of DES.

2. For each guessed value of the 12 bits of K1 entering the two active S-boxes
S6 and S8 in the first round of DES, do the following:

(I). Partially encrypt each plaintext and find the pairs satisfying the
difference � at the entrance to the second round of DES.

(II). For each chosen plaintext pair (P, P ′) obtained above, let C and C′

denote the corresponding ciphertexts of P and P ′ under the 9-round DES respec-
tively. Then for each possible value of η, implement the partial decryptions of C
and C′ respectively and compute the parities in terms of the linear approxima-
tions given by the equations (12). If the parity for the i-th linear approximation
is 0, increment the relevant counter Ti,η by 1, and decrement by 1 otherwise.

(III). Let ĉ = (ĉi,η)1≤i≤6, 0≤η≤26−1 denote a vector consisting of 6× 26 ele-
ments, where ĉi,η represents the estimated imbalance for the i-th linear equation
in (12) and the subkey candidate η which represents the possible value of the
6 bits of K9 entering the active S-box S1 in the ninth round of DES. Then we
have ĉi,η = Ti,η/213.1.

(IV). Compute ‖ĉ‖2 =
6∑

i=1

26−1∑
η=0

ĉ2
i,η, and for each subkey candidate η, calcu-

late ‖ĉη‖2 =
6∑

i=1

ĉ2
i,η.

(V). For a given subkey candidate η, a vector cη of theoretical imbalances
with 6 × 26 elements could be constructed as follows:

cη = (0, . . . , 0, c1, . . . , c6, 0, . . . , 0), (13)

where ci (1 ≤ i ≤ 6) corresponds to the imbalance of the i-th linear equation in
(12), and the location of the subvector (c1, . . . , c6) depends on the value of η.

(VI). For each possible subkey candidate η, the Euclidean distance between
the vector of estimated imbalances and the vector of theoretical imbalances is
measured by the following equation:

‖ĉ − cη‖2 =
6∑

i=1

(ĉi,η − ci)2 +
∑

η′ �=η

6∑
i=1

ĉ2
i,η′

=
6∑

i=1

(ĉi,η − ci)2 + (‖ĉ‖2 − ‖ĉη‖2).
(14)

(VII). Store the subkey candidate η along with the guessed bits of K1 and the
corresponding Euclidean distance ‖ĉ− cη‖2 if the distance is minimal under the
guessed bits of K1.
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3. For all possible values of the guessed bits of K1, compare the stored Eu-
clidean distances and take the subkey candidate η together with the guessed bits
of K1 as the correct key information if the corresponding Euclidean distance is
minimal.

The data complexity of the attack is 214.1 chosen plaintexts. The time complexity
of the attack is dominated mainly by the partial decryptions of all ciphertext
pairs in the step 2(II) of the distillation and analysis phase. Thus the time
complexity of the attack is about 212 × 214.1 × 26/72 ≈ 225.93 9-round DES
encryptions. The complexities of our attack together with the previously known
attacks on 9-round DES are summarized in Table 1.

Table 1. Summary of Attacks on 9-round DES

Type of Attack Success Rate
Complexity

Data Time

Differential [6] 99.97% 224 CP 232 Enc

Linear [13] 89% 221.03 KP 232.86 Enc

Differential-Linear [4] 88.8% 215.8 CP 229.2 Enc

Differential-Multiple Linear (this paper) 89% 214.1 CP 225.93 Enc

KP - Known plaintexts, CP - Chosen plaintexts.

Enc - Encryptions.

6 Conclusion

In this paper, we have presented an extension to the enhanced differential-linear
cryptanalysis, called differential-multiple linear cryptanalysis, which allows using
multiple linear characteristics to mount a multiple linear attack. Moreover, we
have introduced an approach about how to construct a differential-multiple linear
distinguisher from an existing differential-linear distinguisher for Feistel and SPN
block ciphers. For the purpose of illustration, our extension has been applied
to attack 9-round DES, resulting in the best-known key recovery attack on 9-
round DES. As a matter of fact, our work is a new attempt to concatenate
a differential characteristic with multiple linear characteristics to derive a new
cryptanalytic tool which may be helpful to analyze a variety of block ciphers
including Feistel and SPN schemes, and we hope that further research can be
done on the differential-multiple linear cryptanalysis to achieve better results in
the future.
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Abstract. SC2000 is a 128-bit block cipher with a user key of 128, 192

or 256 bits, which employs a total of 6.5 rounds if a 128-bit user key

is used. It is a CRYPTREC recommended e-government cipher. In this

paper we describe one 4.75-round differential characteristic with proba-

bility 2−126 of SC2000 and thirty 4.75-round differential characteristics

with probability 2−127. Finally, we exploit these 4.75-round differentials

to conduct a differential cryptanalysis attack on a 5-round reduced ver-

sion of SC2000 when used with a 128-bit key. The attack suggests for the

first time that the safety margin of SC2000 with a 128-bit key decreases

below one and a half rounds.

Keywords: Block cipher, SC2000, Differential cryptanalysis.

1 Introduction

The SC2000 block cipher [1, 2] has a 128-bit block size and a user key of 128,
192 or 256 bits, which employs a total of 6.5 rounds for a 128-bit user key, and
a total of 7.5 rounds for a 192 or 256-bit key. It was designed to “have high
performance on a wide range of platforms from the low-end processors used in
smart cards and mobilephones to the high-end ones that will be available in
the near future by suitably implementing it in each platform, and also to have
high security” [3]. In 2002, SC2000 became a CRYPTREC recommended e-
government cipher [4], after a thorough analysis of its security and performance.
In this paper we consider the version of SC2000 that uses 128 key bits.

The SC2000 designers [1,2] first analysed the security of SC2000 against dif-
ferential cryptanalysis [5] as well as certain other cryptanalytic methods, such
as linear cryptanalysis [6]. In 2001, Raddum and Knudsen [7] presented a dif-
ferential attack on 4.5-round SC2000, which is based on two 3.5-round differ-
ential characteristics with probabilities 2−106 and 2−107, respectively. In 2002,
by exploiting a few short differentials with large probabilities, Biham et al. [8]
presented boomerang [9] and rectangle [10] attacks on 3.5-round SC2000, follow-
ing the work described in [11]. In the same year, Yanami et al. [12] described a
� The work was done when the author was with Royal Holloway, University of London

(UK).

F. Bao et al. (Eds.): Inscrypt 2009, LNCS 6151, pp. 50–59, 2010.
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Table 1. Cryptanalytic results on SC2000

Attack Type Rounds Data T ime Source

Boomerang attack 3.5 267 ACPC 267 Memory accesses [8]

Rectangle attack 3.5 284.6 CP 284.6 Memory accesses [8]

Linear attack 4.5 2104.3 KP 283.3 Memory accesses [12]

4.5 2115.2 KP 242.3 Memory accesses [12]

Differential attack 4.5 2111 CP 2111 Encryptions [7]

4.5 2104 CP 220 Memory accesses [12]

5 2127 CP 2132 Memory accesses This paper

2-round iterative differential characteristic with probability 2−58, and obtained
a 3.5-round differential characteristic with probability 2−101 by concatenating
the 2-round differential twice and then removing the first half round; finally
they presented a differential attack on 4.5-round SC2000 with a time complexity
smaller than that of the attack of Raddum and Knudsen. Yanami et al. also
presented linear attacks on 4.5-round SC2000. These are the best previously
published cryptanalytic results on SC2000 in terms of the numbers of attacked
rounds.

In this paper we describe one 4.75-round differential characteristic with prob-
ability 2−126 and thirty 4.75-round differential characteristics with probability
2−127, building on the two-round iterative differential characteristic with prob-
ability 2−58 of Yanami et al. Finally, using these 4.75-round differential charac-
teristics we present a differential cryptanalysis attack on 5-round SC2000, faster
than an exhaustive key search. The attack is the first published attack on 5-
round SC2000. Table 1 sumarises both the previous and our new cryptanalytic
results on SC2000, where ACPC, CP and KP respectively refer to the required
numbers of adaptive chosen plaintexts and ciphertexts, chosen plaintexts, and
known plaintexts.

The remainder of this paper is organised as follows. In the next section, we give
the notation, and describe differential cryptanalysis and the SC2000 block cipher.
In Section 3, we give the 4.75-round differential characteristics. In Section 4, we
present our differential attack on 5-round SC2000. Section 5 concludes the paper.

2 Preliminaries

In this section we give the notation used throughout this paper, and then briefly
describe differential cryptanalysis and the SC2000 cipher.

2.1 Notation

In all descriptions we assume that the bits of a n-bit value are numbered from 0 to
n−1 from left to right, the most significant bit is the 0-th bit, a number without
a prefix expresses a decimal number, and a number with prefix 0x expresses a
hexadecimal number. We use the following notation.
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⊕ bitwise logical exclusive OR (XOR) operation
∧ bitwise logical AND operation
◦ functional composition. When composing functions X and Y, X ◦ Y deno-

tes the function obtained by first applying X and then applying Y

� exchange of the left and right halves of a bit string
X bitwise logical complement of a bit string X

2.2 Differential Cryptanalysis

Differential cryptanalysis [5] takes advantage of how a specific difference in a
pair of inputs of a cipher can affect a difference in the pair of outputs of the
cipher, where the pair of outputs are obtained by encrypting the pair of inputs
using the same key. The notion of difference can be defined in several ways;
the most widely discussed is with respect to the XOR operation. The difference
between the inputs is called the input difference, and the difference between
the outputs of a function is called the output difference. The combination of the
input difference and the output difference is called a differential. The probability
of a differential is defined as follows.

Definition 1. If α and β are n-bit blocks, then the probability of the differential
(α, β) for a block cipher E, written Δα → Δβ, is defined to be

PrE(Δα → Δβ) = Pr
P∈{0,1}n

(E(P ) ⊕ E(P ⊕ α) = β).

For a random function, the expected probability of a differential for any pair
(α, β) is 2−n. Therefore, if PrE(Δα → Δβ) is larger than 2−n, we can use the
differential to distinguish E from a random function, given a sufficient number
of chosen plaintext pairs.

2.3 The SC2000 Block Cipher

SC2000 takes as input a 128-bit plaintext. For simplicity, we describe the plain-
text P as four 32-bit words (d, c, b, a). The following three elementary functions
I, B and R are used to define the SC2000 round function, as shown in Fig. 1.

– The I function: the bitwise logical XOR (⊕) operation of the 128-bit input
with a 128-bit round subkey of four 32-bit words.

– The B function: a non-linear substitution, which applies the same 4 × 4 S-
box S4 32 times in parallel to the input. For a 128-bit input (d′, c′, b′, a′),
the output (d′′, c′′, b′′, a′′) is obtained in the following way: (d′′k , c′′k , b′′k, a′′

k) =
S4(d′k, c′k, b′k, a′

k), where Xk is the k-th bit of the word X (0 ≤ k ≤ 31).
– The R function: a substitution-permutation Feistel structure, which consists

of three subfunctions S, M and L. Each of the right two 32-bit words of the
input to the R function is divided into 6 groups containing 6, 5, 5, 5, 5 and 6
bits, respectively. These six groups are then passed sequentially through the
S function, consisting of two 6×6 S-boxes S6 and four 5×5 S-boxes S5, and
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⊕ ⊕ ∧

⊕ ∧
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S6

S6
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S5

S5

3232 32 32

M

M⊕

L

mask

mask

R function

I

I

128

128

R function

Fig. 1. The round function of SC2000

the linear M function that consists of 32 32-bit words (M [0], · · · , M [31]).
Given an input a, the output of the M function is defined as a0 × M [0] ⊕
· · · ⊕ a31 × M [31]. The outputs of the two M functions are then input to
the L function. For a 64-bit input (a∗, b∗) the output of the L function is
defined as ((a∗∧mask)⊕b∗, (b∗∧mask)⊕a∗), where mask is a constant (and
mask is the complement of mask). Two masks 0x55555555 and 0x33333333
are used in SC2000, in the even and odd rounds, respectively. Finally, the
output of the L function is XORed with the left two 32-bit words of the
input to the R function, respectively. We denote the L and R functions with
mask 0x55555555 as L5 and R5, respectively, and the L and R functions
with mask 0x33333333 as L3 and R3, respectively.

The round function of SC200 is made up of two I functions, one B function
and two R functions. We write Ki

j for the subkey used in the jth I function of
Round i, and write Ki

j,l for the l-th bit of Ki
j, where 0 ≤ i ≤ 6, j = 0, 1, 0 ≤

l ≤ 127. The full 6.5-round encryption procedure of SC2000 can be described as:
IK0

0
◦B ◦ IK0

1
◦R5 
� R5 ◦ IK1

0
◦B ◦ IK1

1
◦R3 
� R3 ◦ IK2

0
◦B ◦ IK2

1
◦R5 
� R5 ◦ IK3

0
◦

B◦IK3
1
◦R3 
� R3◦IK4

0
◦B◦IK4

1
◦R5 
� R5◦IK5

0
◦B◦IK5

1
◦R3 
� R3◦IK6

0
◦B◦IK6

1
.

Note that we refer to the first round as Round 0. See [2] for its key schedule.
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3 4.75-Round Differential Characteristics of SC2000

In this section we describe the 4.75-round differential characteristics.

⊕

⊕
S

M

SM

S

S

M

M

⊕

⊕
S

M

SM

S

S

M

M

⊕
SM

SM

⊕

⊕
S

M

SM

S

S

M

M

⊕
SM

SM

⊕
S

M S

M
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I ◦B ◦ I

I ◦B ◦ I

I ◦B ◦ I
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L3

L3

L3

L3

L5
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L5

(0x01124400, 0)

(0x01124400, 0, 0, 0)

(0x01124400, 0x00020000, 0, 0x01124400)

(0x01120000, 0x01124400, 0x01124400, 0)

(0, 0x01124400, 0, 0)

(0, 0)

(0x01124400, 0, 0, 0)

(0x01124400, 0, 0, 0)

(0x01124400, 0x00020000, 0, 0x01124400)

(0x01124400, 0, 0, 0x01124400)

(0, 0x01124400, 0, 0)

(0x01120000, 0x01124400, 0x01124400, 0)

2−10

1

2−16

2−16

2−16

2−16

1

1

1

1

2−15

2−11

2−11

2−15

Fig. 2. A 4.75-round differential characteristic with probability 2−126

3.1 2-Round Iterative Differential Characteristic of Yanami et al.

In 2002, Yanami et al. [12] described the results of a search over all the possible
two-round iterative differential characteristics with only one active S function in
every round for any two consecutive rounds I ◦B ◦ I ◦R5 
� R5 ◦ I ◦B ◦ I ◦R3 
�
R3. Their result is that the best two-round iterative differential characteristic
(i.e. that with the highest probability) is (α, β, β, 0) → (α, β, β, 0) with prob-

ability 2−58: (α, β, β, 0)
I◦B◦I/2−15

−→ (0, β, 0, 0)
R5��R5/2−16

−→ (β, γ, 0, β)
I◦B◦I/2−11

−→
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(β, 0, 0, 0)
R3��R3/2−16

−→ (α, β, β, 0), where α = 0x01120000, β = 0x01124400 and
γ = 0x00020000.

3.2 The 4.75-Round Differential Characteristics

As a result, we can obtain a 4-round differential characteristic (α, β, β, 0) →
(α, β, β, 0) with probability 2−116 by concatenating the above two-round iter-
ative differential twice. It is essential to try to exploit an efficient (i.e. with a
relatively high probability) differential operating over more than four rounds in
order to break more rounds of SC2000. However, this 4-round differential cannot
be extended to a differential characteristic operating over more than four rounds
with a probability larger than 2−128, as appending even a half round R3 
� R3

at the beginning will cost a probability of 2−16 and appending a B function at
the end will cost at least a probability of 2−13.

Nevertheless, observe that from the above two-round iterative differential
characteristic it follows that two-round iterative differential characteristic (β, γ, 0,
β) → (β, γ, 0, β) for any two consecutive rounds I ◦ B ◦ I ◦ R3 
� R3 ◦ I ◦
B ◦ I ◦ R5 
� R5 also holds with a probability of 2−58: (β, γ, 0, β)

I◦B◦I/2−11

−→
(β, 0, 0, 0)

R3��R3/2−16

−→ (α, β, β, 0)
I◦B◦I/2−15

−→ (0, β, 0, 0)
R5��R5/2−16

−→ (β, γ, 0, β). It
might seem counter-intuitive at first, but there is a major difference between
this and the previous iterative 2-round differential characteristic: we can ap-
pend a 0.75-round differential characteristic (β, γ, 0, β) I◦B◦I◦R3→ (β, 0, 0, 0) with
a probability of 2−11 at the end of this differential characteristic! Therefore, we
can obtain a 4.75-round differential characteristic (β, γ, 0, β) → (β, 0, 0, 0) with
probability 2−127. By changing the input difference to the difference (β, 0, 0, β)
we can get a 4.75-round differential characteristic with probability 2−126, and
this 4.75-round differential characteristic is depicted in Fig. 2. When we change
the input difference for only one of the five active S4 S-boxes to a value in
{0x1, 0x2, 0x6, 0x7, 0xD, 0xF}, we get a total of thirty 4.75-round differential
characteristics with probability 2−127. We denote by Ω the set of the 31 input
differences for the thirty-one 4.75-round differential characteristics. The differ-
ential distribution table of the S4 S-box is given in [12], and the differential
distribution table of the S5 S-box is shown in Table 2 in Appendix A. (The
characteristics do not make an active S6 S-box, so we do not give its differential
distribution table.)

In a natural way, we might try to find a better differential characteristic
on greater than four rounds by first exploiting short differentials with similar
structures and then concatenating them, for the above 4.75-round differential
obtained from the two-round iterative differential is just a special case among
these. Motivated by this idea, we perform a computer search over all the possi-
ble differentials for such one round R 
� R ◦ I ◦ B ◦ I with only one R function
active and the right two 32-bit input differences and one of the left two 32-
bit input differences being zero; moreover, in order to ensure that the resulting
differential is capable of being concatenated with itself, we also require that
the right two 32-bit output words and one of the left two 32-bit output words
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have a zero difference. Surprisingly, we find that the differential characteristics
(β, 0, 0, 0) R3��R3◦I◦B◦I−→ (0, β, 0, 0) and (0, β, 0, 0) R5��R5◦I◦B◦I−→ (β, 0, 0, 0) in the
above two-round iterative differential are the best (i.e. with the highest prob-
abilities) among those with the same forms, respectively. Our search for other
similar forms gives no better result.

4 Differential Attack on 5-Round SC2000

In this section, we present a differential cryptanalysis attack on 5 rounds of
SC2000 when used with a 128-bit key.

4.1 Preliminary Results

We first concentrate on the propagation of the output difference of the 4.75-
round differential characteristic described above through the following R3 ◦ IK6

0
operation. The output difference (β, 0, 0, 0) will definitely propagate to a differ-
ence with the form (ΔY ∧ 0x33333333, ΔY, β, 0) after the following R3 function,
where Y ∈ GF (232). Since the S5 function has a uniform differential probability
of 2−4, there are totally 216 possible values for ΔY ; we denote the set of all
the 216 possible differences (ΔY ∧ 0x33333333, ΔY, β, 0) by Γ. The difference
(ΔY ∧0x33333333, ΔY, β, 0) will be kept after the following linear IK6

0
function.

On the other hand, having known the 128-bit difference after the IK6
0

function
for a ciphertext pair, we only need to guess the 64 subkey bits (K6

0,64, · · · , K6
0,127)

of K6
0 to check whether this pair could produce the difference (β, 0, 0, 0) just

before the adjacent R3 function. For our case, as a candidate difference just
after the IK6

0
function should be with the form (ΔY ∧ 0x33333333, ΔY, β, 0), we

only need to guess the 20 subkey bits K6
0,70, · · · , K6

0,89 corresponding to the four
active S5 S-Boxes in the adjacent R3 function to determine whether a ciphertext
pair with a candidate difference could produce the output difference of the above
4.75-round differential characteristics.

4.2 Attack Procedure

By using the 4.75-round differential characteristics, we can mount a differential
attack on the following 5 rounds of SC2000: IK1

0
◦B◦IK1

1
◦R3 
� R3◦IK2

0
◦B◦IK2

1
◦

R5 
� R5 ◦IK3
0
◦B ◦IK3

1
◦R3 
� R3 ◦IK4

0
◦B ◦IK4

1
◦R5 
� R5 ◦IK5

0
◦B ◦IK5

1
◦R3 
�

R3 ◦ IK6
0

1. The attack procedure is as follows.

1. Choose 2107 structures, where a structure is defined to be a set of 220 plain-
texts with the 20 bits for the five active S4 S-boxes taking all the possible
values and the other 108 bits fixed. In a chosen-plaintext attack scenario,
obtain the corresponding ciphertexts. Keep only the plaintext pairs that
have a difference belonging to the set Ω and whose ciphertext pairs have a
difference belonging to the set Γ.

1 Strictly speaking, this is a little more than 5 rounds.
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2. Guess the 20 subkey bits (K6
0,70, · · · , K6

0,89) of K6
0 in the IK6

0
function, and

do as follows.
(a) For every remaining ciphertext pair: Partially decrypt the correspond-

ing 20 bits of the two ciphertexts through the IK6
0

function and the four
active S5 S-boxes in the adjacent R3 operation, compute the 64-bit dif-
ference just after the L3 operation in the R3 operation, then XOR it
with the left 64-bit difference of the ciphertext pair, and finally check
whether the resultant 64-bit difference is zero.

(b) Count the number of the ciphertext pairs with the 64-bit difference com-
puted in Step 2(a) being zero, and record this number for the guessed
(K6

0,70, · · · , K6
0,89). Repeat Step 2 with another guess; and go to Step 3

if all the guesses are tested.
3. For each of the top m ranking guesses for (K6

0,70, · · · , K6
0,89) according to the

numbers recorded in Step 2(b), (specific values of m will be given below),
exhaustively search for the remaining 108 key bits with two known plain-
text/ciphertext pairs. If a 128-bit key is suggested, output it as the user key
of the 5-round SC2000.

4.3 Complexity Analysis

The attack requires 2127 chosen plaintexts. Typically, encrypting chosen plain-
texts is assumed to be done by some “challenger” who holds the user key (i.e.
the challenger’s running time), and is not counted as part of the time complexity
of an attack. In Step 1, it is expected that 2107 × (220)2

2 × 31
165 ≈ 2130.96 plaintext

pairs remain after the filtering condition about Ω, and 2130.96 × 216

2128 = 218.96 ci-
phertext pairs remain after the filtering condition about Γ; and it requires about
31 × 2127 ≈ 2132 memory accesses to filter out the satisfying ciphertext pairs.
The time complexity of Step 2 is dominated by the partial decryptions, which is
approximately 2 ·220 ·218.96 · 1

4 · 1
5 ≈ 236 5-round SC2000 encryptions. Step 3 has

a time complexity of m× 2108 5-round SC2000 encryptions. The signal-to-noise
ratio for the attack is

30
31×2−127+ 1

31×2−126

2−128 ≈ 21.04. In Step 2(b), for the correct
key guess the number of the ciphertext pairs with the 64-bit difference computed
in Step 2(a) being zero is expected to be 2130.96× (30

31 ×2−127 + 1
31 ×2−126) = 16.

According to Theorem 3 of [13], we have that the success probability for the
attack is about 67% when m = 1, and is about 98.7% when m = 215.

5 Conclusions

SC2000 is a 128-bit block cipher, which is one of the CRYPTREC e-Government
Recommended Ciphers. In this paper we have described a few 4.75-round differ-
ential characteristics with a probability of larger than 2−128. Finally, using the
4.75-round differential characteristics we have presented a differential attack on
5-round SC2000 when used with 128 key bits. The presented attack is theoret-
ical, like most cryptanalytic attacks on block ciphers; and from a cryptanalytic
view it suggests for the first time that the safety margin of SC2000 with a 128-bit
key decreases within one and a half rounds.
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A The Differential Distribution Table of the S5 S-box

Table 2. The differential distribution table of the S5 S-box

input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 2 2 2 0 0 2 0 0 2 0 0 2 0 2 2 2 0 2 0 2 0 2 0 0 2 2 0 2 2

2 0 0 0 2 2 2 2 0 2 0 2 0 2 2 0 0 2 0 0 2 0 0 0 0 0 2 2 2 0 2 2 2

3 0 0 0 0 0 0 2 0 0 0 2 2 2 2 2 0 0 2 2 2 2 0 2 0 2 2 2 0 2 2 0 0

4 0 0 0 2 2 0 2 2 0 2 0 0 0 2 0 0 2 0 2 0 2 2 2 2 0 0 2 2 2 2 0 0

5 0 0 0 0 0 2 2 2 2 2 0 2 0 2 2 0 0 2 0 0 0 2 0 2 2 0 2 0 0 2 2 2

6 0 0 0 0 0 2 0 2 2 2 2 0 2 0 0 0 0 0 2 2 2 2 2 2 0 2 0 0 2 0 2 2

7 0 0 0 2 2 0 0 2 0 2 2 2 2 0 2 0 2 2 0 2 0 2 0 2 2 2 0 2 0 0 0 0

8 0 2 2 2 2 2 2 0 0 2 2 0 2 0 2 0 0 2 0 0 2 0 2 2 0 0 0 0 0 2 0 2

9 0 2 2 0 0 0 2 0 2 2 2 2 2 0 0 0 2 0 2 0 0 0 0 2 2 0 0 2 2 2 2 0

10 0 2 2 0 0 0 0 0 2 2 0 0 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 2 0 0 2 0

11 0 2 2 2 2 2 0 0 0 2 0 2 0 2 0 0 0 0 2 2 0 0 0 2 2 2 2 0 2 0 0 2

12 0 2 2 0 0 2 0 2 0 0 2 0 2 2 2 0 2 2 2 0 0 2 0 0 0 0 2 2 2 0 0 2

13 0 2 2 2 2 0 0 2 2 0 2 2 2 2 0 0 0 0 0 0 2 2 2 0 2 0 2 0 0 0 2 0

14 0 2 2 2 2 0 2 2 2 0 0 0 0 0 2 0 0 2 2 2 0 2 0 0 0 2 0 0 2 2 2 0

15 0 2 2 0 0 2 2 2 0 0 0 2 0 0 0 0 2 0 0 2 2 2 2 0 2 2 0 2 0 2 0 2

16 0 2 0 0 2 2 2 0 2 2 2 2 0 2 0 2 0 2 0 2 2 2 0 0 0 0 0 2 2 0 0 0

17 0 2 0 2 0 0 2 0 0 2 2 0 0 2 2 2 2 0 2 2 0 2 2 0 2 0 0 0 0 0 2 2

18 0 2 0 2 0 0 0 0 0 2 0 2 2 0 0 2 2 2 0 0 2 2 0 0 0 2 2 0 2 2 2 2

19 0 2 0 0 2 2 0 0 2 2 0 0 2 0 2 2 0 0 2 0 0 2 2 0 2 2 2 2 0 2 0 0

20 0 2 0 2 0 2 0 2 2 0 2 2 0 0 0 2 2 2 2 2 0 0 2 2 0 0 2 0 0 2 0 0

21 0 2 0 0 2 0 0 2 0 0 2 0 0 0 2 2 0 0 0 2 2 0 0 2 2 0 2 2 2 2 2 2

22 0 2 0 0 2 0 2 2 0 0 0 2 2 2 0 2 0 2 2 0 0 0 2 2 0 2 0 2 0 0 2 2

23 0 2 0 2 0 2 2 2 2 0 0 0 2 2 2 2 2 0 0 0 2 0 0 2 2 2 0 0 2 0 0 0

24 0 0 2 2 0 0 0 0 2 0 0 2 2 2 2 2 0 0 0 2 0 2 2 2 0 0 0 2 2 2 0 2

25 0 0 2 0 2 2 0 0 0 0 0 0 2 2 0 2 2 2 2 2 2 2 0 2 2 0 0 0 0 2 2 0

26 0 0 2 0 2 2 2 0 0 0 2 2 0 0 2 2 2 0 0 0 0 2 2 2 0 2 2 0 2 0 2 0

27 0 0 2 2 0 0 2 0 2 0 2 0 0 0 0 2 0 2 2 0 2 2 0 2 2 2 2 2 0 0 0 2

28 0 0 2 0 2 0 2 2 2 2 0 2 2 0 2 2 2 0 2 2 2 0 0 0 0 0 2 0 0 0 0 2

29 0 0 2 2 0 2 2 2 0 2 0 0 2 0 0 2 0 2 0 2 0 0 2 0 2 0 2 2 2 0 2 0

30 0 0 2 2 0 2 0 2 0 2 2 2 0 2 2 2 0 0 2 0 2 0 0 0 0 2 0 2 0 2 2 0

31 0 0 2 0 2 0 0 2 2 2 2 0 0 2 0 2 2 2 0 0 0 0 2 0 2 2 0 0 2 2 0 2



Pairing-Based Nominative Signatures with
Selective and Universal Convertibility

Wei Zhao and Dingfeng Ye

State Key Laboratory of Information Security,

Graduate University of Chinese Academy of Sciences,

Beijing 100049, P.R. China

wzh@is.ac.cn

Abstract. A nominative signature scheme allows a nominator and a

nominee jointly generate a signature in such a way that only the nomi-

nee can check the validity of the signature and further convince a third

party of the fact. In Inscrypt 2008, Zhao et al. proposed selectively and

universally convertible nominative signatures, which equips the nominee

with additional ability to publish a selective proof to convert a nomina-

tive signature into a publicly verifiable one (i.e. selective convertibility),

or issue a universal proof to make all nominative signatures with respect

to the nominator and the nominee publicly verifiable (i.e. universal con-

vertibility). Finally, they left an open problem to construct a selectively

and universally convertible nominative signature scheme from bilinear

pairings which is provably secure under the conventional assumptions.

In this paper, based on standard digital signature and undeniable signa-

ture, we propose a new selectively and universally convertible nominative

signature scheme from bilinear pairings. Our scheme is efficient which is a

one-move (i.e. non-interactive) convertible nominative signature scheme,

and possesses short signature length compared with Zhao et al.’s scheme.

Moreover, formal proofs are given to show that our scheme is secure un-

der some conventional assumptions in the random oracle model. Based

on our construction and further analysis, we think that nominative sig-

natures are just the dual form of undeniable signatures in the concept;

whether their dual property in the construction of the schemes has gen-

erality needs further investigation.

Keywords: Nominative signatures, Convertible, Selective, Universal,

Bilinear pairings, Probable security.

1 Introduction

Nominative signature (NS) is a cryptographic paradigm proposed by Kim et
al. [9] to restrict the public verifiability of standard digital signature. In a nom-
inative signature scheme, a nominator A (i.e. the signer) and a nominee B (i.e.
the verifier) jointly generate a signature σ so that the validity of σ can only
be verified by B. Furthermore, if σ is valid, B can convince a third party C of
the validity of σ using confirmation protocol; otherwise, B can convince a third

F. Bao et al. (Eds.): Inscrypt 2009, LNCS 6151, pp. 60–74, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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party C of the invalidity of σ using disavowal protocol. Compared with unde-
niable signatures [1,2], nominative signatures hand over the power of signature
verification to the verifier B, so, it can be considered as the dual concept of
undeniable signatures.

At ACISP 2004, the concept of convertible nominative signatures is intro-
duced by Huang and Wang [7]. This new concept enables the nominee to con-
vert a nominative signature into a publicly verifiable one. Moreover, Huang and
Wang proposed a concrete scheme based on Kim et al.’s nominative signature
scheme [9]. Then, Zhao et al. [17] further proposed selectively and universally
convertible nominative signatures. “Selectively convertible” means that the nom-
inee can use a selectively convert algorithm to generate a selective proof for a
NS with respect to the nominator and the nominee. Thus, anyone can check the
validity of this signature using the proof and the public keys of the nominator
and the nominee. However, the validity of other nominative signatures remain
unknown and can only be verified via the comfirmation/disavowal protocol with
the help of the nominee. While “universally convertible” refers to the case where
the nominee can use a universally convert algorithm to generate a universal
proof which can convert all NS with respect to the nominator and the nominee
into publicly verifiable ones. Thus, one can check the validity of any NS with
respect to the nominator and the nominee without the help of the nominee. In
fact, Huang-Wang’s scheme is only a selectively convertible nominative signature
scheme.

Since nominative signatures were proposed in 1996, it was not until recently
that this notion has been formalized in Liu et al.’s work [12] at ICICS 2007.
Liu et al. [12] defined the first formal security models for nominative signatures
and pointed out that the security notions for nominative signature consist of
unforgeability, invisibility, non-impersonation and non-repudiation. Moreover,
they proposed the first provably secure nominative signature scheme based on
Chaum’s undeniable signature scheme [2] and a strongly unforgeable signature
scheme. However, their construction requires multi-round communications be-
tween the nominator and the nominee for signature generation. So, Liu et al. [11]
further proposed a one-round NS schemes based on ring signature, Liu et al. [5]
further proposed a one-move NS scheme from bilinear pairings. As suggested
in [9,7,12,5], (convertible) nominative signatures have potential applications in
the scenarios where a signed message is personally private or commercially sen-
sitive, such as protecting medical/academic records, user certification system.

Let’s look at an application example of nominative signatures given in the
work [5]: protecting patient’s medical records. In this scenario, the patient acts
as the nominee and the hospital acts as the nominator. The patient wants his/her
medical records to be certified and signed by the hospital authority, and mean-
while does not want anybody (including the hospital) to disseminate his/her
medical records. To realize this target, the patient and the hospital jointly gen-
erate a nominative signature on the patient’s medical records, then the privacy of
the patient’s medical records can be protected. In some situations (for example,
the patient engages in a lawsuit with the hospital), however, the patient can use
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CNS to issue a selective proof or universal proof. Then, the judge and jury can
easily checks the validity of the patient’s medical records with these proofs, but
does not need to execute the confirmation/disavowal protocol with the patient.
In this case, the hospital cannot deny that it has signed the patient’s medical
records.
Related work. The first convertible nominative signature scheme was intro-
duced by Huang and Wang [7]. However, it was found by several work [14,4,15]
that the nominator in Huang-Wang’s scheme can verify the validity of a nomina-
tive signature and also show to anyone that the nominative signature is indeed
a valid one without the help of the nominee. Therefore, Huang-Wang’s scheme
fails to meet invisibility and non-impersonation of nominative signatures. Very
recently, Zhao et al. [17] proposed an improvement to fix the flaws of Huang-
Wang’s scheme and showed the improved scheme is provably secure under some
standard assumptions.

In addition, Liu et al. [10] proposed a selectively convertible nominative sig-
nature scheme based on ring signature and the proof protocols for verifiable
decryption of discrete logarithm [3]. In Inscrypt 2008, Zhao et al. [16] proposed a
new convertible nominative signature scheme from bilinear pairings which own
selectively and universally convertible properties. However, their construction
is provably secure under some non-standard assumptions in the random oracle
model. Finally, Zhao et al. left an open problem to construct a selectively and
universally convertible nominative signature scheme from bilinear pairings which
is provably secure under some conventional hard assumptions.
Our contributions. In this paper, we first improve the security models for con-
vertible nominative signatures proposed in [16]. Then we propose a new pairing-
based selectively and universally convertible nominative signature scheme.
Specially, our scheme adopts some techniques in the construction of undeni-
able signature scheme [6] and can be seen as a construction based on standard
digital signature and convertible undeniable signature. Compared with Zhao
er al.’s scheme [16], our scheme has short signature length, and is formally
proven to satisfy all the security properties for nominative signatures under some
conventional hard problems in the random oracle model.

Our construction seems to give a general method of constructing nominative
signatures. However, we find that our method does not have generality. Based
on our construction and further analysis, we think nominative signatures are
just the dual form of undeniable signatures in the concept. Whether there exists
a general construction of nominative signatures based on undeniable signatures
needs further investigation, which will be used to decide whether the dual prop-
erty in the construction of these two types of signatures has generality.

2 Preliminaries

Let G and G1 be cyclic groups of prime order p and g be the generator of G. A
bilinear pairing is a map e : G×G→ G1 with the following properties:
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1. Bilinear: e(ga, gb) = e(g, g)ab for all a, b ∈ Z∗
p,

2. Non-degenerate: e(g, g) �= 1G1 ,
3. Computable: e is efficiently computable.

The following problems are assumed to be hard for any polynomial time
algorithm.
Computational Diffie-Hellman (CDH) Problem. Given a tuple (g, ga, gb)
where a, b ∈R Z∗

p, find gab.

3-Decisional Diffie-Hellman (3-DDH) Problem. Given a tuple (g, ga, gb,

gc, h) where a, b, c ∈R Z∗
p and h ∈R G, decide whether h

?= gabc.

2.1 Zero-Knowledge Interactive Proof

Given a tuple (g, U, V, W ) = (g, gu, gv, gw) where u, v and w ∈ Z∗
p, if w = uv mod

p, then the tuple is a DH-tuple; otherwise, it is not a DH-tuple. Here we review
perfect zero-knowledge interactive proof (ZKIP) protocols for languages of DH-
tuple and non-DH-tuple, which were proposed by Chaum [2] and also described
by Ogata et al. [13]. In the following figures, com(s′) and decom(s′) denote the
commitment and the decommitment of s′ respectively.

Signer Verifier

a, b
R← Zp

c← c = gaV b

r
R← Zp

z1 = cgr

z2 = zu
1

z1,z2−→
a,b←−

c
?
= gaV b r→

z1
?
= ga+rV b

z2
?
= Ua+rW b

Signer Verifier

s
R← {0, 1, · · · , k}

a
R← Zp

c = gaV s

c,c′←− c′ = UaW s

find s′, s.t.

(cu/c′) = (V u/W )s′ com(s′)−→
a←

c
?
= gaV s′ decom(s′)−→

s′ ?
= s

(a) ZKIP for DH-tuple (b) ZKIP for non-DH-tuple

3 Definition and Security Models of Convertible
Nominative Signatures

In this section, we review the definition and security models of selectively and
universally convertible nominative signatures. Specially, the security models are
defined more reasonable than Zhao et al.’s work [16]. Throughout the paper, we
still denote by A, B and C the nominator, the nominee and the verifier (a third
party) respectively as in Zhao et al.’s work.
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3.1 Definition of Convertible Nominative Signatures

The convertible nominative signature scheme consists of the following algorithms
and protocols:

System Setup: a probabilistic algorithm that on input 1k where k ∈ N is a
security parameter, generates the common parameters denoted by cp.

Key Generation: a probabilistic algorithm that on input cp, generates a pub-
lic/secret key pair (pk, sk) for a user in the system.

Signing Protocol: an interactive (or non-interactive) algorithm. The common
inputs of A and B are cp and a message m. A has an additional input pkB,
indicating that A nominates B as the nominee; and B has an additional
input pkA, indicating that A is the nominator. At the end of the protocol,
either A or B outputs a convertible nominative signature σ, or ⊥ indicating
the failure of the protocol.
Signature Space : This is determined by pkA and pkB. We emphasize that
the signature space has to be specified explicitly in the convertible nomina-
tive signature scheme.

Vernominee(nominee-only verification): a deterministic algorithm that on
input cp, a message-signature pair (m, σ), a public key pkA and a secret key
skB, returns valid or invalid.

Confirmation/Disavowal Protocol: an interactive (or non-interactive) algo-
rithm between B and C. On input cp, a message-signature pair (m, σ) and
the public keys (pkA, pkB), B sets a bit μ to 1 if Vernominee(m, σ, pkA, skB)
= valid; otherwise, μ is set to 0. B first sends μ to C. If μ = 1, the Con-
firmation Protocol is carried out; otherwise, the Disavowal Protocol is
carried out. At the end of the protocol, C outputs either accept or reject
while B has no output.

Selectively Convert: a probabilistic (or deterministic) algorithm that on in-
put cp, the public/secret key pair (pkB , skB), the public key pkA and a
message-signature pair (m, σ), outputs a selective proof P m, σ

pkA,pkB
of the given

message-signature pair.
Selectively Verify: a deterministic algorithm that on input cp, the public

keys pkA and pkB, a message-signature pair (m, σ) and the selective proof
P m, σ

pkA,pkB
, outputs valid or invalid.

Universally Convert: a deterministic algorithm that on input cp, the pub-
lic/secret key pair (pkB, skB) and the public key pkA, outputs the universal
proof PpkA,pkB .

Universally Verify: a deterministic algorithm that on input cp, the public
keys pkA and pkB , any message-signature pair (m, σ) with respect to A and
B and the universal proof PpkA,pkB , outputs valid or invalid.

Correctness : Suppose that all the algorithms and protocols of a convertible
nominative signature scheme are carried out by honest entities A, B and C,
then the scheme is said to satisfy the correctness requirement if
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1. Vernominee(m, σ, pkA, skB) = valid;
2. C outputs accept at the end of the Confirmation Protocol;
3. On input (m, σ) together with a valid selective proof P m, σ

pkA,pkB
, the Selec-

tively Verify algorithm outputs valid;
4. On input any message-signature pair (m, σ) together with a universal proof

PpkA,pkB , the Universally Verify algorithm outputs valid.

The security models of convertible nominative signatures will be defined using
the game between an adversary F and a simulator S. F is allowed to access the
following oracles and submit its queries to S adaptively:

– CreateUser Oracle: On input an identity, say I, it generates a key pair (pkI , skI)
using the Key Generation algorithm and returns pkI .

– Corrupt Oracle: On input a public key pk, if pk is generated by the CreateUser
Oracle or in {pkA, pkB}, the corresponding secret key is returned; otherwise,
⊥ is returned. pk is said to be corrupted.

– Signing Oracle: On input a message m, two distinct public keys pk1 (the nom-
inator) and pk2 (the nominee) such that at least one of them is uncorrupted,
and one parameter called role ∈ {nil, nominator, nominee},
• if role is nil, S simulates a run of the Signing Protocol and then

returns a valid convertible nominative signature σ and a transcript of
the execution of the Signing Protocol.

• If role is nominator, S (as nominee with public key pk2) simulates a run
of the Signing Protocol with F (as nominator with public key pk1).

• If role is nominee, S (as nominator with public key pk1) simulates a run
of the Signing Protocol with F (as nominee with public key pk2).

– Confirmation/Disavowal Oracle: On input a message-signature pair (m, σ) and
two public keys pk1 (nominator) and pk2 (nominee). Let sk2 be the corre-
sponding secret key of pk2, the oracle responds based on whether a passive
attack or an active attack is mounted.
• In a passive attack, if Vernominee(m, σ, pk1, sk2) = valid, the oracle

returns a bit μ = 1 and a transcript of the Confirmation Protocol.
Otherwise, μ = 0 and a transcript of the Disavowal Protocol is re-
turned.

• In an active attack, if Vernominee(m, σ, pk1, sk2) = valid, the oracle
returns μ = 1 and executes the Confirmation Protocol with F (acting
as a verifier). Otherwise, the oracle returns μ = 0 and executes the
Disavowal Protocol with F .

– Selectively Convert Oracle: On input a valid message-signature pair (m, σ) and
two public keys pk1 (nominator) and pk2 (nominee), it runs the Selectively
Convert algorithm to generate the selective proof P m, σ

pk1,pk2
and returns it to

F .
– Universally Convert Oracle: On input two public keys pk1 (nominator) and

pk2 (nominee), it runs the Universally Convert algorithm to generate the
universal proof Ppk1,pk2 and returns it to F .

The security notions for convertible nominative signatures include: Unforgeability,
Invisibility, Non-impersonation and Non-repudiation.
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3.2 Unforgeability

The existential unforgeability means that an adversary should not be able to
forge a valid convertible nominative signature if at least one of the secret keys
of A and B is not known.

To discuss the unforgeability of convertible nominative signatures, the poten-
tial adversaries are divided into the following three types:

– Adversary F0 who has only the public keys of the nominator A and the
nominee B.

– Adversary FI who has the public keys of the nominator A and the nominee
B and also has B’s secret key;

– Adversary FII who has the public keys of the nominator A and the nominee
B and also has A’s secret key.

It is obvious that if a convertible nominative signature scheme is unforgeable
against FI (or FII), then it is also unforgeable against F0.

Game Unforgeability (FI): Let S be the simulator and FI be the adversary.

1. (Initialization Phase) Let k ∈ N be a security parameter. First, cp ← Sys-
temSetup (1k) is executed and key pairs (pkA, skA) and (pkB, skB) for
nominator A and nominee B, respectively, are generated using the Key
Generation algorithm. FI is invoked with inputs (1k, pkA, pkB).

2. (Attacking Phase) FI can make queries to all the oracles defined in Section
3.1.

3. (Output Phase) FI outputs a pair (m∗, σ∗).

FI wins the game if Vernominee(m∗, σ∗, pkA, skB) = valid and (1) FI has
never corrupted pkA; (2) (m∗, pkA, pkB, role) has never been queried to the Sign-
ing Oracle for any valid value of role. FI ’s advantage in this game is defined to
be Adv(FI) =Pr[FI wins ].

Game Unforgeability (FII): It is defined similarly to the above game. Specially,
the descriptions of all phases are the same as the above game, so we omit them.
When all phases are over,

FII wins the game if Vernominee(m∗, σ∗, pkA, skB) = valid and (1) FII

has never corrupted pkB; (2) (m∗, pkA, pkB, role) has never been queried to the
Signing Oracle for any valid value of role. FII ’s advantage in this game is defined
to be Adv(FII) =Pr[FII wins ].

Definition 1. A convertible nominative signature scheme is said to be existen-
tial unforgeable if no probabilistic polynomial time (PPT) adversaries FI and
FII have a non-negligible advantage in the above games.

3.3 Invisibility

This property essentially means that it is impossible for an adversary (even the
nominator A) to determine whether a given message-signature pair (m, σ) is valid
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without the help of the nominee, the selective proof P m, σ
pkA,pkB

or the universal
proof PpkA,pkB .

Game Invisibility: Let D′ be the simulator and D be the distinguisher.

1. (Initialization Phase) The initialization phase is the same as that of Game
Unforgeability.

2. (Preparation Phase) At the beginning of this phase, D can adaptively access
to all the oracles defined in Section 3.1. When all queries finish, D submits
the challenge (m∗, pkA, pkB, role) to the Signing Oracle with the restrictions
that:

(a) pkB has not been submitted to the Corrupt Oracle;
(b) (m∗, pkA, pkB, role) has not been submitted to the Signing Oracle;
(c) (pkA, pkB) has not been submitted to the Universally Convert Oracle.

Then D′ (acting as nominee) will carry out a run of the Signing Pro-
tocol with D (acting as nominator). Let σvalid be the convertible nomi-
native signature generated by D′ at the end of the protocol. Note that
Vernominee(m∗, σvalid, pkA, skB) = valid.

The challenge signature σ∗ is then generated based on the outcome of
a random coin toss b. If b = 1, D′ sets σ∗ = σvalid. If b = 0, σ∗ is chosen
uniformly at random from the signature space of the convertible nominative
signature scheme with respect to pkA and pkB. Then the challenge signature
σ∗ is returned to D .

After receiving the challenge signature σ∗, D can still access all the oracles
adaptively except that:
(a) pkB cannot be submitted to the Corrupt Oracle;
(b) (m∗, pkA, pkB, role) cannot be submitted to the Signing Oracle;
(c) (m∗, σ∗, pkA, pkB) cannot be submitted to the Confirmation/Disavowal

Oracle and Selectively Convert Oracle;
(d) (pkA, pkB) can not be submitted to the Universally Convert Oracle.

3. (Guessing Phase) Finally, D outputs a guess b′.

D wins the game if b′ = b. D’s advantage in this game is defined to be Adv(D)=
|Pr[b′ = b]− 1

2 |.
Definition 2. A convertible nominative signature scheme is said to have the
property of invisibility if no PPT distinguisher D has a non-negligible advantage
in the above game.

3.4 Non-impersonation

Non-impersonation means that the validity of a nominative signature can only
be determined by the help of the nominee, someone else (even the nominator A)
should not be able to show the validity of the nominative signature to a third
party. Concretely, this notion requires that:
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1. Only with the knowledge of the public key of the nominee B, it should be
difficult for an impersonator II to execute the Confirmation/Disavowal
Protocol.

2. Only with the knowledge of the public key of the nominee B, it should
be difficult for an impersonator III to generate the selective proof for a
message-signature pair.

3. Only with the knowledge of the public key of the nominee B, it should be
difficult for an impersonator IIII to generate the universal proof.

Game Impersonation of Confirmation/Disavowal Protocol: Let S be the sim-
ulator and II be the impersonator.

1. (Initialization Phase) The initialization phase is the same as that of Game
Unforgeability.

2. (Preparation Phase) In this phase, II is permitted to access all the oracles
defined in Section 3.1. At some point, II prepares a triple (m∗, σ∗, μ) where
m∗ is some message, σ∗ is a convertible nominative signature and μ is a bit.

3. (Attacking Phase) If μ = 1, II (as nominee) executes the Confirmation
Protocol with S (as a verifier) on common inputs (m∗, σ∗, pkA, pkB). If
μ = 0, II executes the Disavowal Protocol with S on the same inputs.

II wins the game if S acting as the verifier outputs accept while II has the
following restriction: II has never submitted pkB to the Corrupt Oracle. II ’s
advantage in this game is defined to be Adv(II ) =Pr[II wins ].

Game Impersonation of Selectively Convert Algorithm: Let S be the simulator
and III be the impersonator.

1. (Initialization Phase) The initialization phase is the same as that of Game
Unforgeability.

2. (Preparation Phase) III is invoked on input (1k, pkA, pkB) and permitted
to issue queries to all the oracles defined in Section 3.1. At some point,
III submits the challenge (m∗, pkA, pkB, role) to the Signing Oracle. Then
S (acting as nominee) will carry out a run of the Signing Protocol with
III (acting as nominator) and return the signature σ∗ generated by S at the
end of the protocol to III .

3. (Impersonation Phase) III outputs a valid selective proof P m∗,σ∗
pkA,pkB

for a
message-signature pair (m∗, σ∗).

III wins the game if P m∗,σ∗
pkA,pkB

satisfies the Selectively Verify algorithm but:
(1) III has never submitted pkB to the Corrupt Oracle; (2) (m∗, σ∗, pkA, pkB)
has never queries the Selectively Convert Oracle. III ’s advantage in this game is
defined to be Adv(III ) =Pr[III wins ].

Game Impersonation of Universally Convert Algorithm: Let S be the simulator
and IIII be the impersonator.

1. (Initialization Phase) The initialization phase is the same as that of Game
Unforgeability.
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2. (Preparation Phase) IIII is invoked on input (1k, pkA, pkB) and permitted to
issue queries to all the oracles defined in Section 3.1.

3. (Impersonation Phase) IIII outputs a valid universal proof PpkA,pkB .

IIII wins the game if PpkA,pkB satisfies the Universally Verify algorithm
but: (1) pkB has never been submitted to the Corrupt Oracle; (2) (pk1, pkB)
has never been queried to the Universally Convert Oracle where pk1 is gener-
ated by the CreateUser Oracle. IIII ’s advantage in this game is defined to be
Adv(IIII) =Pr[IIII wins ].

Definition 3. A convertible nominative signature scheme is said to be secure
against impersonation if no PPT impersonators II , III and IIII have a non-
negligible advantage in the above games.

3.5 Non-repudiation

Non-repudiation requires that the nominee B cannot convince a verifier C that
a valid (invalid) convertible nominative signature is invalid (valid).
Game Non-repudiation: Let S be the simulator and B be the cheating nominee.

1. (Initialization Phase) The initialization phase is the same as that of Game
Unforgeability.

2. (Preparation Phase) B prepares (m∗, σ∗, μ) where m∗ is some message and σ∗

is a nomnative signature. μ = 1 if Vernominee(m∗, σ∗, pkA, skB) = valid ;
otherwise, μ = 0.

3. (Repudiation Phase) If μ = 1, B executes the Disavowal Protocol with
S (acting as a verifier) on (m∗, σ∗, pkA, pkB) but the first bit sent to S is 0.
If μ = 0, B executes the Confirmation Protocol with S but the first bit
sent to S is 1.

B wins the game if S acting as the verifier outputs accept. B’s advantage in this
game is defined to be Adv(B) =Pr[Bwins ].

Definition 4. A convertible nominator signature scheme is said to be secure
against repudiation by nominee if no PPT cheating nominee B has a non-
negligible advantage in the above game.

4 Proposed Scheme and Security Analysis

Our selectively and universally convertible nominative signature scheme adopts
some construction technique of undeniable signature scheme [6]. It consists of
the following algorithms and protocols:

System Setup: Given the system parameter k ∈ N, the algorithm first gener-
ates two cyclic groups G, G1 of prime order p ≥ 2k, a generator g of G and
a bilinear map e : G×G→ G1 with properties described in Section 2. Then
it generates two different hash functions H1, H2 : {0, 1}∗ → G. The common
parameters are cp = (p, G, G1, e, g, H1, H2).
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Key Generation: On input cp, the algorithm generates the secret key skA =
(xA, yA) where xA, yA ∈R Z∗

p and public key pkA = (XA, YA) = (gxA , gyA)
for nominator A. Similarly, let (skB, pkB) be the public/secret key pair of
nominee B.

Signing Protocol: On input a message m ∈ {0, 1}∗, the convertible nomina-
tive signature is generated by carrying out the following protocol between
nominator A and nominee B.
1. A first computes the value s = H1(m‖pkA‖pkB)xA and sends (m, s) to

B.
2. B checks

e(s, g) ?= e(H1(m‖pkA‖pkB), XA)

If the above equation is incorrect, B outputs ⊥ for failure; otherwise, B
computes the convertible nominative signature

σ = sxByB ·H2(m‖pkA‖pkB)yB

Signature Space : We say σ is a convertible nominative signature if σ ∈ G.
Vernominee: On input (m, σ, pkA, pkB), the nominee B checks

e(σ, g) ?= e(H1(m‖pkA‖pkB), XA)xByB · e(H2(m‖pkA‖pkB), YB)

If the above equation is correct, outputs valid; otherwise, outputs invalid.
Confirmation/Disavowal Protocol: On input (m, σ, pkA, pkB),

1. Nominee B first runs Vernominee(m, σ, pkA, skB). If the output is
valid, B sends μ = 1 and t = XxB

A to a verifier C. Otherwise, B sends
μ = 0 to C.

2. For the case μ = 1, C checks e(t, g) ?= e(XA, XB). If the above equation
is correct, C sends ν = 1 to B; otherwise, aborts. For another case μ = 0,
C sends ν = 0 to B.

3. Upon receiving ν, if ν = 1, B proves to C that the following tuple

(e(g, g), e(YB, g), e(H1(m‖pkA‖pkB), t), e(σ, g)/e(H2(m‖pkA‖pkB), YB))

is a DH-tuple using ZKIP protocol for DH-tuple described in Section 2.1;
otherwise, B proves to C that the above tuple is a non-DH-tuple using
ZKIP protocol for non-DH-tuple described in Section 2.1.

Selectively Convert: B computes the selective proof P m, σ
pkA,pkB

of message-
signature pair (m, σ) where

P m, σ
pkA,pkB

= (H1(m‖pkA‖pkB)yB , XxB

A )

Selectively Verify: On input a message-signature pair (m, σ) with respective
to A and B, and the selective proof P m, σ

pkA,pkB
= (PSC

1 , PSC
2 ),

1. anyone can verify e(PSC
1 , g) ?= e(H1(m‖pkA‖pkB), YB) and e(PSC

2 , g)
?= e(XA, XB). If both equalities are satisfied, continue to the next step.
Otherwise, P m, σ

pkA,pkB
is invalid.
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2. verify e(σ, g) ?= e(PSC
1 , PSC

2 ) · e(H2(m‖pkA‖pkB), YB). If this equality
is satisfied as well, one can accept σ as a valid nominative signature.
Otherwise, it is invalid.

Universally Convert: B computes the universal proof

PpkA,pkB = (XxB

A , XxByB

A )

Universally Verify: For any message-signature pair (m, σ) with respect to A
and B and the universal proof PpkA,pkB = (PUC

1 , PUC
2 ),

1. anyone can verify e(PUC
1 , g) ?= e(XA, XB) and e(PUC

2 , g) ?= e(PUC
1 , YB).

If both equalities are satisfied, continue to the next step. Otherwise,
PpkA,pkB is invalid.

2. verify e(σ, g) ?= e(H1(m‖pkA‖pkB), PUC
2 )·e(H2(m‖pkA‖pkB, YB). If this

equality is satisfied as well, one can accept σ as a valid nominative
signature. Otherwise, it is invalid.

Remark: In Zhao et al.’s work [16], the authors proposed a universally and
selectively convertible nominative signature scheme by using WI protocols pro-
posed in Kurosawa and Heng’s work [8] as the confirmation/disavowal protocol.
However, Ogata et al. [13] stated that Kurosawa et al.’s 3-move undeniable sig-
nature scheme which used WI protocols as the confirmation/disavowal protocol
does not satisfy non-impersonation property against active attack. Thus, Zhao et
al.’s scheme also does not satisfy non-impersonation of confirmation/disavowal
protocol against active attack. Therefore, we in our scheme employ Chaum’s per-
fect zero-knowledge interactive protocol described in Section 2.1 as the building
block. As stated in Ogata et al.’s work, Chaum’s ZKIP is secure against active
attack.

4.1 Discussion

Our scheme can be seen as a construction based on two building blocks: standard
digital signature and undeniable signature. It just needs one-round communication
between the nominator and the nominee to generate nominative signature, that
is, the nominator first computes the standard digital signature s on m‖pkA‖pkB

and then the nominee computes the“undeniable signature” [6] on s (Although our
construction has similar form with Zhao et al.’s scheme [16], the construction ideas
of these two schemes are different and our scheme has shorter signature length).
However, we find that our method does not have generality, that is, our method
can not be extended to a generic construction of nominative signatures.

Note that in the work [12], Liu et al. proposed a method to construct nomi-
native signature based on undeniable signature and strongly unforgeable stan-
dard digital signature, and stated that their method can be generalized to
a generic construction of nominative signatures. However, their construction
needs multi-round communications between the nominator and the nominee
and does not satisfy the invisibility (Note that given a challenge (m∗, σ∗ =
(σundeni, σstandard)) in Liu et al.’s nominative signature scheme, an adversary
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with the secret key of nominator can generate another nominative signature
σ′ = (σundeni, (σstandard)′) of m∗. Based on the security model for invisibility
of nominative signatures defined in Liu et al.’s work , the adversary can decide
whether (m∗, σ∗) is valid according to whether (m∗, σ′) is valid. Therefore, the
adversary can always break the invisibility of Liu et al.’s scheme).

From above discussions, we can see that although undeniable signatures is
the dual concept of nominative signatures, it is not trivial to construct nomina-
tive signatures based on undeniable signatures. Therefore, whether there exists
a generic construction of nominative signatures which is based on undeniable
signatures and just needs one-round communications (or not) between the nom-
inator and the nominee to generate nominative signature deserves further inves-
tigation. The answer to this problem will decide whether the dual property in the
construction of nominative signatures and undeniable signatures has generality.

4.2 Security Analysis

In this section, we give a formal security analysis of our proposed scheme in the
random oracle model. Due to page limitation, we leave all the security proofs in
the full version of this paper.

Theorem 1 (Unforgeability). The proposed convertible nominative signature
scheme is existential unforgeable if CDH problem is hard.

Theorem 2 (Invisibility). The proposed convertible nominative signature
scheme has the property of invisibility if 3-DDH problem is hard.

Theorem 3 (Non-impersonation). The proposed convertible nominative sig-
nature is secure against impersonation if CDH problem is hard.

Theorem 4 (Non-repudiation). The proposed convertible nominative signa-
ture scheme is secure against repudiation by nominee.

4.3 Efficiency Analysis and Comparison

Now we make an efficiency analysis of our scheme and a comparison between
our scheme and Zhao et al’s scheme [16].

Since the introduction of nominative signatures, there are only several secure
scheme [10,11,12,5,16]. Among these schemes, only Zhao et al’s scheme [16] is
constructed from bilinear pairings and owns both selectively and universally
convertible property. Their scheme requires that the nominator computes 1 hash
mapping to G and 1 exponentiation in G, and the nominee computes 2 pairings,
2 exponentiations in G and 1 multiplication in Z∗

p in the signature generation.
In our scheme, to generate a signature, the nominator needs to compute 1 hash
mapping to G and 1 exponentiation in G, while the nominee needs to compute 2
pairings, 1 multiplication in Z∗

p, 1 hash mapping to G, 2 exponentiation in G and
1 multiplication in G. In addition, the nominator and nominee in Zhao et al’s
scheme needs one pair of keys respectively, and the nominator and nominee in
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Table 1. Comparison of pairing-based schemes

Scheme Ls Unforgeability Invisibility Non-impersonation Nkey

Scheme in [16]

2|G| WCDH-I WDDH WDLOG 1

WCDH-II WCDH-III

WCDH-IV

Our Scheme |G| CDH 3-DDH CDH 2

Notations. | · | means that the bit length of an element in the group G, Ls denotes

the signature length, and Nkey means the number of key pair employed by the user in

the system.

our scheme needs double key pairs respectively. Hence, compared with Zhao et
al’s scheme, our scheme is slightly less efficient. However, our scheme is provably
secure under some conventional assumptions and enjoys short signature length
which is better than Zhao et al’s scheme. We give the detailed comparison in
the Table 1.

In addition, the nominee in our scheme can precompute some pairings, such
as e(H1(m‖pkA‖pkB), XA), e(H2(m‖pkA‖pkB), YB), e(H1(m‖pkA‖pkB), XxB

A ),

e(g, g) and e(YB , g) to execute the Signing Protocol, the Vernominee al-
gorithm and the Confirmation/Disavowal Protocol efficiently; the verifier
can percompute e(H1(m‖pkA‖pkB), YB), e(H2(m‖pkA‖pkB), YB), e(XA, XB),
e(g, g) and e(YB , g) to reduce the computation overhead when he verifies a nom-
inative signature with respect to A and B.

5 Conclusion

In this paper, we proposed a selectively and universally convertible nominative
signatures from bilinear pairings which is provably secure under several con-
ventional assumptions in the random oracle model. The signature length of our
scheme is short; meanwhile, our scheme is efficient which requires only one-move
message transfer from the nominator to the nominee for signature generation.
Based on our construction and further discussion, we think the nominative signa-
tures are just the dual form of undeniable signatures in the concept; whether the
dual property in the construction of these two types of signatures has generality
needs further investigation.

Acknowledgements. The authors wish to thank the anonymous reviewers for
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Abstract. Certificateless cryptography introduced by Al-Riyami and

Paterson eliminates the key escrow problem inherent in identity based

cryptosystems. Even though building practical identity based signcryp-

tion schemes without bilinear pairing are considered to be almost impos-

sible, it will be interesting to explore possibilities of constructing such

systems in other settings like certificateless cryptography. Often for prac-

tical systems, bilinear pairings are considered to induce computational

overhead. Signcryption is a powerful primitive that offers both confi-

dentiality and authenticity to noteworthy messages. Though some prior

attempts were made for designing certificateless signcryption schemes,

almost all the known ones have security weaknesses. Specifically, in this

paper we demonstrate the security weakness of the schemes in [2], [1] and

[6]. We also present the first provably secure certificateless signcryption

scheme without bilinear pairing and prove it in the random oracle model.

Keywords: Certificateless Signcryption, Provable Security, Pairing-free

Cryptosystem, Random Oracle model, Cryptanalysis.

1 Introduction

To the best of our knowledge, there exist four ([2], [1], [6] and [3]) certificateless
signcryption schemes (CLSC) in the literature. Among these four, [2], [1] and
[6] are pairing based and [3] uses pairing for public key verification alone. In
this paper, we show the security weaknesses in [2], [1] and [6]. We also present a
provably secure certificateless signcryption scheme without pairing. Our scheme
is the first provably secure certificateless signcryption scheme without pairing.
The newly proposed CLSC scheme uses a key construct similar to that of [5] but
uses a completely different approach for encryption. Any signcryption scheme
is strongly secure if attacks by the insider is considered. Our security model
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considers insider security and we have proved the security of our scheme in the
random oracle model. It is to be noted that signcryption schemes are not directly
obtained by combining a digital signature scheme and an encryption schemes.
The security requirements for signcryption schemes are entirely different from
encryption and digital signatures. The notion of insider security comes into pic-
ture when we talk about signcryption. This is because the private information of
the sender and the public information of the receiver is involved in signcryption
schemes. Thus, the certificateless signcryption scheme presented here is not a
trivial extension of a signature scheme clubbed with an encryption scheme.

2 Preliminaries

We refer to [4] for a brief review of Discrete Logarithm Problem (DLP) and
Computational Diffie-Hellman Problem (CDHP). We refer [2] for the framework
of certificateless signcryption scheme.

2.1 Security Model of CLSC

The confidentiality proof of any CLSC scheme can be viewed as an interactive
game, namely IND-CLSC-CCA2 between a challenger C and an adversary A.
Similarly, the unforgeability proof of CLSC can be viewed as an interactive game
namely EUF-CLSC-CMA, between a challenger C and a forger F . In both the
IND-CLSC-CCA2 and EUF-CLSC-CMA games, A and F are given access to
some or all of the following six oracles (depending on their type). These oracles
are simulated by C:
– Partial Private Key Extract of IDA: C responds by returning the partial

private key dA of the user UA to A.
– Request Secret Value of IDA: If UA’s public key has not been replaced

by A then C returns the user secret value yA to A. If UA’s public key was
replaced by A, then C returns nothing to A.

– Request Public Key of IDA: C responds by returning the current public
key PKA of user UA to A. (Because public keys are viable to change, C
returns the current public key it has stored.)

– Replace Public Key of IDA: The public key PKA for a user UA can
be replaced with any value PK ′

A provided by A. On getting PK ′
A from A,

C replaces the public key PKA of IDA with PK ′
A. At any given time the

current value of the user’s public key is used by C in its computations or
responses.

– Signcryption of message m with IDA as sender and IDB as receiver:
C responds with the signcryption c on message m with IDA as the sender
and IDB as the receiver. Note that even if C does not know the sender’s
private key, C should be able to produce a valid ciphertext and this is a
strong property of the security model also C uses the current public keys of
IDA as well as IDB to perform the signcryption.
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– Unsigncryption of ciphertext c with IDA as sender and IDB as
receiver: An unsigncryption query for ciphertext c and user UA as the
sender and UB as the receiver is answered by C, by first decrypting c and
then returning the corresponding message m. C should be able to properly
unsigncrypt ciphertexts, even for those users whose public keys have been
replaced or if the receiver private key is not known to C. This is a strong
requirement of the security model. (Note that, C may not know the correct
private key of the user whose public key is replaced. Still C can unsigncypt
c by getting the corresponding secret value from A.)

For any certificateless signcryption scheme two types of attacks are possible.
They are referred as Type-I and Type-II attacks in the literature. Under each
type of attack, it is required to establish the confidentiality and unforgeability
of the scheme. The attack by a third party, (i.e. anyone except the legitimate
receiver or the KGC) who is trying to break the security of the system is modeled
by Type-I attack.
Summary of Constraints: In summary, the security model distinguishes the
two types of adversaries (resp. forgers), namely Type-I and Type-II with the
following constraints.

– Type-I adversary AI (resp. forger FI) is allowed to replace the public keys
of users at will but does not have access to the master private key msk.

– Type-II adversaryAII (resp. forger FII) is equipped with the master private
key msk but is not allowed to replace public keys of any of the users.

Confidentiality: The security model to prove the confidentiality of a CLSC
scheme with respect to Type-I adversary AI (IND-CLSC-CCA2-I) and Type-II
adversary AII (IND-CLSC-CCA2-II) are given below:
IND-CLSC-CCA2-I game for Type-I Adversary: A certificateless
signcryption (CLSC) scheme is IND-CLSC-CCA2-I secure if no probabilistic
polynomial time adversary AI has non-negligible advantage in winning the IND-
CLSC-CCA2-I game. AI is given access to all the six oracles defined above. It is
to be noted that AI does not have access to the master private key msk. IND-
CLSC-CCA2-I game played between the challenger C and the adversary AI is
defined below:
Setup: The challenger C runs the setup algorithm to generate the system public
parameters params and the master private key msk. C gives params to AI while
keeping msk secret. AI interacts with C in two phases:
Phase I: AI is given access to all the six oracles described above. AI adaptively
queries (adaptively means the current query may depend on the responses to the
previous queries) the oracles consistent with the conditions for Type-I adversary
(Described in the Summary of Constraints above).
Challenge: AI generates two messages m0, m1 of equal length, an arbitrary
sender identity IDA and a receiver identity IDB, which satisfies the following
constraints.
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– AI can access the full private key of the sender IDA.
– AI has not queried the Partial Private Key corresponding to the receiver

IDB.

AI sends m0, m1, IDA and IDB to C. C randomly chooses a bit b ∈R {0, 1} and
computes a signcryption c∗ with IDA as the sender and IDB as the receiver.
Now, c∗ is sent to AI as the challenge signcryption.
Phase II: AI adaptively queries the oracles consistent with the constraints that
AI should not query the partial private key of IDB and AI should not query
for the Unsigncryption on c∗ with IDA as sender and IDB as receiver.
Guess: AI outputs a bit b′ at the end of the game. AI wins the IND-CLSC-
CCA2-I game if b′ = b. The advantage of AI is defined as:

AdvIND−CLSC−CCA2−I
AI

= |2Pr [b = b′]− 1|
IND-CLSC-CCA2-II game for Type-II Adversary: A certificateless sign-
cryption scheme (CLSC) is IND-CLSC-CCA2-II secure if no probabilistic poly-
nomial time adversary AII has non-negligible advantage in winning the IND-
CLSC-CCA2-II game. AII is given access to all the six oracles. The IND-CLSC-
CCA2-II game played between C and the adversary AII is defined below:
Setup: The challenger C runs the setup algorithm to generate the system public
parameters params and the master private key msk. C gives both params and
msk to AII . C interacts with AII in two phases:
Phase I: This phase is similar to Type-I confidentiality game IND-CLSC-
CCA2-I.
Challenge: Same as Type-I but with the restrictions that:

1. AII should not have queried the private key of the receiver IDB in Phase I.
2. AII has not replaced public key of IDB in Phase I.

Phase II: Same as Type-I but with the restrictions that,

– AII cannot extract the private key of IDB.
– AII should not replace the receiver IDB’s public key.
– Unsigncryption query on 〈c∗, IDA, IDB〉 is not allowed.

Guess: Same as Type-I confidentiality game IND-CLSC-CCA2-I.
The advantage of AII is defined as:

AdvIND−CLSC−CCA2−II
AII

= |2Pr [b = b′]− 1|

Unforgeability: The security model to prove the unforgeability of a CLSC
scheme with respect to Type-I forger FI (EUF-CLSC-CMA-I) and Type-II forger
FII (EUF-CLSC-CMA-II) are given below:
EUF-CLSC-CMA-I game for Type-I Forger: A certificateless signcryption
scheme CLSC is Type-I, EUF-CLSC-CMA secure if no probabilistic polynomial-
time forger FI has non-negligible advantage in winning the EUF-CLSC-CMA-I
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game. A Type-I forger FI is given access to all the six oracles defined above.
The EUF-CLSC-CMA-I game played between the challenger C and the forger
FI is defined below:
Setup: C runs the setup algorithm to generate the master private key msk and
public parameters params. C gives params to FI while keeping msk secret.
Training Phase: FI is given access to all the six oracles. FI adaptively queries
the oracles consistent with the constraints for Type-I forger (Stated in the Sum-
mary of Constraints).
Forgery: FI outputs a signcryption c∗ and a sender identity IDA, for which FI

has not queried the partial private key. FI wins the EUF-CLSC-CMA-I game if
c∗ is a valid signcryption with IDA as the sender and IDB as the receiver, also
c∗ was not the output of any signcrypt query on the corresponding message m
with IDA as the sender and IDB as the receiver.
EUF-CLSC-CMA-II game for Type-II Forger: A certificateless signcryp-
tion scheme is Type-II, EUF-CLSC-CMA secure if no probabilistic polynomial-
time forger FII has non-negligible advantage in winning the EUF-CLSC-CMA-II
game. A Type-II forger is given access to all the six oracles. EUF-CLSC-CMA-II
game played between the challenger C and the forger FII is same as EUF-
CLSC-CMA-I with the constraints for Type-II Forger (Stated in the Summary
of Constraints).

3 Certificateless Signcryption Scheme of Barbosa et al.

In this section, we give the review and attack of the certificateless signcryption
scheme by Barbosa et al. [2].

3.1 Review of Barbosa et al. Certificateless Signcryption Scheme

This scheme uses a symmetric bilinear group description Γ which is defined
with two cyclic groups G1 and G2 of same order q, a random generator P ∈ G1

and an admissible pairing ê : G1 × G1 → G2. The four cryptographic hash
functions used in the scheme are : H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → {0, 1}n,
H3 : {0, 1}∗ → G1, H4 : {0, 1}∗ → G1. Here, n is the maximum number of bits
in a message. The master secret key s is selected uniformly at random from Zp,
and the master public key Ppub = sP . The public parameters of the system are
params= 〈Γ, P, Ppub, q, n, G1, G2, ê, H1, H2, H3, H4〉.

The partial private key extraction algorithm on input (ID, s) returns D =
sH1(ID) = sQ. The user key generation algorithm returns a random element x ∈
Zp as the secret value, and PK = xP as the public key of user with identity ID.
The full private key of user with identity ID is S = (x, D). Message, ciphertext
and randomness spaces are {0, 1}κ, G1 × {0, 1}κ ×G1 and Zp respectively.
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Signcrypt(m, SS = (xS , DS), IDS , PKS, IDR, PKR, Ppub)

– Choose r ∈ Zp, compute U = rP , T = ê(Ppub, QR)r, h = H2(U, T,
rPKR, IDR, PKR), V = m ⊕ h, H = H3(U, V, IDS , PKS) and H ′ =
H4(U, V, IDS , PKS).

– Compute W = DS + rH + xSH ′ and set c = 〈U, V, W 〉
– Return the signcryption c of message m from IDS to IDR.

Unsigncrypt(c, SR = (xR, DR), IDR, PKR, IDS , PKS, Ppub)

– The ciphertext c is of the form 〈U, V, W 〉.
– Compute H = H3(U, V, IDS , PKS) and H ′ = H4(U, V, IDS, PKS)
– If the check e(Ppub, QS)e(U, H)e(PKS, H ′) ?=e(P, W ) fails, return ′′Invalid”.
– Compute T = ê(DR, U), h = H2(U, T, xRU, IDR, PKR) and retrieve m =

V ⊕ h.
– Return the message m.

Note: The certificateless signcryption scheme uses an Encrypt-then-Sign ap-
proach. A common randomness is shared between the signature and encryption
components in the scheme to bind them together.

3.2 Attack on Barbosa et al. Certificateless Signcryption Scheme

The scheme proposed by Barbosa et al. in [2] is existentially forgeable. The
scheme uses the Encrypt-then-Sign approach with public verifiability of cipher-
text. The intuition behind the attack: for any signcryption scheme following the
Encrypt-then-Sign approach, the identity of the sender should be bound to the
encryption and the identity of the receiver should be bound to the signature.
In [2], the authors have achieved this binding by using a common randomness
for encryption and signature independently but they failed to bind the receiver
to the signature. This led to the attack on existential unforgeability of [2]. The
attack is shown below.

– During the unforgeability game (Both Type-I and type-II), the forger re-
quests a signcryption on a message m from ID∗

S to a arbitrary user with
identity IDA.

– Let the signcryption of m from ID∗
S to IDA be c = (U, V, W ).

– Now, the forger submits c∗ = (U, V, W ) as a signcryption from user ID∗
S

to ID∗
R, where ID∗

S is the target sender identity for which the forger is not
allowed to know the private key (partial private key for Type-I and user
private key for Type-II forgers respectively) and ID∗

R is the new receiver
identity. Note that c∗ is a valid signcryption of some random message m∗ =
m⊕h⊕h∗ where h∗ = H2(U, T ∗, x∗

RU, ID∗
R, PK∗

R) and T ∗ = ê(D∗
R, U). Here

h = H2(U, T, xAU, IDA, PKA) is the key used for encrypting the message m
from ID∗

S to IDA during signcryption.
– The signature W will pass the verification because none of the components

of the H and H ′ are altered. The correctness of the signcryption is straight
forward as follows.

e(Ppub, QS)e(U, H)e(PKS, H ′) = e(P, W )
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where H = H3(U, V, IDS, PKS) and H ′ = H4(U, V, IDS, PKS)

So the challenger will accept c∗ as a valid forgery on message m∗ = m⊕h⊕h∗.

4 Certificateless Signcryption Scheme of Diego et al.

In this section, we give the review and attack of the certificateless signcryption
scheme by Diego et al. [1].

4.1 Overview of the Scheme

Diego et al.’s CLSC scheme [1] consists of five algorithms namely: Setup, Extract,
Keygen, Signcrypt and Unsigncrypt, which we describe below.

– Setup. Let κ be the security parameter. The KGC performs the following
to set up the system.
• The KGC selects cyclic groups G1, G2 and GT of same order q with

generators P ∈R G1 and Q ∈R G2.
• Selects the master secret key s ∈R Z∗

q and the master public key is set
to be Ppub = sP .

• Selects an admissible pairing ê : G1 ×G2 → GT .
• Computes g = ê(P, Q).
• Selects three hash functions H1 : {0, 1}∗ → Z

∗
q , H2 : GT → {0, 1}n, H3 :

{0, 1}n ×G1 ×G1 → Z∗
q , Here n is the length of the message.

• The public parameters of the scheme are set to be params = 〈q, G1, G2,
GT , ê, g, P , Q, Ppub, H1, H2, H3〉.

– Extract. Here, IDA is the identity of the user UA, the KGC computes the
partial private key of user UA as follows.
• Computes the hash value yA = H1(IDA) and the partial private key

DA = (yA + s)−1Q ∈ G2.
• The KGC sends DA to the user UA via a secure authenticated channel.

– Keygen. User UA computes the full private key by performing the following
steps:
• Chooses xA ∈R Z∗

q as the secret value.
• Computes the full private key SA = x−1

A DA ∈ G2.
• Computes the public key as PA = xA(yAP + Ppub) ∈ G1.
• It is to be noted that ê(PA, SA) = g.

– Signcrypt. Inorder to signcrypt the message m to the receiver UB, the
sender UA does the following:
• Chooses r ∈R Z∗

q , computes u = r−1 and U = gu.
• Computes c = m ⊕ H2(U), R = rPA, S = uPB, h = H3(c, R, S) and

T = (r + h)−1SA.
Finally, the sender outputs the signcryption on message m as σ = 〈c, R, S, T 〉.

– Unsigncrypt. Inorder to unsigncrypt a ciphertext σ, the receiver UB does
the following:
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• Computes h′ = H3(c, R, S) and U ′ = ê(S, SB).
• Recovers the message as m′ = c⊕H2(U ′).
• Checks whether ê(R + h′PA, T ) ?= g.

If the checkholds, thenacceptsm′ as themessage, otherwise outputs “Invalid”.

4.2 Attack on the CLSC Scheme by Diego et al.

Type-I Forgeability: The Type-I adversary who is capable of replacing the
public keys of all users and is not allowed to know the master private key can
forge a valid signcryption on any message m, from any legitimate user UA to UB

by performing the following:

– Let IDA be the identity of user UA.
– The adversary chooses r ∈R Z∗

q , computes u = r−1.
– Computes U = gu and sets c = m⊕H2(U).
– Set T = uQ, R = rP − P and S = uPB.
– Compute h = H3(c, R, S).
– Set PA = h−1P .

Finally, the forger outputs the signcryption on message m as σ = (c, R, S, T )
which is a valid signcryption on m from UA to UB.
Correctness: The signcryption σ, which is produced as forgery passes the ver-
ification test as shown below,

ê(R + hPA, T )= ê(rP − P + hh−1P, uQ)=ê(rP, r−1Q)
f= ê(P, Q) = g

This proves that the forgery generated is valid.

Type-I and Type-II Attacks on Confidentiality

– Let σ∗ = (c∗, R∗, S∗, T ∗) be the challenge signcryption on message mb, b ∈
{0, 1} with IDA as the sender and IDB as the receiver.

– The adversary is capable of generating a new signcryption σ′ on the message
mb (The message is same as in σ∗) with IDC as sender and IDB as receiver
(Note that the adversary knows the private key of IDC).

– σ′ is obtained by the adversary by performing the following:
• Sets c′ = c∗.
• Computes R′ = r′PC , where r′ ∈R Z∗

q .
• Set S′ = S∗.
• Computes h′ = H3(c′, R′, S′)
• Set T ′ = (r′ + h′)−1SC

• The signcryption corresponding to this change is σ′ = 〈c′, R′, S′, T ′〉.
– Now, the adversary can query the unsigncryption oracle for the unsigncryp-

tion of σ′ (Note that this query is valid because σ′ is different from the
challenge signcryption σ∗).
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– The unsigncryption oracle will give back the message mb since the key used
in both σ∗ and σ′ are the same i.e., U ′ = ê(S′, SB) = ê(S∗, SB) = U∗ and
note that S′ = S∗. Hence , c′ ⊕H2(U ′) = c∗ ⊕H2(U∗) = mb.

– Therefore, designcryption of σ′ outputs the message mb, which is used for
generating the challenge ciphertext σ∗. Thus the adversary can determine
whether mb

?=(m0 or m1) breaking the indistinguishability of the scheme.
This attack can be performed by both Type-I and Type-II adversaries be-
cause the adversary does not require the master private key or even does not
want to replace the public key.

5 Certificateless Signcryption Scheme of Chen-Huang
et al.

In this section, we present the review and attack of the certificateless signcryption
scheme by Chen-Huang et al. [6].

5.1 Overview of the Scheme

The CLSC scheme of Chen-Huang et al. [6] consists of the following four algo-
rithms.

– Setup. Given κ as the security parameter, the KGC does the following to
setup the system parameters.
• The KGC selects G1, G2 of same prime order q with a generator P ∈R

G1.
• Selects the master secret key s ∈R Z∗

q and the master public key is set
to be Ppub = sP .

• Selects an admissible pairing ê : G1 ×G1 → G2.
• Selects three cryptographic hash functions H1 : {0, 1}∗ → G1, H2 :
{0, 1}∗ → Z∗

q , H3 : {0, 1}∗ → {0, 1}n, where n is the size of the mes-
sage.

• Computes T = ê(P, P ).
• The public parameters of the scheme are set to be params = 〈q, G1, G2,

ê, n, P , Ppub, T , H1, H2, H3〉.
– Keygen. Let, IDA be the identity of the user UA. The KGC computes the

partial private key of user UA as follows.
• Computes QA = H1(IDA) and the partial private key DA = sQA ∈ G2.
• The KGC sends DA to the user Ui via a secure authenticated channel.

On receiving the partial private key DA, user UA computes his full private
key by performing the following steps:
• UA chooses xA ∈R Z∗

q as the secret value.
• Sets the full private key SA = 〈xA, DA〉.
• The corresponding public key is PA = T xA ∈ G2.

– Signcrypt. Inorder to signcrypt the message m of length n to the receiver
UB, the sender UA does the following:
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• Chooses r, r1, r2 ∈R Z∗
q , computes R1 = T r1 , R2 = T r2 , h = H2(m‖

R1‖R2‖PA‖PB), U = r1P − hSA, u = r2 − xAh, K = ê(SA, QB)rT xA

B ,
W = rQAand computes c = H3(K)⊕m

Finally, the sender outputs the signcryption on message m asσ=(c, u, h, U, W).
– Unsigncrypt. Inorder to unsigncrypt a ciphertext σ, the receiver UB does

the following:
• Computes K ′ = ê(SB, W )T xB

A .
• Retrieves the message as m′ = c⊕H3(K ′).
• Checks whether h

?= H2(m′‖ê(U, P )ê(QA, Ppub)h)‖T uP h
A‖PA‖PB).

If thecheckholds, thenacceptsm′ as themessage, otherwiseoutputs“Invalid”.

5.2 Attack on the CLSC Scheme by Chen-Huang et al.

In this section, we show that the certificateless signcryption scheme by Chen-
Huang et al. does not provide confidentiality as well as unforgeability with
respect to both Type-I and Type-II attacks.

Attack on Type-I and Type-II Confidentiality: The following attack is
possible because the adversary is capable of altering the challenge signcryption
without altering the message in it and is allowed to obtain the unsigncryption
of the newly formed signcryption, which yields the message signcrypted in σ∗.
We explain the attack in detail now. On getting the challenge signcryption σ∗ =
〈c∗, u∗, h∗, U∗, W ∗〉, (σ∗ is the signcryption of either message m0 or m1 from
user UA to UB) the adversary (Type-I and Type-II) is capable of generating a
new ciphertext σ′ = 〈c′, u′, h′, U ′, W ′〉 (signcryption of m0 from user UC to UB)
as follows:

– Replace the public key of user UC with the public key of user UA.
– Sets c′ = c∗ and W ′ = W ∗.
– Chooses r1, r2 ∈R Z∗

q , computes R1 = T r1 and R2 = T r2.
– Computes h′ = H2(m0‖R1‖R2‖PC‖PB).
– Computes U ′ = r1P − h′SC and u = r2 − xCh′.
– Gets the unsigncryption of σ′.
– If Unsigncrypt(σ′) = “m0” then the adversary outputs that σ∗ is the sign-

cryption of m0 (i.e. b′ = 0).
– If Unsigncrypt(σ′) = “Invalid” then the adversary outputs m1 (i.e. b′ = 1).

Note: This attack can be done by both Type-I and Type-II adversaries.

6 Certificateless Signcryption without Pairing

In this section, we present our new certificateless signcryption scheme which is
efficient and does not use the costly bilinear pairing operation.

– CLSC.Setup(1κ): The KGC takes the security parameter 1κ as input and
performs the following for setting up the system:
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• Chooses two big prime numbers p and q such that q|(p− 1).
• Selects an element g ∈R Z

∗
p with order q.

• Chooses a master private key s ∈R Z
∗
q and computes the master public

key gpub=gs.
• Chooses five cryptographic hash functions H1 : {0, 1}∗ × Z∗

p → Z∗
q , H2 :

{0, 1}∗×Z∗
p×Z∗

p → Z∗
q , H3 : {0, 1}∗ → Z∗

q , H4 : {0, 1}∗ → |M|×Z∗
q×Z∗

q ,
H5 : {0, 1}∗ → Z∗

q , here M is the message space.
The public parameters of the system, params = 〈p, q, g, gpub, H1, H2, H3, H4,
H5〉.

– CLSC.PartialPrivateKeyExtract: Given an identity, say IDA of a user
UA, the KGC performs the following to generate the partial private key
corresponding to IDA:
• Chooses xA0, xA1 ∈R Z∗

q .
• Computes XA0 = gxA0 and XA1 = gxA1 .
• Computes qA0 = H1(IDA, XA0) and qA1 = H2(IDA, XA0, XA1).
• Computes dA0 = xA0 + sqA0 and dA1 = xA1 + sqA1.

Returns dA = 〈dA0, dA1〉 and XA = 〈XA0, XA1〉, the partial private keys
securely to user UA.
Note: It should be noted that the partial private key of a user is a Schnorr
signature on the user’s identity, signed by the KGC using the master private
key.

– CLSC.SetSecretValue: The user UA chooses an element yA ∈R Z∗
q and

keeps it as his secret value.
– CLSC.SetPrivateKey: The user UA sets his full private key sA =〈yA, dA0〉.
– CLSC.SetPublicKey: The user UA computes YA = gyA and sets his public

key as PKA = 〈dA1, XA0, XA1, YA〉. The resulting public key is distributed
widely and freely.

– CLSC.Signcrypt: The sender UA signcrypts a message m to a receiver UB

by performing the following:
• Chooses r1, r2 ∈R Z∗

q , computes c1 = gr1 , c2 = gr2 , k1 = (YB)r1 , k2 =
(XB0(gpub)qB0)r1 , d = H3(m, c2, IDA, IDB, PKA), e = H5(m, c2, IDA,
IDB, PKA), v = (d.dA0 + e.yA) + r2 and c3 = H4(k1, k2, IDA, IDB) ⊕
(m‖r1‖v).

Now c = 〈c1, c2, c3〉 is the signcryption on message m to user UB

– CLSC.Unsigncrypt: To unsigncrypt a signcryption c = 〈c1, c2, c3〉 from
sender UA, the receiver UB does the following:
• Computes k′

1 =(c1)yB , k′
2 =(c1)dB0 and (m′‖r′1‖v′)=c3⊕H4(k′

1, k
′
2, IDA,

IDB).
• Checks whether gr′

1
?= c1.

• If so computes d′=H3(m′, c2, IDA, IDB, PKA) and e′=H5(m′, c2, IDA,
IDB, PKA).

• Checks whether gv′ ?= ((gpub)qA0 .XA0)d′
.(YA)e′

.c2.
If both the checks hold, m′ is output as the unsigncrypted message else
outputs ”Invalid”.
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Correctness: The correctness of the verification test gr′
1

?= c1 is straight forward.
The second check also passes the verification if the signcryption is formed in a
legitimate way which is shown below.

gv′
= g(dA0d′+yAe′)+r2 = g(xA0d′+sqA0d′+yAe′)+r2 = gxA0d′

.gsqA0d′
.gyAe′

.gr2

= ((gpub)qA0 .XA0)d′
.(YA)e′

.c2

7 Security of CLSC Scheme

In this section, we provide the formal proof for the unforgeability and confiden-
tiality of the CLSC scheme.

7.1 Type-I Unforgeability

Theorem 1. The certificateless signcryption scheme CLSC is secure against
any EUF-CLSC-CMA-I forger FI in the random oracle model if DLP is hard in
Z∗

P .

Proof: A challenger C is challenged with an instance of the DLP, say 〈g, ga〉,
the aim of C is to find the value a. Let FI be a forger who is capable of breaking
the EUF-CLSC-CMA-I security of the CLSC scheme. C can make use of FI to
compute the solution of the DLP instance by playing the following interactive
game with FI .
Setup: C sets the master public key gpub as gs by choosing s ∈R Z∗

q , designs the
hash functions Hi (i =1 to 5) as random oracles OHi (i =1 to 5) respectively. In
order to maintain the consistency between the responses to the hash queries, C
maintains lists

– L1 with tuples of the form 〈IDA, qA0, qA1, XA0, XA1, dA0, dA1, yA, YA〉.
– LH1 with tuples of the form 〈IDA, XA0, qA0〉,
– LH2 having tuples of the form 〈IDA, XA0, XA1, qA1〉,
– LH3 with tuples of the form 〈m, c2, IDA, IDB, PKA, d〉,
– LH4 which has tuples of the form 〈k1, k2, IDA, IDB, h4〉 and
– LH5 with tuples of the form 〈m, c2, IDA, IDB, PKA, e〉.
C gives the public parameters params to FI .
Training Phase: FI performs a series of polynomially bounded number of
queries in an adaptive fashion during the Training phase. Through out the
game we assume that FI makes the ORequestPublicKey queries on ID before
querying other oracles with ID as input. The description of the various oracles
and the query responses by each oracles are described below.
OH1(IDA, XA0): To respond to this query, C checks whether a tuple of the form
〈IDA, XA0, qA0〉 exists in the list LH1 . If a matching tuple exists in LH1 , C
returns qA0 to FI . Otherwise, C chooses randomly qA0 ∈ Z∗

q , appends the tuple
〈IDA, XA0, qA0〉 to LH1 and returns qA0 to FI .
OH2(IDA, XA0, XA1): For responding to this query, C checks whether a tuple of
the form 〈IDA, XA0, XA1, qA1〉 already exists in the list LH2 . If so, returns qA1
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to FI , else chooses qA1 ∈R Z∗
q , adds 〈IDA, XA0, XA1, qA1〉 to the list LH2 and

returns qA1 to FI .
OH3(m, c2, IDA, IDB, PKA): To respond to this query, C checks whether a tuple
of the form 〈m, c2, IDA, IDB, PKA, d〉 exists in the list LH3 . If so, returns d to
FI else chooses d ∈R Z∗

q , adds the tuple 〈m, c2, IDA, IDB, PKA, d〉 to the list
LH3 and returns d to FI .
OH4(k1, k2, IDA, IDB): To respond to this query, C checks whether a tuple of
the form 〈k1, k2, IDA, IDB, h4〉 exists in the list LH4 . If so, returns h4 to FI

else, chooses h4 ∈R Z∗
q , adds the tuple 〈k1, k2, IDA, IDB, h4〉 to the list LH4

and returns h4 to FI .
OH5(m, c2, IDA, IDB, PKA): To respond to this query, C checks whether a tuple
of the form 〈m, c2, IDA, IDB, PKA, e〉 exists in the list LH5 . If so, returns e to
FI else chooses e ∈R Z∗

q , adds the tuple 〈m, c2, IDA, IDB, PKA, e〉 to the list
LH5 and returns e to FI .
ORequestPublicKey (IDA): During the forgery phase, the model requires the forger
FI and the challenger C to work with a signcryption from user UA to UB, where
UA and UB satisfy the following conditions:

– The hash of the identity IDA of the sender UA should have been queried by
FI to OH1 and OH2 .

– At the same time, during the Training phase FI should not know which
of the identity that FI has queried is selected by C for the forgery phase.

In order to achieve the selection of identities satisfying the above conditions, we
specify the Request Public Key oracle as follows:
FI will generate a series of users and send each of them to C and ask their

corresponding public key. One of them will be chosen by C, say the γth distinct
user, as target identity for the forgery phase. However, C will not reveal the value
of γ or IDγ to FI . Moreover, C will choose γ randomly for each game. Thus,
while the target identity is one of the identities chosen by FI , FI will not know
which one is that. From now on, IDγ denotes the specific target identity selected
by C during the Training phase.

The oracle description and the responses by C are described now. FI produces
an identity IDA to C and requests IDA’s public key. The response of C depends
upon whether the query is γth query or not:
Case 1:

– If the query is not the γth query then C proceeds as follows:
– C checks whether a tuple of the form 〈IDA, qA0, qA1, XA0, XA1, dA0, dA1, yA,

YA〉 already exists in the list L1. If a tuple appears in the list L1, C retrieves
(XA0, XA1, dA1, YA) from the tuple corresponding to IDA and returns them
as the public key of IDA to FI .

– If no matching tuple exists for IDA, C responds as per the actual algorithm,
generates the public key corresponding to IDA and sends (XA0, XA1, dA1, YA)
to FI .
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Case 2:

– If the query is the γth query and a tuple of the form〈IDA, qA0, qA1, XA0, XA1,
⊥, dA1, yA, YA〉, corresponding to IDA exists in list L1, C retrieves (XA0, XA1,
dA1, YA) from the tuple and returns them as the public key of IDA to FI .

– If the query is the γth query and no tuple corresponding to IDA exists in
list L1, C secretly sets IDγ = IDA (The target identity) and proceeds as
follows:
• Randomly chooses xA1, yA ∈ Z

∗
q , computes XA0 = ga, XA1 = gxA1 and

YA = gyA .
• Chooses qA0 ∈R Z∗

q , adds the tuple 〈IDA, XA0, qA0〉 in the list LH1 .
• Chooses qA1 ∈R Z∗

q , adds the tuple 〈IDA, XA0, XA1, qA1〉 in the list LH2 .
• Computes dA1 = xA1 + s qA1. (Here, s is the master private key and is

known to C).
• Adds 〈IDA,qA0, qA1, XA0, XA1,⊥, dA1, yA, YA〉 to the list L1.

OReplacePublicKey(IDA, X ′
A0, X

′
A1, d

′
A1, Y

′
A): FI sends IDA, X ′

A0, X
′
A1, d

′
A1 and

Y ′
A to C. C checks if gd′

A1 = X ′
A0(g

s)qA0 (This is to check the validity of the
public key). If the check holds then C replaces the existing tuple in the list L1

with 〈IDA, q′A0, q
′
A1, X ′

A0, X
′
A1,⊥, d′A1,⊥, Y ′

A〉 (Since XA0 is replaced with X ′
A0,

C does not know the corresponding partial private key d′A0. Thus, C sets d′A0 = ⊥
in the list L1).
OExtractPartialPrivateKey(IDA): FI chooses an identity IDA and gives it to C.
C performs the following to answer this query:

– If IDA = IDγ then C aborts.
– If IDA �= IDγ and a tuple corresponding to IDA was not available in list

L1, then C performs the following:
• Chooses xA0, xA1, yA ∈R Z∗

q , computes XA0 = gxA0 and XA1 = gxA1 .
• C also chooses qA0, qA1 ∈R Z∗

q .
• Computes dA0 = xA0 + sqA0 and dA1 = xA1 + sqA1.
• Stores the tuple 〈IDA, qA0, qA1, XA0, XA1, dA0, dA1, yA, YA〉 and returns

dA0 to FI .
– If IDA �= IDγ and a tuple corresponding to IDA exists in L1, C retrieves

(dA0, dA1, XA0, XA1).
– C sends 〈dA0, dA1, XA0, XA1〉 to FI .

OExtractSecretV alue(IDA): FI produces an identity IDA and requests the corre-
sponding user private key. C performs the following to answer this query:

– If a tuple of the form〈IDA, qA0 , qA1, XA0, XA1, dA0, dA1, yA, YA〉 or〈IDA, qA0

, qA1, XA0, XA1,⊥, dA1, yA, YA〉 already exists in the list L1 then C retrieves
the corresponding yA from the tuple and returns the user secret value yA to
FI .

– If an entry for yA is not found in the corresponding tuple of the list L1, then
C chooses yA ∈R Z∗

q , updates the tuple with yA, YA values, where YA = gyA

and returns the user secret value yA to FI .
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– If FI has already replaced IDA’s public key, i.e. the value of YA is set and the
corresponding yA is⊥ in the tuple, then C does not provide the corresponding
user secret value to FI , since it is replaced by FI and FI knows yA.

Note: No separate private key extract oracle is provided in the model because
the private key of a user is the combination of his partial private key and the se-
cret value, which can be obtained from the two oracles OExtractPartialPrivateKey

and OExtractSecretV alue.
OSigncrypt(m, IDA, IDB): To respond to the signcrypt query on a message m
with IDA as the sender and IDB as the receiver, C does the following:

– If IDA �= IDγ and IDA �= IDB, C proceeds as per the actual signcryption
algorithm because C knows the private key corresponding to the sender IDA.

– If IDA = IDγ and IDA �= IDB then C forms the signcryption in the follow-
ing way:
• Chooses r1, r2, d, e ∈R Z

∗
q , computes c1 = g(r1) and c2 = g(r2).(gsqA0

XA0)−d.(YA)−e.
• Computes k1 = Y

(r1)
B and k2 = (XB0.g

(qB0)
pub )r1

• Stores the tuple 〈m, c2, IDA, IDB, PKA, d〉 in list LH3 and the tuple
〈m, c2, IDA, IDB, PKA, e〉 in list LH5 .

• Sets v = r2.
• Chooses h4 ∈R (M×Z∗

q ×Z∗
q), computes c3 = h4⊕ (m‖r1‖v) and stores

the tuple 〈k1, k2, IDA, IDB, h4〉 in the list LH4 .
– Returns the signcryption c = 〈c1, c2, c3〉 to FI .

Correctness: The validity of the signcryption generated with out knowing the pri-
vate key of the sender IDA can be verified with the equality gv′ ?= (gqA0

pub .XA0)d.Y e
A.

c2. We show that the signcryption formed is indeed a valid one through the fol-
lowing equality:

(gqA0
pub .XA0)d.Y e

A.c2= (gqA0
pub .XA0)d.Y e

A.g(r2).(gsqA0XA0)−d.(YA)−e

= (gqA0
pub .XA0)d.Y e

A.g(r2).(YA)−e(gqA0
pub .XA0)−d = gr2 = gv′

OUnsigncrypt(c, IDA, IDB): To respond to the unsigncrypt query of a signcryp-
tion c = 〈c1, c2, c3〉 with IDA as the sender and IDB as the receiver, C does the
following:

– If IDB �= IDγ and IDA �= IDB, C proceeds as per the actual unsigncryption
algorithm because C knows the private key corresponding to the receiver
IDB.

– If IDB = IDγ and IDA �= IDB then C performs the unsigncryption in the
following way:
• Computes k1 = cyB

1 .
• Checks all entries in the list LH4 for the tuples of the form 〈k1, k2, IDA,

IDB, h4〉, that contains the computed k1 value and with the current
identities (i.e. k1, IDA, IDB)
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• Retrieves all corresponding k2, h4 values from the tuples obtained from
the previous step.

• For all such pair 〈k2, h4〉, C performs the following:
∗ Computes (m′‖r′1‖v′) = c3 ⊕ h4.
∗ Retrieves the tuple 〈m′, c2, IDA, IDB, PKA, d〉 from list LH3 and

the tuple 〈m′, c2, IDA, IDB, PKA, e〉 from list LH5 , checks whether
gv′ ?= gdA0d+yAe.c2 and c1

?= gr′
1 .

∗ If both the aforementioned checks hold, then returns m′ as the mes-
sage corresponding to c.

• If for no pair of 〈k2, h4〉 the verification passes then C returns “Invalid”.

Note: If yA = ⊥ (which means the public key is replaced), C may obtain yA

from FI and perform the above steps.
Remark: Note that the public key of both the sender and the receiver may
be changed by FI during the Training Phase. The unsigncryption will work
correctly only with the public key used at the time of generating the signcryption
and if the public keys are replaced after signcryption, then the unsigncryption
will return “Invalid”
Forgery: At the end of the Training Phase (which is decided by FI), FI sends
to C a forged signcryption c∗ = 〈c∗1, c∗2, c∗3〉, where IDA is the sender identity and
IDB is the receiver identity. It is to be noted that the partial private key of the
sender IDA should not have been queried by FI during the Training Phase.
In addition, c∗ should not be the response for any signcryption queries by FI

during the Training Phase. If c∗ is generated with these restrictions, then C
can obtain the solution for the DLP instance by performing the following steps.

– Checks if IDA = IDγ , if so C performs the following:
• Retrieves (m∗‖r∗i ‖v∗) = c3 ⊕ h4. (Since C knows the private key of A)
• If v∗ passes the verification during unsigncryption, C by using the oracle

replay technique, with the same random tape and different hash oracle
for OH3 simulates the game again and obtains two valid components v∗

and v′.

• Using v∗ and v′, C computes v̂ =
v∗ − v′

d∗ − d′
=dA0=sqA0 + a.

• Since C knows both s and qA0, it computes a = v̂ − sqA0.
• Thus, the solution to the discrete log problem is obtained by C.

– IF IDA �= IDγ then C aborts the game.

7.2 Type-II Unforgeability

Theorem 2. The certificateless signcryption scheme CLSC is secure against
any EUF-CLSC-CMA-II forger FII in the random oracle model if DLP is hard
in Z∗

P .

The proof of this theorem is omitted here due to page limitation and will appear
in the full version of the paper.
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7.3 Type-I Confidentiality

Theorem 3. The certificateless signcryption scheme CLSC is secure against
any EUF-CLSC-CCA2-I adversary AI in the random oracle model if CDHP is
hard in Z∗

P .

Proof: Challenger C is challenged with an instance of the CDH problem say
〈g, ga, gb〉 ∈ Z∗

p. Let us consider, there exists an adversary AI who is capable of
breaking the IND-CLSC-CCA2-I security of the CLSC scheme. C can make use
of AI to compute gab, by playing the following interactive game.

Setup: C begins the game by setting up the system parameters as in the CLSC
scheme. C sets g as in the instance of the CDH problem it has received.
Chooses s ∈R Z∗

q , computes gpub = gs and sends the public parameters
params = 〈p, q, g, gpub〉 to AI . C also designs the hash functions Hi as ran-
dom oracles OHi , (for i = 1 to 5). C maintains six lists L1, LH1 , LH2 , LH3 ,
LH4 and LH5 in order to consistently respond to the queries to the various
random oracles.

Phase I: In this phase AI interacts with C by querying the various
oracles provided by C. The oracles for which AI have access and their re-
sponses during the game are identical and exactly same to the oracle descrip-
tions for OH1 , OH2 , OH3 , OH4 , OH5 , ORequestPublicKey , OReplacePublicKey ,
OExtractPartialPrivateKey , OExtract SecretV alue, OSigncrypt and OUnsigncrypt

in the EUF-CLSC-CMA-I game.

Challenge: AI outputs two equal length messages m0, m1 and an arbitrary
sender identity IDA for which AI knows the private key dA0. If IDB = IDγ ,
C randomly chooses a bit d ∈R {0, 1} and signcrypts md as follows.
– Computes c∗1 = gb, chooses r2 ∈R Z∗

q and computes c∗2 = gr2 .
– Computes k1 = (gb)xB1 .
– Chooses c∗3 ∈R (M× Z∗

q × Z∗
q)

Now, c∗ = 〈c∗1, c∗2, c∗3〉 is sent to AI as the challenge ciphertext.

Phase II: AI adaptively queries the oracles as in Phase I, consistent with the
constraints for Type-I adversary. Besides this it cannot query Unsigncryption
on c∗.

Guess: AI is capable of breaking the IND-CLSC-CCA2-I security of CLSC
(which is assumed at the beginning of the proof) and hence can find c∗ is
“Invalid”,
– AI should have computed k′

1 = (c∗1)yB and k′
2 = (c∗1)dB0 .

– Also, AI should have queried 〈k′
1, k

′
2, IDA, IDB〉 to the oracle OH4 .

– Now, when unsigncrypting c∗, AI finds that c∗ is an invalid ciphertext
and hence aborts.

Therefore, if the list LH4 has qHγ queries corresponding to the sender IDA

and receiver IDB, one of the qHγ values stored in the list LH4 is the solution
for the CDHP instance. Now, C chooses one k2 value uniformly at random
from the qHγ values and outputs it as the solution for the CDH instance.
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7.4 Type-II Confidentiality

Theorem 4. The certificateless signcryption scheme CLSC is secure against
any EUF-CLSC-CCA2-II adversary AII in the random oracle model if CDHP
is hard in Z∗

P .

The proof of this theorem is omitted here due to page limitation and will appear
in the full version of the paper.

8 Conclusion

In this work, we have showed the security weakness in three existing certificate-
less signcryption schemes that appear in [2], [1] and [6]. We have also presented
the first pairing free certificateless signcryption scheme in the random oracle
model. The proposed scheme is more efficient since the scheme evades bilinear
pairing. We have proved the security of the scheme with the strongest security
notion for signcryption schemes, namely insider security. We leave it as an open
problem to construct certificateless signcryption scheme without pairing in the
standard model. As a concluding remark we present the complexity figure of the
new CLSC scheme in the following table.

Table 1. Complexity figure for CLSC

Scheme Signcrypt Unsigncrypt

CLSC 5 EXP 7 EXP

EXP - Exponentiation in group G.
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Abstract. Sanitizable signatures provide several security features which

are useful in many scenarios including military and medical applications.

Sanitizable signatures allow a semi-trusted party to update some part

of the digitally signed document without interacting with the original

signer. Such schemes, where the verifier cannot identify whether the mes-

sage has been sanitized, are said to possess strong transparency. In this

paper, we have described the first efficient and provably secure saniti-

zable signature scheme having strong transparency under the standard

model.

Keywords: sanitizable signatures, strong transparency, standard model.

1 Introduction

Applications like e-government and e-tax payment systems require appropriate
alteration of digitally signed documents in order to hide personal information.
Sanitizable signatures came into much attention when recently, government enti-
ties were forced to disclose documents owing to disclosure laws. In the past, when
secret paper documents were made declassified, hiding of sensitive or personal
information in the document was done by blackening-out (sanitizing) relevant
sections of the documents. A digital signature, however, prohibits any alteration
of the original message once it is signed. So, in the world of digital signatures,
sanitization cannot be done.

A sanitizable signatures protects the confidentiality of a specified part of the
document while ensuring the integrity of the document. A solution for this prob-
lem was proposed earlier in [1] as content extract signatures. In 2005, Ateniese
et al. [2] introduced sanitizable signatures which can alter the signed document
instead of hiding it. A sanitizable signature scheme is a signature scheme which
allows a designated party, called the sanitizer, to hide certain parts of the orig-
inal message after the message is signed, without interacting with the signer.
The verifier confirms the integrity of disclosed parts of the sanitized document
from the signature and sanitized document. In other words, a sanitizable signa-
ture scheme allows a semi-trusted sanitizer to modify designated portions of the
document and produce a valid signature on the legitimately modified document

F. Bao et al. (Eds.): Inscrypt 2009, LNCS 6151, pp. 93–107, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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without any interaction with the original signer. These designated portions of
the document are blocks or segments explicitly indicated as mutable under prior
agreement between the signer and the sanitizer. The sanitizer can produce a valid
signature only if it modifies these portions and no other parts of the message.
Following these works several authors [3,4,5,6,7,8] proposed various sanitizable
signature schemes with different properties.

There are different types of sanitizable schemes present in literature. In some
schemes, sanitization on any part of the message can be performed by the sani-
tizer, while in others, sanitization on some parts of the messages can be restricted
by the signer. Transparency is a another property of sanitizable signature
schemes [2,9]. If the verifier knows which part of the document is sanitized, then
the scheme has no transparency. If he does not know whether the message is san-
itized, then the scheme has weak transparency. If he also does not know whether
the message can be sanitized, then the scheme is said to have strong transparency.

1.1 Our Contributions

In this paper, we have provided two protocols for strong transparency in the
standard model using bilinear pairing. Our construction is based on Waters’s
scheme [10]. These are the first efficient and secure schemes which provide strong
transparency under the standard model. In our first protocol we achieve strong
transparency by providing some secret information to the sanitizer, where the
portions of the message to be sanitized are specified by the signer. In our second
protocol we remove the need to send secret information to the sanitizer on a per-
message basis, provided that the blocks of message which need to be sanitized are
fixed beforehand. This requirement holds in forms, databases, etc. The length of
our sanitized signature is equivalent that of Waters’ [10] signature, hence shorter
than the signatures produced by other protocols. Our scheme uses techniques
similar to the sanitizable signature scheme in [9] and provides additional prop-
erties. The scheme in [9] does not provide transparency. We also compare our
scheme with other sanitizable signature schemes proposed in literature.

1.2 Applications

Sanitizable signatures are well-suited for customizing authenticated multicast
transmissions. Consider a subscription-based multimedia database, where spon-
sors may wish to insert personalized commercials into authenticated broad-
casted messages. One solution is for each vendor to sign the commercial once
and allow the database administrator to customize the individual commercials
by replacing the generic identity field with the actual subscriber’s identity, at
various points of the commercial. Hence, the subscriber can verify that the com-
mercial is legitimate and the sponsors need not sign each customized broadcast.
Detailed motivation and applications of sanitizable signatures including medical
applications, secure routing, e-governance, etc. are available in [2].
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2 Preliminaries

2.1 Bilinear Pairing

Let G1, G2, GT be a multiplicative groups of prime order p. The elements g1 ∈ G1

and g2 ∈ G2 are generators of G1 and G2 respectively. A bilinear pairing is a
map e : G1 × G2 → GT with the following properties:

1. Bilinear: e(g1
a, g2

b) = e(g1, g2)ab for all g1 ∈ G1,g2 ∈ G2, where a, b ∈ Zp.
2. Non-degenerate: There exists g1 ∈ G1 and g2 ∈ G2 such that e(g1, g2) �= 1;

in other words, the map does not send all pairs in G1 × G2 to the identity
in GT .

3. Computability: There is an efficient algorithm to compute e(g1, g2) for all
g1 ∈ G1 and g2 ∈ G2.

2.2 Security Assumptions

Definition 1. The Computational Diffie-Hellman (CDH) problem is that, given
g, gx, gy ∈ G for unknown x,y ∈ Zp∗, to compute gxy.
We say that the ε-CDH assumption holds in G if no polynomial-time algorithm
has non-negligible probability ε in solving the CDH problem.

2.3 Sanitizable Signature

A sanitizable signature scheme is a signature scheme that allows the sanitizer to
sanitize certain portions of the document and to generate the valid signature of
the resulting document with no interaction with the signer. A sanitizable signa-
ture is processed by three parties consisting of a signer, a sanitizer, and a verifier.
The signer generates the signature assuring the authenticity of the document.
The sanitizer receives the document and its signature from the signer. The sani-
tizer generates the sanitized document and its signature without any help of the
signer. The verifier receives the sanitized document and its signature from the
sanitizer. The verifier accepts the signature only if he verifies the authenticity of
the disclosed document.

