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Preface

This volume contains the papers presented at the 17th International Symposium
on String Processing and Information Retrieval (SPIRE 2010), held October
11–13, 2010 in Los Cabos, Mexico.

The annual SPIRE conference provides researchers within fields related to
string processing and/or information retrieval a possibility to present their orig-
inal contributions and to meet and talk with other researchers with similar in-
terests. The call for papers invited submissions related to string processing (dic-
tionary algorithms; text searching; pattern matching; text and sequence com-
pression; automata-based string processing), information retrieval (information
retrieval models; indexing; ranking and filtering; querying and interface design),
natural language processing (text analysis; text mining; machine learning; in-
formation extraction; language models; knowledge representation), search appli-
cations and usage (cross-lingual information access systems; multimedia infor-
mation access; digital libraries; collaborative retrieval and Web-related applica-
tions; semi-structured data retrieval; evaluation), and interaction of biology and
computation (DNA sequencing and applications in molecular biology; evolution
and phylogenetics; recognition of genes and regulatory elements; sequence driven
protein structure prediction).

The papers presented at the symposium were selected from 109 submissions
written by authors from 30 different countries. Each submission was reviewed
by at least three reviewers, with a maximum of five reviews for particularly
challenging papers. The Program Committee accepted 39 papers (corresponding
to ≈35% acceptance rate): 26 long papers and 13 short papers. In addition to
these presentations, SPIRE 2010 also featured invited talks by Gonzalo Navarro
(Universidad de Chile) and Mark Najork (Microsoft Research, USA).

We are especially thankful to the members of the Program Committee, who
provided us with thorough and timely reviews. Every PC member completed
all their reviews on a very tight schedule. We wish to thank the SPIRE Steer-
ing Committee, via their coordinator Ricardo Baeza-Yates and the editorial of-
fice staff at Springer. The student volunteer staff led by Francisco Claude was
especially helpful with attending local matters for the conference. The students
of the Information Retrieval course of CICESE helped in gathering all the kits
for attendees. Yahoo! Research had generously provided sponsorship for partial
support for accommodation costs for student volunteers. We finally thank Uni-
versidad Michoacana and University of California for donating the time of the
organizers.

September 2010 Edgar Chavez
Stefano Lonardi
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Horacio Rodriguez Politècnica de Catalunya, Spain
Kunihiko Sadakane Kyushu University, Japan
Marie-France Sagot INRIA, France
Cenk Sahinalp Simon Fraser University, Canada
Fabrizio Silvestri CNR, Italy
Steven Skiena Stony Brook University, USA
Jens Stoye Bielefeld University, Germany
Gabriel Valiente UPC, Spain
Nivio Ziviani Federal University of Minas Gerais, Brazil
Michal Ziv-Ukelson Tel Aviv University, Israel

Additional Reviewers
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Querying the Web Graph
(Invited Talk)

Marc Najork

Microsoft Research, 1065 La Avenida, Mountain View, CA, USA
najork@microsoft.com

http://research.microsoft.com/~najork/

Abstract. This paper focuses on using hyperlinks in the ranking of web
search results. We give a brief overview of the vast body of work in the
area; we provide a quantitative comparison of the different features; we
sketch how link-based ranking features can be implemented in large-scale
search engines; and we identify promising avenues for future research.

Keywords: Web graph, link analysis, ranking, PageRank, HITS, SALSA.

1 The Ranking Problem

One of the fundamental problems of information retrieval is the ranking problem:
given a corpus of documents and a query reflecting a user’s information need, and
having drawn from the corpus all the “result” documents that satisfy the query,
order the results by decreasing relevance with respect to the user’s information
need. The aim of ranking algorithms is to maximize the utility of the result list
to the user; or (more subjectively) to maximize the user’s satisfaction.

Ranking algorithms deployed in commercial search engines typically draw
on a multitude of individual features, where each feature manifests itself as
a numerical score, and combine these features in some way, e.g. by weighted
linear combination. Features can be classified across many possible dimensions.
Figure 1 shows one possible taxonomy incorporating two dimensions: when a
feature is computed, and what it is based on. Query-dependent or “dynamic”

Fig. 1. A two-dimensional classification of ranking features

E. Chavez and S. Lonardi (Eds.): SPIRE 2010, LNCS 6393, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 M. Najork

features take the query into account and thus can only be computed at query
time, whereas query-independent or “static” features do not rely on the query
and thus can be computed ahead of time. Loosely speaking, dynamic features
estimate the relevance of a document with respect to a query, while static features
estimate its general quality.

Much of the classic research in information retrieval focused on small- to
medium-sized curated corpora of high-quality documents, and assumed that
queries are issued by trained library scientists. Consequently, early ranking al-
gorithms leveraged textual features, based on the words or “terms” contained
in documents and queries. Examples of query-independent textual features are
readability measures such as Flesch-Kincaid [15]; examples of query-dependent
textual features include BM25 [30]. As information retrieval broadened to web
search, some of these assumptions became less tenable (the web is not curated;
pages are more variable in length and quality; and users of web search engines
are less experienced and tend to frame fairly short queries), but the fact that
documents are interconnected by hyperlinks made new features available. Exam-
ples of query-independent link-based features include PageRank [28]; examples
of query-dependent link-based features include HITS [16] and its many descen-
dants. Finally, the explosive growth in the popularity of the web itself and of
commercial web search engines generates an enormous amount of data on user
activity both on search engines and the web at large, which can be harnessed into
usage-based features. An example of a query-independent usage-based feature is
Alexa Traffic Rank [2]; an example of a query-dependent usage-based feature is
result click-through rate [31].

In the remainder of this paper, we will focus on link-based features. However,
it is worth pointing out that all features – whether text-, link- or usage-based
– are generated by human activity: by authors creating documents and endors-
ing other authors’ documents through hyperlinks, and by users surfing the web,
framing queries, and clicking on results. So, the ranking problem is about identi-
fying features generated by observable human activities that are well-correlated
with human satisfaction with the ordering (or more generally the selection and
presentation) of the results of a query. In short, at its very core ranking is nei-
ther a mathematical nor an algorithmic problem, but a social one, concerned
with the behaviors and interactions of people. Given that search is ultimately a
social activity and that so far we are not not able to model human behavior well
enough to accurately predict the effectiveness of any new ranking algorithm, the
importance of experimental studies cannot be overemphasized.

2 Using Hyperlinks to Rank Web Search Results

Marchiori was the first to propose leveraging hyperlinks for ranking web search
results. Specifically, he suggested computing a conventional test-based score for
the result pages of a query, and then to propagate these scores (appropriately
attenuated) to neighboring pages in the web graph [20]. This work inspired other
researchers to consider hyperlinks as ranking features in their own right.
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Hyperlinks can be viewed as endorsements made by web page authors of other
web pages, and they can be classified along several dimensions. First, we can
distinguish between “egotistic” and “altruistic” hyperlinks1 – links that endorse
pages in which the author has a vested interest vs. those that endorse other
pages. It is very hard to identify altruistic links with high confidence, but there
are some easy-to-determine indicators of egotistic links: links that point to pages
on the same web server, on a web server in the same domain, on a server with
the same IP address or in the same IP subnet, or registered to the same entity.
Second, we can distinguish between “topical” and “templatic” links2 – links that
point to pages that are on the same topic as the linking page vs. those that point
to topically dissimilar pages and often are part of a design template applied to
the entire web site (for example, links to the site’s privacy policy). In this world
view, altruistic topical links provide the most meaningful endorsements.

2.1 PageRank

Page (together with Brin, Motwani and Winograd) proposed a purely link-based
ranking function that went beyond the straightforward counting of endorsing
hyperlinks in two respects: First, he suggested that the reputation of a page
should be dependent on the reputation of its endorsing pages, and second, he
suggested that the endorsement ability of a page should be divided among the
pages it endorses. Furthermore, to prevent degenerate behavior in the presence
of cycles and sink pages, he suggested affording each page a guaranteed minimal
score. The resulting ranking function is the now-famous PageRank [28]. In order
to define it formally, we will need some notation.

Web pages and hyperlinks induce a graph with vertex (page) set V and edge
(link) set E ⊆ V ×V . We write I(v, E) to denote the set of pages {u : (u, v) ∈ E}
that link to v, and O(u, E) to denote the set of pages {v : (u, v) ∈ E} that u links
to. The teleportation vector t : V → [0, 1] controls the guaranteed minimum score
of each page, the link weight matrix W : V × V → [0, 1] is typically informed
by the graph’s adjacency matrix and controls the endorsement power of each
hyperlink, and the damping factor λ balances the influence of either component.
Using this notation, the PageRank p(v) of a page v is defined in its most general
form as the fixed point of the following recurrence relation:

p(v) = λt(v) + (1 − λ)
∑
u∈V

p(u)W (u, v)

or, using linear algebra notation, as:

p = λt + (1 − λ)pW

Yet more abstractly, p is the principal eigenvector of the transition matrix T
(i.e. the fixed point of the recurrence relation p = pT ) defined as T (u, v) =
1 Egotistic links are called “nepotistic” by Davison [9] and “intrinsic” by

Kleinberg [16].
2 Qi et al. refer to topical links as “qualified links” [29].
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λt(v) + (1 − λ)W (u, v), assuming that p adds up to 1. In the classical definition
of PageRank, t(v) = 1

|V | for all v ∈ V (i.e. each page has the same guaranteed
minimum score), and W (u, v) = 1

|O(u,E)| for all v ∈ O(u, E) and 0 otherwise (i.e.
page u uniformly endorses all pages it links to).

p, t and the rows of W are typically constrained to add up to 1, such that
they can be viewed as probability distributions. That raises the question of how
to deal with a “terminal” or “dangling” web page u that does not contain any
hyperlinks, i.e.

∑
v∈V W (u, v) = 0. Page et al. proposed pruning such terminal

vertices from the web graph (which may require multiple iterations, since pruning
such terminal vertices and their incoming links may leave other vertices without
outgoing links), computing PageRank on the core graph, and finally adding the
pruned vertices and edges back in and propagating scores to them [28]. As it turns
out, we can ignore the problem. To understand why, let us assume that we add
a “phantom vertex” φ to the graph, plus a reflexive edge (φ, φ) and a phantom
edge from each terminal to φ. The modified graph is free of terminal vertices.
We set t(φ) = 0, W (u, φ) = 1 iff O(u, E) = ∅ and 0 otherwise, W (φ, φ) = 1, and
W (φ, v) = 0 for all v ∈ V . If we compute p on this graph using power iteration,
‖p‖1 ( the �1-norm of p) will not change over iterations. Significantly, the p(v)
score of any non-phantom vertex is the same as it would be had we computed p
using power iteration on the original graph while resigning ourselves that zero-
sum rows in W will cause ‖p‖1 to shrink. The score mass that simply disappears
when computing PageRank on the original graph can be found in the phantom
node of the augmented graph. In other words, adding the phantom node and
phantom edges to the graph is a useful intellectual device, but not actually
needed for computing PageRank.

One very popular interpretation of the PageRank formula is the “random
surfer model”. In this model, a “surfer” traverses the web graph, visiting a new
vertex at each transition. The surfer either “steps” with probability 1 − λ or
“jumps” with probability λ. The destination vertex of a step is conditioned on
the departure vertex, while that of a jump is not. Assuming that W is based
on the web graph’s adjacency matrix, taking a step means following a link. The
surfer transitions from vertex u to vertex v with probability T (u, v) = λt(v) +
(1−λ)W (u, v). In this interpretation, p(v) is the probability that the surfer is at
vertex v at any given point in time. The random surfer model is very intuitive,
and it relates PageRank to Markov random walks. Unfortunately, it also has
led to a fair amount of confusion in the community: the random surfer model
suggests that PageRank is modeling the web surfing behavior of users, i.e. of
consumers of web content; the endorsement model described above suggests that
PageRank is modeling the cross-reference behavior of authors, i.e. of producers of
web content. We subscribe to the latter interpretation. Incidentally, commercial
search engines have fairly direct ways of observing user behavior (e.g. through
browser toolbars) and thus little need to model it.

Since PageRank is query-independent, it can be computed off-line. The Page-
Rank vector p is typically computed using power iteration. Major commercial
search engines maintain web graphs with tens of billions of vertices, and thus
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compute p in a distributed setting. There are two standard approaches of doing
this. The first approach uses data-parallel frameworks such as MapReduce [10],
Hadoop [13] or DryadLINQ [32]. In this setting, the link weight matrix W , the
teleportation vector t, and the old and new score vectors p reside on disk and
are processed in a streaming fashion. Multiplying W and p corresponds to a join
operation in relational algebra followed by a group-by, and the data streams to
be joined must be sorted on the join key. W can be sorted ahead of time, while
p has to be re-sorted every iteration. The second, ad-hoc approach partitions p,
t and the rows of W such that all entries corresponding to pages on the same
web server fall into the same partition. The new score vector is kept in memory
(partitioned over many machines). W , t and the old score vector, which all reside
on disk, are read in a streaming fashion, and fractions of the old scores are used
to increment entries of the new score vector. These updates have a random-access
pattern, but most will affect the local partition of the score array due to link
locality – typically, most hyperlinks in a web page refer to other pages on the
same web server. After every iteration, the new score vector is written to disk
and becomes the old vector in the next iteration. The advantage of the ad-hoc
approach over the MapReduce-approach is that it does not require any sorting;
the two disadvantages are that it requires more engineering (e.g. to provide
for fault-tolerance) and that computing scores for a larger graph requires more
memory (typically by provisioning additional machines).

PageRank scores are computed off-line, and used at query-time to score re-
sults. As stated above, major search engines maintain corpora of tens of billions
of documents. At the same time, they typically aim to answer queries within a
fraction of a second [19]. In order to answer queries over such a large corpus and
with such tight latency constraints, engines maintain all or at least the “hot”
part of the index in main memory, partitioned across many machines, with each
partition replicated multiple times across machines to achieve fault tolerance and
increase throughput. The web corpus is commonly partitioned by document, i.e.
all the terms of a given document are stored in the same sub-index. When a
query arrives at the search engine, it is distributed to a set of index-serving ma-
chines that together hold the full index. Each machine finds the set of results in
its sub-index that satisfy the query, scores these results using locally available
features, and sends the top-k results to a result aggregation machine, which in-
tegrates them into the overall result set, possibly performing a more in-depth
scoring. Since PageRank is a query-independent document score, the PageRank
vector can be partitioned in the same way as the web corpus, and index-serving
nodes can determine the PageRank scores of results using local table lookups.
In other words, the query-time portion of PageRank is both extremely efficient
and extremely scalable.

PageRank’s elegance and intuitiveness, combined with the fact that it was cred-
ited for much of Google’s extraordinary success, led to a plethora of research.
Broadly speaking, this research falls into four classes: PageRank’s mathematical
properties (e.g. [17]); variations of the PageRank formula (e.g. [3]); computing
PageRank efficiently (e.g. [14,21]); and adversarial attacks against PageRank.
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Table 1. Effectiveness of various ranking features, in isolation

Feature Class NDCG@10 Source
PageRank link/q-ind 0.092 [23]
HITS link/q-dep 0.104 [23]
inter-domain indegree link/q-ind 0.106 [23]
SS-SALSA-3 link/q-dep 0.153 [25]
SALSA link/q-dep 0.158 [24]
SALSA-SETR link/q-dep 0.196 [26]
BM25F text+link/q-dep 0.221 [23]

Alas, there is a paucity in experimental validations of its effectiveness as a ranking
function. Part of this is due to the fact that it is hard to assemble a large web cor-
pus, and expensive to compile human judgments required in Cranfield-style evalu-
ations of ranking effectiveness. Early studies tried to overcome these obstacles by
leveraging existing search engines to obtain linkage information [4]; more recent
work by our group performed substantial web crawls and used a test set compiled
by a commercial search engine [23]. To our surprise, we found that PageRank in
its classic form (with uniform teleportation and link bias, and λ = 0.15) is even
less effective than simply counting altruistic (inter-domain) hyperlinks. Table 1
summarizes the results of these studies, which were all based on the same data
sets.

At first glance, it is surprising that PageRank does not outperform inter-
domain link-counting – after all, link-counting ignores the reputation of the
linking page, and considers only the immediate neighborhood of each web page.
We believe that there are two reasons why classic PageRank fares so poorly: First,
it treats all links the same; it ignores whether they are egotistic or altruistic,
topical or templatic. Inter-domain link-counting on the other hand will discard
links that are obviously egotistic. Second, being credited as an important factor
in Google’s ranking algorithm, PageRank is under attack by legions of search
engine optimizers. In its classic formulation, each page receives a guaranteed
minimum score, so the obvious attack is to publish millions of pages that all
endorse a single landing page, which will receive the (slightly dampened) sum
of the scores of the endorsing pages. The key enabler for spammers is that web
pages can be automatically generated on the fly, so publishing even a very large
collection of pages is virtually free. This technique is known as link spam or link
bombs, and there are several studies on the most effective shape of such link
bombs [1,12].

Given that the key enabler of link spam is the low cost of publishing, the
appropriate countermeasure is to correlate the teleportation vector with a feature
that has actual economic cost. Examples of features that have non-zero cost are
domain names (since it requires payment to a registrar), IP addresses (IPv4
addresses in particular are becoming quite scarce), and of course actual traffic
on a page [22]. For example, using visits(u) to denote the number of visits to
page u in a given amount of time (optionally weighted by the dwell-time), we
can define the teleportation vector to discount unpopular pages:
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t(u) =
visits(u)∑

v∈V visits(v)

As a second example, using domain(u) to denote the domain of web page u, we
can define the teleportation vector to discount domains with many web pages:

t(u) =
1

|
⋃

v∈V domain(v)| |{v ∈ V : domain(u) = domain(v)}|

Using the random-surfer analogy, in the probability-λ event of a jump, the surfer
does not choose a page uniformly at random, but instead first chooses a domain
and then a page within that domain, thereby giving equal minimum-endorsement
ability to each (nonzero-cost) domain instead of each (zero-cost) page. As a third
example, using addresses(u) to denote the IP address(es) of the web server(s)
serving page u, we can define the teleportation vector to discount servers with
many web pages while giving credit to multi-hosted pages:

t(u) =
1

|
⋃

v∈V addresses(v)|
∑

a∈addresses(u)

1
|{v ∈ V : a ∈ addresses(v)}|

Again using the random-surfer analogy, in the event of a jump the surfer first
chooses a web server IP address and then chooses a page served by that machine.

In addition to adjusting the teleportation vector to dilute the ability of link
farms to endorse target pages, we could adjust the link weight matrix to prefer
altruistic or topical links. As we said above, any altruistic link classifier suffers
from a non-negligible false-positive rate: it is impossible to rule out the possibility
that two web publishers are colluding. On the other hand, the topicality of a link
from u to v can be captured by straightforward means, e.g. by quantifying the
textual similarity between u and v, using, say, the cosine similarity between their
tf.IDF-weighted term vectors [29]. Given a similarity measure σ : V × V → R
where higher values indicate higher similarity, we can define W as follows:

W (u, v) =
σ(u, v)∑

w∈O(u,E) σ(u, w)
if (u, v) ∈ E; 0 otherwise

There are many other possible techniques for distinguishing topical from tem-
platic links, for example segmenting the page into “blocks” and discounting links
contained in navigational or advertising blocks [6].

Hopefully the above examples will convince you that there is room for improv-
ing PageRank, by finding ways to make it a more effective ranking function and
more resilient to link-spam. Any such research should be data-driven: given the
availability of large web corpora (e.g. the billion-page ClueWeb09 crawl [8]) and
associated test sets (e.g. the TREC 2009 web track judgments [7]), it is possible
to evaluate ranking functions in a repeatable fashion. As a corollary, studies of
PageRank’s mathematical properties and efforts to speed up its computation
have more impact if they don’t assume t and W to be uniform in any way.
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2.2 HITS and Its Variants

At about the same time as Page et al. proposed PageRank, Jon Kleinberg sug-
gested a different link-based ranking algorithm called “Hyperlink-Induced Topic
Search” [16]. HITS takes the result set of a query as its input, expands the re-
sult set to include immediately neighboring pages in the web graph, projects this
expanded vertex set onto the full web graph to obtain a neighborhood graph,
and computes scores for each vertex in that neighborhood graph. Since it takes a
query’s result set as input, HITS is query-dependent, and the latency introduced
by computing it at query-time is a major concern to commercial search engines,
given the high correlation between response time and audience engagement [19].

Fundamentally, HITS consists of two distinct steps: First, given a result set,
compute a neighborhood graph; and second, compute scores for each vertex
in the neighborhood graph. Kleinberg suggested that the neighborhood graph
should be computed by extending the result set to include all vertices that are
within distance 1 in the link graph, ignoring “intrinsic” (egotistic by our termi-
nology) links. In order to keep high-in-degree result vertices from inflating the
neighborhood vertex set too much, he suggested including just (say) 50 randomly
chosen endorsing vertices of each such high-indegree result. The neighborhood
graph consists of the neighborhood vertices and those edges of the full web
graph that connect neighborhood vertices and are not intrinsic. To formalize
this, we write Rn(A) to denote a uniform random sample of n elements from set
A (Rn(A) = A iff |A| ≤ n), and we assume that all intrinsic edges have been
removed from the web graph (V, E). Using this notation and given a result set
R ⊆ V to query q, Kleinberg’s neighborhood graph consists of a neighborhood
vertex set VR and a neighborhood edge set ER:

VR =
⋃

u∈R

{u} ∪ R50(I(u, E)) ∪ O(u, E)

ER = {(u, v) ∈ E : u ∈ VR ∧ v ∈ VR}

Kleinberg furthermore suggested computing two scores for each v ∈ VR: an
authority score a(v) and a hub score h(v), the former indicating whether v is a
good authority (i.e. how relevant v is with respect to q), and the latter indicating
whether v is a good hub (i.e. if v links to pages that are good authorities). Klein-
berg defined a and h in a mutually recursive fashion, as a(v) =

∑
u∈I(v,ER) h(u)

and h(u) =
∑

v∈O(u,ER) a(v), and suggested computing the fixed point of this re-
currence by performing power iteration and normalizing a and h to unit length
after each step. Using linear algebra notation leads to a more concise defini-
tion. If we define the neighborhood graph’s adjacency matrix as A(u, v) = 1 iff
(u, v) ∈ ER and 0 otherwise, then the authority score vector is the principal
eigenvector of the matrix AT A, and the hub score vector is the principal eigen-
vector of the matrix AAT . Based on experimental studies [23], authority scores
are useful ranking features, while hub scores carry virtually no signal.

Lempel and Moran suggested a variant of HITS called the Stochastic Ap-
proach to Link Sensitivity Analysis, or SALSA for short [18]. SALSA combines
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ideas from HITS and PageRank: The SALSA authority score vector is the sta-
tionary probability distribution of a random walk over the neighborhood graph,
where each transition consists of choosing an incoming link and traversing it
backwards, and then choosing an outgoing link and traversing it forwards. Using
linear algebra notation, the authority score vector is the principal eigenvector
of the matrix IT O, where I(u, v) = 1

|I(v,ER)| iff (u, v) ∈ ER and 0 otherwise,
and O(u, v) = 1

|O(u,ER)| iff (u, v) ∈ ER and 0 otherwise. Despite their similarity,
SALSA scores are significantly better ranking features than HITS scores [24].

In the course of performing the aforementioned experimental studies [23,24]
into the effectiveness of HITS and SALSA as ranking features, we found that
the choice of neighborhood graph has a significant impact on effectiveness. We
discovered four modifications to the neighborhood selection algorithm that each
increase effectiveness: first, using consistent instead of random sampling; second,
sampling both the endorsed as well as the endorsing vertices of each result;
third, omitting edges that don’t touch results; and fourth, sampling the eligible
edges [26]. Using Cn(A) to denote an unbiased consistent sample [5] of n elements
from set A, we select the neighborhood graph of result set R as follows:

VR =
⋃

u∈R

{u} ∪ Ca(I(u, E)) ∪ Cb(O(u, E))

ER = {(u, v) ∈ E : (v ∈ R∧u ∈ VR∩Cc(I(v, E)))∨(u ∈ R∧v ∈ VR∩Cd(O(u, E)))}
The free variables a, b, c, and d in the above formulas determine how many ad-
jacent vertices and edges are sampled for each result vertex. In our experiments,
effectiveness was maximal for a, b in the mid-single digits and c, d around 1000.
The SALSA-SETR row of Table 1 provides effectiveness numbers.

Experimenting with HITS-like ranking algorithms requires fast access to ver-
tices and edges in the web graph. While it would be possible to use a standard
relational database to store the graph, extracting the neighborhood graph of a
given result set exhibits a very random access pattern, such that disk latency
would become a serious bottleneck. For this reason, we developed the Scalable
Hyperlink Store [27], a bespoke system that maintains a web graph in main
memory, distributed over multiple machines and employing compression tech-
niques that leverage structural properties of web graphs, e.g. link locality. This
infrastructure enables us to get one-minute turnarounds when scoring 100 TREC
queries; however, the time required for scoring an individual query is pushing
the boundary of what is acceptable for a commercial search engine, where the
aim is to keep overall query latencies within fractions of a second.

In order to overcome this problem, we experimented with techniques for per-
forming as much of the SALSA computation off-line as possible. We explored
two approaches. The first and more radical approach is to assume that each page
in the web graph is a singleton result set (to some unspecified query), and to
off-line perform a separate SALSA computation for each page. More specifically,
for each page u, we extract the neighborhood graph (V{u}, E{u}) around u, com-
pute SALSA authority scores for all vertices in V{u}, and store a mapping from
u to the k highest-scoring v ∈ V{u} together with their scores. At query time,
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having determined the result set R for the given query, we retrieve the entries for
each v ∈ R from the mapping (yielding a multi-set S of k|R| vertex-score pairs),
and for each v ∈ R we find all occurrences of v in S and sum up their scores
to produce an overall score for v. The parameter k controls a trade-off between
ranking effectiveness and required space. The SS-SALSA-3 row in Table 1 shows
the effectiveness for k = 10 (i.e. using 120 bytes per page in the web corpus).
The effectiveness is below that of Lempel and Moran’s “classic” SALSA, but the
query-time portion of the computation is much cheaper, simply requiring a table
lookup for each result. The table can be distributed across multiple machines in
the same way the index is in a modern search engine; the score multi-set of each
result can be looked up by the same index-serving machine that held the result,
but the final scoring has to be performed by the result aggregator.

The second, less radical approach is to move the neighborhood graph extrac-
tion off-line while keeping the score computation on-line [26]. The basic idea is to
compute and store a short summary for each node in the web graph, consisting
of two small samples of endorsing and endorsed vertices, and two Bloom filters
containing larger samples of endorsing and endorsed vertices. At query time, we
look up the summary of each vertex in the result set, we use these summaries to
construct an approximation of the neighborhood graph, and we compute SALSA
authority scores on this approximate graph. The size of a summary is governed
by how many neighbors are sampled and how many hash functions are used by
the Bloom filter, and (as one might expect) there is a trade-off between size
and ranking effectiveness. Choosing parameters that lead to 500 byte summaries
makes this algorithm as effective as the (purely online) SETR variant of SALSA
described above. The summary table can be distributed across the index-serving
machines and summaries can be passed along with results to the result aggrega-
tor; however, the construction of the approximate neighborhood graph and the
subsequent scoring requires all summaries, and therefore has to be performed on
the machine responsible for query distribution and result aggregation.

Much of the design space in HITS-like ranking algorithms remains to be ex-
plored. For example, HITS considers only the distance-one neighborhood of the
result set. In the Companion algorithm [11], Dean and Henzinger suggested in-
cluding more-distant neighbors; how does this impact ranking effectiveness? As
another example, HITS and SALSA both discard egotistic hyperlinks, but make
no attempts to incorporate link topicality. Could effectiveness be improved by
weighing each edge according to the textual similarity of the linked pages, in a
fashion similar to what we suggested above for PageRank? And as a final exam-
ple, how affected are HITS and SALSA by link spam, and could we improve their
resiliency by using ideas similar to what was described above, e.g. by sampling
endorsing and endorsed vertices in a traffic-biased fashion?

3 Conclusion

This paper gives a high-level overview of the two main approaches to leverag-
ing hyperlinks as ranking features: query-independent features as exemplified
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by the PageRank algorithm, and query-dependent features as exemplified by
the HITS algorithm. The main research challenge in this space is to identify
features that (in combination with many other features) improve ranking effec-
tiveness, but that at the same are very efficient to determine at query time.
For PageRank-style features, query-time efficiency is not a significant issue, but
ranking effectiveness is, due to the increase in link spam as well as the decreasing
fraction of on-topic links. Effectiveness can be improved by biasing PageRank
towards on-topic links and against “spammy” web pages. On the other hand,
various descendants of HITS produce highly effective ranking features, but have
a high query-time cost. Two approaches to containing this expense are to imple-
ment highly-optimized infrastructure for executing HITS-like computations, or
to devise ways to to move as much of the computation as possible off-line.

The ranking problem is about identifying and leveraging observable human
activities (production by authors and consumption by readers) that correlate
well with human satisfaction with the performance of an IR system. In order to
truly solve this problem, we need a model of these authors and readers. But at
present, we do not possess any model with predictive abilities – i.e. a model that
would allow us to a priori predict the performance of a new ranking feature and
that would stand up to subsequent experimental validation. In the absence of
such a model, experimental validation is of paramount importance!
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Abstract. Query recommender systems give users hints on possible in-
teresting queries relative to their information needs. Most query rec-
ommenders are based on static knowledge models built on the basis of
past user behaviors recorded in query logs. These models should be pe-
riodically updated, or rebuilt from scratch, to keep up with the possible
variations in the interests of users. We study query recommender algo-
rithms that generate suggestions on the basis of models that are updated
continuously, each time a new query is submitted. We extend two state-
of-the-art query recommendation algorithms and evaluate the effects of
continuous model updates on their effectiveness and efficiency. Tests con-
ducted on an actual query log show that contrasting model aging by con-
tinuously updating the recommendation model is a viable and effective
solution.

1 Introduction

A key challenge for web search engines is improving user satisfaction. Therefore,
search engine companies exert significant effort to develop means that correctly
“guess” what is the real hidden intent behind a submitted query.

In the latest years, web search engines have started to provide users with query
recommendations to help them refine queries and to quickly satisfy their needs.
Query suggestions are generated according to a model built on the basis of the
knowledge extracted from query logs. The model usually contains information
on relationships between queries that are used to generate suggestions. Since
the model is built on a previously collected snapshot of a query stream, its
effectiveness decreases due to interest shifts [9]. To reduce the effect of aging,
query recommendation models must be periodically re-built or updated.

We propose two novel incremental algorithms, based on previously proposed,
state-of-the-art query recommendation solutions, that update their model con-
tinuously on the basis of each new query processed. Designing an effective
method to update a recommendation model poses interesting challenges due to:
i) Limited memory availability – queries are potentially infinite, and we should
keep in memory only those queries “really” useful for recommendation purposes,
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ii) Low response time – recommendations and updates must be performed effi-
ciently without degrading user experience.

Some of the approaches considered in related works are not suitable for con-
tinuous updates because modifying a portion of the model requires, in general,
the modification of the whole structure. Therefore, the update operation would
be too expensive to be of practical relevance. Other solutions exploit models
which can be built incrementally. The two algorithms we propose use two dif-
ferent approaches to generate recommendations. The first uses association rules
for generating recommendations, and it is based on the static query suggestion
algorithm proposed in [11], while the second uses click-through data, and its
static version is described in [2].

We named the new class of query recommender algorithms proposed here
“incrementally updating” query recommender systems to point out that this
kind of systems update the model on which recommendations are drawn with-
out the need for rebuilding it from scratch. We conducted multiple tests on a
large real-world query log to evaluate the effects of continuous model updates on
the effectiveness and the efficiency of the query recommendation process. Result
assessment used an evaluation methodology that measures the effectiveness of
query recommendation algorithms by means of different metrics. Experiments
show the superiority of incrementally updating algorithms with respect to their
static counterparts. Moreover, the tests conducted demonstrated that our so-
lution to update the model each time a new query is processed has a limited
impact on system response time.

The main contributions presented in this work are: i) a novel class of query rec-
ommendation algorithms whose models are continuously updated as user queries
are processed, ii) two new metrics to evaluate the quality of the recommendations
computed, iii) an analysis of the effect of time on the quality and coverage of the
suggestions provided by the algorithms presented and by their static counterparts.

2 Related Work

The wisdom of the crowds, i.e., the behavior of many individuals is smarter than
the behavior of few intelligent people, is the key to query recommenders and to
many other web 2.0 applications. We now present a review of state-of-the-art
techniques for query recommendation.

Document-based. Baeza-Yates et al. in [1] propose to compute groups of re-
lated queries by running a clustering algorithm over the queries and their asso-
ciated information recorded in the logs. Semantically similar queries may even
not share query-terms if they share relevant terms in the documents clicked by
users. Query suggestions are ranked according to two principles: i) the similarity
of the queries to the input query, and ii) the support, which measures how much
the answers of the query have attracted the attention of users. The solution is
evaluated by using a query log containing 6,042 unique queries from the TodoCL
search engine.
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Click-through-based. Beeferman and Berger in [4] apply a hierarchical ag-
glomerative clustering technique to click-through data to find clusters of similar
queries and similar URLs in a Lycos log. A bipartite graph is created from queries
and related URLs which is iteratively clustered by choosing at each iteration the
two pairs of most similar queries and URLs. The experimental evaluation shows
that the proposed solution is able to enhance the quality of the Lycos’s query
recommender which was used as baseline.

Cao et al. propose a query suggestion approach based on contexts [8]. A query
context consists of recent queries issued by a user. The query suggestion process
is structured according to two steps. An offline phase summarizes user queries
into concepts (i.e., a small set of similar queries) by clustering a click-through
bipartite graph, and an on-line step finds the context of the submitted query,
and its related concepts suggesting associated queries to the user. This solution
was experimented with a large query log containing 1, 812 millions of queries.

Session-based. Boldi et al. introduce the concept of Query Flow Graph [5]
(QFG). Authors define a QFG as a directed graph in which nodes are queries,
and edges are weighted by the probability w(qi, qj) of being traversed. Authors
highlight the utility of the model in two concrete applications, namely, finding
logical sessions and query recommendation. Boldi et al. refine the previous study
in [6], [7] proposing a query suggestion scheme based on a random walk with
restart model. The query recommendation process is based on reformulations of
search missions. Baraglia et al. showed that the QFG model ages [3] and propose
strategies for updating it efficiently.

Fonseca et al. use an association rule mining algorithm to devise query pat-
terns frequently co-occurring in user sessions, and a query relations graph in-
cluding all the extracted patterns is built [10]. A click-through bipartite graph is
then used to identify the concepts (synonym, specialization, generalization, etc.)
used to expand the original query.

3 Incremental Algorithms for Query Recommendation

Our hypothesis is that continuously updating the query recommendation model
is feasible and useful. As validation, we consider two well-known query recom-
mendation algorithms and modify them to continuously update the model on
which recommendations are computed. It is worth mentioning that not all query
recommendation algorithms can be redesigned to update their model on-line.
For example, some of the approaches presented in Section 2 are based on in-
dexing terms of documents selected by users, clustering click-through data, or
extracting knowledge from users’ sessions. Such operations are very expensive
to perform on-line and their high computational costs would compromise the
efficiency of the recommender system.

The two algorithms considered use different approaches for generating recom-
mendations. The first uses association rules [11] (henceforth AssociationRules),
while the second exploits click-through data [2] (henceforth CoverGraph). Here-
inafter, we will refer to the original formulations of the two algorithms as “static”,
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as opposed to their relative incremental versions which will be called
“incremental”.

3.1 Static solutions

Static solutions work by preprocessing historical data (represented by past users’
activities on query logs), building an on-line recommendation module that is used
to provide suggestions to users.

AssociationRules. Fonseca et al. uses association rules as a basis for generating
recommendations [11]. The algorithm is based on two main phases. The first
uses query log analysis for session extraction, and the second basically extracts
association rules and identifies highly related queries. Each session is identified
by all queries sent by an user in a specific time interval (t = 10 minutes).
Let I = I1, . . . , Im be the set of queries and T the set of user sessions t. A
session t ∈ T is represented as a vector where tk = 1 if session t contains query
k ∈ [1, . . . , m], 0 otherwise.

Let X be a subset of I. A session t satisfies X , if for all items Ik in X , tk = 1.
Association rules are implications of the form X ⇒ Y , where X ⊂ I, Y ⊂ I,

and X ∩ Y = ∅. The rule X ⇒ Y holds with i) a confidence factor of c if c%
of the transactions in T that contains X also contains Y , and ii) a support s
if s% of the sessions in T contains X ∪ Y . The problem of mining associations
is to generate all the rules having a support greater than a specified minimum
threshold (minsup). The rationale is that distinct queries are considered related
if they occurs in many user sessions.

Suggestions for a query q are simply computed by accessing the list of rules
of the form q ⇒ q′ and by suggesting the q′’s corresponding to rules with the
highest support values.

CoverGraph. Baeza-Yates et al. use click-through data as a way to provide
recommendations [2]. The method is based on the concept of cover graph. A
cover graph is a bipartite graph of queries and URLs, where a query and a URL
are connected if the URL was returned as a result for the query and a user
clicked on it.

To catch the relations between queries, a graph is built out of a vectorial
representation for queries. In such a vector-space, queries are points in a high-
dimensional space where each dimension corresponds to a unique URL u that
was, at some point, clicked by some user. Each component of the vector is
weighted according to the number of times the corresponding URL has been
clicked when returned for that query. For instance, suppose we have five dif-
ferent URLs, namely, u1, u2, . . . , u5, suppose also that for query q users have
clicked three times URL u2 and four times URL u4, the corresponding vector is
(0, 3, 0, 4, 0). Queries are then arranged as a graph with two queries being con-
nected by an edge if and only if the two queries share a non-zero entry, that is,
if for two different queries the same URL received at least one click. Further-
more, edges are weighted according to the cosine similarity of the queries they
connect. More formally, the weight of an edge e = (q, q′) is computed according
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to Equation 1. In the formula, D is the number of dimensions, i.e., the number
of distinct clicked URLs, of the space.

W (q, q′) =
q · q′

|q| · |q′| =

∑
i≤D

qi · q′i√ ∑
i≤D

q2
i

√ ∑
i≤D

q′ 2i

(1)

Suggestions for a query q are obtained by accessing the corresponding node in
the cover graph and extracting the queries at the end of the top scoring edges.

3.2 Incremental algorithms

The interests of search-engine users change over time, and new topics may be-
come popular. Consequently, the knowledge extracted from query logs can suffer
from an aging effect, and the models used for recommendations rapidly become
unable to generate useful and interesting suggestions [3]. Furthermore, the pres-
ence of “bursty” [12] topics could require frequent model updates independent
of the model used.

The algorithms proposed in Section 3.1 use a statically built model to com-
pute recommendations. Incremental algorithms are radically different from static
methods for the way they build and use recommendation models. While static
algorithms need an off-line preprocessing phase to build the model from scratch
every time an update of the knowledge base is needed, incremental algorithms
consist of a single online module integrating the two functionalities: i) updating
the model, and ii) providing suggestions for each query.

Starting from the two algorithms presented above, we design two new query
recommender methods continuously updating their models as queries are issued.
Algorithms 1 and 2 formalize the structure of the two proposed incremental
algorithms that are detailed in the following. The two incremental algorithms
differ from their static counterparts by the way in which they manage and use
data to build the model. Both algorithms exploit LRU caches and Hash tables
to store and retrieve efficiently queries and links during the model update phase.

Our two incremental algorithms are inspired by the Data Stream Model [13]
in which a stream of queries are processed by a database system. Queries consist
modifications of values associated with a set of data. When the dataset fits
completely in memory, satisfying queries is straightforward. Turns out that the
entire set of data cannot be contained in memory. Therefore, an algorithm in the
data stream model must decide, at each time step, which subset of the set of data
is worthwhile to maintain in memory. The goal is to attain an approximation
of the results we would have had in the case of the non-streaming model. We
make a first step towards a data stream model algorithmic framework aimed at
building query recommendations. We are aware that there is significant room
for improvement, especially in the formalization of the problem in the streaming
model. Nonetheless, we show empirically that an incremental formulation of two
popular query recommender maintains the high accuracy of suggestions.
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IAssociationRules. Algorithm 1 specifies the operations performed by IAsso-
ciationRules, the incremental version of AssociationRules.

Algorithm 1. IAssociationRules
1: loop
2: (u, q)← GetNextQuery() {Get the query q and the user u who submitted it.}
3: ComputeSuggestions (q, σ) {Compute suggestions for query q over σ.}
4: if ∃LastQuery (u) then
5: q′ ← LastQuery (u)
6: LastQuery (u)← q {Update the last query submitted by u.}
7: if ∃σq′,q then
8: ++σq′,q {Increment Support for q′ ⇒ q.}
9: else

10: LRUInsert (σ, (q′, q)) {Insert an entry for (q′, q) in σ. If σ is full, remove
an entry according to an LRU policy.}

11: end if
12: else
13: LRUInsert (u, q, LastQuery) {Insert an entry for (u, q) in LastQuery. If

LastQuery is full, remove an entry according to an LRU policy.}
14: end if
15: end loop

The data structures storing the model are updated at each iteration. We use
the LastQuery auxiliary data structure to record the last query submitted by
u. Since the model and the size of LastQuery could grow indefinitely, whenever
they are full, the LRUInsert function is performed to keep in both structures
only the most recently used entries.

Claim. Keeping up-to-date the AssociationRule-based model is O (1).

The proof of the claim is straightforward. The loop at line 3 of Algorithm 1 is
made up of constant-cost operations (whenever we use hash structures for both
LastQuery and σ). LRUInsert has been introduced to maintain the most recently
submitted queries in the model.

ICoverGraph. The incremental version of CoverGraph adopts a solution similar
to that used by IAssociationRules. It uses a combination of LRU structures and
associative arrays to incrementally update the (LRU managed) structure σ. Algo-
rithm 2 shows the description of the algorithm. The hash table queryHasAClickOn
is used to retrieve the list of queries having c among their clicked URLs. This data
structure is stored in a fixed amount of memory, and whenever its size exceeds the
allocated capacity, an entry is removed on the basis of a LRU policy (this justifies
the conditional statement at line 6).

Claim. Keeping up-to-dated a CoverGraph-based model is O (1).

Actually, the cost depends on the degree of each query/node in the cover graph.
As shown in [2], i) the degree of nodes in the cover graph follows a power-law
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Algorithm 2. ICoverGraph
1: Input: A threshold τ .
2: loop
3: (u, q)← GetNextQuery() {Get the query q and the user u who submitted it.}
4: ComputeSuggestions (q, σ) {Compute suggestions for query q over σ.}
5: c = GetClicks (u, q)
6: if ∃queryHasAClickOn (c) then
7: queryHasAClickOn (c)← q
8: else
9: LRUInsert (queryHasAClickOn, c)

10: end if
11: for all q′ �= q ∈ queryHasAClickOn (c) s.t. W ((q, q′)) > τ do
12: if w > τ then
13: if ∃σq′,q then
14: σq,q′ = w
15: else
16: LRUInsert (σ, (q′, q) , w)
17: end if
18: end if
19: end for
20: end loop

distribution, and ii) the maximal number of URLs between two queries/nodes
is constant, on average. The number of iterations needed in the loop at line 11
can be thus considered constant.

From the above methods, it is clear that to effectively produce recommenda-
tions, a continuous updating algorithm should have the following characteristics:

– The algorithm must cope with an undefined number of queries. LRU caches
can be used to allow the algorithm to effectively keep in memory only the
most relevant items for which it is important to produce recommendations.

– The lookup structures used to generate suggestions and maintain the models
must be efficient, possibly constant in time. Random-walks on graph-based
structures, or distance functions based on comparing portions of texts, etc.,
are not suitable for our purpose.

– A modification of an item in the model must not involve a modification
of the entire model. Otherwise, update operations take too much time and
jeopardize the efficiency of the method.

4 Quality Metrics

Assessing the effectiveness of recommender systems is a though problem that can
be addressed either through user-studies or via automatic evaluation mechanisms.

We opted for an automatic evaluation methodology conducted by means of
two novel metrics based on the analysis of users’ traces contained in query logs.
Both metrics measure the overlap between queries actually submitted by the
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users and recorded in the tails of users’ sessions and suggestions generated start-
ing from the first queries in the same sessions. The more users actually submitted
queries suggested, the more the recommender system is considered effective.

To focus the evaluation on the most recently submitted queries in the user
session, we introduce the QueryOverlap and the LinkOverlap metrics defined
as follows. Let S be the set of all users’ sessions in the query log, and let S =
{q1, . . . , qn} be a user session of length n. We define S1 = {q1, . . . , q�n

2 �} to be
the set of queries in the first half of the session, and let Rj = {r1, . . . , rm} be the
set of top-m query recommendations returned for the query qj ∈ S1

1. For each
qj , we now define S2 = {qj+1, . . . , qn} to be the n − j most recently submitted
queries in the session, and

QueryOverlap =
1
K

∑
ri∈Rj

sk∈S2

[ri = sk]f(k) (2)

LinkOverlap =
1
K

∑
ri∈findClk(Rj)

sk∈clk(S2)

[ri = sk]f(k) (3)

where [expr] is a boolean function whose result is 1 if expr is true or 0 otherwise,
clk(S2) is a function returning the set of clicked URLs by the user for the queries
in S2, findClk(Rj) is a function returning the set of clicked URLs by other users
for the queries in Rj , and f(k) is a weighting function allowing us to differentiate
the importance of each recommendation depending on the position it occupies
in the second part of the session. The value of K is defined as

∑m
k=1 f(k), where

m = |S2| for the QueryOverlap, and m = |clk(S2)| for the LinkOverlap metric.
K normalizes the values in the range [0, 1]. Finally, the Coverage of a recommen-
dation model is defined as the fraction of queries for which a recommendation
can be computed.

5 Experiments

5.1 Experimental Setup

We conducted our experiments on a collection consisting of the first 3, 200, 000
queries from the AOL query log [14]. The AOL data-set contains about 20 million
queries issued by about 650, 000 different users, submitted to the AOL search
engine over a period of three months from 1st March, 2006 to 31st May, 2006.

5.2 Results

First, we analyze the effect of time on the static models (Section 3.1) showing
that this type of models age as time passes.

1 In our experiments we use m = 5.
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The plots reported in Figures 1, 2, and 3, show the effectiveness of query
suggestions on a per time window basis for both the static and incremental algo-
rithms. We use a “timeline” composed of 10 days of the query log. The “timeline”
is divided into ten intervals, each corresponding to one day of queries stored in
the query log (about 400,000 queries). The queries in the first time interval were
used to train the models used by the algorithms. While static models are trained
only on the first interval, the incremental counterparts update their model on the
basis of the queries submitted during the entire timeline considered. Effectiveness
of recommendations generated by the different algorithms during the remaining
nine days considered is measured by means of the LinkOverlap, QueryOverlap,
and Coverage metrics.
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Fig. 1. Coverage for AssociationRules, IAssociationRules, CoverGraph, and ICover-
Graph as a function of the time

Our first finding is illustrated in Figure 1, where coverage, i.e., the percentage
of queries for which the algorithms are able to generate recommendations, is
plotted as a function of time. In both plots, the coverage measured for the static
versions of the recommendation algorithms decreases as time passes. In partic-
ular, at the end of the observed period, AssociationRules and CoverGraph lose
20%, and 9% of their initial coverage, respectively. Even if CoverGraph appears
to be more robust than AssociationRules, both algorithms suffer an aging effect
on their models. On the other hand, the coverage measured for the two incre-
mental algorithms is always greater than the one measured for their respective
static versions. In particular, at the end of the observed period, the IAssocia-
tionRules algorithm covers 23.5% more queries with respect to its static version,
while ICoverGraph covers 22% more queries with respect to CoverGraph. This
is due to the inclusion in the model of new and “fresh” data.

Figures 2 and 3 illustrate the effectiveness of recommendations produced by
the static and incremental versions of the AssociationRules and CoverGraph
algorithms as a function of the time. Both QueryOverlap and LinkOverlap in
Figures 2 and 3 are measured in the above described setting.

From the plots we can see that the two static algorithms behave in a slightly
different way. CoverGraph seems to suffer more than AssociationRules for the
aging of its recommendation model.
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Fig. 2. QueryOverlap, and LinkOverlap for AssociationRules, and IAssociationRules
as a function of the time
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tion of the time

By considering both QueryOverlap and LinkOverlap metrics, Association-
Rules is able to return better quality recommendations than CoverGraph, but,
as Figure 1 shows, the coverage of queries for which suggestions can be generated
is lower. In particular, CoverGraph is able to give suggestions to a number of
queries which is three times larger than the one measured with AssociationRules.

We argue that incremental algorithms for query recommendation can provide
better recommendations because they do not suffer for model aging, and can
rapidly cover also bursty topics. From the figures, it is evident that the effec-
tiveness of recommendations provided by both static and incremental models
eventually stabilize. Indeed, the proposed incremental algorithms IAssociation-
Rules and ICoverGraph produce better recommendations. With the exception
of the initialization phase (see Figure 2, LinkOverlap) in which the model warms
up, the percentage of effective suggestions generated by the two incremental al-
gorithms during the entire period observed is larger than those provided by their
static counterparts.
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5.3 Efficiency Evaluation

The feasibility of an incremental update of the recommendation model is an
important point of our work. The update operations must run in parallel with the
query processor; thus, those operations must not constitute a bottleneck for the
entire system. As analyzed in Section 3.2, we propose a method for keeping up-to-
date two algorithms in constant time. The payoff in terms of processing time is,
thus, constant. Furthermore, in the incremental algorithms we use efficient data
structures, and an optimized implementation of the model update algorithm. We
measure the performances of the two incremental algorithms in terms of mean
response time. For each new query, our algorithms are able to update the model,
and to produce suggestions in, on-the-order-of, a few tenth of a second. Such
response times guarantee the feasibility of the approach on a real-world search
engine where the query recommender and the query processor run in parallel.

6 Conclusions

We studied the effects of incremental model updates on the effectiveness of two
query suggestion algorithms. As the interests of search-engine users change over
time and new topics become popular, the knowledge extracted from historical
usage data can suffer an aging effect. Consequently, the models used for recom-
mendations may rapidly become unable to generate high-quality and interesting
suggestions.

We introduced a new class of query recommender algorithms that update
“incrementally” the model on which recommendations are drawn. Starting from
two state-of-the-art algorithms, we designed two new query recommender sys-
tems that continuously update their models as queries are issued. The two incre-
mental algorithms differ from their static counterparts by the way in which they
manage and use data to build the model. In addition, we proposed an automatic
evaluation mechanism based on two new metrics to assess the effectiveness of
query recommendation algorithms.

The experimental evaluation conducted by using a large real-world query log
shows that the incremental update strategy for the recommendation model yields
better results for both coverage (more than 20% queries covered by both IAsso-
ciationRules, and ICoverGraph) and effectiveness due to the “fresh” data that
are added to the recommendation models. Furthermore, this improved effective-
ness is accomplished without compromising the efficiency of the query suggestion
process.
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Fingerprinting Ratings for Collaborative
Filtering — Theoretical and Empirical Analysis
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Abstract. We consider fingerprinting methods for collaborative filter-
ing (CF) systems. In general, CF systems show their real strength when
supplied with enormous data sets. Earlier work already suggests sketch-
ing techniques to handle massive amounts of information, but most prior
analysis has so far been limited to non-ranking application scenarios and
has focused mainly on a theoretical analysis. We demonstrate how to
use fingerprinting methods to compute a family of rank correlation coef-
ficients. Our methods allow identifying users who have similar rankings
over a certain set of items, a problem that lies at the heart of CF applica-
tions. We show that our method allows approximating rank correlations
with high accuracy and confidence. We examine the suggested methods
empirically through a recommender system for the Netflix dataset, show-
ing that the required fingerprint sizes are even smaller than the theoreti-
cal analysis suggests. We also explore the of use standard hash functions
rather than min-wise independent hashes and the relation between the
quality of the final recommendations and the fingerprint size.

1 Introduction

Recommender systems supply users with items they are likely to find interest-
ing. Some methods use the content of the information item (in the content based
approach). We focus on the alternative collaborative filtering approach (CF sys-
tems), where the system predicts whether an item is likely to interest the target
user, based on the ranking of that item by other users. One obstacle in construct-
ing real-world CF systems is the need to handle huge volumes of information.

Previous work [7] suggested a technique for computing the similarity between
users, based on sketching — rather than storing the full lists of items for each
user, it stores a concise fingerprint of the lists of examined items, called a sketch.
These fingerprints are extremely short, much shorter than compression tech-
niques allow, but only allow specific computations on the data. The sketches
of [7] allow approximating the proportional intersection similarity (PI) of any
two users. This method has been extended in [6], where similar fingerprints were
used to compute the correlation between two user’s rankings of items.

Both [7,6] have significant shortcomings. First, they focused on a very spe-
cific rank correlation coefficient — Kendall’s Tau [19]. Other correlations, such as
Spearman’s rank correlation [23], are more appropriate for some settings [15]. For
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example, Spearman’s Rho has the meaningful interpretation as a Pearson cor-
relation coefficient, and known statistical tests can use it in significance testing.
Second, their sketches use min-wise independent families of hashes (MWIFs).
MWIFs are hard to construct and slow to use. Third, they only analyze sketches
theoretically, lacking empirical evidence regarding the quality of the sketches in
terms of the quality of the final recommendations based on these approximations.
Our contributions are:

1. We suggest a similar fingerprint which allows computing a family of rank
correlation coefficients, including the prominent Spearman rank correlation.

2. We discuss empirical analysis of such techniques, based on Collabriprint,
our CF infrastructure which uses fingerprinting techniques, that wastested
on the Netflix [8] dataset. Our empirical analysis shows that in practice:
– It suffices to use smaller sketches than the theoretical results require.
– It is possible to use standard hash functions, such as MD5 [21], instead of

the more complex MWIFs, and still obtain high accuracy and confidence.
– The final recommendation’s quality depends on the fingerprints’ size.

Even small fingerprints result in high quality recommendations.

2 Preliminaries

We first briefly explain the problem of fingerprinting in CF systems. Consider
Alice and Bob, who have both examined a set of n items. In some CF domains, the
mere fact that a user has examined an item implicitly tells the CF system that
the user liked the item. In other domains, explicit information is available as users
rate examined items on a certain scale. CF systems first seek users who share
similar rating patterns with the target user, and use their ratings to generate
a prediction for how the target user would rate items she has not examined.
A method for approximating the Proportional Intersection (PI) was suggested
in [7]. Given two users, Alice and Bob who examined the same number of items,
their PI is defined as follows. Denote by Ci the set of items Alice examined, and
by Cj the set of items Bob examined. Both users examined the same number
of items, so |Ci| = |Cj |. The PI is |Ci∩Cj|

|Ci| = |Ci∩Cj|
|Cj| . The Jackard measure is a

similar measure when |Ci| = |Cj |, and is defined as Ji,j = |Ci∩Cj |
|Ci∪Cj | .

The PI and Jackard measures only consider which items were examined. Rank
correlations, such as Spearman’s Rho and Kendall’s Tau, measure the similarity
between two rankings (orderings) of the same items. Spearman’s Rho is simply
a special case of the Pearson product-moment coefficient, in which the data sets
are converted to rankings before calculating the coefficient. Let xi = ra(i) and
yi = rb(i) be the rankings of item i, given by Alice and Bob, and let di = xi −
yi. Spearman’s Rho ρra,rb

can be computed using the following direct formula:

ρra,rb
= 1 − 6

∑n
i=0 d2

i

n(n2−1) . Both Kendall’s Tau and Spearman’s Rho range from -1
(strong negative correlation) to 1 (strong positive correlation).

Computing user similarity metrics allow constructing CF recommender sys-
tems, by predicting the rating a target user would give any unexamined item,
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based on the ratings given by other users, weighted according to similarity to
the target user. User similarity can be computed using the full information, con-
sisting of the lists of examined items and their ratings for each user. However,
such data sets can be extremely large, so it is desirable to compute similarities
while minimizing the size of the data. Fingerprinting provides a good tradeoff
between the required storage and the quality of the predictions.

The method of [7] approximates the PI pi, for any two users i, j, by maintain-
ing short fingerprints of the lists of examined items, called sketches. This method
assumes i and j have equal size lists of items C1, C2 (so |Ci| = |Cj | = n), and
the size of each sketch depends on the target confidence δ and accuracy ε. The
method returns an approximation p̂i,j to pi,j such that, with probability of at
least 1 − δ, |pi,j − p̂i,j| ≤ ε. Building on this work, a method for computing the
Kendall Tau correlation was proposed in [6]. This improves recommendations,
since even users who examined similar items may rate them differently.

Similarly to the above techniques, we also use a Min-Wise Independent Family
of hashes (MWIF). Let H be a family of functions over the source X and target
Y , so each h ∈ H is a function h : X → Y , where Y is completely ordered.
We say that H is MWIF if when randomly choosing a function h ∈ H , for
any subset C ⊆ X , any x ∈ C has an equal probability to be minimal under
h.1. Formally, we say that H is MWIF, if for all C ⊆ X , for any x ∈ C,
Prh∈H [h(x) = mina∈Ch(a)] = 1

|C| . MWIF computations are slow, making them
ill-suited for many practical applications. For full discussion of MWIFs and their
construction see [10,17].

3 Rank Correlation Fingerprints

Let i, j be two users, and Ci, Cj the set of items each has examined. We now
present our fingerprinting method, based on randomly choosing hashes h from
a MWIF H . Similarly to [7], we consider the identities of items in the set Ci of
items examined by each user as integers, apply h to all these integers and examine
the minimal value obtained. Given a randomly chosen h ∈ H we denote minimal
value obtained after applying h to all elements in Ci as mh

i = minx∈Cih(x).
Performing the same on Cj we denote mh

j = minx∈Cjh(x). We now examine the
probability that mh

i = mh
j . Theorem 1 in [7] has shown that when |Ci| = |Cj | so

the PI is pi,j = Ci∩Cj

|Ci| = Ci∩Cj

|Cj | , we have Prh∈H [mh
i = mh

j ] = pi,j

2−pi,j
. We provide

a similar proof for the Jackard measure, Ji,j = |Ci∩Cj|
|Ci∪Cj| .

Theorem 1. Prh∈H [mh
i = mh

j ] = Ji,j.

Proof. Denote x = J1,2. The set Ci ∪ Cj contains three types of items: items
that appear only in Ci, items that appear only in Cj , and items that appear in
Ci ∩ Cj . When an item in Ci ∩ Cj is minimal under h, i.e., for some a ∈ Ci ∩ Cj

1 It does not matter which distribution is used to choose h from H , as long as this
distribution makes H a MWIF.
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we have h(a) = minx∈C1∪C2h(x), we get that minx∈Cih(x) = minx∈Cjh(x).
On the other hand, if for some a ∈ Ci ∪ Cj such that a /∈ Ci ∩ Cj we have
h(a) = minx∈C1∪C2h(x), the probability that minx∈Cih(x) = minx∈Cjh(x) is
negligible2. Since H is MWIF, any element in C = Ci ∪ Cj is equally likely to
be minimal under h. However, only elements in I = Ci ∩ Cj would result in
mh

i = mh
j . Thus Prh∈H [mh

i = mh
j ] = 1

|Ci∪Cj | · |Ci ∩ Cj | = |Ci∩Cj |
|Ci∪Cj | = Ji,j .

The fingerprints used in [7] are called item sketches, and are created using k hash
functions. Let vk = 〈h1, h2, . . . , hk〉 be a tuple of k randomly chosen functions
from the MWIF H , and let Ci be the set of items that user i has examined.
Denote the minimal item in Ci under hs as mhs

i = minx∈Cihs(x).

Definition 1 (Item Sketches). The Hk sketch of Ci, S(Ci), is the list of
minimal items in Ci under the k randomly chosen functions from h: Sk(Ci) =
(mh1

i , mh2
i , . . . , mhk

i ).

We call a hash hs where mhs

i = mhs

j a collision hash, and say location s is a sketch
collision for i, j. The work [7] shows that in order to approximate the PI pa,b with

accuracy ε and confidence δ, it is enough to use k = ln 2
δ

2 ε2
9

hashes. However, they

do not compute how well the users’ tastes correlate, a problem later addressed
in [6] where the Kendall Tau correlation is approximated. We focus on a different
family of correlations, based on Spearman’s Rho. CF systems seek users similar
to a target user, filtering out users with a low Jackard similarity to that user.
Similarly to [6] we assume the CF system filters out any user with a Jackard
score (or PI score) lower than some value p∗, and augment the item sketches to
compute rank correlations. The system then recommends items based on scores
that weight rankings given by users according to their similarity with the target
user. A strong user similarity metric is rank correlation.

Our fingerprints are the item sketches of Definition 1, augmented with the
rating of the minimal item under the hash. Consider Alice and Bob, with Jackard
similarity of at least p∗. The item sketches in Definition 1 use k random hashes,
and the fingerprint is the list of the minimal items under each hash. Due to
Theorem 1, given users i with items Ci and j with items Cj , the probability of
a collision for i, j on any location s (i.e. P (mhs

i = mhs

j )) depends on Ji,j . Due
to Theorem 1, if Ji,j ≥ p∗, any location has a probability of at least p∗ of being
a collision. A collision in location s is hs(q), where q is an identity of an item
chosen uniformly at random from Ci ∩Cj (an item both i and j examined). Our
fingerprints include the rating of the item q3.

Similarly to item sketches (Definition 1), each location is built using a ran-
domly chosen hash. Let hi be the hash for the i’th location. The augmentation
2 Such an event requires that two different items, xi ∈ Ci and xj ∈ Cj to be mapped to

the same value h∗ = h(xi) = h(xj), and that this value would also be the minimal
value obtained when applying h to both all items in Ci and in Cj . As discussed
in [17], the probability for this is negligible when h’s range is large enough.

3 The sketches of [6] are similar, although we employ a very different algorithm to
compute Spearman’s Rho (whereas they compute Kendall’s Tau).
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for location i contains the rating of the item that is minimal under hi. When
constructing the sketch for user a, we consider the user’s item set Ca and the
ratings of the items in Ca. The rating of user a for items in Ca is denoted as ra.
Thus, ra maps items in Ca to their rating. Given hi, consider the set of items
that are minimal under hi

4, i.e. M = {x ∈ Ca|hi(x) = mhi
a }. If only one item

is minimal under the hash, so |M | = 1, we denote M = {m}, and denote the
rating of that item as gi

a = ra(m). Only with a very low probability do we have
|M | > 1. If |M | > 1, denote m′ to be the minimal item in M , under some pre-
determined ordering (not under hi), and denote gi

a = ra(m′). The sketch for user
a in the i’th location contains the minimal item in Ca under hi, and its rating
in a’s eyes. We denote the sketch for user a with items Ca (where the sketch is
based on Hk = 〈h1, . . . , hk〉, the k randomly chosen hashes from the MWIF), as
Sk(Ca).

Definition 2 (Rank Correlation (RC) Sketches). The Hk RC sketch of Ca,
Sk(Ca), contains the both the item sketch and the rank sketch. The item sketch
is the list of minimal items in Ca under the k randomly chosen hash functions
from, so Sk

items(Ca) = (mh1
a , mh2

a , . . . , mhk
a ), and the rank sketch contains the

ranks of these items, so Sk
ranks(Ca) = (g1

a, . . . gn
a ). The rank correlation sketch is

the concatenation of these two sketches.

The fingerprint size required for approximating Kendall’s Tau using RC sketches
was analyzed in [6]. We provide a similar analysis for a Spearman’s Rho. Ob-
serve that an RC sketch collision for two users5 provides the ratings of each of
the two users of a randomly chosen item from Ca ∩Cb . Thus, a collision provides
ra(x), rb(x) for a randomly chosen items x ∈ Ca ∩ Cb. We now determine how
many collisions are required to approximate Spearman’s Rho with a target ac-
curacy and confidence. We wish to return an approximation ˆρa,b to Spearman’s
Rho ρa,b such that with probability of at least 1 − δ we have |ρri,rj − ˆρi,j | ≤ ε.
We use the following theorem from [6] regarding the required number of hashes
to provide at least k collisions.

Theorem 2. Let k be a certain required sketch collisions, and let p be a bound
from below on the Jackard similarity of any two users. The required fingerprint
size to achieve the required number k of sketch collisions with probability 1 − δc

is m ≥ k
p +

ln 1
δc

4p2 (1 + 3
√

k).

The sketch collision probability depends on the Jackard similarity (as shown
in Theorem 1). Theorem 2 shows that given a minimal Jackard similarity, a
long enough fingerprint would provide the required number of collisions with

4 If each item is hashed to a different value then there is only one item whose value
under the hash is minimal. However, several items may be mapped to the same
value, so there may be several items minimal under the hash.

5 Recall that a sketch collision is a sketch location i with hash function hi where the
minimal items of the two users (a with items Ca and b with items Cb) under hi are
the same, so mhi

a = mhi
b .
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high probability. The required fingerprint length is logarithmic in the required
confidence δc and polynomial in the required number of collisions. We now show
that a family of rank correlations, including Spearman’s Rho, can be computed
using the RC sketches of Definition 2, generalizing the results of [6].

We now show how the RC sketches from Definition 2 allow computing a
family of rank correlations. Members of this family could be expressed as a
certain bounded function of the rank differences, summed across all items. We
begin by an analysis of Spearman’s Rho, and then generalize to this family of
rank correlations. The definition of Spearman’s Rho had a direct formula for it:
ρra,rb

= 1 − 6
∑n

i=0 d2
i

n(n2−1) . We first note that di is simply the difference between the
rating of a certain item in the first user’s eyes and in the second user’s eyes.
Consider an item x chosen uniformly at random from the set of possible items.
We can examine ra(x) and rb(x) and define the following random variable.

Definition 3. The Spearman’s Rho random variable Xi, for item x is Xi =
1 − 6(ra(x)−rb(x))2

n2−1

The random variable Xi has an expectation of: E[Xi] = E[1 − 6(ra(x)−rb(x))2

n2−1 ] =

1 − 6
n2−1E[(ra(x) − rb(x))2] = 1 − 6

n2−1 · 1
n (
∑

i(ra(i) − rb(i))2 = 1 − 6
∑n

i=0 d2
i

n(n2−1) =
ρra,rb

.
We now denote ρ = ρra,rb

for short. Given k such random variables, X1, . . . , Xk,
we can use 1

k

∑k
i=1 Xi as an estimate for ρ. We now derive the required number of

such random items to approximate ρ with accuracy ε and confidence δ. To achieve
the desired accuracy and confidence, the number of sampled items, k, must be
large enough. We find the appropriate k by using Hoeffding’s inequality [16] (see
similar analysis for very different uses in [11,4,3]).

Theorem 3 (Hoeffding’s inequality). Let X1, . . . , Xn be independent ran-
dom variables, where all Xi are bounded so that Xi ∈ [ai, bi], and let X =∑n

i=1 Xi. Then the following inequality holds.

Pr(|X − E[X ]| ≥ nε) ≤ 2 exp
(

− 2 n2 ε2∑n
i=1(bi − ai)2

)
Let X1, . . . , Xk be the series k of random variables, as defined above. Let X =∑k

j=1 Xj , and take ρ̂ = X
k as an estimator for ρ.

Theorem 4. A confidence interval for ρ is [ρ̂ − ε, ρ̂ + ε]. This interval holds the
correct ρ with probability of at least 1 − δ. The required number of pair samples
to perform this is k ≥ 18 ln 2

δ

ε2

Proof. We use Hoeffding’s inequality to bound the error below the target con-
fidence level δ. We note that 0 ≤ d2

i

n2−1 ≤ 1. Due to the definition of Xi (see
Definition 3), all Xi are bounded between -5 and 1, and E[X ] = k · ρ. Thus,
from Hoeffding’s inequality, the following holds: Pr(|X − kρ| ≥ kε) ≤ 2e−

1
18 k ε2 .

Therefore the following also holds: Pr(|ρ̂ − ρ| ≥ ε) ≤ 2e−
1
18 k ε2 . We get that

− 1
18 k ε2 ≤ ln 2

δ . Finally we obtain: ε ≥
√

18 ln 2
δ

k and k ≥ 18 ln 2
δ

ε2 .
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Using fingerprints with a the length determined by Theorem 2, we have a high
probability of getting a large enough number of sketch collisions. Each such
sketch collision gives the rating ra(x), rb(x) of a certain randomly chosen item
x, that both users (a and b) ranked. Thus, with high probability, we obtain a
series of random variables as required by Theorem 4. To compute an estimate for
Spearman’s Rho, we take the rankings ra(x), rb(x) of each item x that occurs on
a sketch collision, and use them to compute Xi = 1− 6(ra(x)−rb(x))2

n2−1 , the random
variables defined above. Given c sketch collisions, as above, we use 1

c

∑c
i=1 Xi as

an estimate for ρ. The analysis so far was specific for Spearman’s Rho. However,
we now show the same type of an analysis can be used for many similar rank
correlation functions.

Theorem 5. Let a be a constant and the function f be bounded between certain
constant values bl and bh. The previous fingerprinting approach can be used to
compute any rank correlation of the form: α = a + 1

n

∑
i f(ra(i), rb(i)).

Proof. Let a be a constant and f a function bounded between bl and bh, and
consider a rank correlation of the form defined above. We can define a set of
random variables Xi as in Definition 3. The expectancy of the Xi’s would be
α. Also, since f is bounded, we can apply Hoeffding in the same way. Note the
bound distance |bh − bl| only changes the resulting constant in the expression
derived for the fingerprint size, so the approach works well for any bounds.
Performing the analysis similarly to Theorem 4 gives the fingerprint size for any
member of this family of functions, and the same RC sketches can be used.

4 Empirical Analysis

We tested the CF fingerprinting approach by analyzing approximations of sim-
ilarity metrics in the Netflix [8] movie ratings dataset. As discussed in the in-
troduction, there are several disadvantages to the approaches of [7,6]: the use of
MWIFs, the high theoretical bound on the fingerprint length, and the lack of em-
pirical evaluation regarding the quality of the similarity approximation and final
recommendations. We discuss how to overcome these drawbacks, and support
this with empirical evidence. We show how to replace MWIFs with MD5 [21],
widely used hash function. We show that the accuracy of the procedure in prac-
tice is much higher than the theoretical bounds, and empirically investigate the
relation between overall recommendation accuracy and the fingerprint length.

The Netflix dataset is a movie ratings dataset, released in October 2006 by
Netflix (www.netflix.com) [8]. It contains a 100 million anonymous movie ratings,
given by half a million users on a collection of 17,000 movies. Fingerprinting
allows approximating user similarity with high accuracy. Our framework, called
Collabriprint was built using C# and F#. We used it on the Netflix dataset,
running several tests. We computed both movie to movie similarity through the
PI/Jackard similarity of the sets of users who watched the movies, and rank
correlation similarity through Kendall’s Tau and Spearman’s Rho correlation
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between users’s rating of movies. We have examined the approximation error
in similarity and the change in recommendation quality for different fingerprint
lengths, as measured by the number k of hashes used. Our implementation has
used various MD5 hash functions rather than MWIFs.

Although MWIF hashes are required for the theoretical results, constructing
and using such a family is computationally expensive, and there are no widely
used implementations of them. As an alternative, we have chosen to use the MD5
hash [21], a widely used hash. Since we require many such functions, we used
HMAC (keyed Hash Message Authentication Code) versions of MD5, HMAC-
MD5. HMACs are computed using a hash function in combination with a key,
where different keys result in different hash functions, all of which appear to have
a random behavior. We chose MD5 for several reasons: it is a cryptographic hash
functions with semi-random behavior; It has an HMAC version; It is commonly
used in many applications, and there are widely available libraries implementing
it; It works quite quickly in terms of computation time.

Our first tests were conducted on randomly chosen movies pairs. For each
pair we computed the Jackard similarity using the full data set, and through
fingerprints. Denoting the correct PI as p and the PI estimate as p̂, the inaccuracy
for the movie pair is e = |p− p̂|. Given an accuracy level ε we say the experiment
had a big error if e ≥ ε, and say it was accurate if e < ε. Let s be a sequence of m
experiments. Given ε, denote by bε the number of experiments with a big error,
and gε = m − bε the number of accurate ones. We denote the fraction of bad
experiments as fb(ε) = bε

m . Let δ be a confidence level. The empirical accuracy
for a target confidence δ, is the maximal ε for which fb(ε), the fraction of bad
experiments, is at most δ. For our analysis we used a confidence level 1−δ = 0.9.
For each fingerprint size s, we chose 2000 random movie pairs. For each such
pair we performed 10 experiments, each using a different fingerprint of s random
hash functions. Thus, for each fingerprint size we had 20, 000 experiments. We
measured the empirical accuracy for that sequence. The theoretical fingerprint
size for target accuracy ε = 0.1 and target confidence 1−δ = 0.9 (from the bounds
in [7]), is s = 1350. The required size for ε = 0.15 and 1 − δ = 0.9 is s = 600.
We tested the empirical accuracy εe(s) for fingerprint sizes of 15, 20, 25, . . . , 100
and of 150, 200, . . . , 650 (all of which are much shorter than the required size
for accuracy ε = 0.1 and 1 − δ = 0.9). Figure 1 shows the empirical accuracy
(measured in the experiment sequence) and the theoretical accuracy (obtained
from the theoretical formulas), for a confidence level of 1 − δ = 0.9. Lower
accuracy numbers are better, as the accuracy is the maximal allowed error.
Figure 1 shows that on the Netflix dataset, the actual accuracy is much better
than the theoretical bounds predict.

We also attempted to find the required fingerprint size to achieve a certain
target accuracy ε (with a target confidence of 1 − δ = 0.9). To get the em-
pirical required fingerprint size se for target accuracy ε, we found the minimal
fingerprint size s such that the empirical accuracy εe for that size is better than
the required accuracy ε (i.e. εe(s) < ε). The following figure presents both the
theoretical and empirical required sizes for different values of target accuracy.
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Fig. 1. Theoretical accuracy and empirical accuracy, for confidence 0.9 (right - loga-
rithmic scale)

Fig. 2. Required sketch sizes for target accuracy, for confidence 0.9 (left - logarithmic
scale)

As Figure 2 shows, the required fingerprint size in empirical tests is much
smaller than the theoretical bounds. The figure shows the empirical fingerprint
size is roughly proportional to the theoretical bounds. The empirical size is
about only 5% of the theoretical required size. The above results indicate that
in practice it is not necessary to use large sizes to achieve very good accuracy.
Given a dataset sample, we suggest finding the right size to use empirically.

We analyzed the quality of the recommendations based on fingerprints of
different length. We implemented a simple recommendation algorithm, based
on [9], where the score for item i for target user u (using the user set U of
recommender) is û+k ·

∑
s∈U sim(u, s)·(s[i]− ŝ) where sim(u, s) is the similarity

between u, s, such as Jackard, Spearman Rho or Kendall’s Tau, s[i] is the ranking
user s gives item i, and û is the average rating of user u. The value k is used
as a normalizing factor, typically 1∑

s∈U sim(u,s) . Our recommender set U was
the 1000 most Jackard similar users, and we used Kendall Tau for sim. Both
measures can be computed using the full data, or by fingerprinting. Obviously,
the fingerprint scores differ from the full data scores.

Consider the scores computed for each movie in the full data set, which we
call true scores. When ordering movies according to the true scores, the first
items are the best recommendations. We call an item in the top 5% of the list
relevant items. Now consider scores computed using the fingerprints only, which
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we call fingerprint scores. Sorting the list by fingerprint scores, and taking the
top items, we obtain the recommendations made using the fingerprints. The
quality of the fingerprint method is determined by its precision, the proportion
of relevant items out of all the fingerprint recommendations. The following figure
presents the relation between the fingerprint size (number of hashes used), and
the quality of the recommendations.

Fig. 3. Recommendation quality

Another important parameter is the recall of the method, the proportion of
the relevant items that are covered. The recall is the proportion of relevant items
(top 5% items under the true scores) covered by the top 5% of the items under
the fingerprint scores. The recall values we measured range from 26% for 250
hashes to 33% for 1500 hashes. These results indicate that the quality of the
recommendations is strongly related to the length of the fingerprint used. As
seen in Figure 3, although longer fingerprints increase the quality, the quality
improvement rate drops as more hashes are used. In some domains fingerprinting
may allow the data to fit in RAM, rather than secondary storage (disks), and
we suggest choosing the highest fingerprint length that allows the data to fit in
memory, to maximize recommendation quality.

5 Related Work

We analyzed the famous Netflix dataset [8], a relatively recent CF domain. Early
recommender systems include GroupLens [20] and Ringo [22]. Today’s CF sys-
tems, as used by Amazon.com, MovieFinder.com and Launch.com face massive
datasets. CF algorithms correlate human ratings to predict future preferences.
There are many such correlations, such as the Pearson correlation used in [20]
or the cosine similarity used in [9]. We focused on fingerprinting in massive
CF systems. Similar works use fingerprints to approximate relations between
strings. The work [13] presents a sketch for the L1-difference, and [12] examines
Hamming norm. This work extends [7,6]. Both are purely theoretical, while this
work includes theoretical analysis of different rank correlations and empirical
analysis. While we use MD5 hashes for the empirical analysis, our theoretical re-
sults are based on MWIF hashes. MWIFs were treated in [10,17]. We hope such
techniques can be used to build fingerprints for various uses, such as collabora-
tive filtering [7], trust and reputation aggregation [18,5] and general preference
aggregation and voting procedures [14].
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Other techniques also concisely represent data relations. Our methods use
the Locally Sensitive Hashing (LSH) [2] framework, but our analysis is based
on assumptions that are specific to CF. Similar approaches are Random Projec-
tions [1] and Spectral Hashing [24]. Our methods are simple and efficient, and
the empirical analysis shows they perform well on real CF datasets.

6 Conclusion

We suggest fingerprinting methods for CF systems, extending previous works
to allow computing a family of rank correlations, including Spearman’s Rho.
We also provide empirical analysis of the suggested methods. Our results are
based on Collabriprint, a complete fingerprinting based recommender system.
Our results show that it is possible to use simple hash functions (rather than
MWIFs) and short fingerprints to obtain high quality recommendations.

Several questions remain open for future research. First, we used a simple
CF approach, and it would be interesting to see how the fingerprint size affects
more sophisticated approaches. Also, it might be possible to create more sophis-
ticated fingerprints to improve recommendation quality while still keeping the
fingerprints small. Also, an even shorter fingerprint may be possible in certain
restricted domains. Finally, other fingerprinting applications would be welcome.
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Abstract. Exploiting the cumulative behavior of users is a common
technique used to improve many popular online services. We build a
tag spell checker using a graph-based model. In particular, we present
a novel technique based on the graph of tags associated with objects
made available by online sites such as Flickr and YouTube. We show the
effectiveness of our approach on the basis of an experimentation done on
real-world data. We show a precision of up to 93% with a recall (i.e., the
number of errors detected) of up to 100%.

1 Introduction

Differing from query spell checking, the goal of tag spelling correction is to
enable the tagged object to be actually retrieved. Correcting “hip hop” as “hip-
hop”, when the latter is more frequent than the former, is a good way to al-
low people to find the resource when querying for the concept “hip-hop”1. By
tagging a resource, a user wants that resource to be easily found. When query-
ing, a user formulates a sentence-like text to retrieve the desired concept and
to satisfy her/his information need. On the other hand, with tags, users leave
“breadcrumbs” for others to detect. Like “breadcrumbs”, tags do not have any
particular inter-relationship apart from the fact that they were left by the same
user.

We exploit the collective knowledge [1,2] of users to build a spell checking
system on tags. The main challenge is to enable tag spell checkers to manage
sets of terms (with their relative co-occurrence patterns) instead of strings of
terms, namely, queries.

Much previous work is devoted to query spell checking. Differing from queries,
namely short strings made up of two or three terms, tags are sets of about ten
terms per resource. We exploit this relatively high number of tags per resource
to provide correct spelling for tags. Indeed, our method exploits correlation be-
tween tags associated with the same resource. We are able to detect and correct

1 The hidden assumption we do is that people formulate queries for resources, following
the same mental process as people tagging resources.

E. Chavez and S. Lonardi (Eds.): SPIRE 2010, LNCS 6393, pp. 37–42, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



38 F.M. Nardini et al.

common variations of tags by proposing the “right”, i.e., the most commonly
used, versions.

We evaluate our method through a user study on a set of tagged resource
coming from YouTube. Note that our experiments are fully reproducible. Instead
of using proprietary data sources, like search engines’ query logs, we leverage
publicly available resources.

Research on spell checking has focused either on non-word errors or on real-
word errors [3]. Non-word errors such as ohuse for house can easily be detected
by validating each word against a lexicon, while real-world errors, e.g., out in I
am going our tonight, are difficult to detect. Cucerzan et al. [4] investigate the
use of implicit and explicit information about language contained in query logs
for spelling correction of search queries. Zhang et al. [5] propose an approach
to spelling correction based on Aspell. Shaback et al. [6] propose a multi-level
feature-based framework for spelling correction via machine learning. Merhav et
al. [7] use a probabilistic approach to enrich descriptors with corrected terms
in a P2P application. Ahmad et al. [8] apply the noisy channel model to search
query spelling corrections.

Unlike previous approaches, we cannot rely on information about sequences of
terms, or n-grams. We must, thus, find another way to contextualize tags within
other tags that are used in association with the same resource.

2 Model Description

In tagging objects, users associate a set of words, i.e., tags, with a resource, e.g.,
a video, a photo, or a document, having in mind a precise semantic concept.
Actually, tagging is the way users allow their resources to be found. Based on
this hypothesis, our spell checker and corrector presents two important features:
i) it is able to identify a misspelled tag, ii) it proposes a ranked list of “right”,
i.e., most likely to come to users’ minds, tags associated with the misspelled tag.

We use a weighed co-occurrence graph model to capture relationships among
tags. Such relationships are exploited to detect a misspelled tag and to identify
a list of possibly correct tags.

Let R be a set of resources. Let Σ be a finite alphabet. Let T ⊆ Σ∗ be a set of
tags associated with each resource. Let γ : R → T be a function from resources
to set of tags mapping a resource with its associated set of tags. Furthermore,
let T ∗ = ∪ {γ(r), ∀r ∈ R} be the union of all tags for all resources in R.

Let G = (V, E) be an undirected graph. V is the set of nodes where each node
represents a tag t ∈ T ∗, and E is the set of edges defined as E = V × V . Given
two nodes, u, v, they share an edge if they are associated at least once with the
same resource. More formally, E = {(u, v)|u, v ∈ V , and ∃r ∈ R|u, v ∈ γ(r)}.
Both edges and nodes in the graph are weighted. Let u, v ∈ V be two tags. Let
we : E → R be a weighting function for edges measuring the co-occurrence of
the two tags, namely, the number of times the two tags appear together for a
resource. For a given node v ∈ V , wv : V → R associates a tag with its weight.
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Given two nodes u, v ∈ V , let Pu,v be the set of all paths of any length between
u and v. Let σ : V × V → R, where σ(u, v) = minpathlengthPu,v be the function
providing the length of the shortest path between the two nodes u, v.

Given a tag t ∈ V , and a threshold value for shortest path l, we define “neigh-
bor nodes” the set of nodes N l

t = {t1 ∈ V |σ(t1, t) ≤ l}. “Neighbor nodes” are
then filtered by using the tag frequency. For each node in N l

t , we select from the
set nodes having a frequency greater than the frequency of the tag t.

Let NGl
t = {t1 ∈ N l

t |wv(t1) > wv(t)} be the set of neighbors of t at maximum
distance l having a frequency greater than the tag t. Given two nodes u, v, let
d(u, v) be a function returning the edit distance of the two tags u, v. By applying
d to a tag t and tags in its neighborhood, NGl

t, we define the “candidate neighbor
nodes” as follows.

Definition 1. Given a tag t ∈ V , and a threshold value for the edit distance δ,
we define Ft = {t1 ∈ NGl

t|d(t1, t) ≤ δ} as the “ candidate neighbor node” set.

We use the candidate neighbor node set to check if the tag t is misspelled and,
if needed, to find better tags to be used instead of t. We assume that, if Ft is
empty then t is a right tag, and it does not need any correction. This approach
allows us to have high effectiveness due to relationships between neighbor nodes.
The method is also very efficient as we explore only a part of the graph in to
find candidate neighbor nodes.

Our approach to the spelling correction problem using tags is defined as:

TagSpellingCorrection: Given s ∈ Σ∗, find s′ ∈ T ∗ such that
d(s, s′) ≤ δ and P (s′|s) = maxt∈T∗:d(s,t)≤δR(t|s), where, d(s, t) is a
distance function between the two tags, δ is a threshold value, P (s′|s) is
the probability of having s′ as a correction of s, and R(t|s) = 1 if t ∈ Fs,
or 0, otherwise.

Algorithm (1) solves the TagSpellingCorrection problem providing a list
of possible right tags for a given tag t. It filters the co-occurrence graph by
sorting “neighbor nodes” by their importance, and by considering only the top-r
most frequent ones.

Given a node t ∈ V , and a r ∈ N, we define a function Tp : V × N → O
taking the top-r most important nodes of a node t, where O = {vi ∈ N1

t , i =
1, ..., r|we(vj) ≥ we(vj+1), and we(v1) = maxt∈N l

t
(we(t)) with j ∈ 1, ..., r − 1}.

3 Experiments

To evaluate our spelling correction approach we built a dataset of tags from
YouTube. In particular, we crawled 568,458 distinct YouTube videos obtaining
a total of 5,817,896 tags.

Precision and recall are evaluated by means of a user-study to get the per-
centage of good corrections. We asked assessors to evaluate four complete vo-
cabularies produced by four different runs of the Algorithm (1). The four runs
differed from the set of parameters used to produce the vocabulary.
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Algorithm 1. FindCorrectTag
1: Input : G = (V, E) co-occurrence graph, a tag t ∈ V , a threshold level for shortest

path l > 0, and a threshold value for edit distance δ > 0, the number of top nodes
to consider r ∈ N, node and edge threshold weights f, k.

2: Output : a list Ft of correct tags for t.
3: Ft = {}, Temps = {}, s = t, Vf,k = {}, Ef,k = {}
4: for all t ∈ V do
5: if (wv(t) > k) then
6: Vf,k = Vf,k ∪ {t}
7: end if
8: end for
9: for all e ∈ E do

10: if (we(e) > f) then
11: Ef,k = Ef,k ∪ {e}
12: end if
13: end for
14: LevelwiseBreadthF irst(Gf,k, t, l, 1);
15: for all t1 ∈ Vf,k in Temps do
16: if (wv(t1) > wv(t)) ∧ (d(t1, t) > δ) then
17: Ft = Ft ∪ {t1}
18: end if
19: end for

To compute recall we performed an estimation of the number of total wrong
tags in the collection. We avoided performing a user-study over all the collection
of tags by taking samples of dimension n = 101 and by computing their average
values. The sample was chosen with the Mersenne-Twister algorithm. We com-
puted the confidence interval [9] with α = 0.05, and the tstudent values equal
to 1.984.

Figure 1(a) shows the percentage of detected misspellings by varying the top-r
most weighted edges of each node. Generally, it decreases as the threshold on the
tag frequency increases. Figure 1(b) shows the percentage of estimated misspelled
tags by varying the cumulative edge weight. It decreases as the threshold on edges

Algorithm 2. LevelwiseBreadthF irst(G, t, l, state)
1: Input: Gf,k a filtered co-occurrence graph, a tag t ∈ V , a threshold level for

shortest path l, the current state
2: Output: a set of nodes.
3: if state < l then
4: Temps = Temps ∪ {Tp(s, r) as set}. {get the top-r neighbors nodes of s at

distance 1.}
5: for all t1 ∈ V in Temps do
6: LevelwiseBreadthF irst(G, t1, l, state + 1)
7: end for
8: end if
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Fig. 1. (a) Upper and lower bound of the average tag frequency by varying top-r most
important neighbors, (b) misspelled tags (%) by varying cumulative edge frequency
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Fig. 2. Precision and recall (%) by varying the tag frequency (log). (a) r = 10, l = 1,
δ = 1, k > 0, (b) r = 10, l = 2, δ = 1, k > 0.

weights increases. This means that by removing edges with an associated weight
less than k, the percentage of misspelled tags (not isolated nodes) in the whole
set decreases.

Figure 2(a) shows values for precision and recall by varying the threshold
on tag frequency. Such a threshold works as a filter on low frequency tags.
This evaluation uses only the first level of neighbors of tags (l = 1). Precision
is high (up to 90%), and recall improves significantly (up to 100%) putting a
threshold on the tag frequency to values close to 10. On the other hand, by fixing
such threshold to values greater than 20, our method starts losing precision.
Figure 2(b) shows values for precision and recall by varying the threshold on
tag frequency when the evaluation uses two levels of neighbors of a tag (l = 2).
Precision is still high (up to 90%), while recall improves significantly (up to
100%) by putting a threshold on tag frequency to values close to 4.
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4 Conclusions

We presented a tag spelling correction method exploiting a graph model rep-
resenting co-occurrences between tags. Tags from YouTube’s resources are col-
lected and represented on a graph. Such a co-occurrence graph is then used in
combination with an edit distance and term frequency to obtain a list of right
candidates for a given possibly misspelled term. Experiments show that this col-
laborative spell checker yields a precision up to 93%, with a recall of 100% (in
many cases). We plan to extend this work by considering not only co-occurrence
of tags within the same objects, but also to consider the effect of neighborhoods
at various distance levels.
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Diego Arroyuelo1, Senén González2, and Mauricio Oyarzún3

1 Yahoo! Research Latin America,
Blanco Encalada 2120, Santiago, Chile

darroyue@yahoo-inc.com
2 Department of Computer Science, Universidad de Chile

sgonzale@dcc.uchile.cl
3 Universidad de Santiago de Chile

mauricio.silvaoy@usach.cl

Abstract. We prove that a document collection, represented as a unique
sequence T of n terms over a vocabulary Σ, can be represented in
nH0(T ) + o(n)(H0(T ) + 1) bits of space, such that a conjunctive query
t1 ∧ · · · ∧ tk can be answered in O(kδ log log |Σ|) adaptive time, where δ
is the instance difficulty of the query, as defined by Barbay and Kenyon
in their SODA’02 paper, and H0(T ) is the empirical entropy of order 0
of T . As a comparison, using an inverted index plus the adaptive inter-
section algorithm by Barbay and Kenyon takes O(kδ log nM

δ
), where nM

is the length of the shortest and longest occurrence lists, respectively,
among those of the query terms. Thus, we can replace an inverted index
by a more space-efficient in-memory encoding, outperforming the query
performance of inverted indices when the ratio nM

δ
is ω(log |Σ|).

1 Introduction, Results and Previous Work

Text retrieval systems allow the access to big text collections in order to retrieve
information that satisfies the information needs of users, so they are fundamental
for information retrieval (IR) [2]. Let D = {D1, . . . , DN} be a collection of N
documents, where each document Di is modeled as a sequence of terms (or
words) from a vocabulary Σ of size |Σ|. We assume that every original term
in Σ has been assigned a unique term identifier. Thus, from now by “term” we
will mean “term identifier”. Conjunctive queries t1 ∧ · · · ∧ tk, asking to report
the documents that contain all the t1, . . . , tk ∈ Σ, are one of the most common
kinds of queries issued to text retrieval systems. We assume a model where all
the documents that satisfy the query are retrieved (as opposed to a model where
only the most relevant documents need to be found).

Text retrieval systems are usually based on inverted indices [2,37], which con-
sists of a vocabulary table (containing the |Σ| distinct terms from the collection)
and an occurrence list for every term c ∈ Σ, storing the identifiers of the docu-
ments that contain the term c. Conjunctive queries are supported by intersecting
the occurrence lists of the query terms [2,1,16,34]. However, the occurrence lists
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must be precomputed and stored, which requires considerable amounts of space.
So these must be compressed, and usually stored on secondary storage [2], in
both cases yielding a slowdown in query processing time.

Given the popularity of inverted indices, it is not a surprise that most of the
work on reducing the space requirements in IR has focussed on compressing the
occurrence lists of inverted indices. Among the vast literature on the topic, we can
cite some recent relevant work [36,34]. An alternative that has emerged in recent
years, and that seeks to avoid the use of secondary storage when dealing with
large volumes of data, is that of compressed/succinct data structures [26,30].
Because of the continuously growing data repositories available from different
sources, reducing the space used by an algorithm is fundamental for efficiency
matters. Hence, in recent years there have been several studies on succinct and
compressed data structures, achieving small and functional data structures. For
instance, there are representations for general trees of n nodes using just 2n+o(n)
bits, while supporting a complete set of operations on it in O(1) time [8,19,33].
This is Θ(log n) times smaller than the traditional representation. Thus, succinct
data structures are not only space-efficient, but also versatile and functional.

There are also compressed data structures for full-text search [30], where all
the occurrences of a pattern in a text must be reported. These are called com-
pressed self-indices, which replace a text with a representation that uses space
proportional to that of the compressed text, allows indexed searches over the
text, and extracting any text snippet. These indices provide interesting trade-
offs in practice [18], allowing one to replace the traditional suffix trees and suffix
arrays in many scenarios. This is an active and mature area of research. Com-
pressed data structures supporting operations rank and select [11,20,4,3] are also
fundamental. Given a sequence of symbols S, rankc(S, i) counts the number of
c’s in S[1..i], and selectc(S, j) yields the position of the j-th occurrence of c in S.
Operation access(S, i), which yields S[i], is also relevant to retrieve the indexed
sequence. These operations are usually the core for more complex succinct data
structures [30], and shall be central to our work. Succinct data structures have
also been successfully used to represent graphs [17,13], functions and permuta-
tions [6,7], and to support document retrieval [32,35,25], among others.

However, the impact of succinct/compressed data structures has not been as
strong as expected in the area of document reporting in text retrieval systems.
As we said, most of the achievements to reduce the space requirements in IR are
related to compressing the inverted indices. There are several solutions for the
problem of document reporting [29,32,35,21,25]. However, none of these support
IR queries, like conjunctive queries, which must be solved by first generating
the occurrence lists of the search patterns, to then apply standard intersection
algorithms on these lists. This is, however, non-efficient, since an inverted index
has precomputed these lists, and only the price for the intersection must be paid
for. We aim at performing conjunctive queries directly over the index, without
generating the occurrence lists beforehand. The idea of emulating list intersection
algorithms in this way was hinted at [7], though without details and not regarding
document collections, but just single texts. Their representation is based on a
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data structure for permutations, which represents, somehow, the wavelet tree [24]
of the text. Thus, they cannot profit from the use of more efficient representations
for rank/select (e.g., [3]).

Instead of storing the occurrence lists, the work [10] proposes to use a com-
pressed index to generate them on the fly, thus saving considerable space (though
increasing the query time). However, they index just single texts, and all the
query occurrences need to be found. This can be adapted to represent document
collections, though the total query time becomes proportional to the number of
query occurrences, rather than the number of documents containing it.

Thus, there is little (or none) support in the compressed data structure lit-
erature for operations that are fundamental in IR. An important result in this
track would be, for instance, being able to replace an inverted index by a com-
pressed/succinct encoding, while still supporting efficient conjunctive queries.

Let T [1..n] denote the sequence obtained from the concatenation of the doc-
uments in the collection. Our main contribution is an study on the support
of conjunctive queries in self-indexed text retrieval systems. We show that any
rank/select data structure (supporting operation access in time O(a), rank in
O(r) time, and select in O(s) time) is powerful enough to support the following
IR operations: (i) Extracting any document snippet of length � in O(a · �) time;
(ii) obtaining the occurrence list (of length occ) of a given query term in time
O((r+s)occ); and (iii) conjunctive queries t1 ∧· · ·∧tk, for k ≥ 2, in O(kδ(r+s))
adaptive time, where δ is the instance difficulty of the query, as defined by [5].

In particular, we use the rank/select data structure from [3], and achieve
nH0(T ) + o(n)(H0(T ) + 1) bits of space, such that snippet extraction can
be carried out in O(�) time, and conjunctive queries can be answered in
O(kδ log log |Σ|) adaptive time, where H0(T ) is the empirical entropy of order
0 of T [28]. It is important to note that δ ≤ nm, where nm is the length of the
shortest occurrence list among those of the query terms. As a comparison, the
time achieved by an inverted index plus the adaptive intersection algorithm by
Barbay and Kenyon [5] is O(kδ log nM

δ ), where nM is the length of the longest
occurrence list among those of the query terms. Thus, we can replace an inverted
index by a more space-efficient in-memory encoding, which outperforms inverted
indices when the ratio nM/δ is ω(log |Σ|).

2 Preliminary Concepts and Notation

Succinct Data Structures for rank and select. Given a sequence S[1..n] over an
alphabet Σ = {1, . . . , |Σ|}, operation rankc(S, i), for c ∈ Σ, counts the number
of c’s occurring in S[1..i]. Operation selectc(S, j) is defined as the position of the
j-th occurrence of c in S (we assume that select yields n + 1 iff the number of
c’s in S is less than j). The representation by Barbay et al. [3] uses nH0(S) +
o(n)(H0(T ) + 1) bits, where H0(T ) ≤ log |Σ| denotes the empirical entropy of
order 0 of T [28]. Operations rankc and selectc on S, for any c ∈ Σ, are supported
in O(log log |Σ|) time, as well as access in O(1) time [3] . Let r and s denote the
time complexities for the rank and select operations, respectively.
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Our Representation for the Document Collection. Let D = {D1, . . . , DN} be a
document collection of size N , where each document is represented as a sequence
Di[1..li] of li terms from a vocabulary Σ of size |Σ|. Assuming that ‘$’∈ Σ is a
special separator symbol, we build the sequence:

T [1..n] = $D1$D2$ · · · $DN$

of length n = 1 +
∑N

i=1 (li + 1) and size n log |Σ| bits. The order of the concate-
nation is arbitrary. A convenient order for document ranking purposes can be
the one given by a global ranking function, such as Hits [27] or Pagerank [9].

Each document Di is assigned a unique document identifier i. If we represent
T with a rank/select data structure, then given any position 1 ≤ j ≤ n, opera-
tion get docid(j) ≡ rank$(T, j) yields the document identifier of the document j
belongs to. Given a document identifier 1 ≤ i ≤ N , one can obtain the starting
position within T for document Di as get doc(i) ≡ select$(T, i) + 1.

3 Succinct Encodings for Document Reporting

The work [10] showed that an instance of rank/select data structure (in partic-
ular, a wavelet tree [24]) is competitive with an inverted index for reporting all
the occurrences of a query term t. This is relevant for text searching, where all
the occurrences need to be found. In our case, however, we should search for
every occurrence of t, and for each determine the document that contains it,
which is reported (without repetitions). However, this is wasteful when there are
many occurrences of t, but just a few documents actually contain it.

To work in time proportional to the number of documents containing the query
term t, we locate the first occurrence of t within T by using j = selectt(T, 1).
We compute next the document identifier d = get docid(j) of the document
containing the term, and report it. Then, with j = select$(T, d + 1) we jump up
to the end of the current document, and f = rankt(T, j) counts the number of
occurrences of t up to position j. Then, we jump to the next document containing
an occurrence of t by means of selectt(T, f + 1), and repeat the procedure. The
running time of this algorithm is O((r+s)occ). By using the data structure from
[3] we obtain nH0(T ) + o(n)(H0(T ) + 1) bits of space, while the occ documents
containing a query term can be computed in O(occ log log |Σ|) time.

4 Efficient Support for Conjunctive Queries

Traditionally, conjunctive queries are supported by intersecting the occurrence
lists of the individual query terms [2,1,16,34]. If the document collection has been
encoded as in Section 3, a simple solution for a query t1 ∧ t2 could be to generate
the occurrence lists Occ1[1..n1] and Occ2[1..n2] for t1 and t2, respectively, and
then intersect them by using any intersection algorithm [1,16,34]. The lower
bound for the intersection problem in the comparison model is Ω(n1 log n2

n1
)

time, assuming that n1 ≤ n2, which is achieved by the work of Baeza-Yates [1].
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Thus, the time for conjunctive queries would be O((r+s)(n1 +n2)+n1 log n2
n1

) in

the worst case. For k > 1, this time is O((r+s)
∑k

i=1 ni +knm log nM

nm
), where ni

denotes the length of the occurrence list of ti, and nm and nM denote the lengths
of the shortest and longest occurrence lists, respectively. By using an adaptive
intersection algorithm [15,5], the time would be O((r + s)

∑k
i=1 ni + kδ log nM

δ ),
where δ ≤ nm is the difficulty of the instance as defined by [5].

Thus, generating the occurrence lists before the intersection phase is wasteful,
since not every occurrence of ti’s is useful for the intersection. Our aim is to avoid
this cost, so we can conceptually think of our indices as storing the lists.

4.1 A Simple Worst-Case Algorithm for Conjunctive Queries

Given a query t1 ∧ t2, a first approach to reduce the query cost is to obtain
the occurrence list Occ1[1..n1] for t1 as in Section 3. Then, for every document
Occ1[i] containing t1, we check whether t2 occurs within it, which is true iff:

rankt2(T, get doc(Occ1[i] + 1) − 1) − rankt2(T, get doc(Occ1[i])) > 0. (1)

We work in time O((r + s)n1), thus saving the time to generate the list of
t2. To minimize the time, we should generate first the shortest occurrence list.
However, we must store the length of the occurrence list of every term, which
uses |Σ| log N extra bits of space, and is usually negligible in practice.

For queries of the form t1∧· · ·∧tk, we first sort the query terms by their number
of occurrences, then generate the occurrence list for the less frequent term, and
then use it to drive the candidate checking, considering one term at a time in
the order given by the sorting. Thus, the total time is O(k log k + k(r + s)nm).
By using the data structure from [3], we obtain:

Theorem 1. Given a document collection T represented as a sequence of n
terms over a vocabulary Σ, it can be replaced by a representation that uses
nH0(T )+ o(n)(H0(T )+1) bits of space, supports extracting any document snip-
pet of length � in O(�) time, and finding all the documents that answer a query
t1 ∧ · · · ∧ tk in O(k log k + knm log log |Σ|) worst-case time, where nm denotes
the length of the shortest occurrence list among those of the query terms.

4.2 An Adaptive Algorithm for Conjunctive Queries

Instead of performing a pair-wise intersection (as with the previous algorithm),
this time we search for all query terms at once, in some sense carrying out the
“intersection” as we search for them.

For a query t1∧t2, we search for the first occurrence of each of the query terms,
s1 = selectt1(T, 1) and s2 = selectt2(T, 1). Assume, without loss of generality,
that s1 < s2 and that these correspond to document identifiers di < di+m,
respectively, for m ≥ 1. Then, notice that it is not necessary to search for the
occurrences of t1 in documents di+1, . . . , di+m−1, since there is no occurrence
of t2 within them. Thus, we move s1 up to the starting position of document
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di+m, and search for the next occurrence of t1 from there (by using select). If this
lies within document dm, then we report it as an occurrence. If the document
identifier obtained is greater than dm, then we move s2 to the beginning of the
document containing t1, and repeat the procedure, moving forward through the
text, until either s1 or s2 reach the value n + 1 (recall that select yields n + 1
when there are not enough occurrences).

Let n1 and n2 be the number of documents containing t1 and t2, respectively,
and let nm = min {n1, n2}. It is not hard to see that the shortest occurrence list
will be exhausted after carrying out at most nm + 1 steps. This indicates that
this algorithm works in O((r + s)nm) time in the worst case. An instance that
yields such a behavior is as follows:

T = $ · · · | · · · t1 · · · | · · · t2 · · · | · · · t1 · · · | · · · t2 · · · | · · · t1 · · · | · · · t2 · · · | · · · t1 · · · $

where the original separator ‘$’ has been replaced by ‘|’ for clarity (except for
the first and last ‘$’). In this example, we work in time proportional to n2, since
it is smaller. Moreover, this method can profit from the distribution of the query
terms across T . For example, if we have an instance like this:

T = $ · · · | · · · t1 · · · | · · · | · · · t1 · · · | · · · | · · · t1 · · · | · · · · · · | · · · t2 · · · | · · · | · · · t2 · · · $

and assuming that these are the only occurrences of t1 and t2 in T , it only takes
O(1) steps to determine that the result of the conjunctive query is empty. Notice
the analogy with an integer intersection algorithm: this corresponds to the case
where all values stored in the occurrence list of t1 are smaller than those in the
occurrence list of t2. So our algorithm adapts nicely to this kind of instance.

In general, this algorithm is adaptive to this interleaving of the query terms
within the document collection. For example, suppose that t1 and t2 occur within
T in exactly δ of these groups. Then, notice that we need O(δ) steps to certify
the result of the intersection. Though seen from a different perspective, notice
that this is the same instance difficulty measure as the one introduced in [5], and
also that δ ≤ nm. Thus, the adaptive complexity of our algorithm is O(δ(r+s)),
which is O((r + s)nm) in the worst case.

This procedure can be generalized to any k > 1. Now, every query term ti
has an index si, which indicates the last occurrence of ti that has been regarded.
First, we look for s1 = selectt1(T, 1), and determine the document identifier
j1 = get docid(s1) that contains it. Then, we look for the next occurrence of
t2 starting from document j1. That is, let j′ = get doc(j1). Hence, we set s2 =
selectt2(T, rankt2(T, j′) + 1). Then, let j2 = get docid(s2). So, we search for the
next occurrence of t3 starting from document j2, and so on, regarding the query
terms in a round-robin fashion. The process finishes when some si reaches n+1,
since the corresponding list has been exhausted.

The adaptive analysis is similar to that for binary conjunctive queries. Hence,
general conjunctive queries take O(kδ(r+s)) time, where δ ≤ nm is our difficulty
measure, as defined above. Thus, by using the data structure from [3], we obtain:
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Theorem 2. Given a document collection T represented as a sequence of n
terms from an alphabet of size |Σ|, it can be replaced by a representation that
uses nH0(T ) + o(n)(H0(T ) + 1) bits of space, supports extracting any document
snippet of length � in O(�) time, and finding all the documents that answer a
query instance t1 ∧ · · · ∧ tk of difficulty δ ≤ nm in time O(kδ log log |Σ|), where
nm is the length of the shortest occurrence list among those of the query terms.

