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Preface

This volume contains the proceedings of the Eighth International Workshop on
Rewriting Logic and its Applications (WRLA 2010) that was held in Paphos,
Cyprus, March 20–21, 2010, as a satellite workshop of the European Joint Con-
ferences on Theory and Practice of Software (ETAPS 2010).

Rewriting logic is a natural semantic framework for representing concur-
rency, parallelism, communication and interaction, as well as being an expressive
(meta)logical framework for representing logics. It can then be used for speci-
fying a wide range of systems and programming languages in various applica-
tion fields. In recent years, several executable specification languages based on
rewriting logic (ASF+SDF, CafeOBJ, ELAN, Maude) have been designed and
implemented. The aim of the WRLA workshop series is to bring together re-
searchers with a common interest in rewriting logic and its applications, and to
give them the opportunity to present their recent works, discuss future research
directions, and exchange ideas.

Previous WRLA workshops were held in Asilomar (1996), Pont-à-Mousson
(1998), Kanazawa (2000), Pisa (2002), Barcelona (2004), Vienna (2006), and
Budapest (2008), and their proceedings have been published in Electronic Notes
in Theoretical Computer Science. In addition, selected papers from WRLA 1996
have been published in a special issue of Theoretical Computer Science, and
selected papers from WRLA 2004 appeared in a special issue of Higher-Order
and Symbolic Computation.

The year 2010 marks the 20th anniversary of the first papers on rewriting
logic. We were very happy to have José Meseguer as an invited speaker reflecting
on the past (and future) twenty years of achievements in this area. We were also
grateful that Natarajan Shankar could contribute to this special occasion by
giving an invited talk. To further celebrate the 20-year-old, selected papers from
WRLA 2010 will appear in a special issue of the Journal of Logic and Algebraic
Programming.

The 13 regular papers presented at WRLA 2010 and included in this volume
were selected by the Program Committee out of 29 submissions. Each submission
was reviewed by four reviewers. As mentioned, the program also included invited
talks by Natarajan Shankar and José Meseguer, as well as tool demonstrations,
the now classic rewrite engine competition, and a report on an advanced school
on Maude and CafeOBJ.

Many colleagues and friends contributed to the success of WRLA 2010. First,
I would like to thank the authors who submitted their work to WRLA 2010
and who, through their contributions, made this workshop a high-quality event.
I would also like to thank the program committee members and the external
reviewers for their timely and insightful reviews as well as for their involvement
in the post-reviewing discussions. The rewrite engine competition at WRLA
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2010 was organized by Francisco Durán; many thanks to him for taking the
lead on organizing the competition and to all rewrite engine developers who
participated in the competition. I am also grateful to my friends who provided
me with all kinds of help and useful advice, to the invited speakers, to the
WRLA steering committee for their work in getting the proceedings published
in Springer’s LNCS series, to Jan Bergstra for accepting to devote a special issue
of JLAP to selected papers from WRLA 2010, and to Anna Philippou for taking
care of the local arrangements and accommodating our special requests. I also
thank Andrei Voronkov for the excellent EasyChair conference system and his
prompt feedback to our request. Finally, I thank the Department of Informatics
at the University of Oslo for financially supporting the workshop.

I hope that WRLA 2010 provided all the participants with a broad overview
of rewriting logic and its research directions, and inspired them to continue to
contribute to the success of rewriting logic for the next 20 years, and beyond.

August 2010 Peter Csaba Ölveczky
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Grigore Roşu University of Illinois at Urbana-Champaign
Mark-Oliver Stehr SRI International, Menlo Park
Carolyn Talcott SRI International, Menlo Park
Eelco Visser Delft University of Technology



VIII Workshop Organization

External Reviewers

Alarcon, Beatriz Gutierrez, Raul
Alba-Castro, Mauricio Hausmann, Daniel
Alpuente, Maria Hills, Mark
Andrei, Oana Lluch Lafuente, Alberto
Bourdier, Tony Meer, Arjan van den
Balland, Emilie Middeldorp, Aart
Bellia, Marco Nakamura, Masaki
Boreale, Michele Ogata, Kazuhiro
Braga, Christiano Oliver, Javier
Burel, Guillaume Riesco, Adrian
Chiba, Yuki Rocha, Camilo
Engelen, Luc Romero, Daniel
Franssen, Michael Santana de Oliveira, Anderson
Gadducci, Fabio Serbanuta, Traian
Gaina, Daniel Serebrenik, Alexander
Goriac, Eugen-Ioan Villanueva, Alicia



Table of Contents

Invited Talks

Rewriting, Inference, and Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Natarajan Shankar

Twenty Years of Rewriting Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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A Maude Coherence Checker Tool for Conditional Order-Sorted
Rewrite Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Francisco Durán and José Meseguer
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Mu Sun, José Meseguer, and Lui Sha

On the Behavioral Semantics of Real-Time Domain Specific Visual
Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
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Rewriting, Inference, and Proof�

Natarajan Shankar1

Computer Science Laboratory
SRI International

Menlo Park CA 94025 USA
shankar@csl.sri.com

http://www.csl.sri.com/˜shankar/

Abstract. Rewriting is a form of inference, and one that interacts in several ways
with other forms of inference such as decision procedures and proof search. We
discuss a range of issues at the intersection of rewriting and inference. How can
other inference procedures be combined with rewriting? Can rewriting be used to
describe inference procedures? What are some of the theoretical challenges and
practical applications of combining rewriting and inference? How can rewriters,
decision procedures, and their combination be certified? We discuss these prob-
lems in the context of our ongoing effort to use PVS as a metatheoretic framework
to construct a proof kernel for justifying the claims of theorem provers, rewriters,
model checkers, and satisfiability solvers.