2.4 Transparency

A sanitizable signature scheme may have various levels of transparency, which
we define below:

1. No transparency. The verifier knows which part of the document is sani-
tized.

2. Weak transparency. The verifier does not know if the message is sanitized.
The verifier only knows if the message can be disclosed and sanitizing is
prohibited or not.

3. Strong transparency. The verifier does not know if the message can be
sanitized. In this model no extra information is sent to the verifier other
than message and a signature.
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2.5 State Information

In our first scheme, the signer can control the states of the bits of the document,
i.e., whether sanitization is allowed or sanitization is prohibited. This state in-
formation is kept secret to achieve strong transparency. The signer generates the
secret information for each message of the document. The secret information is
necessary to generate the signature of the sanitized document. The signer sends
the secret information of the message to the sanitizer if he allows the sanitizer
to sanitize the message. Otherwise he does not send the secret information of
the message to the sanitizer.

In our second scheme, the sanitizer is given the power to control certain bits
of the message a priori in the set-up phase. In this case, no secret information
needs to be sent to the sanitizer by the signer.

2.6 Scheme Outline

– Key Generation. Algorithm KeyGen, executed by the PKG, inputs a se-
curity parameter 1k and outputs public parameters param, public and secret
key pair for the signer (PK, SK) and secret key of the sanitizer SK ′, if any.

– Signing. Algorithm Sign, executed by the signer, takes as input a document
M , public parameters param and secret key SK. Let M = m1m2 · · ·mn ∈
{0, 1}n, where mi is defined as the bit at index i of message M . Let IS ⊆
{1, · · · , n} denote the set of indices that the sanitizer is allowed to modify.
The algorithm outputs a document M , signatures(σ1, σ2) of M and secret
information SI for the sanitizer, if any.

– Sanitization. Algorithm Sanitize, executed by the sanitizer, takes message
M , public parameters param, signature σ on M , sanitizer’s secret key SK ′,
if any, secret information from the signer SI, if any, and outputs a message
M ′ and sanitized signature σ′.

– Verification. Algorithm Verify, executed by the verifier, takes as input an
unsanitized document and signature (M , σ) or a sanitized document and
signature (M ′,σ′), public parameters param, and public key PK of signer,
outputs accept or reject. The strong transparency property requires that the
verifier not be able to find out whether the document is sanitized or not.
Hence the verification procedure remains the same for both sanitized and
unsanitized documents.

3 Security Model

3.1 Correctness

We require that Verify(σ, M, PK, param) = accept, for an unsanitized message
M if :

1. (PK, SK, param) ← KeyGen(1k),
2. σ ← Sign(M, SK, param),
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We additionally require that Verify(σ′, M ′, PK, param) = accept, for an sanitized
message M ′ if:

1. (PK, SK, param) ← KeyGen(1k),
2. σ ← Sign(M, SK, param),
3. (M ′, σ′) ← Sanitize(M, σ, PK, SI, param)

3.2 Unforgeability

We have the following game Expunf for unforgeability:

1. The simulator S gives param and PK to the adversary A.
2. A is allowed to query the signing oracle qs times adaptively. During the jth

query, on inputing a document Mj = mj,1 · · ·mj,n, the oracle returns the
corresponding signature σj on Mj.

3. Finally A outputs a document M∗ , a signature σ∗.

A wins if Verify(σ∗, M∗PK, param) = accept and the message M∗ is not equal
to any query message Mj for 1 ≤ j ≤ qs.

Note that the adversary is not provided a sanitization oracle, as a sanitized
signature is indistinguishable from a normal signature by the signer on the same
message. This follows from strong transparency. This security model for unforge-
ability is also present in [11].

Definition 2. A sanitizable signature scheme is (ε, qs)- unforgeable if there is no
randomized polynomial time adversary winning the above game with probability
at least ε with at most qs queries to the signing oracle.

3.3 Indistinguishability

We have the following game Expind for indistinguishability:

1. The simulator S gives param and PK to the adversary A.
2. A is allowed to query the signing oracle qs times adaptively. The oracle is

the same as the one in the game for unforgeability.
3. A sends two different signatures σ0, σ1 on M0, M1 respectively and a sani-

tized message M ′, where M ′ differs from M0 and M1 only at bits that are
allowed to be sanitized.

4. S picks a random bit b and sends σ′
b to A which is the signature obtained

from the sanitization of message Mb.
5. Finally, A outputs bit b′

A wins the game if b = b′. The advantage of A is |Pr[b = b′]− 1/2]|.

Definition 3. A sanitizable signature scheme is said to be unconditionally
indistinguishable if there is no adversary winning the above game with advantage
greater than 0 with any number of queries to the signing oracle.
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3.4 Immutability

We have the following game Expimm for immutability. Let IS be the set of posi-
tions of the bits in the message that the sanitizer is allowed to modify. Here the
adversary is a sanitizer who attempts to sanitize bits outside his permissible set
IS .

1. A sends a challenge set IS , the set of bit positions where sanitization is
allowed.

2. The simulator S gives the public parameters param and PK to the adversary
A.

3. In scheme-2, the one-time secret information corresponding to the set IS is
also given to the adversary.

4. A is allowed to query the signing oracle qs times adaptively. During the
jth query, on input a document Mj = mj,1 · · ·mj,n, the oracle returns the
corresponding signature σj on Mj.

5. In scheme-1, A additionally obtains secret values SKj along with σj . This
enables A to sanitize bits at positions IS .

6. Finally, A outputs a document M∗ = m∗
1 · · ·m∗

n, a signature σ∗, where
∀j ∈ {1, · · · , qs} ∃i /∈ IS : mj,i �= m∗

i .

A wins the game if signature σ∗ on M∗ verifies successfully. The advantage
of A is the probability that A succeeds. This security model is in accordance
with [12]. Note that accountability is not required in our model as this property
compromises the unconditional indistinguishability of our scheme.

Definition 4. A sanitizable signature scheme is ε- immutable if there is no
randomized polynomial time adversary winning the above game with probability
at least ε.

4 Scheme 1

4.1 Outline

This scheme provides a strong transparent sanitizable signature protocol where
the signer is proactive in deciding which bits need to be sanitized and by which
sanitizer The signer sends the indices which are permitted to be sanitized as well
as one time secret information that enables sanitization of the relevant portions
of the message to the sanitizer, in a secure fashion. The sanitizer may replace
those portions of the message by an appropriate message of his choice.

4.2 Scheme Description

KeyGen. Let G1, G2, GT be groups of prime order p. Given a pairing e :
G1 × G2 → GT . We denote by n, the number of bits of the message m. Let
g ∈ G1 and g2, u

′, u1, · · · , un ∈ G2.
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Public parameters: G1, G2, GT , e, g, p, g2, u
′, u1, · · · , un. Public key of the signer

is g1 = gα, where α ∈ Z∗
p.

Private parameters: Private key of the signer is α ∈R Z∗
p.

Sign. Let m be the n-bit message m1m2 · · ·mn ∈ {0, 1}n. Signer randomly
picks r ∈ Z

∗
p and outputs the following values (σ1, σ2):

(σ1 = gα
2 (u′

n∏
i=1

umi

i )r, σ2 = gr)

Let IS be the set of indices that the sanitizer is permitted to modify. Then
the signer sends the values ur

i ∀i ∈ IS to the sanitizer in a secure channel.
Alternately, these values may be encrypted by the public key of the sanitizer
and sent across.

Sanitize. The sanitizer obtains the values (σ1, σ2), and the secret informa-
tion ur

i ∀i ∈ IS from the signer. It runs the verification protocol to check if
the signature is valid. Let m′ be the message whose signature is sought, which
differs from m at positions I ⊆ IS . Define I1 = {i ∈ I : mi = 0, m′

i = 1},
I2 = {i ∈ I : mi = 1, m′

i = 0}. The sanitizer chooses r̃ ∈R Z∗
p. Then the required

sanitized signature is:

(σ′
1 = σ1

∏
i∈I1

ur
i∏

i∈I2
ur

i

u′r̃
n∏

i=1

u
m′

ir̃
i , σ′

2 = σ2g
r̃)

Verify. The verifier receives the tuple: (σ1, σ2) on a message m,
Verifier checks if the following relation holds from public parameters:

e(g, σ1)
?= e(g1, g2)e(σ2, u

′
n∏

i=1

umi

i )

Note that the verification protocol is same for a sanitized and non-sanitized
message.

4.3 Security

Correctness. To show correctness, we need to show that any valid normal
signature, as well as sanitized signature verifies successfully.

Verification: The signature σ, on a given message m is given by the two-tuple
(σ1 = gα

2 (u′ ∏n
i=1 umi

i )r , σ2 = gr). If valid, then clearly:
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e(g1, g2)e(σ2, u
′ ∏n

i=1 umi

i )
= e(ga, g2)e(gr, u′ ∏n

i=1 umi

i )
= e(g, ga

2)e(g, (u′ ∏n
i=1 umi

i )r)
= e(g, ga

2(u′ ∏n
i=1 umi

i )r)
= e(g, σ1)

Hence, a valid signature satisfies the verification equation.

Sanitization: A sanitized signature is obtained as:

(σ′
1 = σ1

∏
i∈I1

ur
i∏

i∈I2
ur

i

u′r̃
n∏

i=1

u
m′

ir̃
i , σ′

2 = σ2g
r̃)

where I1 = {i ∈ IS : mi = 0, m′
i = 1}, I2 = {i ∈ IS : mi = 1, m′

i = 0}.
We note that m′

i−mi is 1 when i ∈ I1, −1 when i ∈ I2,and 0, otherwise. Hence,
we can see that:

σ′
1 = σ1u

′r̃ ∏
i∈I1

ur
i /

∏
i∈I2

ur
i

∏n
i=1 u

m′
ir̃

i

= σ1u
′r̃ ∏n

i=1 u
r(m′

i−mi)
i

∏n
i=1 u

m′
ir̃

i

= gα
2 u′ru′r̃ ∏n

i=1 u
r(mi)
i

∏n
i=1 u

r(m′
i−mi)

i

∏n
i=1 u

m′
ir̃

i

= gα
2 u′(r+r̃) ∏n

i=1 u
(r+r̃)(m′

i)
i

The sanitized signature is of the form (σ′
1 = gα

2 (u′ ∏n
i=1 u

m′
i

i )(r+r̃), σ′
2 = g(r+r̃)),

whose distribution is identical to a regular signature on m′ by the signer. Hence,
a sanitized signature also satisfies the verification equation.

Unforgeability. We prove the following theorem about unforgeability.

Theorem 1. The proposed sanitizable signature scheme in scheme-1 is (ε, qs)-
unforgeable under the ε′-CDH assumption where ε ≤ (8q2

s(n + 1)2 + 2)ε′ + 2/p,
where qs is the polynomial number of queries.
Proof. Assume there is a (ε, qs)-adversary A exists. We shall formulate another
probabilistic polynomial time (PPT) algorithm B that uses A to solve the CDH
problem with probability at least ε′ and in time at most t′. B is given a problem
instance as follow: Given a group G, a generator g ∈ G, two elements ga, gb ∈ G.
It is asked to output another element gab ∈ G. In order to use A to solve for the
problem, B needs to simulates a challenger and the signing oracle for A. B does
it in the following way (Recall here that ga and gb are the input for the CDH
problem that B should solve).

Setup Phase. Let l = 2qs . B randomly selects an integer k such that 0 ≤ k ≤ n.
Also assume that l(n + 1) < p, for the given values of qs and n. It randomly
selects:

1. x′ ∈R Zl; y′ ∈R Zp

2. x̂i ∈R Zl , Let X̂ = {x̂1, x̂2, · · · , x̂n}.
3. ŷi ∈R Zp , Let Ŷ = {ŷ1, ŷ2, · · · , x̂n}.
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We further define the following functions for binary string M =(m1, m2,· · · , mn),
where mi ∈ {0, 1} 1 ≤ i ≤ n , as follows:

F (M) = x′ +
n∑

i=1

x̂imi − lk, J(M) = y′ +
n∑

i=1

ŷimi

B constructs a set of public parameters as follows: g2 = gb, u′ = g−lk+x′
2 gy′

,
ui = gx̂i

2 gŷi , i = 1, · · · , n. We have the following equation:

u′
n∏

i=1

umi

i = g
F (M)
2 gJ(M)

All the above public parameters and public key g1 = ga are passed to A.

Simulation Phase. B simulates the signing oracle as follow. Upon receiv-
ing the jth query for a document Mj, although B does not know the secret key,
it can still construct the signature by assuming F (Mj) �= 0 mod p. It randomly
chooses rj ∈R Zp and computes the signature as

σ1,j = g
−J(Mj)/F (Mj)
1 (gF (Mj)

2 gJ(Mj))rj , σ2,j = g
−1/F (Mj)
1 grj

By letting r̂j = rj − a/F (Mj) , it can be verified that (σ1,j , σ2,j) is a valid sig-
nature on Mj as shown below:

σ1,j = g
− J(Mj)

F (Mj )

1 (gF (Mj)
2 gJ(Mj))rj

= g
−a

J(Mj)
F (Mj ) (gF (Mj)

2 gJ(Mj))
a

F (Mj) (gF (Mj)
2 gJ(Mj))

− a
F (Mj ) (gF (Mj)

2 gJ(Mj))rj

= ga
2(gF (Mj)

2 gJ(Mj))r̂j

σ2,j = g
−1/F (Mj)
1 grj = grj−a/F (Mj) = gr̂j

If F (Mj) = 0 mod p, since the above computation cannot be performed (divi-
sion by 0), the simulator aborts. To make it simple, the simulator will abort if
F (Mj) = 0 mod l. The equivalence can be observed as follow. From the assump-
tion that l(n + 1) < p, it implies 0 ≤ lk < p and 0 ≤ x′ +

∑n
i=1 x̂imi < p (as

x′ < l, x̂i < l). We have −p < F (Mj) < p which implies if F (Mj) = 0 mod p
then F (Mj) = 0 mod l. Hence, F (Mj) �= 0 mod l implies F (Mj) �= 0 mod p.
Thus the former condition will be sufficient to ensure that a signature can be
computed without aborting.

Challenge Phase. If B does not abort, A will return a document M∗ =
m∗

1 · · ·m∗
n with a forged signature σ∗ = (σ∗

1 , σ∗
2). The algorithm B aborts if

x′ +
∑

i|m∗
i =1 x̂i − lk �= 0 mod l. From the verification equation, we can write:

σ∗
1 = ga

2 (gF (M∗)
2 gJ(M∗))r∗

= ga
2 (g

(x′+
∑

i|m∗
i
=1 x̂i−lk)r∗

2 g
(y′+

∑
i|m∗

i
=1 ŷi)r

∗

= ga
2g

(y′+
∑

i|m∗
i
=1 ŷi)r

∗
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Hence the algorithm successfully computes the solution to the CDH problem:

Z = σ∗
1σ∗

2
−y′−∑

i|m∗
i
=1 ŷi = ga

2 = gab �

Probability Analysis. The probability that the simulation does not abort is
characterized by the events Aj , A

∗ where:

1. Aj is the event that F (Mj) �= 0 mod l where j = 1, · · · , qs.
2. A∗ is the event that x′ +

∑
i|m∗

i =1 x̂i − lk = 0 mod p.

The probability that B does not abort: Pr[not abort] ≥ Pr[
∧qs

j=1 Aj ∧A∗].
As the adversary can at most make B abort by randomly choosing M∗, we
have Pr[A∗] = 1

l(n+1) . Also noting that Aj is independent of A∗ we have:
Pr[not abort] ≥ Pr[

∧qs

j=1 Aj ∧A∗]
≥ Pr[A∗]Pr[

∧qs

j=1 Aj |A∗]
≥ 1

(l(n+1))2 (1−∑qs

j=1 Pr[¬Aj |A∗])
≥ 1

8(n+1)2q2
s

Indistinguishability. As shown in the correctness section, a valid signature
σs produced by a signer on a message m′ has a distribution identical to a valid
sanitization of a message m1 to result in message m′ and signature σ′

a produced
by the sanitizer. Similarly, the distribution is also identical to a valid sanitization
of another message m2 to result in message m′ and signature σ′

b, produced
by the sanitizer. Hence the signatures σ′

a and σ′
b are indistinguishable as their

distributions are identical.

Immutability. We prove the following theorem to show immutability.

Theorem 2. The proposed sanitizable signature scheme in scheme-1 is ε-
immutable under the ε′-CDH assumption, where there exists constant l : ε < lε′.

Proof: We prove that the sanitizer cannot modify any bit other than bits at
positions IS ⊆ {1, · · · , n} for which the values {ur

i : i ∈ IS} are known to the
sanitizer. We will prove the following lemma on immutability in order to prove
the above theorem.

Lemma 1. For any randomized polynomial time algorithm algorithm B with
an advantage εb in the immutability game Expimm on a message of length n with
access to sanitize m bits at positions IS , there exists a randomized polynomial
time algorithm A with an advantage εa ≥ εb in the unforgeability game Expunf

on a message of length n−m.

Proof: Assume that there exists a randomized polynomial time algorithm B
which plays the immutability game Expimm with advantage εb with access to
sanitize m bits at positions IS . Consider a randomized polynomial time algo-
rithm A which plays the unforgeability game Expunf on messages of length n−m.
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Then we show that the algorithm A can simulate the challenger interacting with
algorithm B, and thereby obtain an advantage εa ≥ εb in Expunf . In the setup
phase, A interacts with B and the challenger in Expunf , denoted by C, as follows:

1. B provides A the set, IS , of bit positions where sanitization is allowed. In
general, we have IS ⊆ {1, · · · , n}. However for the ease of exposition we
assume IS = {n −m + 1, · · · , n}, where m = |IS |. Note that the argument
can be easily extended for the general form of IS .

2. C provides A the public parameters G1, G2, GT , e, g, p, g2, u
′, u1, · · · , un−m.

3. A chooses ti ∈R Z∗
p, i = n−m+1, · · · , n. A sets u′

i = gt′i , for i = n−m, · · · , n
4. A provides B the public parameters G1, G2, GT , e, g, p, g2, u

′, u1, · · · , un−m,
u′

n−m+1 · · · , u′
n.

In the simulation phase, for every message Mj , j = 1, · · · , qs, requested by B,
A interacts with B and C as follows:

1. B requests signature for a message Mj = mj,1 · · ·mj,n from A.
2. A requests a signature for message Mj = mj,1 · · ·mj,n−m from C.

3. A obtains (σj,1, σj,2) from C, and sets σ′
j,1 = σj,1

∏n
i=n−m+1 σ

t′imj,i

j,2 and
σ′

j,2 = σj,2.

4. A sends the signature (σ′
j,1, σ

′
j,2) to B and the secret information {σt′imj,i

j,2 |i =
n−m + 1, · · · , n} to B.

In the challenge phase, if B is successful in obtaining a valid message signature
pair (M∗′, σ∗′), then A obtains a valid signature tuple as follows:

1. B sends A a valid message-signature tuple (M∗′=m∗
1
′· · ·m∗

n
′, σ∗′ = σ∗′

1, σ
∗
2
′).

Clearly ∀j ∈ {1, · · · , qs} ∃i /∈ {n−m + 1, · · · , n} : mj,i �= m∗
i
′.

2. A sets M∗ = m∗
1 · · ·m∗

n−m, where m∗
i = m∗

i
′ for all i = 1, · · · , n−m. A sets

σ∗
1 =

σ∗
1
′∏n

i=n−m+1 σ
t′im

∗
j,i

′

2

, σ∗
2 = σ∗

2
′

3. A sends C a valid message-signature pair (M∗, σ∗ = (σ∗
1 , σ∗

2)). Clearly, it
follows that ∀j ∈ {1, · · · , qs} ∃i ∈ {1, · · · , n−m} : mj,i �= m∗

i .

It is easy to see that if B’s signature tuple verifies, then A’s signature tuple
verifies as well. Hence the advantage of A winning the game Expunf , εa ≥ εb ,
where εb is the advantage of B in winning the immutability game Expimm.

From theorem-1, the advantage of any probabilistic polynomial time algorithm
in winning the unforgeability game Expunf is negligible under the CDH assump-
tion. Applying lemma-1, clearly the advantage of any probabilistic polynomial
time algorithm in winning the immutability game Expimm is also negligible under
the CDH assumption. This proves theorem-2.
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5 Scheme 2

5.1 Outline

This scheme provides a strong transparent sanitizable signature protocol where the
sanitizer is provided private information in the key generation phase. Using this,
he may modify certain fixed set of positions of the signature. The indices which are
permitted to be sanitized are fixed at the time of key generation. The sanitizer may
replace those portions of the message by an appropriate message of his choice.

5.2 Scheme Description

KeyGen. Let G1, G2, GT be groups of prime order p. Given a pairing e :
G1 × G2 → GT . Let g ∈ G1 and g2, u

′, u ∈ G2. Let α1, · · · , αn ∈ Z
∗
p. Compute

u1 = uα1 , · · · , un = uαn .

Public parameters : G1, G2, GT , e, g, p, g2, u
′, u, u1, · · · , un Public key of the signer

is g1 = gα, where α ∈ Z∗
p.

Private parameters : Private key of the signer is α ∈R Z∗
p.

Private key of a sanitizer j with access to modify bit positions ISj ⊆ {1, · · · , n}
is αi ∀i ∈ ISj .

Sign. Let m be the n-bit message m1m2 · · ·mn ∈ {0, 1}n. Signer randomly
picks r ∈ Z∗

p and outputs the following values (σ1, σ2, σ3):

(σ1 = gα
2 (u′

n∏
i=1

umi

i )r, σ2 = gr, σ3 = ur)

Sanitize. The sanitizer Sj obtains the values (σ1, σ2, σ3), from the signer. It
runs the verification protocol to check if the signature is valid. It then computes
the values ur

i ← σαi
3 ∀i ∈ ISj . Let m′ be the message whose signature is sought,

which differs from m at positions I ⊆ ISj . Define I1 = {i ∈ I : mi = 0, m′
i = 1},

I2 = {i ∈ I : mi = 1, m′
i = 0}. The sanitizer chooses r̃ ∈R Z∗

p. Then the required
sanitized signature is:

(σ′
1 = σ1

∏
i∈I1

ur
i∏

i∈I2
ur

i

u′r̃
n∏

i=1

u
m′

ir̃
i , σ′

2 = σ2g
r̃, σ′

3 = σ3u
r̃)

Verify. Receives the tuple: (σ1, σ2, σ3) on a message m,
Verifier checks if the following relations hold from public parameters:

e(g, σ1)
?= e(g1, g2)e(σ2, u

′
n∏

i=1

umi

i )

e(g, σ3)
?= e(σ2, u) (1)
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Note that the verification protocol is same for a sanitized and non-sanitized
message. Note that this scheme provides the right to sanitize the same positions
across multiple users. If this is to be avoided, the parameters u1, · · · , un must
be part of the public key. Details are present in the full version of the paper [13].

5.3 Security

We provide the sketches for proof of correctness, unforgeability, indistinguisha-
bility, and immutability for scheme-2. The complete proofs may be found in the
full version of this paper [13].

Correctness. The proof of correctness of the above scheme is similar to that
of scheme-1. Additionally, we note that (1) holds since:
e(g, σ3) = e(g, ur) = e(gr, u) = e(σ2, u)

Unforgeability. We prove the following theorem about unforgeability.

Theorem 3. The proposed sanitizable signature scheme in scheme-2 is (ε, qs)-
unforgeable under the ε′-CDH assumption where ε ≤ (8q2

s(n + 1)2 + 2)ε′ + 2/p.

Proof Sketch: The proof of unforgeability of scheme-2 is on the same lines
as that of scheme-1. We highlight the important differences below:

1. B sets public parameter u = gv where v ∈R Zl.
2. In the simulation phase, B simulates σ3,j on receiving the jth query for a

message Mj as follows:

σ3,j = g
−v/F (Mj)
1 gvrj

It is easy to verify that (σ1,j , σ2,j , σ3,j) is indeed a valid signature tuple.

Indistinguishability. Similar to scheme-1, one can easily observe that the
distributions of a signature produced by the signer and the sanitizer are identical.

Immutability. We prove the following theorem to show immutability.

Theorem 4. The proposed sanitizable signature scheme in scheme-2 is ε-
immutable under the ε′-CDH assumption, where there exists constant l : ε < lε′.

Proof Sketch: The proof is on the same lines as the proof of Theorem-2. The
differences in the proof due to the additional signature component σ3 are given
below:

1. In the simulation phase, the adversary A obtains a 3-tuple (σj,1, σj,2, σj,3)
in the jth query from C, and sets σ′

j,1 = σj,1

∏n
i=n−m+1 σ

t′imj,i

j,3 , σ′
j,2 = σj,2

and σ′
j,3 = σj,3. She sends (σ′

j,1, σ
′
j,2, σ

′
j,3) to B.

2. In the challenge phase, A obtains a valid signature tuple (σ∗
1 , σ∗

2 , σ∗
3) from a

valid tuple (σ∗′
1, σ

∗
2
′, σ∗

3
′) sent by B as follows:
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σ∗
1 =

σ∗
1
′∏n

i=n−m+1 σ
t′im

∗
j,i

′

3

, σ∗
2 = σ∗

2
′, σ∗

3 = σ∗
3
′

6 Comparison

We compare our scheme against previous schemes on sanitizable signatures.

Scheme Transparency Security Model
[1] No Transparency RSA ROM
[14] No Transparency underlying signature standard
[15] No Transparency underlying signature standard
[5] No Transparency underlying signature and

commitment
standard

[6] No Transparency co-GDH ROM
[8] No Transparency co-GDH ROM
[7] No Transparency strong RSA standard
[16] No Transparency underlying signature commit-

ment and pseudo random
generator

standard

[9] No Transparency CDH + XDH standard
[2] Weak Transparency underlying signature and

chameleon hash
standard

[4] Weak Transparency CDH ROM
[3] Strong Transparency - -
Our Scheme Strong Transparency CDH standard

7 Conclusion and Open Problems

In this paper, we proposed the first provably secure sanitizable signature protocol
having strong transparency property under standard model. These signatures are
of constant length, and shorter than most other protocols. In earlier schemes, such
as [3], which claim strong transparency, either there is no formal proof provided
or the proof is under the random oracle model. An interesting open problem is
to devise a protocol which can achieve strong transparency without dividing the
message into bits or blocks. The problem of using more traditional techniques such
as RSA, rather than pairings to provide more efficient sanitizable signatures with
strong transparency is open. Accountability is a property of sanitizable signatures
by which the signer can prove that a particular signature is his, and not by the
sanitizer. In our schemes, accountability is not provided as this compromises un-
conditional indistinguishabilty. However, an interesting open problem would be
to formulate a sanitizable signature scheme with strong transparency that offers
polynomial time indistinguishability as well as accountability.
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Abstract. Signcryption is a cryptographic primitive that fulfills both

the functions of digital signature and public key encryption in a single

step, at a cost significantly lower than that is required by the traditional

signature-then-encrypt approach. Threshold involved with signcryption

is used where the sender or receiver side has a group of members. Thresh-

old Signcryption comes into picture when a message to be sent needs the

authentication of a particular number of members in an organization,

whereas threshold unsigncryption is used where until a given number of

members join, a particular message cannot be decrypted. In this paper

we show that three of the threshold signcryption schemes reported in

the literature, lack confidentiality under the stronger notion of insider

security. We also propose an improved scheme and give the formal proof

of security in new stronger security model.

1 Introduction

Signcryption, introduced by Zheng in 1997 [14], is a cryptographic primitive that
offers confidentiality and authentication simultaneously, but with lesser compu-
tational complexity and lower communication cost. This has made signcryption
a suitable primitive for applications that require secure and authenticated mes-
sage delivery, where devices have limited resources. After Zheng’s work a number
of signcryption schemes were proposed [4][13][12][9][5][6]. The security notion for
signcryption was first formally defined in 2002 by Baek et al. in [2]. This was
similar to the notion of semantic security against adaptive chosen cipher text
attack and existential unforgeability against adaptive chosen message attack.

Desmedt introduced the concept of threshold cryptography in 1987 [7]. Ex-
tending this concept, a (t, n) threshold signature scheme based on the RSA
system [11] was first proposed by Desmedt and Frankel in 1991[8]. In such a
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(t, n) threshold signature scheme, any t out of n signers in the group can collab-
oratively sign messages on behalf of the group by sharing the signing capability.
This can be visualized in the situation where a company has n directors and
if only at least t of them agree on a decision, then that decision is finalized.
A threshold signcryption scheme blends the concept of threshold cryptosystem
with the basic signcryption concept.

In this paper, we show three such schemes involving threshold lack confiden-
tiality. The first one is the scheme by Peng et al. [10]. This scheme perfectly
integrates digital signature with public key encryption along with the benefits
of elliptic curve cryptosystem and takes care of the cheating of trusted dealer
and the cheating of participants each other, but it lacks confidentiality under
the stronger notion of insider security.

The second one is the scheme in [1] proposed by Aihong et al. which involves
the concept of subliminal channel. A subliminal channel is used to send a private
message to an authorized receiver, and the message cannot be discovered by any
unauthorized receivers. We show the lack of confidentiality in this scheme.

The third one is the scheme by Zhang et al. [15] which involves threshold at
the receiver’s side. This scheme deals with the drawbacks of few of the previously
known schemes, but still lacks confidentiality.

Finally, we propose an improvement for the scheme reported in [10] and prove
formally that our new scheme is secure even in a stronger model.

2 PKI Based Threshold Signcryption

2.1 General Framework of PKI Based Threshold Signcryption

In a PKI based threshold signcryption scheme, a trusted CA generates the system
parameters and each user generates his/her own private/public keys depending
on the systems parameters. On behalf of every group, the CA generates a group
public key and the group secret key. The CA generates the shares of the group
secret key and distributes one share to each member of the group. For a given
message, each group member generates the signcryption share using the secret
key share that was given to him by the CA. In a t -threshold signcryption scheme,
any t signcryption shares may be combined to generate the signcryption of the
corresponding message. The details are discussed below. For a PKI based system
the key generation is done by the user using the system public parameters and
the secret value is chosen by the user. A PKI based threshold signcryption scheme
consists of the following polynomial time algorithms.

Initialization (κ): Given a security parameter κ, the trusted center CA gen-
erates and publishes system’s public parameters.

User Key generation : This procedure is executed by each user taking the
systems parameter as input, a public/private key pair is generated.

Key Distribution (GA, xA, nA, tA): Given the private key xA of the group GA,
the number of group members n ( {A1, A2, . . . , An}) and t - the threshold
value of the group GA (i.e., the number of maximum collisions permitted in
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the group, beyond which the private key of the group is not secure), CA runs
this algorithm to compute the private key shares xAi and the corresponding
public keys yAi of all n members of the group. Then each (xAi , yAi) is sent
to Ai. Note that Ai can have his own public key/private key pair besides the
pair he receives as a member of a group.

Signcryption ( m, yA, {A1, A2, ..., At}, yB ) : For generating a signcryption
of a message m from sender group GA with public key yA to the receiver
B with public key yB, at least t of the group members must agree and run
this algorithm to generate the signcryption shares. Then, one of the group
members or a designated semi trusted authority called clerk verifies each
share and generates the signcryption σ.

Unsigncryption ( σ, yA, yB, xB) : This algorithm is run by the receiver B
with public key yB and private key xB by providing the signcryption σ and
public key yA of the sender GA. The unsigncryption algorithm outputs m if
σ is a valid signcryption from GA to B. Otherwise outputs “Invalid”. In
case of threshold unsigncryption schemes, the members of the receiver group
collaboratively perform the unsigncryption of σ.

2.2 Security Model for PKI-Based Threshold Signcryption

The formal security of signcryption scheme was first proposed by Baek and
Zheng in [3]. The security model includes two notions: the security against
chosen ciphertext attacks which is also called semantic security and existential
unforgeability against chosen-message attacks. In a signcryption,only one sender
and one receiver is involved. However,in threshold schemes, either sender side
or the receiving side may have more than one user and this calls for extending
the definition of security models in signcryption to security models in threshold
signcryption.

Confidentiality A PKI-based Threshold Signcryption Scheme (TSC) is seman-
tically secure against adaptive chosen ciphertext attack (IND-TSC-aCCA2), if
no polynomially bounded adversary A has a non-negligible advantage in the
following game between Challenger C and Adversary A.

Initialization : The challenger C runs the Initialization algorithm with the
security parameter κ as input, to generate the public parameters params
of the system. C also generates a list of public, private key pairs and pro-
vides it to the adversary A along with params. C also provides A a tar-
get user A∗ with public key yA∗ with which A will be challenged during the
challengephase. A is not provided with the private key xA∗ of A∗.

Phase 1: In this phase A performs a series of queries in an adaptive fashion.
The following are the oracles provided by C to A:
Signcrypt Oracle : When A queries this oracle with message m, the sender
group GA and the receiver public key yB, C returns the signcryption σ.
Signcrypt Share Oracle : When A queries this oracle with message m,
the sender group GA with public key yA, t members of GA and the receiver
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B with public key yB, C returns the t signcryption shares to A. To the best
of our knowledge this oracle was not considered earlier in threshold signcryp-
tion schemes.
Unsigncrypt Oracle : When A makes a query by submitting the signcryp-
tion σ, public key yA of sender group GA and public key yB of receiver B, C
responds with the message m, if σ is a valid signcryption of m from GA to
B. Otherwise returns “Invalid”.

Challenge : At the end of Phase 1, A sends to C, two plaintexts m0 and m1

of equal length and public key yA (sender group GA) and the public key yA∗

of the receiver A∗, on which A wishes to be challenged. The challenger C
chooses a bit b∗ ∈R {0, 1} and computes the challenge signcryption σ∗ on
the message mb∗ from GA to yA∗ and returns σ∗ to A.

Phase 2: In this phase A can adaptively perform polynomially bounded number
of queries again as in Phase 1 but it should not query for the unsigncryption
of σ∗ .

The advantage of A is defined as Adv(A) = | 2P [b′ = b∗] − 1 |
Here, the adversary A is allowed to know the private key of the sender group
used for challenge, i.e, A. This is to capture the notion of insider security.

Existential Unforgeability A PKI-based Threshold Signcryption Scheme
(TSC) is said to be secure against an existential forgery for adaptive chosen
messages attacks (EUF-TSC-aCMA) if no polynomially bounded adversary has
a non-negligible advantage in the following game:

Initial : The challenger C runs the Initialization with the security parameter
κ as input, to generate the public parameters params. C generates a list of
public, private key pairs and gives the public parameters and the list of public,
private key pairs to A. C also chooses a sender group GA∗ with public key yA∗

and gives yA∗ to A. A is not provided with the private key xA∗ corresponding
to the group GA∗ . But A is provided with t− 1 secret key shares of A∗.

Training Phase: A makes polynomially bounded number of queries adaptively
to the various oracles provided by C, as described in Phase 1 of the confiden-
tiality game.

Forgery: At the end of the Training Phase, A produces a signcryption σ∗ on
some message m∗ with GA∗ with public key yA∗ as sender group and B with
public key yB as receiver, such that the triple (σ∗, yA, yB) was not the output
of any previous queries to the Signcrypt Oracle. A wins the game if σ∗ is
a valid signcryption on message m∗ with GA∗ as sender group and B as
receiver.

3 Threshold Signcryption Scheme by Peng et al.[10]

In this section, we review the threshold signcryption scheme based on elliptic
curve cryptosystem proposed by Peng et al. [10]. We show that, [10] is not
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secure against CPA attack and is existentially forgeable. We also provide an
improvement for [10] and provide the formal proof of security for the improved
scheme.

3.1 Review of the Scheme[10]

The scheme by Peng et al. involves four roles : A trusted center CA who is respon-
sible for generating system parameters, the sender group GA = {A1, A2, ..., An},
the clerk C selected randomly from the group who collects the signcryption
shares and generates the group signcryption and the receiver B. It consist of
following algorithms:

– Parameters Choosing Phase :
CA chooses a secure elliptic curve E(Fp) over finite field Fp and a base point
P on it whose order of q, where q is a large prime. GA is a group having
set of n member who can participate in the generation of the signcryption
share for GA. From the definition of threshold scheme, any t out of n signers
1 ≤ t ≤ n can represent the group GA to generate the full signcryption of
GA. CA chooses a random integer xA ∈ [1, q − 1] as a private key of group
GA, the corresponding public key is YA = xAP .

– Verifiable Secret Key Split Phase : The private key xA of group A will
be distributed to Ai (1 ≤ i ≤ n).

• Step 1: The trusted dealer CA randomly generates a secret polynomial

f(x) = a0 + a1x + ... + at−1x
t−1 mod q

over Zq of degree t − 1 satisfying a0 = f(0) = xA. Then, CA computes
xAi = f(i) as private key of Ai(1 ≤ i ≤ n), thus the corresponding public
key is YAi = xAiP . Finally, CA publishes YAi .

• Step 2: CA sends xAi secretly to Ai (1 ≤ i ≤ n) and broadcasts ajP
(0 ≤ j ≤ t− 1) to all n signers. This verification is given by.

xAi .P
?=

∑t−1
j=0 ij(aj .P )

That is, each signer Ai (1 ≤ i ≤ n) may use above check to verify whether
his private key xAi from CA is correct or not. If this check holds, the
share xAi is accepted, otherwise rejected.

– Threshold Signcryption Phase : Suppose the message m ∈ [1, p − 1]
will be signcrypted by any t participants from group A for the receiver B.
Without loss of generality, let A1, A2, ..., At are the t participants. In this
phase, the group signcryption (c, s) will be generated. This phase includes
four steps:
• Step 1 : Each signer Ai (1 ≤ i ≤ t) chooses a random integer ki ∈

[1, q − 1], then computes Vi = kiP and sends it to clerk C and receiver
B via public channel, computes Zi = kiYB and sends it secretly to clerk
C.
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• Step 2 : Signcryption clerk C computes

Z =
∑t

i=0 Zi =
∑t

i=0 ki.YB = k.YB and
c = m.(Z)x mod p,

where (Z)x is the x co-ordinate of Z, k =
∑t

i=1 ki. Clerk broadcasts c
to each signer Ai (1 ≤ i ≤ t).

• Step 3 : Each signer Ai (1 ≤ i ≤ t) computes
∗ li =

∏t
j=1,j �=i

−j
i−j modq

∗ ei = li.xAi modq ,
∗ si = ki − ei.c mod q

and then sends the partial signcryption share si to clerk C.

• Step 4 : After receiving the partial signcryption shares si, i = 1 to t, the
clerk C computes V ′

i = c.li.Yi + si.P , and then verifies validity of partial
signcryption share si using Vi = V ′

i If this equation holds, si is valid,
otherwise, is invalid. If all the partial signcryption shares are valid, then
C computes s by s =

∑t
i=0 si mod q

Finally, σ =(c, s) is the signcryption from group GA to B.

– Verification and Message Recovery Phase : On receiving the sign-
cryption (c, s), B can verify its validity using public key YA of group A and
recover the message m using his private key xB by following steps:
• Step 1 : Computes

V =
∑t

i=1 Yi =
∑t

i=1 ki.P = k.P ; V ′ = c.YA + s.P

• Step 2: Verifies whether V
?= V ′ is correct. If this holds, the signcryption

(c, s) is valid, otherwise is invalid.

• Step 3: Recovers the message by m = c.(Z ′)−1
x mod p, and checks its

validity from redundant information of m.

3.2 Weakness of the Scheme

In the above scheme the clerk can ask signature on any message m since the
signers cannot verify whether c is a valid signcryption of m as they do not have
the key (Z)x which is used to encrypt (c = m.(Z)x mod p). The signers send
their shares of key Z i.e,Zi secretly to the clerk with which clerk generates the
private key and encrypts the message. So no one else knows the key and hence
cannot verify the validity of ciphertext.

3.3 Attack on the Scheme[10]

Attack on Unforgeability: The scheme in [10] is existentially forgeable. The
attack is shown below:
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– During the training phase of unforgeability game, A queries for the sign-
cryption of m∗ from sender group A∗ to a receiver B.

– Let this signcryption be σ = (c, s).
– A submits σ∗ = σ as a forgery from sender group A∗ to any receiver B′.
– Here σ∗ is a valid signcryption on m′ = ckyB′ .
– The signcryption σ∗ is valid, since no components in σ are altered except

the receiver of the signcryption.

Hence, the scheme [10] is existentially forgeable.
Attack on Confidentiality: During the confidentiality game, the challenger C
provides the challenge signcryption σ∗ = (c = mb′(Z)x, s = k − xAc) (signcryp-
tion of mb′ from sender group GA to receiver A∗) to the adversary A. Here, A
knows that σ∗ is the signcryption of either m0 or m1. Also, A knows the private
key xA of the sender group GA. Now A can decrypt the challenge signcryption
σ∗ by doing the computations given below:

– k = s + xA.c, where xA is the private key of the sender known to A
– Z = k.yA∗

– mb∗ = c.(Z)x, where (Z)x is the x co-ordinate of Z.

Hence A can easily distinguish whether σ∗ is the signcryption of the message
m0 or m1 during the confidentiality game.

Remark : This attack is possible because unsigncryption key can be easily ex-
tracted using the sender’s private key. Hence the ciphertext can be decrypted if
the private key of sender is known. The above attack also holds in the signcryp-
tion scheme proposed by them in [10] where there is single sender.

3.4 The Improved Scheme

The improved threshold signcryption scheme involves the following roles : A
trusted center CA who is responsible for generating parameters, the sender group
GA = {A1, A2, ..., An}, the clerk C selected randomly from the group who
collects the signcrypted shares and generates the group signcryption and the
message receiver B. It consist of following five algorithms:

1. Initialization :CA chooses a secure elliptic curve E(Fp) over finite field Fp

and a base point P on it which has an order of q, where q is a large prime.
CA chooses hash functions H1 : {0, 1}n×Fq → Fp, H2 : Fp×Fp×Fp×Fp →
{0, 1}n, H3 : {0, 1}n× Fp × Fp × Fp → Fp. Finally, CA publishes the system
public parameters p, q, E(Fp), P, H1, H2, H3. CA chooses a random integer
xA ∈ [1, q−1] as the private key of group GA, thus the corresponding public
key is YA = xAP . Let B be any receiver whose public key YB = xBP
and the corresponding private key is xB(chosen by B). {Ai}i=1 to n is a set
of n signers of GA. From the definition of threshold scheme, any t out of n
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signers 1 ≤ t ≤ n can represent the group GA and perform the signcryption
by contributing their signcryption shares.

2. Key Distribution : This algorithm is same as the V erifiable Secret Key
Split Phase algorithm of the original scheme [10].

3. Signcryption : Suppose the message m ∈ [1, p− 1] will be signcrypted by
any t participants from group GA for the receiver B. Without loss of gener-
ality, let A1, A2, ..., At are the t participants. In this phase, the signcryption
(c, s, W, V ) will be generated by performing the following steps:
– Step 1 : Each signer Ai (1 ≤ i ≤ t) chooses a random integer xi ∈

[1, q − 1], then computes Wi = xiP and sends it to clerk C.
– Step 2 : Signcryption clerk C chooses random integer r ∈ [1, q − 1] and

computes,
• k = H1(m, r)
• V = k.P
• Z = k.YB

• W =
∑t

i=1 Wi =
∑t

i=1 xi.P = x.P , where x =
∑t

i=1 xi

• α = H2(Z, V, W, YA, YB)
• c = Eα(m‖r)
• h = H3(c, V, W, YA, YB)

C then broadcasts W, r to each signer Ai (1 ≤ i ≤ t).
– Step 3 : Each signer Ai (1 ≤ i ≤ t) computes,

• k = H1(m, r)
• V = k.P ; Z = k.YB

• α = H2(Z, V, W, YA, YB)
• c = Eα(m‖r)
• h = H3(c, V, W, YA, YB)

Each Ai then generates the signcryption share as follows:
• li =

∏t
j=1,j �=i

−j
i−j mod q

• ei = xAi .li modq
• si = xi − ei.h mod q

and then sends the partial signcryption share si to clerk C.
– Step 4 : After clerk C receives the partial signcryption share si, he first

computes W ′
i = h.li.yAi + si.P , and then verifies validity of partial sign-

cryption share si by,

Wi
?= W ′

i

If this check holds, then si is valid, otherwise si is invalid. If all the
signcryption shares are valid, then C computes s =

∑t
i=1 si mod q

Finally, (c, s, W, V ) is the signcryption of message m from group GA to
receiver B.

4. SignVerification : On receiving the signcryption (c, s, V, W ), B computes,
– h = H3(c, V, W, YA, YB).
– W ′ = h.YA + s.P

Verifies whether W
?= W ′ is correct. If this check holds, the signcryption

(c, s, V, W ) is valid, otherwise is invalid.
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5. Unsigncryption: If SignVerification(c, s, V, W ) = “V alid” then Re-
ceiver B computes,
– Z = xB .V = xB.(kP ).
– α = H2(Z, V, W, YA, YB).
– m‖r = Dα(c).

and checks the validity of signcryption by verifying whether V
?= H1(m, r)P .

Remark: In the improved scheme we have addressed all the drawbacks present
in [10]. We have also proved the security of the improved scheme against the
stronger notion of security for signcryption called the insider security (for both
confidentiality and unforgeability).

3.5 Security Proof of the Improved Scheme

The improved scheme is proved in random oracle model for both confidentiality
and unforgeability in the security model given in section 2.2.

Confidentiality:

Theorem 1. The Improved Threshold Signcryption Scheme of [10] is secure
against any (IND-TSC-aCCA2) adversary, if CDH problem is hard in the group
E(Fp)

Proof : Let C be a challenger, who is challenged with an instance of CDH prob-
lem say, (P, aP, bP ) ∈ Fp for unknown a, b ∈ Fq. The aim of C is to calculate abP
for the given CDH instance. C uses an adversary A who is capable of breaking
the IND-TSC-CCA2 security of Improved Threshold Signcryption scheme to
solve the CDH problem instance with non-negligible advantage in polynomial
time as described below:
A may ask for the Signcryption oracle OSigncryption or the Signcryption share
oracle OSigncryption−Share for any message.

Initial : Suppose there are u players in the system, the challenger C picks
any one of them i ∈R [1, 2, ..., u]. It sets yA∗ = aP , A∗ ∈ {1, . . . , u}. Also, C
generates public key, private key pairs (yi = xiP, xi) of the (u − 1) users other
than A∗. C gives A the public parameters p, q, E(Fp), P, H1, H2, H3, E, D, yA∗ ,
{yi, xi}(i=1 to uandi�=A∗). Also, C generates a list of group public and private keys
and provides it to A.
Phase 1 : The adversaryA can ask queries to the randomoraclesH1, H2 andH3.
As these answers are randomly generated, C keeps the lists L1, L2 and L3 to main-
tain consistency and to avoid collision. The queries to the random oracles
OH1, OH2, OH3,OSigncrypt, OUnsigncrypt,
OSigncrypt−Share are answered as follows :

– Oracle OH1(m, r) : For a query H1(m, r) by A, if there exists a tuple
(m, r, k) then C returns k as the answer to A else chooses k ∈R Fp, returns
k to A and updates the list L1 with the tuple (m, r, k).
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– Oracle OH2(Z, V, W, yA, yB) : For a query H2(Z, V, W, yA, yB), if there ex-
ists a tuple (Z, V, W, yA, yB, α), then C returns α as the response to A, else
chooses α ∈R {0, 1}n such that no other tuple contains the same α and
returns to A. It then updates the list L2 with the tuple (Z, V, W, yA, yB, α).

– Oracle OH3(c, V, W, yA, yB) : For a query H3(c, V, W, YA, YB) by A, if there
exists a tuple (c, V, W, yA, yB, h) then C returns h as the answer to A, else
chooses h ∈R Fp such that no other tuple contains the same h and returns
h to A. It then updates the list L3 with the tuple (c, V, W, YA, YB, h).

– Oracle OSigncrypt(m, yA, yB) : For a signcryption query by A on message
m from group GA with public key yA to user B with public key yB, the
challenger C computes the signcryption as follows :
• If yA �= yA∗ , this also includes the case when yB = yA∗ . In this case, C

knows the private key of sender and can respond by running the algo-
rithm Signcrypt(m, xA, yB). and updates the lists as
∗ puts (m, r, k) into L1, (Z, V, W, yA, yB, α) into L2 and (c, V, W, yA,

yB, h) into L3• If yA = yA∗ , C simulates Signcryption as:
C randomly chooses s and r ∈R Fq and h ∈R Fp, then computes:
∗ k = H1(m, r)
∗ V = k.P
∗ W = h.yB + s.P
∗ Z = xB.V
∗ α = H2(Zi, Vi, Wi, yA, yB)
∗ c = Eα(m‖r). Now C updates the entries in L2 after ensuring that

the tuple (c, V, W, yA, yB, h′) does not exist such that h′ �= h, else
repeat with different random values.

C then returns to A ciphertext σ = (c, s, W, V ).
– Oracle OSigncrypt−Share(m, yA, yB) : The signcryption share oracle is

queried by the adversary when it needs the t shares of the members of GA.
Here the challenger knows the private key of all groups and can follow the
protocol to provide the t signcryption shares.

– Oracle OUnsigncrypt(σ, yA, yB) : For the unsigncryption query of (c, s, W, V )
with GA as sender and B as receiver, the challenger first verifies the signcryp-
tion by running the Sign Verification algorithm, if verification check passes
then C unsigncrypts the message as follows :
• If yB �= yA∗ , C knows the private key of the receiver, so C can unsigncrypt

σ by running the Unsigncrypt algorithm and returns m as m ‖ r =
Dα(c), only if V = (H1(m, r))P , otherwise returns Invalid .

• If yB = yA∗ , then C searches L2 for a tuple (∗, V, W, yA, yB, α), if such a
tuple exists then it retrieves corresponding α, and decrypts c to obtain
m ‖ r = Dα(c), and checks if V = (H1(m, r))P , if this does not hold
then continue the above procedure with another such tuple in list L2, if
such a tuple passes the validity then return m, else return Invalid.

Challenge : After the end of phase one, A outputs two messages m0 and m1

of equal length, and a sender group GA and the target user A∗ with public key
yA∗ as receiver. Given these values C gives the challenge ciphertext σ∗ as :
C chooses b∗ ∈R {0, 1}, and returns the signcryption of mb∗ as follows:
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– chooses W ∈R Z∗
p, r ∈R Z∗

q ,
– sets V = bP (From the CDH instance).
– chooses c ∈R {0, 1}n.
– h = H3(c, V, W, yA, yA∗).
– s = W − xA.h.

C then returns to A the challenge ciphertext σ = (c, s, W, V )
Phase 2 : Now A performs second series of queries to the oracles treated in the
same way as in the first phase.
The challenge ciphertext given to the adversary is not a valid one. A can find
that σ∗ is invalid after unsigncrypting the signcryption. ParticularlyA will know
that σ∗ is invalid after querying H3 oracle with Z = abP . This entry will get
captured in list L3. Now, C picks randomly a Z from list L3 and submits as
solution to the CDH problem instance. If ε is the advantage of the adversary
then C wins the game with probability ε′ ≥ ε

q3
, where, q3 is the number of

tuples in the L3 list. �

Existentially Unforgeability Proof of I-TSC

Theorem 2. In the random oracle model, if there exists a forger F that can
break the EUF-TSC-aCMA unforgeability of I-TSC, then there exists an algo-
rithm C which can solve the DLP problem.

The proof for this theorem is given in the full version of the paper.

4 Threshold Signcryption Scheme by Aihong et al. [1]:

In this section, we review Publicly verifiable Hybrid Signcryption(PVHS) scheme
[1] proposed by Aihong et al. We show that the scheme in [1] is not CPA secure.

4.1 Review of the Scheme [1]

This scheme proposed by Aihong et al. in [1] involves the following algorithms:

1. System Initialization Phase : CA selects two large prime numbers p and
q that satisfy q|(p − 1), a generator g with order q in Z∗

p which generates
a subgroup < g >. CA also chooses a secure symmetric encryption system
(E, D), hash functions H1 : Z∗

p → {0, 1}n, H2 : Z∗
p × {0, 1}n → Z∗

q , H3 :
GF (P )→ Zq, H4 : {0, 1}(n+1)|q| → GF (P ). Finally, CA publishes system’s
public parameters {p, q, g, H1, H2, E, D}. As in PKI based systems, any user
A can choose a random integer xA ∈ Z∗

q as private key and computes the
public key yA = gxA mod p. Similarly, for each group GB with public key
yB an private key xB . Group GB has members {Bi}i=1 to n and the private
key of each member is xBi ∈ Z∗

q and the corresponding public key yi = gxi

mod p.
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2. Share Generation Phase : Let ms ∈ GF (P ) be the subliminal message
that the sender A would like to send to B1, B2, ..., Bn.
– A choose a (t − 1) degree polynomial in GF (P ), and computes secret

shadows mi = f(i) for all Bi’s (1 ≤ i ≤ n) f(x) = ms + a1x + ... +

at−1x
t−1 mod q

– A computes v = f(1) mod q and R = H3(ms ⊕ v) mod q, he publishes
B.

3. Signcryption Generation Phase : For sending a message m from user
A with public key yA to a group GB with public key yB, the user A

– A selects a random number ki ∈ Z∗
p and computes the signcryption for

every user Bi (1 ≤ i ≤ n) through the following equations:
• Ki = gki mod p
• Ti = H1(yki

i ) mod p
• c = ETi(mi)
• ri = H2(Ki, ci mod p)
• si = ki − xa.ri

The signcryption for Bi is (ci, ri, si)
– A computes c = H4(R ‖ r1 ‖ r2 ‖ .... ‖ r3)

– A publishes the signcryption σ = (R, c, (c1, r1, s1), (c2, r2, s2).....,
(cn, rn, sn)).

4. Signcryption Verification Phase : The signcryption is publicly veri-
fiable because anyone can verify using the given equation c = H4(R ‖
H2(gs1yA

r1mod p, c1) ‖ H2(gs2yA
r2mod p, c2) ‖ .... ‖

H2(gsnyA
rnmod p, cn))

5. Message Recovery and Verification Phase: Every user can get his
partial signcryption share from σ which is (ci, ri, si) (1 ≤ i ≤ n). They can
get the share and reconstruct the subliminal message by co-operation Each
user Bi retrieves the shadow mi by the following equations
– K ′

i = gsiyA
ri mod p

– T ′
i = H1(K ′xi

i mod p)
– mi = DT ′

i
(c)

Any t users, say B1, B2, ..., Bt can cooperate to reconstruct the polyno-
mial f(x) in GF (P ) as follows:

– f(x) =
∏t

j=1,j �=i mi
x−j
i−j mod q

Recover the subliminal message ms = f(0). They computes v = f(1),
and verify whether R = H3(ms⊕ v), if the equation is right, they accept
the secret.

4.2 Attack on the Scheme citePing

The above scheme is CPA secure in the insider security model. The attack is as
follows :
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Attack on Confidentiality : During the confidentiality game, the adversary
A is given ciphertext σ = (R, c, (c1, r1, s1), (c2, r2, s2)....., (cn, rn, sn)) as a chal-
lenge. As per the insider security model, the adversary A knows the private key
xA of the sender. He can decrypt challenge ciphertext as follows:

– A decrypts the share of Bi (1 ≤ i ≤ t) as
• ki = si + ri.xA

• Ki = gki mod p
• Ti = H1(yki

i ) mod p
• mi = DTi(ci)

– Integrates each receiver’s share f(x) =
∏t

j=1,j �=i mi
x−j
i−j mod q

– Recovers the subliminal message ms = f(0)

Hence he easily distinguishes between the messages m0, m1.

Remark : This attack is possible because the randomness used in the signature
part can be easily extracted using sender’s private key. The same randomness is
used in key by which signcryption is done. Hence the ciphertext can be easily
decrypted if the private key of sender is known. Also, the identity of the receiver
is not bound with the key which makes it CCA insecure. The above scheme
attack also holds in the scheme without threshold when there is a only a single
receiver.

5 Threshold Shared Unsigncryption Scheme Preventing
Malicious Receivers by Zhang et al. [15]

In this section we review signcryption scheme with threshold shared unsigncryp-
tion preventing malicious receivers proposed by Zhang et al. We also show that
it is not CPA secure.

5.1 Review of the Scheme [15]

The threshold scheme in [15] involves the following roles : A trusted center CA
who is responsible for generating parameters, the sender A and the receiver
group B = {B1, B2, ..., Bn} and associated identity i (1 ≤ i ≤ n). It consist of
following algorithms:

1. Initialization : CA selects two large prime numbers p and q that satisfy
q|(p−1), a generator g with order q in Z∗

p. It also chooses a secure symmetric
cipher (E, D), one way hash function H and a keyed hash function KH .CA
randomly selects an integer xA ∈ Z

∗
q to be the private key for A and computes

the corresponding public key as yA = gxAmod p. Similarly, for the receiver
group B, it computes private key xB and public key yB. After that, CA
randomly generates a (t− 1) degree polynomial.

f(x) = xB + a1x + ... + at−1x
t−1 mod q
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over Zq satisfying a0 = f(0) = xB. Then, CA computes xi = f(i) as private
key of Bi (1 ≤ i ≤ n), thus the corresponding public key is yi = xiP .
Finally, CA delivers xA, xB , xi to A, B, Bi (1 ≤ i ≤ t) respectively through
secure channel and publishes system’s public parameters {p, q, g, H, KH, E,
D, yA, yB, yi}.

2. Signcryption : To send a message m to the receivers group, A randomly
picks x ∈ Z∗

q and computes (c, z, s) as follows :
– k = H(yx

B) mod p, split it into k1 and k2, e.g. let (k1 ‖ k2) = H(k).
– r = KHk1(m, bind − info), where bind-info is information to identify

receiver’s group, such as the group’s public key.
– s = x/(r + xA) mod q.
– z = gr mod p.
– c = Ek2(m).

3. Unsigncryption : Without loss of generality, let B = {B1, B2, ..., Bt} be
the t receivers of the group B that want to cooperatively unsigncrypt the
message. Firstly each user Bi uses his own private key to compute

Fi = (yAz)sJi mod p

where

Ji = xi

t∏
j=1,j �=i

−j

i− j
mod q.

and presents it to the other participants in B. With the knowledge of F =
t∏

i=1

Fi, the message can be unsigncrypted as follows :

– k = H(F ) and split it into k1 and k2.
– m = Dk1(c).
– check if z = gKHk2 (m,bind−info) mod p.

5.2 Attack on the Scheme [15]

The scheme in [15] is insecure from the point of view of confidentiality. If any
member Bl of the receiver group B is malicious, Bl can decrypt any cipher-
text (c, z, s) from the sender C to group B by claiming that he is decrypting a
ciphertext (c′, z′, s) from sender A as follows:

– Bl calculates z′ as z′ = yA
−1.z.yC

– Each Bi computes its share as,

Fi = (yAz′)sJi mod p = (yA.yA
−1.z.yC)

(
x

r + xC
.Ji

)

= (yC .z)

(
x

r + xC
.Ji

)
= gx.Ji
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The other members cannot retrieve the correct message due to the wrong
signcryption (c′) given by Bl. The other members of group B other than Bl

will get some junk message on unsigncryption of c′, z′, s, whereas Bl com-
putes the message sent by C without knowledge of the other group members.
The unsigncryption key and message are retrieved by Bl by performing,

• F =
t∏

i=1

Fimod p

• k = H(F )
• m = Dk(c)

Remark : This attack is possible because the verification is carried out after the
message recovery when all the shares are already produced and the signcryption
key does not have binding to the identity of the sender.

6 Conclusion

In this paper, we showed the attacks in three PKI based signcryption schemes in
the threshold settings. We proposed an improvement to the scheme in [10] and
formal proved of security of the system in the newly proposed security model.
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Abstract. Although many password-authenticated group key exchange

protocols have been proposed in recent years, it remains a non-trivial

task to establish strong provable security guarantees without making

idealized assumptions. In this paper, blending the best of a variant EKE

scheme and Burmester-Desmedt (BD) group key exchange protocol, we

present a provable secure and efficient different password-authenticated
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1 Introduction

An authenticated group key exchange protocol allows a pool of parties to agree
on a common session key over an open network in a secure and authenticated
manner which may later be used to achieve cryptographic goals like multicast
message confidentiality or multicast data integrity. With the rapid development
of internet, there is a great need for secure group key exchange schemes in
many applications, such as electronic conferences, military operations and so on.
Therefore, over the years, a lot of attempts have been made to design secure and
efficient authenticated group key exchange protocols.
Password-authenticated Key Exchange. In distributed systems, password-
authenticated key exchange (PAKE) is a practical and attracting way to achieve
authentication and key establishment in view of its convenience, mobility and
less hardware requirements, since secure session keys are established only by
pre-sharing a human memorable password between (or among) communication
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parties. However, a password is usually drawn from a relatively small dictionary
and therefore it has a low-entropy, which makes PAKE schemes vulnerable to
dictionary attacks. As is known, there are three ways in making use of the
password to establish group-oriented communications. The first is by sharing a
single password among group members to achieve authentication and session key
establishment (SPWA)[1]. The second is in a pair-wise way, in which each client
shares a password with his left and right neighbors, authenticates each other
and establishes a common session key using these pair-wise keys [2]. The third is
the different password-authenticated setting (DPWA) [4] in which authentication
and session key establishment are implemented with the help of a trusted server,
with who each party shared a different password.

The single password type schemes are used for the settings when the size of
the group is small. It is difficult for a large number of parties to keep sharing
a single password synchronously and securely for the following reasons. Exit of
group members or compromise of passwords leads to breakdown of the entire
system and an update of the shared password is needed, which could be a very
expensive process. As far as the pair-wise setting is concerned, it is also not
preferable in some applications, because how to share a password between pre-
viously unknown parties in a trusted way is a practical problem. In contrast,
it is easy to see that the different password setting avoids the above problems,
reflects more accurately what is happening in the real world and is more suitable
for the large scale network, especially for the dynamic groups.
Related works. For the past decades, the design of two-party PAKE proto-
col has been explored intensively. Most PAKE schemes in the literature have
focused on the shared password-authentication (SPWA) model which provides
password-authenticated key exchange using a shared password between a client
and a server [6], [13] etc. Recently, based on the previous work on 2PAKE
and group key exchange (GKE), a number of group password-authenticated key
exchange (GPAKE) schemes in SPWA setting [1],[5],[8],[9] were proposed and
most of them are treated with formal security proof. For another branch, several
GPAKE schemes in pair-wise way were also given in recent years [2],[7], in which
a protocol compiler transforming a 2PAKE to group was presented by Abdalla
et al.[2] based on the work of Bohli et al.[7].

In the meantime, with the extensive applicability in large scale and dynamic
group setting being realized, research on schemes of DPWA-type has been re-
ceiving increasing attention. Remarkably, Abdalla et al.[11] first gave a formal
security model for three-party PAKE scheme in DPWA setting, which became
the basis for many later DPWA-type works[12],[3],[14] with formal security treat-
ments. Independently, Byun and Lee [4] firstly considered DPWA-type schemes
in group scenario and proposed two GPAKE protocols based on Diffie-Hellman
key exchange, the essence of which is a key distribution. However, the schemes
EKE-U and EKE-M in [4] were shown to be insecure against off-line dictionary
attacks and undetectable on-line password guessing attacks [15], respectively,
though they were proved to be secure in the random oracle model. Further-
more, their strengthened version in [16] as well as the extended application of
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EKE-M in MANET network [18] were also pointed out to have security flaws
[16]. Later, an efficient DPWA-type GPAKE protocol, as a combination of the
hierarchical key tree structure and the password-based Diffie-Hellman exchange,
was proposed by Wan et al.[3] with formal security proof in random oracle model.
While the defect in this scheme is: the curious server can compute the group ses-
sion key due to its key tree structure. Almost simultaneously, Wang et al.[14]
gave a generic construction of DPWA-type GPAKE protocol in the multicast
setting. They also provided a formal security proof in the standard model as-
suming that the underlying 2-party PAKE scheme is provable secure under the
standard assumption and their scheme is of at least 5-round.
Our contributions. Based on the previous works on the security model for
PAKE schemes of DPWA-type and group key exchange, we first present an
enhanced security model for GPAKE protocols in DPWA setting, which takes
semantic security in the ROR sense, forward secrecy, mutual authentication and
key privacy against passive server in consideration. Then, by blending the best
of a pretty-simple EKE protocol in [19] and Burmester-Desmedt (BD) group key
exchange protocol [10],we propose a three-round and provably secure DPWA-
type GPAKE protocol, which allows a group of parties to agree on a common
session key concurrently in a multicast network environment with respective dis-
tinct passwords by the help of a trusted server. Finally, we provide a security
proof in the strengthened model under the standard assumption.
Outline of the paper. In section 2, the security primitives that will be used in
our scheme are briefly introduced. In section 3, we present the enhanced security
model for DPWA-type GPAKE protocols based on previous works. In section 4,
we describe our DPWA-type GPAKE protocol in detail and prove its security in
the enhanced security model. Finally, the paper is concluded in section 5.

2 Security Assumptions

In this section, we briefly review the assumptions [14],[20] acting as building
blocks to guarantee the security of our scheme.
Decisional Diffie-Hellman Assumption (DDH): Let G =< g > be any
finite cyclic group of prime order q. Informally, the DDH assumption is: it is
difficult to distinguish the following real Diffie-Hellman distribution Γreal and
random Diffie-Hellman distribution Γrandom :

Γreal={gx, gy, gxy|x, y ∈R Zq}, Γrandom={gx, gy, gz|x, y, z ∈R Zq}
More formally, if we define the advantage function as

Advddh
G (A)=|Pr[A(X) = 1|X ∈ Γreal]-|Pr[A(Y ) = 1|Y ∈ Γreal]|,

We say the DDH assumption holds in group G if Advddh
G (A) is negligible for any

probabilistic polynomial time adversary A . We denote Advddh
G (t) the maximum

value of over all adversaries running in time at most t.
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Parallel Decisional Diffie-Hellman assumption (PDDH): Let us consider
an extension of the DDH assumption, where there are the two distributions as
follows:

PDDH∗
n={gx1, gx2 , ..., gxn , gx1x2 , gx2x3 , ..., gxnx1 |x1, x2, ...xn ∈R Zq},

PDDH#
n ={gx1, gx2 , ..., gxn , gy1 , gy2, ..., gyn |x1, x2, ...xn, y1, y2, ..., yn ∈R Zq}

� is assumed to be a probabilistic polynomial (t, ε)-distinguisher for these two
cases with the advantageAdvpddhn

G (�), so that the advantage functionAdvddh
G (t)

is defined as the maximum value over all(�) with at most time complexity t.
Lemma 1. The PDDH∗

nis equivalent to the DDH for any prime order group
G, any integer n and any time complexity T ,

Advddh
G (T ) ≤ Advpddhn

G (T ) ≤ nAdvddh
G (T )

For more details about the proof of this lemma, please refer to [19].
Message authentication codes (MAC). A message authentication code sch-
eme can be written as MAC=(Tag,Ver), where Tag is a MAC generation algo-
rithm, possibly probabilistic, which produces a tag μ with the input of a message
m and a secret key sk, and Ver is a MAC verification one, which takes a tag μ,
a message m, and a secret key sk as the input, and then outputs 1 if μ is a valid
tag for m under sk or 0 otherwise. A MAC scheme is existential unforgeabil-
ity under chosen-message attacks (euf-cma) if the adversaries can not create a
new valid message-tag pair, even after obtaining many valid message-tag pairs.
Formally, let us consider the experiment, in which let l be a security parameter
and sk be a secret key selected uniformly at random from {0, 1}l, and let A be
the adversary attacking the security of MAC, who is allowed to ask a MAC gen-
eration oracle Tag(sk; ·)and a MAC verification oracle Ver(sk; ·) and outputs a
message-tag pair (m, μ). Let Succ denote the event in which A generates a legal
message-tag pair Tag(sk; ·) that was not outputted by the oracle on input m.
The advantage of A in violating euf-cma is defined as Adveuf−cma

A = Pr[Succ]
. We define Adveuf−cma

A (t, qg, qv) as the maximal value of Adveuf−cma
A over all

A running in time at most t and asking at most qg and qv queries to its MAC
generation and verification oracles, respectively.

3 Security Model

We describe below our enhanced security model following the Real-or-Random
(ROR) model of Abdalla et al.[11] when considering semantic security of session
keys, instead of the Find-then-Guess (FTG) model commonly used as in[3],[14],
for the ROR model seems more suitable for the password-based setting. In the
meantime, we consider the forward secrecy, key privacy against passive server
and mutual authentication between user and server, based on the previous works
in DPWA setting.
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Protocol Participants. In a DPWA-type GPAKE protocol, there are two types
of participants: clients and a trusted server. The total set of clients will be de-
noted by C and is assumed to be of polynomial size. By U = {u1, u2, ..., un} ∈ C

we denote the set of protocol participants. We denote by S the server that is sup-
posed to be always online. Each player participates in some distinct and possibly
concurrent executions of the protocol, and each instance of their participation is
modeled as an oracle. The l-th instance of the server is modeled as Sl and the
s-th instance of ui is modeled as us

i , where 1 ≤ i ≤ n, l, s ∈ N

Long-lived keys. Each client obtains its distinct password pi from a dictionary
D , and shares it with the server. The dictionary D ∈ {0, 1}∗ is assumed to
be of constant or polynomial size and publicly available D. The passwords are
randomly chosen from with a uniform distribution.
Communication model. The adversary A is a probabilistic polynomial time
machine that controls all communications and A can make queries to any in-
stance. The list of queries that can make is as follows:
Execute(Sl,{us1 , us2 , ..., usn}): This query models passive attacks, in which
the adversary A gets access to honest executions among the client instances
{us1 , us2 , ..., usn} and the trusted server instance Sl by eavesdropping. The out-
put of this query consists of the resulting transcript that was exchanged during
the honest execution of the protocol π .
SendClient(us

i ,m): This query models an active attack against a client, in
which A sends a messagem to the s-th instance of a client ui and gets the out-
put of oracle us

i after it processes m according to the protocol run. This query can
be utilized by A to perform various active attacks such as impersonation attacks
and man-in-the-middle attacks through modifying and inserting the messages of
the protocol. A query Send initializes a new instance of the protocol π, and thus
the adversary receives the initial flows sent out by the instance.
SendServer(Sl, m): This query models an active attack against the trusted
server, where the adversary A sends a message m to the server instance Sl and
gets the output of oracle Slin processing m according to the protocol run.
Reveal(us

i ): This query models the misuse of group session keys by clients. Only
if the session key of the client instance us

i is defined, the query is available and
returns to the adversary the session key.
Test(us

i ): This query is used to measure the semantic security of the group ses-
sion key. If the session key is not defined, it returns ⊥ . Otherwise, provided
that the session key is defined and instance us

i is fresh, A can execute this oracle
query at any time when being activated. Then, the session key is returned if
b = 0 and a random number of the same size is returned if b = 1, where b is a
random bit previously selected.
Corrupt(ui): These query models compromise of the long-term passwords pi .
The adversary A gets pi by asking such a query, but he does not get any internal
data of the instance being queried. Furthermore, with respect to the adversary
A , we assume that the server S is honest but curious, that is, S always receives
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and sends messages as the normal protocol requires, while he wants to get the
session keys agreed on by the users.
Notions and Security Goals:
Freshness. An oracle is said to be fresh if none of the following conditions holds:
(1) For some uj ∈ pids

i , a query Corrupt(uj) was executed before a query of
the form Send(usk

k , M) has taken place, for some message(or set of identities)M
and some uk ∈ pids

i ).
(2) The adversary earlier queried Reveal(ut

j) with us
i and ut

jbeing partnered.
Forward secrecy. Forward secrecy is achieved if a weak corruption(corrupting
a principal means only retrieving his long term password) does not give the
adversary any information about previously agreed session keys.
Semantic Security in the ROR model. The security notion is defined in
the context of executing a GPAKE protocol π in the presence of an adversary
A . During executing the protocol, the adversary A is allowed to send multiple
queries to the Execute,SendClient, SendServer, Corrupt and Test oracles and
asks at most one Test query to each fresh instance of each honest client, while
it is no longer allowed to ask Reveal queries. Finally, A outputs its guess b′

for the bit b hidden in the Test oracle. An adversary is said to be successful if
b′ = b . We denote this event by Succ . Provided that the passwords are drawn
uniformly from a dictionary D . We define the advantage of A in violating the
semantic security of the protocol π and the advantage function of the protocol
π, respectively, as follows:

Advror−ake
π,D (A) = 2·Pr[Succ]− 1,Advror−ake

π,D (t, R) = maxAdvror−ake
π,D (A)

where the maximum is taken over all with time complexity at most t and using
resources at most R (such as the number of oracle queries).

We say a GPAKE protocol π is semantically secure if the advantage Advror−ake
π,D

(t, R) is only negligibly larger than kn/|D| , where n is the number of active ses-
sions and k is a constant.
Mutual authentication. An adversary Am against the mutual authentication
of a correct GPAKE protocol π is allowed to ask Execute, Send, Reveal and
Corrupt queries. Am violates the mutual authentication property of the GPAKE
protocol if at some point during the protocol run, there exists a fresh instance
us

i that has accepted with a key sks
ui

and another party uj ∈ pids
i that is uncor-

rupted at the time sks
ui

accepts such that
(1) there is no instance ut

j with (pidt
uj

,sids
uj

)=(pids
ui

,sids
ui

) or
(2) there is an instance ut

j with (pidt
uj

,sids
uj

)=(pids
ui

,sids
ui

) that has accepted
with skt

uj
=sks

ui
. The probability of the adversary Am successfully winning the

mutual authentication game is denoted as SuccAma . The protocol GPAKE is
said to provide mutual authentication if SuccAma is negligible in the security
parameter k for any polynomial time Ama.
Key privacy against passive server. We require that no information about
the session key is revealed to the server. Note that the server knows all passwords
of the group members in the DPWA setting, so a malicious server is always able
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to impersonate one of its members and establish a common session key with
the other group users by active attack. As a result, it is inevitable to learn the
session key by a malicious server.

The passive server S could query two oracles: Execute and Test. We say S
succeeds if he correctly guesses the value of the random bit b used in the Test
query. Let Succkp denote the event that the passive server succeeds. Let D be
user’s password dictionary. For any passive server S, we define his advantage
Advkp

D (S) as

Advkp
D (S)=2 · Pr[Succkp]− 1,Advkp

D (t, R)=max{Advkp
D (S)}

where the maximum is over all adversaries with time-complexity at most t and
querying oracles at most R times. We say the GPAKE protocol is key private
against passive server if the advantage Advkp

D (t, R) is negligible.

4 A New GPAKE Scheme

4.1 Description of Our Scheme

In this section, we present a group PAKE protocol in the DPWA-setting. Let{u1,
u2, ..., un} be the users, who share a distinct password with the trusted server
S, respectively and wish to establish a session key under the help of S. Simulta-
neously, we assume that these participants mentioned above are arranged in a
ring with respect to the lexicographic order of their identities so that u1 = un+1

. Furthermore, the public information needed by the participants is as follows: A
finite cyclic group G of order q in Z∗

p .Two large primes p and q with p = 2q +1,
where p is a safe prime such that the DDH problem is hard to solve in G. g and
h are generators of G both having order q, where g and h must be generated so
that their discrete logarithmic relation is unknown. H is a hash function from
{0, 1}∗ to Z∗

p.
Round 1: For 1 ≤ i ≤ n, each user ui chooses xi, yi ∈R Z∗

q , computes Xi =
gXi · hH(pi||ui),Yi = gyi and broadcasts the message ui||1||Xi||Yi .
Round 2: upon receiving the message from each ui(1 ≤ i ≤ n), S decrypts Xi

using ui’s pi , chooses si∈R Z∗
q , computes Ki = (gxi)si ,Zi = gsi · hH(pi||ui) and

MAC(Ki, Zi, Yi−1, Yi+1). Then, S broadcasts the message:{Zi||2||Yi−1||Yi+1||
MAC(Ki, Zi, Yi−1, Yi+1)}n

i=1.
Round 3: On receiving the message from S, each user ui computes K ′

i =
Zi/hH(pi||ui)(and then checks the correctness of Zi, Yi−1, Yi+1, MAC(Ki, Zi, Yi−1,
Yi+1)}n

i=1 .If it is valid,ui computes Ti = (Yi−1)yi ,Ti+1 = (Yi+1)yi ,ξi = Ti+1/Ti

and MAC(Ki, ξi),and then broadcasts the message:ui||ξi||3||MAC(Ki, ξi). S
checks the correctness of Zi and each ui checks that ξ1·ξ2, ..., ξn = 1 . If at least
one of these checks fails, terminate the protocol execution. Or else, each client
ui computes the group session key Gsk = (Ti)nξi

n−1ξi+1
n−2 · · · ξi+n−2 . This

key is equal to gy1y2+y2y3+,...,+yny1 , which is same for all 1 ≤ i ≤ n.
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4.2 Security Analysis of Our Scheme

Due to the limitation of length, we omit the proof of our scheme here, the
concrete proof will be given in the full version of this paper.
Theorem 1. Let G be a group in which the DDH assumption holds and MAC is
an existential unforgeability secure scheme under chosen-message attacks (EUF-
CMA). Let qexe and qTest represent the number of queries to Execute and Test
oracles, and let q

us
i

send represent the number of queries to the SendClient and
SendServer oracles between the user instance us

i and the corresponding server
instance sl, and assume that there are n honest users who participate qsession

honest executions of the scheme. Then, the protocol we proposed in this paper is
a correct group password-authenticated key exchange protocol and we have

Advror−ake
π,D (t, qexe, qTest, qsend,qsession) ≤

2 · n·qsession·(qexe + qsend + n + 1)·Advddh
G (T )

+2 · n·qsession ·Adveuf−cma
MAC (t, 2, 0)

+2(qsend + 1)/N +2 · (qexe + qsend)2/q

Succma
GPAKE(t, qexe, qTest, qsend,qsession)≤ n·qsession·(qexe+qsend+1)·Advddh

G (T )

+n · qsession·Adveuf−cma
MAC (t, 2, 0)

+(qsend + 1)/N+(qexe + qsend)2/q

where T is the maximum time-complexity for an adversary to solve the DDH
problem in group G, N is the size of the dictionary D.
Theorem 2. In our GPAKE protocol, a passive server cannot learn the group
session key among group users as long as the PDDHn assumption holds in the
group G. Formally,

Advkp
D (t, qexe)≤ 2 · n·qexe·Advddh

G (t + 8qexeτe)

where qexerepresents the number of queries to the oracle Execute,τe denotes the
exponentiation computational time in G.
Theorem 3. Let A be the adversary against forward secrecy of GPAKE protocol
within a time bound t, with qsendqueries to SendClient and SendServer oracles,
qexe Execute queries and assume that there are n honest users who participate
qsession honest executions of the scheme. Let Advddh

G (T ) be the success probability
against the DDH problem of an adversary in time T. Then, we have

Advfs
GPAKE(A)≤ 2 · n · qsession·Adveuf−cma

MAC (t, 2, 0)
+2(2n + qsession + qsend)·Advddh

G (t)
+(qexe + qsend)2/q+2 · qsend/N

where t is the maximum time for the adversary A, N is the size of dictionary D.
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4.3 Comparison with Existing Schemes

As far as security is concerned, the two main advantages of our scheme are as
follows:
(1) Provably secure under standard assumption. As far as we know, aside from
Wang et al.’s scheme, whose security assumption depends on the underlying
two-party PAKE, security of the other existing DPWA-type PAKE schemes is
under random oracle or ideal cipher assumption, while ours is provably secure
under standard assumption.
(2) Semantic security in RoR model. The security model we adopt consider seman-
tic security in RoR sense, which is stronger then that in FTG model as proved in
[11]. Semantic security of the other existing schemes is in the FTG model. Simul-
taneously, efficiency comparison with existing schemes is given by table 1.

Table 1. Comparison on efficiency with existing schemes

schemes EKE-U[4] EKE-M[4]Wan’s scheme[3]Wang’s scheme[14]Our scheme

Round 3 3 3 min:5 3

Exp of client (n+3)/2 2 5+�logn� min:5 7

Exp of server(n+1)(n+2)/2 2n 3n min:2n 3n

5 Conclusion

So far, it is still a non-trivial task to design efficient group password-authentica-
ted key exchange schemes under the standard assumptions, especially in the
DPWA setting. In this paper, we define an enhanced security model for GPAKE
protocols in DPWA setting, through considering semantic security in the RoR
sense and incorporating the formal treatments for key privacy and forward se-
crecy. On this basis, we propose a three-round GPAKE protocol of DPWA-type
without ideal assumptions, and prove its security in the enhanced security model.
Hitherto, to the best of our knowledge, our protocol is the most efficient DPWA-
type GPAKE scheme without ideal assumption.
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Abstract. Password-based Authenticated Key Agreement (PAKA) pro-

tocols are widely used in wireless mobile networks, however many existing

PAKA protocols have security flaws. In the 3GPP2 network, there are

several PAKA protocols proposed to enhance the security of the Authen-

tication Key distribution mechanism which is subjected to the Man-In-

The-Middle attack. We point out the security flaws of such protocols in

[10,6] and give two practical attacks on them. Moreover we propose an

enhanced PAKA protocol which can resist both undetectable on-line and

off-line password guessing attacks, and formally analyze its security in

the random oracle model. In addition, we consider a special version of

Diffie-Hellman problem called Degenerate Diffie-Hellman problem and

propose two assumptions called Computational and Decisional Degener-

ate Diffie-Hellman assumption which are as difficult as CDH assumption

and DDH assumption respectively.

1 Introduction

With the rapid development of wireless technology and applications, wireless
communications become more and more popular in people’s life. At the same
time, security problems become important issues to be considered. Unlike wired
networks which can resist part of attacks by physical access restrictions, every-
one in the valid areas where are covered by radio access points can access the
network resources if there is no available entity authentication mechanism. In
the 3GPP2 network, the OTASP [11,7] (Over the Air Service Provisioning) is
designed to enable and expedite the authentication and authorization proce-
dures, by which potential wireless service subscribers can activate (i.e., become
authorized for) new wireless services or current subscribers can request changes
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in their existing services, without the intervention of a third party or parties.
One of the primary objectives of OTASP is to provide the Mobile Stations with
a secure authentication key to facilitate authentication.

However, the OTASP is not completely secure since it is subject to a Man-In-
The-Middle attack. Recently some protocols [14,10,6] are developed to enhance
the security of the Authentication Key distribution mechanism of the OTASP.
But these schemes do not achieve their design goals. We review these protocols,
point out the security flaws of them and give efficient attacks on them next.

Firstly, Sui et al. [14] found out that Seo and Sweeney’s simple authenticated
key agreement protocol [12] suffers a reflection attack and loses its authentica-
tion capability. Then they developed an improved authenticated key agreement
protocol with perfect forward secrecy using elliptic curve cryptography. They
claim that their protocol eliminates the disadvantages of SAKA [12] and pro-
vides identity authentication, key validation, and perfect forward secrecy. They
also show how their proposed protocol can be included in the 3GPP2 specifica-
tions for OTASP to improve the Authentication Key, which is the master key in
IS-95 and CDMA2000 mobile networks, distribution.

Then, Lu et al. [10] point out the security flaw of Sui et al.’s method. Their
protocol can not resist the off-line password guessing attack. Based on Sui et al.’s
protocol, Lu et al. propose a new password-based authenticated key agreement
protocol, which solves the problems of protocol in [14] and also could be used in
3GPP2 networks.

Furthermore, Chang et al. [6] argue that Lu et al.’s protocol [10] can not resist
the parallel guessing attack. According to their paper, they launch this attack
by guessing Q∗

B2, which is a point value transformed in the second step of the
protocol in [10]. The point value is shown as (a, b), where a, b ∈ [0, n−1] and n is
a secure large prime. Therefore, they can guess all cases of (a, b) in O(n2) time,
which is polynomial time. But, we should note that the variable n is a secure
large prime, and generally the variable n should have 160 bits lengths at least.
So Chang’s attack is a power exponent time algorithm and can not solve by
polynomial time adversaries in fact. Beside this, the modified version protocol
proposed by Chang et al. involved the off-line password guessing attack, and we
will show the practical attack below.

1.1 Attack on Lu et al.’s Protocol

Here, we give a practical undetectable on-line password guessing attack. As pro-
posed in [10] and cited in [6], the two participants in Sui et al.’s protocol are
called as Alice and Bob, and they share a low-entropy password S which is se-
lected from a uniformly distributed dictionary D of size |D|. A point P with
large prime order q is selected randomly from an elliptic curve E. The value t
is derived from the password S in a predetermined way. H is a secure one-way
function. The set (E, P, n, D, H) is sent to Alice and Bob as public parameters.

To guess the password, the adversary Eve first guesses (maybe Eve selects
it from a prepared directory) a password S′, and derives t′ from S′ through
pre-defined methods. Then Eve selects a random number dA ∈ Zn, computes
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QA1 = (dA +t′)P, QA2 = d2
AP , and sends (QA1, QA2) to Bob. When Eve receives

the message responded by Bob, she computes X = dAQB1, and checks whether
the equation HB = H(IDA ‖ IDB ‖ QA1 ‖ QB1 ‖ X) holds or not. If it holds,
Eve guesses the password correctly, and then she responds as Alice following
the protocol. If it is not true, Eve repeats the processes until she gets the right
password, then she could respond the former unfinished session.

1.2 Attack on Chang et al.’s Protocol

The protocol developed by Chang et al. [6] is a slim modified version of Lu et al.’s
[10]. In this section, we will demonstrate that the modification which is being
carried out by Chang et al. makes their protocol be involved in a more serious
situation: it can not resist the off-line password guessing attack. In addition, we
note that it can not resist the undetectable on-line password guessing attack too.
We do not give the detail of the undetectable on-line password guessing attack
because it is similar as the attack in section 1.1. The public parameters of Chang
et al.’s protocol are the same as Lu et al.’s protocol which is described in Section
1.1.

We suppose that Eve listened in the communication channels, and obtained all
of the messages transformed between Alice and Bob. So, Eve have the messages
(QA1, QA2, QB1, HA, HB). Eve first guesses a password S′ from D in accordance
with the way she wants (may be ordered), and computes the corresponding t′.
Then she computes Y ′ = QA1 − t′P and H ′

B = H(IDA ‖ IDB ‖ QA1 ‖ QB1 ‖
Y ′). Eve compares H ′

B with HB which was sent by Bob in the second step of
Chang et al.’s protocol. If they are equal, Eve has got the right password; else she
guesses another password and repeats the procedure until her guess is correct.
The upper bound of the off-line password guessing attack is O(|D|).

1.3 Our Contribution

In this paper, we focus on the PAKA protocols for wireless mobile networks
without certificates and the Public Key Infrastructure because the Public Key
Infrastructure is expensive to construct and maintain such as [16,15,13]. Firstly,
we point out that the attack proposed by Chang et al. [6] on Lu et al.’s [10]
scheme does not hold, and present an off-line password guessing attack on Chang
et al.’s protocol which is based on the Lu et al.’s scheme. Moreover, we show
that Lu et al.’s scheme is not secure enough too and give an undetectable on-line
password guessing attack [8] on their scheme. Secondly, we propose an improved
PAKA protocol, which is efficient and secure against the off-line and undetectable
on-line password guessing attacks, based on Lu et al.’s [10] scheme. Our proto-
col can be applied to CDMA2000 networks to enhance the authentication key
distribution procedure, and can be used in Wireless Local Area Network under
the EAP [1] framework too. Thirdly, we consider a special version of Diffie-
Hellman problem called Degenerate Diffie-Hellman (DDH) problem, and prove
that the Computational DDH assumption is equivalent to the Computational
DH assumption.
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2 Preliminaries

Our protocol is based on the Elliptic Curve Cryptology (ECC), however, it can
be used in other algebraic structure in which the Decisional Diffie-Hellman as-
sumption holds. In this section we list the assumptions which will be used in our
security proof with style of elliptic curve cryptology. Let E be an elliptic curve
over a finite field Fm and let P is a point in E with a large prime order q.

Assumption 1 (Computational Diffie-Hellman (CDH) Assumption).
For a, b←R Zq, given (aP, bP ), computing abP is hard.

Assumption 2 (Decisional Diffie-Hellman (DDH) Assumption). For
a, b, z ←R Zq, given (aP, bP, zP ), deciding whether abP = zP or not is hard.

The assumptions mentioned above are based on the Elliptic Curve Discrete Loga-
rithm Problem (ECDLP). The best known methods to solve ECDLP are Pollard
approach and Pohlig-Hellman method. They are both fully exponential, while
the best known methods to solve the Integer Factorization Problem (IFP) and
the Discrete Logarithm Problem (DLP), on which most of the non-ECC cryp-
tosystems rely, are sub-exponential.

Based on the ECDLP, we propose a modified version of Diffie-Hellman prob-
lem called Degenerate Diffie-Hellman problem. In the new problem, the two
variable a and b, which are defined in Assumption 1, are equal, and we need
to compute the element a2P instead of abP or distinguish a2P from a random
element in E. Like the situation of Diffie-Hellman problem, we propose two as-
sumptions which both based on the Degenerate Diffie-Hellman problem.

Assumption 3 (Computational Degenerate Diffie-Hellman (CDDH)
Assumption). For a←R Zq, given aP , computing a2P is hard.

Assumption 4 (Decisional Degenerate Diffie-Hellman (DDDH) As-
sumption). For a, z ←R Zq, given (aP, zP ), deciding whether a2P = zP or
not is hard.

We emphasize that the Degenerate Diffie-Hellman problem is also hard in other
algebraic structures which the Discrete Logarithm problem still exists, although
we have adopted the Elliptic Curve arithmetic to describe it. Next, we discuss
the difficulty of the CDDH assumption and the DDDH assumption.

Theorem 1. The CDDH assumption is equivalent to the CDH assumption.

Proof. Firstly, we prove that if the CDH assumption holds then the CDDH
assumption holds. To achieve this, we only need to prove if the CDDH problem is
easy then the CDH assumption is no longer tenable. Assuming that we can solve
the CDDH problem in polynomial time, given a CDH instance (E, P, q, aP, bP ),
we compute abP by the following step.
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1. Computes (a + b)P = aP + bP ;
2. Computes a2P and b2P using CDDH;
3. Computes (a + b)2P using CDDH;
4. Computes 2abP = (a + b)2P − a2P − b2P ;
5. Computes abP = 1

22abP .

Secondly, we prove that if the CDDH assumption holds then the CDH assump-
tion holds. To prove this, we only need to prove that if the CDH problem is
easy then the CDDH assumption is no longer tenable. Assuming that we can
solve the CDH problem, we show that we can solve the CDDH problem. Given
a CDDH instance (E, P, xP ), let the values of both variables aP and bP ,which
is described in assumption 1, be xP ,then we can compute x2P using CDH as-
sumption. ��
From the intuitive point of view, the DDDH assumption is as difficult as the
DDH assumption. While, like the situation of DDH, the formal proof is complex
and we do not discuss here.

3 Security Model for Our PAKA Protocol

To prove the security of the new protocol proposed in this paper, we extend the
formal security model which is introduced in [2]. In this model, there are three
classes of participants: clients, servers and the adversary. Each principal is either
a client or a server. Let Ui denote the i-th user in the client set, while Sj denote
the j-th server in the server set. In the special k-th execution of the protocol, we
use Uk

i,j to denote the client involved in this communication, while Sk
j,i to denote

the server. Let b be a bit chosen uniformly which is used in the Test query.
We use SID, a session ID, to indicate an execution of the protocol, where

SID is the conjunction of all messages the participant sent and received in this
interaction.

Definition 1 (Partner). We say that a client Uk
i,j and a server Sk

j,i are part-
nered if the following conditions are met: (1) They are both accepted (if exist);
(2) they share the same SID; (3) No oracle besides them accepts with the same
SID.

The interactions between an adversary Eve and the participants of the protocol
occur via oracle queries, which model the adversary’s capabilities in the real
attack. All oracle queries in our model are listed in the following:

– Hi(x): We give the adversary the ability to access the hash functions. In the
random oracle model, hash functions are formalized as random oracles and
maybe there are more than one hash functions in a protocol.

– Execute(Ui, Sj): This oracle is used to simulate the eavesdropping attack.
This call carries out an honest execution of the protocol between oracle
Uk

i,j and Sk
j,i, where the variable k is the sequence number of this protocol

execution and it is maintained by the simulator.
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– Send(Uk
i,j , S

k
j,i, x) This oracle query enables the adversary to perform an

active attack on a client or a server. According to the input message x, the
oracles Uk

i,j or Sk
j,i execute the operations defined in PAKA protocols. Finally

the query returns the messages produced according the protocol. Message x
can be λ in the query which causes an oracle to be generated as an initiator,
otherwise as a responder.

– Reveal(Ck
i,j/Sk

j,i): The adversary uses this query to gain the session key hold
by Ck

i,j or Sk
j,i. If the oracle has been accepted, the session key is returned;

else a symbol ⊥ is returned.
– CorruptClient(Ui, Sj): This query models exposure of a client Ui’s password

shared with the server Sj .
– CorruptServer(Sj): This query models an exposure of a server Sj’s secret

key t.

If the adversary decides to end the first phase, he chooses a fresh oracle and
issues a Testquery. In [2], there are two notions of freshness: with and without
forward secrecy (fs) . Here, we only consider the former for that we want to prove
that our protocol providers perfect forward secrecy. The definitions of freshness
and test query are described below:

Definition 2 (Freshness with forward secrecy). We say that an oracle is
fresh if the following conditions hold: (1) he has accepted; (2) No Reveal queries
have been made to him or his partner; (3) If he has been made a Corrupt-
Client/Server query then he must not been made a Send query and vice versa.

– Test(Uk
i,j/Sk

j,i): This query is used to measure the semantic security of the
authenticate key agreement protocol. If the oracle is not accepted, it return
⊥. Otherwise, it return either the session key held by the oracle if b = 0 or
a random key with the same distribution as the real session key. This query
can be launched only once.

Now, we can define the advantage of the adversary in attacking the PAKA
protocol. We say that the adversary Eve wins the game define above, in semantic
security scene, if she asks a single Test on a fresh oracle, outputs a single bit
b′, and b′ = b (where b is the random bit selected during the Test query). The
PAKA advantage of the adversary is twice the probability that Eve wins, minus
one.

Definition 3. We say that the protocol is a secure authenticated key agreement
protocol if the following conditions hold:

1. In the presence of a benign adversary, which faithfully conveys messages, both
oracles always accept holding the same session key, and this key is distributed
uniformly on {0, 1}k;

2. For any polynomial time adversary, The PAKA advantage of the adversary
is negligible.
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4 Our Proposed Protocol

In this section, we describe the improved password authentication key agreement
protocol in detail and show its security analysis. We are illumined by the method
in Zhang et al.’s article [17] originally, and then we apply a similar idea to our
protocol to make it resist the Undetectable on-line password guessing attack.
Our protocol also provides a key confirmation procedure which is necessary for
analogous protocols.

Our protocol is based on Lu et al.’s protocol [10] and uses elliptic curve cryp-
tology which could be computed efficient in both of mobile devices and consumer
computer. Especially in China, the elliptic curve cryptology has been adopted in
the standard for Wireless Local Area Network and would be used in encryption
and access control. We call the participants in our protocol Alice and Bob. Alice
plays the role of clients and Bob of servers. Bob has an extra secret information
than Alice besides a password shared with Alice. This is different from Lu et al.’s
protocol. Our protocol is more suitable for an asymmetric authentication scene,
such as the mobile network access authentication, than symmetric environments.

4.1 Construction

In the initial stage, Bob (the server) selects an elliptic curve E over a finite
field Fm with large group order, and randomly selects a point P with large
prime order q from E. He also selects three collision resistant hash [4] functions
H1 : D → Zq, H2 : {0, 1}∗ → {0, 1}l and H3 : {0, 1}∗ → {0, 1}k, where D is the
set containing all the possible passwords, l is a secure parameter selected by Bob
and k is the desirable length of session keys. Finally, the sever selects a random
number t ∈ Zq, set (E, q, P, Q = tP, D, H1, H2, H3) as public parameters and
keeps t secretly.

We assume that the client obtains the public parameters and a password S
shared with the server in an extra register stage which can be realized in different
methods and is not described here. Detail of the protocol is shown in Figure 1
and depicted below:

1. Alice first selects a random number x ∈ Zq, and computes TA1 = (x +
H1(S))P , TA2 =x2P and TA3 =H2(xQ). Then Alice sends (A, TA1, TA2, TA3)
to Bob, where A denotes the identity of Alice.

2. After receiving (A, TA1, TA2, TA3), Bob checks whether the equation H2

(t(TA1 − H1(S)P )) = TA3 holds or not. If it does not hold, Bob termi-
nates the session and output ⊥. Otherwise, Bob selects two random num-
bers y1, y2 ∈ ZQ, and computes Y = TA1 − H1(S)P , TB1 = y1P + y2Y ,
TB2 = H2(tY ‖ S) and HB = H2(A ‖ B ‖ TA1 ‖ TA2 ‖ TA3 ‖ TB1 ‖ TB2).
Then Bob sends (B, TB1, HB) to Alice, where B denotes the identity of Bob.

3. When Alice receives the message, she first verifies whether the equation
HB = H2(A ‖ B ‖ TA1 ‖ TA2 ‖ TA3 ‖ TB1 ‖ H2(xQ ‖ S)) holds or not. If
it holds, A send HA = H2(B ‖ A ‖ TB1 ‖ H2(xQ ‖ S) ‖ TA1 ‖ TA2 ‖ TA3)
to Bob. Then Alice accepts and sets the session key as KA = H2(A ‖ B ‖
TA1 ‖ TA2 ‖ TA3 ‖ TB1 ‖ xTB1).
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Fig. 1. Our Proposed Protocol

4. When Bob receives the third message, he checks whether the equation HA =
H2(B ‖ A ‖ TB1 ‖ TB2 ‖ TA1 ‖ TA2 ‖ TA3) holds or not. If it holds, B sets
the session key as KB = H2(A ‖ B ‖ TA1 ‖ TA2 ‖ TA3 ‖ TB1 ‖ y1Y + y2TA2).

4.2 Security Analysis

In this section, we discuss the security of our protocol. First we prove that our
protocol is a secure authenticated key agreement protocol with forward secrecy
in the semantic security scene under the random oracle model [3], then we prove
that our protocol can resist both undetectable on-line password guessing attack
and the off-line password guessing attack.

Theorem 2. The protocol is a secure AKA protocol with forward secrecy if the
DDH assumption and DDDH assumption holds and the hash functions are mod-
eled as random oracles.

Moreover, our protocol is an password based authentication protocol combined
with public key technologies. However, public key techniques are unavoidable
for password protocols that resist off-line guessing attacks [9]. Our protocol not
only resist the off-line and undetectable on-line guessing attack, but also keep
the advantages such as convenience and efficiency of pure password protocols.

Theorem 3. The protocol is secure against the off-line password guessing attack
if the DDH assumption and DDDH assumption holds and the hash functions are
modeled as random oracles.

Theorem 4. The protocol is secure against the undetectable on-line password
guessing attack if the CDH assumption holds and the hash functions are modeled
as random oracles.

Due to the limitation of space, the proofs of Theorem 2, Theorem 3 and Theorem
4 are given in the full paper.
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Table 1. Security Properties and Complexity Comparation

5 Efficiency and Application

As shown in Table 1, comparing to the scheme in [14] which five scalar multi-
plication and one point addition operations are needed both for Alice and Bob,
our protocol is more suitable for mobile devices. Because of that, in our proto-
col, the client saves one scalar multiplication and one point addition operations.
In contract with the scheme in [10] which needs five scalar multiplication, one
point addition operations and three hash operations for the server and three
scalar multiplication and two hash operations for the client, our protocol has
to execute one scalar multiplication and two hash operations more both for the
server and the client. But that is indispensable to resist the undetectable on-line
password guessing attack. We list the detail information in the Table 1.

In [14], Sui et al. give a method to apply their protocol to improve the Authen-
tication Key distribution in 3GPP2 networks. Our protocol can also be used in
the 3GPP2 network with the same method. We note that our protocol also can
be applied to the Wireless Local Area Network under the Extensible Authenti-
cation Protocol (EAP) framework [1]. The detail method to apply our protocol
with EAP is similar as the method in [5], so we do not give a detail description
here.

6 Conclusion

Our research focuses on the password-based authenticated key agreement pro-
tocol for wireless network. In this paper, we review the solutions which aim to
improve the security of the Authentication Key distribution procedure in the
OTASP, point out the security flaws of them [10,6] and give two practical at-
tacks on them. By considering the security strength, computation efficiency and
security properties, we proposed an enhanced PAKA protocol which can resist
undetectable on-line and off-line password guessing attacks. Moreover, we prove
the security of our protocol in the random oracle model.
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Abstract. In this paper, we propose a new password-based authenti-

cated key exchange (PAKE) protocol and prove its security within the

universal composability (UC) framework. The security proof of this pro-

tocol is based on standard number-theoretic assumptions, i.e., without

random oracle or ideal cipher assumption. Comparisons show that, our

protocol is more efficient than Canetti et al.’s protocol, which is the most

efficient two party PAKE protocol proven secure in the UC framework

and based on standard number-theoretic assumptions. More specifically,

our protocol saves 1 round of communication and 5 modular exponen-

tiations when the underlying cryptosystem is instantiated with Cramer-

Shoup public key cryptosystem. Moreover, our protocol avoids the usage

of the one-time signature, which saves the bandwidth for transmitting

the message and saves the computation for signature and verification.

1 Introduction

Password-based authenticated key exchange (PAKE) protocols allow parties
sharing only a low-entropy, human-memorizable password to securely establish
a common session key over an insecure channel in authenticated manner. Since
PAKE protocols do not require complex public-key infrastructure or trusted
hardware of storing high entropy secrets, they have attracted many attentions
since being introduced.

However, unlike a high entropy secret based protocol, PAKE protocols are
susceptible to dictionary attacks, in which the adversary tries to conduct an
attack by exhaustively trying all the values in the small set, called dictionary,
for the correct password. Usually, dictionary attacks could be classified into two
categories. In the off-line dictionary attacks, an adversary selects a password
from a dictionary and verifies its guess in an off-line manner. In the on-line
dictionary attacks, an adversary guessing a value for the target password must
be present and interact with the system in order to verify whether its guess is
correct. If the attack fails, the adversary can eliminate this value from the list
of possible passwords. It is straightforward that one cannot actually prevent the
adversary from the on-line dictionary attacks. However, we should expect that
this attack is the only one that the adversary can mount, and invalidate the use
of a password whenever a certain number of failed attempts occur. That is, the
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adversary’s chance to defeat protocol goals should be restricted within a bound
which depends on how many times it interacts with the system only, and it won’t
significantly depend on its off-line computing time.

Security models. The first formal models for analysis of PAKE protocols
using password only were proposed in 2000 by Bellare, Pointcheval and Rogaway
(BPR) [3] and by Boyko, MacKenzie and Patel (BMP) [4], independently. The
security definition in the BPR model is indistinguishability-based, while the
security definition in the BMP security model is a simulation-based one. Later,
an improved security model was introduced by Abdalla et al. [2], which is proven
to be strictly stronger than the BPR model. These security models provide quite
reasonable security level and are used widely since being introduced.

Unfortunately, as pointed out by Canetti et al. [7], none of these models relates
to the realistic setting where the password-based protocol is used as a component
within a larger protocol. They fail to consider some scenarios such as protocol
participants runs protocols with different but possibly related passwords. Rather,
these security models assume that passwords being used are chosen from some
pre-determined, known distribution and assume that passwords shared between
different parties are independent. To overcome these deficiencies, Canetti et al.
[7] proposed a new definition of security for PAKE within the UC framework,
which captures these problems that were not adequately addressed by most prior
notions and thus provides security guarantees under arbitrary composition with
other protocols.

Related work. In 2001, a reasonable efficient and practical PAKE protocol
without random oracle was proposed by Katz, Ostrovsky and Yung (KOY) [19]
in the common reference string (CRS) model, in which all parties have access to
a common string that is guaranteed to come from a pre-specified distribution.
The security of KOY protocol relies only on standard number-theoretic building
blocks, such as the Cramer-Shoup cryptosystem [10], one-time signature scheme
[13] and the Decisional Diffie-Hellman (DDH) assumption.

Later, a framework for PAKE protocol, as an abstraction and generaliza-
tion of the KOY protocol, was proposed by Gennaro and Lindell (GL) [16] in
2003, using generic building blocks instead of specific number-theoretic build-
ing blocks. More specifically, their construction uses non-malleable commitment
[12], one-time signature scheme [13] and the smooth projective hash function
family [11]. Very recently in 2008, Gennaro [15] slightly improved on the above
framework by replacing one-time signature scheme with faster and shorter mes-
sage authentication code (MAC). Nevertheless, all these protocols are 3-round
and provide no explicit mutual authentication. Jiang and Gong [18] proposed
yet another variant of the KOY protocol in 2004, which additionally supports
mutual authentication while does not increase the round number.

In 2005, along with the security model, Canetti et al. also proposed a new
protocol based on the KOY protocol [19] and on the GL framework, and proved
its security in the UC framework against static corruption adversary. This two
party protocol is the most efficient one which is proven UC secure in the standard
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model. Nevertheless, the resulting protocol is about 6 rounds and requires almost
30 modular exponentiations per party. Recently, Abadalla et al. [1] showed that
the protocol by Bresson, Chevassut, and Pointcheval [5], which is more efficient
than Canetti et al.’s protocol, is also secure in the model of Canetti et al. [7]
even with the presence of adaptive corruption adversary. However, as an trade-
off between the security and efficiency, the security proof of this protocol is based
on the random oracle assumption and the ideal cipher assumption. Note that
whether schemes proven secure in the random oracle model and the ideal cipher
model can be instantiated securely in the real world is uncertain.

Contribution. In this paper, we propose a new PAKE protocol in the UC
framework, which is based on standard number-theoretic assumption, i.e., with-
out random oracle and ideal cipher assumption. We show that, by utilizing the
projective hash value computed by the client as the random string used in com-
puting a non-malleable ciphertext sent to the server, our protocol saves one
round of communication and as much as 12 KBytes of bandwidth than Canetti
et al.’s protocol [7]. Moreover, our protocol saves at least 5 modular exponen-
tiations when instantiating the underlying public key encryption system with
Cramer-Shoup public key cryptosystem [10].

We stress that our construction is inspired by the work of Jiang and Gong
[18], in which a similar technique was used in constructing a PAKE protocol
supporting mutual authentication. However, we also note that, Jiang et al. have
not yet shown whether their protocol is secure or not without the last round,
even in the BPR2000 model without explicit authentication, since that they use
the CPA secure ElGamal encryption in computing the first message and their
proof uses the last message for authentication in an essential way.

Organization. In Section 2 the UC framework and the PAKE functionality
used for security definition are introduced. In Section 3 we recall the crypto-
graphic tools that will be used in our protocol construction. The protocol is
proposed in Section 4, in which comparisons with other protocols and intuitive
security proof of our protocol are also presented. Finally, conclusions are given
in Section 5.

2 Security Model

We assume the basic familiarity of the UC framework [6] and only briefly recall
some related aspects here. Roughly speaking, the security of a given crypto-
graphic task in the UC framework is captured via an ideal functionality F ,
which is essentially a trust party that interacts with the parties in a secure way.
More specifically, F receives inputs from the parties and sends back outputs in
a private manner. Thus, in the ideal setting, security is inherently guaranteed.
In order to test whether a candidate protocol π securely realizes an ideal func-
tionality F , an environment Z is involved, which provides inputs to and obtains
outputs from all the participants and wants to distinguish the scenario where it
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is interacting with the real execution of the protocol π and a real adversary A
from the scenario it is interacting with the ideal protocol (involving ideal func-
tionality F and dummy parties) and an ideal adversary S. We say that a protocol
π securely realize the ideal functionality F if for every A there exists a S, such
that no environment Z can distinguish these two scenarios with non-negligible
probability. The universal composition theorem then asserts that any larger pro-
tocol that uses multi-instances of F as its components behaves essentially the
same when these instances are replaced with instances of protocol π.

Universal composition with joint state. For security analysis of our pro-
tocol, in which all executions use the same common reference string, we have
to resort to the notion of universal composability with joint state (JUC) that
was introduced by Canetti and Rabin [8], which provides a mean to deduce the
security of the multi-instance case from the security of a single instance, even
when these instances use some joint state, or joint subroutine. Specifically, this
is done by defining a multi-session extension F̂ of F as follows: F̂ runs multi-
ple independent copies of F , where the copies are distinguished via sub-session
identifiers (SSIDs). If F̂ receives a message with SSID ssid it then hands the
message to the copy of F having SSID ssid. If no such copy exists then a new
one is invoked.

The PAKE functionality. We will use the definition of the PAKE function-
ality FpwKE which is given by Canetti et al. [7] and incorporates the inherent
“security defect” due to the use of low entropy passwords within standard key
exchange. That is, the adversary is given the power to fully determine the result-
ing session key not only in case one of the participating parties is corrupted, but
also in case that the adversary succeeds in guessing the parties’ shared password.
An additonal important property of the definition of FpwKE is that, password
is chosen by the environment who then hands it to the parties as input. This
formalization allows that the security of a protocol is preserved for all efficient
password distribution, and even when the same passwords are used for other
unintended purposed by the same environment.

3 Cryptographic Tools

In this section, we briefly recall the cryptographic tools needed in the construc-
tion of the protocol. Note that the encryption system and corresponding smooth
projective hash function family could be instantiated with different assumptions,
such as DDH assumption, Quadratic assumption and N-Residuosity assumption
as specified in [16].

3.1 Labeled CCA2 Secure Public Key Encryption

A labeled CCA2 secure public key encryption system (KeyGen, E ,D) is similar
to the standard notion of CCA2 secure public key encryption system with the
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additional property that an arbitrary label can by bounded to the ciphertext in
a non-malleable way. In more detail, for a pair of key (pk, sk) generated by the
key generation algorithm KeyGen, the encryption algorithm E takes a public
key pk, a plaintext m, a random string r, and additionally a optional label l,
and returns a ciphertext c = Epk(m; l; r). The decryption algorithm D takes a
secret key sk, a ciphertext c and a label l, and returns Dsk(c; l), which is either
the corresponding plaintext or a reject symbol ⊥.

The standard CCA2 attack game is also modified in a similar way. The ad-
versaryM against the encryption system could query a pair of message m0 and
m1 and a label l∗ to an encryption oracle during the game, then a challenge ci-
phertext c∗ = Epk(mb, l

∗) with uniformly randomly chosen b ∈ {0, 1} is returned
to M. During the game, the adversary is given access to the a decryption oracle
whichM could query on any ciphertext with any label except the challenge pair
(c∗, l∗). The adversary’s goal is to guess the hidden bit b. And we say that the
encryption scheme is CCA2 secure if for any PPT adversary defined above, the
probability that it rightly guess the bit is negligible.

3.2 Smooth Projective Hash Function Family

Informally, smooth projective hash function [11] is a family of hash functions
which admit two keys. One key can be used to compute the hash values for all
messages in the hash domain efficiently, the other key, called projection key, could
be used to compute the hash values in some subset properly but given almost no
information to the messages derived from the outside the specified subset, i.e.,
the value of the hash function on these messages is uniformly distributed.

As in [16], we present the notion of projective hash functions in the context of
hard subset membership problems. Assume that X is set of superpolynomial size,
L is a subset of X such that it is computationally hard to distinguish a random
element in L from a random element in X\L. Let G be finite, non-empty sets
with prime order q ≈ 2n, where n is the security parameter. Let H = {Hk}k∈K

be a collection of hash functions from X to G, where K is called the key space
of the hash family. Assume that α : K × X → S be a key projection function
from K ×X to the space of key projections S. Then the above system defines
a projective hash function family, if for all k ∈ K, x ∈ L, it holds that the value
Hk(x) is uniquely determined by the key projection sx = α(k, x) and a witness
for x. The smooth property is defined as follows.