5 Experimental Results

For our experimental results, we used a sample of 277,371 documents (taken at
random) from the UK Web, collected by Yahoo! in 2006. This requires about 1.1
gigabytes, with a vocabulary of about 1.6 million terms. We used a query log of
about 36 million queries submitted to www.uk.yahoo.com during three months
of year 2006. Our computer is an Intel(R) Core(TM)2 Duo CPU at 2.80GHz,
with 5 GB of RAM, and running version 2.6.31-20-server of Linux kernel.

We decided to use a Huffman-shaped wavelet tree as a particular rank/select
data structure, since these have proven to be a competitive choice in practice
[12]. This uses n(H0(T ) + 1) + o(n(H0(T ) + 1)) bits. We based on the wavelet
tree implementation from the libcds library, available in Google code 1. Since
our algorithms need an intensive use of select, we use the darray data structure
from [31] 2 to represent the internal wavelet tree nodes. We modified the original
darray implementation to reduce the overall space wasted, obtaining a wavelet
tree that uses about 521 MB. The space achieved by representing the nodes with
the very space-efficient data structure from [22] is about 500 MB. However, by
using darray the times become around 4–5 times faster.

The first step of the algorithm from Section 4.1 generates the occurrence list
Occ1[1..n1] for term t1. Then, for every remaining query term we check with
Eq. (1) which of the documents in Occ1 contain it. However, this involves the
use of select. Let DocBegin[1..N ] be a table storing the document beginnings in
N log n extra bits. An equivalent test, though faster in practice, is:

rankt2(T, DocBegin[Occ[i] + 1] − 1) − rankt2(T, DocBegin[Occ[i]]) > 0, (2)

Hence, the selects in this algorithm come from generating the occurrence list
Occ1, which amount to n1 selects. The remainder works with rank.

In our experiments, we call SLF (from shortest-list first) the algorithm from
Section 4.1, and Adaptive the one from Section 4.2. We searched for 1 million
random queries from our query log, most of them of length from 1 to 6. We show
in Table 1 the number of queries answered per second, for a random (top part)
and a non-random (bottom part) ordering of the documents. In both cases, we
show experimental results for queries that return a non-empty answer, as well
as for queries that not necessarily have a non-empty answer. The non-random

1 We thank Francisco Claude for providing the source code for the libcds library.
2 We thank Kunihiko Sadakane for providing the source code for the darray data

structure.
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ordering aims at showing the adaptability of Adaptive. We use the following
simple heuristic: we first take the vocabulary of the different terms from our
query log, and construct an inverted index of the document collection for these
query terms. We then take the occurrence list for the most frequent term (i.e., the
longest list), and concatenate the documents that appear in the list. We proceed
in the same way with the remaining occurrence lists, in the order given by their
lengths (we avoid duplicate documents when performing the concatenation).

We also implemented an inverted index by representing the occurrence lists by
their differences, and for every list we use the exact number of bits to represent
the highest difference in the list. This allows us a much better decompression
performance, while achieving an acceptable compression ratio: 189 MB, which
is slightly more space than that used, for instance, by a Golomb-compressed
inverted index. However, as we represent the lists by differences, we cannot
apply binary/doubling search on them, so we cannot use efficient intersection
algorithms like the ones at [1,5]. Hence, we use a two-level approach similar to
the one at [14]. We sample one out of B values in the list, and represent them in
absolute way. Thus, binary search can be used on them, which is followed by a
sequential search on the corresponding block of the list. We chose a typical value
B = 8, so we get an index that requires about 270 MB (recall that this does not
include the text). It is important to note that we only store document identifiers
in the occurrence lists. No extra information about term frequencies, positional
information, or any other information for ranking, is stored in the lists.

As it can be seen, and unlike Adaptive, the inverted index and SLF are in-
sensitive to the document ordering, as expected. It is important to note how the
intensive use of rank (rather than select) in SLF yields in all cases a (sometimes
slightly) better performance than Adaptive. We think that by using a better
heuristic to concatenate the documents we can get better results.

As a comparison, rather than using SLF or Adaptive to compute the answer,
we used the algorithm from Section 3 to generate the occurrence lists of each
query term, yet without using any intersection algorithm afterwards to compute
the final answer. We were able, in this way, to answer less than 10 queries per
second. This indicates that, independently of the intersection algorithm used on
the lists, this approach will be outperformed by ours. Thus, saving the time to
generate the lists is very important.

When comparing with the inverted index, we conclude that our algorithms can
be up to 5–7 times slower, while using about 1.92 times the space of the inverted
index. However, the latter does not include the text, so snippet extraction is
not possible. To achieve this, we must add the text to the index, for instance
represented in compressed for with a wavelet tree (this would support extracting
arbitrary text snippets). This would add about 500–520 MB to the inverted
index, for a total space usage of about 1.5 times the space of our algorithms.
Also, our algorithms store more information than the text itself. For instance,
we can use rank to compute the frequency of a term within a given document.
We can also know the positions of a term within a document, allowing this kind
of information to be used in more involved ranking functions.
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Table 1. Number of queries answered per second, for a random (top) and non-random
(bottom) ordering of the document collection

SLF Adaptive Hybrid Inverted Index
(521 MB) (521 MB) (521 MB) (270 MB, no text)

Every query has an answer 74 58 68 381
Not every query has an answer 102 82 95 583

Every query has an answer 77 74 82 381
Not every query has an answer 106 102 115 583

In the above experiments, algorithm SLF outperforms Adaptive in many cases.
However, for queries with k > 1, we made the experiment of searching just for
the two terms having the smallest occurrence lists. The result is that Adaptive
is faster than SLF for doing this, as it can be seen in Fig. 1 (left), assuming
that the document ordering explained above has been used. This is because the
performance of Adaptive depends on the interleave factor δ. When we search for
long queries, this factor can be high (close to nmin), because of the many terms
that compose the query. However, if we search just for the two terms having
the smallest lists, we minimize the probability of interleaving. Hence, Adaptive
outperforms SLF. This fact improves with the query length, as it can be seen in
Fig. 1 (left), which is explained by the result in Fig. 1 (right), which compares
the length of the two shortest list for different query lengths. When searching
for three terms, instead of two, we concluded that SLF outperforms Adaptive.
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Fig. 1. Experimental time for searching the two terms with the shortest lists, for queries
of different length (left); comparison of the length of the two shortest lists (right)

We use the above fact to define a hybrid scheme (called Hybrid) that first
searches for the two terms with shortest lists using algorithm Adaptive, and then
use this partial result to search with SLF. The result is shown in Table 1. As it
can be seen, we obtain an improvement of about 10% in the query performance.
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Fig. 2. Number of rank (left) and select (right) operations performed by our algorithms

Finally, in Fig. 2 we show the performance of our algorithms from another
point of view: the number of rank/select operations needed to compute an an-
swer. As it can be seen, the total number of operations (i.e., number of ranks
plus number of selects) performed by algorithm SLF is about 1.27 times the
number of operations of Adaptive, and 1.43 times the number of operations
of Hybrid. However, according to our experiments, SLF outperforms the others
when comparing the total time. This can be explained by the fact that most of
the operations of SLF are just ranks (71%), which are supported in a much faster
way in the wavelet tree implementation that we use [12]. Thus, our experimental
results from Table 1 are clearly dependent on the rank/select representation used.
A representation with a more efficient support for select would produce much
better results for the Adaptive scheme. For instance, the data structure from [3]
is able to support select in O(1) time, so this could be relevant for our purposes.
This representation could be also useful to compete against the inverted indices.

6 Conclusions

We proved that any rank/select data structures is powerful enough so as to
represent a document collection using nH0(T ) + o(n)(H0(T ) + 1) bits of space
and support IR operations on it. Thus, a conjunctive query t1 ∧ · · · ∧ tk can be
answered in O(kδ log log |Σ|) adaptive time, where δ is the instance difficulty of
the query [5], and H0(T ) is the empirical entropy of order 0 of the collection.
This outperforms the intersection algorithm [5] when the ratio nM

δ is ω(log |Σ|).
To conclude, our algorithms are powerful and simple to implement. The for-

mer is, on the one hand, because in theory we can perform as efficiently as
(and in many cases even better than) the most efficient algorithms over inverted
indices. The latter is, on the other hand, because we do not introduce any com-
plicated data structure to support the operations, but rather any rank/select
data structure can be used [12]. Our experimental results show that our result
are promising. However, further work need to be done in order to obtain a query
performance similar to that of inverted indices. We hope to achieve this by using
a faster implementation for select, as for instance the one provided by [3].
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We did not regard dynamic document collections in this paper (that is, doc-
ument collections where documents are added and deleted, as well as modified).
However, our algorithms can be also supported in such a case by using appro-
priate dynamic data structures for rank and select [23].

Acknowledgments. We thank Mauricio Marin and Gonzalo Navarro for many
fruitful discussions, suggestions, and proofreading an earlier version of this paper.
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Abstract. Given a collection D of string documents {d1, d2, ..., d|D|}
of total length n, which may be preprocessed, a fundamental task is
to retrieve the most relevant documents for a given query. The query
consists of a set of m patterns {P1, P2, ..., Pm}. To measure the relevance
of a document with respect to the query patterns, we may define a score,
such as the number of occurrences of these patterns in the document, or
the proximity of the given patterns within the document. To control the
size of the output, we may also specify a threshold (or a parameter K),
so that our task is to report all the documents which match the query
with score more than threshold (or respectively, the K documents with
the highest scores).

When the documents are strings (without word boundaries), the tra-
ditional inverted-index-based solutions may not be applicable. The sin-
gle pattern retrieval case has been well-solved by [14,9]. When it comes
to two or more patterns, the only non-trivial solution for proximity
search and common document listing was given by [14], which took
Õ(n3/2) space. In this paper, we give the first linear space (and partly
succinct) data structures, which can answer multi-pattern queries in
O(

∑ |Pi|) + Õ(t1/mn1−1/m) time, where t is the number of output oc-
currences. In the particular case of two patterns, we achieve the bound
of O(|P1|+ |P2|+

√
nt log2 n). We also show space-time trade-offs for our

data structures. Our approach is based on a novel data structure called
the weight-balanced wavelet tree, which may be of independent interest.

1 Introduction

Given a collection D of string documents {d1, d2, ..., d|D|} of total length n, the doc-
ument retrieval problem is to pre-process this collection, so that when a set of pat-
terns comes as a query, we can efficiently output those documents relevant to this
query in some ranked order. This is one of the most fundamental problems in In-
formation Retrieval, and finds applications in web search engines, SQL databases,
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and genome alignment tools. The ranking of documents is done using relevance
scores, which might depend on the frequencies of the patterns in the document,
the proximity of occurrences of the patterns as they appear in the document, or
simply the static (query-independent) PageRank [2] of the document.

Traditionally, the input documents are split into words and then an inverted
index is built over such data. However, in the case of genome data or some Asian
texts, there may be no natural word demarcation, so that the inverted index may
require too much space, or may only provide limited searching capabilities. Alter-
natively, full-text indexes like suffix trees and suffix arrays have been successfully
used when the query consists of only one pattern [12,14,17,18,9].

For two-pattern queries (listing all documents with both the patterns), the
only known solution was given by [14], which requires Õ(n3/2) space and answers
a query in O(|P1| + |P2| +

√
n + t) time, where P1 and P2 are the query pat-

terns, and t is the size of the output1. Recently, Cohen and Porat [3] proposed
an elegant framework for the set-intersection problem, through which the in-
dex space is reduced greatly to O(n log n), while admitting slightly worse query
time bounds which, instead of having

√
n + t term, aims to achieve a

√
nt term.

They achieve O(|P1| + |P2| +
√

nt log2.5 n) query bounds for common document
listing problem. In this paper, we build a framework which can handle string
retrieval under various relevance notions. Our solution is based on the wavelet-
tree-based document retrieval scheme given by Välimaki and Mäkinen [18] aug-
mented with other primitives. We introduce a new version of wavelet tree called
weight-balanced wavelet tree and deploy a multi-way search paradigm on it [3].
Consequently, we show that the index space can further be reduced to linear,
while the query can be answered more quickly in O(|P1| + |P2| +

√
nt log1.5 n)

time. In addition, our framework can easily be extended to handle queries with
more than two patterns.

To avoid retrieving many unwanted results, we also focus on retrieving the
most relevant documents, where either the K highest-scoring documents, or
those with scores above some threshold, are reported. This is in contrast to most
of the earlier work, which focussed on retrieving all the possible documents.

One of the pressing issues for suffix-tree-based solutions is their space us-
age. For instance, a simple implementation of Muthukrishnan’s index [14] for
frequency based retrieval for single pattern takes about 250 times the original
text [20] in practice. Such indexes quickly become impractical for massive data
sets. With the advent of the field of succinct data structures, compressed text
indexes have been developed which can now compete in terms of space with
the inverted indexes (which are typically only 5% overhead over the actual text
size). In this paper, we also show how to achieve space-time tradeoffs so that our
indexes can be made partly succinct.

1.1 Comparison with Previous Work

Document Retrieval Problems on Single Pattern (P ):
1 The notation Õ ignores poly-logarithmic factors. Precisely, Õ(f(n)) ≡

O(f(n) logO(1) n).
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– Document Listing: List all the documents which contain P .
– K-mine: With an extra online parameter K, return all documents which

contain at least K occurrences of P .
– K-repeats: With an extra online parameter K, list all documents which

contain a pair of occurrences of P that are at most distance K apart.

Muthukrishnan [14] gave a linear space structure for the document listing
problem which can answer queries in optimal O(|P | + t) time, which improves
the previous O(|P | log |D|+t) time index by Matias et. al. [12], where t denotes
the size of the output. He also gave indexes that answer K-mine and K-repeats
in optimal O(|P | + t) time. The space requirements for both cases is O(n log n).

Sadakane [17] showed how to solve document listing problems using succinct
data structures. Similar work done by Välimaki and Mäkinen [18] shows how to
achieve partly succinct space by maintaining a wavelet tree of a document array.
Here, document array is an array DA[1..n] such that DA[i] stores the id of the
document where the ith smallest suffix belongs to. For K-mine and K-repeats
problems, Hon et. al. [9] gave a unified framework which solves these problems
in optimal O(|P | + t) time, while using only linear space. For the top-K version
of the above problems, they gave a linear space index with O(|P | + K log K)
query time. Further they showed how to solve these problems in succinct space.

Document Retrieval Problems on Two Patterns (P1 and P2):

– Document Listing: We need to list all documents where both P1 and P2
occur at least once. Muthukrishnan [14] gave an Õ(n3/2)-space index that
answers a query in O(|P1|+|P2|+

√
n+t) time. Recently, Cohen and Porat [3]

proposed an index taking O(n log n) words of space, based on their solution
to the fast set intersection (FSI) problem. They showed that the document
listing problem can be reduced to indexing a log n-partition of the suffix
ranges and then solving log2 n online set intersection queries. Their solution
takes O(n log n) space and O(|P1| + |P2| +

√
nt log2.5 n) query time, where

as our new index takes O(n) space and O(|P1|+ |P2|+ t log n+
√

nt log1.5 n)
time.

– K-mine: We need to list all documents that contain at least K total occur-
rences of P1 and P2. Unfortunately, the above suffix-range partition tech-
nique for the document listing problem [3] does not work. To the best of
our knowledge, no non-trivial solution (except by computing the number of
occurrences of P1 and P2 explicitly for each document that contains both
P1 and P2) is known. In the paper we propose an linear space index with
O(|P1| + |P2| + t log n +

√
nt log2 n) query time for this problem.

– K-repeats: We need to list all documents that contain a pair of occurrences
of P1 and P2 that are at most K distance apart. Precisely, let mindisti(P1, P2)
denote the minimum distance between an occurrence of P1 and an occur-
rence of P2 in document di. Our target is to list all documents di with
mindisti(P1, P2) ≤ K. Muthukrishnan [14] showed how to reduce this prob-
lem to the close common colors problem. Consequently, he gave an index
with O(n3/2 log n)-space, which can answer the query in O(|P1| + |P2| +
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√
n log n + t) time. In the paper we propose an linear space index with

O(|P1| + |P2| + K log2 n +
√

nK log2 n) query time for this problem.

2 Preliminaries

We introduce some data structures which form the building blocks of our indexes.
Throughout the paper, we use D to denote a given collection of documents
{d1, d2, ..., d|D|} of total length n. The patterns which come as online query are
denoted by P1 and P2. We assume that the characters in documents as well as
the patterns are taken from an alphabet set Σ of size σ.

2.1 Suffix Trees and Suffix Arrays

Given a text T [1...n], a substring T [i...n] with 1 ≤ i ≤ n is called a suffix of T .
The lexicographic arrangement of all n suffixes of T in a compact trie is called
the suffix tree of T [19], where the ith leftmost leaf represents the ith lexico-
graphically smallest suffix. Each edge in the suffix tree is labeled by a character
string and for any node u, path(u) is the string formed by concatenating the edge
labels from root to u. For any leaf v, path(v) is exactly the suffix corresponding
to v. For a given pattern P , a node u is defined as the locus node of P if it is the
closest node to the root such that P is a prefix of path(u); such a node can be
determined in O(|P |) time. Similarly generalized suffix tree (GST) is a compact
trie which stores all suffixes of all strings in a given collection D of strings. For
the purpose of our index, we define an extra array DA called document array,
such that DA[i] = j if and only if the ithe lexicographically smallest suffix is
from document dj .

Suffix array SA[1...n] of a text T is an array such that SA[i] stores the starting
position of the ith lexicographically smallest suffix of T [11]. In SA the starting
positions of all suffixes with a common prefix are always stored in contiguous
range. The suffix range of a pattern P is defined as the maximal range [�, r] such
that for all j ∈ [�, r], P is a common prefix of the suffix which starts at SA[j].

2.2 Wavelet Tree

Let A[1...n] be an array of length n, where each element A[i] is a symbol drawn
from a set Σ of size σ. The wavelet tree (WT) [6] for A is an ordered balanced
binary tree on Σ, where each leaf is labeled with a symbol in Σ, and the leaves
are sorted alphabetically from left to right. Each internal node Wk represents
an alphabet set Σk, and is associated with a bit-vector Bk. In particular, the
alphabet set of the root is Σ, and the alphabet set of a leaf is the singleton
set containing its corresponding symbol. Each node partitions its alphabet set
among the two children (almost) equally, such that all symbols represented by the
left child are lexicographically (or numerically) smaller than those represented
by the right child. For the node Wk, let Ak be a subsequence of A by retaining
only those symbols that are in Σk. Then Bk is a bit-vector of length |Ak|, such
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that Bk[i] = 0 if and only if Ak[i] is a symbol represented by the left child of
Wk. Indeed, the subtree from Wk itself forms a wavelet tree of Ak. Note that
Bk is augmented with Raman et al.’s scheme [15] to support constant-time bit-
rank and bit-select operations and we do not store Ak’s explicitly. The total
space requirement of wavelet tree is n log σ(1 + o(1)) bits and it can support
orthogonal range reporting in O((|output| + 1) logσ) time [10,21].

2.3 Weight-Balanced Wavelet Tree

We propose a modified version of the wavelet tree called weight-balanced wavelet
tree (WBT), where we maintain the number of 0’s and 1’s in any bit-vector Bk

almost equal. As a result, the two children of a node may not represent equal
(or almost equal) distinct number of symbols, but they should represent almost
equal total number of symbols. For this, we first consider the symbols in Σ by
their number of occurrences (in ascending order) in A, instead of lexicographic
order. Consider a node Wk which represents the alphabet {σ1, σ2, ...}, such that
f1 ≤ f2 ≤ · · · , where fi is the number of occurrences of σi in A. Then

∑
fi =

|Bk| = nk. The partition of the alphabet for the child nodes is performed as
follows. Initialize n� = nr = 0. Pick up the symbol σ with the most occurrences
f . If n� ≤ nr, we put σ to the left child, and increment n� by f . Otherwise,
if n� > nr, we put σ to the right child, and increment nr by f . The process
continues until all the symbols are distributed. Once Bk of a node is computed,
we perform the procedure recursively in the child nodes until the node represents
a single symbol. This way of partitioning ensures the following property(proof
omitted).

Lemma 1. Let Wk be a node in WBT at depth δk, and Bk denote its associated
bit-vector. Let nk = |Bk|. Then we have nk ≤ 4n/2δk. ��

An interesting property is that a WBT is inherently compressible(with out com-
pressing the individual bit vectors).

Lemma 2. The space of a weight-balanced wavelet tree of an array A of size n
is n(H0(A) + 2) bits, where H0(A) is the 0th-order empirical entropy of A.

Proof: Let the depth of a leaf corresponding to the symbol σi be δi. Then σi

contributes fi bits in each bit-vector corresponding to the nodes from root to this
leaf (excluding the leaf). Hence the contribution of σi towards the total space
is fi · δi. By Lemma 1, δi ≤ log(4n/fi). Therefore, the total size of a weight-
balanced wavelet tree is at most

∑
fi · (log(n/fi) + 2) = n(H0(A) + 2) bits. ��

3 Any-One Index

In this section we describe an index which we call an Any-One index. This is
a building block for the indexes described in later sections. The input query
consists of two patterns P1 and P2, and a parameter K. Any-One index for K-
mine problem answers whether or not there exists at least one document di with



60 W.-K. Hon et al.

score = fi1 + fi2 ≥ K, where fij denotes the number of occurrences of Pj in di.
An Any-One index for K-repeats problem answers whether there exists at least
one document di with mindisti(P1, P2) ≤ K.

3.1 Index Construction

Let GST be the generalized suffix tree for the collection D, and GSA be the
corresponding generalized suffix array. We maintain a document array DA where
DA[i] = j if the ith lexicographically smallest suffix belongs to dj . Let WT be
the wavelet tree of DA. We define a parameter g =

√
n/β which is called group

size. For K-repeats, we also maintain the wavelet trees (WTi’s) over suffix arrays
(SAi’s) of individual documents di’s.

First, starting from left in GST, we group every g contiguous leaves together
to form a group. Thus the first group consists of �1, ..., �g, the next group consists
of �g+1, ..., �2g, and so on, where �j denotes the jth leaf. The total number of
groups is O(n/g). Now for each group we mark the least common ancestor (LCA)
of the first and the last leaves. Furthermore, we continue the marking as follows:
if two nodes are marked, we mark their LCA also. It can be easily shown that
the total number of marked nodes is O(n/g). Now suppose for a marked node u,
its subtree contains the leaves �x, �x+1, . . . , �y, then we refer the range [x, y] as
the suffix range corresponding to u.

Lemma 3. The suffix range [L, R] of any pattern P can be split into a suffix
range [L′, R′] corresponding to some marked node u∗, and two other small ranges
[L, L′ − 1] and [R′ + 1, R] with L′ − L < g and R − R′ < g. ��

Essentially, the suffix range [L, R] of P corresponds to R − L + 1 leaves in the
GST. This set of leaves can be partitioned into three groups: one that is under
the subtree of u∗ which contains R′ − L′ + 1 leaves, and the remaining two with
those on the left of �L′ and those on the right of �R′ . We shall refer to the latter
two groups of leaves as fringe leaves, each group contains fewer than g leaves.

Score Matrix: We make use of score matrices to facilitate the K-mine and
K-repeats queries. The score matrix M for each query is a two-dimensional
O(n/g)×O(n/g) matrix with O(n2/g2)-word space. For K-mine, the matrix M
stores the highest possible score value for any document (along with document
id) for each pair of marked nodes. Precisely, we set M(u∗, v∗) = maxi{fiu∗ +
fiv∗}, where fiu∗ and fiv∗ are the number of leaves in the subtree of u∗ and
v∗ whose suffixes are from document di. For K-repeats, we store score as the
minimum value of mindist between Pu∗ and Pv∗ , where Pu∗ = path(u∗) and
Pv∗ = path(v∗). Precisely, we set M(u∗, v∗) = mini{mindisti(Pu∗ , Pv∗)}.

Total Space: This index consists of the GST for D (O(n) words), the wavelet tree
of DA (O(n) words), individual wavelet trees (for K-repeats) WTi’s (O(

∑
|di|) =

O(n) words), and the score matrix (O(n2/g2) words). If we choose g =
√

n/β,
the score matrix takes O(nβ) words, and hence the total space is O(nβ).
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3.2 Query Answering

The query input consists of two patterns P1 and P2, and a parameter K. We
search for these patterns in GST, find their locus nodes u1 and u2, and obtain
their suffix ranges [L1, R1] and [L2, R2], respectively. From these suffix ranges,
we find the suffix ranges [L′

1, R
′
1] and [L′

2, R
′
2] (as described in Lemma 3), and

the corresponding marked LCA nodes u∗ and v∗. Now we check for the score
matrix value M(u∗, v∗). For K-mine, if M(u∗, v∗) ≥ K, it will immediately
imply that there exists some document di with fi1 + fi2 ≥ K. However, if
M(u∗, v∗) ≤ K, we cannot conclude at this point that there are no documents
satisfying the threshold. This is because there can be some documents in which
most occurrences of P1 and P2 correspond to the fringe leaves. Hence, we check
the documents corresponding to fringe leaves separately using the Check-Fringe
operation described below. Similarly, for K-repeats, if M(u∗, v∗) ≤ K, it will
immediately imply that there exists some document di with mindisti(P1, P2) ≤
K. Otherwise, we cannot conclude anything yet, and we shall check the fringe
leaves. The Check-Fringe operations for K-mine and K-repeats are as follows.

Check-Fringe for K-mine: Firstly we identify the document dc corresponding to
each fringe leaf �a by traversing the wavelet tree WT of DA. Let B1 represent
the bit-vector in the root of WT. If B1[a] = 0, we move to the rank0(B1, a)th
position in the left child of B1, else we move to the rank1(B1, a)th position in
the right child of B1. Here rank0(B, a) and rank1(B, a) represent the number of
0′s and 1′s in B[1..a], respectively. This procedure is continued recursively until
we reach a leaf node in WT, and the document dc is identified. Then we can
count the number of suffixes in [L1, R1] and [L2, R2] that belong to dc. This can
be done by traversing the WT of DA using a similar fashion. Consequently, we
obtain the total occurrences of P1 and P2 in the document dc, and check if it is
above the threshold K.

Check-Fringe for K-repeats: Similar to the above described method, for each
fringe leaf �f , we first identify the corresponding document dc. Next, for those
suffixes that correspond to dc within the suffix range [L1, R1], we identify the
contiguous suffix range [l1, r1] in the individual SA of dc. Such a translation
operation can be done by traversing the WT of DA (i.e. by translating [L1, R1] to
the leaf node corresponding to document dc). Similarly, we obtain the translated
suffix range [l2, r2] for [L2, R2].

Let �f ′ be the position of �f after translation and SAc denotes the suffix array
of dc. Then we need to check the following: (Case 1) If �f ′ ∈ [l1, r1], we check
if there exists any �f ′′ ∈ [l2, r2] such that |SAc[�f ′ ] − SAc[�f ′′ ]| ≤ K. (Case 2)
Otherwise, if �f ′ ∈ [l2, r2], we check if there exists any �f ′′ ∈ [l1, r1] such that
|SAc[�f ′ ]−SAc[�f ′′ ]| ≤ K. In order to perform these checks efficiently, we main-
tain the wavelet tree WTc of SAc and perform the following orthogonal range
searching queries, respectively [10]:

Case 1: Use position range [l2, r2], value bound [SAc[�f ′ ] − K, SAc[�f ′ ] + K];
Case 2: Use position range [l1, r1], value bound [SAc[�f ′ ] − K, SAc[�f ′ ] + K].
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If the output (number of occurrences) of this search is at least one, then dc is
a valid output for the K-repeats query2.

Analysis: In both K-mine and K-repeats, the Check-Fringe operation involves
a wavelet tree traversal per fringe leaf. Since the total number of fringe leaves
is less than 4g, the total time for the Check-Fringe operations is O(g log n) =
O(

√
n/β log n) [10].

Lemma 4. We can maintain an O(nβ)-space Any-One index, such that given
a query consisting two patterns P1 and P2, and a parameter K, we can answer
if the number of outputs for the K-mine or the K-repeats queries is at least one,
using O(|P1| + |P2| +

√
n/β log n) time. ��

Using an Any-One index, top-1 queries can be answered with the same time
bounds. In the next section, we describe our main indexes for answering the
original K-mine and K-repeats queries.

4 Efficient Indexes for K-Mine and K-Repeats Problems

We maintain the collection of documents D in the form of a balanced binary tree,
such that the root node represents all documents and further these documents
are divided evenly among the child nodes. This procedure is continued recursively
until we reach a node (leaf) which represents a single document. We maintain an
Any-One index for each Dk, where Dk is the set of documents represented by an
internal node Wk in the binary tree. Query answering is performed as follows:
first we check if there exists at least one document in the whole set D, which
satisfies our threshold condition. This is performed using the Any-One index at
the root of the binary tree. If the answer is YES, we do a multi-way search in
both child nodes, which are two mutually exclusive and exhaustive subsets of D.
This procedure is continued recursively until we reach a leaf node in the binary
tree. At any node, if the Any-One index returns NO, we do not need to continue
the recursive step further in its sub-tree.

To maintain the Any-One index for Dk, we will need to maintain the wavelet
tree WTk of the subsequence of the document array whose documents belong
to Dk. Instead of storing these wavelet trees separately for each node, we can
just store the wavelet tree WT of the original DA. It is because WTk is ex-
actly the same as the sub-tree of WT rooted at Wk. Next, let GSTk denote the
Generalised suffix tree for Dk, which is a sub-graph of the original GST for D.
Therefore, instead of storing all GSTk’s, we store only the original GST and
the parenthesis encoding [16,1,13] (along with the marked nodes information) of
individual GSTk’s.

To speed up the query, we hope that the searching of P1 and P2 in GSTk can
be avoided. That is, when we query the Any-One index for Dk, we hope that
the desired marked nodes and the ranges, can be obtained without searching
2 Here, we shall use the range successor query [21] in the case of K-repeats.
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P1 and P2 again. This can be performed by translating the suffix ranges using
the wavelet-tree (to the node Wk in WT ). Let [L1k, R1k] and [L2k, R2k] be the
translated suffix ranges in GSTk, then the corresponding marked nodes can be
obtained in O(1) (as described in Lemma 3) using parenthesis encoding and
marked nodes information.

However, there is a challenge involved. We will need to maintain a score matrix
separately for each Any-One index. The total space thus exceeds O(nβ), so that
we will need to use a larger group size (roughly

√
log n times) to reduce the

total space back to O(nβ). Consequently, the time spent at any node Wk for
Check-Fringe operation could be O(

√
nk/β log1.5 n), and in the worst case, this

could lead to a total of O(
√

nk/β log2.5 n) time. Note that the log n blow-up in
the worst case comes from the fact that nk may remain nearly the same if we
go down one level in the wavelet tree. In order to achieve faster searching, we
use the weight-balanced wavelet tree (WBT) instead, so that we can ensure that
nk is getting reduced exponentially as we traverse down in the tree. Further, we
choose a separate blocking factor gk = 2−δk/2

√
(n log n/β) for each bit-vector Bk

at the node Wk with depth δk. In summary, our index consists of the following
components.

1. GST: O(n) space;
2. WBT: O(

∑
|di| log(n/|di|) + n) + o(n log |D|) = O(n log |D|) bits of space;

3. Parenthesis encodings of GSTk’s: It consists of the encodings for GSTk (4nk

bits: suffix tree of a text of length nk contains at the max 2nk −1 nodes) and
for the marked nodes Ek (2nk bits). Hence the total space is O(

∑
k nk) =

O(size of WBT )= O(n log |D|) bits;
4. Score matrices: The space for score matrix Mk associated with the Any-One

index at Wk is O(n2
k/g2

k). By Lemma 1, nk ≤ 4n/2δk . Now, since gk is set to
2−δk/2

√
(n log n/β), Mk takes O(2−δknβ/ logn) space. The number of nodes

at a depth i is almost 2i. So the total space taken by all score matrices can
be bounded as O(

∑
k(nk/gk)2) =

∑log n
i=0 2i(2−inβ/ log n) = O(nβ).

Lemma 5. The total space for the above index is O(nβ) words. ��

4.1 Query Answering

The query consists of input patterns P1 and P2 and a parameter K. First we
search for these patterns in GST and find their corresponding suffix ranges.
Once we get these ranges, we do not need to use the GST any more. Starting
from the root node in the weight-balanced wavelet tree, we use the parenthesis
encodings to find the marked ancestors u∗ and v∗, and check the score matrix
entry. If the score matrix entry satisfies the threshold condition (i.e., M(u∗, v∗) =
maxi{fiu∗ +fiv∗} ≥ K for K-mine, and M(u∗, v∗) = mini{mindisti(P ∗

1 , P ∗
2 )} ≤

K for K-repeats), we translate both these ranges into the child nodes of the WBT
and continue the procedure recursively until we reach a node which represents
a single document. This document is listed as a valid output. During this WBT
traversal, whenever the threshold condition is not satisfied at some node, we do
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Check-Fringe operations and we will not traverse further down in its sub-tree.
In summary, we have the following theorem.

Theorem 1. We can design an O(nβ) space index for answering K-mine or
K-repeats queries (on two patterns) in O(|P1| + |P2| + t log n +

√
(nt/β) log2 n)

time, where t is the number of outputs and β is a tunable parameter.

Proof sketch: The query time mainly consists of the time for tree traversal, the
time for the Check-Fringe operations, and the O(|P1| + |P2|) time for the initial
search in GST. For any leaf node which produces a valid output, we may have
checked its sibling node (which can be a leaf), so that the number of leaf nodes
visited can be at the most 2t. Since the height of the tree is O(log n), the to-
tal number of nodes visited (tree traversal time) is O(t log n). During the tree
traversal, if we perform Check-Fringe operation at a node, we do not traverse
further down from that node. Hence the number of such nodes where we per-
form Check-Fringe operations can be bounded by O(t log n). Here if we ignore
all the nodes in WBT which were not visited, it can be viewed as a binary tree
Δ such that all the nodes in WBT where we performed Check-Fringe operations
become a leaf node in Δ. The number of Check-Fringe operations at a leaf �
(in Δ at a depth depth(�)) is O(2−depth(�)/2

√
n logn/β) (which is the block-

ing factor of the GSTk corresponding to that node). Hence the total number
for Check-Fringe operations can be bounded as O(

∑
� 2−depth(�)/2

√
n log n/β).

We have
∑

� 2−depth(�)/2 ≤
√

(
∑

� 12)(
∑

� 2−depth(�)) using Cauchy-Schwarz’s in-

equality3 and for any binary tree
∑

� 2−depth(�) ≤ 1 according to Kraft’s in-
equality. In our case

∑
� 12 = O(t log n) and time per Check-Fringe operation is

O(log n). Therefore the total time for Check-Fringe operations can be bounded
by O(

√
(nt/β) log2 n). ��

In the document listing problem the score is just a binary (YES or NO) and
we do not store the document id, hence we choose a smaller blocking factor
(gk = 2−δk/2

√
n/β) which improves the query time to O(|P1| + |P2| + t log n +√

(nt/β) log3/2 n).

5 Top-K Queries

For the sake of similicity, assume all top-K answers are coming from leaf
nodes(ignore fringe leaves for now) in WBT. Those K leaves can be found out
in O(K log2 n) time as follows. First we find the leaf (say �1)corresponding to
the top-1 score, by greedly following the branch with highest score matrix entry.
Note that we travel O(log n) nodes to reach this leaf node. In order to find the
leaf(�2) corresponding to top-2, we insert all the nodes (along with the score),
which are the siblings of nodes in the path(�1) into a max-heap. Then we do an
extract-max operation to find the top-2 score and we traverse further down from

3
∑n

i=1 xiyi ≤
√∑n

i=1 x2
i

√∑n
i=1 y2

i .
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that sibling node greedily to reach �2. We do this procedure K times (which
includes O(K log n) insert and K extract-max operations). Hence the total time
is O(K log2 n).

Now we need to check the fringe leaves which we have ignored before. Using
similar analysis as in section 5, this can be performed in O(

√
nK/β log2 n) time.

For retrieving the top-K answers, we sort all the answers from fringe leaves and
the K answers from leaf nodes together and retrieve the Top-K highest scored
(unique) documents.

Theorem 2. We can design an O(nβ) space index for answering top-K version
of the document retrieval queries (on two patterns) in O(|P1|+ |P2|+K log2 n+√

(nK/β) log2 n) time, where β is a tunable parameter. ��

6 Generalization to Multi-pattern Queries

Finally, we show how to extend our indexes to handle multi-pattern queries
where query consists of m patterns P1, P2, ..., Pm. Similar to our two-pattern
index, we maintain a generalized suffix tree of all documents and a wavelet
tree over the document array. Since the score of a particular document depends
upon m patterns, we use an m-dimensional score matrix. In order to maintain
space bounds we choose the blocking factor gk = Õ(2−δk(1−1/m)n1−1/mβ−1/m).
Therefore the number of marked nodes corresponding to GSTk is O(nk/gk) =
Õ(2−δknβ)1/m and the size of the score matrix Mk = Õ((n/gk)m)=Õ(2−δknβ).
By carrying out similar analysis as before (except we use Hölder’s inequality4

instead of Cauchy-Schwarz’s inequality), we obtain the following Theorem.

Theorem 3. For multi-pattern queries, document listing, K-mine, and K-
repeats problems can be answered in O(

∑m
i=1 |Pi|) + Õ(t + (t/β)1/mn1−1/m) and

Top-K queries in O(
∑m

i=1 |Pi|)+ Õ(K +(K/β)1/mn1−1/m) time by maintaining
an O(nβ)-space index. ��

Note that the space requirement of our index can be reduced by using a Com-
pressed Suffix Array [7,5] instead of GST and by tuning the score matrix size
to o(n). It still remains an open question if a fully succinct space bound (i.e.,
without O(n log |D|) bits term of WBT size) can be achieved for these problems.
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Abstract. Colored range queries are a well-studied topic in computa-
tional geometry and database research that, in the past decade, have
found exciting applications in information retrieval. In this paper we give
improved time and space bounds for three important one-dimensional
colored range queries — colored range listing, colored range top-k queries
and colored range counting — and, thus, new bounds for various docu-
ment retrieval problems on general collections of sequences. Specifically,
we first describe a framework including almost all recent results on col-
ored range listing and document listing, which suggests new combina-
tions of data structures for these problems. For example, we give the
fastest compressed data structures for colored range listing and docu-
ment listing, and an efficient data structure for document listing whose
size is bounded in terms of the high-order entropies of the library of doc-
uments. We then show how (approximate) colored top-k queries can be
reduced to (approximate) range-mode queries on subsequences, yielding
the first efficient data structure for this problem. Finally, we show how
a modified wavelet tree can support colored range counting in logarith-
mic time and space that is succinct whenever the number of colors is
superpolylogarithmic in the length of the sequence.

1 Introduction

A range query on a sequence S[1, n] of elements in [1, σ] takes as arguments two
indices i and j and returns information about S[i, j]. This information could
be, for example, the minimum or maximum value in S[i, j] [12], the element
with a specified rank in sorted order [15] (e.g., the median [7]), the mode [17], a
complete list of the distinct elements [31], the frequencies of the elements [35],
a list of the k most frequent elements for a given k [20], or the number of dis-
tinct elements [6]. In this paper, motivated by problems in document retrieval,
we consider the latter three kinds of problems, which are often referred to as
“colored” range queries: colored range listing (with or without color frequen-
cies), colored range top-k queries, and colored range counting. These have been
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associated, respectively, to very relevant document retrieval queries on general
texts [31,35,37,20,15,12,9]: listing the documents where a pattern appears (possi-
bly computing term frequencies), finding the most relevant documents to a query
(under a tf × idf scheme, for example), and computing document frequencies.
Such techniques have been shown to be competitive [9], even beating classical
inverted indexes on natural-language texts.

In Section 2 we describe a framework that includes almost all recent results on
colored range listing and the related problem of document listing. This frame-
work suggests new combinations of data structures that yield interesting new
bounds, including the fastest compressed data structures for colored range list-
ing and an efficient data structure for document listing whose space occupancy
is bounded in terms of the higher-order entropies of the library of documents.
In Section 3 we describe what seems to be the first data structure to support
efficient, general approximate colored range top-k queries. By “approximate” we
mean that we are given an ε > 0 with S and we guarantee that no element
we do not list occurs more than 1 + ε times more often in the range than any
element we list. Finally, in Section 4 we describe a new solution to the col-
ored range counting problem, reducing the space bound from O(n log n) bits
to n logσ + O(n log log n) bits without changing the O(log n) time bound. The
improvements for colored range queries we present in Sections 3 and 4 are not
competitive with the state of the art when mapped to the more specific problem
of document retrieval. However, as we discuss in Section 5, data structures for
general colored range queries can be applied to information retrieval scenarios
that specialized document-retrieval data structures cannot.

2 Listing

Related work. The problem of colored range listing (CRL) is to preprocess a
given sequence S[1, n] over [1, σ] such that later, given a range S[i..j], we can
quickly list all the distinct elements (“colors”) in that range. Almost all recent
data structures for CRL (and the related problem of document listing) are based
on a key idea by Muthukrishnan [31] (see [23] for older work). He defined C[1, n]
to be the array in which C[j] is the largest value i < j such that S[i] = S[j], or 0
if there is no such i, so that S[�] is the first occurrence of a color in S[i..j] if and
only if i ≤ � ≤ j and C[�] < i. He showed how, if we store C in an O(n logn)-bit
data structure due to Gabow, Bentley and Tarjan [14] that supports O(1)-time
range-minimum queries (RMQs), we can quickly find all the values in C[i..j] less
than i and, thus, list all the colors in S[i..j]. To do this, we find the minimum
value C[�] in C[i..j]; if it is less than i, then we output S[�] and recurse on
S[i..�− 1] and S[�+1..j]. Altogether, Muthukrishnan’s CRL data structure uses
O(n logn) bits and O(1) time per color reported.

Muthukrishnan gave his solution to the CRL problem as part of a solution
to the problem of document listing (DL), in which we are given a library of
documents and asked to preprocess them such that later, given a pattern, we can
quickly list all the distinct documents containing that pattern (see [29] for older
work). Let T [1, n] be the concatenation of the D documents. Muthukrishnan
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defined the array E[1, n] such that E[i] is the document containing the starting
position of the lexicographically ith suffix in T . If we store a suffix tree [38,1] for
T then, given a pattern, we can quickly find the lexicographic ranks i and j of
the first and last suffixes starting with the pattern. This is equivalent to finding
the range A[i..j] in the suffix array [27] A for T that lists the starting positions
of all the suffixes of T that start with the pattern. Once we know i and j, we can
implement a DL query as a CRL query on E[i..j]. Altogether, Muthukrishnan’s
DL data structure uses O(n log n) bits and O(m + ndoc) time to list the ndoc
documents containing a pattern of length m.

Sadakane [35] gave a slower but smaller version of Muthukrishnan’s DL data
structure, in which he replaced Gabow, Bentley and Tarjan’s data structure by
a 4n + o(n) bit index that, given a range C[i..j], in O(1) time and without
consulting C returns the position of the minimum value in that range (but not
the value itself). He also replaced the suffix tree by a compressed suffix array
(CSA) for T and showed how the CSA and a bit vector V [1, n] can simulate
access to E: 1s in V mark the positions in T where the documents start; then,
for 1 ≤ � ≤ n, E[�] = rank1(V, CSA[�]), where rank1(V, r) is the number of 1s in
V [1..r]. It takes D log(n/D)+O(D)+o(n) bits to store V such that a rank query
takes O(1) time [33]. Sadakane did not store C at all so, when listing the distinct
documents containing a pattern, he used a D-bit string to mark which documents
he had already listed. He used a recursion similar to Muthukrishnan’s, stopping
whenever it finds a document already reported.

Altogether, Sadakane’s DL data structure uses |CSA| + 4n + D log(n/D) +
O(D) + o(n) bits and O(search(m) + ndoc · lookup(n)) time, where search(m) is
the time to find the range CSA[i..j] containing the starting positions of suffixes
beginning with the pattern and lookup(n) is the time to compute CSA[�] for any
�. (There are a number of CSA implementations, allowing various space/time
tradeoffs [32].) He used |CSA| + 4n + o(n) additional bits for data structures to
compute the pattern’s frequency in each document, increasing the time bound
to O(search(m) + ndoc(lookup(n) + log log ndoc)) (assuming lookup(n) is also the
time to find CSA−1[�], where CSA−1 is the inverse permutation).

Välimäki and Mäkinen [37] gave an alternative slower-but-smaller version of
Muthukrishnan’s CRL data structure, in which they used a 2n + o(n) bit, O(1)
time RMQ succinct index due to Fischer and Heun [13] that requires access to C.
Välimäki and Mäkinen showed how access to C can be implemented by rank and
select queries on S; specifically, for 1 ≤ � ≤ n, C[�] = selectS[�](S, rankS[�](S, �)−
1), where selecta(S, r) is the position of the rth occurrence of a in S. Välimäki and
Mäkinen stored S in a multiary wavelet tree [10], which takes nH0(S)+o(n) log σ
bits and O(1 + log σ/ log log n) time; when σ is polylogarithmic in n, it takes
nH0(S) + o(n) bits and O(1) time. The 0-th order empirical entropy H0(S) =∑

a
occ(a,S)

n log n
occ(a,S) , where occ(a, S) is the number of times element a occurs

in S, is the Shannon entropy of the distribution of elements in S.
Altogether, their CRL data structure takes nH0(S)+ 2n+ o(n) log σ bits and

O(1 + log σ/ log log n) time per reported color. Combining this data structure
with a CSA yields a DL data structure that takes |CSA|+n log D+2n+o(n) log D
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bits and O(search(m) + ndoc(1 + log D/ log log n)) time. They also showed how
to compute the pattern’s frequency in a document d using two rank queries on E,
rankd(E, j) − rankd(E, i − 1). Since multiary wavelet trees support rank queries
in the same time as accesses, it follows that reporting the pattern’s frequency
in all the documents does not affect their time and space bounds. Finally, they
noted that, using one select query per occurrence, they can list the positions of
the pattern’s occurrences in a specified document.

Gagie, Puglisi and Turpin [15] showed that a binary wavelet tree [18] can be
used to compute range quantile queries on S in O(log σ) time, and that these
queries can be used to enumerate the distinct elements in S[i..j], eliminating
the need for RMQs. A binary wavelet tree for S takes nH0(S) + o(n) log σ bits
and supports access, rank and select in O(log σ) time; therefore, by itself it is a
CRL data structure that takes O(log σ) time per reported element. Combining
a wavelet tree for E with a CSA for T , we obtain a DL data structure that takes
|CSA| + n log D + o(n) log D bits and O(search(m) + ndoc log D) time.

Hon, Shah and Vitter [20] described a solution to DL similar to Sadakane’s
but removing the Θ(n)-bit space term. They pack logε n consecutive cells of
C into a block and build the RMQ data structure on the block minima (so it
takes O(n/ logε n) bits of space), and tries to report (avoiding repetitions) all
the documents in the block that holds the minimum. Their whole data struc-
ture takes |CSA| + D log(n/D) + O(D) + o(n) bits and answers queries in time
O(search(m) + ndoc logε n · lookup(n)), for any constant ε > 0.

They can also return the number of times the pattern occurs in any docu-
ment by using, like Sadakane, one CSAd local to each document d. These add
up to other |CSA| extra bits. To find out how many times document d = E[�],
i ≤ � ≤ j, appears in E[i..j], it maps � to position p = CSA[�] − select1(V, d) + 1
within document d, and then to �′ = CSA−1

d [p]. This is the first lexicographic
occurrence of the pattern in CSAd. The last occurrence is found by an expo-
nential search and then binary search on CSAd[�′..], for the largest c such that
CSA−1[CSAd[�′ + c] + select1(V, d) − 1)] ≤ j. Then the answer, c + 1, is obtained
in time O(lookup(n) log c) = O(lookup(n) log n).
New tradeoffs. All the previous solutions have essentially the same ingredients:
for CRL, access to S, distinct color enumeration on S (implemented via RMQs
on C or range quantile queries on S) and, to count the number of times each
color occurs, rank on S; for DL, a suffix tree or CSA for T , access to E, distinct
document enumeration on E and, to report the pattern’s frequency in each
document, rank on E. Solutions for CRL can be used for DL with the addition
of a CSA for T , setting S = E and σ = D. Recall that Sadakane’s [35] and Hon,
Shah and Vitter’s [20] solutions for DL implement access to E using a CSA and
bit vector V on T , so they cannot be used for general CRL.

Our main contribution in this section is the observation that, using new data
structures for access, color enumeration and rank, we can obtain interesting new
bounds for both CRL and DL. This is formalized in the next theorem.

Theorem 1. Suppose we are given a sequence S[1, n] over [1, σ] and we store any
data structure supporting access on S in time tacc and any structure supporting



Colored Range Queries and Document Retrieval 71

distinct enumeration in a range of S in time tenum per element (and any structure
supporting rank on S in time trank if computing frequencies is desired). Then later,
given i and j, we can list the distinct elements in S[i..j] in time O(tacc + tenum) per
reported element, plus O(trank) to list its frequency in S[i..j].

Corollary 1. Given a concatenation T [1, n] of D documents, we can store either

– the CSA for T and data structures supporting access, enumeration and rank
on the corresponding array E[1, n] in times tacc, tenum and trank, or

– the CSA for T , a bit vector occupying D log(n/D) + O(D) + o(n) bits, and
data structures supporting enumeration and rank on E as above,

such that, given a pattern of length m, we can list the distinct documents con-
taining that pattern in time O(search(m)) plus O(tacc + tenum + trank) per reported
document, where tacc = lookup(n) in the second case and trank is required only in
order to list the frequencies of the documents.

A selection of these data structures is shown in Table 1. If we choose a set of rows
covering support for access and enumeration (and rank) then we can answer CRL
queries (and return the frequency of each color). The space bound is the sum of
the space bounds and the time bound per reported color is O(tacc + tenum + trank),
the latter term for computing frequencies. For example,

2+9: is Välimäki and Mäkinen’s scheme [37].
1: is the scheme by Gagie, Puglisi, and Turpin [15].
3+9+10: combining Ferragina and Venturini’s [11] data structure with Fis-

cher’s [12] succinct index for RMQ and Grossi, Orlandi and Raman’s [19]
succinct index for rank gives a solution for CRL that takes nHk(S) + 2n +
o(n) log σ + n o(log σ) bits and O(1) time per reported color, matching the
time of Muthukrishnan’s O(n logn)-bit space solution [31]. The k-th order
empirical entropy Hk(S) measures the compressibility of S when we use
contexts of length k; see [28] for details. The frequency of any color can be
obtained in time O(log log σ).

6+9: is similar to the above but the n o(log σ) space term is avoided, as the
structure by Barbay, Gagie, Navarro and Nekrich [4] computes rank as well.
This becomes the least-space reported solution to CRL, listing in O(1) time.

(4 or 5)+9: combining Barbay et al.’s [4] access and rank data structure
with Fischer’s [12] succinct index for RMQ gives a solution for CRL that
takes nH0(S) + 2n + o(n)(H0(S) + 1) bits and O(log log σ) bits per re-
ported color and its frequency (variant 4), which is the fastest compressed
solution when we want all the frequencies; or O(1) per reported color and
O(log log σ log log log σ) per reported frequency (variant 5), which trades fre-
quency reporting time for constant-time listing.

[35]+9: replacing Sadakane’s [35] RMQ data structure with the one by Fis-
cher [12] improves Sadakane’s space bound by 2n bits.

[20]+10: replacing Hon, Shah and Vitter’s [20] CSAd structures by that of Grossi
et al. [19] speeds up counting document frequencies (here tacc = lookup(n)).
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Table 1. Space and time bounds for some data structures supporting operations on
S[1, n] over [1, σ]. The O(σ log n) extra bits of wavelet trees [18,10] can be avoided [26]
so we have not included it. The space bound in rows 3 and 6 holds for k = o(logσ n).
In rows 7 and 8, g is the size (in bits) of a given context-free grammar generating S
and only S and α is the inverse Ackermann function. The succinct index for RMQ in
row 9 does not need access to the underlying data (i.e., C), but the succinct index for
rank in row 10 does (i.e., S), hence the time of the latter depends on tacc. Due to space
constraints, here we write log[2] and log[3] for log log and log log log.

row source space (in bits) tacc tenum trank

1 [18,15] nH0(S) + o(n) log σ O(log σ) O(log σ) O(log σ)

2 [10, Cor. 3.3] nH0(S) + o(n) log σ O
(
1 + log σ

log[2] n

)
O
(
1 + log σ

log[2] n

)
3 [11] nHk(S) + o(n) log σ O(1)

4 [4, Thm. 1] nH0(S) + o(n)(H0(S) + 1) O
(
log[2] σ

)
O
(
log[2] σ

)
5 [4, Thm. 1] nH0(S) + o(n)(H0(S) + 1) O(1) O

(
log[2] σ log[3] σ

)
6 [4, Thm. 2] nHk(S) + o(n) log σ O(1) O

(
(log[2] σ)2 log[3] σ

)
7 [5, Thm. 1] O(g α(g)) O(log n)

8 [5, Thm. 1] O(g) O
(
log n log[2] n

)
9 [12, Thm. 1] 2n + o(n) O(1)

10 [19, Thm. 5(a)] n o(log σ) O
(
tacc log[2] σ

)

The |CSA| space is exchanged by n o(log d) bits, which can be less or more.
We can then also discard the D-bit string marking documents used by both
solutions [35,20] and replace it with rank queries on E.

(7 or 8)+9+10: combines Bille, Landau and Weimann’s [5] grammar-based
data structure for access, Fischer’s [12] succinct index for RMQ, and Grossi
et al.’s [19] succinct index for rank. González and Navarro [16] showed how
to build a grammar generating an array that, together with some other small
data structures, gives access to the suffix array (SA) A. Building Bille, Lan-
dau and Weimann’s data structure for this grammar, we obtain a O(log n)-
time data structure for DL whose size is bounded in terms of the high-order
entropies of the library of documents. This is described next.

Theorem 2. Given a concatenation T [1, n] of D documents, we can store T in

|CSA| + 2n + o(n) + n o(log D)+

O
((

n min(Hk(T ), 1) + D
)
log

(
1

min(Hk(T ), 1) + D/n

)
α(n) log n

)

bits, for any k ≤ α logτ n, constant 0 < α < 1 and τ the size of the alphabet of
T . Then given a pattern of length m, we can list the distinct documents contain-
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ing that pattern in time O(search(m)) plus O(log n) to list each document, plus
O(log n log log D) to give its frequency.

Proof. González and Navarro’s algorithm takes advantage of the so-called runs
of the SA, that is, areas A[i..i + �] such that there is some other area A[j..j + �]
where A[j +k] = A[i+k]+1 for all 0 ≤ k ≤ �. Let R be the number of runs with
which the SA can be covered; it is known that R ≤ min(n, nHk(T )+σk) for any
k [25]. González and Navarro represent the SA differentially so that these areas
become true repetitions, and use a grammar-based compression algorithm that
represents A using at most R log(n/R) rules. We note that, in E, those SA runs
become identical areas E[i..i + �] = E[j..j + �] except for at most D cells where
the document number can change when we advance one text position. It follows
that, by applying the same compression algorithm [16] to E we obtain at most
(R + D) log(n/(R + D)) rules and hence the space given in the theorem. ��

As a final note applying only to document collections, Sadakane’s CSA [34]
essentially represents a function Ψ such that A[Ψ(i)] = A[i] + 1, which is stored
in compressed form and any value computed in constant time. Thus one advances
virtually in the text by successively applying Ψ . Now assume we sample E with
a step r such that, for any i, E[Ψ j(i)] is sampled for some 0 ≤ j < r. Then one
computes any E[i] value in time O(r) by following Ψ until hitting a sampled
entry, whose value will be the same as E[i] if we also sample every document
end in the text collection. The space is O((n/r) log r)+ (n/r) logD for a bitmap
marking the sampled cells and an array with the sampled values, respectively.
For example, using r = log D yields access to E (though not rank nor select on
it) in the same time of a binary wavelet tree, within bit space n+o(n). Depending
on the relation between n and D, this can be an interesting alternative to using
lookup and marking the document beginnings [35].

3 Top-k Queries

Improving the current-best solution for documents. Recently, Hon, Shah
and Wu [21] described a data structure that stores a library T of D documents of
total length n in O

(
n log2 n

)
bits such that later, given a pattern of length m and

an integer k ≥ 1, we can find the k documents that contain that pattern most
frequently, in O(m + log n log log n + k) time. We call this the document top-k
problem (DTK). Hon, Shah and Vitter [20] gave solutions for DTK that store
T in O(n log n) bits and answer queries in O(m + k log k) time, or in 2|CSA| +
o(n) + D log(n/D) + O(D) bits and O

(
search(m) + k log3+ε n · lookup(n)

)
time.

The last solution consists of a tree τk built for each k power of 2. For τk they
divide E into blocks of size z = k log2+ε n, and τk consists of the suffix tree nodes
that are lowest common ancestors (lca) of end points of blocks, and transitively
all the lcas of pairs of those nodes. At each node, τk stores the k most frequent
documents within the whole blocks it contains, and their frequencies. Thus each
τk requires O((n/z)k log n) = O

(
n/ log1+ε n

)
bits, and all the trees together add

up to O(n/ logε n) bits. At query time, to find the top-k documents in E[i..j],
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they increase k to the next power of 2 and find the highest node of τk whose
range [i′..j′] is contained in [i..j]. They show that i′ − i ≤ z and j − j′ ≤ z by
the lca properties. Then the query is answered by considering the k candidates
given by τk and the O(z) further candidates found at positions of E[i..i′−1] and
E[j′ + 1..j], for each of which they compute the frequency. The total time, con-
sidering priority queue operations, is O(search(m) + z(trank + log k) + k log k) =
O
(
search(m) + k log3+ε n · lookup(n)

)
. This time bound can be improved to

O
(
search(m) + k log D log(D/k) log1+ε n · lookup(n)

)
by noticing that (a) one

needs only O(log D) powers of 2 for k since k ≤ D; (b) one can store the top-k
elements in the τk trees and not their frequency. The k frequencies can be com-
puted at query time without changing the time complexity since k = o(z). Thus
the k documents out of D can be stored in increasing order and as gamma-
encoded differences, taking O(k log(D/k)) bits. Therefore we can use smaller
blocks of size z = k log D log(D/k) logε n, which are processed faster, and still
have O(n/ logε n) = o(n) space for the structure.

In addition, as shown in Section 2, by replacing the |CSA| bits of their solu-
tion for computing frequencies, by Grossi et al.’s [19] succinct index for rank, we
achieve a new space bound of |CSA| + o(n) + D log(n/D) + O(D) + n o(log D)
bits, which can be better or worse than before, but the time is reduced
to O(search(m) + k log D log(D/k) logε n · lookup(n)), for any ε (log-logarithmic
terms disappear by adjusting ε).

An approximate solution to the general problem. We now give a solution
to the approximate colored range top-k problem (CRTK), which asks us to
preprocess a given sequence S such that later, given a range S[i..j] and an
integer k ≥ 1, we can return an approximate list of the k elements (“colors”) that
occur most frequently in that range. We do not know of any previous efficient
solutions to this problem, although finding the k most frequent or important
items in various data sets and models is a well studied problem and there has
been work on interesting special cases (see, e.g., [22,24]).

Greve, Jørgensen, Larsen and Truelsen [17] recently gave a data structure
that, for any ε > 0, stores S in O((n/ε) logn) bits such that we can find an
element such that no element is more than 1 + ε times more frequent in S[i, j],
in O(log(1/ε)) time. Thus, their data structure solves the approximate CRTK
problem for k = 1, which is called the approximate range-mode problem. We can
assume their data structure also returns the frequency of the approximate mode
in S[i..j], since adding a rank data structure for S allows us to compute this and
does not change their space bound. We show how to use their data structure as
a building block to store S in O((n/ε)(H0(S) + 1) logn) bits such that, given
an integer k, we can approximately list the k most common elements and their
frequencies in O(k log σ log(1/ε)) time.

We first build a binary wavelet tree for S [18]. This is a balanced tree where each
node represents a range of [1, σ]: the root represents the full range, the leaves the
individual symbols, and the children of a node represent the left and right halves
of the node’s interval. For each node v, let Sv be the subsequence of S consisting
of characters labelling the leaves in v’s subtree. The original wavelet tree does not



Colored Range Queries and Document Retrieval 75

store Sv, but just a bitmap Bv of length |Sv| telling whether each Sv[i] went to the
left or right child. Rank and select over those bitmaps allow accessing any S[i], as
well as computing ranka(S, i) and selecta(S, i), in time O(log σ), and the overall
space is n log σ(1 + o(1)). It can also track any range S[i..j] down to any node [26].

Here we do store each subsequence Sv in an instance of Greve et al.’s approx-
imate range-mode data structure. For now, assume [i, j] = [1, n] and that Greve
et al.’s data structure returns the exact mode, rather than an approximation.
Notice that, if a1, . . . , ak′ are the k′ most frequent elements and v is an ancestor
of the leaf labelled ak′ but not of those labelled a1, . . . , ak′−1, then ak′ is the
mode in Sv. Let V be the set of ancestors of a1, . . . , ak′−1 and let V ′ be the set
of nodes whose siblings are in V but who are not in V themselves; V ′ contains
the root of the tree if V is empty. We can find ak′ by finding the mode of Sv for
each v ∈ V ′, finding their frequencies in S, and taking the most frequent.

We keep the modes for each v ∈ V ′ in a priority queue, ordered by their
frequencies and with the corresponding nodes of the wavelet tree as auxiliary
data. Notice ak′ is the head of the queue, so we can find and output it in O(1)
time; let v be the corresponding node, i.e., the node in V ′ such that the mode
of Sv is ak′ . To update the queue, we delete ak′ , perform range-mode queries on
the siblings of nodes on the path from v to the leaf labelled ak′ , and add the
modes to the queue. There are always O(k log σ) nodes in the queue (the tree is of
height O(log σ)) so, if we use a priority queue allowing O(log(k log σ)) = O(log σ)
time deletion and O(1) time insertion [8], then we can find the k most frequent
elements in S in O(k log σ log(1/ε)) time. We can deal with general i and j by
using the wavelet tree to compute the appropriate range in each subsequence
[26]. As for the approximation, it is clear that, whenever we output an element,
none of the elements not output yet can be more than 1+ε times more frequent.

If we use a Huffman-shaped wavelet tree, then calculation shows that our space
usage is O((n/ε)(H0(S) + 1) log n) bits. However, since a Huffman tree can be
very deep (height n − 1 for a very skewed distribution), this would compromise
our time bound. Therefore, we use a an O(log σ)-restricted Huffman tree [30],
which yields both the space and time bounds we want.

Theorem 3. Given a sequence S[1, n] over an alphabet of size σ and a constant
ε > 0, we can store S in O((n/ε)(H0(S) + 1) log n) bits such that, given i, j and
k, we can list k distinct elements such that no element is more than 1 + ε times
more frequent in S[i..j] than any of the ones we list, in O(k log σ log(1/ε)) time.

This (1+ ε)-approximation makes sense in information retrieval scenarios, where
top-k queries are understood to be just approximations to the ideal answer.

Corollary 2. Given a set of D documents of total length n and a constant ε > 0,
we can store them in O((n/ε) log n logD) bits such that, given a pattern of length
m and k, we can list k distinct documents such that no document contains that
pattern more than 1 + ε times as often as any of the ones we list, in a total of
O(m + k log D log(1/ε)) time.

Although Corollary 2 is weaker than Hon, Shah and Vitter’s uncompressed re-
sult, our approach applies to the general colored range query problem, and may
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be faster than what the upper bound suggests. For example, if the documents are
webpages sorted lexicographically by URL, then it is more likely that interesting
patterns will occur often in clusters of documents than widely spread out [36,39].
In this case, leaves in a balanced wavelet tree for E that are labelled with the k
distinct documents that contain the pattern most often, are likely to share many
ancestors; if so, our data structure can speed up to O(m + k log k log(1/ε)).

The K-mining problem. Muthukrishnan [31] defined (document) K-mining
(DKM) as the problem of finding all the documents in the library that contain
a given pattern at least K times. He gave an O

(
n log2 n

)
-bit data structure

that, given K and a pattern of length m, answers queries in O(m) time plus
O(1) time per reported document. Hon, Shah and Wu [21] noted that we can
use binary search with a DTK data structure to solve DKM, with an O(log n)
slowdown for the queries. They then showed how we can use an O

(
n log2 n

)
-bit

data structure to find the largest k such that k documents contain the pattern
K times, in O(search(m) + log n log log n) time. Hon, Shah and Vitter [20] gave
an O(n log n)-bit data structure that answers K-mine queries in time O(m)
plus O(1) per reported document. They also showed how to improve the space
bound to 2|CSA| + o(n) + D log(n/D) bits at the cost of increasing the time
O
(
search(m) + k log3+ε n · lookup(n)

)
, which we can improve similarly as before.

Neither of these solutions applies to general colored range queries, however.
Since our CRTK data structure outputs elements in (approximately) non-

increasing order by frequency in the range, it also solves (approximately) the
natural generalization of DKM: i.e., the colored range K-mine (CRKM) problem,
which asks us to report all the elements that occur at least K times in S[i..j]. If
we query our data structure until the next element it would report occurs fewer
than (1 + ε)K times, then we use O(log σ log(1/ε)) time per reported element,
but we may miss some elements that occur between K and (1 + ε)K times.
Alternatively, if we query our data structure until the next element it would
report occurs fewer than K/(1 + ε) times, then we find all the elements that
occur at least K times, but we can bound our time only in terms of the number
of elements that occur at least K/(1 + ε) times.

4 Counting

Given a wavelet tree for the array C we described in Section 2, and positions i
and j, it is not difficult to count the number of values less than i in C[i..j] [26],
which is the number of distinct elements in S[i..j] [31]. The wavelet tree for C
takes O(n log n) bits and does this counting in time proportional to its height,
O(log n). This already matches the best known solution, due to Bozanis, Kitsios,
Makris and Tsakalidis [6]. In the rest of this section we show how to reduce the
space bound to n log σ + O(n log log n) bits.

Theorem 4. We can represent a sequence S[1, n] over alphabet [1, σ] in n log σ+
O(n log log n) bits of space so as to count the number of distinct elements in any
interval S[i..j] in time O(log n).
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Proof. Our structure represents C[1, n] using a wavelet tree. We have already
explained how to attain the given time bound. The remaining problem is that
the wavelet tree for C requires n log n(1 + o(1)) bits. We reduce the space to
n log σ + O(n log log n) as follows. Note that each symbol c ∈ [1, σ] that appears
at positions c1 < c2 < . . . < cnc , S[c1] = S[c2] = . . . = S[cnc ] = c, induces a
chain in C of the form C[c1] = 0, C[c2] = c1, C[c3] = c2, . . ., C[cnc ] = cnc−1. Now
consider the middle point n/2 of C. For any c, let us call mc the last value such
that cmc < n/2. Then for any c and any k ≤ mc it holds C[ck] < n/2, and for any
k > mc it holds C[ck] ≥ n/2. Thus C[cmc+1 ] = cmc ≥ n/2 and C[cmc ] < n/2,
and i = mc is the only value satisfying this for c. Thus all the sequence values are
C[i] < n/2 for i < n/2. For i ≥ n/2 there are at most σ positions i = mc ≥ n/2
such that C[mc] < n/2, and all the rest are C[i] ≥ n/2. Thus there are at most
σ positions in C where C[i] < n/2 and C[i + 1] ≥ n/2, and at most σ positions
where C[i] ≥ n/2 and C[i+1] < n/2. Since the root bitmap Bv satisfies Bv[i] = 0
iff C[i] < n/2, there are at most σ transitions from 0 to 1 in Bv, and at most σ
transitions from 1 to 0. Both children of v may contain the σ subsequences and
thus each may contain up to σ transitions again. Thus, there are at most 2dσ 0/1
and 1/0 transitions among all the bitmaps at depth d of the wavelet tree.

For d ≥ log(n/σ) this upper bound is useless, so we may assume that bitmaps
at depths log(n/σ) to log n − 1 are incompressible. These add up to n(log n −
log(n/σ)) = n logσ bits, plus o(n log σ) to provide rank and select capabilities
to those bitmaps. For smaller d, we introduce a compression scheme. Consider
the concatenation Bd of all the bitmaps at depth d. Then Bd contains at most
2dσ runs of 0s and 2dσ runs of 1s. We represent Bd using two sparse bitmaps.
A bitmap Rd[1, n] will mark with a 1 the beginning of each run of 0s or 1s. Let
o1, o2, . . . the lengths of the runs of 1s. A second bitmap Od[1, rank1(Bd, n)] will
have a 1 at positions 1, 1+o1, 1+o1+o2, . . .. Then rank1(Bd, i) can be computed
as follows. First we compute x = rank1(Rd, i). Because C[i] < i, the first run of
Bd is a 0-run, thus if x is odd then i is within a 0-run and otherwise within a
1-run. If x is odd, then we must count the 1s in the first (x − 1)/2 1-runs of Bd,
that is, rank1(Bd, i) = select1(Od, (x + 1)/2) − 1. If, instead, x is even, then we
must count the 1s in the first x/2 − 1 1-runs and add the 1s in the current run.
This is rank1(B, di) = select1(Od, x/2) + i − select1(Rd, x).

We represent Rd with Raman et al.’s technique [33]. If Rd has m 1s, then
the representation takes m log n

m + O(m) + o(n) bits. At level d we have
m ≤ 2dσ, thus Rd requires at most 2dσ log n

2dσ
+ O

(
2dσ

)
+ o(n) bits (that

o(n) is O(n log log n/ logn)). Added over all the compressible levels we have∑log(n/σ)−1
d=0 2dσ log n

2dσ + O
(
2dσ

)
+ o(n) = O(n) + o(n log(n/σ)) .

Analogously, the Od bitmap takes O(n) + o(n log(n/σ)) bits. Added to the
incompressible levels, we have n log σ+o(n log n) bits of space, or more precisely,
n log σ + O(n log log n). The preprocessing time is the same as for a classical
wavelet tree over alphabet [0, n − 1]. ��

On the other hand, the array C can also provide access to S as follows. Sample
the tth occurrence of each color c, say at S[i] = c, in a bitmap B[1, n], that is
B[i] = 1, and store the samples at W [rank1(B, i)] = c. Then, we can find out
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any S[j] without storing S by repeatedly asking whether B[i] = 1, B[C[i]] = 1,
B[C[C[i]]] = 1, and so on until finding a sampled value, in time O(t log n). The
extra space is n + o(n) + O((n/t) log σ), so we can set t = O(logε n) for any
constant ε > 0 to make it n + o(n) log σ. Therefore, our representation replaces
S, as it can compute any S[i] in time O

(
log1+ε n

)
. Its space occupancy, n log σ+

o(n) log σ + O(n log log n), makes the representation succinct (i.e., |S|(1 + o(1))
bits) whenever σ is more than polylogarithmic in n.

Theorem 4, applied over sequence S = E, lets us compute document frequen-
cies for arbitrary patterns. Find the suffix array interval CSA[i..j] corresponding
to the pattern, and then count the different values in E[i..j]. For this particular
case, however, there is a better solution [35] using 2n + o(n) bits and constant
time, yet it does not generalize to colored range counting. On the other hand,
since our representation provides access to E in time tacc = O

(
log1+ε n

)
, it can

be regarded within the framework of Section 2.

5 Further Applications to Information Retrieval

We have presented new and efficient solutions for three natural colored range
queries: colored range listing, colored range top-k queries, and colored range
counting. Our solutions for colored range listing lead to the fastest compressed
data structures for that problem and for document listing; our (approximate)
solution for colored range top-k queries is, as far as we know, the first efficient
data structure for that problem; and our solution for colored range counting
reduces the space bound from O(n log n) bits to n log σ + O(n log log n) bits
while maintaining O(log n) query time. Although our solutions for colored range
top-k queries and colored range counting do not give improved bounds for the
corresponding document retrieval problems, our more general data structures
may find applications to other information retrieval scenarios beyond ranges
induced by searching for exact patterns in suffix trees or arrays.

A simple example of natural queries not fitting in the restricted model are
lexicographic range queries. Imagine we look for patterns lexicographically in
the range ["1969", "2010"] in documents; the result is a suffix array range that
does not correspond to any suffix tree node. In this case, existing techniques for
document retrieval based on suffix tree properties (such as for computing top-k
queries [20] and for computing document frequencies [35]) will not work. The
general techniques we have introduced in this article do.

Yet another scenario that is not captured by the suffix tree model is inverted
indices for natural language text (as opposed to the general texts addressed
in this paper) [3]. Consider that we store the list of documents where each
vocabulary word appears, consecutively according to the order of the words
in the vocabulary. If queries are simple words, then all the document retrieval
problems we have considered are easily solved by storing the documents of each
list ordered by decreasing term frequency. Yet, imagine we wish to provide also
the same functionality on stemmed searching, upon user request at query time.
One solution is to group together the vocabulary words sharing the same stem
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so that, while individual word queries can be handled as usual, stemmed queries
are handled by considering the concatenation of the lists of the words sharing
the same stem. Then we can regard the concatenation of all inverted lists as
the array E and use the general techniques developed in this paper to answer
various document queries on stems: Document listing and counting algorithms
apply verbatim, while those involving frequencies pose further challenges as each
entry in the inverted lists is weighted by the term frequency of the word in the
document. Other query operations, from case folding to thesauri expansion, can
also be reduced to a proper grouping of lists.

Finally, there are information retrieval scenarios completely different from
the text search framework. For example, colored range queries seem a natural
tool for query mining [2], where logs of queries posed to search engines are
recorded over periods of time, and then analyzed to discover trends in user
behavior. By considering that each different query is a color, we can find the
most popular queries or the number of distinct queries within any given time
period, among many other potential queries of interest, which could in turn
become new challenging colored range queries.
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vol. 5721, pp. 1–6. Springer, Heidelberg (2009)
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25. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing 12(1), 40–66 (2005)
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Abstract. We present a practical implementation of the first adap-
tive data structure for orthogonal range queries in 2D [Arroyuelo et al.,
ISAAC 2009]. The structure is static, requires only linear space for its
representation, and can even be made implicit. The running time for a
query is O(lg k lg n + min(k, m) lg n + m), where k is the number of non-
crossing monotonic chains in which we can partition the set of points,
and m is the size of the output. The space consumption of our imple-
mentation is 2n + o(n) words. The experimental results show that this
structure is competitive with the state of the art. We also present an
alternative construction algorithm for our structure, which in practice
outperforms the original proposal by orders of magnitude.

1 Introduction

Imagine that you are driving and would like to find a nearby gas station using
the Global Positioning System (GPS) in your car. You might instruct the GPS
to draw markers on the map to indicate gas stations. Internally, the GPS would
compute which gas stations are located within the rectangle shown on the screen.
Scenarios like the one just described are special because the set of elements being
queried do not change very often: you might update the database of your GPS
once every few months. In this paper, we will discuss a recent data structure
that is well suited for these kinds of scenarios.

Consider a set of two-dimensional points, P , where n = |P|. An Orthogonal
Range Query, R(x1, y1, x2, y2), where x1 ≤ x2 and y1 ≤ y2, corresponds to a
maximal subset A ⊆ P such that ∀(x, y) ∈ A, x1 ≤ x ≤ x2, y1 ≤ y ≤ y2. Many
solutions have been proposed for answering orthogonal range queries, such as:

– R-trees [11]: a tree decomposition of P , similar to B-trees, where a set of
nodes represents a set of (possibly overlapping) rectangles. The structure
takes linear space and its worst case searching time is O(n). However, in
practice they tend to perform better.

– Kd-trees [13]: recursively divide the d-dimensional space with hyperplanes.
In our case, d = 2, the kd-tree uses lines for dividing the set of points. As
with R-trees, kd-trees require linear space, but the query time improves to
O(

√
n + m), which is optimal for a structure that requires linear space [12].
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– Range trees [6]: a generalization of a binary search tree for multiple dimen-
sions. The query time of this structure is O(lg n + m) time (when combined
with fractional cascading [7]), but as a trade-off it requires O(n lg n) space.

In recent work [3], a static structure for orthogonal range queries was presented.
This structure achieves the same complexity as kd-trees in the worst case, but
has the advantage that it is adaptive: for easy data sets it can improve upon the
worst-case lower bound. We will call this structure u-chains as a shortened form
of untangled-chains.

The structure of the paper is organized as follows. First we present a more
detailed description of the u-chains structure. Then we describe the implemen-
tation decisions taken during the experimental setup. Finally we present the
experimental results and conclude about the work, pointing to interesting open
problems.

2 The U-Chains Structure

The u-chains structure is constructed by partitioning the set of points into mono-
tonic ascending and descending chains, where each point belongs to one and only
one chain.

The problem of splitting a two-dimensional point set into two classes (descend-
ing and ascending) so that we get the minimum number of monotonic chains is
NP-hard [8]. The maximum number of chains we can obtain is bounded by
O(

√
n). Fomin et al. presented an algorithm that achieves a constant factor

approximation in O(n3) time, as well as a greedy algorithm which achieves a
logarithmic factor approximation in O(n

√
n log n) time [10]. Yang et al. [15]

improved the Yehuda-Fogel method [4], giving an algorithm that does not guar-
antee an approximation factor, but generates at most �

√
2n + 1/4−1/2� chains

in O(n
√

n) time.
If the direction is fixed, Supowit proposed an algorithm that runs in optimal

O(n lg n) time and obtains the optimal number of chains [14]. (See Algorithm 1.)

Algorithm 1 – Supowit(p1 . . .pn)
1: S ← ∅
2: for i = 1 . . . n, where x(pi) < x(pj) ∀i < j ≤ n do
3: let S′ = {A ∈ S, miny(A) ≥ y(pi)}
4: if S′ �= ∅ then
5: let A0 = argminA{miny(A),A ∈ S′}
6: append pi to A0

7: else
8: add pi as a chain to S
9: return S

For the u-chains structure, the chains are required to be untangled, meaning
that no two chains cross or tangle. By running an untangling algorithm on the
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output of Supowit’s algorithm, it is possible to obtain the minimum number of
untangled chains [3]. The main property that allows the untangling algorithm
to work is that all tangles generated by Supowit’s algorithm are so called v-
tangles, and when processed in the right order, they generate the corresponding
untangled set.

Next we give some basic definitions to introduce the notation used for de-
scribing the algorithm for obtaining the untangled set of chains.

Definition 1 (H). [3] Given an edge (pi, pj), define H+(pi, pj) to be the open
half-plane bounded by the line through pi and pj and containing the point (x(pi)+
1, y(pi) + 1), and H−(pi, pj) symmetrically.

Using this definition we can define a v-tangle:

Definition 2 (v-tangle). [3] Suppose we have two chains C1 and C2 with edges
(p1, p2), . . . , (p�−1, p�) ∈ C1 and (q1, q2) ∈ C2 such that p1 ∈ H−(q1, q2), p� ∈
H−(q1, q2), and pi ∈ H+(q1, q2) for all 1 < i < �. Also, (q1, q2) is called the upper
part of the v-tangle, and (p1, p2), . . . , (p�−1, p�) the lower part. We define the
operation of untangling a v-tangle as removing p2 . . . p�−1 from C1 and inserting
it to C2, between q1 and q2.

Definition 3 (rv-tangle). [2] Suppose we have two chains C1 and C2 with
edges (q1, q2) ∈ C1 and (p1, p2), . . . , (p�−1, p�) ∈ C2 such that p1 ∈ H+(q1, q2),
p� ∈ H+(q1, q2), and pi ∈ H−(q1, q2) for all 1 < i < �. We call such a tangle a
reverse v-tangle, or rv-tangle.

The untangling procedure is based on a simple building block shown in Algorithm
2 [2]. The main idea is to run one Untangling-Pass and then extract the lower
chain. We then recurse on the residual point set, extracting the lower chain until
no points remain. This version differs from the preliminary version [3], which
contained a difficulty revealed by this experimental work and corrected in a
later version [2]. This procedure takes O(kn lg n + k2n) time, where k is the
minimum number of chains.

Algorithm 2 – Untangling-Pass(P)
1: Run Supowit(P ) to get chains C1, . . . , Cs where Cs is the uppermost chain
2: for i = s down to 1 do
3: for j = i− 1 down to 1 do
4: Find and untangle all v-tangles between Ci and Cj

5: Return C1, . . . , Cs

When the chains are untangled and sorted, searching becomes easier in the
following sense:

– Searching in a chain is equivalent to doing a binary search, because we can
exploit the fact that the chain is monotonic.
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– When a chain C does not intersect the query, we can discard all the chains
to one side of C, given that we add dummy points at the beginning and end
of each chain to enforce an ordering. The dummy points add O(

√
n) words

of extra space1.

The search algorithm described requires O(lg n lg k + min(k, m) lg n + m) time,
which can be improved to O(lg n + k + m) time using fractional cascading. In
the worst case, when k = Θ(

√
n), we achieve the optimal time/space trade-off:

linear space and O(
√

n + m) query time [12]. For easier instances (i.e., when k
is small) the structure takes advantage of this fact and performs better.

3 Implementation Details

In the following subsections we describe the practical decisions taken during the
implementation phase. We go through the partitioning and untangling prepro-
cessing steps.

3.1 Partitioning the Points

For our experiments, we implemented two algorithms for partitioning the set
of points into monotonic descending and ascending chains. The first was the
algorithm by Yang et al. [15]. The basic idea of the algorithm is to start with
all of the points in descending chains called layers, and to repeatedly identify
and extract ascending chains. It is important to note that the number of chains
generated by the algorithm can be different if we start with ascending layers
and extract descending chains. Although the algorithm can be implemented to
run in O(n

√
n) time using optimizations described in [4], we instead opted to

implement the simplified version of the algorithm which runs in O(n
√

n log n)
time. Even with the extra log n factor, the processing time was not prohibitive
for data sets of over a million points.

The second algorithm was the greedy method of Fomin et al. [10]. Since they
describe the greedy algorithm in terms of a graph co-coloring problem, we will
provide a brief description. We start with two empty sets, one for ascending
chains, and one for descending chains. We take the set of points and compute
the maximal length ascending chain, as well as the maximal length descending
chain. The longer of the two chains is then added to the appropriate set, and we
repeat this process on the residual point set until no points remain. Each pass
of our implementation of the greedy algorithm takes O(n log n) time [4], and it
generates a number of chains that is within a logarithmic factor of optimal [10].
Therefore the overall running time of our implementation is O(n

√
n log2(n)),

but can be improved to O(n
√

n log n) using the techniques from [4].
Once we have determined which points belong to which set, we discard the

extra information about the chains provided by the partitioning algorithms. In
1 We need two dummy points for each chain, but we are also spending this amount of

space for the pointers to the chains.
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Algorithm 3 – Untangling(P)
1: Run Supowit(P ) to get chains C1, . . . , Ck where Ck is the uppermost chain
2: done← false
3: Al ← 1
4: Au ← k
5: while Al < Au AND ¬done do
6: for i = Au down to Al do
7: for j = i− 1 down to Al do
8: Find and untangle all v-tangles between Ci and Cj

9: Apply transformation of lemma 2 to CAl . . . CAu

10: for i = Al to Au do
11: for j = i + 1 to Au do
12: Find and untangle all v-tangles between Ci and Cj

13: Apply transformation of lemma 2 to CAl . . . CAu

14: Al ← Al + 1
15: Au ← Au − 1
16: if C1, ..., Ck are untangled then
17: done← true
18: Return C1, . . . , Ck

order for our subsequent untangling algorithm to work in a provably correct man-
ner we need to run Supowit’s algorithm on both the ascending and descending
sets of points.

3.2 Untangling Chains

In this section we propose an alternative method for untangling the chains. As
we will see in the experimental results, this alternative approach allows for a
much faster construction in practice. However, we first describe how to improve
the running time of the previous algorithm [2].

Lemma 1. The algorithm by Arroyuelo et al. [2] for finding the minimum num-
ber of monotonic untangled chains can be adapted to run in O(n lg n+k2n) time.

Proof. The improvement comes from running Supowit’s algorithm k times in
O(n lg n + kn lg k) time. The main observation is that we only need to sort the
points once, after which we can use markers to keep track of which points are
still participating (i.e., do not belong to chains that are removed). We can then
generate the set of the participating points, sorted, in O(n) time. This happens
only k times, so we spend O(nk + n lg n) time for the sorting phase in the k
passes. The construction of the chains itself is easier, since we never have more
than k chains in A, each point added requires at most O(lg k) time, and again
we do this for every point at most k times, obtaining the remaining O(nk lg k).

Adding the cost of the k runs of Supowit’s algorithm to the k runs of the
Untangling-Pass, we obtain O(n lg n + k2n) time in the worst case. ��

The idea of the alternative algorithm is inspired by the previous proposal [2],
but is less dependent on the properties of Supowit’s algorithm. The following
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simple lemma is key for our practical variation. It allows us to transform a set
of chains having only rv-tangles into a set of chains that has only v-tangles.

Lemma 2. Given a set of ordered chains over P, where all tangles among two
chains are rv-tangles, we can map this problem to one with ordered chains and
only v-tangles.

Proof. Let mx = max{x | ∃y, (x, y) ∈ P} and my = max{y | ∃x, (x, y) ∈ P}.
We compute the new set P̄ = {(mx − x, my − y) | (x, y) ∈ P}, maintaining the
chains. The order of the chains is reversed. ��

This observation allows to do one untangling pass, transform the points, and
then repeat the procedure over the remaining set of chains, without discarding
information about the chains. This idea is formalized in Algorithm 3.

We currently do not have a proof that Algorithm 3 will yield untangled chains
after it finishes. However, we have found no case in practice where Algorithm
3 fails to untangle the chains. In fact, for all of the data sets we have tried in
practice, the O(n) time check on line 16 of the algorithm succeeds after a small
constant number of passes. We conjecture that in the worst case k passes are
required. We end this section by noting that we can run Algorithm 3 for k passes,
and, in the advent of a failure, detect that the chains have not been untangled.
After such a failure, we can then run the previous algorithm [2]. Since both
algorithms have the same running time by Lemma 1, running Algorithm 3 does
not affect the overall running time asymptotically. However, as we will see in the
next section, there is a clear separation in practice between the two algorithms.

4 Experimental Results

The machine used for the experiments has an AMD Athlon(tm) 64 X2 Dual Core
Processor 5600+, core speed 2900MHz, L1 Cache size 256KB, and L2 Cache size
1024KB. It has 4GB of main memory of speed 800MHz. The operating system
installed is GNU/Linux – Ubuntu 9.10, with kernel 2.6.31-17-generic running in
64bits mode and the compiler installed in the system is GNU/g++ version 4.4.

Our implementation for preprocessing the data set was compiled with flags
-O2 -Wall, the code for searching was compiled with -O2 -frounding-math
-Wall.

We used data sets provided by the Georgia Tech TSP Web page2. We included
the following sets: Italy, China, LRB744710 and World.

4.1 Partitioning

We first tried the different partitioning methods: aa for all chains ascending,
ad for all descending, gr for the greedy approach [10], pa for Yang et al.’s
method [15] starting with all points in ascending layers, and finally pd for Yang
et al.’s method starting with all points in descending layers.
2 http://www.tsp.gatech.edu
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Table 1. Results of different partition methods

Data Set Nr. Points Partitioning Nr. Chains Avg. Nr. of Std. Dev. of
Method Pts/Chain Pts/Chain

Italy 16862

aa 285 59.16 31.78
ad 207 81.46 47.38
pa 173 97.47 62.69
pd 160 105.39 57.17
gr 141 119.59 56.87

China 71009

aa 520 136.56 51.36
ad 697 101.88 53.87
pa 367 193.49 68.57
pd 373 190.37 103.96
gr 324 219.16 57.65

LRB 744710

ad 1203 619.04 227.76
aa 1129 659.62 271.43
pd 1074 693.40 262.35
pa 1006 740.27 262.79
gr 1065 699.26 228.38

World 1904711

aa 4167 457.09 266.50
ad 3046 625.32 314.56
pa 1865 1021.29 574.67
pd 1843 1033.48 558.83
gr 1608 1184.52 424.15

Table 1 shows the number of chains obtained with each method for the data
sets considered in this work. We also include the average number of points per
chain and the standard deviation for the expected number of points per chain.

The results show that considering the points in a fixed direction provides a
competitive result with respect to the other partitioning methods. Yet, in most
cases (except LRB), the gr approach obtains the minimum number of chains.

4.2 Construction

We implemented the two untangling algorithms. Table 2 shows the results for
the small data set and gives a representative idea on the running time of this
new version. For the World data set, it takes about one day to untangle the
chains using the original method, while the new algorithm takes about twenty
minutes.

Table 2. Results of the two untangling methods

Data Set Partitioning Time (sec) Time (sec)
Method Original [2] This paper

Italy

aa 293.75 1.53
ad 254.34 1.10
pa 125.34 0.48
pd 220.72 0.68
gr 116.78 0.41

4.3 Query Generation

For measuring the time, we generated 6 different types of queries. For each data
set we find the bounding box [xmin, xmax]× [ymin, ymax]. We refer to the regular
grid partition of the bounding box as tile. For the other queries we generate a
random point3 [xi, yi] for each query, and the rectangle is determined as follows:

3 By random we mean uniformly at random unless stated otherwise.
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– rand: we generate the second point within [xi, xmax] × [yi, ymax].
– tiny: we generate the second point at random within [xi, xi + (xmax −

xi)/K] × [yi, yi + (ymax − yi)/K], where K = 100.
– med: same as tiny but using K = 10.
– tall: we generate the second point at random within [xi, xi + (xmax −

xi)/25] × [yi, ymax].
– wide: we generate the second point at random within [xi, xmax] × [yi, yi +

(ymax − yi)/25].

Figure 1 shows roughly how the six types of queries look.

Fig. 1. Example of queries generated for Italy. From left to right, starting from the
top row: rand, tile, tiny, med, tall and wide.

4.4 Range Searching with Different Partitioning Methods

We next measured the searching time considering the two variants: binary for
binary searching every chain and adaptive for the version that binary searches a
candidate chain to start, and uses the fact that the chains are untangled. Figures
2 and 3 show the results for the sets LRB and World. As we can see in Figure 2, for
the binary variant, the running time depends on the number of chains obtained
by the partitioning method, as expected. For the case of adaptive, the running
time of aa and ad is sometimes better, since they do a binary search over all
chains at once. In theory, binary should be better if ad > c, where a and d are
the number of ascending and descending chains generated by the partitioning
method, respectively, and c is the number of chains generated if we only consider
one direction. However, in this argument, we are ignoring the number of points
in each chain, which affects the final result.

In general gr behaves reasonably well compared to the other partitioning
methods for binary and adaptive. For this reason, we use this partitioning
method for the remaining experiments.
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Fig. 2. Detailed time for U-Chains on LRB
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Fig. 3. Detailed time for U-Chains on World

4.5 Comparison to Previous Work

We tested our implementations against two structures implemented in the well
known CGAL library [1] (version 3.4, default Ubuntu 9.10, multiverse packag-
ing): Kd-tree and Range-tree. The code was compiled with flags -O2
-frounding-math -Wall.
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Fig. 4. Time for range queries in the data sets

Table 3. Results for LRB

Query Partitioning Time (sec) Time (sec) Time (sec) Time (sec)
Type Method Binary Adaptive Kd-Tree Range-tree

rand

aa 223.62 208.90

757.38 1144.92
ad 221.03 208.24
gr 235.65 205.06
pa 222.15 210.22
pd 219.46 207.13

tile

aa 14.21 1.12

2.60 1.87
ad 15.26 1.17
gr 11.16 1.44
pa 12.21 1.90
pd 11.39 1.58

tiny

aa 16.85 1.36

2.72 1.88
ad 18.69 1.32
gr 14.27 1.62
pa 17.10 1.71
pd 16.48 1.92

med

aa 20.82 4.70

10.43 11.23
ad 24.46 4.82
gr 18.57 5.25
pa 19.42 5.11
pd 20.82 5.07

tall

aa 38.71 17.17

32.35 35.49
ad 40.32 17.46
gr 34.20 16.87
pa 35.60 17.96
pd 35.42 19.19

wide

aa 41.00 19.39

48.99 43.85
ad 44.86 20.42
gr 36.72 21.53
pa 41.65 20.53
pd 39.21 20.57

Figure 4 shows the results obtained for the four data sets. We do not include
Range-trees for World since the process required more than 7GB of RAM. For the
larger data sets, adaptive dominates for all types of queries. In the two smaller
data sets adaptive is competitive with the two other approaches considered, yet
it does not present a clear time advantage with respect to Range-trees. The main
advantage is the space consumption, when range-trees take more than 7GB of
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RAM for World, adaptive requires only about 30MB. The u-chains structure
offers this interesting trade-off, but does not allow updates.

We include the table of values for LRB, we highlight every value that is within
5% of the minimum obtained.

5 Conclusions

In this paper we presented a practical implementation of the u-chains data struc-
ture. The experimental results show that this structure is efficient and suitable
for two-dimensional orthogonal range queries over static data sets. In particu-
lar, for our two largest data sets, the adaptive search method on the u-chains
structure significantly outperformed both range-trees and kd-trees. Although
both of these structures are dynamic, we note that there are likely further opti-
mizations that can be applied to our search methods to improve performance. A
secondary advantage of the u-chains structure is that it only occupies 2n+O(

√
n)

words. Unlike range-trees and kd-trees, which require many pointers per node,
each chain in the u-chains structure only stores its ordered set of points and its
length. This small footprint certainly does not hurt performance, as it is likely
to have better cache locality than the other data structures.

We included a new construction method (untangling algorithm) that can han-
dle much larger data sets than the original proposal. The main advantage of the
new algorithm is that it often terminates in much less than k passes, and, in the
cases studied here, k is usually close to

√
n.

Our results leave many interesting open problems related to the u-chains:

– It would be an interesting challenge to make this structure dynamic, allowing
for insertions and deletions.

– The performance of the structure could be improved by implementing frac-
tional cascading, or any method that re-uses computational effort when
jumping from chain to chain. It would be interesting to see how much frac-
tional cascading would improve the search time.

– We could implement different methods to search the chains, like interpolation
search or galloping search [5]. The impact of those variations will depend on
the data sets considered, and a study of their impact would be of interest.

– Finally, we could look at ways to improve cache locality when searching the
chains. For instance, considering the van Emde Boas layout for representing
each chain [9].
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Abstract. In this paper we study algorithms for the max-plus product of Monge
matrices. These algorithms use the underlying regularities of the matrices to be
faster than the general multiplication algorithm, hence saving time. A non-naive
solution is to iterate the SMAWK algorithm. For specific classes there are more
efficient algorithms. We present a new multiplication algorithm (MMT), that is
efficient for general Monge matrices and also for specific classes. The theoreti-
cal and empirical analysis shows that MMT operates in near optimal space and
time. Hence we give further insight into an open problem proposed by Landau.
The resulting algorithms are relevant for bio-informatics, namely because Monge
matrices occur in string alignment problems.

1 Introduction and Related Work

In this paper we study algorithms to multiply Monge matrices, more precisely the max-
plus product of anti-Monge matrices, although we still refer to them as Monge. These
matrices have a long history of algorithmic applications [1]. In Particular they occur
in string processing problems, as DIST tables [2,3] or as Highest-Scoring Matrices
(HSMs) [4]. Their applications to string processing problems, include: Cyclic LCS,
Longest Repeated subsequence, Fully-Incremental LCS [5,6,4], etc.

Alves et al. [7] proposed an online algorithm to compute an implicit representation
of HSMs in O(nm) time and O(m+n) working space, where m and n are the sizes of the
strings being processed. Subsequently Tiskin observed that the core of these matrices
has O(n) size [4]. The core provides an alternative way to represent these matrices.

Given this representation the natural question is: can we multiply HSMs in linear
time? proposed as an open problem by Landau1 [8]. Tiskin made significant contribu-
tions by proposing O(n1.5) and O(n logn) time algorithms [4,9,10]. The latter algorithm
becomes O(n log2 n/ loglogn) when considering the O(logn/ loglogn) access time, to
the underlying representation structure [11].

This paper generalizes Landau’s problem to core-sparse Monge matrices, i.e. o(n2)
core size, and presents a core sensitive algorithm, MMT. For some of these problems
Tiskin’s algorithm can be applied, although affected by a variable factor ν. In the con-
ditions of Landau’s problem MMT runs in O(n log3 n) time, including access costs. A

1 The problem was formulated for DIST tables but it is essentially equivalent.

E. Chavez and S. Lonardi (Eds.): SPIRE 2010, LNCS 6393, pp. 94–105, 2010.
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comprehensive comparison is given in section 4. The experimental results show, Sec-
tion 4.1, that MMT runs in around O(n log2 n) time, i.e., faster than the theoretical
bound. Moreover MMT is a general multiplication algorithm that can be applied to
general Monge matrices, namely related to alignment problems. Hence we obtain the
first non-trivial solution for Fully-Incremental Alignment.

The structure of the paper is the following: Section 2 defines basic concepts; Sec-
tion 3 describes the MMT algorithm; Section 4 gives a theoretical analysis of the several
algorithms and experimental results of MMT; Section 5 concludes the paper.

2 Basic Concepts

This section presents basic concepts related to Monge matrices. In this paper logn is
log2 n. Matrix row and column indexes start at 0. For matrix A consider the expression:

ΔA(i, i′; j, j′) = A(i′, j′)− A(i′, j)− A(i, j′)+ A(i, j) (1)

A matrix A, of size r × c, is Monge2 iff ΔA(i, i′; j, j′) ≥ 0, for any indexes i, i′, j and j′

such that 0 ≤ i ≤ i′ < r and 0 ≤ j ≤ j′ < c. Figures 1 and 3 show examples of Monge
matrices. Fig. 1 shows the non-zero ΔA(i, i+ 1; j, j + 1) values inside rectangles, and
likewise for matrices B and C. For example ΔA(3,5;0,2) = (−3)− (−10)− (−20)+
(−3) = 24. The leftmost argument maximum of a given row is denoted as lax, i.e.,
the smallest column index were the maximum of a row occurs. In Fig. 1 the leftmost
maximums per row are in bold. For example laxA[4, ] = 1, the respective maximum is
A(4, laxA[4, ]) = 6. A matrix is monotone when i ≤ i′ implies laxA[i, ] ≤ laxA[i′, ].
In other words the lax values increase as the row index increases. The Monge property
implies that the matrices are also monotone, this can be observed in Fig. 1 by noticing
that the bold values move to the right when descending by the rows.

The notion of core follows from an alternative characterization of Monge matrices.
Let D denote a matrix, of size (r−1)× (c−1), with non-negative values, referred to as
density matrix. The rows and columns of these matrices are indexed over half integers,
i.e., the first row and the first column are indexed by 0.5 instead of 0. Fig. 1 also contains
examples of such matrices. The matrices consist of the values enclosed in rectangles,
the omitted rectangles represent a 0. The respective distribution matrix d, of size r×c,
is defined, over the integers, as:

d(i, j) = ∑
0<i′<i; 0< j′< j

D(i′, j′) for all 0 ≤ i < r and 0 ≤ j < c (2)

The next Lemma shows an alternative characterization of Monge matrices.

Lemma 1 ([1]). A matrix A, of size r × c, is Monge iff there is an r × c distribution
matrix d and two vectors u ∈ Rr and t ∈ Rc such that

A(i, j) = d(i, j)+ u(i)+ t( j) for all 0 ≤ i < r and 0 ≤ j < c (3)

2 The usual Monge definition is ΔA(i, i′; j, j′) ≤ 0, in which case −A verifies our condition.
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Fig. 1. Three Monge matrices, A (top-
left), B (top-right) and C = A ⊗ B (bot-
tom). The row and column indexes are
shown outside. The leftmost maximums,
per row, are in bold. The non-zero
ΔA(i, i+1; j, j +1) = D(i + 0.5, j + 0.5)
values are inside rectangles. The same in-
formation is shown for B and C. Row 4 of
C is over a darker background. Matrix A
is divided into A� and Ar by a vertical line
and TR(A) = 7.5 is pointed by an arrow.
The rectangles between rows 3 and 4 of C
illustrate the procedure in Lemma 7.

The proof of the lemma follows by defining D(i + 0.5, j + 0.5) = ΔA(i, i+ 1; j, j + 1)
and observing that the ΔA values are additive. The non-zero entries of D form the core
of A, were δ(A) denotes its size. A matrix is considered sparse when δ(A) = o(rc).
Notice that ΔA(i, i′; j, j′) = Δd(i, i′; j, j′), therefore computing the expression consists
in summing the core entries inside [i, i′]× [ j, j′], for example ΔA(3,5;0,2) = 12 + 12.

Definition 1. For arbitrary matrices A, B, of sizes r× c and (c = r′)× c′, the max-plus
product matrix, C = A⊗ B, is C(i, j) = max0≤k<c{A(i,k)+ B(k, j)}.

Fig. 1 shows a sample max-plus matrix product. To perform the calculation we organize
it into a sequence of intermediate computation matrices, Ms, of size c′ × r′, such that
Mi( j,k) = A(i,k)+B(k, j), for 0 ≤ i < r, 0 ≤ j < c′, 0 ≤ k < r′ = c. Fig. 3 shows M2,
M3, M4 and M5, ignore the tree-like structure on top. Each cell in the table contains an
entry of the four Ms. The bottom shows the calculation of the M values of cell (4,2).
These matrices are used to compute the values of C, since C(i, j) = Mi( j, laxMi[ j, ]).
For example row 4 of C can be obtained from M4. Observe that the bottom-left values of
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Fig. 2. (Left) Alignment DAGs of S =
ba and T = baba and of S′ = ab with
T . The two DAGs are united, horizon-
tally, into the DAG of S.S′ and T . The
horizontal line indicates the union. A
highest-scoring path is represented by
outlined arrows. This path corresponds
LCS(S.S′,T ) = bab, of size 3. (Right)
Sample weights for Weighted Longest
Common Subsequences.

each cell that are over a darker background correspond to row 4 of C. The Mi matrices
are Monge, because B is Monge, therefore there is a non-naive way to compute C.

Lemma 2. Let A and B be Monge matrices, of sizes r × c and (c = r′)× c′, then the
values of C = A⊗ B can be obtained in O(rr′ max{1, log(c′/r′)}) time.

Proof. Since the Mi matrices are Monge the SMAWK [12] algorithm obtains all the
row maximums, of each Mi, in O(r′ max{1, log(c′/r′)}) time. ��
This paper does not explain the SMAWK algorithm, the interested reader should consult
Aggarwall et al. [12]. A simple recursive algorithm finds the maximum of the middle
row and divides M into two smaller sub-problems. For M of size c′ × r′ this process
takes only O(r′ logc′) time. The MMT algorithm uses regularities of the Mi matrices
and a variation of this algorithm.

2.1 Highest Score Matrices

String alignment problems are a source of Monge matrices. We denote by S, S′ and
T strings of size m, m′ and n respectively; by Σ the alphabet of size σ; by S[i] the
symbol at position i, assuming that positions start at 0; by S.S′ concatenation; by S =
S[..i−1].S[i.. j].S[ j+1..] respectively a prefix, a substring and a suffix; note that S[i.. j],
with j < i, denotes the empty string; A subsequence of S is obtained by deleting zero
or more letters; a Longest Common Subsequence LCS(S,T ) is a largest subsequence
that can be obtained from both strings S and T . Consider the following example S = ba,
S′ = ab and T = baba, where m = m′ = 2 and n = 4. In this example LCS(S,T ) = ba,
LCS(S′,T ) = ab and LCS(S.S′,T ) = bab.

LCS(S,T ) can be computed as a highest-scoring path in a DAG. The DAG is a grid
of horizontal and vertical edges, with score 0, it contains diagonal edges, with score 1,
for every pair of matching characters between the strings. See Fig. 2 for an example of
such a DAG, notice that there is a diagonal edge on the top-left corner because S and
T both start by b. A path corresponding to an LCS between S.S′ and T is highlighted.
Depending on the starting and ending nodes of the path we can determine several LCS
values, between S and a substring of T . The highest-score matrix (HSM) HS,T stores
these LCS values3, i.e., HS,T (i, j) = LCS(S,T [i.. j − 1]). This matrix was denominated

3 General HS,T (i, j) values correspond to highest scoring paths on an infinite EADAG [9].
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as DIST(S,T ) by Apostolico et al. [2], for edit distance problems. In this paper we
follow the theory by Tiskin [9,10] but the results are essentially equivalent.

In this context the max-plus product, Def. 1, represents the fact that a highest-score
path of HS.S′,T can be decomposed into a path of HS,T followed by a path of HS′,T .
HSMs are Monge [2], core-sparse and unit, i.e., δ(HS,T ) = min{m,n} = o(n2) and the
non-empty core entries are always 1. Therefore they can be multiplied efficiently.

Theorem 1 ([9]). Given unit-Monge matrices A, B, both of size n × n, the core entries
of C = A⊗ B can be obtained in O(n logn) time and O(n) space.

This result has a significant impact on string problems [13], namely Cyclic LCS, Longest
Repeated Subsequence, Fully-Incremental LCS [5,6], etc. The latter problem consists
in maintaining a data structure that returns the size of LCS(S,T ) and supports updates
to LCS(c.S,T ), LCS(S.c,T ), LCS(S,c.T ) and LCS(S,T.c), where c is a new charac-
ter. Notice that the first update is against the usual dynamic programing direction and
therefore a naive approach requires O(mn) time. Using Theorem 1 with A = Hc,T the
update to LCS(c.S,T ) runs in O(n logn) time, which is competitive against state of the
art solutions [6] of O(n) time.

The concept of LCS can be extended to generic alignments, where the weight of
the edges is an integer that depends on the characters involved. The resulting HSMs
are generic Monge matrices, not necessarily unit. A simple case, Weighted Longest
Common Subsequences (WLCS), occurs when the weight of the edges depends only
on the type of edge, see the right part of Fig. 2.

3 Core Sensitive Multiplication

This section describes the Multiple Maxima Trees (MMT) algorithm for the max-plus
product of Monge matrices. The algorithm receives the cores of A and B and outputs
the core of C. We describe the algorithm in two phases. First we propose a structure
that represents the individual values of C, i.e., that we can use to access an individual
value of C; Second we explain how to use those values to determine the core of C.