Rewriting is a versatile framework that can be used as a programming notation, a mod-
eling formalism, and as an inference method. It is a crucial component of any effective
interactive theorem prover. Rewriting can also be used as framework for prototyping
and reasoning about inference procedures. A rewriter is itself a very powerful inference
procedure and certifying the claims made by rewriters can be quite challenging. We ex-
plore several themes centered around rewriting, inference, and proof. We describe the
combination of rewriting and decision procedures employed by SRI’s Prototype Verifi-
cation System (PVS) [ORSvH95] in its simplifier. This inference rule is built into PVS
and hence its soundness cannot be taken for granted. We present an architecture for jus-
tifying the soundness of such complex inference procedures based on the use of verified
reference checkers. We review some of the progress in developing this architecture. We
also show how rewriting can be used to define such reference checkers.

There is a long history of work in rewriting in the context of theorem proving.
Woody Bledsoe [Ble77] advocated it as a human-oriented method for automated proof
search. The Boyer-Moore family of theorem provers [BM79, BM88, KMM00] are well
known for induction, but rewriting is one of its big strengths. The Rewrite Rule Labora-
tory [KZ88] supports both explicit and implicit induction within a rewriting framework.
The OBJ family of systems [GW88, GKM+87] employed rewriting as an algebraic spec-
ification language. Maude [CDE+99] and ELAN [BKK+96] are descendants of OBJ
that support extremely fast rewriting within an expressive rewriting logic framework.
� This research was supported NSF Grants CSR-EHCS(CPS)-0834810 and CNS-0917375. Sam

Owre commented on earlier drafts of the paper, and the participants at the 2010 Workshop
on Rewriting Logic and Applications, particularly José Meseguer and Peter Ölveczky, offered
valuable feedback and advice.

P.C. Ölveczky (Ed.): WRLA 2010, LNCS 6381, pp. 1–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.csl.sri.com/~shankar/
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Rewriting also plays a crucial role in the interactive proof assistant of PVS. It is
used within the PVS simplifier in conjunction with decision procedures and simplifi-
cation rules. The simplifier is around 4000 lines of Common Lisp code, and it relies
on decision procedures that also run to nearly 4000 lines of code. PVS uses external
decision procedures including a BDD package and the Yices SMT solver, but the sim-
plifier is easily the most complicated of the built-in inference procedures. We describe
this procedure and examine the challenge of certifying results that are claimed by the
simplifier.

Our approach to certifying the results of untrusted inference procedures is developed
within the Kernel of Truth (KoT) project at SRI. The approach is captured by Figure 1.
At the bottom, there is a small, trusted proof kernel, and at the top, we have the untrusted
inference procedures. We rely on verified reference checkers to check the claims made
by untrusted inference procedures [Sha08] relative to the trusted proof kernel. In the
KoT approach, we do not verify the verifier, but we instead check verification claims
with a verified checker. The approach is driven by the idea that checking is always eas-
ier than solving, and checkers are usually easier to verify than solvers. Furthermore, the
certificates that are checked by the checkers need not be formal proofs and can be cus-
tomized to specific classes of problems. The verification of the checker demonstrates
the existence of a formal proof corresponding to a valid certificate, but the actual proof
need not be explicitly constructed. By using verified checkers, the untrusted procedures
can be optimized for speed while avoiding the overhead of proof instrumentation and
generation. The untrusted procedures can provide hints or certificates to the verified
checkers. The verified checkers are expected to be simple and might therefore per-
form slower than the untrusted procedures, but this is acceptable since the validation
of untrusted results and certificates is done offline. The hints provided by the untrusted
procedures should also make it more efficient to check the resulting claims. The verifi-
cation of the checkers can be performed by the untrusted inference tools, since for these
specific claims, we can break the circular dependency by generating and checking the
kernel-level formal proofs.

Our KoT approach should be contrasted with existing techniques for building
trusted inference tools. The LCF approach used by systems such as Coq [The09],
HOL [GM93], Isabelle [Pau94], and Nuprl [CAB+86], relies on proof generation as a
way of validating claims. Though proofs are constructed using tactics that generate sub-
goals from goals, the application of these tactics are valid only when there is a proof of
the goal from the subgoals. Proof generation imposes an engineering and performance
overhead. Some SAT solvers have been instrumented to generate resolution proofs, and
though these proofs can get quite large, the overhead of generating and checking them is
quite modest at about 2 to 12% for generation with a checking time that is significantly
smaller than the solving time [ZM03]. However, it should be noted that these resolution
proofs are actually certificates and not formal proofs, and not all inference procedures
are similarly amenable to proof generation.

Some systems use reflection to verify and apply decision procedures. In computa-
tional reflection [BM81], the logic is used to formalize a syntactic fragment such as
arithmetic or propositional logic and to verify an inference procedure on this repre-
sentation. A meaning function is used to connect this syntax to formulas in the logic.
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Fig. 1. The Kernel of Truth Architecture

Computational reflection does not require any external devices, but it does require that
the inference procedure be executable. It is also possible to verify inference procedures
non-reflectively using a different trusted or untrusted inference tool.