Definition 1 (Smooth projective hash function, [11]). Let (H, K, X, L, G,
S, α) be a projective hash family defined as above. Denote by V (x, α(k, x), Hk(x))
the random variable where x is some fixed value derived from the set X\L,
k ∈R K is chosen uniformly at random. Similarly, define V (x, α(k, x), g) as the
random variable where x is fixed and k ∈R K, g ∈R G is chosen at random. This
projective hash function family is said to be smooth if for every x ∈ X\L,

{V (x, α(k, x), Hk(x))}n∈N

s≡ {V (x, α(k, x), g)}n∈N
.
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As noted by Gennaro et al. in [16], for x ∈R D(L) of which corresponding witness
is not known, the value Hk(x) is computationally indistinguishable from random,
even given the projection key sx.

Lemma 1 (Pseudorandom property, [16]). Assume that E is a CCA2 se-
cure encryption algorithm, and pk is a randomly generated encryption key. Then
for uniformly chosen hash key k ∈R K and uniformly chosen coins r, it holds that
for every message m, the ensemble {Epk(m; r), pk, m, α(k, c), Hk(x)} is computa-
tionally indistinguishable from the ensemble {Epk(m; r), pk, m, α(k, c), g}, where
g is uniformly derived from G.

3.3 Simulation Sound Zero Knowledge Proof System

A zero knowledge proof system is said to be simulation sound if it has the
property that an adversary cannot give a convincing proof for a false statement,
even if it has oracle access to the zero knowledge simulator and can request
simulated proofs for any statement. This notion was first formally defined by
Garay et al. [14] in the context of interactive zero knowledge. We denote a proof
protocol for the statement x ∈ L in which the verifier V has input x and the
prover P has input x, y by 〈P (x, y), V (x)〉x∈L .

3.4 Universal Hash Function Family

A family of universal hash functions [9] is a family of hash functions with addi-
tional property that for a randomly selected function UH and any two distinct
values x �= x′ derived in the domain, the probability that the two hash values are
equal, i.e., Pr[UH(x) = UH(x′)], is less than some given bound ε, which usually
is the value 1/2−n when the range of the hash function is {0, 1}n. Note that as
a consequence of the entropy smoothing theorem [17], if g is chosen uniformly
at random in the domain, then the distribution of UH(g) is statistically close to
uniform random over its range.

4 The Protocol

In this section, we introduce our new PAKE protocol in the UC framework. Let
n denote the security parameter. The common reference string of the protocol
consists of a public key pk for the labeled CCA2 secure encryption scheme E and
a reference string γ for the simulation sound zero knowledge proof system for the
language Lpk

s= {(c0, c2) | ∃ (pw, r0, r2) s.t. c0 = Epk(pw; r0), c2 = Epk(pw; r2)},
where Epk(m; r) denotes the encryption of the message m using random string
r. Let Cpk denote the ciphertext set {Epk(m; r)|m ∈ M, r ∈ {0, 1}∗}, where M
is the message space. We also uses a family of smooth projective hash functions
H = {Hk} such that for every k in key space K, Hk is a map from the set
Cpk×M to a cycle group G with prime order q ≈ 2n. Let α : K× (Cpk, M)→ S
denote the key projection function. Denote by UH a hash function randomly
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selected from a family of universal hash function that takes elements from G
and maps to the set {0, 1}2n. Denote by UH1(g) the first n bits of UH(g) and
by UH2(g) the remaining n bits of UH(g).

Assume that Pi and Pj are two parties who want to establish a shared session
key SK with each other. Then they involve in a protocol which proceeds as
follows (see also in figure 1).

0. When Pi is activated with input (NewSession, ssid, Pi, Pj , pw, role), it does
the following. If role = server, it simply waits for a flow-zero message as
described below; If role = client, it chooses a random string r0, computes
the ciphertext c0 = Epk(pw; r0), and sends the message (flow-zero, c0) to
party Pj . In the following, assume that Pi is a party activated as client and
Pj is a party activated as server.

1. When the sever Pj receives a message (flow-zero, c0), it first checks that
the ciphertext is with the right form of a ciphertext, then chooses a random
value r1, computes c1 = Epk(pw; r1), and sends (flow-one, c1) to Pi.

2a. When Pi receives the message (flow-one, c1), it first checks that the cipher-
text is with the right form. Then it chooses a key k in the key space K
of the smooth projective hash function family H, computes the key pro-
jection s = α(k, c1), then computes σ = Hk(c1, pw). He also computes
r2 = UH1(σ), sets l2 = i||j||ssid||c0||c1||s, encrypts c2 = Epk(pw; l2; r2),
and sends (flow-two, s, c2) to party Pj .

2b. Party Pi also proves to Pj that c0 in flow-zero and c2 in flow-two are
two ciphertexts of the same password, by engaging in a simulation sound
zero knowledge proof system 〈P (c0, c2, γ; pw, r0, r2), V (c0, c2, γ)〉(c0,c2)∈Lpk

,
which uses the witness pw, r0, r2 that it knows and also the reference string
γ. Pi then computes the session key as SK = UH2(σ), outputs (ssid, SK),
and completes the session.

3. When Pj receives a message (flow-two, s, c2), it checks the form of cipher-
text. Then it involves in the simulation sound zero knowledge proof sys-
tem as the verifier. If the proof is failed, it aborts and chooses a random
session key. Otherwise, it then executes the following ciphertext verifying
procedure: it computes σ = Hk(c1, pw) and r2 = UH1(σ), then it sets
l2 = i||j||ssid||c0||c1||s where c1 is the ciphertext it computed and c0, s
are the messages it received. Then Pj re-ciphers the password with label l2
and random string r2 and verifies whether the equation c2=Epk(pw; l2; r2)
holds. If the verification is invalid then Pj also chooses a random value as the
session key, else if it is valid it computes the session key as SK = UH2(σ).
Either way, at last Pj outputs (ssid, SK) and completes the session.

Protocol Comparisons. We compare our protocol with Canetti et al.’s pro-
tocol [7], which is the most efficient two party PAKE protocol constructed based
on standard number-theoretic assumptions and proven secure in the UC frame-
work, in terms of communication and computation efficiency. Firstly, Canetti et
al.’s protocol [7] has 6 rounds when the zero knowledge proof system used is typ-
ically 3 rounds, while our protocol is only with 5 rounds. Further, in Canetti et
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pub: pk, γ
Pi(pw) Pj(pw)

c0 = Epk(pw; r0) (flow-zero, c0)−−−−−−−−−−−−−−−−−−−−−−→
(flow-one, c1)←−−−−−−−−−−−−−−−−−−−−−− c1 = Epk(pw; r1)

k ∈R K, s = α(k, c1)

σ = Hk(c1, pw)

r2 = UH1(σ)

l2 = i||j||ssid||c0 ||c1||s
c2 = Epk(pw; l2; r2)

SK = UH2(σ) (flow-two, s, c2)−−−−−−−−−−−−−−−−−−−−−→
ZKP {(c0, c2) ∈ Lpk}−−−−−−−−−−−−−−−−−−−−−−→

If proof fails, sk ∈R {0, 1}n

σ = Hk(c1, pw)

r2 = UH1(σ)

l2 = i||j||ssid||c0 ||c1||s
c2

?
= Epk(pw; l2; r2)

If invalid, SK ∈R {0, 1}n;

Otherwise, SK = UH2(σ)

Fig. 1. The new universal composable PAKE protocol

al.’s protocol, assuming a security parameter of 128, we have that transmitting the
key and the one-time signature requires about 12 KBytes [15]. However, our pro-
tocol, which avoids the usage of one-time signature and message authentication
codes, will thus save as much as 12 KBytes of bandwidth. On the other hand, when
instantiating the underlying public key encryption system with Cramer-Shoup
public key cryptosystem [10] and instantiating smooth projective hash function
family correspondingly, our protocol saves at least 5 modular exponentiations.
Moreover, we stress that the remove of one-time signature provides improvement
of computation efficiency too.

Security. The intuition behind the security of our protocol is somewhat similar
to the security of Canetti et al.’s protocol. First note that if two completed
sessions share the same password and accept each other as its intended partner,
then they will generate the same session key, since they have agreed on the same
c1 and s. The pseudorandom property then guarantees that the adversary will
be unable to distinguish this session key from random.

We then explain why a session which is affected by the adversary will generate
a session key computationally close to uniform random. On one hand, if an adver-
sary wants to impersonate the sever, then it has to send to the client the flow-one
message. Due to non-malleability of the encryption scheme, the adversary could
only send an invalid ciphertext or an old message derived from some past session.
In the first case, the session key computed by the client session will be statistically
close to uniform random due to the definition of smooth property. In the second
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case, the session key will be indistinguishable from random due to the pseudo-
random property of smooth projective hash function. On the other hand, if the
adversary wants to impersonate the client, it has to send the flow-two message
to the server. Note that the ciphertext verifying procedure can only be success-
ful when the ciphertext is an encryption of the right password held by the server,
which is impossible due to the non-malleability of the underlying cryptosystem.

As a conclusion, we present the formal theorem for the security of the protocol
in the following. The complete proof is omitted here due to the limitation of the
paper length, which can be found in our full paper.

Theorem 1. Assume that E is a labeled public key encryption scheme that is
CCA2 secure, that H is a smooth projective hash function family as define above,
that the proof system is simulation sound zero knowledge, and assume that UH
is a hash function that randomly selected from a universal hash function family.
Then, the protocol presented in Figure 1 securely realizes the multi-session ex-
tension F̂pwKE of FpwKE in the FCRS-hybrid model, in the presence of static
corruption adversary.

We stress that the protocol is proven secure in the static corruption model,
where the adversary may corrupt some of the participants but only prior to the
beginning of a protocol execution. Although this is a relatively weak assumption
in the UC framework, Canetti et al. have proved that the weak corruption model
of [3] is implied by this definition [7].

At last, we comment that our protocol in fact could be proven securely realiz-
ing the PAKE functionality with client authentication [1], since that the flow-two
message sent to the server session includes the password shared between the two
parties and is verified by the server session. In this case, we only need to modify
the server session in such a way that it explicitly aborts and outputs the state
information when the proof or the ciphertext verifying procedure is failed.

5 Conclusions

We proposed a new PAKE protocol and proved that it securely realize the PAKE
functionality in the UC framework. Our protocol is based on standard number-
theoretic assumptions and can be instantiated with different assumptions, such
as DDH assumption, Quadratic assumption and N-Residuosity assumption as
specified in [16]. By utilizing the projective hash value computed by the client
as the random string used in computing a non-malleable ciphertext sent to the
server, our protocol saves 1 round of communication and 5 modular exponenti-
ations than Canetti et al.’s protocol. Moreover, our protocol omits the usage of
the one-time signature, which saves one signature/verification computation and
saves as much as 12 KBytes bandwidth when typical security parameter is used.
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Abstract. In a selective private function evaluation (SPFE) protocol, the client
privately computes some predefined function on his own input and on m out of
server’s n database elements. We propose two new generalized SPFE protocols
that are based on the new cryptocomputing protocol by Ishai and Paskin and an
efficient CPIR. The first protocol works only for constant values of m, but has 2

messages, and is most efficient when m = 1. The second SPFE protocol works
for any m, has 4 messages, and is efficient for a large class of functionalities.
We then propose an efficient protocol for private similarity test, where one can
compute how similar client’s input is to a specific element in server’s database,
without revealing any information to the server. The latter protocol has applica-
tions in biometric authentication.

Keywords: BDD, biometric authentication, CPIR, cryptocomputing, selective
private function evaluation.

1 Introduction

In a selective private function evaluation (SPFE) protocol [CIK+01], the client pri-
vately computes some predefined function on m out of server’s n database elements.
It is required that the client will obtain only the function value, and the server will ob-
tain no new information. More precisely, for client’s indexes x = (x1, . . . , xm), and
server’s database f = (f0, . . . , fn−1) and function g (either public or a private input
of the server), the client obtains g(fx1 , . . . , fxm). While SPFE has many different po-
tential applications in privacy-preserving data mining, very few efficient solutions are
known. In particular, all single-server SPFE protocols from [CIK+01] have communi-
cation complexity that is equal to at least the size of the Boolean circuit that is needed
to implement g. In practice, g is often sufficiently complex, so that its circuit size is
at least linear. (Here and in what follows, we measure linearity and polynomiality in
n.) In such cases, the single-server SPFE protocols of [CIK+01] do not have sublinear
communication complexity.

We first augment the definition of (n, m)-SPFE by letting the client to have another
private input y, so that he will retrieve the value g(fx1 , . . . , fxm , y). This will enable us
to use SPFE in more applications, including the private similarity test studied later in
this paper. We call the result a generalized SPFE protocol. We then show how to imple-
ment SPFE for a large class of functionalities g in polynomial-time and sublinear (often

F. Bao et al. (Eds.): Inscrypt 2009, LNCS 6151, pp. 154–163, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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low-degree polylogarithmic) communication. This will hold even if g has no sublinear-
size circuits but has a binary decision diagram (BDD) with sublinear length. More pre-
cisely, we propose two different generalized SPFE protocols that are based on the recent
PrivateBDD cryptocomputing protocol by Ishai and Paskin [IP07] and on an efficient
(n, 1)-CPIR protocol. When using Lipmaa’s (2, 1)-CPIR protocol from [Lip05], the
communication of the PrivateBDD protocol is proportional to λ · (λ′ + len(g)), where
λ is the bitlength of client’s private input, λ′ is the length of client’s private output and
len(g) is an upperbound to the length of BDD that computes g. The online computation
of PrivateBDD is size(g) public-key operations, where size(g) is the size of the BDD
that corresponds to Bob’s fixed input g.

The first protocol only works in the case of a constant m, and is especially effi-
cient when m = 1. In this protocol, the server computes—by using the PrivateBDD
protocol—a database of the answers g(fi1 , . . . , fim , y) for all values (i1, . . . , im), and
then the client and the server run an efficient two-message (

(
n
m

)
, 1)-CPIR protocol on

this database so that the client retrieves g(fx1 , . . . , fxm , y). This protocol requires us to
compute g on n different inputs. However, it is still efficient in many cases where the
evaluation of the BDD corresponding to g is efficient for known values of fij .

The second protocol works for any value of m. It consists of an input selection pro-
tocol, after which the client obtains values fx1 ⊕ r1, . . . , fxm ⊕ rm for random strings
rj that are chosen by the server. That is, the client and the server secret-share the values
fxj . It is then followed by a PrivateBDD protocol, where client’s inputs are fxj ⊕ rj

and y, server’s inputs are g and rj , and client’s output is g(fx1 , . . . , fxm , y). Due to the
homomorphic properties of the underlying (2, 1)-CPIR protocol by Lipmaa [Lip05],
it is straightforward to implement PrivateBDD on secret-shared inputs fxj based on a
PrivateBDD protocol that uses non-shared input. The resulting generalized SPFE proto-
col has 4 messages, and requires to compute (n, 1)-CPIR m times, and then to execute
PrivateBDD for g. This protocol has sublinear communication whenever g has a BDD
with length that is sublinear in n.

We show how to apply the first generalized SPFE protocol in biometric authentica-
tion by presenting a new private similarity test. Consider the setting where the client
(a fingerprint terminal) obtains a fingerprint y of some person, together with her claim
that she is the xth employee (say, Alice). Then the client contacts the server who has
a database of fingerprint templates of all employees. At the end of the protocol, the
client gets to know whether fingerprint y is sufficiently close to the xth fingerprint tem-
plate (in the sense of the Euclidean norm �2) in the template database to warrant access,
without getting to know anything else. On the other hand, the server does not get any
new information, including the fingerprint y, the value of x, or even whether the test
succeeded. Moreover, the fingerprint templates at the server can be either unencrypted,
or encrypted with the secret key that is known to the client.

Our private similarity test protocols works as follows. Assume that two fingerprints,
represented as Boolean vectors of dimension λ = |fj | = |y| “match” if at least t of
their coordinates match, that is, if ||fj − y||22 ≤ λ− t. By using the BDD for threshold
function proposed in [ST97] and the CPIR of [GR05], we can constuct a private similar-
ity test program with communication Θ(λ2 log2 λ/ log log λ log log log λ+logn)κ and
server’s online computation that is dominated by Θ(n ·λ log3 λ/ log log λ log log log λ)
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public-key operations. We are not aware of any previously proposed (provably secure)
nontrivial private similarity tests.

2 Preliminaries

Client’s input is x ∈ {0, 1}λ, server’s input is a function f : {0, 1}λ → {0, 1}λ′
. κ is the

security parameter. We denote f(x) by fx, that is, we think of f as of the characteristic
function of the vector f = (f0, . . . , f2λ−1). n denotes the server’s database size, and m
is the number of queries to the database. All logarithms have base 2.

Public-Key Cryptosystems. Let P = (Gen, Enc, Dec) be a length-flexible additively-
homomorphic public-key cryptosystem [DJ01], where Gen is a randomized key gen-
eration algorithm, Enc is a randomized encryption algorithm and Dec is a decryp-
tion algorithm. Here, both Enc and Dec receive an additional length parameter λ, so
that Encpk(λ, ·) encrypts plaintexts from some set {0, 1}≤λ. In the case of the DJ01
cryptosystem from [DJ01], for every integer λ > 0, Encpk(λ, ·) is a valid plaintext of
Encpk(�λ/κ�·κ+κ, ·), and therefore one can multiple-encrypt messages as say in C ←
Encpk(λ+2κ, Encpk(λ+κ, Encpk(λ, M))), and then recover M by multiple-decrypting,
M ← Decsk(λ + 2κ, Decsk(λ + κ, Decsk(λ, C))). In practice, 2λ < N where N is the
public key of the DJ01 cryptosystem. Additionally, in any length-flexible additively-
homomorphic cryptosystem, Encpk(λ, M1) · Encpk(λ, M2) = Encpk(λ, M1 + M2),
where the addition is modulo the public key N . We will explicitly need the existence
of a compression function C that, given pk, λ′ and λ for λ′ ≥ λ, and Encpk(λ′, M) for
M ∈ {0, 1}λ, returns Encpk(λ, M) ∈ {0, 1}
λ/κ�·κ+κ.

In the LFCPA (length-flexible chosen-plaintext attack) game, the challenger first gen-
erates a random (sk, pk) ← Gen(1κ), and sends pk to the attacker. Attacker chooses a
polynomial number of message pairs (Mj0, Mj1) (such that |Mj0| = |Mj1|) and length
parameters λj , and sends them to the challenger. Challenger picks a random bit b, and
sends all ciphertexts Encpk(λj , Mjb) to attacker. Attacker outputs a bit b′, and wins if
b = b′. Because of the existence of the compress function, LFCPA security follows
from the CPA security [Lip09]. Thus, the DJ01 cryptosystem [DJ01] is LFCPA-secure
under the Decisional Composite Residuosity Assumption.

Cryptocomputing. Let λ and λ′ be public parameters, and let F a class of functions
{0, 1}λ → {0, 1}λ′

. In a cryptocomputing protocol for F between a client and a server,
the client has an input x ∈ {0, 1}λ and the server has an input f ∈ F . The client
obtains f(x). Every cryptocomputing protocol Γ = (Q, R, A) has two messages, where
the client sends Q(λ′, x) to the server, the server replies with R← R(λ′, f, Q), and then
finally the stateful client recovers fx by computing A(λ′, x, R). Here, Q, R and A are
(probabilistic) polynomial-time algorithms.

Semisimulatable Privacy. Let Γ = (Q, R, A) be a 2-message cryptocomputing proto-
col. Within this work we use the convention of many previous papers to only require
(semisimulatable) privacy in the malicious model. More precisely, client’s privacy is
guaranteed in the sense of indistinguishability (CPA-security), while server’s privacy is
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guaranteed (if at all) in the sense of simulatability. We now give an informal definition of
privacy, see [IP07] for more. For the the privacy of the client, no malicious nonuniform
probabilistic polynomial-time server should be able to distinguish, with non-negligible
probability, between the distributions Q(λ′, x0) and Q(λ′, x1) that correspond to any
two of client’s inputs x0 and x1 that are chosen by herself. For server-privacy, we
require the existence of an unbounded simulator that, given client’s message Q∗ and
client’s legitimate output corresponding to this message, generates server’s message
that is statistically indistinguishable from server’s message R in the real protocol; here
Q∗ does not have to be correctly computed. A protocol is private if it is both client-
private and server-private.

CPIR. A 2-message 1-out-of-n computationally-private information retrieval protocol,
(n, 1)-CPIR is a special type of cryptocomputing protocol. In a (n, 1)-CPIR protocol
for λ′-bit strings, the client has an index x ∈ {0, . . . , n−1} and the server has a database
f = (f0, . . . , fn−1) with fi ∈ {0, 1}λ′

. The client obtains fx. A (n, 1)-CPIR protocol
Γ = (Q, R, A, C) is BDD-friendly if it satisfies the next four assumptions: (1) Γ has
two messages, as any cryptocomputing protocol. (2) Γ is uniform in λ′, that is, it can
be easily modified to work on other values of λ′. (3) |Q(λ′, ·)|, |R(λ′, ·, ·)| ≤ λ′ +Θ(κ)
(with possibly Q(λ′, ·) being shorter). (4) The compress function C maps Q(λ′′, x) to
Q(λ′, x) for any λ′′ ≥ λ′ and x. Here all 4 algorithms are (probabilistic) polynomial-
time. The only known BDD-friendly (2, 1)-CPIR was proposed by Lipmaa in [Lip05],
see [Lip09] for a compact description. Importantly for us, in this (2, 1)-CPIR protocol,
Q(λ′, x) consists of a public key and an additively homomorphic encryption of x un-
der this key. Any (n, 1)-CPIR protocol Γ must be client-private, that is, CPA-secure.
Lipmaa’s (2, 1)-CPIR protocol [Lip05], when based on the DJ01 cryptosystem [DJ01],
is CPA-secure and thus LFCPA-secure under the Decisional Composite Residuosity
Assumption. A (semisimulatably) private (n, 1)-CPIR protocol is also known as an
(n, 1)-oblivious transfer protocol.

Binary Decision Diagrams. A (multi-terminal) binary decision diagram (BDD, also
known as branching program) is a fanout-2 directed acyclic graph (V, E), where the
non-terminal (that is, non-sink) nodes are labeled by variables from some variable set
{x0, . . . , xλ−1}, the sinks are labeled by λ′-bit strings and the two outgoing edges of
every internal node are respectively labeled by 0 and 1. A BDD computes some function
f : {0, 1}λ → {0, 1}λ′

. Every assignment of the variables selects one path from the
source to some sink as follows. The path starts from the source. If the current version
of path does not end at a sink, test the variable at the endpoint of the path. Select one of
the outgoing edges depending on the value of this variable, and append this edge and its
endpoint to the path. If the path ends at a sink, return the label of this sink as the value
of the corresponding source. The BDD’s value is then equal to the source value.

For a BDD P , let len(P ) be its length (that is, the length of its longest path), size(P )
be its size (that is, the number of non-terminal nodes). Let BDD(f) be the minimal size
of any BDD computing f .

PrivateBDD Protocol. In [IP07], Ishai and Paskin proposed a new cryptocomput-
ing method (PrivateBDD) that uses a BDD-representation of the target function in
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conjunction with a communication-efficient strong oblivious transfer. In [Lip09], the
authors noted that the strong oblivious transfer protocol can be replaced by a BDD-
friendly (2, 1)-CPIR protocol. We now briefly recall the main properties of PrivateBDD,
as instantiated by Lipmaa’s (2, 1)-CPIR from [Lip05], see [Lip09] for more.

Theorem 1. Assume that the Decisional Composite Residuosity Assumption is true.
Let F be a set of functions f : {0, 1}λ → {0, 1}λ′

, and for any f ∈ F let Pf be
some (multi-terminal) BDD with λ′-bit sink labels that computes f . Let len(F) :=
maxf∈F len(f). Then F has a CPA-secure cryptocomputing protocol with communi-
cation upperbounded by κ+λ · (λ′+(len(F)+2) ·κ), and server’s online computation
dominated by size(f) public-key operations.

We omit internal details of the PrivateBDD. However, later we will use the fact that
client’s inputs to the PrivateBDD (when instantiated by Lipmaa’s (2, 1)-CPIR from
[Lip05]) are encrypted bitwise by using a length-flexible additively homomorphic
public-key cryptosystem like [DJ01].

3 Generalized Selective Private Function Evaluation

In [CIK+01], the authors consider the problem of m-out-of-n selective private function
evaluation ((n, m)-SPFE), where the client obtains g(fx1 , . . . , fxm) of the database
elements fx1 , . . . , fxm for some function g. The authors proposed several ways to tackle
this problem, but all their protocol needed an implementation of either a secure multi-
party computation protocol or Yao’s garbled circuits protocol.

In [BC09], the authors considered a related primitive that they called 1-out-of-n
extended CPIR ((n, 1)-ECPIR). In such a protocol, the client obtains g(fx, y), where
x, y are client’s private inputs and f is server’s private input. They proposed a number
of protocols for a few functions g that could efficiently be implemented by using a
homomorphic or a bilinear cryptosystem. Moreover, they only consider the case m = 1.
On the other hand, the inclusion of the free input y makes ECPIR useful in a number of
additional applications.

We define generalized SPFE, by letting the client to retrieve g(fx1 , . . . , fxm , y),
where y is client’s auxiliary input and g may be a function that is private to the server.
Generalized SPFE has a wider class of applications compared to vanilla SPFE, though
it is also somewhat more difficult to implement.

In this section, we propose two protocols for generalized SPFE. The first one, pre-
sented in Sect. 3.1, works in the special case when m is a constant, has only 2 messages
and is very efficient when g(a, ·) has an efficient BDD representation for any constant
a. The second, 4-message protocol (presented in Sect. 3.2) works for general m. In ad-
dition to having an augmented input y (which was not covered in [CIK+01]), it is also
usually more efficient than the protocols of [CIK+01]. We note that one can construct
more PrivateBDD-based SPFE protocols similarly to [CIK+01] that proposed several
different SPFE protocols based on generic multi-party computation. However, the pro-
tocol of Sect. 3.2 seems to be the most efficient one of the possible variations.
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3.1 First Protocol: Efficient Generalized SPFE for Small m

Assume that m is constant, the client has inputs (x1, . . . , xm) and y, and the server has
a database f = (f0, . . . , fn−1). We construct the next protocol:

BDD-Based Generalized SPFE Protocol for Constant m

Client’s inputs: x1, . . . , xm, y.
Server’s inputs: f = (f0, . . . , fn−1), function g.
Client’s output: g(fx1 , . . . , fxm , y).

1. The client and the server run in parallel
(

n
m

)
different PrivateBDD protocols to

compute the values g(fi1 , . . . , fim , y) for every possible input (i1, . . . , im). The
server stores the database π, where π(i1,...,im) = g(fi1 , . . . , fim , y).

2. In parallel to PrivateBDD protocols, the client and the server execute an (
(

n
m

)
, 1)-

CPIR protocol to the database π, from which the client retrieves the correct ele-
ment.

This generalized SPFE protocol takes 2 messages, computes n PrivateBDD proto-
cols for g, and a single (n, 1)-CPIR protocol. Note that the client can “Q-encrypt” ev-
ery bit of y once, since the server will reuse the same input in all n instances. Let
len(Pg) := maxi len(Pg,i) and size(Pg) := maxi size(Pg,i) where i = (i1, . . . , im)
and Pg,x is a BDD that implements g(i1, . . . , im, ·). Thus, this generalized SPFE pro-
tocol has communication κ + λ · (λ′ + (len(Pg) + 2)κ) plus communication of a
(
(

n
m

)
, 1)-CPIR on (λ ·(λ′ +(len(Pg)+2)κ))-bit strings. In particular, when the Gentry-

Ramzan CPIR [GR05] is used, this generalized SPFE protocol has communication
κ + λ · (λ′ + (len(Pg) + 2)κ) + Θ(m · log n + λ · (λ′ + (len(Pg) + 2)κ) + κ) =
Θ(m · log n + λ · (λ′ + len(Pg)κ)). Server’s online computation is dominated by
Θ(

(
n
m

) · size(Pg)) = Θ̃(nm · size(Pg)) public-key operations.

Theorem 2. Let the Decisional Composite Residuosity Assumption be true, and let the
used (n, 1)-CPIR protocol be client-private. Then the BDD-based generalized SPFE
protocol is private.

Proof (Sketch.). One can prove client-privacy by a standard hybrid argument, by as-
suming that the PrivateBDD protocol and the (n, 1)-CPIR protocol are both client-
private. For server-privacy, one can use any of the well-known transformations to trans-
fer the (n, 1)-CPIR protocol and the (2, 1)-CPIR protocol used internally in the Pri-
vateBDD protocol. The most efficient transformation in this case is most probably the
one of [LL07]. In particular, that transformation only has to be applied to the instances
of the (2, 1)-CPIR protocol that are on the very bottom of the BDD (that is, where the
inputs to the CPIR protocol are the actual database elements). The resulting generalized
SPFE protocol is clearly client-private. ��

Example: Comparison Function. Let m = 1. As an example, suppose that the client
wants to establish whether y > fx, y = fx or y < fx, where all values are λ′-bit
long. One can construct a BDD for this with len(P ) = size(P ) = λ′. If one uses the
Gentry-Ramzan (n, 1)-CPIR protocol [GR05], then this protocol has communication
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Θ(log n · λ′ · κ), while server’s online computation is dominated by Θ(n · λ′) public-
key operations.

Another example, private similarity test, is studied more closely in Sect. 4.

3.2 Second Protocol

If m is not a constant, then we cannot use the same technique anymore because it could
result in superpolynomial computation time. Moreover, the previous protocol requires
to evaluate g(a1, . . . , am, y), albeit for known values of aj ,

(
n
m

)
. Description of the

second generalized (n, m)-SPFE protocol, that is more efficient for large values of m,
follows:

BDD-Based Generalized SPFE Protocol

Client’s inputs: x1, . . . , xm, y.
Server’s inputs: f = (f0, . . . , fn−1), function g.
Client’s output: g(fx1 , . . . , fxm , y).

1. The client and the server execute an input selection protocol with the next
inputs and outputs. The client has inputs (x1, . . . , xm). The server has in-
puts (f, r1, . . . , rm), where rj is an λ-bit new random string generated by the
server. The client obtains (fx1 ⊕ r1, . . . , fxm ⊕ rm) while the server remembers
(r1, . . . , rm). Note that after this protocol, the client and the server secret-share
the inputs fx1 , . . . , fxm .

2. After the first step, the client and the server execute a PrivateBDD protocol with
the next inputs: the client has inputs (fx1 ⊕ r1, . . . , fxm ⊕ rm, y). The server has
inputs (g, r1, . . . , rm). The client obtains g(fx1 , . . . fxm , y).

To analyze the communication and computation complexity of the second general-
ized SPFE protocol, we have to specify both subprotocols. In the input selection proto-
col, the client and server execute an (n, 1)-CPIR protocol (for λ′-bit strings) m times in
parallel, for j ∈ {1, . . . , m}, with databases (f1 ⊕ rj , . . . , fm ⊕ rj) respectively. (This
is similar to the input selection protocol of Sect. 3.3.1 of [CIK+01].)

Probably the simplest way to instantiate the PrivateBDD protocol on secret-shared
inputs is to observe that when Lipmaa’s (2, 1)-CPIR protocol [Lip05] is used, then
client’s inputs to the protocol are homomorphic encryptions of the bits fxi,j⊕rij . Since
the server knows the values rij , she can now easily obtain the encryptions of fxi,j . (For
this, the server has to do expected mλ/2 additional divisions that use an encryption of
1.) After that, the server just has to compute PrivateBDD for the functionality that on
inputs (fx1 , . . . , fxm , y) outputs g(fx1, . . . , fxm , y).

This protocol requires 4 messages, and computes m parallel (n, 1)-CPIR protocols
and a PrivateBDD protocol for g(· · · ). As noted earlier, the server also has to execute
1 additional encryption and mλ/2 additional divisions. Thus, when the Gentry-Ramzan
CPIR [GR05] protocol is used, this generalized SPFE protocol has communication Θ(m·
(log n + λ′ + κ) + λ · (λ′ + len(Pg) · κ)). Server’s online computation is dominated
by Θ(mn + size(Pg)) public-key operations. For most of the interesting classes F , the
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proposed SPFE protocol is much more efficient than any of the solutions proposed in
[CIK+01]. In particular, it provides sublinear communication in n whenever the length
of the BDD is smaller than n.

Client-privacy is a straightforward corollary of the client-privacy of the PrivateBDD
and the (n, 1)-CPIR protocol. The server-privacy on the other hand is a more difficult
matter. First, by applying a conditional disclosure of secrets (CDS) protocol of [LL07]
to client’s input to the PrivateBDD, one can almost without no overhead guarantee that
the client obtains a non-random input only if he has encrypted Boolean inputs.

If the client proves in zero-knowledge the consistency of those Boolean inputs with
the output of the input selection protocol, then the second BDD-based generalized SPFE
protocol is also server-private and thus semisimulatable. However, adding such a zero-
knowledge proof will result in considerable overhead. Without zero-knowledge proofs,
the only attack the client can do is to replace the inputs fxj to the PrivateBDD pro-
tocol with some values fxj ⊕ zj , with z = (z1, . . . , zm) chosen by herself. Thus the
second generalized SPFE protocol (when strengthened by the use of the CDS protocol
of [LL07]) is a semisimulatably private protocol for the next functionality: client has
private inputs (x1, . . . , xm, y, z1, . . . , zm), server has private inputs (f0, . . . , fn−1, g).
The client obtains the value g(fx1 ⊕ z1, . . . , fxm ⊕ zm, y). We emphasize that this
functionality is different from the SPFE functionality, however, several SPFE protocols
from [CIK+01] are secure in exactly the same sense. (The authors if [CIK+01] said that
in this case, the SPFE protocol is weakly secure.) We note however that this extended
functionality may have it’s own applications. Moreover, as also argued in [CIK+01],
the damage to server’s privacy is still limited.

Thus we have proved that

Theorem 3. Let the Decisional Composite Residuosity Assumption be true, and let the
used (n, 1)-CPIR protocol be client-private. Then the second BDD-based generalized
SPFE protocol is client-private and (weakly) server-secure.

4 Private Similarity Test

As specified in the introduction, in a private similarity test protocol, the client wants to
establish whether wh(y, fx) < t (or equivalently, whether ||y − fx||22 < t), where all
values are λ′-bit long and wh denotes the Hamming distance and || · ||2 denotes the �2

norm. As usually, it is required that no more information is revealed.
Clearly, private similarity test can be seen as a special case of the SPFE protocol (for

m = 1), and thus we first have to construct an efficient BDD that computes the predicate

[wh(y, fx)
?
< t]. In our case, the latter can be reduced to computing the threshold

function Tλ,t, where Tλ,t(v1, . . . , vλ) = 1 iff at least t bits vi are equal to 1. This is since
client’s message includes homomorphic encryptions of y’s bits and the server knows
fingerprint templates. Alternatively, fingerprint templates can be bitwise encrypted by
the same key as the client’s message — this is possible since they are used to branch in
the BDD, and the branching variables may be encrypted. (See [IW06, CH08] for some
related work on biometric authentication.)

It is straightforward to construct an (ordered) BDD for Tλ,t that has Θ(λ2) nodes
and length λ. Currently, the smallest size BDD for threshold function was presented
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by Sinha and Thathachar in [ST97]. Their BDD has size O(λ · log3 λ/(log log λ ·
log log log λ)), and length aO(λ · log2 λ/(log log λ · log log log λ)). On the other hand,
it is also known from [BPRS90] that BDD(f) = Ω(λ · log λ/ log log λ). Thus, the so-
lution of [ST97] is close to the lower bound though not yet equal to it. We briefly sketch
the idea of the construction from [ST97]. They choose co-prime integers p1, . . . , pk, for
some k, such that

∏
pj ≥ n and

∑
pj is minimal. They then use a Chinese Remainder

Theorem-like construction to test the value of the input v = (v1, . . . , vλ) modulo pj

for all pj . This step can be implemented by a BDD of size Θ(λ · log2 λ/(log log λ))
and length Θ(λ · log λ/ log log λ), and it reduces the threshold function for λ-bit in-
puts to a smaller interval which they then solve recursively. This recursion goes for
O(log λ/ log log log λ) steps.

We now construct a private similarity test protocol by following the BDD-based
generalized SPFE protocol of Sect. 3.1. Compared to the general protocol of Sect. 3.1,
it is restricted to m = 1 and uses the specific BDD-s constructed in [ST97]:

Private Similarity Test

Client’s inputs: x ∈ {0, . . . , n− 1}, y ∈ {0, 1}λ.
Server’s inputs: f = (f0, . . . , fn−1) with fj ∈ {0, 1}λ.
Client’s output: [wh(fx, y) <? t].

1. The client and the server run in parallel n different PrivateBDD protocols, based
on [ST97], to compute the values [wh(fi, y) <? t] for every possible input i. The
server stores the database π, where πi = [wh(fi, y) <? t].

2. In parallel to PrivateBDD protocols, the client and the server execute an n-CPIR
protocol to the database π, from which the client retrieves the correct element.

Combining the BDD of Sinha and Thathachar P with the Gentry-Ramzan CPIR
protocol results in a private similarity test protocol with communication Θ(log n +
λ · len(P )κ) = Θ(log n + λ2 · log2 λ/(log log λ · log log log λ))κ and server’s com-
putation Θ(n · size(P )) = Θ(n · λ · log3 λ/(log log λ · log log log λ))κ public-key
operations, which is efficient for a large range of n and λ. Note that this is close to
optimal communication-wise, because non-private similarity test has communication
log n + λ + 1.

Theorem 4. Let the Decisional Composite Residuosity Assumption be true, and let the
used (n, 1)-CPIR protocol be client-private. Then the new private similarity test is pri-
vate.

Proof. Simple corollary of the security of protocol in Sect. 3.1. ��
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Abstract. It is now a trend that Internet users are increasingly con-

cerned about individual privacy, and as a result numerous privacy-

preserving authentication techniques have been proposed. In this paper,

we propose the concept of private handshakes with optional identifia-
bility, which allows the two users in a handshake deciding real time to

either proceed their interaction as secret handshake or as private hand-

shake. Such optionally identifiable private handshakes are a more flexible

privacy-preserving authentication primitive than secret handshakes and

private handshakes. We formulate a formal definition for optionally iden-

tifiable private handshakes, as well as a set of security definitions, and

propose a concrete scheme. We implement a proof-of-concept prototype

of the proposed scheme, on top of the widely used TLS protocol.

1 Introduction

Nowadays, as Internet has grown to be an indispensable part of our society,
more and more services/transactions are becoming electronic, e.g., e-commerce
and e-banking. Users, on the one hand, fervently embrace the use of Internet
and enjoy the great convenience it brings, while on the other hand, become in-
creasingly conservative in disclosing individual information when using Internet.
As a result, privacy-preserving techniques that can make users accomplish the
desired functionalities and at the same time maintain their individual privacy
are expected to play a key part in a wider adoption of Internet applications.

Secret handshake protocols are a privacy-preserving authentication primitive
that enables a pair of users from the same group, each holding a group credential,
to authenticate each other, while guarantee that 1) non-members learn nothing
on the handshake between the two users including whether they recognize each
other and whether they belong to the same group; 2) a non-member cannot
pretend to be a member, and in turn perform handshakes with members. Secret
handshakes turn out to be quite useful, especially at the time when users are more
and more concerned about individual privacy, reluctant to reveal their activities
and preferences over Internet. Therefore, since first formulated by Balfanz et al.
[3], secret handshakes have attracted enormous attention.

In their original form, secret handshakes are linkable in the sense that differ-
ent handshakes by the same user can be linked. This is because a user needs to

F. Bao et al. (Eds.): Inscrypt 2009, LNCS 6151, pp. 164–178, 2010.
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repeatedly use the same pseudonym/ID in different handshake sessions. However,
unlinkability is often a pursued goal for privacy-preserving protocols, unlinkable
secret handshakes were thus proposed, e.g., [12]. We should point out that it
trivially achieves unlinkability using any secret handshake protocol, as long as a
user can have in possession an indefinite number of pseudonyms/IDs (and cre-
dentials). Note that to use a pseudonym/ID for secret handshakes, there must
be a credential bound to that pseudonym/ID. Hence this trivial approach is not
practical, since it requires a user to apply for an ample number of credentials
from the group administrator. In contrast, unlinkable secret handshakes attain
unlinkability by each user using a single reusable credential. We here should
also clarify the differences between unlinkable secret handshake protocols and
other commonly used privacy-preserving authentication primitives such as group
signature (e.g., [2]) and anonymous credential (e.g., [9]): unlinkable secret hand-
shakes are affiliation-hiding in the sense that non-members cannot learn to which
group the users in handshakes belong; but group signature and anonymous cre-
dential do not hide the users’ affiliation at all.

Among others, traceability is a property offered by unlinkable secret hand-
shakes. Traceability allows a designated group administrator to find out the
users who have engaged in a secret handshake session (e.g., in case of certain
exceptional events), based on the protocol transcript. Although traceability is
often a desired feature in unlinkable privacy-preserving systems, possession of it
actually weakens privacy protection of the underlying system: anyhow a certain
party (group administrator in the setting of unlinkable secret handshakes), how-
ever trustful it is, can violate unlinkability. Recently, Hoepman [13] proposed the
notion of private handshakes, which is essentially unlinkable secret handshakes
without traceability. Offering no traceability whatsoever, private handshakes can
be useful in certain circumstances, e.g, a user in some applications may not want
anyone to identify him in any means.

Our Contribution: In this work, we propose the concept of private handshakes
with optional identifiability, which allows the two users in a handshake to nego-
tiate real time whether to make their handshake identifiable. To make it clearer,
optionally identifiable private handshakes can be viewed as a primitive interpo-
lating between private handshakes and secret handshakes. As shown in Figure 1,
if the two users agree to achieve no identifiability, then the protocol proceeds
as a private handshake; on the contrary, if they decide to achieve identifiability,
then the protocol proceeds as a secret handshake. Optionally identifiable private
handshakes clearly offer the users the flexibility to choose the level of privacy
protection in their handshake, i.e., total privacy or identifiability.

The differences between optionally identifiable private handshakes and unlink-
able secret handshakes are substantial, and are explained as follows. Unlinkable
secret handshakes provide unlinkability to the two users in a handshake, but the
designated group administrator can definitely revoke unlinkability. In compari-
son, for an optionally identifiable private handshake protocol, if it proceeds as a
private handshake, then unlinkability is provided and cannot be revoked by any
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Optionally Identifiable
Private Handshakes

Private
Handshakes

Secret
Handshakes

No
identifiability Identifiability

Unlinkable Secure
Handshakes

Fig. 1. Concept of optionally identifiable private handshakes

party; on the other hand, if it proceeds as a secret handshake, then the users in
the handshake can directly violate unlinkability.

Finally, the properties of optionally identifiable private handshakes can be
summarized informally as follows. (1) Membership authentication: users from
the same group are guaranteed to authenticate each other. (2) Non-member ex-
clusiveness: a user Alice who does not belong to a group pretending to be a
member is not able to successfully perform handshakes with a genuine group
member Bob; she cannot even learn anything on her counterpart, including
whether he belongs to that group or not. (3) Optional identifiability: the two
users in a handshake can decide real time whether to engage in identifiable or
non-identifiable handshake: if the former (i.e., secret handshake), the two learn
their respective counterparts’ pseudonyms/identities; otherwise, the handshake
is entirely unlinkable to them, without any traceability whatsoever (i.e., private
handshake). (4) Unlinkability: a non-member eavesdropper cannot tell apart the
protocol sessions involving the same user from those involving different users.
Better still, if the two group members engage in a non-identifiable handshake
(i.e., private handshake), they cannot differentiate their respective counterparts
either.

Organization: The rest of the paper is organized as follows. In Section 2, we
review the related work. We then formulate a model for optionally identifiable
private handshakes in Section 3, followed by a concrete scheme in Section 4.
Security definitions for optionally identifiable private handshakes are formulated
in Section 5, together with the security proofs for the proposed scheme. In Sec-
tion 6, we report the implementation results, and Section 7 concludes the paper.

2 Related Work

The notion of secret handshakes traces back to private match making [5], where
users with the same “target” can locate and authenticate each other secretly.
However, in private match making, it is likely that any user can identify members
if he correctly guesses the “target”.
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Balfanz et al. [3] first formulated the notion of secret handshakes and revived
the interest in this privacy-preserving authentication primitive. Their protocols
are based on bilinear parings, and secure under the bilinear Diffie-Hellman as-
sumption [4] and the random oracle model [7]. Subsequently, Castelluccia et
al. [8] proposed secret handshake protocols, with security under computational
Diffie-Hellman assumption. RSA-based secret handshake protocols were due to
Jarecki et al. [11] and Vergnaud [17].

The above secret handshake protocols are inherently linkable, unless using dis-
tinct credentials each time. Achieving unlinkability directly using these protocols
requires a user to possess an indefinite number of credentials, which is unlikely
to be affordable in practice. A more satisfactory solution is that a user is able
to reuse his credential while attaining unlinkability. Xu and Yung [18] achieved
the use of reusable credentials in secret handshakes. However, their scheme only
achieves k-anonymity, which allows the attacker to learn that a user in a hand-
shake is from one of the k publicly known users. Tsudik and Xu [16] proposed a
protocol achieving (full) unlinkability, but all members from the same group are
required to share a group secret. One of the main drawbacks of sharing secret
is that the propagation of revocation information must be strictly synchronized;
otherwise, some members will fail to authenticate. Jarechi and Liu’s unlinkable
secret handshake protocol [12] does not rely on group members sharing secret,
and it also tolerates to some extent unsynchronized propagation of revocation
information. Ateniese et al. [1] extended unlinkable secret handshakes in several
ways, e.g., allowing members from different groups to perform handshakes, and
supporting fuzzy attribute-based handshakes.

Unlinkable secret handshakes allow the designated group administrator to
violate unlinkability, such that the administrator can find out the members who
have encaged in the handshakes. Traceability is often a useful feature in privacy-
preserving systems. Nevertheless, in some applications users may not be happy to
be traced by any one. This has motivated Hoepman [13] to propose the concept
of private handshakes, which is essentially unlinkable secret handshakes, but
does not have traceability to any party.

The concept of optionally identifiable private handshakes we propose should
be viewed as a primitive interpolating between private handshakes and secret
handshakes, allowing the two users in a handshake to decide real time either
to proceed their handshake as identifiable or to proceed as non-identifiable. It
is thus a more flexible handshake primitive than private handshakes and secret
handshakes. Optionally identifiable private handshakes are also superior to un-
linkable secret handshakes, in the sense that they do not implicate a trusted
third party (i.e., the group administrator) for unlinkability revocation.

3 Model

An optionally identifiable private handshake system consists of a set G of groups,
a set U of users, and a set A of group administrators who create groups and enrol
users in groups. A user may or may not be affiliated to a group (for simplicity, we
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assume that a user belongs to at most one group). If a user belongs to a group,
then he is a member of that group; otherwise, he is non-member of that group.
An optionally identifiable private handshake system consists of the following
algorithms.

– CreateGroup(1κ)→ {0, 1}∗: On input a security parameter 1κ, the algorithm,
executed by a group administrator A ∈ A, outputs a group secret sG ∈
{0, 1}∗ for a group G ∈ G.

– EnrolUser(G, u) → {0, 1}∗: On input a group G ∈ G and a user u ∈ U, the
algorithm, executed by the group administrator AG of G, outputs a secret
credential xu ∈ {0, 1}∗ bound to the user’s identity/pseudonym u. Note that
xu is generated using the group secret sG.

– Handshake(u1, u2, b)→ {0, 1}∗ ∪ {⊥}: This is an interactive process between
two users u1, u2 ∈ U, governed by b ∈ {0, 1}. If b = 0, the interactions
between u1 and u2 constitute a private handshake protocol; otherwise, the
interactions are a secret handshake protocol. In either case, the algorithm
outputs a shared key sk ∈ {0, 1}∗ between u1 and u2 if they belong to the
same group, or ⊥ otherwise.

– RevokeUser(G, u) → {0, 1}∗: On input a group G ∈ G and a user u ∈ U,
the algorithm, executed by the group administrator AG of G, revokes the
membership of u, and inserts u into the RevokedUserList of G and outputs
the RevokedUserList.

4 Our Construction

4.1 Preliminaries

Our construction is based on bilinear parings. Let G1,G2 be two cyclic groups
of a large prime order q, then ê : G1 × G1 → G2 is a bilinear pairing if for any
a, b ∈ Zq, P, Q ∈ G1, we have ê(aP, bQ) = ê(P, Q)ab. A bilinear pairing should
be non-degenerate, i.e., if P, Q are generators in G1, then ê(P, Q) is not the
identity in G2. In bilinear pairings, the Bilinear Diffie-Hellman (BDH) problem
is assumed to be hard, which states that it is hard to compute ê(P, P )abc from
aP, bP, cP for random a, b, c ∈ Zq and P ∈ G1. Formally, for all probabilistic
polynomial time (PPT) A, we define AdvBDH

A = Pr[A(aP, bP, cP ) = ê(P, P )abc]
to be the advantageA solves the BDH problem, which is negligible in the security
parameter.

4.2 Details of Protocol

The system parameters include ê : G1×G1 → G2 defined as above, cryptographic
hash functions H0 : {0, 1}∗ → G1, H1 : G2 × {0, 1} → K, H2 : G2 × G2

1 → K,
and a semantically secure symmetric key encryption E : {0, 1}∗ × K → {0, 1}∗
(the decryption algorithm is D : {0, 1}∗ × K → {0, 1}∗), where K denotes the
appropriate key space.
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– CreateGroup(1κ): Given the security parameter 1κ, a group administrator A
creates a group G by selecting a random secret sG ∈ Zq, specific to G. Note
that the size of q polynomially relates to κ. Then A is the group administrator
of G, denoted as AG.

– EnrolUser(G, u): To enrol user u into group G whose group secret is sG, the
corresponding group administrator AG computes and issues u a credential
xu = sGH0(u), where u denotes the identity/pseudonym of the user.

– Handshake(u1, u2, b): The interactions between u1, u2, whose credentials are
xu1 = sGH0(u1) and xu2 = sGH0(u2), respectively, are the following, aiming
to authenticate each other and establish a common key for their subsequent
communication. Figure 2 summarizes the details of the procedure.
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Fig. 2. Details of Handshake(u1, u2, b)

Step 1. Let u1 be the initiator. u1 chooses a random number r1 ∈ Zq,
and computes and sends R1 = r1H0(u1) to u2, together with a bit b. Note
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that if b = 0, then it means u1 wants to engage in a private handshake
with u2 (non-identifiability); otherwise it means u1 wants a secret handshake
(identifiability):
u1 −→ u2 : R1, b

Step 2. Upon receiving the message, if u2 does not agree with u1 on the
type of handshake indicated by b, u2 aborts. Otherwise, u2 chooses a random
number r2 ∈ Zq, computes R2 = r2H0(u2) and V2 = H1(ê(R1, r2xu2), b) =
H1(ê(H0(u1), H0(u2))sGr1r2 , b), and responds to u1 with R2, V2:
u2 −→ u1 : R2, V2

Step 3a. u1 first checks whether H1(ê(r1xu1 , R2), b) = V2. If the equa-
tion does not hold, u1 aborts. Otherwise, u1 computes and sends V1 =
H1(b, ê(r1xu1 , R2)) = H1(b, ê(H0(u1), H0(u2))sGr1r2) to u2, and at the same
time computes sku1 = H2(ê(r1xu1 , R2), R1, R2):
u1 −→ u2 : V1

Step 3b. Upon receipt of V1, u2 checks whether H1(b, ê(R1, r2xu1)) = V1.
If the equation does not hold, u2 aborts. Otherwise, u2 computes sku2 =
H2(ê(R1, r2xu2 ), R1, R2).
It is clear that, at this point u1 and u2 have authenticated each other if
they belong to the same group, and the protocol has accomplished private
handshake. Thus if b = 0, then the protocol stops, and sku1 , sku2 are the
shared key between u1 and u2. It is easily verified that sku1 = sku2 =
H2(ê(H0(u1), H0(u2))sGr1r2 , R1, R2).
However, if b = 1, u1 and u2 continue to send to each other their identity
and the random numbers r1 and r2, encrypted by sku1 , sku2 , respectively,
for achieving identifiability. In particular:

Step 4a. u1 −→ u2 : C1 = Esku1
(r1, u1)

Upon receiving u1’s message, u2 decrypts it to get r′1, u
′
1, and then checks

whether R1 = r′1H0(u′
1). If it holds, u2 accepts and computes a new key

sku1 = H2(ê(R1, r2xu2), u′
1, u2). At the same time, u2 sends to u1:

Step 4b. u2 −→ u1 : C2 = Esku2
(r2, u2)

Likewise, u1 decrypts and gets r′2, u
′
2, then checks whether R2 = r′2H0(u′

2). If
it holds, u1 accepts and computes a new key sku1 = H2(ê(r1xu1 , R2), u1, u

′
2).

This completes the whole handshake procedure.

– RevokeUser(G, u): To enable user revocation, we assume that in CreateGroup,
the group administrator AG of G has additionally chosen a t-degree polyno-
mial f(x) ∈ Fq[x], where t is the maximum possible number of users in the
group, and each enroled user u has been issued f(u). As such, to revoke a user
ū from G (suppose there were already m revoked users ūi1 , ūi2 , · · · , ūim be-
fore ū), AG chooses s′G ∈ Zq, computes and broadcasts (or publishes in a pub-
lic bulletin board) g(x) = (x−ū)(x−ūi1 ) · · · (x−ūim)(x−1)t−m−1.s′G+f(x) ∈
Fq[x]; at the same time, AG includes ū in the RevokedUserList and publishes
the updated RevokedUserList. It is clear that each non-revoked user u can
recover s′G = (g(u)− f(u))/(

∏
u′∈RevokedUserList(x− u′))(x− 1)t−m−1, while



Optionally Identifiable Private Handshakes 171

revoked users cannot. The reason why a revoked user ū cannot compute s′G
is that g(ū) = f(ū). With s′G in possession, each non-revoked user u then
updates his credential as xu = s′Gxu.

4.3 Discussions

In the above handshake protocol, when b = 1 the two users u1, u2 need to
exchange their identities/pseudonyms. There may be a “fairness” issue in the
exchange. For example, after getting C1 from u1 in Step 4a., u2 stops without
sending C2 as required, in which case u2 gains advantage over u2 in terms of
identifiability. It seems to us that there is no good technical solution to this
problem without involving a trusted third party.

The bright side is that in secret handshake (recall that when b = 1 the above
protocol is secret handshake), an underlying assumption is that a user does not
mind disclosing pseudonym/identity to his counterpart in a handshake. There-
fore, it should be understood that there is no plausible motive for a user to
deliberately terminate the protocol prematurely. Furthermore, be noted that
the handshake procedure simply helps the two users establish a shared key for
the subsequent communication; as such, if a user deviates from the protocol
to gain advantages, he will be rejected by his victim counterpart for further
communication.

Another issue in our scheme is the requirement of synchronized propagation
of the revocation information in RevokeUser. As a matter fact, user revocation is
a unsolved problem in almost all existing unlinkable secret handshake schemes,
except the one by Jarechi and Liu [12], which to some extent admits unsyn-
chronized propagation of revocation information. We leave the better solution
to user revocation in our scheme to future work.

5 Security Definitions and Proofs

We first formulate security definitions for optionally identifiable private hand-
shakes, and then prove that our proposed scheme satisfies the security definitions.
The strategies for formulation and proofs are largely based on those in [3].

5.1 Security Definitions

We first review the definition for negligible function.

Definition 1. (Negligible function). A function ε(κ) is negligible in κ if for all
polynomials p(.), ε(κ) ≤ 1/p(κ) for sufficiently large κ, where κ is the security
parameter.

Impersonation Resistance. The first security definition for optionally identi-
fiable private handshake is impersonation resistance, which relates to the authen-
tication property of the handshake protocol. Informally, impersonation resistance
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stipulates that only members from the same group can perform a handshake
with each other, and non-members cannot impersonate legitimate members of
the group. Impersonation resistance is defined through an Impersonation Game,
where an adversary A tries to learn how to impersonate members of a certain
group G∗: A interacts with players of the system, corrupts some users, communi-
cates with legitimate members of G∗, and eventually picks a target user u∗ ∈ G∗

and attempts to convince u∗ that it is a member of G∗. Intuitively, if A does
not corrupt any user u ∈ G∗, it is unable to convince u∗ of its membership. In
particular, the impersonation game for a Probabilistic Polynomial Time (PPT)
A is as follows.

Step 1.A interacts with users of its choice, and corrupts some users U ′ ⊂ U.
To corrupt a user, A obtains the credential of that user.
Step 2. A chooses a target user u∗ satisfying u∗ /∈ U ′ and u∗ ∈ G∗.
Step 3. Finally, A tries to convince u∗ that A ∈ G∗, that is, A’s ob-
jective is to pass the verification checks imposed by u∗ by engaging in
Handshake(A, u∗, b).
We say A wins the impersonation game if it indeed passes u∗’s verification

checks. We define A’s impersonation advantage AdvImpersn
A to be the probability

that A wins the impersonation game on the condition that A has not corrupted
any user in G∗, i.e., AdvImpersn

A = Pr[A wins impersonation game | U ′∩G∗ = ∅].

Definition 1. (Impersonation resistance). An optionally identifiable private
handshake scheme achieves impersonation resistance, if AdvImpersn

A is negligi-
ble for all PPT A.

Membership Detection Resistance. The second security definition is mem-
bership detection resistance, which informally requires that a non-member of a
group cannot identify members of that group. Membership detection resistance
is defined through a membership detection Game, where an adversary A tries
to learn how to detect members of a certain group G∗: A interacts with play-
ers of the system, corrupts some users, picks a target user u∗, and attempts to
detect whether u∗ ∈ G∗. Intuitively, it should not be possible for A to decide
whether or not u∗ ∈ G∗ unless A has corrupted some u ∈ G∗. The details of the
membership detection game for a PPT A is the following.

Step 1. A interacts with users of its choice, and corrupts some users U ′ ⊂ U

and gets the credentials of the corrupted users.
Step 2. A chooses a target user u∗ /∈ U ′.
Step 3. A random bit δ is flipped. If δ = 0, A interacts with u∗. If δ = 1, A
interacts with a random simulation of u∗. A random simulation of a player
in a protocol is defined to replace all outgoing messages of that player with
uniformly-random bit strings of the same length.
Step 4. Finally, A outputs a bit δ′, for a guess on δ.
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We say A wins the membership detection game if δ = δ′. We define A’s member-
ship detection advantage as AdvMemDetec

A = |Pr[A wins membership-detection
game | U ′ ∩G∗ = ∅]− 1/2|.
Definition 2. (Membership detection resistance). An optionally identifiable pri-
vate handshake scheme achieves membership detection resistance, if AdvMemDetec

A
is negligible for all PPT A.

Unlinkability of Private Handshake. Recall that when b = 0, the optionally
identifiable private handshake protocol actually performs private handshake. We
next define the unlinkability property of private handshake through a Unlinkabil-
ity Game, where an adversaryA attempts to recognize the individual user of G∗,
who interacts with A: A corrupts some users of G∗, picks a target user u∗ ∈ G∗,
and tries to recognize whether the interacting counterpart is u∗. Specifically, the
unlinkability game for a PPT A is as follows.

Step 1. A corrupts some users U ′ ⊂ G∗ and gets the credentials of the
corrupted users.
Step 2. A chooses a target user u∗ ∈ G∗.
Step 3. A random bit δ is flipped. If δ = 0, A is set to engage
in Handshake(A, u∗, b = 0) with u∗. If δ = 1, A is set to perform
Handshake(A, u, b = 0) with a random u ∈ G∗, u �= u∗.
Step 4. Finally, A outputs a bit δ′, for a guess on δ.
We say A wins the unlinkability game if δ = δ′. We define A’s linkability

advantage as AdvUnlnk
A = |Pr[A wins the unlinkability game]− 1/2|.

Definition 3. (Unlinkability of private handshakes). An optionally identifiable
private handshake scheme performs private handshake when b = 0, if AdvUnlnk

A
is negligible for all PPT A.

Unlinkability to Eavesdroppers. Performing either private handshake or
secret handshake, an optionally identifiable private handshake scheme should
remain unlinkable to passive eavesdroppers who simply watches interactions
between users. It should be noted that unlinkability of private handshake de-
fined above already implies unlinkability to eavesdroppers in private handshake,
since a passive eavesdropper is by no means more powerful than the adversary
considered in the above unlinkability game. Hence, below our focus is only on
unlikability to eavesdroppers in secret handshake.

Consider an adversary A corrupting some users U ′ of its choice, observes an
interaction between u∗

1, u
∗
2 /∈ U ′. Unlinkability to eavesdroppers stipulates that A

is not able to learn anything beyond what it already knows, including whether or
not u∗

1 and u∗
2 belong to the same group. We define A’s linkability advantage as

follows. Let Tru∗
1,u∗

2
be the actual protocol transcript of Handshake(u∗

1, u
∗
2, b =

1), and TrR1,R2 be the resulting transcript of R1 and R2, where R1 and R2

are random simulations of u∗
1, u

∗
2, respectively (recall the definition of random
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simulation in the membership detection game). Then A’s linkability advantage
is AdvEav-Lnk

A = |Pr[A(Tru∗
1 ,u∗

2
) = 1]− Pr[A(TrR1,R2) = 1]|.

Definition 4. (Unlinkability to eavesdroppers). An optionally identifiable pri-
vate handshake scheme achieves unlinkability to eavesdroppers, if AdvEav-Lnk

A is
negligible for all PPT A. That is, A is unable to distinguish between the ac-
tual interactions between u∗

1, u
∗
2 and the interactions resulting from the random

simulation of u∗
1, u

∗
2.

5.2 Security Proofs

We now prove that our proposed scheme satisfies the above security definitions.
In our analysis, we model H0, H1, H2 as random oracles [7]. Let A be a PPT
adversary, we denote QH0 , QH1 , QH2 be the number of distinct queries asked
by A to H0, H1, H2, respectively. We use e to denote the base of the natural
logarithm, i.e., e ≈ 2.78.

Theorem 1. (Impersonation resistance) Suppose A is a PPT adversary in break-
ing impersonation resistance of our scheme. Then there is a PPT algorithm B
such that AdvImpersn

A ≤ e.QH0 .QH1 .AdvBDH
B + ε, where recall that AdvBDH

B is the
advantage with which B solves the BDH problem, and ε is a negligible function.

The proof of the theorem is largely based on that in [3], and quite lengthy. Due
to the space constraint, we omit the details, which can be found in the full paper
[19].

Theorem 2. (Membership detection resistance) Suppose A is a PPT adversary
in breaking membership detection resistance of our scheme. Then there is a PPT
algorithm B such that AdvMemDetec

A ≤ e.QH0 .QH1 .AdvBDH
B + ε, where AdvBDH

B is
the advantage that B solves the BDH problem, and ε is a negligible function.

Proof sketch. It suffices to prove AdvMemDtec
A ≤ QH1 .AdvSolvBDHB + ε, based

on the above “SolvBDH” game. The proof is similar to that for Theorem 1, with
the following minor changes: we claim that A must have queried m∗ to H1 in
order to distinguish u∗’s actual involvement in the handshake from the random
simulation of u∗, rather than claiming that A queried m∗ for constructing V1 in
Theorem 1’s proof. The rest of the analysis is largely the same. �

Theorem 3. (Unlinkability of private handshakes) Let A be a PPT adversary
in the Unlinkability Game with respect to our scheme. Then AdvUnlnk

A = 0.

Proof sketch. The theorem actually says that our scheme achieves unlinkability
(when b = 1) unconditionally. To prove this, we need to show that R2, V2 are
truly random to A. Since V2 does not reveal more information than R2, as it is
derived from R2, it suffices to show that A cannot distinguish between R2 and
a random element in G1. Recall that G1 is a cyclic group with prime order q, so
every element in the group is a generator. Therefore, the base of R2 with respect
to any r2 is indeed a uniformly random generator. �
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Theorem 4. (Unlinkability to eavesdroppers) If cryptographic hash functions
H0, H1, H2 are pseudorandom functions, and the symmetric key encryption scheme
E is semantically secure, then for any PPT A, AdvEav-Lnk

A ≤ ε.
Proof sketch. It is suffices to construct a PPT simulator A∗ such that, for
any u1 and u2, for all PPT adversaries A, A∗ can simulate A(Tru1,u2) with
non-negligible probability, where Tru1,u2 is the protocol transcript of u1 and u2

in Handshake. In particular, we show that A∗(1κ) can generate a view Tr∗u1,u2
,

which is computationally indistinguishable from Tru1,u2 . Let us only consider
when b = 0: recall that

Tru1,u2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 = r1H0(u1)
b

R2 = r2H0(u2)
V2 = H1(ê(H0(u1), H0(u2))sGr1r2 , b)
V1 = H1(b, ê(H0(u1), H0(u2))sGr1r2)

C1 = Esk(u1, r1)
C2 = Esk(u2, r2)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

A∗ generates Tr∗u1,u2
= [R∗

1, b, R
∗
2, V

∗
2 , V ∗

1 , C∗
1 , C∗

2 ] as follows. Picks random ele-
mentsR∗

1, R
∗
2 fromG1; picks a randoms∗G fromZq and setsV ∗

2 =H1(̂e(R∗
1, R

∗
2)s∗

G , b),
V ∗

1 = H1(b, ê(R∗
1, R

∗
2)

s∗
G); picks random C∗

1 and C∗
2 from {0, 1}∗. It is easy to check

that R1, R2 are unconditionally indistinguishable from R∗
1, R

∗
2; V1, V2 are compu-

tationally indistinguishable from V ∗
1 , V ∗

2 if H1 is a pseudorandom function; C1, C2

are computationally indistinguishable from C∗
1 , C∗

2 as long as the symmetric en-
cryption E is semantically secure. This completes the proof. �

6 Implementation Results

We implemented a proof-of-concept prototype of our proposed optionally identi-
fiable private handshake protocol, upon the widely used TLS handshake protocol
[15]. Our implementation only requires small changes to the TLS handshake mes-
sages. Figure 3 shows how we incorporate our protocol into the messages of TLS
(outside of brackets are the standard messages of TLS, and inside of brackets
are messages of our protocol). More specifically, in TLS the client (u1 in our
protocol) initiates the protocol by sending a ClientHello message to the server
(u2 in our protocol). This message contains a random nonce, which is R1 in our
protocol. We also embed b into the ClientHello message. In response, the server
returns a ServerHello message. The random nonce contained in the message
corresponds to R2 in our protocol. The server then sends a ServerHelloDone
message, indicating that it completes handshake negotiation. The client and the
server then send to each other ClientKeyExchange and ServerKeyExchange, re-
spectively. These messages contain an indication on what algorithm is to be used.
We modified these messages to indicate that the optionally identifiable private
handshake scheme (OiPHS) is used. At this point of execution, the server and
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Client Server
ClientHello(R1, b)

ServerHello(R2)

ClientKey Exchange(indic: OiPHS)

ServerKeyExchange(indic: OiPHS)

ChangeCipherSpec

ServerHelloDone

Finished(V1)

Finished(V2)

pre-master
secret

pre-master
secret

Fig. 3. Implementation of our protocol upon TLS

the client have enough information to compute ê(H0(u1), H0(u2))sGr1r2 . We set
ê(H0(u1), H0(u2))sGr1r2 to be the TLS pre-master secret, which will be used to
derive all subsequent session keys for encryption or authentication.

The server and the client continue to exchange the ChangeCipherSpec mes-
sage, indicating that they should begin to use the keys and algorithms they just
negotiated from then on. Finally, they exchange the Finished message, containing
V1 and V2, respectively, to allow each other to confirm that their counterpart has
correctly computed the pre-master secret. This completes the TLS interactions.

Note that the above interactions implement private handshakes when b = 0.
In the case of b = 1, we need 2 extra interactions to exchange C1, C2 in our
protocol. To achieve this, our current implementation simply invokes exchanges
of two Application messages (the content type is 23).

6.1 Experimental Results

Our implementation was written in C/C++, and used the MIRACL library [14].
The curve we chose is y2 = x3 +x+1, and the bilinear map ê is the Tate pairing.
[6] further discussed the properties and performance improvements for this curve.
In our protocol, H0 maps random strings to points in the curve. We implemented
H0 by simply applying a pseudorandom number generator upon the strings to
be mapped, and then generating pseudorandom points in the curve.

The security parameters associated with the curve are two primes p, q, where
the typical size of p is 1024 bits, and q is 160 bits. Table 1 shows the experiment

Table 1. Experimental results

Size of q Size of p Timing

160 bits 1024 bits 2.6 sec

200 bits 2048 bits 13.1 sec
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results with respect to varying sizes of p and q, by running our implementa-
tion on PCs with 2GHz Pentium CPU and 512M RAM. These results can be
further improved, by taking the performance optimization mechanisms in [6].
Our current implementation did not consider any optimization measures, and
we leave performance optimization to future work. The experimental results in-
dicate that the performance of our proposed protocol should be satisfactory for
practical applications.

7 Conclusion

Nowadays, with the prevalence of Internet applications users are becoming in-
creasingly concerned about individual privacy. In this paper, we proposed a
new privacy-preserving authentication primitive, optionally identifiable private
handshakes. Interpolating between private handshakes and secret handshakes,
optionally identifiable private handshakes allow the two users in a handshake
to negotiate real time the level of privacy protection upon their interaction.
As such, optionally identifiable private handshakes represent a more flexible
privacy-preserving authentication technique than private handshakes and secret
handshakes. We formulated a set of security requirements for optionally identifi-
able private handshakes. We then propose a concrete scheme, which is provably
secure with respect to the formulated security definitions under the Bilinear
Diffie-Hellman (BDH) assumption. We further implemented a proof-of-concept
prototype of our proposed protocol upon the widely used TLS protocol, and the
experimental results showed that our protocol has satisfactory performance.
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Abstract. We propose an efficient statistically secure asynchronous mul-
tiparty computation (AMPC) protocol with optimal fault tolerance; i.e.,

with n = 3t+1, where n is the total number of parties and t is the number

of parties that can be under the influence of a Byzantine (active) adversary

At having unbounded computing power. Our protocol privately communi-

cates O(n5κ) bits per multiplication gate and involves a negligible error

probability of 2−Ω(κ), where κ is the error parameter. As far as our knowl-

edge is concerned, the only known statistically secure AMPC protocol with

n = 3t + 1 is due to [7], which privately communicates Ω(n11κ4) bits and

A-casts Ω(n11κ2 log(n)) bits per multiplication gate. Here A-cast is an

asynchronous broadcast primitive, which allows a party to send some in-

formation to all other parties identically. Thus our AMPC protocol shows

significant improvement in communication complexity over the AMPC

protocol of [7].

1 Introduction

A Multiparty Computation (MPC) [20,11,6,19] protocol is carried out among
a set of n parties, say P = {P1, . . . , Pn}, where every two parties are directly
connected by a secure channel and t out of the n parties can be under the in-
fluence of a computationally unbounded Byzantine (active) adversary, denoted
by At. The adversary At, completely dictates the parties under its control and
can force them to deviate from a protocol, in any arbitrary manner. MPC al-
lows the parties in P to securely compute an agreed function f , even in the
presence of At. More specifically, assume that the agreed function f can be ex-
pressed as f : Fn → Fn and party Pi has input xi ∈ F, where F is a finite
field. At the end of the computation of f , each honest Pi gets yi ∈ F, where
(y1, . . . , yn) = f(x1, . . . , xn), irrespective of the behavior of At (correctness).
Moreover, At should not get any information about the input and output of
the honest parties, other than what can be inferred from the input and output
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of the corrupted parties (secrecy). In any general MPC protocol, the function
f is specified by an arithmetic circuit over F, consisting of input, linear (e.g.
addition), multiplication, random and output gates. We denote the number of
gates of these types in the circuit by cI , cA, cM , cR and cO respectively. Among
all the different type of gates, evaluation of a multiplication gate requires the
most communication complexity. So the communication complexity of any gen-
eral MPC protocol is usually given in terms of the communication complexity
per multiplication gate (see [4]).

The MPC problem has been studied extensively over synchronous networks.
However, MPC in asynchronous network has got comparatively less attention,
due to its inherent hardness. As asynchronous networks model real life networks
like Internet more appropriately than synchronous networks, fundamental prob-
lems like MPC is worthy of deep investigation over asynchronous networks.

Asynchronous Networks: In an asynchronous network, the communication
channels have arbitrary, yet finite delay (i.e the messages are guaranteed to
reach eventually). To model this, At is given the power to schedule delivery of
all messages in the network. However, At can only schedule the messages com-
municated between honest parties, without having any access to them. Here the
inherent difficulty in designing a protocol comes from the fact that when a party
does not receive an expected message then he cannot decide whether the sender
is corrupted (and did not send the message at all) or the message is just delayed.
So a party can not wait to consider the values sent by all parties, as waiting for
them could turn out to be endless. Hence the values of up to t (potentially hon-
est) parties may have to be ignored. Due to this the protocols in asynchronous
network are generally involved in nature and require new set of primitives.

Asynchronous Multiparty Computation (AMPC): Any asynchronous
MPC (AMPC) protocol should satisfy termination condition, in addition to
correctness and secrecy condition (specified earlier). According to the termi-
nation condition, every honest party should eventually terminate the protocol.
There are mainly two types of AMPC protocols: (i) A perfectly secure AMPC
protocol satisfies all the properties of AMPC without any error; (ii) On the other
hand, a statistically secure (statistical in short) AMPC protocol involves a neg-
ligible error probability of 2−Ω(κ) in correctness and/or termination, for an
error parameter κ, where κ = poly(n). From [5], perfectly secure AMPC is pos-
sible iff n ≥ 4t + 1. On the other hand, statistically secure AMPC is possible iff
n ≥ 3t + 1 [7]. In this paper, we concentrate on statistically secure AMPC with
optimal resilience; i.e., with n = 3t + 1. As far our knowledge is concerned, the
only known statistically secure AMPC protocol with n = 3t+1 is due to [7], which
privately communicate Ω(cMn11κ4) bits and A-cast Ω(cMn11κ2 log(n)) bits.

Our Contribution: We design a statistically secure AMPC protocol with n =
3t + 1 which privately communicates O(n5κ) bits per multiplication gate. Thus
our AMPC protocol significantly improves the communication complexity of
only known optimally resilient statistically secure AMPC protocol of [7]. As a
tool for our AMPC protocol, we present a new Asynchronous Complete Secret
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Sharing (ACSS) scheme. For designing our ACSS, we present a new statistical
asynchronous verifiable secret sharing (AVSS) protocol with n = 3t + 1. The
novelty of our ACSS protocol is its specific design approach and the way we use
the AVSS in it.

Remark 1. Recently in [16], the authors have designed an ACSS scheme which
has the same communication complexity as the ACSS scheme of this paper.
Moreover, using the ACSS scheme of [16], we can design a statistically secure
AMPC protocol with n = 3t + 1 which privately communicates O(n5κ) bits
per multiplication gate. However, the ACSS scheme of this paper is completely
different from the ACSS scheme of [16] and based on completely different tech-
niques. We believe that the techniques used in our ACSS scheme can be further
optimised, leading to efficiency gain in AMPC protocol.

1.1 Definitions

For the rest of the paper, we assume a finite field F = GF (2κ), over which all the
computation and communication are performed. Here κ is the error parameter.
Thus each field element can be represented by O(κ) bits. Moreover, without loss
of generality we assume that κ = poly(n). We now present the definition of the
primitives that are used for the design of our AMPC protocol.

Statistical Asynchronous Weak Secret Sharing (AWSS) [10,9]: Let (Sh,

Rec) be a pair of protocols in which a dealer D ∈ P shares a secret s from
F ∪ {NULL} using Sh. We say that (Sh, Rec) is a t-resilient statistically secure
AWSS scheme if the following hold:

– Termination: With probability at least 1 − 2−Ω(κ), the following holds: (1) If D
is honest then each honest party will eventually terminate protocol Sh; (2) If some

honest party has terminated protocol Sh, then irrespective of the behavior of D,

each honest party will eventually terminate Sh; (3) If all the honest parties have

terminated Sh and if all the honest parties invoke protocol Rec, then each honest

party will eventually terminate Rec.
– Correctness: With probability at least 1 − 2−Ω(κ), the following holds: (1) If

D is honest then each honest party upon terminating Rec outputs s; (2) If D
is corrupted and some honest party has terminated Sh, then there exists a fixed

s ∈ F ∪ {NULL}, such that each honest party upon terminating Rec, will output

either s or NULL.

– Secrecy: If D is honest and no honest party has begun Rec, then At has no

information about s.

Statistical Asynchronous Verifiable Secret Sharing (AVSS) [10,9]: The
definition of AVSS is same as AWSS except that Correctness 2 property is
strengthened as follows: If D is corrupted and some honest party has terminated
Sh, then there exists a fixed s ∈ F∪{NULL}, such that each honest party upon
terminating Rec, will output only s.

Statistical Asynchronous Complete Secret Sharing (ACSS): It is same
as AVSS. In addition, ACSS should satisfy the following completeness prop-
erty with probability at least (1− 2−Ω(κ)): If some honest party has terminated
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Sh, then each honest party will eventually hold proper share of secret. More
importantly ACSS enforces D to share a secret s only from F (as opposed to
F ∪ {NULL} in AVSS).

Remark 2 (Difference Between AVSS and ACSS). An AVSS ensures the unique
reconstruction of a shared secret, without ensuring completeness property i.e.,
each honest party may not hold proper share of the shared secret at the end of
Sh. However, ACSS ensures the completeness property, apart from satisfying all
the properties of AVSS. Moreover while AVSS can only ensure s ∈ F∪{NULL},
ACSS ensures that s ∈ F. Thus ACSS has more stronger property than AVSS.

All the above definitions can be extended for secret S containing m elements
from F with m > 1.

A-cast: It is an asynchronous broadcast primitive, which allows a special party in
P (called the sender) to distribute a message identically among the parties in P .
If the sender is honest, then every honest party eventually terminates A-cast with
the sender’s message. For a corrupted sender, if some honest party terminates
with some message, then every other honest party will eventually terminate with
same message. A-cast is elegantly implemented in [8] with n = 3t + 1, which
incurs a private communication of O(n2b) bits for a b-bit message.

Agreement on Common Subset (ACS)[3,7]: It is an asynchronous primi-
tive presented in [5,7]. It outputs a common set, containing at least n− t parties,
who correctly shared their values. Moreover, each honest party will eventually
get a share, corresponding to each value, shared by the parties in the common
set. ACS requires private communication of O(poly(n, κ)) bits.

2 Approach Used in AMPC of [7] and Current Article

AMPC of [7]: The AMPC protocol of [7] consists of input phase and com-
putation phase. In input phase every party shares (or commits) his input xi.
All the parties then decide on a common set of n − t parties (using ACS) who
have done proper sharing of their input. Now for sharing/committing inputs, a
natural choice is to use AVSS protocol which can be treated as a form of commit-
ment, where the commitment is held in a distributed fashion among the parties.
Before [7], the only known AVSS scheme with n = 3t + 1 was due to [10]. But it
is shown in [7] that the use of the AVSS protocol of [10] for committing inputs
(secrets), does not allow to compute the circuit robustly in a straight-forward
way. This is because for robust computation of the circuit, it is to be ensured
that at the end of AVSS sharing phase, every honest party should have access to
proper share of the secret. Unfortunately the AVSS of [10] does not guarantee
the above property, which we may refer as ultimate property. This very reason
motivated Ben-Or et. al [7] to introduce a new asynchronous primitive called Ul-
timate Secret Sharing (USS) which not only ensures that every honest party has
access to the proper share of secret, but also offers all the properties of AVSS.
Thus [7] presents an USS scheme with n = 3t + 1 using the AVSS protocol of
[10] as a building block. A secret s that is shared using USS is called ultimately
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shared. Now in the input phase of AMPC in [7], parties ultimately share their
inputs. Then in computation phase, for every gate (except output gate), ultimate
sharing of the output is computed from ultimate sharing of the inputs, following
approach of [6,19].

AMPC of Current Article: Our AMPC protocol is presented in preprocess-
ing model of [1] and proceeds in three phases: preparation phase, input phase and
computation phase. We call a triple (a, b, c) as a random multiplication triple if
a, b are random and c = ab. In the preparation phase, sharing of cM +cR random
multiplication triples are generated. Each multiplication and random gate of the
circuit is associated with a multiplication triple. In the input phase the parties
share (commit) their inputs and agree on a common subset of n−t parties (using
ACS) who correctly shared their inputs. In the computation phase, the actual
circuit will be computed gate by gate, based on the inputs of the parties in com-
mon set. Due to the linearity of the used secret-sharing, the linear gates can be
computed locally. Each multiplication gate will be evaluated using the circuit
randomization technique of [1] with the help of the associated multiplication
triple (generated in preparation phase).

For committing/sharing secrets, we use a new asynchronous primitive called
ACSS. There is a slight definitional difference between the USS of [7] and our
ACSS, though both of them offer all the properties of AVSS. While USS of [7]
ensures that every honest party has access to proper share of secret (but may
not hold the share directly), our ACSS ensures that every honest party holds
proper share of secret. This property of ACSS is called completeness property as
mentioned in the definition of ACSS. The advantages of ACSS over USS are: (a)
it makes the computation of the gates very simple, (b) reconstruction phase of
ACSS is very simple, efficient and can be achieved using on-line error correction
of [9]. Apart from these advantages, our ACSS is strikingly better than USS of [7]
in terms of communication complexity. While Sh protocol of our ACSS privately
communicates O((mn4 + n7κ)κ)) bits and A-casts O(n4 log(n)) bits to share m
secrets concurrently, the Sh of USS in [7] privately communicates Ω(n10κ4) bits
and A-casts Ω(n10κ2 log(n)) bits to share only one secret.

3 Asynchronous Complete Secret Sharing (ACSS)

Here we present an ACSS scheme that allows a dealer D ∈ P to share m ≥ 1
secrets concurrently. For that, we first recall existing protocols from [16] for
two asynchronous primitives, namely Information Checking Protocol (ICP) and
AWSS. The AWSS uses ICP as a building block. We then design a new AVSS
scheme from the AWSS scheme of [16], using the approach of [17]. Notice that
[17] also presents an ICP and AWSS scheme. However, the A-cast communication
of ICP and AWSS of [17] is too high in comparison to ICP and AWSS of [16].

We then extend the ICP in a special way to design an extended AWSS which
in turn is used to design an extended AVSS protocol. Finally ACSS is designed
using the extended AVSS as a building block. Here our main contribution is the
specific design approach of the ACSS protocol using the extended AVSS and the
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specific ideas of extending AVSS, AWSS and ICP. The extension of ICP, AWSS
and AVSS are done in order to maintain a low communication complexity of our
ACSS protocol (it will be clear while we present the ACSS protocol). For the
sake of simplicity, we will first present ICP, AWSS and AVSS and then describe
their extended form.

3.1 Information Checking Protocol and IC Signature

The Information Checking Protocol (ICP) is a tool for authenticating messages in
the presence of At. The notion of ICP was first introduced by Rabin et.al [19,18].
In [16], the authors have designed an ICP in asynchronous settings, called as A-
ICP. We now briefly outline the A-ICP of [16], which is further used in AWSS
protocol. The A-ICP is executed among three entities: the dealer D ∈ P , an
intermediary INT ∈ P and entire set P (including D, INT ) acting as verifiers.
The dealer D hands a secret S containing � ≥ 1 elements from F to INT . At a
later stage, INT is required to hand over S to the verifiers in P and convince
them that S is indeed the secret which INT received from D. A-ICP is struc-
tured into sequence of following three phases:

1. Generation Phase: is initiated D. Here D hands over the secret S, along
with authentication information to intermediary INT and some verification in-
formation to individual verifiers in P .
2. Verification Phase: is carried out by INT and the set of verifiers P . Here
INT decides whether to continue or abort the protocol depending upon the pre-
diction whether in Revelation Phase, the secret S held by INT will be (eventu-
ally) accepted by honest verifier(s) in P . INT achieves this by setting a boolean
variable Ver = 0/1, where Ver = 0 (resp. 1) implies abortion (resp. continuation)
of the protocol. If Ver = 1, then the authentication information, along with S,
held by INT is called D’s IC signature on S, denoted as ICSig(D, INT,P , S).
3. Revelation Phase: is carried out by INT and the verifiers in P . Revelation
Phase can be presented in two flavors: (i) Public Revelation of ICSig(D, INT,P,
S), where INT publicly reveals ICSig(D, INT,P , S) to all the verifiers in P . If
S is properly revealed, then every honest Pi sets Reveali = S, otherwise he sets
Reveali = NULL; (ii) Pα-private-revelation of ICSig(D, INT,P , S): Here INT
privately reveals ICSig(D, INT,P , S) to only a specific verifier, say Pα ∈ P .
If the revelation is successful, then Pα sets Revealα = S, otherwise he sets
Revealα = NULL.

Protocol A-ICP satisfies the following properties (assuming Public Revelation in
Revelation Phase): (1) If D and INT are honest, then S will be accepted in
Revelation phase by each honest verifier. (2) If INT is honest and Ver =1,
then S held by INT will be accepted in Revelation phase by each honest
verifier, except with probability 2−Ω(κ). (3) If D is honest, then during Reve-
lation phase, with probability at least 1− 2−Ω(κ), every S′ �= S produced by a
corrupted INT will be not be accepted by an honest verifier. (4) If D and INT
are honest and INT has not started Revelation phase, then S is information
theoretically secure.
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For A-ICP with Pα-private-revelation in Revelation Phase, the above proper-
ties are modified by replacing every ”every honest verifier” with ”honest Pα”. In
[16], A-ICP is presented with only Pα-private-revelation of ICSig(D, INT,P , S).
Here we present the code for the public revelation of ICSig(D, INT,P , S) and
recall protocol A-ICP. For proof of the properties of A-ICP, see [16]. For ease of
reference, we provide the communication complexity of A-ICP here.

Protocol A-ICP(D, INT,P, S)
Generation Phase: Gen(D, INT,P , S)

1. D selects a random �+ tκ degree polynomial f(x) whose lower order � coefficients

are the secrets in S = (s1, . . . , s�). D also picks nκ random non-zero elements

from F, denoted by αi
1, . . . , α

i
κ, for 1 ≤ i ≤ n.

2. D sends f(x) to INT and the verification tags zi
1 = (αi

1, a
i
1), . . . , z

i
κ = (αi

κ, ai
κ) to

Pi, where ai
j = f(αi

j).

Verification Phase: Ver(D, INT,P , S)

1. Every verifier Pi randomly partitions the index set {1, . . . , κ} into two sets Ii and

Ii of equal size and sends Ii and zi
j for all j ∈ Ii to INT .

2. For every verifier Pi from which INT has received values, INT checks whether

for every j ∈ Ii, f(αi
j)

?
= ai

j .

3. (a) If for at least 2t + 1 verifiers, the above condition is satisfied, then INT sets

Ver = 1. If Ver = 1, then INT assumes f(x) to be ICSig(D, INT,P , S).

(b) If for at least t + 1 verifiers, the above condition is not satisfied, then INT
sets Ver = 0.

Revelation Phase:

– Reveal-Private(D, INT,P , S, Pα): Pα-private-revelation of ICSig(D, INT,P , S)

1. To party Pα, INT sends f(x).

2. To party Pα, every verifier Pi sends the index set Ii and all zi
j such that

j ∈ Ii.

3. Upon receiving the values from a verifier Pi, party Pα checks whether for any

j ∈ Ii, f(αi
j)

?
= ai

j .

(a) If for at least t + 1 verifiers the above condition is satisfied, then Pα sets

Revealα = S, where S is lower order � coefficients of f(x).

(b) If for at least 2t +1 verifiers the above condition is not satisfied, then Pα

sets Revealα = NULL.

– Reveal-Public(D, INT,P , S): Public Revelation of ICSig(D, INT,P , S)

1. INT A-casts f(x).

2. Every verifier Pi checks whether for any j ∈ Ii, f(αi
j)

?
= ai

j . If yes, then he

A-casts Yes, otherwise he A-casts No.

3. If Yes is received from the A-cast of at least t + 1 verifiers, then every verifier

Pi sets Reveali = S, where S is lower order � coefficients of f(x).

4. If No is received from the A-cast of at least 2t +1 verifiers, then every verifier

Pi sets Reveali = NULL.

Lemma 1. Protocol Gen, Ver and Reveal-Private privately communicate O((� +
nκ)κ) bits each. Protocol Reveal-Public A-casts O((� + nκ)κ) bits. Simulating
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the A-cast by protocol of [8], Reveal-Public requires private communication of
O((�n2 + n3κ)κ) bits.

Notation 1. In the AWSS protocol, we will use following notations: Recall that D
and INT can be any party from P. We say that: (i) ”Pi sends ICSig(Pi, Pj ,P , S)
to Pj” tomean that Pi as D, executesGen(Pi, Pj ,P , S); (ii) ”Pi receives ICSig(Pj ,
Pi,P , S) from Pj” to mean that Pi as INT has completed Ver(Pj , Pi,P , S) with
Ver = 1 with the help of the verifiers in P; (iii) ”Pi reveals ICSig(Pj, Pi,P , S) to
Pα” to means Pi as INT executes Reveal-Private(Pj , Pi,P , S, Pα) along with the
participation of the verifiers in P (similarly ”Pi reveals ICSig(Pj, Pi,P , S)” is to
be interpreted with respect to Reveal-Public(Pj, Pi,P , S)); (iv) ”Pα completes rev-
elation of ICSig(Pj , Pi,P , S) with Revealα = S ” to mean that Pα has completed
Reveal-Private(Pj , Pi,P , S, Pα)/ Reveal-Public(Pj, Pi,P , S) with Revealα = S.

3.2 Extended ICP

In our extended AWSS protocol, we come across the following situation: D holds
B = n2 blocks, denoted by S1, . . . , SB, each containing η = m

n2 secrets. In ad-
dition D has another random secret block, say S0 containing η elements. Let
Sb = (s1b, . . . , sηb) for b = 0, . . . ,B. Now D wants to send ICSig(D, INT,P , Sb)
for every b ∈ {0, . . . ,B} to INT such that INT can later compute and re-
veal ICSig(D, INT,P , S∗) where S∗ = (s1∗, . . . , sη∗) with sk∗ =

∑B
b=0 rbskb

(k = 1, . . . , η) for some agreed upon random value r, generated by all the par-
ties in P . Note that the random value r will be generated after INT ensures
the receipt of ICSig(D, INT,P , Sb) for every b ∈ {0, . . . ,B}. We will use the
following notation: S∗ =

∑B
b=0 rbSb. To achieve the above task, we first extend

the protocols for Generation Phase and Verification Phase of A-ICP pro-
tocol. Subsequently, we present the code for generating ICSig(D, INT,P , S∗)
and revealing the same. The protocols are given on next page.
Theorem 1. If D is honest then during Reveal-IC-Sig, S∗ will not reveal any
information about S1, . . . , SB.

Theorem 2. Protocol Extd-Gen and Extd-Ver privately communicate O((m +
n3κ)κ) bits each. Protocol Compute-IC-Sig does not require any communication.
Protocol Reveal-IC-Sig requires O((m + n3κ)κ) bits of private communication
(follows from the communication complexity of Reveal-Public).

Notation 2. In our extended AWSS, we use following notations. We say that: (i)
”Pi sends ICSig(Pi, Pj ,P , (S0, . . . , SB)) to Pj” to mean that Pi as a dealer exe-
cutes Extd-Gen(Pi, Pj ,P , (S0, S1, . . . , SB)); (ii) ”Pi receives ICSig(Pj, Pi,P , (S0,
. . . , SB)) from Pj” to mean that Pi as INT has successfully completed Ext-Ver
(Pj , Pi,P , (S0, S1, . . . , SB)) with the help of the verifiers in P; (c) ”Pi partici-
pates in computing ICSig(Pa, Pb,P , S∗) from ICSig(Pa, Pb,P , (S0, . . . , SB))” to
mean that Pi executes Compute-IC-Sig(Pa, Pb,P , r, (S0, S1, . . . , SB)) as a verifier
and also as INT if Pb = Pi.

Remark 3. Note thatduringExtd-Ver, once (honest)INT receives ICSig(D, INT,
P , (S0, . . . , SB)), later he can privately reveal ICSig(D, INT,P , Sb) for every b to
any Pα, using Reveal-Private.



Communication Efficient Statistical AMPC with Optimal Resilience 187

Protocol Extd-A-ICP(D, INT,P , (S0, S1, . . . , SB))

Generation Phase: Extd-Gen(D, INT,P , (S0, S1, . . . , SB))

1. D sends ICSig(D, INT,P , Sb) to INT for every b ∈ {0, . . . ,B}.
2. Let during the execution of Gen(D, INT,P , Sb), D sends fb(x) of degree η + tκ

to INT (recall that each Sb is of size η) and the verification tags zib
1 =

(αi
1, a

ib
1 ), . . . , zib

κ = (αi
κ, aib

κ ) to Pi, where aib
k = fb(αi

k) for k = 1, . . . , κ. No-
tice that corresponding to Pi, the same set of α values are selected for
each execution of Gen(D, INT,P , Sb).

Verification Phase: Extd-Ver(D, INT,P , (S0, S1, . . . , SB))

1. While executing Ver(D, INT,P , Sb) for every b ∈ {0, . . . ,B}, INT waits for

a common set of at least 2t + 1 verifiers, say COM , for which the condition

specified in step 2 of Verification Phase (see Protocol Ver) is satisfied for

every Ver(D, INT,P , Sb). After that INT sets Ver = 1 in Ver(D, INT,P , Sb)

for every b ∈ {0, . . . ,B}. To be concise, we say that INT now has received

ICSig(D, INT,P , (S0, . . . , SB)) from D such that later INT can compute

ICSig(D, INT,P , S∗) and can reveal the same using following protocols.

Protocol Compute-IC-Sig(D, INT,P , r, (S0, S1, . . . , SB))

1. INT computes f∗(x) =
∑B

b=0 rbfb(x) and assumes f∗(x) to be

ICSig(D, INT,P , S∗) where S∗ =
∑B

b=0 rbSb. Clearly, the η lower order

coefficients of f∗(x) are elements from S∗.
2. Every verifier Pi (note that INT and D are also included in the set of verifiers

P) computes corresponding verification tags zi∗
1 = (αi

1, a
i∗
1 ), . . . , zi∗

κ = (αi
κ, ai∗

κ ),

where ai∗
k =

∑B
b=0 rbaib

k for k = 1, . . . , κ.

Protocol Reveal-IC-Sig(D, INT,P , S∗)

1. Now INT and the verifiers in P can execute Reveal-Public(D, INT,P , S∗) for

public revelation of ICSig(D, INT,P , S∗) with the information that they compute

in protocol Compute-IC-Sig.

3.3 Statistical Asynchronous Weak Secret Sharing

We now recall AWSS scheme of [16] with n = 3t + 1, consisting of protocols
AWSS-Share and AWSS-Rec-Private. Protocol AWSS-Share allows D to commit
a secret S = (s1, . . . , s) containing � elements from F. Moreover, if D is cor-
rupted then he may commit NULL, instead of elements from F (the meaning
of it will be clear in the sequel). In fact, protocol AWSS-Share is similar to the
sharing protocol of AWSS scheme of [17]. Protocol AWSS-Rec-Private enables
private reconstruction of S or NULL to any Pα ∈ P . The authors of [16] called
the private reconstruction as Pα-weak-private-reconstruction. For our ACSS, we
require public reconstruction of the secret as well. So we also present a protocol
AWSS-Rec-Public (which was not presented in [16]).
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AWSS-Share(D,P , S)

Distribution: Code for D – Only D executes this code.

1. For l = 1, . . . , �, select a random, symmetric bivariate polynomial F l(x, y)

of degree-t in x and y such that F l(0, 0) = sl. Let f l
i (x) = F l(x, i), for

l = 1, . . . , �.
2. For i = 1, . . . , n, send ICSig(D, Pi,P , (f1

i (j), . . . , f �
i (j)) for each j = 1, . . . , n

to Pi.

Verification: Code for Pi – Every party including D executes this code.

1. Wait to receive ICSig(D, Pi,P , (f1
i (j), . . . , f �

i (j)) for all j = 1, . . . , n from D.

2. Check if (f l
i (1), . . . , f

l
i (n)) defines degree-t polynomial for every l = 1, . . . , �.

If yes then send ICSig(Pi, Pj ,P , (f1
i (j), . . . , f �

i (j))) to Pj for all j = 1, . . . , n.

3. If ICSig(Pj, Pi,P , (f1
j (i), . . . , f �

j (i))) is received from Pj and if f l
j(i) = f l

i (j)
for l = 1, . . . , �, then A-cast OK(Pi, Pj).

WCORE Construction : Code for D – Only D executes this code.

1. For each Pj , build a set OKPj =

{Pi|D receives OK(Pi, Pj) from the A-cast of Pi}. When |OKPj | = 2t + 1,

then add Pj in WCORE (which is initially empty). In this case,

we say that Pj is IC-committed to (f1
j (0), . . . , f �

j (0)) by sending

ICSig(Pj , Pi,P , (f1
j (i), . . . , f �

j (i))) to every Pi in OKPj .

2. Wait until |WCORE| = 2t + 1. Then A-cast WCORE and OKPj for all

Pj ∈ WCORE.

WCORE Verification & Agreement on WCORE : Code for Pi

1. Wait to receive WCORE and OKPj for all Pj ∈ WCORE from D’s A-cast,
such that |WCORE| = 2t + 1 and |OKPj | = 2t + 1 for each Pj ∈ WCORE.

2. Wait to receive OK(Pk, Pj) for all Pk ∈ OKPj and Pj ∈ WCORE. After

receiving, accept the WCORE and OKPj ’s and terminate AWSS-Share.

Remark 4 (D’s AWSS-commitment). We say that D is AWSS-committed to S =
(s1, . . . , s) ∈ F if for every l = 1, . . . , � there is a unique degree-t polynomial
f l(x) such that f l(0) = sl and every honest Pi in WCORE receives f l(i) from
D and IC-commits f l(i) among the parties in OKPi. Otherwise, we say that D
is AWSS-committed to NULL. An honest D always AWSS-commits S ∈ F as
in this case f l(x) = f l

0(x) = F l(x, 0), where F l(x, y) is the symmetric degree-
(t, t) bivariate polynomial chosen by D. But AWSS-Share can not ensure that
corrupted D also AWSS-commits S ∈ F.

Notation 3. In subsequent sections, we will invoke AWSS-Share as AWSS-Share
(D,P , (f1(x), . . . , f (x))) where D is asked to choose bivariate polynomials F 1(x,
y), . . . , F (x, y), each of degree-t in x and y, such that F l(x, 0) = f l(x) holds for l =
1, . . . , �. Similarly, AWSS-Rec-Private will be invoked as AWSS-Rec-Private(D,P ,
(f1(x), . . . , f (x)), Pα) to enable Pα-weak-private-reconstruction of (f1(x), . . . ,
f (x)). Furthermore AWSS-Rec-Public will be invoked as AWSS-Rec-Public(D,P ,
(f1(x), . . . , f (x))) to enable weak-public-reconstruction of (f1(x), . . . , f (x)) and
hence sl = f l(0) for l = 1, . . . , �.

Theorem 3. AWSS-Share privately communicates O((�n2 +n3κ)κ) and A-casts
O(n2 log n) bits. AWSS-Rec-Private and AWSS-Rec-Public privately communi-
cates O((�n2 + n3κ)κ) and O((�n4 + n5κ)κ) bits respectively.



Communication Efficient Statistical AMPC with Optimal Resilience 189

AWSS-Rec-Private(D,P , S, Pα): Pα-weak-private-reconstruction of S:

Signature Revelation: Code for Pi

1. If Pi belongs to OKPj for some Pj ∈ WCORE, then reveal

ICSig(D, Pi,P , (f1
i (j), . . . , f �

i (j))), ICSig(Pj , Pi,P , (f1
j (i), . . . , f �

j (i))) to Pα.

Local Computation: Code for Pα

1. For every Pj ∈ WCORE, reconstruct Pj ’s IC-Commitment, say

(f1
j (0), . . . , f�

j (0)) as follows:

(a) Construct a set V alidPj = ∅.
(b) Add Pk ∈ OKPj to V alidPj if the following conditions hold:

i. Revelation of ICSig(D, Pk,P , (f1
k (j), . . . , f �

k(j))) and

ICSig(Pj , Pk,P , (f1
j (k), . . . , f �

j (k))) are completed with Re-

vealα = (f1
k (j), . . . , f�

k(j)) and Revealα = (f1
j (k), . . . , f�

j (k));

and

ii. f l
k(j) = f l

j(k) for all l = 1, . . . , �.

(c) Wait until |V alidPj | = t+1. For l = 1, . . . , �, construct polynomial f l
j(x)

passing through the points (k, f l
j(k)) where Pk ∈ V alidPj and associate

f l
j(0) with Pj ∈ WCORE.

2. Wait until f l
j(0) for l = 1, . . . , � is reconstructed for every Pj in WCORE.

3. Check whether the points (j, f l
j(0)) for Pj ∈ WCORE lie on a unique degree-t

polynomial f l
0(x). If yes, then set sl = f l

0(0). Else set sl = NULL. If some sl

is NULL, then set S = NULL. Otherwise, set S = (s1, . . . , s�) and terminate

AWSS-Rec-Private.

AWSS-Rec-Public(D,P , S): Weak-public-reconstruction of S: Same as the steps of

AWSS-Rec-Private except with the following modifications: In the code specified in

[Signature Revelation:], public revelation of ICSigs are performed. Then every

party Pi acting as Pα executes the code specified under [Local Computation:Code

for Pα] to reconstruct either S ∈ F
� or NULL.

3.4 Extended AWSS Protocol

In our extended AVSS protocol, we come across the following situation: D has
B = n2 blocks, denoted by S1, . . . , SB, each containing η = m/n2 secrets. In
addition D has another random secret block, say S0, containing η elements. Let
Sb = (s1b, . . . , sηb) for b ∈ {0, . . . ,B}. Now D wants to AWSS-commit Sb us-
ing degree-t polynomials say, Fb = (f1b(x), . . . , fηb(x)), wherefkb(0) = skb for
k = 1, . . . , η, such that later the parties can generate (by local computation)
AWSS-commitment of S∗ =

∑B
b=0 rb.Sb = (s1∗, . . . , sη∗) using polynomials F∗ =

(f1∗(x), . . . , fη∗(x)), where fk∗(x) =
∑B

b=0 rbfkb(x) and fk∗(0) = sk∗, for k =
1, . . . , η. Here r is some agreed upon random value generated by all the parties in
P . Later the parties can also reconstruct S∗ by invoking AWSS-Rec-Public
(D,P , (f1∗(x), . . . , fη∗(x))). To achieve the above task, we first extend AWSS-
Share to design Extd-AWSS-Share (given below) that uses Extd-A-ICP as building
block. We then give protocols for generating AWSS-commitment of S∗ (protocol
Compute-AWSS-Commit) and revealing the same (protocol Rec-AWSS-Commit).
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Note that in Compute-AWSS-Commit, the random value r will be generated after
every honest party ensures that D is AWSS-committed to every Sb.

Protocol Extd-AWSS-Share(D,P , (F0, . . . ,FB))

Distribution: Code for D – Only D executes this code.

1. For every Fb, select η random, symmetric bivariate polynomials

F 1b(x, y), . . . , F ηb(x, y) of degree-t in x and y, such that F kb(x, 0) = fkb(x)

for k = 1, . . . , η. Let for i = 1, . . . , n, fkb
i (x) = F kb(x, i).

2. Let Δb
i (j) = (f1b

i (j), . . . , fηb
i (j)) for b = 0, . . . ,B and i, j = 1, . . . , n. Send

ICSig(D, Pi,P , (Δ0
i (j), . . . , Δ

B
i (j))) for each j = 1, . . . , n to Pi.

Verification: Code for Pi – Every party including D executes this code.

1. Wait to receive ICSig(D,Pi,P , (Δ0
i (j), . . . , Δ

B
i (j))) for j = 1, . . . , n from D.

2. Check if (fkb
i (1), . . . , fkb

i (n)) defines degree-t polynomial for

every k = 1, . . . , η and b = 0, . . . ,B. If yes then send

ICSig(Pi, Pj ,P , (Δ0
i (j), . . . , Δ

B
i (j))) to Pj for all j = 1, . . . , n.

3. If ICSig(Pj , Pi,P , (Δ0
j(i), . . . , Δ

B
j (i))) is received from Pj and if fkb

i (j) =

fkb
j (i), then A-cast OK(Pi, Pj).

WCORE Construction and [WCORE Verification & Agreement on

WCORE] are same as in AWSS-Share.

Protocol Compute-AWSS-Commit(D,P , r,F∗)

Code for Pi

1. Participate in computing ICSig(D, Pj ,P , Δ∗
j (k)) for all k = 1, . . . , n for every

Pj ∈ WCORE where Δ∗
j (k) =

∑B
b=0 rbΔb

j(k).

2. Participate in computing ICSig(Pj, Pk,P , Δ∗
j (k)) where Δ∗

j (k) =∑B
b=0 rbΔb

j(k) for every Pk ∈ OKPj and every Pj ∈ WCORE.

Protocol Rec-AWSS-Commit(D,P ,F∗)

1. Parties execute AWSS-Rec-Public(D,P ,F∗ = (f1∗(x), . . . , fη∗(x)) to enable

weak-public-reconstruction of F∗ = (f1∗(x), . . . , fη∗(x)) and hence S∗ =

(f1∗(0), . . . , fη∗(0)).

Remark 5. Notice that once WCORE is constructed and agreed upon in Extd-
AWSS-Share, then the parties can later enable Pα-weak-private-reconstruction
of any Fb, where b ∈ {1, . . . ,B} and Pα ∈ P .

Theorem 4. (i) If D is honest then revealing S∗ during Rec-AWSS-Commit
will not reveal any information about S1, . . . , SB; (ii) If D is corrupted and S∗

revealed during Rec-AWSS-Commit is non-NULL (i.e., S∗ ∈ Fη), then with very
high probability D has AWSS-Committed non-NULL S0, . . . , SB.

Theorem 5. Protocol Extd-AWSS-Share privately communicates O((mn2+n5κ)
κ) bits and A-casts O(n2 log n) bits. Compute-AWSS-Commit does not require any
communication. Rec-AWSS-Commit privately communicates O((mn2 + n5κ)κ)
bits.



Communication Efficient Statistical AMPC with Optimal Resilience 191

3.5 Statistical Asynchronous Verifiable Secret Sharing

We now present an AVSS scheme with n = 3t + 1, consisting of protocols AVSS-
Share, AVSS-Rec-Private and AVSS-Rec-Public. These protocols are similar to [17].
Protocol AVSS-Share allows D to commit a secret S = (s1, . . . , s) containing � el-
ements from F. Moreover, if D is corrupted, then he may commit NULL instead
of elements from F (the meaning of it will be clear in the sequel). Protocol AVSS-
Share uses protocol AWSS-Share as a black-box. Protocol AVSS-Rec-Private and
AVSS-Rec-Public enables private reconstruction of S (to any Pα ∈ P) and public
reconstruction of S respectively. We call the private and public reconstruction
as Pα-private-reconstruction and public-reconstruction respectively.

AVSS-Share(D,P , S)
Distribution: Code for D

1. For l = 1, . . . , �, select a degree-t random symmetric bivariate polynomial F l(x, y)

such that F l(0, 0) = sl and send f l
i (x) = F l(x, i) to Pi.

AWSS Commitment after Verification by Individual Party: Code for Pi

1. Wait to obtain f1
i (x), . . . , f �

i (x) from D.

2. If all the polynomials are of degree-t then as a dealer, execute AWSS-
Share(Pi,P , (f1

i (x), . . . , f �
i (x))) to AWSS-commit (f1

i (0), . . . , f �
i (0)) using

(f1
i (x), . . . , f �

i (x)). The AWSS-Share initiated by Pi is called as AWSS-SharePi .

3. Wait to receive (f1
j (i), . . . , f �

j (i)) from Pj in execution AWSS-SharePj . Check

f l
i (j)

?
= f l

j(i) for all l = 1, . . . , �. If the test passes then participate in

AWSS-SharePj and act according to the remaining steps of AWSS-SharePj .

VCORE Construction: Code for D

1. If AWSS-SharePj is terminated, then denote corresponding WCORE and OKPk

sets by WCOREPj and OKP
Pj

k for every Pk ∈ WCOREPj . Add Pj in a set

V CORE (initially empty).

2. Keep updating V CORE, WCOREPj and corresponding OKP
Pj

k ’s for every Pj ∈
V CORE upon receiving new A-casts of the form OK(., .) (during AWSS-SharePj s),

until for at least 2t + 1 Pj ∈ V CORE, the condition |V CORE ∩ WCOREPj | ≥
2t+1 is satisfied. Remove (from V CORE) all Pj ∈ V CORE for whom the above

condition is not satisfied.

3. A-cast V CORE, WCOREPj for Pj ∈ V CORE and OKP
Pj

k for every Pk ∈
WCOREPj .

VCORE Verification & Agreement on VCORE : Code for Pi

1. Wait to receive V CORE, WCOREPj for Pj ∈ V CORE and OKP
Pj

k for every

Pk ∈ WCOREPj from D’s A-cast.
2. Wait to terminate AWSS-SharePj corresponding to every Pj in V CORE.

3. Wait to receive OK(Pm, Pk) for every Pk ∈ WCOREPj and every Pm ∈ OKP
Pj

k ,

corresponding to every Pj ∈ V CORE.

4. Accept V CORE, WCOREPj for Pj ∈ V CORE and OKP
Pj

k for every Pk ∈
WCOREPj and terminate AVSS-Share.
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AVSS-Rec-Private(D,P , S, Pα)
Pα-weak-private-reconstruction of (f1

j (x),. . ., f �
j (x)) for every Pj ∈V CORE:

Code for Pi

1. Participate in AWSS-Rec-Private(Pj ,P , (f1
j (x), . . . , f �

j (x)), Pα) to enable Pα-weak-

private-reconstruction of (f1
j (x), . . . , f �

j (x)) for every Pj ∈ V CORE

Local Computation: Code for Pα

1. Add Pj ∈ V CORE to FINAL if Pα-weak-private-reconstruction of

(f1
j (x), . . . , f �

j (x)) is successful with degree-t polynomials (f1
j (x), . . . , f�

j (x)).

2. For every pair (Pγ , Pδ) ∈ FINAL check f l
γ(δ)

?
= f l

δ(γ). If the test passes for every

pair of parties in FINAL then recover F l(x, y) using f l
j(x)’s corresponding to each

Pj ∈ FINAL and reconstruct sl = F l(0, 0). Else reconstruct sl = NULL. Finally

output S = (s1, . . . , s�) when every sl is nonNULL otherwise output S = NULL
and terminate AVSS-Rec-Private.

AVSS-Rec-Public(D,P , S): Public-reconstruction of S: Same as AVSS-Rec-Private
except the following: instead of Pα-weak-private-reconstruction, weak-public-

reconstruction of (f1
j (x), . . . , f �

j (x)) for every Pj ∈ V CORE is performed. Then every

Pi, acting as Pα executes the code in [Local Computation:Code for Pα] to recon-

struct S.

Remark 6 (D’s AVSS-commitment). We say that D has AVSS-committed S =
(s1, . . . , s) ∈ F

 in AVSS-Share if for every l = 1, . . . , � there is a unique degree-t
symmetric bivariate polynomial F l(x, y) such that F l(0, 0) = sl and every honest
Pi in V CORE receives f l

i (x) = F l(x, i) from D and AWSS-commits f l
i (0) using

f l
i (x) among the parties in WCOREPi . Otherwise, we say that D has committed

NULL. Notice that the above condition implies that for l = 1, . . . , � there exist
a unique degree-t univariate polynomial f l(x)(= f l

0(x) = F l(x, 0)) such that
f l(0) = sl and every honest Pi ∈ V CORE receives f l(i)(= f l

0(i) = f l
i (0)) from

D. The value f l(i) is referred as ith share of sl. An honest D always commits
sl from F as he always chooses a proper symmetric bivariate polynomial F l(x, y)
and properly distributes f l

i (x) = F l(x, i) to party Pi. But AVSS-Share can not
ensure that corrupted D also commits sl ∈ F for all l. When a corrupted D
commits NULL, the f l

i (x) polynomials of the honest parties in V CORE do not
define a degree-t symmetric bivariate polynomial for at least one l implying that
there will be an honest pair (Pγ , Pδ) in V CORE such that f l

γ(δ) �= f l
δ(γ).