3.1 Representing C = A⊗ B

We divide matrix A, in half, into A� and Ar. The left sub-matrix A� contains columns 0
to �c/2�− 1. The right sub-matrix Ar contains columns �c/2� to c − 1. For example in
Fig. 1 A� contains columns 0,1,2,3 and Ar contains columns 4,5,6. Notice that there
will be an index for which the leftmost maximum changes from A� to Ar.

Definition 2. The transition point TR(A), of a monotone matrix A, is a half integer
such that laxA[i, ] is laxA�[i, ] for i < TR(A) and �c/2�+ laxAr[i, ] for i > TR(A).

Fig. 1 indicates that TR(A) = 7.5 with an arrow. Fig. 3 shows that TR(M4) = 6.5.

Definition 3. The maxima tree M T A, of a Monge matrix A, is a balanced binary tree.
If A is empty M T A is also empty, otherwise the sub-trees that start at the children of
the ROOT are M T A� and M T Ar . The ROOT stores TR(A), the remaining nodes store
the corresponding transition points.
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M2(4,2)=A(2,2)+B(2,4)=−24−20=−44; M3(4,2)=A(3,2)+B(2,4)=−20−20=−40;
M4(4,2)=A(4,2)+B(2,4)= −7−20=−27; M5(4,2)=A(5,2)+B(2,4)= −3−20=−23;

Fig. 3. (Bottom) Calculation of the M values of cell (4,2). (Middle) Matrices M2, M3, M4, M5
and the respective maxima trees. Each cell in the table shows a value from the four M matrices,
M2 (top-left), M3 (top-right), M4 (bottom-left) and M5 (bottom-right). The bold values highlight
the leftmost maximum, per row. The maximums of M4 are over a darker background, these val-
ues correspond to row 4 of C in Fig. 1. (Top) the maxima trees of these matrices. The nodes and
branches that are exclusive to trees M T 2 or M T 5 are dashed. Each node contains the transi-
tion point of the respective sub-matrix. The representation is compact, similar sub-trees are not
repeated. The edges of the trees are labeled � and r depending on whether the corresponding
sub-tree is left or right. The computation of laxM3[5, ] = 3 is indicated by thicker lines.
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Fig. 3 shows the maxima trees for M2, M3, M4 and M5. At this point the reader should
focus on an individual tree, M T 3 for example4. It is a fallacy to assume that TR(A�) ≤
TR(A) ≤ TR(Ar), Fig. 3 shows a counter example, indicated by ≤. The maxima tree
can be used to compute lax values.

Lemma 3. Let A be a Monge matrix, of size r×c, its maxima tree M T A can be stored
in O(c) space and laxA[i, ] can be computed in O(logc) time.

Proof. We compute laxA[i, ] recursively as laxA�[i, ] if i < TR(A) and as �c/2�+
laxAr[i, ] otherwise, i.e., move to the left or to the right child. The execution time is
bounded by the height of the tree, that is O(logc). Since we store only one value per
node, the space occupied by the tree depends on the number of nodes, i.e., O(c). ��
Suppose we want to compute laxM3[5, ]. We start at the ROOT and since 5 < 9.5 we
move to the left, now since 5 > 4.5 we move to the right, since 5 > 2.5 we move to the
right and reach the leaf of column 3 = laxM3[5, ]. Notice that we can also compute the
lax values of a sub-matrix corresponding to an internal node of M T A.

Lemma 4. The maxima tree of a Monge matrix A takes O(c logr) time to build.

Proof. The tree can be built bottom-up. Computing TR(A) for the ROOT can be done, in
O(logr) steps, with a binary search. If A�(i, laxA�[i, ]) ≥ Ar(i, laxAr[i, ]) then TR(A) >
i, otherwise A�(i, laxA�[i, ]) < Ar(i, laxAr[i, ]) and TR(A) < i. For the remaining inter-
nal nodes the process is similar. This yields an overall O(c(logc) logr) time. An amortized
analysis shows that we are not paying O(logc) to obtain the lax values, as in Lemma 3.
Most nodes are close to the leaves. Half of the nodes pay 1 operation for lax. One quarter
of the nodes pay 2 operations, and so on. The overall time is O(c logr). ��
Building all the M T Mi trees takes O(rr′ logc′) time and O(rr′) space. The resulting
structure provides O(logr′) access time to C(i, j) = Mi( j, lax Mi[ j, ])). This is inef-
ficient. The Mi matrices have regularities that considerably reduce their requirements.

Lemma 5. Given Monge matrices A and B, when ΔA(i, i′;k,k′) = 0 we have that
Mi( j,k) ≤ Mi( j,k′) iff Mi′( j,k) ≤ Mi′( j,k′).

Proof. Notice the prime in Mi′ . The following diagram proves the Lemma:

Mi( j,k)− Mi( j,k′) = A(i,k)− A(i,k′)+ B(k, j)− B(k′, j) (4)

= (5)

Mi′( j,k)− Mi′( j,k′) = A(i′,k)− A(i′,k′)+ B(k, j)− B(k′, j) (6)

Eqs 4 and 6 follow from the Def. of Mi. Equation 5 follows from the hypothesis. ��
Notice that the ΔA(i, i′;k,k′) = 0 hypothesis implies that ΔA(i1, i2;k1,k2) = 0 for any
i ≤ i1 ≤ i2 ≤ i′ and k ≤ k1 ≤ k2 ≤ k′. This Lemma exposes the redundant information
among the M T Mi trees. Namely if ΔA(i, i′;k,k′) = 0 and ϑ, ϑ′ are nodes of M T Mi

and M T Mi′ whose corresponding rows are the [k,k′] interval then the sub-trees of ϑ

4 Note that we simplified the notation.
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and ϑ′ are identical. Fig. 3 shows an example of this observation, matrices M2, M3, M4

share the right sub-tree, since ΔA(2,4;4,6) = 0. Moreover M5 does not share the right
sub-tree with M4, since ΔA(4,5;4,6) = 10 = 0.

Lemma 6. Given Monge matrices A and B, of sizes r × c and (c = r′)× c′, there is a
representation of C with O(logr′) access time, that needs O(r′ +δ(A) logr′) space and
O(r +(r′ + δ(A)(logr′)2) logc′) time to be built.

Proof. Use Lemma 4 to build the first tree, M T 1, in O(r′ logc′) time. In general use
Lemma 5 to build M T Mi+1 from M T Mi . If ΔA(i, i+ 1;0,c − 1) = 0 then M T Mi and
M T Mi′ are identical and the computation finishes. Otherwise we build a new ROOT

for M T Mi′ and proceed recursively to determine whether the left and right children
of M T Mi′ are new or the same as in M T Mi . Each core value of A originates at most
logr′ new nodes. For each new node we recompute, bottom-up, the respective transition
points, in O((logr′) logc′) time each. The O(r) term comes from the i cycle. ��

3.2 Obtaining the Core

Using the representation of C we can obtain its core. This section explains how.

Lemma 7. Given a Monge matrix C, of size r × c′, its core entries can be determined
by inspecting O(r + δ(C) logc′) entries of C.

Proof. For every i we compute ΔC(i, i+ 1;0,c′ − 1). If the result is 0 we conclude
there is no core entry in [i, i + 1] × [0,c′ − 1] and abandon the search. Otherwise we
recursively consider ΔC(i, i+ 1;0,�c′/2�) and ΔC(i, i+ 1;�c′/2�,c′ − 1). This proce-
dure needs O(logc′) for each core entry of C and O(r) to consider every row of C. ��
Fig. 1 shows an illustration of the procedure described in the Lemma, between rows 3
and 4 of C. We can now combine Lemmas 6 and 7 to obtain our main result.

Theorem 2. Let A and B be Monge matrices, of sizes r×c and (c = r′)×c′, the core of
C = A⊗ B can be computed in O(r logr′ +(r′ +(δ(C)+ δ(A) logr′) logr′) logc′) time
and O(δ(C)+ r′) working space.

Proof. Lemmas 6 and 7 yield an O(δ(C)+ r′ + δ(A) logr′) working space solution. It
is not necessary to store all the maxima trees M T Mi . An iteration of the procedure in
Lemma 7 inspects only Mi and Mi+1. Hence it is enough to store only two trees in each
iteration, which requires at most O(r′) space, see Lemma 3 and proof of Lemma 6. ��
Using the equation C = (BT ⊗ AT )T the previous result gives an algorithm that runs in
O(c′ logc +(c +(δ(C)+ δ(B) logc) logc) logr) time and O(δ(C)+ c) space.

4 Analysis

This section presents a theoretical and empirical analysis of the several multiplication
algorithms. Up to now the time to access an entry of A or B has been omitted. Since the
working space can be o(rc), it is not reasonable to assume O(1) access time. For unit-
Monge matrices this problem was solved [9] using a dominance counting structure [11],
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Table 1. Comparison between max-plus multiplication algorithms, accounting for access time to
A and B, O(1) for ε = 2, O(logn/ log logn) for unit-Monge and O(logn) otherwise. For ε ≥ 1 and
ε �= 2 the performance of MMT is unaltered even if access time is O(1). The 〈s(n),t(n)〉 notation
means s(n) space and t(n) time requirements.

δ = Θ(nε) MMT, Theorem 2 SMAWK , Lemma 2 Theorem 1
ε = 2 〈O(n2),O(n2 logn)〉 〈O(n2),O(n2)〉 —
2 < ε ≤ 1 〈O(nε logn),O(nε log3 n)〉 〈O(nε logn),O(n2 logn)〉 —

unit-Monge, ε = 1 〈O(n),O(n log3 n)〉 〈O(n),O( n2 logn
log logn )〉 〈O(n),O( n log2 n

log logn )〉
1 < ε ≤ 0 〈O(n),O(n log2 n)〉 〈O(n),O(n2 logn)〉 —

which works in O((logδ(A))/ loglogδ(A)) time and O(δ(A)) space. A similar result
can be obtained with a wavelet tree [14]. Moreover by adding accumulated values by
level it is possible to obtain the values of general Monge matrices, in O(logδ(A)) time
and O(δ(A) logδ(A)) space.

To simplify the analysis let us assume that O(r) = O(c) = O(r′) = O(c′) = O(n) and
that O(δ(A)) = O(δ(B)) = O(δ(C)) = O(δ). The algorithm of Theorem 1 needs to ac-
cess entries at each step. Hence the access value becomes a factor of the overall time.
The MMT algorithm always computes a lax value before accessing an entry, i.e., the ac-
cesses of the algorithm are always of the form C(i, j) = Mi( j, lax Mi[ j, ]). Except in
the amortized analysis of Lemma 4 the lax operation is Ω(logn), see Lemma 3. There-
fore the access time does not become a time factor in MMT. This claim is confirmed
experimentally, in Section 4.1.

Table 1 shows a comparison of the different algorithms according to core size, δ =
Θ(nε). The analysis considers the best space and time requirements that includes the
access time to A and B. For ε = 2 the access time is O(1), in this case Lemmas 6 and 7
have amortized performance, hence the o(n2 log3 n) time. Lemma 6 becomes an iterated
Lemma 4. Lemma 7 loses a O(logn) factor. For ε < 1 the access time is O(logn), the
dominating time is that of building M T 1, Lemma 4. Because of the amortized analysis
we need to count the access time, hence the Ω(n logn) time.

Table 1 shows that the MMT algorithm is not always the most efficient, in particular
SMAWK is faster by an O(logn) factor for δ = Θ(n2). This factor quickly disappears
for ε < 2, not only because SMAWK is not sensitive to the core size, but also be-
cause access times are no longer O(1). For the remaining core-sizes MMT is faster than
SMAWK . For the particular case of unit-Monge matrices, with δ = Θ(n), the algorithm
of Theorem 1 is faster than MMT by a O(logn loglogn) factor. However the experimen-
tal results show that in practice MMT is faster than what is predicted by theory.

Using MMT we obtain the first non-trivial solution for the Fully-Incremental Align-
ment problem, which consists in updating a generic alignment score from ALIGN(S,T )
to ALIGN(c.S,T ), ALIGN(S,c.T ), ALIGN(S.c,T ) or ALIGN(S,T.c), where ALIGN is
the respective score. The resulting procedure takes O((n + δ) log3(n + δ)) time and
O(n + δ logδ) space, where δ is the core size of the intervening matrices.

4.1 Experimental Results

We implemented MMT and tested it on an Intel Core2 Duo @1.33GHz, with 1.9 GiB
of RAM running Xubuntu 9.10, with Linux Kernel 2.6.31. The code was compiled
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with gcc 4.4.1 -O9. The prototype consists only of the multiplication and not of the
representation of A and B, which are stored in memory and hence have O(1) access
time. To test the performance we multiplied HSM matrices, obtained from the LCS, as
defined in Section 1. We also tested HSMs that resulted from generic alignments with
the PAM weight matrix [15] and HSMs from Weighted Longest Common Subsequences
(WLCS), using the weights in Fig. 2. The algorithm of Theorem 1 can be extended to
support WLCSs, but the space and time are affected by a factor ν, in this scenario
ν = 14. On the other hand for PAM this technique does not apply, i.e., the algorithm
from Theorem 1 cannot be adapted for this problem. If it were possible it would have
ν = 26. The underlying strings S,S′,T were random Bernoulli proteins, i.e., σ = 23,
that differed in a letter with 10% probability. The sizes were m = m′ = 4i and n = 8i
for i between 1 and 128. The results are shown in Fig. 4. To make the plots readable we
show only 20% of the points. The x axis is indexed by a variable N = max{n + δ}. For
precision we repeated each query during 10 seconds.

The plots on the left show the running time, in seconds, of the MMT algorithm
and of an O(νn log(νn)) time algorithm, denominated as Simulated. The ν factor is
calculated from Tiskin’s reduction procedure [10]. The simulated prototype is a divide
and conquer algorithm that allocates an array of size O(νn) and increases every cell
from 0 to log(νn). At each step all the cells in the array are increased by 1, the array
is then divided in half and each part is processed recursively. The recursion processes
both sub-arrays, but in random order.

We compute a minimum squares (MSQ) estimates for c and d in O(cN logd N). Since
the behavior is asymptotic the first points may distort the values. To diminish this ef-
fect we computed several MSQ estimates, successively discarding the first points. We
pessimistically chose the largest estimate.

The results show that for LCS and WLCS the δ values are similar to n, but not for
PAM, notice the dispersion of the simulated points. Using O(1) access time MMT is
slower than the simulated algorithm for LCS and WLCS but, generally, faster for PAM.
Contrary to what is predicted in Table 1, d is much smaller than 3, for a decent fitting
of the model, i.e., R2 > 0.95, the time bound is always lower than O(Nlog2N).

The graphics on the right show the number of operations for different sub-routines.
The respective MSQs appear in the same line in the label. We estimate the ratio between
node accesses and leaf accesses (Nodes/Leafs), which is always very close to O(logN).
This value is important because it is against this time that the accesses to A and B add.
If this ratio was 1 we would need to add a O(logn) factor to the final complexity. Since
the ratio is close to O(logN) the accesses add only a constant term. The BinSteps line
counts the average number of steps that is necessary in a binary search that computes a
transition point. This value is o(log1 N) because the MMT prototype uses inverse binary
search. Instead of dividing an interval, it starts from a point and moves in powers of 2.
Hence it usually runs on a small interval. TotalOps/N measures the total number of
operations that the algorithm used, divided by N. The d estimate of this value is usually
larger than the d value obtained in the time graphs, on the left. This may be related to
cache effects. For LCS and WLCS the bound was at most O(log2.1 N), for PAM the
value was higher, but the model fitting was extremely low.
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Fig. 4. Experimental testing of the MMT algorithm. The x-axis of the represents variable N =
max{n+δ}. The y-axis of the graphs on the left measures the time in seconds. The y-axis of the
graphs on the right measures the number of operations.

5 Conclusions

In this paper we studied algorithms for the max-plus product of Monge matrices. We
analyzed the existing algorithms considering the core size, Table 1. The analysis showed
that the existing algorithms are either sub-optimal or apply only to specific classes of
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matrices. Alternatively we proposed a core sensitive algorithm, MMT. This algorithm
is faster than the iterated SMAWK algorithm, except when the core is O(n2). For unit-
Monge matrices the algorithm of Theorem 1 is theoretically faster than MMT, by an
O(logn loglogn) factor, which does not really hold in practice, i.e., in practice MMT
is faster than the theoretical bound. The algorithm of Theorem 1 can also be applied to
matrices that result from Weighted LCSs, by using a ν time and space factor.

The MMT algorithm provided the first, as far as we know, non-trivial algorithm for
the Fully-Incremental Alignment problem, a string processing problem that is relevant
for bio-informatics. We expect MMT to have broad applications, since a myriad [9,16]
of string processing and optimization problems [1] use Monge matrices.

Acknowledgments. We thank anonymous reviewers for several insightful remarks.

References
1. Burkard, R., Klinz, B., Rudolf, R.: Perspectives of Monge properties in optimization. Dis-

crete Applied Mathematics 70(2), 95–161 (1996)
2. Apostolico, A., Atallah, M.J., Larmore, L.L., McFaddin, S.: Efficient parallel algorithms for

string editing and related problems. SIAM J. Comput. 19(5), 968–988 (1990)
3. Schmidt, J.: All highest scoring paths in weighted grid graphs and their application to finding

all approximate repeats in strings. SIAM Journal on Computing 27, 972 (1998)
4. Tiskin, A.: Semi-local longest common subsequences in subquadratic time. J. Discrete Al-

gorithms 6(4), 570–581 (2008)
5. Landau, G., Myers, E., Schmidt, J.: Incremental string comparison. SIAM Journal on Com-

puting 27, 557–582 (1998)
6. Ishida, Y., Inenaga, S., Shinohara, A., Takeda, M.: Fully incremental LCS computation. In:
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Abstract. We initiate the study of the smoothed complexity of the
Closest String problem by proposing a semi-random model of Ham-
ming distance. We restrict interest to the optimization version of the
Closest String problem and give a randomized algorithm, we refer to
as CSP-Greedy, that computes the closest string on smoothed instances
up to a constant factor approximation in time O(�3), where � is the
string length. Using smoothed analysis, we prove CSP-Greedy achieves a(
(1 + εe

2n )
)�-approximation guarantee, where ε > 0 is any small value and

n is the number of strings. These approximation and runtime guaran-
tees demonstrate that Closest String instances with a relatively large
number of input strings are efficiently solved in practice. We also give
experimental results demonstrating that CSP-greedy runs extremely effi-
ciently on instances with a large number of strings. This counter-intuitive
fact that “large” Closest String instances are easier and more efficient
to solve gives new insight into this well-investigated problem.

1 Introduction

The Closest String is one of the central theoretical problems in bioinformatics
and as such, has been studied extensively in bioinformatics and computational
biology [7,8,14,15,17,20,21]. It has a wide variety of applications, including uni-
versal PCR primer design [10,15,18,26], genetic probe design [15], antisense drug
design [9,15], finding transcription factor binding sites in genomic data [21], de-
termining an unbiased consensus of a protein family [4], and motif-recognition
[15,24,25]. The Closest String problem is NP-complete, unless P = NP [13],
and therefore is unlikely to be solvable in polynomial time.

We initiate the study of the smoothed complexity of the optimization version
of the Closest String problem, which can be defined as follows: given a set
of �-length strings S = {s1, . . . , sn}1 from the alphabet Σ, determine a string
s of length � such that d(s, si) ≤ d for all si ∈ S and d is minimized. We refer

1 Technically, this is a mulitset since we allow any string to occur multiple times

E. Chavez and S. Lonardi (Eds.): SPIRE 2010, LNCS 6393, pp. 106–117, 2010.
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to s as the closest string for the set S. Here d(·, ·) is the Hamming distance.
The concept of smoothed analysis was introduced as an intermediate measure
between average case analysis and worst case analysis; whereas average analysis
studies the average behaviour of an algorithm over all instances of a problem,
smoothed analysis studies the algorithm’s average behaviour on each “local re-
gion” of the instance space [28]. If the algorithm has good average performance
on each local region, then for any reasonable probabilistic distribution on the
whole instance space, the algorithm should perform well. If the smoothed com-
plexity is low, worst case instances are not robust under small changes. Most
small changes to the instance destroy the property of being worst-case; a small
random perturbation to the instance destroys the property of being worst-case.

Several other papers discuss the smoothed complexity of continuous problems
[5,12] and of discrete problems [3,19]. The smoothed complexity of other string
and sequence problems has been considered by Andoni and Krauthgamer [2],
Manthey and Reischuk [22], and Ma [19]. Andoni and Krauthgamer [2] study
the smoothed complexity of sequence alignment by the use of a novel model of
edit distance; their results demonstrate the efficiency of several tools used for
sequence alignment, most notably PatternHunter [21]. Manthey and Reischuk
gave several results considering the smoothed analysis of binary search trees [22].
Ma demonstrated that a simple greedy algorithm runs efficiently in practice for
Shortest Common Superstring [19], a problem that has application to string
compression and DNA sequence assembly.

We give a smoothed analysis of an efficient probabilistic algorithm for Clos-

est String instances where the alphabet is binary. To the best of our knowledge
this is the first analysis of a natural random model of the Closest String prob-
lem. The main contributions of this paper are as follows:

– We describe our algorithm, CSP-Greedy, prove it achieves a 2-approximation
guarantee, and give a bound on the probability that CSP-Greedy returns an
optimal solution to the Closest String instance.

– Next, we empirically study CSP-Greedy and demonstrate that Closest

String instances with a large number of strings (i.e. n ≥ 15) are solved
with extreme efficiency by this algorithm.

– Lastly, we define a natural model of perturbation for Closest String in-
stances and use smoothed analysis to show that CSP-Greedy achieves an
1 + f(ε, n, �)-approximation guarantee in time O(�3), where ε > 0 is any
small value and f(ε, n, �) approaches zero in time that is exponential in n.
Hence, this result gives analytical explanation for our empirical results.

1.1 Preliminaries

Let s be a string over the alphabet Σ. We restrict interest to Closest String

instances where the alphabet is binary and hence, unless otherwise stated we
assume Σ is the binary alphabet. Denote the length of s by |s|, and the jth
letter of s by s(j). Hence, s = s(1)s(2) . . . s(|s|). Lastly, we denote a function g
to be an asymptotic estimation of f as f � g.



108 C. Boucher and K. Wilkie

Given a set of strings S = {s1, . . . , sn}, each string of length �, then a
string s is a closest string for S if and only if there is no string s′ such that
maxi=1,...,n d(s′, si) < maxi=1,...,n d(s, si). Let s be a closest string for S then
the optimal closest distance d is equal to maxi=1,...,n d(s, si). We refer to a ma-
jority vote for S as the �-length string containing the letter that occurs most
often at each position; this string is not necessarily unique.

1.2 Previous Results

Lanctot et al. [15] gave a polynomial-time algorithm that achieves a 4
3 + o(1)

approximation guarantee. Li et al. [17] proved the existence of a polynomial
time approximation scheme (PTAS) for this problem, though the high degree
in the polynomial complexity of the PTAS algorithm renders this result only
of theoretical interest. In 2005, Brejová et al [7] proved the existence of sharper
upper and lower bounds for the PTAS on a slight variant of the Closest String

problem (which they refer to as the Consensus Pattern problem) and in 2006,
Brejová et al [8] improved upon the analysis of the PTAS for various random
binary motif models. Andoni et al. [1] gave a novel PTAS that has improved
time complexity, and most recently, Ma and Sun [20] presented a PTAS with
time complexity O(nΘ(n−2)), which is currently the best known running time.

Another approach to investigate the tractability of this NP-complete problem
is to consider the parameterized complexity of the Closest String problem.
A problem ϕ is said to be fixed-parameter tractable (FPT) with respect to pa-
rameter k if there exists an algorithm that solves ϕ in f(k) · nO(1) time, where
f is a function of k that is independent of n [11]. Gramm et al. [14] demon-
strated that the Closest String problem is FPT when the number of strings,
denoted as |S|, remains fixed. This FPT result is based on an integer linear
programming formulation with a constant number of variables (assuming n is
fixed), and the application of the result of Lenstra [16], which states that ILP is
polynomial-time solvable when the number of variables remains fixed. Unfortu-
nately, such an integer programming formulation is only of theoretical interest
since the corresponding algorithms lead to very long running times even when
the number of strings is small. Other parameterizations of the Closest String

problem also exist; for example, when d is fixed, the problem can be solved in
O(nl +nd(d+1)d) time [14]. Ma and Sun gave an O(n|Σ|O(d)) algorithm, which
is a polynomial-time algorithm when d = O(log n) and Σ has constant size [20].

2 A Randomized Algorithm for Closest String

In [27], Schöning considers the following simple probabilistic algorithm for solv-
ing the NP-complete problem of k-SAT: randomly choose a starting assignment
and subsequently augment this initial assignment until a satisfying one is ob-
tained. Papadimitriou introduced this random paradigm in the context of 2-SAT
and obtained an expected quadratic time bound [23]. This type of algorithms are
referred to as Monte Carlo algorithms with one-sided error; a useful property of



Why Large Closest String Instances Are Easy to Solve in Practice 109

such algorithm is that the error probability can be made arbitrarily small with
repeated independent random repetitions of the search process. We analyze a
similar probabilistic approach for the Closest String problem. Boucher and
Brown [6] introduced a similar algorithm to Algorithm 2 for the decision version
of the Closest String problem and conjectured about the probability that the
algorithm successfully determines a solution to a Closest String instance; the
results in this section resolve this conjecture.

Algorithm 2 begins with a string smaj,0 randomly selected from all majority
strings and iteratively augments the string so that it is closer to one of the
strings in S a maximum of t times. Let t be the number of times a random
majority string is chosen and augmented � times. Later in the section we define
t in terms of the parameters �, n, and d. In order to determine a closest string
corresponding to the optimal closest distance, this search process is repeated
with the degeneracy parameter ranging from 0 to �. We let Δd be the current
degeracy in the search process.

Let smaj,i be smaj,0 after it has been updated i times. At iteration i + 1, we
obtain the string smaj,i+1 by augmenting smaj,i so that it has smaller Hamming
distance to at least one string sk in S where d(sk, smaj,i) > Δd. This process is
repeated � times at which point the process is restarted if there is at least one
string sk in S where d(sk, smaj,�) > Δd.

Algorithm 1. Procedure augment
Input: A set S of n �-length strings, parameter d.
Output: A �-length string s or “not found”
Let S be the set of all �-length majority strings
Select smaj,0 randomly from S .
For i = 0, . . . , �:

If d(smaj,i, sj) ≤ d for all sj ∈ S then return s and terminate.
Else P = {j : sj ∈ S and d(sj , smaj,i) > d}
Choose any p ∈ P and 1 ≤ k ≤ � such that sp(k) �= smaj,i(k)
Set smaj,i+1 to be equal to sp at position k and equal to smaj,i at all other
positions

Return “not found”

Algorithm 2. CSP-Greedy
Input: A set S of n �-length binary strings.
Output: A �-length string s
For Δd each from 0 → �

Repeat augment t times with parameter Δd

2.1 Approximation Guarantee for CSP-Greedy

In this subsection we give worst-case bounds on the approximation guarantee
of CSP-Greedy. Also, we present examples of inputs for which the algorithm
performs poorly and hence, give lower bounds on the approximation guarantee.
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Theorem 1. The approximation ratio of the CSP-Greedy algorithm is at most
2 for any alphabet size |Σ|.

Proof. Since CSP-Greedy begins with a randomly selected majority string, it is
sufficient to show that for any set of strings S the maximum distance from any
majority string to any string in S is twice the optimal closest distance. Let S
be a set of strings with optimal closest distance equal to dopt. Without loss of
generality assume 0� is a closest string for S and hence the maximum number
of non-zero positions in each string si ∈ S is at most dopt. By the pigeonhole
principle, the maximum number of positions containing greater than n/2 non-
zero positions in a given column is at most 2dopt. Therefore, any majority string
can have at most 2dopt non-zero positions and is at distance at most 2dopt from
each string in S. �

The following example demonstrates that the 2-approximation guarantee is tight
S = {10000001111, 01000001111, 11111111111, 11111111111}, where majority
string is c∗1 = 11111111111 and optimal closest distance is �/4. On the first
iteration the majority string could be altered to c∗2 = 01111111111. On the sec-
ond iteration we could choose to alter this sequence back to c∗1. It is possible to
alternate between c∗1 and c∗2 and end up returning c∗1, which is equal to twice the
optimal closest distance.

2.2 Probabilistic Analysis of CSP-Greedy

The process of augmenting a randomly selected majority string � times or until a
closest string is found can be viewed as a Markov chain. This abstraction will be
useful in achieving an upper bound on the probability that CSP-Greedy returns
an optimal solution.

Let a set S be uniquely satisfiable if there exists exactly one string s∗ where
d(si, s

∗) ≤ d∗ for all si ∈ S. If S is an instance that does not have a string s
such that d(s, si) ≤ d∗ for all si ∈ S, then the augment procedure will return
“not found”. So we assume otherwise, that the set S is uniquely satisfiable and
denote the probability of obtaining s∗ when Δd = d∗ as ps. If smaj,i is not equal
to s∗ then there is at least one letter of smaj,i that can be changed so that
d(smaj,i, s

∗) decreases by one; the probability of this occurring is at least 1/�.
Denote Xi ∈ {0, 1, . . . , �} (i = 0, 1, . . .) as the random variable that is equal to
the Hamming distance between smaj,i and s∗, where i is the number of iterations
of the augment procedure. Each time a position is selected and the value of that
position is augmented, either the Hamming distance is increased or decreased
by one.

The process X0, X1, X2, . . . is a Markov chain with a barrier at state � and
contains varying time and state dependent transfer probabilities. This process
is overly complicated and we instead choose to analyze the following process:
Y0, Y1, Y2, . . ., where Yi is the random variable which is equal to the state number
after i steps and there exists infinitely many states. Initially, this Markov chain is
started like the stochastic process above (i.e. Y0 = X0). As long as the inner loop
is iterating, we let Yi+1 = Xi − 1 if the process decreases the Hamming distance
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between smaj,i and s∗ by one; and Yi+1 = Xi +1 otherwise. After the loop exits,
we continue with the same transfer probabilities. By induction on i, it is clear
that for each i, Xi ≤ Yi, and it follows that ps is at least Pr[∃t ≤ c� : Yt = 0].

We made the assumption that the set was uniquely satisfiable, however, this
assumption is not needed – the random walk may find another closest string while
not in the terminating state but this possibility only increases the probability
the algorithm terminates.

The following asymptotic estimation is used in the proof of the next theorem.
See the appendix for the justification of this fact.

Fact 1. For i > 0 and j > 0 the following asymptotic estimation exists:

j∑
i=0

(
2i + j

i

)(
� − 1

�

)i (1
�

)i+j

�
(

1
� − 1

)j

. (1)

Theorem 2. Let S be a set of strings and d∗ be the optimal closest distance.
Then the probability of procedure ‘augment’ obtaining a closest string for S is at
least e · 2−� for sufficiently large �.

Proof. Suppose s∗ is a closest string for S and let k be the Hamming distance
between smaj,0 and s∗. Denote Pr[Yi+1 = j − 1|Yi = j] by qi. Given that the
Markov chain starts in some state j, it can reach a halting state in at least j steps
by making transitions through the states j − 1, j − 2, . . ., 1, 0. The probability
of this happening is at least

∑j
i=0 qi. For i = 0, 1, 2, . . . the halting state can be

reached after 2i + j steps, where i steps are “bad” and j + i steps are “good”.
The probability of this happening is:

Pr[Y2i+j = 0, and Yk > 0 ∀ k < 2i + j |Y0 = j],

which is at least qi+k
i (1− qi)i times the number of ways of arranging i bad steps

and i+ j good steps such that the sequence starts in state j, ends in state 0, and
does not reach 0 before the last step. Using the Ballot theorem we know there
are

(2i+j
i

)
i

2i+j possible arrangements of these i and i + j steps. Therefore, the
above probability is at least:(

2i + j

i

)
i

2i + j
(1 − qi)iqi+j

i .

This expression is not defined in the case i = j = 0. In this case, the probability
is equal to 1. Thus, we have:

Pr[Y2i+j = 0, and Yk > 0 ∀ k < 2i + j|Y0 = j] =

≥
�∑

j=0

2−�

(
�

j

) ∑
2i+j≤c�

(
2i + j

i

)
i

2i + j

(
� − 1

�

)i (1
�

)i+j

≥ 2−�
�∑

j=0

(
�

j

) j∑
i=0

(
2i + j

i

)(
� − 1

�

)i (1
�

)i+j
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Using Fact 1, we have:

Pr[Y2i+j = 0, and Yk > 0 ∀ k < 2i + j|Y0 = j]

� 2−�
�∑

j=0

(
�

j

)(
1

� − 1

)j

=
(

�

2(� − 1)

)�

[by the Binomial theorem]

� e · 2−�

(
�

� − 1

)
[by Taylor’s theorem]

For sufficiently large � we have the probability is at least e · 2−�. �

The following corollary, an immediate consequence of the previous lemma, bounds
the probability of error.

Corollary 1. If t = � and � is sufficiently large, CSP-Greedy has time complex-
ity O(�3) and one-sided error probability of no more than

(
1 − e · 2−�

)�.

3 Experimental Results

We empirically investigate how the number of augmentations changes as the
number of strings (parameter n) increases. For these experiments, we fix � to be
15, d to be 4, and vary the value of n from 12 to 36. For each value of n, we
generate 100 motif sets at random by selecting a string s at random from the
set of all 2� possible strings and then n motif strings at random from the set of
all strings of distance at most d from s. For each motif set we run Procedure
augment twice–once with smaj,0 initialized to be equal to a majority string,
and a second time with smaj,0 initialized to be equal to a random string–and
in both cases, we count the number of alterations required to obtain a closest
string. We determine the mean number of alterations for 100 motif sets. Figure
1 illustrates this data, which shows that the number of augmentations required
to obtain a closest string is significantly larger if smaj,0 is initialized to be a
random string. Further, as the value of n increases the disparity between the
number of augmentations of a majority string and the number of augmentations
of a random string increases substantially.

Table 1 illustrates the change in the (Hamming) distance as the values n, �,
and d increase. We consider three different values of � and d, varied the value
of n from 5 to 35, generate 100 random motif instances, calculate the Hamming
distance between smaj,0 and s∗ (a closest string found by Algorithm 2) and
determine the mean Hamming distance of the 100 motifs. This data demonstrates
a drastic decrease in the distance between the majority string and the closest
string as n increases. Note that when the value of n is significantly large the
distance between the majority string and the closest string is equal to zero –
implying the majority string is a closest string.
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Fig. 1. Illustration of the effect of the initialization of the starting string
on efficiency of Procedure augment as the value of n increases. A compar-
ison between the mean number of augmentations required to obtain a closest string
if starting from a majority string (white) or if starting from a random string (black).
One hundred random motif sets are generated for each value of n and the mean of the
augmentations is determined. � is fixed to 15 and d is fixed to 4.

Table 1. An Illustration of the variation in the Hamming distance between
a majority and closest string as �, d, and n change. An illustration of the
Hamming distance between a randomly chosen majority string and a closest string
with respect to n. We considered the following (�, d) pairs: (15, 4), (18, 6), and (25, 5)
and varied n to be every even value from 5 to 35. For each (�, d) pair and value of
n we generated 100 random motif sets, determined the Hamming distance between a
randomly selected majority string and the closest string found by the algorithm, and
calculated the mean Hamming distance.

n (�, d)
(15, 4) (18, 6) (25, 5)

5 3.2 2.9 3
8 2.7 2.3 2.1
10 0.8 1.0 1.8
12 0 0.7 1.2
15 0 0 0.5
25 0 0 0
30 0 0 0
35 0 0 0
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In summary, our experimental results illustrate the following trends: as the
value of n increases the (Hamming) distance between a randomly selected ma-
jority string and a closest string decreases and the number of augmentations
required to obtain a closest string from a majority string decreases. Further-
more, regardless of the value of � and d, for significantly large values of n the
majority string is also likely to be a closest string. Similar results were also
reported by Boucher and Brown [6].

4 Smoothed Analysis of CSP-Greedy

Using smoothed analysis, we demonstrate that the approximation ratio of the
greedy algorithm on small perturbations of the worst-case instances is equal

to
(
1 + ε(e−1)

2n

)�

. Hence, our analysis shows that the approximation is equal to
1 + o(1) for significantly large n. This result explains why CSP-Greedy performs
well in practice on large instances (i.e. instances containing a significantly large
number of strings).

A perturbed instance S is defined to be S′ = {s′1, s′2, . . . , s′n}, where each s′i has
length � and each s′i is obtained by mutating uniformly at random each letter of
si with a small probability p > 0. In more general terms, an adversary chooses
n length-� sequences from the binary alphabet at random, and every symbol is
perturbed with a small probability p. Next, let S be a closest string instance, S′

be the corresponding perturbed instance, and q be Pr[si(j) = 1]. We have

Pr[s′i(j) = 0] = Pr[si(j) = 1] Pr[si(j) was permuted] +
Pr[si(j) = 0] Pr[si(j) was not permuted]

= qp + (1 − q)(1 − p).

Assuming, ε > 0 is a small number, and the perturbation probability ε log(�n)
�n ≤

p ≤ 1
2 , we obtain the following:

Pr[s′i(j) = 0] = 1 − q − p + 2qp (2)
≥ 1 − q − p + q since p ≤ 1/2 (3)

≥ ε log(�n)
�n

(4)

The next theorem, our main result, demonstrates that for significantly large �,
as n (and to a lesser extend �) increases the approximation ratio approaches 1.
This result explains our experimental results analytically.

Theorem 3. (CSP-Greedy under limited randomness) Foranygiven small
ε > 0, for perturbation probability ε log(�n)

�n ≤ p ≤ 1
2 and significantly large �, the

expected ratio of ‘CSP-Greedy’ on the perturbed instances is
(
1 + εe

2n

)�.

Proof. Given a Closest String instance S, we define the instance as good
if each majority string of S is also a closest string for S; otherwise, we define
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the instance as bad. Since each iteration of the augment procedure begins by
selecting a random majority string and determining whether it has distance at
most d from each string in S, it follows that CSP-Greedy will return a closest
string when S is a good instance. Let pbad be the probability that the perturbed
instance is bad.

In order to bound pbad we first calculate the probability that a majority string
does not match the closest string at a particular position. There exists at least
one string s such that d(s, s′i) ≤ d for all s′i ∈ S′. Without loss of generality
assume that 0� is a closest string. We calculate the probability that 0� is a
majority string. Let Xi,j be a binary random variable representing the symbol
of si at the j-th position. For a given j, let the number of ones be Xj =

∑
i Xi,j .

Pr[Xj > n/2] =
n∑

i=n/2

(
n

i

)
(Pr[s′i(j) = 1])i(1 − Pr[s′i(j) = 1])n−i

≥ 1 − (1 − Pr[s′i(j) = 1])n

Let α = 1− (1−Pr[s′i(j) = 1])n. We give a lower bound for the probability that
the instance is good.

1 − pbad = 1 − Pr[S′contains at least one bad column]

= 1 −
�∑

i=1

(
�

i

)
Pr[Xj > n/2]i

≥ 1 −
�∑

i=1

(
�

i

)
αi

≥ 1 − α� [by Binomial Theorem]

Therefore, it follows that pbad is at most (1 − (1 − Pr[s′i(j) = 1])n)� and hence,
we get:

pbad ≤ (1 − (1 − Pr[s′i(j) = 1])n)� ≤
(
1 − ε

2n

)�

In Theorem 1 the greedy algorithm was proved to have a worst-case approxima-
tion ratio of 2. Therefore, by Theorem 1 and Corollary 1 we obtain the following:

E[ratio] ≤ 2
(
1 − ε

2n

)� (
1 − e

2�

)�

[by Corollary 1]

≤ 2
(
1 +

εe

2n+�−1 − e

2�
− ε

2n

)�

For significantly large values of n and �, we have:(
1 +

εe

2n+�−1 − e

2�
− ε

2n

)�

≤ 1
21/�

(
1 +

εe

2n

)�

,

and therefore,

E[ratio] ≤
(
1 +

εe

2n

)�

. �
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We note that our perturbation is very small compared to the size of the instance.
With perturbation probability p = ε log(�n)

�n , each set of n strings of length � is
expected to change by log (�n) letters.
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Abstract. The Square Tiling Problem was recently introduced as equiv-
alent to the problem of reconstructing an image from patches and a
possible general-purpose indexing tool. Unfortunately, the Square Tiling
Problem was shown to be NP-hard. A 1/2-approximation is known.

We show that if the tile alphabet is fixed and finite, there is a Polyno-
mial Time Approximation Scheme (PTAS) for the Square Tiling Problem
with approximation ratio of (1− ε

2 log n
) for any given ε ≤ 1.

1 Motivation

Recently [2] Amir and Parienty introduced the Patches Model as a possible
abstraction of ad-hoc techniques that have been used to index various domains.
The idea is to slice the images that we want to index into many small overlapping
patches, or tiles. Patterns whose patches match a large number of patches in an
indexed object, are likely to appear in the image. Similar methods have been used
in Computational Biology (e.g. [15,7,3,12,6,5]), Linguistics (e.g. [8,1]), Image
Processing (e.g. [14,11,4]), or Audio Indexing (e.g. [9]).

The first task tackled in [2] was reconstructing an image from its patches –
the Square Tiling Problem. Unfortunately, it was proven that this problem is
NP-hard. An image constructed from n×n tiles has 2n2 − 2n “seams” between
tiles. If it is correctly constructed then two adjacent tiles match at the seams,
i.e., have equal alphabet symbols on their adjacent edges. We then say that the
seam is correct, otherwise there is an error at the seam. We count a single error
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at the seam whether one or two symbols are not equal at the adjacent tiles. An
approximation in that context is an n × n square where “many” seams match.
In [2] a polynomial-time algorithm that constructs a square with at least 1

2 of
the seams being correct, was shown. If the idea of patch indexing is to have any
chance of applicability, much better approximations are necessary.

In this paper we present a Polynomial Time Approximation Scheme (PTAS)
for the square tiling problem with a fixed finite alphabet. We show that for such
finite alphabets, for any given ε and n2 tiles, there is an algorithm polynomial
in n and ε that constructs a square with at least (1 − ε

2 log n )n2 correct seams.
The paper is constructed as follows. We begin with background and definitions

in Section 2. In Section 3 we show how to reconstruct a rectangle of size n× log n
tiles in polynomial time (or, for a given c an n × c rectangle). We then show in
Section 4 how multidimensional knapsack techniques can be used to approximate
a square tiling.

2 Background and Definitions

The definition below was used in [2] to combinatorially describe the patches
concept.

Definition 1. Given matrix M,

⎛
⎜⎜⎝

m0,0 · · · · · · · · ·m0,n

· · · · · · · · · · · ·
· · · · · · · · · · · ·

mn,0 · · · · · · · · ·mn,n

⎞
⎟⎟⎠

A is a division of M to patches if A = {a0,0, · · · a0,n−1, · · · · · · an−1,0, · · ·an−1,n−1}
and

∀i, j ai,j =
[

mi,j , mi,j+1
mi+1,j , mi+1,j+1

]
.

The problem we are concerned with is the converse.

Definition 2. The problem of constructing an image from patches is defined as
follows:

INPUT: A = {a0, · · · , an2−1} be a set of 2 × 2 matrices over alphabet Σ.

OUTPUT: Construct an (n+1)×(n+1) matrix M =

⎛
⎜⎜⎝

m0,0 · · · · · · · · ·m0,n

· · · · · · · · · · · ·
· · · · · · · · · · · ·

mn,0 · · · · · · · · ·mn,n

⎞
⎟⎟⎠

such that A is the division of M to patches, if such a matrix exists. Otherwise
report that no matrix can be constructed from the input.

In [2] it was proven that the problem of constructing an image from overlapping
patches is equivalent to the square tiling problem, where we are given 2 × 2
patches over alphabet Σ and we are only allowed to place patches next to each
other if their symbols match. Formally:
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Definition 3. A patch A may be correctly placed to the right (left, top, bottom)
of patch B if the pair of letters on the right (left, top, bottom) side of B are
the same as the pair on the left (right, bottom, top) of patch A. The common
edge of two patches is called a seam. The seam is correct if the adjacent tiles are
correctly placed. Otherwise, it is an error.

Definition 4. The Square Tiling Problem is defined as follows:

INPUT: A multiset S of n2 tiles. Each tile is a 2 × 2 matrix over alphabet Σ
DECIDE: Whether there exists a square of tiles correctly placed next to each
other, whose tiles are exactly those in the multiset.

In [2] it was proven that the Square Tiling Problem is NP-hard.
We seek a polynomial time algorithm that approximates the square. The

approximation means reconstructing an image from all of the tiles, with the
minimum amount of seam errors.

Our goal is to improve this result, and in fact we even generalize that. Assume
that the maximum number of correct seams that can be achieved by any tiling
of a given set of patches S is smax. Then for any given ε we can tile, in time
polynomial in the size of S and ε, the patches of S achieving at least (1 −

ε
log n )smax correct seams.

3 Rectangle Tiling

We begin by showing that the NP-hardness is dependent on the dimensions of
the square. For some rectangle dimensions, the Tiling Problem is polynomial-
time computable.

Definition 5. The entropy of multiset m of size a · b is the minimum number
of errors obtained by tiling m as an a × b rectangle.

Theorem 1. The entropy of all multisets of size n × log n
ε can be computed in

time polynomial in ε and n.

Proof: We want to compute the entropy for all multisets, so we must first make
sure that there are not too many multisets.

Claim. There is a polynomial number of multisets of size n × log n
ε .

Proof: The alphabet is fixed and finite. Let us assume that Σ = {1, ..., c}, So
there are O(c4) types of tiles.

A multiset is a histogram of the types of tiles that compose it. There are
at most n · log n

ε tiles of each type, while the sum of all types is also n · log n
ε .

Combinatorially, the number of different multisets it is equal to the number of
combinations to insert n′ balls into k′ bins, when n′ = n · log n

ε and k′ = c4.
There are

(
n′+k′−1

n′
)

= O(n′k′−1) = O((n · log n
ε )c4−1) multisets. �	

We now show an exact polynomial-time algorithm for a fixed finite alphabet
that calculates the entropy for each multiset m of size n · log n

ε . we will need an
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auxiliary data structure to keep track of some values for the multisets constructed
during the execution of the algorithm. In particular, consider a possible tiling of
multiset of size i· log n

ε into a rectangle of i columns and log n
ε rows. The rightmost

column, rc, of such a tiling is composed of log n
ε 2 × 2 patches. For the sake of

improving the time complexity, we consider the column composed only of the
2 log n

ε symbols on the right side of the patches in the rightmost column. It is
possible that different columns of log n

ε patches have the same right side. For any
multiset m and right side r, choose a tiling with the lowest entropy. For that
tiling, record in addition to the right side r, also the 2 log n

ε symbols on the left
side of the patches in the rightmost column.

Auxiliary Data
Define a 2-dimensional array M with the following values:

At iteration i, for each multiset m of size i · log n
ε , that represents a rectangle of

i columns and log n
ε rows, and for each r – the right side of the rightmost column

of multiset m:

– M [m, r].entropy holds the minimum entropy of m subject to the constraint
that r is the right side column of the log n

ε × i rectangle tiling of m.
– M [m, r].left is the left side of the rightmost column in a tiling that obtained

the minimum entropy.
This field’s goal is to enable us to reconstruct the optimal tiling of m.

The size of array M is bounded by the product of the number of multisets and
the number of possibilities for the right side of column r. The number of multisets
for the last iteration was calculated above as O((n log n

ε )c4−1).
Calculation of the number of different possibilities for the right side of a column:
There are c2 possibilities for each tile, and log n

ε tiles altogether. Therefore,
the right side of a column can be arranged in

(c2)
log n

ε = (2log c2
)

log n
ε = (2log n)

logc2
ε = n

log c2
ε = n

2 log c
ε = z different ways.

Thus the size is clearly polynomial.

Algorithm Outline
Initialization phase: initialize all of the entropy values of M to ∞.

A column can be considered a Cartesian product of two sides < l, r >, so
there are z2 different columns.

Count the number of errors of every possible column c, i.e, an ordered log n
ε

tiles placed one above the other. In this case, m is the multiset comprised by c
and r is the right side of column c.

Assume we have computed array M for the first i iterations.

Iteration step: For each combination of (m, r) computed in the previous iteration,
the algorithm attaches to r all possibilities as column c. Let C be the multiset of
the elements of c. Then each such column c creates a new multiset m ← m∪C,
and new right side r ← right side of columnc. The new entropy e′ the entropy
of the old entry + the number of errors introduced by attaching c to the right
of the old entry.

Thus, M [m, r] ← min(M [m, r], e′)
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Correctness:
We prove by induction that for each combination of multiset m of size i · log n

ε
and right side of column r, the algorithm finds the entropy of (m, r).

Base Case: For i = 1, the assumption holds, because the algorithm goes through
all columns and picks the minimum for each combination.

Inductive Step: Assume correctness for i and prove for i + 1: Let mi+1 be a
multiset of size (i + 1) · log n

ε and ri+1 a right side of a column. Any optimal
tiling of mi+1 as a rectangle such that ri+1 is its right side of the rightmost
column, is a selection among an optimal tiling of multiset mi as a rectangle of
size i × log n

ε such that the right side of the rightmost column is ri adjacent to
column < li+1, ri+1 >, such that the number of errors of mi and < li+1, ri+1 >
is smallest. By the induction assumption, the algorithm finds mi as iteration i.
Iteration i + 1 attaches all possible columns, particularly < li+1, ri+1 >.

Therefore the algorithm finds (mi+1, ri+1). �	

Claim. The algorithm’s complexity is polynomial.

Proof :
Initialization phase: Considering all combinations of right side of column r and
column < l′, r′ > is O(z3) = O(n

6 log c
ε ).

Column construction: We seek after the number of multisets of size i· log n
ε ∀i ≤ n.

There are O((n · log n
ε )c4−1) multisets of size exactly n · log n

ε . Therefore, there
are O(n · (n · log n

ε )c4−1) multisets altogether. For each multiset we go through
all m2 columns and perform a constant time work.
Therefore, the algorithm’s running time is O(n · (n · log n

ε )c4−1 · n 4 log c
ε ).

Finding the optimal tiling: Once a multiset m =< t1, ..., tc4 > of size n · logn
ε , is

constructed, it’s trivial to reverse the algorithm and tile it as a rectangle with
the minimum number of errors. �	

4 The Approximation

In the previous section we enumerated all multisets and their entropies. That
action could be referred as a pre-processing action, because it does not use the
input of the problem, but only exploits the problem size n.

We now partition the n2 input patches into n·ε
log n sets of n · log n

ε tiles, such
that the sum of their entropies is minimal. This will also be done by partitioning
all multisets of size n2 into such sets.

Algorithm Outline:

Step 1 - Find the entropy for all multisets of size n · log n
ε .

Step 2 - Select a set of multisets, consisting exactly of the input tiles, with
minimal entropy.
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Implementation:
Step 1: The implementation of step 1 was shown in Section 3.

Step 2: This problem is similar to another NP-hard problem - The Multidi-
mensional Knapsack problem. It needs to select a multiset of given objects (or
items) in such a way that the total profit of the selected objects is maximized
while a set of knapsack constraints are satisfied.

Unfortunately, MDK is NP-hard. It was also shown that finding an FPTAS
even for a special case where all profits are the same and equal to 1 and m =
2 is NP-hard [10]. Moreover, the problem is NP-hard in the strong sense and
thus any dynamic programming approach would result in strictly exponential
time bounds [13].

We want an exact algorithm to be polynomial on the one hand, and on the
other hand to support multiple knapsacks, utilizing the unique characteristics of
our problem.

Let MS = {c1, . . . , cx}, be the set of all multisets of size n · log n
ε , where x is

of size O((n · log n
ε )c4−1). Multiset ci can be represented by < wi1, . . . , wic4 >,

where wij is the number of patches of type j there are in multiset ci. Let ei be
the entropy of multiset ci. We assume that MS is sorted in non-decreasing order
of its entropy, i.e., ∀i ≤ m − 1, ei ≤ ei+1.

The input S of the tiling problem is a set of patches S of size n2. S can be
represented by the tuple < S1, . . . , Sc4 >, where i is the number of input tiles of
type i. Our task is to find a multiset of multisets C ⊆ MS, such that

⋃
c∈C

c = S,

i.e. ∀j, 1 ≤ j ≤ c4,
∑

oi · wij = Sj , where oi is the number of occurrences of ci

in C.

The Dynamic Programming Matrix:
T [1..x ; 1..(n2)c4

] is a matrix with the following values:
Let < b1, . . . , bc4 > be a multiset of size between 0 and n2, and let i be a

number 1 ≤ i ≤ x.

If there does not exist a multiset which is the union of sets from {c1, . . . , ci},
and whose elements are exactly the patches < b1, . . . , bc4 >, then T (i, <
b1, . . . , bc4 >) = ∞.
Otherwise, let L be such a multiset where

∑
c∈L

(entropy of c) = E is smallest.

Set T (i, < b1, . . . , bc4 >) = E.

Algorithm Outline:
The matrix is filled using dynamic programming:

Initialization: The first row can use only c1, so ∀α ∈ N0 every cell that repre-
sents α · c1 will have the entropy α · e1. The rest of the cells are infeasible and
their entropies are ∞.

Filling the Matrix: For each column (b1, . . . , bc4) and row i there are two
possibilities:
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1. The optimal solution does not use ci at all in order to achieve (b1, . . . , bc4).
In that case T (i, < b1, . . . , bc4 >) = T (i − 1, < b1, . . . , bc4 >)

2. The optimal solution uses ci at least one time.
In that case T (i, < b1, . . . , bc4 >) = T (i, < b1, . . . , bc4 > \ ci) + ei

Therefore:

1. T (i, < b1, . . . , bc4 >) ← min(T (i, < b1, . . . , bc4 >), T (i − 1, < b1, . . . , bc4 >))
2. T (i, < b1, . . . , bc4 > ∪ α · ci) ← min(T (i, < b1, . . . , bc4 > ∪ci), T (i, < b1, . . . ,

bc4 >) + ei)

Theorem 2. The dynamic programming algorithm’s running time is
O((n · log n

ε )c4−1 · (n2)c4
/(n · log n

ε ))

Proof: There are m · (n2)c4
cells in matrix M . The algorithm only handles

columns representing multisets of size divisible by n log n
ε . The time to fill each cell

is constant. Therefore, the total complexity is O((n · log n
ε )c4−1 · (n2)c4

/(n · log n
ε ))

�	
Theorem 3. Let S be a set and let s be the number of correct seams in the
dynamic programming construction of S. Let smax be the maximum number of
correct seams for any square tiling of S. Then s ≥ (1 − ε

2 log n )smax.

Proof: Let M be an optimal tiling. Let X be the number of correct vertical
seams, and Y the number of correct horizontal seams in M . smax = X + Y . (If
M has no errors, then smax = 2n2 − 2n).

Without loss of generality we may assume that X ≥ Y (otherwise, we rotate
all tiles by 90o). Since the dynamic programming algorithm provides the opti-
mum tiling within the strips of size log n

ε × n, and the only errors may occur
when “putting together” these strips, then it is clear that the number of correct
vertical seams decided by our algorithm is no less than the number of vertical
seams in the optimum tiling. We need to consider only Y – the number of correct
horizontal seams, since our algorithm makes no effort to match the rows between
the strips.

We start by identifying the total number of correct horizontal seams at the
bottom of the log n

ε × n strips of M . Call that number Y0. Next we consider the
strips as moved down by an offset of 1, i.e., assume the first strip is of only one
row, and the following strips are of size log n

ε × n. The total number of correct
horizontal seams at the bottom of the log n

ε × n strips (with offset 1) we call Y1.
In general, let Yi the total number of correct horizontal seams at the bottom of
the log n

ε × n strips with offset i (i.e, the first strip has only i rows, followed by
log n

ε × n strips.) Formally, ∀ 0 ≤ i ≤ log n
ε − 1, define Yi =

∑ n·ε
log n

j=1 (number of
matches between row j · log n

ε + i and the row below it).
Let Ymin be such that Ymin ≤ Yi∀i, 0 ≤ i ≤ log n

ε −1. We will assume that the
worst happened, and all the horizontal seams at the bottom of the log n

ε ×n strips
of the dynamic programming tiling of S are erroneous. However, this number of
errors can not exceed Yi, since the dynamic programming vertical tiling within
the strips is superior to the optimal tiling. Therefore s ≥ X + Y − Ymin.
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However, because of averaging considerations, it is clear that Ymin ≤ Y/ log n
ε .

Therefore
s ≥ smax − Ymin ≥ smax − Y/ log n

ε . However, smax = X + Y ≥ 2Y , therefore
Y/ log n

ε ≤ smax/ 2 log n
ε . Thus smax − Y/ log n

ε ≥ (1 − ε
2 log n )smax. �	

5 Conclusions and Open Problems

The idea of using patches for indexing, presented by Amir and Parienty [2], is
not viable if tiling can not be done efficiently. In this paper we showed a PTAS
for the square tiling problem over fixed finite alphabets. An interesting open
question is whether square tiling over an infinite alphabet is also approximable.

An intriguing direction is, perhaps, using rectangles, rather than squares for
indexing, since we have shown that rectangle tiling is polynomially computable
for “long and skinny” rectangles over a finite fixed alphabet. Indeed, for indexing
purposes, the entire square will rarely be sought. Thus the results of this paper
bring encouraging evidence to the proposal of utilizing patches for indexing.
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Abstract. Given a set S of n strings, each of length �, and a non-
negative value d, we define a center string as a string of length � that
has Hamming distance at most d from each string in S. The #Closest

String problem aims to determine the number of unique center strings
for a given set of strings S and input parameters n, �, and d. We show
#Closest String is impossible to solve exactly or even approximately
in polynomial time, and that restricting #Closest String so that any
one of the parameters n, �, or d is fixed leads to an FPRAS. We show
equivalent results for the problem of efficiently sampling center strings
uniformly at random.

1 Introduction

Finding similar regions in multiple DNA, RNA, or protein sequences plays an
important role in many applications, including universal PCR primer design
[4,16,18,26], genetic probe design [16], antisense drug design [16,3], finding tran-
scription factor binding sites in genomic data [27], determining an unbiased
consensus of a protein family [1], and motif-recognition [16,24,25]. The Closest

String problem formalizes these tasks and can be defined as follows: given a set
of n strings S of length � over the alphabet Σ and parameter d, the aim is deter-
mine if there exists a string s that has Hamming distance at most d from each
string in S. We refer to s as the center string and let d(x, y) be the Hamming
distance between strings x and y.

The Closest String was first introduced and studied in the context bioin-
formatics by Lanctot et al. [16]. Frances and Litman et al. [11] showed the prob-
lem to be NP-complete, even in the special case when the alphabet is binary,
implying there is unlikely to be a polynomial-time algorithm for this problem
unless P = NP. Since its introduction, the investigation of efficient approxima-
tion algorithms and exact heuristics for the Closest String problem has been
thoroughly considered [9,10,12,16,17,19,20].

S is pairwise bounded if the Hamming distance for each pair strings in S is at
most 2d. The Closest String problem reduces to separating pairwise bounded

E. Chavez and S. Lonardi (Eds.): SPIRE 2010, LNCS 6393, pp. 127–134, 2010.
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sets with a center string, and if so, finding one such string, from those that do
not. A set of strings S with at least one center string is a motif set; S is a decoy
set if it is pairwise bounded but does not have a center string. We note that a
center string for a given set S is not necessarily unique.

A related, uninvestigated problem is determining the computational difficultly
in finding the number of center strings for a set of strings. In many biological
applications, including the ones listed above, it is useful to identify the all possi-
ble center strings, rather than only determining whether one exists. Further, an
important relationship between the number of unique center strings for a given
set of strings S and the computational difficulty of solving the decision version
of #Closest String for an instance S has been shown. Specifically, empirical
analysis demonstrates that for sufficiently large n, all motif sets are clustered
together and are characterized as having one unique center string, which is a
string of length � containing the symbol that occurs most frequently at each
position [2]. Imperative to the analytical explanation of this conjecture is the
development of an algorithm to efficiently count the number of center strings for
a given set of strings.

We give the formal description of this counting problem as follows:

#Closest String

Instance: Parameters n, � and d and a set S of n, length � strings from the
alphabet Σ.
Output: The number of distinct strings taken from the alphabet Σ that have
distance at most d from each string in S.

Countless sampling and counting problems have been studied, including the
sampling and counting versions of the following problems: matchings in a graph
[14], the graph-colouring [6,13,21], Hamiltonian path [7], independent set [8], and
knapsack [5,22].

This paper focuses on the computational difficulty of counting and sampling
center strings exactly or approximately. To our knowledge this is the first consid-
eration of this problem but is motivated by problems addressing the analysis and
use of biological data. We show #Closest String is #P-complete, implying
it is in the complexity class of hard counting problems.

Given that this problem cannot be solved efficiently, we investigate if it can be
reasonably approximated efficiently. Many #P-complete problems have a fully-
polynomial-time randomized approximation scheme (FPRAS) which produces
with high probability an approximation of arbitrarily small error in time that is
polynomial with respect to both the size of the problem and accuracy. Jerrum
et al. [15] showed that every #P-complete problem either has an FPRAS or
is impossible to approximate. For sampling problems, the aim is to obtain a
fully polynomial almost uniform sampler (FPAUS), which outputs solutions that
achieve an approximation to a given distribution of solutions. In absence of the
existence of an FPRAS or FPAUS for a general counting or sampling problem,
interest remains in showing an FPRAS or FPAUS exists for a restricted version
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of the problem (i.e., when one of the problem parameters is fixed). We prove
that although there does not exist an FPRAS for the general #Closest String

problem, the most natural restricted versions of #Closest String lead to the
existence of an FPRAS. Similarly, we show that although there does not exist
an FPAUS for sampling center strings uniformly at random (u.a.r.), restricting
interest to this sampling problem where one of the parameters is fixed leads to
an FPAUS.

2 Hardness Results

We show the #Closest String problem is #P-complete, and that there does
not exist an FPRAS for #Closest String under reasonable complexity as-
sumptions. A problem is #P-complete if and only if it is in #P and every prob-
lem in #P can be reduced to it by a polynomial-time counting reduction. To
prove that #Closest String is #P-hard, it is sufficient to show that #3-SAT,
a #P-complete problem, can be reduced to #Closest String. #3-SAT aims
to determine for given a 3-CNF formula F , how many satisfying assignments ex-
ist for F . Let X = {x1, . . . , xn} be a set of Boolean variables. A literal is either
xi or ¬xi for some i. We refer to a 3-clause as a disjunction of three distinct
literals, made of three different variables.

Proposition 1. #Closest String is #P-complete.

Proof. First, we present the reduction of a single 3-clause, and then extend it to
a general 3-CNF formula. For a 3-clause ω over the variables in X we define the
string s = s(1), . . . , s(2n) by:

s(2i − 1)s(2i) =

⎧⎪⎨
⎪⎩

00 if ω contains the literal ¬xi,
11 if ω contains the literal xi,
01 otherwise

Note that s is defined via its blocks and exactly three of them are repetitions.
Let φ : X → {0, 1}2n be the one-to-one mapping from X onto the set of all
binary strings of length 2n as defined above (i.e. the transformation from ω to
s). It is shown in [11] show that for any 3-clause over the variable x1, . . . , xn,
denoted as ω, and assignment v ∈ {0, 1}n, v satisfies ω if and only if φ(v) has
distance at most n from s.

Let F = ω1 ∧ . . . ∧ ωt be a 3-CNF formula over the variables x1, . . . , xn then
v ∈ {0, 1}n is a satisfying assignment to F if and only if φ(v) has distance less
than n from each of the strings in the set {s1, . . . , st}, where si = φ(ωi). Hence,
the number of satisfying formulae to F is parsimonious to the number of center
strings to the set {s1, . . . , st}. �

Randomization can be quite powerful in achieving an approximation scheme for
several #P-complete problems. Jerrum et al. show that the problem of counting
the number of simple cycles in a directed graph is not approximable by proving
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that the existence of an almost uniform generator for this problem, implies the
existence of a randomized polynomial time algorithm for determining the exis-
tence of a Hamiltonian cycle in a directed graph [15]. FPRAS is the subclass of
#P counting problems whose answer, y, is approximable in the following sense:
there exists a randomized algorithm that, with probability at least 1 − δ, ap-
proximates y to within an ε multiplicative factor in time polynomial in n (the
input size), 1/ε, and log(1/δ).

The results of Jerrum et al. [15] imply that every #P-complete problem ex-
hibits an FPRAS or is not approximable. Given a #P-complete problem an
important question to answer is if there exists a FPRAS for the problem – since
the existence implies the approximability of the problem. Unfortunately, the
existence of a FPRAS for #Closest String is unlikely.

Observation 1. There is no FPRAS for #Closest String, unless NP = RP.

Consider a problem π and I be an instance of the problem π, and let #(I) denote
the number of solutions for I. an FPRAS can be used to distinguish between
the case where #(I) is equal to zero and when #(I) is greater than zero; hence,
providing a randomized polynomial time algorithm for the decision version of the
problem π. Therefore, π must be contained in the class BPP. Since it is unlikely
that BPP equal to NP, all NP-complete problems are believed not to contain
an FPRAS [23, page 309]. Since Closest String problem is NP-complete [11],
there exists no FPRAS for #Closest String, unless BPP = NP.

The notions of counting and sampling are closely related. Jerrum et al. es-
tablished the equivalence between the existence of an FPRAS and an FPAUS;
namely for self-reducible problems there exists an FPRAS if and only if there
exists an FPAUS [15]. It follows that we have the following negative result con-
cerning the approximability of sampling center strings

Observation 2. There is no FPAUS for sampling center string uniformly at
random, unless NP = RP.

3 Counting and Sampling with Fixed Parameters

Observation 2 is evidence that determining the number of center strings is com-
putationally difficult to approximate and therefore, to achieve progress on the
existence of an FPRAS we consider the problem where one of the parameters is
fixed. We first determine if the decision problem corresponding to the restricted
version of #Closest String can be solved in polynomial-time, since otherwise
we could show there does not exist an FPRAS by using similar argument to
that for Observation 2. In order for the existence of an FPRAS to be possible
for some restricted version of the #Closest String problem, the correspond-
ing decision problem has to be fixed parameter tractable (FPT), meaning there
exists an algorithm that is exponential only in the size of a fixed parameter while
polynomial in the remaining, unfixed parameters.

Closest String is trivially FPT when the parameter � is fixed since the
enumeration algorithm that tries all possible length � strings is polynomial-time
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when � is fixed. Gramm et al. prove Closest String is FPT when n or d is
fixed [12]. These results imply that restricting #Closest String such that at
least one of �, d or n is fixed leads to a problem that may have an FPRAS.

When � is fixed the enumeration algorithm that attempts all |Σ|� strings is an
FPRAS. The O(d(|Σ|�e)d) algorithm that determines which strings from the set
of strings that have distance at most d from s1 proves the existence of an FPRAS
when d is fixed. These enumeration algorithms prove the existence of a FPAUS
for the problem of sampling center strings u.a.r. when � or d is fixed. Next we
show there exists both an FPRAS and an FPAUS for the respective problems of
counting and sampling center strings when the number of strings is fixed. In fact,
we show a stronger result: that there exists an exact polynomial-time algorithm
for counting and sampling center strings when n is fixed.

Proposition 2. When the number of strings is fixed and Σ is the binary al-
phabet there exists a polynomial-time algorithm for #Closest String and for
sampling center strings u.a.r.

Proof. The goal is to give an integer linear programming (ILP) formulation such
that the number of variables depends only on the value of n. Let S = {s1, . . . , sn}
denote a set of n binary strings, each of length �, and denote each string sj as
sj(1) · · · sj(�). Let CS denote the set of center strings for the set S. Given a set
of n strings of length �, we can think of these strings as a n × � matrix. We
refer to the columns of an instance of #Closest String as the the columns of
a matrix. There are 2n possible number of unique columns. Using the column
types, we show how #Closest String restricted to the binary alphabet can
be formulated as an ILP with 2n variables.

Let b = [b1, . . . , bn]T correspond to one particular column type, and let P(b) =
{i | (si(1), si(2), . . . , si(n)) = b} (i.e. P(b) is the set of positions in S which are
equal to b). Therefore, |P(b)| is equal to the number of positions in S that are
equal to b.

For a string u = u(1), . . . , u(�), let ρ(b) be the number of positions that are
equal to b where u is equal to 0 (i.e. j ∈ P(b) and u(j) = 0). Hence, |P(b)|−ρ(b)
is the number of positions that are equal to b

Therefore, u has distance at most d from si if and only if∑
b

biρ(b) + (1 − bi)(|P(b)| − ρ(b)) ≤ d.

Thus, CS is nonempty if and only if there is a feasible integer solution to∑
b

(2bi − 1)ρ(b) + (1 − bi)|P(b)|) ≤ d (1 ≤ i ≤ n) (1)

0 ≤ ρ(b) ≤ P(b) (2)

for the variables ρ(b).
Assuming there is a solution, we know the number of strings u corresponding

to each such solution. It is exactly
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∏
b

(
P(b)
ρ(b)

)
(3)

where the product is over all feasible values of the variables ρ(b).
To sample the strings in CS

(i) generate random values of each of the numbers ρ(b), for each b, with the
correct probabilities — proportional to the formula in (3)

(ii) sample exactly uniformly from the vectors corresponding to the given ρ(b)
by choosing subsets of given size uniformly at random.

This immediately shows that for fixed n there is a polynomial-time algorithm
for perfect sampling, since one can run through all possible values of the set of
variables ρ(b) (there are at most � values for each of these, hence at most �2n

values in total) and for each one, compute the value of (3). Then choose between
one of these polynomially many values with the required probability, and then
perform step (ii). �

A slight modification of the proof for the previous proposition leads to the follow-
ing stronger result that eliminates the requirement that the alphabet is binary.
See the Appendix for the details of the proof.

Proposition 3. When the number of strings is fixed there exists a polynomial-
time algorithm for #Closest String and for sampling center strings u.a.r.

4 Conclusion

Counting and sampling from a specific distribution is a well-studied area in dis-
crete mathematics and theoretical computer science that has been useful for the
study of combinatorial problems. The problem of counting and sampling center
strings has a natural application to several bioinformatic problems, including
motif-recognition. We prove #Closest String is #P-complete and does not
exist a FPRAS, the problem of sampling center strings u.a.r. does not have a
FPAUS, and any natural restriction of these counting and sampling problems
yields an FPRAS and FPAUS, respectively. This work suggests some open areas
of study, including developing a more efficient sampling and counting algorithms,
investigating the existence of a rapidly mixing chain for more restricted sampling
problems, or proving hardness results that show the non-existence of a rapidly
mixing chain when a single parameter is fixed.
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Appendix

Proposition 3. When the number of strings is fixed there exists a polynomial-
time algorithm for #Closest String and for sampling center strings u.a.r.

Proof. The goal is to give an ILP formulation such that the number of variables
depends only on the value of n. Let S = {s1, . . . , sn} denote a set of n strings
from the alphabet Σ, each of length �, and denote each string sj as sj(1) · · · sj(�).
Let CS denote the set of center strings for the set S. Let α be a letter in Σ. The
nth Bell number is the number of partitions of a set of size n. Without loss of
generality, we assume that the first string is equal to α�, since any set of strings
can be trivially converted to an equivalent set where this is true. Using the same
terminology defined in the proof of Proposition 2, there exists at most Bn ≤ n!
unique column types, where Bn is nth Bell number.

Let b = [b1, . . . , bn]T correspond to one particular column type, and let P(b) =
{i | (si(1), si(2), . . . , si(n)) = b}. Let |P(b)| be equal to the number of positions
in S that are equal to b. For a string u = u(1), . . . , u(�), let ρ(b, ν) be the number
of positions that are equal to b where u is equal to ν and ν ∈ Σ.

Hence, CS is nonempty if and only if there is a feasible integer solution to∑
b

∑
ν∈(Σ−ν(b,i))

ρ(b, ν) ≤ d (1 ≤ i ≤ n) (4)

0 ≤ ρ(b, ν) ≤ P(b) (5)

for the variables ρ(b, ν), where ν(b, i) is symbol of string i at column b. Sampling
and counting the solutions to this ILP can be done equivalently to sampling and
counting the solutions to the ILP given in the proof of Proposition 2. �
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Abstract. A palindrome is a symmetric string that reads the same for-
ward and backward. Let Pals(w) denote the set of maximal palindromes
of a string w in which each palindrome is represented by a pair (c, r),
where c is the center and r is the radius of the palindrome. We say
that two strings w and z are pal-distinct if Pals(w) �= Pals(z). Firstly,
we describe the number of pal-distinct strings, and show that we can
enumerate all pal-distinct strings in time linear in the output size, for
alphabets of size at most 3. These results follow from a close relationship
between maximal palindromes and parameterized matching. Secondly,
we present a linear time algorithm which finds a string w such that
Pals(w) is identical to a given set of maximal palindromes.

1 Introduction

1.1 Palindromes in Strings

A palindrome is a symmetric string that reads the same forward and backward.
Namely, a string w is a palindrome if w = xaxR where x is a string, xR is a
reversal of x, and a is either a single character or the empty string. Studying
palindromic structures in strings have gathered much attention in theoretical
computer science and in its applications.

In word combinatorics, palindromic structures of interesting family of words
have been extensively studied. For example, palindromic factors of Fibonacci
words and Sturmian words were investigated in [11,12,19,26]. A concept called
palindrome complexity of infinite words was introduced in [1] and its extension to
finite words was proposed in [2]. Palindromic occurrences in ternary square-free
words were studied in [10].

In algorithmics, several efficient algorithms to compute palindromes in a string
have been proposed. Manacher [27] showed a linear-time algorithm to compute
all prefix palindromes of an input string, which can immediately be extended to
computing maximal palindromes of all positions of the string within the linear
complexity. Another linear-time algorithm for prefix palindromes detection was
proposed in the KMP pattern matching algorithm paper [24]. There exist efficient
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parallel algorithms to find all prefix palindromes or all maximal palindromes of a
string [3,4,7]. A polynomial-time algorithm to compute all maximal palindromes
from a given compressed string was proposed in [28].

In bioinformatics, some extended concepts of palindromes are known to be im-
portant in DNA and RNA sequence analysis [25]. An approximate palindrome,
where the first half of the palindrome can be transformed into the reversal of
the second half within a predefined edit distance, was introduced in [30]. Gus-
field showed a linear-time algorithm to compute maximal palindromes with a
fixed gap [20]. Kolpakov and Kucherov proposed linear-time solutions allowing
more flexible gaps [25]. In [21] an efficient algorithm to compute all maximal
approximate gapped palindromes was developed.

1.2 Our Contribution

It is natural and convenient to represent each maximal palindrome p of a string
w by a pair (c, r) such that c is the center of p and r is the radius of p. This
way the set of all maximal palindromes can be represented with O(n) space,
where n is the length of w. In what follows, we assume that the set of maximal
palindromes of a string is represented in this way.

The contribution of this paper is twofold: Firstly, we show new properties of
palindromes which are closely related to parameterized matching [5]. That is, if
two strings are drawn from an alphabet of size at most 3, then they have the same
set of maximal palindromes if and only if they parameterized match. Based on the
above result and the results from [29], the number of distinct sets of palindromes
for alphabets of size at most 3 can immediately be obtained. Besides, we show
that there exists an efficient algorithm to compute a representative string for all
distinct sets of maximal palindromes for alphabets of size at most 3.

Secondly, we study the problem of inferring a string from a given set of palin-
dromic structures. Namely, given a set P of pairs (c, r), find a string whose
maximal palindromes coincide with P . We propose a linear time solution to this
problem, which outputs the lexicographically smallest string over a minimum
alphabet.

1.3 Related Work

Inferring a string from other string data structures has been widely studied. An
algorithm to find a string having a given border array was presented in [16], which
runs in linear time for an unbounded alphabet. A simpler linear-time solution for
the same problem for a bounded alphabet was shown in [14]. Linear-time and
O(n1.5)-time inferring algorithms for parameterized versions of border arrays,
on a binary alphabet and an unbounded alphabet, respectively, were recently
proposed [22,23]. Linear-time inferring algorithms for suffix arrays [15,6], KMP
failure tables [13,18], prefix tables [8], cover arrays [9], directed acyclic word
graphs [6] and directed acyclic subsequence graphs [6] have been proposed, which
provide us with further insight concerning the data structures.

Counting and enumerating some of the above-mentioned data structures have
also been studied in the literature [29,31,22,23].
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2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of
a string w is denoted by |w|. The empty string ε is a string of length 0, that
is, |ε| = 0. Let Σ+ = Σ∗ − {ε}. For a string w = xyz, x, y and z are called a
prefix, substring, and suffix of w, respectively. The i-th character of a string w
is denoted by w[i] for 1 ≤ i ≤ |w|, and the substring of a string w that begins at
position i and ends at position j is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. The
empty substring ε of w is denoted by w[i : i − 1] for 1 ≤ i ≤ n. For any string
w, let wR denote the reversed string of w, that is, wR = w[|w|] · · ·w[2]w[1].

A string w is called a palindrome if w = wR. If |w| is even, then w is called
an even palindrome, that is, w = xxR for some x ∈ Σ+. If |w| is odd, then w is
called an odd palindrome, that is, w = xaxR for some x ∈ Σ∗ and a ∈ Σ. The
radius of a palindrome w is |w|

2 .
The center of a palindromic substring w[i : j] of a string w is i+j

2 . A palin-
dromic substring w[i : j] is called the maximal palindrome at the center i+j

2 if
no other palindromes at the center i+j

2 have a larger radius than w[i : j], i.e.,
if w[i − 1] �= w[j + 1], i = 1, or j = |w|. In particular, w[1 : j] is called a prefix
palindrome of w, and w[i : |w|] is called a suffix palindrome of w.

We denote by (c, r)w the maximal palindrome of a string w whose center
is c and radius is r. We simply write (c, r) when the string w is clear from
the context. The set of all maximal even and odd palindromes of a string w
is denoted by Pals(w). It is clear that for any string w Pals(w) has exactly
2|w| + 1 elements. Let SPals(w) denote the set of all suffix palindromes of w,
that is, SPals(w) = {(c, r) | (c, r) ∈ Pals(w), c + r − 0.5 = n}.

For example, let w = abbacabbba. Then

Pals(w) = {(0.5, 0), (1, 0.5), (1.5, 0), (2, 0.5), (2.5, 2), (3, 0.5), (3.5, 0),
(4, 0.5), (4.5, 0), (5, 3.5), (5.5, 0), (6, 0.5), (6.5, 0), (7, 0.5),
(7.5, 1), (8, 2.5), (8.5, 1), (9, 0.5), (9.5, 0), (10, 0.5), (10.5, 0)} and

SPals(w) = {(8, 2.5), (10, 0.5), (10.5, 0)}.

3 Palindromes and Parameterized Matching

In this section we present new properties of palindromic structures in strings,
with a tight relationship with parameterized matching which was originally in-
troduced by Baker [5].

For any string w, let σw denote the number of distinct characters that ap-
pear in w. Any two strings w and z over the alphabet Σ of the same length
are said to parameterized match (p-match in short) if there exists a renaming
bijection f : Σ → Σ which transforms one string into the other [5], that is,
w = f(z[1])f(z[2]) · · ·f(z[|z|]). For instance, strings w = abab and z = baba
p-match, since w can be transformed to z by applying a renaming function
f : Σ → Σ such that f(a) = b and f(b) = a.

The following intuitive property indeed holds.



138 T. I et al.

i
w

Fig. 1. Illustration for Observation 1

Lemma 1. If two strings w and z p-match, then Pals(w) = Pals(z).

Proof. Assume for contrary that Pals(w) �= Pals(z). Then there exists at least
one center c such that (c, r) ∈ Pals(w), (c, r′) ∈ Pals(z) and r �= r′. Assume
w.l.o.g. that r > r′. Then it holds that w[c − r′ − 0.5] = w[c + r′ + 0.5] and
z[c − r′ − 0.5] �= z[c + r′ + 0.5]. Let a = w[c − r′ − 0.5] = w[c + r′ + 0.5],
b = z[c − r′ − 0.5], and b = z[c + r′ + 0.5], where b denotes any character
in Σ − {b}. Then clearly there exists no bijection on the alphabet Σ that can
transform w into z, since a at position c− r′ − 0.5 needs to be mapped to b but
a at position c + r′ + 0.5 needs to be mapped to b. This contradicts that w and
z p-match. �	

The reverse of Lemma 1 is also true if the strings are unary, binary or ternary.
To show it, the following observation is useful.

Observation 1. For any string w of length n ≥ 1 and for any i ≤ n,

Pals(w[1 : i]) = {(c, i + 0.5 − c) | (c, r) ∈ Pals(w), c ≤ i + 0.5, c + r − 0.5 > i}
∪{(c, r) | (c, r) ∈ Pals(w), c + r − 0.5 ≤ i}.

(See also Fig. 1)

Lemma 2. If Pals(w) = Pals(z) and σw = σz ≤ 3, then w and z p-match.

Proof. Unary case σw = σz = 1. This case is trivial.
Binary case σw = σz = 2. We prove it by induction on the length i of the

strings. When i = 2, clearly two strings w and z of length 2 p-match, if
Pals(w) = Pals(z) and σw = σz = 2.

Suppose that the lemma holds for i = n − 1 ≥ 2. Let w and z be any
strings of length n over Σ, such that Pals(w) = Pals(z) and σw = σz = 2. By
Observation 1 Pals(w[1 : n − 1]) = Pals(z[1 : n − 1]), and by the induction
hypothesis w[1 : n − 1] and z[1 : n − 1] p-match. Let f : Σ → Σ be the
bijection which transforms w[1 : n − 1] into z[1 : n − 1].
1. When w[n−1] = w[n]. If z[n−1] �= z[n], then (n−0.5, 1) ∈ Pals(w) and

(n−0.5, 0) ∈ Pals(z). However, this contradicts that Pals(w) = Pals(z),
and hence z[n−1] = z[n]. Then f(w[n]) = f(w[n−1]) = z[n−1] = z[n],
and therefore w and z p-match.
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2. When w[n−1] �= w[n]. If z[n−1] = z[n], then (n−0.5, 0) ∈ Pals(w) and
(n−0.5, 1) ∈ Pals(z). However, this contradicts that Pals(w) = Pals(z),
and hence z[n−1] �= z[n]. Let f(w[n−1]) = z[n−1] = a and f(w[n]) = b.
Since z[n] �= a, z[n] = b. Hence f(w[n]) = z[n] and therefore w and z
p-match.

Ternary case σw = σz = 3. We prove it by induction on the length i of the
strings. When i = 3, clearly two strings w and z of length 3 p-match, if
Pals(w) = Pals(z) and σw = σz = 3.

Suppose that the lemma holds for i = n−1 ≥ 3. Let w and z be any strings
of length n over Σ, such that Pals(w) = Pals(z) and and σw = σz = 3. By
similar arguments to the binary case, w[1 : n − 1] and z[1 : n − 1] p-match.
Let g : Σ → Σ be the bijection which transforms w[1 : n−1] into z[1 : n−1].
1. When w[n − 1] = w[n]. This case can be shown similarly to the binary

case.
2. When w[n − 1] �= w[n]. By similar arguments to the binary case, we get

z[n− 1] �= z[n]. Let m be the rightmost position of w[1 : n− 1] such that
w[m] �= w[n − 1]. Let g(w[n − 1]) = z[n − 1] = a and g(w[n]) = b.
(a) When w[m] = w[n]. Since w[m + 1 : n − 1] is unary, w[m : n] is a

maximal palindrome of w. Since z[m : n] is a maximal palindrome
of z, z[n] = z[m] = g(w[m]) = b = g(w[n]). Hence w and z p-match.

(b) When w[m] �= w[n]. Let g(w[m]) = c. Since w[m+1 : n−1] is unary,
w[m + 1 : n − 1] is a maximal palindrome of w. Since z[m + 1 :
n − 1] is a maximal palindrome of z, z[n] �= z[m] = g(w[m]) = c.
Additionally, since z[n] �= z[n − 1] = g(w[n − 1]) = a, z[n] = b =
g(w[n]). Consequently w and z p-match. �	

The next proposition follows from Lemma 2.

Proposition 1. For any string w with σw ≤ 2, there exist no string z such that
Pals(w) = Pals(z) and σz > σw.

It is interesting to see that a similar argument to Lemma 2 does not hold if strings
contain 4 or more distinct characters. For instance, two strings w = abbcdaa and
z = accdbcc have the same set of maximal palindromes and σw = σz = 4, but w
and z do not p-match. Also, Proposition 1 does not hold if σw ≥ 3. For instance,
w = abcabb and z = abcdaa have the same set of maximal palindromes, while
σw = 3 and σz = 4. It is easy to extend the above examples to infinite sequences
of strings with an alphabet of size 4 or more.

Let us define equivalence relations ≡pal and ≡pm on Σ∗ by

w ≡pal z ⇐⇒ Pals(w) = Pals(z)
w ≡pm z ⇐⇒ w and z p-match.

By Lemma 1 and Lemma 2, the two equivalence relations are equivalent for
|Σ| ≤ 3. Also, if |Σ| ≥ 4, then ≡pm is a refinement of ≡pal.

Denote by [w]pal and [w]pm the equivalence classes with respect to ≡pal and
≡pm, respectively. Define the representative of equivalence class [w]pal to be the
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lexicographically smallest member of [w]pal, and call each representative a pal-
canonical string. Moore et al. [29] counted the number of p-canonical strings,
each of which is the representative (i.e., the lexicographically smallest member)
of an equivalence class [·]pm. They also presented an algorithm to enumerate
all p-canonical strings. From Lemma 1, Lemma 2 and the results of [29], we
immediately get the following theorems.

Theorem 1. Let p[k, n] be the number of distinct sets of maximal palindromes
for strings of length n containing exactly k characters. Then p[k, n] = S(n, k) for
1 ≤ k ≤ 3 and p[k, n] < S(n, k) for k ≥ 4, where S(n, k) is the Stirling number
of the second kind.

Theorem 2. For every pair of integers k ≤ 3 and n ≥ k, all pal-canonical
strings of length n consisting of exactly k characters can be computed in O(p[k, n])
time and space.

Although the above theorems provide us with new insights and an efficient al-
gorithm, yet they do not immediately help us solve the problem of inferring a
string from a given set of maximal palindromes. In the next section, we will
provide a linear-time algorithm to solve it.

4 Inferring a String from Maximal Palindromes

4.1 Problem

Let N be the set of non-negative integers, and let Q = {i | i = j
2 , j ∈ N}. In

this section we present a linear-time algorithm to solve the following problem.

Problem 1. Given a finite set P ⊂ Q×Q, find a string w such that P = Pals(w)
if such exists.

Concerning Lemma 2 and Proposition 1 of the previous section, we try to find the
lexicographically smallest string over a minimum alphabet in solving Problem 1.

4.2 Linear-Time Algorithm to Compute Maximal Palindromes from
a String

Let us recall a linear-time algorithm to compute all maximal palindromes in a
given string, which is an extended version of Manacher’s algorithm that com-
putes all prefix palindromes [27]. A pseudo-code of the algorithm is shown in
Algorithm 1. The algorithm is based on the following lemma.

Lemma 3 ([27]). For any string w, let (c, r) ∈ Pals(w) and (c − d, r�) ∈
Pals(w) with some 0 < d ≤ r. Then (c + d, rr) ∈ Pals(w), where

rr = r� if r� < r − d, (1)
rr ≥ r − d if r� = r − d, (2)
rr = r − d if r� > r − d. (3)
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Algorithm 1. Manacher’s algorithm to compute all maximal palindromes
in a given string [27]

Input: string w of length n.
Output: compute all maximal palindromes in s.
/* Let w[0] and w[n + 1] be special symbols that do not match other

symbols for convenience. */

add (0.5, 0) and (n + 0.5, 0) to P ;1

i← 2; c← 1; r ← 0.5;2

while c ≤ n do3

j ← 2c− i; /* Set j to be the mirrored position w.r.t. c. */4

while w[i] = w[j] do5

i + +; j −−; r + +;6

add (c, r) to P ;7

d← 0.5;8

while d ≤ r do9

let (c− d, r�) ∈ P ;10

if r� = r − d then break;11

rr ← min{r − d, r�};12

add (c + d, rr) to P ;13

d← d + 0.5;14

if d > r then i + +; r ← 0.5;15

else r ← r − d;16

c← c + d; /* Shift the value of c by d. */17

return P ;18

Recall Observation 1. This observation suggests to compute maximal palin-
dromes from left to right in the input string, and therefore Algorithm 1 computes
the radius of each center in increasing order of the centers. Let c be the currently
focused center, that is, for every center less than c, the corresponding radius has
already been computed. Then we compute the radius for c, comparing leftward
and rightward substrings of c until a mismatch occurs. Let (c, r) ∈ Pals(w). The
key of the algorithm is that, if Condition 1 or 3 of Lemma 3 holds for a center
between c and c+ r, then the radius of the center can be determined in constant
time. If there exists a center c + d with which Condition 2 holds, then we shift
the currently focused center to the center c+d, and compute the radius for c+d.
Since in this case the radius for c+d is at least r−d, the overall time complexity
of Algorithm 1 is linear in the length of the input string.

4.3 Our Algorithm to Compute a String from Maximal Palindromes

Now we consider Problem 1. Any P ⊂ Q × Q is said to be valid if there exists a
string w such that Pals(w) = P , and is said to be invalid otherwise. For P ⊂ Q×Q
to be valid, clearly P has to satisfy the following: For each c = 0.5, 1, 1.5, . . . , n, n+
0.5, there exists (c, r) ∈ P with some r ∈ {0, 0.5, 1, 1.5, . . . , k}, where n = �|P |/2�
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Algorithm 2. Algorithm to compute the lexicographically smallest string
over a minimum alphabet which has a given set of maximal palindromes

Input: P ⊂ Q×Q.
Output: The lexicographically smallest string w over a minimum alphabet with

Pals(w) = P , if such exists.
w[1]← a;1

i← 2; c← 1; r̂ ← 0.5;2

while c ≤ n do3

j ← 2c− i; /* Set j to be the mirrored position w.r.t. c. */4

let (c, r) ∈ P ;5

if r < r̂ then return invalid;6

while r̂ < r do7

w[i]← w[j];8

i + +; j −−; r̂ + +;9

clear the list of forbidden characters;10

add w[j] to the list of forbidden characters for w[i]; /* w[i] �= w[j]. */11

d← 0.5;12

while d ≤ r do13

let (c− d, r�), (c + d, rr) ∈ P ;14

if r� = r − d then break;15

if rr �= min{r − d, r�} then return invalid;16

d← d + 0.5;17

if d > r then18

let x be the lexicographically smallest character not in the list of19

forbidden characters for w[i];
w[i]← x;20

i + +; r̂ ← 0.5;21

clear the list of forbidden characters;22

else r̂ ← r − d;23

c← c + d; /* Shift the value of c by d. */24

return w[1 : n];25

and k = min{c−0.5, n+0.5−c}. Hence in what follows we only consider as input
a set P satisfying the above property.

Algorithm 2 shows our algorithm for Problem 1.

Theorem 3. Given a valid set P ⊂ Q × Q, Algorithm 2 computes the lexico-
graphically smallest string w over a minimum alphabet such that Pals(w) = P ,
in linear time and space.

Proof. Let (c, r) ∈ P . If Condition 1 or Condition 3 of Lemma 3 holds for the
center c, then P is never rejected w.r.t. c in line 2 of Algorithm 2. Also, if
Condition 2 of Lemma 3 holds for the center c, then P is never rejected w.r.t. c
in line 2 of Algorithm 2. Therefore, if P is a valid set, then it is verified as valid
by Algorithm 2.
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In line 2 of Algorithm 2, w[i] is set to w[j] where j = 2c − i is the mir-
rored position of i w.r.t. c. When i goes “outside” of the radius r of the maximal
palindrome (c, r), then w[j] is recorded as a forbidden character for w[i] in line 2,
that is, w[i] cannot be equal to w[j]. Then in line 2, w[i] is set to be the lexi-
cographically smallest character that is not in the list of forbidden characters.
Therefore, for a given valid set P Algorithm 2 computes the lexicographically
smallest string w such that P = Pals(w).

The key for time complexity analysis is how to choose the lexicographically
smallest character in line 2. We use a bit vector F of length n = �|P |/2� where
each F [h] corresponds to the h-th lexicographically smallest character. We ini-
tialize F with F [h] = 0 for every 1 ≤ h ≤ n. If a character w[j] is forbidden
for w[i] in line 2 and if w[j] is the h-th lexicographically smallest character,
then we set F [h] = 1. After finding all forbidden characters for w[i], we find
the lexicographically smallest character for w[i] by scanning F from left to right
until reaching the smallest index k with F [k] = 0. After setting w[i] to be the
k-th lexicographically smallest character, we initialize every entry F [h] = 1 to
F [h] = 0.

Since σw ≤ n for any string w of length n, the bit vector F is sufficiently
large. For each position i, let fc(i) and lc(i) be the first (leftmost) center and
the last (rightmost) center w.r.t. i, respectively. Namely, w[i] is determined right
after lc(i) is obtained by shifting fc(i) several times in line 2, Then, the number
of forbidden characters for w[i] does not exceed 2(lc(i) − fc(i)). Hence the total
number of forbidden characters for all i is bounded by |P |. Consequently we can
maintain the bit vector F in a total of linear time and space. �	

We remark that Algorithm 2 verifies some invalid sets to be valid. For instance,
the following invalid set P is verified to be valid by Algorithm 2:

P = {(0.5, 0), (1, 0.5), (1.5, 1), (2, 0.5), (2.5, 0), (3, 1.5),
(3.5, 0), (4, 0.5), (4.5, 1), (5, 0.5), (5.5, 0)}.

Therefore, we firstly use Algorithm 2 as a filter. Consider the case where Al-
gorithm 2 verifies an input set P to be valid. Let w be the output string of
Algorithm 2 w.r.t. P . We then run Algorithm 1 over w to compute Pals(w).
Finally, we check whether Pals(w) = P or not. Note that P is valid if and only
if Pals(w) = P . Hence we obtain:

Theorem 4. Problem 1 can be solved in linear time.

Reducing Extra Space. Here we consider to reduce extra working space of
Algorithm 2. The next lemma is useful to estimate it.

For any string w, let SPC (w) be the set of centers of suffix palindromes of w,
that is,

SPC (w) = {c | (c, r) ∈ SPals(w)}.

Lemma 4 ([17,28]). For any string w of length n, SPC (w) can be represented
by O(log n) arithmetic progressions.
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Fig. 2. Illustration for Proposition 2

For any w of length n and 1 ≤ i ≤ n, let

MC (i) = {w[2c − i] | (c, r) ∈ Pals(w), i = c + r + 0.5}.

Proposition 2. Let P be the set of maximal palindromes of some string of
length n. Then, there exists a string w over an alphabet of size O(log n) such
that Pals(w) = P .

Proof. Take any three elements from SPals(w[1 : i− 1]) whose centers belong to
the same arithmetic progression, i.e., (c1, r1), (c2, r2), (c3, r3) ∈ SPals(w[1 : i−1])
such that c1 = c2 + d = c3 + 2d for some d > 0 (See also Fig. 2). By mirroring
w[2c2 − i] w.r.t. c3, we get w[2c2 − i] = w[2c3 − (2c2 − i)] = w[2(c3 − c2) + i] =
w[i−2d]. Similarly by mirroring w[2c1−i] w.r.t. c2, w[2c1−i] = w[2c2−(2c1−i)] =
w[2(c2 − c1) + i] = w[i − 2d]. Then we get w[2c1 − i] = w[i − 2d] = w[2c2 − i].
By Lemma 4, |MC (i)| = O(log i). Since the number of forbidden characters for
each position i is at most |MC (i)|, we conclude that O(log n) distinct characters
are sufficient in total. �	

Since Algorithm 2 always computes a string over a minimum alphabet, a bit vec-
tor of size O(log n) is actually enough for maintaining the forbidden characters
for each position i of the output string.

5 Conclusions and Future Work

In this paper we studied the problem of counting the number of distinct sets of
maximal palindromes, and that of finding a string from a given set of maximal
palindromes. For the first problem, we showed the exact number for an alphabet
of size at most 3. We also showed that there exists an algorithm that enumerates
all pal-canonical strings for an alphabet of size at most 3, which runs in linear
time in the output size. These results follow from the close relationship between
maximal palindromes and parameterized pattern matching for alphabets of size
at most 3. For the second problem, we presented a linear time algorithm that
finds the lexicographically smallest string over a minimum alphabet.
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Our future work includes the followings.

1. Counting the number of pal-canonical strings for an alphabet of arbitrary
size.

2. Enumerating all distinct sets of maximal palindromes for an alphabet of
arbitrary size.

3. Finding a string that has a given set of maximal palindromes and contains
exactly k characters, where k is a predefined parameter.

References

1. Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity.
Theoretical Computer Science 292(1), 9–31 (2003)
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Abstract. Next generation sequencing (NGS) technologies are being
applied to many fields of biology, notably to survey the polymorphism
across individuals of a species. However, while single nucleotide polymor-
phisms (SNPs) are almost routinely identified in model organisms, the
detection of SNPs in non model species remains very challenging due to
the fact that almost all methods rely on the use of a reference genome.
We address here the problem of identifying SNPs without a reference
genome. For this, we propose an approach which compares two sets of
raw reads. We show that a SNP corresponds to a recognisable pattern
in the de Bruijn graph built from the reads, and we propose algorithms
to identify these patterns, that we call mouths. We outline the potential
of our method on real data. The method is tailored to short reads (typ-
ically Illumina), and works well even when the coverage is low where it
reports few but highly confident SNPs. Our program, called kisSnp, can
be downloaded here: http://alcovna.genouest.org/kissnp/.

1 Introduction

Biology in general, and genomics more particularly, witnessed a revolution in the
middle 1970s with the development of rapid DNA sequencing techniques, notably
the Sanger method which remained the standard approach for sequencing in-
cluding whole genomes until the early years of the twenty first century. We have
since then been witnessing a second revolution, various orders of magnitude big-
ger than the first, with the advent of the so-called “next generation sequencers”
(NGS for short) which enable to obtain up to several hundred million bases in
one single run at increasingly lower costs. These include (not exclusively) the
454 Life Sciences, SOLiD Applied Biosystems and Illumina technologies, each
with its own characteristics in terms of read length and error rate. Such charac-
teristics are however evolving extremely fast, faster indeed than the algorithms
developed to handle the data such technologies produce.

This incredible acceleration has two implications that motivate the work pre-
sented in this paper: first it is now possible to obtain data for various individuals
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of a same species and thus to investigate the genetic differences among such in-
dividuals, and second, increasingly more often this will concern species for which
we have no genome of reference, that is no genome already fully sequenced and
assembled that could guide the investigation.

The genetic markers that will be of interest in this paper are so-called Sin-
gle Nucleotide Polymorphisms (SNP for short). These correspond to a DNA
sequence variation that occurs when a single nucleotide – A, T, C, or G – in a
genome differs among members of a species or between paired chromosomes in
an individual. There are two types of SNPs: substitutions or insertions/deletions.
We focus here on the first type, that is on substitutions of single nucleotides.

Identifying SNPs in a population may have a wide range of applications that
goes from assessing the polymorphism of the population, linking this polymor-
phism to phenotype information, or selecting SNPs as markers of subpopulations.
However, while SNPs are almost routinely identified in model organisms, the de-
tection of SNPs in non model species remains very challenging due to the fact
that almost all methods to identify SNPs rely on the use of a reference genome.

Our objective is, given high-throughput read data for a pair of individuals,
to identify a set of SNPs with good confidence, without having to perform an
assembly of the reads with all the possible mistakes this entails, in a context
where we do not have a reference sequence to help the identification.

We are aware of only two publications, dating both from 2010, that deal with
the same problem [3,9]. Recognisably, the major difficulty one faces is due to the
presence of errors in the reads, which may be mistaken for a SNP. Additionally,
the presence of inexact repeats in the genomes of the studied individuals, may
further harden the task. In this paper, we restrict to the case where there is
only one genomic variant for each individual (we say that the individuals are
homozygous). In this context, the issue of repeats is greatly reduced.

Ratan et al. [9] first filter the reads in order to remove the repetitive sequences,
then create clusters of overlapping reads which they assemble using a short read
assembler. The SNPs are finally identified in the micro-assembled regions using
a combination of filters, based on the number of reads supporting each variant
or the distance of the SNP w.r.t. the end of the contig.

Unlike Ratan et al., we chose not to use an assembler, which we think can
make undesired choices as to sequence variants to remove during the assembly.
Indeed, the purpose of an assembler is not to identify SNPs but to propose one
reference sequence compatible with the data. Similar to Canon et al. [3], we work
with raw reads, but we go further than a statistical description of the reads and
propose to locally reconstruct the de Bruijn graph in order to identify SNPs. The
use of a de Bruijn graph in computational biology was introduced by Pevzner
et al. in 2001 [8] and used since then as a first step by many short read assemblers.

The key point of our method is that a SNP corresponds to a recognisable
pattern in the de Bruijn graph, which we call a mouth, each lip of the mouth
representing an individual variant of a same genomic locus.

Our aim is to directly find the mouths that may be reliably associated to a
SNP without making use of any preliminary filters that may eliminate repeats.
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This is important because, although not explicitely stated, such filters seem
to strongly rely on the assumption of an approximately uniform coverage of
each sequence position by the reads in the available data. This assumption is
usually not true. Moreover, the biases in read coverage may even vary across two
sequencing experiments of the same genomic sample. This means that filters may
remove sequences which in fact do not belong to repeats.

We thus present in this paper an algorithm which takes as input two sets of
short reads (Illumina or AB/SOLiD) and outputs candidate SNPs (i.e. mouths in
the de Bruijn graph), without performing any filtering nor using a short read as-
sembler. This is what we call a comparative micro-assembly. This method is new
as, as far as we know, no other treats data coming from distinct sequencing ex-
periments. This approach presents the interest of taking advantage of differences
in the data directly into the heart of the algorithm and not in a post-treatment
step. SNPs are thus detected on raw read data instead of on pre-assembled se-
quences. We applied our algorithm on data simulated using MetaSim [10], where
we show under which sets of parameters the method works best. We finally apply
the method to real data for Escherichia coli, for which experimentally validated
SNPs are available [2], which is very rare. We show that our method successfully
identifies the previously known SNPs, but also predicts new SNPs missed by the
conservative method used in the original publication [2].

2 Preliminaries

Sequence, k-mers, prefix, suffix. A sequence is composed by zero or more symbols
from an alphabet Σ containing |Σ| distinct characters. A sequence s of length
n on Σ is denoted also by s[0]s[1] . . . s[n − 1], where s[i] ∈ Σ for 0 ≤ i < n.
The length of s is denoted by |s|. Finally, we denote by s[i, j] the substring
s[i]s[i + 1] . . . s[j] of s. In this case, we say that the substring s[i, j] occurs at
position i in s. We call k-mer a substring of length k. If s = uv for u, v ∈ Σ∗,
we say that v is a suffix of s and that u is a prefix of s.

De Bruijn graph. Each node of a de Bruijn graph stores exactly one k-mer. An
edge connects a node n0 to a node n1 if the suffix of length k − 1 of the k-mer
corresponding to node n0 is equal to the prefix of length k − 1 of the k-mer
corresponding to node n1.

A category of de novo read-assembly methods such as SOAPdenovo [7], Eu-
ler [8] and Velvet [11] (to mention a few) uses the de Bruijn graph as a funda-
mental data structure. In a few words, reads are first divided into overlapping
k-mers, then the associated de Bruijn graph is created and finally Eulerian paths
are found in the graph for reconstructing the initial genomic sequence, or frag-
ments thereof that are as large as possible (contigs).

One of the main difficulties encountered by such methods comes from the se-
quencing errors that generate substitutions and insertions/deletions in the data
that must then be assembled. Such errors lead to loops in the de Bruijn graph
which may hinder the Eulerian path detection. A first step in such algorithms
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consists thus in “cleaning the data” by removing suspicious reads and substi-
tuting suspect nucleotides. This cleaning step may be problematic when looking
for SNPs as it may remove a significant part of them that will be mistakenly
considered as sequencing errors.

3 Comparative Micro-assembly Model

Our method compares reads generated by two distinct sequencing experiments,
and creates parts of the de Bruijn graph potentially linked to a SNP between
these two experiments, thereby detecting such SNPs.

The main idea is that the de Bruijn graph of k-mers stemming from two se-
quences that contain a SNP presents a mouth shape as shown in Fig. 1. The
algorithm described in Section 4 detects and constructs such graph shapes di-
rectly from the non-assembled k-mers coming from the sets of reads of two
distinct sequencing experiments. It is important to notice that the algorithm
does not reconstruct the full de Bruijn graph but focuses only on putative SNPs
by building mouths.

Mouth model definition. In a de Bruijn graph of k-mers coming from reads
of two sequencing experiments (reads A and reads B), a mouth is composed by:

– an upper path of k overlapping k-mers {a0..ak−1} resulting from the reads
of at least set A. This path is called the upper lip of the mouth;

– a lower path of k overlapping k-mers noted {b0..bk−1} resulting from the
reads of at least set B. The ai’s and the bi’s differ by one substitution. This
path is called the lower lip of the mouth;

– a left (resp. right) node, noted c−1 (resp. ck) that corresponds to a k-mer
present in both sets A and B and is connected to both a0 and b0 (resp. ak−1
and bk−1). These k-mers are called the closing k-mers of the mouth.

Fig. 1. A SNP between two genome fragments (Seq A and Seq B) generates a mouth
shape (rightmost frame) in the de Bruijn graph of the k-mers (here k = 4) extracted
from Seq A and Seq B. It is assumed in this example that the coverage is exactly 20
(each position of each sequence is covered by 20 reads, thus each position gives rise to
20 k-mers). In the rightmost frame, the number above (resp. below) the nodes indicates
the number of occurrences in Seq A (resp. Seq B).
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Taking into account the k-mer counts. Let us first consider the case where
the sequencing is perfect: uniform coverage C and no sequencing errors nor re-
peats. In such case, all k-mers from A covering a SNP have C occurrences more
than the same k-mers from B, and vice-versa. We considered this theoretical
perfect coverage C = 20 in the example of Fig. 1. In practice, the coverage is
not uniform and the reads contain errors. The consequence is that the k-mer
count difference between experiments will not be constant along the mouth. To
account for this, we introduce a parameter called δ, which is meant to capture a
deviation from the exact case. Below, we describe the mouth model with counts.