Recently, Davis [Dav09] has completed a dissertation where he has verified a fairly
sophisticated theorem prover, a simplified version of ACL2, in a reflective manner, by
defining 11 layers of proof checkers of increasing sophistication. The most sophisti-
cated of these, level 11, includes mechanisms for induction, rewriting, and simplifica-
tion. This level 11 proof checker is used to define proof checkers at levels 1 to 11, and
to show that proofs at level i + 1 can be justified by proofs at level i, for 1 ≤ i ≤ 10.
These correctness proofs at level 11 can then be translated to level 1 proofs.

Our KoT approach has some similarities to the approach used by Davis, but we
focus on building verified checkers for certificates and not on verifying the inference
procedures themselves. The main reason for this is that high-end inference tools evolve
rapidly. Even if verification were feasible, it would be hard to keep up with the changes
to these tools. In contrast, the certificates generated by these tools can be fairly stable.
Checking these certificates can be much more efficient than solving the original infer-
ence problem. Many different verification tools can share the same certificate format so
that the investment in verifying the checkers can be amortized over these multiple uses.
Our KoT approach smoothly accomodates the entire spectrum from proof generation
to verification so that some inference procedures can be justified by generating proofs
corresponding to their claims, and others by verification, but in most cases we would
use the middle option of generating certificates that are checked by verified checkers.

In Section 1, we present a brief overview of PVS. Section 2 describes the PVS sim-
plifier which combines rewriting, simplification, and decision procedures. In Section 3,
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we describe the concept of inference systems as an abstract framework for proving the
soundness and completeness of inference procedures. The Kernel of Truth framework is
outlined in Section 4 where we describe a kernel proof checker that is being developed
within PVS to serve as a reference proof system to justify the correctness of various
specialized checkers. Checkers for rewriting and resolution are presented in Section 5,
and the current status of the project and future work are covered in Section 6.

1 Brief Background on PVS

The Prototype Verification System (PVS) is a comprehensive framework for interactive
and automated verification based on higher-order logic [ORSvH95] where variables can
range not only over individuals, as in first-order logic, but also over functions, functions
of functions, and so on. Higher-order logic uses types to avoid paradoxes due to self-
application. Types are built from base types such as the Booleans bool and the real
numbers real. The type [A→B] represents the type of functions with domain type A
and range type B. For example, [A→bool] represents the type of predicates over the
type A, and we abbreviate this as PRED[A] or as set[A]. The type [A1, . . . , An]
represents the type of n-tuples where the i’th element has type Ai for 1 ≤ i ≤ n. In
addition, PVS has predicate subtypes which are of the form {x : T |e} which contains
the elements x of T satisfying e. With this, we can define subtypes for subranges, ra-
tional numbers, integers, even numbers, prime numbers, ordering relations, and order-
preserving maps. For example, the subtype of even numbers can be defined as {i :
int | EXISTS (j : int) 2*j = i}. With predicate subtypes, typechecking
and theorem proving become interdependent since the demonstration that an expres-
sion like 6+4 is an even number now requires a proof. The PVS typechecker generates
proof obligations corresponding to predicate subtypes called type correctness condi-
tions (TCCs). It also makes use of typing judgements to incorporate forward chaining
rules such as the assertion that the sum of even numbers is an even number. PVS also has
dependent types such as [x : A→B], where the range type B can depend on the domain
element x. For example, if B is the type multiples(x) containing the integer multiples
of x, then the dependent type [x : int→multiples(x)] contains those functions on the
integers that map each integer x to some multiple of x. Arrays are just functions. Update
expressions can be applied to update the value of a function, record, or tuple at a specific
index, field, or position, respectively. The PVS language has other features like para-
metric theories and recursive and corecursive datatypes. The PVS language and its type
system can be used to embed other methodologies that require the generation of proof
obligations, for example, Hoare logic [Hoa69, HJ00] or the B method [Abr96, Muñ99].

Almost all of the PVS language is executable. The only non-executable parts are
equality on infinite higher-order types, which includes quantification on infinite do-
mains. The PVS code generator detects when it is safe to evaluate updates destructively
and is able to generate efficient code in these cases.

PVS also has an interactive proof checker that builds on various automated proce-
dures for decision procedures, binary decision diagrams, satisfiability modulo theories,
and rewriting. The proof checker uses a sequent representation for proof goals such that
each proof step either completes the proof of a subgoal or generates new subgoals. Proof
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strategies are built from primitive inference steps using a strategy language. Strategies
can be defined to execute complex patterns of proof steps, like induction followed by
simpification and rewriting. The PVS simplifier which combines rewriting, simplifica-
tion, and the use of decision procedures is described in the next section.

2 Combining Rewriting, Simplification, and Decision Procedures

A simplifier is a crucial part of an interactive proof assistant. It must ensure that the
formula as presented to the user should have the expected simplifications applied. Many
simplifications such as eliminating multiplication by 0, cancelling common factors in a
fraction, and applying distributive laws, are quite natural. Others, such as beta reduction,
are usually, but not always, a good idea. Decision procedures need to be employed
during simplification. They can be used to propagate known information so that an
expression of the form i = j ⇒ A[i := v](j) �= v can be simplified to FALSE. With
decision procedures, simplification now becomes contextual. For example, the context
i = j is used in simplifying the expression A[i := v](j) �= v. It also makes sense
to integrate rewriting into the simplifier. Many simplifications can be expressed using
rewriting. Conversely, rewriting also exploits simplification since we can assume that
the expression being rewritten is in simplified form. Also, conditions in the application
of conditional rewrite rules can often be discharged by simplification.