Notation 4. In subsequent sections, wewill invokeAVSS-Share asAVSS-Share(D,
P , (f1(x), . . . .f (x))) to mean that D AVSS-commits to f l(0) using f l(x) for l =
1, . . . , � in AVSS-Share. Essentially here D is asked to choose a bivariate polyno-
mial F l(x, y) such that F l(x, 0) = f l(x). By doing this every honest Pi ∈ V CORE
should ideally receive f l(i). Similarly, AVSS-Rec-Private will be invoked as AVSS-
Rec-Private(D,P , (f1(x), . . . , f (x)), Pα) to enable Pα-private-reconstruction of
(f1(x), . . . , f (x)) and hence (f1(0), . . . , f (0)). AVSS-Rec-Public will also be in-
voked in a similar way.
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Theorem 6. AVSS-Share communicates O((�n3+n4κ)κ) and A-casts O(n3 log n)
bits. AVSS-Rec-Private and AVSS-Rec-Public communicates O((�n3 +n4κ)κ) and
O((�n5 + n6κ)κ) bits respectively.

3.6 Extended AVSS Protocol

Protocol Extd-AVSS-Share(D,P , (F0, . . . ,FB))

Distribution: Code for D – Only D executes this code.

1. For every Fb, select η random, symmetric bivariate polynomials

F 1b(x, y), . . . , F ηb(x, y) of degree-t in x and y, such that F kb(x, 0) = fkb(x)

for k = 1, . . . , η and b = 0, . . . ,B. Let for i = 1, . . . , n, fkb
i (x) = F kb(x, i).

2. For every b = 0, . . . ,B, send (f1b
i (x), . . . , fηb

i (x)) to Pi.

AWSS-commitment after Verification by Individual Party: Code for Pi

1. Wait to obtain (f1b
i (x), . . . , fηb

i (x)) for all b from D.

2. If all the polynomials are of degree-t then as a dealer, execute Extd-AWSS-
Share(Pi,P , (Δ0

i , . . . , Δ
B
i )) where Δb

i = (f1b
i (x), . . . , fηb

i (x)) for b = 0, . . . ,B.

The Extd-AWSS-Share initiated by Pi is called as Extd-AWSS-SharePi .

3. Wait to receive Δb
j(i) = (f1b

j (i), . . . , fηb
j (i)) for all b from Pj in execution

AWSS-SharePj . Check fkb
i (j)

?
= fkb

j (i) for all k = 1, . . . , η. Do the same for

all b = 0, . . . ,B. If the test passes then participate in Extd-AWSS-SharePj and

act according to the remaining steps of Extd-AWSS-SharePj .

VCORE Construction and [VCORE Verification & Agreement on VCORE]

are same as in AVSS-Share.

Protocol Compute-AVSS-Commit(D,P , r, (F0, . . . ,FB))
Code for Pi

1. Participate in computing AWSS-commitment of Δ∗
i for every Pi ∈ V CORE where

Δ∗
i =

∑B
b=0 rbΔb

i by executing Compute-AWSS-Commit. This will generate AVSS-

commitment of F∗.

Protocol Rec-AVSS-Commit(D,P ,F∗)

1. Parties execute AVSS-Rec-Public(D,P ,F∗ = (f1∗(x), . . . , fη∗(x))) to en-

able public-reconstruction of F∗ = (f1∗(x), . . . , fη∗(x)) and hence S∗ =

(f1∗(0), . . . , fη∗(0)).

As described in Extended AWSS protocol, we now extend our AVSS protocol
for the same situation, where D has B = n2 blocks, denoted by S0, . . . , SB,
each containing η = m

n2 secrets with Sb = (s1b, . . . , sηb). Now D wants to AVSS-
commit Sb using degree-t polynomials say, Fb = (f1b(x), . . . , fηb(x)) (where
fkb(0) = skb) for every b ∈ {0, . . . ,B} such that later the parties can generate
(by local computation) AVSS-commitment of S∗ =

∑B
b=0 rb.Sb = (s1∗, . . . , sη∗)

using polynomials F∗ = (f1∗(x), . . . , fη∗(x)) where fk∗(x) =
∑B

b=0 rbfkb(x)
and fk∗(0) = sk∗. Here r is an agreed upon random value which will be gen-
erated after every honest party ensures that D is AVSS-committed to every
Sb. Later the parties can reconstruct S∗ by invoking AVSS-Rec-Public(D,P , (f1∗

(x), . . . , fη∗(x))). To achieve the above task, we first extend protocol AVSS-Share
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to design Extd-AVSS-Share that uses Extd-AWSS-Share as building block. We then
give protocols for generating AVSS-commitment of S∗ (protocol Compute-AVSS-
Commit) and revealing the same (protocol Rec-AVSS-Commit).

Remark 7. Notice that once V CORE is constructed and agreed upon in Extd-
AVSS-Share, then the parties can later enable Pα-private-reconstruction of any
Fb, where b ∈ {1, . . . ,B} and Pα ∈ P .

Theorem 7. (i) If D is honest then revealing S∗ during Rec-AVSS-Commit will
not reveal any information about S1, . . . , SB; (ii) If D is corrupted and S∗ re-
vealed during Rec-AVSS-Commit is non-NULL (i.e., S∗ ∈ F

η), then with very
high probability D has AVSS-Committed non-NULL S0, . . . , SB.

Theorem 8. Protocol Extd-AVSS-Share privately communicates O((mn3+n6κ)κ)
and A-casts O(n3 log n) bits. Compute-AVSS-Commit does not require any com-
munication. Rec-AVSS-Commit privately communicates O((mn3 + n6κ)κ) bits.

3.7 Statistical Asynchronous Complete Secret Sharing

As specified in Remark 6, in AVSS-Share a corrupted D may commit NULL and
more importantly AVSS-Share ensures that only the honest parties in V CORE
receive their respective shares of the committed secret. As it may happen that
potentially t honest parties are not present in V CORE, AVSS-Share lacks com-
pleteness property. So we now outline how our AVSS scheme can be further used
to design an ACSS protocol. Specifically, we present an ACSS scheme called
ACSS, consisting of sub-protocols ACSS-Share, ACSS-Rec-Private and ACSS-Rec-
Public. ACSS-Share allows D to share secret S containing m field elements from
F. Given the sharing of S, satisfying completeness property, ACSS-Rec-Private al-
lows a specific party say Pα to privately reconstruct S. On the other hand, ACSS-
Rec-Public allows every party in P to reconstruct S. Both ACSS-Rec-Private and
ACSS-Rec-Public use Online Error Correcting (OEC) algorithm [9]. In ACSS-
Share, we come across a situation where the parties jointly need to generate a
random number. It can be achieved as follows:

Random Number Generation: Each Pi ∈ P shares a random non-zero ri ∈ F

using AVSS-Share (here � = 1). The parties then run ACS to agree on a com-
mon set, say C of at least 2t + 1 parties who did proper sharing of their ri’s.
Once C is agreed upon, AVSS-Rec-Public is executed for every Pi ∈ C in order to
reconstruct back Pi’s committed secret. Now every party in P locally add the
committed secret of every Pi ∈ C such that the committed secret is non-NULL.
Now it is easy to see that the sum value is random. We call this protocol as
RNG, which privately communicates O(n7κ2) bits. �

In ACSS-Share, if CCORE is agreed upon, then the parties generate a random
number r and checks whether S∗ = (s1∗, . . . , sη∗) =

∑B
b=0 rbSb is from Fη by do-

ing public-reconstruction of the same. As S0 was chosen to be random, S∗ does
not leak any information about Sb’s (b �= 0) when D is honest. Moreover, by
Theorem 7, if S∗ is reconstructed as nonNULL, then with very high probability
each of the individual Sb’s is also nonNULL.
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ACSS-Share(D,P, S)

i. Distribution by D: Code for D – Only D executes this code

1. Divide S into B = n2 blocks, denoted by S1, . . . , SB, each containing η = m
n2

secrets. Let Sb = (s1b, . . . , sηb). Also select η random secrets S0 = (s10, . . . , sη0).
2. For each Sb, b ∈ {0, . . . ,B}, select η random bivariate polynomials

F 1b(x, y), . . . , F ηb(x, y) of degree-t in x and y such that F kb(0, 0) = skb for
k = 1, . . . , η.

3. For each block Sb, send polynomials gkbi (y) = F kb(i, y) for all k = 1, . . . , η to Pi.
4. Let Δb

i = (f1b
i (x), . . . , fηb

i (x)) for b = 0, . . . ,B, where fkb
i (x) = F kb(x, i). For i =

1, . . . , n, initiate Extd-AVSS-Share(D,P, (Δ0
i , . . . , Δ

B
i )) for sharing (Δ0

i , . . . , Δ
B
i ) si-

multaneously. The ith instance of Extd-AVSS-Share is denoted by Extd-AVSS-Sharei.

ii. Code for Pi – Every party in P, including D, executes this code

1. For each Sb, wait to receive polynomials gkbi (y) for all k = 1, . . . , η from D.
2. Participate in Extd-AVSS-Share(D,P, (Δ0

j , . . . , Δ
B
j )) for all j = 1, . . . , n.

3. For each Sb, if (f1b
j (i), . . . , fηb

j (i)) is received from Extd-AVSS-Share(D,P,

(Δ0
j , . . . , Δ

B
j )) then check whether gkbi (j) = fkb

j (i) holds for all k = 1, . . . , η. If the
test passes for all b = 0, . . . ,B and j = 1, . . . , n, then A-cast Matched.

iii. CCORE Construction: Code for D – Only D executes this code.

1. Construct V CORE for every Extd-AVSS-Sharei. Corresponding to
Extd-AVSS-Sharei, the sets are denoted by V COREi, WCOREi

j for every
Pj ∈ V COREi and OKPk

i
j for every Pk ∈ WCOREi

j .
2. Keep updating these sets until CCORE = ∩n

i=1V COREi of size at least 2t+ 1 is
obtained and Matched is received from A-cast of every Pj ∈ CCORE.

3. Make the parties agree on CCORE and corresponding sets by A-casting them and
letting all other parties to verify (follows almost the same steps as in [VCORE
verification & Agreement] in Protocol AVSS-Share).

iv. Checking D’s commitment: Code for Pi

1. Participate in RGB to generate and agree on a common random number, say r.
2. Participate in computing AVSS-commitment of Δ∗

j for every j = 1, . . . , n where

Δ∗
j =

∑B
b=0 r

bΔb
j by executing Compute-AVSS-Commit(D,P, r, (Δ0

j , . . . , Δ
B
j )).

3. Participate in Rec-AVSS-Commit(D,P,Δ∗
j ) to publicly reconstruct Δ∗

j for j =
1, . . . , n. Let Δ∗

j = (f1∗
j (x), . . . , fη∗

j (x)).
4. Conclude that D has committed secrets from F and proceed to the next step, if for

k = 1, . . . , η, there is a bivariate polynomial of degree-t in x and y, say F k∗(x, y)
with F k∗(x, i) = fk∗(x). Let sk∗ = F k∗(0, 0) for all k and S∗ = (s1∗, . . . , sη∗).

v. For j = 1, . . . , n, Pj-private-reconstruction of (f1b
j (0), . . . , fηb(0)) for all

b ∈ {0, . . . ,B}: Code for Pi

1. Participate in AVSS-Rec-Private(D,P, (f1b
j (x), . . . , fηb

j (x)), Pj), for b = 1, . . . ,B
and j = 1, . . . , n, to enable Pj-private-reconstruction of (f1b

j (0), . . . , fηb
j (0)) using

the sets (CCORE, WCOREj
i etc.) agreed before.

2. Output (f1b
i (0), . . . , fηb

i (0)) as ith share of (s1b, . . . , sηb) after the completion of
Pi-private-reconstruction of (f1b

i (0), . . . , fηb
i (0)) for all b = 1, . . . ,B.

ACSS-Rec-Private(D,P, S, Pα): Private reconstruction of S by Pα:

1. Code for Pi:For every b = 1, . . . ,B and k = 1, . . . , η, send fkb
i (0)(= fkb

0 (i)), the ith

share of secret skb to Pα.
2. Code for Pα: Apply On-line error correction [5, 9] on the received shares to recon-

struct skb for every b = 1, . . . ,B and k = 1, . . . , η

ACSS-Rec-Public(D,P, S,P): Public reconstruction of S: Run ACSS-Rec-
Private(D,P, S, Pα) for every Pα ∈ P.
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Lemma 2. In ACSS-Share, if CCORE is agreed upon and S∗ ∈ Fη, then for
b = 0, . . . ,B and k = 1, . . . , η, D has committed a unique degree-(t, t) bivariate
polynomial F kb(x, y) (hence unique secret skb = F kb(0, 0)), such that for every
i, polynomial fkb

i (x) satisfies fkb
i (x) = F kb(x, i) and for every honest Pj ∈

CCORE, gkb
j (y) = F kb(j, y) holds. If D is honest then F kb(x, y) = F kb(x, y).

Now it is clear from the description of ACSS-Share, that the generation of random
number and then the public verification of S∗ = (s1∗, . . . , sη∗) =

∑B
b=0 rbSb to

be from Fη ensures that each Sb’s are also committed from Fη. The main reason
that D divides the secrets into n2 blocks each of size η = m

n2 and discloses S∗ of
size η is that it keeps the communication cost of the public reconstruction (of
S∗) to be O((mn4 + n7κ)κ) bits. Otherwise if the secrets are not divided into
blocks, then S∗ would have been of size m and its public reconstruction would
take O((mn6 + n5κ)κ) bits. Now once above lemma statement is assured, then
by the property of OEC [9], Pi-private-reconstruction of fkb

i (0) will be successful
for every b = 1, . . . ,B and k = 1, . . . , η and hence finally every (honest) Pi will
output fkb

i (0) as the ith share of skb.

Theorem 9. ACSS-Share privately communicates O((mn4 + n7κ)κ) bits and
A-casts O(n4 log n) bits. ACSS-Rec-Private and ACSS-Rec-Public privately com-
municate O(mnκ) and O(mn2κ) bits respectively.

Notation 5. Following previous notations for AWSS and AVSS, we will invoke
ACSS-Share as ACSS-Share(D,P , (h1(x), . . . , hm(x))) and by doing so, we mean
that D executes ACSS-Share with m degree-t polynomials h1(x), . . . , hm(x) such
that for l = 1, . . . , m, hl(0) = sl. As a result of this execution, each party Pi gets
the shares h1(i), . . . , hm(i).

Definition 1 (t-1D-sharing). We say that a secret s is t-1D-shared, denoted
as [s]t, if there exists a degree-t polynomial h(x), with h(0) = s, such that each
(honest) Pi holds the ith share h(i) = si of s.

Notice that ACSS-Share generates t-1D-sharing of m secrets simultaneously.

4 Our Statistical AMPC Protocol

Once we have an ACSS scheme for generating t-1D-sharing of m secrets simul-
taneously, we can design an efficient statistical AMPC protocol with n = 3t +1.
However, due to space constraints, the readers are referred to Section 9 of [16]
for the details of AMPC.

5 Open Problem

It would be interesting to further improve the communication complexity of
AMPC with n = 3t + 1.



Communication Efficient Statistical AMPC with Optimal Resilience 197

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-

baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg

(1992)
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4. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-

tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.

Springer, Heidelberg (2008)

5. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In:

STOC, pp. 52–61 (1993)

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-

cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

7. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with opti-

mal resilience. In: PODC, pp. 183–192 (1994)

8. Bracha, G.: An asynchronous �(n − 1)/3�-resilient consensus protocol. In: PODC,

pp. 154–162 (1984)

9. Canetti, R.: Studies in Secure Multiparty Computation and Applications. PhD

thesis, Weizmann Institute, Israel (1995)

10. Canetti, R., Rabin, T.: Fast asynchronous Byzantine Agreement with optimal re-

silience. In: STOC, pp. 42–51 (1993)

11. Chaum, D., Crpeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.

In: STOC, pp. 11–19 (1988)

12. Cramer, R., Damg̊ard, I.: Multiparty Computation, an Introduction. In: Contem-

porary Cryptography. Birkhuser, Basel (2005)

13. Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-

party computations secure against an adaptive adversary. In: Stern, J. (ed.) EU-

ROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)

14. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-

putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.

Springer, Heidelberg (2007)

15. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fact-track multi-

party computations with applications to threshold cryptography. In: PODC,

pp. 101–111 (1998)

16. Patra, A., Choudhary, A., Pandu Rangan, C.: Efficient statistical asynchronous

verifiable secret sharing and multiparty computation with optimal resilience. In:

Cryptology ePrint Archive, Report 2009/492. A preliminary version of this paper

got accepted in ICITS 2009 (2009)

17. Patra, A., Choudhary, A., Pandu Rangan, C.: Simple and efficient asynchronous

Byzantine Agreement with optimal resilience. In: Cryptology ePrint Archive, Re-

port 2008/424. Also appeared in Proc. of PODC (2009)

18. Rabin, T.: Robust sharing of secrets when the dealer is honest or cheating. J.

ACM 41(6), 1089–1109 (1994)

19. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with

honest majority. In: STOC, pp. 73–85 (1989)

20. Yao, A.C.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)



Gemstone: A New Stream Cipher Using
Coupled Map Lattice

Ruming Yin, Jian Yuan, Qiuhua Yang, Xiuming Shan, and Xiqin Wang

Department of Electronic Engineering,

Tsinghua University, Beijing 100084, China

yrm05@mails.tsinghua.edu.cn, jyuan@tsinghua.edu.cn

Abstract. In this paper, we propose a new stream cipher Gemstone by

discretizing coupled map lattices (CML), which is a nonlinear system of

coupled chaotic maps. Gemstone uses a 128-bit key and a 64-bit initial-

ization vector (IV). We show that there is no high probability difference

propagations or high correlations over the IV setup scheme. Thus the IV

setup of Gemstone is very secure. We also verify that the largest linear

correlations between consecutive key streams are below the safe bounds.

Gemstone is slightly slower than AES-CTR, but its initialization speeds

are higher than some finalists of eSTREAM.

Keywords: Stream cipher, coupled map lattice, confusion and diffusion,

differential cryptanalysis, linear cryptanalysis.

1 Introduction

A stream cipher usually generates a long pseudo-random keystream and en-
cryptes the plaintext by the bitwise XOR of the keystream and the plaintext.
Stream ciphers can be designed to be faster than general block ciphers. Addi-
tionally, they have limited error propagation. With these desirable properties,
many stream cipher algorithms have been published in recent years [22]. Most
of these ciphers try to follow the confusion and diffusion principles from Shan-
non to strengthen the security. Typically, various highly nonlinear S-boxes are
widely used [23]. In this paper, following these design principles, we propose a
new stream cipher for software Gemstone. Gemstone uses a 128-bit key and a
64-bit initialization vector (IV).

Like the famous stream cipher Rabbit [15], which is constructed by using chaos,
the design of Gemstone is inspired by coupled map lattice (CML). CML a real-
valued nonlinear system of coupled chaotic maps [24]. The original CML based ci-
phers suffer from some defects [19-21]. First, the security can not be substantially
improved by cryptographic techniques, since typically cryptographic operations
are performed on binary numbers. In addition, the operations on real numbers
are usually realized by using floating-point arithmetic. Due to the different imple-
mentation of floating-point operations on various processors, the ciphers may be
difficult to realize synchronization between the sender and the receiver. Therefore,
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it is essential to properly discretize the CML to make it operate on binary num-
bers. Thus the constructed cipher can be advantageous for security improvement
as well as the performance.

In this paper, we properly discretize the CML and design a new stream cipher.
CML consists of local chaotic map and spatial coupling. From the point of view
of cryptosystem, the local nonlinear chaotic map provides confusion and the
coupling operation achieves diffusion. When discretizing CML, we preserve this
good confusion and diffusion property. The discretized CML is then used to
design a stream cipher. In the design, we mainly consider two kinds of attacks.
One type is the attack against IV setup. IV setup has been proven to be a
crucial component in stream ciphers [11-13]. In a typical scenario, an attacker
can compare the keystream sequences associated with several known or chosen
IV values, and distinguish the IV setup algorithm from a random function. With
this type of attacks in mind, we investigate the difference propagations and the
linear correlations over the IV setup and verify that no distinguishability from
random is possible. Another type of attack that is considered explores the high
linear correlation between key streams. This is also a major concern in the recent
designs of stream ciphers [14, 15]. For our cipher, we show that the largest linear
correlations between consecutive key streams are below the safe bounds.

We also compare the performance of our stream cipher with some recent
stream cipher proposals by using the eSTREAM testing framework. The test
results show that Gemstone is slightly slower than AES-CTR. However, the ini-
tialization speeds of Gemstone are higher than some finalists of eSTREAM.

Notation. Throughout this paper, ⊕ denotes bitwise XOR, � denotes addi-
tion modulo 216, � denotes concatenation of two bit sequences. x[u1...u2] means
bit number u1 through u2 of variable x. Following the convention, the least
significant bit is denoted by 0.

2 A Discretized CML Model

The CML consisting of skew tent maps can be constructed as

zi,n+1 =(1 − ε)v(zi,n) +
ε

2
[v(zi−1,n) + v(zi+1,n)],

i = 0, 1, · · · , L− 1, (1)

where L is the number of the sites. zi,n ∈ (0, 1) represents the real-valued state
variable for the site i at time n (n = 0, 1, · · ·). ε ∈ (0, 1) is a coupling constant.
The periodic boundary condition is used, i.e., z−1,n = zL−1,n, zL,n = z0,n. v(·)
is the chaotic skew tent map which is defined as follows

v(z) =

⎧⎨⎩ z
p 0 ≤ z ≤ p

z−p
1−p p < z ≤ 1

(2)

where p ∈ (0, 1) is the parameter.
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We discretize CML to make it operates on integer numbers while preserving
the basic structure for good confusion and diffusion. Firstly, the skew tent map
as the local map has to be discretized. The chaotic skew tent map is nonlinear
and can exhibit random-like behavior. From the point of view of cryptosystem,
this map creats confusion in CML. In the best case, we would like to discretize
the skew tent map to obtain a one-to-one substitution. Thus the improved CML
can be bijective, which is desirable for our stream cipher. In this paper, the
discretized skew tent map proposed in [1] is adopted. It is a one-to-one mapping
on [1, M ]. Here [1, M ] denotes the set of all integers between 1 and M including
both. The discretized map V is as follows

V (Z) =

⎧⎨⎩ �MZ
A � 1 ≤ Z ≤ A

�M(M−Z)
M−A �+ 1 A < Z ≤M

. (3)

Where �·� and �·� are the floor and ceiling operators respectively. The parame-
ters Z, A, M are integers. M = 2m. Z, A ∈ [1, M ]. The cryptosystem is usually
required to operate on the interval [0, M − 1]. Therefore we further make im-
provements for the map V . We iterate the discretized map N times and obtain
the substitution S on [0, M − 1] as

S(T ) = V N (T + 1)− 1. (4)

The iteration is made to obtain the excellent properties of confusion. Finally S
is selected as the local map in our improved CML.

On the other hand, the coupling operation in CML has to be improved. The
nearest-neighbor coupling provides diffusion. We hope that the modified coupling
operation can still preserve this diffusion property and is also deeply investigated
in modern cryptosystems. Thus the improved CML can be clearly analyzed by
using cryptographic technology. On the basis of these considerations, addition
modulo M = 2m is used to modify the nearest-neighbor coupling. This modified
coupling component will be called mixing transformation following the general
description of block ciphers.

Additionally, we modify the CML by first applying the mixing transformation
and then performing substitution. The aim of this modification is to faciliate the
security analysis of our cipher (see Section 5.3). Thus the improved CML can be
formulated as follows

yn = Dxn mod M, gn = S(yn). (5)

Where xn is the vector consisting of L state variables, i.e., xn = (xL−1,n, xL−2,n,
· · · , x0,n)t. Similarly, yn = (yL−1,n, yL−2,n, · · · , y0,n)t, gn = (gL−1,n, gL−2,n, · · · ,
g0,n)t, S(yn) = (S(yL−1,n), S(yL−2,n), · · · , S(y0,n))t.
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D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 · · · 1
1 1 1 0 · · · 0
0 1 1 1 · · · 0
0 0 1 1 · · · 0
...

...
...

...
. . .

...
1 0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
L×L

.

The t suffix denotes transposition of the vector. We will use this discretized CML
model to construct the state-update function of our cipher. In our stream cipher,
the parameters of the discretized CML are selected as follows. The number of
the sites L = 8. The parameters of S-box are A = 214 +11 = 16409 and N = 20.
Addition modulo M = 216 is chosen to modify the nearest-neighbor coupling
in CML. In this case the improved CML function, denoted by g, is shown in
Fig. 1. In the figure, D represents the mixing transformation and S denote
substitutions.

• • • • • • • •

S S S S S S S S

7,nx 5,nx 2,nx3,nx4,nx6,nx 1,nx 0,nx

7,ng

D

6,ng 5,ng 4,ng 3,ng 2,ng 1,ng 0,ng

Fig. 1. Function g: the discretized coupled map lattice with parameters L = 8, A =

16409, N = 20 and M = 216

3 Description of the Stream Cipher

In this section, we describe our stream cipher. The proposed cipher is a syn-
chronous stream cipher which uses a 128-bit key K and a 64-bit initialization
vector IV . The 256-bit internal state of the cipher are divided into eight 16-bit
state variables xi,n and eight 16-bit counter variables ci,n. xi,n is the i-th 16-bit
state variable at iteration n and ci,n is the corresponding 16-bit counter variable.
The cipher works in two phases: first the internal state of the cipher is initialized
using the key and initialization vector, then the state is repeatedly updated and
used to generate the key stream bits.
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3.1 The State-Update Function

The state-update function is shown in Fig. 2. In this function, the discretized
CML is first iterated two times as

,i nx D1 ⊕ , 1i nx +

,i nc

S1 D2 S2
,i ny ,i ng

,i nh ,i nf

g g

Fig. 2. The state-update function

yj,n=xj−1,n � xj,n � xj+1,n

gj,n=S(yj,n)
hj,n=gj−1,n � gj,n � gj+1,n

fj,n=S(hj,n), j = 0, 1, · · · , 7 (6)

where x−1,n = x7,n, x8,n = x0,n, g−1,n = g7,n, g8,n = g0,n. Then a counter is used
to expand the cycle length of the key stream. The counter-assisted algorithm is
as follows

xi,n+1 = fi,n ⊕ ci,n, i = 0, 1, · · · , 7. (7)

The selected counter is shown in Fig. 3. It is a maximum-length LFSR of length
128 over F2 defined by the following primitive feedback polynomial [2]:

q(γ) = γ128 + γ7 + γ2 + γ + 1. (8)

The 128-bit counter C
[127···0]
n are divided into eight 16-bit counter variables

c0,n = C [15···0], c1,n = C [31···16], · · · , c7,n = C [127···112]. These eight counter vari-
ables are updated at each iteration as follows.

ci,n+1=c
[0]
i+1,n � c

[15···1]
i,n 0 ≤ i ≤ 6

ci,n+1=ϕ � c
[15···1]
i,n i = 7 (9)

where ϕ = c
[15]
7,n ⊕ c

[14]
7,n ⊕ c

[9]
7,n ⊕ c

[0]
0,n.

3.2 Key Setup

Firstly the counter variables are initialized with the carefully selected values as

c7,0 = 0x0123 c6,0 = 0x4567
c5,0 = 0x89AB c4,0 = 0xCDEF
c3,0 = 0x3210 c2,0 = 0x7654
c1,0 = 0xBA98 c0,0 = 0xFEDC.
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⊕

[127]
nC

[126]
nC [1]

nC
[0]
nC

⊕
Fig. 3. The selected 128-bit Linear Feedback Shift Register

Then the 128-bit key K [127···0] is divided into 8 subkeys k0 = K [15···0], k1 =
K [31···16], · · · , k7 = K [127···112]. Each subkey is loaded into a state variable as
follows

xi,0 = ki, i = 0, 1, · · · , 7. (10)

Then, the state-update function is iterated three times to spread the influence
of each key bit over all the state variable bits. At last, the counter variables are
modified as

ci,3 = ci,3 ⊕ xi,3, i = 0, 1, · · · , 7. (11)

3.3 IV Setup

The 64-bit initialization vector IV [63···0] is divided into 4 16-bit variables as
IV0 = IV [15···0], IV1 = IV [31···16], IV2 = IV [47···32], IV3 = IV [63···48]. These IV s
are used to modify the state variables as follows

xi,3 = IVi ⊕ xi,3, i = 0, 1, 2, 3,

xi,3 = IVi−4 ⊕ xi,3, i = 4, 5, 6, 7. (12)

Then, the state-update function is iterated two times to spread the influence of
each IV bit over all the state variable bits.

3.4 Key Stream Generation and Encryption/Decryption

After each iteration, 64 bits of key stream sn = s3,n�s2,n�s1,n�s0,n are generated
as follows:

s3,n = x7,n ⊕ x3,n s2,n = x6,n ⊕ x2,n

s1,n = x5,n ⊕ x1,n s0,n = x4,n ⊕ x0,n.
(13)

In the encryption phase, the plaintext is transformed into the ciphertext by
the bitwise XOR of the key stream sn and the plaintext. The decryption is
accomplished by applying the enciphering a second time.

4 Design Rationale

4.1 The Substitution

The substitution-box (S-box) in the proposed cipher deserves a few explanations.
Firstly, the S-box performs one-to-one transformation on 16 bits. Thus the dis-
cretized CML function g can be bijective, which is desirable for the cipher.
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Secondly, the value of parameter A of the S-box is carefully selected such that
the corresponding continuous parameter of the original skew tent map, denoted
by p, is close to 1/4. With this parameter, the discretized skew tent map have
nice cryptographic properties [1].

Thirdly, we select the iterating times of the discretized skew tent map such
that our S-box resists well against differential and linear cryptanalysis. The
iterating times is denoted by N . For differential cryptanalysis, the maximum
difference propagation probability is an important measure [3, 4]. Let S be an
S-box with l-bit binary input vector I = (I1, I2, · · · , Il)t and l-bit binary output
vector O = (O1, O2, · · · , Ol)t. Consider a pair of input vectors I and I∗ with
bitwise difference I ⊕ I∗ = I

′
. Let O = S(I), O∗ = S(I∗) and O

′
= O⊕O∗. The

difference I
′
propagates to the difference O

′
through S. A difference propagation

probability PS(I
′
, O

′
) is defined as

PS(I
′
, O

′
) =

#{I ∈ I|S(I)⊕ S(I ⊕ I
′
) = O

′}
2l

. (14)

Where #{Ω} denotes the number of elements of the set Ω. I is the set of
all possible input vectors and the number of its elements is 2l. The maximum
difference propagation probability is PS

max = max
I′ �=0, O′

{PS(I
′
, O

′
)}.

In linear cryptanalysis, we study the following linear approximations of S-box:

l⊕
i=1

ai · Ii =
l⊕

i=1

bi ·Oi. (15)

Where the symbol · denotes a bitwise AND operation. ai ∈ {0, 1} and bi ∈ {0, 1}.
In order to have a compact notation, we define binary vectors a = (a1, a2, · · · , al)t

and b = (b1, b2, · · · , bl)t. Analogous to the inner product of vectors in linear
algebra, we use the follow notation to express the linear equation (15):

aT I = bT O. (16)

According to [5], the probability bias of this linear equation is defined as

εa,b = |#{I ∈ I|a
T I = bT O}

2n
− 1

2
|. (17)

The maximum bias is εmax = max
a,b�=0

{εa,b}. The probability bias εa,b can be effec-

tively computed by using Walsh-Hadamard Transform (WHT) and convolutions
of the WHT spectra [6].

For various values of the iterating times N , we numerically compute PS
max

and εmax for our S-box. When computing εmax, due to the limited computing
resource, we just consider the linear equations containing single output bit. The
results are shown in Table 1. We find that PS

max and εmax decrease to steady
values as the iterating times N increases. In our cipher we select N = 20. In
this case, the maximum probability of difference propagation over our S-box
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PS
max < 2−11 and the maximum linear probability bias εmax < 2−6. Since we

can implement our S-box in the form of a look-up table in software, the large
iterating times of the discretized maps will not decrease the encryption speed of
our cipher. The memory requirement of our S-box is 16× 216 = 220 bits, which
is acceptable for general applications.

Table 1. P S
max and εmax for various values of the iterating times N

N 1 5 10 15 20 25 30 35

P S
max 0.2960 0.0438 0.0068 0.0006 0.0003 0.0003 0.0003 0.0003

εmax 0.2502 0.1765 0.0598 0.0213 0.0096 0.0096 0.0090 0.0096

4.2 The Mixing Transformation

In this section, we demonstrate that the mixing transformation of our cipher is
one-to-one. The mixing transformation is represented by matrix D. For various
values of L, the determinant of the matrix D, denoted by det(D), can be com-
puted. The results are shown in Table 2. We can find that det(D) is nonzero
and equal to 3 or -3 for some values of L. Based on number theory [7], since
the nonzero det(D) and the modulus M = 216 are relatively prime, there exists
an inverse of D modulo M , i.e., the mixing transformation is bijective when
det(D) is nonzero. In the proposed cipher, we select L = 8 such that the mixing
transformation is one-to-one. Since the map S is also bijective, the discretized
CML function g in our cipher performs one-to-one transformation.

Table 2. The determinant of the matrix D for different L

L 4 5 6 7 8 9 10 11 12

det(D) -3 3 0 3 -3 0 -3 3 0

4.3 The Counter System

Period length. In our cipher, we use a maximum-length LFSR of 128 as a
counter to guarantee the large period length of the key streams. Since the state
of the LFSR has a period length of 2128 − 1, according to [8], the period length
of the key streams is larger than

√
2128 − 1 ≈ 264. This period length is able to

satisfy the requirements of general applications. For example, assume that the
encryption speed our cipher is 1G bit/s, which is the maximum encryption speed
we reach with our computer, then our stream cipher can be used to successively
encrypt messages for several hundred years without changing the keys.

Bit-flip probabilities. In addition to a fixed large period length, the sequences
generated by the LFSR have nice statistical properties. As a result, the bit-flip
probabilities for all bit positions of our counter are close to 0.5 [9], which makes
the counter bits very difficult to predict. In fact, in the early design of our cipher,
we adopt the 128-bit counter that is incremented by one after each iteration.
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This counter has a period length of 2128. However, the bits of this counter is
very predictable. For example, the least significant bit flips after each iteration
and the most significant bit keeps unchanged for many iterations. We find that
this weakness of the counter can be used to facilitate the attacks against our
stream cipher [26]. Therefore, in this paper we select the LFSR to enhance the
security of the cipher.

The removal of symmetry. Finally, the selected LFSR can eliminate the
symmetry of the state-update function and the key setup thus avoid a class of
weak keys. We give an example of the weak keys caused by the symmetry of the
state-update function. Suppose the counter is omited. Consider a key with the
relation ki = k8−i (i = 1, 2, 3), then due to the symmetry, the state variable xi,n

would preserve the relations xi,n = x8−i,n (i = 1, 2, 3) for all the round n. In this
case, according to the key stream generation scheme, the key streams always
keep the relations s3,n = s1,n and s2,n = 0. Fortunately the states of the LFSR
does not preserve this symmetry property and thus can avoid these weak keys.
The initial states of the LFSR is just carefully selected for this purpose.

4.4 Key and IV Setup

The one-to-one correspondence between key/IV and stream. For the
key and IV setup, we have the following two secure properties. First, different
keys lead to different key streams. As the improved CML function g is one-to-
one, different keys result in different counter values after key setup. Further,
different counter values must necessarily lead to different key streams. This is
easy to proof, so we omit it here. Second, the two key streams with the same key
and different IVs will also be different. The same key result in the same counter
values and the state variable values after key setup. Since IV bits is XORed to
the state variable bits at the start of IV setup, the state variable values will
be different for different IVs after IV setup. Function g is one-to-one, therefore
different state variable values and the same counter value must necessarily lead
to different key streams.

The diffusion property for key and IV setup. In the key and IV setup, we
require that the influence of a single key and IV bit can be spread over all state
variable bits. We can easily find that it requires four iterations of function g to
spread the influence of a single key bit over all the eight state variables. That is
to say, we need at least two iterations of the state-update function in key setup.
Similarly, it requires at least one iteration of the state-update function to spread
the influence of a single IV bit on all the state variables. In our cipher, a safety
margin is provided by iterating the state-update function three times and two
times for key setup and IV setup respectively. The diffusion of each bit of key
and IV on the state variables can be examined by statistical tests. In section 6,
we use four structural tests to analyze the key and IV setup of our cipher. The
results verify the enough diffusion in our key and IV setup.
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5 Security Analysis

5.1 The Branch Number of the Mixing Transformation

The mixing transformation in our cipher can be rewritten as follows:

y = Dx mod M. (18)

For compactness, the subscript n which represents the round number has been
omitted. This mixing transformation is nonlinear where the linearity here refers
to a bit-wise XOR operation. It takes a 128-bit binary string X as the input and
a 128-bit binary string Y as the output. Where X is obtained by concatenation of
the eight state variables xi as X = x7�x6�· · ·�x0. Similarly, Y = y7�y6�· · ·�y0.
The 128-bit binary strings X and Y are also regarded as 128-bit vectors as
X = (X1, X2, · · · , X128) and Y = (Y1, Y2, · · · , Y128) respectively in the following
description.

The differential branch number. According to [10], the differential branch
number of the mixing transformation is defined by

Bd(D)= min
X, X∗ �=X

{w(X ⊕X∗) + w(Y ⊕ Y ∗)}

= min
X, X′ �=0

{w(X
′
) + w(Y

′
)}. (19)

Where X
′
= X ⊕X∗ = x

′
7 � x

′
6 � · · · � x

′
0, Y

′
= Y ⊕Y ∗ = y

′
7 � y

′
6 � · · · � y

′
0. w(X

′
)

represents the number of variables x
′
i (i = 0, 1, · · · , 7) that is non-zero. For differ-

ential cryptanalysis of block cipher, the cryptanalyst examines the differential
trails with a high probability. A differential trail is a sequence of input and
output differences to the rounds so that the output difference from one round
corresponds to the input difference for the next round. The S-boxes involved in
a differential trail which have a non-zero input difference are called active S-
boxes. Based on this definition, the number of active S-boxes of any two-round
differential trail is lower bounded by the branch number. We have the following
result for our mixing transformation.

Proposition 1. The differential branch number of the mixing transformation is 4.

Proof. We analyze the value of w(X
′
) + w(Y

′
) for different values of w(X

′
).

First, consider w(X
′
) = 1, there is only one variable x

′
i that is non-zero. Due

to the symmetry of the mixing transformation, without loss of generality, we
assume that x

′
0 is non-zero. Thus x0 �= x∗

0. The output variables of the mixing
transformation are y0 = x7 � x0 � x1, y7 = x6 � x7 � x0, yj = xj−1 � xj �
xj+1, j = 1, 2, · · · , 6. It is easy to verify y

′
0 �= 0, y

′
7 �= 0 and y

′
1 �= 0. We take

the proof of y
′
0 �= 0 as an example. Assume y

′
0 = 0, i.e., y0 = y∗

0 , then we have
x7�x0�x1 = x∗

7�x∗
0�x∗

1. Observe that x7�x1 = x∗
7�x∗

1, then x0 = x∗
0 mod M .

Since x0, x
∗
0 ∈ [0, M − 1], we obtain x0 = x∗

0 which leads to contradiction with
the assumption that x0 �= x∗

0. This shows that y
′
0 �= 0. Similarly, we can proof

y
′
7 �= 0 and y

′
1 �= 0. Thus in this case the value of w(X

′
) + w(Y

′
) is at least 4.
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Next, suppose w(X
′
) = 2. Due to the symmetry of the mixing transformation,

we need to consider the following four cases: 1)x
′
0, x

′
1 �= 0, 2)x

′
0, x

′
2 �= 0, 3)x

′
0, x

′
3 �=

0, 4)x
′
0, x

′
4 �= 0. With the similar analysis as for w(X

′
) = 1, we have the following

results for each case: 1)y
′
2, y

′
7 �= 0, 2)y

′
2, y

′
7, y

′
3, y

′
0 �= 0, 3)y

′
1, y

′
0, y

′
7, y

′
2, y

′
3, y

′
4 �= 0,

4)y
′
1, y

′
0, y

′
7, y

′
3, y

′
4, y

′
5 �= 0. Thus the value of w(X

′
) + w(Y

′
) is still at least 4.

Finally, suppose w(X
′
) ≥ 3. Since the mixing transformation is one-to-one,

different input values will always lead to different output values. That is to
say, there is at least one variable yi �= y∗

i for X �= X∗. Therefore we have
w(X

′
) + w(Y

′
) ≥ 4.

The linear branch number. Let Φ = (Φ1, Φ2, · · · , Φ8m), Ψ = (Ψ1, Ψ2, · · · , Ψ8m)
be 8m-bit vectors. We can divide the different bit positions of Φ into 8 sets
denoted by φ1, φ2, · · · , φ8, where φi = {Φ8(i−1)+1, · · · , Φ8i}. Similarly, we can
define ψi = {Ψ8(i−1)+1, · · · , Ψ8i}. For the mixing transformation in our stream
cipher, the value of m is 16, Φ and Ψ are 128-bit vectors. Following the definition
proposed in [10], the linear branch number of the mixing transformation is

Bl(D) = min
Φ, Ψ, εΦ,Ψ �=0

{w(Φ) + w(Ψ)}. (20)

Where w(Φ) represents the number of sets φi (i = 1, 2, · · · , 8) that have at least
one non-zero bit. εΦ,Ψ is the probability bias of equation ΦT X = ΨT Y , which is
the linear relationship between the input vector X and the output vector Y of
the mixing transformation. εΦ,Ψ can be defined as

εΦ,Ψ = |#{X ∈ X|{ΦT X = ΨT Y }
28m

− 1
2
|. (21)

Where X is the set of all possible input vectors.
Linear cryptanalysis of block ciphers tries to exploit the linear trail with a

high probability. A linear trail is specified by a series of linear approximations of
the rounds such that the involving output bits in the approximation of one round
are the same as the involving input bits in the approximation of the next round.
The S-boxes involved in the linear trail are referred as active S-boxes. Then the
number of active S-boxes of any two-round linear trail is lower bounded by the
linear branch number. Clearly, we cannot compute Bl(D) for the original mixing
transformation, since εΦ,Ψ is difficult to numerically computed for all the possi-
ble 128-bit vectors Φ and Ψ . However, we can investigate Bl(D) of the reduced
version of the mixing transformation where each state variable has been given
in 2 or 3 bits, i.e., m = 2 or 3. The results are as follows.

Proposition 2. The linear branch number of the reduced version of the mixing
transformation where m = 2 or 3 is 4.

Assume m = 2 or 3, then the input and output of the mixing transformation
are reduced to 16-bit or 24-bit vectors. We compute the value of w(Φ) + w(Ψ)
for different values of w(Ψ). For compactness, we use the denotion ψi �= 0 to
express that the set ψi has non-zero bits. First, consider w(Ψ) = 1, there is only
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one set of bit positions of Ψ that have non-zero bits. Due to the symmetry of
the mixing transformation, without loss of generality, we assume that ψ0 �= 0.
We can obtain the vectors Φ such that εΦ,Ψ �= 0 by Walsh-Hadamard Transform
(WHT) and convolutions of the WHT spectra. Then we get the minimum value
of w(Φ) + w(Ψ) as 4. Next, suppose w(Ψ) = 2. In this case we need to consider
the following four cases: 1)ψ0, ψ1 �= 0, 2)ψ0, ψ2 �= 0, 3)ψ0, ψ3 �= 0, 4)ψ0, ψ4 �= 0.
By computing εΦ,Ψ , we again obtain the minimum value of w(Φ) + w(Ψ) as 4.
Finally, suppose w(Ψ) ≥ 3. Since the mixing transformation is one-to-one, εΦ,Ψ

will be zero for the linear approximations involving only the output bits and no
input bits. In other words, if εΦ,Ψ �= 0, the linear approximations should involve
at least one input bit. That is to say, w(Φ) ≥ 1. Thus we have w(Φ)+w(Ψ) ≥ 4.

With the above results, we can reasonably presume that the linear branch
number of our original mixing transformation is 4.

5.2 Resistance of IV Setup against Differential and Linear
Cryptanalysis

In modern stream ciphers, IV setup has been proven to be a crucial component
[11-13]. In a typical attack scenario, we assume that an attacker can know or
choose the IV values with a fixed unknown key and get the corresponding key
stream sequences. The attacker aims to derive information upon the keys or
distinguish the IV setup algorithm from a random function. This kind of attack
can be preformed by exploring the high probability difference propagations or
high correlations over the IV setup scheme. Below we demonstrate the resistance
of our IV setup against these two attacks.

Our IV setup algorithm is very similar to a two-round key-alternating block
cipher. In each round, the discretized CML function g is iterated two times.
The IV bits are XORed to the state variable bits before the iteration in IV
setup. Thus in the scenario that IV is known or can be chosen by the adversary,
IV corresponds to the plaintexts of block cipher. The first 64-bit key streams
are extracted from the state variable bits after the IV setup, these key streams
correspond to the ciphertexts of block cipher. The counter bits are XORed to
the state variable bits and behave as round keys. Following the analysis of key-
alternating block cipher [10], we can demonstrate the resistance of our IV setup
against differential and linear cryptanalysis.

For differential cryptanalysis, the number of active S-boxes of each round is
lower bounded by the differential branch number of the mixing transformation
Bd(D) = 4. The IV setup consists of two rounds, therefore the number of active
S-boxes of IV setup is at least 8. Since the maximum difference propagation
probability of the S-box is PS

max < 2−11, the maximum difference propagation
probability over the IV setup is about (PS

max)8 < 2−88. Thus generally it re-
quires about 288 chosen IV pairs to mount the attack. It is impossible for our
64-bit IV.

For linear cryptanalysis, the number of active S-boxes of each round is lower
bounded by the linear branch number of mixing transformation Bl(D) = 4.
Then the number of active S-boxes of IV setup is also at least 8. The maximum



210 R. Yin et al.

linear probability bias of the S-box is εmax < 2−6. According to piling-up lemma
[5], the maximum probability bias of linear approximations of IV setup is about
27(εmax)8 < 2−41. Then generally it requires about 282 known IVs to mount the
attack. It is also impossible for our 64-bit IV.

5.3 Linear Correlations between Consecutive Key Stream Bits

Linear correlation is another major concern in the design of stream ciphers [14,
15]. In this section, we analyze the linear correlations between consecutive key
stream bits of our cipher and show that this linear correlations are below the
safe bounds.

In the following we ignore the counter system, i.e., we have xi,n+1 = fi,n for
the state-update function. We try to find the linear correlations between bits in
consecutive key stream bits sn and sn+1. Let Γ and Θ be 64-bit vectors. sn and
sn+1 are also regarded as 64-bit vectors. Then the linear equations involving bits
in sn and sn+1 are expressed as

Γ T sn = ΘT sn+1. (22)

We investigate the minimum number of the active S-boxes in these linear ap-
proximations. To get the equation of the form (22), the substitution layer S2 of
the state-update function should be first approximated (see Fig.2). As an exam-
ple, consider that we aim to construct the linear approximations involving the
bits in si,n+1. Then according to (13), we have

si,n+1 = xi+4,n+1 ⊕ xi,n+1 = fi+4,n+1 ⊕ fi,n+1. (23)

We need to approximate the two S-boxes with the outputs fi+4,n+1 and fi,n+1 in
the substitution layer S2. The following linear approximations should be obtained:

θT
i fi+4,n = ηT hi+4,n, θT

i fi,n = τT hi,n. (24)

Consequently we have

θT
i si,n+1 = (ηT hi+4,n)⊕ (τT hi,n). (25)

We can finally get the linear equations of form (22) by further finding the linear
approximations between hi,n and si,n.

With the above analysis, we show that the S-boxes with the outputs fi+4,n+1

and fi,n+1 need to be active simultaneously. Thus when applying the definition
(20) to compute the minimum number of active S-boxes at the input and the
output of the mixing transformation D2, Ψ needs to satisfy that ψi = ψi+4 = 0
or ψi, ψi+4 �= 0 for 1 ≤ i ≤ 4. As in the computation of the linear branch
number, we consider the reduced version of the mixing transformation D2 with
m = 2 and 3. By numerical computation, we can get Bl(D2) = 8. We reasonably
presume Bl(D2) = 8 for the original mixing transformation where m = 16. Thus
it needs at least 282 consecutive iterations of the state-update function to mount
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a successful distinguishing attack. Since the cipher will not be iterated more
than 264 times with the same key, this distinguishing attack is infeasible.

In fact, if the counter in the state-update function is considered, it will be
more difficult to construct effective linear approximations between consecutive
key stream bits. Therefore we believe that our stream cipher is secure against
this kind of attack.

6 Statistical Tests

The key streams generated by the cipher should have good randomness prop-
erties so that the statistics of the plaintexts can be masked. The randomness
property is usually analyzed by applying statistical tests. For our cipher, the
key stream bits are tested by using the NIST Statistical Test Suite [16] and
the Diehard Battery of Tests [17]. We did not find any obvious deviation from
randomness in these tests.

Table 3. The results of four statistical tests for the key and IV setup

Test name Key/State

Correlation

IV/State

Correlation

Frame

Correlation

Key

Diffusion

IV

Diffusion

Average p-value 0.4377 0.4498 0.4691 0.5001 0.5427

In addition, we use statistical tests to measure the correlations between the
key, IV and key streams. Four statistical tests are applied following the methods
proposed in [18]. They are Key/State Correlation Test, IV/State Correlation
Test, Frame Correlation Test and Diffusion Test. The details of these tests are
refer to [18]. The test results for our cipher are shown in Table 3. For each test
the average of 10 p-values is computed. We find that the average p-values are
all close to 0.5. That is to say, there is no weakness found in these tests.

7 Performance

In this section we provide the performance of Gemstone. We compare the per-
formance of Gemstone with some recent stream ciphers in two 32-bit processors:
AMD-athlon 3200+, Intel Pentium 4 3.00GHz, using the eSTREAM testing
framework [25]. The number of cycles consumed per byte are tested. The el-
ementary tests are: the encryption rate for long streams by ciphering a long
stream in chunks of about 4Kb; the packet encryption rate for three packet
lengths (40, 576 and 1500 bytes) including an IV setup; the key setup and the
IV setup. Table 4 and Table 5 sum up the results.

As shown in these tables, the cipher Gemstone is slightly slower than AES-
CTR when encrypting long streams. However, the initialization speeds of Gem-
stone are higher than some finalists of eSTREAM, such as HC-128, CryptMT
and NLS. Therefore Gemstone may have some advantages in the applications
where many very small packets are encrypted.
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Table 4. Number of CPU cycles for stream ciphers using an Intel Pentium 4 at 3.00GHz

Algorithm Stream 40 bytes 576 bytes 1500 bytes Key setup IV setup

AES-128 17.84 33.34 18.65 18.14 406.79 202.07

AES-256 27.13 45.36 27.97 27.22 2027.35 183.06

HC-128 4.06 1671.91 119.51 47.43 115.21 67450.55

Py6 3.46 77.84 8.56 5.40 959.63 2012.87

NLS 15.47 125.75 42.76 17.77 1999.70 3061.88

CryptMT 15.40 2429.27 191.31 80.59 106.81 96626.29

DICING 23.20 908.75 71.72 44.41 86.15 24908.67

FUBUKI 144.22 3463.98 374.30 228.57 148.23 130556.80

Frogbit 819.65 1445.70 842.69 827.51 2520.40 30514.76

Gemstone 35.85 60.25 37.54 36.27 977.42 763.12

Table 5. Number of CPU cycles for stream ciphers using an AMD-athlon 3200+ at

2.01GHz

Algorithm Stream 40 bytes 576 bytes 1500 bytes Key setup IV setup

AES-128 17.85 29.19 18.47 18.13 197.91 110.06

AES-256 40.84 59.23 41.35 41.15 1489.95 103.05

HC-128 3.99 2206.18 156.57 62.70 78.61 87891.40

Py6 4.24 60.49 8.18 5.84 917.77 1762.09

NLS 4.70 50.51 7.56 5.44 1068.89 995.97

CryptMT 9.30 680.97 60.14 27.75 76.51 26646.53

DICING 23.20 908.75 71.72 44.41 86.15 24908.67

FUBUKI 144.22 3463.98 374.30 228.57 148.23 130556.80

Frogbit 819.65 1445.70 842.69 827.51 2520.40 30514.76

Gemstone 30.55 48.10 31.83 60.89 684.72 594.88

8 Conclusion

In this paper, we presented a new stream cipher called Gemstone by discretizing
CML. For the security of the cipher, we show that there is no high probability
difference propagations or high correlations over the IV setup scheme. Addition-
ally, the largest linear correlations between consecutive key streams are below
the safe bounds. In terms of performance, Gemstone is slightly slower than AES-
CTR, but its initialization speeds are higher than some finalists of eSTREAM.
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Appendix

Test Vectors of Gemstone

Let the 128-bit key K = k7 � k6 � · · · � k0 and 64-bit initialization vector
IV = IV3 � IV2 � IV1 � IV0. The first 64 bits of keystream are given for dif-
ferent values of key and IV. They are presented byte-wise as follows.

1. The key and IV are set as 0.

68E8 98E3 222B 49F2

2. The key is set as 0 and IVi is set as 0 except that IV0 = 1.

B265 EA2F C7F5 306C

3. The IV is set as 0 and ki is set as 0 except that k0 = 1.

3901 D9C8 30BA 7883
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Abstract. In this paper, we have proposed two block cipher structures

which can be considered as variants of SP-network and Generalized Feis-

tel structure respectively. Our main idea is to improve the diffusion effect

when mixing all the sub-blocks together in each round. We also show that

compared with the original structures, our structures have several impor-

tant advantages. Then we evaluate the security of our structures against

main attacks by estimating the upper bounds for differential and linear

probabilities, and also the maximum number of rounds for impossible

differential. In the end, we present two example ciphers which are based

on the structures proposed, and we also adopt several novel and state-

of-the-art design techniques. Then by explaining the design rationales

and evaluating the security of the example ciphers under main attack

settings, we can conclude that both of our ciphers can achieve enough

immunity against known attacks and also have high performances.

Keywords: Block Cipher, cipher structure, differential probability,

linear probability, provable security, impossible differential characteristic.

1 Introduction

The overall structure of a block cipher is one of the most important properties,
and it will play important roles in both security aspects and implementation
performances of the cipher. At present, the most often used structures include
Feistel structure[1], SP-network[2] and Generalized Feistel structure[3] etc. As
is adopted by the most well known block cipher AES, the SP-network is very
famous. The main advantages of SP structure include that it is very simple and
clear, and it can achieve full diffusion very quickly. However, usually its decryp-
tion and encryption process can not be similar, and this will increase additional
costs in software and hardware implementations. Especially in a resource re-
stricted environment this will be a disadvantage which can not be ignored. On
the other hand, Feistel structure and Generalized Feistel structure both have sim-
ilar advantages such as decryption-encryption similarity and the inverse of round
function is not necessary in decryption. This can make the design of round func-
tion more simple and flexible. However, since only part of a block goes through

F. Bao et al. (Eds.): Inscrypt 2009, LNCS 6151, pp. 215–229, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the round function in each round, it needs more rounds to achieve enough dif-
fusion. Furthermore, there always exists long rounds of impossible differential
in Feistel structure (5-round ID)[4] and 4-branch Generalized Feistel structure
(9-round ID)[5] which makes them vulnerable to impossible differential attack.

Furthermore, new design and cryptanalysis techniques are evolved day by day.
For example, the newly proposed block cipher CLEFIA[5] had been attacked up
to 12 out of the 18 rounds[6], which mainly uses a 9-round impossible differential
existed for the Generalized Feistel structure. Moreover, only recently the first at-
tack on full AES-256 was announced by Biryukov-Khovratovich-Nikolic[7]. They
exploited slow diffusion and other differential weaknesses in the key schedule of
AES-256 and presented the first related-key attacks on the full 14-round AES-
256, but it works only for a weak key class. Later, Biryukov-Khovratovich[8] im-
proved these results and presented the first related-key attack on full AES-256
that works for all the key space and also developed the first related-key attack
on full AES-192 by using boomerang attack. All these cryptanalytic results show
that now it is good timing to enhance the structure design and increase security
strength of both round function and key scheduling of the block cipher.

In this paper, we propose two block cipher structures which are variants of
SP-network and Generalized Feistel structures respectively. Our main idea is
to use permutation with good branch number to improve the diffusion effect
when mixing all the sub-blocks together in each round. Our first structure is a
variant of SP-network, which employs the combination of SDS transformation
as round function to achieve best diffusion in each sub-block, and then employs a
permutation with good branch number to mix all the sub-blocks together. Note
here we can employ a simple 4×4 binary matrix as permutation to obtain enough
number of active columns. Therefore, this structure can be more efficient in the
sense that it can use less MDS transforms while keeping the number of active
S-boxes unchanged. Furthermore, since the round function contains two layers
of S-boxes, if we choose appropriate S-boxes and MDS matrix, we can make
this structure be involution which means its decryption and encryption can be
similar. On the other hand, our second structure can be considered as a variant
of Generalized Feistel structure. It uses a 4 × 4 binary matrix transformation
instead of the ordinary switch transformation in each round. By using this kind
of complicated transformation, we can not only improve the diffusion effect but
also reduce the maximum number of rounds for impossible differential existed.

Then we evaluate the security of these two structures against several main
attacks respectively. By estimating the upper bounds for differential and linear
hull probabilities, and the maximum number of rounds for impossible differential,
we can prove their security against these attacks. In the end, we present two
example ciphers based on the structures proposed, and we also adopt several
novel and state-of-the-art design techniques. Then we evaluate the security of
these two example ciphers against several most often used attacks and their
implementation performances briefly.

This paper is organized as follows. Sect. 2 gives some useful definitions and
notations. Then Sect. 3 describes our first proposed structure, and also explains
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its design rationales and security evaluations briefly. Sect. 4 describes our second
proposed structure and its design rationales and security evaluations respectively.
Sect. 5 and Sect. 6 present the two example ciphers designed and evaluations
of their security against main attacks and implementation performances etc.
Finally, Sect. 7 concludes the paper.

2 Preliminary

In this section, we give some definitions and notations which are useful for later
analysis. If the input difference (linear mask) of a sbox in differential characteris-
tic (linear approximation) is nonzero, then it is called a differential (linear) active
sbox. For the concept of branch number with respect to a bundle partition, we
can follow the definitions of differential and linear branch number defined in [2].

Definition 1. The differential branch number of a linear transformation φ is
given by

Bd(φ) = min
α�=0
{wb(α) + wb(φ(α)},

where wb(·) represents the number of bundles with nonzero difference.

Definition 2. The linear branch number of a linear transformation λ(x) = M ·x
is given by

Bl(λ) = min
β �=0
{wb(β) + wb(MT · β},

where wb(·) represents the number of bundles with nonzero linear mask.

Obviously, an upper bound for the differential and linear branch number of a
linear transformation is m + 1, where m denotes the total number of bundles
in the state. Notice that if a linear transformation has the maximal possible
differential or linear branch number m+1, then both branch numbers are equal.
Furthermore, if a linear transformation satisfies the condition of being symmet-
ric, namely MT = M , then both branch numbers are equal too.

For the 4× 4 binary matrix which will be used to combine all the sub-blocks
together in our structures, its possible differential branch number is at most
4. Hence we try to choose symmetric matrix, so that its differential and linear
branch number are equal. Furthermore, to make the structures be involution
the binary matrix should be involution, too. After searching all the 4× 4 binary
matrices, there are 10 matrices satisfy all the above conditions: symmetric, invo-
lution, and maximal possible branch number. We simply choose the first one as
permutation P used in the first structure, and combine the switch transformation
with it to obtain permutation Q which will be used in the second structure.

P =

⎛⎜⎜⎝
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞⎟⎟⎠ Q =

⎛⎜⎜⎝
1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

⎞⎟⎟⎠
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3 Description of Structure 1

In this section, we describe our first proposed structure, which can be called
Variant-SP structure. Fig. 1 illustrates one round of this structure in detail.
In each round, the input block is split into 4 sub-blocks of equal size, and the
input state can be denoted as X = (X0, X1, X2, X3). Then round function F
is applied to each sub-block in parallel, and we denote the intermediate state
as Z = (Z0, Z1, Z2, Z3). Finally, the 4 × 4 binary matrix P described in Sect.
2 is used to mix all the sub-blocks together and the output state is denoted as
Y = (Y0, Y1, Y2, Y3). Therefore, one round of this structure can be expressed as:⎛⎜⎜⎝

Y0

Y1

Y2

Y3

⎞⎟⎟⎠ = P ·

⎛⎜⎜⎝
F (X0)
F (X1)
F (X2)
F (X3)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞⎟⎟⎠ ·
⎛⎜⎜⎝

Z0

Z1

Z2

Z3

⎞⎟⎟⎠
The round function F is defined as F = S−1 ◦D ◦ S, which contains two layers
of Sbox transformation and one layer of MDS matrix multiplication transfor-
mation. Here we use sbox S0 in the first layer and its inverse sbox S−1

0 in the
second layer. Furthermore, an involution MDS matrix is used in the middle to
make the decryption process of our structure be similar with encryption. Round
subkeys K0 = (K0,0, K0,1, K0,2, K0,3) and K1 = (K1,0, K1,1, K1,2, K1,3), will be
bitwise XORed to the internal state before each layer of S-box transformation
respectively. Therefore, round function F can be expressed as follows.

F (Xi) : Zi = S−1( MDS ( S(Xi ⊕K0,i) )⊕K1,i), (0 ≤ i ≤ 3).

3.1 Design Rationale

In the design of this structure, our main idea is to achieve high level of security
while using as few operations as possible. Therefore, we first apply the combina-
tion of SDS transformations as round function to achieve best diffusion within
each sub-block. Then we employ a simple permutation P to mix all the sub-
blocks together whose branch number can guarantee the least number of active
sub-blocks for every two rounds. Compared with the original SP structure, our
structure can achieve the same number of active sboxes while using less MDS
transforms. This can make our structure be more efficient in resource restricted
implementation environments, especially where Sbox and MDS transformations
can not be combined into a big table. Moreover, even in the big table implemen-
tation, to combine the output value of big tables together still needs more XOR
operations than the permutation P which needs only 7 XOR operations.

This structure can be used to construct involution ciphers. If we omit trans-
formation P in the last round and employ post-whitening key addition in the
end, we can prove that the decryption and encryption frameworks can be similar.
Considering r-round encryption, the plaintext and ciphertext are denoted as P
and C respectively. Then the decryption process can be expressed as follows.

P = S−1 ◦MDS−1 ◦ S ◦ P−1︸ ︷︷ ︸
r−1

◦S−1 ◦MDS−1 ◦ S(C ⊕WK)
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Note in our structure the binary matrix P and MDS matrix are both involution,
namely MDS−1 = MDS and P−1 = P . Therefore, the decryption process is
exactly the same with encryption process, except that additional transforms are
needed to compute decryption subkey from encryption subkey.

Furthermore, we can prove that this structure can reach pseudorandomness
after 3 rounds and super pseudorandomness after 6 rounds respectively, based
on the assumption that their underlying round function F is pseudorandom.

3.2 Security Evaluation

In this section, we evaluate the security of this structure against differential
cryptanalysis[9] and linear cryptanalysis[10] by estimating the upper bounds for
differential and linear hull probabilities respectively.

Differential Probability. According to the definitions of active sbox and dif-
ferential branch number in Sect. 2, we can get the following proposition about
the upper bound for differential probability of this structure.

Proposition 1. Suppose the differential branch numbers of MDS matrix and
permutation P used in this structure are BD and BP respectively. Then for any
two rounds, there are at least BD × BP differential active Sboxes. If the best
differential probability of Sbox used in this structure is p, then the upper bound
for differential probability of any two rounds is p BD ·BP .

Proof. According to the assumption, the permutation P guarantees that there
are at least BP active sub-blocks for any two rounds. Moreover, for each active
sub-block, the combination of SDS transformations make sure that there are at
least BD active Sboxes. Therefore, for any two rounds of this structure, there are
at least BP ×BD differential active Sboxes. Furthermore, if the best differential
probability of the Sbox used is p, then the best differential probability of any
two rounds of this structure is less than p BD ·BP . ��

Hence, after we have chosen appropriate Sbox and MDS matrix, based on this
proposition we can easily conclude how many rounds of this structure is provably
secure against differential cryptanalysis since there exists no differential charac-
teristic whose probability is high enough to mount the key recovery attack.

Linear Hull Probability. Similar to the analysis of differential probability, we
can get the following proposition about the upper bound for linear hull proba-
bility of this structure.

Proposition 2. Suppose the linear branch numbers of MDS matrix and permu-
tation P used in our structure are LD and LP respectively. Then for any two
rounds of this structure, there are at least LD × LP linear active Sboxes. If the
best linear bias of Sbox used is q, then the bias for best linear approximation of
any two rounds is upper bounded by 2(LD·LP−1)q LD ·LP .
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Proof of this proposition is similar with Propostion 1, and we will omit the
detail here for simplicity. Note that for the MDS matrix used in round function,
it achieves maximal possible branch number and so that both its linear and
differential branch numbers are equal, namely LD = BD. Moreover, for the
binary matrix P used, since it is symmetric, then its differential and linear
branch numbers are equal too, namely LP = BP .

After we have chosen appropriate Sbox and MDS matrix, based on Proposition
2 we can easily conclude how many rounds of this structure is provably secure
against linear cryptanalysis since there exists no linear approximation whose bias
is high enough to mount the key recovery attack.

4 Description of Structure 2

In this section, we describe our second proposed structure, which is a variant
of Generalized Feistel structure. Our main idea is to use a complex permuta-
tion instead of the simple switch transformation usually used in Feistel-Type
structures. By choosing a permutation with good branch number, we can not
only improve diffusion effect but also enhance the immunity against impossible
differential attack. The following Fig. 2 illustrates one round of this structure.

Suppose all the internal states are split into 4 sub-blocks of equal size, and then
the input and output block of each round can be denoted as X =(X0, X1, X2, X3)
and Y = (Y0, Y1, Y2, Y3) respectively. In each round, we apply the same round
function F to the left part for every pair of sub-blocks. The intermediate state
after this transformation is expressed as follows.

(Z0, Z1, Z2, Z3) = (X0, F (X0)⊕X1, X2, F (X2)⊕X3)

Then we use the binary matrix Q described in Sect. 2 to mix all the sub-blocks
together. Therefore, one round of this structure can be expressed as follows.⎛⎜⎜⎝

Y0

Y1

Y2

Y3

⎞⎟⎟⎠ = Q ·

⎛⎜⎜⎝
Z0

Z1

Z2

Z3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

⎞⎟⎟⎠ ·
⎛⎜⎜⎝

Z0

Z1

Z2

Z3

⎞⎟⎟⎠
For round function F , we also use the combination of F = S ◦ D ◦ S to en-
hance the security level. Moreover, considering that this structure is involution
itself since Q is involution, we can use the same sbox S0 in both layers of Sbox
transformation and a low hamming weight MDS matrix in the middle layer.
The subkeys of each round are denoted as K = (K0, K1, K2, K3), which will be
bitwise XORed to the internal state before each layer of Sbox transformation.
Therefore, round function F of this structure can be expressed as follows.

F (Xi) = S( MDS ( S(Xi ⊕Ki) )⊕Ki+1), (i = 0, 2).
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K0,3�S
D K1,3�S−1

Z0 Z1 Z2 Z3� � � �

P =

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

0 1 1 1
1 0 1 1
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� � � �
Y0 Y1 Y2 Y3

Fig. 1. One round of structure 1
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�
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�
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Q =

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

� � � �
Y0 Y1 Y2 Y3

Fig. 2. One round of structure 2

4.1 Design Rationale

In the design of this structure, our main idea is to use a transformation with
good branch number to replace the switch transformation usually used in Feistel-
Type structures. The main advantage of this design is that we can achieve better
immunity against impossible differential attack. In next section we will show that
in this structure the best impossible differential is only 6 rounds, while traditional
generalized Feistel structures usually has a 9-round impossible differential.

Furthermore, we carefully choose binary matrix Q which satisfies the condi-
tions that it is symmetric, involution and with possible maximum branch num-
ber. Hence if transformation Q is omitted in the last round, then this structure is
obviously involution. Moreover, since Q achieves the maximum branch number
possible for 4× 4 binary matrix, its good diffusion effect can make the number
of active sub-blocks as high as possible. We also apply combination of SDS as
round function to achieve best diffusion within sub-block, and the choice of MDS
matrix with low hamming weight can reduce cost in hardware implementation.

Furthermore, we can prove that this structure can reach pseudorandomness
after 3 rounds and super pseudorandomness after 6 rounds respectively, based
on the assumption that their underlying F function is pseudorandom.

4.2 Security Evaluation

In this section, we first evaluate the security of this structure against differ-
ential and linear cryptanalysis by estimating the upper bounds for differential
and linear hull probabilities. Then we evaluate its immunity against impossible
differential attack by searching the best impossible differential existed.

Differential Probability. We can evaluate the best differential probability by
estimating the least number of active Sboxes of this structure. Therefore, we can
search for the least number of differential active sub-blocks first, and then the
least number of active Sboxes can be computed easily since round function can
guarantee the number of active Sboxes in each active sub-block.

First of all, we represent the internal state of this structure by a 4-bit value,
in which the i-th bit represent the i-th sub-block. If a sub-block has nonzero
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difference then the corresponding bit is set as 1, and otherwise it is set as 0.
Considering that only two sub-blocks will pass through the round function, hence
only if these two sub-blocks have nonzero differences they will be called active
sub-blocks. Then we can search for the least number of active sub-blocks by
computer simulation, and the conclusions are as follows.

Proposition 3. In this structure the least number of differential active sub-
blocks for one round is 0, for two rounds is 1, for three rounds is 2, for four
rounds is 2, for five rounds is 3 and for six rounds is 4.

Proof. The number of least active sub-blocks for one round and two rounds are
trivial. In the following, we first prove the case of three rounds.

First of all, we show there can be only 2 active sub-blocks for three rounds.
The following 3-round differential characteristic just has 2 active sub-blocks:

(α, 0, 0, α)
p−→ (0, 0, 0, α)→ (α, α, 0, α)

p−→ (0, α, α, 0),

where p means the probability of the input and output difference of round func-
tion F are both equal to α.

In the following, we show that there can not be only 1 active sub-block for
three rounds. If the active sub-block is in the first or third round, the situations
are exactly the same. Hence we can assume the active sub-block in first round for
simplicity. Then input difference of the second round must be the following form
(0, α, 0, β). Hence input difference of the third round should be (β, α⊕β, α, α⊕β),
which contradicts the assumption that there is no active sub-block in third round,
since β = α = 0 is impossible.

If the active sub-block is in the second round, then input differences of the
first and third round should both be the following form (0, α, 0, β). Assume
input difference of the first round is (0, α1, 0, β1), then input difference of the
second round is (β1, α1⊕β1, α1, α1⊕β1). Considering that there should be only
one active sub-block in the second round, we can assume β1 �= 0 and α1 = 0.
On the other hand, suppose input difference of the third round is (0, α2, 0, β2),
then the output difference after round function F of second round should be
(β2, α2 ⊕ β2, α2, α2 ⊕ β2). According to round function F , it must satisfy that
β2 = β1 �= 0, α2 = α1 = 0 and β1 ⊕ F (β1) = β1. Obviously the third expression
is impossible since β1 �= 0. Hence, there can not be only 1 active sub-block.

Therefore, there are at least 2 active sub-blocks for three rounds of this struc-
ture. Furthermore, the least number of active sub-blocks for four rounds etc. can
be proved in a similar way. ��
Suppose the differential branch numbers of MDS matrix is BD. Then for each
active sub-block, the combination of SDS transformations make sure that there
are at least BD active Sboxes. If the best differential probability of Sbox is p,
then the best differential probabilities for three rounds, four rounds, five rounds
and six rounds are upper bounded by p2BD , p2BD , p3BD and p4BD respectively.

Linear Hull Probability. Similar to the analysis of differential probability, we
can get the following proposition about the linear active sub-blocks of this struc-
ture. Considering that the binary matrix Q is symmetric and involution, hence
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the least number of linear active sub-blocks obtained by searching algorithm will
be the same as differential active sub-blocks.

Proposition 4. For this structure, the least number of linear active sub-blocks
for one round is 0, for two rounds is 1, for three rounds is 2, for four rounds is
2, for five rounds is 3 and for six rounds is 4.

Proof of this proposition is similar with that of Proposition 4, and we will omit
the detail here. Suppose the linear branch numbers of MDS matrix is LD, and
then for each active sub-block, the combination of SDS transformations make
sure that there are at least LD active Sboxes. If the best linear bias of Sbox is
q, then the biases of best linear approximation for three rounds, four rounds,
five rounds and six rounds are upper bounded by 22LD−1q2LD , 22LD−1q2LD ,
23LD−1q3LD and 24LD−1q4LD respectively.

Impossible Differential Characteristics. Impossible differential crypt-
analysis[11] is one of the most often used cryptanalytic techniques, and it is espe-
cially powerful for the Feistel-Type structures. For example, there always exists a
5-round impossible differential for Feistel structure[4], even though 3-round Feis-
tel structure is provably secure against differential and linear cryptanalysis[12].
Furthermore, for 4-branch Generalized Feistel structure, there usually also ex-
ists a 9-round impossible differential[5] which makes it vulnerable to impossible
differential attack.

Although our structure is also a variant of Generalized Feistel structure, we
have used complex permutation to enhance the diffusion effect, and hence we can
achieve better immunity against impossible differential attack. After searching
for the maximum number of rounds for impossible differential existed in the
structure, we show that the following 6-round distinguisher is the best existed.

Proposition 5. The maximum number of rounds for impossible differential ex-
isted in this structure is 6 rounds, and the impossible differential characteristics
can be expressed as follows.

(0, 0, 0, α) �→6 (δ, δ, 0, δ), α �= 0, δ �= 0,

and,
(0, α, 0, 0) �→6 (0, δ, δ, δ) α �= 0, δ �= 0.

In detail, we can express the input and output differences of each round as
follows. Note here we just describe the first characteristic as an example.

(0, 0, 0, α)→ (α, α, 0, α)→ (0, β, β, α⊕ β)→ (∗, ∗, 0, ∗) �= (0, γ, γ, ∗)
← (δ, δ ⊕ γ, 0, δ)← (0, 0, 0, δ)← (δ, δ, 0, δ).

where α and δ denote nonzero fixed differences, β and γ denote nonzero nonfixed
differences, and ∗ denotes arbitrary difference respectively.
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5 Application 1: Block Cipher VSP1

As an application, we design a new 256-bit block cipher. This cipher is called
VSP1 and it is based on the first structure we proposed. The following Fig. 3
illustrates the encryption procedure of this cipher in detail.

First of all, 256-bit plaintext is split into 4 sub-blocks, and each sub-block is
a 64-bit word. Then the same round function is applied except the last round,
and the suggested number of rounds is 8. In the last round, we will omit the
final permutation P and add a layer of post-whitening key addition in the end,
so that the decryption and encryption processes can be similar.

In each round, first round function F is applied to each sub-block in parallel,
and then the binary matrix P described in Sect. 2 is used to mix all the sub-
blocks together. The round function F is defined as follows.

F (Xr−1,i) = S−1( MDS1 ( S(Xr−1,i ⊕Kr,0,i) )⊕Kr,1,i), (0 ≤ i ≤ 3).

Here, two layers of Sbox transformation both contain eight 8×8 Sboxes. The first
layer employs the sbox of AES, and the second layer employs its inverse sbox.
The diffusion layer contains an involution 8×8 MDS matrix multiplication. Here
we can employ the following involution MDS matrix of block cipher KHAZAD.

MDS1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01 03 04 05 06 08 0B 07
03 01 05 04 08 06 07 0B
04 05 01 03 0B 07 06 08
05 04 03 01 07 0B 08 06
06 08 0B 07 01 03 04 05
08 06 07 0B 03 01 05 04
0B 07 06 08 04 05 01 03
07 0B 08 06 05 04 03 01

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Furthermore, in each round there needs eight 64-bit subkeys and in the whiten-
ing layer there needs four additional whitening keys. Therefore, our cipher needs
68 subkeys in all, and each subkey is a 64-bit word. Hence it is important for
the key schedule algorithm to generate subkeys fast and securely, and also sup-
ports the involution property of the ciphers without endangering the security by
being overly simplistic. Therefore, in this paper, we will leave the key schedule
algorithm for future work.

Note in this cipher, we set all the internal states as 64-bit words, and many
of the operations are 64-bit word oriented. This is based on the considerations
that recently the 64-bit platform is getting widely use gradually, and there are
also requirements of large internal states since block cipher is often used as a
building block for hash function, MAC and stream cipher constructions.

5.1 Implementation Considerations

For implementation on 64-bit platform, each round of VSP1 will need 64 table
lookups, 43 XOR operations and 16KB memory to store the big tables. For
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Fig. 3. Encryption of VSP1
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Fig. 4. Encryption of VGF2

implementation on 32-bit platform, the 8× 8 MDS matrix can be split into four
4 × 4 small MDS matrix which can also be combined with the Sbox transform
into a table. Therefore, in this case each round will need 64 table lookups, 86
XOR operations and 8KB memory to store the tables.

Compared with the 256-bit cipher Rijndael-256 which employs SP structure,
its implementation on 32-bit platform needs 32 table lookups, 32 XOR operations
and 8KB memory to store the tables each round. According to wide trail strategy
in [2], the lower bound of active Sboxes in four rounds of Rijndael-256 is 25. While
for the cipher VSP1, according to Proposition 1, there are at least 36 active
Sboxes for two rounds. Thus it can be seen that this cipher is more efficient
since to achieve the same level of security it will use less operations.

5.2 Security Evaluation

In this section, we will evaluate the security of VSP1 cipher against several most
often used cryptanalytic techniques briefly.

Differential Cryptanalysis. For the 8×8 MDS matrix used in round function,
its differential branch number is BD = 9. According to the analysis in Sect. 2,
the differential branch number of P is BP = 4. Furthermore, for the sbox of
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AES and its inverse sbox, the best differential probabilities are both p = 2−6.
Therefore, according to Proposition 1 in Sect. 3.2, for two rounds of this cipher,
there are at least 36 active sboxes, and the best differential probability is less
than 2−36∗6 = 2−216. Moreover, for the full 8 rounds of this cipher, there are at
least 144 active sboxes, and the best differential probability is less than 2−144∗6 =
2−864. Therefore, full rounds of VSP1 is secure against differential cryptanalysis
since there exists no differential whose probability is high enough to mount the
key recovery attack.

Linear Cryptanalysis. For the 8× 8 MDS matrix and binary matrix P , their
linear and differential branch numbers are both equal, and the best linear bias
for the sbox of AES and its inverse sbox are both q = 2−4. Therefore, according
to Proposition 2 in Sect. 3.2, for two rounds of this cipher, there are at least 36
active sboxes, and the best linear bias is less than 235 ·2−36∗4 = 2−109. Moreover,
for the full 8 rounds of this cipher, there are at least 144 active sboxes, and the
best linear bias is less than 2143 · 2−144∗4 = 2−433. Therefore, the full rounds of
VSP1 is practically secure against linear cryptanalysis.

Impossible Differential Cryptanalysis. For block cipher VSP1, the best
impossible differential existed is the following 3-round impossible differential,

(0, 0, 0, α1)→ (β, β, β, 0) �= (0, ∗, ∗, ∗)← (γ, 0, 0, 0)← (0, α2, α2, α2)

where α1 and α2 are nonzero fixed differences, β and γ are nonzero nonfixed
differences, and ∗ is an arbitrary difference. Considering that in each round
there are 512-bit subkey, hence it is unlikely that key recovery attack can work
for full rounds of VSP1 using this 3-round impossible differential.

Integral Attack. For block cipher VSP1, the best integral characteristic existed
is a 2-round integral distinguisher. If there is only one active byte in the first sub-
block, then after F transformation in Round 2, the first sub-block is still passive,
and the following P transformation will destroy this property. We can see that
full rounds of VSP1 is secure against integral attack since it is unlikely that key
recovery attack can work using this kind of 2-round integral characteristic.

6 Application 2: Block Cipher VGF2

Based on the second structure proposed, we design the following example cipher
which is called VGF2. Its block size is also 256-bit, and all the internal states are
represented as 64-bit words. Fig. 4 illustrates its encryption procedure in detail.

First of all, the second and fourth plaintext sub-blocks are XORed with the
pre-whitening subkeys. Then the same round function is applied iteratively ex-
cept the last round, and the suggested number of rounds is 16. In the last
round, the final transformation Q is omitted, and two post-whitening subkeys are
XORed to the second and fourth sub-blocks respectively to get the ciphertext.
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In each round, we first apply the following round function F to the left part
for every pair of sub-blocks. Then the binary matrix Q described in Sect. 2 is
used to mix all the sub-blocks together. Round function F is defined as follows.

F (Xr−1,i) = S( MDS2 ( S(Xr−1,i ⊕Kr,i) )⊕Kr,i+1), i = 0, 2.

Here, two layers of Sbox transformation both contain eight 8×8 Sboxes. We can
employ the same sbox of AES in both layers. Since there is no restriction for the
MDS matrix used in diffusion layer, we can employ the following MDS matrix
of cipher Grindahl which has low hamming weight.

MDS2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01 04 01 01 02 0c 06 08
08 01 04 01 01 02 0c 06
06 08 01 04 01 01 02 0c
0c 06 08 01 04 01 01 02
02 0c 06 08 01 04 01 01
01 02 0c 06 08 01 04 01
01 01 02 0c 06 08 01 04
04 01 01 02 0c 06 08 01

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This cipher needs 4×16 round subkeys and 4 whitening subkeys in all, and each
subkey is 64-bit. Here we also leave key schedule algorithm for future work.

6.1 Implementation Considerations

The encryption of VGF2 uses 32 Sbox calls, 4 subkey additions, 2 MDS matrix
transforms and 1 binary matrix transform in each round. Therefore, when it is
implemented on 64-bit platform and the operations of Sbox and MDS trans-
forms are combined into a big table, then the operations of each round include
16 big table lookups, 14 XORs for the combination of table values, 16 small
table lookups, 4 XORs for the two layer of subkey addition and 7 XORs for
the Q permutation. Therefore, in each round there are 32 table lookups and 25
XOR operations altogether, and 16KB memory is needed to store the big tables.
Moreover, note that in each round, the computation of round functions for ev-
ery 2 sub-blocks are exactly the same. Hence they can be performed in parallel
for faster encryption speed. Moreover, decryption and encryption process of our
designed cipher are similar which will also reduce the cost of implementation.

6.2 Security Evaluation

In this section, we give a brief evaluation of the security of block cipher VGF2
against several widely used cryptanalytic techniques.

Differential Cryptanalysis. For the MDS matrix and binary matrix Q used
in this cipher, their differential branch numbers are BD = 9 and BQ = 4 re-
spectively. Therefore, according to Proposition 3 in Sect. 4.2, for six rounds of
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VGF2, there are at least 36 active sboxes. Then the best differential probability
of six rounds is less than 2−36∗6 = 2−216. Moreover, for 16 rounds there will
be at least 90 active sboxes, which means the best differential probability of 16
rounds is less than 2−90∗6 = 2−540. Hence we can conclude that the full rounds
of VGF2 is practically secure against differential cryptanalysis.

Linear Cryptanalysis. Similarly, according to Proposition 4 in Sect. 4.2, we
can conclude that for six rounds of VGF2, there are at least 36 linear active
sboxes, and for 16 rounds there are at least 90 linear active sboxes. Considering
that the best linear bias of six rounds is no more than 235 ·2−36∗4 = 2−109, we can
conclude that full rounds of VGF2 will be secure against linear cryptanalysis.

Impossible Differential Cryptanalysis. According to Proposition 5 in Sect.
4.2, the best impossible differential existed in VGF2 cipher is the 6-round impos-
sible differential. Considering that VGF2 contains 16 rounds and in each round
256-bit subkeys are used, it is unlikely that the key recovery attack can work
against the full cipher using this kind of 6-round impossible differential.

Integral Attack. For block cipher VGF2, the best integral characteristic ex-
isted is a 4-round integral distinguisher. If there is only one active byte, then after
F transformation in Round 3, two sub-blocks of the intermediate state are still
balance, and the following Q transformation will destroy this property. We can
see that full rounds of VGF2 is secure against integral attack since it is unlikely
that key recovery attack can work using this 4-round integral characteristic.

7 Conclusion

In this paper, we have proposed two block cipher structures which are variants of
SP-network and Generalized Feistel structure respectively. Then we explain the
design rationales and evaluate the security of these two structures under main
attack settings. In the end, we have presented two example ciphers based on the
structures proposed. We also estimate their implementation performances and
the security of these ciphers against main attacks briefly.

Note that the block cipher Hierocrypt has an nested-SPN structure which is
similar to our first structure. It also employs the combination of SDS as round
function, and then employs another MDS matrix to mix all the bytes together.
However, our proposition uses a simple binary matrix which operates on 64-bit
words to mix all the sub-blocks together, and this obviously requires much less
operations while still keeps the security level. Furthermore, in this paper we only
give a brief evaluation of the ciphers, and tests of implementation performances
on various platforms and more security analysis will be our future work.
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Cipher

Deian Stefan�

S∗ProCom2// Dept. of Electrical Engineering,

The Cooper Union,

New York NY 10003, USA

Abstract. Rabbit is a software-oriented synchronous stream cipher with

very strong security properties and support for 128-bit keys. Rabbit is

part of the European Union’s eSTREAM portfolio of stream ciphers

addressing the need for strong and computationally efficient (i.e., fast)

ciphers. Extensive cryptanalysis confirms Rabbit’s strength against mod-

ern attacks; attacks with complexity lower than an exhaustive key search

have not been found. Previous software implementations have demon-

strated Rabbit’s high throughput, however, the performance in hardware

has only been estimated. Three reconfigurable hardware designs of the

Rabbit stream cipher – direct, interleaved and generalized folded struc-

ture (GFS) – are presented. On the Xilinx Virtex-5 LXT FPGA, a direct,

resource-efficient (568 slices) implementation delivers throughputs of up

to 9.16 Gbits/s, a 4-slow interleaved design reaches 25.62 Gbits/s using

1163 slices, and a 3-slow 8-GFS implementations delivers throughputs of

up to 3.46 Gbits/s using only 233 slices.

Keywords: FPGA, Rabbit, eSTREAM, DSP, Stream Cipher.

1 Introduction

The widespread use of embedded mobile devices poses the need for fast, hardware-
oriented encryption capabilities to provide higher security and protection of
private data for end users. Stream ciphers are cryptographic algorithms that trans-
form a stream of plaintext messages of varying bit-length into ciphertext of the
same length, usually by generating a keystream that is then XORed with the plain-
text. In general, stream ciphers have very high throughput, strong security proper-
ties, and use few resources, thus making them ideal for mobile applications;
well-known examples of streamciphers include theRC4 cipher used in 802.11Wire-
less Encryption Protocol [13], E0 cipher used in Bluetooth protocol [13], and the
SNOW3G cipher used by the 3GPPgroup in the new mobile cellular standard [26].

The European Union sponsored the four-year eSTREAM project to identify
new stream ciphers which address not only strong security properties, but also

� Part of this work was done while the author was visiting EPFL, Switzerland.

F. Bao et al. (Eds.): Inscrypt 2009, LNCS 6151, pp. 230–247, 2010.
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the need for 1) high-performance software-oriented ciphers and, 2) low-power
and low-resource hardware-oriented ciphers. The Rabbit stream cipher is among
four software-oriented stream ciphers which were selected for the eSTREAM
software portfolio in 2008 [3]. Rabbit performs very well in software (e.g., 5.1
cycles/byte on a 1.7 GHz Pentium 4 and 3.8 cycles/byte on a 533 MHz PowerPC
440GX [6]) and detailed cryptanalysis by the designers and recent studies [2,20]
found no serious weaknesses or attacks more feasible than an exhaustive key
search. In [20], Lu et al. estimate the complexity of a time-memory-data-tradeoff
(TMDT) key-recovery attack to be 297.5 with 232 memory usage, 232 precompu-
tations in addition to an exceptionally strong adversary assumption. Moreover,
they also present the best distinguishing attack with complexity 2158, which is
considerably higher than the exhaustive key search of 2128. The strong security
properties of Rabbit makes the cipher a desirable candidate for both software
and hardware applications. Until now there were no hardware implementations
of Rabbit to evaluate its performance, only estimates of application-specific in-
tegrated circuit (ASIC) and field-programmable gate array (FPGA) designs;
as part of our framework, we present three different architectures suitable for
reconfigurable hardware implementations that can be used as standalone hard-
ware or hardware/software co-designs for both cryptographic and cryptanalytic
applications.

First we introduce the structure of the Rabbit stream cipher and the math-
ematical foundations. We then discuss the three hardware architectures of the
algorithm: direct, interleaved, and generalized folded structure. The tradeoffs
of each are considered along with hardware- and software-based initialization
designs. Finally, FPGA implementations and performance benchmarks are
presentd.

2 Structure of Rabbit

Rabbit is a symmetric synchronous stream cipher with a 513-bit internal state
derived from the 128-bit key and an optional 64-bit initial vector (IV). From the
classical definition of a synchronous stream cipher [22], the internal state during
each system iteration is updated according to a next-state function dependent on
the previous (internal) state, and similarly, the keystream is produced as a func-
tion of the internal states, independent of the plaintext or ciphertext. An output
function, XOR in this case, is then used to combine the plaintext (ciphertext)
message and keystream to produce the output ciphertext (plaintext).

The 128-bit key allows for the safe encryption of 264 plaintext messages [21,6],
while the optional (public) 64-bit IV provides for the safe encryption of up to 264

plaintexts using the same key [8]. Many stream cipher keystream generators are
based on the irregular clocking, non-linear combination, or non-linear filtering of
the output(s) of linear feedback shift registers (LFSRs) and pseudo-random num-
ber generators (PRNGs) [24,22]. The Rabbit design, although counter-assisted
and dependent on the highly non-linear mixing of the internal state, is a novel
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approach to stream cipher design, adopting random-like properties from chaos
theory [7].

The Rabbit 513-bit internal state (at iteration i) is divided into eight 32-bit
state variables xj,i, 0 ≤ j ≤ 7, eight 32-bit counters cj,i, 0 ≤ j ≤ 7 and a carry
bit φ7,i. The design choice of a very large internal state makes TMDT attacks
(e.g., key recovery), which rely on “off-line” precomputations to minimize “on-
line” computing time, infeasible [5,6].

2.1 Internal State Update

The internal state update, i.e., a system iteration, is divided into the non-linear
next-state update of the state variables xj,i’s, and the linear update of the
counter variables cj,i’s.

Next-state update: At the core of the Rabbit algorithm is the iteration of the
state variables, from which the keystream is generated. After the initialization of
the internal state (explained in Section 2.2) the next-state function, depending
only on the previous state, is used to iterate the system; so, the internal state
at iteration i + 1 depends solely on the non-linear mixing of the internal state
at i. Formally, following the notation of [6], the eight 32-bit state variables are
updated as follows:

xj,i+1 =
{

gj,i + gj−1,i ≪ 16 + gj−2,i ≪ 16 for j even
gj,i + gj−1,i ≪ 8 + gj−2,i for j odd,

(1)

where ≪ α is a bitwise-rotation by α bits, the additions are mod 232 and all the
indices j − k, 0 ≤ k ≤ 2 are mod 8 (the number of state and counter variables).
The chaos-inspired function g is defined as:

gj,i = ((xj,i + cj,i+1)2 ⊕ ((xj,i + cj,i+1)2 ! 32)) mod 232, (2)

where ! α is a bitwise right-shift by α and the inner additions, (xj,i + cj,i+1)
are mod 232. The g function is the source of the high non-linearity in the state
updates — 256 bits (all the bits of the xj,i’s) of the 513-bit internal state are
non-linearly transformed; as (1) shows, each state variable is a combination of
three outputs from the g function. The g function is the source of the cipher’s re-
sistance to algebraic, differential, and linear correlation attacks, which commonly
take advantage of ciphers with few non-linear state updates, or the correlation
between the difference of inputs and outputs. These attacks seek to determine an
output’s dependence on the input, find a correlation between the output and in-
ternal state or distinguish the keystream from a truly random sequence [12,1,7,6].

Counter update: Similar to the state variable updates, during each iteration
the eight 32-bit counter variables are also updated, although linearly, according
to:

cj,i+1 =
{

c0,i + a0 + φ7,i for j = 0
cj,i + aj + φj−1,i+1 otherwise (3)

where,
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aj =

⎧⎨⎩
0x4d34d34d for j = 0, 3, 6
0xd34d34d3 for j = 1, 4, 7
0x34d34d34 otherwise

(4)

and the carry φj,i+1 is:

φj,i+1 =

⎧⎨⎩
1 if j = 0 and c0,i + a0 + φ7,i ≥ 232

1 if j �= 0 and cj,i + aj + φj−1,i+1 ≥ 232

0 otherwise.
(5)

It can be shown that the 256-bit counter state (eight 32-bit counters) has a
maximal period length of 2256−1 [7], and since the counter variables are used in
(2), and thus in the next-state function (1), a lower-bound on the period length
of the state variables can also be guaranteed [7,6].

2.2 Initialization

Key setup: The 128-bit key K is divided into eight 16-bit sub-keys K =
k7|| · · · ||k0, where || is the concatenation operation, with the least significant bit
(LSB) bit of k0 and most significant bit (MSB) of k7 corresponding to the LSB
and MSB of K, respectively. The key is expanded to initialize the counter and
state variables according to:

xj,0 =
{

kj+1||kj for j even
kj+5||kj+4 for j odd,

(6)

and:

cj,0 =
{

kj+4||kj+5 for j even
kj ||kj+1 for j odd,

(7)

where the indices j + k are modulo 8. Additionally, the carry φ7,0 is initialized
to zero.

Following the key expansion, the system is iterated four times according to
the next-state and counter-update functions described in Section 2.1, and finally
the counter variables are modified according to:

cj,4 = cj,4 ⊕ xj+4,4, (8)

where the indices are again mod 8.
The expansion of the key is such that there is a one-to-one correspondence

between the key and the 512-bit internal state, while the four system iterations
and counter modifications assert both 1) the mixing of all the key bits with every
state variable and 2) the combination of the counter with the non-linear state
variables [6]. It is important to avoid a many-to-one mapping between the key
and internal state as this drastically degrades the strength of the algorithm, for
if two keys lead to the same internal state an adversary could potentially gen-
erate the same keystream with a different key. Equally essential are the counter
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modifications, as they prevent key-recovery attacks in which an adversary, with
knowledge of the counter’s state, can ‘clock’ the system in reverse and deduce the
key. Since the next-state function is resistant to guess-and-verify and correlation
attacks [6], and thus resistant to the ‘reverse clocking’ of the state variables,
the modification of the counter variables as in (8) secures against key-recovery
attacks.

IV setup: If a 64-bit IV is provided, it is divided into four 16-bit sub-IVs —
IV = iv3|| · · · ||iv0 — where the LSB of iv0 and MSB of iv3 correspond to the
LSB and MSB of IV , respectively. Using the sub-IVs the counters are modified
to:

cj,4 =

⎧⎪⎪⎨⎪⎪⎩
cj,4 ⊕ iv1||iv0 for j = 0, 4
cj,4 ⊕ iv3||iv1 for j = 1, 5
cj,4 ⊕ iv3||iv2 for j = 2, 6
cj,4 ⊕ iv2||iv0 for j = 3, 7,

(9)

after which the system is again iterated four times, guaranteeing the non-linear
combination of all the IV bits into the state variables [6].

2.3 Keystream Generation

During each iteration i, the state variables xj,i are split into low (L) and high (H)
16-bit sub-states xj,i = xj,i,H||xj,i,L, from which the 128-bit keystream output,
a concatenation of eight 16-bit blocks si = si,7|| · · · ||si,0, is extracted according
to:

si,0 = x0,i,L ⊕ x5,i,H si,4 = x4,i,L ⊕ x1,i,H

si,1 = x0,i,H ⊕ x3,i,L si,5 = x4,i,H ⊕ x7,i,L

si,2 = x2,i,L ⊕ x7,i,H si,6 = x6,i,L ⊕ x3,i,H

si,3 = x2,i,H ⊕ x5,i,L si,7 = x6,i,H ⊕ x1,i,L. (10)

It is important that adversaries gain no information from the output, that is,
they should not be able to distinguish the output of the keystream generator
from a truly random sequence [15]. The combination of the outputs of the non-
linear g function in the keystream extraction highlights the strength of Rabbit
in passing various statistical tests [6], including the NIST Test Suite that seeks
to find non-randomness in a sequence [4].

3 Rabbit in Hardware

As previously mentioned, Rabbit is a software-oriented stream cipher and thus
was designed to perform well on general purpose architectures, varying from
32-bit Intel processors to 8-bit microcontrollers. Estimates of ASIC and FPGA
throughput and area performance are presented in [6], however the implementa-
tion details are limited. In the following sections, we consider three architecture
designs of the Rabbit algorithm optimized for reconfigurable devices.
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3.1 Direct Architecture and General Optimizations

The first architecture we consider is a direct implementation of the algorithm.
Observing the relationship between (3) and (5), we note that the counter vari-
ables can be updated using a series of chained adders. Each adder takes inputs
cj,i, aj and carry-in1 φj−1,i+1, j > 0, producing output cj,i+1 and carry-out
φj,i+1 each cycle. Figure 1 illustrates the chaining method within the full ar-
chitecture design. The updated counters cj,i+1 and state variables xj,i are then
used as inputs to the g function blocks, the outputs of which, gj,i, are com-
bined according to (1) to produce the next state variables xj,i+1. Moreover, the
next state variables are concurrently combined according to (10) to produce the
128-bit keystream output.

g

g

g

g

g

g

g

g

c0,i+1 x0,i+1

c1,i+1 x1,i+1

c2,i+1 x2,i+1

c3,i+1 x3,i+1

c4,i+1 x4,i+1

c5,i+1 x5,i+1

c6,i+1 x6,i+1

c7,i+1 x7,i+1

Φ7,i+1

Fig. 1. Direct architecture of the Rabbit algorithm, highlighting the critical path. The

� is a 32-bit adder with carries, while the dotted and dashed lines indicate a vari-

able rotate dependent on whether j is even or odd, see (1). Control logic, ai inputs,

initialization blocks and the keystream extractor are eliminated for clarity.

Below, we consider generic hardware optimizations, which are applied to all
the designs in the framework, including the direct implementation.
1 Note that the carry-in for the first adder is φ7,i.
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Efficient squaring: In implementing the next-state function, eight parallel
realizations of the g function are required. Accordingly, the implementation of g
can greatly affect the overall speed performance and area usage. As Boesgaard et
al. note [6], the most costly part of the g function, the squaring, can be efficiently
implemented using three 16-bit multiplies followed by a 32-bit addition. If we
let u = xj,i + cj,i+1 and split u into two 16-bit values u = uH||uL, then the
optimization follows directly from the fact that u2 = u2

L + 232u2
H + 217uLuH

mod 232. Thus the full g function, as in (2), can be efficiently implemented using
four (2-input) 32-bit adders, three 16-bit multipliers, 3 shifts (which have no cost
in hardware, other than routing), and a 32-bit XOR.

g
cj,i+1 xj,i+1

Stage 1 Stage 2 Stage 3

Fig. 2. Three-stage pipeline for the direct architecture of the Rabbit algorithm

Pipelining: In addition to optimizing g, the speed of the direct design can
be further increased by splitting the design into three pipeline stages. Without
pipeline registers, the critical path – the path with the highest computational
cost between two delay elements – consists of the eight counter adders, a g
function (computing g7,i), two 32-bit adders (computing x7,i+1) and a 16-bit
XOR (extracting keystream output); excluding the final XOR, the critical path
is highlighted in Figure 1. The critical path can, however, be reduced to either
eight 32-bit adders or g and two 32-bit adders2 by introducing pipeline registers
following the counter adders and preceding the keystream output XORs, see Fig-
ure 2. To retain correctness, keeping the inputs cj,i+1 and xj,i to the g functions
synchronized is required and can be accomplished by introducing a latency of
one cycle (using clock-enables) for the xj,i’s to match the latency introduced by
the pipeline register for cj,i+1.

C-slow retiming: To further optimize the pipelined design, the critical path,
which we experimentally determined to be in the second pipeline stage (the
calculation of the the next state variables: g+two 32-bit adders), must be reduced
with fine-grained pipelining of the g block, the costliest element in the path. We
note that since gj,i+1 depends on xj,i+1, which is a function of the output of
gj,i, the direct design cannot take advantage of multiplier pipelining. Instead,
we optimize the design with C-slow retiming, a DSP system-design technique
2 Specifically, the critical path is max(eight 32-bit adders, g+two 32-bit adders).
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that allows for the pipelining of structures with feedback loops [23,27]. C-slow
retiming is a modification of a system design in which each register is replaced
with C registers (C-slowed) after which the full structure is retimed, whilst
retaining algorithmic correctness; we refer the reader to [23] for further details.
For C = 4, Figure 3(a) illustrates the partial C-slow design before retiming,
and Figure 3(b) shows it after retiming, where 3 of the 4 registers were moved
into the g block. Retiming stage 2 can thus be seen as fine-grained pipelining
of the g function into 3 simpler stages (addition, multiplication, and addition
+ XOR). Moreover, by pipelining g, the critical path is “reduced” to the eight
32-bit chained counter adders.

We note that although C-slow retiming can acutely increase the clock rate,
the area usage will, in general, increase, as will the number of cycles it takes
to complete a single iteration; specifically the number of cycles per iteration
will increase to C. Thus to avoid zero-filling the C − 1 pipeline registers, it is
essential that multiple streams be interleaved, running in parallel, so that during
the C cycle system iteration, C independent streams are updated and C different
keystream outputs are generated. Multi-stream cipher applications have been
studied before (see e.g., [28,9]), and find use in many applications, including file
system encryption, securing virtual private networks, and cryptanalysis.

g
cj,i+1 xj,i+1

(a) 4-slow before retiming

g
cj,i+1 xj,i+1

3D

(b) 4-slow after retiming

Fig. 3. C-slow retiming for C = 4 is accomplished by first replacing each register

with C of them, as shown in (a), followed by the retiming, which relocates registers to

optimize the design, as shown in (b)

Initialization: Initialization of the direct architecture requires a key expansion
block for (6) and (7), which consist of simple combinations of bit slices used to
initialize the state and counter variables; additional control logic (multiplexers)
and XORs are needed for the IV setup and modification of the counter as in (8).
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For multi-stream (C-slow retimed) designs, control logic is necessary to correctly
initialize the independent streams.

Alternatively, for hardware/software co-designs, the initialization can be per-
formed in software from which the Rabbit hardware counter, state and carry
registers can be loaded; the Rabbit crypto-co-processor and main CPU (e.g., Mi-
croBlaze or PowerPC) can be interfaced using numerous bus protocols that can
directly access hardware registers, including the Xilinx Fast Simplex Link (FSL),
On-Chip Peripheral Bus (OPB) and the IBM-based Processor Local Bus (PLB).
For many security system- and network-on-chip applications, which commonly
consist of a CPU and peripherals in addition to the FPGA, initialization in soft-
ware eliminates the need for additional hardware resources and further simplifies
the overall design. Moreover, the saved resources can be dedicated to additional
cryptographic cores in multi-stream applications, or to other hardware-assisted
applications running concurrently, e.g., MPEG-4 encoder.

3.2 Interleaved Architecture

Although a C-slow retimed implementation is suitable for hardware, the high
data-dependency between the counters (due to the percolating carries φj,i+1) still
poses a limitation on the clock rate. This is because a 256-bit addition3 must
be completed in a single cycle. For a 3-stage pipeline and C-slow retimed design
(assuming C ≥ 2), the cost can be reduced to that of a 128-bit addition using
cut-set retiming; in this section we, however, focus on interleaved architecture
(IA) design, which is a considerably more balanced structure. See Appendix A
for further details on the cut-set retiming approach.

The interleaved design is a generalization of the C-slow retiming approach
to fine-grained pipelining of, not only the state variable updates (stage 2 of the
pipelined design in Figure 2), but the counter updates as well (stage 1). Given a
C-slow design (C = 2l, l ≥ 1), a C/k-interleaved architecture (in short C/k-IA)
interleaves k independent streams in a single clock cycle for k cycles (ignoring
the initial first cycle used to fill the pipeline), where k ≤ C and k|8. For example,
a 2/2-IA consists of 2 streams which are interleaved such that during the first
cycle half of the state variables of each stream are updated and during the second
cycle the second half of the variables are updated. As another example, consider
the 4/2-IA case; this design is equivalent to interleaving two 2/2-IA streams. We
further note that the C-slow retimed design discussed in Section 3.1 is a special
case for k = 1, i.e., C/1-IA.

We denote variables of different stream with a superscript, e.g., cm
j,i is the j-th

counter variable at iteration i of stream m. For clarity we limit our discussion
to the 4/2-IA design shown in Figure 4. From Figure 4 we observe that during
the first cycle, half of stream 1’s counters c1

j,i+1, 0 ≤ j ≤ 3 and final half of
stream 4’s counters c4

j,i+1, 4 ≤ j ≤ 7 are updated in the top and bottom of the
structure, respectively. Because φ3,i+1 is buffered, in the following cycle we can

3 The eight 32-bit additions with carries is equivalent to a 256-bit addition of

c7,j || · · · ||c0,j and a7|| · · · ||a0 with φ7,i as a carry-in.
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(a) 4/2-IA design.

g
gi-1

2D gi

(b) h function

Fig. 4. 4/2-Interleaved Architecture design and corresponding h block

update c1
j,i+1, 4 ≤ j ≤ 7 in the bottom half, and c2

j,i+2, 0 ≤ j ≤ 3 in the top.
Table 1 illustrates the update of the counter variables over time corresponding
to Figure 4. With the exception of the first cycle, during every cycle a full-state
update is completed.

Due to the interleaving and need to retain correctness of the algorithm, the
retiming of g is slighlty more complex than that of a C-slow design. First, because
we start from a 4-slow design, 2 registers can be dedicated to the fine-grained
pipelining of g, while the others are used to buffer either 1) the output of g so
that the next state variables can be computed according to (1) or 2) the next
state variable. As the update is completed over 2 cycles, half of the g blocks need
an additional register and a multiplexer (see Figure 4(b)) to select the correct
g output; we denote this function by h. For example, in computing x4,j+1, the
outputs of the first two h blocks (h2 and h3) are the previously buffered x2,j+1

and x3,j+1 (and not the output of the g function).
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Table 1. Example counter update of 4/2-IA over increasing time t

t 0 1 2 3 4 5 6

Top:

c1
0,i c2

0,i c3
0,i c4

0,i c1
0,i+1 c2

0,i+1 c3
0,i+1

c1
1,i c2

1,i c3
1,i c4

1,i c1
1,i+1 c2

1,i+1 c3
1,i+1

c1
2,i c2

1,i c3
2,i c4

2,i c1
2,i+1 c2

2,i+1 c3
2,i+1

c1
3,i c2

3,i c3
3,i c4

3,i c1
3,i+1 c2

3,i+1 c3
3,i+1

Bottom:

— c1
4,i c2

4,i c3
4,i c4

4,i c1
4,i+1 c2

4,i+1

— c1
5,i c2

5,i c3
5,i c4

5,i c1
5,i+1 c2

5,i+1

— c1
6,i c2

6,i c3
6,i c4

6,i c1
6,i+1 c2

6,i+1

— c1
7,i c2

7,i c3
7,i c4

7,i c1
7,i+1 c2

7,i+1

We further note that for the 4/2-IA, in addition to registers which buffer the
next state variables, two keystream extractors are needed in order to produce
four 128-bit outputs in four cycles.

3.3 Generalized Folded Structure

Although FPGAs contain digital signal processing (DSP) slices4 that can be
used in implementing an optimized direct or IA design, with the exception of
the DSP-enhanced FPGAs (such as the Xilinx Spartan-3A, Virtex-5 SXT and
Virtex-4 SX [29]), most FPGAs have a small number of DSP slices which may be
necessary for applications other than the encryption module (e.g. Fast Fourier
Transform block used for image processing). As such, we seek a more compact
implementation of the Rabbit stream cipher.

From (1), (2), (3) and Figure 1, we observe the repeated use of identical circuit
blocks in the design (e.g. block g followed by addition), which can be reduced to
fewer shared copies at the cost of additional control logic and intermediate state
registers. Specifically, the g block, adders and rotation blocks used to update a
state variable can be shared to compute all the eight state variables at the cost of
1/8-th the time each computing block is used to update a state variable. Similar
to the sharing of resources to update the state variables, the calculation of the
eight counter variables at 1/8-th the time per resource can be accomplished by
sharing a single adder and carry register.

In DSP terminology, the general design optimization is referred to as a n-folded
or n-rolled design [23], reducing the number of used computational resources
(e.g., g blocks) to 1/n at the cost of taking n cycles to complete a full iteration.
It is constructive to think of folded designs as n threads running on a pipelined
system sharing the same computational units, and during every cycle a different
thread, cycled in a round–robin fashion, gets a chance to use the computational

4 The design of a DSP slice is FPGA-family-specific, however the most common design

is a 18 × 18 multiplier followed by an adder/accumulator and a small number of

registers and multiplexers.
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units (and advance in the pipeline) [16], such that after n cycles all the threads
have finished their necessary computations and the iteration is complete.

Although a directly folded design of Rabbit is realizable, it is inefficient be-
cause each iteration requires g6,i and g7,i to compute the first two next-state
variables, x0,i+1 and x1,i+1, and as such, an elegant solution buffering only the
last two g values is not feasible without the use of an additional g block. In-
stead, we propose a generalized filter structure that allows access to intermediate
values—following the threading analogy: the threads are no longer independent
and can share data. Moreover, an n-GFS implementation only requires 1/n of
the number of computational elements (e.g., adders and g functions) used by a
direct implementation. As the counter implementation in an n-GFS architecture
is the same as that of a folded design (i.e., in an n-GFS design, the counter
system is simply the chaining of 8/n adders whose (partial) inputs are n delayed
counter variables that need to be updated sequentially), we limit our discussion
to the more interesting case of the state updates.

g
cj+1,i+1 xj,i+1

Φj+1,i+1

8D

8D

xj+1,i

gj,i

gj-1,i

gj-2,i

Fig. 5. 8-GFS design. Every 8-th cycle, the multiplexers select the g7,i and g6,i re-

sults for the gj−1,i and gj−2,i inputs of the 32-bit adder. The dashed and dotted lines

highlight rotations dependent on j.

As shown in Figures 5 the 8-GFS design uses a minimal number of resources,
both in terms of the register usage and computational elements (g function
and adders). Only two additional registers, which buffer gj−1,i and gj−2,i, are
needed when computing xj,i+1 according to (1). We note that every 8 cycles
all intermediate terms, g0,i through g7,i, are available and thus any of the next-
state variables can be updated, including x0,i+1. Similarly, Figure 6 shows the
compact 4-GFS design split into a top and bottom pipeline, each computing
even and odd next-state variables, respectively. As with the 8-GFS, every n = 4
cycles, all the intermediate terms are available and thus x0,i+1 and x2,i+1 can
be computed. A 2-GFS design follows directly from these.

From the figures, we observe that a straight-forward GFS implementation will
be limited by the rate at which it can be clocked (due to the fact that the critical
path consists of a g block and two 32-bit adders). However, the pipelining and
C-slow retiming techniques presented in Section 3.1 are adopted to further speed
up the compact n-GFS designs.
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Fig. 6. 4-GFS design with the top pipeline computing every even state variable, and

the bottom every odd. Every 4-th cycle, the top and bottom multiplexers select the g6,i

and g7,i results, respectively. The dashed and dotted lines highlight rotations dependent

on j.