Mouth model integrating k-mer counts. For any k-mer ω, let multA(ω) (resp.
multB(ω)) be its number of occurrences in the set of reads A (resp. B). We
define diff(ω) = multA(ω) − multB(ω). The SNP mouth model integrates the
k-mer number of occurrences as follows. A special k-mer aop called the opening
k-mer is chosen as reference (see Section 4). If aop is in the upper (resp. lower)
lip, for any k-mer ai contained in a node of the upper (resp. lower) lip, we have
diff(ai) = diff(aop)± δ while for any k-mer bi contained in a node of the lower
(resp. upper) lip, we have diff(bi) = −diff(aop) ± δ. The left and right closing
k-mers c−1 and ck have no counting properties.

4 Algorithm kisSnp for Mouth Detection

Algorithm outline. The algorithm kisSnp takes as input two sets of reads (A
and B) coming from two distinct sequencing experiments. The output is a set
of pairs of micro-assembled sequences, each of length 2k−1, differing by exactly
one substitution located at the central position. Those correspond to putative
SNPs detected thanks to the mouth model. The algorithm is divided into three
main steps:

– For each set A and B, extract the k-mers and their reverse complement and
store them in a tree together with their number of occurrences.

– Create the mouths (detailed in Section 4.1):

• For each possible opening k-mer aop, detect all possible opposite opening
k-mers bop distant by one substitution from aop and fulfilling the counting
model.

• For each pair (aop, bop), construct the mouth by extending the k-mers to
the right and to the left with coherent k-mers (i.e. overlapping on k − 1
characters and fulfilling the counting model).

• Stop the right and left extensions once the mouth is closed or no exten-
sion can be found.

– Check that the found mouths are coherent with the reads (detailed in Sec-
tion 4.3).
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4.1 Creating the Mouths

Selection of the k-mers opening the mouth. The opening k-mer aop is selected
such that max (multA(aop), multB(aop)) < max (multA(ai), multB(ai)) for any
k-mer ai �= aop and diff(aop) �= 0. In other words, aop is the k-mer having the
smallest number of occurrences in either set A or B (possibly zero occurrence
in one of the two sets), and is such that it occurs more in a set than in the
other, possibly due to a SNP. The rationale for choosing the k-mer with the
smallest count is to avoid choosing a k-mer involved in a repeat for opening the
mouth. The opposite opening k-mer bop is selected such that aop and bop are
distant by exactly one substitution and diff(bop) = −diff(aop)±δ. Notice that
the substitution position between the k-mers aop and bop may be anywhere. We
denote by p this substitution position (p ∈ [0, k − 1]). It is worth noticing that,
for a given opening k-mer aop, several (at most (|Σ| − 1)k) distinct k-mers bop

may satisfy these conditions. They are all iteratively tested as mouth openers.

Extending and closing the mouth. Once a pair of opening k-mers (aop, bop) is
selected, a recursive procedure extends them to the right and left with other
k-mers fulfilling the following conditions (also shown in Fig. 2). The k-mers ai+1
and bi+1 may extend ai and bi iff:

– p ≥ 0 (the closing k-mer ck has not yet been reached), and
– ai[1, k − 1] = ai+1[0, k − 2] and bi[1, k − 1] = bi+1[0, k − 2] (the new k-mers

overlap on k − 1 characters with their predecessors), and
– ai+1[k − 1] = bi+1[k − 1] (the extension is done with a same character), and
– diff(ai+1) = diff(aop) ± δ and diff(bi+1) = −diff(aop) ± δ (the counting

model is fulfilled).

Similar conditions apply to ai−1 and bi−1 for extending ai and bi on the left.
The two lips of a mouth have to be closed. A mouth can be right-closed (resp.

left-closed) if there exists a k-mer ck (resp. c−1)) whose prefix (resp. suffix) of
length k−1 is equal to the suffix (resp. prefix) of length k−1 of ak−1 (resp. a0),
by definition itself equal to the suffix (resp. prefix) of length k − 1 of bk−1 (resp.
b0). Once the mouth is right- and left- closed, the procedure stops.

Fig. 2. A mouth with k = 4. The symbol ′−′ stands for a match between two k-mers
positions while the symbol ′X ′ stands for a mismatch. The k-mer a2 is the opening
k-mer and the k-mer b2 is the opposite opening k-mer. Here, p = 1 as aop[1] �= bop[1].
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Disabling the use of a same opening k-mer more than once Once a k-mer aop

was used for opening a mouth, it is flagged and never used anymore either as
an opening or as an extending k-mer. The underlying idea is to avoid detecting
twice the same mouth. Moreover, we can safely discard this k-mer because, since
it was the one with smallest count, it should not belong to another mouth.

4.2 Complexity

The time complexity can then be divided into two main parts as follows.

– Indexation: if N is the total number of distinct k-mers, indexing them into
a tree can be done in O(N log N) time using heap sort. This then provides
access in time O(k) to any k-mer information.

– Mouth creation: Given one opening k-mer aop, at worst k × (|Σ| − 1)
k-mers bop may fulfill the opening conditions. Any k-mer may be opening.
Thus at worst, O(N × k × |Σ|) mouth opening pairs must be tried. Given
an opening pair of k-mers aop and bop, in the worst case, for each of the
k − 1 steps of the extension, |Σ| k-mers muts be tested. Access to a k-mer
information being in time O(k), the time complexity for one mouth extension
is thus O(k|Σ|k). Thus, at worst, the time complexity for mouth finding is
O
(
N × k2 × |Σ|2k

)
.

Each k-mer being stored in O(k), the space complexity is O(Nk).

4.3 Checking for Read Coherence

Two k-mers are linked in the de Bruijn graph if they overlap over k-1 characters,
without checking whether the created k+1-mer indeed exists in the set of reads.
This may lead to false-positive results. In order to remove those k-mers, in a post-
treatment step, we check for read-coherency of the identified mouths. The upper
(resp. lower) lip of a mouth is said to be read-coherent if it is 100% covered by
reads from set A (resp. B) and, moreover, if in the upper (resp. lower) lip the SNP
position is covered by at least two distinct reads from set A (resp. B). We keep only
the mouths for which both lips are read-coherent. The rationale for restricting to
mouths covered by at least 2 reads is to minimize the number of sequencing errors
that are mistaken for SNPs. Indeed, it is unlikely that a sequencing error occurs
at the same nucleotide for 2 distinct reads, as shown in [9].

5 Applications to Simulated Read Data

We developed the algorithm in a program called kisSnp, coded in Java, that
was used for testing our approach. kisSnp is available for download at: http://
alcovna.genouest.org/kissnp/.

To test our approach on controlled datasets, we applied the following proce-
dure. Given an input sequence sref , we generated a sequence ssnp such that sref
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and ssnp differ by
⌊ |sref |

1000

⌋
substitutions, each considered as a SNP. The aver-

age distance between two virtual SNPs is then 1000 nucleotides, in agreement
with [4]. The substitutions are randomly distributed over ssnp, and each substi-
tution is introduced following the transition/transversion probabilistic model [5].

The sequence sref and ssnp are then virtually sequenced into a set of reads rref

and rsnp using the MetaSim [10] program. Among other parameters, MetaSim
enables to tune the sequencing errors model as well as the average coverage.
In all our experiments, we generated reads of length 62, in agreement with the
Illumina technology. kisSnp is then tested using sets rref and rsnp.

5.1 Finding the SNPs

Human chrX portion. We extensively tested the parameters of kisSnp on a
small portion of the human chromosome X of length 137897 bp, corresponding to
a kinesin family member 4A (KIF4A). We applied MetaSim to the pair sref , ssnp

distant by 137 simulated SNPs with i) no sequencing errors (Fig. 3(a)) and ii)
errors following an empirical Illumina error model (Jean Marc Aury, Genoscope,
personal communication – Fig. 3(b) and (c)).

One may start by observing that the quality of the results is relatively robust
to the choice of parameters. With a good coverage (> 4x), large distinct sets
of parameters thus enable to find almost all SNPs with no false positives. The
main lessons learnt about such parameters from these results are the following:

– The δ value has not a strong influence for δ ≥ 20 (Fig. 3(b) vs Fig. 3(c)).
However, for smaller values of δ (data not shown), the specificity decreases
rapidly due to sequencing errors and a non uniform coverage.

– As expected, for small values of k (≤ 20), false positives are found. For
larger values of k (say, ≥ 30), less SNPs are found as more k-mers involve
sequencing errors and/or more positions are not covered by any k-mer.

Concerning the data, coverage is of major importance as a small coverage leads
to lower sensitivity (in each case, the lower the coverage, the less sensitive is
kisSnp). Illumina sequencing errors have a small influence on the results (Fig. 3(a)
vs Fig. 3(b)). One important message is that, using k = 25 and δ ≥ 20, all
experiments obtained 100% specificity (no false positives) for various values of
sensitivity, the latter depending in particular on the coverage.

Neisseria meningitidis strain MC58. One main limitation of our mouth
model could be the presence of repeats in the genomes considered. To measure
the effect of repeats on the performance of kisSnp, we performed experiments on
the bacterium Neisseria meningitidis (strain MC58) of length 2.27 Mbp. The
size of the repeated elements in this genome range from 10 bases to more than
2000 bases, and their number may reach more than 200 copies. We performed
tests on the original MC58 sequence introducing 2272 SNPs and simulating reads
using MetaSim with an Illumina error model. Moreover, we performed exactly
the same tests on a randomised sequence obtained from the MC58 sequence
(same length and nucleotide frequencies, distribution of nucleotides following a



Identifying SNPs without a Reference Genome by Comparing Raw Reads 155

(a) δ = 20, exact

(b) δ = 20, Illumina (c) δ = 40, Illumina

Fig. 3. Number of SNPs (read-coherent mouths) found by kisSnp. Fragment of the
human chromosome X, 137 SNPs to find (symbolised by the horizontal line). The
“n×” values indicate the coverage used while simulating the reads.

Fig. 4. Results on MC58 and the randomised MC58 sets while looking for 2272 SNPs
(horizontal line) with δ = 20. The “n×” values indicate the coverage used while simu-
lating the reads, “rand.” stands for results on the randomised MC58 set.
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Bernoulli model). Results for both MC58 and the randomised MC58 are pre-
sented in Fig. 4.

One may observe that even on a difficult dataset like MC58, a large part of
the SNPs are identified (26%, 86% and 97% respectively with coverage 4x, 10x,
and 20x with k = 20). Another important remark is that the difference between
the results obtained on MC58 and the randomised MC58 is small, showing that
the algorithm is robust to repeats.

5.2 Execution Time

The kisSnp program, coded in Java, is a prototype and is not yet time optimised.
The performance results below enable only to give an idea of the evolution of the
running time with different parameters. All tests were done on a DELL laptop,
quad-core 2.67GHz with 4Gb memory running under Fedora Core 12.

Fig. 5. Influence of k on the execution
time. Data: set KIF4A (described Sec-
tion 5.1), δ = 30.

Fig. 6. Execution time with respect to the
number N of distinct k-mers of length
k = 25, with δ = 20, Bernoulli random
sequences

We started by testing on the human KIF4A dataset (simulating reads with an
Illumina error model), the influence of the δ parameter on the execution time.
We observed (data not shown) that this has no influence whatsoever for δ ≥ 20.

On the same dataset, we fixed δ = 30 and checked the execution time for
values of k varying from 0 to 40. The results, presented in Fig. 5, show that two
phases may be distinguished. For k from 0 to 6, we observe an exponential time
growth that is in agreement with the theoretical complexity. During this phase,
the worst-case behaviour is reached, each mouth extension tests |Σ|k lips. The
second phase is observed for bigger values of k, when a large number of possible
k-mers are no longer present in the data, thus limiting the number of tested lips
extensions. This greatly reduces the execution time, which starts decreasing for
k ≥ 25 as less and less mouths are successfully created.

The execution time also highly depends on the number N of distinct k-mers we
have to deal with. We thus performed experiments on random sequences of grow-
ing size. The results are presented in Fig. 6. The execution time grows linearly
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with N while N remains below a threshold of around 15 million reads. Above
this threshold, one observes an exponential growth that could be explained by
the fact that the kisSnp prototype uses a hash table instead of a tree for storing
and accessing the k-mers information. With a large number of k-mers, the hash
table load factor becomes higher than 0.75 increasing the lookup cost, because
of an important number of collisions.

6 Applications to Real Read Data

To test our approach on a real dataset now, we used raw reads from the Es-
cherichia coli Long-term Experimental Evolution Project [1] whose purpose was
to grow Escherichia coli during more than 20 years, conserving a sample each
500 generations. The SNPs found over these generations are listed in the Barrick
et. al paper [2]. An Illumina 1G platform was used for sequencing the samples
with reads of length 36 and a high coverage (50x). We focused our attention
on the raw reads from the first generation sample, and those from the 20.000th

generation sample. The existence of experimentally validated SNPs is very rare
which is the main reason that led us to work on this dataset, for which true
positives are known.

Using a custom-made computational pipeline called BRESEQ, Barrick et. al
identified 28 SNPs by mapping these two generations of reads against the refer-
ence genome CP000819. These 28 SNPs were then experimentally validated.

We used kisSnp for comparing these two sets of reads, forgetting the reference
genome. Using as parameters k = 26 and δ = 20, 88 SNPs were found. Of these,
27 of the 28 SNPs found by Barrick et. al were also identified by us, giving a
sensitivity of 96%. Our kisSnp method missed one SNP, located position 430835.

To evaluate the potential interest of the remaining 61 SNPs we identified,
we mapped them against the reference genome using Maq [6]. Among the 61, 43
correspond to a SNP structure not detected in the Barrick et. al project: the two
lips map at the same position with one substitution in the 20.000th generation
sequence. The remaining 18 correspond to suspicious SNPs. Indeed, the two lips
do not map to the same position in the genome. Without experimental validation,
one however cannot conclude on those 61 detected putative SNPs.

The results obtained with kisSnp are very good on this real dataset, as without
a reference genome it was able to find back 27 of the 28 experimentally verified
SNPs, and 41 additional ones that correspond to real SNP structures.

7 Conclusion and Future Work

We proposed an algorithm for comparing the raw outputs of short reads ex-
periments, typically Illumina ones, with the purpose of finding SNPs between
individuals of a same species. This is of particular interest for quickly designing
genomic tags without waiting and/or paying for a full genome assembly.

Preliminary results on both simulated and real experimental data are partic-
ularly promising. In both cases, kisSnp identifies the SNPs, while not being too
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sensitive to the parameters used. On a real dataset, kisSnp enabled to find 96%
of the SNPs initially detected by mapping to the reference genome. In addition,
we propose new SNPs, which could be tested experimentally.

There is clearly room for improvement. For now, the method does not handle
heterozygous SNPs, does not take sequencing qualities into account and is limited
to pairwise comparison while sets of more than two individuals may be compared.
More generally, the three challenges of SNP identification are that the reads
contain errors, the genome contains repeats and the read coverage is not uniform.
This last item is usually disregarded whereas we notice that it has a significant
impact on the results. We expect that several algorithms in the area of NGS
bioinformatics could be improved by taking this observation into account.
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Abstract. We describe a dynamic version of the z-fast trie, a new data
structure inspired by the research started by the van Emde Boas trees [12]
and followed by the development of y-fast tries [13]. The dynamic z-fast
trie is a very simple, uniform data structure: given a set S of n variable-
length strings, it is formed by a standard compacted trie on S (with
two additional pointers per node), endowed with a dictionary of size
n − 1. With this simple setup, the dynamic z-fast trie provides prede-
cessors/successors in time O(log max{|x|, |x+|, |x−|}) (x± is the succes-
sor/predecessor of x in S) for strings of length linear in the machine-
word size w. Prefix queries are answered in time O(log |x| + k), and
range queries in time O(log max{|x|, |y|, |x−|, |y+|} + k), where k is the
number of elements in the output and x (and y) represent the input
of the prefix (range) queries. Updates are performed within the same
bounds in expectation (or with high probability using an appropriate
dictionary). We then show a simple modification that makes it possible
to handle strings of length up to 2w; in this case, predecessor/successor
queries and updates are supported in O(|x|/w+log max{|x|, |x+|, |x−|})
time, (and O(|x|/B+log max{|x|, |x+|, |x−|}) I/Os in the cache-oblivious
model) with high probability. The space occupied by a dynamic z-fast
trie, beside that necessary to store S, is just of 12n pointers, n integers
and, in the “long string” case, O(n) signatures of O(w) bits each.

1 Introduction

Data structures providing successor and predecessor primitives on strings are
divided into comparison-based and digital structures. The former assume to be
able to compare strings in constant time; the latter rely on the actual (binary)
digits forming the strings to do their job. The comparison-based data structure
of choice is the balanced binary tree, whereas digital structures have been object
of a growing interest in the last years starting from the introduction of van
Emde Boas trees [12] and fusion trees [5], which provide asymptotically faster
alternatives.

In this paper, we revisit the classical dynamic predecessor problem on a set S
of size n from a universe of strings of length �. The static version of this problem
has been completely solved, with matching upper and lower bounds [11]. If only
linear space is available, in a significant number of cases variants of the van
Emde Boas tree [12] that answer in time O(log �) are optimal even in the static
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setting using randomisation. Among such variants we quote Willard’s y-fast trie
and Mehlhorn and Näher [8] structure, which uses dynamic perfect hashing [3].

These two solutions are both two-level data structures using buckets; within
each bucket some other standard data structure is used to answer queries. This
approach makes these structures complicated, and makes it difficult to decouple
the space that is necessary to store the structure and the set S. This is not only
a practical issue when we are interested in sets of “long” strings (i.e., shorter
than 2w rather than w, where w is the machine word) of variable length.

The data structure discussed in this paper, the dynamic z-fast trie, can be
thought of as the first simple optimal digital data structure that is neither re-
cursive nor needs to use bucketing to achieve optimal time and linear space.
Moreover, we present a simple variant that provides results with high probabil-
ity within the same bounds of the standard version for “long” strings, always
using a number of words linear in n (rather than in the number of bits that is
necessary to represent S). In both cases, our space estimates are not asymptotic:
we can provide exact bounds, which amount to about a dozen machine words
per element.

The name “z-fast trie” was used for the first time in [2]. The structure described
in this paper is inspired by the idea of fat binary search introduced therein, but
has little else in common. In particular, the structure described in [2] is a static
structure that just manipulates strings and returns strings: a z-fast trie is only
able to provide the longest extent (see Section 2) in the compacted trie on S
that is a prefix of a given query string. The dynamic z-fast trie, instead, is based
on a standard compacted trie with two additional pointers per node. On leaves,
the additional pointers are used to keep track of the original set in a doubly
linked list. On internal nodes, the pointers are called jump pointers: they make
it possible to jump quickly to the farthest left/right descendant. Additionaly, the
z-fast trie uses a dictionary, inspired by the static case, to locate quickly the exit
node of a string using a variant of the fat binary search. The main combinatorial
results we prove (Theorem 3 and 4) highlights a deep connection between jump
pointers and fat binary search that make it possible to update the pointers very
quickly.

Results. Given a prefix-free set S of n binary strings, we let

x− = max{y ∈ S | y < x} (the predecessor of x in S)

x+ = min{y ∈ S | y ≥ x} (the successor of x in S),

where ≤ is the lexicographic order. A predecessor/successor query is given by a
string x, and the answer is x±. An existential prefix query tells whether there
are strings in S with given prefix x. An existential range query is given by a pair
x, y of strings, and tells whether there are strings in S in the (lexicographic)
interval [x . . y). Standard prefix (range, respectively) queries report the set of
strings (expressed as pointers) with prefix x in S (the set of strings in the interval
[x . . y), respectively).
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We work in the standard RAM model with a word of length w, allowing
multiplications, under a full randomness assumption1. We also discuss results in
the cache-oblivious model [6], which analyses RAM algorithms in the I/O model
using an ideal cache replacement strategy.

We prove the following statements:
Theorem 1. If the string length is bounded by O(w), the dynamic z-fast trie an-
swers predecessor and successor queries in time O(log max(|x|, |x+|, |x−|)), exis-
tential prefix queries in time O(log |x|) and existential range queries in time
O(log max{|x|, |y|}). Insertions are performed in time O(log max{|x|, |x+|, |x−}),
and deletions in time O(log |x|), in expectation. Besides the space required to store
S, the z-fast trie needs 12n pointers and n integers.
For long strings (i.e., strings of length bounded by 2w) we can provide a simple
variant of the structure (the signed z-fast trie):
Theorem 2. If the string length is bounded by 2w, the signed z-fast trie answers
predecessor and successor queries in time O(|x|/w + log max{|x|, |x+|, |x−|})
and O(|x|/B+log max{|x|, |x+|, |x−|}) I/Os (in the cache-oblivious model) with
high probability. Existential prefix queries are answered, always w.h.p., in time
O(|x|/w + log |x|) and O(|x|/B + log |x|) I/Os. Existential range queries are
answered, always w.h.p., in time O(max{|x|, |y|}/w + log max{|x|, |y|}) and
O(max{|x|, |y|}/B + log max{|x|, |y|}) I/Os. Insertions are performed in time
O(log max{|x|, |x+|, |x−|}), and deletions in time O(log |x|), in expectation. Be-
sides the space required to store S, the signed z-fast trie needs 12n pointers, n
integers, and 3n signatures of O(w) bits.
We can also answer prefix and range queries: if the answer is a set of k strings,
then the I/O and time costs are the same as in the existential case, plus O(k) and
O(log max{|x−|, |y+|} + k) for prefix and range queries respectively. Note that
the space bounds assume a dictionary using 3n buckets (e.g., a linear-probing
hash table with load factor 2/3 and backing arrays whose length is a power
of two, or a variant of Cuckoo hashing [10]). We remark that the only reason
of having expectations in the update bounds is the presence of a dictionary:
improvements in dynamic dictionaries reflects immediately in improvements to
the z-fast trie time and space bounds.

To our knowledge, this is the first paper to propose a digital data structure for
variable length strings with optimal performance in the RAM model and good
performance in the cache-oblivious model. Nonetheless, we stress the fact that
the main feature of dynamic z-fast tries is that they are simple data structures
which can be actually implemented, and that the space usage is just about a
dozen machine words per element, independently of the string length. A complete
implementation is distributed under the GNU Lesser General Public License2.

Previous work. From a RAM perspective, several structures already provide
optimal bounds both in terms of n (e.g., Andersson and Thorup [1] achieve
1 We remark that hash functions are only used to implement a hash table and to

compute signatures in the “long string” case.
2 http://sux4j.dsi.unimi.it/
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O(
√

log n/ log log n) update/query time) and in term of the string length for
fixed-length strings (e.g., y-fast tries [13]). The main contribution of the dynamic
z-fast trie is that it is a simple structure that can be easily implemented, and
that it works with variable-length strings longer than O(w).

Andersson and Thorup note that by using a trie on the alphabet 2w and some
very careful bookkeeping it is possible to achieve O(|x|/w +

√
log n/ log log n)

time by storing in each node of the trie a predecessor structure.3 Although
in principle this solution would be faster in the RAM model than ours (for
sufficiently small sets), in the cache-oblivious model it would require (|x|/w +√

log n/ log log n) I/Os—in most cases worse than O(|x|/B + log max(|x|,
|x+|, |x−|)) I/Os achieved by our data structure. Moreover, the construction
is rather involved; finally, while the O(|x|/w) term in our bound is simply due to
the evaluation of a hash function and some bit-vector comparisons, the O(|x|/w)
term in the trie technique depends on |x|/w accesses to dictionaries, an operation
that in practice is orders of magnitude slower.

In the cache-oblivious model, the string B-trees and its variants [4] provide
predecessor/successor queries using O(|x|/B + logB n) I/Os. We remark that
this bound is in general incomparable to ours. Finally, note that the RAM time
bound in this case is essentially always worse than ours.

2 Notation and Tools

We use von Neumann’s definition and notation for natural numbers: n = {0, 1,
. . . , n − 1}, so 2 = {0, 1} and 2∗ is the set of all binary strings. If x is a string,
x juxtaposed with an interval is the substring of x with those indices (starting
from 0 in that interval). Thus, for instance, x[a . . b) is the substring of x starting
at position a (inclusive) and ending at position b (exclusive). We will write x[a]
for x[a . . a]. The symbol � denotes prefix order, and ≺ is its strict version.

3 The Components of a Z-Fast Trie

A dynamic z-fast trie (hereafter referred to simply as z-fast trie) is a compacted
trie endowed with two additional pointers per internal node and with a dictio-
nary. More precisely, the z-fast trie can be thought of as an indexing structure
built on a set of binary strings S (stored somewhere in memory), and made of
two components:

– a compacted trie, whose nodes contain data that will be described later;
– a dictionary (e.g., implemented as a hashtable), whose keys are binary strings

and whose values are nodes of the trie.

3 Using other kinds of digital structures (e.g., the structure described in this paper) it
would be possible to achieve similarly O(|x|/w+log w), but this is of little advantage
as O(|x|/w + log |x|) = (|x|/w + log(|x|/w) + log w) = O(|x|/w + log w).
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3.1 The Compacted Trie

We start by defining some basic notation that will be necessary to describe the
trie. Consider the compacted trie T (S) [7] built for a prefix-free set of strings
S ⊆ 2∗. For a given node α of the trie, we define (see Figure 1):
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Z

0010 → 001001
00100110 → 0010011010

Fig. 1. (above) A compacted trie for S, and the corresponding nomenclature, and its
dictionary. where S = {001001010, 0010011010010, 00100110101}.

– eα, the extent of node α, is the longest common prefix of the strings repre-
sented by the leaves that are descendants of α;

– nα, the name of node α, is the string eα deprived of the string stored at α;
– given a string x, we let exit(x) be the exit node of x, that is, the only node

α such that nα is a prefix of x and either eα = x or eα is not a prefix of
x; moreover, we call parex node of x the parent of the exit node of x, or a
special symbol ⊥ if the exit node of x is the root (note that the parex of x
is the node with the longest extent that is a proper prefix of x);

– the skip interval (iα . . jα] associated to α is (0 . . |eα|] for the root, and (|nα|−
1 . . |eα|] for all other nodes.

For the time being we assume that the trie contents are as follows: every internal
node α contains a pointer to its two children, the extremes iα and jα of its skip
interval, its own extent eα and two additional pointers (called “jump pointers”),
J− and J+ whose meaning will be explained later. Leaves are organized in a
doubly linked list: each leaf, besides a pointer to the corresponding string of S,
stores two pointers to the next/previous leaf in lexicographic order.

3.2 The Dictionary

The dictionary associated to a z-fast trie maps certain prefixes of the extents
of internal nodes, called handles, to the corresponding node. This mapping is
sufficient to navigate the trie and find exit(x) in time O(|x|/w + log |x|). The
mapping is similar to that described in [2], where static z-fast tries were defined.
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Here we are going to prove some new important properties of this mapping (in
particular, its rôle in the discovery of 2-fat ancestors) that are at the basis of
the dynamic version. The key definition is the following:

Definition 1 (2-fattest numbers and handles). The 2-fattest number of an
interval (a . . b) of positive integers is the unique integer in (a . . b) that is divisible
by the largest power of two, or equivalently, that has the largest number of trailing
zeroes in its binary representation. The handle hα of a node α is the prefix of eα

whose length is 2-fattest number in the skip interval of α (see Figure 1). If the
skip interval is empty (which can only happen at the root) we define the handle
to be the empty string.

We will in general use “fat” for numbers divisible by large powers of two, and
“lean” with the opposite meaning. We remark that if f is 2-fattest in (a . . b), it
is also 2-fattest in every subinterval of (a . . b) that still contains f .

We define the map Z from 2∗ to the set of internal nodes by

Z : hα �→ α,

for every internal node α. We assume that Z is actually implemented using a
hash table, also denoted by Z, and that the entries of this hash table can also be
accessed (by their address) if needed (of course, any dictionary allowing satellite
data will do the job).

Definition 2 (2-fat jump). Given a positive integer x = a2b, with a odd, we
call

x′ = (a + 1)2b,

the (2-fat) jump of x: it is the smallest integer larger than x with more trailing
zeroes than x. We let x(n) denote the application of n jumps (i.e., x(0) = x
and x(n+1) = (xn)′). Moreover, the 2-fat backjump of x is x′ = (a − 1)2b: it
is the largest integer smaller than x with more trailing zeroes than x. Note that
(2n)′ = 0, but (2n)′ = 2n+1.

It is an easy observation that iterating n times a jump we always obtain a number
larger than or equal to 2n. This property will be silently used throughout the
paper.

Definition 3 (2-fat ancestors). Given a node α, its 2-fat ancestors are the
nodes β such that hβ ∈ {eα[0 . . |hα|), eα[0 . . |hα|′), eα[0 . . |hα|′′), . . .}.

The above definition may seem a bit cryptic: the idea is that we are looking for
nodes on the path leading to α whose handle lengths are fatter than that of α.
This property will be essential when updating the trie. Note that not all handles
in the definition above necessarily exists. We will need the following lemma,
which relates 2-fat ancestors with 2-fattest numbers of certain intervals:

Lemma 1. Given a positive integer r, let a0 = 0, and ak+1 be the 2-fattest
number in (ak . . r]. Then {a0, a1, . . . , at = r} = {r, r′, r′′, . . . , 0}. Morevoer, t is
equal to the number of ones in the binary expansion of r.



Dynamic Z-Fast Tries 165

Proof. First note that 0 belongs to both sets. Now let p1 > p2 > · · · > pk be
the positions of the ones in the binary expansion of r: the i-th backjump of r
is exactly

∑
j≤k−i 2pj . We prove that ai = r − r mod 2pi . For i = 1, a1 is by

definition the 2-fattest number in (0 . . r], which is exactly the largest power of
two in such interval. For the inductive step, we have defined ai+1 as the 2-fattest
number in the interval (r−r mod 2pi . . x]; observing that r =

∑
j 2pj , we deduce

that ai+1 = x − x mod 2pi+1 . The thesis follows easily. �	

The most important property of Z is that it makes us able to find very quickly
all 2-fat ancestors either of the parex or of the exit node of a string, using
Algorithm 1, which is inspired by the querying algorithm presented in [2]: in
particular, at the end of the algorithm, on the top of the stack we will find
parex(x) or exit(x).

Algorithm 1. Querying the z-fast trie: at the end of the execution, on the stack
you will find either parex(x) or exit(x) and its 2-fat ancestors

Input: a string x
Output: a stack containing the 2-fat ancestors of parex(x) or exit(x)
S ← empty stack
a, b← 0, |x|
while b− a > 0 do

f ← the 2-fattest number in (a . . b]
β ← Z(x[0 . . f))
if β �= ⊥ then

a← |eβ| {Move from (a . . b] to (|eβ| . . b]}
push β on S

else
b← f − 1 {Move from (a . . b] to (a . . f − 1]}

end if
end while
return S

The cutpoint for a string x with respect to a trie is the length of the longest
common prefix bewteen x and exit(x). There are two cases: we say that x cuts
high if the cutpoint is strictly smaller than |hexit(x)|, cuts low otherwise. Note
that only in the second case the handle of exit(x) is a prefix of x.

Theorem 3. Let x be a nonempty string, and

η =

{
parex(x) if x cuts high or exit(x) is a leaf
exit(x) otherwise.

Let α0, α1, . . . , αt = η be the sequence of 2-fat ancestors of η. Let (a . . b] be the
interval maintained by Algorithm 1. Before and after each iteration the following
invariant is satisfied: a = 0 or a = |eαj | for some j and |hη| ≤ b. Moreover, all
values |eαj | are attained by a (in order of increasing j) at some point of the
execution.
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Proof. Note that hη is the longest handle in Z that is a prefix of x. The invariant
is trivially true at the start, as the initial interval is (0 . . |x|]. While a = 0 (we
follow the notation of Algorithm 1), f goes through the powers of two not larger
than |x|, starting from the largest one, and whenever we take the negative branch
we know that b = f − 1 ≥ |hη|. The first time we find a node β with a handle
of length f that is a prefix of x we take the positive branch of the test (as f
is 2-fattest in (0 . . b] ⊇ (0 . . |hη|], and thus in in (0 . . |eη|]). By the definition of
2-fat ancestor, β = α0.

We now prove by induction that in the rest of execution the invariant is true.
At each step we pick the 2-fattest number f ∈ (|eαi | . . b], and change interval.
Let β = Z(x[0 . . f)). We have two cases:

– If f ≤ |hη|, x[0 . . f) must be the handle of a node β, as f is 2-fattest
in (|eαi | . . b] ⊇ (|eαi | . . |hη|]. Moreover, necessarily β = αi+1 because of
Lemma 1. Thus, by setting a = |eβ | = |eαi+1 | the invariant is preserved.

– If f > |hη|, necessarily β = ⊥. Thus, by setting b = f − 1 ≥ |hη| we preserve
the invariant. �	

A few remarks are in order:

– Notice that exit(x) can be recovered in constant time: if parex(x) = ⊥,
exit(x) is the root; otherwise, exit(x) is the left or right child of parex(x)
depending on whether x[|eparex(x)|] is zero or one, respectively.

– Algorithm 1 completes in at most log |x| iterations.
– If we get exit(x) and we need parex(x), we just have to remove exit(x) from

the stack and check whether parex(x) is at the top of the stack: in this case,
we can return the stack as it is; otherwise, we set a = 0 if the stack is
now empty or a = |etop(S)|, b = |eparex(x)|, and we restart the algorithm: by
Theorem 3 the top of the new stack is necessarily parex(x).

– At the end of Algorithm 1 the returned stack contains the 2-fat ancestors of
η in increasing handle-length order.

– Finding the 2-fattest number in an interval requires the computation of the
most significant bit4, but alternatively we can check that (1 � i)&a �= (1 �
i) & b for decreasing i: if the test is satisfied, the number is b & −1 � i,
otherwise we decrement i.

– In Definition 1 we had to state separately the case of the empty skip interval,
but it is clear that it is just for convenience, as Algorithm 1 will never query
Z using the empty string.

3.3 Implementing the Dictionary: Short vs. Long Strings

Each of the O(log |x|) iterations of Algorithm 1 performs a query to Z with some
prefix of x; the time required by such queries depend on the way the dictionary
Z is concretely implemented.

4 More precisely, the 2-fattest number in (a . . b] is −1� msb(a⊕ b) & b.
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Our description so far assumes that one can determine, for a given string x,
whether Z(x) is defined and, if so, what is the associated node (specified through
a pointer). If Z is implemented through a constant-time hash table, under stan-
dard universal-hashing assumptions [9] queries to the hash table require a worst-
case constant number of accesses to the table (whereas modifications yield an
expected constant number of accesses), but each access may imply a comparison
of keys: if keys are “short” (i.e., if their length is O(w)), such comparisons can
be performed in constant time, and hence Algorithm 1 requires time O(log |x|).
However, if keys are “long” (more than a constant time the machine-word size),
a more complex solution should be devised.

Let us discuss briefly how to obtain results analogous to those described up
to here, but only with high probability, when the string length is bounded by
2w. In this circumstance, we use a signature-based z-fast trie: the hashtable Z
contains additional signatures of c log n+log w bits, and queries are performed to
the table using signatures, rather than actual strings; more precisely, when the
hashtable is queried, no string comparison is performed, but only comparisons
between signatures. Note that signatures can be computed incrementally: after
a preprocessing using O(|x|/w) times and O(|x|/B) I/Os, computing a signature
for a prefix of x takes constant time.

It is easy to see that the probability of performing w probes without getting
a false positive or a colliding key is at most 2/nc: indeed, since signatures have
size c log n+ logw = log ncw, the probability of a colliding key at any given step
is at most

(
n
2

)
(1/ncw)2 ≤ 1/n2c−2w2 and the probability of a false positive is

at most 1/nc−1w; therefore, the probability of an error at some step is at most
w(1/n2c−2w2 + 1/nc−1w) ≤ 2/nc−1. Thus, Algorithm 1 will end correctly in
time O(|x|/w + log |x|) with high probability. Note that since n is not known
in advance, the signatures must actually be cw + log w = O(w) bits long (we
assume, as usual, that the set size is bounded by 2w).

At the end of the algorithm, we can check in time O(|x|/w) that the length
of the longest common prefix of x and eexit(x) intercepts exit(x) (which implies
that the result is correct), and re-run the algorithm using actual keys instead
of signatures if something went wrong (this requires time O((|x|/w + 1) log |x|)
and O((|x|/B + 1) log |x|) I/Os).5 We note that if the exit node is correct, then
necessarily the stack of 2-fat ancestors is correct, too.

3.4 Jump Pointers

As a last step towards a complete z-fast trie, we endow all internal nodes with two
additional pointers, called jump pointers. The left jump pointer J−(α) of a node
α points somewhere along the path defined recursively by the left child pointers
(analogously for right jump pointers J+(α)). How far the pointer goes depends
5 In practice, if the dictionary is implemented by a hash table it is much more effi-

cient and convenient to keep track of the (very few) signatures that are duplicates,
and perform exact comparisons when hitting them in the probing phase. Mistakes
are then restricted just to false positive. For instance, on a 64-bit machine, 64-bit
signatures are sufficient to handle efficiently hundreds of billions of strings.
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on some arithmetics related to 2-fattest numbers. Our goal is to position jump
pointers so that if the rightmost (largest) leaf under node α contains the string
x, in O(log |x|) steps we can get to leaf. At the same time, when we perform
insertions or deletes in a trie we want to be able to update the pointers in time
O(log |eexit(x)|), where x is the string added to the trie. Remember that a right
(left) descendant is either the right (left) child, or a descendant of the right (left)
child.

Definition 4. An internal node α intercepts an integer k if k belongs to the
skip interval of α; a leaf α intercepts k if k > iα, that is, if k belongs to the skip
interval of α or is larger than its right extreme. Given an internal node α, its left
(right) jump pointer points to its unique left (right) descendant that intercepts
|hα|′.

The intuition behind this definition is that jump pointers point near for nodes
with lean handles, and point far for nodes with fat handles. Of course, since
when we follow a jump pointer of α we land into a node β whose skip interval
contains |hα|′, the handle of the β will have strictly fatter length than |hα|: as
a consequence, we never need more than log |x| jumps to reach a leaf containing
the string x.

3.5 Space Usage

As described up to now, the z-fast trie is not very space-efficient: the internal
nodes must contain their extent, and the dictionary must contain handles, which
implies that the space usage is (at most) three times the one necessary to store
S. We briefly describe how to avoid storing additional strings at all.

The first observation is that the extent of every internal node is a prefix of some
string in S, and such strings are stored in leaves. Thus, we can just store in each
internal node the skip interval and a reference to one of its descendant leaves. It
is easy to make this relation between internal nodes and leaves an injection (i.e.,
different nodes always point to different leaves); this way, by storing also in the
leaf a backward reference it is possible to perform insertions and deletions with
few pointers assignment (the interested reader can easily work out the details).

Moreover, it is not necessary to store both extremes of the skip interval in an
internal node: it is enough to store its left extreme iα, because the right extreme
can be deduced from the children.

Finally, in the dictionary every handle is associated with the corresponding
internal node, which contains a (now indirect) representation of its extent. From
the extent it is also possible to obtain (by truncation) the handle, which implies
that we do not need to store the keys of the dictionary explicitly if we use a hash
table (although other kind of dictionaries might behave differently).

We can at this point provide a rather precise evaluation of the space required
by the z-fast trie, avoiding any asymptotic notation. Each leaf contains four
pointers, and internal nodes contains five pointers and an integer: so the trie
occupies (9p + w)n bits (where p is the bit size of a pointer). Each dictionary
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entry contains a pointer and possibly a signature (only in the case of signature-
based z-fast tries); assuming a linear-probing implementation with a load factor
of 2/3 and backing array sized as a power of two, we have at most 3n entries,
the dictionary takes 3(p + s)n bits, where s = 0 in the exact case and s is the
size of a signature in the signature-based case.

4 Queries

We now proceed to describe how the various types of queries discussed in Theo-
rem 1 and 2 are handled by the z-fast trie, and prove the associated time bounds.

Predecessor/successor. In time O(|x|/w + log |x|) we recover the exit node of x
using Algorithm 1. Then, by examining eexit(x) and x we decide in time O(|x|/w)
whether x exits on the left or on the right. By moving through jump pointers
to the left or right descendant leaf, respectively, we can find the successor or
the predecessor of x, respectively, in time O(log max{|x−|, |x+|}); then, possibly
after a single access to the doubly linked list of leaves, we can return the result.
For example, if x exits on the left and we want to obtain its predecessor x−,
we must follow left jump pointers until reaching a leaf and then move to the
previous leaf.

Prefix queries. In time O(|x|/w + log |x|) we recover the exit node of x using
Algorithm 1. We then check in time O(|x|/w) that x � eexit(x), and, if so,
enumerate the leaves in the subtree under exit(x) (the enumeration requires
O(k) time to output k elements). If x �� eexit(x) the output is empty. Note that
the test x � eexit(x) is sufficient to answer existential queries.

Range queries. For the range query [x . . y) we first locate exit(x) and exit(y)
using Algorithm 1 in time O(max{|x|, |y|}/w+ logmax{|x|, |y|}). Starting from
exit(x) (exit(y)) we then follow left (right, respectively) jump pointers until
reaching a node α (β, respectively) such that |eα| ≥ |y| (|eβ | ≥ |x|, respectively).
This requires time O(log |y|) (O(log |x|), respectively).

Now existential queries can be answered as follows: if x exits on the left the
output is empty iff eα ≥ y, and if y exits on the right the output is empty iff
eβ < x; both tests can be performed in time O(max{|x|, |y|}/w. If x exits on the
right and y exits on the left we recover x− and y+ in time O(log max{|x−|, |y+|}),
and then the output is empty iff the successor of x− is not y+.

Standard range queries can be answered easily noting that after the range
emptiness check either we know x− (y+, respectively), or we can recover it in
time O(k), where k is the size of the output. For example, if x exits on the left
and the output is not empty then the entire subtree under exit(x) is part of the
output, and thus has size and depth bounded by k: we conclude that following
left jump pointers up to x+ has cost O(k) (recovering x− is then trivial).

We now relieve existential from the dependence on O(log max{|x−|, |y+|})
range queries. Note that if x exits on the right and y exits on the left then
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lcp(x, y) is necessarily the extent of some node η that we can recover using
Algorithm 1 in time O(max{|x|, |y|}/w + log max{|x|, |y|}). We then follow the
right (left, respectively) jump pointers of the left (right, respectively) child of
η until reaching a node α (β, respectively) such that |eα| ≥ |x| (|eβ | ≥ |y|,
respectively). This requires time O(log |x|) (O(log |y|), respectively). The output
is not empty iff x ≤ eα or eβ < y.

I/O bounds. The I/O bounds are easily proved as we scan x (or y) a fixed number
of times to preprocess them so to obtain hashes of prefixes in constant time, or
to compare them to other strings.

5 Updates

Insertions. We describe how to insert a new string x into the z-fast trie for a set
S �= ∅. We assume that the 2-fat ancestors of parex(x) and the exit node of x
have been found using Algorithm 1. To simplify the description, we describe in
turn how each component is updated. First, however, we state the fundamental
property we will use:

Lemma 2 (Parenthesis property). For positive integers x and y we have
that

x′ < y < x′ =⇒ x′ ≤ y′ < y′ ≤ x′.

Proof. By contradiction, suppose first that x′ < y < x′ < y′, that is, (2h)2b <
(2k + 1)2c < (2h + 2)2b < (2k + 2)2c, where x = (2h + 1)2b and y = (2k + 1)2c.
If b < c, dividing by 2b+1 we obtain h < (2k + 1)2c−(b+1) < h + 1, which is
impossible. Otherwise, if b ≥ c dividing by 2c we obtain 2k +1 < (2h+ 2)2b−c <
2k +2, which is again impossible. Reasoning analogously about y′ < x′ < y < x′

completes the proof. �	

The compacted trie. Updating the compacted trie by adding a new string x
requires the usual constant number pointer updates. We remark that we have
also to insert the new leaf into the doubly linked list: to find the predecessor
or the successor in S of the new string, we simply follow the right or left jump
pointers, respectively, of exit(x), and then move along the list.

The dictionary. We have to add to the trie a new leaf and a new internal node.
If x cuts low we have to add to the dictionary a new entry for the new internal
node, and update the entry of the split node if it is not a leaf, as its handle has
changed. If x cuts high, we just add to the dictionary the new internal node.

Jump pointers. A node α crosses a node β if eα � eβ and |hα|′ > iβ (i.e., α
potentially jumps to some left or right descendant of β). When inserting a new
string with exit node β, only nodes crossing β might need to change their jump
pointers. The fundamental combinatorial fact that we will use to update quickly
the z-fast trie is the following connection between fat binary search and jump
pointers:
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Theorem 4. The nodes crossing β are a subset of the 2-fat ancestors of its
parent γ.

Proof. Indeed, |hγ |′ > iβ (as iβ = jγ), so certainly γ crosses β. Now suppose by
induction that a 2-fat ancestor ξ crosses β. Because of the parenthesis property,
any node with a handle of length t < |hξ| must satisfy either t′ ≤ |hξ| or
t′ > |hξ|′, and the largest t satisfying the second condition is |hξ|′. We can
iterate this process until |hξ|′′···′ is the handle of some node, which is necessarily
the next 2-fat ancestor. �	
Not all the jump pointers of 2-fat ancestors need to be updated: actually, we
need to update only pointers to nodes that are left (right) descendant of β.

Algorithm 2 exploits the parenthesis property to find such nodes: it just pops
nodes out of the 2-fat-ancestors stack and matches them greedily with left (right)
descendants of the exit node. As soon as we cannot find a matching descendant,
we can stop updating.

Besides updating existing pointers and setting a few other in obvious ways,
there are cases in which we create a new node and set somehow its left and right
child pointers. In this case, we can easily set the jump pointers by following the
jump pointers of the children, and stop as soon as we find a node intercepting
the jump length of the new node: the parenthesis property guarantees that this
procedure is correct. All these operations require time O(log |x|).

Algorithm 2. Algorithm to find the nodes that need updates to J±(−)
Input: a string x
Output: the set of nodes that need jump pointer updates when x is inserted
R← ∅
S ← stack of 2-fat ancestors of parex(x) (Algorithm 1)
β ← exit(x)
while S not empty do

pop α from S
while β is internal and J±(α) �= β do

β ← J±(β)
end while
if J±(α) = β then

R← R ∪ {α}
else

break
end if

end while
return R

Deletions. Deletions mostly follow the insertion steps uneventfully. There is just
one important observation to be made: to fix the jump pointers, we need to know
the 2-fat ancestors of the parent of parex(x), not of parex(x) (so it is possible
that we have to restart Algorithm 1 twice).
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Abstract. We engineer an algorithm to solve the approximate dictio-
nary matching problem. Given a list of words W, maximum distance d
fixed at preprocessing time and a query word q, we would like to re-
trieve all words from W that can be transformed into q with d or less
edit operations. We present data structures that support fault tolerant
queries by generating an index. On top of that, we present a generaliza-
tion of the method that eases memory consumption and preprocessing
time significantly. At the same time, running times of queries are virtu-
ally unaffected. We are able to match in lists of hundreds of thousands
of words and beyond within microseconds for reasonable distances.

1 Introduction and Previous Results

The problem of searching approximate of matches in a dictionary arises in many
fields. For example, Google’s ’Did you mean’ feature catches typos in search
queries. But in some settings, the uncertainty is higher and therefore one is not
interested in the best match, but also in other matches which are still within a
certain distance from the query.

Each word is represented by a string of characters over a finite alphabet Σ.
The Levenshtein distance ed(a, b) defines a metric between two words a, b ∈ Σ∗

and is used in this work to compute the distance between two words. Since
distance computations are rather expensive, it is natural to find an algorithm
that does not compare the input to the entire dictionary, but only a few entries.
A so-called filter represents a criterion to quickly discard large portions of the
search space. The exploitation of the underlying metric space implied by the
edit distance [1] is easy. The set of words is partitioned by the distance of each
element to a more or less carefully chosen and perhaps random pivot element. By
computing the distance to the pivot, the search space is pruned using the triangle
inequality. However, this approach has limited effect, e.g. in natural language
dictionaries. To cope with the limitations, different schemes were introduced
from using multiple pivots to tree-like data structures. The oldest of such trees
is the BK-tree data structure proposed by Burkhard and Keller [2], which is built
recursively. A root is selected whose subtrees are identified by distance values
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to the root. The i-th subtree consists of elements of the dictionary at distance i
to the root. The subtrees are recursively built until the number of elements in a
subtree is below some threshold. See Chávez et al. [3] for a survey.

The problem of approximately matching words can be categorized into match-
ing elements from a set of words or matching arbitrary patterns in strings
[1]. Cole et al. [4] give a solution for the dictionary matching problem using
O(n logd n) space and answer a query in O(m · log log n+occ) for a dictionary of
size n, query length m, edit distance d. Here, occ is the number of occurrences of
the pattern. Russo et al. [5] propose a compressed index that performs well for
d = 1, 2, 3, but not for larger d. Mihov and Schulz [6] present a sophisticated but
complicated method to solve the problem with universal Levenshtein automata.
The best known linear space solution needs O(md−1 log n log log n + occ) query
time [7] for error d ≥ 2. However, this solution is fairly complicated and involves
large constant factors, and to our knowledge there aren’t any implementations
yet.

Practically oriented work focused on filtering algorithms that use linear space,
but these do not have strong worst case performance guarantees. The technique
of so-called q-grams [8] is popular among practitioners and works for Hamming
distance. q-grams are sub words of length q and the q-gram distance (similarity)
is defined by the number of q-grams two words share. Taking q letters from a word
as before and introducing don’t care defines a pattern including gaps instead of
sub-word. The major difficulties with gapped q-grams is the computation of the
smallest number of matching q-grams between a pattern and a text.

2 Approximate Dictionary Matching

Our method can be seen as an implementation of a general approach to approx-
imate matching known as (lossless) filtering. This can be formalized as follows:
Given a set S of words over a finite alphabet Σ, a metric δ : Σ∗×Σ∗ → R0, and
an error threshold d, a preprocessing algorithm produces a data structure that
allows fast evaluation of a function F : Σ∗ → P(S). For a query word q ∈ Σ∗,
F (q) computes a set of candidate words from S such that the set of approximate
matches {s ∈ S : δ(q, s) ≤ d} is a subset of F (q).

Deletion Neighborhood. We improve a filtering technique called Fast Similarity
Search (FastSS) [9] which is a generalization of the method proposed by Mor and
Fraenkel [10]. For integer d and a word w ∈ Σ∗ the d-(deletion-)neighborhood
Nd(w) is defined as the set of all sub words of w with exactly d deleted positions.
Each element of Nd(w) is called a residual string. Furthermore, a string w is
called originating string for residual r if and only if r ∈ Nd(w). We obtain a
lossless filter for a set of words S by precomputing the d-neighborhoods of strings
in S. As a filtering function, we obtain F (q) = {s ∈ S : Nd(s) ∩ Nd(q) �= ∅}.

Basic Data Structure. A static index data structure is generated in a precom-
putation phase that can be queried during an on-line phase. We insert a number
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of values into a hash table that is part of our data structure. The structure
utilizes the hash table to store pointers to originating dictionary entries at the
hash values of residual strings. If any hash value has more than one originating
dictionary entry then the corresponding pointers are stored in a list.

Query. For an input query q and maximum distance d, the corresponding d-
neighborhood and its hash values are computed. If any element of the query’s
residuals is also an element of the data structure then the pointers to the orig-
inating dictionary entries give a set of candidates. Each of those might be an
approximate match. Once the candidate set is completely built, it is searched
exhaustively by computing the edit distance of each candidate to the query. By
removing all elements from the candidate set whose distance is larger than the
threshold d we get the set of all dictionary members that are at most a distance
d away from query q. Perhaps there exists an additional order on the candidates
stemming from the application. The algorithm can be adapted to not only return
the best match, but also a list of those candidates that are sufficiently close.

Precomputation. We compute the d-neighborhood of each element of the input
dictionary and insert the resulting information into our index data structure.
Doing this precomputation naively and storing all residual strings in a data
structure takes up an enormous amount of space. Instead, we use hashing and
reduce each element of the residual neighborhood into an integer number. We
insert pointers to the originating dictionary entries into the hash table at the
respective hash values of all residual strings. Therefore, only constant space is
needed per residual string regardless of the length of that string.

Algorithmic Generalization. We limit the number of elements that are inserted
into the index while staying lossless. We split long input words in half, compute
residual strings with half the number of errors, and adapt the query algorithm,
which will be explained in this Section. See Section 3 for an analysis of thresh-
old m, which indicates whether or not to split a word. Instead of generating(|s|

d

)
hashes we insert only

( |s|
� d

2 �
)

+
( |s|
� d

2 �
)

values for any dictionary entry s. The
generalized d-neighborhood of w′ ∈ Σ∗ is the set of residuals that is found by
computing all combinations of �d

2 deleted characters for both half of w′.
Index generation is simple. But we have to pay some extra care at query time,

because insertions and deletions that transform words w into w′ can take place
at arbitrary positions. As a consequence, we can not rely on the length of a
query q to decide whether it has been split or not. Instead of splitting a query q
of length l at a fixed position, it is split several times in half at positions in the
interval of � l

2 ± �d
2 . Also, the allowed error is halved. If the length of an input

word is within m ± d then the index is also searched for the non-split string.
Consider these definitions. Let w ∈ Σ∗ be an entry of dictionary D and d the

maximum allowed error. Let u = p(w) and v = s(w) denote the first and second
half of the split word w. Prefixes u and suffix v are indexed, while q is the query.
Any query q is split at several positions as explained above and we define P(w)
to be the set of first and S(w) to be the set of second halves. Our method is still
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correct since we can show the existence of a common residual string for either
the prefix or the suffix of a split query word. See the full paper for the proof.

3 Experimental Results

Implementation Details. We implemented the data structure, the construction
and query algorithms in C++ using GCC Compiler version 4.3.2. We hashed all
residual strings with the built-in hash function of the Boost library v1.36 to a
32-bit Integer, chained with a simple linear congruence. Our tests were ran on a
single core of a Intel Xeon X5550 CPU, running a version 2.6.27 Linux kernel.

The exhaustive search of the candidate set is done by a simple implementation
of the Levenshtein distance. It computes a band of width 2d + 1 only. This way
we compute the distance exactly only if it is smaller than d and return otherwise
as soon as we get a certificate that the distance is larger than d. Since we need
O(1) to fill a cell in the distance table, we can verify a candidate in O(d · l),
where l is the length of the shorter word. In the experiments it took less than a
microsecond to verify any single candidate. We compare the performance of our
optimizations against our own implementation for reasons of fairness.

Test Instances. The word list mobydick consists of the 37 924 distinct words
(avg. length 9) from Melville’s classic novel, the town dictionary consists of 47 339
German town names (avg. length 10) extracted from the OpenStreetMap project
(http://www.openstreetmap.org) in February 2009, the english dictionary is
an extract of words 213 557 (avg. length 10) from Webster’s English Dictionary
and the wikipedia dictionary is the list of 1 812 365 pairwise distinct words (avg.
length 9) from all english Wikipedia (http://www.wikipedia.org) titles as of
February 2009.

Index Performance. We analyzed the space and query performance of the index
for varying values of the split parameter m and error d = 0, . . . , 4. A distance of
d = 3 is large for natural languages and larger d deliver matches that already look
random. Thus, we are able to calibrate the split parameter. The preprocessing
was run for all of our data sets and we averaged over 1 000 randomized queries
for each m.

In the full paper we experimented with different values of the split parameter
m. It turns out that choosing the average word length of the dictionary is a
good choice. Splitting large words benefits preprocessing time as well. Memory
consumption rises with the split parameter, while the query time decreases as
expected. The split parameter functions as an adjusting value to choose between
index size and query performance. The query performance is virtually unaffected.
Query times rise sublinear with the size of the dictionary and are roughly pro-
portional to the candidate size. For example, for d = 2 the query times on the
wikipedia dictionary are roughly six times slower than on the mobydick dic-
tionary, while the dictionary size is 45 times larger. See Table 1 for gives an
overview of the numbers. See the full paper for an extensive experimental eval-
uation. When looking at our result and the original experiments of Bocek et al.
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Table 1. Mem is the size of the index in [MiB], proc the preprocessing time in [s], qry
the avg. query duration in microseconds, cand the avg. size of the candidate set.

Mobydick Town English Wikipedia
d mem proc qry cand mem proc qry cand mem proc qry cand mem proc qry cand
0 0.25 0.061 2 1 0.46 0.156 0 2 2.36 0.886 0 1 14.41 7.131 1 1
1 1.33 0.320 5 5 1.79 0.576 8 9 8.55 3.450 8 6 55.84 32.287 34 25
2 4.57 1.272 84 61 6.91 2.483 99 99 30.49 12.596 122 46 170.79 107.289 502 702
3 9.78 4.044 553 606 15.18 7.458 644 613 61.37 36.309 644 502 342.18 270.506 7 019 9 900
4 16.09 14.647 2 974 3 376 27.20 28.144 7 250 3 720 105.75 117.970 7 543 4 520 603.35 922.521 55·103 65·103

Table 2. Comparison Against Existing Experiments and BK-tree, best results bold

m =∞ m = 10 Best of Bocek et al. BK-tree
preprocessing [ms] 2 649 349 5 000 - 7500 183

avg. query [μs] 114 18 100–200·103 935
dictionary size [MiB] 9.8 1.5 20 0.25

[9] in Table 2 we see that our implementation performs better by about an order
of magnitude in all important areas. Although we know that our numbers were
measured on different hardware, they give an impression on the performance.
The experiments were run on the same random dictionary of 10 000 words. Note
that the case of m = ∞ corresponds to Bocek et al.’s algorithm. They proposed
several improvements that either perform fast or have low space consumption
but not both at the same time. Since the results of the experiments are only
available as plots we had to estimate the values. We did so in a benevolent way
and compare the best of their values in each category against our implementation
with and without splitting. We see one potential source of performance prob-
lems with our experiments as we tested on dictionaries with rather short words
that have similar sizes. The higher the allowed error distance d is, the shorter
residual strings get. This leads to longer index lists in the hash table, because it
is more likely that two distinct words will have common residual strings. This
also explains the larger number of candidates for higher values of d.

An experimental evaluation of BK-trees [11] and several variants reports on
the sizes of the search space that is visited depending on the allowed error dis-
tance. Those experiments were done on a set of 100 000 English words and report
on a nearly linear growth of the search space going up from 5% for edit distance
0 to slightly more than 40% for a distance of 4. The size of the visited search
space in our experiments is always less than 1% and much less than the search
space size for the best BK-tree variant [11]. We confirmed the high number of
candidates with our own implementation. The number of candidates is high, i.e.
more than 103 candidates for a query to the Wikipedia dictionary with d = 2.

4 Conclusions and Future Work

We improved a method for approximate string matching in a dictionary. We
developed algorithmic optimizations that provide a tuning parameter to choose
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between space consumption and running time while having overall lower prepro-
cessing duration. Additionally, the performance has been validated experimen-
tally by comparison against BK-trees and the baseline version of FastSS.

We see possibilities to speed up the verification of the candidate set using
bit-parallelism [12] and SIMD instructions of current processors. However, only
about half of the time of the algorithm is actually spent in the verification phase
with the computation of the edit distance. Likewise there might be opportunities
to speed up the precomputation, in particular, using fast, incremental compu-
tations of hash functions and using parallelization. Also, it might be interesting
to use data compression techniques to further reduce the storage requirements.
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Abstract. We address the problem of improving variable-length-to-
fixed-length codes (VF codes), which have favourable properties for fast
compressed pattern matching but moderate compression ratios. Com-
pression ratio of VF codes depends on the parse tree that is used as a
dictionary. We propose a method that trains a parse tree by scanning
an input text repeatedly, and we show experimentally that it improves
the compression ratio of VF codes rapidly to the level of state-of-the-art
compression methods.

1 Introduction

From the viewpoint of speeding up pattern matching on compressed texts,
variable-length-to-fixed-length codes (VF codes for short) have been reevaluated
lately [3, 4]. A VF code is a coding scheme that parses an input text into a
consecutive sequence of substrings (called blocks) with a dictionary tree, which
is called a parse tree, and then assigns a fixed length codeword to each sub-
string. It is quite hard to construct the optimal parse tree that gives the best
compression ratio for the input text, since it is equal to or more difficult than
NP-complete [4].

Our concern is how to construct parse trees that approximate the optimal tree
better. In most VF codes, a frequency of each substring of T is often used as a
clue for the approximation, since it could be related to the number of occurrences
in a sequence of parsed blocks. This gives a chicken and egg problem as Klein
and Shapira stated in [4]; that is, to construct a better dictionary, which decides
the partition of T , one has to estimate the number of entries that occurs in the
partition.

In this paper we discuss about a method for training a parse tree of a VF code
to improve its compression ratio. We propose an algorithm of reconstructing a
parse tree based on the merit of each node. We employ a heuristic approach:
scanning the input text for estimating the parse tree and then reconstructing it
many times. We can control the number of repetition and also we can employ a
random sampling technique to reduce the training time. We show experimentally
that our method improves VF codes comparable to gzip and the others with a
moderate sacrifice of compression time.
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2 Variable-Length-to-Fixed-Length Codes

Let Σ be a finite alphabet. A VF code is a source coding that parses an input
text T ∈ Σ∗ into a consecutive sequence of variable-length substrings and then
assigns a fixed length codeword to each substring. We will describe the brief
sketches of two VF codes below.

Tunstall code [7] is an optimal VF code (see also [6]) for a memory-less in-
formation source. It uses a parse tree called Tunstall tree, which is the optimal
tree in the sense of maximizing the average block length. Tunstall tree is an
ordered complete k-ary tree that each edge is labelled with a different symbol
in Σ, where k = |Σ|. Let Pr(a) be an occurrence probability for source symbol
a ∈ Σ. The probability of string xμ ∈ Σ+, which is represented by the path
from the root to leaf μ, is Pr(xμ) =

∏
η∈ξ Pr(η), where ξ is the label sequence on

the path from the root to μ (from now on we identify a node in T and a string
represented by the node if no confusion occurs). Then, Tunstall tree T ∗ can be
constructed as follows:

1. Initialize T ∗ as the ordered k-ary tree whose depth is 1, which consists of
the root and its children; it has k + 1 nodes.

2. Repeat the following while the number of leaves in T ∗ is less than 2k

(a) Select a leaf v that has a maximum probability among all leaves in T ∗.
(b) Make v be an internal node by adding k children onto v.

A Suffix Tree based VF code [3, 4] (STVF code for short1) is a coding that
constructs a suitable parse tree for the input text by using a suffix tree [8], which
is a well-known index structure that stores all substrings and their frequencies
in the target text compactly. In STVF codes, a suffix tree for the input text
is constructed at first, and then the frequencies of all nodes are precomputed.
Since the suffix tree for the input text includes the text itself, the whole tree
can not be used as a parse tree. We have to prune it with some frequency-based
heuristics to make a compact and efficient parse tree.

We outline the algorithm of constructing the parse tree. The algorithm starts
with the initial parse tree that contains the root and its k children in the suffix
tree. Then, it repeats choosing a node whose frequency is the highest in the
suffix tree but not yet in the parse tree, and putting it into the parse tree. The
construction algorithm extends the parse tree on a node-by-node basis.

An internal node u in the parse tree is said to be complete if the parse tree
contains all the children of u in the suffix tree. We do not need to assign a code-
word to any complete node, since the encoding process never fail its traversals at
a complete node. In Tunstall codes and the original STVF codes, all the internal
nodes are complete; only leaves are assigned codewords. An idea of improving
VF codes is to include incomplete nodes in the parse tree, but we have to mod-
ify the coding process so that it works in a non-instantaneous way. We omit the
detail of the modified coding process for lack of space.
1 Strictly, the methods of [3] and [4] are slightly different in detail. However, we call

them the same name here since the key idea is the same.
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Fig. 1. An example of computing accept counts and failure counts

3 Training Parse Trees

In this section, we present a reconstruction algorithm for a ready-made parse tree
to improve the compression ratio. The basic idea is to exchange useless strings
in the current parse tree as a result for the other strings that are expected to be
frequently used.

We define two measures for evaluating strings. For any string s in the parse
tree, the accept count of s, denoted by A(s), is defined as the number of that s
was used in the encoding. For any string t that is not assigned a codeword, the
failure count of t, denoted by F (t), is defined as the number of that the prefix
t[1..|t| − 1] of t was used but the codeword traversal failed at the last character
of t. That is, F (t) suggests how often t likely be used if t is in the parse tree. We
can embed the computations of A(s) and F (t) in the encoding procedure. When
p = T [i..j] is parsed in the encoding, A(p) and F (p · T [j + 1]) are incremented
by one. Figure 1 shows an example of computing these measures.

Comparing the minimum of A(s) and the maximum of F (t), the reconstruction
algorithm repeats to exchange s and t if the former is less than the latter; it
removes s from the parse tree and enter t instead.

To train a parse tree we apply the algorithm many times. For each iteration,
it first encodes the input text with the current parse tree. Next, it evaluates the
contribution of each string in the parse tree, and then exchanges some infrequent
strings for the other promising strings.

4 Experimental Results

We have implemented Tunstall coding and STVF coding with training ap-
proach that we stated in Sec. 3, and compared them with BPEX [5]2, ETDC
[2], SCDC [1], gzip, and bzip2. Although ETDC/SCDC are variable-to-variable
length codes, their codewords are byte-oriented and designed for compressed
pattern matching. We chose 16 as the codeword lengths of both STVF coding
and Tunstall coding. Our programs are written in C++ and compiled by g++
of GNU, version 3.4. We ran our experiments on an Intel Xeon (R) 3 GHz and
12 GB of RAM, running Red Hat Enterprise Linux ES Release 4.

2 This name comes from the program implemented by Maruyama.
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Table 1. About text files to be used

Texts size(byte) |Σ| Contents
GBHTG119 87,173,787 4 DNA sequences
DBLP2003 90,510,236 97 XML data
Reuters-21578 18,805,335 103 English texts
Mainichi1991 78,911,178 256 Japanese texts (encoded by UTF-16)

Fig. 2. Compression ratios

We used DNA data, XML data, English texts, and Japanese texts to be com-
pressed (see Table 1). GBHTG119 is a collection of DNA sequences from Gen-
Bank3, which is eliminated all meta data, spaces, and line feeds. DBLP2003 con-
sists of all the data in 2003 from dblp20040213.xml4. Reuters-21578(distribution
1.0)5 is a test collection of English texts. Mainichi19916 is from Japanese news
paper, Mainichi-Shinbun, in 1991.

4.1 Compression Ratios and Speeds

The methods we tested are the following nine: Tunstall (Tunstall codes without
training), STVF (STVF codes without training), Tunstall-100 (Tunstall codes
with 100 times training), STVF-100 (STVF codes with 100 times training),
BPEX, ETDC, SCDC, gzip, and bzip2. Figure 2 shows the results of compres-
sion ratios, where every compression ratio includes dictionary informations. We
measured the averages of ten executions for Tunstall-100 and STVF-100.

For GBHTG119, STVF, Tunstall-100, and STVF-100 were the best in the com-
pression ratio comparisons. Since ETDC and SCDC are word-based compression,
they could not work well for the data that are hard to parse, such as DNA se-
quences and Unicode texts. Note that, while Tunstall had no advantage to STVF,

3 http://www.ncbi.nlm.nih.gov/genbank/
4 http://www.informatik.uni-trier.de/~ley/db/
5 http://www.daviddlewis.com/resources/testcollections/reuters21578/
6 http://www.nichigai.co.jp/sales/corpus.html
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Fig. 3. Compression times. Note that the
vertical axis is logarithmic scale.

Fig. 4. Decoding times

Fig. 5. The effects of training Fig. 6. Training with sampling

Tunstall-100 gave almost the same performance with STVF-100. Moreover, those
were between gzip and bzip2.

Figure 3 shows the results of compression times. STVF was much slower than
Tunstall and ETDC/SCDC since it takes much time for constructing a suffix
tree. As Tunstall-100 and STVF-100 took extra time for training, they were the
slowest among all for any dataset.

Figure 4 shows the results of decompression times. Tunstall and STVF were
between BPEX and ETDC/SCDC in all the data. Tunstall-100 and STVF-100
became slightly slow.

4.2 Effects of Training

We examined how many times we should apply the reconstruction algorithm for
sufficient training. We chose Reuter21578 as the test data in the experiments.
Figure 5 shows the results of the effect of training for STVF and Tunstall. We
can see that both compression ratios were improved rapidly as the number k of
iterations increases. We can also see that they seem to come close asymptotically
to the same limit, which is about 32%.
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4.3 Speeding-Up by Sampling

In this experiment, we introduce a random sampling technique to save the train-
ing time.

Let T be the input text, m be the number of pieces, and B be the length of
a piece. For given m ≥ 1 and B ≥ 1, we generate a sample text S from T at
every iteration as S = s1 · · · sm (sk = T [ik..ik + B − 1] for 1 ≤ k ≤ m), where
1 ≤ ik ≤ |T | − B + 1 is a start position of a piece sk that we select in a uniform
random manner for each k. Then, |S| = mB.

Figure 6 shows the compression ratios for Tunstall codes with 20 times train-
ing. We measured the average of 100 executions for each result. We observed
that the compression ratio achieves almost the same limit when the sampling
size |S| is 25% of the text and the number m of pieces is 100. Compared with
BPEX, Tunstall codes with training overcome in compression ratios when |S| is
20% and m = 40. The average compression time at that point was 30.97 sec-
onds, while that of BPEX was 58.77 seconds. Although STVF codes are better
than Tunstall codes in compression ratios, it revealed that Tunstall codes with
training are also useful from the viewpoint of compression time.
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Abstract. A string with many repetitions can be written compactly by
replacing h-fold contiguous repetitions of substring r with (r)h. We refer
to such a compact representation as a repetition representation string or
RRS, by which a set of disjoint or nested tandem arrays can be com-
pacted. In this paper, we study the problem of finding a minimum RRS
or MRRS, where the size of an RRS is defined to be the sum of its com-
ponent letter sizes and the sizes needed to describe the repetitions (·)h

which are defined as wR(h) using a repetition weight function wR. We de-
velop two dynamic programming algorithms to solve the problem. One
is CMR that works for any repetition weight function, and the other
is CMR-C that is faster but can be applied only when the repetition
weight function is constant. CMR-C is an O(w(n + z))-time algorithm
using O(n + z) space for a given string with length n, where w and z
are the number of distinct primitive tandem repeats and the number
of their occurrences, respectively. Since w = O(n) and z = O(n log n)
in the worst case, CMR-C is an O(n2 log n)-time O(n log n)-space algo-
rithm, which is faster than CMR by ((log n)/n)-factor.

Keywords: tandem repeat, string algorithm.

1 Introduction

A contiguous repeat of a substring embedded in a string is called a tandem array,
or a tandem repeat (or a square) for a two-fold repetition. The problem of finding
tandem arrays and repeats has been studied for more than two decades in the
fields of computer science, mathematics and biology [4]. Efficient algorithms for
finding all or primitive tandem repeats, namely, repeats whose repeated units
themselves are not tandem arrays, have been developed so far [2,3,4].

In this paper, we consider repetition representation strings, or RRSs, which
allows to use notations (r)h instead of contiguous sequences rr · · · r of h identical
strings r. An RRS can represent many tandem arrays simultaneously but cannot
always represent all tandem arrays in a string. An RRS is a string representation
for a set of disjoint or nested tandem arrays in a string, where two substrings of

E. Chavez and S. Lonardi (Eds.): SPIRE 2010, LNCS 6393, pp. 185–190, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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a string are disjoint if they have no intersection, and (r)h and (r′)h′
are nested if

r contains (r′)h′
. Different RRSs are possible for a string depending on which set

of tandem arrays is represented. As an evaluation measure for RRSs, we use their
sizes, that is, we consider the problem of finding a minimum RRS (MRRS) for a
given string. Our expectation that an MRRS represents an essential repetition
structure of a string is supported by the well-known MDL principle: “the success
in finding regularities can be measured by the length with which the data can
be described” (www.mdl-research.org).

We define the size of an RRS as the sum of its component sizes, namely, the
sum of its component letter sizes and the sizes needed to describe the repetitions
(·)h which are defined as wR(h) using a repetition weight function wR.

We developed two algorithms: CMR and CMR-C. CMR works for any repeti-
tion weight function wR, though it is slow; it runs in O(n3) time and O(n2) space.
On the other hand, CMR-C works only when the repetition weight function is
constant, but it is faster; it is an O(w(n + z))-time O(n + z)-space algorithm
using a sophisticated technique of finding tandem repeats. Here, n is the length
of a given string, z is the number of (occurrences of) primitive tandem repeats in
the string, and w is the number of distinct strings among them. Considering the
worst case setting [1,2]: w = O(n) and z = O(n log n), these complexities corre-
spond to O(n2 log n) time and O(n log n) space, which are smaller than those of
CMR by ((log n)/n)-factor. We further note that CMR-C is more effective for
smaller w and z.

2 Problem Setting

Let Σ be a finite alphabet, whose elements are called letters. A string s is a
sequence of letters with finite length. The length of string s is the number of
letters in s which is denoted by |s|. More general notion called a repetition
representation string, or an RRS, is defined as follows. First, all strings are
RRSs themselves. If r1 and r2 are RRSs, then r1r2, concatenation of r1 and
r2, is also an RRS. If r is an RRS, then (r)h (h ≥ 2) is also an RRS that is
another representation of a concatenation rr · · · r of h identical RRSs r. Note
that parentheses ‘(’, ‘)’ and codes for numbers are special symbols not contained
in Σ. A substring represented by RRS (r)h is called a tandem array, and it
is called a tandem repeat when h = 2. We say that (r)h is expanded to the
concatenation rr · · · r of h identical RRSs r and reversely rr · · · r is reduced to
(r)h. String s without (·)h notation is said to be represented by an RRS r if s is
obtained by expanding all the (·)h in r for any h.

The size of an RRS can be calculated using given two non-negative weight
functions, alphabet weight function wΣ on Σ and repetition weight function wR

on the set of natural numbers at least 2. Given wΣ and wR, the size l(r) of an
RRS r is recursively defined as follows:

l(λ) = 0 for empty string λ, l(a) = wΣ(a) for a ∈ Σ,
l(r1r2) = l(r1) + l(r2) for all RRSs r1 and r2, and
l((r)h) = l(r) + wR(h).
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Remark 1. In most cases, we use constant functions as wΣ and wR for simplicity.
A constant function wR in the uniform cost model and wR(h) = log h + c in the
logarithmic cost model seem natural, where c is a some constant. In practice,
wΣ and wR should be decided depending on applications.

The problem we deal with in this paper is the following one.

Problem 1. Given a string s, an alphabet weight function wΣ and a repetition
weight function wR, find a minimum(-sized) RRS r that represents s.

3 Algorithms

In this section, we show algorithms for problem 1. We assume that s is an
arbitrary string a1a2 · · · an with length n. For 1 ≤ i ≤ j ≤ n, we let s[i..j]
denote the substring aiai+1 · · · aj of s, and let r∗[i..j] denote a minimum RRS
(MRRS) representing s[i..j] in the following subsections.

3.1 General Algorithm

First, we show algorithm CMR that works for any repetition weight function
wR. CMR calculates an MRRS representing a given string s[1..n] by calculating
MRRSs representing s[i..j] for all the substrings s[i..j] of s[1..n] using dynamic
programming. Its dynamic programming is based on the following proposition,
which says that an MRRS representing a string is either a repetition of an MRRS
representing its some prefix or a concatenation of two MRRSs representing its
two substrings that are made by cutting the string at some position.

Proposition 1. For all 1 ≤ i < j ≤ n, r∗[i..j] is one of the followings:

(1) (r∗[i..i + d − 1])h for some d ≥ 1 and h ≥ 2 with hd = j − i + 1,
(2) r∗[i..i + d]r∗[i + d + 1, j] for some 0 ≤ d < j − i.

For given 1 ≤ i < j ≤ n, assume that r∗[i′..j′] is already known for all 1 ≤
i′ < j′ ≤ n with j′ − i′ < j − i. By the proposition, r∗[i..j] is obtainable by
searching an MRRS among at most �(j − i + 1)/2� possibilities of (1) and j − i
possibilities of (2). If l(r∗[i′..j′]) for all 1 ≤ i′ < j′ ≤ n with j′ − i′ < j − i is
already calculated, the size for each possible RRS can be calculated in constant
time. Thus, such search can be finished in O(j − i) time. This means that an
MRRS r∗[1..n] for a given string s[1..n] is obtainable in O(n3) time and O(n2)
space by dynamic programming using the fact that r∗[i..i] = s[i..i] = ai for all
1 ≤ i ≤ n.

3.2 Algorithm for a Constant Repetition Weight Function

In this subsection, we describe an algorithm faster than CMR in the case with
a constant repetition weight function. In this subsection, wR is always supposed
to be a constant function.
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First, note that

l((rr · · · r︸ ︷︷ ︸
h times

)g) = hl(r) + wR(g) ≥ l(r) + wR(hg) = l((r)hg)

because wR is supposed to be a constant function. This means that we only have
to check combinations of primitive tandem arrays, where a tandem array (r)h

is said to be primitive if r cannot be represented by RRS (r′)h′
for any string

r′ and h′ ≥ 2. Such a tandem array is called a primitive tandem repeat when
h = 2. It is known that there are at most O(n log n) occurrences of primitive
tandem repeats in a string of length n.

Let E(i) denote the set of primitive tandem repeats ending at the ith letter of
s. For each tandem repeat s[i−2j+1..i] in E(i), namely, for each tandem repeat
with width j and ending at i, h∗(i, j) denotes an optimal number of repetitions
of the last j letters as an RRS-representation of s[1..i]:

h∗(i, j)
def= arg min

g
{l(r(g)) : μ(r(g)) = s[1..i],

r(g) = r∗[1..i − gj](r∗[i − j + 1..i])g},

where μ(r) denotes an expanded string of r. Then, r∗[1..i − h∗(i, j)j](r∗[i − j +
1..i])h∗(i,j) is a minimum RRS representing s[1..i] among the RRSs of the form
r∗[1..i− gj](r∗[i− j +1..i])g (g ≥ 2) by the definition, and also a minimum RRS
even among all the RRSs of the form r[1..i − gj](r[i − j + 1..i])g (g ≥ 2) for any
RRSs r[1..i − gj] and r[i − j + 1..i] representing s[1..i − gj] and s[i − j + 1..i],
respectively. Fortunately, h∗(i, j) can be calculated efficiently using dynamic
programming.

The following proposition indicates that candidate RRSs for r∗[1..i] can be
narrowed to only |E(i)| + 1 RRSs.

Proposition 2. One of the RRSs of the following form (1) or (2) is an MRRS
representing s[1..i].

(1) r∗[1..i − 1]ai,
(2) r∗[1..i − h∗(i, j)j](r∗[i − j + 1..i])h∗(i,j) for s[i − 2j + 1..i] ∈ E(i).

By the above propositions, r∗[1..n] can be calculated using dynamic program-
ming if an appropriate representation of E(i) is prepared. We call such a dynamic
programming algorithm FindBestComb. As an input of FindBestComb, E(i) is
assumed to be given by a linked list, where the list entry for tandem repeat
s[i− 2j + 1..i] has the repeat width j, an MRRS r∗[i− j + 1..i] and its size, and
the pointer to the entry for the tandem repeat s[i−3j+1..i− j]. FindBestComb
calculates l(r∗[1..i]) in the increasing order of i. For each i, it searches an MRRS
r∗[1..i] among |E(i)| + 1 candidates shown in Proposition 2 using already cal-
culated l(r∗[1..i′]) for i′ < i. Note that h∗(i, j) can be calculated using already
calculated h∗(i−j, j), which can be accessed through the pointer to the entry for
the repeat s[i−3j+1..i− j]. An MRRS r∗[1..n] can be constructed by traceback
if which one among |E(i)| + 1 candidates is an MRRS r∗[1..i] is memorized for
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CMR-C %[Calculate an MRRS of a string for a Constant repetition weight function]
Input: s[1..n]: string,

wΣ : alphabet weight function, wR: constant repetition weight function
Output: r∗[1..n] : an MRRS representing s[1..n]

Step 1 Make the suffix tree T decorated with the endpoints of all primitive tandem
repeats in the vocabulary for the reversed string of s using the algorithm developed
by Gusfield and Stoye [2].

Step 2 Prepare linked list E(i) for i = 1, ..., n by executing Prepare E(T ’s root node).
Step 3 For each entry of tandem repeat s[i − 2j + 1..i] in E(i) (i = 1, 2, ..., n),

set an MRRS and its size of s[i − j + 1..i] to the entry by executing
Set Min Size(s[1..n], wΣ , wR, E).

Step 4 Calculate r∗[1..n] by executing FindBestComb(s[1..n], wΣ , wR, E).

Fig. 1. Algorithm CMR-C

each i = 1, 2, ..n. The time and space complexity of FindBestComb is O(n log n)
because the number of occurrences of primitive tandem repeats is O(n log n).

Linked lists E(i) for all i = 1, ..., n and the pointers to the entries for tandem
repeats s[i−3j +1..i− j] which are set for all entries of primitive tandem repeat
s[i − 2j + 1..i] in E(i) (i = 1, ..., n) are calculated in O(n log n) time using the
suffix tree of s decorated with the endpoints of all primitive tandem repeats
in the vocabulary, which can be constructed in O(n) time by the algorithm
developed by Gusfield and Stoye [2]. The calculation can be done by postorder
traversal of the decorated suffix tree for the reversed string of s. We call such
a recursive algorithm Prepare E. We also let each entry in E(i) have a pointer
to the entry for the leftmost occurrence of the same type tandem repeat, which
is also set in algorithm Prepare E. This pointer is used to save computational
cost for occurrences of the same type tandem repeat as described below. Since
the number of occurrences of primitive tandem repeats are O(n log n), the above
procedure is done in O(n log n) time and O(n log n) space.

There is still one thing we have to do before executing FindBestComb for
the whole string. An MRRS r∗[i − j + 1, ..i] and its size l(r∗[i − j + 1..i]) in
each entry for tandem repeat s[i − 2j + 1..i] must be calculated. There are
O(n log n) occurrences of primitive tandem repeats but MRRSs and their size
have to be calculated only for distinct tandem repeats, namely, tandem repeats
in the vocabulary (the set of different repeat types) [2], the number of which
is O(n). Applying FindBestComb to s[i − j + 1..i] for each primitive tandem
repeat s[i − 2j + 1..i] in the vocabulary, an MRRS r∗[i − j + 1..i] and its size
l(r∗[i − j + 1..i]) can be calculated in O(n log n) time and O(n log n) space, so
the minimum size for all tandem repeats in the vocabulary can be obtained
in O(n2 log n) time and O(n log n) space. We call the algorithm for this task
Set Min Size.

Putting all together, algorithm CMR-C shown in Fig. 1, an algorithm finding
an MRRS representing s[1..n], is obtained.

By the argument so far, we have proved the following theorem.
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Theorem 1. r∗[1..n] can be calculated in O(n2 log n) time and O(n log n) space.

If the number of occurrences of primitive tandem repeats is z, FindBestComb
and Prepare E can be executed in O(n+z) time and O(n+z) space. Furthermore,
if the number of primitive tandem repeats in the vocabulary is w, Set Min Len
can be executed in O(w(n + z)) time and O(n + z) space. Thus, the following
corollary holds.

Corollary 1. r∗[1..n] can be calculated in O(w(n+ z)) time and O(n+ z) space
when w > 0, where w and z is the number of primitive tandem repeats in the
vocabulary and the number of their occurrences, respectively.

4 Concluding Remarks

In this paper, we considered representations called an MRRS for a string, in
which a set of disjoint or nested contiguous repeats are compacted, and proposed
dynamic programming algorithms CMR and CMR-C to calculate it for a given
string. CMR-C was theoretically proved to run in O(w(n+z)) time and O(n+z)
space, which indicates that it is fast if the number of distinct tandem repeat
w and the number of its occurrences z are not large compared to the string
length n. According to our experiments on DELL Precision T7500 (cpu: Intel(R)
Xeon(R) E5520 [2.27GHz], memory: 2GB), CMC-R is fast enough for large-scale,
synthetic datasets on strings; for a random binary string of 1,638,400 letters, 8.2
seconds were enough for CMR-C to find an MRRS. The size of MRRS can be
a measure of how well a string is organized in terms of repeated structures.
From our experimental result of such a structural complexity analysis applied
to DNA sequences or chromosomes of the most major nine species (A. thaliana,
C. elegans, zebrafish, fruit fly, chicken, human, mouse, yeast and rat), we found
that the MRRS size was unique for each species.
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Abstract. Given a set D of d patterns, the dictionary matching problem
is to index D such that for any query text T , we can locate the occur-
rences of any pattern within T efficiently. When D contains a total of n
characters drawn from an alphabet of size σ, Hon et al. (2008) gave an
nHk(D) + o(n log σ)-bit index which supports a query in O(|T |(logε n +
log d)+ occ) time, where ε > 0 and Hk(D) denotes the kth order entropy
of D. Very recently, Belazzougui (2010) proposed an elegant scheme,
which takes n log σ + O(n) bits of index space and supports a query in
optimal O(|T |+occ) time. In this paper, we provide connections between
Belazzougui’s index and the XBW compression of Ferragina et al. (2005),
and show that Belazzougui’s index can be slightly modified to be stored
in nHk(D)+O(n) bits, while query time remains optimal; this improves
the compressed index by Hon et al. (2008) in both space and time.

1 Introduction

Given a set D of d patterns, the dictionary matching problem is to index D such
that for any query text T , we can locate the occurrences of any pattern within
T efficiently. Such a query is called the dictionary matching query. This problem
is well-studied [1,2,5,12,16,3], and finds applications in computer virus detection
and bio-informatics.

When D contains a total of n characters drawn from an alphabet of size
σ, Aho and Corasick [1] proposed a data structure, now popularly known as
the Aho-Corasick automaton, which supports the dictionary matching query in
O(|T |+occ) time. The automaton consists of a trie structure with t ≤ n+1 nodes,
and can be stored in O(t log t) bits of space. Alternatively, we may also store the
generalized suffix tree [14,17] for the patterns in D, so that the query time
remains O(|T | + occ), while the space becomes O(n log n) bits. Recent research
focussed on reducing the index space for this problem. Hon et al. [12] gave an
nHk(D) + o(n log σ)-bit index which supports a query in O(|T |(logε n + log d) +

� This work is supported in part by Taiwan NSC Grant 96-2221-E-007-082 and US
NSF Grants CCF-1017623 and CCF-0621457.

E. Chavez and S. Lonardi (Eds.): SPIRE 2010, LNCS 6393, pp. 191–200, 2010.
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occ) time, where ε > 0 and Hk(D) denotes the kth order entropy of the text
formed by concatenating all the patterns in D. Very recently, Belazzougui [3]
proposed an elegant scheme, which takes tH0(D) + O(t) bits of index space and
supports a query in O(|T | + occ) time without slowdown. Note that Hk(D) ≤
H0(D) ≤ log σ.

In this paper, we provide connections between Belazzougui’s index and the
XBW compression of Ferragina et al. [6], and show that Belazzougui’s index can
be slightly modified to be stored in tHk(D)+O(t) bits, while query time remains
O(|T |+occ); this improves the compressed index by Hon et al. [12] in both space
and time. Note that the achieved space bound is the same as that required by
performing front coding [18] of the patterns with a subsequent kth-order entropy
compression, which is likely to be smaller than the usual nHk(D) + O(n) bits
obtained by compressing each pattern independently.

The organization of the paper is as follows. In Section 2, we give a review of
the Burrows-Wheeler transformation [4] and the XBW compression of Ferragina
et al. [6]. Then in Section 3, we solve a related problem called prefix matching
based on the XBW compression. Section 4 describes how to directly apply the
result in Section 3 to obtain our index for the dictionary matching problem. We
conclude the paper in Section 5.

2 Preliminaries

2.1 A Review of BWT

Let T [1..n] be a text. The Burrows-Wheeler transform (BWT) of T is a per-
mutation of the characters in T , such that the location of T [i] is determined by
the rank of the suffix T [i + 1..n] among all suffixes of T . (Here, we assume the
rank of the empty suffix, T [n+1..n], is 0.) For example, consider Figure 1 which
shows a text T = cababaac. The rank of each suffix is marked by the node to
the left of the suffix. By storing the character preceding the ith smallest suffix
in increasing order of i, we obtain the BWT of T .

c a b a b a a c
0123 456 78

c b b c a a a aBWT  =

Fig. 1. An example of the Burrows-Wheeler transform

Ferragina and Manzini [8] showed that we can store BWT of T with some
auxiliary data structures in nHk(T )+O(n) bits space, such that we can locate the
occurrences of any pattern P [1..p] within T efficiently. Basically, the searching
algorithm first identifies all locations in T that match with P [p..p], and then
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iteratively identifies the locations matching P [i..p] based on the locations that
match with P [i+1..p]. For example, consider Figure 2 which shows how to search
P = aba in the text T of Figure 1. The searching algorithm starts by finding the
locations that match with “a”, then the locations that match with “ba”, and
finally the locations that match with “aba”. Note that in each step, the ranks
of the matching locations (highlighted nodes) form a contiguous range. The
searching algorithm makes use of this fact to implicitly represent the matches,
and then to compute the desired range of the matches in the next step.

It is shown in [9] that if the alphabet size σ is polylog(n), each step can be
done in O(1) time. In general, each step can be performed in O(log σ/ log log n)
time.

c a b a b a a c
0123 456 78

c a b a b a a c
0123 456 78

ba

c a b a b a a c
0123 456 78

aba

Fig. 2. An example of searching with BWT

2.2 A Review of XBW

Ferragina et al. [6] proposed a generalization of the BWT that is capable for
encoding rooted tries. Given a trie T , we encode the tree structure and the edge
labels separately, where the latter are stored as a text string XBW analogous
to the BWT. Precisely, for each node u in the trie, we define a string ru, called
the reverse prefix string of u, formed by concatenating the characters along the
path from u to the root. Then each node u is associated with the rank of su

among all the reverse prefix strings in the trie. Finally, the label on the edge
(u, v) is stored in XBW text in (monotonic) increasing order of the rank of ru.
For example, consider Figure 3 which shows a trie. The rank of the reverse prefix
of each node is marked inside the node. By storing the character(s) succeeding
the node with the ith smallest reverse prefix in increasing order of i, we obtain
the XBW of trie. Note that when the trie contains exactly one path, XBW is
equivalent to BWT.

Ferragina et al. [6] also extended the notion of entropy compression on a text
T to a trie T . For each string ρ, we define cover[ρ] to be the string formed by
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b b
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XBW  = b a c b - - a b a - - b

10 2 3 4 5 6 7 8

9

c

c

9

-

Fig. 3. An example of the XBW transform

concatenating the labels on the edges (u, v) such that ru is prefixed by ρ. For
instance, in the example of Figure 3, cover[b] = aba−− and cover[ba] = a
(Note that the order of characters among the cover is irrelevant). The kth-order
entropy of the trie T , denoted by Hk(T ), is defined as:

Hk(T ) ≡ 1
t

∑
length-k string ρ

|cover[ρ]|H0(cover[ρ]),

where t is the number of nodes in T , and H0(s) for a string s is the standard
zeroth-order entropy of s.1

Then, Ferragina et al. showed that we can store XBW of T with some auxiliary
data structures in tHk(T ) + O(t) bits space, such that for any pattern P [1..p],
we can locate all the subpaths (ancestor-descendent paths) within T efficiently.
The searching algorithm is analogous to that of searching BWT, where it first
identifies all locations of the subpaths that match with P [1], and then iteratively
identifies the locations of the subpaths matching P [1..i+1] based on the locations
corresponding to P [1..i].2

In each step, the ranks of the matching locations form a contiguous range.
Again, we can make use of this fact to implicitly represent the matches, and then
to compute the desired range of the matches in the next step. It is shown that if
the alphabet size σ is polylog(n), each step can be done in O(1) time. For larger
alphabet size, each step can be performed in o((log log σ)1+ε) time, for any fixed
ε > 0 [7].

1 H0(s) ≡ (1/|s|)∑character c
|nc| log(|s|/|nc|), where nc is the number of character c

appearing in s.
2 Unlike searching with BWT, the pattern P is processed in the forward direction

during the trie search. It is because we are essentially searching for those nodes whose
reverse prefix strings begin with P [p]P [p − 1]...P [1], so that we start by matching
P [1] first, and then P [2]P [1], and so on.
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3 Compressed Prefix Matching with XBW

Suppose that we want to index a trie T , but instead of supporting subpath query,
we want to check if a pattern P [1..p] can be searched starting from the root. We
call this a prefix matching query. Obviously, we can create a dummy root node
z and connect z to the original root with a special character λ, and then reduce
the prefix matching query to finding the subpath λP in the modified trie. In this
way, the prefix matching query can be performed in o(|P |(log log σ)1+ε) time,
while the index takes nHk(T ) + O(t) bits space.

A natural question is whether we can reduce the query time to O(|P |), for
any alphabet size σ. Very recently, Belazzougui [3] (implicitly) showed that it is
possible. The idea is to find an encoding such that given a node u with rank x
and a character c, we can determine if we can extend the node u by the character
c in O(1) time, and if so, the rank of the resulting node. His scheme is as follows:

1. For each character c in the alphabet, compute a list with the ranks of all
reverse prefixes whose corresponding nodes are succeeded by c.3 For instance,
in the example of Figure 3, we compute
– the list for a: 0, 4, 5;
– the list for b: 0, 1, 4, 8;
– the list for c: 0, 8;

2. Construct an indexable dictionary on each of the list, so that for each list L,
we can support the following operation in O(1) time:
– rank(x, L): If x is in L, report its rank among the other elements of L.

Otherwise, report -1 indicating “x is not found in L”.
3. Construct an auxiliary data structure such that for each character c, we can

report in O(1) time the value C[c], which is the number of reverse prefixes
lexicographically smaller than c.

Based on the above data structures, we can perform our desired query as follows.
Firstly, to check whether we can extend a node with rank x by the character c,
we simply call rank(x, Lc) to check if the list Lc for c contains x, which requires
O(1) time. Next, suppose we can perform the extension. Then the rank of the
desired node must be equal to C[c]+ rank(x, Lc), which also requires O(1) time.
Consequently, prefix matching can be performed in O(|P |) time.

For the indexable dictionary, we use the result of [15], which takes log
(

t
nc

)
+

o(nc) = nc log(t/nc)+O(nc) bits for the list for c, where nc denotes the number
of entries in the list. Note that nc is exactly equal to the number of c in the
XBW string X of T . In total, the indexable dictionaries for all lists are stored
in ∑

character c

nc log(t/nc) + O(nc) = tH0(X) + O(t) bits.

For the auxiliary data structure that supports computation of C[c], it can be
stored in O(t + σ) = O(t) bits using Jacobson’s constant-time rank and select
index [13]. Thus, the overall space is bounded by tH0(X) + O(t) bits.
3 When the trie contains only one path, these lists are exactly the Ψ function of the

compressed suffix arrays [10].
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3.1 Compressing Belazzougui’s Scheme

We now show how to modify the above scheme so that the space becomes
tHk(T ) + O(t), for any k = o(logσ+1 t).4 Note that in any case, Hk(T ) ≤
H0(X) ≤ log σ. The key idea for the compression is to further divide the list into
sublists, where each sublist contains the ranks of the reverse prefixes that begin
with the same length-k string ρ; then, each sublist is encoded with a separate
indexable dictionary. To see why compression can be achieved, we observe that
the ranks in the sublist corresponding to ρ must be at least the rank of ρ (say
x′) among all the reverse prefixes, and can be at most x′ + |cover[ρ]| − 1. Thus,
we can store the rank x′ of ρ, and replace each rank in the sublist with the dif-
ference with x′. As the number becomes smaller (between 0 and |cover[ρ]| − 1),
we achieve compression. For instance, consider the example of Figure 3 and the
case where k = 1. Then the ranks 4, 5, 6, and 7 will be referred as 0, 1, 2, 3,
respectively, when we encode the sublist for ρ = b.

More precisely, suppose that the sublist in the list c that corresponds to ρ
contains nc,ρ ranks. Then the corresponding indexable dictionary of [15], which
supports O(1) time query, can be stored in at most

nc,ρ log(|cover[ρ]|/nc,ρ) + O(nc,ρ) bits,

so that the sublist in all lists that correspond to ρ can be stored in at most∑
character c

nc,ρ log(|cover[ρ]|/nc,ρ)+O(nc,ρ) = |cover[ρ]|H0(cover[ρ])+O(|cover[ρ]|) bits.

Consequently, the total space of all sublists for all ρ’s can be stored in at most∑
length-k ρ

|cover[ρ]|H0(cover[ρ]) + O(|cover[ρ]|) = tHk(T ) + O(t) bits.

The indexable dictionaries for the sublists are concatenated according to
where it appears in the list. To facilitate the location of a particular dictio-
nary, we use a conceptual bit-vector to mark the boundaries of the dictionaries.
Such a bit-vector consists of (σ+1)k+1 1’s and tHk(T )+O(t) 0’s, which is stored
with the fully indexable dictionary of [15] in o(t) bits, and supports finding the
desired dictionary for any sublist in O(1) time. We can similarly store the rank of
each ρ among the reverse prefixes by using a conceptual bit-vector with (σ +1)k

1’s and t 0’s. The idea is to treat ρ as a k log σ-bit integer, such that the number
of 0’s preceding the ρth 1 is exactly equal to the desired rank of ρ. The required
space is o(t) bits, and the desired rank can be reported in O(1) time. Also, when
given a rank x, we can compute in O(1) time the number of 1’s preceding the
xth 0’s; this corresponds to the rank of the string ρ whose sublist may contain
x. Finally, we construct a table such that for each character c and each length-k
string ρ, we can report in O(1) time the value C[c, ρ], which is the number of

4 With some minor adaptation, we can extend the range of k slightly to become
o(logσ n) instead.
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reverse prefixes lexicographically smaller than cρ. The table contains (σ + 1)k+1

entries, each taking O(log t) bits, so that the total space is bounded by o(t) bits.
Given the above data structures, let us now examine how to perform the

extension operation. Suppose we are given a node with rank x and a character
c. First, we check which sublist of ρ that x may appear. Next, we check whether
list c has a sublist corresponding to ρ. If not, we can conclude such an extension
fails. Else, we retrieve the rank x′ of ρ among the reverse prefixes, retrieve the
indexable dictionary for the sublist Lc,ρ of ρ within the list c, and check if x−x′

is stored in the sublist. If not, we can again conclude that the extension has
failed. Else, we compute the desired rank r of the extended node as:

r = rank(x − x′, Lc,ρ) + C[c, ρ].

In summary, the total space of our index is tHk(T )+O(t) bits, and it supports
prefix matching of a pattern P in the trie T in O(|P |) time.

4 Our Index for Compressed Dictionary Matching

The Aho-Corasick automaton [1] is an index for a set D of patterns that support
dictionary matching query in O(|T | + occ) time, where occ denotes the total
number of occurrences of the patterns in T . The automaton consists of a trie
T storing all the patterns in D, together with two functions called failure and
report that respectively facilitate the matching algorithm and the occurrence
reporting. In particular, the failure function maps a node u to a node v such
that its reverse prefix rv is a proper prefix of ru, and among all nodes v has
the longest rv. See Figure 4 for an example, where the mapping from each node
to its desired node is shown by the dotted arrows. For the report function, it
maps a node u to a node v such that (i) its reverse prefix rv is a proper prefix
of ru, (ii) v itself corresponds to a pattern in D (that is, the reverse of rv is
a pattern in D), and (iii) among all nodes v has the longest rv. Note that the
report function of a node u may not exist due to condition (ii). The space of the
index is O(t log t) bits, where t is the number of nodes in T .

In [3], Belazzougui showed that if each node u is represented with the rank of
the reverse prefix ru, then both the failure function and the report function can
be encoded in O(t) bits, and be computed in the same complexity as those in the
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Fig. 4. An example of the failure function
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uncompressed Aho-Corasick automaton. Indeed, Belazzougui’s idea of encoding
the failure function is very elegant: Consider storing all the reverse prefixes of T
in a compact trie C, and marking each node in C that corresponds to a reverse
prefix. Let uC denote the marked node in C that corresponds to ru. It is easy
to check that the rank of ru is exactly the pre-order rank of uC among all the
marked nodes in C. See Figure 5 for an example.

Now, to compute the node v mapped by the failure function of u in T , we
simply locate uC , find its lowest marked ancestor vC (which corresponds to
the desired node v in T ), and return the pre-order rank of vC among all the
marked nodes. To support the above computation, we need only to store the
tree structure of C (which contains O(t) nodes), a lowest marked ancestor data
structure, and a data structure for returning the pre-order rank of a marked
node. All these can be stored easily in O(t) bits using the standard technique
(see [3] for details) so that the above computation is done in O(1) time.

b
4

5

1

6
2

8

3

b
a

a c

b

a
9

c

7

c

0

Fig. 5. An example of the compact trie of reverse prefixes. All nodes in this example
are marked, and the label of a node shows its pre-order rank among all marked nodes.
Note that in general some nodes in the compact trie may not be marked.

As for the report function, Belazzougui showed that it can be represented by
a tree with d = |D| internal nodes and O(t) leaves so that it can be encoded
in O(d log(t/d) + d) = O(t) bits, and the function can be computed in O(1)
time. Thus, by combining the above with the prefix matching index in Section
3, where each node can be extended by any character c in O(1) time, dictionary
matching can be performed as if we are using the uncompressed Aho-Corasick
automaton. This gives the following theorem.

Theorem 1. The Aho-Corasick automaton with a trie T can be stored in
tHk(T ) + O(t) bits, such that for any query text T , the dictionary matching
query can be performed in O(|T | + occ) time.

5 Conclusion

We have slightly modified Belazzougui’s scheme for encoding an Aho-Corasick
automaton so that the index space becomes entropy compressed, while it sup-
ports dictionary matching query in O(|T | + occ) time. Nevertheless, it seems
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that such a scheme cannot readily support dynamic operations, where a pattern
P [1..p] may be inserted to or deleted from the set D from time to time. If ran-
domized amortized update is allowed, then we remark that we can apply the
technique of [11] so that each update requires O(p + tε) randomized amortized
time, while query time remains O(|T |+ occ); here, ε > 0 and t denotes the num-
ber of states in the Aho-Corasick automaton. A challenging open question is to
support worst-case update operation, while keeping the search time as close to
O(|T | + occ) as possible.
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Abstract. Self-indexes – data structures that simultaneously provide
fast search of and access to compressed text – are promising for genomic
data but in their usual form are not able to exploit the high level of
replication present in a collection of related genomes. Our ‘RLZ’ ap-
proach is to store a self-index for a base sequence and then compress
every other sequence as an LZ77 encoding relative to the base. For a
collection of r sequences totaling N bases, with a total of s point muta-
tions from a base sequence of length n, this representation requires just
nHk(T ) + s log n + s log N

s
+ O(s) bits. At the cost of negligible extra

space, access to � consecutive symbols requires O(� + log n) time. Our
experiments show that, for example, RLZ can represent individual hu-
man genomes in around 0.1 bits per base while supporting rapid access
and using relatively little memory.

1 Introduction

The emergence of high-throughput sequencing technologies, capable of sequenc-
ing entire genomes in a single run, has lead to a dramatic change in the number
and type of sequencing projects being undertaken. In particular, it is now feasible
to acquire and study variations between many individual genomes of organisms
from the same species. While the total size of these sets of genomes will be large,
individual genomes will not greatly vary, and so these collections represent new
challenges for compression and indexing.

In this paper we address the following problem.

Definition 1 ([7]). Given a collection C of r sequences T k ∈ C such that
|T k| = n for 1 ≤ k ≤ r and

∑r
k=1 |T k| = N , where T 2, T 3, . . . , T r are mutated

� This work was supported by the Australian Research Council and the NICTA Victo-
rian Research Laboratory. NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications and the Digital Economy
and the Australian Research Council through the ICT Center of Excellence program.
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copies of the base sequence T 1 containing overall s point mutations, the repet-
itive collection indexing problem is to efficiently store C while allowing queries
of the form display(i, j, k) to efficiently return the substring T k[i..j].

We describe a solution to this problem that requires nHk(T 1)+s logn+s log N
s +

O(s) bits of space and O(� + log1+ε n) time to return a requested substring of
length � for any constant ε > 0, assuming a constant alphabet size.

Our approach is to use the base sequence as a dictionary for compression of the
other sequences. The collection is parsed into factors in an LZ77 [11] manner, but
references to substituted strings are restricted to be in the base sequence only.
Arbitrary substrings can then be decoded by reference to the base sequence. This
work is inspired by the recent work of Mäkinen et al. [7] who, to our knowledge,
were the first to tackle the above problem.

2 Background and Basic Tools

BioCompress [5] was the first compression algorithm to be specific to DNA
sequence compression, by simple modifications such as encoding nucleotides with
2 bits per base and detecting reverse complement repeats. Two further variations
on the BioCompress theme, Cfact [10] and Off-line [1], both work in rounds,
greedily replacing duplicate text with shorter codes. GenCompress [3] showed
that by considering approximate repeats the results could be improved. Since
GenCompress, most DNA compression algorithms have been based on efficient
methods of approximate repeat detection.

Many of these early DNA compression algorithms are only able to compress
small files. Due to the latest advances in DNA sequencing technologies, much
larger DNA sequencing projects are underway. As a result, many individual
genomes from the same species are being sequenced, creating a large amount of
redundancy. Recent algorithms have specifically addressed the issue of compress-
ing DNA data from the same species. Christley et al. [4] compresses variation
data from human genomes and encodes the mutations and indels with respect to
the human reference sequence and known variations recorded in a SNP database.
However, large resources are required to be shared among users of the compressed
data (4.2 GB of reference and SNPs in Chirstley et al.’s software). Furthermore,
it does not support random access into the sequences.

Before explaining our method we introduce notation and review several pieces
of algorithmic machinery on which our results rely.