The PVS simplifier employs an inside-out strategy where sub-expressions are sim-
plified before the expression is analyzed. The simplifier also carries a context for the
decision procedure that is incrementally extended with new assertions. For example,
when simplifying the branches of a conditional expression, the condition is asserted
positively in the THEN branch, and negatively in the ELSE branch. The ground deci-
sion procedures can be used to decide if a given formula (that is, a boolean expression)
is true or false (or not known to be either) with respect to the current context and rela-
tive to theories such as those of equality over uninterpreted function symbols and linear
arithmetic. In a sequent of the form a1 . . .am � b1 . . . bn, the ai are simplified and
recorded as being true, and the bi are simplified and recorded as being false. The sim-
plifications are described below. The recording process can yield a refutation in which
case the sequent has been proved. The ground decision procedure is a Shostak com-
bination [Sho84, RS01, SR02] of the theory of equality with uninterpreted function
symbols, quantifier-free integer and real linear arithmetic equalities and inequalities,
array and function updates, and tuples and records.

The simplifier performs a range of simplifications. One set of simplifications
applies to redexes as in the following examples (drawn from the PVS Prover
Guide [SORSC99]).

1. Lambda redex: (lambda x : x * x)(2) −→ 2 * 2
2. Record redex : b((# a:= 1, b:= 2, c:= 3 #)) −→ 2
3. Tuple redex : proj 2((1, 2, 3)) −→ 2
4. Function update redex: For function f,

(f WITH [(i) := 3])(i) =⇒ 3

(f WITH [(0) := 3])(1) =⇒ f(1)
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5. Record update redex: For record r,

a(r WITH [(a) := 3]) =⇒ 3

a(r WITH [(b) := 2]) =⇒ a(r)

6. Cotuple redex:

in 2(out 2(x)) =⇒ x

out 2(in 2(x)) =⇒ x

in 2?(in 2(x)) =⇒ TRUE

in 1?(in 2(x)) =⇒ FALSE

7. Datatype redex: car(cons(1, null)) =⇒ 1
8. Recognizer redex:

cons?(null) =⇒ FALSE

cons?(cons(1, null)) =⇒ TRUE

9. Subtype redex:even?(i) =⇒ TRUE, if even? is one of the subtype predicates
in the type of i.

Several of the above simplifications can be expressed as rewrite rules, but some like
record and tuple reduction are generic across records and tuple types and require a fam-
ily of rewrite rules depending on the actual type of the record or tuple. The second of
the function update reductions requires a disequality to be established in the general
case, and is therefore not directly representable as a rewrite rule. The remaining sim-
plifications are summarized in brief. The PVS prover guide [SORSC99] contains more
details.

A second set of simplifications addresses arithmetic expressions which are placed
into an ordered sum-of-products form while grouping similar monomials and eliminat-
ing multiplication by 0 or 1. These simplifications yield a normal form for polynomials.

A third set of simplifications applies to Boolean expressions involving conjunction,
disjunction, implication, equivalence, and negation.

A fourth set of simplifications applies to conditional and case expressions to prune
infeasible branches and merge equivalent branches. For conditional expressions, the test
is added to the context when simplifying the THEN branch, and its negation is added
when simplifying the ELSE branch.

A final set of simplifications applies to quantified expressions. Note that when the
body of a lambda-expression or a quantified expression is simplified, the type con-
straints on the bound variables are assumed, i.e., added to the context. Examples of
simplifications applied to quantified expressions are

(EXISTS x: x = 5) =⇒ TRUE
(EXISTS x, y, z: x = y + z AND f(x, y, z))

=⇒ (EXISTS y, z: f(y + z, y, z))
(EXISTS (x: T): TRUE) =⇒ TRUE

(FORALL (x: T): FALSE) =⇒ FALSE
The last two simplifications only happen when the type T is known to be nonempty.
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Rewriting. The PVS simplifier uses conditional rewriting to simplify expressions with
respect to definitions and lemmas that have been installed by the user. A conditional
rewrite rule triggers only when the conditions simplify to TRUE. Some rewrite rules
such as recursive definition might loop if applied unconditionally. Therefore, if the
right-hand side expression of a recursive definition is a conditional expression, then
the top-level condition must simplify to TRUE or FALSE in order for the rewrite to
occur. This mix of decision procedures and rewriting means that context comes into
play in simplifying these conditions. Since the instantiable variables in a rewrite rule
can have type constraints, proof obligations are generated corresponding to these type
constraints on the actual instantiation for these variables. These proof obligations must
also be discharged by the simplifier. The type constraints on the instantiable variables
are therefore treated as conditions. Matching on the left-hand side of the rewrite rules
also uses decision procedures to, for example, match a term a with i + 3, where i is
a natural number, when it is possible to demonstrate that a is at least 3 in the given
context. Decision procedures can also be used to check if a pattern of the form f(x, x)
matches an instance of the form f(a, b) where a = b is known in the context. Pattern
matching is also lifted to the higher-order level through the use of Miller’s higher-order
patterns [Mil90] which turns out to be very useful for rewrite rules involving higher-
order operations such as map and reduce.