Keystream extraction: To extract the keystream output according to (10),
a time division demultiplexer (TDD) is needed so that xj,i, 0 ≤ j ≤ 7 are
simultaneously available for the calculation of the si’s. Since a TDD uses a
considerable number of registers, applications of 8-GFS where variable output
lengths and out-of-order keystreams are acceptable (such as random number
generators), the TDD (and following XORs) can be replaced by two 16-bit XORs
producing the following output sequence: si,0||si,1, si,7||si,4, si,2||si,3, si,6, si,5.
As the 4-GFS does not directly benefit from this optimization, the keystream
extractor of 4-GFS consists of a 2-to-8 TDD followed by a series of XORs to
generate the output.

Initialization: The generalized filter structure has a very flexible initialization
process. For an 8-GFS, the hardware initialization requires additional 1) four
registers so that x0,4 is available for the modification of c4,4 according to (8),
2) two XORs for the mixing of the counters with the state variables and IV,
3) set of control logic. Similar requirements follow for the 4-GFS. We note that
although minimal additions are needed for the hardware initialization, software
initialization (as discussed in Section 3.1) can be used without the need for any
additional resources.

4 Implementation and Discussion

Three direct designs, a 4/2-IA design, and various 4- and 8-GFS designs of the
Rabbit cipher were implemented using System Generator and synthesized using
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Xilinx XST (ISE 11.1). We targeted the Xilinx Virtex-5 LXT (XC5VLX50TFFG
1136) FPGA hosted on the Xilinx ML 501 development board, consisting of 7,200
slices, 60 Block RAMs and 48 DSP48 slices. Table 2 summarizes the post-place
and route results, where the suffix V is used to identify the implementations with
variable output rate (see Section 3.3). We stress the advantage of using C-slow
retiming by observing that a direct design can be maximally clocked at 71.58
MHz, while the fine-grained pipelining of the g function increases the clock rate
to 141.38 MHz. This nearly doubles the throughput from 9.16 Gbps to 18.10
Gbps, in addition to increasing throughput/area ratio. Although using SLICEM
and SLICEL slices (memory- and logic-enhanced slices) for more efficient carry
propagation endures a clock rate of 71.58 MHz, we notice the advantage of
pipelining the adders in the very high throughput (25.62 Gbps) of the 4/2-IA
design; we expect that using C/k-IA designs with k > 2 will further allow for an
increase in the clock rate, and thus throughput. Furthermore, our results confirm
that the estimates made in [6] are reasonably accurate.

Table 2. Rabbit Resource Usage and Performance Evaluation

Design
Freq

Slices (%)
DSP Block Thruput Mbps/

(MHz) Slices(%) RAMs(%) (Gbps) Slice

(Rabbit)
Direct 71.582 568 (7.88%) 24 (50%) 0 (0.00%) 9.16 16.10

Direct, 3-slow 137.155 884 (12.28%) 24 (50%) 0 (0.00%) 17.56 19.86

Direct, 4-slow 141.383 961 (13.35%) 24 (50%) 0 (0.00%) 18.10 18.83

4/2-IA 200.120 1163 (16.15%) 24 (50%) 0 (0.00%) 25.62 22.03

8-GFS 83.724 260 (3.61%) 3 ( 6%) 0 (0.00%) 1.34 5.15

8-GFS, 2-slow 138.198 368 (5.11%) 3 ( 6%) 0 (0.00%) 2.21 6.01

8-GFS, 2-slow, V 142.227 239 (3.32%) 3 ( 6%) 0 (0.00%) 2.28 9.52

8-GFS, 3-slow 214.638 351 (4.88%) 3 ( 6%) 0 (0.00%) 3.43 9.78

8-GFS, 3-slow, V 216.450 233 (3.24%) 3 ( 6%) 0 (0.00%) 3.46 14.86

4-GFS 85.697 360 (5.00%) 6 (12%) 0 (0.00%) 2.74 7.62

4-GFS 2-slow 155.982 602 (8.36%) 6 (12%) 0 (0.00%) 4.99 8.29

4-GFS 3-slow 195.198 588 (8.17%) 6 (12%) 0 (0.00%) 6.25 10.62

Estimate [6] — — 24 — 17.8 —

(eSTREAM)
Mickey128 [25] 280.5 392 (2.86%) 0 (0.00%) 0 (0.00%) 0.56 1.43

Grain [14] 155 356 (46.35%) — — 2.48 6.97

Grain-128 [10] 181 48 (0.14%) — — 0.18 3.77

Trivium [14] 190 388 (10.83%) — — 12.16 31.34

(other)
AES [11] 350 400 (—%) 0 (0.00%) 0 (0.00%) 4.1 10.2

AES [17] 168.3 5177 (37.8%) — 84 (61.7%) 21.5 4.2

RC4 [18] 64 138 (8.98%) — 3 (12.5%) 0.22 0.16

LILI-II [19] — 866 (2.56%) — 1 (0.69%) 0.24 0.28

SNOW 2.0 [19] — 1015 (3.00%) — 3 (2.08%) 5.659 5.57
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Table 2 also shows the performances of the more compact n-GFS designs.
The ascent from an 8- to 4-GFS shows a linear increase in the throughput,
with only a slight increase in slice count. The single stream 4-GFS and 3-slow 8-
GFS are ideal for resource-constrained environments, while delivering reasonably
high throughputs (2.74 and 3.43 Gbps, respectively). For cases where variable
rate and out-of-order keystream output is acceptable, we recommend the use of
the 3-slow 8-GFS, as it outperforms the 4-GFS by more than 26% while using
approximately 35% fewer slices, and half the number of DSP slices.

We measured the performance penalty and additional resource of using
hardware-initialized designs as compared to hardware/software co-designs to be
less than 5% and 10%, respectively. Moreover, since the initialization circuit
will not be needed after initialization, we recommend the hardware/software
co-design as a very resource efficient design approach.

For completeness, we also compare our results to other stream cipher imple-
mentations in Table 2. The table shows previous results of the three eSTREAM
hardware-oriented ciphers; a direct comparison is difficult, since [14,10,25] are
based on the Spartan-3, Virtex-II, and Virtex-II Pro FPGAs and we present
results on the Virtex-5 (which is based on the new-generation 6-input LUT ar-
chitecture). However, we observe that, in general, the throughput/slice ratio of
our results is greater than that of Mickey 128 2.0 and comparable with that of
Grain. Trivium’s throughput/slice is higher than the compared stream ciphers,
including our 4/2-IA, whose throughput is much higher than all three eSTREAM
candidates. We stress that although Rabbit is a software-oriented stream cipher,
its performance in hardware is commendable in terms of both throughput and
area-usage.

Finally, we compare our results to the Advanced Encryption Standard (AES,
Rijndael) and various well-known stream ciphers. In terms of speed, the compact
4-GFS 3-slow Rabbit outperforms all these ciphers, including the Virtex-5 imple-
mentation of AES [11], in addition to maintaining the highest throughput/area
ratio of 10.62. Similarly, the 4/2-IA outperforms one of the fastest AES imple-
mentations [17]; again, a direct comparison is difficult since the AES block cipher
of [17] was implemented on older generation Virtex-II Pro FPGAs. In addition
to the very high speed performance of Rabbit in hardware, with the exception
of RC4, the compact n-GFS implementations outperform the compared stream
ciphers in terms of slices used as well; however we also expect the slice count of
the compared ciphers to be lower on a Virtex 5.

5 Conclusion

The first hardware standalone and hardware/software co-designs of the Rabbit
stream cipher were presented and optimized using DSP system design techniques.
As part of the generalized hardware framework, three different architectures were
presented: a direct, interleaved and generalized folded structure. These imple-
mentations on the Virtex-5 LXT FPGA outperform previous FPGA implemen-
tations of stream ciphers such as MICKEY-128, RC4 and LILI-II, while also
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maintaining area-efficiencies above 5 Mbps/slice. Future work includes further
optimization of Rabbit for ASICs, low-power Spartan-6 FPGAs, and implemen-
tation of additional IA and GFS variants.
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Fig. 7. Example of cut-set retiming to pipeline the chained counter adders

G0 to G1, k delays are added and, similarly, for every edge from G1 to G0 k
delays are removed (note that this assumes the existence of the k delays). We
refer to [23] for additional details. Figure A shows part of the chained counter
adders of a 4-slow Rabbit cipher with an example of a cut-set (Figure 7(a)) and
the respective retiming (Figure 7(b)). This particular example shows a reduction
from a 256-bit addition to two 128-bit additions. Similarly, for C = 4 and C = 8-
slow designs, the 256-bit addition can be further reduced to four 64-bit or eight
32-bit additions, respectively. We note that the IA design of Section 3.2 can be
similarly pipelined, however unlike the latter, the cut-set retimed design leads
to an unbalanced design with a buildup of many registers between c0,j+1 and
the g function. As such, we prefer the IA design approach.
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Abstract. We present several new observations on the SMS4 block

cipher, and discuss their cryptographic significance. The crucial observa-

tion is the existence of fixed points and also of simple linear relationships

between the bits of the input and output words for each component of

the round functions for some input words. This implies that the non-

linear function T of SMS4 does not appear random and that the linear

transformation provides poor diffusion. Furthermore, the branch number

of the linear transformation in the key scheduling algorithm is shown to

be less than optimal. The main security implication of these observations

is that the round function is not always non-linear. Due to this linear-

ity, it is possible to reduce the number of effective rounds of SMS4 by

four. We also investigate the susceptibility of SMS4 to further cryptanal-

ysis. Finally, we demonstrate a successful differential attack on a slightly

modified variant of SMS4. These findings raise serious questions on the

security provided by SMS4.
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1 Introduction

SMS4 [14,7] is a 32-round block cipher with 128-bit input block and 128-bit mas-
ter key. It is used in the Chinese Wireless LAN Wired Authentication and Pri-
vacy Infrastructure (WAPI). Using the terminology of Schneier and Kelsey [16],
the cipher employs a homogeneous, complete, source-heavy unbalanced Feistel
network structure. The encryption and the key scheduling algorithms are nearly
identical. The only difference between the structures of these two algorithms is
the linear transformation used in each round function.

Since SMS4 was made public in January 2006, the cipher has endured ex-
tensive cryptanalysis. Reduced-round versions of the cipher have been cryptan-
alyzed using integral [12], rectangle [13,17,19,10], impossible differential [13,17],
boomerang [10], differential [10,19] and linear [10,8] attacks. The best attack
so far is a differential attack on 22 rounds by Zhang et al. [18]. In the same
paper, they observe that the number of rotations and XOR operations used in
the linear transformation of the SMS4 block cipher is the minimum required to

F. Bao et al. (Eds.): Inscrypt 2009, LNCS 6151, pp. 248–265, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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achieve an optimal branch number. They also show that the linear transforma-
tion is bijective and present the distribution of input and output patterns of this
transformation to assist in differential attacks.

In this paper, we present further observations on both the encryption and the
key scheduling algorithms of the SMS4 block cipher. The crucial observation is
the existence of fixed points and also of simple linear relationships between the
bits of the input and output words for each component in the round functions.
In particular, we show that the non-linear function T has 11 fixed points. Note
that the expected number of fixed points for a random permutation is one [9,
Chap. 6]. Therefore, the function T does not behave like a random permutation.
We also identified a set of input words for which the round functions of both the
encryption and the key scheduling algorithms produce the same output words.
Furthermore, we show that the branch number of the linear transformation in
the key scheduling algorithm is four, which is less than optimal.

One of the implications of these observations is that the first four round func-
tions of SMS4 are not always non-linear. Under this condition, the number of
effective rounds is reduced by four: from 32 to 28. We briefly explore the sus-
ceptibility of SMS4 against algebraic and advanced variants of the slide attacks.
Finally, we demonstrate that if the linear transformation in the key scheduling
algorithm was used in the encryption algorithm, then this variant of SMS4, re-
duced to 27 rounds, is vulnerable to a differential attack. In contrast, the best
differential attack on the original SMS4 is on 22 rounds [18], which is also the
best existing attack so far. These observations might potentially be useful in
attacking SMS4 itself.

This paper is organized as follows. Section 2 describes the specification of the
SMS4 block cipher. The observations on the components in the round functions
of both the encryption and the key scheduling algorithms are analyzed in Sec-
tion 3. Section 4 discusses the cryptographic significance of these observations.
Section 5 presents a differential attack on a slightly modified variant of SMS4.
A summary of our observations and conclusions are given in Section 6.

2 Specification of SMS4

SMS4 [14,7] is a block cipher that accepts a 128-bit plaintext block P , and a 128-
bit master key K. The master key is used as input to the key scheduling algorithm
to produce a set of thirty-two 32-bit round subkeys. The plaintext block and the
round subkeys are used as input to the encryption algorithm to produce the
ciphertext block C. The encryption algorithm consists of 32 applications of the
round function.

2.1 Round Function of the Encryption Algorithm

Let P = (X0, X1, X2, X3) denote the 128-bit plaintext block formed from the
concatenation of four 32-bit words Xi. Let Ki denote the 32-bit i-th round
subkey derived from the 128-bit master key K. The derivation of these subkeys
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is explained in Section 2.2. Let T = L ◦ S denote the function composed of the
non-linear transformation S and the linear transformation L. Both S and L are
described in detail later. The i-th round function of the encryption algorithm
can be described as follows:

Xi+4 = Xi ⊕ T (Xi+1 ⊕Xi+2 ⊕Xi+3 ⊕Ki), i = 0, 1, . . . , 31

and is depicted in Figure 1. The ciphertext consists of the concatenation of the
four 32-bit words C = (X35, X34, X33, X32), which is obtained in the reverse
order from the output of the final round function to facilitate decryption.

Xi Xi+1 Xi+2 Xi+3

T

Ki

Xi+1 Xi+2 Xi+3 Xi+4

Fig. 1. Round Function of SMS4 in Round i

Decryption is the same as encryption with the only difference being the order
in which the subkeys are used; this is in the reverse order as follows:

Xi = Xi+4 ⊕ T (Xi+3 ⊕Xi+2 ⊕Xi+1 ⊕Ki), i = 31, 30, . . . , 0.

The function T is the composition of the two transformations S and L, where S is
applied first, followed by L. These transformations operate on 32-bit words. Let
Xi = (Xi,0, Xi,1, Xi,2, Xi,3) denote a 32-bit word formed from the concatenation
of four 8-bit words Xi,j . The application of the non-linear transformation S to
Xi consists of the application of a single 8× 8 S-box s to Xi,j as follows:

S(Xi) = (s(Xi,0), s(Xi,1), s(Xi,2), s(Xi,3)).

Let Xi ≪ k denote the rotation of Xi by k bits to the left. The linear transfor-
mation L is defined as:

L(Xi) = Xi ⊕ (Xi ≪ 2)⊕ (Xi ≪ 10)⊕ (Xi ≪ 18)⊕ (Xi ≪ 24).

2.2 Round Function of the Key Scheduling Algorithm

In the initialization phase of the key scheduling algorithm, a 128-bit constant
FK is XORed with the 128-bit master key K to produce the initial inputs for the
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key scheduling algorithm. Let K = (MK0, MK1, MK2, MK3) denote the master
key formed from the concatenation of four 32-bit words MKi. Similarly, let
FK = (FK0, FK1, FK2, FK3) denote the constant as the concatenation of four
32-bit words FKi, where FK0 = A3B1BAC6, FK1 = 56AA3350, FK2 = 677D9197
and FK3 = B27022DC (in hexadecimal). Then, the initial input words to the key
scheduling algorithm are Ki−4 = MKi ⊕ FKi for i = 0, 1, 2, 3. Note that this
initialization phase has no cryptographic significance because the operation is
linear and the constants are known.

Let T ′ = L′ ◦ S denote the function composed of the non-linear transforma-
tion S and the linear transformation L′ (L′ is described later). Note that this
transformation L′ is the only difference between the round functions of the en-
cryption and the key scheduling algorithms. Let Ki and CKi denote the i-th
round 32-bit subkey and constant, respectively. The i-th round function of the
key scheduling algorithm can be described as follows:

Ki = Ki−4 ⊕ T ′(Ki−3 ⊕Ki−2 ⊕Ki−1 ⊕ CKi), i = 0, 1, . . . , 31.

The round constants CKi = (CKi,0, CKi,1, CKi,2, CKi,3), which are composed
of the concatenation of four 8-bit words CKi,j , are defined as

CKi,j = (28i + 7j) mod 256, i = 0, 1, . . . , 31 and j = 0, 1, 2, 3.

The linear transformation L′ is defined as:

L′(X) = X ⊕ (X ≪ 13)⊕ (X ≪ 23).

3 Observations on Components in the Round Functions

This section presents several new observations on each component in the round
functions of both the encryption and the key scheduling algorithms of SMS4.

3.1 Simple Linear Relationships between Input and Output Words

We observe the existence of a simple linear relationship between the bits of
some input and output words of each component in the encryption and the key
scheduling algorithms. For a component F , there exist a set of output words of
F which are equivalent to a simple rotation of the input word. That is, for some
32-bit words Xi,

F (Xi) = Xi ≪ j (1)

for some particular rotation values of j ∈ {0, 1, . . . , 31}. A fixed point is a special
case of this relationship when j = 0. For example, consider the linear transfor-
mation L, i.e. F (Xi) = L(Xi) and the input word Xi = 02020202. The output
word is F (02020202) = 08080808, so Equation 1 is valid for j = 2, 10, 18, 26.

In the remainder of this section, NF denotes the total number of distinct
values Xi that satisfy the relationship described in Equation 1 for a particu-
lar component F . The set containing these input words Xi is denoted by ΘF .
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Additionally, NF,j denotes the number of individual values that satisfy this re-
lationship for a specific rotation value j. Note that the sum

∑31
j=0 NF,j may be

higher than NF because some input words satisfy this relationship for multiple
values of j. For instance, in the previous example, i.e. F (02020202) = 08080808,
the input word 02020202 is counted four times.

Non-linear Transformation S. Recall that the non-linear transformation
S consists of the application of a single 8 × 8 S-box s, applied four times in
parallel. By reverse engineering, Liu et al. [12] managed to deduce how the S-
box for SMS4 is constructed. They found that the S-box s uses an inversion in
the finite field, which is similar to that of the AES. Note that the design of the
S-box for the AES explicitly avoids fixed points [6]. However, we identified one
fixed point in s. The fixed point is the 8-bit value AB (in hexadecimal). Thus,
the non-linear transformation S also has a fixed point, which is the hexadecimal
value ABABABAB.

In addition to this fixed point, there also exist other input words Xi that
satisfy the relationship S(Xi) = Xi ≪ j for some j > 0. For these particular
input words, the transformation S is basically linear. There are NS = 39 (in-
cluding the fixed point) distinct input words Xi that have a relationship of this
form. Let ΘS denote the set containing the exact values of these Xi, which are
given in Table 3 in the Appendix. The number, NS,j, of values that satisfy this
relationship for S, for each rotation value j is given in Table 1.

Linear Transformation L. We identified four fixed points (j = 0) and 1020
other (j > 0) input words Xi that satisfy the relationship L(Xi) = Xi ≪ j, i.e.
NL = 1024. Let ΘL denote the set containing the exact values of these Xi. For
these input words, the linear transformation L provides poor diffusion because
the input bits of these words are not well scattered by L when producing the
output words. The number, NL,j, of values that satisfy this relationship for L,
for each rotation value j is given in Table 1.

Function T . As a non-linear cryptographic component, the function T of SMS4
should behave like a random permutation. The probability that a given permu-
tation of n elements has c fixed points is given by [15, Chap. 3]

pn,c =
1
n!
·
(

n
c

)
· (n− c)! ·

n−c∑
k=0

(−1)k

k!
≈ 1

c!e
.

For both c = 0 and c = 1, as n tends to infinity, the probabilities pn,0 and pn,1

approach e−1 = 0.3679. Therefore, the number of permutations having at least
2 fixed points is approximately 1− 2(0.3679) = 0.2642. Note that the expected
number of fixed points for a random permutation is one [9, Chap. 6].

By exhaustive search, we found 11 fixed points in the function T of SMS4,
i.e. values Xi such that T (Xi) = Xi (for j = 0). The fixed points are 0B0B0B0B,
3E973E97, 3AE2C6AD, 62D367B9, 973E973E, E2C6AD3A, D367B962, C6AD3AE2,
67B962D3, AD3AE2C6 and B962D367. For a random permutation, the probability
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Table 1. Number of output words which are equivalent to the rotation of the input

word by j bits to the left (0 ≤ j ≤ 31), for each component function

j NS,j NL,j NT,j NL′,j NT ′,j j NS,j NL,j NT,j NL′,j NT ′,j

0 1 4 11 4 0 16 9 4 3 4 0

1 16 2 4 2 6 17 4 2 4 2 2

2 7 1024 7 8 8 18 3 1024 3 8 4

3 0 2 2 2 4 19 0 2 2 2 4

4 1 4 1 4 5 20 1 4 1 4 5

5 3 2 0 2 3 21 3 2 0 2 3

6 1 16 1 8 6 22 1 16 1 8 2

7 0 2 1 2 3 23 0 2 1 2 7

8 3 4 1 4 2 24 3 4 1 4 2

9 2 2 4 2 2 25 2 2 0 2 2

10 1 256 1 8 4 26 1 256 9 8 4

11 0 2 2 2 4 27 0 2 2 2 12

12 1 4 1 4 3 28 1 4 1 4 3

13 1 2 2 2 1 29 1 2 2 2 1

14 1 16 5 8 6 30 1 16 1 8 6

15 0 2 7 2 1 31 0 2 11 2 1

of having 11 fixed points is approximately pn,11 = 1/(11! ·e) ≈ 9.216E−9, which
is quite low. Interestingly, if the S-box of SMS4 is replaced by the S-box of the
AES, there are no fixed points in the resulting function T .

Similarly, there exist input words Xi that satisfy the relationship T (Xi) =
Xi ≪ j for j > 0. In total, there are NT = 59 distinct input words Xi (including
the fixed points) that satisfy this relationship. Let ΘT denote the set containing
the exact values of these Xi, which are given in Table 4 in the Appendix. The
number NT,j for each value of j is given in Table 1.

Recall that the function T is composed of S and L, i.e. T = L ◦ S. The 39
input words contained in the set ΘS do not all appear in the set ΘT . However,
there are seven input words that appear in the intersection of these two sets,
ΘS ∩ ΘT . These input words are 0A0A0A0A, 0B0B0B0B, 21212121, 26262626,
ABABABAB, E7E7E7E7 and FAFAFAFA.

Linear Transformation L′. We found, by exhaustive search, that there are
no fixed points for L′. However, we found N ′

L = 8 distinct input words Xi that
satisfy the relationship L′(Xi) = Xi ≪ j for some j > 0. Let ΘL′ denote the set
containing the exact values of these Xi. As a linear transformation, the diffusion
provided by L′ is poor for these input words. Note that the size of the set ΘL′

is smaller than the size of ΘL, despite the fact that L′ has fewer rotations than
L. The number NL′,j of values for each rotation value j is given in Table 1.

Function T ′. Unlike the function T , the function T ′ has no fixed points.
However, there still exist some input words Xi that satisfy the relationship
T ′(Xi) = Xi ≪ j for some j > 0. In total, there are NT ′ = 59 distinct
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input words Xi that satisfy this relationship. Let ΘT ′ denote the set containing
the exact values of these Xi, which are given in Table 5 in the Appendix. The
number NT ′,j for each value of j is given in Table 1.

Recall that the function T ′ is composed of S and L′, i.e. T ′ = L′ ◦ S. The
number NT ′ of input words in the set ΘT ′ is about 7 times more than the same
number for ΘL′ , and 20 more than ΘS . Unlike the function T , the input words
contained in the set ΘS do not appear at all in the set ΘT ′ , i.e. ΘS ∩ ΘT ′ = ∅.
However, there exist a set of input words for which the functions T and T ′

produce the same output words. This relationship is discussed in the following
section.

3.2 Relationship between T and T ′

As noted in Section 2, the encryption and the key scheduling algorithms are
nearly identical, differing only in the linear transformation. We identified eight
input words for which the transformation L and L′ produce the same output
words, i.e. L(Yi) = L′(Yi). These input words Yi are 00000000, 33333333,
55555555, 66666666, 99999999, AAAAAAAA, CCCCCCCC and FFFFFFFF.

Recall that the non-linear transformation S is the same in both the functions
T and T ′. If there exist some input words Yi such that L(Yi) = L′(Yi), then
there exist words Xi = S−1(Yi) such that T (Xi) = L(S(Xi)) = L′(S(Xi)) =
T ′(Xi). The eight input words Xi are 71717171, 28282828, 97979797, A5A5A5A5,
1F1F1F1F, 18181818, 04040404 and B9B9B9B9.

3.3 On the Branch Number of L′

A commonly used measure of diffusion for Substitution-Permutation-Network
(SPN) block ciphers is the notion of the branch number [6]. For an SPN ci-
pher, this number denotes the minimum number of active S-boxes for any two
consecutive rounds. However, in the context of a generic Feistel cipher such as
SMS4, this is not always true. Therefore, the branch number of a linear trans-
formation L, denoted B(L), can be defined as the minimum number of non-zero
subword differences for any input and output pair of L. If the input word to L is
partitioned into m sub-words, then the optimal branch number for L is B(L) =
m + 1 [6].

The branch number is calculated as follows. Let Xi = (Xi,0, Xi,1, . . . , Xi,m−1)
denote a mb-bit word formed from the concatenation of m b-bit words. Let
ΓXi = ΓXi,0ΓXi,1 . . . ΓXi,m−1 denote a binary vector of length m where ΓXi,j = 1
if Xi,j is nonzero and ΓXi,j = 0 otherwise. Let wt(ΓXi ) denote the Hamming
weight (i.e. the number of non-zero bits) of ΓXi . The branch number of L,
denoted B(L), is defined as

B(L) = min{wt(ΓXi ) + wt(ΓYi ) : Xi �= 0 and Yi = L(Xi)}.

For SMS4, the input word to both L and L′ is partitioned into m = 4 subwords.
Therefore, the optimal branch number for both L and L′ is 5. Zhang et al.
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Table 2. The input-output pattern distribution of L′

ΓXi ΓYi

0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 1 . . . . . . . . . . . . . . .

1 . . . . . . . . . . . 1 3 31 . 220

2 . . . . . . . . . . . 3 31 . 1 220

4 . . . . . . . . . . . 31 . 1 3 220

8 . . . . . . . . . . . . 1 3 15 236

3 . . . . . 7 1 1 3 1 . 242 210 220 252 n22

5 . . . . . 1 3 1 1 . 1 218 250 218 250 n21

6 . . . . . 3 1 7 . 1 1 210 220 252 242 n22

9 . . . . . 1 1 . 7 1 3 380 370 338 236 n0

A . . . . . 1 . . 1 3 1 251 218 250 235 n19

C . . . . . . 1 1 1 1 7 222 252 242 228 n20

7 . 1 3 1 1 240 248 242 249 249 251 n20 n18 n16 n11 n23

B . 1 . . 1 245 252 254 242 249 250 n1 n5 n4 n12 n29

D . . . 1 1 253 249 252 245 252 242 n3 n2 n5 n13 n30

E . . 1 3 . 250 250 243 253 249 243 n17 n14 n9 n15 n24

F . 253 251 250 252 n8 n6 n8 n7 n6 n10 n28 n27 n26 n25 n31

[18] showed that the branch number of L is indeed optimal, and noted that the
number of rotations and XOR operations used in L are the minimum needed
to reach this optimal branch number. However, they did not investigate the
branch number for L′. We determine the branch number for L′ using a computer
program and by observing the input-output pattern distribution table defined
as follows.

Let both ΓXi and ΓYi denote binary vectors of length m = 4. Furthermore,
let W [ΓXi ][ΓYi ] denote the ΓXi -th row and ΓYi -th column entry for the input-
output pattern distribution table. The entries for this table are computed as
follows. Initialize the counter W to all-zero. For every input Xi = 0, 1, . . . , 232−1,
calculate the output Yi = L′(Xi) and increment the counter W [ΓXi ][ΓYi ]. The
resulting table for L′ is given by Table 2 where the entry ‘.’ denotes zero, for
simplicity. Due to size constraints, some values are denoted by ni given as follows.

n0 = 63688, n7 = 64023, n14 = 64049, n21 = 64082, n28 = 16323877,
n1 = 63894, n8 = 64024, n15 = 64050, n22 = 64088, n29 = 16324086,
n2 = 63895, n9 = 64025, n16 = 64051, n23 = 16323681, n30 = 16324087,
n3 = 63919, n10 = 64026, n17 = 64057, n24 = 16323702, n31 = 4229286763.
n4 = 63930, n11 = 64027, n18 = 64061, n25 = 16323764,
n5 = 63939, n12 = 64032, n19 = 64065, n26 = 16323875,
n6 = 64019, n13 = 64040, n20 = 64070, n27 = 16323876,

The branch number of L′ can be determined by first searching in Table 2 for a
non-zero entry W [ΓXi ][ΓYi ] with ΓXi �= 0 for which the sum of the Hamming
weight for ΓXi and ΓYi is the lowest among other entries. Then, the branch
number is calculated as B(L′) = wt(ΓXi )+wt(ΓYi ). An example of such an entry
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is W [1][7] and thus, the branch number of L′ is B(L′) = wt(1)+wt(7) = 1+3 = 4,
which is not optimal.

The input-output pattern distribution table also gives information regarding
possible and impossible subword difference paths propagated by L′. This is use-
ful for differential-type attacks. The sub-optimal branch number for L′ is an
indication of a potential weakness. This is exploited in Section 5 in a differential
attack on a slightly modified variant of SMS4.

4 Cryptographic Significance

This section discusses the cryptographic significance of the observations made
in Section 3.

4.1 Implications for the Key Scheduling Algorithm

The length of the master key for SMS4 is 128 bits, hence there are 2128 possible
values of the master key. The key scheduling algorithm produces 32 subkeys,
each of 32 bits, thus the sequence of subkeys forms a 32 × 32 = 1024-bit bi-
nary sequence. Clearly, there are extremely many sequences of subkeys that are
impossible.

Note that the function T ′, which is a 32-bit to 32-bit map, is bijective (using
the theorem provided by Zhang et al. [18]). In every round, the value of a single
32-bit word is updated using the output of T ′, a function which takes the other
three 32-bit words as input. After four rounds, all 128 bits of the master key
are completely updated by the round functions. Therefore, we can reasonably
conjecture that all possible values of the first four subkeys are equally likely
to occur (statistically independent), whereas the values for the remaining 28
subkeys are determined entirely by these four subkeys. This conjecture allows us
to make the following claim.

We know from Section 3.1 that there are 59 distinct words Xi contained in
the set ΘT ′ . Recall that the value of the master key after the initialization phase
is partitioned into four 32-bit words (K−4, K−3, K−2, K−1) and the i-th round
constant is denoted by CKi. If the input words to the first four consecutive
functions T ′ of the key scheduling algorithm are in the set ΘT ′ , then the first
four subkeys consist of merely linear combinations of the master key1. This event
is illustrated as follows. If (K−3 ⊕K−2 ⊕K−1 ⊕ CK0) ∈ ΘT ′ , then

K0 = K−4 ⊕ [(K−3 ⊕K−2 ⊕K−1 ⊕ CK0) ≪ j0].

Similarly, if (K−2 ⊕K−1 ⊕K0 ⊕ CK1) ∈ ΘT ′, then

K1 = K−3 ⊕ [(K−2 ⊕K−1 ⊕K−4 ⊕ [(K−3 ⊕K−2 ⊕K−1 ⊕ CK0) ≪ j0]⊕
CK1) ≪ j1].

1 Note that the initialization phase does not have any cryptographic significance.

Therefore, if we know the value of the resulting key after this phase, then we also

know the value of the master key.
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Furthermore, if (K−1 ⊕K0 ⊕K1 ⊕ CK2) ∈ ΘT ′ , then

K2 = K−2 ⊕ [(K−1 ⊕K−4 ⊕ [(K−3 ⊕K−2 ⊕K−1 ⊕ CK0) ≪ j0]⊕
K−3 ⊕ [(K−2 ⊕K−1 ⊕K−4 ⊕ [(K−3 ⊕K−2 ⊕K−1 ⊕ CK0) ≪ j0]⊕
CK1) ≪ j1]⊕ CK2) ≪ j2].

Finally, if (K0 ⊕K1 ⊕K2 ⊕ CK3) ∈ ΘT ′ , then

K3 = K−1 ⊕ [(K−4 ⊕ [(K−3 ⊕K−2 ⊕K−1 ⊕ CK0) ≪ j0]⊕
K−3 ⊕ [(K−2 ⊕K−1 ⊕K−4 ⊕ [(K−3 ⊕K−2 ⊕K−1 ⊕ CK0) ≪ j0]⊕
CK1) ≪ j1]⊕
K−2 ⊕ [(K−1 ⊕K−4 ⊕ [(K−3 ⊕K−2 ⊕K−1 ⊕ CK0) ≪ j0]⊕
K−3 ⊕ [(K−2 ⊕K−1 ⊕K−4 ⊕ [(K−3 ⊕K−2 ⊕K−1 ⊕ CK0) ≪ j0]⊕
CK1) ≪ j1]⊕ CK2) ≪ j2]⊕ CK3) ≪ j3].

The above linear equations are valid for specific values of ji ∈ {0, 1, . . . , 31}.
This event occurs with probability (59/232)4 ≈ 2−104.5 and thus, there are ap-
proximately 223.5 values of the master key which cause such an event to happen.

4.2 Implications for the Encryption Algorithm

As noted in Section 3.1, there are 59 distinct words Xi contained in the set ΘT .
If the input words to the first four consecutive functions T of the encryption
algorithm are in the set ΘT , then the output block after four rounds consist of
merely linear combinations of the plaintext block and subkeys. In general, this
event is similar to that described in Section 4.1. Let us demonstrate the specific
case in which only fixed points occur in the first four consecutive rounds. Let Θ̂T

denote a subset of ΘT containing the 11 fixed points for T (Refer to Section 3.1).
This event is shown as follows for the plaintext block P = (X0, X1, X2, X3) and
subkeys K0, K1, K2 and K3. If (X1 ⊕X2 ⊕X3 ⊕K0) ∈ Θ̂T then

X4 = X0 ⊕X1 ⊕X2 ⊕X3 ⊕K0.

Similarly, if (X2 ⊕X3 ⊕X4 ⊕K1) ∈ Θ̂T , then

X5 = X0 ⊕K0 ⊕K1. (2)

Furthermore, if (X3 ⊕X4 ⊕X5 ⊕K2) ∈ Θ̂T , then

X6 = X1 ⊕K1 ⊕K2. (3)

Finally, if (X4 ⊕X5 ⊕X6 ⊕K3) ∈ Θ̂T , then

X7 = X2 ⊕K2 ⊕K3. (4)

Clearly, for the specific case of fixed points, the linear relationships above are
much simpler than the general case because some words Xi and subkeys Ki

cancel. This specific event occurs with probability (11/232)4 ≈ 2−114.2 and thus,
there are approximately 213.8 values of the plaintext block that cause such an
event to happen for the full SMS4. In the general case, there are 223.5 values of
the plaintext block that cause the four-round linearity to happen.
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4.3 Further Implications for Both the Key Scheduling and the
Encryption Algorithms

The points discussed in Sections 4.1 and 4.2 have further security implications
for SMS4. In the (admittedly rare) event that both the key scheduling and
the encryption algorithms behave linearly for the first four rounds, the output
block after four rounds of SMS4 is composed of merely linear combinations of
the plaintext block and subkeys. The subkeys, in turn, are composed of linear
combinations of the master key. Theoretically, if both of these events occur at
the same time, then the number of effective rounds for SMS4 is reduced by four,
from 32 to 28.

The above discussions only consider the case for which the linearity occurs in
the key scheduling and the encryption algorithms in the first four consecutive
rounds. Note that it may be possible for the linearity to occur in any four of the
32 rounds of SMS4. Furthermore, for certain particular combinations of plaintext
block and master key, the linearity might possibly exist in more than four rounds.
In this case, the number of effective rounds for SMS4 can be further reduced.

4.4 Susceptibility to Algebraic Attack

The algebraic attack [5] introduced by Courtois and Pieprzyk consists of building
a system of binary equations that link the plaintext block, subkeys and ciphertext
block. The binary equations describing an S-box that uses a finite field inversion,
such as the AES and SMS4, are quadratic whereas the remaining equations are
linear. The system is then solved to obtain the key bits. One of the obstacles in
solving the system of equations for ciphers such as the AES and SMS4 is the
existence of quadratic equations. The claimed advantage of this attack is that it
only needs very few number of plaintext and ciphertext pairs.

As discussed in Sections 4.1, 4.2 and 4.3, there exist a few exceptional cases
in which the non-linear functions T and T ′ are linear in the first four rounds
of SMS4. Under these conditions, the binary equations describing the first four
rounds are also entirely linear. Therefore, there is no need to describe the S-boxes
in these rounds as systems of quadratic equations [12]. Since the occurrence of
this event is statistical in nature, we may need more plaintext and ciphertext
pairs compared to a conventional algebraic attack. However, the removal of some
quadratic equations might help in reducing the complexity of solving the equa-
tion system.

4.5 Susceptibility to Advanced Variants of the Slide Attack

The slide attack was introduced by Biryukov and Wagner [3,4]. Given two differ-
ent plaintexts, the attack permits the sliding of the two encryptions by a certain
number of rounds. This is due to the similarity that exists between the structure
of the two encryptions. The attack also allows the sliding of encryption with
decryption [4].

We have shown in Section 3.2 that there are eight input words for which
the functions T and T ′ produce the same output words. This similarity might
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provide an avenue for advanced variants of the slide attack. However, it is an
open problem to determine whether it is useful to slide the encryption algorithm
with the key scheduling algorithm if both algorithms are nearly identical, as is
the case for SMS4.

4.6 Subkeys and Related-Keys

As discussed in Section 4.1, we conjecture that all possible 32-bit subkey values of
the first four rounds of SMS4 are equally likely to occur. This allows us to explore
the relationship between subkeys in these rounds and subkeys in the subsequent
rounds. One possible relationship is described as follows. If the first four 32-bit
round subkeys are identical (that is Ki = K̂ for i = 0, 1, 2, 3 where K̂ denotes
an arbitrary 32-bit value), then a total of 232 (out of 2128) master keys have the
following forms: K−1 = K̂ ⊕T ′(K̂ ⊕CK3), K−2 = K̂ ⊕T ′(K−1⊕CK2), K−3 =
K̂ ⊕T ′(K−2⊕K−1⊕ K̂⊕CK1) and K−4 = K̂ ⊕T ′(K−3⊕K−2⊕K−1⊕CK0).
If this event and the event discussed in Section 4.2 occur at the same time, then
the subkeys that exist in Equations 2, 3 and 4 will cancel and the subkeys in the
first four rounds will have no effect on the intermediate words X5, X6 and X7.

Similarly, if the subkeys in the first four rounds are identical, then the subkeys
in rounds four (K4) and five (K5) have the following form:

K4 = K̂ ⊕ T ′(K̂ ⊕ K̂ ⊕ K̂ ⊕ CK4) = K̂ ⊕ T ′(K̂ ⊕ CK4)

Suppose that K4 = K̂, which implies that K4 = K̂ = K̂ ⊕ T ′(K̂ ⊕ CK4) and
T ′(K̂⊕CK4) = 0. Since CK4 is a known fixed round constant, only one value of
K̂ can satisfy this equation, that is K̂ = CK4⊕71717171 = 1060FF4. Therefore,
for all 232 master keys that have the form Ki = K̂ for i ∈ {0, 1, . . . , 4}, only one
master key satisfies the relationship K3 = K4. The remaining 232−1 master keys
have the relationship K3 �= K4. Stated differently, if we are given a sequence of
subkeys containing five identical words Ki = K̂ for i ∈ {0, 1, . . . , 4}, and Ki �=
1060FF4, then we know that the subkeys are not the first four subkeys derived
from the SMS4 key scheduling algorithm. These kinds of relationships can be
further investigated beyond the first four rounds by taking into consideration
the relationship between the round constants. The algorithm to derive these
constants is already given in Section 2.2. In a key recovery attack, if the attacker
knows the relationship of the words in the master key beforehand, then guesses
that are impossible can be skipped. This reduces the key space that the attacker
needs to guess.

The previous single-key discussion may be extended to the related-key model.
Related-key attacks [1,11] allow the attacker to choose the relationship between
two different master keys but not the actual value of the keys. The relationship
is chosen such that the round subkeys of the first master key are related in some
way to the round subkeys of the second master key. Then, several (known or
chosen) plaintexts are encrypted using these related master keys to obtain the
corresponding ciphertexts. The ciphertexts are then used to recover both master
keys. This is an area for further investigation.
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5 A Differential Attack on Modified SMS4

This section presents a differential attack [2] on a modified variant of SMS4,
created by replacing the linear transformation L in the encryption algorithm with
L′. This basically means that we are attacking the key scheduling algorithm, if
it was used for encryption. We demonstrate that a differential attack is possible
on a 27-round version of this variant.

5.1 23-Round Characteristic

We use a 5-round self-iterating differential characteristic based on previous dif-
ferential attacks on SMS4 [10,18,19]. The characteristics used in these attacks
have six active S-boxes: three in the fourth round and three in the fifth. Based
on the entries of the input-output pattern distribution of L′ given in Table 2,
we know that there exist a number of differential paths where only two S-boxes
are active in one round. An example of such a path is the entry W [3][3].

Let α = (α0, α1, α2, α3) denote a 32-bit difference formed from the concatena-
tion of four 8-bit differences αi. The 5-round self-iterating characteristic satisfies
0 T−→ 0 in the first, second and third rounds; and α

T−→ α in the fourth and
fifth rounds. This characteristic is given as follows: (α, α, α, 0) → (α, α, 0, α) →
(α, 0, α, α)→ (0, α, α, α)→ (α, α, α, α) → (α, α, α, 0).

By exhaustive search, we found six values of α that satisfy the above 5-round
self-iterating characteristic such that only two bytes of α are nonzero (i.e. two
bytes are active). The values are 0000900C, 00C900C9, 00900C00, 0C000090,
900C0000 and C900C900. The probability that α

T−→ α for each of these values
is 2−14. The probability for the 5-round self-iterating characteristics is therefore
(2−14)2 = 2−28. This characteristic can be concatenated four and a half times to
produce a 23-round differential characteristic with total probability (2−28)4 =
2−112 given below.

(α, α, α, 0) 5 Rounds−−−−−−→ (α, α, α, 0) 5 Rounds−−−−−−→ (α, α, α, 0) 5 Rounds−−−−−−→
(α, α, α, 0) 5 Rounds−−−−−−→ (α, α, α, 0) 3 Rounds−−−−−−→ (0, α, α, α)

In comparison, the best 5-round differential characteristic on the original SMS4
has probability 2−38 and can only be concatenated up to three and a half times
(to construct a 18-round differential characteristic) with total probability 2−114

[18].

5.2 27-Round Key Recovery Attack

The previous 23-round differential characteristic can be used in a 27-round key
recovery attack on the modified variant of SMS4. Since the attack is heavily
based on previous differential attacks [10,18,19], we only briefly describe the
attack.

Choose α = (00,00,90,0C) and let Λ be the set of all output differences of
T ′ where only 2 S-boxes are active. For each S-box, there is only 127 possible
output differences. Therefore, the set contains 127 · 2 ≈ 28 possible values.
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Let P and P ∗ denote a plaintext pair and let C and C∗ denote the cor-
responding ciphertext pair after 27 rounds, where P = (X0, X1, X2, X3), P ∗ =
(X∗

0 , X∗
1 , X∗

2 , X∗
3 ), C = (X27, X28, X29, X30) and C∗ = (X∗

27, X
∗
28, X

∗
29, X

∗
30). The

attack proceeds as follows.

1. Generate m · (216)3 = m · 248 plaintext blocks where bytes 2, 3, 6, 7, 10 and
11 are set to all possible values whereas the remaining bytes are fixed. These
propose m · 248/2 = m · 247 plaintext pairs (P, P ∗) having the difference
(α, α, α, 0).

2. Encrypt the plaintexts using 27 rounds of the modified SMS4.
3. Filter the ciphertexts so that we only choose (X27⊕X∗

27) ∈ Λ. This filtering
causes about m · 247 · 2−8 = m · 239 pairs to remain.

4. Let γi,j = s(Xi,j⊕Xi+1,j⊕Xi+2,j⊕Ki−1,j)⊕s(X∗
i,j⊕X∗

i+1,j⊕X∗
i+2,j⊕Ki−1,j)

and δi,j = L′(Xi+3,j ⊕X∗
i+3,j ⊕ αj).

5. For each round i = 27, 26, 25, do the following
(a) For each byte j = 0, 1, 2, 3, do the following

i. For each byte guess Ki−1,j = 0, 1, . . . , FF, do the following
A. Calculate γi,j and δi,j .
B. If γi,j = δi,j , then store Ki−1,j as a possible correct candidate

key byte.
ii. After all values have been guessed for this byte, wrong pairs are

expected to be discarded by a factor of 2−8.
6. After Step (5), we have guessed 12 bytes of key material and about m · 239 ·

(2−8)12 = m · 2−57 pairs are expected to remain.
7. For round i = 24, do the following

(a) For each byte guess K23,0 = 0, 1, . . . , FF, calculate γ24,0 and δ24,0. If
γ24,0 = δ24,0, then store K23,0 as a possible correct candidate key byte.

(b) After all values have been guessed for this byte, wrong pairs are expected
to be discarded by a factor of 2−8.

8. After Step (7), about m ·2−57 ·(2−8) = m ·2−65 pairs are expected to remain.
If m = 268, then for a wrong key guess, the expected number of remaining
ciphertext pairs is approximately 268 ·2−65 = 23 = 8. However, for a right key
guess, the expected number of remaining ciphertext pairs is approximately
268 · 248 · 2−112 = 24 = 16.

9. If the guesses for K23,0, K24, K25 and K26 suggest more than 16 remaining
ciphertext pairs, then the guesses are candidates for correct subkeys.

The data complexity of this 27-round attack is 268 ·248 = 2116 chosen plaintexts.
The time complexity of the attack is dominated by Steps (5) and (7). At the
beginning of Step (5), there are about 268 · 239 pairs of texts. We guess 12 bytes
of key material and for each guess, wrong pairs are discarded by a factor of 2−8.
At the beginning of Step (7), there are roughly 268 · 2−57 pairs of texts and we
only guess one byte of key material. Adding these two complexities together, we
obtained the time complexity of approximately (

∑11
k=0 28 · 268 · 239 · 2−8k) + 28 ·

268 · 2−57 ≈ 2115 encryptions. In contrast, the best existing cryptanalysis on the
original SMS4 is a differential attack on 22 rounds with a data complexity of
2117 chosen plaintexts and time complexity of 2112.3 22-round encryptions [18].
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5.3 Comments on the Security of SMS4

As mentioned at the beginning of Section 5, the attack described above is the
same as attacking the key scheduling algorithm, as if it was used for encryption.
We use the original components of the SMS4 and did not modify the function
of these components. The key scheduling algorithm might therefore be exploited
in related-key differential attacks.

In the light of our discussion in Section 4.3, there is a small possibility that the
first four rounds of SMS4 is deprived of non-linearity. Under these conditions,
the number of effective rounds for SMS4 is theoretically reduced by four, from
32 to 28. In this section, we have demonstrated an attack against 27 rounds of a
slightly modified variant of SMS4. This is only one round short of the effective 28
rounds. Note that the four-round linearity event discussed in Section 4.3 refers
to the event in which the function T was used in the encryption, instead of T ′,
as is the case here. However, if T ′ was used in the encryption, the probability of
this event to occur for T ′, in the general case, is the same as if T was used in
the encryption. This is because the number of input words in the set ΘT is the
same as the set ΘT ′ .

Recall that the best attack on the original SMS4 is on 22-rounds [18], which
is six rounds short of the effective 28 rounds. However, note that the security
margin is reduced from 32 to 28 rounds only if the linearity in the first four rounds
can be detected and utilized in an attack. A method to detect this remains an
open problem.

6 Summary and Conclusion

This paper presents several new observations on both the encryption and the key
scheduling algorithms of the SMS4 block cipher. We have shown the existence of
fixed points and of simple linear relationships between the bits of the input and
output words for each component of the round functions for some input words.
Furthermore, we show that the branch number of the linear transformation in
the key scheduling algorithm is less than optimal.

The major security implication of these observations is that the round function
is not always non-linear. Due to this linearity, for some combinations of plaintext
block and master key, the number of effective rounds of SMS4 is theoretically
reduced by four, from 32 to 28. We also briefly explored the susceptibility of
SMS4 against algebraic and advanced variants of the slide attacks.

Finally, we demonstrated that if the linear transformation L of the encryption
algorithm is replaced with the linear transformation L′ of the key scheduling
algorithm, then this variant of SMS4 is weaker than the original SMS4 with
regard to differential cryptanalysis. We show this by attacking four more rounds
than the best existing differential attack on SMS4. This is possible due to the
sub-optimal branch number of L′. This property of L′ might be an indication of
further weakness that can be exploited in an attack. We strongly believe that
this variant is also weaker than SMS4 against other differential-type attacks.
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Given the number of expected fixed points, it is unlikely that the compo-
nents in the round functions are generated randomly, that is, they were selected
specifically. However, the criteria for selecting the components are not known.
The findings made in this paper raise serious questions on the security provided
by SMS4, and might provide clues on the existence of a flaw in the design of the
cipher.
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A Appendix

Table 3. Values of Xi (in the set ΘS) and j such that S(Xi) = Xi ≪ j

Xi j Xi j Xi j

0A0A0A0A 1, 9, 17, 25 21210A0A 1 ABB4ABDE 16

0A0A0A21 1 21210A21 1 ABDEABB4 16

0A0A210A 1 2121210A 1 B4ABDEAB 16

0A0A2121 1 21212121 1, 9, 17, 25 B4B4DEDE 16

0A210A0A 1 245C245C 2, 18 B4DEB4DE 8, 24

0A210A21 1, 17 245C2626 2 B4DEDEB4 16

0A21210A 1 26245C26 2 D056D056 5, 21

0A212121 1 2626245C 2 DEABB4AB 16

0B0B0B0B 6, 14, 22, 30 26262626 2, 10, 18, 26 DEB4B4DE 16

210A0A0A 1 56D056D0 5, 21 DEB4DEB4 8, 24

210A0A21 1 5C245C24 2, 18 DEDEB4B4 16

210A210A 1, 17 5C262624 2 E7E7E7E7 4, 12, 20, 28

210A2121 1 ABABABAB 0, 8, 16, 24 FAFAFAFA 5, 13, 21, 29
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Table 4. Values of Xi (in the set ΘT ) and j such that T (Xi) = Xi ≪ j

Xi j Xi j Xi j

02740274 2, 18 4F13E4B4 2 BB06C4A3 26

039A039A 1, 17 58434DF7 26 BE6CBE6C 15, 31

06C4A3BB 26 5CDE9B16 14 C4A3BB06 26

0A0A0A0A 3, 11, 19, 27 62D367B9 0 C6AD3AE2 0

0B0B0B0B 0, 8, 16, 24 67B962D3 0 C7E7C7E7 13, 29

1079D3A1 31 6CBE6CBE 15, 31 D367B962 0

13E4B44F 2 74027402 2, 18 D3A11079 31

165CDE9B 14 79D3A110 31 DE9B165C 14

16AF4D4B 15 973E973E 0, 16 E0E1F7E3 9

1A2A1A2A 1, 17 9A039A03 1, 17 E1F7E3E0 9

21212121 3, 11, 19, 27 9B165CDE 14 E2C6AD3A 0

22E59CB6 31 9CB622E5 31 E3E0E1F7 9

26262626 4, 12, 20, 28 A11079D3 31 E4B44F13 2

2A1A2A1A 1, 17 A3BB06C4 26 E59CB622 31

3AE2C6AD 0 ABABABAB 2, 10, 18, 26 E7C7E7C7 13, 29

3E973E97 0, 16 AD3AE2C6 0 E7E7E7E7 6, 14, 22, 30

434DF758 26 AF4D4B16 15 F758434D 26

4B16AF4D 15 B44F13E4 2 F7E3E0E1 9

4D4B16AF 15 B622E59C 31 FAFAFAFA 7, 15, 23, 31

4DF75843 26 B962D367 0

Table 5. Values of Xi (in the set ΘT ′) and j such that T ′(Xi) = Xi ≪ j

Xi j Xi j Xi j

02020202 4, 12, 20, 28 5228B69C 6 A66BA66B 10, 26

06C206C2 1, 17 52505250 4, 20 AAA027D5 23

087B087B 4, 20 5522DB49 27 B0B0B0B0 3, 11, 19, 27

10B78569 2 58F758F7 8, 24 B69C5228 6

12121212 6, 14, 22, 30 5A5A5A5A 2, 10, 18, 26 B7856910 2

12161216 7, 23 61F161F1 14, 30 B8B8B8B8 2, 10, 18, 26

16121612 7, 23 64C164C1 9, 25 BAC74FDD 27

1B341B34 5, 21 6910B785 2 C164C164 9, 25

1D411D41 2, 18 6BA66BA6 10, 26 C206C206 1, 17

22DB4955 27 74747474 3, 11, 19, 27 C74FDDBA 27

25A498A2 1 7B087B08 4, 20 CBA1CBA1 14, 30

27D5AAA0 23 856910B7 2 D5AAA027 23

28B69C52 6 94949494 6, 14, 22, 30 D69AD69A 12, 28

32323232 3, 11, 19, 27 98A225A4 1 DB495522 27

341B341B 5, 21 9AD69AD6 12, 28 DDBAC74F 27

411D411D 2, 18 9C5228B6 6 DFDFDFDF 3, 11, 19, 27

495522DB 27 A027D5AA 23 E1E1E1E1 7, 15, 23, 31

4F4F4F4F 5, 13, 21, 29 A1CBA1CB 14, 30 F161F161 14, 30

4FDDBAC7 27 A225A498 1 F758F758 8, 24

50525052 4, 20 A498A225 1
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Abstract. In this paper, we present an algebraic attack

against the Flurry and Curry block ciphers [12,13]. Usually, algebraic

attacks against block ciphers only require one message/ciphertext pair to

be mounted. In this paper, we investigate a different approach. Roughly,

the idea is to generate an algebraic system from the knowledge of several

well chosen correlated message/ciphertext pairs. Flurry and Curry are

two families of ciphers which fully parametrizable and having a sound de-

sign strategy against the most common statistical attacks; i.e. linear and

differential attacks. These ciphers are then targets of choices for algebraic

attacks. It turns out that our new approach permits to go one step fur-

ther in the (algebraic) cryptanalysis of difficult instances of Flurry and

Curry. To explain the behavior of our attack, we have established an

interesting connection between algebraic attacks and high order differ-

ential cryptanalysis [32]. From extensive experiments, we estimate that

our approach – that we will call “algebraic-high order differential” crypt-

analysis – is polynomial when the Sbox is a power function. As a proof

of concept, we have been able to break Flurry/Curry – up to 8 rounds

– in few hours. We have also investigated the more difficult (and inter-

esting case) of the inverse function. For such function, we have not been

able to bound precisely the theoretical complexity, but our experiments

indicate that our approach permits to obtain a significant practical gain.

We have attacked Flurry/Curry using the inverse Sbox up to 8 rounds.

1 Introduction

A fundamental problem in cryptography is to evaluate the security of widely used
cryptosystems against the most powerful techniques. To this end, several general
methods have been proposed : linear cryptanalysis [34], differential cryptanalysis
[8,9,10], etc . . . . Algebraic cryptanalysis can be described as a general framework
that permits to asses the security of a wide range of cryptographic schemes
[4,15,16,17,26,27,28,29]. As pointed in [20] “the recent proposal and development
of algebraic cryptanalysis is now widely considered an important breakthrough in
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the analysis of cryptographic primitives. It is a powerful technique that applies
potentially to a wide range of cryptosystems, in particular block ciphers.

The basic principle of such cryptanalysis is to model a cryptographic primitive
by a set of algebraic equations. The system of equations is constructed in such
a way as to have a correspondence between the solutions of this system, and a
secret information of the cryptographic primitive (for instance, the secret key of
a block cipher). This line of research is somehow inspired by C.E. Shannon who
stated that: “Breaking a good cipher should require as much work as solving a
system of simultaneous equations in a large number of unknowns of a complex
type.”(Commu–nication Theory of Secrecy Systems, 1949). Shannon relates then
the security of a cryptosystem to the difficulty of solving a set of algebraic
equations, and lays then the foundation of algebraic cryptanalysis.

In theory, any cryptosystem can be modeled by a set of algebraic equations
over a finite field [30]. In fact, it is usual that the same cryptographic primitive
can be described by several algebraic systems. However, it is an open research
problem how to optimally model a cryptosystem so that it is easiest to solve.
Thus, it is one of the most crucial aspects of algebraic cryptanalysis to derive
the best system with respect to equations solving.

Algebraic techniques have been successfully applied against a number of mul-
tivariate schemes and in stream cipher cryptanalysis [4,15,16,17,26,27,28,29]. On
the other hand, its feasibility against block ciphers remains the source of spec-
ulations [19,21,33,4,3]. The main problem is that the size of the corresponding
algebraic system is so huge (thousand of variables and equations) that nobody
is able to predict correctly the complexity of solving such polynomial systems.

However, it is worth to remark that the algebraic systems are huge but highly
structured. The equations are very sparse and the round structure of the block
ciphers implies a similar structure on the algebraic equations. Secondly, there is
not a unique algebraic description of a cryptographic primitive. Although it is
an open issue how to optimally model a cryptosystem, it is crucial to use this
degree of freedom to derive the best system with respect to equations solving.

Typically, algebraic cryptanalysis against block ciphers only requires one mes-
sage/ciphertext pair to be mounted. In this paper, we present a novel approach.
The basic idea is to generate an algebraic system from the knowledge of several
well chosen correlated message/ciphertext pairs. It turns our that this system is
easier to solve in practice. To explain this behavior, we have established an in-
teresting connection between algebraic attacks and high order differential crypt-
analysis [31,32].Interesting enough, this is on the line of a new trend in algebraic
cryptanalysis which is to combine statistical and algebraic techniques. Albrecht
and Cid [1,2] recently proposed to mix differential and algebraic cryptanalysis
to attack PRESENT.

As already explained, the algebraic cryptanalysis of a block cipher usually
leads to huge systems of equations. For this reason, it makes sense to first exper-
iment such attacks on “scalable” block ciphers. For this reason, Cid, Murphy,
and Robshaw [18] described small scale variants of AES. In the same vain, Buch-
mann, Pyshkin and Weinmann [12,13] described two families of Feistel (Flurry)
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and SPN (Curry) block ciphers which are fully parametrizable. The main goal
of Curry and Flurry was probably to be relevant families of ciphers for ex-
perimenting algebraic attacks. To do so, the encryption process of these ciphers
can be easily described by a set of algebraic equations. On the other hand, these
ciphers have a sound design strategy against linear [34] and differential [8,9,10]
attacks. The aim was to mimic as much as possible the design criteria of widely
used modern block ciphers. Therefore, any new successful algebraic cryptanalysis
against Curry/Flurry can be a step toward more efficient algebraic cryptanal-
ysis against industrial block ciphers such as AES.

1.1 Organization of the Paper: Main Results

After this introduction, the paper is organized as follows. In Section 2, we intro-
duce the families of Feistel and SPN block ciphers Flurry and Curry respec-
tively [12,13]. We briefly recall some security features of the ciphers.

In this last section (Section 3), we will present results that we have obtained
when mounting two refined algebraic attack strategies. First, we show that the
use of a sparse version of FGLM [23] permits to obtain a practical gain w.r.t.
to the attack presented by Buchmann, Pyshkin and Weinmann [12]. However,
this attack remains limited since its theoretical complexity is exponential in the
number of rounds and the size of the plaintext space.

To overcome this limitation, we have investigated the possibility of using a
small amount of suitably chosen message/ciphertext pairs to improve the effi-
ciency of algebraic attacks. Precisely, we propose to use correlated messages.
It appears that this approach permits to go one step further in the (algebraic)
cryptanalysis of of difficult instances of Flurry and Curry. To explain the
behavior of our attack, we have established an interesting connection between
algebraic attacks and high order differential cryptanalysis [32]. From extensive
experiments, we estimate that our approach – that we will call “algebraic-high
order differential” cryptanalysis – is polynomial when the Sbox is a power func-
tion. As a proof of concept, we have been able to break Flurry/Curry – up to 8
rounds – in few hours. We have also thoroughly investigated the inverse function.
Although we have not been able to bound precisely the theoretical complexity,
our experiments indicate that our approach permits to obtain a significant prac-
tical gain. We have been able to break Flurry/Curry using the inverse Sbox
up to 8 rounds.

2 The Flurry and Curry Block Ciphers

In this part, we describe the main concern of this paper, namely Curry and
Flurry [12,13]. We will briefly recall the algebraic description of such ciphers,
and highlight some security features of these ciphers.

In the rest of this paper K = F2(θ) will denote a finite field of size k = 2n, n ∈
{8, 16, 32, 64}. The number of rounds will be denoted by r ∈ N. D ∈Mm×m(K)
is a matrix describing the linear diffusion mapping of the round function. This
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matrix D is also used in the key scheduling. We refer to [12] for the exact
description of these matrices, but we mention that these matrices have been
chosen to have an optimal diffusion. Finally, f is a non-linear function describing
the Sbox chosen as the power function f(x) = fp(x) : x ∈ K #→ xp ∈ K, with
p ∈ {3, 5, 7}, or the inverse function f(x) = finv(x) : x ∈ K #→ xk−2 ∈ K.

2.1 The Feistel Case: Flurry

First we describe the family of Feistel ciphers Flurry(n, t, r, f, D), with t ∈ N

being the size of a message block. To add to this confusion, we will also use the
notation m = t

2 for the half-size of a block (t is assumed to be even).
We will denote by L = (�1, . . . , �m) ∈ Km

(
resp. R = (r1, . . . , rm) ∈ Km

)
the

left (resp. right) part of the current state, and by K = (k1, . . . , km) ∈ Km a key.
The round function T : Km ×Km ×Km → Km ×Km is then defined as :

T (L, R, K) =
(
R,

(
f(r1 + k1), . . . , f(rm + km)

) ·D + L
)
.

Let K = (K0, K1) ∈ Km × Km be the initial key. The subkey used at round
i, 2 ≤ i ≤ r + 1 is :

Ki = Ki−1 ·D + Ki−2 + vi,

where vi =
(
(θ + 1)i, (θ + 1)i+1, . . . , (θ + 1)i+m−1

) ∈ Km.
A message m = (L0, R0) ∈ Km × Km is encrypted into a ciphertext c =

(Lr, Rr) ∈ Km ×Km by iterating the round function T as follows :

(Li, Ri) = T (Li−1, Ri−1, Ki−1), for all i, 1 ≤ i ≤ r − 1,

c = (Lr, Rr) = T (Lr−1, Rr−1, Kr−1) + (Kr, Kr+1).

It is not difficult to describe the encryption process by a set of algebraic equa-
tions. Actually, this was a design policy [12,13]. To keep the degree as low a
possible, we have to introduce new variables :
– {xi,j}1≤j≤t

1≤i≤(r−1) corresponding to the internal states of the cipher,

– and {ki,j}1≤j≤m
1≤i≤r+1 corresponding to the initial/expanded key.

We will denote by RFlurry the polynomial ring K
[{xi,j}1≤j≤t

1≤i≤(r−1), {ki,j}1≤j≤m
1≤i≤r+1

]
.

For a pair plaintext/ciphertext (m, c)∈Kt×Kt, we will denote by : PFlurry(m, c)⊂
RFlurry, the set of all algebraic equations describing a Flurry encryption process.

2.2 The SPN Case: Curry

Curry(n, m, r, f, D) is a family of SPN ciphers which is also fully parametrizable.
The plaintext, ciphertext and secret key spaces are space dimension is m ∈ N

are Km×m. The round function T : Km×m×Km×m → Km×m of Curry is given
by :

T (S, K) = G(S, K) ·D,

with G : X = {xi,j} ∈ Km×m → G(X) = {f(xi,j)} ∈ Km×m being the parallel
application of the SBox function f to the components of a matrix X ∈ K

m×m.
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A plaintext m = S0 ∈ Km×m is transformed into a ciphertext c ∈ Km×m by
iterating the round function T exactly r times followed by a last key addition :

S� = T (S�−1, K�−1), for all �, 1 ≤ � ≤ r − 1,

c = Sr = T (Sr−1, Kr−1) + Kr.

The master key K0 ∈ Km×m is used at the first round; subsequent round keys
Ki, i ≥ 1 are computed using the formula :

Ki = Ki−1 ·D + Mi,

with Mi = {θi+(j−1)m+k}1≤j,k≤m ∈ Km×m being a (constant) matrix depending
of the round.

As for Flurry, there is no problem to construct a set of algebraic equations
modeling the encryption process of Curry. We have to introduce new vari-
ables : {x�

i,j}1≤�≤(r−1)
1≤i,j≤m corresponding to the internal states of the cipher, and

{k�
i,j}1≤i,j≤m

1≤�≤r corresponding to the initial/expanded key.

Using an obvious notation,RCurry will denote K

[
{x�

i,j}1≤�≤(r−1)
1≤i,j≤m , {k�

i,j}1≤i,j≤m
1≤�≤r

]
,

andPCurry(m, c) ⊂ RCurry, the set of algebraic equations describing Curry
(
for a

plaintext/ciphertext (m, c)
)
.

3 Improved Algebraic Attacks against Curry and Flurry

This section is divided into two parts. First, we show that the Buchmann,
Pyshkin and Weinmann (BPW) attack against Curry and Flurry [12] can be
improved using a “fast version” of FGLM. The goal is to illustrate the gain that
we can obtain using sparse algebra techniques. This will permit to have a tight
complexity estimates of the BPW attack, and then a good basis to comparison
with others attacks. In particular with respect to the practical behavior of the
new attack presented in the second part of this section.

3.1 Practical Improvements of the Buchmann, Pyshkin and
Weinmann Attack

We start by recalling a surprising result of to Buchmann, Pyshkin and Wein-
mann [12,13]. They proved that for a well chosen ordering ≺∗, the polynomials of
PFlurry and PCurry already form a Gröbner basis [22,11]. It has to be noted that a
similar result holds for AES-128 [14]. The key-recovery problem is then reduced
to changing the order of a Gröbner basis. More precisely, solving PFlurry (resp.
PCurry) is equivalent to compute a Lex-Gröbner basis knowing a ≺∗–Gröbner
basis. This can be done by using FGLM [23], and a precise complexity estimates
can be then given [23,12,13].

Lemma 1. Let IFlurry (resp. ICurry) be the ideal generated by the polynomials
of PFlurry (resp. PCurry). It holds that :
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dimK (RFlurry/IFlurry) = deg(f)t·r, for Flurry(n, t, r, f, D)

dimK (RCurry/IFlurry) = deg(f)m2·r, for Curry(n, m, r, f, D).

These results are not valid if f is the inverse function [12].

The complexity of FGLM is polynomial in the dimension of the quotient. We
can use sparse linear algebra [35] techniques to decrease the exponent and ob-
viously improve the efficiency of FGLM. To illustrate this fact, we will present
experimental results. In the table below, we have quoted:
– the practical results obtained in [12,13] using FGLM. The authors have used
the version available in Magma (version 2.11-8).
– the dimension dimK

(R/I) of the quotient.
– The timings obtained with our sparse version of FGLM. This version of the
algorithm has been implemented in C within the FGb software1.

[12] This paper

Flurry(n, t, r, f, D) dimK

(R/I) F4+FGLM (Magma) “fast” FGLM (Fgb)

Flurry(64, 2, 4, f3, I1) 34 < 0.1 s. < 0.1 s.
Flurry(64, 2, 4, f5, I1) 54 2.3 s. < 0.1 s.
Flurry(64, 2, 4, f7, I1) 74 82.62 s. 19.4 s.
Flurry(64, 2, 6, f3, I1) 36 145.08 s. 2.1 s.

Interpretation of the Results. We observe that there is a non-negligible
practical gain when using a sparse version of FGLM. Anyway, this approach
becomes quickly impractical due to huge dimension of RFlurry/IFlurry (resp.
RCurry/ICurry). This is mainly due to the fact that the field equations are not
included in PFlurry (resp. PCurry). Therefore, the variety associated with these
systems will mostly contain spurious solutions (solutions over the algebraic clo-
sure of K). However, this is to our knowledge the best (algebraic) attacks pro-
posed so far against Flurry and Curry. We will now present an alternative
approach for attacking these ciphers.

3.2 On the Use of Several Plaintext/Ciphertext Pairs

The key recovery systems PFlurry and PCurry are constructed from the knowledge
of only one plaintext/ciphertext pair (Section 2). In this part, we investigate the
possibility of using few pairs of plaintext/ciphertext. Namely, we select N >
1 messages m1, . . . , mN and request the corresponding ciphertexts c1, . . . , cN .
Instead of trying to solve each system PFlurry(mi, ci) individually, the idea is
to solve a new key recovery system: PN

Flurry =
⋃N

i=1 PFlurry(mi, ci). Obviously,
the secret key will be also a solution of this larger system. The set of equations
PN

Curry is defined similarly.
Note that for each pair (mi, ci), we have to introduce new variables corre-

sponding to the internal states of the cipher. On the other hand, the variables
1 http://fgbrs.lip6.fr/jcf/Software/FGb/index.html

http://fgbrs.lip6.fr/jcf/Software/FGb/index.html
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corresponding to the key will remain the same for each pair (mi, ci). Again, we
emphasize that the field equations are not included in the systems. Remark that
the result described previously (Sec. 3.1) for Flurry/Curry systems only holds
when N = 1.

Using N random messages. Unfortunately, when we select randomly N
messages m1, . . . , mN , this approach will not lead to any improvement w.r.t.
to the use of a single plaintext/ciphertext pair. Even worse, we have observed
that the new systems are harder to solve in practice. To illustrate this fact, we
have quoted few results that obtained for Flurry(8, 2, 2, D2, finv) with different
values of N . The F5 [25] and FGLM [23] algorithms have been implemented in C
within the FGb software. We used this implementation for computing Gröbner
bases. We have included the time T necessary for solving the systems and the
total number of solutions Nbsol.

N 1 2 3
T 0.43 s. 25.8 s. 16 m. 42 s.

Nbsol 184 1 1

We have increased the number of equations/variables (corresponding to in-
termediate states), but the maximum degree reached during the Gröbner basis
computation remains stable, i.e. the systems are not easier to solve. Interest-
ingly enough, as soon as N > 1, the variety associated to PN

Flurry (resp. PN
Curry)

contains – most of the time – only one solution corresponding to the secret key;
thus only one direct (DRL) Gröbner basis computation is needed.

3.3 Algebraic-High Order Differential Style Cryptanalysis

The difficulty is to find a suitable way to incorporate the additional knowledge
of several message/ciphertext pairs. Or, stated differently, how to choose such
pairs to improve the efficiency of the solving step. To do so, we have considered
a classical cryptatanalytic tool, namely high order differentials [32,31], as a filter
to select correlated messages. This will permit to decrease the complexity of the
solving step. To explain the intuition behind our approach, we introduce few
new definitions. The derivative (or finite difference) of a mapping f : K

n #→ K
m

at a point r ∈ Kn is defined as follows: Δrf(x) = f(x + r)− f(x). Remark that
if the components of f are of an algebraic degree d, then the components of
Δrf(x) will be of an algebraic degree ≤ d. To further decrease this degree, we
can consider the ith derivative of f at points r1, . . . , ri which is recursively [32]
defined as: Δ

(i)
r1,...,rif(x) = Δri

(
Δ

(i−1)
r1,...,ri−1f(x)

)
.

Now, let L[r1, . . . , ri] be the set of all binary linear combinations of the
r1, . . . , ri. It is well known that: Δ

(i)
r1,...,rif(x) =

∑
δ∈L[r1,...,ri]

f(x + δ). We can
now explain how we have generated correlated the messages.

First, we will consider the most basic case, i.e. N = 2. We randomly select a
message m0, a difference r1, and construct the key recovery system :

P2 = P(m0, c) ∪ P(m0 + r1, c
′), with P ∈ {PFlurry,PCurry} .
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Now, let T (Xi, Ki) = TKi(Xi) be the round function (for Flurry Xi ∈ Kt, and
for Curry Xi ∈ Km×m) of Flurry or Curry (Ki is the subkey used at round
i). For the first round, we have :

X1
(0) − TK1(m0) = 0 ∈ P2, (1)

X1
(1) − TK1(m0 + r1) = 0 ∈ P2. (2)

X1
(0) (resp. X1

(1)) being the first intermediate variables corresponding to m0

(resp. m1 = m0 + r1). From now on, a boldfaced letter will refer to a vector.
From (1) and (2), we deduce that the equations X1

(1)−X1
(0) = Δr1TK1(m0)

are in the ideal generated by P2. Thus, by simply taking two pairs, we have
created new equations relating the intermediates variables X1

(1),X1
(0), and the

variables corresponding to K1. The new equations are of degree strictly smaller
than the initial equations of P2. We can iterate the process. Let r1, . . . , rN be
a set of N ≥ 2 linearly dependent vectors, and m0 be a random message. We
consider now the system :

PN =
⋃

r∈L[r1,...,rN ]

P(m0 + r, cr), with P ∈ {PFlurry,PCurry} .

We will denote by Xi
(j) the intermediates variables used at the ith round and

corresponding to the jth message2, and cr will be the encryption of m0 + r. For
the first round, we have that for all k, 1 ≤ k ≤ #L[r1, . . . , rN ] :

X1
(k) −X1

(0) = ΔrTK1(m0) ∈ PN , with r ∈ L[r1, . . . , rN ].

As previously, we have created new low-degree equations corresponding to deriva-
tives. But, we will also generate low-degree equations corresponding to high order
derivatives. For instance, let r1, r2 ∈ L[r1, . . . , rN ]. It holds that:

X1
(0) − TK1(m0) = 0 ∈ PN , X1

(1) − TK1(m0 + r1) = 0 ∈ PN ,

X1
(2) − TK1(m0 + r2) = 0 ∈ PN , X1

(3) − TK1(m0 + r1 + r2) = 0 ∈ PN .

Therefore, X1
(3) −∑2

k=0 X1
(k) = Δr1,r2TK1(m0) ∈ PN . The ideal generated

by PN will now include linear relations between the intermediates variables
X1

(j). Moreover, such new linear equations will induce derivatives and high or-
der derivatives in the subsequent rounds of the cipher. In our case, we know that
X1

(3) =
∑2

k=0 X1
(k). If we consider the second round X2

(0) = TK2(X1
(0)) ∈

PN , and X2
(3) = TK2(X1

(0) + X1
(1) + X1

(2)) ∈ PN . The equations X2
(3) −

X2
(0) = ΔX1

(1)+X1
(2)TK2(X1

(0)) is then in the ideal generated by PN . In func-
tion of N , this phenomena will be propagated throughout the rounds of the
cipher to generate high order differentials, and so new low-degree equations
between the intermediates variables. This permits to establish an interesting

2 We supose w.l.o.g. an explicit ordering on the elements of L[r1, . . . , rN ].
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connection between algebraic attacks and high order differential cryptanalysis
[32,31]; that we can call “algebraic-high order differential” cryptanalysis.

Experimental results. To summarize, our attack works as follows. Let N >
1 be an integer. We fix m0 = (0, . . . , 0), and r1 = (1, . . . , 0). We construct
differences ri, for all i, 2 ≤ i ≤ N , using the relation ri+1 = θ · ri. After that, we
have to solve the system :

PN =
⋃

r∈U⊂L[r1,...,rN ]

P(m0 + r, cr), with P ∈ {PFlurry,PCurry} ,

cr being the encryption corresponding to m0 + r. Note that in practice, we have
not considered all the 2N elements of L[r1, . . . , rN ] but a smaller subset U ⊂
L[r1, . . . , rN ] of size N . As explained previously, the ideal generated PN includes
many new low-degree equations corresponding to all the derivatives of order less
than �ln(N)�. We expect that these new equations will allow the ease the Gröbner
basis computation. We will see that this is indeed the case in practice.

In next table, we have quoted the results we have obtained on Flurry and
Curry with different values of N . Note that most of the parameters have been
chosen for having a secret key of 128-bit. In this case, the ciphers considered are im-
mune against differential/linear attacks when the number of rounds is≥ 4 [12,13].
The experimental results have been obtained with a cluster of Xeon bi-processors
3.2 Ghz, with 64 Gb of Ram. It is well known that the efficiency of the Gröbner
basis computation can vary in function of the order used. In our experiments, we
have used the order proposed in [12,13]. In the table, we have included :
– T : total time of our attack; Nbop : number of basic operations;
Mem : Maximum memory usage;
Dmax : the maximal degree reached during the Gröbner basis computation.
TBPW : estimated complexity of the attack of [12]. Remark that this attack can
not be mounted for f−1.

Flurry(n, t, r, f, D) TBPW N Dmax T Nbop Mem

Flurry(16, 2, 6, f−1, I1) 3 3 0.6 s. 225 1.8 Gb.

Flurry(16, 2, 7, f−1, I1) 3 4 0.4 s. 224 1 Gb.

Flurry(16, 2, 8, f−1, I1) 4 4 37.6 s. 231 1.4 Gb.

Flurry(16, 2, 9, f−1, I1) 10 4 37296 s. 241 6.4 Gb.

Flurry(16, 4, 5, f−1, D2) 2 4 0.5 s. 224.2 1.7 Gb.

Flurry(16, 4, 6, f−1, D2) 4 4 810.3 s. 236.0 4.6 Gb.

Flurry(16, 8, 5, f−1, D4) 3 4 3755.2 s. 237.5 5.4 Gb.

Flurry(16, 4, 6, f3, D2) ≈ 2114 14 3 3.4 s. 227.4 1.3 Gb.

Flurry(16, 4, 8, f3, D2) ≈ 2152 90 3 1952 s. 236.1 117 Gb.

≈ 2152 100 3 2058 s. 236.2 130 Gb.

Flurry(16, 8, 6, f3, D4) ≈ 2228 20 3 35.8 s. 226.1 47 Gb.

Curry(n, m, r, f, D) TBPW N Dmax T Nbop Mem

Curry(32, 4, 3, f3, D2) ≈ 257 2 10 0.01 s. 212.7 2.4 Gb.

≈ 257 17 6 0.01 s. 214.5 18.8 Gb.

≈ 257 20 3 0.01 s. 211.5 2.1 Gb.



Algebraic Cryptanalysis of Curry and Flurry Using Correlated Messages 275

Interpretation of the Results. For power Sboxes, we can observe that our
approach is significantly faster than BPW attack [12]. The most important is to
observe that – in all cases – we have been able to find a number of pairs N∗ > 1
such that the maximal degree reached during the Gröbner basis computation is
equal to the degree d of the Sbox function. In practice, we have found this N∗

by performing the following test incrementally on N ≥ 2. We compute a DRL
Gröbner basis of PN

Flurry (resp. PN
Curry). If the maximal degree reached during this

computation is greater than d then we stop the computation and set N ← N +1,
otherwise N ← N∗. We can extrapolate the (experimental) complexity of our
attack. Let bF (resp. bC) be the number of variables of the system PN∗

Flurry (resp.
PN∗

Curry). Let ω, 2 < ω ≤ 3 be the linear algebra constant. The complexity of our
attack is :

– O
(
b
deg(f)·ω
F

)
, for Flurry(n, t, r, f, D), and

– O
(
b
deg(f)·ω
C

)
, for Curry(n, m, r, f, D)

We have then a polynomial time complexity for solving Flurry and Curry for
(pure) power Sboxes. These results are no longer valid for the inverse function.
For this Sbox, the maximum degree reached during the computation is more
difficult to predict. On the other hand, we observed that our technique permits
to have a significant gain of efficiency also in this case. The use of correlated
messages has permitted to go one step further in the algebraic cryptanalysis of
hard instances of Flurry instantiated with the inverse SBox. However, it is not
clear that there exists an optimal number of correlated messages N∗ such that
the maximal degree reached during the Gröbner basis computation is bounded
by a constant (for instance, 3 or 4). This deserves further investigations.

Conclusion. As explained in the introduction, a new trend in algebraic crypt-
analysis is to combine statistical and algebraic techniques. Albrecht and Cid [1,2]
recently proposed to mix differential and algebraic cryptanalysis. Note that there
is a fundamental difference between our approach and the technique of Albrecht
and Cid [1,2]. In this work, the equations derived from high order differentials are
automatically (explicitly) generated during the Gröbner basis computation. In
[1,2], linear equations derived from the knowledge of a differential are explicitly
added to a key recovery system.
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Abstract. Let N = pq be an LSBS-RSA modulus where primes p
and q have the same bit-length and share the m least significant bits,

and (p − 1, q − 1) = 2. Given (N, e) with e ∈ Z
∗
φ(N)

4
that satisfies

ew + z · 22(m−1) = 0 (mod φ(N)/4) with 0 < w ≤ 1
9

√
φ(N)

e
N

1
4+θ and

|z| ≤ c ew
φ(N)

N
1
4−θ , we can find p and q in polynomial time. We show that

the number of these weak keys e is at least N
3
4+θ−ε, where θ = m/ log2 N ,

and there exists a probabilistic algorithm that can factor N in time

O(N
1
4−θ+ε).

Keywords: RSA, Coppersmith’s theorem.

1 Introduction

The RSA cryptosystem was proposed by Rivest, Shamir and Adleman [9] in 1978,
in which the public and private exponents are chosen to be inverses of each other
modulo ϕ(N) = (p−1)(q−1). Usually, in the original RSA gcd(p−1, q−1) = 2.

It is well-known that small prime difference makes RSA insecure. In [13],
Weger showed that if p − q is small, RSA system with small exponent is much
more vulnerable. In [2], Blömer and May proved that the number of weak keys in
their approach increases as p−q decreases. But only requiring the primes to have
large difference will not ensure the security of RSA with small private-exponent.
See the LSBS-RSA.

The LSBS-RSA is an RSA system with modulus primes sharing a large num-
ber of least significant bits. This RSA variant was suggested to improve the
computational efficiency of server-aided signature generation in [1][10]. The se-
curity of LSBS-RSA under the partial key exposure attacks has been analyzed by
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Steinfeld and Zheng [10] and Sun et. al. [12]. The cryptanalysis of short exponent
LSBS-RSA was given by Zhao and Qi [15] and further by Sun et. al. [11].

In this paper we give an attack to LSBS-RSA. We are able to show that
if N = pq and primes p and q share the m least significant bits, there are
at least N

3
4+θ−ε weak keys (N, e), where θ = m/ log2 N . Thus the number of

weak keys increases as primes p and q sharing more least significant bits. As
θ approaches 1

4 , almost all keys are weak. Notice that if p and q sharing the
m least significant bits, then the m least significant bits are known. Thus our
attack has an interpolation property towards Coppersmith’s theorem [3], which
states that if primes p and q are balanced and the 1

4 log2 N least significant bits
of p are known, then N = pq can be factored in polynomial time. In case m = 1,
our result is consistent with that of [2].

The remainder of this paper is organized as follows. In section 2, we review
the LSBS-RSA and the lattice attack. In section 3, we show our attack on the
LSBS-RSA. In section 4, we show the number of weak LSBS-RSA keys under
our attack. Conclusions are finally drawn in section 5.

2 Preliminary

2.1 Primes Sharing the Least Significant Bits

In this paper, we denote an LSBS-RSA modulus N = pq where primes p and q
are balanced and share the m least significant bits, and

p− q ≥ cN
1
2 (1)

with 0 < c ≤ 1 being a constant. Furthermore, in this paper, as in the original
RSA, we assume

gcd(p− 1, q − 1) = 2. (2)

Since primes p and q share the m least significant bits, we may write p = p1 ·
2m + v0, q = q1 · 2m + v0. The following lemma is a reformation of Lemma 3.1
in [10] and Lemma 1 in [11].

Lemma 1. Let N = pq be an LSBS-RSA modulus, where p and q share the m
least significant bits. Then in time polynomial in log N , we can compute u0 and
v0 such that

p = p1 · 2m + v0, q = q1 · 2m + v0, p + q = u1 · 22m + u0,

where p1, q1 and u1 are unknown.

Proof. Since p and q share the m least significant bits, we write p = p1 · 2m + v0

and q = q1 · 2m + v0. By pq = N , we have

(p1 · 2m + v0)(q1 · 2m + v0) = N,

and then v2
0 ≡ N (mod 2m). By Lemma 2.1 in [10], we can obtain v0 in time

O(m2) bit-operations.
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Since (p− q)2 = (p + q)2 − 4N , we have

((p1 + q1) · 2m + 2v0)2 − 4N = (p1 − q1)2 · 22m,

(p1 + q1)2 · 22m + 4v0(p1 + q1) · 2m − 4N + 4v2
0 = (p1 − q1)2 · 22m.

Since 2|p1 + q1, we have

4v0(p1 + q1) · 2m ≡ 4N − 4v2
0 (mod 22(m+1)).

Let v−1
0 · v0 ≡ 1 (mod 22(m+1)). We have

4(p1 + q1) · 2m ≡ 4(N − v2
0)v−1

0 (mod 22(m+1)).

Let u0 ≡ (N − v2
0)v

−1
0 + 2v0 (mod 22m). By the above, we have that (p1 + q1) ·

2m +2v0 = u0 + v1 ·22m. Thus p+ q = (p1 + q1) ·2m +2v0 = u0 +u1 ·22m, where
u1 is unknown.

2.2 Lattice Attack

Let u1,u2, · · · ,uω ∈ Zn be ω linearly independent vectors over Z, and

L =

{
ω∑

i=1

aiui| where ai ∈ Z and ui ∈ Z
n for i = 1, · · · , ω

}
.

The vectors u1,u2, · · · ,uω are also called basis of lattice L. We define the deter-
minant of the lattice as the square root of the Gramian determinant det1≤i,j≤ω <
ui, uj >.

The following is a well-known theorem [8] on a short vector in lattice L.

Theorem 1. (Minkowski) Every n-dimensional lattice L contains a non-zero
vector v with

||v|| ≤ √n · det(L)
1
n .

LLL algorithm outputs a short vector in lattice L. This algorithm works in
deterministic polynomial time. One can see [5] for details. Coppersmith [3] took
the advantage of LLL algorithm to find the small roots of a modular equation.
Define the norm of a polynomial h(x, y) =

∑
i,j ai,jx

iyj as ||h(x, y)||2 =
∑

i,j a2
i,j .

Using the following lemma, if the coefficients of h(x, y) are sufficiently small, we
have that h(x0, y0) = 0 holds over the integers. The proof can be found in earlier
citations, see [3] for example. The original lemma can be found in [4].

Lemma 2. (Howgrave-Graham) Let h(x, y) ∈ Z[x, y] be a bivariate polynomial
which is a sum of at most ω monomials. Further, let m be a positive integer.
Suppose that

1. h(x0, y0) = 0 (mod Hm), where |x0| < X and |y0| < Y ;
2. ||h(xX, yY )|| < Hm/

√
ω.
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Then h(x0, y0) = 0 holds over the integers.

Here is the result of Coppersmith [3] in the reformulation of May [7].

Theorem 2. (Coppersmith) Let N be an integer of unknown factorization with
a divisor d ≥ Nβ. Let fd(x) be a univariate, monic polynomial of degree δ.
Furthermore, let cN be a function that is upper-bounded by a polynomial in log N .
Then we can find all solutions x0 for the equation fd(x) = 0 (mod d) with

|x0| ≤ cNN
β2
δ

in polynomial time in (log N, δ).

From Theorem 2, we obtain the following lemma which will be applied later.

Lemma 3. Let N = pq be an LSBS-RSA modulus, where primes p and q share
the m least significant bits such that

p = p1 · 2m + v0, q = q1 · 2m + v0.

Given an approximation of p1 with an error at most c1N
1
4 , then one can recover

p and q in polynomial time.

Proof. By Lemma 1, the above v0 is known. Let p̄1 be an approximation of
p1 with error x such that |x| ≤ c1N

1
4 . Then we have p1 = p̄1 + x and p =

p̄1 · 2m + x · 2m + v0.
Let b · 2m ≡ 1 (mod N). Then by the above and p is a divisor of N , we have

bp = p̄1 + x + bv0 = 0 (mod p), with |x| ≤ c1N
1
4 .

By Theorem 2, p and q can be recovered in time polynomial in log N . This
concludes the lemma.

3 Main Result

Now we state our main theorem and give a proof in this section. We will apply
the similar technique that is used in Chapter 4 in [6], which is a generalization
of Wiener’s attack [14].

Theorem 3. Let 0 < c ≤ 1 and let (N, e) be an RSA public key tuple with
N = pq where primes p and q satisfy (1) and share the m least significant bits
such that p− q = 2m · u. Let θ = m/ log2 N . Suppose that e ∈ Z∗

φ(N)
4

satisfies an
equation

ew + z · 22(m−1) = kφ(N)/4 (3)

with w, z, k ∈ Z and

0 < w ≤ 1
9

√
φ(N)

e
N

1
4+θ =: X, |z| ≤ c

ew

φ(N)
N

1
4−θ =: Z. (4)

Then N can be factored in time polynomial in log N .



282 X. Meng and J. Bi

Here is the roadmap for the proof of Theorem 3.

1. We construct a lattice such that we can use the lattice attack to find w and
k;

2. From w and k, we compute an approximation of p1 + q1. And from an
approximation of p1 + q1, we compute an approximation of p1 − q1;

3. Combining both approximations gives us an approximation of p1, which leads
to the factorization of N by using Coppersmith’s theorem.

Proof. Let us begin with equation (3). Using φ(N) = N +1− (p+ q), we rewrite
(3) as

ew + z · 22(m−1) = k(N + 1− (p + q))/4.

By Lemma 1, we have

ew + z · 22(m−1) = k(N + 1− (u1 · 22m + u0))/4,

and
ew + (ku1 + z)22(m−1) = k(N + 1− u0)/4.

Let M = (N + 1− u0)/4. We have

ew + (ku1 + z) · 22(m−1) = kM.

By the assumption in (2), we have gcd(M, 2) = 1. Compute a such that

a · 22(m−1) ≡ 1 (mod M) (5)

and compute h1 such that a · 22(m−1) = 1 + h1M . By this, we have that

aew + (ku1 + z) = hM, (6)

where
h = ak + h1(ku1 + z). (7)

Let fM (x, y) = aex + y. This gives us a bivariate polynomial fM (x, y) with the
root (x0, y0) = (w, ku1+z) modulo M = (N +1−u0)/4. And (6) can be reformed
as

aex + y = hM. (8)

Without loss of generality, we assume

gcd(x, h) = 1. (9)

Otherwise, every integer that divides both x and h must also divide y by (8),
thus we can divide (8) by gcd(x, h) which gives us an equation eax′ + y′ = 0
(mod M) with even smaller parameters x′ and y′.

Now we apply Coppersmith’s method by Lemma 2 to transform the polyno-
mial fM (x, y) into a polynomial f(x, y) satisfying f(x0, y0) = 0 over integers
(and not just modulo M), and then compute (x0, y0). By definition, we have
that 0 < x ≤ X and 0 < x0 ≤ X .
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Since
|z · 22(m−1)| ≤ c

4
ew

φ(N)
N

1
4 +θ <

1
2
ew

and k =
(
ew + z · 22(m−1)

)
/φ(N), we have

1
2

ew

φ(N)
≤ k ≤ 3

2
ew

φ(N)
≤ 3

2
e

φ(N)
X. (10)

We have

y0 = ku1 + z ≤ 3
2

e

φ(N)
Xu1 + z < 5

e

φ(N)
XN

1
2−2θ =: Y.

Let g(x, y) = c0Mx + c1fM (x, y). The coefficient vectors of g(xX, yY ) form a
lattice L in Z2, where L is spanned by the row vectors of the (2×2)-lattice basis

B =
[
MX 0
aeX Y

]
.

By Theorem 1, we know that L contains a vector v with ||v|| ≤ √
2 det(L).

Hence, whenever the condition√
2det(L) <

1√
2
M

is satisfied, then ||v|| ≤ 1√
2
M . The condition is equivalent to det(L) < 1

4M2.
Since M = (N + 1− u0)/4, we have that

det(L) = MXY <
5
81

NM ≤ 1
16

(N + 1− u0)2

holds for N > 884. This means that
√

2det(L) < 1√
2
M is satisfied.

By Theorem 1, L contains a vector v = (c0, c1)·B with ||v|| ≤ 1√
2
M . We inter-

pret v as the coefficient vector of a polynomial g(xX, yY ) and apply Lemma 2,
then we know that g(x0, y0) = c0Mx0 + c1fM (x0, y0) = 0 over Z. Using (8), we
conclude that fM (x0, y0) = hM . Reordering terms leads to

h

x0
= −c0

c1
.

By construction, we know that the parameters h and x0 are positive. Our goal
is to show that the fractions on both sides of the equation are in their lowest
terms, since then h = |c0| and x0 = |c1|. But gcd(h, x0) = gcd(h, w) = 1 as we
assumed in (9). And we have gcd(c0, c1) = 1, since v is a shortest vector in L.

Therefore, the coefficients c0, c1 of a shortest vector in L (in terms of the basis
B) give us the secret parameters h and x0. Using (8), we can compute

y0 = hM − aex0 = |c0|M − |c1|ae.
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Notice that exactly one of the coefficients c0 and c1 is negative. Therefore |y0| =
|c0M +c1ae|, but we know that y0 > 0 which proves the claim. Since y0 = ku1+z
is known and h is known, we can compute k by (7).

Now we obtain the secret parameters (x0, y0) and k. Since y0 = ku1 + z, we
have

y0

k
= u1 +

z

k
=

p + q − u0

22m
+

z

k
=

p1 + q1

2m
+

2v0 − u0

22m
+

z

k
, (11)

then

2m ·
(

y0

k
− 2v0 − u0

22m

)
= p1 + q1 +

z

k
· 2m.

Let s = 2m · (y0
k − 2v0−u0

22m ). Then s is an approximation of p1 + q1 up to some
additive error z

k · 2m. By (10) and (4), we have∣∣∣ z
k
· 2m

∣∣∣ ≤ 2cN
1
4 . (12)

By (12) and 0 < θ < 1
4 , we have that z

k · 2m < 2cN
1
4 ≤ 2N

1
4 < 4

3 (p1 + q1). Thus

s = 2m ·
(

y0

k
− 2v0 − u0

22m

)
= p1 + q1 +

z

k
· 2m ≤ 7

3
(p1 + q1). (13)

Also by (12), we have

s− (p1 + q1) =
z

k
· 2m ≤ 2cN

1
4 ,

and thus
2ms− (p + q) ≤ 2cN

1
4 · 2m. (14)

Let t =
√

s2 − 4N · 2−2m. By (13) and (14), and the condition p− q > cN
1
2 , we

have

t− (p1 − q1) =
2mt− (p− q)

2m

=
(2ms− (p + q))(2ms + (p + q))

2m(2mt + (p− q))

≤ 2cN
1
4 · 10

3 (p + q)
p− q

< 14N
1
4 . (15)

Then by (3) and (15) we have∣∣∣∣s + t

2
− p1

∣∣∣∣ =
1
2
|s− (p1 + q1) + t− (p1 − q1)|

≤ 1
2
|s− (p1 + q1)|+ 1

2
|t− (p1 − q1)|

< cN
1
4 + 7N

1
4 ≤ 8N

1
4 .

Thus s+t
2 is an approximation to p1 with an error 8N

1
4 . Then one can recover p

by Lemma 3.
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In conclusion, we summarize the whole algorithm which leads to the factor-
ization of the modulus.

Algorithm
Input: (N, e), where N = pq and ew+z ·22(m−1) = kφ(N)/4 for some unknown
0 < w ≤ X and |z| ≤ Z.

1. Let aex + y = hM with x ≤ X and y ≤ Y , where a and h are defined in
(5) and (7) respectively;

2. Construct the lattice L with base B, where B =
[
MX 0
aeX Y

]
;

3. Find a short vector v = (c0, c1) ·B ∈ L using Gauss reduction;
4. Compute (x0, y0) = (|c1|, |c0N + c1e|) and h = c0;

(a) Compute s = 2m · (y0
k − 2v0−u0

22m ), t =
√

s2 − 4N · 2−2m and p̄1 = [(s +
t)/2];

(b) Apply Coppersmith’s algorithm (Theorem 2) to the candidate p̄1. If
Coppersmith’s algorithm output the factorization of N , then stop.

Output: p, q.

Every step in Algorithm can be done in polynomial time. This concludes the
proof of Theorem 3.

4 Weak Keys

If a public key (N, e) yields the factorization of N in polynomial time, then
(N, e) is called a weak key. In this section, our purpose is to prove

Theorem 4. Let (N, e) be the public key tuples defined in Theorem 3 with 0 <

θ < 1
4 . Then the number of such weak keys is at least Ω( N

3
4+θ

(log log N)2 ).

The public key (N, e) satisfying Theorem 3 can also be written as e ≡ − z·22(m−1)

w
(mod φ(N)/4), with e ∈ Z∗

φ(N)
4

where w and z and φ(N)/4 are pairwise rela-

tively prime, and w and z satisfy (4). Let E be the class of all these (N, e).
We call E a weak class, since there is an algorithm that on (N, e) outputs the
factorization of N in polynomial time. Let SizeE(N) be the cardinality of E.

To prove Theorem 4, we only have to show SizeE(N) = Ω

(
N

3
4+θ

(log log N)2

)
. Since

e ≡ − z·22(m−1)

w (mod φ(N)/4), we have that every (w, z) satisfying 0 < w ≤ X

and |z| ≤ Z defines a public key e with ew + z · 22(m−1) = kφ(N)/4. Now we
show that different (w, z) defines different public key e.

Lemma 4. Let w, z, w′ and z′ be integers such that gcd(w, zφ(N)) = gcd(zz′,
φ(N)) = gcd(w′, z′φ(N)) = 1. Let

e ≡ −z · 22(m−1)

w
(mod φ(N)/4) (16)
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and

e′ ≡ −z′ · 22(m−1)

w′ (mod φ(N)/4), (17)

with e, e′ ∈ Z∗
φ(N)

4

. If (w, z) �= (w′, z′), then e �= e′.

Proof. Suppose that (w, z) �= (w′, z′), and for contradiction, that e = e′ where
e and e′ satisfy (16) and (17). Since gcd(w, z) = gcd(w′, z′) = 1, then by the
above e = e′ implies

z · 22(m−1)w′ ≡ z′ · 22(m−1)w (mod φ(N)/4)

and
(zw′ − z′w) · 22(m−1) = 0 (mod φ(N)/4).

By the assumption in (2), we have gcd(2, φ(N)/4) = 1, and thus by the above

zw′ − z′w = 0 (mod φ(N)/4).

For 0 < |zw′|, |z′w| ≤ ZX < φ(N)/4, we have zw′ = z′w, and z
w = z′

w′ . Since
gcd(w, z) = gcd(w′, z′) = 1, we have (w, z) = (w′, z′), which is a contradiction.
Therefore e = e′ and the claim follows.

By the above, we have that every (w, z) with w ≤ X and z ≤ Z defines a public
key e ∈ Z∗

φ(N)
4

satisfying ew + z · 22(m−1) = kφ(N)/4, and different (w, z) defines

different public key e. Thus we have

SizeE(N) =
∑

0<w≤X

gcd(w,φ(N)/4)=1

∑
|z|≤Z

gcd(z,wφ(N)/4)=1

1. (18)

By Corollary 14 in [2], we have

SizeE(N) ≥
∑

0<w≤X

gcd(w,φ(N)/4)=1

(
Z

2 log log N2
− O(Nε)

)

≥ N
3
4 +θ

4(log log N)2
−O(N

1
4+θ+ε).

This completes the proof of Theorem 4.

5 Conclusion

In this paper, we use the lattice attack to the LSBS-RSA. Let N = pq be an
LSBS-RSA modulus where primes p and q have the same bit-length and share
the m least significant bits, and (p − 1, q − 1) = 2. We investigate an attack
on the LSBS-RSA keys e satisfying ew + z · 22(m−1) = kφ(N)/4 with a small
solution 0 < w ≤ X and |z| ≤ Z. We compute the number of keys satisfying
e ∈ Z∗

φ(N)
4

and ew + z · 22(m−1) = kφ(N)/4 with 0 < w ≤ X and |z| ≤ Z, and we

are able to give a lower-bound of the number of such keys e by Ω
(
N

3
4+θ−ε

)
,

where θ = m/ log2 N .
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Abstract. In ciphertext policy attribute based encryption (ABE) schemes

the sender selects an access structure and generates a ciphertext, which de-

cryptors can get plaintext if he has certain set of secret key associate with

his attributeswhich satisfies the access structure.On the other hand,many

organisations already introduced standard identity based encryption (IBE)

or public key encryption (PKE) where only a single recipient is specified at

the time of encryption. To utilize the above schemes and to simplify the

management of user’s key, it is valuable to develop a proxy re-encryption

schemes between ABE schemes and IBE schemes. In this paper we propose

the first proxy re-encryption scheme, which can convert an ABE cipher-

text to a ciphertext which is encrypted by IBE scheme. Using new proxy

re-encryption scheme, some useful applications can be constructed. Fur-

thermore, we prove the security in the standard model based on decisional

bilinear Diffie-Hellman assumption.

Keywords: attribute-based encryption, proxy re-encryption, identity-

based encryption, bilinear maps.

1 Introduction

In ciphertext policy attribute based encryption (ABE) schemes the sender se-
lects an access structure and generates a ciphertext, which decryptors can get
plaintext if he has certain set of secret key associate with his attributes which
satisfies the access structure. Using the ABE scheme, the sender does not specify
all the recipients at the time of encryption, and enforces access policies, defined
on attributes within the encryption procedure.

Suppose some organisation plan to apply an ABE scheme to share the secret
data among members securely. They might have been applied identity based
encryption (IBE) or public key encryption (PKE) system, where only a single
recipient is specified at the time of encryption, already. If they plan to distribute
the ABE secret keys to the members, the ABE key authority should generates
ABE secret keys to each members, and the member should manage the ABE
secret key in addition.

On the other hand, in proxy re-encryption schemes, a semi-trusted entity
called proxy can convert a ciphertext encrypted for Alice into a new ciphertext,

F. Bao et al. (Eds.): Inscrypt 2009, LNCS 6151, pp. 288–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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which another user Bob can decrypt with his own secret information without
revealing the underlying plaintext. Because the proxy is not fully trusted, it is
required that the proxy cannot reveal Alice’s and Bob’s secret key, and cannot
learn the plaintext during the conversion. If the proxy which can convert the
ABE ciphertext to the IBE ciphertext exists, the IBE user can decrypt the ABE
ciphertext using his own IBE secret key only. In this paper, we propose the first
proxy re-encryption scheme which can convert the ABE ciphertext to the IBE
ciphertext securely.

If the above mentioned organisation builds the gateway which converts ABE
ciphertexts to IBE ciphertext with our new proxy re-encryption scheme, the
member of the organization can access ABE ciphertexts only using this gateway,
and stores IBE secret key only. This gateway only re-encrypts ABE ciphertext
to IBE ciphertext without revealing underling plaintext.

Furthermore, the member of the organisation does not need to consider about
decryption operation of the ABE scheme. The proxy removes the effect of the
ABE scheme.

1.1 Attribute-Based Encryption Schemes

The ABE schemes were first introduced by Sahai and Waters as an application
of their fuzzy IBE scheme [2], which have single threshold access structure.

Two variants of ABE were subsequently proposed. The key policy attribute-
based encryption (KP-ABE) was proposed by Goyal, Pandey, Sahai and Waters
in [22]. In [22], every ciphertext are associated with a set of attributes, and every
user’s secret key is associated with a monotone access structure on attributes.
Decryption is enabled iff the ciphertext attribute set satisfies the access structure
on the user’s secret key. The first ciphertext policy attribute-based encryption
(CP-ABE) was proposed by Bethencourt, Sahai and Waters in [11]. In [11],
the situation is reversed: attributes are associated with user’s secret keys and
monotone access structures with ciphertexts. However, in [11], the security of
scheme was proved in generic bilinear group model only. Cheung and Newport
proposed a simple and provably secure CP-ABE scheme in standard model,
where the access policy is defined by AND gates, in [12]. Waters [5] recently
proposed the first fully expressive CP-ABE in the standard model.

1.2 Proxy Re-encryption Schemes

Several proxy re-encryption schemes have been proposed in the context of public
key encryption (PKE), e.g., ElGamal or RSA. Other schemes have been proposed
in the context of identity based encryption (IBE) which the sender encrypts a
plaintext using arbitral strings that represents the recipient’s identity as the
public key.

Matsuo proposed a hybrid proxy re-encryption scheme which can convert a
PKE ciphertext to an IBE chiphertext in [20]. He also classifies proxy
re-encryption schemes as follows:
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[PKE-PKE] type Proxy converts PKE ciphertexts to PKE ciphertexts. [17],
[14], [16], [23], [13], [10], [18], [9] and [3] have been proposed as this type.

[IBE-IBE] type Proxy converts IBE ciphertexts to IBE ciphertexts. [23], [20],
[15], and [6] have been proposed as this type.

[PKE-IBE] type Proxy converts PKE ciphertexts to IBE ciphertexts. [20] has
been proposed as this type.

[IBE-PKE] type Proxy converts IBE ciphertexts to PKE ciphertexts. [15] [21]
have been proposed as this type.

1.3 Our Contribution

We propose [ABE-IBE] type proxy re-encryption scheme, which can convert a
ciphertext encrypted by ABE scheme to an IBE ciphertext, without revealing the
underlying plaintext. Our scheme holds the following advantages simultaneously.

– Our scheme achieve proxy invisibility, which means delegatee does not re-
quire additional algorithm and does not require additional secret information
while decrypting a re-encrypted ciphertext.

– In our scheme the size of a re-encrypted ciphertext is same as an original
ABE ciphertext, while in some scheme ([15]) requires additional elements of
ciphertext only used for re-encryption.

– Our scheme are secure in the standard model against chosen plaintext attack.
We prove the security, combining two different scheme (ABE and IBE) all
together.

1.4 Organisation

The rest of paper consists of 4 sections. In section 2 we give some definitions
and preliminaries. In section 3 we define security of [ABE-IBE] type proxy re-
encryption. In section 6 we give an extension of our scheme. In section 4 we
present the [ABE-IBE] type proxy re-encryption scheme, in section 5 we prove
the security, and finally conclude this study in section 7.

2 Preliminaries

2.1 Bilinear Groups

Let G, GT be the two multiplicative cyclic groups of prime order p, and g be a
generator of G. We say that GT has an admissible bilinear map ê : G×G→ GT

if the following conditions hold.

1. ê(ga, gb) = ê(g, g)ab for all a, b
2. ê(g, g) �= 1

We say that G is a bilinear group if the group action in G can be computed
efficiently and there exists a group GT and an efficiently computable bilinear
map ê as above.
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2.2 Decisional Bilinear Diffie-Hellman (DBDH) Assumption

The Decisional BDH problem [1], [19], [7] in G is defined as follows:
The challenger chooses a, b, c ∈ Zp at random and then flips a fair binary coin

β. If β = 1 it outputs the tuple
〈
g, ga, gb, gc, ê (g, g)abc

〉
∈ G4 ×GT . Otherwise,

if β = 0, the challenger choose ΓT ∈R GT at random and outputs the tuple〈
g, ga, gb, gc, ΓT

〉 ∈ G
4 × GT . The adversary must then output a guess β′ of β.

An adversary, B, has at least an ε advantage in solving the decisional DBDH
problem if

∣∣Pr [β = β′]− 1
2

∣∣ ≥ ε where the probability is taken over the random
choice of the generator g, the random choice of a, b, c in Zp and ΓT in GT , and
the random bits consumed by B.

Definition 1. The Decisional (κ, t, ε)-BDH assumption holds in G if no t-time
adversary has at least ε advantage in solving the Decisional BDH problem in G

under a security parameter κ.

2.3 Ciphertext Policy ABE

The access structure on attribute is a rule W that returns either 0 or 1 given
a set S of attributes. We say that S satisfies W (written S |= W ) if and only if
W answers 1 on S. In ABE schemes, access structures may be Boolean expres-
sions, threshold trees, etc. A ciphertext policy attribute based encryption (ABE)
consists of the following algorithms.

SetUpA(1κ) Given a security parameter 1κ as input, outputs a public key PKA

and master secret key MKA.
KeyGenA(MKA, S) Let N be the set of all attributes in the system. For input

of a master secret key MKA, and a set S ∈ N of attributes, outputs a secret
key SKA associated with S.

EncryptA(PKA, M, W ) For input of a public key PKA, a message M and an
access structure W , outputs a ciphertext CA with the property that a user
with a secret key generated from attribute set S can decrypt CA iff S |= W .

DecryptA(CA, SKA) For input of a ciphertext CA and a secret key SKA, out-
puts the message M if S |= W , where S is the attribute set used to generate
SKA.

2.4 Identity Based Encryption

Identity Based Encryption (IBE) consists of the following algorithm.

SetUpI(1κ) Given a security parameter 1κ as input, a trusted entity called Pri-
vate Key Generator (PKG) generates a master key MKI and public param-
eters π, and outputs MKI and π.

KeyGenI(MKI , π, ID) For inputs of a master key MKI , public parameters π,
and an identity ID, the PKG outputs an IBE secret key SKI corresponding
to the identity.
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EncI(ID, π, M) For inputs of an identity ID, public parameters π, and a plain-
text M , outputs an IBE ciphertext CI .

DecI(SKI , π, CI) For inputs of a IBE secret key SKI , public parameters π, and
an IBE ciphertext CI , decrypts a plaintext M .

2.5 [ABE-IBE] Proxy Re-encryption

The [ABE-IBE] type proxy re-encryption consists of the following algorithms.

KenGenA→I(S, ID, sID, SKA, π) For inputs of a set of attributes S, an IBE
identity ID, IBE public parameter π, an IBE additional secret information
to generate re-encryption key sID, and an ABE secret key SKA, outputs a
re-encrypt key RKA→I to the proxy.

ReEncryptA→I(RKA→I , CA) For inputs of a re-encrypt key RKA→I and an
ABE ciphertext CA, the proxy re-encrypts and outputs a IBE ciphertext CI

to the delegatee.

3 Chosen Plaintext Security for [ABE-IBE] Type Proxy
Re-encryption

We define chosen plaintext security for [ABE-IBE] type proxy re-encryption
scheme according to the following game between an adversaryA and a challenger
C.

We design the following game on the basis of Cheung and Newport’s CPA
Security Game for ABE in [12], Boneh and Boyen’s selective ID game in [8]
and Green and Ateniese’s proxy re-encryption game [15]. We show even if an
adversary obtains additional informations related to proxy re-encryption, such
as re-encryption keys, they does not affect the security of underlying ABE and
IBE scheme. In the challenge phase, the adversary can adaptively select which
scheme to attack (ABE or IBE), this implies that these two schemes which are
combined by our scheme, secure against chosen plaintext attacks.

In the following game, the adversary is allowed to adaptively conduct ABE
secret key queries, IBE secret key queries and re-encryption key queries. Follow-
ing the claim of Green and Ateniese, the adversary must not be restricted to
obtain re-encryption keys which can convert the target ciphertext to a cipher-
text if the adversary cannot decrypt it, in [15]. In other words, the adversary
was only restricted to obtain the set of secret keys which can decrypt the target
ciphertext.

Hence, in our security definition, the adversary is restricted to obtain re-
encryption keys which can convert a target ABE ciphertext to an identity whose
IBE secret key is already queried (and answered). In this case, the adversary can
convert the target ABE ciphertext to a ciphertext which can be decrypted by the
IBE key which is the adversary already obtains. The adversary is also restricted
to obtain an IBE secret key, if the adversary already obtain re-encryption key
which can convert the target ABE ciphertext to that identity.
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Definition 2. (Security of [ABE-IBE] type proxy re-encryption) The security
against [ABE-IBE] type proxy re-encryption scheme is defined according to the
following game between an attacker A and a challenger C.
Init : A chooses the following and sends them to C.

– The target access structure W .
– The target IBE identity ID∗.

SetUp : C runs the SetupA(1κ) and SetupI(1κ). C gives ABE public parameters
and IBE public parameters to the A.