Strings. A string T = T [0..n] = T [0]T [1] . . . T [n] is a sequence of n + 1 = |T |
symbols. The first n symbols of T are drawn from a constant ordered alphabet,
Σ. The final character T [n] is a special “end of string” character, $, distinct
from and lexicographically smaller than all the other characters in Σ. We write
T [i..j] to represent the substring T [i]T [i+1] · · ·T [j] of T that starts at position
i and ends at position j. For substring T [i..j], if j = n (resp. i = 0) we call the
substring a suffix (resp. prefix) of T . With T̂ we denote the reverse of T .
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Suffix Arrays and Self-Indexes. The suffix array of T , denoted SAT or
just SA, when the context is clear, is an array SA[0..n] that contains a permuta-
tion of the integers 0..n such that T [SA[0]..n] < T [SA[1]..n] < · · · < T [SA[n]..n].
In other words, SA[j] = i iff T [i..n] is the jth suffix of T in ascending lexico-
graphical order. All the positions of occurrence in T of a given pattern, P [1..m],
lie in a contiguous range of the suffix array SA[sp..ep]. In recent years, successful
attempts have been made to compress suffix arrays, and data structures call
self-indexes have emerged [8]. A self-index of a text T allows the following func-
tionality, all in compressed space: (i) extract (display) any substring T [s..e], (ii)
find the range sp..ep for a pattern P , and (iii) return SA[i] for any i.

Relative Lempel-Ziv Factorization. Given two strings T and S, the Lempel-
Ziv factorization (or parsing) of T relative to S, denoted LZ(T |S), is a factoriza-
tion T = w0w1w2 . . . wz where w0 is the empty string and for i > 0 each factor
(string) wi is either: (a) a letter which does not occur in S; or otherwise (b) the
longest prefix of T [|w0 . . . wi−1|..|T |] that occurs as a substring of S. For exam-
ple, if S = abaababa and T = aabacaab then in LZ(T |S) we have w1 = aaba,
w2 = c and w3 = aab. It is convenient to specify the factors not as strings, but
as (pi, �i) pairs, where pi denotes the starting position in S of an occurrence1 of
factor wi (or a letter if wi is by rule (a)) and �i denotes the length of the factor
(or is zero if wi is by rule (a)). Thus, in our example: LZ(T |S) = (3, 4)(c, 0)(2, 3).
For convenience, we assume no factors are generated by rule (a) above; that is,
if c occurs in Ti for i ≥ 2 then c also occurs in T1. If T1 is not so composed we
can simply add the at most σ − 1 missing symbols to the end of it.

Compressed Integer Sets. We make use of a compressed set representation
due to Okanohara and Sadakane [9] (called “sdarray” in their paper). Given a
set S of m integers over a universe u this data structure supports the opera-
tions: rank(S, i), returning the number of item in S less than or equal to i; and
select(S, i), returning the value of the ith item in S. The data structure requires
m log u

m + O(m) bits and O(1) time for select and O(log u
m ) time for rank.

3 Storing and Accessing Related Genomes

We now describe how to store a collection of related sequences, while still allowing
efficient access to arbitrary substrings of any of the constituent sequences.

Lemma 2. Given a collection C of r sequences T k ∈ C such that |T k| = n for
1 ≤ k ≤ r and

∑r
k=1 |T k| = r · n = N , with

LZ(T i|T 1) = (p1, �1), (p2, �2), . . . , (pzi , �zi) ,

for 2 ≤ i ≤ r and z =
∑r

i=2 zi, we can store C in at most n log σ + z log n +
z log N

z + O(z) bits such that any substring T k[s..e] can be output in O(e − s +
log N

z ) time.

1 There may be more than one occurrence; for our purposes here it does not matter
to which one pi refers.
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Proof. T 1, the base sequence, is stored in n log σ bits (in the obvious way).
Let Zi = LZ(T i|T 1) = (p1, �1), (p2, �2), . . . , (pz, �zi) for i > 1 be the parsing of

text T i relative to T 1. We store Zi in two pieces. The position components of each
factor, p1, . . . , pzi are stored in a table Pi[1..zi] taking zi log n bits. Pi is simply
a concatenation of the bits representing p1, . . . , pz. Each entry in Pi is log n bits
long, allowing access to any entry pj = Pi[j] in O(1) time. The length components
are stored in a compressed integer set, Li, containing the values j =

∑u
k=1 �k for

all u ∈ 1..zi. In other words, the values in Li are the starting positions of factors
in Ti. Via a select query, Li allows us to access a given pj as Pi[select(Li, j)];
and the length of the jth factor, �j, is simply select(Li, j + 1) − select(Li, j)
for j ∈ 1..z − 1 (because of the terminating sentinel we always have �z = 1).
Furthermore, the factor that T i[j] falls in is given by rank(Li, j). Li is stored in
the “sdarray” representation [9], which requires z log N

z + O(z) bits and allows
rank in O(log N

z ) time and select in O(1).
As described, Pi and Li allow, given j, fast access to pj and �j : simply a select

query on Li to get �j and a lookup on Pi to retrieve pj . Given a position k in
sequence T i, we can determine the factor in which k lies by issuing a rank query
on Li, in particular rank(Li, k). To find a series of consecutive factors we only
need to use rank in obtaining the first factor. For the others, the � values can
be retrieved using repeated select queries on Li and the p values by accessing
consecutive fields in Pi, both in constant time per factor. This observation allows
us to extract any substring T i[s..e] in O(e − s + log N

z ) time overall. �	

We can reduce the n logσ term in the size of the above data structure to nHk

bits by storing T 1 as a self-index instead of in plain form. This increases the cost
to access a substring of length � to O(� log1+ε n + log N

z ) worst-case time. It is
possible to build our data structure in O(n + N log n) time and n log σ + n log n
bits of extra space. The basic idea is to build the suffix array for T1 and “stream”
every other sequence against it to generate the LZ(T i|T 1) parsings.

4 Experimental Results

The compression performance of our algorithm, which we call RLZ, is compared
to the algorithms XM [2], which is known to currently be the best single sequence
DNA compression algorithm, Comrad [6], which specialises in compression of
large related DNA datasets, and RLCSA, an implementation of a self-index from
Mäkinen et al. [7]. The RLZ display() function is also compared to RLCSA [7].

Table 1 compares RLZ with RLCSA, Comrad and XM by compressing datasets
containing many real biological sequences that slightly vary from each other. The
datasets are S. coronavirus with 141 sequences, S. cerevisiae with 39 genomes,
S. paradoxus with 36 genomes, and H. sapien with 4 genomes.

The compression performance of RLZ is varied (Table 2). Unsurprisingly,
for the smaller datasets, XM has the best compression results. For the larger
dataset, RLZ is produces better compression results than Comrad while using
less memory (≈45 Mbyte for the yeast sets). RLCSA doesn’t perform as well
as the other algorithms, but it uses less memory (≈100 Mbyte for yeast) and
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Table 1. Compression results for four repetitive collections. The first row is the original
size for all datasets (Size in Megabases rather than Mbytes), the remaining rows are
the compression performance of RLZ, RLCSA, Comrad and XM algorithms. The two
columns per dataset show the size in Mbytes and the 0-order entropy (in bits per base).

Dataset S. coronavirus S. cerevisiae S. paradoxus H. sapien
Size Ent. Size Ent. Size Ent. Size Ent.

(Mbyte) (bpb) (Mbyte) (bpb) (Mbyte) (bpb) (Mbyte) (bpb)
Original 4.19 1.98 485.87 2.18 429.27 2.12 12066.06 2.18
RLZ 0.08 0.15 17.89 0.29 23.38 0.44 754.43 0.50
RLCSA 0.22 0.43 41.39 0.57 47.35 0.88 3834.82 2.54
Comrad 0.09 0.18 15.29 0.25 18.33 0.34 2176 1.44
XM 0.03 0.06 74.53 1.26 13.17 0.25 — —

Table 2. Compression and decompression times (in seconds)

Dataset S. coronavirus S. cerevisiae S. paradoxus H. sapien
Comp. Decom. Comp. Decom. Comp. Decom. Comp. Decom.
(sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec)

RLZ 2 1 213 12 260 10 9874 172
RLCSA 6 2 781 312 740 295 34525 14538
Comrad 10 16 1070 45 1068 50 28442 1666
XM 43 62 18990 17926 30580 28920 — —

Table 3. display() times for RLZ and RLCSA for varying query lengths. Query datasets
contain 1000 queries each with the same length. The times for each algorithm are in
microseconds per character extracted. The times are an average of 5 consecutive runs
per dataset. RLZ used 28.71 MByte of memory and RLCSA used 47.35 MByte.

Query Length 10 100 1000 10000 100000
RLCSA (μsec/char) 18.00 2.40 0.85 0.71 0.71
RLZ (μsec/char) 0.2300 0.0250 0.0046 0.0025 0.0022

is faster than Comrad and XM. Overall, RLZ compress and decompress much
faster, and uses drastically less memory, than RLCSA, Comrad and XM.

For the H. sapien dataset, each chromosome of each dataset was compressed
against the respective reference genome chromosomes for RLZ and RLCSA. We
do not report XM results since it took nearly 6 hours for a single chromosome
1 sequence to compress. RLZ performed very well on this dataset compared to
RLCSA and Comrad (RLZ used ≈1 Gbyte of memory while RLCSA and Com-

rad used ≈2 and ≈16 Gbyte respectively). With the inclusion of the 7-zipped
human reference genome, the total dataset of three human genome sequences
(summing to 12 Gbase) can be represented in just under 755 MByte with RLZ;
of this, 643 Mbyte is the overhead for the base sequence, and we anticipate that
roughly 27,000 human genomes could be stored in a terabyte, a massive increase
on the 1500 or so that could be stored using methods such as 7-zip.
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Results for the display(i,s,e) (retrieve substring T i[s..e]) function are in Ta-
ble 3. RLZ displays substrings significantly faster than RLCSA for small query
lengths and continues its good performance for even larger query lengths, with
approximately 0.022 (μsec/c) for RLZ compared to 0.77 (μsec/c) for RLCSA.

Tests were conducted on a 2.6 GHz Dual-Core AMD Opteron CPU with 32Gb
RAM and 512K cache running Ubuntu 8.04 OS. The compiler was gcc v4.2.4
with the -O9 option.

5 Discussion

A key issue is choice of a reference sequence. While selecting the reference genome
is a simple matter for the yeast datasets, it may not be a good representation of the
other individual sequences. To observe the compression performance for different
reference sequence choices, we compressed the dataset by selecting each genome in
turn as the reference. Selecting a genome such asDBVPG6765 leads to 16.5MByte
as opposed to selecting UWOPS05 227 2, which led to 24.5 MByte. We also ex-
plored the effect on compression when a reference sequence that is unrelated to the
original dataset is selected. 35 genomes of S. paradoxus (excluding REF genome)
was compressed against the S. cerevisiae REF genome. The compressed size was
112.09 MByte compared to the result of 2.04 MByte when the S. paradoxus REF
genome was used. RLZ’s effectiveness is at its best when compressing related se-
quences and care must be taken when selecting a reference sequence.
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Abstract. In this paper a new Query Performance Prediction method
is introduced. This method is based on the hypothesis that different score
distributions appear for ‘hard’ and ‘easy’ queries. Following we propose a
set of measures which try to capture the differences between both types
of distributions, focusing on the dispersion degree among the scores. We
have applied some variants of the classic standard deviation and have
studied methods to find out the most suitable size of the ranking list for
these measures. Finally, we present the results obtained performing the
experiments on two different data-sets.

1 Introduction

Query Performance Prediction (QPP) deals with the problem of estimating the
difficulty of a query, where the difficulty degree is commonly measured in terms
of the average precision (AP) obtained by the query. Thus, a query which obtains
a low AP value is considered as a ‘hard’ query, while one with a high AP value
would be considered as an ‘easy’ query. A classic application of QPP which has
shown some interesting results is selective query expansion [1], where the quality
prediction is applied to avoid the automatic expansion of those queries which
would worsen the overall retrieval quality.

This paper introduces a novel approach for Query Performance Prediction,
which falls into the so-called post-retrieval prediction methods. This type of
predictors makes use of the information supplied by the search system, once the
search has been performed, while pre-retrieval predictors compute the estimation
before completing the search. Our approach is focused on the study of the scores
assigned to the documents returned by a search system in response to a query.
It is based on the hypothesis that there exist differences between the scores
distribution of ‘hard’ and ‘easy’ queries. The dispersion in the scores of the
document ranking list is measured in order to predict the query performance.
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The rest of this paper is organised as follows. In Section 2 related work in query
performance prediction is introduced, with a special emphasis on post-retrieval
approaches. Then, in Section 3, a detailed description of the starting hypothesis
and the different measures employed to compute the ranking list dispersion is
given. Section 4 deals with the specific evaluation performed and the analysis of
the obtained results. Finally, the main conclusions are given in Section 5.

2 Related Work

In the last years several techniques dealing with Query Performance Prediction
have been proposed. The different prediction methods are usually classified into
two main categories: a) pre-retrieval approaches, which try to estimate query
difficulty without using the list of documents obtained from the search engine;
b) and post-retrieval, which use the information obtained after submitting the
query to the search engine.

Focusing on post-retrieval methods we can found the classic Clarity Score
by Cronen-Townsend et al.[2]. Clarity Score tries to measure the ambiguity of
a query with respect to the document collection. The ambiguity of a query is
calculated using the Kullback-Leibler divergence (KLD) between the language
models of the collection and the top ranked documents. A well performing query
would show a high divergence value. Some methods based on Clarity Score ap-
pear subsequently, such as Ranked List Clarity Score, which replaces ranking
scores by the document ranking position, and Weighted Clarity Score, which al-
lows to assign a different weight to each query term in order to calculate KLD,
both in [3].

Recently a new improved version of Clarity Score has been presented by Hauff
et. al [4], which outperforms the original Clarity Score on performance prediction
accuracy. A related approach to the one introduced here, where the scores of the
ranking list are analysed, was developed by Diaz [5], who applied the similarity
between the scores of topically close documents as a prediction value. A similar
approach was proposed by Vinay [6], where the prediction is based on the cor-
relation between the actual rank of a document and a computed expected rank,
where the expected rank is obtained by modelling the score of a document as a
Gaussian random variable.

The following section introduces the proposed post-retrieval predictor based
on the scores dispersion in a ranking list.

3 Ranking List Score Dispersion as a Predictor

We based our approach on the hypothesis that some differences between doc-
ument score distribution for ‘hard’ and ‘easy’ queries should be observed. For
example, if a ranking list has a high value of dispersion in their document scores,
it could indicate that the ranking function has been able to discriminate between
relevant and non-relevant documents. On the other hand, if a low level of disper-
sion appears, it can be interpreted as if it was not able to distinguish between
relevant documents from non-relevant ones.
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This behaviour can be observed assuming a ‘perfect probabilistic model’,
where documents are scored with a probability of relevance equal to either 1
or 0. Relevant documents are weighted with 1, while 0 is assigned to those con-
sidered non-relevant. In this theoretical model, the dispersion among scores will
be maximised when an equal number of relevant and non-relevant documents
are included within the ranking list. An immediate consequence of the applica-
tion of dispersion as a query hardness estimator, is the importance of selecting
a suitable size k for the document ranking list. The dispersion measured at a
wrong ranking list size, which for example includes too many non-relevant doc-
uments or not enough relevant documents, will imply a misleading estimation of
the query hardness.

An example of the differences in terms of score dispersion can be observed in
Figure 1, where the five best (left) and five worst (right) performing queries from
Robust 2004 track are represented. As it can be seen in the figure, best queries
show a longer distance between maximum and minimum score and a sharp slope.
However, queries with a poor performance show a higher similarity in their scores
along the ranking list, a softer slope and a smaller distance between maximum
and minimum scores.
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Fig. 1. 5 Best Performing Queries (left) vs 5 Worst Performing Queries (right), from
Robust 2004 using BM25 as ranking model. Scores have been normalised in [0, 1],
dividing each score by the highest one. The maximum number of retrieved documents
is fixed to 1000.

Concerning score distributions, previous works have tried to define how doc-
ument scores are distributed along a ranking list. In general, it can be assumed
that an appropriate model could be a mix of an exponential and a gaussian prob-
ability distribution. Exponential for non-relevant documents, and gaussian for
relevant documents [7]. Usually most of the retrieved documents are non-relevant
(exponential distribution), thus it is likely that a big majority of documents will
obtain a low score.

Therefore, the shape of the ranking list exhibits a ‘long tail’ where most of
the non-relevant documents are placed, see Figure 1. An overall effect of the
ranking list ‘long tail’ is a reduction of the accuracy of the applied measures.
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Next section describes the measures defined to capture the differences between
‘hard’ and ‘easy’ queries.

Proposed Measures

We have tested different measures for capturing the dispersion from the scores
of a ranking list. All the proposed measures are based on standard deviation,
but with some differences in the techniques used for fixing the most suitable
ranking list size k. It should be noted that document scores are normalised by
the maximum to allow a fair comparison between queries with different lengths.

Maximum Standard Deviation: This measure tries to minimize the effect
of the ranking list tail by computing the standard deviation at each point in
the ranking list and selecting the maximum value of the standard deviation thus
found. Hence, those scores which appear at the ranking list tail have no influence
in the calculation of the maximum standard deviation.

Standard Deviation at a Common Best k : Computing the standard devi-
ation manually fixing its size k. With the selection of a suitable size k the noise
introduced by the set of low scores is removed. Fixing k globally requires the
selection of a common k value which maximises the correlation degree for all
queries.

Estimating a Cut-Point k Automatically for each Query: The previously
introduced measures establish a ranking list size k which is shared by all queries.
Here we propose a method aimed at fixing the size k specifically for each query.
For this estimation we use the number of documents which are retrieved when
each term from the query is considered mandatory, which is equivalent to ap-
plying the boolean AND operator for all terms in the query. This estimator has
been applied previously [4] to select an appropriate document set size in order
to create a top ranking language model.

With the use of the AND operator some queries retrieve no documents at all,
while for others the number of retrieved documents is large and similar to that
obtained with the OR operator. In order to circumvent this situation a scaling
linear function is applied. This function scales the original k value obtained
from an AND search to a value closer to the expected median (k̃) for all queries,
avoiding the undesired cases described above.

The linear transformation makes use of a free parameter λ, which defines
how similar will be the new ranking list size to the original median. In order
to ascertain the similarity between the original k value, obtained with the AND
operator, and the scaled one k′, obtained after the linear transformation, the
next conditions have to be fixed:

k̃′ = k̃ and k′
max = λk̃

where k′
max is the longest ranking list size expected for the scaled values. Thus

the linear transformation is calculated as k′ = ak + b, where a = (λ−1)k̃
kmax−k̃

, b =

(1 − a)k̃ and λ ∈ [1, kmax

k̃
].
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4 Results

As usual the performance of the predictor is computed by measuring the corre-
lation degree between the predictor and the real search system performance in
terms of AP. A significant correlation degree between both measures means an
accurate estimation of the query performance. For this purpose the Pearson and
Kendall correlation coefficients have been applied. Both correlation coefficients
calculate a real number in the range [−1, 1], where 1 means perfect correlation,
−1 means a perfect inverse correlation and 0 means no correlation at all. The
different measures proposed in this paper have been tested with the set of doc-
uments from TREC Disk4 & 5 and GOV2 collections, including topics from 301
to 450 and 700 to 800. Only the field title from each topic has been employed for
both collections and the Okapi BM25 [8] has been applied as ranking function.

The results obtained with both datasets are shown in Table 1. Each row
corresponds to one of the proposed measures: (σfull) the standard deviation for
the whole ranking list (1000 for TREC 4 & 5 and 10000 for GOV2); (σbest)
the standard deviation at a common best size k for all topics (100 for TREC 4
& 5 and 1000 for GOV2); (σmax) the maximum standard deviation; and (σk)
the standard deviation at a specific size k for each query, using the automatic
method proposed previously. The last two rows include the results obtained with
Clarity Score (CS) and the Improved Clarity Score (ICS)1 version proposed by
Hauff et al. in [4].

In relation with the capability to capture dispersion of the different proposed
measures. Here we can observe how the standard deviation of the whole rank-
ing list obtains the lowest correlation value, as it was expected because of the
noise introduced by the ranking list tail. The results obtained with the maximum
standard deviation are similar to those achieved with the selection of a common
optimal ranking list size, but with the advantage of removing the use of a pa-
rameter to cut the ranking list and thus avoiding the problem of computing this
optimal common k. The best results have been achieved by fixing automatically
a suitable ranking list size for each topic.

Table 1. Pearson and Kendall coefficients obtained with the proposed measures

Pearson Kendall

TREC 4 & 5 GOV2 TREC 4 & 5 GOV2

301-350 351-400 401-450 701-750 751-800 301-350 351-400 401-450 701-750 751-800

σfull 0.3886 0.3358 0.4367 0.4551 0.1497 0.2721 0.2295 0.2261 0.2959 0.1530
σbest 0.7455 0.5188 0.6363 0.3808 0.2509 0.4693 0.3690 0.3146 0.1921 0.2534
σmax 0.6488 0.4298 0.7854 0.3522 0.2322 0.4761 0.3282 0.4659 0.1802 0.2380
σk

4 0.7802 0.5623 0.7136 0.4957 0.3019 0.5340 0.3996 0.3639 0.3656 0.2193
CS 0.5390 0.3095 0.5727 0.6033 0.4441 0.4198 0.2172 0.3045 0.4149 0.3299
ICS 0.6330 0.5106 0.7064 0.5422 0.5498 0.4998 0.4002 0.5624 0.3723 0.4181

1 CS and ICS results have been taken from [4].
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Finally, the correlation found in the GOV2 collection is not so strong, as for
TREC 4 & 5 dataset, although it is almost equivalent to the achieved with CS
or ICS. We believe that this decrease is caused by the noise which appears in
a Web environment, where for each query the number of retrieved documents
that obtain a similar score is higher than for TREC 4 & 5. A similar problem
was addressed by Hauff et al. [4] in the application of predictors to a Web
environment.

5 Conclusions

A novel query performance predictor has been introduced in this paper. A high
correlation value has been found using the proposed measures based on standard
deviation, suggesting the hypothesis described on this work about the relation
between the scores dispersion and query performance.

The application of the standard deviation as a dispersion measure for a rank-
ing list has shown to be an effective approach if a suitable ranking list size is
selected. We have introduced three different techniques for fixing this size, which
have improved the results reducing the noise introduced by the ranking list tail.
Best results have been achieved using a specific ranking list size per topic.
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Abstract. There are numerous queries for which search engine results
are not satisfactory. For instance, the user may submit an ambiguous
or miss-spelled query; or there might be a mismatch between query and
document vocabulary, or even character set in some languages. Different
automatic methods for query rewriting / refinement have been proposed
in the literature, but little work has been done on how to combine the
results of these rewrites to find relevant documents. In this paper, we
review some techniques efficient enough to be computed online and we
discuss their respective assumptions. We also propose and discuss a new
model that is theoretically more appealing while still computationally
very efficient. Our experiments show that all methods manage to improve
the ranking of a leading commercial search engine.

1 Introduction

The search engine query logs provides an invaluable source of information about
what a user may find as relevant over the results presented by the search engine
and the path he follow to express his information need.

Many queries contain errors or are inherently ambiguous. There is also typ-
ically a gap between the language in which users express queries, and the rep-
resentation built by the search engine to answer them. A possible solution to
narrow this gap, is to re-interpret or re-write the user query in a way that is
more adequate to the search engine. This is known generically under the name
of query refinement. Various techniques for query refinement have been devel-
oped by exploiting various sources of data. Nevertheless, the question of how to
combine the different refinements suggested by these various techniques remains
an open question.

In this work, we make use of search engine query logs to derive both query
rewritings or refinements and document relevance estimates. The logs continu-
ously collect the trace of user interactions with the search engine and provides
detailed and valuable information about the issued queries, the URLs presented
by the search engine, the clicked documents, and their ranking. It is a poll of
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millions of users over an enormous variety of topics, and can be thought as users
votes in favor of the documents they find interesting.

Click data has been used in different ways to mine user interests and pref-
erences. Examples of applications include Web personalization, Web spam de-
tection, query term recommendation, among others. Also, click data seems the
perfect source of information when deciding which documents (or ads) to show
in answer to a query. This information can be fed back into the engine, to tune
search parameters or even used as direct evidence to influence ranking [11].

However, click data has to be pre-processed in order to be useful. It is very
noisy, both including users’ mistakes (such as clicks on irrelevant documents
by misled users), as well as malicious actions from search engine spammers [3].
Beyond the problems related to data cleaning, there is the problem of how to in-
terpret clicks. For example, the probability of a document being clicked depends
not only on its relevance, but on other factors such as its position in the result
page, the other documents co-appearing in the result list and the quality of the
snippet that summarizes the document. Various methods have been proposed in
the literature to evaluate relevance from clicks [8,6,4,9]. We will use the model
proposed in [8] to deal with position bias and provide a baseline, and we will focus
on another fundamental problem that motivates this work: the sparsity of click
data. Users click on the URLs of documents shown on the first page of results,
and rarely on the following result pages. Thus, conclusions about the document
relevance can only be drawn for a small subset of candidate documents, and a
highly relevant document can be totally missed. Radlinski et al. [14] recognize
this issue and propose to regularly alter the result list to give other documents
a chance of being clicked so as to collect information about them.

Approach. The approach we present in this work is based on the observation
that when users are not entirely satisfied with the results presented to them,
they often issue new queries [12] until they find relevant documents. When re-
formulating a query, users can correct the spelling, disambiguate the original
query or use a new formulation that better matches the vocabulary of the rele-
vant documents. This is intrinsically an iterative process.

We propose to use these reformulations to improve the original query result
list. Consider the following scenario: a user who issues a query q0, does not
click on any result, but reformulates her information need as query q1. She then
clicks on a document on the new result list. Clearly, the presence of the clicked
document in the results of q0 would have improved the user experience. The idea
can be extended to ambiguous queries: users’ reformulations may reflect different
subtopics totally or partially missed by the search engine for the original query.

Pertinent query reformulations can also be obtained in different ways from the
click-through data [7] or from different methods, generally referred to as query re-
finement [16]. Consider for example the query “new deal”. It can be parsed as two
distinct terms, or as a phrase query, leading to different sets of documents. The
objective of query refinement is to transform the original query into a new query
before submitting it to the search engine. Although most work on query refine-
ment aims at discovering one superior reformulation and substitute it the original
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query, we argue that maintaining different reformulations of the same query are
potentially useful and the final ranking should be able to take all of them into ac-
count, pondered by their importance. For example, a query like “apple” could
be reformulated as “apple computer” or “apple growing”. Choosing one of the
reformulations exclusively is sure to frustrate the users having the other intent.
Other cases arise where the original query has various syntactically different but
semantically equivalent reformulations. A final example is related to query seg-
menation: A three words query “A B C” can be segmented in various ways –say
"A B", "C" or "A", "B C", etc. All these rewrite might be beneficial. We can also
consider long queries where different segmentations can co-exist with some query
term deletion mechanism.

Contribution. In this paper, we review existing methodologies to take advantage
of the various query reformulations to construct the final result list. We make
the assumption that these reformulations, along with their probability of being
relevant to the original query, have been estimated using a reliable method. We
also assume that we know the relevance of document in the result list of the query
for which they appear. Various methods have been proposed in the literature to
evaluate such probabilities from clicks [8,6,4,9]. We will use a variation on the
one described in [8].

In Section 2, we cast the problem in a probabilistic framework. By making
some carefull assumptions, the resulting general statistical model is simplified to
an efficient and tractable form. We proceed in Section 3 to compare the different
models based on numerical experiments.

2 Generative Model

In this section we cast the problem in a general probabilistic framework and
discuss hypothesis that lead to a tractable solution. We first introduce some
notations:

– Document-query relevancy. A document d is relevant to a query q0 for
a user, if when asked “is this document relevant to your search?” the user
answers “yes”. The relevancy of d to q0 is the proportion of users finding d
relevant to q0. We use the following notation: P (d+|q+) is the probability
that document d is relevant to the user (denoted d+) whenever query q is
relevant to the user (similarly denoted q+). This is the probability of a binary
event; denoting the event that the document is not relevant by d−, we have
P (d+|q+)+P (d−|q+) = 1. The probability of being relevant is typically used
as a score for ranking documents in accordance to Robertson probabilistic
ranking principle [15].

– Inter-query relevancy. P (q+
i |q+

0 ) is the probability that the query qi is
relevant to the users for which q0 is relevant1. For example, if we discover

1 There are different ways to define the relevance of a query. We can state for example
that a query is relevant if the user who issued q0 answers yes to the question “would
a correct answer to qi help to satisfy your information need?”.
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that 90% of the users who issue the query “car” are actually interested in
used cars, we would have P ( “used car” is relevant | “car” is relevant) =
0.9. Note that if the conditioned query possess a close synonym, then the
probability of relevance of the synonym query should be equal or similar. In
our example, we should have P (“second hand car” is relevant | “car” is
relevant) " 0.9.

The probability of a query being relevant is a binary event and P (q+|q+
0 )+

P (q−|q+
0 ) = 1. Unlike random-walk models [5] , here

∑|Q|
i=0 P (q+

i |q+
0 ) where

Q is the set of all queries, is always larger or equal to 1 because we have by
definition that P (q+

0 |q+
0 ) = 1. The difference with the random-walk model is

due to a different event definition. In the random-walk model, the event is
“the user jumps to node n” and because a user can jump to only one node
at a time, the probabilities need to add to one. By contrast, the event we
describe here is “the query is relevant to the user”, and, as various queries
can be relevant simultaneously, the scores need not add to one.

– P (d+|q+
0 ) is the probability of relevance of document d prior to includ-

ing the knowledge about the relation of q0 with other queries (P (d+|q+
i )

and P (q+
i |q+

0 )). The posterior estimate of the relevance of d is denoted
P (d+|q+

0 ; Q) where Q is the set of queries that is taken into account to
update P (d+|q+

0 ).

The generative model makes the following assumption on the user mental pro-
cess: the user thinks of an ideal document that would answer his query. Given this
document, he decides which queries have the potential to bring up the document
in the search engine. Finally, he chooses one query among these queries and is-
sues it to the search engine. This process can be described by a joint distribution
P (d+, IQ, q+

0 ) where d is a document, IQ relates to the set of queries and q0 is rel-
evant. Returning to the “apple” query example and denoting “apple computer”
by q1 and “apple tree” by q2, we expect intuitively that IQ = {q+

0 , q+
1 , q+

2 } has
a low probability because few users are interested in both the fruit and the com-
puter at the same time. Meanwhile, P (IQ = {q+

0 , q+
1 , q−2 }|q0) should be large

because the majority of web search users who issue the query “apple” are actu-
ally interested in apple computers exclusively.

P (d+|IQ) is the probability that a document is relevant given the set of rele-
vant and irrelevant queries identified by IQ. If IQ = {q+

0 , q+
1 , q−2 } in the previous

example and the document d is www.apple.com then P (d|IQ) is large. On the
other hand, the relevance of d to IQ = {q+

0 , q+
1 , q+

2 } is low because the web site
of Apple Inc. does not provide information about the fruit of the same name.

Because we do not observe IQ, we will need to sum over all its possible states:

P (d+|q+
0 ; Q) =

∑
IQ∈P(Q)

P (IQ|q+
0 )P (d+|IQ) (1)

where P(Q) is the set of the 2|Q| possible IQ configurations.
The remaining of this section examine various possibilities to estimate the

terms in the Eq. 1 in terms of what we suppose is known, i.e. P (q+
i |q+

0 ) and
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P (d+|q+
i ). Note that the conventional way to handle this problem is to define

instead of IQ a latent variable that spans the latent topics covered by the doc-
uments and the queries. The inconvenience of introducing a latent variable is
that estimation ends up being iterative and numerically very costly, especially
in the context of web retrieval where the number of queries and documents is
very large. We will see that the proposed model leads to an efficient approximate
method.

2.1 Exclusive Subtopics

In this section, we try to relate the generative model in Eq. 1 with the intuition
that the document relevance should be proportional to the sum of the relevance
of the related queries, weighted by the probability that those related queries are
themselves relevant:

P (d+|q+
0 ; Q) ∝

∑
qi∈Q

P (q+
i |q+

0 )P (d+|qi) (2)

It is important to notice that some of the following assumptions may not reflect
the reality, although are necessary to match the intuition from the generative
model, and just reveal the weakness behind of this intuitive model.

To define completely the model, we need to express P (d+|IQ) and P (IQ|q+
0 )

in terms of P (q+
i |q+

0 ) and P (d+|qi) before we can plug these expressions into
Eq. 1.

Document Relevance P (d+|IQ). For convenience we define two sets based on
IQ: Q+ is the set of queries indicated as relevant in IQ and Q−, its complement,
contains the queries indicated as not relevant. Naturally we have Q = Q+ ∪ Q−

whatever IQ.
We first propose to model the probability P (d+|IQ) as the product of the

probabilities that the document is relevant to the queries in Q+:

Assumption 1 (Positive Set Relevance)

P (d+|IQ) =
∏

q∈Q+

P (d+|q)

That is, a document is relevant if it is relevant to all the queries in Q+. The
remaining queries are ignored.

Inter-Query Relevance P (IQ|q+
0 ). We assume that two queries qi and qj , distinct

from each other and distinct from q0 cannot be relevant simultaneously. In other
words, each reformulation represents a distinct, mutually exclusive subtopic of
the original query q0. Returning to the “apple” example, we assume that no
user is interested simultaneously in the search results for “apple computer” (q1)
and “apple tree” (q2) and we have P (IQ = {q+

0 , q+
1 , q+

2 }|q+
0 ) = 0. This reduces

the sets of IQ with a positive probability to: {q+
0 , q−1 , q−2 }, {q+

0 , q+
1 , q−2 } and

{q+
0 , q−1 , q+

2 }.
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More generally the hypothesis states that P (IQ|q+
0 ) > 0 only for those IQ

where only one reformulation is relevant at a time and all other are non-relevant,
i.e. P (IQ|q+

0 ) = 0 unless Q+ = {qi, q0} and Q− = {qj|j �= i, 0}. After Bayesian
inversion this leads to the intuitive model of equation 2.

P (d+|q0; Q) =
∑
q∈Q

P (q+
i |q0)P (d+|qi) (3)

If Eq. 3 is applied regardless of the distinct sub-query hypothesis, we can run
into problems. Consider for example adding a third query q3, “apple seeds”,
to the previous example. The relevance of a document dfruit, totally non-relevant
to a user interested in computers (P (d+

fruit|q2) = 0), according to Eq. 3, is:

P (d+
fruit|q

+
0 ; Q) =

P (d+
fruit|q

+
0 ) + P (q+

1 |q+
0 )P (d+

fruit|q1)

if we take into account only q1 (and therefore respect the exclusive subtopic
hypothesis). If however we include the closely related query q3, we obtain

P (d+
fruit|q

+
0 ; Q) =

P (d+
fruit|q

+
0 ) + P (q+

1 |q+
0 )P (d+

fruit|q1) + P (q+
3 |q0)P (d+

fruit|q3)

This shows that the model predicted probability of relevance always increase as
we add new related queries. In other words, this model might wrongly predict
that an obscure document on the topic of apple fruits is more relevant than
“www.apple.com” provided we add enough queries related to fruits. The ranking
predicted by this model depends on the number of synonym queries entering the
sum in Eq. 3, rather than the actual relevance of the documents.

In conclusion, the Exclusive Subtopics model promotes documents relevant to
the particular meaning of the original query that happens to have more rewrites.
Using only one rewrite per subtopic is a possible mend, but it is usually not
simple to identify a query subtopics or to match a subtopic to a particular
rewrite. Another possibility is to restrict updates to a single rewrite –say qi–,
typically the more informative one. Finally, one can select the related query that
boosts the most the particular document relevance and ignore the other queries.

2.2 Naive Bayes

We have seen that the hypothesis of the Exclusive Subtopics model are rather
restrictive. While it handles correctly queries belonging to mutually exclusive
subtopics of the original query, its performance is expected to degrade if several
reformulations refer to a common topic. In this section we propose a new model
that relaxes some of the previous assumptions.

Document Relevance P (d+|IQ). We propose to model the document probability
as the product of the probabilities that the document is relevant to the queries
in Q+, multiplied by the product of the probabilities that the document is not



Using Related Queries to Improve Web Search Results Ranking 219

relevant to the queries in Q−. The main idea behind, is that a document is
relevant to a given IQ if it is relevant to the queries in Q+ and is not to the
queries in Q−.

Assumption 2 (Specific Set Relevance)

P (d+|IQ) =
∏

q∈Q+

P (d+|q) ×
∏

q∈Q−
P (d−|q)

The first term in the product is identical to Assumption 1; The second term
adds a specificity restriction and promotes documents relevant to Q+ and not
relevant to Q−.

Inter-Query Relevance P (IQ|q+
0 ). The Exclusive Subtopics model makes the

assumption that the query reformulations refer to mutually exclusive sub-topics.
We relax here this condition and instead we express P (IQ|q+

0 ) in terms of the
known quantities P (q+|q+

0 ) by using the Naive Bayes hypothesis:

Assumption 3 (Naive Bayes)

P (IQ|q+
0 ) =

∏
q∈Q+

P (q+|q+
0 ) ×

∏
q∈Q−

P (q−|q+
0 )

This Naive Bayes assumption is not perfect, albeit convenient. As mentionned
earlier, the appropriate solution would be to define a latent variable representing
the different topics present among documents and query and develop a model
similar to PLSA [10] or LDA [1], but these models involve iterative parameter
updating and are numerically too expensive for online computation. Also note
that Assumptions 2 and 3 together do not respect the Probability Axioms, but
they might be allowable as a tractable approximation.

Although the Naive Bayes Assumption is not perfect, its main properties are
in line with what we expect. To see this, consider two reformualtions q1 and q2,
that are synonyms. We have P (q+

1 |q+
0 ) = P (q+

2 |q+
0 ) and we call this probabil-

ity p. P (q+
1 , q−2 |q+

0 ) should be zero while the model states that P (q+
1 , q−2 |q+

0 ) =
P (q+

1 |q+
0 )(1 − P (q+

2 |q+
0 )) = p(1 − p) �= 0. Consider though for a moment that p

is larger than 1
2 ; i.e. the two synonym queries tend to be relevant when q0 is, we

observe that P (IQ = {q+
1 , q+

2 , . . . }|q+
0 ) ∝ p2 and P (IQ = {q+

1 , q−2 , . . . }|q+
0 ) ∝

p(1−p) < p2. In other words, the IQ set where both the synonym queries are rele-
vant has a larger influence when computing the document relevance in Eq. 1 than
the other IQ sets. Similarly, IQ = {q−1 , q−2 , . . . } is dominant when p is small. Fi-
nally, if p " 1

2 , P ({q+
1 , q+

2 , . . . }|q+
0 ) " P ({q+

1 , q−2 , . . . }|q+
0 ) " P ({q−1 , q−2 , . . . }|q+

0 )
and the two reformulations have, correctly, little importance. In conclusion, al-
though the assumption gives incorrectly some probability to IQ = {q+

0 , q+
1 , q−2 }

and {q+
0 , q−1 , q+

2 }, this probability is comparatively low.
Another argument in favor of the Naive Bayes assumption is that it interacts

well with Assumption 2. It is indeed unlikely that a document relevant to q1 will
not be relevant to q2 if these are synonyms. Hence P (d+|IQ = {q+

0 , q+
1 , q−2 }) and

P (d+|IQ = {q+
0 , q−1 , q+

2 }) will be small anyway.
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2.3 Naive Bayes Generative Model

The assumptions 2 and 3, only involve terms we already know, i.e. P (q+|q+
0 )

and P (d+|q). They can therefore be plugged into Eq.1 to estimate P (d+|q+
0 ; Q).

P (d+|q+
0 ; Q) = (4)

∑
IQ∈P(Q)

⎛
⎝ ∏

q∈Q+

P (d+|q)P (q+|q+
0 ) ×

∏
q∈Q−

P (d−|q)P (q−|q+
0 )

⎞
⎠

Eq.4 involves a summation over 2|Q| terms, i.e. a number growing exponentially
with the number of queries, but we show in Appendix A how to compute it effi-
ciently (in linear time proportional to |Q|) by taking advantage of the particular
form of the hypothesis we have made.

P (d+|q+
0 ; Q) = (5)∏

q∈Q

(
P (d+|q)P (q+|q+

0 ) + P (d−|q)P (q−|q+
0 )

)

The linear re-expresion of the Naive Bayes generative model bring into evidence
how the document relevance is estimated. A document will have a high proba-
bility of relevance if it is relevant to queries relevant to q0 and non-relevant for
queries that are not relevant to q0. In other words, in order to be highly relevant,
a document needs to be specific to q0.

3 Numerical Experiments

We compare the different models we have discussed on a set of queries for which
we have editorial judgments. We first describe the data and the evaluation mea-
sure. The probabilities P (q+

i |q+
0 ) of a query being relevant given that another

query is relevant are extracted from one month of a UK search engine query logs
using a state of the art algorithm [2]: When the search engine fails to return
the expected results, users often reformulate the original query. We make the as-
sumption that these query rewrites are relevant to the original query. When we
observe no rewrite from the query q0 to a query q, we assume that P (q+|q+

0 ) = 0,
that is we assume that q is not relevant to q0. We don’t use direct estimates of
the probabilities P (d+|q+

i ) (Although these could be extracted from the same
logs [7]). Instead, we take advantage of editorial judgments that assign one out
of five relevance labels to a large set of document & query pairs because they
are expected to be of higher quality. We map these labels to a numerical value
that reflect the quality of the pair: Perfect pairs are assigned a probability of
1., Excellent is mapped to 0.8, Good to 0.6, Fair and Bad are mapped to 0.3
and 0.1 respectively. We use standard Discounted Cumulated Gain scores (DCG,
see [13]) to compare the models. DCG is a popular metric for search engine eval-
uation that is computed as the average over a set of test queries as the sum of
the document relevances discounted by a factor that increases with the rank of
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the document. The discounting factor is 1 at rank 1 and 1
logbr for r > 1, where

r is the position in the ranking and the basis b of the logarithm is as often set
to 2. Editorial labels offer the most reliable P (d = r|q+

i ) values but they are not
available for all document & query pairs. In particular, for the computation and
the evaluation of the DCG of the different models we need both the quantities
P (d|q+

i ) and P (d|q+) for any given document d that appears in the final ranking
of q0. Consequently, we need to remove from our database all the pairs that miss
one of these values. This leaves us with a set of 40 queries q0 for which we can
compute the full models in Eqs. 3 and 5.

3.1 Models Comparison

Because we know the labels of the documents, it is easy to define what the ideal
ranking would be and compute the corresponding DCG. We compute this upper
bound on the score for a given level of expansion as follows: We first identify the
set of documents that appear in the ranking of all the queries involved in the
expansion and the original query q0. We then order these documents according
to their labels and we compute the DCG up to the 10th document. Because the
more queries we include in the expansion, the more documents we will have to
chose from, the ideal DCG can never decrease when more queries are added. We
examine the effect of adding successively more queries to the expansion set. In
practice, this resolves to starting by setting all P (qi|q) to zero to obtain the model
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Fig. 1. Relative DCG gain (y axis) as a function of the number of expensions (x axis).
We observe that the Exclusive Subtopic model actually impacts negatively the DCG
score while the Naive Bayes Model improves the results steadily with the number of
expansions. At six expansions, the generative model achieves a relative DCG score of
1.057 compared to 1.077 for the ideal model.
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without expansion. Then the query with highest P (qi|q+
0 ) is set to its real value to

compute the model with one expansion. The other expansion levels are obtained
similarly by adding one by one the remaining queries according to the highest
remaining P (qi|q+

0 ) value. To allow a fair comparison, the implementation of
the Naive Bayes model of Eq 5 also restricts the number of involved queries.
In Figure 1 we take the DCG score with no expansion as the reference and
we compute the relative scores of the different models for up to 6 expansions.
The same results are reported in Table 1. We see that the Naive Bayes model
performs better than the Exclusive Subtopics model at all levels of expansion
and that the DCG score increases with the number of expansions.

Table 1. Average relative DCG (y axis) as a function of the number of expansions
(x axis)

Model 0 1 2 3 4 5 6
Exclusive Subtopics 1 0.970 0.967 0.963 0.957 0.968 0.976

Naive Bayes 1 1.021 1.034 1.042 1.051 1.055 1.057
Ideal 1 1.036 1.059 1.066 1.074 1.074 1.077

4 Discussions and Conclusions

Besides the fact that many queries contain errors or are inherently ambiguous,
there is also typically a large gap between the natural language of users and
the representation search engine use to answer the queries. A possible solution
to narrow this gap, known generically under the name of query refinement, is
to re-interpret or re-write the user query in a way that is more adequate to
the search engine. Many different techniques of query refinement have been de-
veloped, based on various source of data. Nevertheless, the question of how to
combine the different refinements suggested by these various techniques remains
an open question. A simple, intuitive method is to issue the different query re-
formulations to the engine and add the scores that a document achieve in the
different result sets. In this work we argue and we show on the basis of numerical
experiments that this simple technique is not adequate. Instead, we propose a
simple generative model based on the probability of relevance of the different
reformulations and we show that it out-performs the intuitive model.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

2. Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A., Vigna, S.: The query-
flow graph: model and applications. In: CIKM 2008: Proceeding of the 17th ACM
conference on Information and knowledge mining, pp. 609–618. ACM, New York
(2008)



Using Related Queries to Improve Web Search Results Ranking 223

3. Buehrer, G., Stokes, J.W., Chellapilla, K.: A large-scale study of automated web
search traffic. In: AIRWeb 2008: Proceedings of the 4th international workshop on
Adversarial information retrieval on the web, pp. 1–8. ACM, New York (2008)

4. Chapelle, O., Zhang, Y.: A dynamic bayesian network click model for web search
ranking. In: WWW 2009: Proceedings of the 18th international conference on
World wide web, pp. 1–10. ACM, New York (2009)

5. Craswell, N., Szummer, M.: Random walks on the click graph. In: SIGIR 2007:
Proceedings of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval, pp. 239–246. ACM Press, New York
(2007)

6. Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of
click position-bias models. In: First ACM International Conference on Web Search
and Data Mining WSDM 2008 (2008)

7. Dupret, G., Mendoza, M.: Recommending better queries based on click-through
data. In: Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp.
41–44. Springer, Heidelberg (2004)

8. Dupret, G., Piwowarski, B.: A user browsing model to predict search engine click
data from past observations. In: Press, A. (ed.) Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in information
retrieval (2008)

9. Guo, F., Liu, C., Kannan, A., Minka, T., Taylor, M., Wang, Y.M., Faloutsos,
C.: Click chain model in web search. In: WWW 2009: Proceedings of the 18th
international conference on World wide web, pp. 11–20. ACM, New York (2009)

10. Hofmann, T.: Probabilistic Latent Semantic Indexing. In: Proceedings of the 22nd
Annual ACM Conference on Research and Development in Information Retrieval,
pp. 50–57. Berkeley, California (August 1999)

11. Joachims, T.: Optimizing search engines using clickthrough data. In: KDD 2002:
Proceedings of the eighth ACM SIGKDD, pp. 133–142. ACM Press, New York
(2002)

12. Jones, R., Fain, D.C.: Query word deletion prediction. In: Proceedings of the 26th
annual international ACM SIGIR conference on Research and development in in-
formation retrieval (2003)
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A Fast Evaluation

In order to estimate the document relevance, the Naive Generative Model in
Eq. 4 involves a sum over an exponential number of terms, which makes it
unpractical. Fortunately there is an equivalent formulation which cost is linear
in the number of related queries. The basic principle is to add related queries
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one at a time: Consider Q1 = {q0, q1} and compute P1(d+|q0; {q0, q1}). Then
use this last expression as the new P (d+|q0) ← P1(d+|q0; {q0, q1}) and update
it using Q2 = {q0, q2}, etc. We show below that this is indeed equivalent to the
original formula.

Let us define IQn = {q0, q1, ..., qn−1} as a set of n queries, where q0 is the orig-
inal query submitted by the user. If we also introduce rq+ := P (d+|q)P (q+|q0)
and rq− := P (d−|q)P (q−|q0), them the Naive Generative Model can be rewritten
as

P (d+|q0; Q) =
∑

IQ∈P(Q)

⎛
⎝ ∏

q+∈Q+

rq+ ×
∏

q−∈Q−
rq−

⎞
⎠

Suppose Qn+1 = Q ∪ qn+1 where qn+1 is a new query related to q0 (qn+1 �∈ Q).
P (d+|q0; Qn+1) can be rewritten in terms of P (d+|q0; Q) as follows:

P (d+|q0; Qn+1) =
∑

IQ∈P(Qn+1)

∏
q+∈Q+

n+1

rq+ ×
∏

q−∈Q−
n+1

rq−

=
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IQ∈P(Qn)
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⎝rq+

n+1
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n

rq+ ×
∏

q−∈Q−
n

rq− + rq−
n+1
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n

rq+ ×
∏

q−∈Q−
n

rq−

⎞
⎠

= (rq+
n+1

+ rq−
n+1

)
∑

IQ∈P(Qn)

⎛
⎝ ∏

q+∈Q+
n

rq+ ×
∏

q−∈Q−
n

rq−

⎞
⎠

= (rq+
n+1

+ rq−
n+1

) × P (d+|q0; Qn)

and because we also have that P (d+|q0; q1) = rq+
0

× (rq+
1

+ rq−
1

) we see that
P (d+|q0; Q) can be computed in |Q| steps.
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exhibits a more accurate performance, making explicit the differences
between predictors for different types of queries.
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1 Introduction

Research on Query Performance Prediction, or QPP, has attracted growing at-
tention from the information retrieval (IR) community in the last years. This
topic is focused on predicting the retrieval effectiveness of a query, that is, the
quality of a search engine’s response to a submitted query. The relevance of a
subset of documents returned by a search engine is usually measured by means
of the user’s relevance judgements and the Average Precision (AP). Therefore,
a query which obtains a high AP value can be considered as ‘Easy’, since the
retrieval model was able to return a relevant subset of documents. Otherwise
if the query obtains a low AP it is considered as ‘Hard’. Having the ability to
predict the performance of a query can help us to apply some specific techniques
in order to improve the relevance of the returned documents. This improvement
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can be achieved with classic techniques such as relevance or pseudo-relevance
feedback, or with the use of a different index whose content is more related to
the submitted query.

In the last years several methods have been proposed to deal with QPP, which
fall into one of the following groups, depending on the information used to make
predictions:

– Pre-retrieval methods, where the estimations are computed using query
terms statistics, such as collection frequency (CF), document frequency (DF)
or query length. An extensive description about this type of prediction meth-
ods can be found in the work developed by He and Ounis [1].

– Post-retrieval methods, which are usually more complex and are computed
using the document ranked list returned by the search engine combined with
other collection statistics. The most representative example within this type
of prediction methods is Clarity Score. It was proposed by Cronen-Townsend
et al. [2] and it is based on measuring the divergence between the relevance
language model1 and the collection language model, where a high divergence
suggests a well-performing query.

In general post-retrieval methods achieve better estimations since they use more
information to compute predictions, although this entails a considerable increase
of the computational cost.

Prediction methods are evaluated by means of correlation coefficients. The
goal is to measure for each topic the correlation degree between the estimated
value, obtained with the proposed prediction method, and the Average Precision
value. Therefore a prediction method is considered more accurate if it obtains a
higher value of correlation between the actual values and the generated predic-
tion values.

The correlation degree between two random variables measures the depen-
dence between both variables. This dependence in general is quantified with a
real number in the range [−1, 1], where 1 means a perfect direct correlation,
−1 means a perfect inverse correlation and 0 means no correlation at all. There-
fore, for values of correlation close to zero no dependence between both variables
can be observed, although this fact does not imply a total independence between
both random variables. Besides, high values of correlation, positives or negatives,
suggest, but do not assure, a possible dependence between both variables.

The evaluation based on correlation coefficients usually produces very similar
results for the different prediction methods as it can be observed in the related
literature [3]. These values are usually hard to interpret, since the differences
among the obtained correlation coefficients are sometimes too low.

The evaluation of prediction methods should be focused on their applica-
tion to specific contexts, and therefore the evaluation framework should help us
to decide if a prediction method is suitable for that specific context. Current
evaluation, based on correlation, provides a very coarse measure of the method

1 The relevance language model is built using a subset of the documents returned by
the query.
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accuracy, ignoring some important details of the real performance. For instance
an evaluation more focused on the predictors application should be able to an-
swer questions like: Is a new method able to outperform others in relation with
the detection of ‘Hard’ queries?

In order to stress these differences in terms of prediction performance we
propose a new method for measuring the effectiveness of a query performance
predictor which provides information for different levels of retrieval quality. This
task can be achieved by assuming a discrete classification of topics, that is,
assuming that each topic belongs to a unique type based on their retrieval per-
formance. This assumption avoids the drawbacks which arise with the use of the
correlation approach, since it allows us to measure the predictor performance
partially, i.e. for each type of topic, and globally as it is done by correlation
coefficients.

The rest of this paper is organised as follows. In Section 2 current evaluation
approaches are introduced, with a special emphasis on describing their main
weaknesses. Section 3 is devoted to describe a new evaluation framework for
Query Performance Prediction, which we introduce in order to overcome some
of the previously analysed limitations. In Section 4 the proposed evaluation
method is tested against current approaches using a standard TREC collection,
and a detailed analysis of the obtained results is carried out. Finally, the main
conclusions drawn from this work appears at Section 5.

2 Current Evaluation Approaches

In the context of Query Performance Prediction Pearson(r) and Kendall(τ) are
the most commonly applied correlation methods2 to evaluate the accuracy of
the estimations.

Pearson is a parametric method, which assumes a linear relationship be-
tween both data series indicating the strength and direction of this relationship,
whereas Kendall computes the correlation value counting the pairwise swappings
needed to transform one ranking into the other. Kendall is a non-parametric
method, and thus does not make assumptions about the input data, provid-
ing less information about the data relationship. Therefore, while Pearson is
focused on establishing if both data series are produced by two linearly depen-
dent functions, Kendall measures how similar are the orderings produced by the
prediction method in comparison to the one produced by the ‘actual’ values.
The obtained Kendall’s τ coefficient can be interpreted as a degree of certainty,
which indicates if a topic would obtain a higher AP value than other, although
the AP value itself cannot be predicted as Pearson’s r does.

Due to their different nature both methods frequently produce dissimilar val-
ues, and thus a direct comparison between both coefficients is not possible.

Pearson drawbacks have been extensively treated in the literature. It is well-
known that Pearson produces very different results for data series which show
2 In some works we can find Spearman (ρ) correlation coefficient, although its use

remains rare in this context.
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strong dependence, whenever a data outlier appears or a small fraction of the
data takes values far from the mean. Another known problem occurs when both
random variables show a strong dependence but through a non linear relation-
ship. In this case the correlation coefficient r will be low even if the data are
strongly correlated. The main problems of the application of Pearson correlation
coefficient in the context of QPP were previously pointed out by Hauff et al.[4].

Due to the described problems many works on query performance prediction
report their results with the Kendall correlation coefficient at the expense of
using a less informative evaluation measure.

Although Kendall is considered as a more appropriate measure to evaluate
estimations, in our opinion this measure does not make explicit the real effective-
ness of the predictor, since we only obtain a unique value describing the average
accuracy, but ignoring the performance for different types of queries.

Kendall is only focused in the number of disordered elements and the distance
of them to the position where they should be placed. Therefore Kendall gives the
same importance to all elements within the data series. On the context of QPP
we can be more interested on analysing the performance on topics of different
difficulty (‘Hard’ or ‘Easy’), that is, topics placed at the top or bottom of the
topic list sorted by AP. For instance a key factor that should be highlighted in
the operation of a predictor is its ability to detect those topics that obtain a
low AP value. This feature is of extreme importance for tasks such as pseudo-
relevance feedback, since it will help us decide in which cases to expand the
original user query, as it has been recently studied by He et. al [5].

For instance, let us consider the data series: X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
and Y = {4, 2, 3,1, 5,10, 7, 8, 9,6} , where we consider elements 1 to 5 as the
‘best’ elements and the rest as the ‘worst’ elements. Since elements 1,4,6 and 10
are not placed at their right position a Kendall correlation of 0.46 is obtained,
which suggests a significant but not strong correlation between data. On the
other hand if we are only interested on evaluating by type of elements, i.e. ‘best’
and ‘worst’, we can conclude that both data series X and Y group both types of
elements in the same fashion, as best elements are grouped within the first five
positions, and therefore the worst elements are within the last places.

On the other hand, this drawback can not be overcome by measuring the
Kendall correlation partially for each type of elements. For instance, if we con-
sider the next data serie Z = {6, 7, 8, 9, 10, 1, 2, 3, 4, 5} produced by a predictor,
where as before we consider elements 1 to 5 as the ‘best’ elements and the rest
as the ‘worst’ elements. The τ obtained between X and Z for the so-called ‘best’
and ‘worst’ elements is in both cases equals to 1. However it can be observed
that the predictor shows a pretty poor performance since it has predicted the
best elements as worst and viceversa.

Some extensions to Kendall try to overcome this drawback assigning a rel-
ative importance for each element or groups of elements to the final τ value.
This family of Kendall variants is known as ‘Weighted Kendall’, and are usually
applied to measure the similarity between responses of different search engines
[6,7]. Using this approach it is possible to measure if a method shows a better
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performance for a specific type of topics than other, although we must set a
suitable weight for each element. Another weakness of this approach is that it is
not able to provide partial results for the different types of topics.

3 Evaluating by Range

Previous sections have introduced the idea that using correlation coefficients
as a quality measure only provides a global view of the predictor performance,
ignoring its specific behaviour on different types of topics, i.e. topics of different
difficulty. However, it is expected that different prediction methods show different
performance on ‘Easy’ or ‘Hard’ topics. Detecting this disparity in terms of
prediction effectiveness can be a key factor in order to apply these methods to
improve the retrieval quality for a specific type of queries.

In this section we propose a new QPP evaluation framework with a two fold
goal: a) evaluate the ability of the method to detect ‘Easy’ or ‘Hard’ queries;
and b) to make explicit the accuracy of the method for different types of topics.

For the development of this evaluation framework, we should be able to parti-
tion the topic set of study into n blocks of interest, where each topic is uniquely
assigned to one of these partitions by its corresponding AP value, which estab-
lishes the retrieval quality of the partition. Thus, the best topics in terms of AP
would be assigned to the first partition and likewise the n-th partition groups
the worst topics. The same process is applied using the values provided by the
prediction method, instead of AP.

After partitioning the full set of topics, each topic is labelled according to the
prediction and the average precision obtained. Therefore, it is possible to test for
each topic if the AP value and the estimation belong to the same partition. Thus,
the evaluation of the quality of this labelling resembles a problem of classification
evaluation.

Grouping Data

An interesting problem which arises with the proposed evaluation is how to group
topics by their retrieval performance. The application of a suitable method to
group topics is a key task for the evaluation of QPP methods, since different
systems gives rises to different retrieval performance.

For instance, we can imagine a hypothetical search system where almost all
queries obtain as response a set of documents which satisfy the user. In this
case the application of a prediction method is not necessary, since it is known
that all queries are correctly answered. A similar case occurs when a search
system is unable to respond correctly to a great majority of queries. Therefore,
a prediction method is only useful when there is a significant divergence in the
quality of the search engine responses. In general, this divergence occurs in actual
search systems.
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Focusing on the TREC environment, a typical run usually shows an exponen-
tial probability distribution3, as Figure 1 illustrates, where a great number of
topics obtain a low AP value.

In order to adapt the different partitions of topics to each search system, we
propose to group them following the probability distribution of the AP values,
which represents the overall search system performance. For this task the k-
means[8] clustering algorithm is a suitable approach, since our goal is to create
groups such that the distance between elements in the same group is minimum
and the distance among the means of each group is maximum. More formally,
given a set of topic AP values (t1, t2, · · · , tn), the k-means clustering aims to
partition the n observations into k sets (k < n) C = {C1, C2, . . . , Ck} so as to
minimize the within-cluster distance to the mean:

arg max
C

k∑
i=1

∑
t∈Ci

(t − C̄i)2

where C̄i is the mean in Ci.
The k-means algorithm is not a deterministic method of clustering because

it depends on the initial selection of cluster means. In order to circumvent this
problem we propose to set the initial means in such a way that they do not
introduce any bias in the construction of the groups. Therefore, initial means
should be uniformly distributed along the whole set of topics in such a way that,
the number of topics between the proposed means is roughly the same. This
method can be implemented computing the percentiles for each desired group
based on the next equation: C̄i = percentile

(
100 · i−1

n+1

)
where C̄i is the initial

mean of the i-th cluster, and n is the number of clusters. For instance if n=3,
the initial means will be fixed at the 25th, 50th and 75th percentile of the data.

Using k-means in combination with the initialisation method proposed above
ensures that the groups created will depend on the data distribution. A proof of
this fact is that those groups with a larger number of topics appear where the
density function has a maximum, as observed in Figure 1.

The k-means algorithm requires a parameter indicating the desired number
of groups in which the input data will be divided. In our opinion a reasonable
approach is to set this value manually, since this number only depends on the
granularity level desired for the study4. For example, a typical setup can include
three groups: ‘Easy’, ‘Average’ and ‘Hard’ topics. Obviously, in order to compare
different prediction methods the number of partitions must be the same for all
the evaluated methods.

The described methodology for grouping topics is also applied to the pre-
diction values. Applying to both data series the same partition method has a
strong effect on the results of typical evaluation measures as precision or recall.
In general, those prediction methods whose probability distribution is not similar

3 Although best runs approach a Gaussian distribution as the MAP value increases.
4 Although there are several methods which set automatically the number of clusters

for the k-means algorithm.
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Fig. 1. AP histograms, density function and the obtained partitions applying k-means
with k=3 for the worst, average and best run submitted to the Robust 2004 track

to the AP distribution produce poorer results, because this dissimilarity leads
to the creation of partitions with different sizes, and this affects the evaluation
measures.

In the next section we apply the introduced evaluation framework to a subset
of different prediction methods in a standard TREC collection, in order to test
the ability of our proposal to circumvent some of the drawbacks of the current
approaches for the evaluation of QPP methods.

4 Experiments and Results

For the experimental evaluation of our proposal the set of documents from TREC
Disk4 & 5, along with the full set of topics from the Robust 2004 track[9], are
employed. We have selected this set of topics since a majority of prediction
methods obtain their best results when they are tested with them, as it appears
in related literature [3].

All prediction methods are executed against a base run which was obtained
using the query likelihood language modeling [10], with a Dirichlet prior smooth-
ing parameter[11] equal to 15005. This run achieves a MAP value of 0.24, which
is of the order of a typical TREC run for this collection.

A significant set of prediction methods considered as state of the art have
been implemented. For the pre-retrieval case, we have tested some of the methods
proposed by He et. al [1], including those based on the query terms IDF or ICTF,
such as the maximum IDF, the average ICTF, Simplify Clarity Score (SCS) and
the QueryScope method based on the number of documents returned by each
query term. On the other hand, the post-retrieval methods tested include Clarity
Score[2], for which the number of feedback documents have been fixed to 500,
and the ScoreDesv method, which is based on measuring the standard deviation
of the top k scores, fixing the top k to 120, as recommended in [12].

The set of topics is grouped into three blocks: ‘Easy’, for topics with the
highest AP; ‘Hard’, for those with lowest AP; and ‘Average’, for the rest. The
details of the different groups obtained after the application of the k-means
5 For this task The Lemur Toolkit software was employed.
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Table 1. Statistics for ‘Easy’, ‘Average’ and ‘Hard’ topic groups, including number of
topics per group, maximum, mean and minimum AP per group and the AP standard
deviation per group

Num Max Mean Min Sd

Hard 121 .02 .001 .0005 .006
Average 97 .21 .10 .02 .05
Easy 31 .91 .41 .21 .17

algorithm appear in Table 1. As expected, for a typical TREC run the largest
group corresponds to the set of ‘Hard’ topics, while the group with the smallest
number of topics corresponds to the ‘Easy’ partition.

In order to describe in detail the performance obtained by the tested predic-
tion methods, several measures from the classification topic can be applied. The
wide range of available measures allow us to define the experimental setup as
a function of the desired type of study. For the current setup we have decided
to apply the measures described below with the main goal of highlighting the
differences in terms of prediction not shown by the correlation coefficients.

The simplest approach to compare the accuracy of the different evaluated
methods is to compute the number of hits per partition and the total number of
hits. We will employ the classic F-measure, since it is able to combine precision
and recall in a single number and can be applied globally and for each defined
partition. Formally, the F-measure is defined as 2 · precision·recall

precision+recall .
In previous measures misclassified elements are equivalent. However, in QPP

all errors should not penalise the measure in the same manner. For instance, in
a set-up where we have decided to label topics as ‘Easy’, ‘Average’ and ‘Hard’,
predicting a topic as ‘Hard’ when it is actually ‘Easy’ should imply a greater
penalty than if the element had been misclassified as ‘Average’, a partition closer
to ‘Easy’. For this purpose we introduce a new measure: the Distance Based Error
Measure (DBEM), which is able to indicate the global performance along all the
partitions but focused only on the misclassified topics. We define the distance
between two partitions Ci and Cj in a set of topics that have been grouped in k
partitions as

distance(Ci, Cj) = ‖i − j‖

where 0 < i,j ≤ k. Then

DBEM =
∑n

i distance(Pti , Cti)∑n
i max

[
∀j∈ndistance(Pti , Ptj )

]
where Pti is the predicted partition for the topic ti, Cti is the AP partition for
the topic ti, and n is the total number of topics. This is, the distance between
all topics normalised by the maximum possible distance, where lower distances
imply better performances.
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Results

Table 2 shows the number of correctly classified topics for the whole set of top-
ics and for each partition. These results indicate that the subset of methods
based on IDF is strongly biased toward grouping topics as ‘Hard’, which leads
them to achieve the best result for the ‘Hard’ partition and very poor results
for the ‘Average’ and ‘Easy’ partitions. Furthermore, this subset of prediction
methods obtain very similar results, as it is shown by the total number of hits
achieved by them. However, this similarity in their results is not captured by the
Pearson and Kendall correlation. Moreover, some important differences appear
in the correlation coefficients obtained by these methods, suggesting a different
performance for these predictors, which has proved false using the simple accu-
racy. For instance, according to Pearson IDFMin (r=0.24) should outperforms
clearly IDFAvg (r=0.17), while according to Kendall we should conclude exactly
the opposite, since IDFMin obtains a τ of 0.16 to be compared with the 0.32
obtained by IDFAvg.

One key factor when comparing prediction methods by their accuracy is to
observe the performance not only globally but for each partition too. For ex-
ample, the obtained global accuracy for the QueryScope method will guide us
to the wrong conclusion of a worse performance of this compared to the IDF
based methods. But if we check the partial results of QueryScope we can ob-
serve a much better performance for this method in the detection of ‘Easy’ and
‘Average’ topics in comparison with the IDF based methods. Therefore, we can
conclude that the strong performance of the IDF based methods on ‘Hard’ topics
is a consequence of considering more than 95% of topics as ‘Hard’, which does
not correspond to the real performance of the tested run.

The global accuracy is not able to detect the previous situation either, because
it is computed as a sum of partial accuracies. However, this weakness is overcome
by the F-measure for the whole set of topics, as it can be observed in Table 3
where the IDF based methods obtains the worst results among all predictors.

Table 2. Results for the proposed predictors. The first three columns show the number
of hits per type of topic, including in brackets the whole number of topics classified as
the type of the column title. Besides, the last three columns show the total accuracy
hits
total

and the Pearson and Kendall correlation coefficient obtained.

Hard Average Easy Total Accuracy Pearson Kendall

AVICTF 73(122) 47(110) 9(17) 129 0.52 0.45 0.26
IDFAvg 120(245) 1(3) 1(1) 122 0.49 0.17 0.32
IDFDesv 119(245) 1(3) 1(1) 121 0.48 0.12 0.25
IDFMax 118(243) 1(5) 1(1) 120 0.48 0.15 0.32
IDFMin 121(245) 1(3) 1(1) 123 0.49 0.24 0.16
QScope 91(171) 22(67) 5(11) 118 0.47 0.37 0.18
SCS 60(87) 50(109) 18(53) 128 0.51 -0.45 -0.26
CS 78(110) 54(103) 13(36) 145 0.58 0.51 0.41
ScoreDesv 84(128) 47(91) 17(30) 148 0.59 0.55 0.40



234 J. Pérez-Iglesias and L. Araujo

Table 3. Results for the proposed predictors. The first three columns show the F-
measure for each type of topic. Besides, the last four columns show the F-measure for
the whole set of topics, the Distance Based Error Measure and the Pearson and Kendall
correlation coefficient obtained.

Hard Average Easy Total DBEM Pearson Kendall

AVICTF 0.60 0.45 0.37 0.51 0.32 0.45 0.26
IDFAvg 0.65 0.02 0.06 0.33 0.39 0.17 0.32
IDFDesv 0.65 0.02 0.06 0.33 0.39 0.12 0.25
IDFMAX 0.63 0.02 0.06 0.33 0.39 0.15 0.32
IDFMin 0.66 0.02 0.06 0.36 0.38 0.24 0.16
QScope 0.62 0.26 0.23 0.43 0.35 0.37 0.18
SCS 0.58 0.48 0.43 0.52 0.34 -0.45 -0.26
CS 0.67 0.54 0.39 0.59 0.29 0.51 0.41
ScoreDesv 0.67 0.50 0.56 0.59 0.27 0.55 0.40

Table 4. Confusion Matrix for Clarity Score (left) and ScoreDesv (right), the number
of correctly classified topics appears in boldface

Hard Average Easy Total

Hard 78 36 7 121
Average 27 54 16 97
Easy 5 13 13 31
Total 110 103 36 145

Hard Average Easy Total

Hard 84 35 2 121
Average 39 47 11 97
Easy 5 9 17 31
Total 128 91 30 148

A final conclusion that can be extracted from the results in Table 2 is that,
as it was expected, the most accurate methods in terms of grouping predictions
are CS and ScoreDesv, which outperform clearly the rest of prediction methods.

Table 3, shows the F-measure obtained, which can help us to extract some
other conclusions. These results show that in general prediction methods show a
better performance detecting ‘Hard’ topics than ‘Average’ or ‘Easy’ topics, some-
thing not revealed by means of the correlation coefficients. Besides, while both
correlation coefficients suggest an equivalent performance for SCS and AVICTF
prediction methods, using the F-measure we observe how SCS outperforms in
more than a 16% the AVICTF in relation with the detection of ‘Easy’ topics.

In relation with the most accurate methods, CS and ScoreDesv, although the
correlation methods and the global F-measure suggest a similar performance, a
more detailed comparison leads us to observe some interesting differences between
them. For instance, with the partial F-measure we can observe that although CS
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is slightly better for ‘Hard’ and ‘Average’ topics, ScoreDesv improves CS around
a 43% detecting ‘Easy’ topics, which makes ScoreDesv a more reliable option in
those contexts where we would expect an accurate detection of ‘Easy’ topics.

The differences between these last prediction methods are shown as well by
the proposed DBEM measure. Although this measure shows a strong correlation
with the rest of the global performance measures, as it appears in Table 5, it
reveals some important details which are not shown with the rest of measures.
Focusing on CS and ScoreDesv, DBEM suggests a minor fail ratio for the last
method. This fact can be confirmed observing the confusion matrix of both
methods, which appears in Table 4. In this table we observe that while the
number of misclassified topics is similar for both methods (104 for CS and 101
for ScoreDesv), CS is labelling 12 topics as ‘Easy’ when they are actually ‘Hard’
or viceversa, while these errors only occurs 7 times with ScoreDesv. This error
rate implies that the proportion of strong errors by CS is around an 11% against
the 6% obtained by the ScoreDesv.

Finally it should be highlighted that the proposed measures applied show a
strong correlation with the classic evaluation approach, as it appears in Table
5. Thus the proposed evaluation method provides an information equivalent to
correlation approach, but showing a higher level of detail for the topics subset
of interest.

Table 5. Pearson correlation coefficient between pairs of proposed measures

Accuracy F-Measure DBEM

Pearson 0.78 0.77 -0.95
Kendall 0.77 0.66 -0.57

5 Conclusions

In this paper a novel method for the evaluation of Query performance Prediction
Methods has been introduced. The goal of this proposal is to avoid some of the
drawbacks which appear with the use of correlation coefficients when they are
applied to evaluate Query Performance Prediction methods.

Our proposal overcomes previous drawbacks avoiding the use of correlation
coefficients, and transforming the performance prediction evaluation into a clas-
sification task by assuming that each topic belongs to a unique type based on
their retrieval performance. For this task we have proposed an automatic method
to group topics based on their retrieval quality, according to the overall retrieval
quality of the search system in study.

While the application of correlation coefficients to this topic can hide the spe-
cific performance of prediction methods for different types of topics, our proposal
makes explicit these differences guiding us to the selection of the more suitable
method depending on the application context. Furthermore, each topic is au-
tomatically labelled by their retrieval effectiveness according to the prediction
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method. Based on this label, a system would be able to decide which is the most
suitable technique to improve the quality of the response for this topic, oppo-
site to current approach where this decision is taken based on a numeric value
assigned by the prediction method.

The novel evaluation framework has been tested against a set of different pre-
diction methods, providing with a more detailed information about the tested pre-
dictors performance. Besides, the proposed measures have shown a strong correla-
tion degree with the current evaluation, which suggests a similar behaviour of our
proposal with correlation approach but being at the same time able of revealing
some performance differences that are not detected with the current approaches.
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Abstract. The human interaction through the web generates both im-
plicit and explicit knowledge. An example of an implicit contribution is
searching, as people contribute with their knowledge by clicking on re-
trieved documents. Thus, an important and interesting challenge is to
extract semantic relations among queries and their terms from query
logs. In this paper we present and discuss results on mining large query
log induced graphs, and how they contribute to query classification and
to understand user intent and interest. Our approach consists on effi-
ciently obtaining a hierarchical clustering for such graphs and, then, a
hierarchical query folksonomy. Results obtained with real data provide
interesting insights on semantic relations among queries and are com-
pared with conventional taxonomies, namely the ODP categorization.

1 Introduction

Nowadays the Web is the biggest representation of human knowledge, where
people contribute with content either explicitly or implicitly. An example of
an implicit contribution is searching, as people contribute with their knowledge
by clicking on retrieved documents. Thus, queries submitted to search engines
carry implicit knowledge and they can be seen as equivalent to tags associated to
clicked documents. An interesting challenge is then to extract relevant semantic
relations from query logs, which have several interesting applications. For in-
stance, ranking algorithms, query recommendation systems and advertisement
systems integrate such semantic information to improve their results.

In this paper we discuss query classification and meaning, and not URL tag-
ging and folksonomies. We use click-data to infer relationships and similarities
among queries. Then, by finding closely related queries, we are able to define
a hierarchical query folksonomy associating tags to queries. Note that this ap-
proach may associate a tag to a query even if that tag is not part of the query,
leading to query contextualization. Our approach relies on graphs to represent
relations among queries and on efficient graph mining techniques to uncover re-
lations. According to SearchEngineWatch.com, the number of queries per day is
of the order of hundreds of millions, leading to huge query graphs. On the other
hand, the number of potential relations and applications is also huge.
� Work done while visiting Yahoo! Research Barcelona. Email: aplf@ist.utl.pt
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Our study follows recent works on the analysis of query graphs [3,10], which
introduce the notion of click induced graph and present several results concerning
semantic relations among queries. Here we propose three main contributions: a
new heuristic to detect and remove noisy relations among queries mostly caused
by multi-topical URLs; an efficient hierarchical clustering method for weighted
graphs to extract semantic relations from query graphs; and, given a hierarchical
clustering, a method to infer a query folksonomy and semantic relations among
queries. We use a sample of a query log of the Yahoo! search engine to evaluate
our approach and we compare our results with a query classification obtained
by mapping queries over the Open Directory Project (ODP) categories.

2 Related Work

Most of the work on query similarity is related to query expansion or query
clustering, common tasks in many applications such as query recommendation
systems. Wen et al [15] proposed to cluster similar queries using four notions of
query distance: (1) based on keywords or phrases of the query; (2) based on string
matching of keywords; (3) based on common clicked URLs; and (4) based on the
distance of the clicked documents in some predefined hierarchy. As the average
number of words in queries is small and the number of clicks in the answer pages
is also small [1], notions (1) and (2) generate distance matrices that are very
sparse. For notion (4) we need a concept taxonomy and the clicked documents
must be classified into that taxonomy as well, something that usually requires
direct human intervention and that cannot be done in a large scale. Although
notion (3) can generate also sparse distance matrices, the sparsity can be greatly
reduced by using large query logs. Previous works have used notion (3) [4], or
even variants combining (1) and (3) [16].

Baeza-Yates et al. [2] used the content of clicked Web pages to define a term-
weight vector model for a query. In their work each term in a clicked URL is
weighted according to the number of occurrences of the query and the number
of clicks of the documents in which the term appears. Then, the similarity of
two queries is given by the cosine similarity of their vector representations. This
notion of query similarity is based on common clicked URLs as (3) and has
several advantages. It is simple and easy to compute and makes it possible to
relate queries that happen to be worded differently but stem from the same
topic. More recently, Shen et al. [13] also used the notion (3) to cluster similar
queries and build a query taxonomy. They also consider the terms in the clicked
documents instead of the terms in the queries. In this paper we represent queries
in a high dimensional space and we use also the cosine similarity, but each
dimension corresponds to a URL. This notion uses common clicked URLs and
it was introduced by Baeza-Yates and Tiberi [3].

Chuang et al. [5,6,7] also used query logs to build a query taxonomy to also
cluster answers. However they do not use any user feedback, like user clicks.
Moreover, this is not the same as building a taxonomy of the queries, which is
what we call a query taxonomy or folksonomy.
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Fig. 1. On left, URL weight contribution geometric mean versus URL coverage size n.
On right, given the set of terms associated to the queries covered by each URL, URL
maximum tf-idf score versus URL coverage size n.

3 Click Induced Graph

Given a query q, the cover μ(q) of q is the set of URLs clicked by q. The click
induced graph G = (V, E) is an undirected graph with queries as nodes, V = Q,
and where (q1, q2) ∈ E whenever q1 and q2 share at least one common clicked
URL, μ(q1) ∩ μ(q2) �= ∅. Edges are weighted according to the cosine similarity
σ of the queries they connect, with each query q being represented in a high
dimensional space. Each dimension corresponds to a unique URL u and the
weight is the frequency ratio with which the URL u was clicked for the query q.

In this paper we considered a query log piece from the Yahoo! search engine.
The data was collected in April 2005 and contains 2,822,337 queries with at least
one clicked URL and 4,927,980 different URLs. From these, only 660,910 URLs
were clicked for at least one query. On average, each query has 2.39 distinct clicks
and each URL is clicked by 1.37 distinct queries. Click distributions, per query
and per URL, follow a power law with exponents 3.50 and 2.59, respectively.

The main purpose of the click induced graph is to represent semantic relations
between queries and to enable knowledge extraction. But, for the studied query
log, we have that about 75% and 50% of edges have weights bellow 0.5 and
0.273, respectively. Thus, there are many connected queries which are not much
similar. Such noisy relations are mostly due to URLs covering dubious topics,
several topics or very general topics, i.e., multi-topical URLs.

An approach to remove noise is to ignore contributions from multi-topical
URLs. Baeza-Yates and Tiberi [3] suggested that such URLs are the ones that
contribute more to edges with low weights. But, we observed that URLs which
contribute more to low weighted edges also may contribute more to high weighted
edges. In fact there is a positive correlation between the number of queries cov-
ered by a URL and its contribution to edge weights (see Fig. 1). We tackle this
problem by considering as documents the terms among the queries covered by
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each URL and by computing the tf-idf score for each term as usual. We observed
that multi-topical URLs have a low average tf-idf score, even when we select only
high related queries for which those URLs were clicked. Hence, we propose to
compute the maximum tf-idf among the bag of terms associated to each URL
and select the URLs with lowest score as multi-topical candidates. In Fig. 1 we
have the maximum tf-idf score against URL coverage size for the query log ana-
lyzed. In what follows, we ignore 0.05% of the URLs with lowest score, filtering
the click induced graph in a conservative way. Note that many of the selected
URLs have a large coverage and, maybe unexpectedly, they are not spam URLs.

The resulting click induced graph has 23,177,430 edges, about 6.44% of the
size of the full click induced graph. Since we continue having low weighted edges,
we remove 10% of the edges with lowest score, which have weights lower than
0.043. The filtered click induced graph has 20,974,257 edges and 1,648,649 con-
nected components. The giant component and the second largest component
have 861,903 and 64 vertices, respectively. There are now 1,474,249 singleton
vertices. The degree distribution follows a power law with exponent 1.65. Our
approach to remove noise and multi-topical URLs dramatically reduces the size
of the click induced graph, keeping its structure almost unchanged.

4 Graph Clustering and Induced Query Folksonomy

One of the hardest problems in graph mining is finding graph community struc-
ture or graph clustering. Usually, clusters are groups of vertices such that the
number of edges within them is higher than the number of edges among different
groups. This problem has recently attracted a large interest [9]. In this paper
we follow a two stage approach. We find a set of seed sets and, then, we apply a
local optimization method. This approach is related to methods based on global
partition and local expansion [12,14], but avoiding traditional global partition-
ing. Since we are interested in forming clusters of similar queries, our approach
consists of joining similar queries, i.e., we define cores based on vertex struc-
ture similarity. Let G = (V, E) be a graph and σ : E −→ IR+

0 the edge weight
function. Given two connected vertices (v1, v2) ∈ E, their structural similarity η
takes values in [0, 1] and is given by∑

w∈N12
σ(v1, w) + σ(v2, w)

|N12|
2 σ(v1, v2) +

∑
w∈N12

σ(v1, w)σ(v2, w)√
1 +

∑
w∈N1

σ(v1, w)2
√

1 +
∑

w∈N2
σ(v2, w)2

,

where N1 and N2 are the sets of neighbors of v1 and v2, respectively, and
N12 = N1 ∩ N2. The first term, the weight mean among common neighbors,
was introduced because the second term, a cosine similarity based score, takes
value 1.0 whenever the vertices v1 and v2 share all neighbors, even if they are
connected through edges with low weights. Given ε > 0, C ⊆ V is a core if C is
a connected component composed only of edges with weights higher than ε. We
can enumerate the set of cores in a graph for different values of ε > 0 and, by
considering the edges in decreasing order of η, we obtain a hierarchy of cores.
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Then, we apply the local partition method proposed by Chung [8] to each core,
which expands it minimizing the conductance score Φ.

The induced query taxonomy is obtained by associating the most relevant
terms to each node in the hierarchical clustering tree. We compute the set of
terms associated to each node by grouping together all queries in the under-
lying subtree and by inspecting the queries. Those sets of terms become our
documents and we infer the most relevant terms for each node by computing
the tf-idf score for each term. Such terms become the tags for that node. Since
click induced graphs are scale-free and have a giant component, we may want to
define a threshold on the tf-idf score. Internal nodes corresponding to the giant
component, or even to part of it, have usually bad quality tags which do not
bring relevant semantic information.

5 Experimental Evaluation

For lack of space, we summarize briefly our results for the click induced graph
described above. Full results are available in a technical report [11]. By consider-
ing different values for ε, we saw that the method effectively clusters the graph.
For instance, with ε = 0.4, the biggest cluster is much smaller, about 1.1% of
the original giant component. We note also that values for average conductance
Φ are less than 0.1. Nevertheless, we obtain many small clusters for any cut of
the hierarchical clustering tree, corresponding to loosely connected clusters that
could appear connected if we consider larger query logs. Many are composed of
highly specific queries or navigational queries, for which the search engine may
return a low number of results and where the user clearly knows what he wants.

As mentioned before, the local optimization may lead to overlaps among clus-
ters, providing interesting information with respect to query ambiguity, context,
topic and polysemy. Terms like “windows” and “wine” are examples of poly-
semic terms that appear within overlaps of rather different clusters. Thus, an
approach to identify term polysemy is to compare the bag of terms among over-
lapping clusters and, if a query is in two clusters but they share few terms, then
the query shall be polysemic. Similarly, by analyzing similar words in the same
cluster we can detect misspellings.

Given the hierarchical clustering described above, we build the induced query
folksonomy for which tf-idf scores become meaningful only for ε > 0.3, i.e.,
when the giant component vanishes. For ε ≤ 0.3, the tf-idf score for the giant
component takes values between 0.05 and 0.07, and the most relevant term is
“free”. Evaluating the query classification is difficult since it is very different
from traditional directories. Here we try to compare it with the ODP in order
to understand how different are these two ways of expressing knowledge. We
mapped all queries over the ODP categories, obtaining several category paths for
each query. Then we compare the ODP paths with the induced folksonomy. Since
folksonomy labels are not comparable to the categories in the ODP mapping,
they are not topic based, we evaluate the clusters by comparing the common
ODP path prefix among the queries. Given two queries q1 and q2, we select
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the two most similar ODP category paths p1 and p2, i.e., the ones which share
the longest common prefix π(p1, p2). Then we compute the score σodp(p1, p2) =
|π(p1, p2)|

/
max{|p1|, |p2|}, where | · | denotes the path length. The ODP score

for a given cluster is the average of the score σodp for all pairs of queries in
that cluster. For all snapshots of the hierarchical clustering for different values
of ε, more than 50% of the clusters have an ODP score higher than 0.5 and 30%
to 39% of them have an ODP score equal to 1.0. For ε > 0.3, after we cluster
the giant component, the ODP score increases with the hierarchical clustering
depth, revealing that clusters at higher depths have better quality. This is also
supported by the tf-idf scores.
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Abstract. The Longest Common Subsequence (LCS) problem is a clas-
sic and well-studied problem in computer science. Given strings S1, S2

and P , the generalized constrained longest common subsequence problem
(GC-LCS) for S1 and S2 with respect to P is to find a longest common
subsequence of S1 and S2, which contains (excludes) P as a subsequence
(substring). We present finite automata based algorithms with time com-
plexity O(r(n+m)+(n+m) log(n+m)) for a fixed sized alphabet, where
r, n and m are the lengths of P , S1 and S2 respectively.

1 Introduction

The Longest Common Subsequence (LCS) problem is a classic and well-studied
problem in Computer Science with extensive applications in diverse areas rang-
ing from spelling error corrections to molecular biology. Given a string, a subse-
quence of that string is any string such that its symbols appear (not necessarily
contiguously) somewhere in the string in the same order. A substring of a string
is a subsequence of successive characters within the string. Given two strings X
and Y , a common subsequence of X and Y is a subsequence that appears in
both the strings. A longest common subsequence is a maximum length common
subsequence of the given strings. Given two strings X and Y , the goal of the
LCS problem is to compute a longest common subsequence of X and Y .

The classic dynamic programming solution to LCS problem was invented by
Wagner and Fischer [16]. The LCS problem and variants thereof have been ex-
tensively studied for decades (e.g., [2,3,14,5]). In this paper, we study some rel-
atively new variants of the LCS problem, namely, the Generalized Constrained
LCS problems (GC-LCS) as defined below.

� This research work constitutes part of the undergraduate thesis work of the first
and second authors under the supervision of the last author. Authors’ names are in
alphabetic order.
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Problem 1. (STR-IC-LCS Problem): Given two strings S1 and S2 and a con-
straint pattern P of lengths n, m and r respectively, the STR-IC-LCS problem
is to find an LCS of S1 and S2 including P as a substring.

Problem 2. (SEQ-IC-LCS Problem): ( [4,8,12,15]) Given two strings S1 and
S2 and a constraint pattern P of lengths n, m and r respectively, the SEQ-IC-
LCS problem is to find an LCS of S1 and S2 including P as a subsequence.

Problem 3. (STR-EC-LCS Problem): Given two strings S1 and S2 and a con-
straint pattern P of lengths n, m and r respectively, the STR-EC-LCS problem
is to find an LCS of S1 and S2 excluding P as a substring.

Problem 4. (SEQ-EC-LCS Problem): Given two strings S1 and S2 and a con-
straint pattern P of lengths n, m and r respectively, the SEQ-EC-LCS problem
is to find an LCS of S1 and S2 excluding P as a subsequence.

SEQ-IC-LCS was first introduced by Tsai in [15], where an algorithm was pre-
sented solving the problem in O(rn2m2) time, where |X | = n, |Y | = m and
|P | = r. Later, Chin [8] and independently, Arslan and Egecioglu [4] presented
improved algorithm with O(mnr) time and space complexity. Recently, Iliopouos
and Rahman [12] proposed an O(rR log log n + n)-time algorithm for this prob-
lem, where R is the total number of ordered pairs of positions at which X and Y
match1. The other three variants of GC-LCS problems were introduced and stud-
ied by Chen and Chao very recently in [6]. They solved all four variants in O(mnr)
time. This problem finds its motivation from bioinformatics: in the computation
of the homology of two biological sequences it is important to take into account a
common specific or putative structure. To compare two sequences, from the above
point of view, both inclusive and exclusive constraints seems to be interesting.

Very recently, Gotthilf et al. [9]2 considered the “Restricted LCS” problem
which is basically a variant of the SEQ-EC-LCS Problem. In particular, Gotthilf
et al. [9] solved the SEQ-EC-LCS Problem for arbitrary number of input and
constraint strings in O(nL+�) time where L = number of input strings, � =
number of constrained Patterns. Here for the sake of convenience, it is assumed
that all the input strings are of same length n. So, for two input strings and one
constraint pattern, the algorihm runs in O(n3) time.

In this paper, we devise finite automata based efficient algorithms for GC-
LCS problems that run in O(r(n + m) + (n + m) log(n + m)) time for a fixed
alphabet. Since the GC-LCS problems find their motivation from computational
biology and since biological sequences mostly have constant sized alphabets (e.g.,
DNA/RNA sequences have alphabet size 4 and protein sequences 20), the as-
sumption of a fixed alphabet in this context is perfectly valid. Note that the
very recent result of Gotthilf et al. [9] doesn’t assume a fixed alphabet. The rest
of the paper is organized as follows. In Section 2, we present some preliminary
definitions and in Section 3, we present our main results. The time complexity
1 In [12], without the loss of generality, it is assumed that |X| = |Y | = n.
2 In fact, the result of Gotthilf et al. [9] is presented at the same conference we present

our result.
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analysis of our algorithms is presented in Section 4. Finally, we conclude briefly
in Section 5.

2 Preliminaries

To formally describe our algorithms following definitions are necessary.

Definition 1. DFA. A deterministic finite automata is represented by 5-tuple
notation A = (Q,

∑
, δ, q0, F ), where A is the name of the DFA, Q is its set of

states,
∑

its input symbol, δ its transition function, q0 its start state and F its
set of accepting states.

Definition 2. DASG. A DASG for a string A is a DFA that accepts the lan-
guage of all possible 2n subsequences of A. The DFA is partial, that is, each
state need not have a transition defined for every symbol.

Definition 3. DASG for multiple texts. Let S be a set of texts T1, T2, . . . , Tk.
We say that P is a subsequence of S if and only if there exists i ∈ [1, k] such that
P is a subsequence of Ti. More formally, DSAG of S is a DFA A which accepts
the language L(A)={w: i ∈ [1, k], w is a subsequence of Ti}.

Definition 4. Substring Automata. Given a string P , substring automata is a
DFA A, which accepts the language L(A)={w: w has P as substring}.

Definition 5. Supersequence Automata. A supersequence automata is a finite
automata which accepts the set of all supersequences of a given string.

3 Finite Automata Based Algorithms

In this section, we present our algorithms to solve the GC-LCS problems. Since,
the algorithms we present are closely related to each other, we first present our
algorithm for the STR-IC-LCS Problem and then we modify it to solve the other
three variants.

3.1 STR-IC-LCS Problem

We first present the algorithm to find an LCS of S1 and S2 containing the con-
strained pattern P as a substring. The main steps of the algorithm are as follows:
Step 1: Construct the Common Subsequence Automata M1 for S1 and S2.
Step 2: Construct the Substring Automata M2 for P .
Step 3: Construct the Intersection Automata M3 of M1 and M2.
Step 4: Construct the Maximum length Automata M from M3.
Detailed description of each of the steps are given below:

Step 1: Construction of common subsequence automata
On input (S1, S2) we can build a DASG M ′

S1S2
using O((n + m) log(n + m))

time. The DASG M ′
S1S2

has O(n + m) states and |
∑

|(n + m) transitions
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(for DNA/RNA sequence, fixed alphabet, |
∑

| = 4), and accepts the language
L(M ′

S1S2) = {w: w is a subsequence of S1 or S2}. Additionally, each transition in
M ′

S1S2
is labeled if the transition corresponds to part of a subsequence common

to both S1 and S2. The construction is given by Baeza-Yates [1], using suffix-
trees and table accesses. Then we prune this DASG to create DASG M1which
accepts the language L(M1) = {w: w is a common subsequence of S1 and S2}.
We need to do the following steps:

– We build the DASG for S1 and S2, appending to each transition the number
of strings that share the matched point. For any state s, we call state s′

reachable from s if there is a transition from s to s′ that is labeled as being
common to both S1 and S2.

– We use Depth first search to traverse the DFA M ′
S1S2 =(S′,

∑
, δ′, s0, F ′),

starting at s0. For all (s, σ, s′) ∈ δ′, if state s′ is reachable from s, then add
(s, σ, s′) to δ. Also, add s′ to F .

– We return M1=(S′, Σ, δ, s0, F).

Step 2: Construction of substring automata for P
The deterministic substring automata is similar to pattern matching automata
described in [7]. The properties and performance can be expressed by the fol-
lowing Lemma.

Lemma 1 ([7]). Given a constrained pattern P of length r, we can construct a
DFA M2 accepting language L(M2)={w: w has P as substring} in O(r) time.
M2 has (r + 1) states and |

∑
|(r + 1) transitions.

Step 3: Automata for intersection of language
L(M1) and L(M2) are both regular languages [13] and regular languages are
closed under Boolean operation [10]. Therefore, L(M1)

⋂
L(M2) is the language

that contains all strings that are both in M1 and M2, that is, it accepts all
common subsequence of S1 and S2 containing P as substring. As DASG is a
partial DFA, we have used a variant of standard intersection algorithm that
creates only accessible states.

Lemma 2. Given DFA M1 and M2 having (n+m) and r states, DFA M can be
constructed accepting language L(M) = L(M1)

⋂
L(M2) in O((n + m)r) time.

M has at most (n+m)r states and at most |
∑

|(n+m)r transitions. Moreover,
if M1 (or M2) is acyclic, then M is also acyclic.

Step 4: Maximum Length Automata
We use a maximum length automata (maxlen automata) to find maximum length
strings from the intersecting automata. The algorithm can be found in [11].
In brief, the automata is a modification of longest path algorithm for DAGs
(Directed Acyclic Graph) that works in O(E) time; where E is the number of
edges in the input DAG. If the original automata is A′ = (Q′,

∑
, δ′, q′0, F

′),
then the resulting maxlen automata is A = (Q,

∑
, δ, q0, F ), where Q ⊆ Q′, δ ⊆

δ′, F ⊆ F ′.

Lemma 3 ([11]). Given an acyclic DFA M ′ with n transitions, DFA M can
be built accepting language L(M)=Maxlen(M ′) in O(n) time. M has at most as
many states and at most as many transitions in M ′.
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3.2 STR-EC-LCS Problem

Steps are similar as before except for substring automata in Step 2. Now we
need an automata accepting the complement of language L(M2). This can be
done by making the accepting states of M2 into nonaccepting states and vice
versa. [10].

3.3 SEQ-IC-LCS Problem

The procedure is same as STR-IC-LCS. But here in Step 2 instead of sub-
string automata we use supersequence automata, which accepts all strings in-
cluding constrained pattern P as subsequence. The DFA for accepting language
L(M) = Super(X), for string X , |X | = n can be formally described as follows:
M = (Q,

∑
, δ, q0, {F}), where Q = {q0, q1, . . . , qn}, F = {qn}, δ(qi−1, xi) =

qi, δ(qi−1, s) = qi−1, for s ∈ {
∑

\xi}, where 1 ≤ i ≤ n and δ(qn, s) = qn. The
basic properties and time complexity of this automata can be summarized by
the following lemma.

Lemma 4. Given a string X of length n, a DFA M can be constructed in O(n)
time accepting language L(M)=Super(x). M has (n + 1) states and |

∑
|(n + 1)

transitions.

3.4 SEQ-EC-LCS Problem

The procedure is same as STR-EC-LCS. But here in Step 2 instead of substring
automata’s complement we use supersequence automata’s complement. So, after
intersecting with common subsequence automata we get an automata which
accepts all common subsequences that do not contain P as subsequence. Finally,
MAXLEN algorithm is applied on this automata. The resulting automata M
accepts language L(M)= maximum length common subsequence of S1 and S2
that does not contain P as subsequence.

4 Complexity

In this section, we present the following lemma which proves the correctness of
our algorithms and their time complexity.

Lemma 5. Given strings S1, S2 and P of length n, m and r, we can find GC-
LCS(S1, S2, P ) in O((n + m) log(n + m) + (m + n)r) time.

Proof. Correctness: Common subsequence automata is acyclic and accepts
all common subsequences of S1 and S2. Substring automata for P is a cyclic
automata that accepts all strings which contain P as a substring. In case of
STR-IC-LCS, after intersecting common subsequence automata with substring
automata, we get an acyclic automata which accepts all common subsequences
of S1 and S2 that contain P as a substring. Finally, by constructing maxlen
automata from this we can get longest common subsequence with P included
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as a substring. In case of STR-EC-LCS, we take intersection between common
subsequence automata and complement of Substring automata. Complement of
Substring automata accepts those strings that do not contain P as a substring.
Resulting automata accepts all common subsequences of S1 and S2 that do not
contain P as a substring. Again, by constructing maxlen automata from this we
get longest common subsequence with P not included as substring. Similarly, we
can prove correctness of our algorithm for SEQ-IC-LCS and SEQ-EC-LCS.

Time Complexity: Constructing common subsequence automata takes O((n+
m) log(n + m)) time. This automata has O(m + n) states. Constructing sub-
sequence automata and substring automata takes O(r) time. This automata
has O(r) states. Their intersection takes O((m + n)r) time. Construction of
Maxlen automata takes further O((m+n)r) time. So, overall time complexity is
O((n+m) log(n+m)+(m+n)r), which significantly improves existing O(mnr)
solution.

5 Conclusion

In this paper, we have studied different variations of the constrained longest
common subsequence problem and have given finite automata based solutions
that run in O((n+m) log(n+m)+(m+n)r) time for fixed sized alphabet. How-
ever, we can also extend our algorithm for arbitrary number of input strings and
constraint patterns as considered in [9]. In that case, the overall time complexity
of our extended algorithm will be O((n − L + 2)×

∏k
i=1 ri + Ln log n). It would

be interesting to implement these algorithms to compare the performances in
practice.
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Abstract. The Longest Common Subsequence (LCS) of two or more
strings is a fundamental well-studied problem which has a wide range of
applications throughout computational sciences. When the common sub-
sequence must contain one or more constraint strings as subsequences,
the problem becomes the Constrained LCS (CLCS) problem. In this pa-
per we consider the Restricted LCS (RLCS) problem, where our goal is
finding a longest common subsequence between two or more strings that
does not contain a given set of restriction strings as subsequences. First
we show that in case of two input strings and an arbitrary number of re-
striction strings the RLCS problem is NP-hard. Afterwards, we present
a dynamic programming solution for RLCS and we show that this al-
gorithm implies that RLCS is in FPT when parameterized by the total
length of the restriction strings. In the last part of this paper we present
two approximation algorithms for the hard variants of the problem.

1 Introduction

Given a set of strings A1, . . . , Am, a common subsequence of these strings is a
string S which appears as a subsequence in each of A1, . . . , Am, i.e. it can be
obtained from each Ai by deleting (possible none) letters. The Longest Common
Subsequence (LCS) problem is the problem of determining the (length of the)
longest common subsequence between a given set of strings. LCS is a funda-
mental problem in computer science, and has therefore been thoroughly studied
(see e.g. [1,6,12,13]). The problem had also been investigated on more general
structures such as trees and matrices [2], run-length encoded strings [4], and
more.
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The Constrained Longest Common Subsequence (CLCS) is an extension of
the LCS problem, where now we are given a set of constraint strings B1, . . . , B�

in addition to the set of comparison strings, and the goal is to find the longest
common subsequence of the comparison strings that contains each of B1, . . . , B�

as a subsequence. Quite a few results on the CLCS problem were presented
recently [5,8,9,10,11,14,15,18].

In this paper, we consider the “opposite” extension of the LCS problem,
namely the Restricted LCS (RLCS) problem:

Definition 1 (Restricted LCS). Given m input strings A1, . . . , Am and �
restriction strings B1, . . . , B�, the Restricted LCS (RLCS) problem is the problem
of computing the (length of the) longest common subsequence of A1, . . . , Am that
does not contains each of B1, . . . , B� as a subsequence.

In molecular biology, when biologists find new DNA sequences, they typically
would like to discover similarities between this sequence and other known se-
quences. The classical LCS will provide a good measurement for such similarities.
However, in real life, biologists might already be familiar with a set of sequences
that are known to be ”irrelevant” or ”non interesting”. Such sets of irrelevant
sequences can be based on previous research, in such cases the biologists would
like to find the maximum relevant similarity between this new sequence and
other known sequences. In other words, biologists would prefer to find major
similarities while also reducing unnecessary parts of it.

Similar application can be also found in the data-mining area. While searching
for similarities, in most cases people prefer to find a qualitative solution which
is compatible to some previous known restrictions or assumptions, than just
finding the longest similarity.

Andrejkova [3] also refers to a restricted variant of the classical LCS problem,
however, the problem discussed in this paper is completely different. As far as
we know, this extension of the LCS problem has not yet been considered. We
believe that RLCS might be better suited than its counterpart CLCS for some
scenarios, e.g. the above mentioned biological or data-mining applications.

1.1 Related Work

One of the goals of this paper is to compare the RLCS problem with CLCS. We
therefore briefly describe the state of the art of CLCS. The problem was first
introduced by Tsai [18] where he presented a dynamic programming algorithm
for the simplest case of two comparison strings and a single constraint string.
Improved dynamic programming algorithms were proposed in [5,9]. In [11], fast
approximation algorithms were designed for this basic CLCS variant. In [10], it
is proven that it is NP-hard to approximate CLCS within any factor, even in case
of two input strings and an arbitrary number of constraint strings. Moreover, a
factor 1√

nmin|Σ| approximation algorithm is presented for the case of many input

strings and a single constraint, where nmin denotes the length of the shortest
comparison string, and |Σ| denotes the number of different letters occurring in
both the comparison and constraint strings.
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1.2 Our Contribution

We focus on several different settings of RLCS. Section 2 is devoted to fixing some
notation and simplifications. Afterwards, in section 3, we show that the problem
is NP-hard even in the case of two comparison strings and an arbitrary number
of restrictions, each of length at most 2. Moreover, in Section 4, we present an
O(nm+�) dynamic programming solution for the RLCS problem, where m and
� respectively denote the number of comparison and restriction strings. We also
show in this section that this algorithm implies that RLCS is in FPT when pa-
rameterized by the total length of the restriction strings. Finally, in Section 5, we
present two simple approximation algorithms for the problem: The first having
an approximation ratio of a 1

|Σ| , and is suited for the most general variant of the
RLCS problem, and the second having a ratio of kmin−1

nmin
, and is relevant only for

instances with a constant number of input strings. Here nmin and kmin are the
lengths of the shortest input string and the shortest restriction, respectively, and
|Σ| is the number of different letters occurring in all strings of the instance.

2 Preliminaries

All strings considered in this paper are defined over some fixed alphabet Σ which
can have arbitrary (including infinite) cardinality, for a string S, we use |S| to
denote the length of S. For i ∈ {1, . . . , |S|}, we write S[i] for the letter at the
i’th position in S, and S[[i]] for the i’th prefix of S, i.e. S[[i]] = S[1] · · ·S[i].

We will use A1, . . . , Am and B1, . . . , B� to denote the set of comparison and
restriction strings in our input of the RLCS problem. Typically, we will use the
letter i to index the comparison strings, and the letter j to index the restriction
strings. For i ∈ {1, . . . , m}, we write ni for |Ai|, and for j ∈ {1, . . . , �}, we use kj

to denote |Bj |. Finally, n is used to denote the total length of the comparison
strings, i.e. n =

∑m
i=1 ni, and k to denote the total length of the restriction

strings, i.e. k =
∑�

j=1 kj .
We will make two assumptions that will not introduce any loss of generality,

yet will help in simplifying matters somewhat. The first assumption is that all
restriction strings have length at least 2, since if any single character appears
as a restriction, we can simply delete all its occurrences from the comparison
strings, and proceed without this restriction. The second assumption is that for
all i ∈ {1, . . . , m} and all j ∈ {1, . . . , �}, we have kj ≤ ni, since otherwise we can
remove the j’th restriction as it will never appear in a common subsequence of
A1, . . . , Am.

3 Hardness Result

It is known that in case of two input strings the classical LCS problem can
be solved easily in polynomial time. Here we show that if we add an arbitrary
number of restrictions, each of length 2, then the problem becomes NP-hard:

Theorem 1. The RLCS problem in case of two comparison strings and an ar-
bitrary number of restrictions, each of length 2, is NP-hard.
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Note that a valid solution to RLCS can always be easily found, as opposed to the
CLCS problem where it is NP-hard to determine whether a given instance has
any valid solutions. In this sense, proving hardness of approximation for RLCS is
somewhat more challenging in comparison to CLCS. Nevertheless, to prove The-
orem 1, we deploy a reduction which is similar to the one used for CLCS in [10].

The reduction we use is from the 6-OCC-MAX-2SAT problem which is defined
as follows: Given a CNF formula φ with clauses of size 2, and where every variable
appears in at most 6 clauses, the goal is to find an assignment of the variables
that maximizes the number of satisfied clauses in φ. Berman and Karpinski [7]
showed that 6-OCC-MAX-2SAT is APX-hard.

Given a 6-OCC-MAX-2SAT instance φ with variables x1, . . . , xnφ
and clauses

c1, . . . , c�, we construct an RLCS instance Iφ = (A1, A2, B1, . . . , B�) over the
alphabet Σ = {c1, . . . , c�} ∪ {s}, where s is a special padding character. The
string A1 is constructed as follows: For each variable xi, if ci1 , . . . , cit are the
clauses satisfied by setting xi = 1, and ci′1 , . . . , ci′

t′
are the clauses satisfied by

setting xi = 0, we construct a pair of substrings

Xi = “ ci1 , . . . , citci′1 , . . . , ci′
t′
” and X ′

i = “ ci′1 , . . . , ci′
t′
ci1 , . . . , cit”.