3 Rewriting and Inference Systems

We now present inference systems as an abstract framework for presenting and reason-
ing about inference procedures [SR02, Sha05, dMDS07, Sha09]. Inference systems can
be represented using rewriting logic. An inference system is a triple 〈Ψ, Λ,�〉 consist-
ing of a set Ψ of inference states, a mapping Λ from an inference state to a formula, and
a binary inference relation � between inference states. For each formula φ, there must
be at least one state ψ such that Λ(ψ) = φ. There is a special unsatisfiable inference
state ⊥. Given an input formula, the inference system is used to construct a sequence
of logical states ψ0 � . . . � ⊥ where the input formula is represented by the first state.
The inference relation � must be

1. Conservative: If ψ � ψ′, then Λ(ψ) and Λ(ψ′) must be equisatisfiable.
2. Progressive: For any subset S of Ψ , there is a state ψ ∈ S such that there is no

ψ′ ∈ S where ψ � ψ′.
3. Canonizing: If ψ ∈ Ψ is irreducible, that is, there is no ψ′ such that ψ � ψ′, then

either ψ ≡ ⊥ or Λ(ψ) is satisfiable.

Inference systems are presented in the form of inference rules. For example, the infer-
ence system for ordered resolution on a set of ordered clauses (deleting tautologies, i.e.,
clauses containing a literal and its negation) is given in Figure 2.

In a number of cases, inference rules can be given as rewrite rules. In the case of
resolution, the rewrite rules operate on an inference state that is a set of clauses. One
rewrite rule adds a new clause obtained by resolving two clauses, and the other rewrite
rule detects a contradiction.

Inference systems can be given for a variety of decision procedures including SAT
and SMT solvers. These inference systems can also be used to construct satisfying
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Res
K, k ∨ κ1, k ∨ κ2

K, k ∨ κ1, k ∨ κ2, κ1 ∨ κ2

κ1 ∨ κ2 �∈ K
κ1 ∨ κ2 is not tautological

Contrad
K

⊥ if p,¬p ∈ K for some p

Fig. 2. Inference System for Ordered Resolution

assignments when the input formulas are satisfiable, and proofs when the input formulas
are unsatisfiable. Theory solvers for theories such as equality, arithmetic, and arrays can
also be expressed as inference systems. While some of these require specialized data
structures like hash tables and linked pointer structures, it is possible to prototype such
solvers within a rewriting system like Maude.

4 A Kernel of Truth

Some applications, particularly safety-critical and security-critical ones, need the claims
made using complex inference tools to be certified. For inference, the expected standard
for certification is that of a proof. We have already noted that it is possible to construct
inference procedures that are proof generating. In many cases, the overhead of proof
generation is not significant, although the representation of these proofs can become
large. State-of-the-art inference tools are constantly being modified and improved, and
proof generation is an added burden. For example, in the case of the PVS simplifier
described in Section 2, we would have to combine proofs from many different sources.

We outline a lighter approach to certifying inference claims. In our approach, we use
a kernel proof checker as the reference standard. In our case, we use PVS to define a
proof checker for first-order logic with the axioms of ZFC. Such a proof checker can be
defined in about 500 lines of PVS. Though this proof checker is executable, we mostly
use it to demonstrate the existence of proofs that are, in the usual case, not explicitly
constructed. The point of the reference proof checker is to demonstrate the correctness
of other checkers. These checkers can range from reference implementations of infer-
ence procedures to those that check certificates for specific classes of problems. We
illustrate this with checkers for resolution proofs and certificates from rewriting.

The reference proof checker has some notable features. One, it uses one-sided
sequents. This is mainly to reduce the size and complexity of the proof calculus. The
kernel itself could be used to justify the correctness of a two-sided sequent calculus.
The system we use is quite similar to the one given in Shoenfield [Sho67]. Second, it
uses two kinds of function and predicate symbols. Interpreted function and predicate
symbols are used for defined operations such as those for equality, set membership,
and arithmetic. Uninterpreted function and predicate symbols are used as schematic
operations. These can be substituted by lambda-expressions of the appropriate arity.
Such lambda-expressions do not have a first-class status in the logic, but are merely
used to instantiate the schematic operators. Schematic operators have several uses. They
can be used to introduce eigenvariables corresponding to the sequent rule for universal
quantification as schematic constants. Uninterpreted predicates of arity 0 can serve as
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Ax � A,¬A, Δ

¬¬ � A,Δ

� ¬¬A, Δ

∨ � A,B, Δ

� A ∨ B, Δ

¬∨ � ¬A, Δ � ¬B, Δ

� ¬(A ∨ B),Δ

Cut
� A, Δ � ¬A, Δ

� Δ

Fig. 3. A Sequent Calculus for Propositional Logic

∃ � A[t/x], Δ
� ∃x.A,Δ

¬∃ � ¬A[c/x], Δ
¬∃x.A, Δ

Fig. 4. Sequent proof rules for quantification. The schematic constant c must not occur in Δ.

propositional atoms. Uninterpreted functions and predicate can also be used to capture
schematic axioms and theorems. For example, the comprehension axiom scheme of set
theory can be written as

∀y.∃z.∀x.(x ∈ z ⇐⇒ x ∈ y ∧ p(x)),

where p is a schematic predicate. Here, p can be replaced by a lambda-expression of
the form λw.A, that contains no free variables (but may contain schematic function and
predicate symbols) to yield ∀y.∃z.∀x.x ∈ z ⇐⇒ x ∈ y ∧ A[x/w]. Similarly, the
replacement axiom scheme can be written as

∀w.(∀x ∈ w.∃!y.q(x, y, w)) ⇒ ∃z.∀y.(y ∈ z ⇐⇒ ∃x ∈ w.q(x, y, w)),

where q is a schematic predicate.
With this proof checker, we can also define the concept of an LCF-style tactic. A the-

orem is a sequent that has a proof. A tactic then is an operation that maps a conclusion
sequent � Δ to a list of premise sequents � Δ1, . . . ,� Δn such that the conclusion is a
theorem if the premise sequents are theorems. This concept of a tactic can be given as
a type in PVS.