Phase 1 :
ExtractA(S) : A can adaptively request an ABE secret key for a set S where

S �|= W . A can repeat this multiple times.
ExtractI(ID, params) : A can adaptively request an IBE secret key cor-

responding to an identity ID of his choice. A can repeat this multiple
times for different IBE identities.

ExtractA→I(S, ID) : A can adaptively request re-encryption key which can
transform ABE ciphertexts encrypted for set S to IBE ciphertexts corre-
sponding to an identity ID. A can repeat this multiple times for different
sets and identities.

Challenge : A submits two equal length messages M0 and M1 and selects
which scheme to attack(ABE or IBE). C flips a coin μ ∈ {0, 1} and returns
the encrypted result of Mμ encrypted by the selected scheme.

Phase 2 : Same as Phase 1.
Solve : A submits a guess μ′ ∈ {0, 1} for μ. The adversary A wins if μ′ = μ.

During Phase 1 and 2, A is restricted the following queries which A can
decrypt a challenge ciphertext only using C’s answers

– ExtractA(S∗), where S∗ |= W .
– ExtractI(ID∗).
– The set of queries ExtractA→I(S∗, ID) and ExtractI(ID, param), where

S∗ |= W and ID is an identity of IBE user.

Definition 3. Let A be an adversary against our scheme. We define the IND-
sAttr-CPA advantage of A is AdvA(κ) = 2(Pr[μ′ = μ]− 1/2).

We say that the our scheme is (κ, t, q, ε) adaptive chosen plaintext secure if
for any t-time adversary A that makes at most q chosen queries under a security
parameter κ, we have that AdvA(κ) < ε.

4 Construction

We construct an [ABE-IBE] type proxy re-encryption scheme which achieves
CPA-security without random oracle.

Our scheme enables conversion of an ABE ciphertext to an IBE ciphertext.
Our construction is based on Basic Construction of Cheung and Newport ABE
scheme proposed in [12], because [12] is proved DBDH assumption and we com-
bine the security of ABE and IBE schemes which bridged by our re-encryption
method under single assumption. Furthermore, we use [8] as IBE scheme which
achieves selective ID security under DBDH assumption.
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4.1 CN-ABE Scheme

Let the set of attributes N = {1, · · · , n} for some natural number n. We refer to
attributes i and their negations ¬i as literals. In [12], access structure consists of
a single AND gate whose input are literals and denoted as

∧
i∈I i, where I ⊆ N

and every i is a literal( i.e. i or ¬i).

SetUpA(1κ) Let G, GT be a bilinear group of prime order p. Let ê : G×G→ GT

be the bilinear map. Choose a random generator g ∈ G and t0, t1, · · · , t3n ∈R

Zp. Let T0 = ê (g, g)t0 and Tj = gtj for each j ∈ {1, · · · , 3n}. The pub-
lic key is PKA = 〈ê, g, T0, T1, · · ·T3n〉. The master secret key is MKA =
〈t0, t1, · · · , t3n〉.
The public key element Ti, Tn+i and T2n+i correspond to the three types of
occurrences of i : positive, n + i : negative and 2n + i : don’t care for each
i ∈ {1, · · · , n}.

EncryptA(M, W ) Given a message M ∈ GT and an AND gate W =
∧

i∈I i as
input, select a random element s ∈ Zp and sets C̃ = M · T s

0 and Ĉ = gs. For
each i ∈ I, set Ci as follows: If i ∈ I and i = i, set Ci = T s

i . If i ∈ I and
i = ¬i, set Ci = T s

n+i. For each i ∈ N \ I, set Ci = T s
2n+i. The ciphertext is

CA =
〈
W, C̃, Ĉ, {Ci|i ∈ N}

〉
.

KeyGenA(S, MKA) Given the attribute set S and ABE master secret key MKA

as input, output a secret key SKA =
〈
D̂, {〈Di, Fi〉 |i ∈ N}

〉
as follows:

Select ri ∈R Zp for every i ∈ N and set r =
∑n

i=1 ri.

1. Set D̂ = gt0−r.
2. For each i ∈ N , set Di as follows:

If i ∈ S, set Di = g
ri
ti . If i �∈ S, set Di = g

ri
tn+i . Note that every i ∈ S

represents a positive attribute and i �∈ S represents a negative attribute.

3. For every i ∈ N , set Fi = g
ri

t2n+i .
DecryptA(SKA, CA) Given an ABE secret key SKA and an ABE ciphertext CA

as input, if an ABE secret key SKA can satisfy AND gate W in the ABE
ciphertext CA, output a plaintext as follows:
1. For each i ∈ N , compute C′

i as follows:⎧⎪⎪⎨⎪⎪⎩
If i ∈ I ∧ i = i ∧ i ∈ S : C′

i = ê(Ci, Di) = ê(gtis, g
ri
ti ) = ê(g, g)ri·s

If i ∈ I ∧ i = ¬i ∧ i �∈ S : C′
i = ê(Ci, Di) = ê(gtn+is, g

ri
tn+i ) = ê(g, g)ri·s

If i �∈ I : C′
i = ê(Ci, Fi) = ê(gt2n+is, g

ri
t2n+i ) = ê(g, g)ri·s

2. Output a plaintext

C̃

ê
(
Ĉ, D̂

)
·∏n

i=1 C′
i

=
M · ê (g, g)t0·s

ê (gs, gt0−r) · ê (g, g)r·s = M.
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4.2 BB-IBE Scheme

We show BB-IBE [8] construction as follows:

SetUpI(1κ) Let G, GT be a bilinear group of prime order p, and ê : G×G→ GT

be the bilinear map.Given a security parameter 1κ as input, select a random
generator g ∈ G and h, g2 ∈R G. Pick α ∈R Z∗

p and set g1 = gα,MKI = α
and set π = 〈g, g1, g2, h〉.
Let MKI be a master secret key, and π be the public parameters.

KeyGenI(MKI , π, ID) Given master secret key MKI = α, public parameters
π and an identity ID as input, the PKG picks u ∈R Z∗

p and output an IBE
secret key as SKI = 〈skI

1 , skI
2〉 = 〈gα

2

(
gID
1 h

)u
, gu〉.

EncryptI(ID, π, M) Given an identity ID, public parameter π and plaintext
M ∈ GT as input, select w ∈R Z

∗
p and output an IBE ciphertext CI .

CI = 〈C1, C2, C3〉 =
〈
gw,

(
gID
1 h

)w
, Mê(g1, g2)w

〉
.

DecryptI(SKI , π, CI) Given an IBE secret key SKI , public parameters π and
an IBE ciphertext CI as input, output a plaintext M .

M =
C3ê(skI

2 , C2)
ê(skI

1 , C1)
.

4.3 [ABE-IBE] Type Proxy Re-encryption

KenGenA→I(S, ID, SKA, π, skI
2) Given the attribute set S, a delegatee’s IBE

identity ID, a delegator’s ABE secret key SKA, IBE public parameter π
and an IBE user’s 2nd component of secret key1 skI

2 as input, output a
re-encryption key RKA→I =

〈
R̂a, R̂b, R̂c, R̂d, {〈Ri, Qi〉 |i ∈ N}〉 as follows:

1. Set R̂a = D̂ · skI
2 = gt0−rgu.

2. Select τ ∈R Zp and set R̂b =
(
gID
1 h

)τ , R̂c = gτ , R̂d = ê (g1, g2)
τ .

3. Select δi ∈R Zp for every i ∈ N , set Ri as follows:⎧⎨⎩If i ∈ S : Ri = 〈ri,1, ri,2〉 =
〈
Di · gδi , T δi

i

〉
If i �∈ S : Ri = 〈ri,1, ri,2〉 =

〈
Di · gδi , T δi

n+i

〉
4. For every i ∈ N , set Qi as follows:

Qi = 〈qi,1, qi,2〉 =
〈
Fi · gδi , T δi

2n+i

〉
.

ReEncryptA→I(RKA→I , CA) Given a re-encryption key RKA→I and an ABE
ciphertext CA =

〈
W, C̃, Ĉ, {Ci|i ∈ N}

〉
as input, output an IBE ciphertext

CI as follows:
1 In our [ABE-IBE] type proxy re-encryption scheme, an IBE user must pass own

second component of secret key skI
2 to the ABE user, however this property does

not affect security of [8]. This property proved in Lemma 1 of [20].
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1. For each i ∈ N compute Ci as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
If i ∈ I ∧ i = i ∧ i ∈ S : Ci = ê(Ci,ri,1)

ê(ri,2,Ĉ) = ê(g, g)ri·s

If i ∈ I ∧ i = ¬i ∧ i �∈ S : Ci = ê(Ci,ri,1)

ê(ri,2,Ĉ) = ê(g, g)ri·s

If i �∈ I : Ci = ê(Ci,qi,1)

ê(qi,2,Ĉ) = ê(g, g)ri·s

2. Select y ∈R Zp and output CI = 〈C1, C2, C3〉 as follows:

〈C1, C2, C3〉 =

〈(
R̂c

)y

,
(
R̂b

)y

Ĉ,
C̃ ·

(
R̂d

)y

ê
(
Ĉ, R̂a

)
·
(

n∏
i=1

Ci

)〉
.

Note that, the delegatee can decrypt this re-encrypted result CI using his own
secret key SKI with same IBE decryption algorithm as follows:

C3ê(skI
2 , C2)

ê(skI
1 , C1)

=
C̃ ·

(
R̂d

)y

ê
(
skI

2 ,
(
R̂b

)y

Ĉ
)

ê
(
Ĉ, R̂a

)
·

n∏
i=1

Ci · ê
(
skI

1 ,
(
R̂c

)y)

=
M ·

(
e (g, g)t0

)s

ê (g1, g2)
yτ

ê
(
gu,

(
gID
1 h

)yτ
gs
)

ê (gs, gt0−rgu) ·
n∏

i=1

ê (g, g)ri·s · ê (gα
2

(
gID
1 h

)u
, gyτ

) = M

5 Security

We next show that ABE-PRE is IND-sAttr-CPA, if the Decisional BDH problem
holds in G, GT .

Theorem 1. Suppose that the (κ, t, ε)−DBDH assumption holds in (G, GT ).
Then, the ABE-PRE is (κ, t′, q, ε)-IND-sAttr-CPA secure against an adversary
for any (q, κ, ε) and t′ < t−Θ(τq), where τ denotes a maximum time for expo-
nentiation in G, GT .

Proof. Let A be a (t, q, ε) adversary against the [ABE-IBE] type proxy re-
encryption scheme(ABE-IBE-PRE). We construct an adversaryB which can solve
the DBDH problem in G by using A. The B is given an input 〈g, Γa, Γb, Γc, ΓT 〉 =〈
g, ga, gb, gc, ΓT

〉
, and distinguishes ΓT is ê(g, g)abc or ΓT ∈R GT . B works as

follows:

Init A chooses the following and sends it to B.
– The challenge access structure W =

∧
i∈I i

– The challenge IBE identity ID∗

Setup B setup simulation as follows:
List SetUp B generates three blank lists to store a query and answer pairs

for every queries, and setup ABE, IBE as follows:
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Table 1. ABE Public Key in CPA simulation

i ∈ I i �∈ I
i = i i = ¬i

Ti gαi Γ αi
b Γ αi

b

Tn+i Γ βi
b gβi Γ βi

b

T2n+i Γ γi
b Γ γi

b gγi

ISKL (IBE Secret Key List): Record the tuple 〈ID, SKI〉, where ID is an
identity of IBE user, SKI are IBE secret key corresponding to ID.

ASKL (ABE Secret Key List): Record the tuple 〈S, SKA〉, where S is a
set of attributes and SKA are ABE secret key corresponding to set S.

REKL (Re-Encryption Key List for IBE): Record the tuple 〈S, ID, RKA→I〉,
where S is a set of attributes, ID is an identity of IBE user, RKA→I is a
re-encryption key.

ABE SetUp B sets T0 = ê (Γa, Γb) = ê (g, g)ab and chooses αi, βi, γi ∈R Zp

for each i ∈ N . Then set ABE public key components Ti, Tn+i and T2n+i

as Table 1.
Under this condition, the first component of ABE master secret key is
ab which B cannot compute.

IBE SetUp Then B generates random numbers z1, z2, z3 ∈R Z∗
p and sets

g1 = Γ z1
a , g2 = Γ z2

b , h = g−ID∗
1 gz3 . B provides public parameters

π = 〈g, g1, g2, h〉 to A. Under this condition, the master secret key is
MKI = az1 which B cannot compute.

Phase 1 A adaptively queries B, and B responds as follows:
ExtractA(S) A queries the ABE secret key SKA, B as follows:

A queries the ABE secret key SKA with a set S ⊆ N where S �|= W .
There must exist j ∈ I such that, either j ∈ S ∧ j = ¬j or j �∈ S ∧ j = j.
B chooses such j. Without loss of generality, we can assume that j �∈
S ∧ j = j.
For every i ∈ N , B chooses r′i ∈R Zp. Then sets rj = ab + r′jb and for
every i �= j, i ∈ N ,ri = r′ib. Finally B sets r =

∑n
i=1 ri = ab +

∑n
i=1 r′ib.

The D̂ component of the secret key can be computed as∏n

i=1

1

Γ
r′

i

b

= g−
∑n

i=1 r′
ib = gab−r.

Recall that j ∈ I \ S ∧ j = j, then Dj = Γ
1

βj
a g

r′j
βj = g

ab+r′jb

bβj = g
rj

bβj .
For each i ∈ I ∧ i �= j, ABE secret key components Di can be computed
as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

If i ∈ S ∧ i ∈ I ∧ i = i : Di = Γ
r′i
αi

b = g
ri
αi .

If i ∈ S ∧ ((i ∈ I ∧ i = ¬i) ∨ i �∈ I) : Di = g
r′i
αi = g

ri
bαi .

If i �∈ S ∧ ((i ∈ I ∧ i = i) ∨ i �∈ I) : Di = g
r′i
βi = g

ri
bβi .

If i �∈ S ∧ i ∈ I ∧ i = ¬i : Di = Γ
r′i
βi

b = g
ri
βi .
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The ABE secret key components Fi (for don’t care attribute) can be
computed as follows:
1. If i = j

Fj = Γ
1

γj
a g

r′j
γj = g

ab+r′jb

bγj = g
rj

bγj .

2. Otherwise (i �= j) ⎧⎨⎩If i ∈ I : Fi = g
r′i
γi = g

ri
bγi

If i �∈ I : Fi = Γ
r′i
γi

b = g
ri
γi

B answers SKA and writes down to the ASKL.
ExtractI(ID) A queries the IBE user’s secret key SKI with an identity ID.

1. If the ID = ID∗, B rejects.
2. If the ID �= ID∗,B checks the REKL, and if already answers re-

encryption key to the ID and S |= W , B rejects.
3. Otherwise B answers SKI =

〈
skI

1 , skI
2

〉
as follows. BI generates a

random number u ∈R Z∗
p and computes SKI =

〈
skI

1 , skI
2

〉
as follows:

skI
1 = Γb

−z2z3
(ID−ID∗)

(
Γ z1(ID−ID∗)

a gz3

)u

, skI
2 = Γb

−z2
(ID−ID∗) gu

B answers SKI and writes down to the ISKL.
ExtractA→I(S, ID) A queries the re-encryption key which can transform

ABE ciphertext corresponding to the set S, B answers a re-encrypt key
RKA→I =

〈
R̂a, R̂b, R̂c, R̂d, {〈Ri, Qi〉 |i ∈ N}

〉
as follows:

1. If S �|= W ,
B runs ExtractA(S) and obtain an ABE secret key
SKA =

〈
D̂, {〈Di, Fi〉 |i ∈ N}

〉
, then chooses τ, u ∈R Zp for every

i ∈ N .
(a) If ID �= ID∗, B sets re-encryption key components R̂a, R̂b, R̂c,

R̂d as follows:

R̂a = D̂Γ
−z2

ID−ID∗
b gu, R̂b =

(
Γ z1(ID−ID∗)

a gz3

)τ

,

R̂c = gτ , R̂d = ê (Γ z1
a , Γ z2

b )τ

Note that, let u′ = −bz2
ID−ID∗ , simulated R̂a and R̂b can be trans-

form as follows:

R̂a = D̂Γ
−z2

ID−ID∗
b gu = gu′

,

R̂b =
(
Γ z1(ID−ID∗)

a gz3

)τ

=
(
Γ z1ID

a h
)τ

=
(
gID
1 h

)τ

(b) If ID = ID∗, B sets re-encryption key components R̂a, R̂b, R̂c,
R̂d as follows:

R̂a = D̂gu, R̂b = (gz3)τ , R̂c = gτ , R̂d = ê (Γ z1
a , Γ z2

b )τ
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Note that, simulated R̂b can be transform as follows:

R̂b = (gz3)τ =
(
gID∗
1 g−ID∗

1 gz3

)τ

=
(
gID∗
1 h

)τ

After the success of above simulation, B chooses δi ∈R Zp for every
i ∈ Nand φ ∈R Zp and sets re-encryption key components Ri, Qi as
follows:

Ri =

⎧⎨⎩i ∈ S :
〈
Di · gδi , T δi

i

〉
i �=∈ S :

〈
Di · gδi , T δi

n+i

〉
Qi =

〈
Fi · gδi , T δi

2n+i

〉
2. Otherwise (S |= W ),
B chooses ρi ∈R Zp for every i ∈ N and sets ρ =

∑n
i=1 ρi mod p. B

chooses τ ∈R Zp for every i ∈ N .
(a) B checks, and if already answers IBE secret key for ID, B rejects.
(b) If ID �= ID∗, B sets re-encryption key components R̂a, R̂b, R̂c,

R̂d as follows:

R̂a = Γ−ρ
b Γ

−z2u

ID−ID∗
b , R̂b =

(
Γ z1(ID−ID∗)

a gz3

)τ

,

R̂c = gτ , R̂d = ê (Γ z1
a , Γ z2

b )τ

Note that, let u′ = −ab− buz2
ID−ID∗ and r′ = bρ, simulated R̂a,R̂b

can be transform as follows:

R̂a = Γ−ρ
b Γ

−z2u

ID−ID∗
b = gab−bρg−abg

−buz2
ID−ID∗ = gab−r′

gu′
,

R̂b =
(
Γ z1(ID−ID∗)

a gz3

)τ

=
(
Γ z1ID

a h
)τ

=
(
gID
1 h

)τ

Under this condition, B cannot compute an IBE secret key for
ID, however B can reject the IBE secret key query for the ID.

(c) If ID = ID∗, B sets re-encryption key components R̂a, R̂b, R̂c,
R̂d as follows:

R̂a = g−ρ, R̂b = (gz3)τ
, R̂c = gτ , R̂d = ê (Γ z1

a , Γ z2
b )τ

Note that, let u′ − r = −ab− ρ, simulated R̂a can be transform
as follows:

R̂a = g−ρ = gab−ρg−ab = gab−rgu′
,

R̂b = (gz3)τ =
(
gID∗
1 g−ID∗

1 gz3

)τ

=
(
gID∗
1 h

)τ

Under this condition, B cannot compute an IBE secret key for
ID∗, however B can reject the IBE secret key for the ID∗.
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After the success of above simulation, B chooses δi ∈R Zp for every
i ∈ Nand φ ∈R Zp and sets re-encryption key components Ri, Qi as
follows:

Ri =

⎧⎨⎩i ∈ S :
〈
g

ρi
αi · gδi , T δi

i

〉
i �∈ S :

〈
g

ρi
βi · gδi , T δi

n+i

〉
Qi =

〈
g

ρi
γi · gδi , T δi

2n+i

〉
Challenge. A submits two equal length plaintexts M0, M1 ∈ GT and selects

which scheme to attack. B chooses μ ∈ {0, 1} and outputs a challenge ci-
phertext as follows:
– If A selects ABE scheme to attack, B outputs an ABE ciphertext for a

challenge access structure C∗
A =

〈
C̃∗, Ĉ∗, {C∗

i |i ∈ I}
〉

as follows:

C̃∗ = MμΓT , Ĉ∗ = Γc,

C∗
i =

{{Γ αi
c |i ∈ I ∧ i = i}, {Γ βi

c |i ∈ I ∧ i = ¬i}, {Γ γi
c |i �∈ I}}

– If A selects IBE scheme to attack, B outputs a IBE ciphertext C∗
I =

〈C1, C2, C3〉 corresponding to a target identity ID∗ as follows:

C1 = Γc, C2 = (Γc)
z3 , C3 = Mμ (ΓT )z1z2

Phase 2. B answers A’s queries in same manner of Phase 1.
Solve. Finally, A outputs a guess result μ′ ∈ {0, 1}. If μ′ = μ, then B judges

ΓT = ê(g, g)abc and outputs 1. Otherwise, B judges ΓT ∈R GT and outputs
0.

We claim that in the above simulation answers of B are correctly distributed,
and A cannot distinguish our simulation from the real-world interaction. Fur-
thermore, AdvDBDH

A = AdvSA, because B does not abort during the above sim-
ulation.

In the above simulation, maximum computation cost of the queries is at most
polynomial time exponentiation, hence t′ < t−Θ(τq). Therefore, the ABE-IBE-
PRE is (κ, t′, q, ε)-IND-sAttr-CPA secure against an adversary.

6 Extension

In our scheme, the delegator can delegate a part of his decryption rights. The
delegator can pass subset of the ABE secret key SK ′

A and subset of S′ to generate
a re-encryption key for substitute of SKA. The subset of the ABE secret key SK ′

A

at least have a positive or negative or don’t care component for each attribute.
On the other hand, the full set of the ABE secret key SKA have a positive or
negative component and don’t care component for each attribute.

For example, if the delegator passes positive component and does not passes
don’t care component for some attribute, then the proxy cannot convert cipher-
texts which have don’t care policy for the attribute.
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7 Conclusion

In this paper, we propose new proxy re-encryption scheme which can convert an
ABE ciphertext to an IBE ciphertext. Our scheme achieves proxy invisible which
means delegatee does not aware of existence of the proxy. We define the security
notation and prove security based on DBDH assumption in the standard model
against chosen plaintext attack. To achieve the CCA security and adaptive-ID
security is further study. However, it should be possible to change [8] to [4] to
achieve adaptive ID security.

Furthermore, [ABE-PKE] type proxy, and conbination of types such as [IBE-
ABE] and [PKE-ABE], [ABE-ABE] might be useful, but it is also further study.
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Abstract. In this paper, we consider the problem of building eÆcient key en-
capsulation mechanism (KEM) with partial message recovery, in brief, PKEM,
which aims at providing better bandwidth for standard KEM. We demonstrate
several practical issues that were not considered by the previous research, e.g., the
additional security loss due to loose reduction of OAEP, and the ciphertext over-
head caused by the corresponding data encapsulation mechanism (DEM). We
give solutions to these problems, furthermore, we consider the multi-challenge
model for PKEMs, where an adversary can obtain up to multiple challenge ci-
phertexts. Apparently, this is a more severe and more realistic model for PKEM.
We then show two generic constructions of PKEMs and prove their security in the
multi-challenge model. Our constructions are natural and simple. Finally, we give
some instantiations of our generic constructions, and compare their eÆciency.
Our results demonstrate that there are strong ties between PKEM and public key
encryption.

1 Introduction

B��������	. With public key cryptosystems applied more and more widely in the
mobile environment, bandwidth of public key encryption (PKE) schemes has become
a prominent problem, since data transmissions usually consume a large proportion of
power, even more than extra o�-line computations [23]. Let us give some numerical ex-
planations. Suppose one wants to encrypt a long message using the RSA key encapsula-
tion mechanism (RSA-KEM), one of the ISO�IEC standards1 for public key encryption
[22] to have �-bit security. Let the length of the plaintext m be �m� bits, and that of the
ciphertext c be �c� bits. To have 128-bit security (as considered necessary nowadays),
the ciphertext overhead (defined by �c� � �m�) is at least 3074 bits, according to recent
NIST recommendation on parameter size [17] (Fig. 1). In the near future, when 256-bit
security is a must, this overhead will soar to more than 15k bits!

One may alternatively consider to use elliptic curve cryptography (ECC) based
schemes, e.g, ECIES-KEM [22], which archives about 2�-bit overhead2 with �-bit

1 We note that there is another key encapsulation mechanism (KEM) in the ISO standard, namely
RSAES (a.k.a. RSA-OAEP) [6], however, it does not support long plaintexts. So we do not take
it into account.

2 The original DHIES [1] actually didn’t achieve this, since the DEM part uses message authen-
tication code (MAC). However it is easy to remove the MAC while maintaining the chosen
ciphertext security by using a strong DEM [14].

F. Bao et al. (Eds.): Inscrypt 2009, LNCS 6151, pp. 303–312, 2010.
c� Springer-Verlag Berlin Heidelberg 2010
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Bits of Security (�) Size of RSA Modulus (R�) Size of Elliptic Curve (E�)
80 1024 160

112 2048 224
128 3072 256
192 7680 384
256 15360 512

Fig. 1. NIST recommendation of key sizes (in bits) for comparable security [17]

security. But adoption of ECC-based schemes often means rebuilding the current en-
cryption module, which can be expensive and time-consuming for a practical system.
Especially, considering the fact that RSA-based cryptographic modules are widely de-
ployed in many systems, which are mature and with support from various industrial
standards, ECC-based schemes does not always seem to be the best solution.

Recently, the problem of improving overhead of RSA-based KEMs was formally
considered by Bjørstad, Dent and Smart [7]. Their key idea was to construct key en-
capsulation mechanisms with partial message recovery (PKEMs). They gave a formal
security model based on the KEM�DEM framework [20] as well as the tag-KEM�DEM
[2] framework, with two constructions based on RSA: one from OAEP, the other from
OAEP� [21] with feedbacks. As a result, the overhead of both constructions no longer
depend on R�, but linear in �.

Given the problem of constructing a PKEM, one may naturally consider to utilize se-
cure public key encryption. Actually, this works! One just needs to encrypt dk��m0 in the
KEM ciphertext, where dk is the session key and m0 is the partial message to be recov-
ered. If the public key encryption is secure, it is possible to show this scheme achieves
both message confidentiality and session key privacy. Note that by choosing a proper
PKE scheme, one can achieve quite good eÆciency, ever smaller ciphertext overhead
than the best from [7], which use more intricate tag-KEM structure [2]. Throughout this
paper, we don’t consider the tag-KEM variant of PKEMs, since it requires feedbacks,
thus is slower than the standard KEM�DEM construction [20].

M
��
�� P�
��� �� ��� P���
��� S������. The OAEP PKEM was previously consid-
ered a practical PKEM [7], since it is compatible with OAEP. However, we couldn’t
find any rigorous security argument why the OAEP PKEM can achieve the redundancy
of about 5� bits in [7]. Because OAEP is only known to su�er from a quadratic security
loss, due to the reduction from partial domain onewayness to full domain onewayness
[9,10,15], it is quite unlikely this optimistic estimation can hold. Also in [7], combin-
ing with passively secure DEM with ciphertext aunthenticity, a secure PKEM yields
a secure hybrid encryption. But such DEM will require additionally � bits ciphertext
overhead due to the best known construction of such DEMs. We emphasize that the
PKEM is not tag-based in the construction, since otherwise this can be easily avoided.
We then give a new composition theorem, which requires only a weaker DEM. The
direct merit is this additional � bits can be removed from the DEM.

T�� M���
-C�������� M�	��. In practice, an adversary can observe multiple cipher-
texts, possibly chosen by itself, as discussed by [4,3]. It was then shown in [3] that
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for public key encryption, the security reduction will degrade as the number challenge
queries increase, in general a factor of qe, where qe is the number of the challenge
queries. Thus proving the security in the single-challenge model becomes suÆcient.
For practical applications, if qe is estimated as 240, this actually implies that the anal-
ysis given in [7] is not valid in this stronger, however, more realistic scenario. As a
result, one has to enlarge the public key size and the randomness size of the ciphertext
to compensate this security loss, e.g., at least 40-bit additional randomness and a 3072-
bit RSA modulus (for only 80-bit security) should be used, for the security result of the
RSA-OAEP PKEM given in [7].

Additionally, we remark that even in the single challenge model, the analysis of
OAEP-PKEM in [7] may be a little too optimistic, because � has to be much longer
than what was mentioned, due to the fact that the best known reduction of RSA-OAEP
[10,15] su�ers from a quadratic security loss. I.e., for �-bit security, one has to adopt
R2�-bit RSA modulus. In fact, it was already pointed out in [18], RSA-OEAP with a
1024-bit modulus only provides a security level of 240. Considering this security loss,
one has to enlarge R�, which makes the scheme very ineÆcient.

To summarize, the results in [7] become not meaningful in the multi-challenge model,
furthermore, as we will argue shortly after, even in the single challenge model, known
PKEM schemes are not eÆcient enough, because there are a few important issues un-
considered in the previous research. So we naturally consider the following question,
how to eÆcient build PKEM in the multi-challenge model?

1.1 Related Work

We note the idea of using the KEM to transport partial plaintext is not new: Shoup
has mentioned a “long message mode” for RSA-OAEP� KEM [20], which aimed at
shortening the overhead of OAEP� KEM when dealing with a long plaintext, but no
formal security definition or analysis was given there. It seemed that the long message
mode did not draw much attention, probably because the OAEP� KEM didn’t show up
in the final ISO�IEC standard [22].

The standard security definition for public key encryption is indistinguishability
against adaptive chosen ciphertext attack IND-CCA [11,16,19]. In such a security model,
the adversary can query the challenge oracle only once, acquiring only one target chal-
lenge ciphertext, thus it is called the single-challenge model.

The multi-challenge (single receiver) model was first considered in [3], where the
adversary can query the challenge oracle multiple (up to a number bounded by a poly-
nomial of the security parameter) times, thus it is called the multi-challenge model.
Apparently, the multi-challenge model is stronger. But in [3], a general reduction to
from the multi-challenge to the single-challenge security was given, yet with noticeable
security loss. It is then worth emphasizing that a loose security reduction means only
less security is guaranteed under the same key size. So if a multi-challenge adversary
is considered, one has to enlarge the key size to compensate the security loss due to the
loose reduction.

Recently, Boldyreva [8] proved an RSA-based scheme (OAEP��), oringinally pro-
posed by Kobara and Imai [13], achieves tight security in the multi-challenge model. We
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remark that only DiÆe-Hellman based schemes were known to achieve tight security
reduction in the multi-challenge model previously [3].

1.2 Our Contributions

Since most techniques used in this paper were well-known in the related literature,
we view our primary contributions as confirming previous research on PKEMs and
pointing out some practical issues, and giving alternative solutions. Though some RSA
based schemes are in the random oracles, our generic constructions are without random
oracles.

Especially, regarding security notions, we extend the single challenge model in [7],
and define a multi-challenge model for PKEMs. We also give some constructions of
PKEMs based on secure PKEs in the multi-challenge model. Such constructions are nat-
ural and simple. We note similar constructions were considered in [7] to build PKEMs
in the single-challenge model. The short security arguments in [7] claimed that if the
PKE scheme is IND-CCA secure [11,16,19] regarding m (the plaintext) and oneway
against chosen plaintext attack (OW-CPA), the above PKEM scheme is secure. Their
confidence comes from the proof of RSA-KEM [20], where H(m��r) happens to be the
session key for RSA-KEM. In this way, they have implicitly assmed that m��r can be
encoded as a plaintext of the underlying (deterministic) PKE (RSA encryption in this
case), which is exactly the proof strategy for RSA-KEM [20]. We note that for general
PKE with randomness recovery, e.g., McEliece Encryption, this may not necessarily be
true. It is thus concluded that the claim of [7] requires further justification. In this paper,
we investigate this point and give an aÆrmative answer. As an independent interest, we
also improve the PKEM�DEM composition theorem of [7], in both the single challenge
model and the multi-challenge model.

Finally, we show some instantiations of our generic constructions and compare their
performances. We are thus confident that our generic constructions are eÆcient.

2 Preliminary

N����
���. If x is a string, let �x� denotes its length, while if S is a set then �S � denotes
its size. If S is a set then s � S denotes the operation of picking an element s of S
uniformly at random. We write z � �(x� �� � � �) to indicate that � is an algorithm with
inputs (x� �� � � �) and an output z. Denote x��� as the string concatenation of x and �. If
k � �, a function f (k) is negligible if � k0 � �, � k � k0, f (k) � 1�kc, where c � 0 is a
constant.

2.1 Public Key Encryption

A public key encryption scheme consists of three algorithms PKE� (PKE�Kg�PKE�Enc�
Dec).

PKE.Kg: a randomized algorithm, taking a security parameter � as input, generates a
public key pk and a corresponding secret key sk, denoted as (pk� sk) � PKE�Kg(�).
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PKE.Enc: a possibly randomized algorithm, taking a public key pk, and a plaintext
m taken from the message space as input, with internal coin flipping r, outputs a
ciphertext c, denoted as c � PKE�Enc(pk�m; r), in brief c � PKE�Enc(pk�m).

PKE.Dec: a deterministic algorithm, taking a secret key sk and a ciphertext c as input,
outputs the corresponding m, or “�” (indicating invalid ciphertext), denoted as m �

PKE�Dec(sk� c).

We require a PKE scheme should satisfy the standard correctness requirement, namely
for all (pk� sk) � PKE�Kg(1�) and all m, PKE�Dec(sk�PKE�Enc(pk�m)) � m. We give
the definition of IND-CCA security below.

Definition 1 (PKE Security). We say a public key encryption scheme 	 is (�� T )-IND-
CCA secure, if the advantage of any adversary � is at most � within time T in the
following experiment.

Advind-cca
���

(�) � �Pr[(pk� sk) � PKE�Kg(1�); b � 
0� 1�;

b� � ���(pk�����b)���(sk��)(pk) : b� � b] � 1�2�

where � is a decryption oracle, which returns the corresponding decryption result on
a decryption query on a ciphertext c (except the challenge ciphertexts output by 	).
The adversary queries 	 and � at most qe and qd times, respectively. We say a
PKE scheme is IND-CCA-MC secure, if for polynomially bounded qe, qd and T , � is
negligible.

Moreover, if we call the PKE scheme IND-CCA secure if qe � 1.

2.2 KEMs with Partial Message Recovery (PKEMs)

Informally, a KEM with partial message recovery is a public key encryption that not
only encrypts the session key but also encrypts part of the plaintext. Towards an easy
comparison, we take the syntax of [7]. A KEM with partial message recovery (PKEM)
consists three algorithms PKEM � (PKEM�Kg�PKEM�Enc�PKEM�Dec):

PKEM.Kg: a randomized algorithm, taking a security parameter � as input, gener-
ates a public key pk and a corresponding secret key sk, denoted as (pk� sk) �

PKEM�Kg(�). As part of the public key, there are two parameters PKEM�ms	len
and PKEM�ke�len, denoting the length of message data that may be recovered from
the KEM.

PKEM.Enc: a possibly randomized algorithm, taking a public key pk, and a partial
plaintext m of length at most ms	len taken from the message space as input, with
internal coin flipping, outputs a session key dk of length ke�len and a ciphertext c,
denoted as (dk� c) � PKEM�Enc(pk�m).

PKEM.Dec: a deterministic algorithm, taking a secret key sk and a ciphertext c as
input, outputs the corresponding m, or “�” (indicating invalid ciphertext), denoted
as (m� dk) � PKEM�Dec(sk� c).

Additionally, we require the correctness property, namely, � (pk� sk) � PKEM�Kg(�),
� m and (c� dk) � PKEM�Enc(pk�m), there is PKEM�Dec(sk� c) � (m� dk). For sim-
plicity, we shall omit the descriptions of PKEM�ms	len and PKEM�ke�len in clear
contexts.



308 R. Zhang and H. Imai

S����
�� D�
�
�
��. PKEMs provide better eÆciency over plain KEMs, however, the
more complicated structure makes the security definitions more intricate. As pointed
out by [7], both session key confidentiality and data privacy of plaintext should be
considered. Following [7], we call the resulting security notion IND-RoR-CCA, where
data privacy, namely indistinguishability (IND), and session key confidentiality, namely
real-or-random (RoR), are considered simultaneously against chosen ciphertext attack
(CCA). Note that we allow the adversary to ask multiple challenge queries. Since the
data confidentiality of the PKEMs is related to that of the PKEs, for easy understanding,
we also use the notation IND-CCA-MC.

Definition 2 (PKEM Data Privacy). We say a PKEM scheme is (�� qe� qd� t)-IND-
CCA-MC secure, if an adversary � with running time t has at most advantage � in
the following experiment, assuming it queries 	 at most qe times and � at most qd

times, respectively.

Advror-cca
���

(�) � �Pr[(pk� sk) � PKEM�Kg(�); b � 
0� 1�;

b� � ���(pk�����b)���(sk��)(pk) : b � b�] � 1�2�

� is given access to two oracles: An encryption oracle	(pk� �� �� b), on an input pair of
messages (m0�m1) of equal length, returns cb and dkb, where (dkb� cb)�PKEM�Enc(pk�
mb). A decryption oracle �, on an input ciphertext c, returns the corresponding ses-
sion key dk and partial plaintext m or a special symbol “�” if c is invalid, where
(dk�m) � PKEM�Dec(sk� c). The only limitation is that � cannot query to � any
ciphertext previously output by 	. We say a PKEM is secure, if for any probabilistic
polynomial time (PPT) bounded�, � is negligible.

Definition 3 (PKEM Session Key Privacy). We say a PKEM scheme is (�� qe� qd� t)-
RoR-CCA-MC secure, if an adversary � with running time t has at most advantage �

in the following experiment, assuming it queries 	 at most qe times and � at most
qd times, respectively.

Advror-cca
���

(�) � �Pr[(pk� sk) � PKEM�Kg(�); b � 
0� 1�;

b� � ���(pk���b)���(sk��)(pk) : b � b�] � 1�2�

� is given access to two oracles: An Real-or-Random oracle ��(pk� �� b), on an input
message m, returns dkb and c, where (dk1� c) � PKEM�Enc(pk�m) and dk0 � � is
a random session key chosen from the key space � . A decryption oracle �, on an
input ciphertext c, returns the corresponding session key dk and partial plaintext m
or a special symbol “�” if c is invalid, where (dk�m) � PKEM�Dec(sk� c). The only
limitation is that� cannot query to � any ciphertext previously output by 	. We say
a PKEM is secure, if for any probabilistic polynomial time (PPT) �, � is negligible.

It is worth emphasizing that in the above two definitions, we allow � to have multi-
ple challenge queries, i.e., access 	 or �� multiple times. When qe � 1, the multi-
challenge model degenerates to the single challenge model.
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3 A Modified Composition Theorem for PKEM

[7] has shown how to use PKEM with data encapsulation mechanism (DEM) to design
hybrid encryption. The method is quite classical. Compared with normal KEM, PKEM
has to additionally carry a part of the plaintext. We remark that one can use the same
construction as mentioned in Def. 7 of [7], which is just a classic KEM�DEM con-
struction of hybrid encryption with the KEM part carry a partial plaintext. We have the
following modified composition theorem for the construction:

Theorem 1 (PKEM�DEM Security). The PKEM�DEM construction of PKE is (�1 �

�2 � �3� t1 � t2 � t3)-IND-CCA-MC secure, assuming the PKEM is (�1� t1)-IND-CCA-MC
and (�2� t2)-RoR-CCA-MC secure and the DEM is (�3� t3)-IND-CCA-MC secure.

For limitation of space, we omit the definition of IND-CCA-MC security for DEMs and
leave the complete proof the full version of this paper [24]. We discuss two issues. First,
in [7], the DEM part was required to provide both passive security (a.k.a. semantic
security for symmetric key encryption) and ciphertext authenticity (a.k.a. integrity of
ciphertext). Actually, as shown in [14], this requirement can be relaxed. Recall the result
of [5], a passively secure symmetric key encryption with ciphertext authenticity implies
IND-CCA-MC secure symmetric key encryption [4,5,12], which may be weaker.

4 Generic Constructions from Secure PKE

In this section, we give two generic constructions: one from PKEs, and the other from
PKEs with randomness recovery.

4.1 From PKEs

Construction 1. Denote PKE � 
PKE�Kg�PKE�Enc�PKE�Dec� as a public key en-
cryption scheme with plaintext space 
0� 1��, then a secure PKEM can be constructed
with plaintext space 
0� 1���k and the session key space 
0� 1�k as follows:

PKEM�Kg: taking as input a security parameter �, outputs (pk� sk) � PKE�Kg(�),
where pk is the public key and sk is the secret key.

PKEM�Enc: taking as input a public key pk and a message m, sampling dk � 
0� 1�k,
outputs the ciphertext c � PKE�Enc(pk�m��dk) and the encapsulated session key
dk.

PKEM�Dec: taking as input a secret key sk and a ciphertext c, computing (m��dk) �
PKE�Dec(sk� c), outputs the partial plaintext m and the session dk.

The correctness of this construction follows that of the underlying PKE, which is easily
verifiable from the construction. We furthermore have Theorem 2 guarantee its security.

Theorem 2. The scheme of Construction 1 is a secure PKEM scheme in the multi-
challenge model. In particular, the PKEM scheme is (�� t�O(qe�))-IND-CCA-MC secure
and (�� t�O(qe�))-RoR-CCA-MC secure, assuming the PKE scheme is (�� t)-IND-CCA-
MC secure.
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4.2 From PKEs with Randomness Recovery

With the warming-up in Section 4.1, it is natural to come up with the following idea:
in Construction 1, one has used (independent) random coins for PKE. It will be more
eÆcient, if the session key is also derived from the same random coins. Certainly, for
the correctness condition, it is necessary that the decryption algorithm of the underlying
PKE also recovers these random coins.

In the standard model, this approach may be problematic since the same random
coins are used both to encrypt the partial message and generate the session key, and this
is hard for a proof in general. Fortunately, our main applications are RSA-based prim-
itives, and usually random oracles are inherent in the schemes. By assuming random
oracles, we can actually achieve pretty good eÆciency.

Informally speaking, a PKE with randomness recovery means that there is an ef-
ficient randomness recovery algorithm PKE�Dec� related to the decryption algorithm,
with input a secret key sk and a valid ciphertext, recovers the original message m and
the randomness r used in the encryption algorithm. We require that for all (pk� sk) �
PKE�Kg(�), (c� dk) � PKE�Enc(pk�m), we have (m� r) � PKE�Dec�(sk� c). Naturally
�r� � �.

Construction 2. Denote PKE � (PKE�Kg�PKE�Enc�PKE�Dec) as a public key en-
cryption scheme. Denote PKE�Dec� as the associated randomness recovery algorithm
defined above. A secure PKEM can be constructed with plaintext space 
0� 1�� as
follows:

PKEM�Kg: taking as input a security parameter �, outputs (pk� sk) � PKE�Kg(�).
Additionally pick a cryptographic hash function T : 
0� 1�2� � 
0� 1��. The public
key is (pk� T ) and the secret key is (sk� T ).

PKEM�Enc: taking as input a public key pk and a message m, outputs the ciphertext
c � PKE�Enc(pk�m; r) and the encapsulated session key is dk � T (pk�m� r).

PKEM�Dec: taking as input a secret key sk and a ciphertext c, computing (m� r) �
PKE�Dec�(sk� c), outputs the partial plaintext m and the session dk � T (pk�m� r).

In the above construction, the randomness recovery algorithm PKE�Dec� is used instead
of the decryption algorithm PKE�Dec. The construction is similar to, but with essential
improvement over [7]. In [7], the session key dk is set as dk � T (m� r), while in our
scheme, dk � T (pk�m� r). Our scheme has an obvious advantage: Including pk into the
session key derivation eliminates the so-called rogue key malleability of the encapsu-
lated session key. This attack is outside of the model of chosen ciphertext security, but
may have significant impact in practice.

Theorem 3. Construction 2 is a (� � qT 2�k2 � t � O(qT�))-IND-CCA-MC and (�� t �
O(qT�))-RoR-CCA-MC secure, assuming PKE is (�� t)-IND-CCA-MC secure with ran-
domness recovery and T is a random oracle.

The proofs of Theorems 2, 3 are left to the full version of this paper [24].
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5 Concrete Schemes and Comparisons

In this section, we instantiate our generic constructions, and analyze their security and
eÆciency. The table only listed multi-challenge, but the result is similar wit single chal-
lenge model. It is then seen that compared with many other candidates, OAEP PKEM
is quite ineÆcient.

Table 1. Comparisons of PKEMs in the multi-challenge model

Schemes Reduction Cost Ciphertext Size Ciphertext Overhead
OAEP PKEM qeε

2 + O(qeqGqH2−k1 + qeqdqG2−k2 ) R2κ + k2 k1 + k2 ≈ 7κ
OAEP+ PKEM qeε + O((qeqG2−k1 + qeqd2−k2 )κ) Rκ k1 + k2 ≈ 6κ
OAEP++ PKEM ε + O(qd2−k1 + (qe(qG + qd) + qdqG)2−k2 ) Rκ + k2 k1 + k2 ≈ 5κ
OAEP-3R PKEM ε + O(qe(q2

d + qGqH + qdq f )2−k2 ) Rκ k2 ≈ 4κ
� For simplicity, we only list a few PKEM schemes using Construction 2 in the table. k1 is the
length of a constant vector or the output length of a hash function. k2 is the bit length of the
random coin. It remains possibility for the OAEP PKEM or the OAEP� PKEM to have a better
proof, since the above bound is obtained by directly using [3,21,9]. For simplicity, we assume
R� � k2 � � � k2 for OAEP-3R.

6 Conclusion

In this paper, we investigate several issues regarding the KEM with partial message
recovery (PKEM). We first point out some practical issues not considered by previous
research, then go to to extend the security model in the multi-challenge setting. We then
show two generic constructions in the extended model and compare some instantiations
from well-known transforms for RSA.
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Abstract. Peer-to-peer (P2P) file-sharing worms are becoming a deadly

security threat to P2P systems. The defense that just relies on the im-

provement of users’ security awareness and their individual recoveries is

not adequate. Existing automated patching systems such as Microsoft

Windows Update and Symantec Security Update are also not necessar-

ily the best fits in combat with P2P file-sharing worms, because of the

inconsistency between the jurisdiction of these patching systems and the

propagation community of P2P file-sharing worms. In this paper, with a

deep understanding of the propagation characteristic of P2P file-sharing

worms and the inspiration of more rapid contagion worms, we propose

a complementary contagion-like patch dissemination mechanism which

utilizes the existing file-sharing infrastructure to timely disseminate se-

curity patches between the participating peers of the file downloading. In

addition, the digital signature scheme is introduced to prevent malicious

peers tampering with patches in the dissemination process. Through the

epidemiological model and extensive packet-level simulations we demon-

strate the effectiveness of the proposed patch dissemination mechanism.

Keywords: Peer-to-peer file-sharing worm, Contagion, Workload.

1 Introduction

In recent years, more and more network applications adopt the peer-to-peer
(P2P) architecture to achieve high scalability and reliability, such as file-sharing,
instant messaging, cooperative computing, and live media streaming. Among
the numerous existing P2P applications, file-sharing is the most widely used
application. It has been illustrated that P2P file-sharing traffic accounted for
more than 44% of North-American Internet traffic in the traffic statistics report
on North-American broadband networks released by Sandvine in June 2008 [1].

The growing popularity of P2P networks provides an ideal venue for worm
propagation. Recently, many worms exploiting the file-sharing service of P2P sys-
tems as their major infection vector have been reported, e.g., Benjamin, Surnova
and Duload [2], which are referred to as P2P file-sharing worms. These worms
usually disguise themselves as popular files in P2P file-sharing systems to attract
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users’ attention. When downloaded and opened by the user without being aware
of the threat, they infect the victim host and add a number of copies of them-
selves with different attracting names to the shared folder of the new infected
host to accelerate their propagation. Since P2P file-sharing worms passively wait
the download of the victims instead of active scanning and also require human’s
operation to propagate, they are also referred to as P2P passive worms or P2P
virus. Two measurements about malware prevalence in the KaZaA file-sharing
network in February and May 2006 suggested that: over 12% of KaZaA hosts
were infected by over 40 different malwares, and the malwares accounted for
more than 22% and 15% of the total crawled data respectively [3].

Due to the increasing trend in worms of exploiting file-sharing application
as their major infection vector, it is necessary to carry out in-depth investiga-
tions on the design space of defense strategies against P2P file-sharing worms.
Being the currently most popular vehicle for eliminating and containing Inter-
net worms, automated patching systems are widely employed by vendors (e.g.,
Microsoft and Symantec) to automatically push the latest security patches to In-
ternet hosts. Since the existing patching systems are not exclusively designed for
P2P systems, there exist some problems when combating with P2P file-sharing
worms. First, the jurisdiction of these patching systems and the propagation
community of P2P file-sharing worms are are often not a good match. In most
cases, hosts running P2P client programs may not install automated patching
tools, and vice versa. On one hand, the P2P users out of the jurisdiction of patch-
ing systems cannot get the latest P2P patches; on the other hand, whether the
security server of patching tools blindly push P2P patches to all Internet hosts
or scan for existence of P2P client programs within each Internet host before
sending a patch to it, not only system resources and network bandwidth could
be greatly wasted, but unnecessary latency would be introduced. Moreover, most
existing patching systems adopt the traditional client/server architecture, which
is essentially different from the distributed P2P architecture with high scalability
and reliability. The introduce of the centralized patching server may cause the
whole system to have a single point of failure and suffer from lack of scalability.

Utilizing the existing file-sharing infrastructure, Xie et al. provided two in-
ternal patch dissemination mechanisms exclusively for P2P file-sharing systems,
a download-based approach and a search-based approach [4]. In the download-
based approach, the security patches are first disseminated to a small set of
popular key peers which provide a large fraction of shared files, and then the
other participating peers could receive the security patches from these popu-
lar peers when they actively download files from these popular peers. In the
search-based approach, once the key peer detects worm infection in a file just
downloaded, it immediately re-performs a search to locate a set of suspicious
targets, and actively push security patches to some of them.
Contributions: In this paper, with a deep understanding of the propagation
characteristic of P2P file-sharing worms and the inspiration of more rapid con-
tagion worms, we propose a novel contagion-like patch dissemination mecha-
nism against P2P file-sharing worms. Being a proprietary patch dissemination
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mechanism specially designed for P2P systems, the proposed patch dissemination
mechanism utilizes the existing file-sharing infrastructure to internally dissem-
inate patches between the participating peers of the file downloading. Security
patches cannot only be received from the file provider as a piggyback of the
requested file, but also can be received from the file requestor which proactively
pushes the patch to the file provider as an acknowledgement of the requested
file. Just as contagion worms, security patches continue their dissemination cycle
between the participating peers with the workload of P2P file-sharing systems,
while P2P file-sharing worms can only propagate from the file provider to the file
requestor. In addition, the digital signature scheme is introduced to prevent ma-
licious peers from tampering with patches in the process of patch dissemination.
Our proposed scheme is not a substitution of the existing automated patching
systems but rather a nice complement to them.

In the download-based approach, security patches can only be received from
the fixed initial patch dissemination peers; in the search-based approach, the pre-
cise identification of suspicious targets is difficult. In our proposed contagion-like
patch dissemination mechanism, all the participating peers can be the candidates
for security patch providers and receivers. After being patched, these participat-
ing peers cannot only provide the received security patch to the incoming file
requestors, but also proactively push the received security patch back to the file
providers when they download files from the file providers. Thus, security patches
can be disseminated more effectively in a simple way. Through the determinis-
tic epidemiological model and extensive packet-level simulations we demonstrate
the effectiveness of the proposed patch dissemination mechanism.
Organization: The rest of the paper is organized as follows. Section 2 gives
an overview of the propagation characteristics of P2P file-sharing worms. Sec-
tion 3 provides a deep dive into the details of the proposed contagion-like patch
dissemination mechanism against P2P file-sharing worms, and discusses the ef-
fectiveness of the patching scheme with a deterministic epidemiological model.
With the constructed P2P file-sharing worm simulator, we further evaluate the
proposed patch dissemination mechanism through the packet-level simulations
and summarize the experimental results in Section 4. Finally, we conclude this
paper in Section 5 with a brief summary and an outline of future work.

2 Preliminaries

P2P file-sharing worms usually disguise themselves as popular files in P2P sys-
tems to attract users’ attention. When downloaded and opened by the user with-
out being aware of the threat, P2P file-sharing worms infect the victim host. To
avoid suspicion, these worm usually not directly add a number of copies of them-
selves with different attracting names to the existing shared folder of the new
infected host to accelerate their propagation. Instead they usually first create a
hidden folder in the system directory of the new infected host, and then set the
hidden folder as an extra shared folder of the P2P application to which a number
of malicious copies with different attracting names are appended [2]. In this way,



316 X. Nie, J. Jing, and Y. Wang

P2P file-sharing worms continue their spread cycle. It is important to note that,
the propagation of P2P file-sharing worms is closely related to the workload of
P2P file-sharing systems, and P2P file-sharing worms can only spread from the
file provider to the file requestor with the file downloading. Although the spread
of P2P file-sharing worms is slower than that of random scanning worms, due
to their better performance in stealth, it is recommended as a major infection
vector especially in the preparing stage for a full fledged attack.

Files in P2P file-sharing systems are divided into normal files and malicious
files that are virtually the P2P file-sharing worms in this paper. According to
the existence of malicious files and their damage, all peers in the P2P file-sharing
system can be classified into one of following categories:

Susceptible - Peers that are not sharing any malicious files, but at risk of
downloading malicious files and being infected.

Exposed - Peers that have downloaded one or more malicious files, but have
not executed them. The exposed category is included on account of the delay
between the download of malicious files and execution.

Infected - Peers that have executed the malicious file. Upon execution, the
host become compromised and some more copies of malicious files reside in the
peer’s shared folder.

Recovered - Peers that have installed security patches. Once the patch has
been applied, the peer’s shared folder will be immediately scanned and cleaned,
and the peer become immunized to the worm.

The number of peers in each category at time t is denoted as S(t), E(t), I(t),
and R(t), respectively. N is the total number of peers in the P2P system. At all
times, every one of the N peers making up the system falls into one of the four
categories. Thus, for all value of t, N = S(t) + E(t) + I(t) + R(t).

3 The Contagion-Like Patch Dissemination Mechanism

To effectively eliminate and contain P2P file-sharing worms, we cannot merely
rely on the improvement of users’ security awareness and their individual re-
coveries; rather, we should disseminate the security patches to all participating
peers of P2P systems in an automated and systematic approach [5]. However, as
described in previous sections, existing automated patching systems are not nec-
essarily the best fits in combat with P2P file-sharing worms. Besides the incon-
sistency between the jurisdiction of these patching systems and the propagation
community of P2P file-sharing worms, the essential difference in the architecture
is another important reason. Because the patch is one special kind of files, the
existing file-sharing infrastructure should be considered rather than rebuilding.
Moreover, Since the spread of P2P file-sharing worms is much slower than that of
random scanning worms, a relative faster patch dissemination mechanism would
throttle the spread of P2P file-sharing worms well, not as the traditional patch
dissemination mechanism against random scanning worms that should be as
soon as possible. Based on the above considerations, we propose a contagion-like
patch dissemination mechanism against file-sharing worms.
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3.1 Scheme Description

Staniford et al. first presented the theoretical threat of contagion worms that
spread surreptitiously within the usual communication patterns to escape detec-
tion [6]. The core idea of the propagation measure of contagion worms can be
expressed as follows. Suppose an attacker has attained a exploit W which sub-
vert the clients of a P2P system. The attacker releases the worm on a peer, and
then simply waits. When other peers request download from the subverted peer,
the exploit W is sent with the download response; when the subverted peer re-
quests download from other peers, the exploit W is also sent with the download
request. The file requestor or file provider receiving the exploit are subverted by
the exploit W if they are vulnerable to it. In this fashion, the infection spreads
in the P2P system, much as a contagious disease spread based on the incidental
traffic patterns of its hosts, so this surreptitious worm is notably referred to as
the contagion worm.

If the exploit of contagion worms was substituted by the security patch, a
new fast patch dissemination mechanism would be available. The rate of patch
dissemination under the new mechanism will be faster than the spread of P2P
file-sharing worms, and little influence will be caused to the traffic patterns of
P2P systems. The patches in our proposed mechanism are not like traditional
worms which exploit the system vulnerability to self-propagate, but with slight
modification in the file download protocol to make the security patches dissem-
inated in P2P systems with the similar behavior of contagion worms.

GET /get/<File Index>/<File Name> HTTP/1.1

GET /get/<Patch Index>/<Patch Name> HTTP/1.1

HTTP/1.1  OK

HTTP/1.1  OK

GET /get/<Patch Index>/<Patch Name> HTTP/1.1

HTTP/1.1  OK

GIV <Patch Index>/<Patch Name>

Peer A`s patch version < Peer B`s patch version Peer A`s  patch version > Peer B`s patch version 

Peer A Peer B Peer A Peer B

Query

QueryHit

Query

QueryHit

Patch-Version: 0.4
GET /get/<File Index>/<File Name> HTTP/1.1
Patch-Version: 0.5

Patch-Version: 0.4

HTTP/1.1  OK
Patch-Version: 0.5
Patch-Info: patch index + patch name

Transfer File

Transfer Patch

Transfer File

Transfer Patch

Fig. 1. Illustration of contagion-like patch dissemination with the workload

The interaction between peers in the process of contagion-like patch dissem-
ination is illustrated in Fig. 1. Suppose peer A determines to download a file
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from peer B based on the search results. Peer A first initiates a HTTP GET
request to peer B with the current version number of the patch repository in
peer A. After receiving the download request, peer B sends a HTTP response
with the current version number of the patch repository in peer B. If the version
number of the patch repository in peer A is smaller than that of peer B, the
information about the latest patch (e.g. the index, name and size of the patch)
in peer B also should be provided with the HTTP response. After the transfer of
the requested file as the normal Gnutella paradigm, if the version number of the
patch repository in peer A is smaller than that of peer B and the information
about the latest patch in peer B is provided, peer A sends a HTTP GET request
to download the latest patch from peer B. If the version number of the patch
repository in peer A is larger than that of peer B, peer A sends a GIV message
with the information about the latest patch in it as a signal to proactively push
the patch back. After receiving the GIV, peer B initials a reverse HTTP GET
request to download the latest patch from peer A.

3.2 Security Enhancement

In the above described scheme, all the participating peers can be the candidates
of patch providers, while in the traditional centralized patching systems the se-
curity patches can only be got from the central server. For the openness nature
of P2P systems, malicious peers could easily replace the patch with other files
to interfere with the normal patch dissemination process or even inject mali-
cious codes to compromise the whole system, so it is essential to consider the
authentication and integrity of security patches. The digital signature scheme
based on public key cryptography is introduced to our proposed scheme to en-
sure that security patches originate from the legitimate security vendors and are
not tampered with in the dissemination process.

The security patches in contagion-like patch dissemination mechanism consist
of three parts: peer information, patch information and signature. The peer
information part contains the peer identifier and the version number of the patch
repository of the patch provider, and the two counterparts of the patch receipt.
The patch information part contains the description of the security patch (e.g.,
the release time and the publisher of the security patch, and the name, severity
level and propagation vector of the worm) and the security patch itself, which
is encoded in binary delta compression format to reduce the patch size.

Once a new security patch is generated, the security vendor immediately uses
its private key to sign the concatenation of the patch description and the patch
content, then publishes patches to initial patch dissemination peers. In the pro-
cess of patch dissemination, the fields of patch description, patch content and
digital signature should be kept unchangeable. Our proposed mechanism does
not require every receiver to authenticate the intermediate patch distributor but
the original publisher of security patches.

When receiving a security patch, the peer validates the signature with the
built-in certificate of the security vendor. If the signature is valid, the peer installs
the security patch; otherwise, the security patch is dropped.
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3.3 Modeling and Performance Analysis

In this section we derive a deterministic epidemiological model and analyze the
performance of the contagion-like patch dissemination mechanism theoretically.

Besides the fundamental notations, S(t), E(t), I(t), R(t) and N , we adopt the
notation λ to denote the average rate of file download per peer, η to denote the
average rate of file execution per peer, and c to denote the number of malicious
files generated when a file-sharing worm is executed. The total number of mali-
cious files and normal files at time t are denoted by K(t) and J(t), respectively.
When a user downloads a file, suppose the probability of choosing a malicious
file, h(t), depends on the prevalence of malicious files in the network, that is,
h(t) = α K(t)

K(t)+J(t) , where the constant α is a regulatory factor [7].
Based on the peer state transition described in Section 2, we derive the fol-

lowing group of differential equations that govern the system evolution.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dS(t)/dt = −λS(t)h(t)− 2λS(t)R(t)/N
dE(t)/dt = λS(t)h(t)− ηE(t) − 2λE(t)R(t)/N
dI(t)/dt = ηE(t)− 2λI(t)R(t)/N
dR(t)/dt = 2λ[S(t) + E(t) + I(t)]R(t)/N
dK(t)/dt = λS(t)h(t) + ηE(t)(c − 1)− 2λE(t)R(t)/N − 2cλI(t)R(t)/N
dJ(t)/dt = λN [1− h(t)]

The simulation parameters are set as follows: N = 20000, J(0) = 200, 000,
c = 20, λ = η = 0.5/hour, and α = 0.6. The initial proportion of all categories
of peers are set as follows: in the case of no defense deployment, S(0) = 99.5%,
E(0) = 0, and I(0) = 0.5%; while in the case with contagion-like patch dissemi-
nation mechanism, S(0) = 89.5%, I(0) = E(0) = 5%, and R(0) = 0.5%.
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Fig. 2. System evolution status on the epidemiological model

Figure 2 illustrates the system evolution status under the above two scenarios.
The results indicate that the contagion-like dissemination of security patches is
significantly faster than the propagation of file-sharing worms, and the contagion-
like patch dissemination mechanism can effectively contain file-sharing worms.
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The maximum proportion of infected peers is about 13%, slightly larger than the
sum of exposed peers and infected peers before disseminating security patches.

4 Experimental Evaluation

4.1 Simulation Setup

Based on the Gnutella 0.6 protocol and the latest measurement results, we imple-
ment a packet-level P2P file-sharing worm simulator. In this simulator, several
important factors affecting the spread of P2P file-sharing worms are taken into
consideration. The main modules of the simulator are constructed as follows.
Initial replicas distribution: The measurement study on the characteristic of
available files in the modern Gnutella networks demonstrated that the number
of shared files and contributed storage space by individual peers both follow
a power-law distribution, and the replicas popularity of individual files follow a
Zipf distribution [8]. Zipf’s law is a particular power-law function with coefficient
close to 1. Based on the Generalized Linear Preference (GLP) model for one-
dimensional power-law distribution, we construct the initial replicas distribution
of P2P systems as a two-dimensional power-law distribution. The coefficients of
the power-law distribution and the Zipf distribution are respectively set to be 2.5
and 0.8 according to the measurement results. With the continuous downloads,
the replicas distribution of P2P systems keeps changing.
Overlay topology: Previous measurements reported that both the top-level
overlay topology and the entire overlay topology of the Gnutella 0.6 network
with two-tier hierarchy exhibit small world properties [9]. According to this
discovery, we construct the overlay topology for simulation. We first construct
the top-level overlay topology composed of ultrapeers based on the Watts and
Strogatz’s one-dimensional small world model. Then for each leafpeer, we choose
U ultrapeers to connect to uniformly at random with an assumption that the
number of ultrapeers that the leafpeer connected to follows a normal distribution
U ∼ N(2, 1). If the chosen ultrapeer already has η leafpeers, re-choose another
ultrapeer to connect to, where η denotes the maximum number of leafpeers that
a ultrapeer can serve. The ratio of ultrapeers to leafpeers in the overlay topology
is set to 1:4 according to the measurement results.
Workload engine: The immutability of shared files causes the workload of
P2P file-sharing systems two distinguished characteristics. First, the file-sharing
clients rarely request the same file twice (“fetch-at-most-once”), unlike web
clients which fetch the same Web page many times. Second, the introduction
of new files and the addition of new users are the driven force which prevents
the fetch-at-most-once behavior driving the system to stagnation [10]. In our
model, we hypothesize that the underlying file request popularity follows a Zipf
distribution, and the popularity ranks are set according to the initial replicas
distribution. Due to the fetch-at-most-once behavior, subsequent requests from
the same client obey the distribution obtained by removing already fetched files
from the candidate file set and re-scaling so the total probability is 1.0. When a
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new file is introduced to the file-sharing system, its popularity rank is determined
by selecting randomly from Zipf(1) distribution.

The simulation parameters are set as follows: the total number of peers N =
20000, the initial number of unique files M = 30000, the initial number of replicas
J = 200, 000. The 20 popular files disguised by file-sharing worms are selected
uniformly at random from the top 100 most popular files. Suppose the number
of generated queries of each peer in an hour follows an exponential distribution,
λQ ∼ Exponential(0.5). Suppose all downloaded files will be executed, and the
interval between the file download and the execution follows another exponential
distribution, t ∼ Exponential(5min). For simplicity we assume that the file is
downloaded from a single peer, and the initial patch dissemination peers are
selected uniformly at random. The initial proportions of all categories of peers
are set as those in the epidemiological model. All the following results are the
average of 100 experiments.

4.2 Performance Analysis

The system evolution status on the simulator is illustrated in Fig. 3. In the begin-
ning the propagation of P2P file-sharing worms on the simulator is significantly
faster than that on the analytical model, but after about 75% of the participat-
ing peers are infected, the propagation on the simulator greatly declines. The
total time needed for P2P file-sharing worms to infect the whole system on the
simulator is longer than that on the analytical model. This phenomenon can be
explained as follows. In the beginning, as most peers request the popular files
which file-sharing worms disguise, the probability of choosing a malicious file is
considerably higher than the proportion of malicious files. With the ongoing in-
fections, the remaining uninfected peers are mostly the peers which share some or
all the files which file-sharing worms disguise. Because of the fetch-at-most-once
behavior, these peers will rarely request the shared files any more, so they have
a lower probability of choosing a malicious file. While on the analytical model
the probability of choosing a malicious file is just related to the proportion of
malicious files, which keeps increasing with the ongoing infections.

The dissemination of security patches on the simulator is slightly faster than
that on the analytical model. The reason is that when the precise replicas distri-
bution is taken into consideration, peers are more likely to download files from
the peers sharing more files, not as on the analytical model where all peers have
the equal probability to be downloaded from. This preference accelerates the
dissemination of security patches. In spite of the difference between the dissem-
ination curve on the analytical model and that on the simulator, the maximum
proportions of infected peers are approximately equivalent.

With the same parameters, we investigate the performance of the download-
based patch dissemination mechanism, where security patches can only be
received from a fixed set of popular peers which share the most files in the P2P sys-
tem. Figure 4 shows the system evolution status with the download-based patch
mechanism. Compared with the download-based patch dissemination mechanism,
our proposed contagion-like patch dissemination mechanism can disseminate
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Fig. 3. System evolution status on the file-sharing worm simulator

security patches to all participating peers in significantly less time, and throttle
the maximum number of infected peers to a rather lower level. Besides we investi-
gate the impact of the number of initial dissemination peers and the reaction time
on the maximum number of infected peers. We adopt patching threshold to con-
trol when the patching procedure starts, which represents the time delay since the
worm starts propagating till it is detected and a patch is generated. In this model,
the patching threshold is measured as the percentage of a sum of exposed peers
and infected peers in the system. Figure 5 illustrates that both a higher number
of initial dissemination peers and a lower patching threshold result in a less severe
infection.
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5 Conclusions and Future Work

In this paper, we propose a contagion-like patch dissemination mechanism as a
complement to existing centralized patching mode to combat with P2P
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file-sharing worms. The contagion-like patch dissemination mechanism utilizes
the existing file-sharing infrastructure to internally disseminate security patches
between the participating peers of the file downloading. In addition, the digi-
tal signature scheme is introduced to prevent malicious peers tampering with
patches in the process of patch dissemination. Through the epidemiological
model and extensive simulations we demonstrate the effectiveness of the pro-
posed patch dissemination mechanism. In future work we plan to investigate
effective patch dissemination mechanisms for P2P topological worms.
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Abstract. This paper addresses the challenges to formally specify the

vulnerability information and unify text-based vulnerability descriptions,

which might be available in various commercial, governmental, or open

source vulnerability databases, into a generic information model. Our

motivation is to utilize the remodeled vulnerability data for automat-

ing the construction of attack graph, which has been recognized as an

effective method for visualizing, analyzing, and measuring the security

of complicated computer systems or networks. A formal data structure

is proposed based on a comprehensive conceptual analysis on normal

computer infrastructure and related vulnerabilities. The newly proposed

vulnerability representation, which contains most of meaningful prop-

erties extracted from textual descriptions of actual vulnerability items,

can be directly fed into the reasoning engine of attack graph tools. A

lightweight information extraction mechanism is designed to automati-

cally transform textual vulnerability descriptions into the proposed data

structure. Several Reader and Writer plugins are implemented to enable

the communication with known vulnerability repositories.

1 Introduction

In recent years, a large number of vulnerabilities, which may result from weak
passwords, software bugs, computer virus, malware, script code, SQL injection,
misconfiguration, etc., have been revealed and archived by various communities,
either commercial, governmental, or open source [1]. The provided vulnerability
capabilities (repositories, tools, and services) are widely used by security audit-
ing, risk measurement, system adminstration, network management, penetration
testing, IDS/IPS, as well as software design, implementation, and evaluation, etc.

However, due to huge varieties on goals and requirements, the vulnerability in-
formation is represented and organized in different ways. The lack of similarities
and common criteria for vulnerability description has been recognized as a major
issue for sharing data across separate vulnerability databases. Several standards
or techniques, e.g., CVE [2], OVAL [3], CVSS [4], IDMEF [5], etc., have been
proposed to address this challenge ([6], [7]). However, the listed techniques are
not fully supported by most vulnerability repositories used in practice. More-
over, most of standards are based on the textual descriptions, which makes it
difficult to directly use the vulnerability information for automatic reasoning or

F. Bao et al. (Eds.): Inscrypt 2009, LNCS 6151, pp. 324–336, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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further processing efforts based on other formal methods, e.g., attack graph ([7],
[8], and [9]), which is an effective method to model, analyze, and evaluate the
security of complicated computer systems or networks.

In this paper, we propose a generic data structure which can model the vul-
nerability information in a formal way. Our work is originally motivated by find-
ing a way for automatic construction of attack graphs. To construct an attack
graph, the runtime information about the target system or network environment
should be monitored, gathered, and later evaluated with existing descriptions of
known vulnerabilities. The heterogeneous vulnerability repositories maintained
by different vulnerability vendors result in many practical problems on com-
patibility and inconsistency for the attack graph tools. Unifying vulnerability
description is expected but unfortunately has not been researched. On the other
hand, some vulnerability information, which is originally reported and even later
archived in textual descriptions, have been neglected by some emerged attack
graph constructors. The reason is that these descriptions do not follow a machine
understandable format and therefore can not be directly processed by computer
programs. Thus, current attack graph tools mostly rely on hand-generated in-
put or are restricted to only a few attributes, which are manually extracted from
those public vulnerability databases. The problems we expect to solve in this pa-
per include: a) how to design a data structure for fully containing the properties
of a textual vulnerability information. b) how to automatically extract mean-
ingful information from various existing vulnerability databases and transform
them into the proposed unified format.

The reminder of this paper is organized as follows. Some background informa-
tion and analysis, concerning on basic concepts of computer vulnerability and
existing works on modeling vulnerability information, are provided in Section 2.
Besides, some recognized efforts towards unifying vulnerability information are
presented. In Section 3, a new data structure is proposed which can be used
to represent vulnerability information as well as some important properties of
systems under attacks. Section 4 shortly presents how to extract useful infor-
mation from existing vulnerability databases and then transform them into the
proposed data structure. Then, we conclude the paper in Section 5.

2 Towards Modeling Vulnerability Information

2.1 Vulnerability Representation: Description and Condition

Computer system vulnerabilities describe the potential harm threatening an IT
system. The cause of this harm can be assigned to one of the four categories:
software layer, physical layer, administrative layer, and user layer. The software
layer includes vulnerabilities which originate in the unintended behavior of ap-
plications. The physical layer includes vulnerabilities that result from physical
access to hardware on which applications run. The administrative layer includes
vulnerabilities caused by procedures, policies and configurations, etc. Vulnerabil-
ities are often the result of poor policies. The last, and probably most damaging
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class of vulnerabilities are caused by users. No matter how good software is pro-
grammed, the hardware is protected, and how tight the security policies may be
defined, if a user writes down the account password on a Post-it note and sticks
it right on the monitor, the system remains highly vulnerable.

A vulnerability may have a number of exploits which describe how to cause
unintended behavior based on the corresponding weakness. For each exploit, mit-
igation may be known to circumvent the exploitation of a vulnerability. Transi-
tively, each mitigation relates to a specific vulnerability. All three, vulnerability,
exploit, and mitigation belong to description, since they describe a situation,
how to make use of it, as well as how to prevent it. Note the difference in vul-
nerability which describes a situation as is, and an exploit at hand or mitigation
which describes a how-to that is a procedure or algorithm. Descriptions are not
necessarily textual descriptions only, but can be available in the form of code
examples, recommendations, or the like. A piece of software can be a description
as well. Also, having an exploit at hand does not mean making use of it. For
this, actions are used which are realizations of descriptions. The action making
use of an exploit is called attack, the action applying a mitigation is called a fix.

Both actions, i.e., attack and fix, result in the change of system properties
referred to by a description as condition. A condition is a characterization of
system properties. Although there is no difference in the structure of a precondi-
tion and a postcondition, both are proposed to clarify the concept of condition.

Take the Downadup1 vulnerability as an example. The textual description
of the CVE entry 2008-4250 states:

The Server service in Microsoft Windows 2000 SP4, XP SP2 and SP3,
Server 2003 SP1 and SP2, Vista Gold and SP1, Server 2008, and 7 Pre-
Beta allows remote attackers to execute arbitrary code via a crafted
RPC request that triggers the overflow during path canonicalization, as
exploited in the wild by Gimmiv.A in October 2008, aka “Server Service
Vulnerability.”

Vulnerable applications were all Microsoft Windows versions from Windows 2000
to Windows Server 2008. The inflicted harm is described as “allows remote
attackers to execute arbitrary code”, which results in an integrity violation,
but can easily turn into a confidentiality as well as an availability violation.
Because the affected programs are operating systems, it is assumed that any
data stored and program executed in the context of this operating system will
be affected. The technique used is described as “RPC request that triggers the
overflow during path canonicalization” and an exploit is available by the name
“Gimmiv.A”. Microsoft has released a patch as a fix on October 23rd, 20082.

2.2 Unification on Known Vulnerability Databases

Similar to the Downadup example given above, many other vulnerabilities
emerge each year. Reports are provided by commercial organizations which
1 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4250
2 http://www.microsoft.com/technet/security/bulletin/ms08-067.mspx

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4250
http://www.microsoft.com/technet/security/bulletin/ms08-067.mspx
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offer security solutions, as well as by individual security researchers. Known
vulnerabilities of programs are collected in vulnerability databases (VDB). Such
databases comprehend large compilations of software weaknesses in a non-
uniform manner. The reason is likely the different goals that different providers
of VDBs pursuit. Currently, a large number of VDBs are maintained by commer-
cial vendors, such as SecurityFocus (S.Focus)3, DragonSoft (D.Soft)4, Secunia
5, X-Force6, etc. In comparison, there are also some non-commercial VDBs,
such as Open Source Vulnerability Database (OSVDB)7, Cooperative Vulnera-
bility Database (CoopVDB)8, Department of Energy Cyber Incident Response
Capability (DoE-CIRC)9, National Vulnerability Database (NVD)10, and United
States Computer Emergency Readiness Team (US-CERT)11, etc.

To unify these VDBs, some efforts, usually resulting in meta vulnerability
databases, are proposed. Most of them are independent from different VDB in-
stances. The ultimate goal is to provide a unified view on different implementa-
tions and aspects of the same problem. An important role in this process is taken
by the United States National Cyber Security Division (NCSD). The NCSD
runs the US-CERT and sponsors vulnerability related projects, such as National
Vulnerability Database (NVD), Common Vulnerabilities and Exposures (CVE)
list [2], as well as Common Vulnerability and Assessment Language (OVAL) [3].
Besides, the Common Vulnerability Scoring System (CVSS) [4] maintained
by the Forum of Incident Response and Security Teams (FIRST) is another
recognized activity towards providing a unified view of exposed vulnerability
information.

3 Data Structure for Modeling Vulnerability Information

As discussed above, a transitional database is usually required to link descrip-
tions in VDBs and attack descriptions required by some automatic reasoning
software, e.g., attack graph tools. A data structure for this intermediate database
is proposed in this section, which can be used as an interface between vulnera-
bility databases and attack graph construction tools.

3.1 Requirements

The required data structure should be capable of holding a broad range of knowl-
edge. This information could be drawn from a number of different sources, such

3 http://www.securityfocus.com/
4 http://vdb.dragonsoft.com/
5 http://secunia.com/advisories/
6 http://xforce.iss.net/
7 http://www.osvdb.org/
8 https://cirdb.cerias.purdue.edu/coopvdb/public/
9 http://doecirc.energy.gov/ciac/

10 http://dnvd.nist.gov
11 http://kb.cert.org/vuls/

http://www.securityfocus.com/
http://vdb.dragonsoft.com/
http://secunia.com/advisories/
http://xforce.iss.net/
http://www.osvdb.org/
https://cirdb.cerias.purdue.edu/coopvdb/public/
http://doecirc.energy.gov/ciac/
http://dnvd.nist.gov
http://kb.cert.org/vuls/
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as vulnerability databases, network scanners, policy parsers, firewall configura-
tions, and user input. These pieces are based on semantically different things,
although they all describe security aspects of a system. Also, different sources
mean different semantics, because one source may describe and interpret data in
another way, which might be different with what other sources do. This implies
that a good data structure needs to be flexible or provide means to describe
different aspects in different ways, while still providing a link between them.

Information on topology of the target network has been seen as an important
type of knowledge by almost all of previous vulnerability models, such as [8]
and [9]. It is relevant how hosts are connected, which systems can be reached
from which computers, what firewall rules are active and restrict access, and how
traffic flows are manipulated. Besides, vulnerabilities of installed software and
used protocols are concerned, e.g., which version of software is vulnerable, what
is necessary to exploit it, and what are the effects of such an exploitation. Some
attack graph tools allow different types of attacker models, such as a novice
attacker or an adversary with unlimited knowledge and resources. Moreover,
information on deployed security policies gets more and more interests [10].

The existing vulnerability descriptions can be categorized as either dynamic
or static. The network topology changes every time when a host joins or leaves
the network. New software may be installed, reconfigured, or removed at any
point in time, and the stored data can also change at any time. Therefore, a
flexible structure is important. On the other hand, vulnerability information
that are descriptions of vulnerabilities known to mankind, are generally static.
Once identified and described they do not change.

For a useful data structure it is important to be related to a specific domain,
because a clear conception of the modeled information eases the description of
data and relationships between pieces of information. Therefore, some completely
generic data structures, e.g., [11], do not meet the needs. The vulnerability infor-
mation databases used as sources of input always refer to software vulnerabilities.
This excludes weaknesses exploited through social engineering or direct physical
access to a machine.

Additionally, [12], [13], and [14] have tried to use predicate and boolean
logic to describe multi-step attacks. A predicate describes a property or a rela-
tion which objects may have in common. For example, data can or cannot be
readable for a certain user. is readable(x) then is a predicate which is true if
x is readable and false if x is not readable. The use of predicates allows the
description of a set of elements without the need to explicitly list them. Instead,
the property all these elements have in common is described. In the context of
attack descriptions, this allows to describe, for example, installed applications
without the need to list all vulnerable versions, such as done by the NVD. The
use of boolean logic gives further benefits. First of all, it reduces values to simple
true or false characteristics. This increases the speed of evaluation of conditions,
for example “is a vulnerable application installed” or “is a file readable to the
attacker”. Also, boolean logic enables the connection of conditions, such as “ap-
plication A is installed” and “write access to file F is given.”
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3.2 A Conceptual Model of Computer Vulnerability

To propose a new data structure, several questions need to be considered, such
as what information is used, how it is used, and how it relates to each other.

(a) System Properties (b) Influence Properties

Fig. 1. Properties of Computer Vulnerability

System properties are characteristics and resources of a computer system.
Each system property describes one specific attribute of such a system, whereas
properties are related to one another as depict in Figure 1(a). For example, the
installed version of an application can be a system property. An application’s
version is meaningless if it cannot be linked to a certain application. Proper-
ties and their relations may change over time due to modifications, such that
an application may be upgraded to a newer version. System properties can be
found in two layers, the network layer and the software layer. The network layer
describes properties of interconnected computers, such as network addresses and
port numbers. The software layer describes properties of software systems, such
as programs, data, and account information.

A network is a group of directly connected network addresses. A network
address is an identifier of a host in a network. Directly connected means it is
possible to reach from one host of network to another host of the same network.
Network addresses may have a number of open ports per address which are used
by programs to communicate with other programs.

The network layer properties also consist of host connectivity as well as port
connectivity. Both are essential to capture which hosts and programs can be
reached. Host connectivity is a boolean value to describe whether one host can
be reached from another host. This may be influenced by the network the cor-
responding hosts are in or by firewall rules, preventing certain hosts to connect
to others. Port connectivity is a boolean value to describe whether one port of a
network address can be accessed from another port of a network address. Sim-
ilar to host connectivity, this can be influenced by firewall rules or comparable
system configuration tools.
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The term program is used synonymously to application, service, and operating
system. All of them are regarded as programs. Programs may run other programs,
such as an operating system runs daemons or user applications, or an Internet
browser allows to include add-ons. A program may use a number of protocols to
communicate with other programs. A protocol is not necessarily linked to either a
network port (e.g., TCP) or a network address (e.g., ICMP). Protocols may also
be file-based or use other means to connect to programs. The decision to not
distinguish between operating systems and applications was made to simplify
the modeling of programs. Other approaches make a difference even between the
operating system, services, and user-space applications, which can be omitted if
all of them are regarded as programs.

Data is regarded as a collection of organized information. It is associated with
programs, such as a database accessed through a database management system.
Also, data may be used by many programs (e.g., the database may also be read by
a file editor) and a program may use data from many sources (e.g., the database
server reads from the database, but also from various configuration files). Data
provide means for programs to exchange information. If you modify the data
that a service provides, you effect all the consumers. This gives attackers two
ways to influence a consuming program, either change the providing service or
change the provided data.

Accounts are used to identify entities, e.g., users, and are interpreted by a
program. Thus, accounts always belong to a program.

As shown in Figure 1(b), influence properties describe the relationship be-
tween a potential attacker and system properties which represent computer re-
sources. The influence is different according to the type of resource. System
properties can be categorized as either passively processed resources or actively
processing resources. Passive resources are used by some kinds of processes, such
as a file is read, or an account is created. The basic actions performed on passive
resources are the creation and deletion as well as read and write operations.
Active resources on the other hand implement a process which actively works on
processed resources. A database application for example modifies the database
and the operating system reads permissions to grant or deny access to users. In-
fluence on passive resources is the creation and destruction as well as the reading
and writing of data. For active resources, often the input data is influenced, e.g.,
to cause buffer overflows, the output data can be modified, e.g., to disguise the
existence of malicious processes, or the existence of the active resource can be
erased, e.g., in Denial of Service attacks. Vulnerabilities in server applications
such as the Apache HTTP server can be exploited from remote machines without
any local access to the target machine. This locality information can be speci-
fied with the range property and most commonly has the value remote or local.
The remote indicates that an attack targets a resource on another host than the
one from which the attack originates, whereas local indicates that the attack is
aiming at a resource on the same host.

System properties represent the information which may be used or modified in
an attack, while the attacker performs some kinds of actions on them. Programs
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Fig. 2. A Conceptual Model of Computer Vulnerability

may be used, data can be read, or ports are blocked. Additionally, influence
properties specify how system properties are used.

These properties are the essential elements to describe preconditions and post-
conditions of an attack. Together with the concepts mentioned in Section 2.1,
description (i.e., vulnerability, exploit, and mitigation) and condition (i.e., pre-
condition and postcondition), we propose a conceptual model of vulnerability
in Figure 2. It shows that condition can be further described with the help of
properties. Conditions may contain any number of properties, they can be any-
thing from general to specific characterizations and only the relevant ones have
to been known for a weakness. Based on this data, attack information can be
linked and chained.

3.3 The Proposed Data Structure

With the requirements for vulnerability representation and the conceptual vul-
nerability model, it is now possible to propose a data structure. As outlined in
the previous Section, properties will be used to describe attributes of relevant
systems. These properties are then combined to conditions to specify the exact
requirements and results of an attack. Descriptions are used to link preconditions
and postconditions. Based on the conceptual model of the vulnerability informa-
tion, we propose the new data structure which consists of properties, sets and
descriptions.

Properties. As depict in Figure 3(a), properties are described with simple key-
value pairs with the addition of a parent-child relationship among them. The
key identifies the type of a property, for example, program or data. Value in-
formation then specify the corresponding instance, for example, Windows XP.
This allows to translate information encoded in properties easily to relational
database entries or serialization into an XML-based structure. An abstract base
class can provide functionality which derived properties, such as program or data
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(a) Properties

(b) Sets (c) Descriptions

Fig. 3. The Proposed Data Structure for Modeling Vunerability

properties, can re-use. This also allows to extend the data model easily if the
need for further properties arises.

The child attribute of each property allows the definition of more complex
properties similar to the composite design pattern, i.e., more details of a system
can be described. Often, it is not sufficient to know that a certain program is
running on a target host, but it has to be a specific version. An exploit which
works for Windows XP Service Pack (SP) 1, may not work for Windows XP
SP2. With child properties further details can be provided, such as the version
information.

Note that the usage of properties implements a predicate logic. Each property
describes an attribute different entities may have in common. Whether a certain
entity has a characteristic can be checked with a simple comparison which returns
either true or false. For example, to verify if a target host has Windows XP
installed, it is checked if a property of type program with the value ’Windows
XP’ is assigned to this host.

Any two properties with the same key can be compared. If both have the
same value, they represent the same predicate. But this does not automatically
indicate that they represent the same entity. For this, the child properties have
to be matched as well. If these all evaluate to equal values, the parent predicate
will match, thus indicating that the compared objects are in the same category.

A set of predefined values for certain properties may be helpful, since many
vulnerability descriptions refer to common values. For example, ’host’ is a com-
mon generic identifier for the operating system used in many reports.

The complexity of nested properties in parent-child and possible grandchild
relationships can be hidden behind a higher level programming interface. For
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example, programs and their corresponding versions can be hidden behind func-
tionality which takes these two arguments and returns a single object. For a
developer, only programs with a version attribute are visible.

Sets Conditions are represented as sets. A set is a collection of distinct objects
with no repetition and insensible to an ordering of these objects. At the same
time, a set is an object itself. To distinguish objects which can be part of a set,
the abstract superclass setmember is defined (see Figure 3(b)). Aside from set,
any property can be a set member. Therefore, a set may consist of other sets
and properties. This leads to a similar nesting which is possible with parent-
child relationship of properties, with similar evaluation characteristics. Because
the atomic set members are properties, and properties represent predicates which
are either true or false, a set resolves to either true or false as well.

With the help of sets, it is possible to group several properties which are not
in parent-child relationship, but nevertheless relate to each other in terms of
describing a system. Properties by themselves can for example only describe a
specific program or a file, but with sets it is possible to describe a system where
application A in version V is installed and at the same time another application
B is installed or a file F is readable by the attacker.

To characterize the relationship of set members, the operator is used. This
operator can take the value of the usual boolean operators of AND, OR, and
NOT. AND indicates that all the set members must hold true for the set to
evaluate to true. OR indicates that at least one of the members has to evaluate to
true, and NOT, as a unary operator, negates the value of the set. If a set member
is not a property but a set itself, this member has be evaluated before the parent
set can be evaluated. Thus, sets allow to describe simple and complex conditions
that a system is in, based on the aggregation of properties describing the system.
Next, these conditions will be linked to represent vulnerability descriptions.

Descriptions Figure 3(c) depicts the data structure used to specify descrip-
tions. Each description is of a certain type, either vulnerability, exploit, or miti-
gation. An exploit can be related to a vulnerability and a mitigation. Also, each
description refers to a precondition and a postcondition. Note that several precon-
ditions (e.g., different program versions) can be expressed with OR-connected
set members. An identifier for each description can be stored as well, e.g., the
CVE identifier. This is helpful to identify vulnerability information from different
sources.

3.4 Applying the Data Structure to an Example

As shown in Figure 4, the vulnerability describing the previously mentioned
Downadup worm is remodeled. The information can also be easily represented
in an XML file, which is readable for both human beings and computer pro-
grams. A description of the type ’vulnerability’ with the identifier ’CVE 2008-
4250’ represents the container for the vulnerability. It points to a precondition
and a postcondition. Both conditions are sets which describe the state of a sys-
tem. Members of a set are displayed as being inside the corresponding set. The
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Fig. 4. Data Structure - Example

outermost sets have the AND operator, stating that all set members have to
evaluate to true for the parent set to be true. The name of the property is the
actual key used, e.g., a range property has the key ’range’ and an additional
value. This vulnerability involves more than 10 vulnerable system combinations,
but only two are given in Figure 4. The arrow from one property to another in-
dicates the parent-child relationship. In this case, a Windows 2000 program has
the child version node value of Service Pack (SP) 4 or greater assigned and the
’Netapi32.dll’. Both program definitions are part of a set with the OR operator,
which means either one can match for this set to be true.

The precondition includes a ’remote’ range that an attacker does not need
or has local access to the target system and can only influence the input data
of the described programs. Because range and influence are the same for both
programs, they can be included in the topmost set. Thus, the system state de-
scribed by the precondition can be read as “Windows 2000 installations of SP
4 or later with ’Netapi32.dll’ in version 5.1.2195.7203 as well as Windows XP
installations of SP 2 or later with ’Netapi32.dll’ in version 5.1.2600.3462, where
an attacker can influence the input data remotely.”

The postcondition can be more generic because the concrete program version
is not relevant to describe the outcome of this vulnerability. Instead, a generic
’host’ value is used to describe the affected program, in this case the entire host.
This means that programs which evaluate this condition have to be aware of
that ’host’ indicates that the entire system is affected. All influences on active
resources are possible to the attacker, i.e., on the input stream, the output
stream, as well as on the existence. Everything can be done from a ’local’ range.
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4 Automatic Extraction of Meaningful Vulnerability
Information

To apply and verify the proposed data structure, a vulnerability information ex-
tractor is required. The extractor includes several plugins for reading, transform-
ing, and writing vulnerability information. The extracting components are referred
to as readers, because they read information from a vulnerability database or some
other sources. Every reader is able to extract information from a specific data
source (i.e., a specific VDB, such as the NVD). The counterpart of readers are writ-
ers, which output vulnerability information in different formats. Gathered data
can be read by various source, e.g., attack graph tools or vulnerability analysis
programs. Thus, it is reasonable to provide a writer for each target application.
All plugins provide a simple interface and communicate based on a common data
structure. This allows to link existing plugins into a tool chain and therefore con-
vert vulnerability information from any source format for which a reader exists to
any target format for which a writer exists.

To prove the proposed concepts, we implement a prototype tool where the
proposed data structure is used as an exchange format and the extractor is
realized by several Reader and Writer plugins for providing compatibilities with
known VDBs. Vulnerability information is transformed from VDBs to serve as
input for the MulVAL tool [15], which is a known attack graph constructor. It
was shown that sufficient data could be automatically transformed to identify an
attack path in a company computer network using the proposed data structure
as an intermediary format. Readers, such as the NVD Reader or the OVAL
Reader, transform information from one XML representation into another XML
representation, but the transformed information remains the same. The major
benefit of this type of readers is the increased amount of available vulnerability
information provided by a common vulnerability database, which is based on
the data structure used in the implementation. The CVE Reader on the other
hand extracts information from textual descriptions of vulnerabilities.

5 Conclusions

The contributions of this paper can be summarized as following: a) Proposing a
unified data structure which can be used for representing the vulnerability infor-
mation. b) Designing and implementing an easy way to extract and transform the
vulnerability descriptions from existing databases to the proposed data model.
The given structures are considered to be extendable and are not claimed to be
complete. The goal is to represent the bulk of known vulnerabilities for a prac-
tical solution, not to provide a complete, but merely theoretical one. However,
the data model is expected to be optimized to possibly cover all the information
of a certain vulnerability description. Implementing more Reader and Writer
plugins is helpful to extend the usage of the proposed model as well as to verify
its completeness. A vulnerability exposure mechanism which can represent the
vulnerability report directly using the given model is recommended.
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Abstract. The anticipation game framework is an extension of attack graphs
based on game theory. It is used to anticipate and analyze intruder and admin-
istrator concurrent interactions with the network. Like attack-graph-based model
checking, the goal of an anticipation game is to prove that a safety property holds.
However, expressing intruder goal as a safety property is tedious and error prone
on large networks because it assumes that the analyst has prior and complete
knowledge of critical network services and knows what the attacker targets will
be.

In this paper we address this issue by introducing a new kind of goal called
“strategy objectives”. Strategy objectives mix logical constraints and numerical
ones. In order to achieve these strategy objectives, we have extended the anticipa-
tion games framework with cost and reward. Additionally, this extension allows
us to take into account the financial dimension of attacks during the analysis. We
prove that finding the optimal strategy is decidable and only requires linear space.
Finally we show that anticipation games with strategy objectives can be used in
practice even on large networks by evaluating the performance of our prototype.

1 Introduction

With the increasing size and complexity of networks, attack modeling is now recognized
as a key part of constructing an accurate network security for intrusion analysis, and
prevention. Anticipation games (AG) [4] are an evolution of attack graphs based on
game theory. More specifically, an anticipation game is a simultaneous game played
between a network attacker and a network defender on a game-board consisting of a
dependency graph. The dependency graph defines which services exist on the network
and how they are related. The moves of the game do not change this dependency graph,
but they do change the attributes, such as the compromise attribute which is associated
with the nodes to reflect player’s actions.

Typically an anticipation game is used to analyze how the network will be impacted
by various attacks and how administrator actions can counter them. Using anticipation
games instead of attack graphs offers the following advantages:

First it allows us to model the concurrent interaction of the intruder and the adminis-
trator with the network. For example, it is possible to model a case where the intruder is
trying to exploit a vulnerability while the administrator is trying to patch it. Secondly,
player interactions with the network are described by timed rules that use preconditions
and postconditions written in a modal logic. Describing the model only with the net-
work initial state and a set of rules relieves the security analyst from the tedious and
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error prone burden of explicitly describing each network state and the transitions be-
tween them. In AG the model-checking algorithm uses the set of rules to infer automat-
ically every transition and network state reachable from the network’s initial state [3].
As a result it is possible to express very large and complex models in a very compact
form, which is handy while working on large networks and complex attacks.Thirdly, the
use of timed rules allows us to model the temporal dimension of the attack. It captures
the fact that each interaction with the network requires a different time. For instance,
developing and launching an exploit is somewhat slower than downloading and launch-
ing a publicly available one. Modeling the time also models the so called ”element of
surprise” [7], which occurs when one player takes the other by surprise because he is
faster. For example, when the administrator is patching a service she can be taken by
surprise by the intruder if the intruder is able to exploit the vulnerability before the
patch is complete.

Finally, since AG have been designed for network security analysis, they take into ac-
count network topological information such as dependency between network services,
which allow them to model collateral effects. For example when a DNS server is un-
available due to a DDOS then by collateral effect, the web server is merely available
because browsers can’t perform DNS resolution.

Although using AG to analyze attacks provides a substantial improvement over stan-
dard attack graphs, there is still one side of attack modeling that remains tedious and
error-prone: defining the analysis goal. So far as standard attack graph[16], the current
AG analysis goal is to prove that a given safety property holds for a given model. How-
ever, network analysis makes the expression of security goal in term of reachability
very hard because it is difficult to assert which services/hosts should be considered as
a primary security objective, especially when working on large networks. Therefore in
this paper we introduce a new kind of analysis goal called ”Strategy objectives”. In-
tuitively the idea is to combine a symbolic objective (logical formula) with numerical
ones (time, cost, and reward). The logical formula is used to select all the plays that are
valid strategies, and the numerical objectives are used to refine the analysis by selecting,
among all of these possible strategies, the one that is the most relevant to the player ac-
cording to his quantitative objectives. To the best of our knowledge this is the first time
that symbolic and numerical objectives have been combined to express security goals.
Note that being able to select the most relevant candidate is a central issue in network
security as the number of possible candidates (e.g different attacks) to achieve a given
goal is usually very large. The expressiveness offered by strategy objectives allows an-
ticipation games to be used to answer a brand new range of question that more closely
match administrator and security analysts needs. For example, using strategy objectives
it is possible to answer the question: ”What is the most effective patching strategy in
terms of cost or time ?”. Finally the introduction of action costs and rewards takes into
account the financial dimension of attacks which is a central concern of network at-
tacks. Taking into account action cost allows us to reason about the costs required to
launch an attack, the loss induced by it, and the investment required to prevent it.

Our main contribution is the extension of AG with strategy objectives. This extension
allows the analysis to answer key network security questions and to capture the financial
dimension of the attack.
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As far as we know, our extension the AG framework is the first attack model that
covers both the financial and temporal aspects of attacks. Additionally we prove that the
model-checking of AG with strategy objectives is decidable, and that deciding if a play
is a valid strategy can be done in linear time. We also prove that using strategy objectives
instead of a safety property adds only a linear space complexity to the analysis. The
evaluation performed with our prototype shows that in practice this framework can be
used to find strategy for large networks (Thousands of nodes). This evaluation also
demonstrates that practical results are consistent with the theoretical bounds we have
proven.

The reminder of this paper is organized as follows. In Sect. 2, we will survey related
work. In Sect. 3, we recall what an anticipation game is and present how we have
extended it to take into account cost and reward. We also present the game example that
is used as a guideline for the rest of the paper. Sect. 4 details how strategies objectives
are expressed and contains the strategy decidability and space complexity proofs. In
sect. 5, we evaluate the impact of using strategy in term of speed and memory with
our prototype. We show that our experiments are consistent with the theory and that
strategies can be used in practice.

2 Related Work

Model checking for attack graphs was introduced by Ammann and Ritchey [16]. It
is used to harden security [12]. Various methods have been proposed for finding at-
tack paths, i.e., sequences of exploit state transitions, including logic-based approaches
[17] and graph-based approaches [13].Research has also been conducted on formal lan-
guages to describe actions and states in attack graphs [5].Anticipation games are based
on timed automata, timed games, and timed alternating-time temporal logic (TATL)
[8], a timed extension to alternating-time Kripke structures and temporal logic (ATL)
[1]. The TATL framework was specifically introduced in [7]. The notion of cost for
attack appears in [6]. Mahimkar and Shmatikov have used the game theory to model
denial of service in [11] The use of games for network security was introduced by Lye
and Wing [10]. The Anticipation Game framework was introduced in [4]. A dedicated
model-checker called NetQi [3] has been developed to accommodate anticipation game
specificities.

3 Anticipation Games with Cost and Rewards

This section briefly recalls what an anticipation game (AG) is and explains the exten-
sion made to introduce strategy in the model. Intuitively, an AG can be represented as
a graph. Each node of the graph describes the network state at any given moment; e.g,
each state describes which services are compromised at this moment. The transitions
represent the set of actions that both players, the administrator and the intruder, can
perform to alter the network state. For example, an edge may represent the action of
removing a service from the vulnerable set by patching it.
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3.1 Network State

The network state is represented by a graph called a Dependency Graph (DG) and a
finite set of states. DGs are meant to remain fixed over time and describe the relation
between services and files. The figure 1 presents the DG used as an example in this
paper. DG vertices are services and files present on the network and the set of directed
edges is used to express the set of dependencies between them. In the example below,
the direct edge that links the vertex Email server (5) to the vertex User database (6) is
used to denote that the email server depends on the user database to identify its clients.

States 1 2 3 4 5 6
ρ(Vuln) ⊥ ⊥ ⊥ � � ⊥

ρ(Public) ⊥ ⊥ ⊥ � � ⊥
ρ(Compr) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

ρ(NeedPub) ⊥ ⊥ ⊥ � � ⊥

Fig. 1. The intial network state (left) and the dependency graph (right)

The set of variables (figure 1) is used to model information that does evolve over
time. Intuitively this set describes which services and files are currently public, vulner-
able, compromised, and so on. More formally, let A be a finite set of so-called atomic
propositions A1, . . . , An, . . . , denoting each base property. Thus each atomic propo-
sition is true or false for each DG vertex. The complete initial mapping used in the
example is detailed in figure 1. This mapping indicates that the email server and the
web server need to be public, are vulnerable, and are public because (ρ(NeedPub)),
ρ(Public), and (ρ(Vuln)) return true ('). It also indicates that no vertex is compro-
mised as ρ(Compr) returns false (⊥) for every vertex. Finally the set ρ(NeedPub) is
used by the Unfirewall rules to know which vertices should be made public.

3.2 Player’s Actions

To describe which actions are legal for each player a set of timed rules is associated to

the AG. Each rule is of the form Pre F
Δ,p,a,c−→ P where F is the precondition, stating

when the rule applies, Δ is the amount of time needed to fire the rule, p is the name
of the player that originates the rule, a is an action name, c is the rule cost, and P is a
command, stating the effects of the rule. It is required for the precondition F to hold
not just when the rule is selected, but during the whole time it takes the rule to actually
complete (Δ time units). For example consider the following rule :

Pre V uln ∧ Public
(30,I,Compromise,500)−→ Compr
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This says that the intruder can compromise a vertex if it is vulnerable (Vuln) and public
(Public) in 30 units of time. Compromise means here that the targeted vertex will be
added to the state Compr. If the intruder chooses to apply this rule to the Email server
then it is required that the preconditions are fulfilled when he chooses to apply it but also
after the 30 units of time required to execute it because the network state might have
changed during this time due to administrator actions. For example, the administrator
could firewall the targeted vertex. In this case, the vertex is not public anymore, the
intruder is taken by surprise, and the compromise rule fails. An AG play is a path (a
sequence of action and states) ρ : s0r0s1r1... where ∀j : sj →rj sj+1, sj and s(j + 1)
are network states, and rj is the rule used to make the transition.

3.3 Extending Anticipation Game for Strategy

Using strategy and analyzing the financial dimension of the attack requires that we
extend the framework with costs and rewards. The natural way to do so is to add a cost
to rules and an a reward to each DG vertex.

Costs are added to rules because it is obvious that some actions are more costly
than others. For example, coding an exploit is more costly than using an existing one.
Similarly, rewards are bound to DG vertices because some services and files are more
valuable than others. In our example (figure 1), it is obvious that the user database is
more important than any client. Formally we have a function Value(x) → y/y ∈ N

that returns the value y associated to the DG vertex x. Costs are naturally added to
rules because a rule execution is equivalent to a player action on the network. To take
into account the fact that not all the rules grant a reward we use two types of rules:
regular rules that have an execution cost and granting rules that have an execution cost
and grant a reward. For example if the administrator objective is to secure her network,
then firewalling a service (removing it from the Public set) will prevent it from being
compromised but it is a temporary measure, and therefore should not grant a reward. At
the opposite end of the spectrum, patching the service (removing it from the Vuln set)
is a permanent measure and grants a reward. Note that computing the value of network
assets is a topic by itself [14] and we we assume that one of the existing methods is
used to compute the rewards associated to vertices.

3.4 Player Rules

The set of rules used for the example focuses on intrusion and is meant to be very
general. It is just meant to give a flavor of what is possible with our model. It follows that
the cost and time associated with each rule are meant to be on the order of magnitude of
what is commonly accepted, but these measures are not necessarily completly accurate.
The seven rules used in the example are shown in Figure 2.

We take the convention that a granting rule uses the =⇒ double arrow and
that a regular rule uses the−→ single arrow. Rules Compromise 0day(1) and
Compromise Public(2) say that if a vertex is vulnerable (Vuln), public (Public)
and not compromised (Compr), then it can be compromised. The difference between
the two is the time required to compromise the service (2 or 7 units) and the cost re-
quired (20000 or 5000). The use of these two rules allows us to express the fact that



342 E. Bursztein and J.C. Mitchell

1) Pre : V uln ∧ Public ∧ ¬Compr
=⇒ 2, I, Compromise 0day, 20000
Effect : Compr

2) Pre : V uln ∧ Public ∧ ¬Compr
=⇒ (7, I, Compromise public, 5000)
Effect : Compr

3) Pre : ¬Compr ∧ ♦Compr
=⇒ (4, I, Compromise backward, 5000)
Effect : Compr

4) Pre : Compr ∧ ♦¬Compr
=⇒ (4, I, Compromise forward, 5000)
Effect : ♦Compr

5) Pre Public ∧ V uln
−→ (1, A, Firewall, 10000)
Effect ¬Public

6) Pre ¬Public ∧ ¬V uln ∧ NeedPub
−→ (1, A, UnFirewall,0)
Effect Public

7) Pre V uln ∧ ¬Compr
−→ (3, A, Patch, 500)
Effect ¬V uln ∧ ¬Compr

Fig. 2. Set of rules

using a 0 day exploit instead of a public exploit provides an advantage in terms of time
and a disadvantage in terms of cost. To be consistent with this idea, the administra-
tor patch rule (7) is slower than the compromise 0day rule and faster than the
compromise public one. These three rules model the windows of vulnerability
[9]. The rule Compromise backward says that the intruder can take advantage of a
dependency relation to compromise a vertex that depends on a compromised one. The
modal operator [2] ♦ allows preconditions and postconditions to speak about vertice
successor. For example ♦Compr means ”there exists a successor that is compromised”.
This operator is used to model attacks that exploit trust relationships and collateral ef-
fects such as the attack where a compromised DNS server is used to redirect clients to
spoofed sites. Similarly the rule Compromise forward (4) says that the intruder
can take advantage of a dependency relation to compromise the successor of a compro-
mised vertex. In our DG example (figure 1) if the intruder is able to compromise the
intranet server, he can look in its configuration files to steal database credentials. The
rule Firewall (5) says that if a service is vulnerable (Vuln) and Public (Public) it
can be firewalled. The cost of the rule is very high (10000) compared to the patch rule
cost (500) because firewalling a public service will indeed prevent the intruder to access
it but also forbids legitimate access. Thus this action induces an activity disturbance and
a possible financial loss. Notice the −→ arrow of this rule that denotes that no reward
is granted. Finally the rule Unfirewall (6) is used to make public services that are
not vulnerable and need to be public (NeedPub).

3.5 Play Example

The play used as an example (figure 3) is an intruder strategy that aimed at compro-
mising the network. Due to space constraints, rules name have been truncated. Column
Ti stands for time, Pl for players, Act for action, Ta for target, S for successor node,
Pa for payoff and C for cost. Furthermore, I is for intruder and A is for admin. Every
strategy presented in this paper is the output result of NetQi using the DG, the initial
mapping set, and the set of rules presented above, along with various strategy objec-
tives. Even if this example seems simple, it still cannot be analyzed by hand because
this game configuration leads to 4011 distinct plays.
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Ti Pl Act Rule Ta S Pa C

0 I choose Comp 0 Day 4 ⊥ - -
0 A choose Firewall 4 ⊥ - -
1 A execute Firewall 4 ⊥ 0 10000
1 A choose Patch 4 ⊥ - -
2 I fail Comp 0 Day 4 ⊥ 0 20000
2 I choose Comp 0 Day 5 ⊥ - -
4 I execute Comp 0 Day 5 ⊥ 31 40000
4 I choose Comp For 5 6 - -
4 A execute Patch 4 ⊥ 21 10500
4 A choose UnFirewall 4 ⊥ - -
5 A execute UnFirewall 4 ⊥ 21 10500
5 A choose Patch 5 ⊥ - -
8 I execute Comp For 5 6 1382 45000
8 I choose Comp Back 2 5 - -

Ti Pl Act Rule Ta S Pa C

8 A execute Patch 5 ⊥ 52 11000
12 I fail Comp Back 2 5 1382 50000
12 I choose Comp Back 4 6 - -
16 I execute Comp Back 4 6 1403 55000
16 I choose Comp Back 1 4 - -
20 I execute Comp Back 1 4 1404 60000
20 I choose Comp Back 2 4 - -
24 I execute Comp Back 2 4 1405 65000
24 I choose Comp For 2 5 - -
28 I execute Comp For 2 5 1436 70000
28 I choose Comp Back 3 5 - -
32 I execute Comp Back 3 5 1437 75000

Fig. 3. Play example Intruder maximum payoff

The figure 3 example is read as follows: At time 0 the intruder chooses to use an
0 day exploit against the Web server (Target 4). At the same time the administrator
starts firewalling the Web server. Because firewalling is faster than exploiting the 0
Day vulnerability, the administrator is able to firewall the web server before the 0day
exploitation is successful (time 1). The administrator starts to patch the web server. At
time 2 the intruder is taken by surprise by the administrator because the web server
is firewalled before his exploitation is successful, hence the rule execution fails. He
chooses to try another 0day exploit against the email server (target 5, time 2). At time
4 the administrator has finished patching the web server and decides to unfirewall it
since it is no longer vulnerable. Meanwhile, the intruder compromises the email server
and decides to use his newly gained access to compromise the user database (target
6). At time 5 the administrator decides to patch the email server (target 4). At time 8
the intruder has compromised the user database (target 6). At the same moment, the
administrator has finished patching the email server (node 5). Therefore at time 12 the
intruder fails to compromise the client 2 from the email server (Succ 4) because the
email server is no longer vulnerable and compromised. However the intruder still has
access to the database user server (node 6) and he uses this access to compromise the
web server (time 16). From there he compromises the client 1 (time 20) and the client 2
(time 28). He uses his access on client 2 to compromise the web server again (node 5,
time 28) and finally owns the network by compromising the client 3. This play illustrates
that the interaction between players leads to very complex plays even when the initial
situation is simple. This emphases that analyzing administrator and intruder interactions
on a real network cannot be achieved by hand.

4 Strategy Objectives

In game theory, a strategy is the optimal succession of actions (plays) that a player
can perform to achieve his goal. As said previously, translating real world network
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security goals into reachability properties is not expressive enough and is also error-
prone. Therefore in this section, we introduce a new kind of analysis goal called strat-
egy objectives that combine symbolic constraints and numerical objectives by leverag-
ing the notion of cost and reward introduced previously.

Symbolic constraints, expressed as a CTL logical formula, are used to express which
plays are acceptable strategies. Numerical objectives are used to select among these
potential candidates, the one that fulfill the most player interests. To the best of our
knowledge this the first time that symbolic and numerical objectives have been com-
bined to express analysis goal. Strategy objectives allow security analysts to express
naturally many network security goals. For example it allow security analysts to express
that the goal of the administrator is to patch her network (logical formula) in minimum
amount of time and for the lowest cost possible (numerical constraints). More formally
we define strategy objectives as :

Definition 1 (Strategy objectives). A set of strategy objectives is the tuple S : (name,
P,O,R, ϕ) where name is the strategy name, P is its owner, O is the set of numeri-
cal objectives, R is the numerical objectives priority strict order, and ϕ is the logical
formula that a play needs to satisfy to be a valid strategy.

4.1 Numerical Objectives

Numerical objectivesO are assigned on play outcomes φ:

Definition 2 (Play outcomes). are the unordered set of natural numbers
φ : {payoff, cost, opayoff, ocost, time} where payoff is the player payoff ,
cost is the player cost , opayoff is the player opponent payoff, ocost is the oppo-
nent cost, and time is the duration of the play.

The player P payoff for the play ρ is the sum of all the rewards granted by the successful
execution of his granting rules. A rule reward is the value of the DG vertex targeted by
the rule execution. The players P cost for ρ is the sum of all executed rule costs whether
they are successful or not, because regardless of its success the player has invested the
same amount of resource in it. A strategy numerical objective is either the maximization
or the minimization of one of these play outcome. For instance, an administrator might
want to find a patching strategy that minimizes the cost and the time.