The comparison strings A1 and A2 are then constructed as

A1 = X1s
6X2s

6 · · · s6Xnφ
and A2 = X ′

1s
6X ′

2s
6 · · · s6X ′

nφ
,

where s6 = ‘ssssss′. Finally, we let Bj = “ cjcj” for all j ∈ {1, . . . , �}.
Given the following 6-OCC-MAX-2SAT formula: φ = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧

(x̄2 ∨ x̄4) ∧ (x̄1 ∨ x2) ∧ (x2 ∨ x̄3) ∧ (x3 ∨ x4), we construct the following RLCS
instance Iφ:

6s

6 6

B4

B3

1B

2B

5B

C2

C3

C4

C5

C6

C1

C2

C3

C4

C5

C6

C1

B6

C1 C5A2

C3A1

C6C5 C6C3s

C1

C4 C1

C2 C4

C2

C1 C4

C3 C4

C5 C5C2 C3C6C6

C2

s s s

s6 6

6

Note that the instance Iφ satisfies the requirements of the theorem and can be
constructed in polynomial time. To complete the proof of Theorem 1, we have
the following lemma:

Lemma 1. w clauses can be satisfied in φ iff there is a solution to Iφ of length
6(nφ − 1) + w.
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Proof. For simplicity, we assume that there are no clauses in φ that contain both
xi and x̄i.

(⇒) Let ϕ : {x1, . . . , xn} → {0, 1} be some assignment satisfying w clauses
in φ, and for each i, 1 ≤ i ≤ nφ, let Ci denote the clauses satisfied by ϕ(xi).
We construct a valid solution to Iφ from left to right: Assuming we have already
processed {C1, . . . , Ci−1}, we append to our solution all clauses in Ci which have
not been appended previously, concatenated by s6.

Note that since we only add clauses satisfied by xi = 0 or xi = 1, but never
both, our solution is indeed a common subsequence of A1 and A2. Furthermore,
notice that every clause has exactly one occurrence in our solution, therefore it
does not contain any of B1, . . . , B� as a subsequence. Obviously, since w different
clauses are satisfied and the separator has 6(nφ − 1) occurrences, the length of
our solution is 6(nφ − 1) + w.

(⇐) Let Sφ be a solution to Iφ of length 6(nφ−1)+w. Since every Xi contains
at most 6 letters, we can conclude that Sφ contains exactly 6(nφ−1) occurrences
of the padding-character s. Moreover, every clause has at most one occurrence in
Sφ, by construction of the restriction strings B1, . . . , B�. Now, since all padding
characters are in Sφ, Sφ must contain exactly w different clauses, and for each of
these clauses there is an i with the clause selected from Xi in A1 and X ′

i in A2. By
construction of Xi and X ′

i, clauses that are satisfied by xi = 0 cannot be selected
with clauses satisfied by xi = 1. It follows that there exists an assignment to
x1, . . . , xnφ

which satisfies w clauses of φ. �	

4 Exact Algorithms

In this section we present an exact algorithm for the RLCS problem. We begin
with the special case of two input strings and one restriction string, the variant
we dub the basic RLCS problem. We then extend this algorithm to the general
case of m input strings and � restriction strings. We show that this generaliza-
tion implies that RLCS is FPT when parameterized by the total length of the
restriction strings.

For describing our dynamic-programming solution for basic RLCS, we define
a dynamic-programming table DP , where the entry DP [i1, i2 : j1], for (i1, i2) ∈
{1 . . . , n1} × {1, . . . , n2} and j1 ∈ {1, . . . , k1}, will store the length of the LCS
between A1[[i1]] and A2[[i2]] restricted by B1[[j1]]. The entry DP [n1, n2 : k1]
will store the length of the LCS between A1 and A2 restricted by B1. The
computation of DP [i1, i2 : j1] is given by the following recursion:

DP [i1, i2 : j1] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

⎧⎨
⎩

DP [i1 − 1, i2 − 1 : j1 − 1] + 1
DP [i1, i2 − 1 : j1]
DP [i1 − 1, i2 : j1]

A1[i1] = A2[i2] = B1[j1],

DP [i1 − 1, i2 − 1 : j1] + 1 A1[i1] = A2[i2] �= B1[j1],

max
{

DP [i1 − 1, i2 : j1]
DP [i1, i2 − 1 : j1]

otherwise.



Restricted LCS 255

It is not difficult to see that the above recursion is correct. In particular, if
A1[i1] and A2[i2] are not both equal to B1[j1], then the recursion for DP [i1, i2 :
j1] follows the standard recursion for pairwise LCS, since there is no danger
in computing a solution which contains B1[1] · · ·B1[j1]. On the other hand, if
A1[i1] = A2[i2] = B1[j1], then a common subsequence of A1[[i1]] and A2[[i2]]
ending with the letter A1[i1] cannot contain B1[[j1 − 1]] as a subsequence, and
so its length must be equal to DP [i1 − 1, i2 − 1 : j1 − 1] + 1.

We next extend the above recursion for the case of m comparison strings
A1, . . . , Am and � restriction strings B1, . . . , B�. Again, we have a dynamic
programming table DP , indexed by tuples (i1, . . . , im) ∈ {1 . . . , n1} × · · · ×
{1, . . . , nm} and (j1, . . . , j�) ∈ {1, . . . , k1}×· · ·×{1, . . . , k�}, where DP [i1 . . . , im :
j1, . . . , j�] is equal to the length of the LCS between A1[[i1]], . . . , Am[[im]] re-
stricted by B1[[j1]], . . . , B�[[j�]].

If it is not the case that A1[i1] = · · · = Am[ik], then the recursion for
DP [i1 . . . , im : j1, . . . , j�] follows the standard recursion for LCS between m
strings (i.e. the restriction strings can be ignored). If A1[i1], . . . , Am[ik] all equal
some letter σ, then we compute DP [i1, . . . , im : j1, . . . , j�] by:

DP [i1, . . . , im : j1, . . . , j�] = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

DP [i1 − 1, . . . , im : j1, . . . , j�]
.
.
.
DP [i1, . . . , im − 1 : j1, . . . , j�]

DP [i1 − 1, . . . , im − 1 : j∗1 , . . . , j∗� ]

Where for all x ∈ {1, . . . , �}, we set j∗x = jx − 1 if Bx[jx] = σ, and otherwise
j∗x = jx.

Correctness of this recursion follows from the same arguments used for the
recursion for basic RLCS. Thus, since the dynamic programming table DP has
O(nm+�) entries, with each entry computable in constant time, we get:

Lemma 2. RLCS can be solved in O(nm+�) time.

Let k denote the total length of the restriction strings, i.e. k =
∑�

j=1 kj . Observe
that the number of entries in DP can also be bounded by O(2knm), since the
number of prefixes of the restriction strings cannot exceed 2k. Thus, we have:

Lemma 3. RLCS is in FPT when parameterized by the total length of the re-
striction strings.

5 Approximation Algorithms

We next present two approximation algorithms for the RLCS problem. The
first algorithm provides a 1

|Σ| approximation ratio for the case of both arbitrary
number of input strings and arbitrary number of restrictions. Here Σ is the set
of letters used in the instance, i.e. the actual alphabet of the comparison and
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restriction strings. Afterwards, we present an kmin−1
nmin

-approximation algorithm,
where nmin and kmin are the lengths of the shortest input string and the
shortest restriction, respectively. This algorithm is relevant only for the case
of fixed number input strings (and arbitrary number of restrictions). Both
algorithms are very simple. This situation should be compared with CLCS,
where in general no approximation can be sought unless P=NP, and for the
case of a single constraint string only a ratio of 1√

nmin|Σ| is known.

Algorithm I:

1. For every s ∈ Σ and every i ∈ {1, . . . , m}, compute the number of occur-
rences Occi(s) of s in Ai.

2. For every s ∈ Σ compute:
– Occ(s), the minimum between Occ1(s), . . . , Occm(s).
– Cons(s), the length of the shortest restriction string that does not contain

any symbol besides s. If no such restriction string exists, Cons(s) = ∞.
– V al(s), the minimum between Occ(s) and Cons(s) − 1.

3. Find s ∈ Σ with maximal V al(s) and return sV al(s).

The following lemma is easily established:

Lemma 4. Given a RLCS instance with arbitrary number input strings and ar-
bitrary number of restrictions, Algorithm I yields an approximation ratio of 1

|Σ| .

Proof. There is no restricted common subsequence of A1, . . . , Am that contains
more than V al(s) occurrences of any s ∈ Σ, and thus Algorithm I returns a
1

|Σ| -approximate solution. �	

Our second algorithm is even simpler than the first:

Algorithm II:

1. Compute the LCS S of A1, . . . , Am.
2. Return the prefix of length kmin − 1 of S.

Lemma 5. Given a RLCS instance with fixed number input strings (and ar-
bitrary number of restrictions), Algorithm II yields an approximation ratio of
kmin−1

nmin
.

Proof. If the LCS of A1, . . . , Am is shorter than kmin, then Algorithm II finds an
optimal RLCS. Otherwise, it outputs an RLCS of length kmin − 1 which yields
an approximation ratio of kmin−1

nmin
. �	

References

1. Aho, A.V., Hirschberg, D.S., Ullman, J.D.: Bounds on the Complexity of the
Longest Common Subsequence Problem. Journal of the ACM 23(1), 1–12 (1976)

2. Amir, A., Hartman, T., Kapah, O., Shalom, B.R., Tsur, D.: Generalized LCS.
In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 50–61.
Springer, Heidelberg (2007)



Restricted LCS 257

3. Andrejkova, G.: The Longest Restricted Common Subsequence Problem. In: Pro-
ceedings, Prague Stringology Club Workshop 1998, pp. 14–25 (1998)

4. Apostolico, A., Landau, G.M., Skiena, S.: Matching for Run-Length Encoded
Strings. Journal of Complexity 15(1), 4–16 (1999)
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Abstract. A breakthrough in the field of text algorithms was the dis-
covery of the fact that the maximal number of runs in a string of length
n is O(n) and that they can all be computed in O(n) time. We study
some applications of this result. New simpler O(n) time algorithms are
presented for a few classical string problems: computing all distinct kth
string powers for a given k, in particular squares for k = 2, and finding
all local periods in a given string of length n. Additionally, we present
an efficient algorithm for testing primitivity of factors of a string and
computing their primitive roots. Applications of runs, despite their im-
portance, are underrepresented in existing literature (approximately one
page in the paper of Kolpakov & Kucherov, 1999). In this paper we at-
tempt to fill in this gap. We use Lyndon words and introduce the Lyndon
structure of runs as a useful tool when computing powers. In problems re-
lated to periods we use some versions of the Manhattan skyline problem.

Keywords: run in a string, square, local period.

1 Introduction

The structure of all runs in a string provides succinct and very useful informa-
tion about periodic properties of the string. Several basic applications of this
structure were given in [14]. We present some other algorithmic applications of
runs and simplify already known algorithms.

First we consider the problem of computing all distinct kth powers in a string
of length n, for a given k. It is a known fact that the number of distinct squares
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(k = 2) does not exceed 2n [8,11,12] and for cubes (k = 3) there is a 0.8n bound
[15], which implies same bound for any value k ≥ 4. Gusfield & Stoye [10] present
an O(n) time algorithm for computing all the distinct squares. Unfortunately,
this algorithm is complicated and uses suffix trees which are a rather heavyweight
data structure and add a logarithmic factor depending on the size of alphabet in
most implementations. We present a much simpler O(n) time algorithm which
computes all distinct kth powers in a string of length n using suffix arrays instead
of suffix trees.

Another application of the runs structure is the computation of local periods
which are related to the critical factorizations of a string [5]. The known O(n)
time algorithm by Duval et al. [6] employs several different techniques modified
in a non-trivial way. We present an equally efficient but simpler algorithm using
the solution of the Manhattan Skyline Problem.

Finally, we consider factor-primitivity queries, which consist in checking, for
any factor of a given word, whether it is primitive and what is its primitive root.
This problem has potential applications in data compression, in particular, in
run-length encoding and its derivatives. We provide a solution to this problem
with O(n logε n) preprocessing time, for any ε > 0, and O(log n) query time.

2 Preliminaries

Let u be a word of length n, u = u[1 . . n], over a bounded alphabet Σ. We say
that an integer p is the (shortest) period of u[1 . . n] (notation: p = per(u)) if p is
the smallest positive integer such that u[i] = u[i + p] holds for all 1 ≤ i ≤ n− p.

Fig. 1. The structure of runs in the word baababaababb. The word contains 3 runs
with period 1, 2 runs with period 2, 1 run with period 3 and 1 run with period 5.

A run v (a maximal repetition) in the word u is an interval [i . . j] such that the
shortest period p = per(v) of the associated factor u[i . . j] satisfies 2p ≤ j− i+1,
and the interval cannot be extended to the left nor to the right without violating
the above property, that is, u[i − 1] �= u[i + p − 1] and u[j − p + 1] �= u[j + 1],
provided that the respective letters exist. Denote by R(u) the set of all runs in
u, each represented as a triple (i, j, p). It is known that |R(u)| = O(n) [4] and all
elements of R(u) can be computed in O(n) time [14] (a more practical algorithm
for computing all runs is given in [2]).

If wk = u (k is a positive integer) then we say that u is the kth power of
the word w. A square (cube) is the 2nd (3rd) power of a nonempty word. The
primitive root of a word u, denoted root(u), is the shortest word w such that
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wk = u for some positive integer k. We call a word u primitive if root(u) = u,
otherwise it is called non-primitive.

Let us recall two useful data structures in string processing.

Suffix Arrays. The suffix array of the word u consists in three tables: SUF,
LCP and RANK. The SUF array stores the list of positions in u sorted according
to the increasing lexicographic order of suffixes starting at these positions, i.e.:

u[SUF[1] . . n] < u[SUF[2] . . n] < . . . < u[SUF[n] . . n] .

Thus, indices of SUF are ranks of the respective suffixes in the increasing lexi-
cographic order. The LCP array is also indexed by the ranks of the suffixes, and
stores the lengths of the longest common prefixes of consecutive suffixes in SUF.
Denote by lcp(i, j) the length of the longest common prefix between u[i . . n] and
u[j . . n] (for 1 ≤ i, j ≤ n). Then, we set LCP[1] = −1 and, for 1 < r ≤ n, we
have:

LCP[r] = lcp(SUF[r − 1], SUF[r]) .

Finally the RANK table is an inverse of the SUF array:

SUF[RANK[i]] = i for i = 1, 2, . . . , n .

All tables comprising the suffix array can be constructed in O(n) time [3].

Range Minimum Queries. Define the range minimum query data structure
(RMQ, in short) as follows. Assume that we are given an array A[1 . . n] of
integers. This array is preprocessed to answer the following form of queries: for
an interval [a . . b] (for 1 ≤ a ≤ b ≤ n), find the minimum value A[k] for a ≤ k ≤ b.

The best known RMQ data structures have O(n) preprocessing time and O(1)
query time, using only O(n) bits of space [7,16]. The RMQ data structure on the
LCP array enables the computation of longest common extensions, i.e., longest
common prefixes between any two suffixes of a string in O(1) time, with O(n)
time preprocessing.

3 Lyndon Representations of Runs

Let u be a word of length n. By rot(u, c) let us denote a cyclic rotation of the
word u obtained by moving (c mod n) first letters of u to its end. We say that the
words u and rot(u, c) are cyclically equivalent. A word that is both primitive and
lexicographically minimal in the class of its cyclic rotations is called a Lyndon
word. We define the Lyndon root of a word u, lroot(u), as the (only) Lyndon word
cyclically equivalent to root(u). We define the Lyndon root of a run v = (i, j, p)
in u, lroot(v), as lroot(u[i . . i + p − 1]), note that this notion is slightly different
from the corresponding notion for words.

Denote by u(a) a prefix of the word u of length a and by u(a) a suffix of u
of length a. Each run v can be uniquely represented (Lyndon representation) in
the following form:

v
.= λ(a) · λm · λ(b) (1)
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λ = (v) λ λ
λ(b)λ

(a)

m

suf (v)

Fig. 2. A graphical view of the Lyndon representation of a run v = λ(a) · λm · λ(b)

where λ = lroot(v) and 0 ≤ a, b < per(v), see Fig. 2. We say that v is a λ-run.
We will divide all runs of R(u) into maximal groups of λ-runs.

For a run v = (i, j, p), define suf (v), suf (v) ≥ i, as the smallest index for
which:

u[suf (v) . . suf (v) + p − 1] = lroot(v) ,

see Fig. 2. This parameter, together with the period per(v), provides a unique
characterization of the Lyndon root of the run. Additionally define rank(v) =
RANK[suf (v)].

Lemma 1. The values of suf (v) and rank(v) for any run v in a word u of length
n can be computed in O(1) time assuming O(n) time preprocessing.

Proof. Let v = (i, j, p). The value of rank(v) can be computed using RMQ on
the interval I = [i . . i+p−1] of the table RANK. Indeed, the prefixes of length p
of the suffixes {u[d . . n] : d ∈ I} are exactly all cyclic rotations of lroot(v). Recall
that RMQ for an array of length n can be implemented with O(n) preprocessing
time and O(1) query time. Finally, suf (v) = SUF[rank(v)]. �	

Theorem 1. The set R(u) of all runs within u can be decomposed into pairwise
disjoint classes R1,R2, . . . ,Rt corresponding to runs with equal Lyndon roots in
O(n) time, where n = |u|.

Proof. We start the proof of the theorem with the following claim.

Claim 2. The equality of Lyndon roots of runs (represented as pairs of the form
(per(v), rank(v))) in u can be tested in O(1) time with O(n) preprocessing time.
Moreover, if L = v1, v2, . . . , va is a list of all runs in u with period p sorted in
ascending order of the values of parameter rank, then all runs in u with the same
Lyndon root λ, |λ| = p, form a sublist of L composed of a number of consecutive
elements.

Proof. The Lyndon roots of two runs v1 and v2 are equal if and only if per(v1) =
per(v2) and the longest common prefix of suffixes at positions suf (v1) and suf (v2)
is at least per(v1). Recall that longest common prefixes of arbitrary suffixes can
be computed using RMQ on the LCP array, which proves the first part.
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As for the second part of the claim, assume that for three runs v1, v2 and v3
we have per(v1) = per(v2) = per(v3) = p, rank(v1) < rank(v2) < rank(v3) and
lroot(v1) = lroot(v3). Then

lcp(suf (v1), suf (v3)) ≥ p ,

however due to the rank inequalities we have

lcp(suf (v1), suf (v3)) = min(lcp(suf (v1), suf (v2)), lcp(suf (v2), suf (v3))) .

Therefore
lcp(suf (v1), suf (v2)) ≥ p

and consequently lroot(v1) = lroot(v2) = lroot(v3). �	

Using Claim 2, the requested decomposition of R(u) can be obtained in O(n)
time in the following three steps, recall that |R(u)| = O(n).

1. Compute the values of suf (v) and rank(v) for all runs in R(u) — O(n) time
in total due to Lemma 1.

2. Represent all runs v in u as pairs (per(v), rank(v)), sort all such pairs lexi-
cographically — O(n) time using radix sort.

3. Group runs with equal Lyndon roots — due to Claim 2 the groups consist in
consecutive runs in the sorted order of pairs, and equality of Lyndon roots
of runs can be tested in O(1) time with O(n) time preprocessing, what gives
O(n) time complexity of this step. �	

Define the compact Lyndon representation of a run v = (i, j, p) as a tuple:

v � (i, j, p, a, m, b, �) (2)

where � is the length of v and a, m, b are defined as in the (ordinary) Lyndon
representation (1). Due to the following lemma, the compact Lyndon represen-
tations of runs can be computed efficiently:

Lemma 3. The compact Lyndon representation of runs (represented as (i, j, p))
in a word u of length n can be computed in O(1) time with O(n) time prepro-
cessing.

Proof. For a run v = (i, j, p) of length � = j − i + 1, knowing the value of suf (v)
the compact Lyndon representation of v can be computed using the following
additional formulas:

a = suf (v) − i, m = �(� − a)/p� , b = � − a − mp .

Hence, the statement is a consequence of Lemma 1. �	
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4 Inferring Powers from Runs

Denote by #powers(u, k) the total number of distinct kth powers in a string u.
In this section we present an algorithm for efficiently computing this function
as well as reporting the corresponding powers. By reporting we mean returning
the vector POWERS such that, for each i, POWERS [i] is the set of periods of
all kth powers which have the last occurrence starting at position i. These sets
have cardinality at most two [8,11,12].

Each kth power wk (for k ≥ 2) occurring in u corresponds to a run v containing
this occurrence for which per(v) = |root(w)|, we say that wk is induced by the
run. If lroot(w) = λ then we call wk λ-compatible. Note that two runs may induce
the same power only if their Lyndon roots are equal.

For a λ-run v define maxpower(v) as the maximal natural β such that some
cyclic rotation of λkβ is induced by v.

Observation 4. If v is a run of length � with period p then maxpower(v) =
��/(kp)�.

The following lemma shows a correspondence between Lyndon representation of
a run and the set of induced distinct kth powers.

Lemma 5. Let v be a λ-run with period p and let β = maxpower(v). Then all
powers induced by v are:

– all cyclic rotations of λkα for α < β
– cyclic rotations rot(λkβ , c) for c ∈ I(v), where I(v) ⊆ [0 . . p) is a union of

at most two intervals.

Proof. Let v
.= λ(a) · λm · λ(b) be a run of length � with period p.

Note that for a given α the run v induces all cyclic rotations rot(λkα, c) for
c ∈ [p − a, p − a + � − kp · α]. In particular, for α < β, we obtain all distinct
cyclic rotations, since � − kp · α ≥ p. For α = β, the aforementioned interval for
the value of c must be treated modulo p and forms either a single subinterval of
[0 . . p) or a sum of at most two intervals I(v). For α > β, no cyclic rotation of
the word λkα is present in v, since |λkα| > |v|. �	

Let maxruns(u, λ) be the set of λ-runs of u with maximal value of maxpower(v).
Denote by #powersλ(u, k) the number of λ-compatible k-powers in u. The fol-
lowing lemma is a consequence of Lemma 5.

Lemma 6. For a word u let β(λ) = max{maxpower(v) : v ∈ λ-runs(u)}.
Then

#powersλ(u, k) = (β(λ) − 1) · |λ| +

∣∣∣∣∣∣
⋃

v∈maxruns(u,λ)

I(v)

∣∣∣∣∣∣ ,

#powers(u, k) =
∑

λ

#powersλ(u, k) .
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λ λ λ λ

rot(λ2, 5)

Fig. 3. The run λ(2)λ4λ(2) with the Lyndon root λ = abbcccc induces all possible
distinct squares cyclically equivalent to λ2 and 5 squares cyclically equivalent to λ4,
that is, maxpower(v) = 2 and I(v) = [0 . . 2] ∪ [5 . . 6]

Theorem 2. For a given word u of length n, the value #powers(u, k) can be
computed and all distinct kth powers in u can be reported in O(n) time.

Proof. The value #powers(u, k) can be computed using the formulas from Lemma
6, assuming that we have the decomposition of R(u) from Theorem 1 and the
compact Lyndon representations of all runs, which are necessary to compute the
values of β(λ) and I(v) (see the formulas in Lemma 5). The only difficulty is to
find the size of the union of the sets I(v) for a given group of λ-runs Ry in O(|Ry |)
time. Note that this can be performed in a simple way if the sets to be summed
form a list of intervals sorted in non-decreasing order (intervals treated as pairs).
Due to Lemma 5, each set I(v) can be divided into a constant number of intervals.
Finally, all intervals across all the groups Ry can be sorted using radix sort in O(n)
time.

The algorithm reporting all powers is a natural extension of the algorithm
computing #powers(u, k) using the exact formulas from Lemma 5, we omit the
technical description of the algorithm in this version of the paper. �	

Denote by #occ-powers(u, k) the total number of occurrences of kth powers in a
string u. We end this section presenting a formula for #occ-powers(u, k) which
can be evaluated in a straightforward manner to obtain an O(n) time algorithm,
where n = |u|. Note that the value of the formula can be Θ(n2).

Theorem 3

#occ-powers(u, k) =
∑

(i,j,p)∈R(u)

c(i, j, p) · (j − i + 2 − kp/2) − c(i, j, p)2 · kp/2

where

c(i, j, p) =
⌊

j − i + 2
kp

⌋
. (3)

The proof of the theorem will be included in the full version of the paper.

5 Computation of Local Periods

By P = {p1, p2, . . . , pn−1} we denote the set of inter-positions that are located
between pairs of consecutive letters of u[1 . . n]. We say that a square ww is



Extracting Powers and Periods in a String from Its Runs Structure 265

centered at inter-position pi of u if both of the following conditions hold, for
x = u[1 . . i] and y = u[i + 1 . . n]:

– w is a suffix of x or x is a suffix of w
– w is a prefix of y or y is a prefix of w.

We define the local period at inter-position pi (notation: localper[i]) as |w|, where
ww is the shortest square centered at this inter-position, see also Fig. 4. Clearly,
for any pi there are three possible cases:

Fig. 4. A Fibonacci string with local periods at all its inter-positions. Local period at
inter-position p9 of the string is 3, since the smallest period q of a run which completely
covers the factor of the string corresponding to the interval [9− q + 1 . . 9+ q] equals 3.

Case A: |w| ≤ min(|x|, |y|), i.e., ww is an internal square of u.
Case B: min(|x|, |y|) < |w| ≤ max(|x|, |y|), i.e., ww is a left-external square (if
|w| > |x|) or a right-external square (if |w| > |y|).
Case C: max(|x|, |y|) < |w|, i.e., ww is a both-sides-external square.

We handle Cases A-C separately. In Case A we use the structure of runs in u
and perform a reduction to the Manhattan Skyline Problem. In Cases B and
C we use the border array from the Morris-Pratt algorithm, which is a simple
alternative to a modified Boyer-Moore shift function used for this purpose in [6].

Case A: internal local periods. The problem of the internal local periods
can be reduced in O(n) time to the (restricted min-version) of the following
problem:

Restricted Manhattan Skyline Problem

Input:
given a set S of O(n) subintervals of [1 . . n − 1] with natural heights of size
O(n);

Output:
the table f [t] = min{height([i . . j]) : t ∈ [i . . j], [i . . j] ∈ S}, t ∈ [1 . . n−1].

Indeed, note that any internal local period corresponds to a primitively rooted
square in u, induced by one of the runs of u, see also Fig. 4. Each run v = (a, b, q)
in u induces such squares with root q at inter-positions pa+q−1, pa+q, . . . , pb−q.
Thus for each inter-position pi we need to find the shortest period of a run (i.e.,
height of an interval from the Manhattan Skyline Problem) inducing a square
at this inter-position.

The following two lemmas show how to utilize the described reduction to
construct a linear time algorithm for computing internal local periods.
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Lemma 7. Assume initially X = ∅ and all considered intervals [i . . j] are from
the universe [1 . .m]. Then the sequence of O(m) pairs of operations:

{ list-all-elements([i . . j] \ X); X ← X ∪ [i . . j]; } (4)

can be implemented in O(m) time.

Proof. The implementation uses a restricted version of the find/union data struc-
ture, in which we are allowed to union only adjacent subintervals. Thus the
structure of union operations forms a static tree (here it is a path graph) and
therefore O(m) find/union operations can be performed in O(m) time [9] (see
also [13]).

In the algorithm the universe [1 . .m+1] (extended to the right by a sentinel) is
partitioned into maximal segments of elements of X followed by a single element
which is not in X : all elements in such a segment form a single find/union
component which stores the index of its rightmost position. The operations (4)
are implemented by traversing the components intersecting the interval [i . . j],
reporting their rightmost elements and summing them one by one. �	
Lemma 8. The internal local periods can be computed in linear time.

Proof. We showed that the problem can be reduced to the restricted Manhattan
Skyline Problem. This problem can be solved in O(n) time as follows.

Sort intervals from S according to their heights (in increasing order);
Initialize X = ∅;
for each interval [i . . j] ∈ S (in the sorted order) do

for each t ∈ list-all-elements([i . . j] \ X) do
f [t] ← height([i . . j]);

X ← X ∪ [i . . j];

According to Lemma 7, the set operations in the above pseudocode can be
implemented in linear time. This completes the proof. �	

Case B: one-side-external local periods. Recall that a word that is both a
prefix and a suffix of a word u is called a border of the word u; a border of u is
called proper if it is shorter than u. Denote by border[i], for i = 1, 2, . . . , n, the
length of the longest proper border of u[1 . . i]. Recall that the border array can
be computed in O(n) time, as in the Morris-Pratt algorithm [5].

The following lemma shows how the border array can be used to compute
left-external local periods, the case of right-external local periods is symmetric
and can be treated similarly by considering the reversed word u. The proof of
the lemma will be present in the full version of the paper.

Lemma 9

(a) If the local period at inter-position pi is left-external (and not right external)
then there exists j > i such that border[j] = i and localper[i] = j − i.

(b) If border[j] = i for any j = 2, 3, . . . , n and i > 0 then localper[i] ≤ j − i.
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Due to Lemma 9, the localper array can be updated in O(n) time by considering
all left-external local periods corresponding to the values border[j] for all j =
1, 2, . . . , n.

Case C: both-sides-external local periods. Consider a both-sides-external
local period at inter-position pi of u. If b is the longest overlap between u[i+1 . . n]
and u[1 . . i], i.e., the longest suffix of the former word which is also a prefix of
the latter word, then localper[i] = n − b, see Fig. 5. Note that b is the length of
the longest border of u which is not longer than min(i, n − i).

1 i n

ww

b b

w

i n

1 i

b

b

Fig. 5. The correspondence between both-sides-external local periods and borders

Recall that the lengths of all proper borders of u are iterations of the form
border(j)[n]. This concludes an O(n) time algorithm which updates the localper
array obtained after the previous cases considering all both-sides-external local
periods, filling the array from its middle to its sides.

Combining the solutions to Cases A-C, we obtain the following result.

Theorem 4. All local periods of a string u of length n can be computed in O(n)
time (in a simple way) using the runs structure of u and the border array.

6 Factor-Primitivity Queries

For a given string u of length n, we define a factor-primitivity query as follows:
for the indices a, b, 1 ≤ a ≤ b < n, check whether the factor u[a . . b] is primitive,
and if not, find the length of its primitive root. Let us introduce a notion relating
runs with factor-primitivity queries. We say that a run (i, j, p) completely covers
an occurrence of a factor u[a . . b] in u if i ≤ a, b ≤ j.

Lemma 10. Let p be the minimum period of a run completely covering an oc-
currence of a factor w in a string u (or p = ∞ if no such run exists). If p < |w|
and p | |w| then |root(w)| = p; otherwise w is primitive.
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Proof. Assume first that q
def= |root(w)| < |w|. Then also per(w) = q, see [5].

Hence, w is completely covered by a run with period q and, obviously, by no run
with period smaller than q.

On the other hand, if |root(w)| = |w| then any run completely covering w and
having period p satisfies p = |w| or p � |w|. This concludes the proof. �	

The conclusion of Lemma 10 can again be interpreted using the notion of Man-
hattan skyline, see Fig. 6.

i j

Fig. 6. The buildings in the skyline correspond to runs in a string u and their heights
correspond to their periods. When checking primitivity of a factor w = u[i . . j] we look
for the lowest building such that w is completely “under its roof”.

In our algorithm we utilize yet another interpretation of the problem. To each
run (i, j, p) in a word u (|u| = n) we assign a point (i, j) in the 2-dimensional
plane, and define the value of this point as f((i, j)) def= p. Denote the set of all
such points by V . By Lemma 10, to find the primitive root of any factor u[a . . b]
of u, it suffices to compute the value

min{f((i, j)) : 1 ≤ i ≤ a, b ≤ j ≤ n, (i, j) ∈ V } .

This is exactly a 2D range search for minimum query, which can be answered
in the RAM model in: O(log1+ε m) query time with O(m) preprocessing time,
O(log m log log m) query time with O(m log log m) preprocessing time, or
O(log m) query time with O(m logε m) preprocessing time, where m = |V | =
|R(u)| and ε is an arbitrary positive real [1]. Thus we obtain the next result.

Theorem 5. For a given string u of length n, using the runs structure of u we
can answer factor-primitivity queries in O(n logε n) preprocessing time, for any
ε > 0, and O(log n) query time.
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Abstract. The Shortest Common Superstring (SCS) is a well studied
problem, having a wide range of applications. In this paper we consider
two problems closely related to it. First we define the Swapped Restricted
Superstring(SRS) problem, where we are given a set S of n strings, s1,
s2, . . ., sn, and a text T = t1t2 . . . tm, and our goal is to find a swap
permutation π : {1, . . . , m} → {1, . . . , m} to maximize the number of
strings in S that are substrings of tπ(1)tπ(2) . . . tπ(m). We then show that
the SRS problem is NP-Complete. Afterwards, we consider a similar
variant denoted SRSR, where our goal is to find a swap permutation
π : {1, . . . , m} → {1, . . . , m} to maximize the total number of times that
the strings of S appear in tπ(1)tπ(2) . . . tπ(m) (we can count the same
string si as a substring of tπ(1)tπ(2) . . . tπ(m) more than once). For this
problem, we present a polynomial time exact algorithm.

1 Introduction

1.1 Motivation

In the shortest common superstring problem we are given a set S of n strings,
s1, s2, . . . , sn and we want to find the shortest string that is a superstring on
every string in S. We consider its motivation as follows. Given a set of goals (or
tasks) which have to be accomplished, we want to find the most cost efficient
plan which achieves all the goals. One can notice that in this case we have two
major assumptions:

– We have an unlimited set of resources.
– The resources are independent and we can use them in any order.

However, in real life this is never the case: our resources are always limited and
might be dependent on each other. Therefore, we ask a more realistic question:
given a fixed set of resources with restrictions on their order, how many goals
can be achieved ?

To do so, we present the following pattern matching model of the superstring
problem while using swap permutations. First we assume to have a fixed set of
� This work was partially supported by the Israel Science Foundation grant 1484/08.

E. Chavez and S. Lonardi (Eds.): SPIRE 2010, LNCS 6393, pp. 270–278, 2010.
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resources, which are defined as a text T = t1t2 . . . tm. The set of tasks corre-
sponds to the set S of n strings, s1, s2, . . ., sn. Then, we limit the way we can
use our resources by using swap permutation on the text T . Hence, our goal is
to find the best valid arrangement of these resources that leads us to accomplish
the maximum number of goals.

It seems that several applications of the Shortest Common Superstring prob-
lem are more suitable for the case of fixed set of resources and arrangement
restriction.

In AI planning research it is very important to exploit the interactions between
different parts of plans. This was observed early in the area [15,17,19]. One very
important type of interaction is the merging of different actions to make the
total plan more efficient. Consider the case where a plan already exists and a set
of actions is performed according to this plan. We now may want improve the
plan to achieve a better performance, however, we do not want to (or we cannot)
alter the current plan, thus we are interested in performing local improvements
in the existed plan.

Moreover, consider a factory that places a set of machines in a single hall.
Now, given a set of products that has to be manufactured, we would like to
find the most efficient arrangement of the machines that maximizes the number
of manufactured products. The problem is that even if we can find the best
arrangement, it is not possible to shift every machine into its optimal position,
instead we only use local rotations between adjacent machines.

1.2 Previous Work

In the shortest common superstring problem we are given a set S of n strings,
s1, s2, . . . , sn and we want to find the shortest string that is a superstring on
every string in S. For arbitrary n the problem is known to be NP-Complete [9]
and APX-hard [7]. Even for the case of binary alphabet Ott [14] presented ap-
proximation ratio lower bounds. The best known approximation ratio so far is
2.5 [12,16].

Given a text T of n symbols and a pattern P , a swapped version T ′ of T is
a length n string derived from T by a series of local swaps, (i.e. t′� → t�+1 and
t′�+1 → t�) where each element can participate in no more than one swap. The
pattern matching with swaps problem is that of finding all the locations i for
which there exists a swapped version T ′ of T where there is an exact matching
of P at the location i of T ′.

In the last decade several results regarding the pattern matching with swaps
problem are presented. In [3], Amir et. al. shows that for special cases the pattern
matching with swaps problem can be solved in time O(n log2 m). Then, in [1] the
first o(mn) algorithm for the pattern matching with swaps problem is presented.
In [4], Amir et. al. present an algorithm that counts the number of swaps at every
location in running time of O(n log m log σ), where σ = min(m, |Σ|). In [20], the
problem of pattern matching with swaps in a weighted sequence is considered.
Then, in [6] approximation algorithms for the problem of computing the cyclic
swap distance between two n-bit (cyclic) binary strings are considered. In [2], it
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is shown that approximate string matching problem with the swap and mismatch
as the edit operations, can be computed O(n

√
m log m) running time. Iliopoulos

and Rahman [11] present a new algorithm using a graph-theoretic model for
the swap matching problem. Then, in [5], an application for this algorithm is
presented.

In [8] it is considered the problem of Shortest Common Permutation Su-
perstring. This turns out to be a very general and difficult problem (hard to
approximate within a factor of n1−ε, for any ε > 0, unless P = NP and remains
NP-hard even in the case of a binary alphabet). The problems we consider here
are interesting restricted variants in the sense that the permutations allowed
are restricted to swaps. While these are interesting variants because of their
practicality, the theoretical implication is quite surprising as well.

It turns out that there is an inherent difference between the SRS problem and
the SRSR problem. One remains hard while the other is polynomial.

1.3 Our Contributions

In this paper we define two variants of the above described model. First we define
the Swapped Restricted Superstring(SRS) problem, where our goal is to find the
best arrangement of our resources (restricted by swap permutations) that leads
us to accomplish the maximum number of different goals. For this variant we
show that it is NP-hard to find the permutation that maximizes the number of
different goals that we can accomplish.

Then, we define the Swapped Restricted Superstring with Repetitions (SRSR)
problem, where our goal is to find the best arrangement of our resources (restricted
by swap permutations) that maximizes the total number of goals achieved (here
we can count completion of the same goal more than once). For this variant we
present an exact algorithm that finds the permutation that maximizes the total
number of goals that we can accomplish (with repetitions).

Here we present the formal definition of both problems:

Problem 1. (Swapped Restricted Superstring) The input consists of a set S =
{s1, s2, . . . , sn} of n strings over an alphabet Σ and a text T = t1t2 . . . tm over
the same alphabet. The goal is to find an ordering of the text T that maximizes
the number of different strings from S that are substrings of the ordered text.

We denote this ordering by π : {1, . . . , m} → {1, . . . , m} such that:

– if π(i) = j, then π(j) = i.
– for all i, π(i) ∈ {i − 1, i, i + 1}, (only adjacent characters can be swapped).
– if π(i) �= i then tπ(i) �= ti.

Example 1. Given a text T = abcab and the set S = {abc, cab, cbb, acb, bba}.
The maximum number of different strings from S that can be a substring of a
swapped permutation of T is 3. Such a permutation is acbba which contains the
strings acb, cbb, bba as substrings.

Problem 2. (Swapped Restricted Superstring with Repetitions) The input con-
sists of a set S = {s1, s2, . . . , sn} of n strings over an alphabet Σ and a text
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T = t1t2 . . . tm over the same alphabet. The goal is to find an ordering of the
text T that maximizes the number of occurrences of strings in S that are sub-
strings of the ordered text, such that the string si can be counted as a substring
more than once.

We denote this ordering by π : {1, . . . , m} → {1, . . . , m} exactly as in the
SRS definition.

Example 2. Given a text T = ababca and the set S = {ba, bca, aac}. The
maximum number of occurrences of strings from S that can be a substring of
a swapped permutation of T is 3. Such a permutation is babaac which contains
the string ba twice and the string aac once as substrings.

The rest of the paper is organized as follows. In Section 2 we show that the SRS
problem is NP-Hard. In Section 3, we present an exact algorithm for the SRSR
problem. We first present an algorithm based on dynamic programming with the
running time O(mn2�2), where � is the maximum length of a string in the input
for the SRSR problem. Then, in Section 3.2, we present guidelines for running
time improvements of the above algorithm. We end the paper with some open
questions.

2 Hardness of Swapped Restricted Superstring

In this section we prove that the SRS problem is NP-Hard. We present a reduc-
tion from the Fragmentary Pattern Matching which is known to be NP-Hard [10].

Problem 3 (Fragmentary Pattern Matching (FPM)). Given a text t = t1t2 . . . tm
and a set of strings P = {p1, p2, . . . , pn} over the alphabet Σ, find a subset
P ′ = {p′1, p′2, . . . , p′k} ⊆ P of maximum cardinality such that there exists a
permutation π for which t = α1p

′
π(1)α2p

′
π(2) . . . αkp′π(k)αk+1, where αi ∈ Σ∗ for

1 ≤ i ≤ k + 1 (i.e. all the k strings match the text t and they do not overlap).

Theorem 1 ([10]). Fragmentary Pattern Matching is NP-Hard.

The main result of this section is stated in the following theorem.

Theorem 2. Swapped Restricted Superstring is NP-Hard.

Proof. Given an instance of the FPM we construct the following instance of the
SRS :

– The alphabet Σ′ of the SRS instance is Σ ∪ {x1, x2, . . . , xn, xn+1}, where
x1, x2, . . . , xn, xn+1 /∈ Σ.

– We create the text T by concatenating the string X = x1x2 . . . xnxn+1 after
each character of the text t in the FPM instance. Thus, given a text t =
t1t2 . . . tm in the FPM instance, we set the text T of the corresponding SRS
to be T = t1Xt2X . . . tmX .

– Denote by Xi the string x1x2 . . . xi−1xi+1xixi+2 . . . xnxn+1. For every string
pi = a1a2 . . . aq in the FPM instance we construct its corresponding string
si = a1Xia2Xi . . . aqXi in the SRS instance.
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We show that the optimal solution of the FPM instance is of the same size
as the optimal solution of its corresponding SRS instance.

Given an FPM solution of size k, we construct a solution of the same size to
the corresponding SRS instance in the following way. Assume that in the FPM
instance the strings are placed on the positions i1, i2, . . . , ik, then in the SRS
instance we can place the corresponding strings in the text T on the positions
(i1 − 1)(n + 1) + i1, (i2 − 1)(n + 1) + i2, . . . , (ik − 1)(n + 1) + ik and swap the
text accordingly.

We now prove the converse part. To do so, we show that in any swap permuta-
tion of the text such that si and sj are substrings of it, si and sj cannot overlap.
Suppose they do, then the text has to be swapped in a way that matches both
Xi and Xj. Since these strings are different, this is impossible (contradiction).
Thus, we can recover a solution to the FPM problem of the same size. �	

Example 3. We are given the following instance of the FPM problem: t = abaab
and P = {ab, ba}. The optimal solution of this instance has size 2 (we can
place the first string in the fourth position, and the second string in the second
position). The corresponding instance of the SRS problem is:
T = ax1x2x3bx1x2x3ax1x2x3ax1x2x3bx1x2x3
S = {ax2x1x3bx2x1x3, bx1x3x2ax1x3x2}

The optimal solution of the SRS instance has also size 2: we place the first
string on position 13 and the second one on position 5.

3 Exact Algorithm for Swapped Restricted Superstring
with Repetitions

In this Section we present a polynomial time algorithm for the SRSR problem.
First we give a dynamic programming algorithm and then we improve the run-
ning time of this algorithm using suffix trees.

3.1 A Dynamic Programming Approach

Before we present the algorithm, let us introduce a few notations.
First, we define |sk| to be the length of the string sk. We define the function

f(i, k), for all 1 ≤ i ≤ m and 1 ≤ k ≤ n to be the optimal solution for the text
T = t1 . . . ti with the following restriction: in this solution a copy of the string
sk is placed at position i − |sk|+ 1. For a pattern sk = a1a2...a�, and an integer
1 ≤ i ≤ �, let incl(i, k) be the total number of times the strings of S appear
in aiai+1 . . . a�, or have a suffix which is a prefix of aiai+1 . . . a� (but are still
included in sk). We say that a pattern sk swap-matches the text at position i
if there exists a swap permutation π of the text such that sk matches π(T ) at
position i.

We show now how to compute the function f . If sk does not swap-match the
text T at position i−|sk|+1, then f(i, k) = 0. Otherwise, f(i, k) is the maximum
of the following values:
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– f(a, b) + incl(1, k), for any 1 ≤ a ≤ i − |sk|, 1 ≤ b ≤ n.
– f(j, q)+ incl(j − i+ |sk|+1, k)+1, for each index j between i− |sk|+1 and

i and all the patterns sq such that j − |sq| ≤ i− |sk| and the last j − i + |sk|
characters of sq are the same as the first j − i + |sk| characters of sk.

The solution of the SRSR problem is maxm
i=1maxn

j=1f(i, j). Algorithm 1 de-
scribes formally the computation of the function f . We assume that at the be-
ginning all the variables are set to 0.

Theorem 3. Algorithm 1 computes the optimal solution of the SRSR problem
in time O(mn2�2), where � is the maximum length of a string in the input.

Proof. First we prove that our algorithm computes the correct result. The proof
is by induction over the length of the text. Assume that we want to compute the
value f(i, k) and we know that f(j, q) contains the correct value for all 1 ≤ j < i
and 1 ≤ q ≤ n. We want to compute what is the maximum number of strings in
an optimal solution that are not in conflict with the string sk. This is performed
in the lines 20− 28 in the Algorithm 1: if we are at position j and we know that
the solution ends with a string sq that agrees with sk (i.e. the last j − i + |sk|
characters of sq are the same as the first j − i + |sk| characters of sk) we know
that we can place both sk and all the strings in the solution given by f(j, q). In
our solution we also want to count the strings that are substrings of sk: we do so,
by defining the function incl(). We add only the strings that are substrings, or
have a suffix which is a prefix of sk[j +1] . . . sk[|sk|], since the others are counted
already in f(j, q).

The value max[i] is equal to maxi
j=1maxn

k=1f(j, k). Since we need this infor-
mation each time we compute a value f(i, k) we store it to reduce the running
time.

The time complexity of the lines 3 − 11 is O(n2�3), where � is the maximum
length of a string, even if all the computations are performed naively. The run-
ning time of the part between the lines 13 − 33 is O(mn2�2) which is greater
than O(n2�3). Therefore the total running time is O(mn2�2).

3.2 A Faster Solution

In this part we show a few methods to improve the running time of Algorithm 1.
First, we observe that we can improve the running time of the algorithm

between the lines 3 − 11 (which computes the incl() function) to O(n2�) as
follows. For any two strings si and sk we find all the occurrences of sk in si using
the KMP algorithm [13], and therefore compute faster the values of match().
If sk matches si at position j, then we set match(j + |sk| − 1) to one. Then
incl(j, i) ← incl(j, i) +

∑|si|
q=j match(q), as we do in Algorithm 1. Since the

running time of the KMP algorithm is linear in the length of the input, the total
running time of this part is O(n2�). We show later how to improve this part
using suffix trees.

Then, we observe that f(i, k) is 0 for all the positions i at which the pattern
sk does not swap-match the text. Therefore, we only have to compute the value
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Algorithm 1. Computes the optimal solution to the SRSR problem
1: Input: Text t = t1t2 . . . tm, strings s1, s2, . . . , sn.
2:
3: for i=1 to n do
4: for k=1 to n do
5: for j=1 to |si| − |sk|+ 1 do
6: if sk = si[j]si[j + 1] . . . si[j + |sk| − 1] then
7: match(j + |sk| − 1)← 1
8: else
9: match(j + |sk| − 1)← 0

10: end if
11: end for
12: for j=|si| − 1 downto 1 do
13: match(j)← match(j) + match(j + 1)
14: incl(j, i)← incl(j, i) + match(j)
15: end for
16: end for
17: end for
18:
19: for i=1 to m do
20: max[i]← max[i− 1]
21: for k=1 to n do
22: if sk does not swap match T at position i− |sk|+ 1 or |sk| > i then
23: continue;
24: end if
25: f(i, k)← max[i− |sk|] + incl(1, k)
26: for j=i downto i− |sk|+ 1 do
27: for q=1 to n do
28: if sk[1]sk[2] . . . sk[j − i + |sk|] = sq[|sq | − (j − i + |sk|) + 1] . . . sq[|sq |]

and j − |sq | ≤ i− |sk| then
29: if f(i, k) < f(j, q) + incl(j − i + |sk|+ 1, k) + 1 then
30: f(i, k)← f(j, q) + incl(j − i + |sk|+ 1, k) + 1
31: end if
32: end if
33: end for
34: end for
35: end for
36: if f(i, k) > max[i] then
37: max[i]← f(i, k)
38: end if
39: end for
40:
41: Output: max[m]
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f(i, k) for all the other positions. We can compute all the positions at which a
string si swap-matches the text in time O(m�1/3 log � logΣ) [1]. Since there are
n strings, the running time is O(nm�1/3 log � log Σ).

We focus now on the lines 20 − 27: for a string sk and a position i we want
to compute f(i, k) as fast as possible. The key observation is that we do not
have to check all the positions between i − |sk| + 1 and i and all the strings
sq, since two strings sk and sq can overlap in a solution only if they agree
on the overlap. Therefore, we want to find for a string sk all the strings sq

that have a suffix which is a prefix of sk. We introduce the following notation:
Overlap(k) = {(j, q)|sk[1]sk[2] . . . sk[j] = sq[|sq| − j + 1] . . . sq[|sq|]}

We precompute Overlap(k) for all the strings sk, before we enter the main
loop from the line 13, as follows. First, we create the suffix tree for the string
s1#s2# . . . #sn, where # /∈ Σ is a special character. The construction of the
suffix tree can be done in linear time (in our case O(

∑n
i=1 |si|) using Ukkonen’s

algorithm [18]. Then for each string k we can find the set Overlap(k) in time
O(� + |Overlap(k)|): we traverse the suffix tree following the characters of sk

and we check which other strings have a suffix which is a prefix of sk.
Using the same suffix tree we can also speed up the computation of the incl()

function. For a string sk, all the nodes in the suffix tree that are below it corre-
spond to suffixes of strings si that include sk (and start with sk). Therefore the
computation can be done in time O(

∑n
i=1

∑|si|
j=1 incl(j, i)).

4 Open Questions

It would be interesting to answer the following questions:

1. Can we find a faster find a faster algorithm for the SRSR problem ?
2. Is there an efficient approximation algorithm for the SRS problem ?
3. Can we obtain lower bounds for the SRS problem?
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Abstract. Wikipedia is the largest encyclopedia on the web and has
been widely used as a reliable source of information. Researchers have
been extracting entities, relationships and attribute-value pairs from
Wikipedia and using them in information retrieval tasks. In this paper we
present a self-supervised approach for autonomously extract attribute-
value pairs from Wikipedia articles. We apply our method to the Wikipe-
dia automatic infobox generation problem and outperformed a method
presented in the literature by 21.92% in precision, 26.86% in recall and
24.29% in F1.

1 Introduction

Wikipedia started in 2001 aiming to enable collaborative publication and dis-
semination of ideas and concepts on the web. Since then, people around the
world share their knowledge through a platform that allows the organization of
information into articles accessible and editable by anyone. Available in several
languages, Wikipedia currently has a collection of over 16 million articles and
over 24 million registered users. Each Wikipedia article published by one user
is reviewed by others that evaluate issues of accuracy and completeness. This
evaluation activity makes Wikipedia a valuable source of reliable information on
the web.

The feasibility of using Wikipedia as a source of information has been shown
to extract entities [28], relationships [20], and attribute-value pairs [1,30,31]. The
information extracted from Wikipedia can be used in many information retrieval
tasks, such as question answering [12,13], query expansion [17,19], multilingual
information retrieval [23], and text categorization [3,29]. The work in [11] illus-
trates a practical application of an attribute-value pairs extraction approach.

This paper presents Wave (Wikipedia Attribute-Value Extractor), a self-
supervised approach to autonomously extract attribute-value pairs from Wikipe-
dia articles. Our approach is self-supervised in the sense that it uses a priori
available information to learn a baseline extractor and the training proceeds re-
peatedly by using the decisions of the extractor at step s to train the extractor
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at step s+1. Wave learns how to extract an unlimited number of non-predefined
attribute-value pairs from articles represented in the enriched plain text format.
For example, consider a dataset “University”: a possible attribute of this dataset
could be a “name” with value equal to “Stanford University”.

To verify the quality of the attribute-value pairs obtained we applied our ap-
proach to populate infoboxes with attribute-value pairs extracted from Wikipe-
dia articles, a problem known as automatic infobox generation. An infobox is
a special tabular structure that summarizes the content of Wikipedia articles
displaying factual information in a set of attribute-value pairs. We considered
as baseline the Kylin system [31], which also extracts attribute-value pairs from
Wikipedia articles to generate infoboxes. We used precision, recall and F1 as
measures to compare the results obtained by Wave with the results obtained by
the baseline. Experimental results show that Wave outperforms the baseline by
21.92% in precision, 26.86% in recall and 24.29% in F1.

The remainder of this paper is organized as follows. Section 2 presents the
related work. Section 3 presents Wave components. Section 4 compares Wave

with the baseline. Finally, Section 5 concludes our work.

2 Related Work

Several approaches have addressed the problem of information extraction from
Wikipedia. The DBPedia system [1] extracts attribute-value pairs from existing
infoboxes associated with articles and turns it into an Resource Description
Framework (RDF) knowledge base which can be later accessed by users. An
RDF [25] extends the linking structure of the Web to use Unified Resource
Identifiers (URIs) to name the relationship between things as well as the two
ends of the link. This linking structure is usually referred to as a “triple”.

The Yago system [28] extends WordNet [16] taxonomy using a mixed suite of
heuristics to extract information from Wikipedia’s category tags. It also presents
a basic data model of entities and a logic-based representation language to allow
queries from users. WordNet is a large lexical database for the English language
that is widely used in computational linguistics and natural language processing
researches.

The work in [20] uses simple heuristics developed by the authors themselves
to extract relations from Wikipedia. The heuristics exploit lexical and syntactic
patterns and combine them with several techniques such as anaphora resolution,
full dependency parsing and subtree mining.

The Kylin system [31] extracts attribute-value pairs from articles and au-
tonomously generates infoboxes. It uses maximum entropy classifiers [21] to as-
sociate sentences to attributes and conditional random fields (CRF)1 [15,26]
extractors to take attribute-values pairs from sentences. In a later work, some
improvements were proposed in the Kylin system [30] by making it capable of

1 Conditional random fields (CRF) is a framework for building probabilistic models
to segment and label sequence data.



A Self-Supervised Approach for Extraction of Attribute-Value Pairs 281

dealing with rare infobox templates. First, the system refers to WordNet’s on-
tology and aggregate attributes from parents to children infobox templates, e.g.,
knowing that isA(Actor, Person) infobox for Actors receives prior missing field
BirthPlace. Second, the system apply TextRunner [10] to the web in order to
retrieve additional sentences describing the same attribute-value pairs. Third,
the system uses the Google search engine [9] to retrieve additional sentences
describing an article. The combination of these techniques improves the recall
by 2% to 9% while maintaining increasing precision.

Wave differs from previous approaches in several ways. Differently from
DBPedia[1], Wave not only extract attribute-value pairs from existing infoboxes
but it can also learn how to extract attribute-value pairs from new articles. Un-
like the Yago system [28] and the approach presented in [20], Wave can extract
attribute-value pairs for an unlimited number of non-predefined attributes in
addition to effectively extracts attribute-value pairs from articles.

The way Kylin system extracts attribute-value pairs is similar to Wave. How-
ever, Wave improves Kylin in many aspects. First, Kylin represents the content
of articles using a plain text format while Wave represents the content of arti-
cles using an enriched plain text format. Second, Kylin uses multiple sentences
per article to generate CRF extractors, while Wave uses only one sentence per
article. Third, Kylin uses a sentence based segmentation model to generate CRF
extractors while Wave uses a window based segmentation model. It is important
to note that all improvements proposed in the Kylin system by [30] can also be
applied to Wave.

3 Extracting Attribute-Value Pairs from Wikipedia

Wave uses the content of Wikipedia articles to learn how to extract attribute-
value pairs from it, building extraction models to perform the extraction. In
this section we present the Wave system. Figure 1 shows the main components
of the system: Wikipedia processor, classifier, filter, and extractor, describing
the learning step to obtain extraction models which are then used by Wave to
extract attribute-value pairs from Wikipedia.

3.1 Wikipedia Processor

The Wikipedia processor is responsible for extracting articles, infoboxes tem-
plates, and attribute-value pairs from Wikipedia corpus. The extracted elements
compose a set of training data used by the other components. The Wikipedia
processor has five steps:

1. Scan Wikipedia corpus and select articles associated with specific infobox
templates. To be selected, an article must contain an infobox with the same
name of a given infobox template name.

2. Extract attribute-value pairs from the infoboxes within the selected articles
and create infoboxes schemata. An infobox schema is a set of attributes for
a specific infobox template.
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Fig. 1. The Wave architecture

3. Convert the content of each article from Mediawiki text format to HTML
format using the Bliki engine [8], a Java API for parsing and transforming
texts. Mediawiki is a Wikipedia syntax used by users to edit articles.

4. Convert the content of each article from HTML format to an enriched plain
text format. The enriched plain text format considers alpha-numeric and
punctuation characters. It also considers HTML tags, but discards the at-
tributes of each tag. Figure 2 shows an example of an article content in
Mediawiki text format, HTML format, plain-text format and enriched plain
text format.

5. Segment the content of articles in enriched plain text format into sentences
using OpenNLP [22], a Java API for natural language processing.

Fig. 2. Example of text formats



A Self-Supervised Approach for Extraction of Attribute-Value Pairs 283

Notice that steps 3 and 4 are simply normalization procedures to make it more
explicity the syntactic regularity on the text.

3.2 Classifier

Article Classifier. The Wikipedia processor component provides a set of cat-
egorized articles, i.e., articles associated with infoboxes templates. This data is
used by the article classifier to learn how to associate new articles with infoboxes
schemata. We need to associate each new article with exactly one infobox schema
in order to determine which attributes should be extracted from the article con-
tent. We implement the article classifier using LIBSVM [5], a library for Support
Vector Machines (SVM) [4,6], which was chosen because it obtains good predic-
tion performance for text categorization [7]. We use infobox template names,
article titles, the content of articles, Wikipedia list names, and Wikipedia cate-
gory tags as features for the article classifier.

Sentence Classifier. The sentence classifier is responsible for associating arti-
cle sentences with article attributes. We can divide the processing of the sentence
classifier into two phases:

1. Training Phase: Data provided by the Wikipedia processor component is
used to build training data for the sentence classifier. For each article, sen-
tences are associated with attributes within the infobox schema of the article.
The association is based on simple term matching. If we have terms within
any value of an attribute that exactly matches with terms within any sen-
tence, they will be associated.

2. Learning Phase: A maximum entropy classifier [21] learns how to associate
sentences with attributes based on training data generated in the previous
phase. We use the OpenNLP Maxent library [18] for implementation of the
maximum entropy classifier. This classifier was chosen in this step because
it is known as a quite competitive alternative for multi-class and multi-label
classification.

When a new article arrives, it is segmented into sentences. Then, the classifica-
tion model learned by the sentence classifier is applied and article sentences are
associated with article attributes.

3.3 Filter

The sentence classifier is a multi-class classifier and can obtain a set of sen-
tences associated with the same attribute. The filter component is responsible
for choosing the most appropriate sentence in the set.

Considering that we have the same attribute present in several infobox sche-
ma within training data, we take all the sentences related with an attribute
and group them into clusters using an efficient implementation of the k-means
clustering algorithm [14]. To compute the distance between sentences we rep-
resent them in a vector space and use the similarity measure as defined by the
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vector space model [2]. From the resultant clusters, we select one that presents
the greater number of sentences from different infobox schema. This heuristic
selection is based on the intuition that the most popular cluster tends to be
the one that contains the best value (the best sentence) to be associated with
the processed attribute. Then, we use the proximity of the cluster centroid to
choose one sentence for each infobox schema. The sentence closer to the centroid
is considered as the best option to fill the value of the attribute.

3.4 Extractor

The extractor is responsible for extracting attribute values from text segments
and assigning them to attribute-value pairs.

Window Based Segmentation. There is a preprocessing procedure that must
be done in an attempt to maximize CRF extractors performance. Each sentence
associated with each attribute must be segmented into terms and a term sequence
must be selected to compose the text segment to be processed by the CRF
extractor.

In more details, for each sentence filtered by the filter component it is possible
to determine, with the same term matching procedure used by the sentence
classifier, the terms of the sentence that corresponds to the attribute value. We
call this terms of “attribute-terms”. Using a window size of x, we can extract from
each sentence a term sequence composed of x terms before the attribute-terms
(pre-terms), the attribute-terms, and x terms after the attribute-terms (post-
terms). The extracted term sequences compose a training data for segmentation.
It is important to note that the value x of the window size should be obtained
empirically.

When a new sentence arrives, it is segmented into terms. Then, we use the
similarity between the pre-terms and post-terms extracted from the sentence
and the pre-terms and post-terms present in training data to select which terms
will be used by CRF Extractor.

CRF Extractor. Extracting attribute values from a text can be viewed as a
sequential data-labeling problem. Therefore, the choice of CRF for solving the
problem is feasible, since CRF is the state-of-the-art for this task. Our approach
trains a different CRF extractor for each attribute and uses a well-known imple-
mentation of CRF [24]. For each attribute, the term sequences associated with it
by the window based segmentation procedure is used to train the extractor. We
label the pre-terms with the “pre” label, the post-terms with the “post” label
and each one of the terms on the attribute-terms with three different type of
labels in the following way:

1. If the attribute-terms is composed by only one term, this term is labeled
with “init” label.

2. If the attribute-terms is composed by only two terms, the first term of the
sequence is labeled with “init” label and the last one is labeled with “end”
label.
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3. If the attribute-terms is composed by more than two terms, the first term of
the sequence is labeled with “init” label, the last one is labeled with “end”
label and each one of the other terms is labeled with “middle” label.

Each one of the CRF extractors learn a different extraction model and use it
to extract values from term sequences. The extracted value is assigned to the
attribute generating an attribute-value pair.

4 Experimental Results

As mentioned before, we applied Wave to address the automatic infobox gen-
eration problem and we have chosen Kylin as the baseline. In order to evaluate
the performance of Wave and the baseline, we created four datasets from the
2010.03.12 Wikipedia corpus, one for each of the following popular Wikipedia
infobox templates: U.S. County, Airline, Actor and University. Table 1 shows
the distribution of the 3,610 Wikipedia articles in the four datasets. The size of
a dataset is the number of Wikipedia articles within the dataset.

Table 1. Size of the datasets

U.S. County Airline Actor University
Dataset size 1,697 456 312 1,145

Some attributes do not occur frequently in Wikipedia articles and therefore
were discarded. For each dataset, we discarded all attributes not present in at
least 15% of its articles. The sentence classifier component also discards, for each
Wikipedia article, attributes which values do not match with any word sequence
in sentences within it. Table 2 shows the number of attributes extracted from
Wikipedia articles, the number of attributes discarded due to low frequency
and the matching procedure of the sentence classifier, and the total number of
attributes actually used in experiments for each dataset.

There are three different types of attribute in each dataset: date, number, and
string. Table 2 shows that we used 54 different attributes in the experiments.
The most common type of attribute is the string (55.55%), followed by number

Table 2. Number of extracted, discarded, and used attributes for each dataset

Dataset
Number of Attributes

Extracted
Discarded

UsedLow frequency No matching
U.S. County 105 75 (71.42%) 11 (10.48%) 19 (18.10%)
Airline 60 40 (66.67%) 9 (15.00%) 11 (18.33%)
Actor 45 34 (75.55%) 6 (13.34%) 5 (11.11%)
University 283 251 (88.70%) 13 (4.59%) 19 (6.71%)
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(a) U.S. County (b) Airline (c) Actor (d) University

Fig. 3. Distribution of attribute type per dataset. String is in black, date is in gray
and number is in white.

(27.78%), and date attributes (16.67%). Figure 3 show the distribution of the
attribute types in the datasets. We observe that only in the U.S. County dataset
the string type is not majority. In this case, the number of numerical attributes
is greater than the number of attributes of the string type.

To perform the experiments, we used the 10-fold cross validation method [27].
Each dataset was randomly split in ten parts, such that, in each run, a different
part was used as a training set while the remaining were used as a test set. The
split on training and test sets was the same in all experiments. The final results
of each experiment represent the average of the ten runs.

The performance of Wave and the baseline was evaluated using the con-
ventional precision, recall and F1 measures. Precision p is defined as the pro-
portion of correctly extracted attribute-value pairs in the set of all extracted
attribute-value pairs. Recall r is defined as the proportion of correctly extracted
attribute-value pairs in all of the correctly attribute-value pairs in examples. F1
is a combination of precision and recall defined as 2pr/(p + r).

We performed preliminary experiments in order to empirically obtain the
value of the window size x used by the window based segmentation procedure
of the Wave extractor component. We use x = 3 for all experiments.

As mentioned before, Wave trains a different CRF extractor for each attribute.
We perform experiments using the 10-fold cross validation method and, for each
attribute, we compute the average precision, average recall, and average F1.

Table 3 shows the overall performance for Wave and the baseline, for each
attribute type. The values presented correspond to the mean average precision,
mean average recall and mean average F1 for the group of attributes of each
type.

We observe that the difference in performance between Wave and the baseline
is greater in attributes of the string type. When observing the results we realized
that attributes of the string type take more advantage of the textual content
enrichment made by Wave. Remember that Wave enriches the textual content
of the articles with HTML structural information, making word patterns more
regular, which have increased the performance of the CRF extractors. We observe
that the greater the regularity in the word patterns of the HTML tags around
the attribute value to be extracted within sentences, the better the performance
of the CRF extractor. The gain for numerical numbers are a bit smaller, but can
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Table 3. Mean average precision, recall and F1 results achieved by Wave and the
baseline for different attribute type

Attribute Type Precision (%) Recall (%) F1 (%)
Baseline Wave Gain Baseline Wave Gain Baseline Wave Gain

Date 57.46 63.33 +10.20 52.34 57.34 +9.56 54.67 60.04 +9.82
Number 89.19 92.34 +3.53 88.16 93.04 +5.54 88.58 92.64 +4.58
String 62.58 74.37 +18.85 55.30 67.05 +21.25 58.40 70.02 +19.91

Table 4. Mean average precision, recall and F1 results achieved by Wave and the
baseline for each dataset

Dataset
Precision (%) Recall (%) F1 (%)

Baseline Wave Gain Baseline Wave Gain Baseline Wave Gain
U.S. County 87.73 93.85 +6.97 86.40 93.92 +8.71 87.01 93.87 +7.88
Airline 55.73 67.95 +21.92 49.75 63.11 +26.86 52.40 65.13 +24.29
Actor 65.82 75.31 +14.42 60.57 68.73 +13.48 63.09 71.60 +13.53
University 63.87 71.59 +12.08 56.12 63.33 +12.83 59.27 66.59 +12.34

be also considered as quite important, since the results of the baseline in this
case were already quite high, with almost no space for improvements.

Table 4 shows the overall performance for Wave and the baseline for the
datasets. The values presented correspond to the mean average precision, mean
average recall and mean average F1 for the group of attributes within each
dataset.

We observe that all Wave results outperform the baseline values. As ex-
pected, the gain was greater in datasets with more attributes of the type string,
followed by type date. This was expected, since the baseline already presents
quite high quality results for numerical attributes. Again, the type string take
more advantage of the textual content enrichment made by Wave.

5 Conclusions

In this paper we have presented Wave, a self-supervised approach to autono-
mously extract attribute-value pairs from Wikipedia articles. The extracted
attribute-value pairs can be used in many information retrieval tasks, such as
question answering, query expansion, multilingual information retrieval, and text
categorization.

We applied Wave to address the automatic infobox generation problem and
we have shown that Wave outperforms the baseline by 21.92% in precision,
26.86% in recall and 24.29% in F1. We have also shown that the greater the
regularity in the word patterns of the HTML tags around the attribute value to
be extracted within sentences, the better the performance of Wave.

Future work will concentrate on improving performance of the classifier com-
ponent by exploiting other Wikipedia features. We intend to analyze the impact
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of window size in CRF extractors and also exploit other features, incorporate im-
provements described by [30], expand the types of values from date, number and
string to multivalued slots such as locations and person names, and measure the
improvements arising from the application of our approach in some information
retrieval tasks.
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Abstract. As the amount of generated information increases so rapidly
in the digital world, the concept of time as a dimension along which in-
formation can be organized and explored becomes more and more impor-
tant. In this paper, we present a temporal document analysis framework
for document collections in support of diverse information retrieval and
seeking tasks. Our analysis is not based on document creation and/or
modification timestamps but on extracting time from the content itself.
We also briefly sketch some scenarios and experiments for analyzing doc-
uments from a temporal perspective.

1 Time in Information Retrieval

Time is an important dimension of any information space, and it can be very
useful in information retrieval tasks [4]. Little work has been done on analyzing
and exploiting temporal information embedded in documents as relevance cues
for the presentation, organization, and in particular the exploration of search
results in a temporal context.

In this paper, we outline such a framework that realizes an add-on to search
engines in support of time-centric document exploration, visualization, and sim-
ilarity search tasks. Using an information extraction approach, we show how
temporal information embedded in the text of documents is extracted and made
explicit for deriving novel temporal document measures, such as temporal speci-
ficity, richness, and boundaries. Using such base measures, we introduce a his-
togram based approach, called temporal coverage, to compute and visualize what
time periods and points in time are mentioned in a document.

A further important contribution of our framework is a temporal document
distance measure, which is built on the concept of temporal coverage. This func-
tionality is in support of determining documents that are temporally similar
to a given document in terms of the time information embedded in the docu-
ments. Although our focus is primarily on topic specific document collections,
some concepts easily translate to Web search scenarios. We also do not focus on
topic detection and tracking using temporal information but rather establish a
framework that can be used to target these areas as well.
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2 Time Annotated Document Model
As the basis for anchoring documents in time, we assume a discrete representa-
tion of time based on the Gregorian Calendar, with a single day being an atomic
time interval called chronon. Our base timeline, denoted Td, is an interval of con-
secutive day chronons. We assume the five timelines T = {Tt, Td, Tw, Tm, Ty}
for times (of the day), days, weeks, months, and years, respectively. The com-
position of granules naturally induces a lattice structure in T . That is, we have
the relationship Tj & Ti if timeline Tj is (transitively) composed of chronons
of timeline Ti. Associated with each timeline T ∈ T is a precedence relationship
≺T that allows to compare chronons.

A key aspect of our approach is to take a set of documents D, extract all
types of temporal information associated with the documents in D, and use this
information for computing temporal document measures. The first type of such
information is the document timestamp, which appears as the date a document
d ∈ D has been created and be anchored in the timeline Td (or Tt).

The second type of temporal information corresponds to concepts that are
represented in the document text as sequences of tokens or words, called temporal
expressions. Similar to the approach by Schilder and Habel [5], we distinguish
between explicit, implicit, and relative temporal expressions.

Explicit temporal expressions describe chronons in some timeline, such as an
exact time (of a day), day or year. For example, “December 2004” is an explicit
expression that is anchored in the timeline Tm. Depending on the capabilities of
the entity extraction approach, implicit temporal expression, such as names of
holidays or events can be anchored in a timeline as well. For example, the token
sequence “Columbus Day 2006” in the text of a document can be mapped to
the expression “October 12, 2006”, which is anchored in Td. Relative temporal
expressions represent temporal entities that can only be anchored in a timeline in
reference to another explicit or implicit, already anchored temporal expression.

In our time annotated document model, for a document d ∈ D, the entity
extraction applied to d results in a temporal document profile, denoted tdp(d).
A temporal document profile is a sequence of chronon/position pairs 〈ci, pi〉.
A chronon ci is an element from the timelines T = {Tt, Td, Tw, Tm, Ty}, and a
position pi is the absolute document position of the (first token in the) temporal
expression that has been mapped to ci. We assume that all chronons ci in a
temporal document profiles are normalized.

3 Temporal Document Measures

Temporal document profiles provide the basis for deriving measures to analyze
and better describe documents in terms of their temporal information content. In
the following, we assume a single document d ∈ D with temporal document profile
tdp(d). Let t-seq(d) = 〈(c1, p1), (c2, p2), · · · , (ck, pk)〉 denote the chronon/position
pairs of the profile. The first measure simply defines the ratio of chronons in the
document d to the total number of chronons in the collection D. We call this
measure temporal richness of d, denoted t-rich(d). The higher this ratio, the richer
the document d is in its temporal information content.
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Thenextmeasure focusesmore on the types of chronons in t-seq(d), inparticular
the frequencies of types. A document d is said to be temporally most specific with
respect to chronons of type T ∈ T , if most of the chronons in t-seq(d) are of type
T . For example, a document detailing the events of a soccer game might be very
specific, using chronons of type time (Tt) whereas a resume document might be
more specific with respect to chronons of type year or month (Ty or Tm). In the
following, we denote the temporal specificity of a document d as t-spec(d). As this
measure is simplybased on the frequencies of chronons of different types in t-seq(d),
it naturally defines an order among the types in T for a document d, with the first
type in that order being the most frequent chronon type in t-seq(d) and so on.

The last aggregate measure considered here describes the temporal boundaries
of a document. For this, the earliest and the most recent chronons in t-seq(d)
are determined. The problem here is that chronons can be of different types
and thus the precedence relationship ≺T might not always be applicable. We
therefore make the following assumption: If two chronons ti ∈ Ti and tj ∈ Tj

from t-seq(d) can each be considered the earliest (most recent) chronon, then
the one with the coarser granularity is chosen as the earliest (most recent). In
the following, we denote the earliest and most recent chronons in t-seq(d) as
t-low(d) and t-high(d), respectively. As an example, for Einstein’s Wikipedia
page, we have t-low = “3/14/1879” (his date of birth), and t-high = “2008”.

We use an equiwidth histogram approach to describe the distribution of
chronons in a document over a period of time, called temporal coverage. The
objective is to represent (a) what periods in time are covered by the document’s
content and (b) what periods in time are emphasized in terms of chronon fre-
quencies. Loosely speaking, for a given document d, the period of time (range)
described by its histogram is determined by the temporal boundaries t-low(d)
and t-high(d), and the number of values in a bucket is based on the number of
chronons that fall in that bucket’s subrange (period in time).

First, a range for the histogram’s buckets needs to be determined. We choose
as temporal unit the type of the chronon in t-seq(d) with the coarsest granu-
larity, even though the temporal specificity of the document might be of a finer
granularity. Consider, for example, a document d with t-low(d) = “1950” and
t-high(d) = “2003”. The histogram for d, denoted t-hist(d) then is made up of
54 buckets, each labeled by a year chronon in [1950, 2003]. In the worst case,
there might only be one bucket in t-hist(d), namely when all chronons refer to
the same year but there is at least one chronon c ∈ t-seq(d) of type year.

With each bucket in a histogram two important measures are associated.
First, for each bucket bi, i ∈ [1, �], the relative frequency of the chronons placed
in bi, denoted t-freq(bi), is maintained. The relative frequency for bi is the ratio
between the number of chronons in bi to the total number of chronons on all the
buckets for the histogram. The domain of the chronons’ relative frequency is the
interval [0, 1], and the histogram is an approximation of the probability density
function representing the underlying distribution of the chronons. Second, as for
the whole document d, also with each bucket bi a temporal specificity, denoted
t-spec(bi), can be determined.
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Fig. 1. Temporal coverage in the form of a histogram (Einstein’s Wikipedia page)

Figure 1 illustrates an example of the temporal coverage for Einstein’s Wiki-
pedia page. Note the temporal “focus” of the document for the time period
between 1900 and 1930, something that provides some important information
about the temporal content of the document. Note that although the label of a
bucket bi is based on a coarse-grained type T , the bucket might contain several
chronons that are of a granularity T ′ finer than T , i.e., T ′ � T . To obtain more
fine-grained temporal information from such buckets, a temporal zoom operation
can be applied as follows. Assume a bucket bi labeled with a year chronon y. A
zoom-in operation partitions this bucket into twelve buckets, each labeled with
a month of the year y.

The chronons from bi are then distributed over these twelve new buckets,
based on whether the a new bucket’s label covers that chronon. With each new
bucket, again a frequency and temporal specificity is associated. As bi might
contain chronons of granularity T , not all chronons can be distributed over the
new buckets. This zoom-in operation can be applied in an iterative fashion,
exploring individual buckets at an increasingly fine level of time granularity.

4 Temporal Document Similarity

An important feature of our proposed temporal document analysis and explo-
ration framework is to allow users to search for “temporally similar” documents
in a hit list or document collection. But what does it mean that two documents
are temporally similar? While this question itself warrants an extensive study
that goes far beyond the scope of this paper, we propose a simple and easy way
to compute the temporal distance between two documents.

Assume a hit list L of documents as result to a user query and the user considers
a document d ∈ L as interesting, because d covers a particular period in time in
detail (this observation alone can be made from the visual representation of the
document’s histogram). If the user is now interested in documents from L that
are temporally similar to d, she can either look at each document’s histogram or
simply invoke a distance function that is realized as follows.
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The temporal distance is defined as the difference between the distributions
of the chronons of two documents. Since we use a histogram as the estimation of
the underlying distribution of the chronons, we employ a distance measure for
ordinal type histograms described in [3]. We modify this approach to take the
characteristics of our type of histograms into account. Assume two documents d
and d′ with histograms t-hist(d) = b0, b1, . . ., bd and t-hist(d′) = a0, a1, . . . , ad′ ,
respectively. In order to apply the technique, the two histograms first need to
be normalized in terms of underlying chronon type and temporal boundaries.
For this, the histogram based on the coarser type of chronon is chosen and the
buckets of the other histogram are aggregated correspondingly. For example,
t-hist(d′) might be based on month chronons while t-hist(d) is based on year
chronons. The buckets in t-hist(d′) are then aggregated and new buckets, now
labeled with year chronons are created. Next, as the temporal boundaries of
the two histograms may differ, they need to be brought to the same length.
This is easily achieved by extending the histograms to the left and right, as
necessary, with empty buckets so that both histograms have the same t-low and
t-high values (c.f. Sect. 3). Assume this normalization results in the two modified
histograms t-hist(d) = b0, b1, . . . , bn and t-hist(d) = a0, a1, . . . , an that now have
the same lengths n, temporal boundaries, and underlying chronon type. After
these two histogram normalization steps, the distance function

dist(d, d′) =
n−1∑
i=0

∣∣∣ i∑
j=0

(t-freqn(bj) − t-freqn(aj))
∣∣∣ (1)

derived from [3] is applied to the two documents d and d′ and associated (mod-
ified) histograms. This non-metric distance function basically determines the
number of re-arrangements of buckets in one histogram so that the two his-
tograms are trivially identical (recall that because of the normalization, both
histograms have the same “number” of elements). The closer the computed value
to 0, the more temporally similar the documents are.

It should be noted that standard distance functions such as cosine-based sim-
ilarity are not applicable here (e.g., when histograms are represented as vectors)
as they do not consider the shape but only focus on frequencies. Given a docu-
ment d ∈ L, the distance to all other documents in L is computed and, based on
the computed values, the remaining documents in L can in fact also be sorted,
presenting the user the temporally most similar documents first.

5 Applications

In the following, we sketch some applications based on the temporal framework
described in the previous sections. The first item is to have a temporal annota-
tion infrastructure that can handle different collections. In our case, we rely on
the Alembic1 POS tagger and the GUTime2 temporal expression tagger to extract
1 http://www.mitre.org/tech/alembic-workbench/
2 http://complingone.georgetown.edu/~linguist/
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temporal expressions based on the TimeML standard3. Having all temporal infor-
mation embedded in document available in the form of temporal document profiles
now gives rise to several document search and exploration scenarios. Here we out-
line only a few due to space constraints.

First, it is important to note that the temporal content in documents varies
form collection to collection. We investigated this aspect using a subset of TREC
(FBIS documents) and Wikipedia (featured articles). As shown in Figure 2, the
Wikipedia collection is in general much richer in terms of temporal expressions
and thus are suitable for temporal exploration applications.

Fig. 2. Distribution of temporal expressions in Wikipedia and TREC samples

We conducted a user study among 30 persons (graduate students and faculty)
about our temporal framework. Part of the study consisted of a survey about
temporal information in search engines. Of all the respondents, 70% answered
that current search engines do not return temporal information and 30% did not
know for sure. The other finding is that 65% think that a search engine should
present temporal information in a hit list or as a feature (10% answered “No”
and 25% “Do not know”).

We also performed experiments using the Amazon Mechanical Turk4 crowd-
sourcing platform. We ran the same survey about temporal information in search
engines. Of all the respondents (20 in total), 80% answered that current search
engines do not return temporal information and 20% did not know for sure. Of
all respondents 75% think that a search engine should present temporal infor-
mation in the search results. In summary, for both studies users are interested
in using search applications that offer time-aware features.

Typical applications using the temporal information, which we have realized
in a prototype, are as follows. Assume one queries a collection for [Einstein], like
in a conventional search engine. Using our approach, a hit list is returned that
contains the usual document information but also includes information about
the temporal coverage. The latter is visualized using sparklines that show the

3 http://timeml.org
4 http://www.mturk.com/
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temporal coverage as well as the temporal boundaries for each document (see
Figure 3). Assume the user is specifically interested in the time period 1905–
1920. Using the documents’ histogram information, respective documents can
be determined and presented to the user.

Fig. 3. Enhanced user interface showing tem-
poral information as sparklines

Based on a document from the
hit list, the user can also request
documents that are “temporally to
this”. The application then returns
all pages that are temporally sim-
ilar to the selected one, ranked by
the distance to the selected docu-
ment. Another interesting function-
ality we realized is to construct
temporal snippets (Figure 4) for a selected document, which are fragments of
the document’s text that display two or three sentences with the most relevant
chronons [2]. Based on temporal document profile, also recently a method has
been presented and integrated into our prototype that enables the temporal
clustering of documents in search and exploration tasks [1].

Fig. 4. Temporal snippet for the query [hey jude]

In summary, one can claim that temporal information embedded in documents
in the form of temporal expressions offer an interesting means to further enhance
the functionality of current information retrieval applications. In this paper,
we have outlined a framework that can be used to make a search application
temporally aware by providing more document search and exploration features
that leverage time.
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Abstract. The classical set theory provides a method for comparing ob-
jects using cardinality and intersection, in combination with well-known
resemblance coefficients such as Dice, Jaccard, and cosine. However, set
operations are intrinsically crisp: they do not take into account similar-
ities between elements. We propose a new general-purpose method for
comparison of objects using a soft cardinality function that show that
the soft cardinality method is superior via an auxiliary affinity (similar-
ity) measure. Our experiments with 12 text matching datasets suggest
that the soft cardinality method is superior to known approximate string
comparison methods in text comparison task.

1 Introduction

Things are usually not either completely equal or completely different. More
often than not we need to decide which objects are more similar than others. For
example, in information retrieval task we need to find documents most similar
to the user query, while none of these documents is exactly equal to it. While
the task of exact comparison is well-defined and the corresponding methods are
clear and well understood, approximate comparison is a highly heuristic task for
which a great variety of methods have been suggested, each one good for some
problems and none good for all—which means that the quest for better and more
general approximate comparison paradigms is in full swing.

In this paper we propose a new approximate object comparison method based
on soft cardinality. While stemming from fundamental elements from the classic
set theory, it uses a new cardinality function that allows for flexibility. Despite
the simplicity of our method, preliminary results obtained in a text matching
task are encouraging as compared with much more elaborated state-of-the-art
approximate string matching techniques.

The paper is organized as follows. Section 2 briefly describes some most closely
related approaches and compares our method with them. Section 3 presents
the notion of soft cardinality and introduces our method. Section 4 gives the
experimental results. Finally, Section 5 concludes the paper.

2 Related Work

Binary similarity measures use different strategies to assess commonalities and
differences of objects under comparison. Probably the most popular approximate

E. Chavez and S. Lonardi (Eds.): SPIRE 2010, LNCS 6393, pp. 297–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



298 S. Jimenez, F. Gonzalez, and A. Gelbukh

comparison technique uses the well-known resemblance coefficients [1]. Although
resemblance coefficients reflect the degree of similarity, they are based on crisp
operations such as set intersection, which do not consider degree of similarity
between the elements of the sets. This is a drawback in scenarios with uncer-
tainty. Our proposed method addresses the problem of the inability to manage
uncertainty by resemblance coefficients: instead, it exploits the redundancy in
sets.

Unlike fuzzy sets [2], our approach does not consider uncertainty in the mem-
bership of a particular element. It, however, does handle uncertainty as to the
contribution of an element to the cardinality of the set if the element presents
redundancy with respect to other elements of the same set.

Classic set theory provides an intuitive mechanism for object comparison using
set operations such as intersection ∩ and union ∪, as well as a function | ∗ |∈ N
called cardinality for counting the number of different elements in a set. Using
only those components, it is possible to compute similarity between two sets A
and B using a family of resemblance coefficients [1] such as:

Jaccard(A, B) =
|A ∩ B|
|A ∪ B| , cosine(A, B) =

|A ∩ B|√
|A| × |B|

, (1)

as well as a host of other resemblance coefficients widely used in biosciences,
economics, social sciences, engineering and computer science, among other fields.
All those expressions return 1 if A and B are equal, 0 if A and B have no elements
in common, and otherwise a number between 0 and 1.

3 Soft Cardinality

The classic set cardinality function counts the elements in a set in a crisp manner:
if an element is duplicated, it is only considered once. However, if two elements
in a set are very similar—nearly duplicates but not exactly—our intuition is
that together they should contribute less to the total cardinality than a pair of
completely different elements.

Consider the set S of animals in Fig. 1 (a). The classic crisp cardinality func-
tion reports 3 different animals in S. Nevertheless, if an affinity function between
the elements of the set is used, Fig. 1 (b) shows a better view of the situation. A
soft cardinality function that reflects this intuition should produce a value less
than three but greater than two. Even though the elements of the set shown in
Fig. 1 are not sets themselves, the affinity between tiger and lion induces some
type of intersection in terms of the total soft cardinality of the set.

We define a binary affinity function α(∗, ∗) that reflects the similarity between
two elements a and b in the set. Obviously,

α(a, b) ∈ [0, 1]; α(a, b) = α(b, a); α(a, a) = 1;
δ(a, b) = 1 − α(a, b); δ(a, c) ≤ δ(a, b) + δ(b, c), (2)

where δ is the distance.
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Fig. 1. A set with three elements

Consider Fig. 1 (b). If the elements of S′ are treated as sets, the affinity func-
tion α can be considered as an estimation of the intersection between the ele-
ments in the set. Assume an affinity value α(tiger, lion) = 0.7, the total soft
cardinality of the set can be defined as the crisp cardinality |S| = 3 minus the
overlap between tiger and lion (which is 0.7), which gives |S′|α = 2.3.

3.1 Estimating Cardinality of Set Union Using Pairwise
Intersections

The affinity binary function α has been proposed as an approximation of the
cardinality of the intersection of two elements in a set. Although a and b are not
sets themselves (they are just elements), the previous assumption allows us to
treat them as sets. If we want to calculate the soft cardinality of a set S with
only two elements a and b, it can be calculated using (2) properties and recalling
|A ∪ B| = |A| + |B| − |A ∩ B|:

|S|α = α(a, a) + α(b, b) − α(a, b) = 2 − α(a, b),

where |S|α stands for the soft cardinality of the set S given the affinity function
α. Similarly, the case of a set S with three elements a, b, c can be treated using
the following classic set theory expression:

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |B ∩ C| − |A ∩ C| + |A ∩ B ∩ C| .

However, to estimate |A∩B ∩C|, a ternary affinity function α(∗, ∗, ∗) is needed.
In the general case, the soft cardinality of a set S with elements s1, s2, . . . , sn

requires k-ary affinity functions, k = 1, . . . , n. Nevertheless, the most common
affinity (similarity) and distance functions are binary, making the construction
of such high-arity functions a problem. We propose to estimate |S|α using only
a binary α function.

Consider a matrix A of pairwise affinity α(si, sj) between the elements of S.
It is symmetric and has all 1’s in the diagonal. We will construct a function of
this matrix that gives n if A = In (n×n identity matrix) and 1 if all entries of A
are 1’s. The former case corresponds to a set S in which all its elements are com-
pletely different (i.e., classical crisp cardinality), while the later case corresponds
to a set S in which all elements are identical. On any other symmetric matrix
the function will give a real number in the interval (1, n) that approximates the
cardinality of

⋃n
i=1 si.
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Consider the following expression that satisfies the previous requirements of
reproducibility of the classic crisp cardinality:

|S|α =
n∑

i=1

1∑n
j=1α(si, sj)p , p ≥ 0 (3)

where p is an adjustable parameter. Using p = 1 in this expression with our
example, a result of |S|α = 2.18 is obtained. This result is close to the value 2.3
obtained previously out of intuitive considerations.

3.2 Decoupling and Combining Affinity and Importance

Until now, we have assumed an inherent individual cardinality of 1 for each
element. This makes sense given that the classic crisp cardinality increases by 1
with each different element in a set. This is equivalent to considering elements
as sets represented as circles of area equal to 1 in a Venn diagram with among
them. However, often it is reasonable to consider elements represented by circles
with different areas. For instance, if the elements of the set are words, their
discrimination power can be encoded by the area of the circles: stop words coded
by small circles and rare words by large circles. This approach allows us to treat
separately (i) the affinity between elements and (ii) the intrinsic importance or
weight of the element.

In order to integrate importance or “element cardinality” to the soft cardinality
method, consider the role of the inner term (

∑
j=1 α(si, sj)p)−1 in (3). This term

represents the contribution of the element si to the total soft cardinality of S and
thus can be weighted with a factor wi to reflect the importance (“cardinality”)
of the element si:

|S|pα =
n∑

i=1

wi∑n
j=1α(si, sj)p (4)

Vector space model represents documents as vectors whose coordinates are dic-
tionary words. Generally, the values of the coordinates are weights associated
with the discrimination power of the words such as tf-idf [3]: the importance of
the word for the document. However, this model assumes independence between
index terms (i.e. dimensions), making it impossible to take into account their
relatedness. Unlike vector space model, (4) provides the soft cardinality method
a mechanism to keep affinity (correlation) and importance (weight) decoupled
but naturally combined.

4 Preliminary Results

The aim of our experiments is to explore the utility and potential of the soft
cardinality method in a particular text comparison task. The name-matching
task consists in comparing two strings and to decide if the strings refer to the
same entity or not. For instance, “King Rail Rallus elegans” and “Rail: King (Rale
élégant) Rallus elegans” in the Birds-Scott2 dataset refer to the same bird. All
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possible string pairs are compared with a similarity measure and a threshold θ
selects matched pairs.

Cohen et al. [4] carried out a comparative study of several similarity mea-
sures with twelve name matching data sets.They showed that their SoftTF-IDF
measure, on average, outperforms all other measures. We compared our soft
cardinality method using the same data sets that they used.

4.1 Experimental Setup

The matching problem between two set of strings can be viewed as a classifica-
tion problem over the Cartesian product of the sets. As performance measure
for each experiment (i.e. pairs dataset-similarity measure) we used interpolated
average precision (IAP) and F1-score, which are commonly used in information
retrieval [5].

We carried out experiments with more than 148 well-known string similar-
ity measures, see [6] for details. For reference purposes, the results for the best
performing character level measure (i.e. bigrams) and the best token level mea-
sure (i.e. cosine) are reported. The reported similarity measures are described
as follow:

bigrams. Bigrams intersection computed as the quotient of the common bi-
grams between the two strings and the number of bigrams in the longer
string.

cosine. Both strings are tokenized (separated into words) and compared using
cosine coefficient.

SC1. Both strings are tokenized. Soft cardinality (3) with p = 1 is used to
compute the cardinality of each set of tokens and the cardinality of the union
of both set of tokens. Cardinalities are combined with cosine coefficient (1).
The used auxiliary inter-token affinity function α was bigrams.

SC2. It is the same method as SC1, but using p = 2 in (3).
SC.3 It is the same method as SC1, but using p = 2 and wi = idfi in (4).
STI. SoftTF-IDF proposed by Cohen et al. [4] SoftTF-IDF is a fuzzified exten-

sion to the well-known tf-idf vector space model metric.

4.2 Results

Similarly to Cohen et al., we also noticed that STI (SoftTF-IDF) outperforms on
average practically all known text similarity measures. As shown in Table 1, the
proposed soft cardinality methods SC2 and SC3 slightly outperformed STI, and
SC1 reached a close performance. Both average IAP and F1-score, reported SC3
and SC2 as the best performing measures for the data sets. Note that unlike STI,
SC1 is a basic soft cardinality measure without any parameters to be adjusted.
Moreover, SC1 is a static measure, that is, it only uses information in the pair
of strings being compared. The SC2 measure is also static, with p = 2, see (3),
reach the same performance of a STI, which also uses the entire corpus as input.
In addition, SC3 performs better than STI using the same idf coefficients.
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Table 1. IAP results for experiments

Data set bigrams cosine SC1 SC2 SC3 STI
Birds-Scott1 0.848 0.890 0.877 0.883 0.883 0.879
Birds-Scott2 0.789 0.907 0.895 0.905 0.905 0.897
Birds-Kunkel 0.512 0.857 0.723 0.837 0.868 0.875
Birds-Nybird 0.715 0.723 0.734 0.745 0.740 0.743
Business 0.529 0.533 0.685 0.732 0.776 0.704
Game-Demos 0.722 0.754 0.776 0.784 0.811 0.798
Parks 0.881 0.846 0.868 0.859 0.890 0.897
Restaurants 0.860 0.906 0.899 0.906 0.903 0.904
UCD-people 0.797 0.909 0.889 0.909 0.909 0.909
Animals 0.066 0.117 0.104 0.116 0.119 0.118
Hotels 0.610 0.722 0.613 0.722 0.697 0.671
Census 0.806 0.412 0.818 0.768 0.806 0.726
Average IAP 0.678 0.715 0.740 0.764 0.776 0.760
Average F1-score 0.717 0.779 0.776 0.809 0.827 0.808

5 Conclusions

We have proposed a new method for object comparison based on classic set
theory, and similarity measure used as a metaphor of elements intersection, which
we called soft cardinality method. We have explored the modeling ability of the
new method with the case study of text comparison applications.

In particular, soft cardinality allows a nice combination of affinity (similarity)
between elements and their importance (weights). This property is useful in text
applications where approximate string matching measures can be used as affin-
ity function in combination with practical term weighting schemas such as tf-idf.
Experimental results showed that our approach gives better results than state-of-
the-art approximate string comparison methods in a name matching task.
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Abstract. The retrieval of similar documents in the Web from a given
document is different in many aspects from information retrieval based
on queries generated by regular search engine users. In this work, a new
method is proposed for Web similarity document retrieval based on gen-
erative language models and meta search engines. Probabilistic language
models are used as a random query generator for the given document.
Queries are submitted to a customizable set of Web search engines. Once
all results obtained are gathered, its evaluation is determined by a pro-
posed scoring function based on the Zipf law. Results obtained showed
that the proposed methodology for query generation and scoring proce-
dure solves the problem with acceptable levels of precision.

1 Introduction

Classic Web search engines have been developed aiming to solve information
requirements from users. As proposed in [5], Web search queries can be grouped
into three categories: Informational queries, navigational queries, and transac-
tional queries. In [4] a different information requirement is described. We called
it, the Web document similarity retrieval problem (WDSRP). This consists of
retrieving the most similar documents from the Web using as input a given doc-
ument instead of a query. Solutions to WDSRP could be applied for plagiarism
detection, document impact analysis, or as related ideas retrieval tool. Also, a
variation of this problem is known as the Near-Duplicate Detection [3].

Web search engines could perfectly solve the WDSRP allowing users to send
complete documents as inputs. However, search engines allow a maximum query
length, because long queries take a huge computation time, are hard to cache,
and are usually composed of many non relevant terms.

The main contribution of this work is to solve the WDSRP using a probabilis-
tic language model for query generation. Also, a meta search scoring function
based on Zipf law is proposed. This function scores considering just the informa-
tion responded by each search engine, mainly the rankings of retrieved results.
This approach aims to avoid costly text processing algorithms over the responded
documents. Furthermore, we performed successful experiments in a real world
application with promising results.

E. Chavez and S. Lonardi (Eds.): SPIRE 2010, LNCS 6393, pp. 303–308, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



304 F. Bravo-Marquez et al.

2 Previous Work

As described in [7], meta-search engines provide a single unified interface, where
a user enters a specific query, the engine forwards it in parallel to a given list of
search engines, and results are gathered and ranked into a single list.

The WDSRP has been studied by different researchers [4,9]. These works
propose fingerprinting techniques for document representation. In both cases the
fingerprint is composed by sentences used as queries. The queries are submitted
into a meta-search engine for retrieving an extended list of similar candidate
documents.

On the one hand, in [9] document snippets are retrieved and compared with
the given document using cosine similarity from the vector space model. On the
other hand, Pereira and Ziviani propose in [4] to retrieve the complete text from
each Web document, and compare them using text comparison strategies, like
Patricia trees and Shingles method.

3 Hypergeometric Language Model for Query Generation

As stated by [5], given a document D, from which a vocabulary V can be ex-
tracted, a language model MD from D is a function that maps a probability
measure over strings drawn from V . Language models are used as ranking func-
tions in information retrieval, estimating the probability of generating a query q
given a document language model MD, i.e. P (q|MD), using a generative expres-
sion for the ranking function.

In our query generation task, the probabilistic distribution from the language
model is used as a randomized term extraction procedure. The reason for using
randomized term permutations, is that similar documents from D do not nec-
essarily contain words in the same order. Furthermore, as a strong but realistic
assumption, search engines, where queries will be submitted, treat user natural
text queries following a bag of words property [1].

The Hypergeometric Language Model (HLM) is a proposed extension of lan-
guage models inspired in the multivalued hypergeometric distribution [2], which
provides a non replacement property. This means that terms are extracted one
by one without replacement. The property is based on the hypothesis that a
new term gives more information to a search engine than a repeated term in
the generated query, considering that search engines allow a maximum length of
input queries.

Consider that the extracted vocabulary is determined by the expression V =
{t1, . . . , tm}, where each term ti in the document has an assigned positive value
wi stored in vector −→w = {w1, . . . , wm}. These values can be determined by
several weighting approaches, like Boolean, tf, tf-idf, among others [8].

A generated query q can be modeled as a list of term pointers extracted from
a given vocabulary V , defined by q = s1, . . . sn, where each term pointer sj ∈ q
is an integer taking values in {1 . . .m} ∈ V .

By using the chain rule of probabilities, the probability of generating the
query q from a language model MD, can be defined as, P (q|MD) = P (s1|MD) ·
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. . . P (sn|s1, . . . , sn−1, MD) and the conditional distribution of extracting the to-
ken sj given an accumulated generated query q = s1, . . . sn and the language
model MD, is determined by,

P̂ (sk|q, MD) =

{
0 if ∃sj ∈ q, sk = sj

wsk

||−→w ||1−
∑n

j=1 wsj

otherwise
(1)

HLM also provides a random query generator function. This function generates
a sequence of terms using equation 1, giving a higher probability of occurrence to
the most relevant terms ranked with the given weighting approach. The function
models the term extraction with a multinomial distribution parametrized by
(

−→w
||−→w ||1 ). The without replacement property is modeled by reconstructing the

multinomial distribution after each extraction by reducing the dimensionality
of −→w and V by removing the extracted term dimension. Finally, the number of
terms extracted is defined by a query length parameter.

4 Meta Search Engine and Zipf-Like Scoring Function for
Generated Queries

As the coverage of the Web is potentiated by using a set of search engines S, the
document retrieval is proposed by the union of the indexed documents presented
in each of the search engines used. Assuming that document D is represented by
a set of queries Q, generated by HLM (section 3), each query q ∈ Q is mapped
to be submitted to a search engine s ∈ S.

A queryAnswer ω is defined as a tuple (s, q, r) , where r represents the ranking
assigned by search engine s for query q. Each queryAnswer ωs,q,r will point to a
particular document. In our work, all queries originate from the same language
model. The hypothesis is that if the set of Web search inverted indexes contains
documents with a higher similarity to the given document D, these documents
should be founded by many queries in the top of their ranks, and more than once.

After retrieving the set of queryAnswer ω objects, they are grouped into
metaAnswer objects. A metaAnswer Ω (|Ω| ≥ 1) is a set of ω, where each
element points to the same URL or Web document.

Finally, all metaAnswer objects are scored and ranked by a proposed ap-
proach, based on the Zipf-like distribution function, described below.

The Zipf law, proposed in [10], has been used in the natural language com-
munity for the analysis of term frequencies in documents. As stated by [6], if f
denotes the popularity of an item and r denotes its relative rank, then f and r
are related as f = c

rβ , where c is a constant and β > 0. If β = 1, then f follows
exactly the Zipf law, otherwise, is it said to be Zipf-like.

In [6], the Web popularity is modeled as the Zipf law, where the relative
frequency with which Web pages are requested for the rth most popular Web
page is proportional to 1/r. Furthermore, in this work we propose to model the
relevance of a given queryAnswer as a Zipf-like distribution, where the relevance
of results presented in a Web search engine are inversely related to their rankings.
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All queries are generated by the same language model and have an underlying
search intention. If a specific queryAnswer appears more than once, the prob-
ability that the pointed document is related to the document from which the
query was generated increases. Thus, the scoring strategy for a metaAnswer Ω
is expressed by

ZipfLikeScore(Ω) =
1
|Q|

∑
ω∈Ω

cs

rβs
(2)

where cs ∈ [0, 1] is a constant which represents the average relevance of the
best response of a Web search engine s, and βs represents the decay factor of
the results’ relevance while the amount of retrieved results increases. With this
score measure, we are estimating the relevance of the queryAnswer using its
ranking and the reliability of search engine results. The score is normalized by
the number of queries requested, in order to represent the score by a real value
∈ [0, 1].

5 Experiments

According to the previously described procedures, a prototype using a term fre-
quency weighting approach and a Spanish stopwords’ list was implemented. The
prototype allows the client to insert a text without length constraints. However,
if a whole document is considered as input, this could increase the number of non
relevant results retrieved, because of the randomized query generation process.
Therefore, we recommend to use a single paragraph instead of a whole document
since it is a self-contained independent information unit.

A hand-crafted set of paragraphs were extracted from a sample of Web doc-
uments. For this, a total number of 160 paragraphs were selected from different
Spanish written Web sites. The respective URL was stored and classified into
three different document types: bibliographic documents or school essays (type
1), blog entries or personal Web pages (type 2), and news (type 3). The distribu-
tion of the paragraph types was 77, 53, and 30 respectively. The selected search
engines for the experiments were Google, Yahoo!, and Bing. The parameters used
for each search engine for the query generation and the ranking procedures were
the number of queries generated per paragraph, cs and βs, whose assigned values
were (3, 0.95, 0.5) for Google, and (2, 0.93, 0.5) for Yahoo! and Bing respectively.
Finally the term length of each query was assigned to 13. These values have
been assigned by inspection and their formal estimation has been intentionally
omitted.

After this, paragraphs were sent to the system as input. The top 15 answers
from each paragraph were manually reviewed and classified as relevant or non
relevant results (2400 Web documents). The criteria of labeling an answer as rel-
evant was defined that the retrieved document must contain the given paragraph
exactly.

The goal of this experiment is to measure the effectiveness of the model at
satisfying user information needs. In this case, those needs are related to the
WDSRP. The criteria of measuring the relevance of the results is the number of
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documents containing exactly the given paragraph (DEPs). The selected evalu-
ation measure was the precision at k, which is defined as the number of DEPs
retrieved in the top k results divided by the number of documents retrieved in
top k results.

6 Results and Discussion

Fig. 1 shows the precision at k for results retrieved by the whole set of paragraphs
associated with their document types. It is easy to see that the precision at k
differs with each type of document.
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Fig. 1. Precision at k for types of documents

Firstly, type 1 has higher precision at the first values of k than the other
types. This is because bibliographic documents are often founded in popular
collections like Wikipedia, which are indexed by most Web search engines and
usually ranked on top. In this case, a Web document will appear as result for
most of generated queries. Secondly, type 2 documents are not as popular as
type 1. In this case, blog entries or personal pages are hardly indexed by all Web
search engines. Finally, we can observe a lower precision for the first ranked
results of type 3 documents. However, a slow decline of the precision at k is
presented. That is because news contents are repeated in many different Web
pages, through the increasing use of content aggregators, so is possible to find a
high number of relevant results lower ranked documents.

7 Conclusions

To the best of our knowledge, there are no methods for the Web document sim-
ilarity retrieval problem (WDSRP) based on randomized query generation and
meta-search scoring functions, using mainly the search engines’ ranking. The de-
scribed Zipf-like scoring function can be used as a relevance estimator for a Web
search engine result. Also, our probabilistic language model for query generation
allows to extract relevant terms, where its weighting approach parameters are
sufficient for a key term extraction light-technique.
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Abstract. Several IR tasks rely, to achieve high efficiency, on a single
pervasive data structure called the inverted index. This is a mapping
from the terms in a text collection to the documents where they appear,
plus some supplementary data. Different orderings in the list of docu-
ments associated to a term, and different supplementary data, fit widely
different IR tasks. Index designers have to choose the right order for one
such task, rendering the index difficult to use for others.

In this paper we introduce a general technique, based on wavelet trees,
to maintain a single data structure that offers the combined functional-
ity of two independent orderings for an inverted index, with competitive
efficiency and within the space of one compressed inverted index. We
show in particular that the technique allows combining an ordering by
decreasing term frequency (useful for ranked document retrieval) with an
ordering by increasing document identifier (useful for phrase and Boolean
queries). We show that we can support not only the primitives required
by the different search paradigms (e.g., in order to implement any inter-
section algorithm on top of our data structure), but also that the data
structure offers novel ways of carrying out many operations of interest,
including space-free treatment of stemming and hierarchical documents.