The basic judgement is given by a one-sided sequent of the form � A1, . . . , An.
We have a contraction rule that allows � Γ to be derived from � Δ when Δ ⊆ Γ .
The basic propositional connectives are negation and disjunction, and these are used to
define the other connectives. The propositional proof rules are shown in Figure 3 and
the quantifier rules are shown in Figure 4.

As noted earlier, the language admits schematic function and predicate symbols
that can be instantiated. For n-ary uninterpreted function symbol f , let Δ[λx.s/f ],
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where x represents the sequence x1, . . . , xn, be the result of replacing each sub-
term f(t1, . . . , tn) in Δ with s[t1/x1, . . . , tn/xn]. Similarly, for n-ary uninterpreted
predicate symbol p, let Δ[p ← λx.A] be the result of replacing each subformula
p(t1, . . . , tn) by A[t1/x1, . . . , tn/xn] while renaming bound variables in A as needed
to avoid variable capture. We then have a function instantiation rule that allows
� Δ[λx.s/f ] to be derived from � Δ, and the predicate instantiation rule allows
� Δ[λx.s/f ] to be derived from � Δ.

For equality, we have inference rules corresponding to reflexivity and congruence.
The rules for transitivity and symmetry can be derived from reflexivity and predicate
instantiation.

5 A Verified Checker for Rewriting and Other Inference
Procedures

We now describe some ongoing work on building a certified checker for rewriting.
Here, we rely only on the first-order logic part of the kernel checker. A proof system
for certifying rewriting is given by Rosu, Eker, Lincoln, and Meseguer [RELM03].
We describe a checker for rewriting that we are currently verifying. A term is either a
variable or an n-ary function symbol, with 0 ≤ n, applied to a sequence of n terms.
The free variables vars(s) of a term s is the set of all the variables that occur in the
term. A path π is a a finite sequence of natural numbers. Given a term s and a path π,
the subterm s|π of s at π is defined as s itself, when π is empty, and as si|π′ , where
π ≡ i, π′ and s ≡ f(s1, . . . , sn). The result of replacing the subterm s|π by a term t
is represented by s|π←t. We restrict our attention to unconditional rewrite rules of the
form ∀x.l = r, where x is a sequence of distinct variables that contains all and only the
variables in vars(l) and vars(r) ⊆ vars(l). The rewriter takes a set of rewrite rules and
applies them to rewrite an expression e to e′. We represent the certificate as a sequence
of triples 〈τ1, . . . , τm〉, where each triple τi of the form 〈Ri, πi, σi〉 consists of a rewrite
rule Ri, a path πi, and a substitution σi. Such a sequence of triples is a valid certificate
for the claim e = e′ if there is a sequence of terms e0, . . . , em such that e ≡ e0 and
e′ ≡ em, and ei+1 ≡ ei|πi+1←σi+1(ri+1), where li+1 and ri+1 are the left-hand and
right-hand sides of the rewrite rule Ri+1 and ei|πi+1 ≡ σi+1(li+1) for 0 ≤ i < m.

The checker for such a certificate has to check the validity conditions above. We de-
fine rwcheck (R, 〈τ1, . . . , τm〉, e, e′) to check that 〈τ1, . . . , τm〉 yields a sequence of
replacements from e to e′ using the rewrite rules in R. We then have to prove the
metatheorem that whenever rwcheck (R, 〈τ1, . . . , τm〉, e, e′) holds, there is a formal
proof of � ¬R, e = e′, where ¬R is the formula-wise negation of each element of
R. Once this metatheorem is proved, there is no need to actually generate this proof.
For a rewrite step from ei to ei+1, the formal justification goes as follows. First, we es-
tablish the instantiation rule where we can derive � σ(l = r) from � ∀x.l = r, where σ
maps each variable in x is mapped to a ground term, i.e., a term with no free variables.
The proof of e = e′ then follows by applying congruence to � σi+1(li+1 = ri+1) to
derive � ei = ei+1, and then transitivity to establish � e0 = em from the sequents
� ei = ei+1, for 0 ≤ i < m.

In the more general situation of proof development in first-order and higher-order
logic, rewriting can occur within the body of a quantification. The validity checker
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for certificates requires a more powerful metatheorem that uses the equality theo-
rem [Sho67] that justifies the replacement of one term by a provably equal one within a
formula.

Other specialized proof calculi can be similarly justified using certificate formats
that are validated by verified checkers. For example, the proof system for resolution
can be justified as follows. We have to show that when a set of clauses K yields a
refutation, then the negation of the formula corresponding to K is provable. For some
applications, we have to represent the derivation of clauses and not just refutational
proofs. Each resolution step where a clause κ is derived from the clauses κ1 and κ2 is
represented by the proof of the sequent � ¬κ1,¬κ2, κ. This sequent is easily proved
from Ax, ∨, and ¬∨ steps. A complete resolution refutation from a set of clauses K is
represented by the proof of the sequent � ¬K . Such a proof is constructed from those
of the individual resolution inferences using the Cut rule. The resolution calculus is
used as a kernel for justifying a SAT solver as a verified checker.

In addition to certificates and proof formats, the KoT kernel can also be used as a
foundation for other logics. For example, a proof calculus for a modal logic or a higher-
order logic can be justified in terms of its set-theoretic semantics. Once this is done, we
can use the proof checker for the new logic as a kernel for other checkers. We plan to
use this to justify proof calculi for various higher-order logics (including PVS) as well
as modal, temporal, and program logics. We also plan to develop certificate checkers
for SAT and SMT solvers, model checkers, and program analyzers.