4.2 Symbolic Constraints

Symbolic constraints are used to express which plays can be considered valid strategies.
In the patch strategy example, valid plays are those in which every vulnerable service
is patched. An additional constraint can be that no services are compromised. This con-
straint has two possible interpretations that lead to two very different results: first, it can
mean that at the end of the play no service is compromised but that at some point a ser-
vice could have been compromised and restored. Secondly, it can mean that no service
is ever compromised during the play. The difference between the two interpretations is
that with the first interpretation, having a service compromised for a brief moment is
acceptable, whereas with the second interpretation, it is not.
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To express the second type of constraint the CTL [2] operator � is needed. This
operator is used to express the fact that a constraint needs to be true for every state of
the play. We also use the ♦ operator to express the fact that a constraint needs to be true
at some point. This operator is used, for example to express information leak strategy
where at some point a service was compromised. Thus the strategy formula is expressed
in the following fragment of CTL:

ϕ ::= A Atomic proposition
| ¬ϕ
| ϕ ∧ ϕ
| ∀A
| ∃A
| �ϕ
| ♦

We take the convention that if a constraint is specified without the ♦ and the � operator
then this constraint has to be true only on the last state of the play. Patching strategy
symbolic constraints are used to ensure that no vertex is ever compromised (belongs to
the set Compr) and that every vertex is not vulnerable at the end of the play are written:
�¬Compr ∧ ¬V uln in our CTL fragment.

4.3 Dominant Strategy

The natural question that arises is what class of strategy objectives should be considered
for network security. A naive idea would be to consider the class of objectives that min-
imizes/maximizes player cost/reward only and ensures by a set of constraints that the
player goals are fulfilled. The following patching strategy objectives minimize the cost
and ensures that no vertex is ever compromised and that every vertex is not vulnerable
at the end of the play is:

S : (patch, Admin, MIN(Cost), Cost, �¬Compr ∧ ¬V uln))

However these strategy objectives lead to an incorrect strategy because the cost is min-
imal when the opponent makes ”mistakes” :

Ti Pl Act Rule Ta S Pa C

0 I choose Comp Public 4 ⊥ - -
0 A choose Patch 5 ⊥ - -
3 A execute Patch 5 ⊥ 31 500
3 A choose Patch 4 ⊥ - -
6 A execute Patch 4 ⊥ 52 1000
7 I fail Comp Public 4 ⊥ 0 5000

The intruder could have been more effective. For example, he could have used an
0 day exploit at the beginning. Thus, a more interesting class of strategies to consider
for network security is the ones that minimize/maximize the cost/reward and are suc-
cessful whatever the opponent does. These strategies are the best set of actions against
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the worst case. Thus, in our patching strategy example, the administrator wants to have
the least costly patching strategy that is effective even against the worst case attack.
This class of strategies is computed by adding objectives that maximize/minimize the
opponent’s cost/reward. They are commonly called strictly dominant strategies [15].
Dominant strategies are effective against the worst case but also every less effective
case. In other words, when a player has a strictly dominant strategy and he performs
it, he is able to fulfill his objective regardless of what his opponent does. From the net-
work security perspective, it means that when the administrator has a dominant strategy
for a given set of goals, whatever her opponent do, this strategy will ensure her that
she will always accomplish her objective. In the example, a dominant strategy exists
for the administrator.When used, it ensures that the administrator, regardless of the in-
truder actions, will be able to patch the two vulnerable services before any service is
compromised.Note that in the general case dominant strategies do not always exist.

4.4 Complexity

We now study the decidability of finding the best strategy for a given set of strategy
objectives. The key issue is that plays can be infinite. However, they are ultimately
periodic paths because an AG is finite and therefore even when a game has an infinite
play it is possible to decide which play is the best for a given set of objectives. To
decide so, two things must be known: the play outcome and if the play satisfies the
logic formula used to express the symbolic constraints. For the play outcome we have
the following result:

Lemma 1. An infinite play outcome can be computed by examining a short finite prefix.

For formula satisfiability we have the following result:

Lemma 2. For an infinite play the decidability of objectives formula satisfaction can
be reduced to verifying the formula on a short finite prefix.

This leads us to the central theorem for decidability:

Theorem 1. Deciding if a play is the one that fulfills the most strategy objectives is
decidable for any play by looking at a finite number of states.

Moreover we can prove that deciding if a play satisfies the most strategy objectives can
be done in polynomial time:

Theorem 2. Deciding if a play satisfies the most strategy objectives can be decided in
polynomial time O(s × |ϕ|) where s is the number of states in the finite prefix and ϕ is
the formula to verify.

Ultimately we have the general decidability theorem:

Theorem 3 (Decidability). Finding the strategy that fulfills the most strategy objec-
tives over an anticipation game is decidable.

A key property for implementation is that the memory required to find a strategy for a
given set of objectives is linear:
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Theorem 4. Memory space complexity worst case is: WC = Set× V ×R× (S + 1)
Where Set is the finite memory space required to hold sets mapping values, V is the
number of vertices of the dependency graph, R is the number of rules and S is the
number of strategies researched.

5 Evaluation

In order to evaluate that AG can be used in practice, we have conducted a set of eva-
lutions with our prototype on a standard Intel 2.9GHz core 2 Linux. Each benchmark
was run three times and the reported time is the mean. Two sets of benchmarks have
been conducted. The first set was used to determine if the AG framework is usable in
practice. The second set was used to measure the impact of strategy on the analyzer
performance and ensure that they are consistent with theoretical bounds.

The first set of benchmarks was done by running the analyzer against a large ex-
ample. This example uses the set of rules presented in the Sec. 3.4, an initial random
network state, and looks for the intrusion and defense strategy presented in Sec 4. The
random initial state is composed of 5200 nodes, 27000 dependencies and 3 random
vulnerabilities. Each of the 200 server nodes has 10 random dependencies and each of
the 5000 client nodes has 5 random dependencies. To ensure that the generated initial
state is not a degenerate case, we used 10 different initial states. Our prototype has the
same performance regardless of the initial states used. In order to deal with such a large
example, our analyzer uses numerous optimization tricks, including a static analysis of
the dependency graph shape and a static analysis of the rules set based on the shape
of the symbolic constraints [3]. Benchmark results presented in figure 4 show that, in
practice AG can be used to analyze a new situation even for a complex network in a
matter of seconds.

Nb Nodes Nb Dep Strategy type Time
5200 27000 Defense Exact 2.4 sec
5200 27000 Intrusion Approximate 55 sec

Fig. 4. Analyzer performance benchmark

We evaluate the performance impact of using strategy objectives instead of veri-
fying a security property by conducting two types of benchmark. The first type was
designed to measure the impact of strategy on analyzer speed and the second to mea-
sure memory usage. In order to have the most accurate evaluation possible, all analyzer
optimizations were disabled. The game we choose as a baseline for our benchmark is
an expanded version of the example presented in this paper with ten additional clients.
Without optimization, adding clients increases drastically the interleaving generated by
the rules compromise forward and compromise backward. For this speed
performance benchmark, we used as a baseline the time required by the analyzer to run
every possible play generated by the game without strategy. Then we ran the analyzer
with an increasing number of strategy requests. The requested number of strategies
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ranges between 0 and 100. Every strategy symbolic objectives contains a � constraint
to ensure that we are in the worst case possible: Our prototype has to evaluate the sym-
bolic constraints satisfaction on every state of every play. Experimental results show
that that the time requested to analyze the game grows linearly in the number of strate-
gies, which is consistent with theorem 2. Secondly, we have used the memory profiler
massif from the valgrind tool suite to verify that the memory needed by the analyzer
grows linearly in the number of strategies as proved in theorem 4.

6 Conclusion

In this paper we have introduced strategies for anticipation games. We have shown
that using strategy objectives as analysis goals allow us to find answers to key security
questions such as ”What is the best patching strategy in term of time and cost”. We
have described how our extension takes into account the financial dimension of the net-
work security, making the AG the first framework that deals with time and the financial
dimension of attack at the same time. We have proved that finding the strategy that ful-
fills the most strategy objectives is decidable and that it only requires a linear memory
space. Finally, we have demonstrated the suitability of AG with strategies for practical
uses by fully implementing AG with strategies in our prototype . Future work involves
extending strategies with non-determinism to model attackers with various levels of
knowledge and skill.
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Abstract. Direct anonymous attestation (DAA) is a special digital sig-

nature primitive, which provides a balance between signer authentication

and privacy. One of the most interesting properties that makes this prim-

itive attractive in practice is its construction of signers. The signer role of

DAA is split between two entities, a principal signer (a trusted platform

module (TPM)) with limited computational capability and an assistant

signer (a computer platform into which the TPM is embedded) with

more computational power but less security tolerance. Our first contri-

bution in this paper is a new DAA scheme that requires very few TPM

resources. This new scheme has better performance than the existing

DAA schemes and is provable secure based on the q-SDH problem and

DDH problem under the random oracle model. Our second contribution

is a modification of the DAA security model defined in [12] to cover the

property of non-frameability.

Keywords: direct anonymous attestation, trusted platform module, bi-

linear map.

1 Introduction

Many types of digital signatures have been developed to achieve signer authenti-
cation as well as signer privacy. Generally speaking, there are three categories of
signature primitives depending on which type of public keys is used for signature
verification. Given a signature, if a verifier makes use of the signer’s public key,
like an ordinary signature scheme, that shows the signer’s unique information
and therefore this type of signatures does not provide signer privacy. If a verifier
makes use of a set of public keys each binding to one potential signer, such as
ring signatures, designated verifier signatures and concurrent signatures, signer
privacy is held but the level of privacy is dependent on the size of the public key
set. If a verifier makes use of a group public key, such as group signatures and
Direct Anonymous Attestation (DAA), signer privacy is also held and the level
of privacy is dependent on the size of the group.

The concept and a concrete scheme of DAA were first introduced by Brick-
ell, Camenisch, and Chen [10] for remote anonymous authentication of a trusted
computing platform. The first DAA scheme was adopted by the Trusted Comput-
ing Group (TCG). The DAA scheme was specified in the TCG TPM Specification
Version 1.2 [36] that has recently been adopted by ISO/IEC as an international
standard [27]. A historical perspective on the development of DAA was provided
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by the DAA authors in [11]. Since then, DAA has drawn a lot of attention from
both industry and cryptographic researchers, e.g. [2,3,29,32,33,35].

The following two unique properties make DAA attractive in practice.
The first one is that the signer role of DAA is split between two entities, a

principal signer with limited computational and storage capability, e.g. a trusted
platform module (TPM), and an assistant signer with more computational power
but less security tolerance, e.g. an ordinary computer platform (namely the Host
with the TPM embedded in). The TPM is the real signer and holds the secret
signing key, whereas the host helps the TPM to compute the signature under
the credential, but is not allowed to learn the secret signing key and to forge
such a signature without the TPM involvement.

The second one is to provide different degrees of privacy. A DAA scheme can
be seen as a special group signature scheme without the feature of opening the
signer’s identity from its signature by the issuer. Interactions in DAA signing and
verification are anonymous, that means the verifier, the issuer or both of them
colluded cannot discover the signer’s identity from its DAA signature. Instead
of full-traceability as held in group signatures [4], DAA has user-controlled-
traceability, that we mean the DAA signer is able to control if a verifier enables
to determine whether any two signatures have been produced by the same signer.
Moreover, the signer and verifier may negotiate as to whether or not the verifier
is able to link different signatures signed by the signer.

The original DAA scheme [10] and another DAA scheme by Ge and Tate [26]
are based on the strong-RSA problem. We call them RSA-DAA for short. In an
independent work [16], Canard and Traore proposed the concept of list signa-
tures, in which signatures within a certain time frame are linkable. This property
is similar to the user-controlled-traceability in DAA. Also in [16], the authors
proposed a concrete list signature scheme, that, as the same as the first DAA
scheme, is based on the strong RSA problem.

Recently, many researchers have been working on how to create DAA schemes
with elliptic curves and pairings. We call these DAA schemes ECC-DAA for
short. Generally speaking, ECC-DAA is more efficient in both computation cost
and communication cost than RSA-DAA. The TPM’s operation is much simpler
and the key/signature length is much shorter in ECC-DAA than in RSA-DAA.

To our best knowledge, there are five ECC-DAA schemes available. The
first one was proposed by Brickell, Chen and Li [12,13]. This scheme is based
on symmetric pairings. For the purpose of increasing implementation flexibil-
ity and efficiency, Chen, Morrissey and Smart proposed two extensions of this
scheme [20,21,22]. Their schemes are based on asymmetric pairings. A flaw in the
first one was pointed out by Li and further discussed in [19,22]. Security of these
three DAA schemes are based on the LRSW problem [31] and DDH problem.
The other two DAA schemes were proposed by Chen and Feng [23] and Brickell
and Li [15], respectively. Security of these two schemes are based on the q-SDH
problem [7] and DDH problem.

We have two contributions in this paper. The first one is a new ECC-DAA
scheme, which takes the advantages of multiple existing pairing-based DAA
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schemes. More specifically, our new scheme is a modification of the last two
DAA schemes above. One of the most significant benefits is that the scheme
requires very few TPM resources because it places a small computational re-
quirement on a TPM. In fact the TPM has only to perform two exponentiations
for the DAA Join protocol and three exponentiations for the DAA Signing proto-
col. This computational workload is equivalent to a couple of ordinary standard
digital signatures, such as EC-DSA or EC-SDSA [28].

We will give some comparison between the proposed scheme and all the exist-
ing ECC-DAA schemes, and show that this new scheme has better performance
than all the existing schemes. The second contribution is a modification of the
DAA security model defined in [12] to cover the property of non-frameability.

The rest of this paper is organized as follows. We first introduce some prelim-
inaries in the next section. We then specify our new DAA scheme in Section 3.
For the reason of the limited space, we only describe the security result of our
scheme in Section 4, but leave the actual security proof in the full paper [17].
We show some comparison between this scheme and all the existing ECC-DAA
schemes in Section 5. We conclude the paper in Section 6.

2 Preliminaries

Throughout the paper, we will use some standard notation as follows. If S is
any set then we denote the action of sampling an element from S uniformly at
random and assigning the result to the variable x as x←S. If A is any algorithm
then we denote the action of obtaining x by running A on inputs y1, . . . , yn as
x← A(y1, . . . , yn). We denote concatenation of two date strings x and y as x‖y.
We write {0, 1}� for the set of binary strings of length � and {0, 1}∗ for the set
of binary strings of arbitrary length.

2.1 Formal Definition and Security Model of DAA

We modify the DAA security model described in [12] by adding the property
of non-frameability (as described in [6]) or called exculpability (as described
in [1]), i.e., the dishonest issuer and signers together are unable to create a
judge-accepted proof that an honest signer produced a certain valid signature
σ0, unless this honest signer really did produce this signature σ0.

A DAA scheme involves four types of players: a set of DAA issuers ik ∈ I, TPM
mi ∈M, host hi ∈ H and verifier vj ∈ V. The index values, k, i, j, are polynomial.
mi and hi form a computer platform in the trusted computing environment
and share the role of a DAA signer. Throughout the paper, for the purpose
of simplicity, we may omit some of the index values if it does not occur any
confusion; for example, we make use of i instead of ik.

A DAA schemeDAA = (Setup, Join, Sign, Verify, Link) consists of the following
five polynomial-time algorithms and protocols:
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– Setup: On input of a security parameter 1t, an issuer i uses this randomized
algorithm to produce its secret key isk, public key ipk and the global public
parameters par. We will assume that par are publicly known so that we do
not need to explicitly provide them as input to other algorithms.

– Join: This protocol, run between a signer (mi, hi) and an issuer i, consists of
two randomized algorithms, Joint for the TPM and Joini for the issuer, and
it creates the TPM’s secret key tski and its DAA credential crei. The value
crei is given to both mi and hi, but the value tski is known to mi only.

– Sign: On input of tski, crei, a basename bsnj (the name string of vj or a
special symbol ⊥), and a message m to be signed and the verifier’s nonce
nV for freshness, mi and hi run this protocol to produce a signature σ.

– Verify: On input of m, bsnj , a candidate signature σ for m, and a set of rogue
signers’ secret keys RogueList, vj uses this deterministic algorithm to return
either 1 (accept) or 0 (reject). Note that how to build the set of RogueList is
out the scope of the DAA scheme.

– Link: On input of two signatures σ0 and σ1, vj uses this deterministic algo-
rithm to return 1 (linked), 0 (unlinked) or ⊥ (invalid signatures). Note that,
unlike Verify, the result of Link is not relied on RogueList.

A DAA scheme must hold the notions of correctness, user-controlled-anonymity
and user-controlled-traceability. The first two notions are the same as these
defined in [12], so we do not recall them here. The notion of user-controlled-
traceability is defined via a game played by a challenger C and an adversary A
as follows:

– Initial: There are two initial cases. In Initial Case 1. C executes Setup(1t)
and gives the resulting par to A, and C keeps isk secret. In Initial Case 2. C
receives par from A and does not know the value of isk.

– Probing: C is probed by A who makes the following queries:
• Sign. A submits a signer’s identity ID, a basename bsn (either ⊥ or a

data string) and a message m of his choice to C, who runs Sign to get a
signature σ and responds with σ.

• Semi-sign. A submits a signer’s identity ID along with the data trans-
mitted from hi to mi in Sign of his choice to C, who acts as mi in Sign
and responds with the data transmitted from mi to hi in Sign.

• Join. There are three join cases of this query; the first two are used
associated with the Initial Case 1, and the last one is used associated
with the Initial Case 2. Suppose that A does not use a single ID for
more than one join case or more than one time.
∗ Join Case 1: A submits a signer’s identity ID of his choice to C, who

runs Join to create tsk and cre for the signer, and finally C sends cre
to A and keeps tsk secret.

∗ Join Case 2: A submits a signer’s identity ID with a tsk value of
his choice to C, who runs Joini to create cre for the signer and puts
the given tsk into the list of RogueList. C responds A with cre.
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∗ Join Case 3: A submits a signer’s identity ID of his choice to C, who
runs Joint with A to create tsk and to obtain cre from A. C verifies
the validation of cre and keeps tsk secret.

• Corrupt. A submits a signer’s identity ID of his choice to C, who re-
sponds with the value tsk of the signer, and puts the revealed tsk into
the list of RogueList.

– Forge: A returns a signer’s identity ID, a signature σ, its signed message m
and the associated basename bsn. We say that the adversary wins the game
if either of the following two situations is true:
1. With the Initial Case 1 (A does not have access to isk),

(a) Verify(m, bsn, σ, RogueList) = 1 (accepted), but σ is neither a re-
sponse of the existing Sign queries nor a response of the existing
Semi-sign queries (partially); and/or

(b) In the case of bsn �= ⊥, there exists another signature σ′ associated
with the same identity and bsn, and the output of Link(σ, σ′) is 0
(unlinked).

2. With the Initial Case 2 (A knows isk), the same as the item (a), in the
condition that the secret key tsk used to create σ was generated in the
Join Case 3 (i.e., A does not have access to tsk).

Definition 1. Let A be an adversary that plays the game above. We denote
Adv[Atrace

DAA] = Pr[A wins] as the advantage that A breaks the user-controlled-
traceability of DAA. We say that a DAA scheme is user-controlled-traceable if
for any probabilistic polynomial-time adversary A, the quantity Adv[Atrace

DAA] is
negligible.

Note that in the above game of the user-controlled-traceability, we allow the
adversary to corrupt the issuer. This is an important difference from the game
in [12], since it covers the requirement of non-frameability or called exculpabilty.

2.2 Pairings and Relevant Hard Problems

Our new DAA scheme is based on asymmetric pairings. Throughout we let G1 =
〈P 〉, G2 = 〈Q〉 and GT be groups of large prime exponent p ≈ 2t for security
parameter t. All the three groups will be written multiplicatively. If G is some
group then we use the notation G

× to mean the non-identity elements of G.

Definition 2 (Pairing). A pairing (or bilinear map) is a map t̂ : G1×G2→GT

such that:

1. The map t̂ is bilinear. This means that ∀P, P ′ ∈ G1 and ∀Q, Q′ ∈ G2 that
– t̂(P · P ′, Q) = t̂(P, Q) · t̂(P ′, Q) ∈ GT .
– t̂(P, Q ·Q′) = t̂(P, Q) · t̂(P, Q′) ∈ GT .

2. The map t̂ is non-degenerate. This means that
– ∀P ∈ G

×
1 ∃Q ∈ G2 such that t̂(P, Q) �= 1GT ∈ GT .

– ∀Q ∈ G
×
2 ∃P ∈ G1 such that t̂(P, Q) �= 1GT ∈ GT .
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3. The map t̂ is computable i.e. there exist some polynomial time algorithm to
compute t̂(P, Q) ∈ GT for all (P, Q) ∈ G1 ×G2.

Our DAA scheme is based on the pairing based signature scheme that is used
by Delerablee-Pointcheval [24] as a group membership certificate and also men-
tioned by Boneh-Boyen-Shacham in [8] as an alternative group member creden-
tial. This scheme is given by the following triple of algorithms:

– KeyGeneration: Select P1, P2←G1, Q←G2 and x←Z
∗
p, and compute X←

Qx ∈ G2. The public key is the tuple (P1, P2, Q, X) and the private key is x.
– Signing: On input of a message m ∈ Zp the signer chooses e←Zp and

computes A←(P1 · Pm
2 )1/(x+e) ∈ G1. The signature on m is σ←(A, e).

– Verification: To verify a signature σ on a message m the verifier checks
whether t̂(A, X ·Qe) = t̂(P1 · Pm

2 , Q).

The security of the above signature scheme is related to the hardness of the
q-SDH problem introduced by Boneh and Boyen [7]. The q-SDH problem in
(G1, G2) is defined as follows:

Definition 3 (q-SDH). Given a (q + 2)-tuple (P, Q, Qx, Qx2
, ..., Qxq

) ∈ G1 ×
G

q+1
2 as input output a pair (e, P 1/(x+e)) where e ∈ Z∗

p. An algorithm A has
advantage ε in solving q-SDH in (G1, G2) if

Pr[A(P, Q, Qx, Qx2
, ..., Qxq

) = (e, P 1/(x+e))] ≥ ε,

where the probability is over the random choice of generator Q in G2 (with P ←
ψ(Q)), of x in Z∗

p and of the random bits of A. We say that the (q, t, ε)-SDH
assumption holds in (G1, G2) if no t-time algorithm has advantage at least ε in
solving the q-SDH problem in (G1, G2).

As the same as in [22], our DAA scheme requires the DDH problem for G1 to
be hard. The formal definition of this problem is defined as follows:

Definition 4 (G1-DDH). We define the AdvDDH
A (t) of an G1-DDH adversary

A against the set of parameters (G1, G2, GT , P, Q, p, t̂) as∣∣Pr
[
x, y, z←Zp; X←xP, Y←yP, Z←zP ;A(G1, G2, GT , t̂, P, Q, X, Y, Z, p) = 1

]
−Pr

[
x, y←Zp; X←xP, Y←yP ; Z←xyP ;A(G1, G2, GT , t̂, P, Q, X, Y, Z, p) = 1

]∣∣
We then say a tuple (G1, G2, GT , P, Q, p, t̂) satisfies the DDH assumption for G1

if for any p.p.t. adversary A its advantage AdvDDH
A (t) is negligible in t.

Often this problem in the context of pairing groups is called the external Diffie–
Hellman problem, or the XDH problem.

3 The Proposed DAA Scheme

In this section, we give a detailed description of the new DAA scheme. Before
proceeding we note a general point which needs to be born in mind for each
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of the following protocols and algorithms. Every group element received by any
party needs to be checked that it lies in the correct group, and in particular
does not lie in some larger group which contains the specified group. This is to
avoid numerous attacks such as those related to small subgroups etc (e.g. [9,30]).
In asymmetric pairings this is particularly important since G1 and G2 can be
considered as distinct subgroups of a large group G. If transmitted elements are
actually in G, as opposed to G1 and G2, then various properties can be broken
such as anonymity and linkability.

Hence, our security proofs implicitly assume that all transmitted group el-
ements are indeed elements of the specified groups. For the situation under
consideration, namely Type-III pairings [25], efficient methods for checking sub-
group membership are given in [18]. Note, we do not count the cost of these
subgroup checks in our performance considerations later on, as their relative
costs can be quite dependent on the specific groups and security parameters
under consideration.

3.1 The Setup Algorithm

On input of the security parameter 1t, the setup algorithm executes the following:

1. Select three groups, G1, G2 and GT , of sufficiently large prime order p along
with a pairing t̂ : G1 × G2 #→ GT . Select four random generators, P1, P2,
P3 and Q, such that G1 = 〈P1〉 = 〈P2〉 = 〈P3〉 and G2 = 〈Q〉 and compute
T1 = t̂(P1, Q), T2 = t̂(P2, Q) and T3 = t̂(P3, Q). Select five hash functions
H1 : {0, 1}∗ #→ Zp, H2 : {0, 1}∗ #→ Zp, H3 : {0, 1}∗ #→ G1, H4 : {0, 1}∗ #→ Zp

and H5 : {0, 1}∗ #→ Zp.
2. For each issuer i ∈ I, select an integer x ← Zp and compute X = Qx ∈ G2

and T4 = t̂(P3, X). The issuer secret key isk is assigned to be x and the
corresponding public key ipk is assigned to be X .

3. For each TPM m ∈M, select a sufficiently large integer DAAseed at random
(e.g. choose DAAseed from {0, 1}t) and keep it inside of the TPM secretly.

4. Describe a DAA credential space C, a finite message space M and a finite
signature space Σ. The spaces C and Σ will be defined in the Join protocol
and Sign protocol respectively. The space M is dependent upon applications.

5. Finally, the system public parameters par are set to be (G1, G2, GT , p, t̂,
P1, P2, P3, Q, T1, T2, T3, T4, H1, H2, H3, H4, H5, ipk) together with C, M
and Σ, and are published.

The group order p is selected so that solving the G1-DDH problem or the q-
SDH problem takes time 2t. The three generators P1, P2, P3 are selected so that
the discrete logarithm relation between each other, e.g. logP1

P2, is unknown.
Including the four pairing values, T1, T2, T3 and T4, in par is optional; alterna-
tively these values are computed by hosts and verifiers. To make sure these four
values are formed correctly, it is recommended that each host and verifier should
compute them once before storing them with other values of par.

We assume that prior to any system setup each TPM has its private endorse-
ment key SK embedded into it and that each issuer has access to the corresponding
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public endorsement key PK. This key pair is used to build up an authentic channel
between the TPM and issuer in the following Join protocol.

3.2 The Join Protocol

This protocol is run between a given TPM m ∈ M, the corresponding Host
h ∈ H and an Issuer i ∈ I. Our protocol proceeds as shown in Figure 1. The
communication between m and i is via h. This communication must be authentic,
that we mean the issuer must be sure that he only creates the DAA credential
for a genuine TPM. An authentic channel between the TPM and issuer can be
built by using the TPM endorsement key pair (SK, PK). We suggest using the
same mechanism as in the RSA-DAA scheme [10,36] to achieve this. A TPM
DAA secret key f is computed from DAAseed along with a count number cnt
and an issuer’s public data string KI .

We note that one of the reasons why our DAA scheme is more efficient than
the DAA schemes in [15,23] is that we make use of a simplified construction of
the DAA credential cre. In our scheme cre = (A, e) where A = (P1 · P f

2 )1/(x+e),
but in the both schemes of [15,23], cre = (A, e, y) where A = (P1 ·P f

2 ·P y
3 )1/(x+e)

and the value y is contributed by both the TPM and Issuer. Our security proof
in the full paper [17] will show that our cre construction is sufficient for achieving
required security features of the new scheme.

TPM (m) Host (h) Issuer (i)

nI←{0, 1}t

str←X‖P1‖P2‖P3‖Q‖nI
req� req� req←nI

f←H1(DAAseed‖cnt‖KI)

u←Zp

F←P f
2 ; U←P u

2

v←H2(str‖F‖U)

w←u + f · v (mod p)

comm←(F, v, w, nI) comm� comm� If nI �∈ {req}, or

U ′←P w
2 · F−v

str←X‖P1‖P2‖P3‖Q‖nI

v �= H2(str‖F‖U ′)

then abort

e←Zp

A←(P1 · F )1/(x+e)

If t̂(A, X · Qe) cre� cre←(A, e)

�= t̂(P1 · F, Q)

then abort

Fig. 1. The Join Protocol

3.3 The Sign Protocol

This protocol is run between a given TPM m ∈ M and the corresponding Host
h ∈ H. During the protocol m and h work together to produce a DAA signature
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on some message. We note that the Host will know a lot of the values needed in
the computation and will be able to take on a lot of the computational workload.
However, if the TPM has not had its secret f published (i.e. it is not a rogue
module) then the Host h will not know f and will be unable to compute the
whole signature without the aid of the TPM. Therefore, we say that the TPM
is the real signer and the Host is a helper.

TPM (m) Host (h)

msg ∈ M

If bsn =⊥ then J←G1

else J←H3(bsn)

Either nV ←{0, 1}t or receive

nV ∈ {0, 1}t from the verifier

str←X‖P1‖P2‖P3‖Q‖nV

a, ra, re, rae←Zp

R←A · P a
3

Ŝ←T re · T a·re+rae
3 · T ra

4

rf←Zp
h, J, Ŝ, msg� h←H4(str‖R)

K←Jf ; L←Jrf

S←Ŝ · T
rf
2

nT ←{0, 1}t

c←H5(h‖J‖K‖L‖S‖msg‖nT )

sf←rf + f · c (mod p) (K, c, sf , nT ) � sa = ra + a · c (mod p)

se = re − e · c (mod p)

sae = rae + a · e · c (mod p)

σ←(R, J, K, c, sf , sa, se, sae)

Fig. 2. The Sign Protocol

The protocol then proceeds as in Figure 2. We note that in this scheme, the
Host h precomputes T = t̂(A, Q) and stores it as a long-term parameter. In
Table 1 of Section 5, we do not list this pairing computation in the signing
computational cost since it will only be computed once. We also note that the
following equation holds:

S = Ŝ · T rf

2

= T re · T a·re+rae
3 · T ra

4 · T rf

2

= t̂(R, Qse ·X−c) · T sf

2 · T sa
4 · T sae

3 · T c
1 .

3.4 The Verification Algorithm

This algorithm is run by a verifier v. On input of a signature σ=(R, J, K, c, sf ,sa,
se, sae), two nonces (nV , nT ), a message msg, a basename bsn, an issuer public
key ipk = X and the public system parameters par, this algorithm performs the
following steps:
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1. Check Against RogueList. If K = Jfi for any fi in the set of rogue secret
keys then return reject.

2. Check J computation. If bsn �=⊥ and J �= H3(bsn) then return reject.
3. Verify Correctness of Proofs. This is done by performing the following sets

of computations:
– S′←t̂(R, Qse ·X−c) · T sf

2 · T sa
4 · T sae

3 · T c
1 .

– L′←Jsf ·K−c.
– str←X‖P1‖P2‖P3‖Q‖nV .
– h′←H4(str‖R).

If c �= H5 (h′‖J‖K‖L′‖S′‖msg‖nT ) return reject and otherwise return accept.

3.5 The Linking Algorithm

This algorithm is run by a given verifier vj ∈ V which has a set of base-
names {bsn}j in order to determine if a pair of signatures were produced by
the same TPM. This algorithm is the same as in the DAA schemes of [12,22].
Signatures can only be linked if they were produced by the same TPM and the
user wanted them to be able to be linked together. Formally, on input a tuple
((σ0, msg0), (σ1, msg1), bsn, ipk) the algorithm performs the following steps:

1. Verify Both Signatures. For each signature σb, for b ∈ {0, 1} the verifier runs
the algorithm Verify(σb, msgb, bsn, ipk) and if either of these returns reject
then the value ⊥ is returned.

2. Compare J and K values. If J0 = J1 and K0 = K1 then return linked , else
return unlinked .

3.6 Revocation Consideration

In the literature, there are four types of revocation solutions are known for
DAA. The first two solutions were proposed in the original DAA paper [10]:
(1) anybody can verify whether a given DAA signature was signed under a key
listed in the rogue list RogueList, and (2) without RogueList, a verifier can build
his own black list of unwelcome signers and reject these signer’s signatures by
using a basename. The third was proposed by Brickell and Li in [14]: a signer can
prove that he is not anyone listed in the black list. The last one was proposed
by Chen, Morrissey and Smart in [22]: the issuer can update his public key and
each legitimate singer’s credential efficiently, and this process is transparent to
a TPM. Our new DAA scheme is suitable for all of these revocation solutions.
Choice of them is dependent upon applications. This feature has no difference
from the existing DAA schemes.

4 Security of the DAA Scheme

In this section, we will state the security results for the new DAA scheme under
the definitions of security notions in Section 2.1. In general, we will argue that
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our new DAA scheme is secure, i.e., correct, user-controlled-anonymous and
user-controlled-traceable, as addressed in the following theorems.

Our security results are based on the q-SDH assumption and the G1-DDH
assumption as defined in Section 2.2. The security analysis of the notions of
user-controlled-anonymity and user-controlled-traceability is in the random or-
acle model [5], i.e., we will assume that the hash functions H2 H3 and H5 in the
new DAA scheme are random oracles. Note that the hash function H1 used to
compute the value f and H4 used in the Sign protocol do not have to be random
oracles, since they are internal functions.

Theorem 1. The DAA scheme specified in Section 3 is correct.

Proof. This theorem follows directly from the specification of the scheme. �

Theorem 2. Under the G1-DDH assumption in Definition 4, the above DAA
scheme is user-controlled-anonymous. More specifically, if there is an adver-
sary A that succeeds with a non-negligible probability to break user-controlled-
anonymity of the scheme, then there is a simulator S running in polynomial
time that solves the G1-DDH problem with a non-negligible probability.

The proof of this theorem is given in the full paper [17].

Theorem 3. Under the q-SDH assumption, the above DAA scheme is user-
controlled-traceable. More specifically, if there is an adversaryA that succeeds with
a non-negligible probability to break user-controlled-traceability of the scheme, then
there is a simulator S running in polynomial time that solves the q-SDH problem
with a non-negligible probability.

Again, the proof of this theorem is given in the full paper [17].

5 Performance Comparison

In this section, we compare efficiency of the proposed DAA scheme with all the
existing ECC-DAA schemes, based on our best knowledge. We do not include
RSA-DAA schemes such as these in [10,26], since the comparison between the
RSA-based schemes and pairing-based schemes has been presented in a number
of papers. In general speaking, we see that the ECC-DAA schemes are a lot
more efficient than the one based on factoring. We refer to [12,20,22,23] for the
detailed information.

In Table 1, we present some performance figures for the six ECC-DAA schemes.
For the computational cost, we consider the Join protocol, Sign protocol and Verify
algorithm, with respect to each player. We do not specify the computational cost
of the Setup algorithm and its verification, since this is only run once and the re-
sulting parameters are only verified once by each part. We do not specify the cost
for the linking algorithm either, as it is closely related to that of the verification
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Table 1. Cost Comparison of the Six Pairing-Based DAA Protocols

Operation Party Computational Cost Credential Size Signature Size

Scheme of [12]

Join TPM 3G1

Issuer 2G1 + 2G
2
1

Host 6P 3G1 2p+ 3G1 + 2G+ 1h
Sign TPM 3GT

Host 3G1 + 1GT + 3P
Verify Verifier 1G

2
T + 1G

3
T + 5P + (n+ 1)GT

Scheme of [20]

Join TPM 3G1

Issuer 2G1 + 2G
2
1

Host 6P 3G1 1p+ 4G1 + 1h
Sign TPM 1G1

Host 4G1 + 3GT + 1P
Verify Verifier 1G

2
1 + 1G

2
T + 5P + nG1

Scheme of [22]

Join TPM 3G1

Issuer 2G1 + 2G
2
1

Host 4P 3G1 1p+ 5G1 + 1h
Sign TPM 2G1 + 1GT

Host 3G1 + 1P
Verify Verifier 1G

2
1 + 1G

2
T + 5P + nG1

Scheme of [23]

Join TPM 3G
2
1 + (2P )

Issuer 1G
2
1 + 1G

3
1

Host (2P ) 2q + 1G1 6p+ 2G1 + 2G+ 1h
Sign TPM 2G1 + 1G

2
T

Host 1G1 + 2G
2
1 + 1G

3
1 + 1G

3
T

Verify Verifier 1G
2
1 + 2G

3
1 + 1G

5
T + 3P + nGT

Scheme of [15]

Join TPM/Host 2G
2
1 + 1G2 + 2P + proof

Issuer 1G
2
1 + verify 2q + 1G1 4p+ 1G1 + 2G+ 1h

Sign TPM/Host 1G1 + 2GT + 1G
4
T

Verify Verifier 1G
2
T + 1G

5
T + 2P + nGT

Scheme of this paper

Join TPM 2G1

Issuer 1G1 + 1G
2
1

Host 1G1 + 2P 1q + 1G1 4p+ 3G1 + 1h
Sign TPM 2G1 + 1GT

Host 1G1 + 1G
3
T

Verify Verifier 1G
2
1 + 1G

2
2 + 1G

4
T + 1P + nG1
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algorithm. For the communication cost and storage cost, we consider the creden-
tial size and signature size, but ignore the size of TPM secret key (i.e. the values
of f and DAAseed) because this could be the same in all of the six schemes.

In this table, for the computational cost, we let Gi (i = {1, 2, T }) denote the
cost of an exponentiation in the group Gi, and Gm

i denote the cost of a multi-
exponentiation of m values in the group Gi. Note, that a multiexponentiation
with m exponents can often be performed significantly faster than m separate
exponentiations, which is why we separate this out. We also let P denote the cost
of a pairing computation. In addition in the table we let n denote the number
of keys in the verifier’s rogue secret key list. For the credential and signature
sizes, we let p denote the size of the prime order p, Gi (i = {1, 2, T }) denote the
size of an element of the group Gi, G denote the size of an element of the group
G, which is used in [12,15,23] as a group that might be separated from G1, G2

and GT , and h denote an output of a hash-function used in the Schnorr-type
signature schemes [34]. The Brickell et al. scheme [12] uses symmetric pairings
t̂ : G1 × G1 −→ GT , and the other five schemes in [15,20,22,23] and this paper
use asymmetric pairings t̂ : G1 ×G2 −→ GT .

Observe that in [23], the rogue ragging operation is not defined in the Verify
algorithm, but it can be easily added in the same way as every existing DAA
scheme does. So in Table 1, we add this computation n ·GT . Another observation
of this scheme is that the pairing computation in the Join protocol can be done
by the Host instead of the TPM, because it is expensive to implement the pairing
operation in TPMs. We mark this change as (2P ) in Table 1. Observe also that
in the scheme in [15], the signer is a single entity, but it is not difficult to split
the signer role between a TPM and a Host. So in the following comparison, we
assume that these changes have been taken into account.

Our proposed DAA scheme has the most efficient computational cost in the
Join protocol, that includes not only the computational cost of the TPM but
also the computational cost of the whole signer (the TPM and Host) and the
computational cost of the issuer. In the Sign protocol, the most efficient scheme
regarding the TPM’s operation is the scheme in [20]. However, this scheme is
not secure as the attacks demonstrated in [19,22]. Especially in the important
operation of signing by the TPM, our scheme is the same as the scheme in [22],
which is a repair of the scheme in [20] and these two schemes are more efficient
than the other three schemes [12,15,23]. Note that in the scheme in [22], the
pairing computation of the Host in the Sign protocol can be replaced by an
exponentiation in GT with the precompution on t̂(B, X). In the Verification
algorithm, our scheme has the same computation cost of the verifier as in [15],
and they are more efficient than all of the other schemes in [12,20,22,23].

Except the efficiency in the computational cost, the attractive performance
of our scheme is that it has the smallest credential size and signature size, com-
paring with the other schemes in the table. This comparison is based on the
fact that the size of G is various, and to our best knowledge it can be chosen
between the sizes of G1 and GT . In summary, our scheme is the most efficient
DAA scheme so far with the acceptable security level.
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6 Conclusions

Recently TCG TPM working group has been working on the next generation
of TPM. One of the most interesting features is that the new TPM supports
algorithm agility. If a TPM supports multiple DAA algorithms, such as both
RSA-DAA and ECC-DAA, we can make use of DAAseed as a master secret and
create multiple DAA secret f values from it. In that case, we do not require extra
internal storage for long-term secrets. Our conclusion is that DAA is algorithm
agile and our ECC-DAA implementation is fairly efficient.
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Abstract. The question of whether elliptic curve cryptography (ECC)

can be implemented efficiently enough to meet the strict power and area

constraints of passive RFID tags has received considerable attention in

recent years. While numerous algorithmic and architectural approaches

for reducing the footprint of ECC hardware have been investigated, the

potential of full-custom VLSI design is still completely unexplored. In

this paper we present the design of a radix-2 and a radix-4 version of a

unified (16 × 16)-bit multiplier with a 40-bit accumulator that provides

all the arithmetic functionality needed to perform ECC over prime and

binary fields. The term “unified” means that our multiply/accumulate

(MAC) unit uses the same datapath for the multiplication of integers as

well as binary polynomials. We designed a full-custom layout of both the

radix-2 and the radix-4 multiplier on basis of a conventional array ar-

chitecture. Simulation of netlists showed a power saving of 22% and an

energy-delay advantage of 48% for the radix-4 multiplier compared to

the radix-2 version. The multiplication of binary polynomials consumes

about 39% less power than integer multiplication.

1 Introduction

Radio-Frequency Identification (RFID) is a technology that uses radio waves to
determine the identity of objects or subjects. Originally developed as a “barcode
replacement,” RFID technology has found widespread adoption in supply chain
management, transportation, and logistics. An RFID system consists of three
basic building blocks: RFID tags, RFID readers, and a backend server. Each tag
contains a tiny micro-chip (in which a unique ID is stored) and an RF antenna
for communication with the reader. Passive RFID tags have no internal power
supply but obtain their operating power from a magnetic field generated by the
reader through inductive coupling. The reader interacts with the tags and passes
their responses to the backend server, which can retrieve detailed information
about the tagged objects or subjects by querying its database.

F. Bao et al. (Eds.): Inscrypt 2009, LNCS 6151, pp. 366–382, 2010.
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The growth and proliferation of RFID technology in recent years has raised
a number of security and privacy concerns [20]. As stated in [36], unprotected
RFID tags may have vulnerabilities to eavesdropping, traffic analysis, spoofing
or denial of service, whereby the concrete threat scenario depends on the appli-
cation. For example, the main threat to RFID-based anti-counterfeiting systems
is the spoofing (or “cloning”) of tags, which can be prevented by securing the
tags’ identifying information against unauthorized access. A privacy concern in
the realm of RFID is the surreptitious tracking of tags through time and space
[36]. These concerns have triggered a large body of research on lightweight cryp-
tosystems and security protocols, taking the specific constraints and adversary
models of RFID into account. A good example of a lightweight cryptosystem is
the block cipher PRESENT [5], which can be implemented in hardware with as
few as 1000 gates [31]. However, RFID authentication schemes based on secret-
key algorithms suffer from poor scalability due to the key search problem [2]. In
addition, they require the distribution of keys across organizational boundaries
(e.g. from a manufacturer to a retailer), which may be non-trivial to realize in
practice. A third problem relates to the privacy of these schemes. For example
it was shown in [35] that narrow-strong privacy in an RFID system can only be
achieved with tags being able to perform public-key cryptography.

Among the public-key techniques that have been examined regarding their
suitability for securing RFID are elliptic and hyperelliptic curve cryptography
(ECC, HECC) [4,11], NTRU [21], WIPR [29], and GPS [30]. However, ECC has
the advantage of being promoted by various standardization bodies such as the
NIST. Wolkerstorfer [38] was the first to demonstrate that ECC (or, more pre-
cisely, ECDSA signature generation) is feasible for passive RFID tags in terms
of silicon area and power consumption. The design of low-cost ECC hardware
has progressed considerably during the past five years, thanks to innovation on
both the algorithmic and architectural level. An example for the former is Lee
et al’s common Z-coordinate technique for scalar multiplication, which reduces
the storage requirements and, hence, size of ECC hardware [24]. One of the ar-
chitectural innovations that led to a reduction of silicon area is the combination
of different arithmetic operations into a single datapath; examples include the
integration of addition into a multiplier datapath for binary polynomials such
as proposed in [32, Chapter 6.2] (and previously in [14]), as well as the unified
multiplier/inverter datapath from [10]. The majority of low-cost ECC hardware
implementations reported in the literature are based on a binary field due to the
“carry-free” arithmetic and efficiency of the squaring operation. However, it was
shown in [12] that ECC hardware using a prime field as underlying algebraic
structure is also suitable for RFID tags. Wolkerstorfer’s ECC implementation
[38] supports both prime and binary fields.

In 2008, Hein et al [19] introduced a completely new architecture for small-
footprint ECC hardware that advanced the state-of-the-art in several ways. The
ECCon Processor described in [19] uses a (16 × 16)-bit multiplier (instead of a
bit-serial or digit-serial multiplier) to perform the field arithmetic—a distinctive
feature that makes ECCon radically different from other ECC implementations
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Fig. 1. Bit-serial architecture vs. word-level architecture (source: [19])

for RFID tags. Figure 1 illustrates a classical architecture based on a bit-serial
multiplier for the binary field GF(2163) and Hein et al’s word-level architecture
using a (16 × 16)-bit multiplier for binary polynomials. The latter operates on
16-bit words (“digits”) at a time and performs a multiplication of two elements
of GF(2m) via well-known algorithms for multiple-precision arithmetic such as
the product scanning method [18]. Also the reduction of a 2m-bit product mod-
ulo an irreducible polynomial as well as the inversion of an element of GF(2m)
can be efficiently realized through multiplications of 16-bit words [16,22]. The
idea of splitting up binary-field arithmetic into operations on small words was
first described in the context of instruction set extensions for general-purpose
processors [16]. Hein et al applied this concept to RFID tags by replacing the
processor by a hardwired finite-state machine in order to save silicon area. The
area requirements of a (16 × 16)-bit multiplier are very similar to that of a
bit-serial multiplier for GF(2163). However, the big advantage of the word-level
architecture is low power consumption in combination with a flat (and nearly
constant) power profile suitable for passive RFID tags. Bit-serial multipliers, in
contrast, require the distribution of certain signals (e.g. the operand bit ai [14])
over the full datapath, resulting in long wires with high capacitive load that can
cause significant power peaks.

Besides algorithmic and architectural optimizations, there is a third avenue
for reducing area and power consumption of ECC hardware, namely the VLSI
design methodology. Applying a Full-Custom Design Flow allows a designer to
hand-craft all circuits (using, for example, a special logic style) and optimize
transistor sizes [37]. Dally and Chang demonstrated through a number of case
studies that employing a full-custom design methodology can yield substantial
savings in area (up to a factor of 14.5 [8]) and power consumption (between a
factor of 3 and 10 [7]) compared to a standard-cell based design. However, while
algorithmic and architectural optimizations have received a lot of attention in
recent years, the potential of full-custom design for the implementation of low-
footprint ECC hardware is yet to be explored. In the present paper we take a
first step in this direction by introducing a full-custom VLSI design of a unified
(16 × 16)-bit multiplier with a 40-bit accumulator. The term “unified” in the
context of our multiplier (or, more precisely, multiply/accumulare unit) refers
to its ability to process integers and binary polynomials [34]. Consequently, the
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multiply/accumulate (MAC) unit provides all the functionality needed for the
implementation of ECC over both prime and binary fields. In the latter case, a
unified multiplier or MAC unit allows for performing a full ECDSA signature
generation1, whereas Hein et al’s ECCon processor [19] can just accomplish a
scalar multiplication. We actually implemented and analyzed two versions of a
unified (16 × 16 + 40)-bit MAC unit; the first uses a conventional radix-2 rep-
resentation of operands, while the second variant is based on the radix-4 design
from [17] but adapted for full-custom implementation. Optimized for small area
and low power dissipation, the unified MAC unit(s) can be used as functional
unit of a general-purpose processor [17] or as arithmetic core of a cryptographic
co-processor [33]. The MAC unit is particularly suited for the implementation
of low-footprint ECC hardware following Hein et al’s approach [19].

2 Preliminaries and Basic Design Decisions

Design of Unified Multipliers. The elements of a prime field GF(p) are the
residue class modulo p (i.e. the integers 0, . . . , p− 1), whereas the elements of a
binary extension field GF(2m) are commonly represented by binary polynomials
of degree up to m − 1. However, there exist also some structural similarities
between prime and binary fields. First, the elements of either type of field can
be represented by a bit-string. Second, the multiplication in both GF(p) and
GF(2m) implies a modular reduction. Third, the multiplication of both integers
and binary polynomials can be performed by means of generation and addition
of partial products [1]. These similarities facilitate the design of a unified multi-
plier, which is simply a multiplier that uses the same datapath for integers and
binary polynomials [33,34]. Having a unified multiplier instead of two separate
multipliers can result in considerable savings in area when an application needs
to deal with both types of operand. For example, the silicon area of the unified
multiplier introduced in [34] is only slightly larger than the area of a standard
(i.e. integer-only) multiplier.

When classifying previous work on unified multipliers, three principal design
approaches can be identified. The first approach, introduced by Garcia et al in
[13], uses a special wiring methodology to integrate the multiplication of binary
polynomials into a tree multiplier for integers. More precisely, the architecture
presented in [13] (and also the one in [33]) implements two separate sub-trees
for the addition of sum and carry vectors. Another approach for the unification
of integer and polynomial arithmetic is the integration of some extra logic into
half and full adders such that all carry bits of the multiplier datapath can be
suppressed (i.e. set to zero) [9,34]. Finally, it is also possible to design a unified
multiplier on basis of a redundant binary representation as shown in [1].

1 Computing an ECDSA signature requires, besides the field arithmetic (i.e. polyno-

mial arithmetic when using a binary field), also integer arithmetic (addition and

multiplication) modulo the order of the base point [18]. Lee et al [24] integrated a

dedicated 8-bit microcontroller into their RFID security processor to execute these

integer arithmetic operations in a byte-wise fashion.
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Array versus Tree. Array multipliers are known to provide high regularity as
well as locality at the silicon level for the expense of a critical path that scales
linearly with the word-size. On the other hand, tree multipliers have an irregular
structure but can work at much higher frequencies due to a significantly shorter
(i.e. logarithmic-length) critical path. While the speed characteristics of array
and tree multipliers are obvious and well understood [37], the situation is not so
clear regarding power consumption.

At a first glance, one is tempted to attribute array multipliers a rather high
power consumption because of the long signal paths that may cause lots of gate-
output transitions to propagate through the array. It was shown in [3] and [6]
that array multipliers consume significantly more power than tree multipliers
when the impact of wiring is completely ignored. However, since CMOS process
technology improves and transistor geometries become smaller and smaller, the
parasitic capacitances of interconnect wires dominate over the transistor capaci-
tances. Tree multipliers suffer from long interconnect wires with high capacitive
load, which is due to their highly irregular structure. In addition, signal paths
of varying lengths lead to signal skew and an increased number of glitches and
spurious transitions. Meier et al [26] demonstrated that wiring has a big impact
on the power consumption of tree multipliers, and that the difference between
array and tree multipliers is very small when wiring effects are considered.

An array-like architecture is definitely to prefer over a tree-like architecture
when one employs a full-custom design methodology instead of logic synthesis
with automatic place and route. It is, of course, also possible to produce a full-
custom layout of a tree multiplier, but this is a laborious task because of the
irregular structure. Array architectures feature a high degree of regularity and
mainly local interconnect, which makes them easy to design and lay out. Taking
these aspects into account, we opted for the array architecture.

Full-Custom Cell Library. Bisdounis et al [3] compared eight circuit tech-
niques to evaluate their suitability for the implementation of low-power adders
and multipliers. Complementary static CMOS logic showed good results in this
comparison and belonged to the “Top 3” logic styles with respect to power con-
sumption. Furthermore, static CMOS logic is fast, easy to design, immune to
noise, and robust against voltage scaling and transistor down-sizing. All these
desirable properties make static CMOS the circuit technique of choice for the
implementation of a low-power/small-area multiplier [39].

We developed a small full-custom cell library containing all standard logic
gates with two and three inputs [37]. Moreover, our cell library also includes a
two-input XOR and XNOR designed on basis of the classical transmission-gate
XOR/XNOR circuit [23, Figure 4] with a tailing inverter to increase the drive
strength. Transmission gates were also employed for the implementation of an
inverting 2:1 multiplexer. The XOR and XNOR gate consist of eight transistors
each, while the multiplexer has a transistor count of six. We used Mentor Gra-
phics’ GDT tools (i.e. the Led editor, Lmask, and Lsim Power Analyst) for the
design, parasitics extraction, and simulation of our full-custom cell library.
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3 Unified Radix-2 Multiplier

A hardware multiplier computes the product of two integers (resp. polynomials)
through generation and addition of partial products. In the following, we detail
this process for a radix-2 (resp. radix-t) representation of operands.

3.1 Generation of Partial Products

Formally, a multiplication of two unsigned 16-bit integers A, B is carried out by
generation and addition of partial products as follows.

Z = A ·B = A ·
15∑

i=0

bi · 2i =
15∑

i=0

A · bi · 2i (1)

In the binary case (i.e. radix-2 representation), the generation of a partial prod-
uct A · bi is simply a logical AND operation between the multiplier bit bi and
the 16 bits of the multiplicand A. These partial products have to be summed up
according to their weight 2i (i.e. in the appropriate relative position) to obtain
the correct result Z = A · B [37]. The multiplication of binary polynomials can
employ the same technique of generation and addition of partial products. For
example, a multiplication of two binary polynomials A(t), B(t) of degree 15 is
performed as follows.

Z(t) = A(t) ·B(t) = A(t) ·
15∑

i=0

bi · ti =
15∑

i=0

A(t) · bi · ti (2)

All coefficients bi of B(t) are from GF(2) = {0, 1} when using a conventional
(i.e. radix-t) representation; thus, the generation of a partial product A(t) · bi is
simply a logical AND operation between bi and the coefficients of A(t) [27]. The
multiplication of a partial product A(t) · bi by a power of the form ti is nothing
else than a left-shift by i bit positions (“Shift-and-XOR” technique). A partial
product generator (PPG) for a unified radix-2/radix-t multiplier consists of a
row of AND gates [9,33]. In other words, we can use exactly the same hardware
(i.e. AND gates) to generate partial products for both integer and polynomial
multiplication.

3.2 Addition of Partial Products

A conventional implementation of an array multiplier is built of rows of (3,2)
counters (full adders) and (2,2) counters (half adders) to compress the partial
products to a single sum and carry vector. The addition of these two vectors is
the final step for completing the multiplication and calls for an efficient carry-
propagation adder (generally referred to as “final adder”). In the radix-2 case, a
typical (w × w)-bit array multiplier consists of w2 AND gates, w − 1 half and
(w− 1) · (w− 2) full adder cells, respectively, and a fast w-bit carry-propagation
adder for redundant-to-binary conversion of the upper part of the result [37].
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cin

sin

pin

sout

cout

fsel

Fig. 2. Dual-field adder (DFA) Fig. 3. DFA full-custom layout

As outlined in Section 2, there are three different approaches for combining
integer and polynomial multiplication into a single datapath. The first method
(i.e. the special wiring technique described in [13]) is applicable to tree multi-
pliers, but would completely destroy the regularity of array multipliers. On the
other hand, using a redundant binary representation—as proposed in [1]—has
advantages for high-speed designs, but causes significant power consumption in
polynomial mode [17]. Therefore, we decided to implement our multiplier using
full adders with the ability to suppress the carry bit, as this approach complies
best with our requirements for a regular layout and low power consumption.

The sum output of a conventional full adder represents the “modulo-2” sum
(i.e. logical XOR) of the three input values. Thus, suppressing all carries of the
adder cells enables a radix-2 integer multiplier to multiply binary polynomials
[9]. A Dual-Field Adder (DFA) is, in essence, an ordinary full adder with some
extra logic to set the carry output to zero [34]. Figure 2 shows the DFA design
from [16], which was optimized for low power consumption. The control signal
fsel allows for switching between integer and polynomial mode. In integer mode
(i.e. fsel = 1), the DFA works like a conventional full adder, i.e. both the sum
and the carry output are active. On the other hand, when the DFA operates in
polynomial mode (fsel = 0), the NAND gates are 1, which forces the ORNAND
gate (and consequently cout) to 0. An advantage of this design is that only the
two XOR gates are active in polynomial mode; all other gates do not transition
and, hence, they also do not consume power. Therefore, the DFA illustrated in
Figure 2 has a substantially lower power dissipation in polynomial mode than
in integer mode. Savaş et al’s DFA design from [34] does not have this feature
as it is prone to unnecessary gate transitions in polynomial mode.

We implemented the DFA using the cells of our full-custom library in such a
way that all transistors have minimal size. The only exception are the PMOS
transistors of the ORNAND gate, which were enlarged (as can be seen in the
layout in Figure 3) to ensure that the sum and carry output have similar drive
strengths and rise/fall times. A simulation of the DFA’s netlist with extracted
parasitics confirmed that the delay from the inputs sin, cin to the two outputs
sout and cout is also almost identical. The usage of minimum-size transistors in
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combination with delay balancing helps to reduce the impact of spurious tran-
sitions (i.e. glitches) on the total power consumption. Other advantages of the
DFA are its relatively small area and a short critical path. The five gates shown
in Figure 2 amount to 32 transistors altogether (on basis of our full-custom cell
library), which is only four transistors more than the classical 28-transistor full
adder design given in [37, p. 517]. The delay of a full adder is generally deter-
mined by the delay of the XOR gates, which means that our DFA has the same
critical-path delay as a conventional full adder. In summary, the DFA shown in
Figure 2 is only slightly larger than a full adder and has the same propagation
delay. The complete adder array of a unified (16× 16)-bit multiplier has, in the
radix-2 case, a critical path of 14 DFAs and one dual-field half adder.

3.3 Accumulator and Final Adder

The presented adder-array compresses the partial products to a single sum and
carry vector. An accumulator allows for adding the result of the multiplication
(i.e. the product) to a cumulative sum. The accumulator of our unified MAC
unit consists of DFAs and has a length of 40 bits (i.e. we have 8 guard bits to
prevent overflows). The output of the accumulator is exactly the result of the
multiply/accumulate operation in a redundant representation, the carry-save
form. Consequently, we have to convert the sum and carry vector into a normal
binary number to obtain the final result.

The redundant-to-binary conversion (“final addition”) calls for a fast carry-
propagation adder [37]. An important aspect when designing a final adder is to
consider the non-uniform signal arrival profile of the sum and carry vector as
explained in [28]. Array multipliers have a typical “staircase-like” signal arrival
profile, which means that the lower half of the result appears sequentially (in a
bit-by-bit fashion), whereas the upper part arrives simultaneously after passing
through the full adder array. In order to reduce the overall delay of the MAC
unit, we designed the final adder to match this special arrival profile. Our final
adder consists of a ripple-carry adder for redundant-to-binary conversion of the
16 sequentially-arriving bits, and a carry-select adder (CSA) for the upper bits
of the result. We used ripple-carry adders of varying length for the sub-stages
of the CSA to reduce the delay. A CSA composed of small ripple-carry adders
features high regularity and is, therefore, suitable for full-custom design.

The multiplication of binary polynomials does not need a final adder, simply
because all carry vectors are 0 in polynomial mode. Therefore, we forward the
accumulator’s sum output directly to the output of the MAC unit when a poly-
nomial multiplication is performed. The sum input to the final adder is set to
0 in polynomial mode to ensure that the final adder is completely inactive and
does not dissipate power.

4 Unified Radix-4 Multiplier

High-radix multiplication schemes reduce the number of partial products com-
pared to the conventional (i.e. radix-2 or binary) multiplication scheme, which
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shortens the critical path of an array multiplier as fewer partial products have
to be summed up. A radix-4 multiplication of two unsigned 16-bit numbers can
be performed according to the following equation.

Z = A ·B = A ·
7∑

k=0

bk · 4k =
7∑

k=0

A · bk · 4k with bk ∈ {0, 1, 2, 3} (3)

The conventional radix-4 representation of integers is based on the digit-set
{0, 1, 2, 3}. Consequently, any partial product Pk = A · bk is either 0, A, 2A, or
3A, whereby the latter is difficult to generate as the addition of 2A and A will
typically imply a propagation of carries. Therefore, most radix-4 multiplication
schemes employ other digit sets, e.g. the set {−2,−1, 0, 1, 2} as used in modified
Booth recoding (resp. Booth-MacSorley recoding [25]).

The idea of high-radix multiplication is applicable to binary polynomials as
well and was first described in [27]. Analogous to integer multiplication, the use
of a high-radix representation reduces the overall number of partial products
that need to be summed up. The radix-t representation of binary polynomials is
based on the coefficient set {0, 1}, and hence it corresponds to the conventional
radix-2 representation of integers. On the other hand, the analogue of radix-4
integer representation is the radix-t2 representation of binary polynomials. This
representation uses the coefficient set {0, 1, t, t + 1} and allows for performing
a multiplication of two binary polynomials A(t), B(t) of degree 15 as follows.

Z(t) = A(t) · B(t) = A(t) ·
7∑

k=0

bk(t) · t2k =
7∑

k=0

A(t) · bk(t) · t2k (4)

with bk(t) ∈ {0, 1, t, t + 1}
All coefficients bk(t) of a binary polynomial B(t) in radix-t2 representation are
themselves binary polynomials, namely binary polynomials of degree up to one
(i.e. 0, 1, t, or t + 1). The corresponding partial product Pk(t) = A(t) · bk(t) is
either 0, A(t), t ·A(t), or A(t)⊕ t ·A(t), all of which can be easily generated by
1-bit left-shift and XOR operations. Therefore, a radix-t2 multiplication can be
efficiently performed with the standard coefficient set {0, 1, t, t + 1}.

4.1 Generation of Partial Products

Modified Booth recoding (also referred to as Booth-MacSorley recoding [25]) is
commonly used in array multipliers as it reduces the number partial products
by a factor of two. However, modified Booth recoding is not directly applicable
to binary polynomials since it relies on a signed-digit representation with the
digit set {−2,−1, 0, 1, 2}, which does not exist in the context of polynomials as
the principle of “carrying” from less to more significant positions is absent. It is
nonetheless possible to “unify” the high-radix multiplication of integers and bi-
nary polynomials, as was demonstrated in [15]. In the following, we summarize
how the unified radix-4/radix-t2 multiplier from [17] generates partial products
in integer mode and polynomial mode.
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Fig. 4. Unified radix-4 PPG for integers and radix-t2 PPG for binary polynomials

Integer Mode. Modified Booth recoding is, in general, performed within two
steps: Encoding of the multiplier B and Selection (i.e. generation) of the partial
products. The encoding step is simply a conversion in which a radix-2 number
B with digits bi in {0, 1} is transformed into an equivalent radix-4 number B̃

represented by digits b̃k from the set {−2,−1, 0, 1, 2}. When assuming that B is
an unsigned 16-bit integer, the conversion can be carried out as follows.

B̃ =
8∑

k=0

b̃k · 4k with b̃k = −2 · b2k+1 + b2k + b2k−1 and b17 = b16 = b−1 = 0 (5)

The radix-4 digits b̃k are obtained by partitioning the multiplier B into over-
lapping groups of three adjacent bits b2k+1, b2k, b2k−1 (for k = 0, 1, . . . , 8) and
calculating −2 · b2k+1 + b2k + b2k−1 as shown in Equation (5). All digits b̃k are
available “simultaneously” because they can be calculated independently from
each other and in parallel. A multiplication with the radix-4 number B̃ instead
of B cuts the number of partial products from 16 to 9 (or 8 when multiplying
signed integers). The major advantage of using the digit set {−2,−1, 0, 1, 2} is
that the corresponding partial products Pk ∈ {−2A,−A, 0, A, 2A} are easy to
generate through shifts and bit-wise inversions. Booth multipliers generally use
two’s complement (TC) representation for negative numbers. Negative partial
products, in TC form, are obtained via inversion of the corresponding positive
partial product (i.e. producing the one’s complement) and adding a “1” at the
least significant bit position. This “correction” is performed together with the
addition of partial products in the adder array.

Figure 4 depicts a unified radix-4/radix-t2 partial product generator (PPG)
for integers and binary polynomials. This design is based on [15] but optimized
for implementation using our full-custom cell library. The PPG is controlled by
the three signals inv (invert), trp (transport), and shl (shift left). These signals
depend on the multiplier bits b2k+1, b2k, and b2k−1 according to Equation (6) to
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Table 1. Radix-4 encoding of integers and radix-t2 encoding of binary polynomials

Multiplier bits Integer mode (fsel = 1) Polynomial mode (fsel = 0)

b2k+1 b2k b2k−1 Pk inv trp shl +1 Pk(t) inv trp shl +1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 +A 0 1 0 0 0 0 0 0 0

0 1 0 +A 0 1 0 0 A(t) 0 1 0 0

0 1 1 +2A 0 0 1 0 A(t) 0 1 0 0

1 0 0 −2A 1 0 1 1 t·A(t) 0 0 1 0

1 0 1 −A 1 1 0 1 t·A(t) 0 0 1 0

1 1 0 −A 1 1 0 1 t·A(t) ⊕ A(t) 0 1 1 0

1 1 1 0 1 0 0 0 t·A(t) ⊕ A(t) 0 1 1 0

(8), which can be directly derived from Table 1. In integer mode (fsel = 1), the
generation of partial products is done similar to the classical encoding scheme
using N/X1/X2 signals as specified in [37, p. 551]. Therefore, the unified PPG
acts like an ordinary radix-4 Booth-PPG when operated in integer mode. The
logical equation for the “+1” needed in the case of a negative partial product is
also easily derived from Table 1.

inv = fsel · b2k+1 (6)
trp = fsel · (b2k · b2k−1 + b2k · b2k−1

)
+ fsel · b2k (7)

shl = fsel · (b2k+1 · b2k · b2k−1 + b2k+1 · b2k · b2k−1

)
+ fsel · b2k+1 (8)

The PPG shown in Figure 4 needs A (the multiplicand) and its inverse A as
input, and the multiplexers select between A and A, depending on the control
signal inv. The AND/XOR combination performs a 1-bit left-shift operation
when shl = 1, which is necessary for the generation of the partial products 2A
and −2A. On the other hand, trp = 1 means that no left shift is performed and
hence the resulting partial product is either A or −A.

Polynomial Mode. The radix-t2 multiplication of binary polynomials corres-
ponds to the radix-4 multiplication of integers. Given two binary polynomials
A(t), B(t) in conventional (radix-t) representation, the radix-t2 multiplication
requires to consider two adjacent bits of B(t) at a time in order to produce the
corresponding partial product Pk(t) as specified by Equation (5). However, two
adjacent bits of B(t) can also be interpreted as a binary polynomial of degree
one, and depending on whether this polynomial is 0, 1, t, or t + 1, the corres-
ponding partial product Pk(t) is either 0, A(t), t · A(t), or t · A(t) ⊕ A(t). The
multiplication of A(t) by t is nothing else than a 1-bit left shift operation of the
coefficients of A(t), which means that the generation of partial products for a
radix-t2 multiplication is simply a matter of shift and XOR operations.

An important property of the inv/trp/shl scheme is that, in integer mode
(i.e. fsel = 1), the two control signals trp and shl are never 1 at the same time
(see Table 1), which allows us to use XOR or XNOR gates to select between
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±A and ±2A. Thanks to this property, the PPG depicted in Figure 4 provides
the necessary functionality to generate partial products for radix-t2 multiplica-
tion. In polynomial mode (i.e. fsel = 0), the control signal inv is always 0 and
the PPG is directly controlled by the coefficients of B(t), i.e. trp = b2k and
shl = b2k+1. Therefore, the PPG depicted in Figure 4 is a unified radix-4 PPG
for integers and binary polynomials2.

4.2 Addition of Partial Products

Applying radix-4 Booth recoding in a (16× 16)-bit multiplier reduces the num-
ber of partial products from 16 to 9 (in the case of unsigned integers). On the
other hand, radix-t2 multiplication of polynomials halves the number of partial
products compared to the radix-t architecture (i.e. 8 partial products instead
of 16). The adder array of a unified radix-4 multiplier for 16-bit operands is, in
general, dimensioned to sum up 9 partial products [17]. This means that the
radix-4/radix-t2 scheme reduces the overall number of DFAs by almost 50% in
relation to the radix-2/radix-t datapath. However, the adder array of a unified
radix-4 multiplier differs in the following aspects from the radix-2 version.

– The length of the partial products is 18 bits instead of 16 bits since they can
be twice as large as the multiplicand A and may have a negative value. The
MSB of the partial product is its sign bit.

– The rules of two’s complement arithmetic demand a sign extension, which
increases both area and power consumption. Therefore, it is important to
minimize the effects of sign extension.

– The PPG shown in Figure 4 performs merely an inversion when the genera-
tion of a negative partial product is required. Therefore, the adder array has
to add a “1” at the least significant position of the partial product in order
to get the correct two’s complement representation.

– The partial products must be summed up according to their weight (i.e. in
the appropriate relative position) to get the correct result. For instance, the
partial product Pk has four times the weight of Pk−1, which means that the
offset between Pk and Pk−1is two bit positions.

Detailed information about the implementation of an adder array for unified
radix-4/radix-t2multiplication is given in [17]. Although the architecture from [17]
was originally developed for a standard-cell implementation, it is also well suited
for full-custom design since it features a high degree of regularity and mainly local
interconnect. The adder array of a unified (16 × 16)-bit multiplier implemented
on basis of [17] consists of 7 adder stages to sum up the 9 partial products. Ev-
ery adder stage is composed of 18 DFAs, which amounts to 126 DFAs altogether.
Note that the first three partial products, P0, P1, and P2, can be summed up by
one adder stage. All remaining partial products require an additional adder stage,
2 We denote the combined radix-4/radix-t2 PPG as a “unified radix-4 PPG for inte-

gers and binary polynomials” since the radix-t2 multiplication of binary polynomials

corresponds to the radix-4 multiplication of integers.
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which yields the 7 adder stages mentioned before. The critical path of the radix-4
adder array (i.e. 7 DFA cells) is only one half of the radix-2 array.

4.3 Accumulator and Final Adder

The 40-bit accumulator of the unified radix-4 multiplier is identical to the one
of the radix-2 version. On the other hand, the signal arrival profiles, and hence
the final adders, differ slightly. The radix-4 multiplier also has a staircase-like
profile, but the low-order bits (i.e. the 16 LSB) of the sum and carry vector
arrive sequentially in two-bit blocks, and not one bit at a time as in the radix-2
version. Therefore, the final adder uses concatenated 2-bit ripple-carry adders
for the redundant-to-binary conversion of these bits. The high-order bits of the
sum and carry vector arrive simultaneously (as in the radix-2 multiplier), and
are summed up by a fast carry-select adder.

5 Results and Discussion

We created a full-custom layout of both the unified radix-2 and radix-4 MAC
unit using a standard 0.6 μm CMOS technology with two metal layers and a
single polysilicon layer. The transistor width of gates with ordinary (1x) drive
strength is always 1.5 μm; gates with 2x drive strength are realized with PMOS
transistors of width 3 μm and NMOS transistors of 1.5 μm, respectively. Both
the radix-2 and the radix-4 variant have a regular structure with mainly local
interconnect (i.e. short wires), which allows using minimum-size transistors in
gates and drivers. However, some gates demand an increased drive strength in
order to achieve equal output signal strength or balance the delay and rise/fall
times of signal slopes. Delay balancing ensures synchronously arriving signals
at the input of logic gates, thereby eliminating, or substantially reducing, the
power consumption caused by spurious transitions (glitches).

Table 2 summarizes the simulation results and main characteristics of the
two unified (16 × 16 + 40)-bit MAC units. Both the radix-2 and the radix-4 ver-
sion consist of roughly 12,000 transistors, whereby the silicon area of the radix-2

Table 2. Simulation results for f = 10 MHz and Vdd = 3.3V

Parameter Radix-2 version Radix-4 version

Transistor count 12,384 11,744

Delay (INT mode) 82.4 nsec 54.3 nsec

Avg. current (INT mode) 7.37 mA 5.75 mA

PDP (INT mode) 2.43 nJ 1.90 nJ

EDP (INT mode) 200.2 · 10−18 Js 103.0 · 10−18 Js

Delay (POLY mode) 66.8 nsec 38.0 nsec

Avg. current (POLY mode) 3.66 mA 3.49 mA

PDP (POLY mode) 1.21 nJ 1.15 nJ

EDP (POLY mode) 80.7 · 10−18 Js 43.8 · 10−18 Js
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MAC unit is slightly larger. The radix-4 variant has a worst-case delay of 54.3 nsec
(in integer mode at a supply voltage of 3.3 V), which corresponds to a maximum
clock frequency of 18.4 MHz. As expected, the radix-2 MAC is slower, mainly due
to the longer critical path in the adder array. Both versions are not very fast since
we used an old 0.6 μm CMOS process and most of the transistors are of minimum
size. However, the performance is still appropriate for common RFID applications.
Each of our MAC units executes a polynomial multiplication much faster than an
integer multiplication since a redundant-to-binary conversion of the result is not
required in polynomial mode (i.e. the final adder is bypassed).

The average current drawn by the radix-2 and the radix-4 implementation
is also given in Table 2. These results were obtained via simulation of netlists
with extracted parasitics. In general, the current drawn during a multiplication
depends heavily on the input values. Therefore, we simulated 10,000 multiply-
accumulate operations using independent, pseudo-random input patterns and
measured the power consumption. The simulation was done with a frequency
of 10 MHz (i.e. new inputs were presented with a period of 100 nsec), which is
a frequency that both the radix-2 and the radix-4 MAC unit could handle. Our
results show that the radix-4 MAC draws, on average, 22% less power than the
radix-2 version. This power saving is mainly due to the shorter adder array in
the radix-4 multiplier, which reduces the number of glitches compared to the
radix-2 version. In both cases, a multiplication of binary polynomials consumes
significantly less power than an integer multiplication (e.g. roughly 39% in the
radix-4 version). Polynomial multiplication needs no redundant representation
and, therefore, causes less switching activities in the adder array (only the two
XNORs of each DFA are active) and no switchings at all in the final adder.

Besides area, delay, and power consumption, also the Power-Delay Product
(PDP) and the Energy-Delay Product (EDP) are widely accepted comparison
metrics for MAC units. When leakage current is ignored, the PDP of a static
CMOS multiplier can be interpreted as the average figure of energy consumed
per multiplication. Thus, the PDP is an important metric for battery-operated
devices as it determines the battery-lifetime. Our simulations showed that the
average amount of energy needed to perform an integer multiplication is 2.43 nJ
for the radix-2 MAC, but only 1.90 nJ for the radix-4 variant, which represents
a saving of 22%. The EDP differs by more than 48% in integer mode. Both the
radix-2 and the radix-4 version have significantly better energy characteristics
in polynomial mode than in integer mode, which confirms that a multiplication
of binary polynomials is more energy-efficient than integer multiplication.

6 Conclusions

In this paper, we analyzed and compared two implementations of a unified
(16× 16 + 40)-bit MAC unit for integers and binary polynomials. Our first im-
plementation utilizes a unified radix-2/radix-t multiplication scheme, whereas
the second employs radix-4 Booth recoding for integers and radix-t2 multiplica-
tion for binary polynomials. Both the radix-2 and radix-4 variant are based on
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a normal array architecture and perform multiplications and MAC operations
in one cycle. The MAC unit can be integrated into low-cost ECC hardware to
perform all arithmetic operations in GF(p) and GF(2m).

Our simulation results show that the unified radix-4 MAC is superior to its
radix-2 counterpart in terms of area, delay, and power consumption. While the
difference in silicon area is only marginal, the radix-4 version achieves a 34%
improvement in delay and a power advantage of 22% compared to the radix-2
version. Moreover, the radix-4 MAC exhibits a much better EDP. Taking the
tight power budget of RFID tags into account, our unified radix-4 multiplier is
a significant improvement over the radix-2 designs proposed in [34,33]. We also
demonstrated that the multiplication of binary polynomials is more efficient in
terms of power and energy than integer multiplication because the latter uses a
redundant representation which causes more signal transitions.
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Abstract. The design of secure authentication solutions for low-cost

RFID tags is still an open and quite challenging problem, though many

algorithms have been published lately. In this paper, we analyze two re-

cent proposals in this research area. First, Mitra’s scheme is scrutinized,

revealing its vulnerability to cloning and traceability attacks, which are

among the security objectives pursued in the protocol definition [1].

Later, we show how the protocol is vulnerable against a full disclosure

attack after eavesdropping a small number of sessions. Then, we analyze

a new EPC-friendly scheme conforming to EPC Class-1 Generation-2

specification (ISO/IEC 180006-C), introduced by Qingling and Yiju [2].

This proposal attempts to correct many of the well known security short-

comings of the standard, and even includes a BAN logic based formal

security proof. However, notwithstanding this formal security analysis,

we show that Qingling et al.’s protocol offers roughly the same security

as the standard they try to improve, is vulnerable to tag and reader im-

personation attacks, and allows tag traceability.

Keywords: RFID, EPC, Cloning, Traceability, Impersonation, Crypt-

analysis, BAN, Proof.

1 Introduction

Many authors have recently focused their attention on low-cost RFID tags, be-
cause designing secure solutions within their restricted capabilities is a great
challenge. The solutions proposed can be categorized with respect to three main
criteria. First, some proposals are based on the learning parity with noise (LPN)
problem, initially examined by Hopper and Blum [3] and introduced by Juels
in the context of RFID systems [4]. Secondly, other authors severely restrict
the assumed set of operations supported by tags to very simple and efficient
operations: The SASI [5] and Gossamer [6] protocols are two proposals in this
direction, where tag capabilities are limited to bitwise operations and rotations.
These protocols have been christened ultra-lightweight protocols, in Chien’s clas-
sification [5]. When we add to the described tags the requirement of supporting
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Pseudo Random Number Generators (PRNGs), we then call these proposals
lightweight. For example, EPC Class-1 Generation-2 (Gen-2 in short) compliant
tags support a 16-bit PRNG and a 16-bit Cyclic Redundancy Check (CRC) [7].

In this paper, we successfully cryptanalyse two recent lightweight authenti-
cation protocols. First, Mitra’s scheme [1] is explored, discovering that its two
main objectives (anti-cloning and untraceability) are not guaranteed. After that,
we present a full disclosure attack that points out the protocol fails short of the
security level required for the intended applications. Then, a new scheme under
the EPC Gen-2 framework is scrutinized. As is already well-known, the Gen-2
specification has some important security drawbacks. In [2], Qingling et al. made
an attempt to correct many of them in their proposed scheme, but we show that
the authors failed, just as those of many other previous protocols [8,9,10,11],
despite providing a formal security proof.

2 Mitra’s Protocol

In 2008, Mitra proposed a new scheme (in the following called TC-RFID for
short) that attempts to protect tags against traceability and cloning [1]. The
author assumes that tags support an on-chip PRNG. Tags are also able to com-
pute simple operations, particulary multiplication and addition. Operations in
readers are limited to the computation of a modulo. Regarding communication
channels, both the forward (reader-to-tag) and the backward (tag-to-reader) can
be eavesdropped by an adversary. As for memory requirements, each tag stores
a static identifier {EPCi} and a key {Ki}. This key is shared between the tag
and legitimate readers (and the back-end database) registered in the system.

The author proposed this simple protocol, in which only tags (T ) are authen-
ticated by readers (R):

Step 1: R→ Ti The reader sends a request message to tag i.
Step 2: Ti (Tag i) computes an encrypted and/or anonymized version of its

static identifier:
Ei(n) = RND(n) ∗Ki + EPCi (1)

where RND is a random number, the output after the nth-call to the on-chip
PRNG, and Ki is the shared key between Ti and R.

Step 3: Ti →R The tag sends the reader Ei(n), which serves as an authenti-
cation token.

3 Vulnerabilities of Mitra’s Protocol

In this section we analyze the most relevant weaknesses of the TC-RFID protocol.

3.1 Cloning Attack

As mentioned in the last section, nowadays tags often respond to reader’s queries
without requiring any authentication at all. Tags can even transmit their static
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identifier {EPCi} over the channel in plaintext. In it case, an adversary can
snoop this publicly available information and transfer it to a clone device (i.e.
another tag or a more sophisticated emulator).

Symmetric-key cryptography can be used to avoid tag cloning attacks. Specif-
ically, a challenge-response mechanism like the following can be employed. We
assume the tag (Ti) shares a secret key {Ki} with the reader (R). Afterwards,
the following messages are exchanged:

Step 1: R→ Ti The reader generates a fresh random number (RND(n), a
nonce challenge) and transmits it to the tag.

Step 2: Ti →R The tag computes Hi(n) = g(Ki, RND(n)) and sends it back
to the reader.

Step 3: R The reader locally computes H ′
i(n) = g(Ki, RND(n)) and checks if

its value is identical to tag’s answer Hi.

The g function can be implemented by using any hash or encryption algorithm.
Note that the protocol security is highly dependent on that of the g function.
As low-cost RFID tags have severe resource limitations, the use of standard
cryptographic primitives is not possible. Particularly, Mitra proposed the use of
multiplication and summation operands for the g function (Hi(n) = Ei(n) =
RND(n) ∗Ki + EPCi), which is vulnerable to cloning attacks. An attacker can
collect a number of encrypted messages, and compute their difference:

Δ = Ei(n)− Ei(n + 1) = (RND(n)−RND(n + 1)) ∗Ki (2)

Then, she will compute the greatest common divisor of these differences. The
attacker concludes this value is the secret key {Ki} of the target tag.

Additionally, an attacker that eavesdrops on two (non necessarily consecutive)
authentication sessions ({Ei(n), Ei(n + p)}) between the target tag (Ti) and a
legitimate reader (R) is able to supplant a tag indefinitely by sending E′

i =
E(n)+RNDr(q)∗Δ as its authentication token, where Δ = Ei(n)−Ei(n+p) =
(RND(n)− R(n + p)) ∗Ki.

3.2 Traceability Attack

The traceability problem has been studied by many researchers lately. In [12],
Juels and Weis give a formal definition of the untraceability model. The same
definition, though in a style more commonly used to formally define the proper-
ties of security protocols, is described by Phan in his recent attack against the
SASI protocol [13], and used in the following.

In RFID systems, tags (T ) and readers (R) interact in protocol sessions. In
general terms, the adversary (A) controls the communications between all the
participants and interacts passively or actively with them. In our case, we can
succeed in the traceability attack by only using passive means. Specifically, A
can run the following queries:
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– Execute(R, T , i) query. This models a passive attacker. A eavesdrops on the
channel, and gets read access to the exchanged messages between R and T
in session i of a genuine protocol execution.

– Test(i, T0, T1) query. This does not model any ability of A, but it is necessary
to define the untraceability test. When this query is invoked in session i, a
random bit is generated b ∈ {0, 1}. Then, Eb(n), from the set {E0(n), E1(n)}
corresponding to tags {T0, T1} is given to A.

Upon definition of the adversary’s abilities, the untraceability problem can be
defined as a game G. We now show why the TC-RFID scheme does not achieve
untraceability. Specifically, the TC-RFID protocol, in an RFID system (S= {Ri,
T0, T1, ....} in which an adversary A can invoke two Execute(R, T , i) queries
and one Test(i, T0, T1) query, is vulnerable to traceability attacks, since the
advantage for an adversary is significant: AdvUNT

A (t, r = 2) = 0.5 ! ε(t, 2), t
being a security parameter (i.e. the bit length of the secret key) and ε(.) some
negligible function.

Specifically, an adversary A performs the following steps:

Phase 1 (Learning): A sends two Execute queries to T0. Consecutiveness in
the queries is not necessary, which is handy because the target tag may
have been read by a legitimate reader in between. A acquires the following
messages:

E0(n) = RND(n) ∗K0 + EPC0 (3)
E0(n + m) = RND(n + m) ∗K0 + EPC0 (4)

Phase 2 (Challenge): A chooses two fresh tags whose associated identifiers
are EPC0 and EPC1. Then he sends a Test(q, T0, T1) query. As a result,
A is given a challenge cipher text Eb(q) from the set {E0(q), E1(q)}, which
depends on a chosen random bit b ∈ {0, 1}:

Ei(q) =
{

RND(q) ∗K0 + EPC0 if b = 0
RND(q) ∗K1 + EPC1 if b = 1 (5)

Phase 3 (Guessing) A finishes G and outputs a bit d (d ∈ {0, 1}) as his guess
of the value b. In particular, we propose the following procedure to obtain
value d:
1. A computes the difference between Equations 3, 4:

Δ1 = |E0(n)− E0(n + m)|
= |RND(n) ∗K0 + EPC0 −RND(n + m) ∗K0 − EPC0|
= |(RND(n)−RND(n + m)) ∗K0| (6)

2. A computes the difference between Equations 3, 5:

Δ2 =
{ |(RND(n)−RND(q)) ∗K0| if b = 0
|RND(n) ∗K0 −RND(q) ∗K1 + EPC0 − EPC1| if b = 1 (7)
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3. A uses the following decision rule:

d =
{

0 if gcd(Δ1, Δ2) ≥ 2L/2

1 if gcd(Δ1, Δ2) < 2L/2 (8)

where gcd(.) symbolizes the greatest common divisor and L represents
the length of the variables used. To be compatible with the common
encodings schemes defined by EPCGlobal [14], we can fix L to 96 bits.

We have run 1000 experiments, with 220 executions of the above game (G) in
each experiment, in order to obtain an approximation of the success probability
of the adversary. From this experimentation, a probability of 1 was obtained. So,
the AdvUNT

A (t, r) is not only not negligible, but maximal. A wins G, allowing
him the traceability of tags: AdvUNT

A (t, 2) = |1− 1
2 | = 0.5. So the use of random

numbers does not prevent the attacker from associating the tags’s answers with
its holder, with complete certainty.

3.3 Full Disclosure Attack

In this section, we show a much more harmful attack in which the attacker
disclosures the secret key {Ki} of the target tag. Once {Ki} is made public, the
static identifier {EPCi = Ei(n + c) mod Ki} is compromised too. That is, all
the private information of the tag is exposed by the adversary.

Specifically, in the TC-RFID protocol, an adversary that eavesdrops on t (non
necessarily consecutive) authentication sessions {Ei(n+c1), Ei(n+c2), ..., Ei(n+
ct)} between the target tag (Ti) and a legitimate reader (R) is able to disclo-
sure the secret key {Ki} by computing the greatest common divisor of the t–1
independent differences {|Ei(n + c1)−Ei(n + c2)|, ..., |Ei(n + c1)−Ei(n + ct)|}.
The probability of success –from basic Number Theory [15]– is quite accurately
given by the equation bellow:

Pr[A reveals Ki] ≈ 1
ζ(t− 1)

(9)

where ζ is the Riemann zeta function.
We ran 10,000 experiments in order to estimate the Adversary’s probability

of success. We conducted this experiment for several numbers of eavesdropped
sessions. In Figure 1, the good fitting between the theoretical and experimental
results is depicted. We observe that after a low number [2 : 11] of eavesdropped
sessions the attack is quite successful (60% – 100%). The attack just presented
here is the most powerful and implies all those described in previous sections
(i.e. privacy exposure, cloning, traceability, etc.).

4 Qingling et al.’s Protocol

In 2008, Quingling et al. proposed a minimalist mutual authentication protocol
conforming with Gen-2 specification (QYY-Gen2 in short) [2]. A formal security
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analysis was included in their proposal, which generated some hopes that it could
be the first solution to really increase the security of the Standard. We have
analyzed the scheme, and realized these hopes were overoptimistic, because the
protocol has the same security weaknesses as the Gen-2 Standard it is intended
to improve, as shown in Section 5.

The authors proposed a challenge-response protocol in which both tags (Ti)
and reader (R) are authenticated. Each tag and reader (back-end database)
share a 32-bit EPC unique identifier {TIDTagi} and a 32-bit access password
{APWDTagi}. For simplicity, we condense readers and back-end database into
a single entity as the communication channel between both entities is assumed
to be secure. The subindex M and L are used to represent the 16 most and
least significant bits of a variable (i.e. X = XL||XM ). We outline the messages
exchanged bellow:

Step 1: R→ Ti: Query, RNDRdr

The reader first generates a random number RNDRdr and sends {Query,
RNDRdr} to the target tag.

Step 2: Ti →R: MTagi , RNDTagi

Upon receiving reader’s query, the tag also generates a nonce RNDTagi

and computes: MTagi = MTagi

L ||MTagi

M

MTagi

L = CRC(TIDTagi

L ⊕RNDRdr ⊕RNDTagi)⊕APDWTagi

L

MTagi

M = CRC(TIDTagi

M ⊕RNDRdr ⊕RNDTagi)⊕APDWTagi

M (10)

Finally, the tag sends {MTagi , RNDTagi} to the reader.
Step 3: The reader verifies whether the equation MTagi ⊕APDWTagi

= CRC(TIDTagi

L ⊕ RNDRdr ⊕ RNDTagi)||CRC(TIDTagi

M ⊕ RNDRdr ⊕
RNDTag) holds for any tag registered in the back-end database. If it can
find a match, the tag is authenticated and the process continues; otherwise
it stops the process, which ends in failure.

Step 4: R→ Ti: MRdr = MRdr
L ||MRdr

M
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The reader computes an authentication message and sends it to the tag.

MRdr
L = CRC(TIDTagi

L ⊕RNDTagi)⊕APDWTagi

L

MRdr
M = CRC(TIDTagi

M ⊕RNDTagi)⊕APDWTagi

M (11)

Step 5: On receiving MRdr, the tag verifies the equation MRdr ⊕APDWTagi

= CRC(TIDTagi

L ⊕RNDTagi)||CRC(TIDTagi

M ⊕RNDTagi). If it holds, the
reader is successful authenticated; otherwise it stops the process, which ends
in failure.

5 Vulnerabilities of Qingling’s Protocol

In this section we analyze the most relevant weaknesses of the QYY-Gen2 pro-
tocol. The authors use a Cyclic Redundancy Check (CRC) function as if it were
a “strong” primitive despite its well-known security problems due to its linearity
[16,17]. Basically, the security of the proposed scheme is incorrectly based on the
assumption that CRC functions are one-way functions.

CRC functions possess some properties that are undesirable from a secu-
rity point of view. We show one of them, which will be enough to prove that
the QYY-Gen2 protocol fails short of its security objectives, being as inse-
cure as the original Gen-2 specification it is intended to improve on. For any
CRC (independently of its generator polynomial) and for any values A, B:
CRC(A⊕B) = CRC(A) ⊕ CRC(B).

5.1 Tag/Reader Impersonation Attack

Tags are authenticated by checking the equation: MTagi ⊕APDWTagi
?=

CRC(TIDTagi

L ⊕RNDRdr⊕RNDTagi)||CRC(TIDTagi

M ⊕RNDRdr⊕RNDTagi).
The authors claim that only genuine tags can compute correct answers to the
readers’s queries because private information shared between these two entities is
employed in message generation. However, we show how an attacker can supplant
a tag without needing to know any private information. A passive attacker, after
eavesdropping one authentication session between an authentic tag (Ti) and a
genuine reader (R), can impersonate the target tag by sending message MTagi

L ⊕
CRC(α)||MTagi

M ⊕ CRC(α), RNDTagi
new , where δ = RNDTagi

new ⊕ RNDTagi , γ =
RNDRdr

new ⊕RNDRdr, and α = δ ⊕ γ. The adversary is thus authenticated as a
legitimate tag, without knowing any of the tag’s private information.

Similarly, the authors point out that an attacker cannot respond to tag queries
due to their ignorance of the private information and the use of fresh random
nonces in each authentication session. However, we show an attacker can im-
personate a reader using similar arguments as in the tag impersonation at-
tack. On capturing messages transmitted in a valid authentication session be-
tween an authentic tag (Ti) and a genuine reader (R), an adversary can sup-
plant a reader by sending message MRdr

L ⊕ CRC(δ)||MTagi

M ⊕ CRC(δ), where
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δ = RNDTagi
new ⊕ RNDTagi . The tag cannot, therefore, detect the ploy and au-

thenticates the adversary as a genuine reader.
We must emphasize that these attacks are very efficient, since passive capture

of messages in just one legitimate authentication session is all that is required
for their success.

5.2 Traceability Attack

The authors argue that the proposed protocol guarantees untraceability due
to the use of new nonces in each session. However, in this section we show
how an attacker is able to track a tag by making some simple computations
over the tag’s response. To do this, we use the traceability game defined in
Section 3.2.

Specifically, QYY-Gen2 protocol, in an RFID system (S= {Ri, T0, T1, ....}
in which an adversary A can invoke one Execute(R, T , i) and Test( i, T0, T1)
query in an untraceability game G, is vulnerable to traceability attacks, since
the advantage for an adversary to win G is not negligible: AdvUNT

A (t, r = 1) )
0.499999! ε(t, 1), t being a security parameter (i.e. the bit length of the access
and key password) and ε(.) some negligible function.

An adversary A performs the following steps to track tags in the QYY-Gen2
protocol:

Phase 1 (Learning): A sends an Execute query to T0. A acquires the random
numbers used in the session and the tag’s authentication message: RNDRdr,
RNDTag0

q , MTag0 = MTag0
L ||MTag0

M .

MTag0
L = CRC(TIDTag0

L ⊕RNDRdr ⊕RNDTag0
q )⊕APDWTag0

L

MTag0
M = CRC(TIDTag0

M ⊕RNDRdr ⊕RNDTag0
q )⊕APDWTag0

M (12)

Phase 2 (Challenge): A chooses two fresh tags whose associated identifiers
are TIDTag0 and TIDTag1 . Then he sends query Test(q, T0, T1). As a re-
sult, A is given two random number messages RNDRdr

new, RNDTagi

q+1 , and an
authentication message MTagi from the set {MTag0 , MTag1}, which depends
on a chosen random bit b ∈ {0, 1}:

MTagi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CRC(TIDTag0

L ⊕RNDRdr
new ⊕RNDTag0

q+1 )⊕APDWTag0
L || if b=0

CRC(TIDTag0
M ⊕RNDRdr

new ⊕RNDTag0
q+1 )⊕APDWTag0

M

CRC(TIDTag1
L ⊕RNDRdr

new ⊕RNDTag1
q+1 )⊕APDWTag1

L || if b=1
CRC(TIDTag1

M ⊕RNDRdr
new ⊕RNDTag1

q+1 )⊕APDWTag1
M

(13)
Phase 3 (Guessing) A finishes G and outputs a bit d (d ∈ {0, 1}) as its con-

jecture of value b. Specifically, we propose the following procedure to obtain
d:
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1. From Equation 12 and CRC linearity, the following constant value uni-
vocally associated with T0 is obtained by the adversary: X = XL||XM

XL = MTag0
L ⊕ CRC(RNDRdr)⊕ CRC(RNDTag0

q ) =

= CRC(TIDTag0
L )⊕APDWTag0

L

XM = MTag0
M ⊕ CRC(RNDRdr)⊕ CRC(RNDTag0

q ) = (14)

= CRC(TIDTag0
M )⊕APDWTag0

M

2. By the same mathematical reasoning, A calculates the constant value
associated with Equation 13:

Y =

⎧⎪⎪⎨⎪⎪⎩
CRC(TIDTag0

L )⊕APDWTag0
L || if b = 0

CRC(TIDTag0
M )⊕APDWTag0

L

CRC(TIDTag1
L )⊕APDWTag1

L || if b = 1
CRC(TIDTag1

L )⊕APDWTag1
L

(15)

3. A utilizes the following simple decision rule:

d =
{

0 if X = Y
1 if X �= Y

(16)

As tags are randomly initialized, there is a negligible probability for the value
CRC(TIDTagi

L ) ⊕ APDWTagi

L ||CRC(TIDTagi

M ) ⊕ APDWTagi

L to be equal for
different tags (i.e. T0 and T1). Specifically, for the parameters proposed by the
authors, with variables set to a 32-bit length and a CRC function of 16 bits,
we have a 1/232 probability of collision, assumed independence and uniformity
in the secret values {TIDTagi, APWDTagi} linked to each tag. Therefore the
advantage of A in distinguishing whether the adversary interacts with T0 or T1
is: AdvUNT

A (t, 1) = |Pr[d = b]− 1
2 | = 1

2 − 1
232 .

6 Conclusions

In this paper the cryptanalysis of two recent lightweight protocols is proposed.
Both of these protocols assume that tags support an on-chip PRNG and simple
operations. In Mitra’s protocol, operations are limited to multiplication and
addition, paving the way towards a simple differential analysis of exchanged
messages, and showing its lack of resistance to cloning and traceability attacks.
Additionally, a full disclosure attack, which involves all the aforemention attacks,
can be implemented with a high probability of success by applying some simple
results from Number Theory. Qingling et al.’s protocol is on the other hand based
on a CRC function and bitwise operations as dictated by the Gen-2 specification.
The security of this scheme resides in the strength provided by CRC functions.
However, the authors are not aware that CRCs are linear. These functions should
be confined only to detect random transmission errors and must not be used for
security purposes. Qingling et al. even included a formal BAN logic analysis in
their paper. The whole analysis presented is incorrect because it assumes that
a secure encryption algorithm is used in the protocol. However, the use of the
combination CRC()⊕ password is not at all secure, as shown in Section 5.
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Abstract. In 2002, algebraic attacks using overdefined systems of equa-

tions have been proposed as a potentially very powerful cryptanalysis

technique against block ciphers. However, although a number of convinc-

ing experiments have been performed against certain reduced algorithms,

it is not clear whether these attacks can be successfully applied in gen-

eral and to a large class of ciphers. In this paper, we show that algebraic

techniques can be combined with side-channel attacks in a very effec-

tive and natural fashion. As an illustration, we apply them to the block

cipher PRESENT that is a stimulating first target, due to its simple

algebraic structure. The proposed attacks have a number of interest-

ing features: (1) they exploit the information leakages of all the cipher

rounds, (2) in common implementation contexts (e.g. assuming a Ham-

ming weight leakage model), they recover the block cipher keys after the

observation of a single encryption, (3) these attacks can succeed in an

unknown-plaintext/ciphertext adversarial scenario and (4) they directly

defeat countermeasures such as boolean masking. Eventually, we argue

that algebraic side-channel attacks can take advantage of any kind of

physical leakage, leading to a new tradeoff between the robustness and

informativeness of the side-channel information extraction.

1 Introduction

In classical cryptanalysis against block ciphers, an adversary is usually provided
with the inputs/outputs of a target algorithm. Side-channel attacks additionally
provide him with some partial information on the cipher intermediate values,
leaked by a device performing a cryptographic computation. Such attacks are
therefore much less general - since they are specific to a given implementation -
but often much more powerful than classical cryptanalysis. Hence they are con-
sidered very seriously by cryptographic devices (e.g. smart cards) manufacturers.
Following the publication of the first Differential Power Analysis (DPA) in the
late nineties [14], various types of side-channel attacks have been proposed in
order to carry out effective key recoveries (see, e.g. [17] for a survey). Most of
these techniques share a divide-and-conquer strategy in which different parts of
a target key (e.g. physical bytes, typically) are recovered separately. They also
generally exploit the leakages corresponding to the first (or last) rounds of a block
cipher, where the diffusion is sufficiently weak for some parts of the intermediate
key-dependent computations to be easily enumerated and predicted.
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As a matter of fact, these side-channel attacks are quite demanding in leaked
information since they use physical measurements to identify key bytes exactly.
Also, they usually do not exploit particular weaknesses of the block ciphers.
Therefore, an intriguing question is to know if an adversary could use side-
channels to recover simple targets rather than exact key byte values and then
use this partial information in a more elaborated offline cryptanalysis step. In
other words, can we stop measuring earlier and still have the complexity of a
key recovery that does not grow exponentially with the key size?

In this paper, we answer this question positively and show that combining
powerful (template-like) side-channel attacks with algebraic cryptanalysis allows
performing key recoveries with extremely restricted access to the target devices.
Still, the attack is general and can work in a flexible manner that includes the two
following phases. First, the adversary selects as many intermediate computations
in the target algorithm as possible and measures their physical leakage. For each
of these intermediate computations, he recovers some partial information. This
partial information can be represented by a surjective function of which the
output has been recovered thanks to a side-channel attack. As a typical example,
if a device leaks an information that is strongly correlated with the Hamming
weight of the target intermediate computations results, this function could be
the Hamming weight function. But any other type of function (and hence leakage
model) could be considered. It is eventually the adversary’s choice to select a
target that is both informative and robust. At the extremes, a bijective function
is the most informative but recovering its output by a side-channel attack may
require several measurements - and a surjective function with only one possible
output value yields no information at all. Then, during a second (offline) phase,
the adversary exploits this partial information on the algorithm intermediate
values with an algebraic attack. That is, he writes the block cipher as a system
of quadratic (or cubic, . . . ) equations and adds the previously defined functions
with known outputs to the system. In practice, the approach we follow in this
paper is to convert the system of equations representing the block cipher into a
SAT problem and to use an automated solver to perform the key recoveries. It
turns out that this solution yielded very good results. However, it remains an
open question to determine better techniques for this purpose.

The proposed attacks differ from most previously known side-channel attacks
in a number of interesting aspects. First, they potentially exploit the leakage of
all the cipher rounds (classical DPA generally exploits the first or last rounds
only). Second, they can succeed in an unknown plaintext/ciphertext adversarial
context (classical DPA usually requires the knowledge of either the plaintexts or
the ciphertexts). Third, they require much less observations to succeed. In certain
reasonable implementation contexts, we show that the leakage trace of a single
encryption can be sufficient to perform a complete key recovery. This implies that
constructions based on re-keying strategies such as [20,21] can sometimes be bro-
ken in practice. Eventually, they can deal with block ciphers protected with a
masking countermeasure, e.g. [12]. In particular, we show experiments that break
such masked designs with a single trace, nearly as easily as unprotected ones.
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In summary, classical side-channel attacks can be viewed as a combination of
two sub-problems: (1) “how to efficiently recover partial information on certain
parts of a cipher state?” and (2) “how to efficiently exploit this partial infor-
mation?”. Algebraic side-channel attacks raise a new question, namely: “which
partial information should we try to recover?”. It relates both to the previously
mentioned tradeoff between robustness and informativeness and to the selection
of the best target key classes mentioned as an open question in [28].

Fig. 1. Standard DPA versus algebraic side-channel attacks

More precisely, the difference between algebraic side-channel attacks and stan-
dard DPA attacks is illustrated in Figure 1. As already mentioned, standard
DPA attacks exploits a divide-and-conquer strategy and recover several pieces
of a secret key independently. For example, in the left part of the figure, the set
S1 typically contains the 256 candidates for a key byte. In order to recover the
correct one, the adversary targets a single intermediate value (in the set Y1).
Typically, it could be the output of an S-box in the first cipher round. Each
leakage trace li provides him with information about this intermediate value
that is then “translated” into subkey information. By combining the leakage
corresponding to several plaintexts (i.e. by increasing the data complexity q),
he finally identifies the key byte exactly. By contrast, an algebraic side-channel
attack aims to limit the data complexity to q = 1 and exploits several (nv) inter-
mediate values within a single leakage trace. This information is then combined
in an offline cryptanalysis step in order to recover the master key at once. Note
that the data complexity is not always equivalent to the number of measure-
ments since the same leakage trace can be measured several (nr) times. But the
data complexity is the most relevant quantity to compare from a cryptanalytic
point of view, in particular regarding constructions such as [20,21].

Related works. The following results can be related to three different lines of
research. First, they aim to recover partial information from a leaking device in
the most efficient way. They consequently exploit techniques such as template
attacks (e.g. [9,29]) and stochastic models [25]. Second, they take advantage of
algebraic cryptanalysis in the black box setting, introduced by Courtois and
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Pieprzyk in [10]. In particular, we exploit solutions based on SAT solvers as
described in [1,11]. Eventually, several other papers suggested to combine side-
channel attacks with classical cryptanalysis. The most studied problem is prob-
ably the one of collision-based side-channel attacks, detailed e.g. in [15,26,27].
Techniques borrowed from square attacks [7] and differential cryptanalysis [13]
against block ciphers have also been proposed in 2005 and 2006, respectively.
More recently, impossible and multiset collision attacks were presented at CHES
2007 [3]. All these attacks have objectives similar to ours. They usually try to
exploit the information leakages for more than the first block cipher rounds with
advanced cryptanalysis. The goal is to break implementations for which only
those rounds would be protected against side-channel attacks or to reduce the
number of measurements required to perform a key recovery. We finally mention
the recent and very efficient collision-based attacks of [6] that also use algebraic
techniques and therefore closely connect to the present paper. In fact, our pro-
posed cryptanalysis can be viewed as a generalization of such collision-based
attacks. We similarly aim to reduce the data complexity ([6] found 4 ≤ q ≤ 20,
we claim q = 1). The main difference is that we are not restricted to one partic-
ular type of information (i.e. collisions) and are not limited to the exploitation
of the first/last rounds of a block cipher. In principle, our algebraic attacks can
take advantage of any information leakage, from any part of a cryptographic
computation. A consequence is that they can be easily extended to protected
implementations (e.g. masked), contrary to collision-based ones [5].

2 Target Cipher

PRESENT is a Substitution-Permutation Network with a block size of 64 bits [4].
The recommended key size is 80 bits, which should be sufficient for the expected
applications of the cipher. However a 128-bit key-scheduling is also proposed.
The encryption is composed of 31 rounds. Each of the 31 rounds consists of a
XOR operation to introduce a round key Ki for 1 ≤ i ≤ 32, where K32 is used
for post-whitening, a linear bitwise permutation and a non-linear substitution
layer. The non-linear layer uses a single 4-bit S-box which is applied 16 times in
parallel in each round. The cipher is described in pseudo-code in Appendix A.

3 Offline Phase: Algebraic Attack

3.1 Deriving the System of Equations

The first step in an algebraic cryptanalysis is to describe the target cryptosystem
with a set of polynomial equations involving the key bits as variables. Given such
a representation, exposing the secret key is equivalent to solving the system of
equations. For this purpose, we will denote the bits of the plaintext, ciphertext
and key as Pi, Ci and Ki and look for a set of equations involving these variables
and describing the cryptosystem PRESENT. The most obvious solution would
be to build a system of equations of the form:
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C1 = f1(P1, ..., P64, K1, ..., K80)
C2 = f2(P1, ..., P64, K1, ..., K80)

C64 = f64(P1, ..., P64, K1, ..., K80)

However, this kind of representation is quite useless for practical attacks. Due
to the diffusion in the cryptosystem, each equation would involve every single
bit of the plaintext and the key. Due to the 31 successive rounds of non-linear
substitutions, these equations would also include a lot of high degree monomials.
In order to avoid such limitations, the idea developed by Courtois and Pieprzyk
in [10] is to introduce new internal variables in order to work with a large number
of small, low degree polynomial equations instead of a small number of huge, high
degree equations. For PRESENT, we decided to add three groups of variables:

– one variable xi for each input bit of each S-box in the cryptosystem,
– one variable yi for each output bit of each S-box in the cryptosystem,
– one variable ki for each bit of each sub-key.

In practice, the substitutions are the only non-linear elements of PRESENT
and are therefore the most challenging parts of the cipher to reduce to low
degree equations. Fortunately, it has been shown in [2] that for small S-boxes,
such equations can be constructed in a simple and systematic manner. As an
illustration, the construction of a system of low degree equations for a 3-bit
S-box is described in Appendix B. Extending this technique to the complete
31-round PRESENT, we can build a system of approximately 40 000 equations
in 7000 variables (50 000 monomials). The most interesting characteristic of this
system is its sparsity. If we represent such a system like a matrix, a line being
an equation, a column being a monomial, the proportion of non-null elements is
very low (approximately 0.0155%). Using a compact representation of the system
matrix consequently improves the attack performances considerably.

3.2 Conversion to a SAT Problem

Bard et. al showed in [1] how to reduce a system of equations to a SAT problem.
Most SAT solvers take a formula in conjunctive normal form (CNF) as input. A
problem in CNF is a conjunction (AND) of clauses, each clause being a disjunc-
tion (OR) of literals. The literals are variables (x) or variable negations (x̄).

In order to reduce our problem, there are two main steps. First, we need to
translate every monomial of degree higher than 1. If we consider a monomial
x1x2x3x4, we can turn it into a dummy variable a and a set of clauses:

(x1 ∨ ā) ∧ (x2 ∨ ā) ∧ (x3 ∨ ā) ∧ (x4 ∨ ā) ∧ (a ∨ x̄1 ∨ x̄2 ∨ x̄3 ∨ x̄4), (1)

that is equivalent to a = x1x2x3x4. Hence we can transform each occurrence
of the monomial x1x2x3x4 into an occurrence of the dummy variable a in the
system of equations and include the previous set of clauses in a CNF. So, for each
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monomial of degree d > 1, we introduce one dummy variable and d + 1 clauses.
Secondly, we need to translate the exclusive disjunctions (XOR) of our original
equations into conjunctions and disjunctions. Translating long XOR-equations
in conjunctive normal form is problematic because the number of new clauses
is exponential in the number of terms in the equation. Hence, we use again
dummy variables in order to bound the number of new clauses in the formula.
We transform each equation x1 ⊕ x2 ⊕ x3 ⊕ ...⊕ xn = 0 into:

x1 ⊕x2 ⊕ x3 ⊕ b1 = 0
b1 ⊕x4 ⊕ x5 ⊕ b2 = 0
...

bm ⊕xn−1 ⊕ xn = 0

This way, we separate each n-term equation into an equivalent set of m = �n/2�−
1 (for n > 2) 4-term equations1, via the addition of m dummy variables. After
that, each 4-term equation of the form a⊕ b⊕ c⊕ d is turned into an equivalent
set of 8 clauses that we add to the previously initiated CNF:

(ā ∨ b ∨ c ∨ d) ∧(a ∨ b̄ ∨ c ∨ d) ∧ (a ∨ b ∨ c̄ ∨ d) ∧ (a ∨ b ∨ c ∨ d̄) ∧
(ā ∨ b̄ ∨ c̄ ∨ d) ∧(ā ∨ b̄ ∨ c ∨ d̄) ∧ (ā ∨ b ∨ c̄ ∨ d̄) ∧ (a ∨ b̄ ∨ c̄ ∨ d̄)

Combining these two steps, we can build a CNF formula from our system
of equations. We can estimate the number of different literals in the formula:
nliteral ) nmon + nequ ∗ (�nterm/2� − 1), were nmon and nequ are respectively
the number of monomials and equations in the system and nterm is the average
number of terms in an equation (typically quite low, because of the sparsity
of the system). We can similarly estimate the number of clauses: nclause )
nmon ∗ (d + 1) + nequ ∗ (�nterm/2� − 1) ∗ 8, where d is the average degree of the
monomials appearing in the system. Interestingly, the size of the CNF and the
number of literals are linearly dependent in most of the cryptosystem parameters
(block and key size, number of rounds). In fact, only the size of the S-boxes has
more impact, because it not only modifies nmon and nequ but also d and nterm.

3.3 Solving the System

We selected zChaff, a SAT solver that was developed by Princeton University [8]
and won the 2004 SAT competition [24]. This solver is not the best SAT solver
available anymore, but it works fine for our experiments. zChaff uses the Chaff
algorithm, which is a refinement of the DPLL algorithm [19]. These algorithms
use a recursive backtracking procedure to find an adequate solution [18]. In
summary, at each step s the procedure assigns a random value (say FALSE) to a
literal xis and simplifies the formula. If no conflict (empty clause) is detected, the
procedure is repeated for the next step s+1. If one or more conflicts are detected,
the procedure backtracks: the formula is restored as it was before assigning xis .
1 Using a cutting number of 4 is arbitrary but yielded satisfactory results in our

context. 5-term, 6-term, . . . equations could be similarly investigated.
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Then it assigns the opposite value (TRUE) to xis and continues as previously.
If both values (TRUE and FALSE) were already tried for xis , the procedure
backtracks to xis−1 , and so on. If the procedure assigns a value to all the literals
and finds no conflicts, the problem is declared satisfiable. If the procedure must
but cannot backtrack (s = 0), the problem is declared unsatisfiable. In practice,
solving the system of equations described in Sections 3.1, 3.2 with the previous
SAT solver is generally hard. Therefore, the idea we propose in this paper is to
take advantage of the additional information provided by side-channel leakages
on the intermediate values during the execution of PRESENT. The next section
describes the online part of this attack. We explain how a leakage model that can
be efficiently exploited in an algebraic cryptanalysis was selected and constructed
for a given device. In addition, we discuss the generalization to other leakage
models and the resulting information vs. robustness tradeoff in Section 6.