1 Introduction

The last decade has been witness to tremendous progress in the field of compact
data strucutres. These data structures mimic the operations of their classical
counterparts within much less space and sometimes, surprisingly, offer much
wider functionality. Recently, several authors have brought compact data struc-
tures to bear on problems in Information Retrieval (IR), in particular ranked
document retrieval [14,20]. Although quite different in their details, the common
vision of these works is to use breakthroughs in compressed pattern matching as
an efficient algorithmic base on which the more sophisticated operations required
by IR systems can be built. Our work in this invited paper is complementary to
these efforts, applying compact data structures to gain a new perspective on a
tool already widely adopted in IR: the inverted index.
� Funded in part by Fondecyt Grant 1-080019, Chile (first author) and by the Aus-

tralian Research Council (second author).
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Inverted indexes are an old and simple data structure, yet one of the most
successful in IR. They play a central role in any book on the topic [6,31,12,22,11],
and are also at the heart of most modern Web search engines.

Given a text collection regarded as a set of documents, an inverted index is
an array of lists. Each array entry corresponds to a different word or term of
the collection, and its list points to the documents where that word appears in
the text collection. The set of different words is called the vocabulary. Empirical
laws well accepted in IR [19] establish that the vocabulary is much smaller than
the collection size n, more precisely of size O(nβ), for some constant 0 < β < 1
that depends on the text type.

Two main variants of inverted indexes exist [5,35]. Ranked retrieval is aimed
at retrieving documents which are “relevant” to a query, under some criterion.
Documents are regarded as vectors, where terms are the dimensions, and the
values of the vectors correspond to the relevance of the terms in the documents.
The lists point to the documents where each term appears, storing also the
weight of the term in that document (i.e., the coordinate value). The query is
seen as a set of words, so that retrieval consists of processing the lists of the query
words and finding the documents which, considering the weights the query terms
have in the document, are predicted to be relevant. Query processing usually
involves somehow merging the involved lists, so that documents can be assigned
the combined weights over the different terms. Algorithms and different data
organizations for this type of query have been intensively studied [25,31,35,3,30].
List entries are usually sorted into order of descending weight of the term in the
documents.

The second variant is the inverted index for so-called full-text retrieval (also
known as boolean retrieval). These simply find all the documents where the query
terms appear. The lists point to the documents where each term appears, usually
in increasing document order. Queries can be single words, in which case the
retrieval consists simply of fetching the list of the word; or disjunctive queries,
where one has to fetch the lists of all the query words and merge the sorted lists;
or conjunctive queries, where one has to intersect the lists. While intersection
can be done also by scanning all the lists in synchronization, it is usually the case
that some lists are much shorter than the others [34], and so faster intersection
algorithms are possible. These algorithms are especially relevant when many
words have to be intersected.

Intersection queries have become extremely popular as Google-like default
policies to handle multiword queries. Another important query where intersec-
tion is essential is the phrase query, where intersecting the documents where the
words appear is the first step. The amount of recent research on intersection of
inverted lists witnesses the importance of the problem [15,8,4,7,27,28,13,9]. In
particular, in-memory algorithms have received much attention recently, as large
main memories and distributed systems make it feasible to hold the inverted in-
dex entirely in RAM.

Needless to say, space is an issue in inverted indexes, especially when com-
bined with the goal of operating in main memory. Much research has been carried
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out on compressing inverted lists [31,24,35,13], and on the interaction of various
compressed representation with different query algorithms, including list inter-
sections. Most of the list compression algorithms for full-text indexes rely on the
fact that the document identifiers are increasing, and that the differences be-
tween consecutive entries are smaller on the longer lists. The differences are thus
represented with encodings that favor small numbers [31,35]. Random access
is supported by storing sampled absolute values. For lists sorted by decreasing
weights, these techniques can still be adapted, by considering that most docu-
ments in a list have small weight values, and within the same weight one can
still sort the documents by increasing identifier.

A problem with the current state of the art is that a serious IR system must
support both types of retrieval: ranked and full-text. Yet, to maintain reasonable
space efficiency, the list must be ordered either by decreasing weights or by
increasing document number, but not both. Hence one type of search will be
significantly slower than the other, if affordable at all.

In this paper we introduce a data structure that permits, within the same
space required for a single compressed inverted index, retrieving the list of doc-
uments for any term in either decreasing-weight or increasing-identifier order,
thus supporting both types of retrieval. Moreover, we can efficiently support the
operations needed to implement any of the intersection algorithms, namely: re-
trieve the i-th element of a list, retrieve the first element larger than x, retrieve
the next element, and several more complex ones. In addition, our structure
offers novel ways of carrying out several operations of interest. These include,
among others, the support for stemming and for structured document retrieval
without any extra space cost. Indeed, the data structure can be generalized to
support a combination of any two orderings, not only the two most popular ones.

2 Related Work

2.1 Intersection Algorithms for Inverted Lists

The intersection of two inverted lists can be done in a merge-wise fashion (which
is the best choice if both lists are of similar length), or using a set-versus-set (svs)
approach where the longer list is searched for each of the elements of the shortest,
to check if they should appear in the result. Either binary or exponential (also
called galloping or doubling) search are typically used for svs. The latter checks
the list at positions i + 2j for increasing j, to find an element known to be after
position i (but probably close).

Algorithm bys [7] is based on binary searching the longer list N for the median
of the smallest list M . If the median is found, it is added to the result set. Then
the algorithm proceeds recursively on the left and right parts of each list. At each
new step the longest sublist is searched for the median of the shortest sublist.
It has been shown that bys performs about the same number of comparisons as
svs with binary search. As expected, both svs and bys improve upon the merge
algorithm when |N | >> |M | (actually from |N | ≈ 20|M |).
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Multiple lists can be intersected using any pairwise svs approach (iteratively
intersecting the two shortest lists, and then intersecting the result against the
next shortest one, and so on). Other algorithms are based on choosing the first
element of the smallest list as an eliminator that is searched for in the other lists
(usually keeping track of the position where the search ended). If the eliminator
is found, it becomes a part of the result. In any case, a new eliminator is chosen.
Barbay et al. [9] compared four multi-set intersection algorithms: i) a pairwise
svs-based algorithm; ii) an eliminator-based algorithm [8] (called sequential) that
chooses the eliminator cyclically among all the lists and exponentially searches
for it; iii) a multi-set version of bys; and iv) a hybrid algorithm (called small-
adaptive) based on svs and on the so-called adaptive algorithm [15], which at each
step recomputes the list ordering according to the elements not yet processed,
chooses the eliminator from the shortest list, and tries the others in order. In
their experimental results [9] the simplest pairwise svs-based approach (coupled
with exponential search) performed best.

2.2 Data Structures for Inverted Lists

The previous algorithms require that lists can be accessed at any given element
(for example those using binary or exponential search) and/or that, given a
value, its smallest successor from a list can be obtained. Those needs interact
with the methods employed for inverted list compression.

The compression of inverted lists usually represents each list 〈p1, p2, p3, . . . , p�〉
as a sequence of d-gaps 〈p1, p2 − p1, p3 − p2, . . . , p� − p�−1〉, and uses a variable-
length encoding for these differences, for example γ-codes, δ-codes or Golomb
codes [31]. More recent proposals use byte-aligned [29,10,13] or word-aligned
[2,33] codes, which lose little compression and are faster at decoding.

Intersection of compressed inverted lists is still possible using a merge-type
algorithm. However, approaches that require direct access are not possible as
sequential decoding of the d-gaps values is mandatory. This problem can be
overcome by sampling the sequence of codes [13,27]. The result is a two-level
structure composed of a top-level array storing the absolute values of, and point-
ers to, the sampled values in the sequence, and the encoded sequence itself.

Assuming 1 ≤ p1 < p2 < . . . < p� ≤ u, Culpepper and Moffat [13] extract
a sample every k′ = k log � values1 from the compressed list, where k is a pa-
rameter. Each of those samples and its corresponding offset in the compressed
sequence is stored in the top-level array of pairs 〈value, offset〉 needing �log u 
and �log(� log(u/�)) bits, respectively, while retaining random access to the top-
level array. Accessing the v-th value of the compressed structure implies accessing
the sample �v/k′ and decoding at most k′ codes. We call this “(a)-sampling”.
Results [13] show that intersection using svs coupled with exponential search in
the samples performs just slightly worse than svs over uncompressed lists.

Sanders and Transier [27], instead of sampling at regular intervals of the list,
propose sampling regularly at the domain values. We call this a “(b)-sampling”.

1 Our logarithms are in base 2 unless otherwise stated.
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The idea is to create buckets of values identified by their most significant bits
and then build a top-level array of pointers to them. Given a parameter B
(typically B = 8), and the value k = �log(uB/�) , bucket bi stores the values
xj = pj mod 2k such that (i−1)2k ≤ pj < i 2k. Values xj can also be compressed
(typically using variable-length encoding of d-gaps). Comparing with the previ-
ous approach [13], this structure keeps only pointers in the top-level array, and
avoids the need of searching it (in sequential, binary, or exponential fashion),
as �pj/2k indicates the bucket where pj appears. In exchange, the blocks are
of varying length and more values might have to be scanned on average for a
given number of samples. The authors also keep track of up to where they have
decompressed a given block in order to avoid repeated decompressions.

2.3 Algorithms for Ranked Retrieval

Persin et al. [25] proposed heuristics to solve ranked retrieval problems without
scanning all of the lists, and assuming they are sorted by decreasing weight. To
fix ideas we will assume, as in their work, that the weight is simply the term
frequency, that is, the number of times the term appears in the document. This
supports various tf-idf-like formulas, yet other weights that have been proposed
(for example the so-called impacts [3]) can be acommodated as well.

In the tf-idf model, the final weight of a document d for a query q is w(d) =∑
t∈q tft,d × idft summed over all the query terms t. The query retrieves the

documents with highest w(d). The term tft,d is the term frequency of t in d,
whereas idft = log D

dft
, where D is the total number of documents and dft is the

number of those where t appears. While idft (or dft) is stored in the vocabulary,
a term’s tft,d values are stored together with each document d in the inverted
list of each term t, and the documents d are sorted by decreasing tft,d value.

The algorithm retrieves first the shortest list (i.e., with highest idft) and
stores the documents as candidates for the final answer. Now the other lists are
processed in increasing length order. The documents of each list are sought in
the set of candidates, and their weight accumulated if found; otherwise they are
inserted as new candidates. There is a threshold for continuing processing each
list: if the tft,d values fall below it, the list is abandoned (see Ahn et al. [1] and
references therein). There is also a stricter threshold for inserting new elements
as candidates. These heuristic thresholds provide a time/quality tradeoff.

3 Wavelet Trees

Let L[1, N ] be a sequence of N symbols, where each symbol is in the range [1, D].
The wavelet tree of L is a perfect binary tree with D leaves. The leaves are labeled
left-to-right with the symbols [1, D] in increasing order. For a given internal node
v of the tree, let Sv be the subsequence of L consisting of only the symbols on the
leaves in the subtree rooted at v. We store at v a bitvector Bv of |Sv| bits, setting
Bv[i] = 1 if symbol Sv[i] is appears below the right child of v, and Bv[i] = 0
otherwise. Note that Sv is not actually stored, only Bv. Finally, each bitvector
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Bv is preprocessed for O(1) rank and select queries [26]: rankb(Bv, i) returns the
number of occurrences of bit b in Bv[1, i]; and selectb(Bv, i) returns the position
in Bv of the ith occurence of bit b. As we shall see, this preprocessing allows for
efficient navigation of the tree when resolving certain range queries on L.

The wavelet tree was originally designed [17] to allow accessing any S[i], as
well as computing queries rankd(L, i) and selectd(L, i) on L for any value d, all
in O(log D) time.

4 Our Data Representation

Let D be the total number of documents in the collection and V the number
of different terms. Let Lt[1, dft] be the list of document identifiers in which
term t appears, in decreasing tf order. Let N =

∑
t dft be the total number of

occurrences of distinct terms in the documents2, and n =
∑

t,d tft,d be the total
length, in words, of the collection. (Thus D ≤ N ≤ min(DV, n).) Finally, let |q|
be the number of terms in query q.

We propose to concatenate all the lists Lt into a unique list L[1, N ], and store
for each term t the starting position st of list Lt within L. The sequence L of
document identifiers is then represented with a wavelet tree.

The tf values themselves are stored in differential and run-length compressed
form in a separate sequence. More precisely, we mark the vt different tft,d val-
ues of each list in a bitmap Tt[1, mt], where mt = maxd tft,d, and the points
in Lt[1, dft] where value tfd,t changes, in a bitmap Rt[1, dft]. With Tt and Rt

preprocessed for rank and select queries we can obtain tft,Lt[i] = select1(Tt, vt−
rank1(Rt, i) + 1).

Finally, the st sequence is represented using a bitmap S[1, N ], also prepro-
cessed for rank and select queries. Thus st = select1(S, t), and also rank1(S, i)
tells the list L[i] belongs to.

The analysis of wavelet trees [17,23] shows that the space occupied by that of L
is NH0(L)+o(N log D) bits. Here NH0(L) =

∑
d dtd log N

dtd
≤ N log D, where dtd

is the number of distinct terms in document d. The classical differential encoding
of inverted files produces a set of N numbers. If they are sorted by increasing
document identifier, these numbers can be represented using

∑
t dft log N

dft
≤

N log V bits plus lower-order terms, by using Elias δ-encoding. If, however, they
are sorted by decreasing tf, the analysis is not so clean.

In general the measures are not comparable, yet we remind that our wavelet
tree representation will offer the combined functionality of both inverted indexes,
and more.

The other structures are the tf and the st values. The former is encoded
with Tt and Rt, which are compressible as they have only vt bits set. We use a
bitmap representation [18, BSGAP, Section 4.3] supporting rank and select in
time O(log vt) and requiring vt log mt

vt
+O(vt log log mt

vt
) bits for Tt and vt log dft

vt
+

O(dft log log dft
vt

) for Rt. This is asymptotically similar to the space needed to

2 N =
∑

t dft counts each distinct term once for each document it appears in. This is
also the total length of the inverted lists.
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represent, in a traditional tf-sorted index, each new tft,d value and the number of
entries that share it. The st values are represented so that they support constant-
time rank and select [26], requiring V log N

V + O(V ) + o(N) bits, which is less
than the usual pointers from the vocabulary to the list of each term. In the
worst case the bitmaps add up to O(N log N

V ) bits and the time to compute tf
is O(log D).

Before considering the classical and extended operations that can be carried
out with our data structure, let us raise a couple of issues:

1. Stemming is a useful tool to enhance recall [21,32]. A way to provide it is by
stemming the terms directly during the parsing, yet in this case the index
is unable to provide at the same time non-stemmed searching. One can of
course index the stemmed and non-stemmed occurrence of each term, thus
increasing the space. We will be able to provide stemmed retrieval without
any extra space. All we require is that all the variants of the same stemmed
word be contiguous in the vocabulary (this is in many cases automatic as
stemmed terms share the same root, or prefix).

2. Most IR systems support a flat set of documents, while in XML or file sys-
tems, for example, one has a hierarchy of documents and would like to choose,
at query time, which level of the hierarchy to use (e.g., to retrieve relevant
sections, or relevant chapters, or relevant books), or to carry out ranked IR
on a certain subtree. In a temporal (e.g., news archives) or versioned (e.g.,
Wikipedia) text collection, one might want to search only a range of doc-
uments. Our data structure has also support for some queries of this kind
without using any extra space.

4.1 Full-Text Retrieval

The full-text index, rather than Lt, requires a list Ft, where the same terms
are sorted by increasing document identifier. Different kinds of access operations
need to be carried out on Ft. We show now how all these can be carried in
O(log D) time.

Direct retrieval. First, with our wavelet tree representation of L we can
find any value Ft[i]. This is equivalent to finding the i-th smallest value in
L[stt, stt+1 − 1]. The algorithm, for a general range L[l, r], is as follows [16].
Let v be the root of the wavelet tree and Bv its bitmap. We count with n1 =
rank1(Bv, r) − rank1(Bv, l − 1) the number of 1s in Bv[l, r], and with n0 =
(r−l+1)−n1 the number of 0s. If i ≤ n0, then there are at least i values d in L[l, r]
belonging to the smaller half of the document identifiers, thus we continue recur-
sively on the left child of v, with l = rank0(Bv, l − 1) + 1 and r = rank0(Bv, r).
Otherwise, we continue on the right child, with l = rank1(Bv, l − 1) + 1, r =
rank1(Bv, r), and i = i− n0. The symbol corresponding to the leaf arrived at is
the answer.

We can also extract any segment Ft[i, i′], in order, in time O((i′ − i + 1)(1 +
log D

i′−i+1 )). The algorithm is as above, going just by one branch when both i
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and i′ choose the same, and splitting the interval into two separate searches when
they do not. At worst we arrive at i′ − i + 1 leaves of the wavelet tree, but part
of the paths to these leaves must be shared. At worst, their paths become all
distinct at depth log(i′− i+1), up to which point we work on all the O(i′− i+1)
different wavelet tree nodes, and after then we work on a different path, of length
log D − log(i′ − i + 1), for each value.

Another useful operation is to find Ft[j] after having visited Ft[i], for some
j > i. We show this can be done in amortized time proportional to log(j− i+1).
We need to store log D numbers m�, d�, and b�, where m0 = ∞ and d1 = 0, and
the others are computed as follows when we obtain Ft[i]: If, at wavelet tree depth
� (the root being depth 1), we must go left, then m� = min(m�−1, d� + n0 − i)
and d�+1 = d�, else m� = m�−1 and d�+1 = d� + n0. Here n0 is the value local
to the node. Therefore d� counts the values skipped to the left, and m� is the
maximum j − i value such that the downward paths to compute Ft[i] and Ft[j]
coincide up to depth �. We also set b� = i. Now, to compute Ft[j], we consider
all the � values, from largest to smallest, until finding the first one such that
j − b� ≤ m�. From there on we recompute the downward path, resetting d� and
m� accordingly and setting b� = j.

Overall, if we carry out this operation k times, across a range [i, i′], the cost
is O(log D + k(1 + log i′−i+1

k )), as there can be only O(1) different paths longer
than O(log(i′ − i + 1)) arriving at i′ − i + 1 consecutive leaves, and considering
the argument above to analyze the retrieval of Ft[i, i′].

Boolean operations. The most important operation for intersecting lists is to
be able to find the first j such that Ft[j] ≥ d, given d. This is usually solved with
a combination of sampling and linear, exponential, or binary search. We show
now that our representation supports this operation in O(log D) time.

The operation is as follows. We start at the root v, with bitmap Bv, and the
interval L[l, r] with l = stt and r = stt+1 − 1. If number d belongs to the first
half of the wavelet tree, we descend left, otherwise right. In both cases we update
l and r as in the algorithm to retrieve Ft[i]. If, at some point, the interval [l, r]
becomes empty, then there is no value d in the subtree and we return without
a value. If, instead, we arrive at a leaf with a nonempty [l, r] (indeed, it must
hold l = r in this case), then the leaf arrived at is d and we return this value.
If the recursive step returns no result, then we must look for the first result to
the right: If the recursion was to the right child, or it was to the left but there
is not any 1 in Bv[l, r], we in turn return with no result. Otherwise we enter
the right child looking for the smallest value. From there, we enter recursively
the left child only if there is some 0 in Bv[l, r], otherwise we go right. Thus in
at most two root-to-leaf traversals we find out the first d′ ≥ d value in Ft. To
obtain j, the position of d′ in list Ft, we must add up the n0 values at all the
nodes in the path to d′ where we have gone to the right. Note O(log D) is not
far from the time required by a binary search on Ft.

As before, if we know Ft[j] = d and seek for the first value Ft[j′] ≥ d′, where
d′ ≥ d, we can do it in amortized time proportional to log(d′−d+1). The reason
is that, once again, we can redo the work for d′ from the corresponding position
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of the path used for d (this position is now easier to calculate: it is the first bit
at which d and d′ differ). For the same reason as before, k searches covering a
range [d, d′] will cost at most O(log D + k log d′−d+1

k ) time. This is indeed the
time required by k successive searches using exponential search.

Finally, our data structure allows us to carry out a particular intersection
algorithm. Consider intersecting two lists Ft and Ft′ . This is equivalent to finding
the common document numbers in L[l, r] and L[l′, r′]. We proceed as follows.
Let v be the wavelet tree root and Bv its bitmap. We descend to the left with
l = rank0(Bv, l − 1) + 1, r = rank0(Bv, r), l′ = rank0(Bv, l′ − 1) + 1, and r′ =
rank0(Bv, r′). We also descend to the right using the same formulas replacing
rank0 with rank1. If at any point range [l, r] or range [l′, r′] is empty, we abort
that branch. If we arrive at a leaf d with l = r and l′ = r′, then we report d as an
element in the intersection. This algorithm is indeed a materialization of bys [7],
where the binary searches have been replaced by constant-time rank operations,
hence it is an O(log D) factor faster!

Furthermore, this can be extended to intersecting k terms simultaneously,
by maintaining k ranges instead of two, with an O(k) time penalty factor. As
soon as one such range disappears, the tree branch is abandoned. This can offer
much better performance than the successive pairwise intersections that are
currently the best choice in practice. Perhaps more importantly, this scheme can
be relaxed to report any document where at least k′ out of the k words appear, by
abandoning the branches when there are less than k′ nonempty intervals. Again,
it is not easy to implement this type of search by, say, successive intersections.

We can proceed similarly in case of unions. We start with the k intervals
and proceed recursively as long as one of the intervals is nonempty. The cost
is O(M(1 + log D

m )), where m is the size of the output and M is the sum, over
the returned documents, of the number of intervals where they appeared. The
reason is that each interval must be projected to all of its leaves, but again, we
arrive at m different leaves overall, but the m paths of length log D cannot be
all different. The classical algorithm is O(M log k) time, which can be slightly
better or worse.

Other operations of interest. If the range of terms [t, t′] represent the deriva-
tives of a single stemmed root, we might wish to act as if we had a single list Ft,t′

containing all the documents where they occur. Indeed, if we apply our previous
algorithm to obtain Ft[i] from L[stt, stt+1 −1], on the range L[stt, stt′+1 −1], we
obtain precisely Ft,t′ [i], if we understand that a document d may repeat several
times in the list if different terms in [t, t′] appear in d.

More than that, the algorithms to find the first j such that Ft[j] ≥ d can
be applied verbatim to obtain the same result for Ft,t′ [j] ≥ d (except that
l = r may not hold at the leaves, but rather r − l + 1 is the number of times the
resulting document appears in Ft,t′). All the variants of these queries are directly
supported as well. Finally, the bys-like search can also be applied verbatim in
order to intersect stemmed terms (again, at the leaves it may hold that l ≤ r
and l′ ≤ r′, not necessarily the equality).
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Note we can obtain the list of unique documents d for a range of terms [t, t′]
by using the method that finds the first j and d such that Ft[j] = d ≥ 1, then
Ft[j′] = d′ ≥ d + 1, and so on.

Note also that we have a kind of summarization information available. In
particular, we can obtain the local vocabulary of a document d, that is, the set
of different terms that appear in d. By descending to a leaf d, and then locating
back all of its occurrences L[i] (via select as we move upwards in the wavelet
tree), we can find all the i such that L[i] = d, and then rank1(S, i) gives the
terms, all in time O(log D) per term. Moreover, as the occurrences of d within
its leaf are a stable sort of the original order in L, we can retrieve the local
vocabulary in lexicographic order. This allows, for example, merging in linear
time the vocabularies of different documents, or binary searching for a particular
term in a particular document (yet, the latter is easier via two rank operations
on L: rankd(L, st+1 − 1)− rankd(L, st − 1); then the corresponding position can
be obtained by selectd(L, 1 + rankd(L, st − 1))).

The way to support hierarchical documents by mapping them to ranges [dl, dr]
of documents is relatively obvious. It is sufficient to restrict all our wavelet tree
traversals to the nodes that contain leaves in this range, disregarding others.

4.2 Ranked Retrieval

We focus now on the operations of interest for ranked retrieval, which are also
simulated essentially in O(log D) time.

Direct access and Persin’s algorithm. The Lt lists used for ranked retrieval
are directly concatenated in L, so Lt[i] is obtained by extracting symbol L[st +
i−1] using the wavelet tree. Recall that the term frequencies tf are also available
in time O(log D). Again, a range Lt[i, i′] is obtained in O((i′ − i + 1) log D

i′−i+1 )
time, as follows. Start at the root v with bitmap Bv and let the range to extract
be [l, r]. Compute the corresponding ranges [l0, r0] and [l1, r1] for the left and
right child, as usual, and descend recursively to both. Stop the recursion when
the range is empty. Upon arriving at a leaf d, report d. One can, for example,
find with select1(Rt, vt−rank1(Tt, p)+1)−1 the length of the prefix of Lt where
the tf values are > p, which is useful for Persin’s algorithm [25].

This algorithm is correct but it has the problem of retrieving the documents
in document order, not in tf order as they are in Lt. To recover the correct
ordering, we must merge the results at each internal wavelet tree node during
the recursion, as they arrive. At node v with results returned by its left and right
child, we use select0 and select1, respectively, in Bv to map their positions in
the bitmap of v. We advance in both lists so as to build their union in the correct
order in Bv prior to sending them upwards. Note that, due to this merging effort,
the complexity is again O((i′ − i+1) log D), but in practice the method is faster
than extracting each L[i] one by one.

Note, nevertheless, that retrieving the highest-tf documents in document order
is indeed beneficial for Persin’s algorithm, where a difficulty is how to accumulate
results across unordered document sets. One could use the threshold p of the
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algorithm to retrieve the relevant documents from the next list to consider, and
gracefully merge the result with the current candidates, as all are automatically
in increasing document order.

Other operations of interest. Any candidate document d in Persin’s algo-
rithm can be directly evaluated, obtaining its weight w(d), by finding it within
Lt for each t ∈ q (with rankd and selectd on L, as explained), and its tf obtained,
all in O(|q| log D) time.

If we wish to use stemming, we might want to retrieve prefixes of several lists
Lt to Lt′ . We may carry out the previous algorithm to deliver all the distinct
documents in these prefixes, now carrying on the t′−t+1 intervals as we descend
in the wavelet tree. When we arrive at the relevant leaves d, the corresponding
positions will be contiguous, thus we can naturally return just one occurrence
of each d in the union. This is a simplification of the method sketched earlier
to obtain the unique documents in Ft,t′ . If we wish to obtain the sum of the tf
values for all the stemmed terms in d, we can traverse the wavelet tree upwards
for each interval element at leaf d, and obtain its tf upon finding its position i
in L. Alternatively, we could store the tf values aligned to the leaves and mark
their cumulative values on a compressed bitmap, so as to obtain the sum as the
difference of two select1 queries on that bitmap. The space for tf becomes now
O(N log n

N ) bits. In any case, this delivers the results in document order.
There is also some basic support for hierarchical documents: If we wish to

know the total tf of t in a range [d, d′] of documents, this range is exactly covered
by O(log D) wavelet tree nodes. We can descend, projecting the range of Lt in
L, until those nodes, and then move upwards again to find their positions and
individual tf values, to add them all.

More interesting is the fact that we can carry out ranked retrieval restricted
to any range of documents [d, d′] (e.g., within a particular XML subtree or
filesystem directory or range of document versions). Once again, it is sufficient
to restrict any of the operations described above so that they do not descend
to a node whose range does not intersect [d, d′]. This automatically yields, for
example, Persin’s algorithm over a range of documents.

5 Conclusions and Future Work

In this paper we have shown how wavelet trees can be used to achieve dual-
ordered inverted lists, that is, lists that are simultaneously sorted by document id
(useful for intersections and document retrieval) and by term impact or frequency
(useful for ranked retrieval). We are in the process of translating these data
structures into practice and verifying them experimentally.

Finally, we emphasize that our approach can be applied to any ordering on
the documents. A very different and interesting ordering from the one considered
here is that induced by the suffix array (the D array of Culpepper et al. [14]).
Applying our data structure and bys-like intersection algorithm over this or-
dering immediately yields efficient “bag-of-strings” queries from suffix arrays,
further bridging the gap between IR problems and optimal pattern matching
data structures.
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Abstract. Let A be an array of n elements taken from a totally ordered
set. We present a data structure of size 3n + o(n) bits that allows us to
answer the following queries on A in constant time, without accessing
A: (1) given indices i < j, find the position of the minimum in A[i..j],
(2) given index i, find the first index to the left of i where A is strictly
smaller than at i, and (3) same as (2), but to the right of the query index.
Based on this, we present a new compressed suffix tree (CST) with O(1)-
navigation that is smaller than previous CSTs. Our data structure also
provides a new (practical) approach to compress the LCP-array.

1 Introduction

A suffix tree (ST) for a string S of length n is a compact trie storing all the
suffixes of S, in the sense that the characters on any root-to-leaf path spell out
exactly a suffix. An example is shown in Fig. 1. The ST is an extremely impor-
tant data structure with applications in exact or approximate string matching,
bioinformatics, and document retrieval, to mention only a few examples.

The drawback of STs is their huge space consumption of 20–40 times the text
size (O(n lg n) bits in theory), even when using carefully engineered implementa-
tions. To reduce their size, in recent years several authors provided compressed
variants of STs (CSTs), both in theory [1, 2, 3, 4, 5, 6, 7] and in practice [8, 9, 10].

We regard the CST as an abstract data type supporting the following opera-
tions (u and v are nodes): Root() yields the root, IsAncestor(u, v) is true iff
u is an ancestor of v, Count(u) gives the number of leaves (suffixes) below u,
LeafLabel(u) for leaf u yields the position in S where the corresponding suffix
begins, SDepth(u) gives u’s string-depth (number of characters on root-to-u
path), Parent(u)/FChild(u)/NSibling(u) yields the parent/first child/next
sibling of u (if existent), SLink(u) gives the unique node v with root-to-v la-
bel α ∈ Σ� if the root-to-u label is aα for some a ∈ Σ, Lca(u, v) yields the
lowest common ancestor of u and v, TDepth(u) gives the tree depth of u, and
Child(u, a) gives the child v of u such that the label on edge (u, v) starts with
a ∈ Σ. Here and in the following, Σ denotes the underlying alphabet of size σ.

In all CSTs, there is a trade-off between the space it occupies and the time it
needs to support the operations from the previous paragraph. We first make an
extensive survey of existing approaches in the following section (along with some

E. Chavez and S. Lonardi (Eds.): SPIRE 2010, LNCS 6393, pp. 322–333, 2010.
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0 11 -1 $
1 10 0 i$
2 7 1 ippi$
3 4 1 issippi$
4 1 4 ississippi$
5 0 0 mississippi$
6 9 0 pi$
7 8 1 ppi$
8 6 0 sippi$
9 3 2 sissippi$
10 5 1 ssippi$
11 2 3 ssissippi$
12 -1

Fig. 1. Left: suffix tree for S = mississippi$. Right: suffix- and LCP-array.

simplifications and unifying observations); our technical results and an outline
on the rest of this article will be given at the end of that survey.

2 A Guided Tour through Compressed Suffix Trees

Let Si denote the i’th suffix of S. A CST on S can be divided into three compo-
nents: (1) the suffix array SA, specifying the lexicographic order of S’s suffixes,
defined by SSA[0] < SSA[1] < · · · < SSA[n−1] (hence SA captures information about
the leaves); (2) the LCP-array LCP, storing the lengths of the longest common
prefixes of lexicographically adjacent suffixes: LCP[0] = −1 = LCP[n] and for
1 ≤ i < n, LCP[i] = max{k ≥ 0 : SSA[i] and SSA[i−1] share a length-k-prefix}
(hence LCP captures information about internal nodes); and (3) additional data
structures for simulating the navigational operations mentioned in the introduc-
tion. The goal of a CST is to compress each of these three components.

Compressed Suffix Arrays. There is a wealth of literature on Compressed
Suffix Arrays (CSAs), offering different trade-offs between the space they require
and the lookup-time tSA they provide. We refer the reader to Navarro’s and
Mäkinen’s survey paper [11] for an in-depth overview of the different alternatives.
One of the best choices is the CSA due to Grossi et al. [12], achieving tSA =
O(lgε n) with space (1 + 1

ε )nHk + o(n) bits (assuming an alphabet of size σ =
O(polylg n)). Here and in the following, Hk denotes the empirical entropy of
order k of the input text S, which, at least in the realm of text indexing, is used
as the de facto standard for the compressibility of a text [11].

Compressed LCP-Arrays. There are also different options for compressing
the second component (LCP-array), for convenience summarized in Tbl. 1. Al-
though we focus primarily on theoretical results, we also included the simple
byte-aligned variant [13] in Tbl. 1, as it is still competitive [10] with recent
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Table 1. Trade-offs for storing and accessing the LCP-array. (∗)worst case O(n lg n).

ref. space in bits tLCP comment
[14] n lg n O(1) uncompressed variant
[13] 8n(∗) O(1) practical byte-aligned variant

NEW 4–6n(∗) O(1) only in conjunction with our new CST
[3] 2n + o(n) O(tSA)
[4] nHk + o(n) O(lg1+α n) constant 0 < α < 1
[5] O(nHk lg 1

Hk
) O(tSA)

[15] O(n lg n
q

) O(tSA · q) time amortized; O(tSA · n) time in the worst case
[7] O( n

lg lg n
) O(tSA lgβ n) constant 0 < β < 1

[16] O(nHk lg 1
Hk

) O(tψ
n

R1−γ ) R = number of equal-letter runs in BWT of S

practical implementations [8, 9]. Apart from the first two [14, 13], all other vari-
ants exploit the redundancy arising from listing the LCP-values in text order
(as opposed to suffix array order); this is sometimes called the permuted LCP-
array [15, 16]. Note in particular that all LCP-variants with o(n lg n) bits have
non-constant access-time tLCP (assuming an underlying compressed SA).

In principle, implementations of suffix- and LCP-arrays are interchangeable
in CSTs. Hence, combining the different variants mentioned above already yields
a rich variety of CSTs, although some CSTs favor certain suffix- or LCP-arrays.

Succinct Tree Navigation. The real difference between the various known
CSTs lies in the way they support the navigational operations (third component
above), which we are going to discuss next. There are two main lines of research:

(a) Storing the tree topology explicitly by a sequence of balanced parentheses
(either BPS [17] or DFUDS [18]).

(b) Deriving the tree topology implicitly from intervals in the LCP-array as
follows: let v be a node in ST such that the labels on the root-to-v path
form the string ω of length �. Then there is an interval [vl..vr] in the suffix
array such that ω is the longest common prefix of SSA[vl], . . . , SSA[vr ], and ω
in not a prefix of any other suffix. In the LCP-array, this interval is called
an LCP-interval of LCP-value � [13]. It has the properties LCP[vl] < �,
LCP[vr + 1] < �, and LCP[k] ≥ � for all k with vl < k ≤ vr. The indices
i1 < i2 < · · · < im in [vl..vr] with LCP[ij ] = � (where 1 ≤ m ≤ σ − 1)
are called LCP-indices, and the child intervals of [vl..vr] are [vl..i1 − 1],
[i1..i2−1], . . . , [im..vr], where some of them may be singleton intervals [ij ..ij ].

Tbl. 2 summarizes all known existing CSTs, and shows those with type-(a)-
navigation in the left half [1,2,3,4], and those of type (b) in the right half [5,6].

Approach (a), pursued either verbatim [1, 2, 3] or on a subset of certain sam-
pled nodes [4], has the advantage that the rich results on navigation in general-
purpose succinct trees (see [17, 18, 19, 20] and references therein) can be re-used
for CSTs. Hence, whenever a new operation for BPS or DFUDS is discovered,
this automatically carries over to CSTs using this representation.
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Table 2. Comparison of different CSTs (space in bits on top of CSA & LCP). The
O(·) is omitted in all operations. Trees with type-(a) navigation are in the left half.

[1, 2, 3] [4] [5] [6] NEW
space 4n o(n) o(n) 2n 3n

Root, IsAncestor,Count 1 1 1 1 1
LeafLabel tSA lg1+α n tSA tSA tSA

SDepth tLCP lg1+α n tLCP tLCP tLCP

Parent 1 lg1+α n tLCP polylglg n tLCP lg σ 1
FChild, NSibling 1 lg1+α n tLCP polylglg n tLCP 1
SLink, Lca 1 lg1+α n tLCP polylglg n tLCP lg σ 1
TDepth 1 lg2+2α n tLCP polylglg n 1 1
Child tSA lg σ lg σ + lg1+α n tSA lg σ tSA lg σ tSA lg σ

The most prominent CST from group (a) is the one due to Sadakane [3], called
Sad-CST henceforth. Sad-CST supports very fast operations, but its disadvan-
tage is that it needs up to 4n + o(n) bits for the sequence of parentheses, as the
ST consists of n leaves and up to n− 1 additional internal nodes (the o(n)-term
comes from the extra data structures for navigation). There are at least two
explanations why the resulting 4n bits are a waste of space. First, a suffix tree
is not an arbitrary tree, but a compact one, meaning that it does not contain
nodes of out-degree 1. Thus, in principle it should be possible to represent such a
compact tree on n′ nodes with less than 2n′ bits (n′ < 2n is the number of nodes
in ST). The second (and even more convincing) reason is that the LCP-array
itself already captures the topology of the ST by means of LCP-intervals. Hence,
in theory no space at all has to be spent for the topology, as the LCP-array is
already part of any CST.

Motivated by the observations from the previous paragraph, more recent CSTs
[5,6] base their navigation on intervals in the LCP-array LCP. CSTs from this (b)-
group express all navigational operations by a combination of three basic queries
on LCP: (i) range minimum queries (RMQ), where for two given indices i ≤ j in
LCP one seeks the (first) position of the minimum in LCP[i, j], (ii) previous
smaller value queries (PSV), where for an index i in LCP one searches for the
rightmost position to the left of i where LCP is strictly smaller than at position
i, and (iii) next smaller value queries (NSV), which are defined analogously for
the sub-array to the right of the query point.

One could use separate data structures for each of the three queries mentioned
above (RMQ/PSV/NSV), amounting to 6n+ o(n) bits in total: 2n+ o(n) for RMQs
[21] and 2n + o(n) each for PSV and NSV [5]. This, however, would constitute a
disadvantage over the 4n + o(n) bits used by the methods storing the explicit
topology (a). To cope with this situation, Fischer et al. [5] proposed to “sparsify”
the RMQ/PSV/NSV-structures to use only o(n) bits in total, thereby giving up
constant-time retrieval of RMQ/PSV/NSV-values. This, nonetheless, constitutes no
theoretical slowdown for the suffix-tree operations, as they have to make at least
one lookup to LCP, which already costs Ω(tSA) = Ω(lgε n) at the very best in
the presence of a compressed LCP-array (see Tbl. 1).
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A different idea to reduce the 6n-bit term is to use a combined data structure
for RMQ/PSV/NSV. This is the idea of Ohlebusch and Gog’s OG-CST [6], who
noted that a 2n-bit balanced parentheses representation BPR of LCP’s Super-
Cartesian Tree [22] provides this functionality, at least for RMQ and NSV. Although
BPR is not defined in mathematically rigorous terms, the authors provide an
algorithm that constructs BPR in linear time [6, Alg. 3]. It works by scanning
LCP from left to right, and writing ‘)k(’ in step i if LCP[i] is the NSV of k
preceding positions. This results in a 2n-bit sequence BPR that supports RMQ
and NSV in O(1) time (using additional o(n) bits); PSV-queries are supported
in O(tLCP lg σ) time by a binary search over the at most σ closing parentheses
(which are consecutive), taking the LCP-values of the corresponding positions as
search keys. A different (practical) proposal [9] of a combined data structure is
based on the range min-max tree [20].

The parentheses sequence BPR from OG-CST has an interesting connection
to a seemingly different data structure, the 2d-Min-Heap [21]: BPR is DFUDS of
the 2d-Min-Heap of LCP read from right to left (reversed). To see why this is so,
recall the definition of the 2d-Min-Heap MA of an array A [21, Def. 1]: it is an
ordered tree on nodes {1, 2, . . . , n}, defined such that i is the parent of j iff A[i]
is the PSV of A[j]. Writing the DFUDS of MA, where a node with k children
is encoded as ‘(k)’, results in a sequence of parentheses where node i appears
as ‘(k)’ if A[i] is the PSV of k succeeding positions (as opposed to NSV in BPR).
Given these similarities, it is also not surprising that the construction algorithms
for BPR [6, Alg. 3] and the DFUDS of MLCP [21, Sect. 4] are strikingly similar.

Unifying View. The separation between CSTs with navigation of type (a) and
those of type (b) is actually not as strict as it may seem at first sight. Indeed,
if for (a) we restrict ourselves to the BPS, then the resulting sequence U [1, 2n′]
implicitly lists the depths of the ST-nodes as visited in an Euler-Tour. For such
a sequence U , Sadakane and Navarro [20] showed that the efficient support of
operations very similar to (if not the same as) RMQ/PSV/NSV yields all known
navigational operations in the underlying tree. The only conceptual difference
is that the underlying BPS U lists the tree-depths of ST, whereas type-(b)-
navigation works on LCP, which lists the string-depths (a similar observation is
made by [9]).

Construction. Particular emphasis has been put on efficient construction al-
gorithms for all three components of CSTs. Here, “efficiency” encompasses both
construction time and space, as the latter can cause a significant memory bottle-
neck. Most CSAs can be built in O(n) time and O(n) bits (constant alphabet),
or O(n lg lg σ) time using O(n lg σ) bits (arbitrary alphabet size σ) of space [23].

The 2n + o(n)-bit LCP-array [3] can be constructed with no extra space in
addition to CSA and the text [8]. Other smaller LCP-variants from Tbl. 1 would
need these 2n bits as their intermediate working space.

Concerning the navigational component, the most space-consuming part is
the sequence of balanced parentheses, either that of the ST (Sad-CST), or of
the Super-Cartesian Tree (OG-CST). For Sad-CST, it has been shown how to
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Algorithm 1. Space-efficient construction of the DFUDS U of a suffix tree
push(n + 1) /* LCP[n + 1] = −1 */
for i← n downto 1 do

write ’)’ to U ’s current beginning /* accounts for leaf SA[i] */
while LCP[i] < LCP[top()] do

write ’(()’ to U ’s current beginning /* node with ≥ 2 children */
λ← pop()
while LCP[λ] = LCP[top()] do

write ’(’ to U ’s current beginning /* additional children */
λ← pop()

push(i)
write ’(’ to U ’s current beginning /* to make U balanced */

construct the BPS in O(n) time using O(n) bits of working space [24, 8]. How-
ever, these algorithms are quite complex (using Elias δ-codes, batched updates,
. . . ) and involve large big-O-constants, and are therefore not used in existing
implementations [8, 9].

There is a simpler way if we construct ST’s DFUDS U instead of its BPS,
shown in Alg. 1.1 As in previous approaches [24, 8], we construct U from the
LCP-array of S. We scan LCP from right to left and build the DFUDS from back
to front. Note the similarity of our algorithm to the construction of the balanced
parentheses representation of LCP’s Super-Cartesian Tree [6, Alg. 3] (and to the
algorithm for constructing the DFUDS of LCP’s 2d-Min-Heap [21, Sect. 4.1]).

The correctness follows from the fact that if v is a node in ST with k children
v1, . . . , vk, then there are k − 1 LCP-indices p1, . . . , pk−1 in v’s LCP-interval
[vl..vr]. These indices pj must have vl as their PSV; hence, when scanning posi-
tion i = vl in Alg. 1, we write k opening parentheses (2 in the outer and k− 2 in
the inner while-loop). The outer while-loop accounts for the fact that vl could be
the left delimiter of several nested LCP-intervals with decreasing LCP-values.

The only drawback of Alg. 1 is that the stack might still use O(n lg n) bits in
the worst case. To cope with such a situation, Fischer [21, Sect. 4.2] shows how
to represent a stack containing at most n in- or decreasing elements from [1, n]
with a bit-vector of length n, assuming that elements are only pushed in a right-
to-left (or left-to-right) manner. To retain constant-time access to the elements
on the stack, we need three further tables of size at most O(n lg lg n

lg n ) = o(n) bits.
Thus, n + o(n) bits of working space suffice for constructing ST’s DFUDS.

It is interesting to note that if one substitutes the ‘(()’ by a simple ‘(’ in line
3 of Alg. 1, then the result is again the DFUDS of LCP’s 2d-Min-Heap [21]!
This shows yet another interesting connection between the triumvirate suffix
tree/Super-Cartesian Tree/2d-Min-Heap.

1 Note that BPS and DFUDS support the same set of operations [25], so we can choose
whatever representation is more suitable for our purposes.
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2.1 Our Results in Context

In Sect. 3, we first show a general result that is independent from CSTs:

Theorem 1. Given an array A of n elements taken from a totally ordered set,
there is a data structure of size 3n+o(n) bits that supports RMQ/PSV/NSV-queries
on A in O(1) time, without needing access to A at query time.

In Sect. 4, we then use Thm. 1 to improve upon OG-CST:

Theorem 2. Let S be a text of size n with characters from an alphabet of size σ.
Given S’s suffix array with access time tSA and its LCP-array with access time tLCP,
there is a CST with additional 3n + o(n) bits that supports Count, IsAncestor,
Parent,FChild,NSibling,SLink,Lca and TDepth in O(1), LeafLabel in
tSA, SDepth in O(tLCP), and Child in O(tSA lg σ) time.

This latter result should be seen in the context of other CSTs; see again Tbl. 2.
In terms of space, our new CST resides between Sad-CST with 4n additional
bits [3] and OG-CST with 2n bits [6]. However, it is equally fast as the larger
of these (Sad-CST). Clearly, there are smaller variants of CSTs [4,5], but due to
their increased navigation time they are incomparable to Thm. 2.

Finally, we briefly sketch how the data structure from Thm. 2 yields a prac-
ticable and small LCP-array.

3 A New Representation of Super-Cartesian Trees

In this section, we prove Thm. 1 (with linear construction time).

Definition 1. Let A[1..n] be an array of elements of a totally ordered set (M,≤).
To deal with boundary cases, we add an element −∞ to M which is smaller
than any other element of M , and define A[0] = −∞ = A[n + 1]. For an index
1 ≤ i ≤ n, we define:

FEV(i) = min{k | PSV(i) < k < NSV(i) and A[k] = A[i]}
LEV(i) = max{k | PSV(i) < k < NSV(i) and A[k] = A[i]}

An interval [i..j], where 1 ≤ i ≤ j ≤ n, is called mound-interval if A[k] >
max{A[i − 1], A[j + 1]} for all k with i ≤ k ≤ j.

Let us call the interval [PSV(i) + 1..NSV(i) − 1] the mound-interval of i. Then,
FEV(i) (LEV(i)) is the first (last) index in the mound-interval of i at which a
value equal to A[i] can be found. As an example consider index 5 in the array A
from Fig. 2: Its mound-interval is [1..11] because PSV(5) = 0 and NSV(5) = 12.
Furthermore, FEV(5) = 1 and LEV(5) = 8.

The definition of the Super-Cartesian tree is taken from [22]; cf. Fig. 3.

Definition 2. Let A[l..r] be an array of elements of a totally ordered set (M,≤)
and suppose that the minima of A[l..r] appear at positions p1 < p2 < · · · < pk

for some k ≥ 1. The Super-Cartesian tree Csup(A[l..r]) of A[l..r] is recursively
constructed as follows:
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i 0 1 2 3 4 5 6 7 8 9 10 11 12
A[i] −1 0 1 1 4 0 0 1 0 2 1 3 −1

Fig. 2. A[1..11] is an array of natural numbers. We choose −1 as the element that is
smaller than every natural number and set A[0] = −1 = A[12].

– If l > r, then Csup(A[l..r]) is the empty tree.
– Otherwise create k nodes v1, v2, . . . , vk, label each vj with pj, and for each

j with 1 < j ≤ k the node vj is the right sibling of node vj−1 (in Fig. 3,
node vj−1 is connected with vj by a horizontal edge). Node v1 is the root of
Csup(A[l..r]). Recursively construct C1 = Csup(A[l..p1−1]), C2 = Csup(A[p1+
1..p2 −1]), . . . , Ck+1 = Csup(A[pk +1..r]). For each j with 1 ≤ j < k, the left
child of vj is the root of Cj. The left and right children of vk are the roots of
Ck and Ck+1, respectively.

Ohlebusch and Gog [6] showed that the Super-Cartesian tree of A[1..n] can
be represented by a sequence of balanced parentheses BPR, and they give a
construction algorithm that is solely based on A. However, the sequence BPR
lacks some information, as the cases “right child” and “right sibling” are treated
in the same fashion, and the array A itself is required to compensate for this.
Here, we will compensate for the lack of information by enhancing the BPR with
a bitstring B of length n + 2. A closing parentheses corresponding to a node
that is a right sibling is marked with a 0, otherwise it is marked with a 1. The
construction of the enhanced BPR of the Super-Cartesian tree of array A starts
at the root of the tree and proceeds as follows (see Fig. 4 for an example):

1. Write the balanced parentheses sequence of the left child.
2. Write an opening parenthesis.
3. Write the balanced parentheses sequence of the right child/sibling.
4. Write a closing parenthesis. If the node under consideration is a right sibling,

append 0 to B; otherwise append 1 to B.

Similar to [6, Alg. 3], the enhanced BPR of (the Super-Cartesian tree of) an
array can be constructed without knowing the Super-Cartesian tree itself; see
Alg. 2. Again, the stack can be implemented with n + o(n) bits [21, Sect. 4.2].

0

1

2 3

4

5 6

7

8

9

10

11

12

Fig. 3. The Super-Cartesian tree of the array A from Fig. 2
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1 0 1 1 1 1 1 0 0 0 1 0 1
( ( ( ( ( ) ) ) ( ( ( ) ( ( ) ( ( ) ) ) ) ) ) ( ) )
0 1 2 3 4 4 3 2 5 6 7 7 8 9 9 10 11 11 10 8 6 5 1 12 12 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Fig. 4. Enhanced BPR of the Super-Cartesian tree of Fig. 3. The lower row of numbers
shows the positions of the parentheses in the sequence. The row below BPR is only
for illustrative purposes: The opening parentheses are numbered consecutively and a
closing parenthesis has the number of its matching opening parenthesis. The row above
the BPR shows the bitstring B.

A few thoughts on the space of our data structure: For an array of n elements,
there are 2n + 4 parentheses and the bitstring has length n + 2. Note that
the class of Super-Cartesian trees is isomorphic to the class of Schröder Trees,
whose number is given by the n’th Small Schröder Number Cn, and lg Cn ≈
2.54n − Θ(lg n) [22]. Hence, although our 3n-bit representation does not meet
this lower bound, it is also not too far away from it.

Given a balanced parentheses sequence, the following operations can be sup-
ported in O(1) time with o(n) bits of extra space (see [17] and references therein):
rank((i) returns the number of opening parentheses up to position i; select((i)
returns the position of the i-th opening parenthesis; findclose(i) returns the po-
sition of the closing parenthesis matching the opening parenthesis at position i;
and enclose(i) for an opening parenthesis at position i returns the position j of
the opening parenthesis such that (j,findclose(j)) encloses (i,findclose(i)) most
tightly. Operations rank)(i), select)(i), and findopen(i) are defined analogously.

Let us denote the i-th opening parenthesis by i( and the matching closing
parenthesis by )b

i , where b is its mark (bit in B). Note that i( and )b
i occur

at positions ipos = select((i) and cipos = findclose(ipos) in BPR, respectively.
Moreover, b occurs at position bcipos = rank)(cipos) in the bitstring B. Vice
versa, given the position bpos in B, its corresponding index in A can be deter-
mined by rank((findopen(select)(bpos))).

Algorithm 2. Construction of the enhanced BPR of an array A.
push(0) /* A[0] = −∞ */
B ← ε /* bitstring B is initially empty */
write ’(’
for i← 1 to n + 1 do

while A[i] < A[top()] do
λ← pop()
write ’)’
if A[λ] = A[top()] then append 0 to the bitstring B
else append 1 to the bitstring B

push(i) and write ’(’
write ’))’ and append 01 to the bitstring B /* for A[0] and A[n + 1] */
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Algorithm 3. Finding FEV(i) and LEV(i) in constant time.
cipos← findclose(select((i))
bcipos← rank)(cipos)
if BPR[cipos − 1] = ”(” or (BPR[cipos − 1] = ”)” and B[bcipos− 1] = 1) then
LEV(i)← i

else /* BPR[cipos− 1] = ”)” and B[bcipos− 1] = 0 */
blpos← select1(rank1(bcipos)− 1) + 1
LEV(i)← rank((findopen(select)(blpos)))

if B[bcipos] = 1 then
FEV(i)← i

else /* B[bcipos] = 0 */
brpos← select1(rank1(bcipos) + 1)
FEV(i)← rank((findopen(select)(brpos)))

The enhanced BPR has the following crucial property. If j1 < j2 < · · · <
jm are the indices in the mound-interval of i such that A[i] = A[jk], then
)0jm

. . . )0j2 )
1
j1 form a contiguous subsequence in BPR (note that the order is re-

versed, so that LEV(i) = jm is first and FEV(i) = j1 is last), where the first m−1
closing parentheses are marked 0 and the last one is marked 1. This allows us
to compute FEV(i) and LEV(i) by a case distinction (see Alg. 3): If )b

i is preceded
by i( or by )1j , then LEV(i) = i. Otherwise, )b

i is preceded by )0j . In this case, we
search for the position bpos of the first 1 in B that is left to bcipos (to ensure that
there is always such a 1, an additional 1 is added at the beginning of B). The
index corresponding to blpos = bpos + 1 is LEV(i). If b = 1 (i.e., B[bcipos] = 1),
then FEV(i) = i. Otherwise, b = 0 and we search for the position brpos of the
first 1 in B that is right to bcipos. The index corresponding to bcipos is FEV(i).

As a matter of fact, Alg. 3 also allows us to determine the number of values
that are equal to A[i] in the mount interval of i: this is brpos − blpos + 1, and
we can access each of them in constant time!

It follows from the construction of the enhanced BPR that the values PSV(i)
and NSV(i) can also be computed in constant time:

– PSV(i) = rank((enclose(select((FEV(i))))
– NSV(i) = rank((findclose(select((i))) + 1

Furthermore, it is proved in [6] that a (general) RMQ can be computed in constant
time on the BPR. However, the hidden constant is quite large, so that this
operation is rather slow in practice. In other words, one should avoid its use
whenever possible. Specific RMQ’s (on mound-intervals) can be answered quicker
as we shall see next. The proof of the following lemma is straightforward.

Lemma 1. If [i..j] is a mound-interval in array A, then A[i − 1] > A[j + 1] if
NSV(i − 1) = j + 1 and A[i − 1] ≤ A[j + 1] otherwise.

At first glance, Lemma 1 is sort of weird. However, if the array A is compressed
and access to its entries takes more time than the computation of NSV(i − 1),
then a use of Lemma 1 makes perfect sense.
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Lemma 2. Let [i..j] be a mound-interval in array A. Then,

RMQ(i, j) =
{

rank((findopen(findclose(select((i − 1)) − 1)), if NSV(i − 1)=j + 1
rank((findopen(select((j + 1) − 1)), otherwise

Proof. Let k = RMQ(i, j). If NSV(i − 1) = j + 1, then A[i − 1] > A[j + 1] by
Lemma 1. In this case, k is the right child of i − 1 in the Super-Cartesian
tree of the array A. In the BPR, )k is directly followed by )i−1. Thus, k =
rank((findopen(findclose(select((i − 1)) − 1)). Otherwise, A[i − 1] ≤ A[j + 1]. In
this case, k is the left child of j +1 in the Super-Cartesian tree of A. In the BPR,
)k is directly followed by (j+1. Therefore, k = rank((findopen(select((j +1)−1)).

4 New Compressed Suffix Tree

We now show how to use the result from Sect. 3 for CSTs. Our basis is OG-
CST [6], but we use the enhanced BPR for RMQ/PSV/NSV. It remains to show
how to simulate the operations that access LCP in OG-CST; all other operations
(including level ancestor queries, if needed) can be taken from [6, 5]. Note that
an LCP-interval is a mound-interval that includes its leftmost delimiting point.

– Parent([vl..vr]) returns ⊥ if v = [vl..vr] is the root. If v is not the root, it
returns [PSV[k]..NSV[k] − 1], where k = vl if NSV[vl] = vr + 1 (i.e., LCP[vl] >
LCP[vr + 1] by Lemma 1) and k = vr + 1 otherwise.

– FChild([vl..vr ]) returns ⊥ if vl = vr; otherwise it returns [vl..k − 1], where
k = RMQ(vl + 1, vr) is calculated according to Lemma 2.

– NSibling([vl..vr ]) first determines NSV(vl). If NSV(vl)=vr+1, then LCP[vl] >
LCP[vr + 1] by Lemma 1. In this case LCP[vl] is the last LCP-index of the
parent interval; so it returns ⊥ because [vl..vr] has no sibling. Otherwise we
know from LCP[vl] ≤ LCP[vr + 1] that i = vr + 1 is an LCP-index of the
parent interval. There is a succeeding LCP-index j iff )i is preceded by )0j .
If so, it returns [vr + 1..j − 1], otherwise it returns [vr + 1..NSV(vr + 1) − 1].

Moreover, the enhanced BPR provides a new (practical) approach to compress
the LCP-array: Because we can access the first LCP-index of an LCP-interval
[i..j] in constant time (starting from [i..j] or an arbitrary LCP-index) and all
LCP-indices have the same LCP-value �, it suffices to store � solely at the first
LCP-index. Combining this with the byte-aligned LCP-array [13] yields LCP-
arrays of size 4n to 6n bits on texts from pizzachili.dcc.uchile.cl with
tLCP = O(1).
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Abstract. The rank and select operations over a string of length n
from an alphabet of size σ have been used widely in the design of
succinct data structures. In many applications, the string itself must
be maintained dynamically, allowing characters of the string to be in-
serted and deleted. Under the word RAM model with word size w =
Ω(lg n), we design a succinct representation of dynamic strings using
nH0+o(n) · lg σ+O(w) bits to support rank, select, insert and delete

in O( lg n
lg lg n

( lg σ
lg lg n

+ 1)) time1. When the alphabet size is small, i.e. when
σ = O(polylog(n)), including the case in which the string is a bit vector,
these operations are supported in O( lg n

lg lg n
) time. Our data structures are

more efficient than previous results on the same problem, and we have
applied them to improve results on the design and construction of space-
efficient text indexes.

1 Introduction

Succinct data structures provide solutions to reduce the storage cost of modern
applications that process large data sets, such as web search engines, geographic
information systems, and bioinformatics applications. First proposed by Jacob-
son [17], the aim is to encode a data structure using space close to the information-
theoretic lower bound, while supporting efficient navigation operations in them.
This approach was successfully applied to many abstract data types, including bit
vectors [17,7,23], strings [14,3,13], binary relations [2,3], (unlabeled and labeled)
trees [17,20,8,2,3,24], graphs [17,20,1] and text indexes [14,5,13].

A basic building block for most succinct data structures is the pair of opera-
tions rank and select. In particular, we require a highly space-efficient repre-
sentation of a string S of length n over an alphabet of size σ to support the fast
evaluation of the following operations:

– access(S, i), which returns the character at position i in the string S;
– rankα(S, i), which returns the number of occurrences of character α in S[1..i];
– selectα(S, i), which returns the position of the ith occurrence of character

α in the string S.
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program.

1 lg n denotes log2 n.
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This problem has many applications such as designing space-efficient text in-
dexes [14,13], as well as representing binary relations [2,3], labeled trees [8,2,3]
and labeled graphs [1]. The case in which the string is a bit vector whose charac-
ters are 0’s and 1’s (i.e. σ = 2) is even more fundamental: A bit vector supporting
rank and select is a key structure used in several approaches of representing
strings succinctly [14,2,3,19], and it is also used in perhaps most succinct data
structures [17,20,8,2,3,1].

Due to the importance of strings and bit vectors, researchers have designed
various succinct data structures for them [17,23,14,3,13] and achieved good re-
sults. For example, the data structure of Raman et al. [23] can encode a bit
vector using nH0 + o(n) bits, where H0 is the zero-order entropy of the bit
vector2, to support access, rank and select operations in constant time. An-
other data structure called wavelet tree proposed by Grossi et al. [14] can rep-
resent a string using nH0 + o(n) · lg σ bits to support access, rank and select
in O(lg σ) time.

However, in many applications, it is not enough to have succinct static data
structures that allow data to be retrieved efficiently, because data in these ap-
plications are also updated frequently. In the case of strings and bit vectors, the
following two update operations are desired in many applications in addition to
access, rank and select:

– insertα(S, i), which inserts character α between S[i − 1] and S[i];
– delete(S, i), which deletes S[i] from S.

In this paper, we design succinct representations of dynamic strings and bit
vectors that are more efficient than previous results. We also present several
applications to show how advancements on these fundamental problems yield
improvements on other data structures.

1.1 Related Work

Blandford and Blelloch [4] considered the problem of representing ordered lists
succinctly, and their result can be used to represent a dynamic bit vector of
length n using O(nH0) bits to support the operations defined in Section 1 in
O(lg n) time (note that H0 ≤ 1 holds for a bit vector). A different approach
proposed by Chan et al. [5] can encode dynamic bit vectors using O(n) bits to
provide the same support for operations. Later Chan et al. [6] improved this
result by providing O(lg n/ lg lg n)-time support for all these operations while
still using O(n) bits of space. Mäkinen and Navarro [19] reduced the space cost
to nH0 + o(n) bits, but their data structure requires O(lg n) time to support
operations. Recently, Sadakane and Navarro [24] designed a data structure for
dynamic trees, and their main structure is essentially a bit vector that supports

2 The zero-order (empirical) entropy of a string of length n over an alphabet of size
σ is defined as H0 =

∑σ
i=1(

ni
n

lg n
ni

), where ni is the number of times that the ith

character occurs in the string. Note that we always have H0 ≤ lg σ. This definition
also applies to a bit vector, for which σ = 2.
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more types of operations. Their result can be used to represent a bit vector
using n + o(n) bits to support the operations we consider in O(lg n/ lg lg n)
time.

For the more general problem of representing dynamic strings of length n
over alphabets of size σ, Mäkinen and Navarro [19] combined their results on
bit vectors with the wavelet tree structure of Grossi et al. [14] to design a data
structure of nH0 + o(n) · lg σ bits that supports access, rank and select in
O(lg n logq σ) time, and insert and delete in O(q lg n logq σ) time for any q =
o(
√

lg n). Lee and Park [18] proposed another data structure of n lg σ + o(n) ·
lg σ to support access, rank and select in O(lg n( lg σ

lg lg n + 1)) worst-case time
which is faster, but insert and delete take O(lg n( lg σ

lg lg n + 1)) amortized time.
Finally, González and Navarro [13] improved the above two results by designing a
structure of nH0+o(n)·lg σ bits to support all the operations in O(lg n( lg σ

lg lg n+1))
worst-case time.

Another interesting data structure is that of Gupta et al. [15]. For the same
problems, they aimed at improving query time while sacrificing update time.
Their bit vector structure occupies nH0 + o(n) bits and requires O(lg lg n) time
to support access, rank and select. It takes O(lgε n) amortized time to sup-
port insert and delete for any constant 0 < ε < 1. Their dynamic string
structure uses n lg σ + lg σ(o(n) + O(1)) bits to provide the same support for
operations (when σ = O(polylog(n)), access, rank and select take O(1)
time).

1.2 Our Results

We adopt the word RAM model with word size w = Ω(lg n). Our main result
is a succinct data structure that encodes a string of length n over an alphabet
of size σ in nH0 + o(n) · lg σ + O(w) bits to support access, rank, select,
insert and delete in O( lg n

lg lg n ( lg σ
lg lg n + 1)) time. When σ = O(polylog(n)), all

these operations can be supported in O( lg n
lg lg n ) time. Note that the O(w) term

in the space cost exists in all previous results, and we omit them in Section 1.1
for simplicity of presentation (in fact many papers simply ignore them). Our
structure can also encode a bit vector of length n in nH0 + o(n) + O(w) bits
to support the same operations in O( lg n

lg lg n ) time, matching the lower bound in
[12]. Our solutions are currently the best to the problem, for both the general
case and the special case in which the alphabet size is O(polylog(n)) or 2 (i.e.
the string is a bit vector). The only previous result that is not comparable is
that of Gupta et al. [15], since their solution is designed under the assumption
that the string is queried frequently but updated infrequently.

We also apply the above results to design a succinct text index for a dynamic
text collection to support text search, and the problem of reducing the required
amount of working space when constructing a text index. Our dynamic string
representation allows us to improve previous results on these problems [19,13].
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2 Preliminaries

Searchable Partial Sums. Raman et al. [22] considered the problem of repre-
senting a dynamic sequence of integers to support sum, search and update
operations. To achieve their main result, they designed a data structure for the
following special case in which the length of the sequence is small, and we will
use it to encode information stored as small sequences of integers in our data
structures:

Lemma 1. There is a data structure that can store a sequence, Q, of O(lgε n)
nonnegative integers of O(lg n) bits each3, for any constant 0 ≤ ε < 1, using
O(lg1+ε n) bits to support the following operations in O(1) time:

– sum(Q, i), which computes
∑i

j=1 Q[j];
– search(Q, x), which returns the smallest i such that sum(Q, i) ≥ x;
– update(Q, i, δ), which updates Q[i] to Q[i] + δ, where |δ| ≤ lg n.

The data structure can be constructed in O(lgε n) time, and it requires a precom-
puted universal table of size O(nε′) bits for any fixed ε′ > 0.

Collections of Searchable Partial Sums. A key structure in the dynamic string
representation of González and Navarro [13] is a data structure that maintains
a set of sequences of nonnegative integers, such that sum, search and update
can be supported on any sequence efficiently, while insert and delete are per-
formed simultaneously on all the sequences at the same given position, with
the restriction that only 0’s can be inserted or deleted. More precisely, let C =
Q1, Q2, · · · , Qd to be a set of dynamic sequences, and each sequence, Qj , has n
nonnegative integers of k = O(lg n) bits each. The collection of searchable partial
sums with insertions and deletions (CSPSI) problem is to encode C to support:

– sum(C, j, i), which computes
∑i

p=1 Qj [p];
– search(C, j, x), which returns the smallest i such that sum(C, j, i) ≥ x;
– update(C, j, i, δ), which updates Qj [i] to Qj [i] + δ;
– insert(C, i), which inserts 0 between Qj [i − 1] and Qj[i] for all 1 ≤ j ≤ d;
– delete(C, i), which deletes Qj [i] from sequence Qj for all 1 ≤ j ≤ d, and to

perform this operation, Qj[i] = 0 must hold for all 1 ≤ j ≤ d.

González and Navarro [13] designed a data structure of kdn(1+ O( 1√
lg n

+ d
lg n ))

bits to support all the above operations in O(d + lg n) time. This structure
becomes succinct (i.e. using dk(n+o(n)) bits if d = o(lg n), when the operations
can be supported in O(lg n) time. A careful reading of their technique shows that
these results only work under the word RAM model with word size w = Θ(lg n)
(see our discussions after Lemma 5). We improve this data structure for small
d, which is further used to design our succinct string representations.
3 Raman et al. [22] required each integer to fit in one word. However, it is easy to

verify that their proof is still correct if each integer requires O(lg n) bits, i.e. each
integer can require up to a constant number of words to store.
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3 Collections of Searchable Partial Sums

We follow the main steps of the approach of González and Navarro [13] to design
a succinct representation of dynamic strings, but we make improvements in each
step. We first improve their result for the CSPSI problem (Section 3), and then
combine it with other techniques to improve their data structure for strings over
small alphabets (Section 4). Finally, we extend the result on small alphabets to
general alphabets (Section 5). Our main strategy of achieving these improve-
ments is to divide the sequences into superblocks of appropriate size, and store
them in the leaves of a B-tree (instead of the red-black tree in [13]). Similar ideas
were applied to data structures for balanced parentheses [6,24]. Our work is the
first that successfully adapts it to integer sequences and character strings, and
we have created new techniques to overcome some difficulties. Proofs omitted
from this paper due to space constraints can be found in the full version [16].

In this section, we consider the CSPSI problem defined in section 2. We as-
sume that d = O(lgη n) for any constant 0 < η < 1, and for the operation
update(C, j, i, δ), we assume |δ| ≤ lg n. Under these assumptions, we improve
the result in [13] under the word RAM model with word size Ω(lg n).

Data Structures. Our main data structure is a B-tree constructed over the given
collection C. Let L = � �lg n�2

lg�lg n� . Each leaf of this B-tree stores a superblock whose
size is between (and including) L/2 and 2L bits, and each superblock stores the
same number of integers from each sequence in C. More precisely, the content
of the leftmost leaf is Q1[1..s1]Q2[1..s1] · · ·Qd[1..s1], the content of the second
leftmost leaf is Q1[s1 + 1..s2]Q2[s1 + 1..s2] · · ·Qd[s1 + 1..s2], and so on, and the
indices s1, s2, · · · satisfy the following conditions because of requirement on the
sizes of superblocks: L/2 ≤ s1kd ≤ 2L, L/2 ≤ (s2 − s1)kd ≤ 2L, · · ·.

Let f = lgλ n, where λ is a positive constant number less than 1 that we will
fix later. Each internal node of the B-tree we construct has at least f and at
most 2f children. We store the following d + 1 sequences of integers for each
internal node v (let h be the number of children of v):

– A sequence P (v)[1..h], in which P (v)[i] is the number of positions stored in
the leaves of the subtree rooted at the ith child of v for any sequence in C
(note that this number is the same for all sequences in C);

– A sequence Rj(v)[1..h] for each j = 1, 2, · · · , d, in which Rj(v)[i] is the sum
of the integers from sequence Qj that are stored in the leaves of the subtree
rooted at the ith child of v.

We use Lemma 1 to encode each of the d + 1 sequences of integers for v.
We further divide each superblock into blocks of ��lg n 3/2 bits each, and

maintain the blocks for the same superblock using a linked list. Only the last
block in the list can be partially full; any other block uses all its bits to store the
data encoded in the superblock. This is how we store the superblocks physically.

To analyze the space cost of the above data structures, we have:

Lemma 2. The above data structures occupy kd(n+o(n)) bits if the parameters
λ and η satisfy 0 < λ < 1 − η.
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Supporting sum, search and update. We discuss these three operations first
because they do not change the size of C.

Lemma 3. The data structures in this section can support sum, search and
update in O( lg n

lg lg n ) time with an additional universal table of o(n) bits.

Proof. To support sum(C, j, i), we perform a top-down traversal in the B-tree. In
our algorithm, we use a variable r that is initially 0, and its value will increase
as we go down the tree. We have another variable s whose initial value is i.
Initially, let v be the root of the tree. As P (v) stores the number of positions
stored in the subtrees rooted at each child of v, the subtree rooted at the cth

child of v, where c = search(P (v), i), contains position i. We also compute the
sum of the integers from the sequence Qj that are stored in the subtrees rooted
at the left siblings of the cth child of v, which is y = sum(Rj(v), c − 1), and we
increase the value of r by y. We then set v to be its cth child, decrease the value
of s by sum(P (v), c− 1), and the process continues until we reach a leaf. At this
time, r records the sum of the integers from the sequence Qj that are before the
first position stored in the superblock of the leaf we reach. As the height of this
B-tree is O( lg n

lg lg n ), and the computation at each internal node takes constant
time by Lemma 1, it takes O( lg n

lg lg n ) time to locate this superblock.
It now suffices to compute the sum of the first s integers from sequence Qj

that are stored in the superblock. This can be done by first going to the block
storing the first integer in the superblock that is from Qj, which takes O(

√
lg n

lg lg n )

time (recall that each block is of fixed size and there are O(
√

lg n
lg lg n ) of them in

a superblock), and then read the sequence in chunks of � 1
2 lg n bits. For each

� 1
2 lg n bits we read, we use a universal table A1 to find out the sum of the z =

�� 1
2 lg n /k� integers stored in it in O(1) time (the last a = � 1

2 lg n mod k bits in
this block are concatenated with the next � 1

2 lg n −a bits read for table lookup).
This table simply stores the result for each possible bit strings of length � 1

2 lg n .
The last chunk we read may contain integers after Qj[i]. To address the problem,
we augment A1 so that it is a two dimensional table A1[1..2�

1
2 lg n�][1..z], in which

A[b][g] stores for the bth lexicographically smallest bit vector of length � 1
2 lg n ,

the sum of the first g integers of size k stored in it. This way the computation
in the superblock can be done in O( lg n

lg lg n ) time, and thus sum(C, j, i) can be
supported in O( lg n

lg lg n ) time. The additional data structure we require is table

A1, which occupies O(2�
1
2 lg n�×�� 1

2 lg n /k�× lgn) = O((
√

n lg2 n)/k) bits. The
operations search and update can be supported in a similar manner. �	

Supporting insert and delete. We give a proof sketch of the following lemma
on supporting insert and delete:

Lemma 4. When w = Θ(lg n), the data structures in this section can support
insert and delete in O( lg n

lg lg n ) amortized time.

Proof (sketch). To support insert(C, i), we locate the leaf containing position
i as we do for sum, updating P (v)’s along the way. We insert a 0 before the
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ith position of all the sequences by creating a new superblock, copying the data
from the old superblock contained in this leaf to this new superblock in chunks
of size �lg n , and adding 0’s at appropriate positions when we copy. This takes
O( lg n

lg lg n + d) = O( lg n
lg lg n ) time. If the size of the new superblock exceeds 2L,

we split it into two superblocks of roughly the same size. The parent of the old
leaf becomes the parent, v, of both new leaves, and we reconstruct the data
structures for P (v) and Rj(v)’s in O(df) = o( lg n

lg lg n ) time. This may make a
series of internal nodes to overflow, and in the amortized sense, each split of the
leaf will only cause a constant number of internal nodes to overflow. Thus we can
support insert in O( lg n

lg lg n ) amortized time. The support for delete is similar.
Each insert or delete changes n by 1. This might change the value �lg n ,

which will in turn affect L, the size of blocks, and the content of A1. As w =
Θ(lg n), L and the block size will only change by a constant factor. Thus if we
do not change these parameters, all our previous space and time analysis still
applies. The o(n) time required to reconstruct A1 each time �lg n changes can
be charged to at least Θ(n) insert or delete operations. �	
As we use a B-tree, a new problem is to deamortize the support for insert and
delete. We also need to consider the case in which the word size is w = Ω(lg n).
The following lemma presents our solution to the CSPSI problem:

Lemma 5. Consider a collection, C, of d sequences of n nonnegative integers
each (d = O(lgη n) for any constant 0 < η < 1), in which each integer requires
k bits. Under the word RAM model with word size Ω(lg n), C can be represented
using O(kdn + w) bits to support sum, search, update, insert and delete in
O( lg n

lg lg n ) time with a buffer of O(n lg n) bits (for the operation update(C, j, i, δ),
we assume |δ| ≤ lg n).

Proof (sketch). To deamortize the algorithm for insert and delete, we first
observe that the table A1 can be built incrementally each time we perform
insert and delete. Thus the challenging part is to re-balance the B-tree (i.e.
to merge and split its leaves and internal nodes) after insertion and deletion. For
this we use the global rebuilding approach of Overmars and van Leeuwen [21]. By
their approach, if there exist two constant numbers c1 > 0 and 0 < c2 < 1 such
that after performing c1n insertions and/or c2n deletions without re-balancing
the B-tree, we can still perform query operations in O( lg n

lg lg n ) time, and if the
B-tree can be rebuilt in O(f(n)×n) time, we can support insertion or deletion in
O( lg n

lg lg n + f(n)) worse-case time using additional space proportional to the size
of our original data structures and a buffer of size O(n lg n) bits. We first note
that if we do not re-balance the B-tree after performing delete c2n times for any
0 < c2 < 1, the time required to answer a query will not change asymptotically.
This is however different for insert, and we use the approach of Fleischer [11]
as in [24]. Essentially, in his approach, at most one internal node and one leaf is
split after each insertion, which guarantees that the degree of any internal node
does not exceed 4f . This way after Θ(n) insertions, query operations can still be
performed in O( lg n

lg lg n ) time. Finally, it takes O(nd) time to construct the B-tree,
so we can support insert and delete in O(d + lg n

lg lg n ) = O( lg n
lg lg n ) time.



Succinct Representations of Dynamic Strings 341

To reduce the space overhead when w = ω(lg n), we allocate a memory block
whose size is sufficient for the new structure until another structure has to be
built, and this increases the space cost by a constant factor. Then we can still
use pointers of size O(lg n) bits (not O(w) bits), and O(w) bits are required to
record the address of memory blocks allocated. �	

Section 2 states that González and Navarro [13] designed a data structure of
kdn(1 + O( 1√

lg n
+ d

lg n )) bits. This is more compact, but it only works for the
special case in which w = Θ(lg n). González and Navarro [13] actually stated
that their result would work when w = Ω(lg n). This requires greater care than
given in their paper. Their strategy is to adapt the approach of Mäkinen and
Navarro [19] developed originally for a dynamic bit vector structure. To use it for
the CSPSI problem, they split each sequence into three subsequences. The split
points are the same for all the sequences in C. The set of left, middle, and right
subsequences constitute three collections, and they build CSPSI structures for
each of them. For each insertion and deletion, a constant number of elements is
moved from one collection to another, which will eventually achieve the desired
result with other techniques. Moving one element from one collection to another
means that the first or the last integers of all the subsequences in one collection
must be moved to the subsequences in another collection. However, their CSPSI
structure only supports insertions and deletions of 0’s at the same position in all
subsequences in O(lg n) time, so moving one element cannot be supported fast
enough. Thus their structure only works when w = Θ(lg n). Their result can be
generalized to the case in which w = Ω(lg n) using the approach in Lemma 5,
but the space will be increased to O(kdn+w) bits and a buffer will be required.

4 Strings over Small Alphabets

In this section, we consider representing a dynamic string S[1..n] over an alpha-
bet of size σ = O(

√
lg n) to support access, rank, select, insert and delete.

Data Structures. Our main data structure is a B-tree constructed over S. We
again let L = � �lg n�2

lg�lg n� . Each leaf of this B-tree contains a superblock that has
at most 2L bits. We say that a superblock is skinny if it has fewer than L
bits. The string S is initially partitioned into substrings, and each substring is
stored in a superblock. We number the superblocks consecutively from left to
right starting from 1. Superblock i stores the ith substring from left to right. To
bound the number of leaves and superblocks, we require that there do not exist
two consecutive skinny superblocks. Thus there are O(n lg σ

L ) superblocks.
Let b =

√
lg n, and we require that the degree of each internal node of the B-

tree is at least b and at most 2b. For each internal node v, we store the following
data structures encoded by Lemma 1 (let h be the number of children of v):

– A sequence U(v)[1..h], in which U(v)[i] is the number of superblocks con-
tained in the leaves of the subtree rooted at the ith child of v;
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– A sequence I(v)[1..h], in which I(v)[i] stores the number of characters stored
in the leaves of the subtree rooted at the ith child of v.

As in Section 3, each superblock is further stored in a list of blocks of ��lg n 3/2 
bits each, and only the last block in each list can have free space.

Finally for each character α, we construct an integer sequence Eα[1..t] in
which Eα[i] stores the number of occurrences of character α in superblock i (t
denotes the number of superblocks). We create σ integer sequences in this way,
and we construct a CSPSI structure, E, for them using Lemma 5. Note that the
buffered required in Lemma 5 to support operations on E takes o(n) bits here
as the length of the sequences in E is O(n/L).

The above data structures occupy n lg σ + O(n lg σ lg lg n√
lg n

) bits.

Supporting access, rank and select. We first support query operations.

Lemma 6. The data structures in this section can support access, rank and
select in O( lg n

lg lg n ) time with a universal table of O(
√

npolylog(n)) bits.

Proof. To support access(S, i), we perform a top-down traversal in the B-tree
to find the leaf containing S[i]. During this traversal, at each internal node v,
we perform search on I(v) to decide which child to traverse, and perform sum
on I(v) to update the value i. When we find the leaf, we follow the pointers to
find the block containing the position we are looking for, and then retrieve the
corresponding character in constant time. Thus access takes O( lg n

lg lg n ) time.
To compute rankα(S, i), we first locate the leaf containing position i using the

same process for access. Let j be the number of the superblock contained in this
leaf, which can be computed using U(v) during the top-down traversal. Then
sum(E, α, j − 1) is the number of occurrences of α in superblocks 1, 2, · · · j − 1,
which can be computed in O( lg n

lg lg n ) time by Lemma 5. To compute the number
of occurrences of α up to position i inside superblock j, we read the content of
this superblock in chunks of size � 1

2 lg n bits. As with the support for sum in the
proof of Lemma 3, this can be done in O( lg n

lg lg n ) time using a precomputed table
A2 of O(

√
npolylog(n)) bits. Our support for selectα(S, i) is similar. �	

Supporting insert and delete. Careful tuning of the techniques for supporting
insertions and deletions for the CSPSI problem yields the following lemma:

Lemma 7. When w = Θ(lg n), the data structures in this section can support
insert and delete in O( lg n

lg lg n ) amortized time.

To deamortize the support for insert and delete, we cannot directly use the
global rebuilding approach of Overmars and van Leeuwen [21] here, since we do
not want to increase the space cost of our data structures by a constant factor,
and the use of a buffer is also unacceptable. Instead, we design an approach
that deamortizes the support for insert and delete completely, and differently
from the original global rebuilding approach of Overmars and van Leeuwen [21],
our approach neither increases the space cost by a constant factor, nor requires
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any buffer. We thus call our approach succinct global rebuilding. This approach
still requires us to modify the algorithms for insert and delete so that after
c1n insertions (c1 > 0) and c2n deletions (0 < c2 < 1), a query operation can
still be supported in O( lg n

lg lg n ) time. We also start the rebuilding process when
the number of insert and delete operations performed exceeds half the initial
length of the string stored in the data structure. The main difference between
our approach and the original approach in [21] is that during the process of
rebuilding, we never store two copies of the same data, i.e. the string S. Instead,
our new structure stores a prefix, Sp, of S, and the old data structure stores a
suffix, Ss, of S. During the rebuilding process, each time we perform an insertion
or deletion, we perform such an operation on either Sp or Ss. After that, we
remove the first several characters from Ss, and append them to Sp. By choosing
parameters and tuning our algorithm carefully, we can finish rebuilding after
at most n0/3 update operations, where n0 is the length of S when we start
rebuilding. During this process, we use both old and new data structures to
answer queries in O( lg n

lg lg n ) time.
To reduce the space overhead when w = ω(lg n), we adapt the approach

of Mäkinen and Navarro [19]. We finally use the approach of González and
Navarro [13] to compress our representation. Since their approach is only applied
to the superblocks (i.e. it does not matter what kind of tree structures are used,
since additional tree arrangement operations are not required when the number
of bits stored in a leaf is increased due to a single update in their solution), we
can use it here directly. Thus we immediately have:

Lemma 8. Under the word RAM model with word size w = Ω(lg n), a string
S of length n over an alphabet of size σ = O(

√
lg n) can be represented using

nH0 + O(n lg σ lg lg n√
lg n

) + O(w) bits to support access, rank, select, insert and

delete in O( lg n
lg lg n ) time.

5 Strings over General Alphabets

We follow the approach of Ferragina et al. [10] that uses a generalized wavelet
tree to extend results on strings over small alphabets to general alphabets. Spe-
cial care must be taken to avoid increasing the O(w)-bit term in Lemma 8
asymptotically. We now present our main result:

Theorem 1. Under the word RAM model with word size w = Ω(lg n), a string S
of length n over an alphabet of size σ can be represented using nH0+O(n lg σ lg lg n√

lg n
)

+ O(w) bits to support access, rank, select, insert and delete operations
in O( lg n

lg lg n ( lg σ
lg lg n + 1)) time. When σ = O(polylog(n)), all the operations can

be supported in O( lg n
lg lg n ) time.

The following corollary is immediate:

Corollary 1. Under the word RAM model with word size w = Ω(lg n), a bit
vector of length n can be represented using nH0 + o(n) + O(w) bits to support
access, rank, select, insert and delete in O( lg n

lg lg n ) time.
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6 Applications

Dynamic Text Collection. Mäkinen and Navarro [19] showed how to use a dy-
namic string structure to index a text collection N to support string search. For
this problem, n denotes the length of the text collection N when represented as
a single string that is the concatenations of all the text strings in the collection
(a separator is inserted between texts). González and Navarro [13] improved this
result in [19] by improving the string representation. If we use our string struc-
ture, we directly have the following lemma, which improves the running time of
the operations over the data structure in [13] by a factor of lg lg n:

Theorem 2. Under the word RAM model with word size w = Ω(lg n), a text
collection N of size n consisting of m text strings over an alphabet of size σ can
be represented in nHh +o(n) · lg σ+O(m lg n+w) bits4 for any h ≤ (α logα n)−1
and any constant 0 < α < 1 to support:

– the counting of the number of occurrences of a given query substring P in N

in O( |P | lg n
lg lg n ( lg σ

lg lg n + 1)) time;
– After counting, the locating of each occurrence in O(lg2 n( 1

lg lg n + 1
lg σ )) time;

– Inserting and deleting a text T in O( |T | lg n
lg lg n ( lg σ

lg lg n + 1)) time;
– Displaying any substring of length l of any text string in N in O(lg2 n( 1

lg lg n +
1

lg σ ) + l lg n
lg lg n ( lg σ

lg lg n + 1)) time.

Compressed Construction of Text Indexes. Researchers have designed space-
efficient text indexes whose space is essentially a compressed version of the given
text, but the construction of these text indexes may still require a lot of space.
Mäkinen and Navarro [19] used their dynamic string structure to construct a
variant of FM-index [9] using as much space as what is required to encode the
index. Their result was improved by González and Navarro [13], and the con-
struction time can be further improved by a factor of lg lg n using our structure:

Theorem 3. A variant of a FM-index of a text string T [1..n] over an alphabet
of size σ can be constructed using nHh + o(n) · lg σ bits of working space in
O( n lg n

lg lg n ( lg σ
lg lg n +1)) time for any h ≤ (α logα n)−1 and any constant 0 < α < 1.

7 Concluding Remarks

In this paper, we have designed a succinct representation of dynamic strings
that provide more efficient operations than previous results, and we have suc-
cessfully applied it to improve previous data structures on text indexing. As
a string structure supporting rank and select is used in the design of suc-
cinct representations of many data types, we expect our data structure to play
an important role in the future research on succinct dynamic data structures.
4 Hh is the hth-order entropy of the text collection when represented as a single string.
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We have also created some new techniques to achieve our results. We particularly
think that the approach of succinct global rebuilding is interesting, and expect
it to be useful for deamortizing algorithms on other succinct data structures.
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Abstract. Exact string matching is a problem that computer program-
mers face on a regular basis, and full-text indexes like the suffix tree or
the suffix array provide fast string search over large texts. In the last
decade, research on compressed indexes has flourished because the main
problem in large-scale applications is the space consumption of the index.
Nowadays, the most successful compressed indexes are able to obtain al-
most optimal space and search time simultaneously. It is known that a
myriad of sequence analysis and comparison problems can be solved ef-
ficiently with established data structures like the suffix tree or the suffix
array, but algorithms on compressed indexes that solve these problem
are still lacking at present. Here, we show that matching statistics and
maximal exact matches between two strings S1 and S2 can be computed
efficiently by matching S2 backwards against a compressed index of S1.

1 Introduction

The suffix tree of a string S of length n is an index structure that can be com-
puted and stored in O(n) time and space; see the seminal paper of Weiner [1].
Once constructed, it can be used to efficiently solve a myriad of string processing
problems [2,3]. Although being asymptotically linear, the space consumption of
a suffix tree is quite large (about 20n bytes). This is a drawback in actual imple-
mentations. Thus, nowadays many string algorithms are based on suffix arrays
instead. The suffix array specifies the lexicographic ordering of all suffixes of S,
and it was introduced by Manber and Myers [4]. Almost a decade ago, Ferragina
and Manzini [5] invented the FM-index, which is based on the Burrows-Wheeler
transform [6] and the LF -mapping, and showed that it is possible to search a
pattern backwards in the suffix array SA of string S using the FM-index in-
stead of SA. In contrast to traditional data structures like the suffix tree, this
compressed index supports backward search much better than forward search.
Needless to say that one needs new algorithms to exploit this. In this paper, we
present the first algorithms for computing matching statistics and maximal exact
matches that use backward search instead of forward search. Matching statistics
were introduced by Chang and Lawler [7] to solve the approximate string match-
ing problem. Among other things, they were used in the computation of string
kernels [8] and the design of DNA chips [9]. Matching statistics can also be used
in a space-efficient computation of longest common substrings [3, Section 7.9]

E. Chavez and S. Lonardi (Eds.): SPIRE 2010, LNCS 6393, pp. 347–358, 2010.
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i SA LCP PSV NSV BWT SSA[i]

1 11 −1 t $
2 3 0 1 12 c aaacatat$
3 4 2 2 4 a aacatat$
4 1 1 2 8 $ acaaacatat$
5 5 3 4 6 a acatat$
6 9 1 2 8 t at$
7 7 2 6 8 c atat$
8 2 0 1 12 a caaacatat$
9 6 2 8 10 a catat$

10 10 0 1 12 a t$
11 8 1 10 12 a tat$
12 −1

0-[1..11]
���������

���������

���������

���������
2-[2..3]

�

2-[6..7]

�

��
3-[4..5]

1-[2..7]

�

1-[10..11]

�

��
2-[8..9]

Fig. 1. Left: The suffix array of the string S = acaaacatat$ and auxiliary arrays. Right:
The lcp-interval tree (without singleton intervals) of the lcp-array.

and in the preprocessing phase of an algorithm that determines longest common
prefix queries in constant time [3, Section 9.1]. Maximal exact matches play a
key role in genome-genome comparisons (see e.g. [10,11]) and recently they were
used to seed alignments of high-throughput reads for genome assembly. Our ex-
periments show that the new algorithms outperform the current state-of-the-art
algorithms based on forward search.

2 Preliminaries

Let Σ be an ordered alphabet whose smallest element is the so-called sentinel
character $. In the following, S is a string of length n over Σ having the sentinel
character at the end (and nowhere else). For 1 ≤ i ≤ n, S[i] denotes the character
at position i in S. For i ≤ j, S[i..j] denotes the substring of S starting with the
character at position i and ending with the character at position j. Furthermore,
Si denotes the ith suffix S[i..n] of S. The suffix array SA of the string S is an
array of integers in the range 1 to n specifying the lexicographic ordering of the n
suffixes of the string S, that is, it satisfies SSA[1] < SSA[2] < · · · < SSA[n]; see Fig. 1
for an example. In the following, SA−1 denotes the inverse of the permutation SA.
In 2003, it was shown independently and contemporaneously by three research
groups that a direct linear time construction of the suffix array is possible. To
date, over 20 different suffix array construction algorithms are known; see [12].

The Burrows and Wheeler transform converts a string S into the string
BWT[1..n] defined by BWT[i] = S[SA[i] − 1] for all i with SA[i] �= 1 and
BWT[i] = $ otherwise; see Fig. 1. In virtually all cases, the Burrows-Wheeler
transformed string compresses much better than the original string; see [6]. The
permutation LF , defined by LF (i) = SA−1[SA[i] − 1] for all i with SA[i] �= 1
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Algorithm 1. Given c ∈ Σ and an ω-interval [i..j], backwardSearch(c, [i..j])
returns the cω-interval if it exists, and ⊥ otherwise
backwardSearch(c, [i..j])

i← C[c] + Occ(c, i− 1) + 1
j ← C[c] + Occ(c, j)
if i ≤ j then return [i..j]
else return ⊥

and LF (i) = 1 otherwise, is called LF -mapping. The LF -mapping can be im-
plemented by

LF (i) = C[c] + Occ(c, i), where c = BWT[i],

C[c] is the overall number (of occurrences) of characters in S which are strictly
smaller than c, and Occ(c, i) is the number of occurrences of the character c in
BWT[1..i].

In the following, the ω-interval of a substring ω of S is the interval [i..j] in the
suffix array SA such that ω is a prefix of SSA[k] for all i ≤ k ≤ j, but ω is not a
prefix of any other suffix of S. For example, the ca-interval in the suffix array of
Fig. 1 is the interval [8..9]. Ferragina and Manzini [5] showed that it is possible
to search a pattern character-by-character backwards in the suffix array SA of
string S, without storing SA; see Algorithm 1.

Searching backwards in the string S = acaaacatat$ for the pattern ca works as
follows. By definition, backward search for the last character of the pattern starts
with the ε-interval [1..n], where ε denotes the empty string. In our example n =
11 and backwardSearch(a, [1..11]) returns the a-interval [2..7] because C[a] +
Occ(a, 1 − 1) + 1 = 1 + 0 + 1 = 2 and C[a] + Occ(a, 11) = 1 + 6 = 7. Similarly,
backwardSearch(c, [2..7]) delivers the ca-interval [8..9] because C[c]+Occ(c, 2−
1) + 1 = 7 + 0 + 1 = 8 and C[c] + Occ(c, 7) = 7 + 2 = 9.

A space efficient data structure that supports backward search and the LF -
mapping (plus a certain navigational operation in the lcp-interval tree as detailed
below) will be called compressed full-text index in this paper. In our implemen-
tation, we use the wavelet tree of Grossi et al. [13] but there are alternatives;
see the review paper of Navarro and Mäkinen [14] for details. With the wavelet
tree, both a backward search step and the computation of LF (i) take constant
time; see [13].1 The wavelet tree uses n log |Σ| + o(n log |Σ|) bits of space.

The suffix array SA is often enhanced with the so-called lcp-array LCP contain-
ing the lengths of longest common prefixes between consecutive suffixes in SA; see
Fig. 1. Formally, the lcp-array is an array such that LCP[1] = −1 = LCP[n + 1]
and LCP[i] = |lcp(SSA[i−1], SSA[i])| for 2 ≤ i ≤ n, where lcp(u, v) denotes the
longest common prefix between two strings u and v. Kasai et al. [15] showed
that the lcp-array can be computed in linear time from the suffix array and
1 Strictly speaking, it takes O(log |Σ|) time, but here we assume a constant alphabet.

In fact it is possible to get rid of the log |Σ| factor, trading space for time; see [14].
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its inverse. Sadakane [16] describes an encoding of the lcp-array that uses only
2n+o(n) bits. Abouelhoda et al. [17] introduced the concept of lcp-intervals. An
interval [i..j], where 1 ≤ i < j ≤ n, in an lcp-array LCP is called an lcp-interval
of lcp-value � (denoted by �-[i..j]) if

1. LCP[i] < �,
2. LCP[k] ≥ � for all k with i + 1 ≤ k ≤ j,
3. LCP[k] = � for at least one k with i + 1 ≤ k ≤ j,
4. LCP[j + 1] < �.

An lcp-interval m-[p..q] is said to be embedded in an lcp-interval �-[i..j] if it
is a subinterval of [i..j] (i.e., i ≤ p < q ≤ j) and m > �. The interval [i..j] is
then called the interval enclosing [p..q]. If [i..j] encloses [p..q] and there is no
interval embedded in [i..j] that also encloses [p..q], then [p..q] is called a child
interval of [i..j]. This parent-child relationship constitutes a tree which we call
the lcp-interval tree (without singleton intervals); see Fig. 1.

An interval [k..k] is called singleton interval. The parent interval of such a
singleton interval is the smallest lcp-interval [i..j] which contains k. The parent
interval of an lcp-interval [i..j] �= [1..n] with LCP[i] = p and LCP[j + 1] = q can
be determined as

parent([i..j]) =
{

p-[PSV[i]..NSV[i] − 1] , if p ≥ q
q-[PSV[j + 1]..NSV[j + 1] − 1], if p < q

where, for any index 2 ≤ i ≤ n,

PSV[i]=max{k | 1 ≤ k < i and LCP[k] < LCP[i]}
NSV[i]=min{k | i < k ≤ n + 1 and LCP[k] < LCP[i]}

3 Matching Statistics by Backward Search

In the following, let S1 and S2 be strings of length n1 and n2, respectively. We
tacitly assume that S1 has the sentinel character at the end (and nowhere else).
As already mentioned, Chang and Lawler [7] introduced matching statistics in
the context of approximate string matching. For each position p2 in the string
S2, they searched for the longest match of S2[p2..n2] with a substring of S1 by
matching S2 in forward direction against the suffix tree of S1. This takes only
linear time if suffix links are used as shortcuts in the traversal of the suffix tree;
cf. [3, Section 7.8]. By contrast, we here match S2 in backward direction against
a compressed index of S1. Our algorithm does not rely on suffix links but on
the ability to determine parent intervals of lcp-intervals efficiently. Sadakane’s
[16] compressed suffix tree requires 4n+ o(n) bits and allows one to determine a
parent interval in constant time. Recently, we presented a balanced parentheses
data structure that can be constructed in linear time from the lcp-array, uses only
2n + o(n) bits, and—in combination with the lcp-array—allows us to compute
NSV[i] in constant time and PSV[i] in O(log |Σ|) time [18]. In other words, a
parent interval can be computed in constant time (for a constant alphabet).
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Algorithm 2. Computing matching statistics by backward search
p2 ← n2

(q, [i..j]) ← (0, [1..n1])
while p2 ≥ 1 do

[lb..rb]← backwardSearch(S2[p2], [i..j])
if [lb..rb] �= ⊥ then

q ← q + 1
ms[p2]← (q, [lb..rb])
[i..j] ← [lb..rb]
p2 ← p2 − 1

else if [i..j] = [1..n1 ] then
ms[p2]← (0, [1..n1 ])
p2 ← p2 − 1

else
q-[i..j]← parent([i..j])

An even more space-efficient implementation was proposed by Fischer et al.
[19]. Their method to identify parent intervals also uses PSV and NSV values
and runs in sublogarithmic time (in n). Either of the three methods can be used
in our algorithms.

Before explaining our new Algorithm 2, we define matching statistics slightly
more general than Chang and Lawler did.

Definition 1. A matching statistics of S2 w.r.t. S1 is an array ms such that
for every entry ms[p2] = (q, [lb..rb]), 1 ≤ p2 ≤ n2, the following holds:

1. S2[p2..p2 + q − 1] is the longest prefix of S2[p2..n2] which is substring of S1.
2. [lb..rb] is the S2[p2..p2 + q − 1]-interval in the suffix array of S1.

Algorithm 2 shows how matching statistics can be computed by backward
search. To exemplify it, we match the string S2 = caaca backwards against the
compressed full-text index of S1 = acaaacatat$; cf. Fig. 1. Starting with the
last character of S2 and the ε-interval [1..n1], backward search returns the a-
interval [2..7], and Algorithm 2 sets ms[5] = (1, [2..7]). Similary, it determines
ms[4] = (2, [8..9]), ms[3] = (3, [4..5]), and ms[2] = (4, [3..3]). The procedure call
backwardSearch(c, [3..3]) returns ⊥, indicating that S2[1..5] = caaca is not a
substring of S1. In this case—if a mismatch occurs—the algorithm determines
the parent interval of the current interval [3..3], which in our example is the aa-
interval 2-[2..3]. The next procedure call backwardSearch(c, [2..3]) returns the
caa-interval [8..8], and ms[1] is set to (3, [8..8]).

We prove the correctness of Algorithm 2 by finite induction on the length n2 −
p2+1 of the suffix S2[p2..n2] of S2. If the length equals 1, i.e., p2 = n2 then there are
two possibilities. The character c = S2[n2] either (a) occurs in S1 or (b) it does not.
In case (a), Algorithm 2 sets ms[n2] = (1, [lb..rb]), where [lb..rb] is the c-interval.
This is certainly correct. In case (b), Algorithm 2 sets ms[n2] = (0, [1..n1]), where
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[1..n1] is the ε-interval. This is also correct. As induction hypothesis, we may as-
sume that for some fixed position p2 + 1 with 1 ≤ p2 < n2, Algorithm 2 correctly
computed the matching statistic ms[p2 + 1] = (q, [i..j]), i.e.,

1. ω = S2[p2 + 1..p2 + q] is the longest prefix of S2[p2 + 1..n2] that occurs as a
substring of S1.

2. [i..j] is the ω-interval in the suffix array of S1.

In the inductive step, we must show that Algorithm 2 correctly computes ms[p2].
Let c = S2[p2]. If cω is a substring of S1, then backwardSearch(c, [i..j]) yields
the cω-interval [lb..rb] in the suffix array of S1. It is readily verified that cω =
S2[p2..p2 + q] is the longest prefix of S2[p2..n2] that occurs as a substring of S1.
Consequently, ms[p2] = (q + 1, [lb..rb]). Otherwise, if cω is not a substring of
S1, then backwardSearch(c, [i..j]) returns ⊥. We consider the two subcases (a)
[i..j] = [1..n1] and (b) [i..j] �= [1..n1].
(a) If [i..j] = [1..n1], i.e., ω = ε, then the character c does not occur in S1. This
means that the longest prefix of S2[p2..n2] that occurs as a substring of S1 is
the empty string ε and ms[p2] = (0, [1..n1]).
(b) If [i..j] �= [1..n1], then ω �= ε. Because cω is not a substring of S1, we must
search for the longest prefix u′ of ω such that cu′ is a substring of S1. Let [i′..j′]
be the parent lcp-interval of [i..j]. The lcp-interval [i′..j′] is the u-interval of a
proper prefix u of ω. Suppose that b is the character immediately following u
in ω, i.e., ω = ubv for some string v. Because the u-interval [i′..j′] is the parent
lcp-interval of the ω-interval [i..j], every substring ω′ of S1 that has ub as a
prefix must also have ω as a prefix. We claim that the string cub cannot occur
in S1. To prove the claim, suppose to the contrary that cub is a substring of S1.
Because every substring ω′ of S1 that has ub as a prefix must also have ω as
a prefix, it follows that cω must be a substring of S1. This contradicts the fact
that cω is not a substring of S1 and thus proves the claim that the string cub
cannot occur in S1. Consequently, u is the longest prefix of ω such that cu is a
possible substring of S1. Observe that the algorithm checks in the next iteration
of the while-loop whether or not cu is indeed a substring of S1. If so, then u is
the longest prefix of ω such that cu is a substring of S1. If not, the algorithm
continues with the parent interval of the u-interval [i′..j′], and so on, until either
backward search succeeds or the interval [1..n1] is found. In both cases ms[p2]
is assigned correctly.

We use an amortized analysis to derive the worst-case time complexity of Al-
gorithm 2. Each statement in the while-loop takes only constant time (assuming
a constant alphabet). We claim that the number of iterations of the while-loop
over the entire algorithm is bounded by 2n2. In each iteration of the while-loop,
either the position p2 in S2 is decreased by one or the search interval [i..j] is
replaced with its parent interval. Clearly, p2 is decreased n2 times and we claim
that at most n2 many search intervals can be replaced with its parent interval.
To see this, let the search interval [i..j] be the ω-interval and let [i′..j′] denote
its parent interval. The lcp-interval [i′..j′] is the u-interval of a proper prefix u of
ω. Consequently, each time a search interval is replaced with its parent interval,
the length of the search string ω is shortened by at least one. Since the overall
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length increase of all search strings is bounded by n2, the claim follows. Thus,
in our implementation, Algorithm 2 has a worst-case time complexity of O(n2).

4 Computing Maximal Exact Matches by Backward
Search

The starting point for any comparison of large genomes is the computation of
exact matches between their DNA sequences S1 and S2. In our opinion, maxi-
mal exact matches—exact matches that cannot be extended in either direction
towards the beginning or end of S1 and S2 without allowing for a mismatch—are
most suitable for this task.

Definition 2. An exact match between two strings S1 (where S1 ends with $)
and S2 of lengths n1 and n2 is a triple (q, p1, p2) such that S1[p1..p1 + q − 1] =
S2[p2..p2 + q − 1]. An exact match is called right maximal if p2 + q − 1 = n2 or
S1[p1+q] �= S2[p2+q]. It is called left maximal if p2 = 1 or BWT[p1] �= S2[p2−1].
A left and right maximal exact match is called maximal exact match (MEM).

In genome comparisons, one is merely interested in MEMs (q, p1, p2) that exceed
a user-defined length threshold �, i.e., q ≥ �. In the software-tool CoCoNUT
[11], maximal exact matches between S1 and S2 are computed by matching S2

in forward direction against an enhanced suffix array of S1. The bottleneck in
large-scale applications like genome comparisons is often the space requirement
of the software-tool. If the index structure (e.g. an enhanced suffix array) does not
fit into main memory, then it is worthwhile to use a compressed index structure
instead. Our new Algorithm 3 computes maximal exact matches by matching
S2 in backward direction against a compressed full-text index of S1.

Algorithm 3 proceeds as in the computation of the matching statistics by
backward search, i.e., for each position p2 in S2, it computes the longest match
of S2[p2..n2] with a substring of S1 of length q, and the matching S2[p2..q − 1]-
interval [lb..rb]. This time, however, it keeps track of the longest matching path.
To be precise, it stores the matching statistics ms[p2] = (q, [lb..rb]) of each
position p2 satisfying q ≥ � as a triple (q, [lb..rb], p2) in a list called path until
a mismatch occurs (i.e., until backward search returns ⊥). Then, it computes
MEMs from the triples in the list path (in its outer for-loop). If all elements of
the list path have been processed, it computes the next longest matching path,
and so on.