6 Conclusions

Modern implementations of inference procedures like rewriting and propositional and
theory satisfiability are extremely sophisticated and not easily amenable to formal veri-
fication. This makes it difficult to certify the results obtained by these procedures. It is
even more difficult to certify results that are obtained by a combination of these tools.
We address the challenge of certifying results from untrusted tools by relying on ver-
ified checkers that can be used to validate certificates generated by these tools. Our
Kernel of Truth approach takes a middle ground between proof generation, where the
untrusted tools are required to generate formal proofs, and verification, where only ver-
ified inference tools are used. Both these extreme cases are feasible within the KoT
framework, but we also allow the more practical alternative of verifying checkers that
use other logics or representations of certificates. Our approach is also similar to trans-
lation validation [PSS98] where each source-to-binary translation by a compiler is ver-
ified. These individual translations are often easily verified, whereas the verification of
an entire compiler is a monumental task [SC98]. The KoT approach similarly avoids
directly verifying inference procedures in favor of the checking the individual claims
made by them.

The idea of verifying the inference steps of PVS within PVS itself might seem circu-
lar and vacuous. However, this is the one instance where we exploit the availability of
explicit formal proofs to break the circularity. This is done by using the KoT framework
itself to generate the complete formal proof for the verification of the correctness of any
checkers. This proof can be checked by the kernel proof checker so that we need not
trust the inference procedures used by PVS.
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As mentioned at the beginning, the work we have described is still at a very early
stage. We have defined the kernel proof checker for first-order logic described in Sec-
tion 4 and have used it to prove some basic metatheorems. In earlier work from 2007
with Marc Vaucher, we also verified a sophisticated SAT solver using PVS. With An-
drei Dan and Antoine Toubhans, we have developed a verified certificate checker for
the proof traces generated by PicoSAT [Bie08]. A similar verified checker has been de-
veloped by Darbari, Fischer, and Marques-Silva [DFMS10]. We are working toward
verified certificate checkers for rewriting, satisfiability modulo theories (SMT), and
simplifiers. We hope to eventually develop a range of certificate checkers so that in-
ference tools like PVS, Yices [DdM06], and SAL [dMOR+04] can be instrumented to
generate checkable certificates.

The approach of checking the results of a computation with a verified checker is not
restricted to inference tools. Result checking can be applied to a wide range of compu-
tations where there is a specific correctness claim associated with the output. Such an
approach has been already been advocated by Mehlhorn [Meh03] in what he calls the
Reliable Algorithmic Software Challenge. Generating efficiently checkable certificates
both for inference and non-inference procedures is itself an interesting challenge. At the
Workshop on Rewriting Logic and Applications, José Meseguer posed the challenge of
certifying that a unifier is the most general unifier. It is easy to certify that a substitution
is in fact a unifier, but it is often important to know that it is in fact the most general
one. There are many ways to approach such challenges. One approach is to verify a
unification algorithm[Pau84]. Another approach is to demonstrate that no generaliza-
tion of the unifier is a valid unifier. A third approach is for the unification procedure
to generate a trace that demonstrates how any solution to the unification problem can
be transformed into an instance of the unifier, but generating and checking such traces
is still a problem. A similar challenge arises with graph algorithms where we must
demonstrate that a path is indeed the shortest path or that a target vertex is unreachable.
In earlier work [Sha10], we showed how fixpoints can be used to construct efficient cer-
tificates for such graph search algorithms. The KoT project is a response to Mehlhorn’s
challenge for the specific case of inference procedures but we are also interested in ex-
tending it to a larger class of computations. Compared to the goal of verifying software,
the Kernel of Truth framework has the more limited ambition of checking computations
in a verifiable manner.
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The first three papers on rewriting logic were published in 1990 [4,3,2]; they were
then expanded in [5,6]. Since that time, many researchers around the world have
made important contributions to its foundations, tools, and applications. Since
1996, the WRLA workshop has met biennially, with the 2010 Paphos meeting
being its eighth edition, and many hundreds of papers have been published on the
subject (for a bibliography up to 2002 see [1]). This growth makes it desirable
to reflect from time to time upon the advances made, survey such advances,
and perhaps get some glimpses and make some guesses about future directions.
I thank the organizers of WRLA 2010 for giving me the opportunity and the
stimulus to do some reflecting, surveying, and guessing about rewriting logic at
this point, when twenty years have passed since the first papers were published.
It is somewhat like taking a snapshot of a person at age twenty. I have taken
some similar, total or partial pictures at earlier ages, as a child [7,9,8], and as a
teenager [1] (with Narciso Mart́ı-Oliet) and [10]. It seems appropriate to attempt
taking a coming-of-age picture, and to ask some questions about rewriting logic
such as the following:

– How well-developed are its mathematical foundations?
– To what extent have its goals as a semantic framework for concurrency, and

as a logical framework, been achieved?
– Which languages and tools supporting rewriting logic programming, speci-

cation, and verification have been developed?
– In which application areas has it been shown useful?
– How do its future prospects look like?