4 Online Phase: Side-Channel Attacks

Our experiments target an implementation of PRESENT with an 80-bit key in
a PIC 16F877 8-bit RISC-based micro-controller and exploit the measurement
setup described in [29]. This target device is particularly convenient for a first
investigation since it typically leaks a power consumption that is strongly cor-
related with the Hamming weight of the data it manipulates. For example, the
left part of Figure 2 illustrates the power consumption corresponding to different
8-bit values commuting on the PIC bus, having different Hamming weights: the
bold traces represent the mean power consumption for a given Hamming weight
between 0 and 8; the grey traces represent single measurements. This picture
visually suggests that the Hamming weight of the data commuting on the bus
can be recovered with very high confidence in a single trace. In practice, we used
a Bayesian template attack such as described in [9] to perform a partial key re-
covery for which the target subkey is the Hamming weight of a data commuting
on the bus. That is, we have |S| = 9 (rather than |S| = 256 in standard DPA
attacks). In this setting, we experimented a single-byte success rate (defined in
Appendix C) of 99.3%. That is, given a leakage sample corresponding to some
8-bit byte x, we can recover WH(x) with probability 0.9932.

Importantly and contrary to most other side-channel attacks, algebraic side-
channel attacks do not only exploit the leakage corresponding to one byte of
the intermediate cipher state at once. On the contrary, they aim to exploit as
much partial information about these intermediate values as possible. Hence,
our attacks exploit a powerful profiling step such that the adversary recovers the
leakages corresponding to the computation of 2× 8× 31 = 496 bytes during the
encryption of a single plaintext. Those bytes relate to the computation of the
key additions (8 bytes per round) and the S-boxes (8 bytes per round) for all
the 31 cipher rounds. As for any profiling step, this requires that the adversary
can manipulate a device with a known key prior to the attack. But once this
profiling is performed, it can be re-used for as many online attacks as possible.
2 Improved techniques such as [29] could be used in more critical contexts.
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Fig. 2. Leakage traces, mean leakage traces and multiple byte success rate

Because a SAT solver can hardly deal with errors in the information it is pro-
vided with, the important quantity in our attacks is not the single-byte success
rate but the multiple-byte success rate. In practice, it can be improved by using
simple error detection and likelihood rating techniques such as:

– Detection of impossibilities: we systematically rejected the leakages samples
that give rise to incoherent inputs and outputs for the S-boxes.

– Selection of most likely Hamming weights: when using only a subset of the
496 available leakages, we used the ones with highest probabilities first.

In addition and when necessary, the success rate of our attacks can be increased
by repeating a measurement for the same input plaintext, therefore keeping
a constant data complexity q = 1. The right part of Figure 2 represents the
multiple-byte success rate as a function of the number of target bytes in the
implementation of PRESENT, with or without error detection and likelihood
rating (EDLR), and for q = 1 and nr = 1, 2. As a matter of fact, the complexity
of this online phase depends on how many bytes of information are required to
solve the system of equations given in Section 3.1, 3.2. Yet, it remains that for
our target device, it is easier to recover the Hamming weight of a byte than the
exact value of this byte, which is the main motivation behind our attack.

We mention that we did not consider side-channel leakages from the key
scheduling of PRESENT (i.e. we assumed implementations with securely pre-
computed round keys). This allows avoiding the algebraic counterparts of simple
power analyzes such as [16] that would trivially break the implementation. In
other words, we focused our attention on the more challenging scenarios where
only the cipher rounds are leaking. Note that although the leakage of the key
scheduling algorithm is not exploited in our attacks, its algebraic description is
included in the system of equations representing PRESENT.

5 Combining Algebraic and Side-Channel Attacks

Following the previous section, the partial information provided by side-channel
leakages can be represented by a surjective function of which the output is known.
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Fig. 3. 8, 16, 24, 32 and 64-round PRESENT, complete WH leakages

Given a leakage model and a number of target bytes, an adversary can directly
inject this additional information into the system of Section 3.1, or in its CNF
representation (since the leakage information can be converted into a set of
clauses). In practice, we exploited the Hamming weights of the key addition and
S-box outputs in PRESENT. As mentioned in Section 2, a maximum of 496 bytes
can be extracted. It corresponds to a SAT problem for a 31-round PRESENT
that includes approximately 130 000 variables and 1 100 000 clauses.

5.1 First Experimental Results

We first applied algebraic side-channel attacks assuming that all the Hamming
weights of the S-box inputs and outputs in PRESENT are correctly extracted.
For comparison purposes, we attacked different reduced-round and extended-
round versions of the algorithm. The results of these attacks are summarized in
Figure 3 from which we obtain the following observations:

1. The success rate of these attacks equals one for all versions of PRESENT.
2. Hence, the important quantity to analyze is the resolution time which seems

to follow an exponential probability distribution.
3. The average resolution time is approximately linear in the number of rounds.

5.2 Advanced Scenarios

The experiments in the previous section are quite disconnected from practical
attacks since we assume that all Hamming weights are recovered. In practice, the
subkey extraction may suffer from errors and consequently, only a subset of the
496 bytes Hamming weights in a 31-round PRESENT can be exploited. In this
section, we consider advanced scenarios where only parts of the 496 bytes are
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targeted. Specifically, we consider two types of contexts: (1) consecutive weights,
i.e. the adversary recovers a number of Hamming weights that correspond to
consecutive rounds in the block cipher, starting from the middle ones and (2)
random weights, i.e. the adversary recovers Hamming weights that correspond
to random bytes in the cipher rounds. We measure the amount of information
extracted in “number of rounds of WH information”, one round corresponding to
the Hamming weights of 16 intermediate bytes. And we consider that an attack
has failed whenever the solver has not found a solution within 3600 seconds.

Fig. 4. 31-round PRESENT, partial WH leakages and unknown P,C (the average solv-

ing times for these advanced scenarios are available in Appendix D)

The plain curves in Figure 4 correspond to this more realistic scenario. They
illustrate that reaching high success rates is significantly more difficult with ran-
dom weights. It also shows that recovering the Hamming weights of 4 consecutive
rounds is generally sufficient to solve the system of equations. It is interesting to
trade the effectiveness of this offline algebraic phase with the one of the online
phase in Section 4. Indeed, taking advantage of the error detection and likelihood
rating techniques implies a non consecutive selection of weights.

Unknown plaintexts-ciphertexts. In addition, the same figure shows the
success rates when considering attacks in an unknown plainext and ciphertext
adversarial scenario. Quite naturally, it does not affect the results when consecu-
tive rounds are considered. But unknown plaintexts/ciphertexts imply the need
of larger amounts of information when this information is randomly distributed
over the block cipher intermediate values. It is worth noting that most side-
channel attacks (e.g. Kocher’s original DPA [14]) would fail in a similar context.

Masked implementations. We also performed experiments against an im-
plementation protected with a masking countermeasure. In short, masking a
software implementation aims to trade the efficiency and cost of this implemen-
tation for an improved security against side-channel attacks. In general, the most
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challenging part to mask in a block cipher is the non-linear S-box. That is, as-
suming a masked plaintext p⊕m, we need to generate an output mask q for the
S-box S(p ⊕ k). For example, [17] describes a masked software implementation
of the AES in Section 9.2.1. In order to limit the cost overheads, the same pair
of masks (m, q) is used for all the AES S-boxes and in all the AES rounds (4
other masks are used in the MixColumn operation). Applying this solution to
PRESENT would yield very little additional variables for our algebraic attacks.
Hence, we considered a more robust countermeasure (algebraically speaking) de-
noted as duplication in [12] or GLUT in [22] in which a different mask is used for
all the S-boxes and is propagated through the rounds as in Figure 5: an S-box S′

is then used to generate the output masks q. Since PRESENT has 4-bit S-boxes,
this is feasible at a reasonable cost (the memory requirements of S′ equals 28×4).

Fig. 5. Masked implementation of PRESENT

Interestingly, two different strategies can be considered to break this masked
implementation. A simple one is to just neglect the masks and solve the system
as if it had unknown plaintext and ciphertext (i.e. to consider only the upper
part of Figure 5). A more elaborated solution is to build a system of equations
including the new S-boxes S′ and to solve it with known plaintext and cipher-
text. We performed both solutions and the results are summarized in Figure 6.
These attacks show that even a masked implementation can be broken with the
observation of a single encrypted plaintext in our experimental setting. They also
confirm the intuition of the previous section that unknown plaintext/ciphertext
only increases the difficulty of recovering the block cipher key if random weights
are provided to the adversary. In this context, building a more complex system
including the mask propagation leads to better results. It is worth noting that
when building a complete system, more Hamming weights are also extracted per
round. Eventually, we mention that refreshing the masks in every round would
not improve the security either, since the combined information on p ⊕m ⊕ k
and p⊕m⊕m′ ⊕ k would allow to easily break the masking too.

Global success rate. Eventually, the previous success rates have been com-
puted for the offline phase of our attacks only. But we can similarly compute the
global success rate, combining the ones of the online side-channel attack and the



404 M. Renauld and F.-X. Standaert

Fig. 6. Masked 31-round PRESENT, partial WH leakages and unknown P,C

algebraic cryptanalysis. For example, Figure 7 presents this global success rate
for an unprotected implementation, in a known plaintext/ciphertext scenario and
with randomly distributed leakages. It illustrates the tradeoff between the two
phases of the attack. Recovering more Hamming weights increases the probabil-
ity of mistake for one of them - but if all correct, they significantly facilitate the
offline computations. We mention that in this figure, we assume that an incorrect
Hamming weight leads to a failure. But advanced strategies could be considered,
by better dealing with incorrect information (e.g. extracting sets of Hamming
weights including the correct one rather than exact Hamming weights).

Fig. 7. Global success rate, randomly distributed WH and known P,C

6 Information vs. Robustness Tradeoff

Although the construction of a leakage model and the selection of a target subkey
in Section 4 appears natural for our running device, they are in fact arbitrary to
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a certain extent. Indeed, an adversary can generally choose any leakage model as
soon as this model fits reasonably well to the actual measurements. And given
a leakage model, he still has to decide which subkey to recover. In the previous
section and given a byte x commuting on the PIC bus, we decided to guess the
value of the Hamming weight of this byte (which is motivated by reasonable
physical assumptions). But another adversary could decide to guess the exact
value of x (a far more challenging goal) or one bit of x. The selection of a target
subkey with respect to a leakage model gives rise to a tradeoff between the
robustness and informativeness of the partial key recovery that we now discuss.

Fig. 8. Two illustrative leakage probability density functions

As an illustration, let us imagine two leaking device with a 3-bit ALU and
bus. Let us also assume that these devices leak two normally distributed samples
as intuitively represented in Figure 8. That is, each of the 8 possible values
that can appear on the device bus gives rise to a leakage represented by a two-
dimensional Gaussian curve (i.e. a circle on the figure). From this example, it
quite directly appears that a good hypothetical leakage model for the left leakage
function would be a Hamming weight-like function. By contrast, the right leakage
function does not show such Hamming weight dependencies (since values with
identical Hamming weights do not give rise to similar leakages). In both cases,
it is the adversary’s choice to select a target subkey that is easy to recover
and informative. Recovering Hamming weights is usually relevant for standard
CMOS devices. But in general, one can decide to extract any type of information
from the leakages. And the better the target subkey actually corresponds to the
actual leakages, the more robust and efficient the subkey recoveries. Of course
and on the contrary, more informative subkeys generally give rise to an easier
solving for the system of equations described in Section 3.

In summary, classical DPA attacks usually directly target key bytes in block
ciphers and this requires to combine the leakages corresponding to several en-
crypted plaintexts. Algebraic side-channel attacks allow focusing on easier tar-
gets and can exploit any information on the intermediate values of a block cipher
that physical leakages may effectively determine. This information can be easily
represented by a surjective function from the target intermediate value space
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(i.e. {0, 1}8 in our example) to an hypothetical leakage space (i.e. {0, 1, . . .9}
in our example). It is then the goal of the SAT solver to find if the extracted
information is sufficient to perform a complete key recovery from it. The answer
depends on the quality of the solver, the specifications of the block cipher and
the quality of its implementation. Hence, algebraic side-channel attacks raise a
new research problem, namely: “what is the smallest amount of information that
a side-channel attack has to provide to break a block cipher?” In Section 4, we
show that finding the Hamming weights of the intermediate bytes in PRESENT
is sufficient. But is is an open question to determine if other types of information
(e.g. obtained from for dual-rail circuits) can be sufficient.

7 Conclusions and Open Problems

This paper introduces algebraic side-channel attacks allowing to successfully re-
cover a block cipher key with the observation of a single side-channel trace.
While most side-channel attacks can be generically applied independently of
the algorithms, the proposed technique takes advantage of cryptanalytic tools
that are dependent both on the amount of physical information leakage and
the structure of the target cipher. It trades some of the flexibility of standard
DPA for a reduced data complexity. Still, it remains very flexible, since given a
system of equations describing a block cipher (or a masked block cipher), any
type of physical information can in principle be exploited in a straightforward
manner. These results raise two main open questions. A first one is to prevent
algebraic side-channel attacks. Intuitively, this would require to increase the al-
gebraic complexity of both the target algorithms and the information leakages.
Experiments performed against the AES Rijndael (see [23]) suggest that moving
to more elaborated ciphers than PRESENT is not sufficient. Hence, additionally
moving from 8-bit platforms where the Hamming weight leakages are very in-
formative to larger devices is an interesting direction for increasing the security
of cryptographic devices. The impact of former countermeasures against DPA
in this new context (e.g. time randomizations) should also be investigated. A
second question is to improve and optimize the different parts of an algebraic
side-channel attack. It implies to study both the offline cryptanalytic aspects and
the selection of good leakage models. Properly combining these two phases would
allow determining the best tradeoff between the robustness and informativeness
of a side-channel attack that is discussed in Appendix 6.
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A Pseudo-Code of PRESENT

P’ ← P

Round key 1 ← K

for i = 1 to 31 do
P’ ← P’ ⊕ Round key i
P’ ← Substitution(P’)

P’ ← Permutation(P’)

Round key i + 1 ← Update(Round key i)
end for
C ← P’ ⊕ Round key 32

P K

Update

Substitution

Permutation

Update

... ...

Substitution

Permutation

C

Round key 1

Round key 2

Round key 32

Fig. 9. A top-level algorithmic description of PRESENT

http://www.lri.fr/~simon/contest04/results/


Algebraic Side-Channel Attacks 409

B Building the System of Equations for a 3-Bit S-Box

Let us consider the 3-bit to 3-bit substitution defined by the lookup table :
S = {5, 3, 0, 4, 7, 2, 6, 1}, with input bits x1, x2, x3 and output bits y1, y2, y3 (the
most significant bits being x1 and y1). First, one has to decide the monomials
that will appear in the equations, which significantly impacts their complexity.
In our example, we choose the monomials xi, yi, and xiyj (∀ 1 ≤ i, j ≤ 3) so
that we eventually have 16 monomials (including the independent term). Then a
16×23 matrix is built in which each row represents a monomial and each column
represents a possible input for the substitution. The matrix is filled as follows:
the element (i, j) is the value of the monomial i if the substitution input is j.
Finally, we perform a Gaussian elimination on the matrix : we add and swap
the rows until the matrix becomes upper triangular (i.e. all the elements below
the diagonal are null). In our example, we obtain 8 linearly independent combi-
nations of monomials which are null for every possible input of the substitution,
as illustrated by the following matrices:

1
x1

x2

x3

y1

y2

y3

x1y1

x1y2

x1y3

x2y1

x2y2

x2y3

x3y1

x3y2

x3y3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 0 0 1 1 0 1 0
0 1 0 0 1 1 1 0
1 1 0 0 1 0 0 1
0 0 0 0 1 0 1 0
0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 1
0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

1
x3

x2

x3 + y2

x1

1 + x2 + y3

1 + x2 + x3 + y1

x1 + x1y2

1 + x1 + x2 + y3 + x1y1

x1 + x3 + y1 + y3 + x1y3

x1 + y1 + y2 + y3 + x2y1

1 + x1 + x2 + x3 + y1 + x1y2 + x2y2

x1 + x1y2 + x2y3

1 + x2 + x3 + y2 + y3 + x1y2 + x3y1

1 + x1 + x2 + y2 + y3 + x3y2

x1 + y2 + x3y3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 1 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Hence, the equations we are looking for in order to describe our substitution are:

0 = 1 + x1 + x2 + y3 + x1y1

0 = x1 + x3 + y1 + y3 + x1y3

0 = x1 + y1 + y2 + y3 + x2y1

0 = 1 + x1 + x2 + x3 + y1 + x1y2 + x2y2

0 = x1 + x1y2 + x2y3

0 = 1 + x2 + x3 + y2 + y3 + x1y2 + x3y1

0 = 1 + x1 + x2 + y2 + y3 + x3y2

0 = x1 + y2 + x3y3
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Note that in general, large S-boxes are quite unfavorable for an algebraic rep-
resentation. The number of linearly independent equations produced is equal to
nequ = nmon − 2n, where nmon is the number of monomials used and n is the
input size of the substitution. This relation implies that the number of mono-
mials (and thus the complexity of the equations) needs to grow exponentially to
match the size of the substitution input. This explains why PRESENT, with its
small 4-bit to 4-bit S-boxes is an interesting first target for our attack.

C Definition of a Subkey Recovery Success Rate

Let the adversary AEK ,L be an algorithm with limited time complexity τ , memory
complexity m and queries q to the target implementation (EK , L). Its goal is to
guess a subley s = γ(x, k) with non negligible probability. For this purpose, we
assume that the adversary AEK ,L outputs a guess vector g = [g1, g2, . . . , g|S|]
with the different key candidates sorted according to the attack result: the most
likely candidate being g1. A success rate of order 1 (resp. 2, . . . ) relates to the
probability that the correct subkey is sorted first (resp. among the two first ones,
. . . ) by the adversary. More formally, we define the experiment:

Experiment Expsc-kr-o
AEK,L

[k R←− K; s = γ(x, k); g← AEk,L;];
if s ∈ [g1, . . . , go], then return 1, else return 0;

The oth-order success rate of the side-channel key recovery adversary AEK ,L

against a subkey variable S is straightforwardly defined as:

Succsc-kr-o,S
AEK ,L

(τ, m, q) = Pr [Expsc-kr-o
AEK ,L

= 1] (2)

When not specified otherwise, a first-order success rate is assumed. [28] also
defines an alternative security metric (the guessing entropy) that measures the
effectiveness of a side-channel adversary in a more flexible fashion: it corresponds
to the average position of the correct key candidate in the guess vector g.

D Average Solving Times in Advanced Scenarios

Table 1. Solving times in advanced scenarios, when a 100% success rate is reached.

Experiments are performed on an Intel-based server with a Xeon E5420 processor

cadenced at 2.5GHz running a linux 32-bit 2.6 Kernel.

Scenario Nbr. of WH for Average

100% success rate solving time (s)

Known P,C - consecutive weights 8 rounds 79,69

Known P,C - random weights 18 rounds 117,1

Unknown P,C - consecutive weights 8 rounds 45,59

Unknown P,C - random weights 26 rounds 214,12

Masked system - consecutive weights 16 rounds 393,86

Masked system - random weights 22 rounds 154,32
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Abstract. CAPTCHAs are widespread security measures on the World

Wide Web that prevent automated programs from massive access. To

overcome this obstacle attackers generally utilize artificial intelligence

technology, which is not only complicated but also not adaptive enough.

This paper addresses on the issue of how to defeat complex CAPTCHAs

with a social engineering method named CAPTCHA Phishing instead

of AI techniques. We investigated each step of this attack in detail and

proposed the most effective way to attack. Then we did experiment with

real Internet web sites and obtained a positive results. The countermea-
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1 Introduction

CAPTCHA [2] is a verification technique used on the World Wide Web to deter-
mine whether a user is a human or a computer. It exists as a challenge response
test for users. This test is designed to be a task which a computer can not perform
but a human can easily do. A typical CAPTCHA may be an image containing
distorted characters on the web registration form. The user can complete the
registration task only if he entered the correct characters, and since a computer
can not read distorted characters, CAPTCHA works.

CAPTCHAs have become one of the most common web site security mod-
ules. With this technique web servers can effectively screen out those users who
employ automated programs for abusing the service. A CAPTCHA located on
the comment board of blogs can prevent automated programs from publishing
a mass of advertisements or other junk messages. Thus, it is beneficial to break
CAPTCHAs for the attackers. AI technologies such as OCR have been devel-
oped to recognize distorted characters. It forces people to develop more complex
CAPTCHA to confuse intelligent computers, and then upgrading both the attack
and defence.
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Another simple but potent method is based on social engineering. It is in-
genious but underestimated by previous researches. In this paper we focus on
how to organize a scalable and low-cost social engineering method to break
CAPTCHA. We propose a quasi-phishing-attack scheme named CAPTCHA
phishing, which can be implemented as an automated architecture to help at-
tackers smoothly solve CAPTCHAs. Similar to traditional web phishing attacks,
CAPTCHA phishing takes advantage of both technical and social vulnerabilities.
The CAPTCHAs to be solved are passed on to online people by the attacker, and
then there are some tactics to induce these users to contribute their answers. In
this way, a CAPTCHA problem is transferred to a quasi-phishing problem. We
have developed a toolkit and harvested a successful result to prove the feasibility
of our idea. We also discuss how to prevent this attack.

In the remainder of this paper we explain our work in detail, which is interest-
ing. Section 2 introduces related works about CAPTCHA and anti-CAPTCHA
techniques, in Section 3 we expound on our work, and section 4 we give the
results of the experiment. Section 5 discusses some possible ways to prevent our
attack, and in Section 6, we make a conclusion.

2 Related Works

2.1 CAPTCHAs

CAPTCHA was firstly proposed by Luis von Ahn of CMU in 2002 [2] to help
the free email system to screen out the ’bots’ that would sign up for thousands
of accounts and send out masses of junk email. Figure 1 shows some typical
CAPTCHAs. Figure 1(a) is an early one generated by EZ-GIMPY: An image
with randomly distorted characters and gradient color background. 1(b) is a more
complicated CAPTCHA that adds a perturbing curve to prevent computer from
segmenting the string into single characters; 1(c) makes the characters crowded
and difficult to separate, some even human might not recognize.

(a) (b) (c)

Fig. 1. Typical text-based CAPTCHAs

In recent years some complex CAPTCHAs were designed to confront de-
veloping OCR techniques. Asirra and reCAPTCHA are representative ones.
Asirra(Animal Species Image Recognition for Restricting Access) [1] is the rep-
resentative approach of those which are not text-based. A typical Asirra in
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Figure 2a provides a group of pictures of animals, and demands users to point
out all in a species.

reCAPTCHA [15] is a great approach that hits the shortage of OCR tech-
niques. As Figure 2b shows, a reCAPTCHA appearing with two imaged words
demands user to input both. Scanned text is subjected to analysis by two differ-
ent OCR programs; in cases where the programs disagree, the questionable word
is converted into a CAPTCHA. The word is displayed along with a control word
already known. The system assumes that if the human types the control word
correctly, the questionable word is also correct. This scheme guarantees that the
challenge is not vulnerable to OCR software.

(a) Asirra (b) reCAPTCHA

Fig. 2. Complex CAPTCHAs

There are some other interesting CAPTCHAs such as audio-based or question-
based, but they are not as widely used as the above two. It is troubling to treat
those CAPTCHAs. Finally, the administrators of web sites should consider user
experience.

2.2 AI-Based anti-CAPTCHAs

For each CAPTCHA scheme there are corresponding countermeasures already.
[17,11,12,6,16] These approaches remain essentially the same despite all apparent
changes. Optical character recognition(OCR) is a significant method. Early in
2003 Mori and Malik[11] had already broken the EZ-Gimpy[5] (92% success)
and the Gimpy (33% success) CAPTCHAs with sophisticated object recognition
algorithms. Moy et al [12] developed distortion estimation techniques to break
EZ-Gimpy with a success rate of 99% and 4- letter Gimpy-r with a success rate
of 78%.

In these anti-CAPTCHA techniques, machine learning is a popular tool. Take
text-based CAPTCHAs for example, it is supposed that there exists some sta-
tistical features in all distorted instances of the same English character, and
the features can be extracted from enough samples and used to recognize new
instance. With this method, even those non-text-based CAPTCHAs are proven
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to be unsafe. Golle[8] has presented a successful machine learning attack against
Assira.

Although the AI-based anti-CAPTCHA techniques show their excellences,
they always fall behind their adversary. A simple but smart CAPTCHA scheme
may require a complicated algorithm to break. Moreover, there is not a universal
solution to break various CAPTCHAs.

2.3 Social-Engineering-Based anti-CAPTCHAs

To break CAPCTHA with social engineering is not a new concept. Early in 2003,
[4,13] had revealed this ingenious crack, to offer a free porn site which requires
that visitors key in the solution to a captcha before they can gain access. Each
solution entered by an innocent user is relayed by the attacker to complete the
malicious task.The process is summarized in Figure 3:

Fig. 3. To hire human to solve CAPTCHAs

In spite of the fact, as far as we know, this attack has not been widely used,
and definitely has some weaknesses. For example, it is illegal to provide porn
content, it is costly to maintain a whole web site, and it should be doubted
that how the attacker attracted a large amount of users. Nonetheless, if the
social-engineering-based CAPTCHA crack can be easily and safely deployed on
a large scale, it is believed to work better than AI solutions. CAPTCHAs are so
common components on web pages that it is easy to make someone contribute
their solutions unconsciously. Moreover, the precision of the human is expected
to be higher than any AI recognition. Some researches proposed their defence
[10,9], but they are actually easy to break in practice.

Another human-based crack is, as [14] describes, the attackers pay humans
for their solutions. In this paper we do not concern ourselves with this issue.
To stop attackers from hiring humans is impossible, so it’s none-sense to make
a discussion about this. We focus on the attack that is robot driven and easily
deployed by a single attacker.
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3 CAPTCHAs Phishing

3.1 Principle

Suppose we are attackers who plan to widely spam on public blogs and decide
to use the social-engineering-based method to crack CAPTCHAs, we can build
a web site which is similar to the previous work introduced in [4], but it can not
be expected that people will actively provide help, so we should induce them to
come over to our site.

Phishing is a form of social engineering in which an attacker attempts to fraud-
ulently acquire sensitive information from a victim by impersonating a trust-
worthy third party [7]. It employs generalized ”lures”. For instance, a phisher
misrepresenting himself as a large banking corporation or popular on-line auc-
tion site will have a reasonable yield, despite knowing little to nothing about the
recipient. Inspired by this attack, the idea of CAPTCHA phishing is to publish
phishing messages on those web sites with many users to attract people.

Although CAPTCHA phishing employs the same principle as normal phishing
attacks, it is only a quasi-phishing method because its target is not the lured
people. Neither the lured people nor the web site which convey phishing messages
suffers from any loss. In this paper when we refer to ”victims”, it denotes those
target web sites that generate CAPTCHAs. The people who give their solutions
are called ”fools” because they do not lose anything but can still be cheated. We
will discuss the details.

3.2 Phishing Strategy

A phishing strategy is the logic process of CAPTCHA fetching, transmission,
and phishing. We proposed three strategies.

Asynchronous fetch-and-phish (AFP). strategy: Whenever a CAPTCHA
is to be solved, it is fetched and immediately deployed to phishing web site, and
will not be changed until a fool enters an answer.

AFP strategy is the simplest of all. The shortcoming is, the session of
CAPTCHA may expire. Default HTTP session expiring time is 20 minutes.
If it can not be ensured that the visits to the phishing page are frequent enough,
AFP may become an inefficient policy.

Synchronous fetch-and-phish (SFP). strategy: The robot refreshes encoun-
tered CAPTCHA at a regular interval and replaces the old CAPTCHA with a
new one. When someone enters a solution, the solution is adopted as the current
CAPTCHA’s answer.

Most web sites employing CAPTCHA provide a refreshment user interface.
If the imaged text is so indistinct that even a human can not definitely recog-
nize it, the user can choose to try another challenge. SFP guarantees that the
CAPTCHAs will not expire if the interval of refreshment is small enough, such
as 30 seconds, however, continuing refreshment is easy to detect.
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Phish-and-fetch (PF). strategy: In a phish-and-fetch strategy the robot waits
until someone visits the phishing page, then immediately gets a CAPTCHA, and
sends this temporarily retrieved image to the fool.

PF strategy overcomes the defect of AFP and SFP, but has a network delay
problem. It can not be exactly estimated how long it will take from when a user
visits the phishing page to when the fake CAPTCHA is completely sent to him.
If this time span is too long, the page may be closed before the CAPTCHA is
displayed.

3.3 Phishing Carrier

We implemented a CAPTCHA phishing based on a web page. It should neither
be expensive nor bring about risk to us. We deployed CAPTCHA phishing in-
terface on a page(This page is the called CAPTCHA Carrier)and then chose
some web sites as phishing areas to publish phishing messages. Obviously, the
best phishing areas are those web sites that have a large amount of traffic, such
as popular web forums. These sites often gather masses of users who always
browse page by page.

Fig. 4. complete architecture of CAPTCHA phishing

Figure 5 shows our page-based phishing instance. Figure 6(a) is a piece of
phishing message that sets up a vote and a hyperlink pointing to a psychological
test page. Viewers can do the test firstly and submit their scores. The psycholog-
ical test page shown in Figure 6(b) is our phishing page. It demands viewers to
enter a solution before they do the test. The page in 6(b) only contains the user
interface for CAPTCHA displaying and solution input, and an <iFrame>tag,
which includes a psychological test page of another site. In other words, the
content in phishing page is easy to change, so the cost for attacking is reduced.
The improved architecture is in Figure 4.

Although this CAPTCHA phishing scheme in Figure 4 seems plausible, its
effect should be doubted in practice. A simple but non-ignorable reason is most
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(a) Phishing message
in SNS

(b) Phishing page

Fig. 5. Instance of page-based CAPTCHA phishing: (a) is a piece of phishing mes-

sage which contains a hyperlink to phishing page; (b) labeled 2 is the phishing page

which displays a psychological test, 3 is the CAPTCHA user interface which shows:

the content will be visible after the above word is decoded

online people are not willing to click a hyperlink which points to an outer address.
In our experiment we can demonstrate online people are lazy and inpatient. They
may feel it’s trouble or risky to click a unknown hyperlink. It is the bottleneck
of the attack.

So a better way is to integrate the phishing carrier into the phishing area. If
the attacker can paste the fake CAPTCHAs and input interface directly on the
page of web communities, it can deceive more users. However, most web sites do
not allow users to code script with data interaction. Without considering regular
cross-site scripting attack based on javascripts, we found a legal solution: Adobe
flash files can implements internet communication interface. For example, a flash
object displayed on the page of domain A may actually be stored in domain B,
and can call remote HTTP services of domain C. When users visit web page
of domain A, the content they browse in the flash is loaded from domain C.
When a user interacts with this flash, the client data can also be sent to any
domain. In other words, it allows the attacker to combine the phishing area and
the phishing carrier together, it is completely allowed, flash files are usually used
to republish media and advertising animus. Although Adobe has realized the
potential threat and has restricted the cross-domain calling in the new version,
it is easy to bypass by using old version.

Figure 6 shows the framework of flash-based phishing. The flash is only a
shell which presents a CAPTCHA user interface, and remotely loads CAPTCHA
images from the attacker’s server. It also relays some flash file such as game or
video. The visitors who want to play the game or enjoy the video will be required
to solve a fake CAPTCHA. Figure 7 shows an instance. The flash is displayed
on a page of a web Forum, and shows a flash game(We make the game’s content
blurry). A popup panel contains a CAPTCHA image and a user input interface
is displayed.
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Fig. 6. Architecture of flash-based CAPTCHA phishing

Fig. 7. Instance of flash-based CAPTCHA phishing: 1 is a post in web forum; 2 is the

phishing flash which exhibit a game; 3 is the CAPTCHA input panel which shows:

please enter the two words to make game continuing

3.4 Verification to Solutions

Each fool who created the solution is waiting for a confirmation on the phishing
page. We can choose to give him a real or fake verification.

A real verification denotes that whether the solution is correct or not, it will
be fed back to the fool. One benefit is to prevent fools from discovering that the
CAPTCHA is a fake. On the other hand, if a fool gives a wrong solution, we
can demand him to contribute another. However, Real verification increases the
complexity of data transmission and time delay. Fake verification does not need
redundant communication. The simplest method is to make the user get passed
no matter what he entered, but it is improper. If a user accidentally found that
the CAPTCHA is invalid, he may enter nothing or freely fill out some characters
next time when he meets another fraud. A better fake verification scheme is as
follows:
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1. For each phished solution, make it passed with p probability. and with 1-p
probability, the user is notified that his answer is incorrect, then another
CAPTCHA is displayed to call for a new answer.

2. Apply a basic format check using regular expressions to solutions. For ex-
ample, in a reCAPTCHA, the string is required to be in a format which is
made up of two words and one blank split as regular expression ”.* .*”. So
randomly filled answers are likely to be screened out.

4 Experimentation

The experiment is organized as follows. Two categories of web communities are
chosen as phishing area: web forum and social network service(SNS). The former
is a typical form of traditional web application. On web forums users create and
read a great amount of posts every day. The latter is a representative one in
web 2.0 time. Each SNS user shares his individual information with his friends.
In each category we chose large sites that gathers millions of users (the site
names are not revealed), and deploy both page-based phishing and flash-based
phishing. The results will be compared.

To evaluate the results we measuresd the efficiency, which shows the rela-
tionship between the number of phished solutions and our cost, the precision,
which measures the correct rate of phished solutions, and the time lag, which
reveals the time required by different kinds of phishing strategies.

4.1 Efficiency

An efficient phishing attack should be able to obtain as many solutions as possible
with few phishing messages. We tried page-based and flash-based phishing re-
spectively in different web communities, and measured the results. In page-based
phishing each phishing message contains a hyperlink with a unique identification
number, so do the flashes. The identification number will be sent back to our
server together with solutions, so we can get to know where each solution comes
from. Both flash-based phsihing and page-based were tested in both web forum
and SNS. In each situation, 10 phishing messages were published and traced for
10 days.

Table 1. Efficiency of CAPTCHA phishing

flash-based page-based

Web Forum SNS Web Forum SNS

#visits 1890 942 322 409

# solutions 1905 905 139 126

As table 1 shows, flash-based phishing presented more attraction. In web
forum it attracted 1,890 users, and obtained 1,905 solutions in total (some fools
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have contributed several), in SNS it also harvested 942 visits and 905 solutions.
In comparison, page-based phishing performed rather weaker. In web forum, it
only successfully induces 322 users, 139 of whom gave their solutions, in SNS
the corresponding number is 409 and 126. Moreover, we found that 30% of the
phishing messages in page-based phishing were deleted by administrators of the
web forum in 10 days, while all the phishing flashes were safe. It seems web
phishing is so notorious that web sites do not welcome suspicious outer links.

Duration: A good CAPTCHA phishing should have continuous effect. In our
experiment each phishing message has been traced from when it was posted.
Because the posts on the page of web communities are usually ordered by their
publication time and popularity, they may be ’sunk’ and lose focus in several
days. Only those posts that draw a lot of attraction can get a high rank. We
certainly hope our posts which convey phishing messages will attract more users.

Fig. 8. Duration of different CAPTCHA phishing

Figure 8 shows the results. The duration of flash-based phishing in web fo-
rums is much longer than the others. In the first 5 days the phishing flashes
performed in web forums as well as in SNS, then it lost focus rapidly in SNS,
and worked for longer time in web forums. It can harvest ten of solution even if
the phishing messages have been posted for 1 month in web forums. The results
of the other two are worse. Page-based phishing performs weakly, few people
show their interest in it after the first 5 days.

This result illustrates two facts: First it proves that people indeed present their
lack of patience. A hyperlink pointing to an outer address is not very attractive
even if there is a brief introduction to the content. It is reasonable for us to blame
the effect of the page-based CAPTCHA phishing. A flash which facilitates users
performs much better. Second, the traditional web forums is a better phishing
area than SNS. The difference is mainly in duration, phishing messages in web
forums get longer term results, because the information updating in SNS is
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more frequent, a majority of contents will be ’sunk’ more quickly after they were
published.

Scalability We increased the attack size and scope. 10 popular web forums
that have similar visits number were chosen to paste the phishing flashes. The
experiment was deployed for 3 times, in each of which the number of flashes
increased from 10 to 50. Table 2 shows the results of different attack size in the
first day.

Table 2. Scalability of CAPTCHA phishing

attack size 10 30 50

#solutions 578 1121 2146

The number of solutions that each flash harvested are not equal. On average
there are about 40 to 50 solutions per flash in the first day. The effect of the
phishing flashes mainly depends on the visits of their carrier sites, it can be be
asserted how much solutions a single phishing flash can obtain, so the attacker
can expand the attack scope and size to achieve an overall effect.

4.2 Precision

In theory the CAPTCHA solutions contributed by humans are more precise
than any computers. We chose two different kinds of CAPTCHA to attack, EZ-
GIMPY used by Yahoo! and reCAPTCHA used by Facebook. For each we tested
1,000 CAPTCHA images, whose answers were already known. In every 1,000,
500 utilized real verification and 500 utilized fakes. The success rate p of fake
verification is set to 0.6.

Table 3. Precision of CAPTCHA phishing

EZ-GIMPY reCAPTCHA

verification real fake real fake

#solutions 500 500 500 500

# wrongly recognized 32 30 139 176

#deleberately wrongly filled 19 17 21 32

The result is given in Table 3. The precision of human recognizing EZ-GIMPY
is as high as 92%. Apart from this, 6% of the fools have wrongly recognized, and
approximately 2% intentionally gave incorrect solutions whether the verification
was real or not. Those deliberately wrongly filled solutions are easy to identify,
because people prefer to type several adjacent keys on keyboard. The precision of
reCAPTCHA recognition is lower, reaching only about 72%, because the imaged
text in reCAPTCHA is often distorted so much that even a human can not
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definitely recognize it correctly. Moreover, it is interesting that more people
chose to freely fill characters when they encountered reCAPTCHAs. It seems
that complex challenges are better at making users to lose their patience.

This result demonstrates that the precision of CAPTCHA phishing is con-
siderable. By comparison we concluded that whether the feed back to the fools
is real or not is not very important. Fake verification will result in a few more
wrong solutions, and real verification also can not prevent some curious people
from trying to freely fill the information.

4.3 Time Lag

We made a statistical work to measure how long the whole process of a CAPTCHA
phishing task will take. The process flow is similar to a communication protocol
which contains a 4-way handshake. In Step 1 the fool visits the phishing carrier.
In step 2 fake CAPTCHA is transmitted and displayed. In step 3 the transmission
of CAPTCHA solution is done. Finally, the fool is given a verification result for
his answer.

The time spans between each two adjacent steps are recorded for 100 times.
Different phishing strategies have different time lag during step 1 and 2. In SFP
and AFP, the CAPTCHA image is already prepared when a fool visits, but in
PF, the image should be fetched instantly. The verification scheme determines
the time lag during step 3 and 4, it requires some time to verify the solutions.

Table 4. Time lag of CAPTCHA phishing

Time lag (in seconds)

Step 1-2 2-3 3-4

APF & SPF 0.6 11.5 -

FP 6.2 10.8 -

real verification - - 3.5

fake verification - - 0.4

Table 4 shows the mean values. Taking all factors into consideration, In can
be concluded that PF strategy is the best, not only because it can overcome the
defect of the other two, but also because its time lag is trivial. On average the
fake CAPTCHA will be displayed in the browser in 6.2 seconds after the page
is opened.

The time span from step 2 to 3 reflects the reaction of the fools. It takes less
than 12 seconds for most people to enter their solutions, meaning that people do
not suspect our trick. They consider CAPTCHA so common a thing that they
will solve it wherever it is necessary. Once they encounter one, they solve it.

It took 3.5 seconds on real verification on average, which is acceptable. Con-
sidering the result in section 4.2, real verification will not perform worse than
the fake one.



CAPTCHA Phishing: A Practical Attack on Human Interaction Proofing 423

5 Possible Countermeasure for CAPTCHA Phishing

CAPTCHA crack based on social engineering is difficult to prevent. In our at-
tack, the content of CAPTCHA phishing did not contain any illegal or mali-
cious information. The usual phishing tactics such as imitating HTTP address
and imitating web page visual views were not necessary at all. Just because
of this, everything in CAPTCHA phishing looks so normal that the swindle in
CAPTCHA phishing is invulnerable to current anti-phishing methods[3].

Considering the whole process flow of CAPTCHA phishing, all the steps are
transparent to external people except for two phases: phishing interface and orig-
inal CAPTCHA extraction. People have to try to expose the fraud of phishing,
or prevent the attacker from retrieving CAPTCHAs from the victim site, but to
completely achieve the two goals is scarcely possible. In the former one, take our
flash-based method as an example, people can not find any malicious or suspect
code even if they decompile and analyze our phishing flash file. In the latter one,
it is impossible to prevent attackers from extracting anything that is already
shown in browser.

A considerable method is to stop the attacker from relaying CAPTCHAs.
Golle [9] has proposed a scheme named CAPTCHA token that requires soft
keyboard to input. But flash can implement powerful scripting, the attack-
ers can take a screenshot to extract complete information, and easily repro-
duce the user interface such as soft keyboard in flash. So special user interface
can not stop relay attack. A good countermeasures we propose is identified
CAPTCHA, which is embedded into a watermark which contains identification
of this CAPTCHA images’ original domain or user client and some cautionary
information. The watermark should be properly designed to make it difficult to
be cleaned by image processing. It is supposed that the attackers who employ
social engineering do not have enough ability using complicated AI techniques.

(a) (b)

Fig. 9. Two demo identified CAPTCHAs to prevent social engineering. (a) warns: Do

not solve it outside Yahoo!. (b) indicate the address of client: xxxx university.

We roughly improved an EZ-GIMPY CAPTCHA as Figure 9 shows, 9(a)
contains a Yahoo! logo as background and presents a line of caution to warn
people. 9(b) shows a line that labels the address of visitor(the address can be
looked up according to visitor’s IP). The caution text should be located, rotated
or distorted randomly. While confronting this CAPTCHA, attackers have to
deploy phishing attack inside Yahoo!, but if they do this, the risk of being exposed
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will increase. Moreover, the language of the caution must be the same as the
CAPTCHA text, otherwise, the attacker may employ a cross-language attack,
where they can relay the CAPTCHA with English caution to Chinese people,
or do the opposite.

We have tested identified CAPTCHAs. Images were embedded into water-
mark and delivered to people. As we expected, this time people did not play
the roles of fool. In 261 visitors only 35 keyed in their solutions. The identi-
fied CAPTCHAs successfully reduced the success rate to 13.4%. The scheme in
Figure 9(b) performed a little better than that in Figure 9(a).

Another countermeasure is to increase attackers’ cost for retrieving
CAPTCHAs. Halprin [10] has proposed a scheme named dependent
CAPTCHA, whose solution requires data that exists on the page in which
that CAPTCHA is given, but outside the CAPTCHA image itself. It is useless
for the attacker to extract a single image, and it indeed increases the difficulty
of retrieving. However, the attacker can also extract complete information by
partly screen shot to the browser.

We proposed a scheme named hidden CAPTCHAs. The Attacker usually
find and extract CAPTCHAs according to their HTML element attributes such
as ID, name, image Url, position and element index, they will be bothered by
following settings.

1. To embed the CAPTCHA in a random image on the page.
2. Not to assign the images any attributes which can identify it such as ID.
3. To make all the images on the page have similar Url format,
4. To embed tiny random noise into all the images on the page.
5. To fix the position of CAPTCHA input interface.

HTML parser will be confused by hidden CAPTCHAs. It can not easily extract
the correct image because the right one has no obvious feature. All the images
are similar in HTML attributes. If there are 20 images on the page, the crack
rate will be reduce to 1/20 when the attacker employ OCR to attack, and it
is inconvenient for the attackers to relay all these images to phish a solution.
However, the same applies to dependent CAPTCHA, hidden CAPTCHAs also
sacrifices user experience. The distorted imaged text is not located near the
solution input interface, the users will have to find it, and all the images are
always regenerated when the page is requested for, it is a waste of cache.

6 Conclusion

This paper shows how easy it is to break CAPTCHAs with a quasi-phishing
scheme. The attack achieves its best result when attacker uses flash-based phish-
ing in web forums, both real and fake verification do work. PF strategy is the
most practicable of the proposed three. This attack is easy to deploy but quite
difficult to penetrate, and can get a high precision. It is quite possible for some
attackers to use it in large scale web spamming or other robot-driven attacks.
We think that so far there’s hardly a technical solution that can stop this social-
engineering-based attack, but people can bring problems to the attackers with
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especially-designed CAPTCHAs if they find methods to achieve equilibrium be-
tween security and user experience.
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Abstract. The security problems that impact mobile agents include au-
thentication and privacy. A challenging task is to implement secure mo-
bile agents that provide anonymity for the mobile agent. Wang, Zhang,
and Wang constructed a scheme that provides secure web transactions
with anonymous mobile agents over the internet. Our paper will dis-
cuss the Wang, Zhang and Wang protocol(WZW) thoroughly, our work
demonstrates the weaknesses of the WZW protocol, showing that it is
not as secure as it is claimed to be. In this paper, we will construct at-
tacks on the WZW protocol, provide several repairs and construct a se-
cure scheme for conducting E-commerce using anonymous mobile agents.

Keywords: Anonymity, Mobile Agent Security, Mobile Agent Authen-
tication, E-commerce.

1 Introduction

Mobile agents are autonomous or semi-autonomous software that migrate from
one host to another in the network. Mobile agent reduce bandwidth and network
traffic. Moreover, mobile agents are good for efficiency and space savings. Mobile
agents are used in many applications, like E-commerce, Intrusion Detection, and
Social Networking. In the context of this paper, a motivating application for
mobile agents will primarily be E-commerce. However our work has implication
of the use of mobile agents well beyond this setting.

Secure anonymous routing protocols have been developed [4,10,13] to provide
routing in ad hoc networks. Wireless hosts in an ad hoc network transmit and
receive packets, malicious nodes will affect the security of the network if secure
transmission is not handled properly. In such scenarios, utilizing mobile agents
to provide secure communications between nodes will improve efficiency.

A mobile agent can be utilized to solve many problems and adds value to any
system as long as the mobile agent system satisfies the security and integrity
concerns. What are some of the security concerns that might arise? A mobile
agent may be a threat to a host or website on the network, also mobile agents
can tamper with other mobile agents [3]. We will discuss many of these problems
in the next section.

F. Bao et al. (Eds.): Inscrypt 2009, LNCS 6151, pp. 426–442, 2010.
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In a court of law, the motto is : “Innocent until proven guilty”. When using
mobile agents we can’t afford such a philosophy. In order to implement a secure
system, we need to consider any potential malicious behavior that can occur
within the network/system. There are a number of attacks that the system can
encounter in which the integrity of the system is compromised. A mobile agent
consists of state, code and data. We need to maintain the integrity of state,
code and data during the lifetime of the agent. If the agent is tampered by a
malicious host, then the user that initiated that agent is damaged, but so is the
next host.

In [12], a model constructed by Wang, Zhang and Wang was introduced. This
model discusses the anonymity of a mobile agent system; this model also al-
lows the mobile agent to sign a message without revealing the private key or
the identity of the user. In this paper we will demonstrate a number of weak-
nesses of the Wang, Zhang and Wang (WZW) protocol. We construct several
attacks. We then construct a secure anonymous authentication scheme for mobile
agents.

2 Background and Prior Work

Security in Mobile Agents
Security is defined by three important factors: Confidentiality or Privacy, In-
tegrity and Availability. Privacy of the data and information for each party is
critical, for example one host might not want other hosts to view its prod-
ucts or prices. This could be because these two hosts are competitors. Further,
anonymity may be preferred, that is, users may favor to remain anonymous,
not wanting other hosts to deduce their purchasing patterns. In a mobile agent
system which supports anonymity, the host needs to be able to authenticate the
transaction without identifying the user. Wang, Zhang and Wang constructed
such a protocol [12]. However, we will show that there are problems with their
protocol. Integrity is an important security property that has to be maintained.
Integrity assures that the code of the agent is not tampered with. If the agent
code is modified in any way by an unauthorized party it should be detected.
Only the owner of the code can change it and in some cases authorization is
given to a trusted party. Availability on the other hand is related to the ability
to use the resources of the host. Each agent should be assigned certain resources
for its execution duration on the host. If there is a malicious agent, this agent
might try to use as much resources as it can and deny the other agents from
the resources, this is a denial of service attack. Consequently there are three
primary security aims: securing hosts from attacks by malicious agents, securing
agents from attacks by malicious hosts, and protecting agents from attacks by
other agents [3,7].

Cryptography
One cryptographic tool that is used throughout our work will be elliptic curve
cryptography ECC [9]. There is a natural “arithmetic" that can be defined on the
elliptic curve E, such that E can be interpreted as an additive abelian group,
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where O is the additive identity. For cryptographic applications, the curve E
is selected so that it has a subgroup of large prime order. The order of the
subgroup of E will be denoted by q. An essential calculation is to compute the
scalar multiple of a point kP = P +P + · · ·+P where P belongs to the subgroup
of E of large prime order and k is the secret key. Thus the secret key k belongs to
the field Fq. In the context of cryptographic purposes the secret may be the scalar
and the public value will be the scalar multiple. The elliptic curve discrete log
problem (ECDLOG) is the problem that given an elliptic curve E, q (the order
of the subgroup of E of prime order), the point P belonging to this subgroup,
and the scalar multiple kP , then it is “computationally hard” to determine k.

We will also use pairing based cryptography. Let E be an elliptic curve defined
over Fp and G1 is an additive subgroup of E of order q, G2 is a multiplicative
group of order q.

Definition 1. A map e : G1 × G1 → G2 is said to be bilinear pairing if it
satisfies the following properties:
XXXXBilinearity e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1 and a, b ∈ Zp,
XXXXNon-degeneracy e(G, G) �= 1 where G is a generator of G1, and
XXXXComputability there exists and efficient algorithm that computes e(P, Q)
for all P, Q ∈ G1.

3 Wang, Zhang and Wang’s Secure Web Transaction
with Anonymous Mobile Agent Protocol

In 2003, Wang, Zhang and Wang [12] constructed a protocol, which we will
call the WZW protocol. Their goal was to provide secure e-commerce using
anonymous mobile agents. Essentially their goal was to construct a mobile agent
protocol that provides user anonymity at the same time providing security for
the hosts against potential malicious agents and malware. A trivial solution to
the problem of providing anonymity, is to have each user register with the trusted
third party. The trusted third party will have the private information of each
user and they are trusted so they will not reveal anything to the hosts. Every
time a user wants to release a mobile agent they will approach the trusted third
party. The trusted third party will create pseudonym credentials for the agent.
The trusted third party will send the agent and user’s request to the host, and
the agent will migrate in the network as specified. This approach however will
create a bottleneck on the trusted third party, as every mobile agent released
within the mobile agent system will require active processing (user-centric) by
the trusted third party. A primary goal is to create a scheme so that the trusted
third party provides at most off-line support. Thus there is no active role (user-
centric) played by the trusted third party when a mobile agent is released. The
model in the WZW protocol consists of three types of parties:
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User Agent Home (UAH) The UAH, also denoted by user, is the party that
generates, constructs and releases the mobile agent.

Agent Management Center (AMC) The AMC, also called the trustee, is
the trusted party that all users who wish to release a mobile agent must
register to.

Host The host is the party in the network that the mobile agent migrates to
and who executes the mobile agent instructions.

We now describe the WZW protocol as described in [12]. The WZW protocol
utilizes an elliptic curve E defined over Fp. The elliptic curve possesses a prime
subgroup of order q, let the elliptic curve point G denote a generator of the
prime subgroup of order q. If P is a point of the elliptic curve we will use Rx(P )
to denote the x-coordinate of P and Ry(P ) to denote the y-coordinate of P . Let
XAMC and PAMC denote the private and public key pair of the AMC. Thus
PAMC = XAMCG. For brevity, we will denote H(Rx(PAMC)||Ry(PAMC)) in the
following by H0. This value is known by all parties. Each party who would like
to participate in the system will be required to register with the AMC. This is a
one-time registration. Before the user registers, they must generate a long-term
private key/public-key pair. This is done once by the user.

3.1 User Key Generation

The User C selects a private key Xc ∈R F∗
q . 1 The user then computes the public

key Yc = XcG. Here XC and YC are user C’s private key/public key pair. Yc and
Xc are the long term public and private keys of the user C.

3.2 Registering a User

In order to utilize the mobile agent network, user C must register with the trusted
party AMC. To register user C sends its identity IDC and public key YC to the
AMC. The AMC chooses ωc ∈R F∗

q and computes AC where Ac = ωcG − Yc.
The AMC also computes γc = H0ωc + Rx(Ac)XAMC mod q. The AMC then
stores (Ac, γc, Yc, IDc, ωc) in its database and returns Ac and γc to the user,
this represents the long term certificate of the user in the sense of its use within
the mobile agent system. The user C verifies that the certificate from the AMC
by checking that γC satisfies the following congruence relation.

γcG = H0(Ac + Yc) + Rx(Ac)PAMC . (1)

Observe that γcG represents the ability of the user to authenticate to other mem-
bers of the system because it binds their (AMC generated) AC , their long-term
public key YC , and the public key PAMC of the AMC. More important, because
the user possesses γC they can generate multiples of the right hand side of equa-
tion (1). Observe that the AMC keeps ωC private from the user C, that is by
sending AC rather than ωC the user knows AC but not ωC , this of course protects
the AMC’s private key XAMC , which is included as one of the terms in γC .
1 We use ∈R to denote that we select the element uniformly random from the targeted

set.
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3.3 User Releases Mobile Agent

When the user would like to utilize the mobile agent system and release a mobile
agent, the user’s mobile agent will need to provide a signature to demonstrate
that they were released by a user who is authorized (i.e. has registered). There are
a number of potential problems with this process because the user’s anonymity
needs to be preserved. Later, the mobile agent will need to sign the output that
the host generates. There are a number of problems with this as well. One, any
signing key will have to be provided among the data and instructions that the
agent carries, thus a signature with the user’s long term private key cannot be
generated at the moment the agent arrives on the host because all instructions
will be executed on the host and so the host would know the key. Secondly, the
user’s identity needs to be protected from the host, remember that anonymity is
a goal, so one cannot use any long-term information that a host could use to iden-
tify users from their mobile agent data. Wang, Zhang and Wang [12], solved this
problem by requiring the user to generate what they termed as “one-off keys”, these
are keys that would be generated “fresh” each time the user releases a mobile agent.

Creating the One-Off keys
The user creates what the authors called one-off keys. The user C selects xc ∈R

F∗
q and then computes yc = xcG.

Mobile Agent Data Structure
The entire data structure that is included with the mobile agent is illustrated
in Figure 1. This data structure includes M , which contains the user’s request
(instructions that need to be executed), information base, routing table, times-
tamp, and other static data. The data structure also includes dynamic data, the
Virtual certificate Vcert and the one-off keys {xC , yC}.

Fig. 1. Mobile Agent Data Structure

Creating the Virtual Certificate
The user cannot send γ with the agent since this would providing tracing mate-
rial for any host to identify the user who released the agent. Consequently the
user must mask their information, at the same time the mobile agent needs to
provide information to the host that proves that the Mobile Agent belongs to
an authorized user. Let M denote the static data that the user will place on
the mobile agent. Thus M contains the user’s request (instructions that need to
be executed), information base, routing table, timestamp, and other static data.
The user will need to generate a virtual certificate called Vcert by completing
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Algorithm 1. The Vcert is used by Wang, et. al. in the agent authentication part
of the WZW protocol.

Algorithm 1. agentC ’s Virtual Certificate Generation Vcert for static agent
data M
Input: users AC , XC , one-off keys xC , yC and static agent data M
Output: Vcert = (α, β, z, λ, yC)

1: User selects ψ ∈R F
∗
q

2: User computes the elliptic curve point T = ψG
3: Let t = Rx(T ) mod q
4: if t = 0 then
5: Goto 1 and select a new ψ ∈R F

∗
q

6: Let z = tRx(Ac) mod q
7: Let α = AC + T
8: Let β = t(AC + T )
9: Let λ = γct + (ψt − Xct + xcH(M))H0) mod q
10: Output the Vcert = {z, α, β, λ, yC}

3.4 Agent Authentication to Host and Validity Verification

The mobile agent migrates through the network from host to host. In the WZW
protocol, the mobile agent authenticates to a host, as follows. The host checks
the validity of the agent by checking that λ satisfies the following congruence
relation, where λ is included in the virtual certificate Vcert.

λG
?= H0(β + ycH(M)) + zPAMC . (2)

In the WZW protocol, if the congruence is satisfied then the agent will be au-
thenticated and the agent’s instructions will be executed by the host. Due to the
assumption that the ECDLOG problem is hard, and the fact that the agent can
provide the discrete log term of zPAMC (which is z) implies that the agent used
their γC in their construction of λ. However as we will see in Section 4, that this
(authentication) does not imply that the λ is formed in the manner that Wang
et. al. defined.

3.5 Signature and Verification

After the host W has executed the agent’s instructions an output/bid Wbid is
created by W . The agent needs to sign this output/bid Wbid. In the WZW
protocol, the agent’s one-off keys will be used to generate the signature on the
bid Wbid. That is, the host uses the one-off keys provided by the agent in the
WZW protocol, to generate a signature on the Wbid. Thus the agent can sign
without revealing the private key of the user. Let m = H(IDw, Wbid). The agent
generates signature Sig on m by the following algorithm.

The host verifies the signature of the agent by checking that r satisfies the
congruence rG = H(m)K + Rx(K)yc. The host W then signs it bid Wbid using
its digital signature key and constructs SigW (IDW , Wbid). Note anyone with
m, Sig, Vcert can verify the agent’s signature. By defining Sig in this manner,
the authors imply that Sig represents a binding of the agent with Vcert to the
output m.
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Algorithm 2. agentC ’s signature on host’s Wbid

Input: m = H(IDw, Wbid), one-off keys xC

Output: Sig = {K, r}
1: Select k ∈R F

∗
q

2: Compute the elliptic curve point K = kG
3: if Rx(K) = 0 mod q then
4: Go To 1 and select a new k
5: Let r = H(m)k + Rx(K)xc mod q
6: Output Sig = {K, r}

3.6 AMC Tracing of Malicious Agents

In the WZW protocol [12], the authors recognized the problem what often ap-
pears to be an honest user is really dishonest and such a user may release a
malicious agent. In order to discourage malevolent behavior, the host upon the
realization of malevolent agent activity by the agent, can submit the agent’s
Vcert to the AMC so that AMC can determine the identity IDuser of the user
who constructed the agent agent, and then penalize the user in a appropriate
manner.

Recall that during the registration process the AMC stored IDC , YC , AC

and ωC into its database, which we denote by D, for each registered user C. To
determine the identity IDuser of the user who constructed the malicious agent,
the AMC performs the following algorithm. Observe that if the host followed the
“authenticate agent procedure”, then they checked the congruence relationship
found in step 1 of Algorithm 3, thus the conditional in step 1 should always
be false. This tracing algorithm is inefficient since the trusted party AMC must
look at each entry in the database until it finds the user’s identity.

Algorithm 3. AMC Trace the User
Input: agent’s Vcert = (z, α, β, λ)
Output: IDC , YC , AC and ωC

1: if λG �= H0(β + ycH(M)) + zPAMC then
2: return Invalid Vcert

3: for each AC ∈ AMC database D do
4: Compute z

Rx(Ac)α

5: if z
Rx(Ac) α = β then

6: return The user who released agent is IDC , YC , AC and ωC

7: return The user who released the agent is not in the AMC database

4 Attacking the WZW Protocol

Wang et. al. in [12] relied heavily on the argument that to defeat their scheme
one had to break the ECDLOG problem. However, as we will now establish
this is certainly not true. Recall the data structure of an agent is described in
Figure 1. We now provide a number of attacks and observations concerning the
WZW protocol.
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4.1 Masquerading Attack–Malicious User on Honest User Attack

Whenever Alice wants to purchase a product, there are a number of hosts that
her agent will be migrate to. All of them will know the contents of her agent
data structure (the hosts know this information but they do not know Alice’s
identity). Further, adopting the Dolev-Yao security model [8], all content on the
network is visible to all parties. Consequently there are many parties that will
know the content of the agent’s data structure, all of theses parties possess M ,
Vcert, xC and yC .

Suppose Eve is a malicious host who is also a user of the mobile agent system.
Further, suppose Eve has acquired the data structure of a mobile agent that
was release by another party, which is denoted by MC , Vcert,C , xC and yC . Eve
now constructs a mobile agent, she selects her agent’s instructions, routing table,
etc. which we denote by Meve. Eve now proceeds to form the rest of the data
structure for her mobile agent agenteve, in particular Vcert,eve, xeve and yeve.
Eve sets xeve = xC and yeve = yC , she sets zeve = zC , βeve = βC and αeve = αC .
She then must compute λeve which must satisfy equation (2). Clearly Eve is not
using her registered public key Yeve and her AMC generated Aeve. Observe that
Eve knows λC where λC = γct + (ψt − Xct + xcH(M))H0 mod q, but Eve
does not know t, XC , and ψ, because these parameters belong to user C. In
order to satisfy equation (2), the value λeve will need to satisfy this equation
λeve = γct + (ψt−Xct + xcH(Meve))H0 mod q. Then

λeve − λC = xcH0(H(Meve)−H(M)) mod q (3)

and observe that Eve knows each term on the right-hand side of equation (3).
Therefore Eve can compute λeve − λC and so she computes λeve = λC +
(λeve − λC). Now Eve’s data structure for her agenteve is {Meve, Dynamic
data, Vcert,eve {yeve, αeve,βeve,λeve,zeve}, {yeve,xeve}}

Thus Eve’s data structure will satisfy the authentication step as described
in equation (2). Also note that Eve has modified the agent’s instructions from
the original instructions (user C’s original instructions were given in M where
M was defined by user C). Further, Eve has modified the lists of hosts to visit
(she can modify the routing table). Consequently Eve can place malicious in-
structions/malware in Meve. Now when a host complains to the AMC about
the agenteve, they will send to AMC the certificate Vcert,eve. When the AMC
uses Algorithm 3, the AMC will compute for each Ai ∈ Database D the point

zeve

Rx(Ai)
αeve and compare it to βeve. Of course zeve = zC , αeve = αC and

βeve = βC . Consequently the AMC will determine that user C has released the
malicious agenteve and so Eve has successfully masqueraded as user C and this
has gone undetected. This attack is devastating to the WZW protocol, because
it shows that the WZW protocol lacks any identity integrity.

It is clear that Wang et. al. [12] rely on the assumption that the only way
to form a λ that will be authenticated requires that λ must be well-formed
and follow the definition given in Algorithm 1, which is false. Another illustra-
tion of the weakness of the original WZW protocol is as follows. Here we describe
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a simple modification of a Vcert that would go undetected. Consider a Vcert =
{z, α, β, λ, yC}, and the one-off keys xC and yC . The parameter β need not be
of the form t(AC + T ), in order for λ to satisfy the authentication procedure.
We will illustrate this with an example.

Example 1. Consider a Vcert = {z, α, β, λ, yC}. Let λ′ = λ + b where b ∈ F∗
q .

Let β′ = β + H−1
0 · bG, V ′

cert = {z, α, β′, λ′, yC} then λ′G = (γct + (ψt−Xct +
xcH(Meve))H0)G + bG. Consequently
λ′G = H0(β + H−1

0 · bG + ycH(M)) + zPAMC = H0(β′ + ycH(M)) + zPAMC .
So it is easy to reuse another user’s authentication parameter λ.

4.2 Violating the Trustee AMC’s Tracing

If Alice wants to purchase a product using a mobile agent then Alice issues
mobile agent agentalice. Now if Alice is malicious and would like to construct
her agentalice to include malware to tamper with a host then the potential
repercussions that Alice will bear is that the host will complain to the AMC,
which would then trace Alice by using Algorithm 3, and then Alice would be
punished in some manner. It is this psychology that discourages a dishonest
party from behaving maliciously. However if Alice could somehow avoid tracing,
then Alice may issue malicious agent agentalice. Let Malice denote the set of
instructions, routing table, etc. Alice then computes her Vcert, she selects ψ ∈R

F∗
q , computes T = ψG, sets t = Rx(T ) mod q, sets zalice = tRx(Aalice), selects

xalice ∈R F∗
q , compute yalice = xaliceG, computes λ = γalicet + (ψt −Xalicet +

xaliceH(Malice))H0 mod q, and computes β = tAalice + tT . However Alice then
selects α ∈R prime subgroup of order q of E. Now that the mobile agent data
structure is complete, Alice releases the mobile agent agentalice.

Clearly agentalice will satisfy equation (2). Thus agentalice will be autho-
rized by any host it was sent to. However if agentalice included any malware,
then when the host complains to the AMC, the AMC will be unsuccessful in
tracing Alice because β �= tα (since α is a random EC point) which is necessary
for the WZW protocol to provide tracing. This situation can occur because no
host can check the condition β

?= tα, because if t was ever provided to a host
then Rx(Aalice) would be revealed which violates the anonymity of the user.
This attack will be much more difficult to repair than the other attacks we have
discussed because some type of proof concerning the relationship between β and
α must be conducted, while maintaining the anonymity of the user.

4.3 Attack – Agent’s Signature of Wbid

The following discussion concerns the signature Sig generated on the host’s Wbid.
Here we list a series of observations concerning potential vulnerabilities and in-
adequacies. Depending on the application, the actual agent instructions (that the
host executed), and the Wbid, one may be able to take advantage of the vulnerabil-
ities we raise to construct an attack. First, the Sig as defined in the WZW protocol
only takes as input the m which is the hash H(IDw, Wbid), thus there is no binding
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of the agent’s original set of instructions (i.e. its data structure M) to this signa-
ture. Now the agent must provide the host all parameters to produce the agent’s
signature, but the only parameter used is xC , which is a weakly authenticated pa-
rameter. In the agent-to-host authentication λG = H0(β + ycH(M)) + zPAMC ,
the term xCH(M) can easily be replaced with another term, thus the binding of
the agent to the WBid via Sig (by its use of xC) is weak at its best. That is, m
(host’s bid/output) and M agent’s instructions (which generated the host bid m)
should be “bound together more securely”.

A signature is important, no user should be able to deny a signature, and no
one should be able to forge a signature. However, in the WZW protocol nothing
in the signature binds the Vcert and the message M to the signature, the user can
deny the signature. Moreover, any host (even those that are not in the routing
table) can generate a K and an r randomly and forge a signature for the user.
Also observe that the routing table (if it is fixed in the message M) is not bound
in the signature.

5 Constructing a Secure Mobile Agent System That
Supports Anonymity

The structure of our mobile agent system will be similar to the structure that
Wang et. al. introduced in [12]. There will be three types of parties: users, the
trusted party T T P and servers. The goal is to develop a protocol that allows
the user to release mobile agents to execute on servers, such that the agents can
authenticate to the server, establishing that they are owned by users that have
registered to the trusted party. Central to the theme of the protocol is that there
is NO active/on-line requirements for the T T P to intervene during the release
of a mobile agent by a single user. Another central theme should be that the
anonymity of the user should be protected throughout the protocol. We first
discuss modifications that need to be made to the WZW protocol notation, and
state our security assumptions needed throughout the protocol.

We will denote elliptic curve points using uppercase characters, scalars will
be denoted by lowercase letters or Greek letters. If P = (x0, y0) is an elliptic
curve point where P �= O, we will let Rx(P ) denote the projection of the point
P onto its x-coordinate and Ry(P ) denote the projection of the point P onto its
y-coordinate. Thus Rx(P ) = x0 and Ry(P ) = y0. The user will be denoted by
C, the trusted third party by T T P instead of AMC and the server/host by S.

5.1 Security Assumptions

We will assume that the elliptic curve discrete log problem (ECDLOG) is hard.
The ECDLOG problem is such that given an elliptic curve E, with a prime
subgroup of order q, point P belonging to this prime subgroup with P �= O, and
the scalar multiple kP , then it is “computationally infeasible” to determine k.
We will be utilizing a multiplicative group G2. We will assume that the discrete
log problem is “hard” in G2. Several arguments in this paper will deal with the
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knowledge or the calculation of the discrete log and/or the elliptic curve discrete
log. The discrete log of aP base P is a, which we will denote by DLOGP (aP ) = a.

In addition, we will be using a bilinear map e, we assume that the discrete
log is “hard” even with the presence of the bilinear map, that is given generator
G, a scalar multiple aG and e(G, aG) it is “hard” to compute the scalar a.
We will assume that Computational Diffie-Hellman (CDH) problem is a hard
problem. Moreover that in both G1 and G2, CDH is infeasible. Implying that
a bilinear map isn’t useful for solving the CDH problem. The CDH problem is
such that given aG, bG, and e(aG, bG) it is hard to compute ab. The Decision
Diffie-Hellman (DDH) problem is the problem that: concerning whether one
can distinguish between G, aG, bG, cG and G, aG, bG, abG. The Decision Diffie-
Hellman (DDH) problem is “easy” in G1 due to the existence of the bilinear map
e. We will be working in an algebraic setting described by Boneh et. al, [2] as
the Gap Diffie-Hellman (GDH) group. The additive group G1 is called a GDH
group if DDH is easy in G1 but CDH is hard. We will assume that G1 is a GDH
group.

5.2 Setup

The T T P does the following:
An elliptic curve E is generated. G1 is a subgroup of E of order q, where

q is prime. G is a generator for the subgroup G1. G2 is a multiplicative group
of order q and e : G1 × G1 → G2 is a bilinear map. Let H denote secure
cryptographic hash function. The T T P publishes E, G1, G2, G and H . The
T T P selects s ∈R Z∗

q randomly. The T T P publishes sG. Each entity C in the
system establishes a private key kC and public key YC = kCG. This includes the
T T P. Thus the private key for the T T P is kT T P and the public key is YT T P .
A common term that we will employ throughout our protocol will be H0 =
H(Rx(YT T P)||Ry(YT T P)), recall H is a hash function, Rx(YT T P) and Ry(YT T P)
are the x and y coordinates of YT T P and || will denote concatenation. Each entity
C possesses an identity IDC , we assume that this identity has been bound to their
public key YC by a certificate generated by a trusted party Certificate Authority
(CA).

5.3 Our Mobile Agent Data Structure

The first item is the formation of λ as described in step 9 of Algorithm 1. Recall
the masquerade attack described in Section 4.1. This attack allowed a user Eve
to utilize another user C’s Vcert,C . Moreover Eve was able to construct her own
set of instructions and modify the routing table. If Eve was merely performing
a replay attack on user C then this is solved by the timestamp that is included
in M . So the problem is that Eve can construct her own Meve yet reuse much
of user C’s virtual certificate Vcert,C . The reason this attack can be performed
is the definition of λ = γCt + (ψt − kC t + xH(M))H0 mod q, each factor of
the term xH(M)H0 is known by Eve. Hence she can replace this term by the
term xH(Meve))H0 to use and help her form λeve. Thus in our protocol we will
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make the parameter x private and not part of the mobile agent data structure.
Of course this decision will have implications in other areas of the protocol.

To address the attack on T T P tracing as described in Section 4.2 we will
need to provide a mechanism that will prove that the mobile agent belongs to
an authenticated user, and that the agent is using the parameters of this user, the
authentic parameters that the T T P has generated for them. Further, the agent
needs to prove to the server that the T T P can trace the owner of the mobile
agent, in cases where the agent acts “poorly” or “maliciously” the owner/user
needs to be able to be traced by the T T P , this will be future work and will be
considered in future work.

5.4 User Key Generation and Registering with the T T P

This aspect of the protocol is identical to what Wang et. al. described in [12].
Each user C will generate a private key kC and compute the corresponding public
key YC = kCG. To register with the T T P so that C becomes an authentic mem-
ber of the mobile agent system, user C sends IDC and YC . The T T P generates
AC , ωC and γC , as described in the WZW protocol. So ωc ∈ F

∗
q and AC is com-

puted by Ac = ωcG− Yc. Lastly γC is computed by γc = H0ωc + Rx(Ac)XAMC

mod q. The T T P stores (Ac, γc, Yc, IDc, ωc) in its database and returns Ac

and γc to the user. This represents the long term certificate of the user in the
sense of its use within the mobile agent system. The user C can verify that the
certificate from the T T P by checking that γC satisfies the equation (1).

5.5 User Releases a Mobile Agent

Many of the steps that user C performs will be similar to the steps in the
WZW protocol, however there will be several extremely important additional
steps/parameters unique to our system.

Creating One-Off keys and the Mobile Agent Data Structure
The user creates one-off keys. The user C selects x ∈R F∗

q and then computes
L = xG.

The data structure that is included with the mobile agent is very similar to
the data structure in the WZW protocol, which was illustrated in Figure 1.
This data structure includes M , which contains the user’s request (instructions
that need to be executed), information base, routing table, time stamp, and
other static data. The data structure will also include dynamic data, the Virtual
certificate Vcert (which will be different than the Vcert described in the WZW
protocol). We will also include in the data structure the scalar multiple L of the
one-off keys BUT WE DO NOT INCLUDE the scalar x (this will remain as a
private/secret one-off key for user C and will NOT be made available to anyone).

Creating the Virtual Certificate
The user will need to generate a virtual certificate called Vcert much in the same
way as the WZW protocol with a few minor changes. The Vcert is described as
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follows. For the sake of simplicity we will denote H(D) to represent the hash of
some of the session parameters in the structure with the message M such that
H(D) = H(H(M)||H(zG)||H(tG)||H(B)||H(L)||H(tx)||H(tL)). The use of the
hash H(D) will be discussed in the security analysis. Observe the parameter t is
calculated differently in our scheme.

Algorithm 4. agentC ’s Virtual Certificate Generation Vcert for static agent
data D by User C
Input: User’s AC , kC , one-off keys x, L and static agent data D
Output: Vcert = (zG, tG, B, λ, L, tx, tL)

1: Selects ψ ∈R F
∗
q

2: Computes the elliptic curve point T = ψG
3: Selects t ∈R F

∗
q , and computes tG

4: Computes z = tRx(AC) mod q, and zG
5: Computes B = t(AC + T )
6: Computes λ = γCt + (ψt − kCt + xH(D))H0 mod q
7: Computes tx and tL = txG
8: Outputs the Vcert = (zG, tG, B, λ, L, tx, tL)

Observe that by making the parameter x private, no party can modify the
data structure and the corresponding λ. Thus we have defeated one of the attacks
outlined in 4.1. Note that this version of Vcert contains modified parameters from
the Vcert that was defined in [12].

5.6 Agent Authentication to Server and Validity Verification

In the agent authentication process, the server first checks the timestamp and
the validity period of the agent. Next, the server S computes λG where λ is
included in the virtual certificate Vcert. The server S will use the λG calculation
to compute the term W by.

W = λG−H0(B + H(D)L). (4)

The server will now check if the following relation is valid.

e(W , G) ?= e(zG, YT T P) (5)

If equation (5) is satisfied, then W = zYT T P . Note that zG is published in the
Vcert, and is thus known to the server.

If all the steps are valid, then the agent is authenticated. We will discuss the
security of this authentication technique in Section 6.

5.7 Signature and Verification

After the server S has executed the agent’s instructions, a bid/output Sbid is
generated. The server signs the output using its private key producing SignS(m)
where m = H(H(D)||IDS ||Sbid). Since the agent is an intermediary for user C,
the agent needs to sign the bid. The signature Sig = {K, r} where the server S
allows the intermediary agent to select k ∈R F

∗
q and compute K = kG. The agent
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also computes, r = H(H(m)||H(D)||H(Vcert,C))k+Rx(K)tx mod q. Recall that
Vcert,C contains both tx and tL. Observe that the mobile agent instructions, the
Sbid and the authentication material Vcert,C have been bound into the signature.
The Algorithm 5 addresses the verification of the signature.

Algorithm 5. Signature Verification
Input: m = H(IDS ,Sbid), data structure D, Vcert,C

Output: true or false
1: if SignS (m) is not a valid signature produced by server S then
2: Return false
3: if the routing table is provided in M and identity IDS routing table then
4: Return false
5: if Authentication of Vcert,C fails then
6: Return false
7: if e(tL, G) �= e(L, tG) then
8: Return false
9: Compute rG
10: if rG = H(H(m)||H(D)||H(Vcert,C))K + Rx(K)tL then
11: Return false
12: else
13: Return true

5.8 Tracing

We do not claim that we can trace all users who release mobile agents. We will
demonstrate here that the T T P can trace users who are honest and follow the
protocol honestly. The only value of demonstrating this tracing is that it estab-
lishes the importance of showing that no user can masquerade/replay parameters
generated by another user. This will be discussed in Section 6.

Suppose that user U has acted honestly when releasing their mobile agent.
Then T T P can determine the user U by:

Algorithm 6. Tracing by T T P
Input: Vcert = (zG, tG, B, λ, L, tx, tL)
Output: user U who released the mobile agent
1: for all user C in T T P database do
2: if RX (AC) · tG

?
= zG then

3: Return user C
4: Return cannot determine

6 Security Analysis

Due to space limitations we will briefly outline the security analysis of our pro-
tocol. A more complete analysis will be provided in the extended version of the
paper.

Authentication. The system should not allow a non-authentic user to pass
the authentication step.

Anonymity. The system should protect the identity of an authenticated user.
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We now make a series of observations that follow from Algorithm 4 and the
hardness of the ECDLOG problem.

Observation 1. Observe that a user C does not know ωC. Further, user C does
not know the discrete log of AC base G, which is denoted by DLOGG(AC).

Observation 2. Consider a user U who has computed wG and wYttp then user
U knows some scalar a, with a �= 1, and points Q1 and Q2 such that DLOGQ1

wG = a = DLOGQ2wYttp
2.

This observation will be applied in the context of proving the security of our
protocol. Thus when we use the term computing we imply the user has not
borrowed or replayed two points that were generated by another user. The above
result is trivial if we allowed a to equal 1, since the user could replay two points
generated by another user. In the case that a = w then in the context of our
protocol the user U appears to be acting honestly.

Of course, the correctness of this observation does not necessarily imply the
user knows w nor does it prevent the user U from replaying two points generated
by another user. That is, user U could borrow (replay) two points bG and bYttp

from another user U ′, by selecting a ∈ Zq and computing a(bG) and a(bYttp),
in this case w = ab and Q1 = bG and Q2 = bYttp. In this situation the user U
would not know w.

The correctness of this observation follows from the difficulty of the discrete
log problem, in the sense that the user U needs to compute two points wG and
wYttp that share a discrete log relation, i.e. DLOGGwG = w = DLOGYttpwYttp.

In the following, the term non-authentic user is referring to a user who has not
registered and does not possess a AC and a γC that is generated by the T T P .

Observation 3. It is computationally hard for a non-authentic user U to com-
pute λ such that λG = Q + wYT T P , where w and Q are known by the user
U .

Note that an authentic user C can be considered to be non-authentic (in the
sense of the above observation) if they attempt to engage in a mobile agent
transaction and decide not to use their secret registration parameters AC and
γC that were generated by the T T P .

Observation 4. Observe that the hash function H(D) contains the message M ,
which includes a timestamp and a period of validity. D contains other parameters
of the Vcert Further, the parameters t and ψ are random, secret and vary for each
mobile agent that is generated.

Observation 5. Observe that user C’s one-off private key x is secret. Thus any
user U , where U �= C, cannot modify the mobile agent data structure D that was

2 By the use of the term computing, we imply that user U is not using (replaying)
two points that were generated by another user.
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created by user C to some D′, with D′ �= D, since user U would need x, to
compute xH(D′)− xH(D) to add to λ in order to compute λ′. 3

First consider the authentication aspect of the protocol. Recall that in the
authentication process, the server S computes λG and calculates W . Then the
server checks the pairing e(W , G) ?= e(zG, YT T P).

By a series of arguments we can prove the following Theorem (the proof will
be provided in the extended version of the paper).

Theorem 1. It is infeasible for a user U to masquerade as user C where U �= C.

When we say server S authenticates the mobile agent we are referring that the
series of steps described in Section 5.6 are completed and verified, in particular
equation (5) must be satisfied. Recall that a non-authentic user we are referring
to a user who has not registered and does not possess a AC and a γC that is
generated by the T T P .

Theorem 2. Suppose server S authenticates a mobile agent then server S knows
that the user that created the agent is authentic.

Now consider the privacy (anonymity) aspects of the protocol. Those pa-
rameters which can be used to trace the identity of a user are kC , AC and γC .
Observe tx, tL, tG, L possess no sensitive materials. The sensitive materials are
kC , AC and γC . The only parameters that consist of sensitive materials are zG,
B, and λ where each of them are masked with randomness, independently se-
lected (in some cases they are protected by more than one mask). For example,
zG is masked by t. B is masked by T , and λ is masked by ψ. Thus user C’s
identity is protected and they remain anonymous.

Consider the security of the signature/verification scheme of the protocol.
There are two important properties in signing. A user can initially act nonmali-
cious when contacting the server, but can later decide to become malicious and
deny its signature for example. The second property is that NO ONE other than
the user and its intermediary agent should be able to construct a signature. In
our protocol we solved these signature problems by requiring additional verifi-
cation steps, where anyone can verify using these steps. If the identity of the
server IDS is not in the routing table of the message M, then the server is not
an authentic server and is not the right intermediary server. The verifier should
check the Vcert of the user, and if it’s not authentic then the verifier caught a
bad user. We also introduced a step that checks the pairing e(tL, G) �= e(L, tG)
where this pairing binds one-off keys x and L. Lastly, the verifier computes and
checks rG as before.

7 Open Problems and Conclusion

In the WZW protocol, when an agent visits a server, if the server doubts that
this agent is malicious, the server submits Vcert and Sig to the AMC to find out
3 Here λ′ = λ + xH(D′) − xH(D).
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the agent owner’s identity. AMC has a database record of (Ai, γi, Yi, IDi, ωi).
For each user there is a unique record, however if there are many users, it is very
difficult to identify the owner of the mobile agent, thus this remains as an open
problem. Thus the original AMC tracing algorithm that was described in WZW
protocol [12] would require a search of the entire database. An open problem is
to find a tracing algorithm for which the search requires O(1) time.

Wang et. al [12] thought their protocol enables the AMC to trace, however
we demonstrated in our attacks that the AMC is incapable of tracing malicious
users. Future work should support tracing of malicious users that try not to follow
the protocol correctly. Non-malicious users should remain anonymous through
the protocol.
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Abstract. The Extensible Markup Language (XML) is utilised in many

Internet applications we are using today. However, as with many com-

puting technologies, vulnerabilities exist in XML that can allow for mali-

cious and unauthorised use. Applications that utilise XML are therefore

susceptible to security faults if they do not provide their own meth-

ods. Our research focuses on developing a formal language which can

provide access control to information stored in XML formatted docu-

ments. This formal language will have the capacity to reason if access

to an XML document should be allowed. Our language, Axml(T ), allows

for the specification of authorisations on XML documents based on the

popular Role-based Access Control model. Temporal interval reasoning

is the study of logically representing time intervals and relationships be-

tween them. As part of our research, we have also included this aspect in

our language Axml(T ) because we believe it will allow us to specify even

more powerful access control authorisations.

Keywords: AI in computer security, AI in database, logic programming,

knowledge representation and reasoning, access control, authorisations,

XML databases and security.

1 Introduction

Many applications utilise the Extensible Markup Language [9] as a tool to store
and retrieve information. However, the guarantee that information stored in
XML documents is secure and is only accessible by authorised users is not possi-
ble unless an external method is used. XML does not have any inherent security
methods as part of its specification [9]. An XML document is essentially a for-
matted plain text file that can be freely viewed and edited. Therefore there is a
demand for methods in which access to XML documents can be controlled.

In this paper, we present our work on the development of a formal language
that will provide access control to XML documents. We incorporate the XML
query language, XPath [8], into our formal language so that we can define which
documents (or elements within a document) we would like to restrict access to.
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An XPath is a string representation of traversing through an XML document to
return an element within the document. For example, the following is an XPath
that follows the tree-like structure of a document to return the element author :

/library/books/book/author

Our formal language uses the Role-based Access Control model [15] as a basis
for the structure of authorisations to subjects. This primarily means rather than
applying authorisations directly to subjects, we create “roles” that can have one
or more specified authorisations. This gives us better control over which subjects
have what authorisations. It also allows us to include features like separation of
duty and conflict resolution directly into the language [15].

Finally, we include Allen’s Temporal Interval Relationship logic [1]. Allen’s
temporal relationships cover all possible ways in which intervals can relate to
one another (such as before, meets, equal, etc.) and are incorporated into the
syntax of our formal language. We include this aspect of temporal reasoning
in our language so that we can specify time constraints on authorisations to
designate when they should be applied.

We utilise the formal language to produce a security policy base. The policy
base contains all the Axml(T ) rules of authorisation for the XML documents
requiring access control. The policy base can be reasoned upon to determine
which authorisations should be followed.

The rest of this paper is organised as follows. Section 2 presents the formal
syntax of our language Axml(T ), illustrates its expressive power through various
XML access control scenarios, and defines queries on XML policy bases. Section
3 describes the semantics of language Axml(T ) based on its translation to a logic
program under answer set semantics. In section 4, an example is also presented
to show the application of Axml(T ) in XML authorisation specification and rea-
soning. Section 5 briefly discusses the related work. Finally, Section 6 concludes
the paper with some remarks.

2 Formal Language Axml(T)

Our language, Axml(T ), consists of a finite set of predicate statements. These
statements are used to create various rules in a security policy base. We present
the syntax of our language in Backus-Naur Form (Table 1) with a definition of
each element. The statements are written from the point of view of the policy
base writer or admin. This single subject represents the author of the access
control policies.

2.1 Syntax

A rule is a conditional statement that allows the policy writer to specify a
predicate statement to be validated based on the truth of other predicates. Rules
include nonmonotonic reasoning derived through the absence of predicates. Our
language also includes deny rule statements which are for specifiying conditional
states that should never be allowed.
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Table 1. BNF for Axml(T )

<rule> ::= <head-statement> [ if [ <body-statements> ] [ with absence
<body-statements> ] ]

<deny-rule> ::= admin will deny [ if [ <body-statements> ] [ with absence
<body-statements> ] ]

<head-statement> ::= <relationship-statement> | <grant-statement> |
<request-statement> | <auth-statement> |
<role-statement>

<body-statements> ::= <body-statement> | <body-statement>, <body-statements>
<body-statement> ::= <relationship-statement> | <grant-statement> |

<request-statement> | <auth-statement> |
<role-statement>

<relationship-statement> ::= admin says <relationship-atom>
<grant-statement> ::= admin grants <role-name> to <subject> during

<temporal-interval>
<relationship-atom> ::= below( <role-name>, <role-name> ) |

separate( <role-name>, <role-name> ) |
during( <temporal-interval>, <temporal-interval> ) |
starts( <temporal-interval>, <temporal-interval> ) |
finishes( <temporal-interval>, <temporal-interval> ) |
before( <temporal-interval>, <temporal-interval> ) |
overlap( <temporal-interval>, <temporal-interval> ) |
meets( <temporal-interval>, <temporal-interval> ) |
equal( <temporal-interval>, <temporal-interval> )

<subject> ::= <subject-constant> | <subject-variable>
<role-name> ::= <role-name-constant> | <role-name-variable>

<temporal-interval> ::= <temporal-interval-constant> | <temporal-interval-variable>
<request-statement> ::= admin asks is <subject> a member of <role-name>

during <temporal-interval>
<auth-statement> ::= admin says that <subject> can use the <role-atom>

during <temporal-interval>
<role-statement> ::= admin creates <role-atom>

<role-atom> ::= role( <role-name>, <sign>, <xpath-statement>, <privilege> )
<sign> ::= + | -

<xpath-statement> ::= in <document-name>, return <xpath-expressions>
<document-name> ::= <document-name-constant> | <document-name-variable>

<xpath-expressions> ::= <xpath-node> | <xpath-node>, <xpath-expressions>
<xpath-node> ::= [ / ] <node-name> [<xpath-predicate>] /
<node-name> ::= <node-name-constant> | <node-name-variable> | * | //

<xpath-predicate> ::= <child-node-name> <predicate-relationship> <variable-value> |
<attribute-name> <predicate-relationship> <variable-value>

<child-node-name> ::= <child-node-name-constant> | <child-node-name-variable>
<attribute-name> ::= <attribute-name-constant> | <attribute-name-variable>

<predicate-relationship> ::= < | > | =
<privilege> ::= read | write

The head-statement from a rule consists of the predicate statements that will
be validated true if the rules conditions are true as well. The head-statement itself
can either be one of five statements; a relationship-statement, grant-statement,
request-statement, auth-statement, or role-statement.

The body-statement(s) of a rule are the conditions that are reasoned upon to
validate the head-statement. These are also made up of the same five statements
used in the head-statement.

A relationship-statement confirms that some relationshipbetween twoobjects in
the security policy base is true. These relationships are represented by those pred-
icate symbols found under the relationship-atom. There are a few relationship-
atoms available that can be used in relationship-statements. Relationships for
example could be hierarchical (below), mutually exclusive (separate), or be based
on Allen’s Temporal Interval relationships (during, starts, meets, etc.) [1].



446 S. Policarpio and Y. Zhang

The role-statement creates an access control role. The role-atom used in the
statement includes a role-name, a sign which represents either positive or neg-
ative access to the object in question, an xpath-statement to identify an XML
object, and finally the privilege that can be performed on the object.

An xpath-statement in Axml(T ) is a formal representation of an XPath ex-
pression. These expressions include the primary features of the syntax of XPath,
such as single node queries, tree-like structured queries, wildcard queries, and
predicate filters on nodes and attributes [8].

Grant-statements serve the purpose of assigning an access control role to a
subject (a person requiring authorisation). This statement also includes a tem-
poral argument to specify when the roles authorisation should be applied.

A request-statement is used when a query for subject authorisation is made.
It represents the policy writers attempt to discover if a particular subject is a
member of a role at a specific temporal-interval.

Auth-statements specify that a subject who has been previously granted a
role now has authorisation to access an object. We create rules in the policy
base that will validate these statements by checking if a subject has positive
authorisation to a role and that there are no conflicting rules. If these are true,
then an auth-statement is created.

2.2 Expression Examples with Axml(T )

In this section, we demonstrate utilising our formal language to express some
common relationships and rules for a security policy base.

Creating a temporal interval relationship. The policy base writer speci-
fies that the interval morning tea is before afternoon tea and that the interval
play time meets nap time:
admin says before(morning tea, afternoon tea).
admin says meets(play time, nap time).

XML elements and attributes. Using the xpath-statement, an arbitrary ele-
ment named cleaning log with the child element cleaning area from the document
“database.xml” can be represented like this:
in database.xml, return cleaning log/cleaning area

The policy writer can also specify more in the XPath by using predicates or
wildcards. This xpath-statement uses the wildcard (*) to specify a single step
between the elements cleaning information and cleaning log. The policy writer
also uses a predicate expression to filter cleaning area’s that have the attribute
type equal to office.
in database.xml, return /janitor logs/cleaning information/*/cleaning log/

cleaning area[@type=“office”]

Role Creation, Role Relationships, and Granting Authorisations. The
policy writer creates the janitor role. This role is allowed to read the element
specified in our XPath from the previous example.
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admin creates role(janitor, +, in database.xml, return /janitor logs/

cleaning information/*/cleaning log/cleaning area[@type=“office”], read).

The policy writer specifies relationship statements between roles. They can
state that the role staff is below the role manager, or in other words, is a child
role, and that they also be mutually exclusive by specifying that they be separate.
admin says below(staff, manager).

admin says separate(staff, manager).

The policy writer adds a subject to a roles membership. They add the subject
tyler to the role janitor. He will be able to access this role only during the
afternoon temporal interval.
admin grants janitor to tyler during afternoon.

Here, the policy writer creates a complex rule stating that if any subject is a
member of the role janitor during any time, then they should also be a member
of the role window washers during the same interval. The interval must also finish

at the same time as maintenance time. They add the condition that the subject
also not be a member of the electrician role.
admin grants window washer to SubX during TimeY

if admin grants janitor to SubX during TimeY,
admin says finishes(TimeY, maintenance time),
with absence admin grants electrician to SubX during TimeZ.

The deny rule is useful for specifying rules where the validity of the body-
statements are not desired. A deny rule can be written to indicate that patrick
should never be a member of the role janitor during any interval.
admin will deny if admin grants janitor to patrick during TimeY.

Request Statements. The policy writer can query if a subject is a member
of a role at a specific time. They will check if taro is a member of the musician
role during rehearsals.
admin asks is taro a member of musicians during rehearsals.

2.3 Producing Authorisations and Querying the XML Policy Base

With a security policy base written in Axml(T ), it is possible to find which
subjects have authorisations to what objects based on the roles they have been
granted membership to. To do this, we reason upon statements that have been
written in the policy base. The subject authorisations are found with a rule we
refer to as the authorisation rule.
admin says that SUBJECT can use role(ROLE-NAME, +, XPATH, PRIVILEGE) during INTERVAL

if admin grants ROLE-NAME to SUBJECT during INTERVAL,
admin asks is SUBJECT a member of ROLE-NAME during INTERVAL,
admin creates role(ROLE-NAME, +, XPATH, PRIVILEGE),
with absence role(ROLE-NAME, -, XPATH, PRIVILEGE)

This rule is written to pertain to all grant-statements. It ensures that a role
be postively authorised for use by a subject only if it does not conflict with a
possible negative role with the same privileges and temporal interval (conflict
resolution [15]). If this rule produces an auth-statement, that is the indication
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that the subject in question does in fact have authorisation based on those
specified in the role-statement.

There are other defined rules like this that apply to many aspects of our
formal language that must also be reasoned upon before authorisation is given
to a subject. We refer to these as language rules within Axml(T ). They are
discussed in more depth in the formal semantics of our language and are defined
in two groups:

– Role-based Access Control Rules are included to ensure that features
of the model are present (ie. separation of duty, conflict resolution, role
propagation) and that authorisations are generated when querying the policy
base (ie. the authorisation rule).

– Temporal Interval Relationship Reasoning Rules allow for defined
temporal intervals to adhere to the relationships defined in Allen’s work [1].

By using Axml(T ) to define a security policy base, we now have a determinable
way to reason who has authorisation to what XML objects based on facts about
subject privileges. However, to produce these authorisations and to also prove
that our policy base written in Axml(T ) is satisfiable, we need a method to
compute a result. To do this, we provide the semantics of our language in the
form of an answer set program.

3 Semantics

We chose answer set programming [4] as the basis for our semantics because it
provides the reasoning capabilities to compute the authorisations defined using
our formal language. If properly translated, we can use an ASP solver (such as
smodels [18]) to find which authorisations will be validated true. What we want
to produce is an answer set that will have the same results as those produced
from our formal language Axml(T ). We first present the alphabet of our ASP
based language ALP and then its formal semantics.

3.1 The Language Alphabet ALP

Entities Subjects, temporal intervals, role names, role properties, XPaths, and
XPath properties make up the types of entities allowed in the language. These
can either be constant or variable entities, distinguished by a lowercase or up-
percase first letter respectively.

Function symbols

– role(role-name, sign, xpath(), priv), where role-name is the name of this role,
sign is a + or − depending on if the role is allowing or disallowing a priv-
ilege, xpath is an xpath function representing an element(s) from an XML
document, and priv is the privilege that can be performed on the object (ie.
read or write).
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– node(name, id, level, doc), represents a node in an XML document, where
name is the name of that node (element), id is a distinct key in the document,
level represents its hierarchical placement, and doc the document it originates
from.

– xpred(axis, query), represents an XPath predicate, where axis is the location
of the node to apply the predicate query on.

– xpath(node(), xpred()), represents an XPath, consisting of a node() and xpred().

Predicate symbols The first set of symbols are used for representing relation-
ships between roles and temporal intervals. Their definitions are taken directly
from Axml(T ).

below(role-name2, role-name1)
separate(role-name2, role-name1)
during(tempint2, tempint1)
starts(tempint2, tempint1)
finishes(tempint2, tempint1)
before(tempint2, tempint1)
overlap(tempint2, tempint1)
meets(tempint2, tempint1)
equal(tempint2, tempint1)

These next set of symbols are used for defining and querying authorisations
in the policy base and are also similar to their Axml(T ) equivalents.

grant(subject, role-name, tempint)
request(subject, role-name, tempint)
auth(subject, xpath(), priv, tempint)

A new predicate symbol is introduced in ALP for conflict resolution reasoning
on subject authorisations.

– exist neg(subject, xpath(), priv, tempint) states that at least one negative
grant for a subject exists.

And finally, four predicates are also introduced for providing relationships be-
tween XML nodes.

– isNode(node()), indicates that the node() function exists.
– isParent(node2(), node1()), means node2 is the parent or is hierarchically

above node1, where both are node functions.
– isLinked(node2(), node1()), means node2 can be reached directly (is descended)

from node1, where both are node functions.
– isAttr(attr name, node()), means attr name is an XML attribute of the node

function

In most cases, with an understanding of Axml(T ), the transformations and mean-
ings of symbols and rules from ALP are self explanatory. However, extra consid-
eration must be given to the method in which XPaths are handled in ALP .

3.2 Handling XPaths in ALP

There was a problem handling particular XPaths in ALP because our formal
language implements features and syntax of XPath that are difficult to translate
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and use in answer set programming. Specifically, this is the use of wildcards and
predicate queries. We refer to these problematic XPaths as dynamic XPaths be-
cause they can represent zero to many XML nodes, as opposed to static XPaths
which can only refer to zero or one node. When dynamic XPaths are used in
a logic program, it is difficult to specify which nodes should have authorisation
rules applied to them. This is because the nodes that are meant to be represented
by the XPath are not yet known. With static XPaths, it is clearly stated what
node requires authorisation.

We consider the approach by Almendros-Jimenez et al. [2] which described
a method to represent the structure and data of an XML document as a logic
program. Using a similar technique, we provide new rules that rewrite dynamic
XPaths into static ones. The idea of query rewriting is to use the structure of
XML documents to understand and define what dynamic XPaths might mean
[13,14].

These concepts are what make up the majority of the language rules for XPath
Translation in the policy base. We introduced the functions node, xpred, and xpath,
and the predicate symbols isNode, isParent, isLinked and isAttr into ALP for this
reason. These various new functions and predicates allow us to write rules to
satisfy different kinds of dynamic XPaths. However, due to space constraints,
we will show only one example of an XPath transformation rule.

XPath Tranformation Rule. For this example, we will assume that the struc-
ture (schema) of the XML documents are already defined using the node function
and predicate statements introduced earlier.

This rule will determine the meaning of a wildcard (*) in an XPath like this
/A/*/C. It will produce an xpath that will return the element C which can only be
reached from the parent element A.
xpath(node(C, ID3, 3, DOC), xpred(self, ‘‘’’)) ←

isParent(
node(X, ID2, 2, DOC),
node(C, ID3, 3, DOC)),
isParent(
node(A, ID1, 1, DOC),
node(X, ID2, 2, DOC)).

The rule determines if an arbitrary node, X, is the parent of node C and is
the child of node A. In each node, we specify the level and use variables for the
id and document. This allows for the rule to determine all possible XPaths that
satisfy the relationship conditions. For those nodes that satisify the rule, we can
produce an XPath function for C that we can guarantee is meant to be produced
from the XPath /A/*/C.

Remarks. It is important to note that these rules are not part of our semantics,
which will be presented in the next section. This is because the process of trans-
forming the XPaths occur at an intermediate level that is not concerned with
the reasoning of the security policy base. Also, because these rules are written
specific to varying XPaths, it is not possible to give a formal definition of their
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translation. We consider the transformations of XPaths as happening before the
translation of an Axml(T ) policy base into ALP .

3.3 Formal Definitions

We define the semantics of our formal language by translating Axml(T ) into an
answer set logic program. We refer to this translation as Trans. A policy base,
DA, is a finite set of rules and/or deny rules, ψ, written in Axml(T ) as specified in
Table 1. The generic rules, or language rules, for the same policy base, DA, are
a finite set of statements, α, written in Axml(T ).

α contains statements to provide:

– conflict resolution,
– separation of duty,
– role propagation,
– temporal interval relationship reasoning, and
– authorisation reasoning

Definition 1. Let DA be a policy base. We define Trans(DA) to be a logic
program translated from DA as follows:

1. for each rule or deny rule, ψ, in DA, Trans(ψ) is in Trans(DA)
2. for each statement α in DA, Trans(α) is in Trans(DA)

A translated rule or deny rule, Trans(ψ), has the same form as those defined
in Gelfond’s Stable Model Semantics [17] and answer set programming [4]. A
translated rule has the following form:
Trans(head-statement)k ←

Trans(body-statement)k+1,...,
Trans(body-statement)m,
not Trans(body-statements)m+1,...,
not Trans(body-statements)n.

A translated deny rule has the same form except for the dismissal of the
head-statement.

The conflict resolution rules in α are located in the authorisation rule (Section
2.3). In Trans(α), conflict resolution rules are transformed into a new rule that
checks if a subject has at least one negative grant for a role. We use this to reason
if a conflict with a positive grant is possible. In ALP , exist neg was introduced
for this purpose. The translated rule is as follows:
exist neg(S, xpath(node(N, I, L, D), xpred(A, Q)), P, T) ←

grant(S, R, T),
role(R, -, xpath(node(N, I, L, D),
xpred(A, Q)), P).

Separation of duty in α is translated with a simple deny rule:
← grant(S, R1, T1), grant(S, R2, T2), separate(R2, R1).

If grant predicates are giving a subject membership to roles that are stated
as being separate, then the statement should be denied and the logic program
faulted.
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Role propagation in α is also translated similarily in Trans(α) with two
generic rules. The original rules were (1.) to do with transitivity between roles
and (2.) for propagation of role properties. The propagation rule searches for
roles that are hierarchically related (using below) and copies the authorisation
properties from the parent role to the descendent role. Their translation is as
follows:

1. below(R1, R3) ← below(R1, R2), below(R2, R3).

2. role(R1, Si, xpath(node(N, I, L, D), xpred(A, Q)), P) ←
below(R1, R2), role(R2, Si,
xpath(node(N, I, L, D), xpred(A, Q)), P)

α contains numerous rules that pertain to temporal interval relationship reason-
ing. Again, many of these rules are transformed from Axml(T ) to ALP trivially.
We show some of these rules from Trans(α) 1:

Temporal Interval Bounded Rule:
This rule searches for an interval that is contained within another but does

not overlap the beginning or end of the outer interval.
during(T4, T1) ←

starts(T2, T1), finishes(T3, T1),
before(T2, T4), before(T4, T3).

Temporal Interval Containment Rule:
If the temporal interval used in a grant predicate is found to have an interval

contained within it, then a similar grant will be applied to the subject for that
contained interval.
grant(S, R, T2) ←

grant(S, R, T1), during(T2, T1).

Implicit Temporal Interval Relationships:
These rules apply some implied temporal relationships we have choosen to

implement for our own purposes. Namely, that starts and finishes should imply
during and that meets should imply before.
during(T2, T1) ← starts(T2, T1).
during(T2, T1) ← finishes(T2, T1).
before(T2, T1) ← meets(T2, T1).

Finally, the authorisation rule (Section 2.3) in Axml(T ) is translated in
Trans(α) as follows:
auth(S, xpath(node(N, I, L, D), xpred(A, Q)), P, T) ←

request(S, R, T), grant(S, R, T),
role(R, +, xpath(node(N, I, L, D),
xpred(A, Q)), P),
not exist neg(S, xpath(node(N, I, L, D),
xpred(A, Q)), P, T).

A query on DA, φ, written in Axml(T ) is a request statement, as specified in
Table 1, and its translation, Trans(φ), is a request predicate from ALP .

Definition 2. Let φ be a query on a policy base DA written in Axml(T ). We
define Trans(φ) as the translation of the request statement from Axml(T ) to
ALP .
1 All rules can be found in original manuscript
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An answer from a query φ is denoted as π and has the form of an authorisa-

tion statement, specified in Table 1, while its translation, Trans(π), is an auth

predicate from ALP .

Definition 3. Let π be the answer from a query φ on policy base DA written in
Axml(T ). We define Trans(π) as the translation of the authorisation statement
from Axml(T ) to ALP .

We define the relationship between our formal language and its translation into
the semantics of answer set programming.

Definition 4. Let DA be a policy base, φ a query on it, and π the answer from
that query. We say DA entails π, or DA |= π, iff for every answer set, S, of the
logic program Trans(DA) with the query Trans(φ), Trans(π) is in S.

DA |= π iff Trans(DA) |= Trans(π)

4 An Example

We will demonstrate the creation of a security policy for a scenario requiring
access control to XML documents. Due to space constraints, we will only have
a very small example and also forgo XPath’s utilising predicates.

Scenario Description. A hospital requires the implementation of an access
control model to protect sensitive information it stores in a number of XML
documents. We will discuss roles created for two particular subjects at the
hospital.

Hospital Roles. An administration role in the hospital will have access to read
two nodes named board minutes and financial info from a document named
board db. Roles that are below the administration role will also inherit this rule.
For example, a role named board member will inherit these privileges. However,
we will also include within the board member role the privilege to write to the
document.

The role admin doctor will be able to write to the board minutes section of
the board db document.

In our policy base, we will allow the admin doctor role to read and write
to a few other documents. They will have access to read a staff contact info
document and both read and write to the patient db and doctor db documents.

Table 2 shows these roles written in Axml(T ).

Policy Base Subjects and Rules. Within our case scenario, we will focus on
two subjects, Lucy and Rita, both administrative doctors. Lucy will utilize the
privileges of the admin doctor role for a single specific interval while Rita must
be active in that same role at any other time.

The XML access control rules in which these subjects must abide to in the
hospital are as follows.
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Table 2. Hospital Roles

Administration
admin creates role(administration, +, in board db, return /, read).
admin says below(board member, administration).
admin creates role(board member, +, in board db, return /, write).

Administrative doctors
admin says below(admin doctor, administration).
admin creates role(admin doctor, +, in board db, return /board minutes, write).
admin creates role(admin doctor, +, in staff contact info, return /, read).
admin creates role(admin doctor, +, in patient db, return /, read).
admin creates role(admin doctor, +, in patient db, return /, write).
admin creates role(admin doctor, +, in doctor db, return /, read).
admin creates role(admin doctor, +, in doctor db, return /, write).

For Lucy, we can specify that she has the admin doctor role on some arbitary
interval tuesday. We could state some relationships for this interval like so:
admin says meets(monday, tuesday).
admin says meets(tuesday, wednesday).

Now we can make a rule that states that Lucy be active with the admin doctor
role on tuesday and Rita be active during any other time. In this case, possibly
monday and wednesday or any other interval defined in the policy base.
admin grants admin doctor to lucy during tuesday.
admin grants admin doctor to rita during INT I

if with absence admin grants admin doctor to lucy during INT I.

4.1 Logic Program Translation

With a completed policy base, we can translate all of the Axml(T ) rules into an
ALP answer set program. For our case study, we will demonstrate the translation
of our policies for Lucy and Rita.

Role Translations From the defined roles, we will show the translation of one
of the Axml(T ) rules for the admin doctor.

This rule was orignally written in Axml(T ) to specify that the admin doctor
role be allowed to write to the board minutes node in the board database. In
ALP it is written as:
role(admin doctor, +, xpath(node(/board minutes, ID, 0, board db), xpred(self, ‘‘’’)),
write).

As mentioned earlier, we will forgo the explanation of the translation of
XPaths. However, briefly, this XPath represents the /board minutes node, with
any ID, at the top-level (0) of the board db document.

Grant Translations We will now translate some rules granting subjects mem-
bership to roles. We take a look at the rule that specified that Lucy be granted
the admin doctor on the interval tuesday and that Rita have it at any other
interval. In ALP , they are translated as:
meets(monday, tuesday).
meets(tuesday, wednesday).
grant(lucy, admin doctor, tuesday).
grant(rita, admin doctor, I) ← not grant(lucy, admin doctor, I).
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4.2 Experimenting with Queries on the ALP Program

We now present authorisation queries on our policies. We will show the queries
and results in Axml(T ) and ALP .

We first create requests of authorisation for Lucy and Rita to obtain the role
admin doctor during the temporal interval tuesday.

In Axml(T ), we would write request-statements like so:
admin asks is lucy a member of admin doctor during tuesday.
admin asks is rita a member of admin doctor during tuesday.

In ALP , those statements are translated into the following request statements:
request(lucy, admin doctor, tuesday).
request(rita, admin doctor, tuesday).

If we were to logically reason upon our Axml(T ) policy base with the previous
request-statements, the following statements would be produced by the authorisa-
tion rule (Section 2.3).
admin says that lucy can use role(admin doctor, +, in board db, return /, read) during tuesday.

admin says that lucy can use role(admin doctor, +, in board db, return /board minutes, write)
during tuesday.

admin says that lucy can use role(admin doctor, +, in staff contact info, return /, read) during
tuesday.

admin says that lucy can use role(admin doctor, +, in patient db, return /, read) during tuesday.
admin says that lucy can use role(admin doctor, +, in patient db, return /, write) during tuesday.
admin says that lucy can use role(admin doctor, +, in doctor db, return /, read) during tuesday.
admin says that lucy can use role(admin doctor, +, in doctor db, return /, write) during tuesday.

When our translated policy base and request predicates are computed in a
stable model solver, an answer set containing the following equivalent facts is
generated.
auth(lucy, xpath(node(/, idbdb00, 0, board db), xpred(self, ‘‘’’), read, tuesday).

auth(lucy, xpath(node(/board minutes, idbdb01, 0, board db),
xpred(self, ‘‘’’), write, tuesday).

auth(lucy, xpath(node(/, idscidb00, 0, staff contact info),
xpred(self, ‘‘’’), read, tuesday).

auth(lucy, xpath(node(/, idpdb00, 0, patient db), xpred(self, ‘‘’’), read, tuesday).
auth(lucy, xpath(node(/, idpdb00, 0, patient db), xpred(self, ‘‘’’), write, tuesday).
auth(lucy, xpath(node(/, idddb00, 0, doctor db), xpred(self, ‘‘’’), read, tuesday).
auth(lucy, xpath(node(/, idddb00, 0, doctor db), xpred(self, ‘‘’’), write, tuesday).

Because Rita’s rule specifies that she cannot be a member of admin doctor
at any interval that Lucy is, her requests for authorisation do not generate
any results. Lucy however retrieves all the authorisations that an admin doctor
should. Referring to Table 2, we can identify all the admin doctor roles that are
used to create the auth-statements and auth predicates above.

5 Related Work

Damiani et al. [11,12] provided some essential work in the field of XML access
control. In [12], a fine-grained access control model is discussed. This model
takes an XML document and designates access rights on each element. They
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provide implementations of rule propagation and also include features such as
both positive and negative authorisations and conflict resolution in the model.
Through their algorithm, a source XML document can be processed by remov-
ing all objects of negative authorisation and returning a document with only
elements that are allowed to be viewed [12].

Crampton [10] utilised the role-based access control model for specific use
with XML documents. He utilises the same object-based approach by using the
XPath query language. However, Crampton points out that his work only focuses
on reading XML documents [10].

In [5,7], Bertino et al. discussed their own implementation of an access control
system for XML documents. Their work does follow the role-based access control
model to a certain extent (however, we did not see methods for role propagation
or separation of duty). Subjects are granted authorisation through credentials
and objects are specified through XPath’s [5,7]. The implementation includes
features such as the propagation of policy rules and conflict resolution. Bertino
et al. include in their formalisation temporal constraints based on their previous
work in [6]. However, their approach seems restricted in terms of handling XPath
expressions in authorisation reasoning.

Besides Bertino et al., only a small group of other researchers have produced
research utilising logic programming for XML policy base descriptions [3,16]. To
the best of our knowledge, a logic-based formal language for XML authorisations
has not yet been developed with the inclusion of temporal constraints, the com-
plete role-based access control model, and nonmonotonic reasoning capabilities
of answer set programming.

6 Conclusion

In this paper, we presented a formal language of authorisation for XML docu-
ments. We demonstrated its expressive power to provide role-based access control
with temporal constraints. We provided a semantic definition through the trans-
lation of the high level language into an answer set program. Finally, we gave
a brief example of defining a security policy base in Axml(T ), translating it into
an ALP logic program, and then computing the authorisations from it.
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