By construction (or more precisely, by the correctness of Algorithm 2), if the
triple (q, [lb..rb], p2) occurs in some matching path, then ms[p2] = (q, [lb..rb])
and q ≥ �. (Note that for each position p2 in S2 at most one triple (q, [lb..rb], p2)
appears in the matching paths.) Clearly, this implies that each (q, SA[k], p2) is a
longest right maximal exact match at position p2 in S2, where lb ≤ k ≤ rb. Now
Algorithm 3 tests left maximality by BWT[k] �= S2[p2 −1]. If (q, SA[k], p2) is left
maximal, then it is a maximal exact match between S1 and S2 with q ≥ �, and
the algorithm outputs it. After that, it considers the parent lcp-interval of [lb..rb].
Let us denote this parent interval by q′-[lb′..rb′]. For each k with lb′ ≤ k < lb or
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Algorithm 3. Computing MEMs of length ≥ � by backward search
p2 ← n2

(q, [i..j]) ← (0, [1..n1])
while p2 ≥ 1 do

path← [ ]
[lb..rb]← backwardSearch(S2[p2], [i..j])
while [lb..rb] �= ⊥ and p2 ≥ 1 do

q ← q + 1
if q ≥ 
 then

add(path, (q, [lb..rb], p2))
[i..j] ← [lb..rb]
p2 ← p2 − 1
[lb..rb]← backwardSearch(S2[p2], [i..j])

for each (q′, [lb′..rb′], p′
2) in path do

[lb..rb]← ⊥
while q′ ≥ 
 do

for each k ∈ [lb′..rb′] \ [lb..rb] do
if p′

2 = 1 or BWT[k] �= S2[p′
2 − 1] then

output (q′, SA[k], p′
2)

[lb..rb]← [lb′..rb′]
q′-[lb′..rb′]← parent([lb′..rb′])

if [i..j] = [1..n1 ] then
p2 ← p2 − 1

else
q-[i..j]← parent([i..j])

rb < k ≤ rb′, the triple (q′, SA[k], p2) is a right maximal exact match because
S1[SA[k]..SA[k]+q′−1] = S2[p2..p2+q′−1] and S1[SA[k]+q′] �= S2[p2+q′]. So if
q′ ≥ � and BWT[k] �= S2[p2−1], then the algorithm outputs (q′, SA[k], p2). Then
it considers the parent lcp-interval of [lb′..rb′] and so on. To sum up, Algorithm
3 checks every right maximal exact match exceeding the length threshold � for
left maximality. It follows as a consequence that it detects every maximal exact
match of length ≥ �.

We exemplify the algorithm by matching the string S2 = caaca backwards
against the compressed full-text index of S1 = acaaacatat$. For the length
threshold � = 2, the first matching path is (2, [8..9], 4), (3, [4..5], 3), (4, [3..3], 2).
The triple (2, [8..9], 4) yields no output, but for the triple (3, [4..5], 3), the algo-
rithm outputs the MEM (3, 1, 3). (Note that the parent intervals of [8..9] and
[4..5] are not considered because their lcp-value is smaller than � = 2.) The triple
(4, [3..3], 2) yields the output (4, 4, 2), and when its parent interval 2-[2..3] is con-
sidered, the algorithm does not output the right maximal exact match (2, 3, 2)
because it is not left maximal. Now all triples in the matching path have been
considered, and the algorithm computes the next longest matching path starting
at position p2 = 1 and the parent interval 2-[2..3] of [i..j] = [3..3]. This new path
consists of the triple (3, [8..8], 1) resulting in the output (3, 2, 1) and (2, 6, 1).
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Let us analyse the worst-case time complexity of Algorithm 3. If the outer
for-loop was not there, it would run in O(n2) time; see the run-time analysis of
Algorithm 2. In each execution of the while-loop within the outer for-loop, Algo-
rithm 3 tests a right maximal exact match of length ≥ � for left maximality by
BWT[k] �= S2[p′2−1]. As a matter of fact, it is not necessary to store the Burrows-
Wheeler transformed string BWT[1..n1] of S1. This is because the wavelet tree
allows to access the LF -mapping without it, and we have BWT[k] �= c if and only
if LF (k) �∈ [i..j], where [i..j] is the c-interval (e.g., backwardsearch(c, [1..n1])
returns [i..j]). In other words, the test BWT[k] �= S2[p′2 − 1] in Algorithm 3
can be replaced with the test LF (k) �∈ [i..j], where [i..j] is the S2[p′2 − 1]-
interval, and this test takes only constant time. Therefore, the algorithm runs in
O(n2 + z + occ · tSA) time, where occ (z) is the number of (right) maximal exact
matches of length ≥ � between the strings S1 and S2, and tSA is the access time
to the compressed full-text index.

5 Experimental Results

Our implementations are available under the GNU General Public License at
http://www.uni-ulm.de/in/theo/research/seqana. As already mentioned,
the wavelet tree of a string S1 of length n1 needs only n1 log |Σ| + o(n1 log |Σ|)
bits (about 1.25n1 log |Σ| bits in practice). The balanced parentheses data struc-
ture [18] to determine parent intervals requires 2n1 + o(n1) bits (about 3n1 bits
in practice). The lcp-array is stored as suggested in [17], i.e., values < 255 are
stored in one byte and larger values are stored in an index sorted array—so that
larger values are retrieved in logarithmic time. Thus, the lcp-array uses n1 to
4n1 bytes (n1 to 2n1 bytes in practice). Alternatively, one could use Sadakane’s
[16] encoding of the lcp-array, which uses only 2.1n1 bits in practice. However,
this slows down the computation considerably. So here is room for improvement.

We conducted experiments to compare our algorithms using backward search
with “standard” algorithms using forward search. (Very recently, Russo et al.
[20] presented algorithms based on forward search for parallel and distributed
compressed indexes. To the best of our knowledge, implementations of their
algorithms are not available.)

Test setup: All programs were compiled using g++ version 4.1.2 with options
-O3 -DNDEBUG on a 64 bit Linux (Kernel 2.6.16) system equipped with a Dual-
Core AMD Opteron processor with 3 GHz and 3GB of RAM. For each test set
we measure the real runtime (user time plus system time) of the programs in
order to show the effects of swapping, which occurs when a program does not fit
into main memory. All programs construct an index (suffix array, wavelet tree)
in a first phase and then perform their task based on the index. Because (a) the
index can be reused and (b) different programs are used to construct the index,
we solely focus on the second phase.

Matching statistics: In machine learning, string kernels in combination with
SVM provide string classification algorithms. After a preprocessing phase, an
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Fig. 2. Left: The amount of memory used by the programs (without the construction
phase because the programs use different construction algorithms). Right: Runtime in
seconds of the programs to calculate the matching statistics. Note that the y-axis is in
log scale.

efficient computation of a string kernel boils down to the computation of match-
ing statistics; see [8]. In this context, Teo and Vishwanathan [8] implemented
the linear time algorithm of Abouelhoda et al. [17]. Their program sask-sl is
available at http://users.cecs.anu.edu.au/~chteo/SASK.html. It uses 18n1
to 21n1 bytes (n1 bytes for the string S1, 4n1 bytes for the suffix array, n1 to 4n1
bytes for the lcp-array, 4n1 bytes for the child table, and 8n1 bytes for the suffix
links). In our experiments it used 21n1 bytes. We compared their implementa-
tion of matching statistics computation with our implementation backwardSK.
As data we used a concatenation of books from project Gutenberg. Fig. 2 shows
the memory usage and the real runtime of the programs to compute the match-
ing statistics, given precalculated supporting data structures of S1. We evaluated
the effect of increasing the size of S1 while keeping S2 constant (S2 has size 20
MB). For sizes up to 120 MB, the runtimes of the programs do not differ sig-
nificantly. When the size of S1 reaches 160 MB, however, sask-sl slows down
drastically because it does not fit into main memory anymore (so parts of it are
swapped out of main memory).

Maximal exact matches: Besides the data structures mentioned above, we used a
compressed suffix array based on a wavelet tree that occupies (n1 log n1)/k bits
[14]. Its size and the access time tSA to it depend on the parameter k ≥ 1.
For k = 1, it is the uncompressed suffix array and the access time is con-
stant. For k > 1, only every kth entry of the suffix array is stored and the
remaining entries are reconstructed in k/2 steps (on average) with the LF -
mapping (which can be computed with the wavelet tree). In order to com-
pare our implementation backwardMEM with other software-tools computing
MEMs, we chose the one developed by Khan et al. [21], called sparseMEM
(http://compbio.cs.princeton.edu/mems). Their method computes MEMs
between S1 and S2 by matching S2 in forward direction against a sparse suf-
fix array of S1, which stores every Kth suffix of S1, where K is a user-defined
parameter. (The reader should be aware of the difference between a sparse and
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a compressed suffix array: A sparse suffix array stores each Kth suffix of S1,
while a compressed suffix array stores each kth entry of the suffix array of S1.)
Our choice is justified by the fact that the sequential version of sparseMEM
beats the open-source software-tool MUMmer [10] and is competitive with the
closed-source software-tool vmatch (http://www.vmatch.de/).

For a fair comparison, we used the sequential version of sparseMEM and the
same input and output routines as sparseMEM. In the experiments, we used the
program parameters -maxmatch -n -l �, which set the length threshold on the
MEMs to �. We ran both programs on DNA-sequences of different species. In the
uncompressed case (k = K = 1), the memory consumption of backwardMEM is
smaller than that of sparseMEM, but sparseMEM is faster. In the compressed
cases, backwardMEM performs quite impressively, in most cases much better
than sparseMEM. For example, backwardMEM takes only 57s (using 235 MB
for k = 16) to compare the human chromosome 21 with the mouse chromosome
16, whereas sparseMEM takes 10m34s (using 255 MB for K = 8); see Table 1.

The space consumption of sparseMEM decreases faster with K as that of
backwardMEM with k, but its running time also increases faster. While the ex-
periments show a clear space-time tradeoff for sparseMEM, this is fortunately not
the case for backwardMEM. Sometimes its running time increases with increas-
ing compression ratio, and sometimes it does not. This is because the algorithm
is output-sensitive. More precisely, before a MEM (q, SA[i], p2) can be output,
the algorithm first has to determine the value SA[i]. While this takes only con-
stant time in an uncompressed suffix array, it takes tSA time in a compressed
suffix array, and the value of tSA crucially depends on the compression ratio.

Table 1. For each pair of DNA-sequences (cf. http://compbio.cs.princeton.edu/mems),
the time (in minutes and seconds) and space consumption (in MByte) of the programs
are shown (without the construction phase). We tested different values of K and k
to demonstrate the time-space tradeoff of the algorithms. The value 
 is the length
threshold on the MEMs.

S1 |S1| S2 |S2| 


sparseMEM Mbp Mbp K = 1 K = 4 K = 8
A.fumigatus 29.8 A.nidulans 30.1 20 23s 307 3m59s 108 6m13s 74
M.musculus16 35.9 H.sapiens21 96.6 50 1m15s 430 10m52s 169 19m56s 163
H.sapiens21 96.6 M.musculus16 35.9 50 32s 957 5m08s 362 10m34s 255
D.simulans 139.7 D.sechellia 168.9 50 2m17s 1489 21m09s 490 49m34s 326
D.melanogaster 170.8 D.sechellia 168.9 50 2m37s 1861 28m49s 588 55m43s 386
D.melanogaster 170.8 D.yakuba 167.8 50 2m49s 1860 32m57s 587 61m39s 384
backwardMEM Mbp Mbp k = 1 k = 8 k = 16
A.fumigatus 29.8 A.nidulans 30.1 20 43s 187 49s 89 50s 82
M.musculus16 35.9 H.sapiens21 96.6 50 2m09s 261 2m09s 142 2m16s 134
H.sapiens21 96.6 M.musculus16 35.9 50 51s 576 59s 258 57s 235
D.simulans 139.7 D.sechellia 168.9 50 5m42s 859 17m35s 399 32m39s 366
D.melanogaster 170.8 D.sechellia 168.9 50 4m33s 1074 11m19s 504 20m38s 464
D.melanogaster 170.8 D.yakuba 167.8 50 3m50s 1068 5m18s 502 7m35s 463
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Abstract. Approximate searching using an index is an important ap-
plication in many fields. In this paper we introduce a new data structure
called the gapped suffix array for approximate searching in the Ham-
ming distance model. Building on the well known filtration approach for
approximate searching, the use of the gapped suffix array can improve
search speed by avoiding the merging of position lists.

1 Introduction

Pattern matching in textual data is a much studied question in Computer Sci-
ence and large parts of books on algorithms on strings and sequences are devoted
to the question (see e.g. [2,6]). Several types of applications require approximate
matching rather than exact matching of the patterns. This is typically the sit-
uation for motif search and inference in biological molecular sequences because
they allow some diversity without altering the basic information they carry. But
this is not by far the only domain demanding approximate matching solutions.
A main technique to deal with the question is the notion of alignment, which
admits a considerable number of variants and is parameterised by the costs of
allowed elementary operations (see e.g. [1]).

However there are actually two sub-problems depending on which are known
first, patterns to be searched for or data to be searched. They admit totally
different types of solutions. The paradigm solution for searching for approximate
occurrences of a fixed pattern under the notion of Levenshtein operations is due
to Landau and Vishkin [8], and the same authors designed a simpler version
when only mismatches are considered [7]. The second type of solution appears
when the data is to be searched for multiple patterns. It is then appropriate to
index the data for accelerating their future inspection and analysis.

Indexing for approximate searches is the problem we address in the article,
but with one important restriction: patterns are of fixed size. Moreover the pro-
posed solution accommodates only few mismatches to be feasible with reasonable
resources.

In this paper we introduce what we call the gapped Suffix Array. It is a data
structure enhancing the standard suffix array and tailored to accept searches for
patterns up to some mismatches.
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2 Definitions

Let throughout this paper Σ be a finite ordered alphabet and let Σ∗ denote the
set of all finite strings over Σ. We denote the empty string by ε and the length
of a string u by |u|. Let y = y[0] . . . y[n − 1] denote a string of finite length
n over Σ which we call the text. We denote the factor starting at position i
and ending at position j of some string x by x[i . . j]. It is defined by x[i . . j] =
x[max(0, i)]x[max(0, i)+1] . . . x[min(j, |x|−1)] for max(0, i) ≤ min(j, |x|−1) and
x[i . . j] = ε otherwise. A prefix of a string x is x[0 . . i] for any position i and a
suffix of x is x[i . . |x|− 1] for any position i. A string u ∈ Σ∗ is lexicographically
smaller than a string v ∈ Σ∗ (which we denote by u < v), if u �= v and either
u = ε or u �= ε �= v and u[0] < v[0] or u �= ε �= v and u[0] = u[0] and
u[1 . . |u| − 1] < v[1 . . |v| − 1]. The array SA of length n is defined by SA[r] being
the start position of the r’th lexicographically smallest non empty suffix of y,
i.e. we obtain the relation

y[SA[0] . . n − 1] < y[SA[1] . . n − 1] < . . . < y[SA[n − 1] . . n − 1] .

The array SA can be computed from the string y in linear time if |Σ| ∈ O(nc)
for some constant c (in particular for c = 0, i.e. alphabets of constant size, cf.
[2]). Let the array ISA be defined by ISA[SA[r]] = r for 0 ≤ r < n. The length of
the longest common prefix of u, v ∈ Σ∗, which we denote by is lcp(u, v), is the
largest l ≤ max(|u|, |v|) such that u[0 . . l−1] = v[0 . . l−1]. We denote the length
of the longest common prefix of the two suffixes starting at position i and j of
y by lcpy(i, j) and we define lcpr(r, q) = lcpy(SA[r], SA[q]) for 0 ≤ r, q < n. We
define the LCP array by LCP[r] = lcpr(r− 1, r) for 1 ≤ r < n and by LCP[0] = 0.
It is well known that the identity

lcpr(r, q) = min{LCP[r + 1], LCP[r + 2], . . . , LCP[q]}

holds for 0 ≤ r < q < n. The LCP array can be computed from the string y and
the array SA in linear time (cf. [2]). The pair of arrays (SA, LCP) is commonly
known as the suffix array of the string y.

For two strings u, v such that |u| = |v| = m the Hamming distance d(u, v)
of u and v is defined as the number of differences between u and v. For sake of
completeness we define d(u, v) = ∞ for strings u, v such that |u| �= |v|.

3 Approximate String Matching

We consider approximate string matching by the well known procedure called
filtration or partitioning into exact matches (cf. [10,9]). Let x ∈ Σ∗ be a pattern of
length m. We want to find occurrences of x in the text y with up to k mismatches
under the Hamming distance. Partitioning into exact matches works as follows.
We partition x into q > k fragments x0, . . . xq−1 ∈ Σ+. We search the lists
occurrences Xi of xi. For each of the possibilities of choosing q − k of the q
fragments, we merge the respective lists of positions using the respective position
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offsets. This provides us with
(

q
q−k

)
candidate position lists. The union X of these

merged lists is a superset of the positions of occurrences of x in y with up to
k mismatches. We obtain the list of occurrences of x in y by filtering X using
an online algorithm for testing if the candidate positions designate occurrences
with at most k mismatches.

As an example consider a pattern x we partition into three fragments x0, x1
and x2 for searching its occurrences with 1 mismatch. We have to consider three
pairs of fragments: (x0, x1), (x1, x2) and (x0, x2). The first two combinations are
easily found using an index for y. We need only search for the patterns x0x1
and x1x2. The third requires merging of lists in the conventional scheme. If we
have an index supporting searching patterns with gaps however, merging is no
longer necessary. Supporting the search of patterns with gaps is the purpose of
the gapped suffix array.

4 The Gapped Suffix Array

4.1 Definitions

We define a generalisation of the notion of lexicographical order which we call
(g0, g1)-lexicographical order, where g0, g1 ∈ N. A string u ∈ Σ∗ is (g0, g1)-
lexicographically smaller than a string v ∈ Σ∗

– if u[0 . . g0 − 1] �= v[0 . . g0 − 1] then iff u < v
– otherwise (u[0 . . g0 − 1] = v[0 . . g0 − 1]), if min(|u|, |v|) > g0 + g1 then iff

u[0 . . g0 − 1]u[g0 + g1 . . |u| − 1] < v[0 . . g0 − 1]v[g0 + g1 . . |v| − 1]
– otherwise (u[0 . . g0 − 1] = v[0 . . g0 − 1], min(|u|, |v|) ≤ g0 + g1), iff |u| < |v|

Informally the definition means that we compare u and v ignoring the presence of
the letters in the position interval [g0, g0 + g1), where we have to take some care
about those strings which end inside the gap area. The (g0, g1)-lexicographical
order is a total order on a set of strings such that each string has a differ-
ent length. We define the (g0, g1)-gapped suffix array of y, which we denote by
(g0, g1) − gSA (or shorter gSA, if the parameters g0 and g1 are clear from the
context), as the array containing the starting positions of the non-empty suffixes
of y in (g0, g1)-lexicographically ascending order. The (g0, g1)-prefix of the string
u ∈ Σ∗, which we denote by D(g0, g1, u), is defined as u[0 . . g0−1] if |u| ≤ g0+g1
and as u[0 . . g0−1]u[g0+g1 . . |u|−1] if |u| > g0 +g1. We define the (g0, g1)-gLCP
array (we use the shorter notation gLCP, if the parameters g0 and g1 are clear
from the context) for the string y based on its (g0, g1)-gSA array by

gLCP[r] = lcp(D(g0, g1, y[gSA[r − 1] . . n − 1]), D(g0, g1, y[gSA[r] . . n − 1]))

for r > 0 and gLCP[r] = 0 for r = 0.

4.2 Searching Using the Gapped Suffix Array

Assume we are given a query x of length m > g0 + g1 and we want to find all
occurrences of patterns in x[0 . . g0 − 1]Σg1x[g0 + g1 . . m − 1] in a text y using
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the array (g0, g1)-gSA for y. The search method we use is analogous to the one
we would use for searching an ungapped pattern using the array SA. The only
major difference is that we suitably substitute the lexicographic order by the
(g0, g1)-lexicographic order in the binary search for the interval of gapped suffix
matching x. Thus the time required to report the occ gapped occurrences of x
in y is O((m − g1) log n + occ) if we do not use an adjoint (g0, g1)-gLCP array
and O((m − g1) + log n) if we do.

4.3 Computing the Gapped Suffix Array

For the rest of the section assume we have fixed two natural numbers g0 and
g1 and want to compute the arrays (g0, g1)-gSA (short gSA) and (g0, g1)-gLCP
(short gLCP). We now show how to deduce the sorting in gSA in linear time
O(n) from the suffix array of y.

Let GRANK[r] be defined as the number of ranks r′ < r such that LCP[r] < g0.
GRANK contains the ranks of factors of y with length up to g0. The largest
number we can find in GRANK is n. If GRANK[ISA[i]] < GRANK[ISA[j]] for
two positions i, j, then the suffix at position i is lexicographically and (g0, g1)-
lexicographically smaller than the one at position j. Thus the order of the suffixes
between SA and gSA can only differ if GRANK[r] = GRANK[q] for two ranks r and
q. If GRANK[r] = GRANK[q], then we can determine the order of the respective
gapped suffixes in gSA by checking ISA[SA[r] + g0 + g1] and ISA[SA[q] + g0 + g1],
given that these two are defined. A problem occurs for such ranks r where
SA[r]+g0+g1 ≥ n because the obtained value is not a valid position on y and thus
ISA is not defined for it. According to the definition of the (g0, g1)-lexicographic
order, this problem can be solved by sorting along the array HRANK given by

HRANK[r] =
{

ISA[SA[r] + g0 + g1] + g0 + g1 if SA[r] + g0 + g1 < n
n − 1 − SA[r] otherwise

The range of numbers found in the array HRANK is [0, n+g0+g1−1], in particular
the upper bound is O(n). We can compute a representation of the array gSA by
sorting the sequence of ranks 0, . . . , n − 1 by the pair (GRANK[r], HRANK[r]).
This can be performed efficiently in linear time using a two stage radix sort,
where we first sort by HRANK and then by GRANK. The concrete array gSA can
then be obtained from this intermediate representation by mapping each rank
on the suffix array to the respective position.

Theorem 1. Given a string y of length n and its suffix sorting SA, the gapped
suffix array (g0, g1)-gSA of y can be computed in linear time O(n).

4.4 Computing the Gapped LCP Array gLCP

We show how to compute the gapped LCP array gLCP from the suffix array
and the array (g0, g1) − gSA (short gSA) in linear time. We require a constant
time solution of the range minimum query (RMQ) problem after linear time
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preprocessing (see e.g. [3]). We can obtain the array (g0, g1)−gLCP (short gLCP)
by setting

gLCP[r] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

LCP[r] if LCP[r] < g0
g0 if max(gSA[r] + g0 + g1, gSA[r − 1] + g0 + g1) ≥ n
g0 + l otherwise, where l = min(LCP[p] + 1, . . . , LCP[q]) for

p′ = ISA[gSA[r − 1] + g0 + g1]
q′ = ISA[gSA[r] + g0 + g1]
p = min(p′, q′) and q = max(p′, q′)

As every single step in the computation takes constant time and we have n steps,
the runtime for computing gLCP is O(n).

Theorem 2. Given a string y of length n and its suffix sorting SA, the gapped
LCP array (g0, g1)-gLCP of y can be computed in linear time O(n).

5 Representing the Array gSA in Reduced Space

The uncompressed version of the gSA array requires n�log n bits. The text
however can be stored in n�log |Σ| bits. In applications the size of the alphabet
is fixed an small. Thus the space taken by the gSA will often be much larger
than the space required for the text. The array SA is compressible (cf. [5]).
Unfortunately, methods for compressing SA cannot be applied for compressing
the array gSA, as the compression of SA requires the sorting of the suffixes
according to the lexicographical order, which in general is not the same as the
(g0, g1)-lexicographical order.

We provide a simple method for storing the array gSA using less than n log n
bits space on average. Decoding the compressed representation of gSA will re-
quire the array SA. We limit our description to the aspects necessary for searching
using the array gSA, i.e. our description allows accessing values in gSA corre-
sponding to a provided query string. The more general case of accessing gSA for
a given rank r without knowing a corresponding string can be facilitated using
some additional succinct data structures. We omit the description for lack of
space. We assume that the query string has a length of at least g0. For shorter
strings searching on the suffix array is sufficient. This may enumerate occurrences
in a different order. However, this is not critical in most applications.

Let R[r] = {r′|HRANK[r′] = r}. Each R[r] is given as an interval of ranks.
Observe that the sequences found in SA and gSA in each such interval are per-
mutations of each other. On average we can expect each interval to have a size
of n

|Σ|g0 . Thus the permutation transforming gSA into SA can be stored using
�log |R[r]| bits per number for each interval r. Each interval R[r] is assigned
to a unique prefix u(r) ∈ Σ∗ of length at most g0. The left bound low(r) and
right bound up(r) of the interval R[r] can be obtained by searching u(r) on
the suffix array. Knowing low(r) and up(r) we can compute the number of bits
b(r) = �log up(r) − low(r) + 1 used to store the numbers in the interval. Let L
be defined by L(r) = b(R−1[r]). L can be stored and indexed for rank queries via
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a wavelet tree (cf. [4]) using n�log�log n  + o(n log log n) bits. Let C[r] denote
the permutation mapping the portion R[r] of gSA to SA and let Ci denote the
concatenation of all C[r] such that b(r) = i. We can obtain gSA[r] for the query
v as Cb(u−1(v[0..g0−1]))[rankb(u−1(v[0..g0−1]))(r)] in time O(log log n). The size of
the data structure on average is n(log n− g0 log |Σ|)+ n log log n + o(n log log n)
bits. Using a space efficient wavelet tree data structure, the size is dominated by
the first two terms in practice.

6 Conclusion

In this paper we have presented the gapped suffix array as a new efficient data
structure for approximate matching under the Hamming distance. We obtained
the same query time as for the conventional suffix array. The gapped suffix
array can be derived in linear time from a text and its suffix sorting. Open
problems include an improved query time independent of the text size, a succinct
representation in n logΣ + o(n log Σ) space and whether the gLCP array can be
computed in linear time without using RMQ queries.
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1 Introduction

Two strings y and y′ of equal length over respective alphabets Σy and Σy′

are said to parameterized match if there exists a bijection π : Σy → Σy′ such
that π(y) = y′, i.e., renaming each character of y according to its corresponding
element under π yields y′. (Here we assume that all symbols of both alphabets are
used somewhere.) Two natural problems are then parameterized matching, which
consists of finding all positions of some text x where a pattern y parameterized
matches a substring of x, and approximate parameterized matching, which seeks,
at each location of x, a bijection π maximizing the number of parameterized
matches at that location.

The first variant was introduced and studied by B. Baker [2,3] and others,
motivated by issues of program compaction in software engineering. In [2,3],
optimal, linear time algorithms were given under the assumption of constant
size alphabets. A tight bound for the case of an alphabet of unbounded sizes
was later presented in [1].

We study approximate variants of the problem where a (possibly controlled)
number of mismatches is allowed. Hence, we are concerned with the second
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variant. Formally, we seek to find, for given text x = x1x2 . . . xn and pattern
y = y1y2 . . . ym over respective alphabets Σt and Σp, the injection πi from Σp

to Σt maximizing the number of matches between πi(y) and xixi+1 . . . xi+m−1
(i = 1, 2, . . . n − m + 1). The general version of the problem can be solved in
time O (nm(

√
m + log n)) by reduction to bipartite graph matching (refer to,

e.g., [4]): each mutual alignment defines one graph in which edges are weighed
according to the number of effacing characters and the problem is to choose the
set of edges of maximum weight. An O

(
nk

√
k + mk log m)

)
time algorithm for

parameterized matching with at most k mismatches was given in [5].
In this paper, we are interested in particular in a more general version where

both strings are run-length encoded. This case was previously examined in [4],
further restricted to the case where one of the alphabets is binary. For this special
case, the authors gave a construction working in time O (n + (rp × rt)α(rt) log rt),
where rp and rt denote the number of runs in the corresponding encodings for p
and t, respectively and α is the inverse of Ackerman’s function. This complexity
actually reduces to O(n + (rp × rt)) when both alphabets are binary.

Here we turn our interest to a more general case: we still assume run-length
encoded text and pattern, however we relax the constraints on the the size of both
alphabets. We give two algorithms, both having a time complexity of the form
O
(
(rt×rp)×F1×F2

)
, where F1 and F2 are polynomials of substantial degree in

the alphabet size. The first one will compute the parameterized matching with
mismatches between two run-length encoded strings giving values throughout the
positions of the text; the second will report the positions where such a match is
achieved within a preassigned bound k.

2 Problem Description

We assume that x and y are presented in their run-length encodings, denoted
X = X1X2 . . .Xrt and Y = Y1Y2 . . . Yrp , respectively. The generic run, say Xk

corresponds to a maximal substring xixi+1 . . . xi+�−1 of consecutive occurrences
of the same symbol, and is encoded by the pair [σ, Lk] where σ = xi, we set
xn+1 to the empty word, and Lk is the k-th element of the left-end list, L1 =
1, L2, . . . , Lrt+1 = n + 1 of x. This notation is extended to Y in analogy.

Consider the left-end list L1, . . . , Lrt+1 of the text and assume that we want
to compute the approximate parameterized matching of the pattern beginning at
location i of x. It is convenient to view this alignment as a shift of the text i− 1
positions to the left. The i-shift list is the list L1−(i−1), L2−(i−1), . . . , Lrt+1−
(i − 1). At position i, we are interested only in the portion of the text facing
the pattern, that is, in the portion of the i-shift list containing the first |y| = m
positive elements.

Definition 1. The i-fusion (or fusion when this causes no ambiguity) is the
sequence of intervals defined by the left-end list resulting from the merge of the
left-end list of y with the i-shift list of x.
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Depending on its origin, an element Lk of a fusion is said to be either a pattern
element or a text element. Two elements of the same value coalesce in a single
item and are said to form a bump.

As mentioned, the problem of finding an optimal injection from Σp to Σt at
position i can be re-formulated in terms of the following standard graph theoretic
problem.

We are given a weighted bipartite graph Gi with classes Σt and Σp, which
draws its edge-weights from all possible bijections πi, as follows: for each edge
u, v (u ∈ Σp and v ∈ Σt) the weight wu,v is the number of matches induced by
accepting πi(u) = v.

Under this formulation, an optimal approximate parametrized matching at
position i corresponds to a maximum weighted matching (MWM for short) in a
bipartite graph G.. There are several standard methods to determine the best
weighted matching in a bipartite graph. However, the complexity of these algo-
rithms is O

(
V 2 log V + V E

)
(see [8]), which would make the iterated application

to our case prohibitive. In what follows, we show an approach that resorts to
MWM more sparsely.

We begin by examining the effect of shifting the text by one position to
the left. Clearly, this might change the weight wu,v for every pair. Let δu,v be
the value of this change, which could be either negative or positive. The new
weights after the shift will be in the form wu,v + δu,v. Observe that as long as no
bump occurs each consecutive shift will cause the same changes in the weights.
Within such a regimen, we could calculate the new weights in our graph following
every individual shift, each time at a cost of O (|Σt||Σp|) time. But we could as
well just use the linear functions wu,v + αδu,v to determine the weights of the
maximum weighted matching achievable throughout, without computing every
intermediate solution.

Whenever a bump occurs, we have to recalculate the δ functions. Each re-
calculation should take care of all characters that are actually affected by the
bump. However, the number of function recalculations cannot exceed rt × rp,
the maximum number of of bumps.

In conclusion, our task can be subdivided into two interrelated, but compu-
tationally distinct, steps:

1. At every bump we have to (re)calculate the function Δ in order to quickly
update the weights on the bipartite graph.

2. Within bumps, we have to update the weight function following each unit
shift and determine whether or not a change in the matching function is
necessary.

3 Parameterized String Matching via Parametric Graph
Matching

For our intended treatment, we need to neglect for a moment the fact that the
“weight” and “difference” functions (w and Δ, respectively) take integer values
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and even that the relative shifts between pattern and text take place in a stepwise
discrete fashion.

Definition 2. Let G = (A, B, E) be a bipartite graph with node sets A and B
and edge set E. Assume that |A| ≤ |B|. A set of independent edges is called
(graph) matching, and a matching is full if it covers each vertex in A.

Let M denote the set of all full matchings. Let w : E −→ R and Δ : E −→ R be
two given functions on the edges. For some λ ∈ R+ and for an arbitrary function
z : E −→ R let zλ := z+λΔ. Furthermore, let L(z) := max{z(M) : M ∈ M} and
Mz := {M ∈ M : z(M) = L(z)}. For the sake of simplicity we use the notations
L(λ) := L(wλ) and Mλ := Mwλ

. A fundamental (but simple) property of the
function L is the following

Claim 1. L(λ) is a convex piecewise linear function. �	
A function π : A ∪ B −→ R is called a potential if π(b) ≥ 0 for all b ∈ B.
Let z : E −→ R be again an arbitrary weight function on the edges. Then a
potential is called z-feasible or shortly feasible if z(uv) ≤ π(u) + π(v) holds for
all uv ∈ E. Finally, let Πz denote the set of z-feasible potentials. Then, Πz is a
closed convex polyhedron in RA∪B.

The following duality theorem is well known (see e.g. [7]):

Theorem 1

L(z) = min

{ ∑
v∈A∪B

π(v) : π ∈ Πz

}
.

If π∗ ∈ Πz is an arbitrary minimizing feasible potential, then a full matching M
is z-minimal if and only if z(uv) = π∗(u) + π∗(v) holds for all uv ∈ M .

From the linearity of the objective function we get the following

Claim 2. Let [α, β] be a linear segment of L(λ). Then Mλ1 = Mλ2 for all
λ1, λ2 ∈ (α, β). �	

Definition 3. Let f : Rn −→ R be a convex function. A vector s ∈ Rn is a
subgradient of the function f in the point u ∈ Rn if f(v) ≥ f(u) + 〈s, v − u〉
holds for all v ∈ Rn.

Let ∂f(u) denote the set of the subgradients of f in u, i.e

∂f(u) :=
{
s ∈ Rn : f(v) ≥ f(u) + 〈s, v − u〉 ∀v ∈ Rn

}
. (1)

Obviously ∂f(u) is never empty and |∂f(u)| = 1 if and only if f is differentiable
in u.

Theorem 2. For any λ ≥ 0, the value of L(λ) and a subgradient of the function
L in the point λ can be computed using the max weight matching algorithm.

Proof. It is easy to see that for any M ∈ Mλ, Δ(M) is a subgradient of the
function L in the point λ. In fact all the subgradients can be obtained in this
way, i.e.

∂L(λ) := {Δ(M) : M ∈ Mλ}.
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Assuming now that a threshold value γ ∈ R+ is assigned, we look for the set

Γ := {λ ∈ R+ : L(λ) ≤ γ}. (2)

Due to the convexity of L, the set Γ is a closed interval. Moreover, it is also easy
to see that starting the following Newton-Dinkelbach method from an upper
and a lower bounds of Γ gives us the endpoints of Γ in finitely many steps. (See
Figure 1 demonstrating the execution of the algorithm.)

Procedure Maxl(w,d,lstart)

begin

l:=lstart;

do

M:=max_matching(w+l*d);

l:=(w(M)-gamma)/d(M);

while (w+l*d)(M)!=0;

return l;

end

Using a technique originally developed by Radzik[6], it can be shown that

Theorem 3. The above method terminates in O
(
|E| log2 |E|

)
iterations, thus

the full running time is O
(
|B||E|2 log2 |E| + |B|3|E| log3 |E|

)
.

Due to the space limitations the proof of this theorem is deferred to the full
paper.

Note that the number of iterations (therefore the running time) is independent
from the distance of the initial starting points and from the w and Δ values in
the input. It solely depends on the size of the underlying graph.

We now apply the above treatment to our string searching problem. As it
has already been mentioned in Section 2, our problem can be considered as a
sequence of weighted matching problems over special auxiliary graphs, where

Fig. 1. The steps of Newton-Dinkelback method



370 A. Apostolico, P.L. Erdős, and A. Jüttner

an optimal matching in the auxiliary graph represents a best mapping of the
pattern alphabet at that position. It has further been noticed that the edge
weights change linearly between two bumps, therefore the problem breaks up
rtrp pieces of parametric bipartite graph matching problems (over the integral
domain).

We mention that restricting ourselves to integer solutions does not cause any
problem, as it suffices to round up the solutions into the right direction at the
end of the algorithm.

Now, let us analyze the running time. The nodes of the graph represent the
characters of the alphabets, therefore |A| = |Σp| and |B| = |Σt|, whereas |E| =
|A||B| = |Σp||Σt|. Thus the running time needed to solve a single instance of
the parametric weighted matching problem is

O
(
|B||A|2|B|2 log2(|A||B|) + |B|3|A||B| log3(|A||B|)

)
= O

(
|Σp||Σt|4 log3 |Σt|

)
.

Note that this is simply a constant time algorithm if the size of the alphabets are
constant. Thus for any fixed size alphabets the full running time of the algorithm
is simply the number of bumps, i.e., O(rprt). If the size of the alphabet is part
of the input, then the full running time is O

(
rprt|Σp||Σt|4 log3 |Σt|

)
.

4 Conclusion

We have presented a method for computing the parameterized matching on run-
length encoded strings over alphabets of arbitrary size. The approach extends to
alphabet of arbitrary yet constant size the O (|rp| × |rt|) performance previously
available only for binary alphabets. For general alphabets, the bound obtained
by the present method exhibits a substantial polynomial dependency on the
alphabet size. This, however, should be contrasted with the general version of
the problem, that can be solved in time O(nm(

√
m + log n)). In other words,

although the exponents are quite high in our expression, the overall complexity
depends – in contrast with the convolution based approaches – on the run-length
encoded lengths of the input and it is still polynomial in the size of the alphabets.
The problem of designing an alphabet independent O(|rp|× |rt|) time algorithm
for this problem is still open.
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Abstract. In this paper, we extend the SHIFT-AND approach by Baeza-
Yates and Gonnet (CACM 35(10), 1992) to the matching problem for net-
work expressions, which are regular expressions without Kleene-closure
and useful in applications such as bioinformatics and event stream pro-
cessing. Following the study of Navarro (RECOMB, 2001) on the extended
string matching, we introduce new operations called Scatter, Gather, and
Propagate to efficiently compute ε-moves of the Thompson NFA using the
Extended SHIFT-ANDapproach with integer addition. By using these op-
erations and a property called the bi-monotonicity of the Thompson NFA,
we present an efficient algorithm for the network expression matching that
runs in O(ndm/w) time using O(dm) preprocessing and O(dm/w) space,
where m and d are the length and the depth of a given network expression,
n is the length of an input text, and w is the word length of the underlying
computer. Furthermore, we show a modified matching algorithm for the
class of regular expressions that runs in O(ndm log(m)/w) time.

1 Introduction

Recent emergence of massive text and sequence data in networks has attracted
much attention to string processing technologies [1,3,4,12,15,17,19]. In this pa-
per, we study the regular expression matching problem, which is one of the most
important problems in string processing. Especially, for the last decades, ap-
proaches based on efficient NFA simulation have been extensively studied for
restricted subclasses of regular expressions, namely, the four-russian approach
for the class REG of regular expressions [4,12]; the SHIFT-AND approach for
the class STR of strings [3,19], and the SHIFT-ADD approach for the classes
of k-mismatch string patterns [3,8]. In particular, Navarro and Raffinot [14,15]
presented efficient bit-parallel approach, called Extended SHIFT-AND approach
tailored to a restricted but useful subclass EXT of extended string patterns , which
are regular expressions in linear form, such as R0 = ([AB]+)(B.{1, 3})([BC]?)(.∗)C,
that consists of letters a ∈ Σ, wildcards “.”, classes of letters α = [ab · · · ], op-
tional letters α?, bounded repeats α{x, y}, and unbounded repeats α∗ and α+,
where α ⊆ Σ. In this approach, Navarro and Raffinot [15] nicely extended the
original approach of [3,19] by introducing a new bit-parallel simulation technique,
called the propagation, with the use of integer addition “+” (or subtraction “−”)
in addition to usual Boolean operations on RAM to deal with a special case of

E. Chavez and S. Lonardi (Eds.): SPIRE 2010, LNCS 6393, pp. 372–384, 2010.
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ε-closure caused by optional letters α? and bounded repeats α{x, y} in extended
string patterns as well as unbounded repeats α∗ with the use of an extended
letter mask.

In this paper, inspired by the work by Navarro and Raffinot [15], we study the
pattern matching problem for a special class NET of regular expressions, called
network expressions , which are introduced in Myers [13]. A network expression
(over strings) in NET is a regular expression without Kleene-closure, that is, an
expression constructed recursively from strings in STR applying ε-edges, con-
catenation, and union. Similarly, we can define the class EXNET of extended
network expressions , which are network expressions over extended string pat-
terns in EXT. For example, R1 = A(BA|CD)(CD|AB)B and R2 = A(AB|B?)(B?.∗|AB)C
are examples of expressions in NET and EXNET, respectively. Network expres-
sions and extended network expressions are widely used in applications in the
various fields including such as bioinformatics [13], event stream processing [1],
and network intrusion detection systems [17].

As main results in this paper, we show the followings. Let RAM(op) denote
a unit-cost random access machine equipped with a set op of arithmetic opera-
tions in addition to the standard Boolean operations “&”, “|”, “∼”, and “⊕”.
We present an efficient algorithm that solves the regular expression matching
problem for the classes NET and EXNET in O(nd�m/w ) time using O(dm +
|Σ|�m/w ) preprocessing and O(d�m/w +|Σ|�m/w ) space on RAM(+), where
Σ is a fixed alphabet, m and d are the length and the depth of an input ex-
pression R, and n is the length of an input text T over Σ. Furthermore, we
show that the regular expression matching problem for the full class REG can be
solved in O(nd�m/w log m) time using O(dm log m + |Σ|�m/w ) preprocessing
and O(d�m/w log m + |Σ|�m/w ) space on RAM(+). If we allow the reversal
of bitmasks inv as a primitive, then the problem can be solved in the same time,
preprocessing, and space complexities as NET and EXNET on RAM(+, inv).

To obtain above results, we devise the following techniques to achieve efficient
bit-parallel simulation of Thompson NFA (TNFA, for short) for classes NET and
EXNET. A key of NFA simulation for the full class REG is an efficient simula-
tion of ε-closure in TNFA as mentioned in the previous works [4,12]. Hence,
by extending the previous SHIFT-AND [3,19] and Extended SHIFT-AND [15]
approaches, we introduce a set of new bit-parallel simulation operations, called
Scatter, Gather and Propagate operations to deal with the long succession and the
branching of ε-edges caused by concatenation and union in network expressions
in NET and EXNET. Furthermore, we also devise a transformation technique of
a given TNFA into a special form of NFA that satisfies a property called “bi-
monotonicity” of ε-moves by attaching new ε-edges to all subexpressions whose
initial and final states are ε-reachable in the original expression. Furthermore,
we introduce the barrel shifter technique for implementing backward ε-edges for
REG based on a well-known technique in the VLSI circuit design.

The advantages of our approach to regular expressionmatching are summarized
as follows. (i) Simple and efficient: Since our algorithm naturally exploits the com-
position structure of TNFAs and does not use complex module decompositions as
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in [4], it is particularly efficient for regular expressions with small depth. (ii) Hard-
ware friendly: Since it uses only simple bit-operations and addition/subtraction
and avoids the heavy use of table-lookup, it has potential to be implemented on
modern parallel hardwares with simple structure, such as GPGPUs or FPGAs.
To confirm the above observations, we developed a hardware implementation of
a multiple regular expression matching system on FPGA based on the proposed
algorithm. The experimental results showed that the system could match 256 pat-
terns at the same time against a text stream with throughput of 1.6Gbps and
0.5Gbps in total for NET and EXNET, respectively.

Related works. There are a number of researches on the regular expression
matching problem for REG other than the Extended SHIFT-AND approach. In
the Table-Lookup approach, Myers [12] developed an O(nm/ log n) time and
space algorithm. Improving the space complexity of [12], Bille and Thorup [5]
presented O(nm(log log n)/(log n)3/2 + n + m) time and O(m) space algorithm.
For DFA simulation by Brute force determinization, Navarro and Raffinot [16]
proposed an O(n) time and O(m2m) bits space algorithm using DFA simulation
of Glushkov’s NFAs, while Wu and Manber [19] presented an O(n) time and
O(m22m) bits space algorithm based on the DFA simulation of Thompson’s
NFAs. Champarnaud et al. [7] improves this result by obtaining an expected
exponential reduction of the space complexity. Papers [6,13,14] study pattern
matching with bounded and unbounded gaps.

Organization of this paper. In Section 2, we give basic definitions and no-
tations. In Section 3, we present our algorithm for the class NET of network
expressions as well as extended network expressions EXNET. In Section 4, we
give a modified algorithm for the full class REG of regular expressions. In Sec-
tion 5, we show experimental results on the hardware implementation of the
proposed algorithms. In Section 6, we conclude this paper. For details, please
consult the full paper [10] and the companion paper [11].

2 Preliminary

In this section, we give basic definitions and notations in the regular expression
matching problem according to [2,12,15].

Regular expression matching problem. Let N = {0, 1, 2, . . .}. For i ≤ j,
we define [i..j] = {i, i + 1, . . . , j}. Let Σ be a finite alphabet of letters . A string
on Σ is a sequence S = s1 · · · sn of letters, where si ∈ Σ for every i. For every
1 ≤ i ≤ j ≤ n, We denote by S[i] = si ∈ Σ, by S[i..j] the substring si · · · sj , and
by ε the empty string . If i > j, we define S[i..j] = ε. For a string S, we denote
by |S| the length (or the size) of S.

The class REG of regular expressions on Σ is defined recursively as follows:
(1) If a ∈ Σ ∪ {ε} then a ∈ REG. (2) If R1, . . . , Rn ∈ REG then (R1 · · ·Rn),
(R1| · · · |Rn), (R1)∗ ∈ REG. In this paper, regular expressions are unbounded ,
i.e., n ≥ 1, while n = 2 in the standard definition [4,15]. The length (or the size)
of R is defined by the number ||R|| of symbols from Σ∪{ε, ·, |, ∗} appearing in R.
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For a regular expression R, the parse tree TR, the language L(R) ⊆ Σ∗, and the
depth (or the height) d(R), respectively, are defined in the standard way [15]. Let
C ⊆ REG be any subclass of REG. A pattern is any regular expression R ∈ C and
a text is a string T ∈ Σ∗ over Σ. We say that a regular expression R of length m
occurs in a text T of length n if there exist some i ≤ j such that T [i..j] ∈ L(R)
holds. Then, the index j is called the end position of R in T . Now, we state our
problem below. The regular expression matching problem for a class C ⊆ REG
is, given a regular expression R ∈ C of length m and an input text T of length
n, to output the set of all end positions of R in T .

Subclasses of regular expressions. We introduce the classes STR, EXT, NET,
and EXNET of string patterns, extended string patterns, network expressions,
and extended network expressions, respectively, as follows. A string pattern over
Σ is a string R ∈ Σ∗. An extended string pattern [14] over Σ is a regular
expression R = r1 · · · rm (m ≥ 0), where for every 1 ≤ i ≤ m, ri is one of the
following forms: (i) letters a ∈ Σ, (ii) wildcards “.”, (iii) classes of letters α =
[ab · · · ], (iv) optional letters α?, (v) bounded repeats α{x, y}, and (vi) unbounded
repeats α∗ and α+, where α ⊆ Σ. The semantics of the additional operations is
given by the notational equivalence: “.” ≡ Σ, α? ≡ (α|ε), α{x, y} ≡ (α?)y−xαx,
and α+ ≡ (α α∗).

A network expression (over strings) in NET [13] is a regular expression over
strings, that is, a regular expression obtained from strings, ε-edges, concate-
nation, and union. An extended network expression in EXNET [13] is a net-
work expression over extended string patterns in EXT. For example, R0 =
A(BA|C?)(C∗|AB)B, R1 = A(BA|CD)(CD|AB)B, and R2 = A(AB|B?)(B?.∗|AB)C are ex-
amples of expressions over Σ = {A, B, C} in EXT, NET, and EXNET, respectively.

Model of computation. As the model of computation, we assume a unit-cost
RAM with word length w [2]. For any bitmask length L ≥ 0, A bitmask is a
vector X = bL · · · b1 ∈ {0, 1}L of L bits. for a bit b ∈ {0, 1}, we denote by bk

the bitmask consisting of k copies of b. For bitmasks with L ≤ w, we assume
that the following Boolean and arithmetic operations are executed in O(1) time:
bitwise and “&”, bitwise or “|”, bitwise not “∼”, bitwise xor “⊕”, left shift
“�”, right shift “&” on RAM(), integer addition “+” and integer subtraction
“−” on RAM(+). The space complexity is measured in the number of words.

3 Fast Bit-Parallel Algorithm for Extended
Network Expressions

In this section, we present an efficient algorithm that receives any input extended
network expression R in NET or EXNET with length m and depth d and an input
text T on Σ with length n, and finds all the occurrences of R in T in O(nd�m/w )
time using O(dm+ |Σ|�m/w ) preprocessing and O(d�m/w + |Σ|�m/w ) space
on RAM(+). In what follows, we assume an input regular expression R with
length m and depth d and the input text T with length n.
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Fig. 1. The construction of Thompson automata (TNFAs)

3.1 Basic NFA Simulation Algorithm

We show the outline of our algorithm BP-Match. First, in the preprocessing
phase, we construct a set of the bitmasks MR from a given extended network
expression R ∈ EXNET, and then, in the runtime phase, we search for all the
end positions of R in an input text T based on NFA simulation of NR.

Algorithm. BP-Match(T ∈ Σ∗: an input text, R ∈ EXNET: an extended network
expression)

Preprocess:
(1) Transform R to its expanded form Expand(R).
(2) Construct the TNFA NR from Expand(R).
(3) Construct a set MR of the bitmasks from NR.

Runtime:
(4) Simulate NR on T by using MR

Transformation of a regular expression to its expanded form. As pre-
processing, we first expand all the occurrences of bounded repeats α{x, y} and
unbounded repeats α+ in an input expression R using the equivalence α{x, y} ≡
(α?)y−xαx and α+ ≡ (αα∗), respectively. Furthermore, we apply the operation,
called bypassing, that replaces all the subexpressions S in R such that ε ∈ L(S)
with the expression S′ ≡ (S | ε). This bypassing does not change the language
L(R). We denote by Expand(R) the resulting extended network expression. The
properties of Expand(R) will be examined later.

Construction of TNFA. We construct the parse tree TR of R as shown in
Fig. 2. By the construction in Fig. 1, we compute the Thompson NFA (TNFA,
for short) N(R) = (V, E, θ, φ) of Expand(R) as shown in Fig. 3, where V =
{0, . . . , L} for L ≥ 0. As a special case, for the subexpression S′ ≡ (S|ε) in-
troduced by the bypassing, we add the ε-edge to S directly connecting from
θS to φS instead of rule (f). In Fig. 3, we show an example of TNFA for
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Fig. 2. The parse tree of an extended net-
work expression R2 = A(AB|B?)(B?.∗|AB)C

R2 = A(AB|B?)(B?.∗|AB)C
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Fig. 3. An extended network expression
R2 and its TNFA N2 = N(R2)
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Fig. 4. The bit-position assignment for subexpressions of Expand(R2), where the depth
is compressed by ignoring internal nodes labeled with concatenation “·”

R2 = A(AB|B?)(B?.∗|AB)C. For each node v of TR, let S = S(v) be the subex-
pression of Expand(R) associated with v and NS = N(S) = (VS , ES , θS , φS) be
its corresponding TNFA, called the component TNFA for v, with a state set VS ,
an edge set ES , initial and final states θS and φS . By depth-first search of TR

from left to right, we assign the set V (v) = {θS, φS} ⊆ [0..L] of the initial and
final states of S to each node v of TR as in Fig. 2, and define the depth d(v)
by the number of non-concatenation nodes on the path from the root to v. For
each x ∈ V (v), we define d(x) = d(v), and for each subexpression S = S(v), we
associate the interval IS = [θS ..φS ] ⊆ [0..L]. In Fig. 4, we show a bit-position
assignment related to TR in Fig. 2. A labeled edge e = (u, β, v) ∈ ES is an α-edge
if β ⊆ Σ, and is an ε-edge if β = ε.

Efficient NFA simulation. Next, we describe the standard NFA simulation
method developed by Thompson [2,18] that most of the previous regular expres-
sion matching algorithms [3,4,12,15,19] employ. In Thompson’s algorithm [18],
the current status of the TNFA NR = (VR, ER, θR, φR) is represented by a set
D ⊆ VR of active states . Then, we define the following operations: InitN returns
the set {θR}; AcceptN returns the set {φR}; For any letter c ∈ Σ, MoveN (D, c)
returns the set {y ∈ VR | y is reachable from some x ∈ D by exactly one α-edge
such that c ∈ α }; EpsCloN (D) returns the set {y ∈ VR | y is reachable from
some x ∈ D by zero or more ε-edges }, called the ε-closure of D.

In Fig. 5, we show the algorithm RunTNFA that simulates the computation
of the TNFA NR on an input text T . We can show the following lemma [18].

Lemma 1 (Thompson [18]). For any input text T , the algorithm RunTNFA
in Fig. 5 correctly solves the regular expression matching problem for REG.
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Algorithm RunTNFA(T = t1 · · · tn: an input
text, N(R): a TNFA)
1: D ← InitN ; //initial state set
2: D ← EpsCloN (D); //ε-closure
3: for i← 1, . . . , n do
4: if D ∩ AcceptN �= ∅ then
5: report “match at i− 1”;
6: D ← MoveN(D, ti); //α-edges
7: D ← EpsCloN(D); //ε-closure
8: end for
9:

10:

Fig. 5. The algorithm RunTNFA for NFA
simulation in the runtime phase

Procedure EpsCloN(D: the state set
for a TNFA N(R))
1: for k ← d(R), . . . , 1 do
2: D ← Propagate(D, k);
3: D ← Gather(D, k − 1);
4: end for
5: D ← Propagate(D, 0);
6: for k ← 1, . . . , d(R) do
7: D ← Scatter(D, k − 1);
8: D ← Propagate(D, k);
9: end for

10: return D;

Fig. 6. The procedure EpsCloN for
computing ε-closure

Fine classification of ε-moves. It is not hard to efficiently implement MoveN

either by using table-lookup [12] or SHIFT-AND approach [3,19], while it is not
straightforward to efficiently implement EpsCloN since we have to compute ε-
closure. The key of our algorithm is an efficient implementation of EpsCloN based
on a set of new bit-parallel operations Scatter, Gather, and Propagate defined as
follows.

In the construction (a)–(g) of TNFA in Fig. 1, we categorize ε-edges in a
component TNFA N(S) into four types: (i) e = (θ, ε, θi) in (f) or (g) is a scatter
edge (s-edge) with depth d(θ), (ii) e = (φi, ε, φ) in (f) or (g) is a gather edge
(g-edge) with d(φ), (iii) e = (θ, ε, φ) in (a), (c), (d), or (g) is a propagate edge
(p-edge) with d(θ) = d(φ), and (iv) e = (φi, ε, θi) in (g) is a back edge (b-edge)
with d(θi) = d(φi), where θ and φ are the initial and the final states of N(S).
We classify the ε-edge introduced by bypassing as a propagate edge. For scatter,
gather, propagate, and back edges in N(S), we assign the depth of the outermost
node θ or φ of N(S). The next lemma gives a characterization of ε-edges.

Lemma 2. If e = (u, ε, v) is an ε-edge in the TNFA NR for R ∈ EXNET, then
Δ = d(v) − d(u) ∈ {+1, 0,−1} holds. Moreover, (i) if Δ = +1, e is a scatter
edge, (ii) if Δ = −1, e is a gather edge, and (iii) if Δ = 0, e is a propagate edge.

For any set D ⊆ V and any k = 0, . . . , d(R), we define Scatter(D, k) (or
Gather(D, k)) the sets of states from some states in D reachable by exactly
one scatter edge (or one gather edge, resp.) with depth k. On the other hand,
the set Propagate(D, k) is defined by the ε-closure of D restricted by the prop-
agate edges with depth k. For any component TNFA S, an ε-block B ⊆ VS is
a set of states that induces a maximal connected component consisting only of
propagate edges. By construction of TNFA and bypassing, we can see that any
such ε-block forms a chain. Clearly, all states in B have the same depth d, which
is called the depth of B. For example, an expression R2 = A(AB|B?)(B?.∗|AB)C in
Fig. 3 has three ε-blocks, B1 = {1, 7, 14}, B2 = {5, 6}, and B3 = {8, 9, 10}.
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Fig. 7. The bit-operations and the corresponding parts of TNFAs

Now, we show the key lemma, called the bi-monotonicity lemma on bypassing
transformation. For any d, d′ ∈ N, we define d ≤1 d′ if |d − d′| ≤ 1 holds. For
any states x, y in TNFA N(R), a ε-path π = (x1 = x, . . . , xn = y) ∈ (VR)∗

is said to be bi-monotone if there exists some state xk (1 ≤ k ≤ n) such that
d(x1) ≤1 · · · ≤1 d(xk) and d(xk) ≥1 · · · ≥1 d(xn) hold, that is, the depth
sequence for the first half is non-decreasing and the latter half is non-increasing.
By induction on the construction of TNFA, we can show the next lemma.

Lemma 3 (bi-monotonicity lemma). Let x, y be any states in Expand(R).
If π be any ε-path from x to y, then there also exists some bi-monotone ε-path
from x to y in Expand(R).

Based on the bi-monotonicity of an expanded version of TNFA, we present in
Fig. 6 the procedure EpsCloN that computes the ε-closure for EXNET.

Lemma 4. Suppose that Scatter, Gather, and Propagate operations are correctly
implemented for R ∈ EXNET with depth d(R). Then, the algorithm EpsClo in
Fig. 6 correctly computes the ε-closure EpsCloN(R)(D) of any state set D.

Proof. The soundness is obvious from construction. The completeness follows
that if a state y is ε-reachable from a state x, then the applications of op-
erators in the order of the regular expression (Propagete.Gather)∗ Propagete
(Scatter.Propagete)∗ moves x to y by the existence of a bi-monotone ε-path
by Lemma 3. Since this is what EpsCloN does, the lemma is proved. �	

3.2 Bit-Parallel Implementation

To simulate the TNFA NR for an extended network expression Expand(R), we
use a set MR of bitmasks of L bits CHR[c], REP[c], BLKτ [k], SRCτ [k], and DSTτ [k] ∈
{0, 1}L, for every c ∈ Σ, 0 ≤ k ≤ d(R), and τ ∈ {S, G, P}, where L is the number
of the states of NR. Then, by further generalizing the Extended SHIFT-AND
approach, we simulate the ε-closure operations Scatter, Gather, and Propagate as
follows. Let NS = (V, E, θ, φ) be any component TNFA in depth k.

Simulation of Move operation. Preprocess: Let e = (θ, α, φ) ∈ E be an α-
edge of NS , where α ⊆ Σ. To implement the Move operation, we precompute the
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following bitmasks. For every letter c ∈ α and every NS , we define: (M.1) CHR[c]
has 1 in the bit-position j = φ. (M.2) REP[c] has 1 in the bit-position j = φ such
that θ = φ holds, that is, an α-edge e is a self-loop, equivalently, either S = α∗

or S = α+.
Runtime: To simulate the Move(D, ti), we perform

D ← (((D � 1) & CHR[ti]) | 1) | (D & REP[ti]); (1)

where ti ∈ Σ be an input letter. This code is the same as the code for α-moves
in the Extended SHIFT-AND approach [15]. For the details, see [15].

Simulation of Scatter operation. Preprocess: Let e = (θ, ε, θi) ∈ E be a
scatter edge of NS . To implement the Scatter operation, we precompute the
following bitmasks. For every depth k and every NS , we define: (S.1) BLKS[k]
has 1 in the bit-position j = φ− 1. (S.2) SRCS[k] has 1 in the bit-position j = θ.
(S.3) DSTS[k] has 1 in the bit-position j iff j = θi for all i (Fig. 7).

Runtime: To simulate the Scatter(D, k), we perform

D ← D | ((BLKS[k] − {D & SRCS[k]}) & DSTS[k]); (2)

Firstly, by the formula (D & SRCS[k]), we extract the values of source bits from
D. Then, by subtracting the values from BLKS[k], all the destination bits are set
to 1 if the source bits is 1, and all to 0 otherwise. Note that this is done by
carry propagation of subtraction “−”. Finally, we extract the destination bits
by and-ing the result with DSTS[k], and put all the destination bits to D.

Simulation of Gather operation. Preprocess: Let e = (φi, ε, φ) ∈ E be a
gather edge of NS . For every depth k and every NS , we define: (G.1) BLKG[k]
has 1 in the bit-position j ∈ [θ +1..φ−1]. (G.2) SRCG[k] has 1 in the bit-position
j iff j = φi for all i. (G.3) DSTG[k] has 1 in the bit-position j = φ (Fig. 7).

Runtime: To simulate the Gather(D, k), we do the following

D ← D | ((BLKG[k] + {D & SRCG[k]}) & DSTG[k]); (3)

Since this code is similar to one of Scatter except that Gather uses addition, while
Scatter uses subtraction, we omit the details.

Simulation of Propagate operation. Preprocess: Let e = (θ, ε, φ) ∈ E be a
propagate edge of NS. For every k and ε-block B with depth k, we define: (P.1)
BLKP[k] has 1 in the bit-position i ∈ B. (P.2) SRCP[k] has 1 in the bit-position
i = min(B). (P.3) DSTP[k] has 1 in the bit-position i = max(B) (Fig. 7).

Runtime: To simulate the Propagate(D, k), we perform the following

A ← (D & BLKP) | DSTP[k]; (4)
D ← D | (BLKP[k] & ((∼ (A − SRCP[k])) ⊕ A)); (5)

The above code works since any ε-block is a chain in the same depth, and thus
the propagation of the carry bits in the subexpression (A − SRCP[k]) correctly
implements the ε-closure on a chain as shown in [14,15].
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3.3 Main Results

From Navarro and Raffinot (Sec. 1.3.1, [15]), we know that the integer addition
and subtraction can be executed in O(�m/w ) time and space by simulating
carry propagation. Combining this and the arguments in the previous section,
we have the following lemma.

Lemma 5. By the above construction, the Move(D, c), Scatter(D, k), Gather
(D, k), and Propagate(D, k) operations for N(R) are correctly implemented to
run in O(�m/w ) time on RAM(+), where c ∈ Σ, 0 ≤ k ≤ d(R), D is any
m-bit mask, m is the number of states in N(R) and w is the word length.

From Lemma 5, in the large automata case with m > w, we can use inexpensive
simulation of primitive operations on RAM(+) instead of expensive module
decomposition technique used tabling-based algorithms as in [4,12]. This will be
an advantage of our algorithm in implementing it on parallel hardwares such as
GPGPUs and FPGAs. Now, we show the main result of this paper.

Theorem 1. The algorithm BP-Match solves the regular expression matching
problem for NET and EXNET of network and extended network expressions in
O(nd�m/w ) time using O(dm + |Σ|�m/w ) preprocessing and O(d�m/w +
|Σ|�m/w ) space, where n = |T |, m = ||R||, d = d(R), w is the word length.

Proof. The correctness follows from Lemma 1, Lemma 4, and Lemma 5. Then,
the result immediately follows from that the for-loop is executed at most d(R)
times and each code can be executed in O(�m/w ) time from Lemma 5 �	

4 Extension for General Regular Expressions

To generalize our algorithm in Sec. 3 for the full class REG in the Extended
SHIFT-AND approach, we need to simulate backward ε-edges corresponding to
the Kleene-closure “∗”. However, the backward ε-edges from lower to higher bits
seems hard to compute on RAM(+). To overcome this difficulty, we introduce
a technique called barrel shifter as follows.

The idea is to decompose each backward ε-moves from higher to lower bits
having the length J bits into a series of right-shifts “&” having the widths
20 = 1, 21 = 2, . . . , 2�, where � = �log δ and δ = O(m) is the maximum length
of the backward ε-edges in TNFA R. More precisely, for each back edge e in
a certain depth of R, if the edge e has the width J ≥ 0, we have the unique
binary expansion bin(J) = J�−1 · · · J0 ∈ {0, 1}L such that J =

∑�−1
i=0 Ji2i. For

each k = 0, . . . , d(R) and i = 0, . . . , � − 1, the bitmask BLKB[k][i] is defined by:
for each back edge e = (φi, ε, θi) in depth k, we fill the interval Ie = [θi..φi] with
1’s if Jk = 1 and with 0’s if Jk = 0. In run-time, we set jmp ← 0, and repeatedly
perform D ← (D & ∼ BLKB[k][i]) | (D & BLKB[k][i]) & jmp); jmp ← jmp � 1.
From the construction, this operation can be implemented in O(d�m/w log m)
time using O(dm log m) preprocessing and O(d�m/w log m) space.
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Table 1. Summary of experimental results on the hardware implementation, where
#op, #add, #reg, #bram, and #slice, are the numbers of 32 bit operations, 32 bit
integer additions, registers, block RAM lines, resp., per PMM. #pat and #char are
the number and the total size of input patterns, resp.

.Class #op #add #reg #bram #slice frequency throughput load time #pat #char
STR 5 0 3 256 54 363 MHz 2.9 Gbps 0.182 ms 256 8,192
EXT 11 1 6 512 123 202 MHz 1.6 Gbps 0.328 ms 128 4,096
EXNET 20 9 24 512 736 65 MHz 0.5 Gbps 1.055 ms 128 4,096

Theorem 2. The regular expression matching problem for the class REG can be
solved in O(nd�m/w log m) time using O(dm log m + |Σ|�m/w ) preprocessing
and O(d�m/w log m + |Σ|�m/w ) space.

As an alternative, if there are at most constant number of back edges with
mutually distinct lengths, then we can replace the O(log m) term with O(1). As
other option, if the O(1)-bit-reversal inv is available, we can also replace the
O(log m) term with O(1) on RAM(+, inv) by simulating backward ε-moves by
Scatter (or Gather) and inv. Thus, we obtain the same complexity as Theorem 1.

5 Experimental Results

To evaluate the performance, we implemented our regular expression matching
algorithm on FPGA in Verilog-HDL for STR, EXT, and EXEXT. We designed
the algorithm as a collection of up to 256 pattern matching modules (PPMs)
working simultaneously [11], where the word length is w = 32 bits, and masks are
stored in block RAMs and a set of registers. We used the Xilinx ISE Design Suite
10.1 and Synopsys VCS development tools. Having targetted an FPGA device,
Xilinx Virtex-5 LX330 with −1 speed grade, which had 51,840 slices and 288
block RAMs with 36 Kbits, we could install up to 256 PPMs. For more details of
the experiments, see the companion paper [11]. Table. 1 shows the summary of
the experimental results on our hardware. The #bram is given by the number of
block RAMs times |Σ| = 256. Then, we can observe that our hardware achieves
the high throughput of 0.5 Gbps for the class EXNET and of 1.6 Gbps for the
class EXT, which is hard to achieve by software implementation on the current
general CPUs. Hence, our algorithm is suitable to hardware implementation.

6 Conclusion

In this paper, we presented an efficient bit-parallel algorithm that solves the
regular expression matching problem for the class EXNET of extended network
expressions in O(nd�m/w ) time using O(d�m/w ) space and O(dm) prepro-
cessing by extending the Extended SHIFT-AND approach [15]. Furthermore, we
show that the problem for the full class REG of regular expressions is solvable
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in O(nmd log w/w) time on RAM(+). Experiments on its hardware implemen-
tation showed that the proposed algorithm is suitable to parallel execution on
hardwares. Other advantage is the guaranteed worst-case time complexity. Thus,
it may be useful as a base algorithm for other approaches such as filtration as
mentioned in [8,15]. Application of the Extended SHIFT-AND to tree and XML
matching [9] will be an interesting future research.
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String Matching with Variable Length Gaps
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Abstract. We consider string matching with variable length gaps. Given
a string T and a pattern P consisting of strings separated by variable
length gaps (arbitrary strings of length in a specified range), the prob-
lem is to find all ending positions of substrings in T that match P . This
problem is a basic primitive in computational biology applications. Let
m and n be the lengths of P and T , respectively, and let k be the
number of strings in P . We present a new algorithm achieving time
O((n+m) log k+α) and space O(m+A), where A is the sum of the lower
bounds of the lengths of the gaps in P and α is the total number of oc-
currences of the strings in P within T . Compared to the previous results
this bound essentially achieves the best known time and space complexi-
ties simultaneously. Consequently, our algorithm obtains the best known
bounds for almost all combinations of m, n, k, A, and α. Our algorithm
is surprisingly simple and straightforward to implement.

1 Introduction

Given integers a and b, 0 ≤ a ≤ b, a variable length gap g{a, b} is an arbitrary
string over Σ of length between a and b, both inclusive. A variable length gap
pattern (abbreviated VLG pattern) P is the concatenation of a sequence of
strings and variable length gaps, that is, P is of the form

P = P1 · g{a1, b1} · P2 · g{a2, b2} · · · g{ak−1, bk−1} · Pk .

A VLG pattern P matches a substring S of T iff S = P1 ·G1 · · ·Gk−1 ·Pk, where
Gi is any string of length between ai and bi, i = 1, . . . , k − 1. Given a string T
and a VLG pattern P , the variable length gap problem (VLG problem) is to find
all ending positions of substrings in T that match P .

Example 1. As an example, consider the problem instance over the alphabet
Σ = {A, G, C, T }:

T = ATCGGCTCCAGACCAGTACCCGTTCCGTGGT
P = A · g{6, 7} · CC · g{2, 6} · GT

The solution to the problem instance is the set of positions {17, 28, 31}. For ex-
ample the solution contains 17, since the substring ATCGGCTCCAGACCAGT,
ending at position 17 in T , matches P .

Variable length gaps are frequently used in computational biology applications
[15,13,16,7,8]. For instance, the PROSITE data base [5,9] supports searching for
proteins specified by VLG patterns.

E. Chavez and S. Lonardi (Eds.): SPIRE 2010, LNCS 6393, pp. 385–394, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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1.1 Previous Work

We briefly review the main worst-case bounds for the VLG problem. As above, let
P = P1 ·g{a1, b1}·P2 ·g{a2, b2} · · · g{ak−1, bk−1}·Pk be a VLG pattern consisting
of k strings, and let T be a string. To state the bounds, let m =

∑k
i=1 |Pi| be

the sum of the lengths of the strings in P and let n be the length of T .
The simplest approach to solve the VLG problem is to translate P into a

regular expression and then use an algorithm for regular expression matching.
Unfortunately, the translation produces a regular expression significantly longer
than P , resulting in an inefficient algorithm. Specifically, suppose that the alpha-
bet Σ contains σ characters, that is, Σ = {c1, . . . , cσ}. Using standard regular
expression operators (union and concatenation), we can translate g{a, b} into
the expression

g{a, b} =

a︷ ︸︸ ︷
C · · ·C

b−a︷ ︸︸ ︷
(C|ε) · · · (C|ε),

where C is shorthand for the expression (c1 | c2 | . . . cσ). Hence, a variable length
gap g{a, b}, represented by a constant length expression in P , is translated into
a regular expression of length Ω(σb). Consequently, a regular expression R cor-
responding to P has length Ω(Bσ + m), where B =

∑k−1
i=1 bi is the sum of the

upper bounds of the gaps in P . Using Thompson’s textbook regular expression
matching algorithm [19] this leads to an algorithm for the VLG problem using
O(n(Bσ + m)) time. Even with the fastest known algorithms for regular expres-
sion matching this bound can only be improved by at most a polylogarithmic
factor [14,17,2,3].

Several algorithms that improve upon the direct translation to a regular ex-
pression matching problem have been proposed [15,13,6,16,11,12,18,7,8,4]. Some
of these are able to solve more general versions of the problem, such as search-
ing for patterns that also contain character classes and variable length gaps
with negative length. Most of the algorithms are based on fast simulations of
non-deterministic finite automata. In particular, Navarro and Raffinot [16] gave
an algorithm using O(n(m+B

w + 1)) time, where w is the number of bits in a
memory word. Fredrikson and Grabowski [7,8] improved this bound for the case
when all variable length gaps have lower bound 0 and identical upper bound b.
Their fastest algorithm achieves O(n(m log log b

w + 1)) time. Very recently, Bille
and Thorup [4] gave an algorithm using O(n(k log w

w + log k)+m log m+A) time
and O(m + A) space, where A =

∑k−1
i=1 ai is the sum of the lower bounds on

the lengths of the gaps. Note that if we assume that the nk term dominates and
ignore the w/ log w factor, the time bound reduces to O(nk).

An alternative approach, suggested independently by Morgante et al. [12]
and Rahman et al. [18], is to design algorithms that are efficient in terms of
the total number of occurrences of the k strings P1, . . . , Pk within T . Let α
be this number, e.g., in Example 1 A, CC, and GT occur 5, 5, and 4 times
in T . Hence, α = 5 + 5 + 4 = 14. Rahman et al. [18] gave an algorithm using
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O((n + m) log k + α log(max1≤i<k(bi − ai))) time1. Morgante et al. [12] gave a
faster algorithm using O((n + m) log k + α) time. Each of the k strings in P can
occur at most n times and therefore α ≤ nk. Hence, in the typical case when the
strings occur less frequently, i.e, α = o(n(k log w

w + log k)), these approaches are
faster. However, unlike the automata based algorithm that only use O(m + A)
space, both of these algorithm use Θ(m + α) space. Since α typically increases
with the length of T , the space usage of these algorithms is likely to quickly
become a bottleneck for processing large biological data bases.

1.2 Our Results

We address the basic question of whether is it possible to design an algorithm
that simultaineously is fast in the total number of occurrences of the k strings
and uses little space. We show the following result.

Theorem 1. Given a string T and a V LG pattern P with k strings, we can
solve the variable length gaps matching problem in time O((n+m) log k+α) and
space O(m + A). Here, α is the number of occurrences of the strings of P in T
and A is the sum of the lower bounds of the gaps.

Hence, we match the best known time bounds in terms of α and the space for
the fastest automata based approach. Consequently, whenever α = o(n(k log w

w +
log k)) the time and space bounds of Theorem 1 are the best known. Our algo-
rithm uses a standard comparison based version of the Aho-Corasick automaton
for multi-string matching [1]. If the size of the alphabet is constant or we use
hashing the log k factor in the running time disappears. Furthermore, our algo-
rithm is surprisingly simple and straightforward to implement.

In some cases, we may also be interested in outputting not only the ending
positions of matches of P , but also all of the possible combinations of strings
in P that imply an occurrence in T . For instance, after we have identified a
particularly interesting section in T using Theorem 1. Note that there can be
exponentially many of these. Morgante et al. [12] showed how to encode all of
these in a graph of size O(α). We can similarly extend our algorithm to produce
such an encoding at the cost of using O(α) additional space.

1.3 Technical Overview

The previous work by Morgante et al. [12] and Rahman et al. [18] find all of the
α occurrences of the strings P1, . . . , Pk of P in T using a standard multi-string
matching algorithm (see Section 2.1). From these, they construct a graph of
size Ω(α) to represent possible combinations of string occurrences that can be
combined to form occurrences of P .

Our algorithm similarly finds all of the occurrences of the strings of P in
T . However, we show how to avoid constructing a large graph representing the
1 The bound stated in the paper does not include the log k factor, since they assume

that the size of the alphabet is constant. We make no assumption on the alphabet
size and therefore include it here.
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possible combinations of occurrences. Instead we present a way to efficiently
represent sufficient information to correctly find the occurrences of P , leading to
a significant space improvement from O(m + α) to O(m + A). Surprisingly, the
algorithm needed to achieve this space bound is very simple, and only requires
maintaining a set of sorted lists of disjoint intervals. Even though the algorithm is
simple the space bound achieved by it is non-obvious. We give a careful analysis
leading to the O(m + A) space bound.

2 Algorithm

In this section we present the algorithm. For completeness, we first briefly review
the classical Aho-Corasick algorithm for multiple string matching in Section 2.1.
We then define the central idea of relevant occurrences in Section 2.2. We present
the full algorithm in Section 2.3 and analyze it in Section 3.

2.1 Multi-string Matching

Given a set of pattern strings P = {P1, . . . , Pk} of total length m and a text
T of length n the multi-string matching problem is to report all occurrences of
each pattern string in T . Aho and Corasick [1] generalized the classical Knuth-
Morris-Pratt algorithm [10] for single string matching to multiple strings. The
Aho-Corasick automaton (AC-automaton) for P , denoted AC(P), consists of the
trie of the patterns in P . Hence, any path from the root of the trie to a state s
corresponds to a prefix of a pattern in P . We denote this prefix by path(s). For
each state s there is also a special failure transition pointing to the unique state
s′ such that path(s′) is the longest prefix of a pattern in P matching a proper
suffix of path(s). Note that the depth of s′ in the trie is always strictly smaller
for non-root states than the depth of s.

Finally, for each state s we store the subset occ(s) ⊆ P of patterns that match
a suffix of path(s). Since the patterns in occ(s) share suffixes we can represent
occ(s) compactly by storing for s the index of the longest string in occ(s) and a
pointer to the state s′ such that path(s′) is the second longest string if any. In
this way we can report occ(s) in O(|occ(s)|) time.

The maximum outdegree of any state is bounded by the number of leaves in
the trie which is at most k. Hence, using a standard comparison-based balanced
search tree to index the trie transitions out of each state we can construct AC(P)
in O(m log k) time and O(m) space.

To find the occurrences of P in T , we read the characters of T from left-to-
right while traversing AC(P) to maintain the longest prefix of the strings in P
matching T . At a state s and character c we proceed as follows. If c matches
the label of a trie transition t from s, the next state is the child endpoint of t.
Otherwise, we recursively follow failure transitions from s until we find a state
s′ with a trie transition t′ labeled c. The next state is then the child endpoint of
t′. If no such state exists, the next state is the root of the trie. For each failure
transition traversed in the algorithm we must traverse at least as many trie
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Pi
R(x)

Pi+1

Pi+1

Pi+1

x

Not relevant

Relevant

Not relevant

y

Position in Tτ τ + ai + 1 τ + bi + 1 u

Fig. 1. In this figure x is an occurrence of Pi in T reported at position τ . The first
and last occurrence of Pi+1 start outside R(x) thereby violating the ith gap constraint,
so these occurrences are not relevant compared to x. The second occurrence y of Pi+1

starts in R(x), so if x is itself relevant, then y is also relevant.

transitions. Therefore, the total time to traverse AC(P) and report occurrences
is O(n log k + α), where α is the total number of occurrences.

Hence, the Aho-Corasick algorithm solves multi-string matching in O((n +
m) log k + α) time and O(m) space.

2.2 Relevant Occurrences

For a substring x of T, let startpos(x) and endpos(x) denote the start and end
position of x in T , respectively. Let x be an occurrence of Pi with τ = endpos(x)
in T , and let R(x) denote the range [τ + ai +1; τ + bi +1] in T . An occurrence y
of Pi in T is a relevant occurrence of Pi iff i = 1 or startpos(y) ∈ R(x), for some
relevant occurrence x of Pi−1. See Fig. 1 for an example. Relevant occurrences
are similar to the valid occurrences defined in [18]. The difference is that a valid
occurrence is an occurrence of Pi+1 that is in R(x) for any occurrence x of Pi

in T , i.e., x need not be a valid occurrence itself.
From the definition of relevant occurrences, it follows directly that we can solve

the VLG problem by finding the relevant occurrences of Pk in T . Specifically, we
have the following result.

Lemma 1. Let S be a substring of T matching the VLG pattern S1 · g{a1, b1} ·
S2 · g{a2, b2} · · ·Sk. Then, startpos(Si+1) ∈ R(Si) for all i = 1, . . . , k − 1.

2.3 The Algorithm

Algorithm 1 computes the relevant occurrences of Pk using the output from
the AC automaton. The idea behind the algorithm is to keep track of the ranges
defined by the relevant occurrences of each subpattern Pi, such that we efficiently
can check if an occurrence of Pi is relevant or not. More precisely, for each
subpattern Pi, i = 2, . . . , k, we maintain a sorted list Li containing the ranges
defined by previously reported relevant occurrences of Pi−1. When an occurrence
of Pi is reported by the AC automaton, we can determine whether it is relevant
by checking if it starts in a range contained in Li (step 2b). Initially, the lists
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Algorithm 1. Algorithm solving the VLG problem for a VLG pattern P and a
string T

1. Build the AC-automaton for the subpatterns P1, P2, . . . , Pk.
2. Process T using the automaton and each time an occurrence x of Pi is reported at

position τ = endpos(x) in T do:
(a) Remove any dead ranges from the lists Li and Li+1.
(b) If i = 1 or τ − |Pi| = startpos(x) is contained in the first range in Li do:

i. If i < k: Append the range R(x) = [τ +ai +1; τ +bi +1] to the end of Li+1.
If the range overlaps or adjoins the last range in Li+1, the two ranges are
merged into a single range.

ii. If i = k: Report τ .

L2, L3, . . . , Lk are empty. When a relevant occurrence of Pi is reported, we add
the range defined by this new occurrence to the end of Li+1. In case the new
range [s, t] overlaps or adjoins the last range [q, r] in Li+1 (s ≤ r + 1) we merge
the two ranges into a single range [q, t].

Let τ denote the current position in T . A range [a, b] ∈ Li is dead at position
τ iff b < τ −|Pi|. When a range is dead no future occurrences y of Pi can start in
that range since endpos(y) ≥ τ implies startpos(y) ≥ τ −|Pi|. In Fig. 1 the range
R(x) defined by x dies, when position u is reached. Our algorithm repeatedly
removes any dead ranges to limit the size of the lists L2, L3, . . . , Lk. To remove
the dead ranges in step 2a we traverse the list and delete all dead ranges until
we meet a range that is not dead. Since the lists are sorted, all remaining ranges
in the list are still alive. See Fig. 2 for an example.

3 Analysis

We now show that Algorithm 1 solves the VLG problem in time O((n+m) log k+
α) and space O(m + A), implying Theorem 1.

3.1 Correctness

To show that Algorithm 1 finds exactly the relevant occurrences of Pk, we show
by induction on i that the algorithm in step 2b correctly determines the relevancy
of all occurrences of Pi, i = 1, 2, . . . , k, in T .

Base case: All occurrences of P1 are by definition relevant and Algorithm 1
correctly determines this in step 2b.

Inductive step: Let y be an occurrence of Pi, i > 1, that is reported at position
τ . There are two cases to consider.
1. y is relevant. By definition there is a relevant occurrence x of Pi−1 in

T , such that startpos(y) = τ − |Pi| ∈ R(x). By the induction hypoth-
esis x was correctly determined to be relevant by the algorithm. Since
endpos(x) < τ , R(x) was appended to Li earlier in the execution of the
algorithm. It remains to show that the range containing startpos(y) is
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P1

P1

P1

P1

P1

P2

P2

P2

P2

P2

P3

P3

P3

P3

x

R(x)

A T C G G C T C C A G A C C A G T A C C C G T T C C G T G G T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fig. 2. The occurrences of the subpatterns P1 = A, P2 = CC and P3 = GT and the
ranges they define in the text T from Example 1. Occurrences which are not relevant
are crossed out. The bold occurrences of P3 are the relevant occurrences of Pk and their
end positions 17,28 and 31 constitute the solution to the VLG problem. Consider the
point in the execution of the algorithm when the occurrence x of P2 at position τ = 26 is
reported by the Aho-Corasick automaton. At this time L2 =

[
[17; 20], [22; 23], [25; 26]

]
and L3 =

[
[23, 28]

]
. The ranges [17; 20] and [22; 23] are now dead and are removed from

L2 in step 2a. In step 2b the algorithm determines that x is relevant and R(x) = [29; 33]
is appended to L3: L3 =

[
[23; 33]

]
.

the first range in Li in step 2b. When removing the dead ranges in Li

in step 2a, all ranges [a, b] where b < τ − |Pi| are removed. Therefore
the range containing τ − |Pi| = startpos(y) is the first range in Li af-
ter step 2a. It follows that the algorithm correctly determines that y is
relevant.

2. y is not relevant. Then there exists no relevant occurrence x of Pi−1 such
that startpos(y) ∈ R(x). By the induction hypothesis there is no range in
Li containing startpos(y), since the algorithm only append ranges when
a relevant occurrence is found. Consequently, the algorithm correctly
determines that y is not relevant.

3.2 Time and Space Complexity

The AC automaton for the subpatterns P1, P2, . . . , Pk can be built in time
O(m log k) using O(m) space, where m =

∑k
i=1 |Pi|. For each of the α occur-

rences of the strings P1, P2, . . . , Pk Algorithm 1 first removes the dead ranges
from Li and Li+1 and performs a number of constant-time operations. Since
both lists are sorted, the dead ranges can be removed by traversing the lists
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Pi−1

Pi

Pi−1

R(x1)

R(x�)

R(x2)

d

|Pi| − 1 ai−1 ci−1

bi−1 + 1

x1 is reported and
R(x1) is added to Li

Last position where
R(x1) is still alive

|{z}
1 Position in T

x1

x�

Fig. 3. The worst-case situation where 
, the maximum number of ranges are present in
Li. The figure only shows the first and the last occurrence of Pi−1 (x1 and x�) defining
the 
 ranges.

from the beginning. At most α ranges are ever added to the lists, and there-
fore the algorithm spends O(α) time in total on removing dead ranges. Since
the AC automata runs in time O((n + m) log k + α), the total running time is
O((n + m) log k + α).

To prove the space bound, we first show the following lemma.

Lemma 2. At any time during the execution of the algorithm we have

|Li| ≤
⌊

2ci−1 + |Pi| + ai−1

ci−1 + 1

⌋
= O

(
|Pi| + ai−1

bi−1 − ai−1 + 2

)
,

for i = 2, 3, . . . , k, where ci = bi − ai + 1.

Proof. Consider list Li for some i = 2, . . . , k. Referring to Algorithm 1, the size
of the list Li is only increased in step 2(b)i, when a range R(xj) defined by a
relevant occurrence xj of Pi−1 is reported and R(xj) does not adjoin or overlap
the last range in Li.

Let R(x1) = [s, t] be the first range in Li at an arbitrary time in the execution
of the algorithm. We bound the number of additional ranges that can be added to
Li from the time R(x1) became the first range in Li until R(x1) is removed. The
last position where R(x1) is still alive is τa = t+ |Pi|−1. If a relevant occurrence
x� of Pi−1 ends at this position, then the range R(x�) = [τa+ai−1+1; τa+bi−1+1]
is appended to Li. Hence, the maximum number of positions d from t to the end
of R(x�) is

d = τa + bi−1 + 1 − t

= (t + |Pi| − 1) + bi−1 + 1 − t

= |Pi| + bi−1

= |Pi| + ai−1 + ci−1 − 1 .
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In the worst case, all the ranges in Li are separated by exactly one position as
illustrated in Fig. 3. Therefore at most �d/(ci−1 + 1)� additional ranges can be
added to Li before R(x1) is removed. Counting in R(x1) yields the following
bound on the size of Li

|Li| ≤
⌊

d

ci−1 + 1

⌋
+ 1 =

⌊
2ci−1 + |Pi| + ai−1

ci−1 + 1

⌋
= O

(
|Pi| + ai−1

bi−1 − ai−1 + 2

)
.

�	

By Lemma 2 the total number of ranges stored at any time during the processing
of T is at most

O

(
k∑

i=2

|Pi| + ai−1

bi−1 − ai−1 + 2

)
=O

(
k−1∑
i=1

|Pi+1|
bi − ai + 2

+
k−1∑
i=1

ai

bi − ai + 2

)
=O (m + A) .

Each range can be stored using O(1) space, so this is an upper bound on the
space needed to store the lists L2, . . . , Lk. The AC-automaton uses O(m) space,
so the total space required by our algorithm is O(m + A).

In summary, the algorithm uses O((n+m) log k+α) time and O(m+A) space.
This completes the proof of Theorem 1.
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Abstract. A string S ∈ Σm can be viewed as a set of pairs {(si, i) | si ∈
S, i ∈ {0, . . . , m − 1}}. We follow the recent work on pattern matching
with address errors and consider approximate pattern matching prob-
lems arising from the setting where errors are introduced to the location
component (i), rather than the more traditional setting, where errors are
introduced to the content itself (si). Specifically, we continue the work
on string matching in the presence of address bit errors. In this paper,
we consider the case where bits of i may be stuck, either in a consistent
or transient manner. We formally define the corresponding approximate
pattern matching problems, and provide efficient algorithms for their
resolution.

1 Introduction

Background. Over 30 years ago, one of the co-authors of this paper was busy
writing a program that points an antenna to a given moving location. Hav-
ing written a program that converts latitude and longitude to the appropriate
azimuth, taking all geodesic information into consideration, the program was
finally tested.

The frustrated programmer noticed that the antenna was pointing to the west,
when it was supposed to point north. In those days, de-bugging meant halting
the computer and looking at the memory contents through a panel register.
The programmer halted the program after it loaded the bus with the azimuth
and immediately prior to giving the device the signal to load the azimuth, and
checked the value. To his surprise, the value matched his calculations. He then
resumed running the program and the antenna pointed exactly to the required
direction. However, running the program from beginning to end again achieved
a wrong result.

The problem was that some bits on the bus settled on their value faster than
others, thus when those bits had a 0 value and the value was changed to 1, it
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took longer to settle than when a 1 was changed to a 0, or when the value was
not changed. A short wait helped.

1.1 Pattern Matching with Address Errors

Motivation. An important implicit assumption in the traditional view of pattern
matching was that there may indeed be errors in the content of the data, but
the order of the data is inviolate. Consider a text T = t0 . . . tn−1 and pattern
P = p0 . . . pm−1, both over an alphabet Σ. Traditional pattern matching regards
T and P as sequential strings, provided and stored in sequence (e.g., from left to
right). However, some non-conforming problems have been gnawing at the basis
of this assumption. An example is the swap error, motivated by the common
typing error where two adjacent symbols are exchanged [20,7,8,11], which does
not assume error in the content of the data, but rather, in the order.

Computational biology has also added several problems wherein the “error”
is in the order, rather than the content. During the course of evolution areas of
genome may be shifted from one location to another. Considering the genome as
a string over the alphabet of genes, these cases represent a situation where the
difference between the original string and resulting one is in the locations rather
than contents of the different elements. Several works have considered specific
versions of this biological setting, primarily focusing on the sorting problem
(sorting by reversals [13,14], sorting by transpositions [12], and sorting by block
interchanges [15]).

The inherently distributed nature of the web is already causing (in Bit Torrent
and Video on Demand) the phenomenon of transmission of a stream of data in
tiny pieces from different sources. This creates the problem of putting scrambled
data back together again.

Finally, in computer architecture, address errors are of no less concern than
content errors [17]. It is by no means taken for granted that when seeking a word
from a given address, no errors will occur in the address bits. This problem is
relevant even when reading a buffer of consecutive words since these words are
not necessarily consecutive in the disk or in an interleaved cache.

Therefore, the traditional view of strings is becoming, at times, too restrictive.

The Model. In such cases, it is more natural to view the string as a set of pairs
(σ, i), where i denotes a location in the string, and σ is the value appearing
at this location. Given this view of strings, the problem of approximate pattern
matching has been reconsidered in the last few years, and a new pattern match-
ing paradigm – pattern matching with address errors – was proposed in [2]. In
this model, the pattern content remains intact, but the relative positions (ad-
dresses) may change. Efficient algorithms for several different natural types of
rearrangement errors were presented [3,9,4,19] (see also [10]). These types of
address errors were inspired by biology, i.e., pattern elements exchanging their
locations due to some external process.

Address Bit Errors. Another broad class of address errors inspired by computer
architecture was studied by [1,6]. They consider errors which arise from a process
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of flipping some or all of the bits in the binary representation of [1, m]. Such errors
represent situations where the text and the pattern are generated by two different
systems, which may use different naming conventions. The error processes are
inspired by address errors resulting from failures in the wires of the address
bus, the wires connecting the CPU and the memory which are used to transmit
the address of operands (see Figure 1), or failure in the transmitted address
bits. The errors handled by [1,6] were all bi-directional, jogging the memory of
our programmer. Discussions with old cronies who, over the years, continued
grappling with parallel transmissions over wires, resulted in the desire to study
the situation where the “badness” of the bits means being “stuck” on a value,
rather than changing it.

Fig. 1. Failures in the address bus due to ’bad’ bits cause wrong addresses to be stored
in the address register

Our Contribution. This paper follows the work of [6], but studies the situation of
address bit errors caused in the presence of stuck bits (defined below), that was
not considered by previous work. The contributions of this paper are two-fold:

1. to enhance the nascent body of work on pattern matching with rearrange-
ments. In particular this paper requires a non-trivial use of network flow to
solve one version of our problem. This is definitely not a technique in the
traditional Pattern Matching tool kit.

2. to continue the study of pattern matching under address bit errors that was
begun in [5]. This paper is still only a beginning. Discussions with practi-
tioners suggest further directions, as will be presented in Sect. 4.

1.2 Problem Definition

Consider a string S ∈ Σm. Using the definition of [5], the string is regarded as
a set of pairs, S = {(σ, i) | σ ∈ Σ, i ∈ {0, 1}logm}. We consider two types of
errors in the bits of the i entries:
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Stuck bits. There exists a subset of bit positions F ⊆ {0, . . . , log m − 1}, such
that in each i, all bits in positions f ∈ F are either always changed to zero
(i.e. 1 is turned into a 0 and 0 remains 0) or always changed to one (i.e. 0 is
turned into a 1 and 1 remains 1).

For example, for the string S = 1234 = {(1, 00), (2, 01), (3, 10), (4, 11)}
and F = {1}, a resulting string is S′ = {(1, 00), (2, 01), (3, 00), (4, 01)}.

Transient stuck bits. There exists a subset of bit positions F ⊆ {0, . . . , log m−
1}, such that in each i, the bits in positions f ∈ F may remain unchanged,
or may be changed to a “1” (of course the original string changes only if the
intention was to output a “0”).

As an example, for the string S = 1234 = {(1, 00), (2, 01), (3, 10), (4, 11)}
and F = {1}, the resulting string may be S′ = {(1, 10), (2, 01), (3, 10), (4, 11)}
(the bit was changed to one for address 1 but not for address 2).

Note that the resulting set is actually a multi-set, and may not represent a valid
string, as some locations may appear multiple times, while others not at all.

We consider approximate pattern matching problems associated with each of
the above types of errors. Specifically, given a pattern P and text T , we wish to
find:

– the smallest set F such that if the bits of F are consistently stuck, then P
has a match in T . We call this problem the stuck bits problem.

– the smallest set F such that if the bits of F may be transiently stuck, then
P has a match in T . We call this problem the transient stuck bits problem.

Following [5], we focus on developing efficient solutions for the case that the text
and the pattern are both of length m. We discuss the situation of text longer
than pattern in Sect. 4.

1.3 Our Results

We provide the following results:

– an O(m log m) time solution for pattern matching with stuck bits, which
also reports the stuck bits positions, where m is the length of both text and
pattern.
(Theorem 1)

– a simple O(m2.5) time solution for pattern matching with transient bits,
which also reports the stuck bits positions. This algorithm is based on a
reduction to finding perfect matching in a bipartite graph.
(Corollary 2)

– a flow-based O(m2.2156 log2 m) time solution for pattern matching with tran-
sient bits, which also reports the stuck bits positions.
(Theorem 2)
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Paper Organization. The rest of the paper is organized as follows. In Sect. 2
we study the stuck bits problem and prove Theorem 1. In Sect. 3 we study the
transient stuck bits problem and prove Corollary 2 and Theorem 2.

2 The Stuck Bits Problem

The nature of the stuck bits problem, as opposed to the flipped bits problem
of [5], is that a stuck bit necessarily deletes addresses and creates addresses
with multiple symbols. We show below that it is possible to not only compute
the number of stuck bits by a considering the address sets, but also to easily
compute the stuck bits’ positions.

Let T be a length-m text and P = {(σ, i) | σ ∈ Σ, i ∈ {0, 1}log m} be a
length-m pattern. Define IP = {i | ∃σ, (σ, i) ∈ P} to be the set of character
positions given in P .

Observation 1. Assume m is a power of 2. Let n be the number of stuck bits
and � = log m − n. Then |IP | = 2�.

Algorithm StuckBits(P ) below constructs the set IP from input P , and outputs
a binary string k of length log m, where k[i] = 0 if i is a stuck bit, and k[i] = 1
otherwise. The algorithm uses the boolean operator ⊕ – the exclusive or opera-
tion. Specifically, a⊕b is 0 if a = b and 1 if a �= b, for a, b ∈ {0, 1}. The definition
below extends the boolean operation to strings in the natural manner.

Definition 1. Let s, t ∈ {0, 1}� i.e. s = s[1], . . . , s[�] , t = t[1], . . . t[�]
s[i], t[i] ∈ {0, 1}, i = 1, . . . , �, and let ⊕ be a boolean operator, exclusive or.
Define s ⊕ t as:

(s ⊕ t)[i] = s[i] ⊕ t[i]

for i = 1, . . . , �.

Algorithm 1. StuckBits(P )
let k be a log m-length bit-vector;1

let i0 be the lexicographic minimum i such that i ∈ IP ;2

if �j ∈ IP, j �= i0 then return 1log m;3

foreach j ∈ IP such that j �= i0 do4

kj ← j ⊕ i0;5

end foreach6

k ← ∧
j �=i0

kj ;7

return k;8

Lemma 1. Every location in k – the output vector of StuckBits(P ) – that equals
zero, is a stuck bit.
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Proof. A bit i is stuck iff every location i has the same value (zero or one) in all
addresses (second component) of P iff the exclusive or of all addresses of P has
a zero in location i.

Example 1. Given the pattern P = {(1, 00), (2, 01), (3, 00), (4, 01)}, algorithm
StuckBits calculates (00 ⊕ 01), and therefore returns 01. We conclude that in
this case the most significant bit is a stuck bit.

2.1 Pattern Matching under Stuck Bits Errors

For two addresses i, j ∈ {0, . . . , m}, we say i is equivalent to j under possible
stuck bits, and write i ≡ j, if all bits where i differs from j are stuck bits.
Formally, i ≡ j iff (i⊕j)∧StuckBits(P ) = 0log m. The following algorithm decides
if there exist a set of bits that, if stuck, cause text T to become pattern P . In this
case we say that P matches T under stuck bits errors. The idea of the algorithm
is to gather all text symbols in locations whose addresses are indistinguishable
due to the stuck bits, and compare these sets to the sets provided by the pattern.
The algorithm works efficiently since Lemma 1 allows us to identify the locations
of the stuck bits.

Algorithm 2. StuckMatch(T, P )
foreach i ∈ IP do1

BP
i ← {σ | (σ, i) ∈ P};2

sort BP
i ;3

BT
i ← {T [j] | j ≡ i};4

sort BT
i ;5

end foreach6

B ← ∧
i∈IP (BP

i = BT
i );7

return B;8

Example 2. Given the pattern P = {(1, 00), (2, 01), (3, 00), (4, 01)}, algorithm
StuckBits(P ) returns 01. In this case, T = 〈1, 2, 3, 4〉, BP

0 = 〈1, 3〉, BP
1 = 〈2, 4〉,

BT
0 = 〈1, 3〉, and BT

1 = 〈2, 4〉. Therefore, algorithm StuckMatch(T, P ) returns 1.

2.2 Total Time for the Stuck Bits Problem

We obtain the following:

Theorem 1. StuckMatch(T, P ) can be solved in O(m log m) time, where m is
the length of both text and pattern. For finite alphabets, or alphabet {1, ..., m},
StuckMatch(T, P ) can be solved in linear time.
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Proof. Correctness follows from the above discussion. For the time complexity,
we assume constant time operations on words of size O(log m) bits. Finding
the stuck bits requires Θ(m) time. The BP

i and BT
i can be constructed in time

Θ(m) as well. Sorting each of the BP
i and BT

i can be done in time O(m log m) in
general, and by bucket sort for finite alphabets or alphabet {1, ..., m}. Finally,
B is calculated in Θ(m) time. We conclude that the overall time is O(m log m),
and linear in the case of finite alphabets, or alphabet {1, ..., m}.

3 Transient Stuck Bits Problem

Similarly to the flipped bit problem of [5], the first step is comparing the his-
togram of characters in the text and pattern, i.e., for each alphabet symbol σ,
the number of occurrences of σ in T and P needs to be equal, otherwise there
can be no matching. Assume, therefore, that the histograms match.

3.1 Verifying the Existence of a Transient Stuck Bit Matching

Let T ∈ Σm and P = {(σ, i) | σ ∈ Σ, i ∈ {0, 1}logm} of length m.
The following is a simple solution, reducing the problem to perfect bipartite

matching. For a given σ ∈ Σ, we are seeking a bijection from the pattern pairs
(σ, i) to the text locations where there are σ’s, in a manner that if (σ, i) is
matched to j then every bit location b that has a 1 in j has a 1 in i.

Such a bijection can be constructed via maximum perfect matching in the
following bipartite graph:

Definition 2. [The Bipartite Graph] Let Gσ = (V1, V2, E) where each of V1 and
V2 has m elements. The elements of V1 are labeled by the pairs (T [j], j), j =
1, ..., m. We label V2 by the bijection � : V2 → P .

Put an edge between node v1 ∈ V1 and node v2 ∈ V2 if their labels have the
same symbols and if the address of v1’s label can be translated to the address
of v2’s label via transient stuck bit errors. Formally, E = {(v1, v2)| where v1 =
(σ1, i), v2 = (σ2, j), σ1 = σ2 and for every 1 in bit location b in i there is a 1
in bit location b in j }.

Example 3. Given T = ABAB and P = {(A, 01), (A, 10), (B, 11), (B, 11)}. Fig-
ure 2 shows the bipartite graph constructed from the text and pattern as well
as a maximal perfect matching.

Now all we need to do is verify if there is a perfect matching in Gσ. The Hopcroft
and Karp algorithm [18] (denoted as HopcroftKarp in the pseudo-code below)
finds the size of the maximum matching in time: Θ(E

√
V1 + V2). In our case,

since V1 = V2 = m the time is Θ(E
√

m), and in the worst case, O(m2.5).

3.2 Finding the Stuck Bits Location

The remaining task is identifying the locations of the transient stuck bits.
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Fig. 2. The bipartite graph with a maximal matching

Algorithm 3. TransientBitsMatch(T, P)
Construct bipartite graph Gσ.1

if |HopcroftKarp(G)| = m then return 1;2

else return 0;3

Denote the sum of 1’s in bit location b of the addresses in the text (V1) as Tb,
and the sum of 1’s in bit location b of the addresses in the pattern (V2) as Pb.

Consider node v1 ∈ V1 and assume there is a 1 in bit location b of its address.
The node v2 ∈ V2 that was matched to v1 by the perfect matching must have a
1 in bit location b of its address. Therefore, if the sum of 1’s in bit location b of
all nodes in V1 (Tb) equals the sum of 1’s in bit location b of all nodes in V2 (Pb)
then bit b can not be a stuck bit.

On the other hand if Pb > Tb then it means that b is sometimes stuck. More-
over, the number of times it is stuck is Pb − Tb.

It can never be the case that Tb > Pb since then there is no possible perfect
matching of size m.

Corollary 1. The stuck bits are all the bit locations b where Pb > Tb and the
number of times it is stuck is Pb − Tb.

Example 4. In example 3, T0 = 2 and P0 = 3 which means that bit 0 was stuck
once. T1 = 2 and P1 = 3 which means that bit 1 was also stuck once.

3.3 Faster Verification of Transient Stuck Bit Matching

Assuming a transient stuck bit matching exists, Subsection 3.2 finds the loca-
tion in time O(m log m). Thus the time complexity bottleneck is the transient
stuck bits matching verification. In this subsection, we show a faster verification
algorithm, based on network flow.
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Let V1 be as in Definition 2 and V3 be the set of all distinct pairs (σ, i) ∈ P .
Construct the following flow network.

Definition 3. [The Flow Network] Let GT,P = (V, E) where V = V1∪V3∪{s}∪
{f}. s is the source and f is the sink.

E is constructed as follows. ∀v ∈ V1 there is an edge −→sv (for every node v

in V1 there is an edge from the source to v). ∀w ∈ V3 ∃edge −→
wf . For every

v = (σ1, i) ∈ V1 and w = (σ2, j) ∈ V3, if σ1 = σ2 and for every 1 in bit location
b in i there is a 1 in bit location b in j then there is an edge −→vw. (This last
condition is the same as that of Definition 2.)

We now define the edge capacities. Let v = (σ, i) ∈ V3 and assume that v

occurs c times in P . Then the capacity of edge
−→
vf is c. The capacity of every

edge from the source to V1 or from V1 to V3 is 1.

Lemma 2. GT,P has a flow of value m iff there is a transient stuck bits matching
between T and P .

Proof. It is easy to see that a transient stuck bits matching defines a flow. Con-
versely, if there is a flow whose value is m, assign the nodes as defined by the
flow.

Max flow can be determined, using the Goldberg-Rao binary blocking flow algo-
rithm [16], in time O(|E|min(|V |2/3,

√
|E|) log(|V |2/|E|) log U), where U is the

network capacity. In our case we have |V | = U = Θ(m).

Corollary 2. The transient stuck bits matching problem can be solved in time
O(|E|min(m2/3,

√
|E|) log2 m).

We need to determine the value of |E|.

Lemma 3. GT,P has at most O(3log m) = O(mlog2 3) ≈ O(m1.5489) edges.

Proof. There are always exactly m nodes from s to V1, and between 1 and m
nodes from V3 to f . We consider the case where |V1| = |V3|, because that is the
case with the most number of edges from V1 to V3. Every other case has a subset
of nodes, thus a subset of edges from V1 to V3.

If V1 = V3 then for every node in V1, if it has t zeroes, it has 2t outgoing
edges, to all possible nodes in V3 that a stuck bit can send it. Therefore, the
total number of outgoing edges from V1 is:

|E| =
∑log m

t=0

(log m
t

)
· 2t = 3log m ≈ m1.5489

3.4 Total Time for the Transient Stuck Bits Problem

From the above discussion we obtain the following:

Theorem 2. TransientStuckBits(T, P ) runs in Θ(mlog2 3+2/3log2m) =
O(m2.2157 log2 m) time, where m is the length of both text and pattern.
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4 Conclusions and Open Problems

This paper follows up recent work on a new paradigm for approximate pattern-
matching that, instead of content errors, considers location errors or rearrange-
ment errors. Specifically, the problems of finding a match under stuck bits and
transient stuck bits were studied and efficient solutions for these problems are
provided. Most importantly, apart from the specific algorithmic results, this pa-
per gives another evidence of the richness of the research field that is opened
with the new paradigm.

We have solved the stuck bit problem only for the case where the text and
pattern are of the same length. It can clearly be extended to a pattern matching
setting where the text is of greater length and we would like to find the number
of stuck bits for a every text location where there is a stuck bit matching. Our
algorithm can, of course, be run for every text location separately. It would be
interesting to know if a faster solution than O(nm2.2156 log2 m) can be found.

This direction of research leads to more challenging questions. In reality, var-
ious types of address bit errors can occur. Some were considered in [5], some in
this paper, and there are more. Different types of errors have different probabil-
ities of occurrence. In some hardware configurations, even the ”stuck” bits have
a different probability of occurrence depending on where in the register they
are located. It would be important to integrate various different errors into the
Pattern Matching model and, in future work, consider the probabilities of the
various errors as well.
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