In this short abstract (as opposed to the talk itself) I cannot give details on
my answers to these questions: I hope to provide such details in a projected
survey. I can however outline the different headings covered in the talk as a way
of addressing the above questions:

1. Foundations, including:
– Generalized Rewrite Theories
– Coherence and Computability
– Termination
– Narrowing and Reachability Analysis
– Reflection

P.C. Ölveczky (Ed.): WRLA 2010, LNCS 6381, pp. 15–17, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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– Strategies
– Temporal Logic Properties
– Simulation and Abstraction
– Real-Time Rewrite Theories
– Probabilistic Rewrite Theories

2. Rewriting Logic as a Logical and Semantic Framework, including:
– Representing Logics
– Representing Models of Concurrency
– Representing Modeling Languages
– Rewriting Logic Semantics of Programming Languages

3. Rewriting Logic Languages, including:
– Cafe-OBJ
– ELAN
– Maude

4. Applications and Tools, including applications to:
– Software/Hardware Specification and Verification
– Network Systems
– Real-Time and Embedded Systems
– Probabilistic Systems
– Security
– Bioinformatics

and tools such as rewriting logic interpreters and model checkers, formal tool
environments for rewriting logic specifications, and domain-specific formal
tools.

5. Future Directions, where, besides future developments in all the above-
mentioned areas, the following areas seem particularly promising:
– Deductive and Symbolic Reachability Verification Methods for Rewrite

Theories
– Verification Methods and Tools for Probabilistic Rewrite Theories
– Parallel and Distributed Computing
– Cyber-Physical Systems
– Further Advances in the Rewriting Logic Semantics Project.

Acknowledgments. In a talk of this kind, one feels a great sense of gratitude to
the many efforts of gifted researchers who have made important contributions.
They are too many to mention here by name; but in the planned survey I hope to
do justice to many of their contributions. This work has been supported in part
by NSF Grants CNS 07-16638, CNS 08-34709, CNS 08-31064, CNS 09-04749,
and CCF 09-05584.
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Proving Termination in the Context-Sensitive
Dependency Pair Framework�
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Abstract. Termination of context-sensitive rewriting (CSR) is an in-
teresting problem with several applications in the fields of term rewrit-
ing and in the analysis of programming languages like CafeOBJ, Maude,
OBJ, etc. The dependency pair approach, one of the most powerful tech-
niques for proving termination of rewriting, has been adapted to be used
for proving termination of CSR. The corresponding notion of context-
sensitive dependency pair (CSDP) is different from the standard one in
that collapsing pairs (i.e., rules whose right-hand side is a variable) are
considered. Although the implementation and practical use of CSDPs
lead to a powerful framework for proving termination of CSR, handling
collapsing pairs is not easy and often leads to impose heavy requirements
over the base orderings which are used to achieve the proofs. A recent
proposal removes collapsing pairs by transforming them into sets of new
(standard) pairs. In this way, though, the role of collapsing pairs for
modeling context-sensitive computations gets lost. This leads to a less
intuitive and accurate description of the termination behavior of the sys-
tem. In this paper, we show how to get the best of the two approaches,
thus obtaining a powerful context-sensitive dependency pair framework
which satisfies all practical and theoretical expectations.

1 Introduction

In Context-Sensitive Rewriting (CSR, [1]), a replacement map μ satisfying μ(f) ⊆
{1, . . . , ar(f)} for every function symbol f of arity ar(f) in the signature F is
used to discriminate the argument positions on which the rewriting steps are
allowed. In this way, a terminating behavior of (context-sensitive) computations
with Term Rewriting Systems (TRSs) can be obtained. CSR has shown useful
to model evaluation strategies in programming languages. In particular, it is
an essential ingredient to analyze the termination behavior of programs in pro-
gramming languages (like CafeOBJ, Maude, OBJ, etc.) which implement recent
presentations of rewriting logic like the Generalized Rewrite Theories [2], see
[3,4,5].

� Partially supported by the EU (FEDER) and the Spanish MEC/MICINN, under
grant TIN 2007-68093-C02-02.

P.C. Ölveczky (Ed.): WRLA 2010, LNCS 6381, pp. 18–34, 2010.
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Example 1. Consider the following TRS in [6]:

gt(0, y) → false p(0) → 0
gt(s(x), 0) → true p(s(x)) → x

gt(s(x), s(y)) → gt(x, y) minus(x, y) → if(gt(y, 0), minus(p(x),p(y)), x)
if(true, x, y) → x div(0, s(y)) → 0
if(false, x, y) → y div(s(x), s(y)) → s(div(minus(x, y), s(y)))

with μ(if) = {1} and μ(f) = {1, . . . , ar(f)} for all other symbols f. Note that, if
no replacement restriction is considered, then the following sequence is possible
and the system would be nonterminating:

minus(0, 0) →∗
R if(gt(0, 0), minus(0, 0), 0) →∗

R . . . , minus(0, 0), . . . →∗
R · · ·

In CSR, though, this sequence is not possible because reductions on the second
argument of the if-operator are disallowed due to μ(if) = {1}.

In [7], Arts and Giesl’s dependency pair approach [8], a powerful technique for
proving termination of rewriting, was adapted to CSR (see [9] for a more recent
presentation). Regarding proofs of termination of rewriting, the dependency pair
technique focuses on the following idea: since a TRS R is terminating if there is
no infinite rewrite sequence starting from any term, the rules that are really able
to produce such infinite sequences are those rules  → r such that r contains
some defined symbol1 g. Intuitively, we can think of these rules as representing
possible (direct or indirect) recursive calls. Recursion paths associated to each
rule  → r are represented as new rules u → v (called dependency pairs) where
u = f�(1, . . . , k) if  = f(1, . . . , k) and v = g�(s1, . . . , sm) if s = g(s1, . . . , sm)
is a subterm of r and g is a defined symbol. The notation f� for a given symbol
f means that f is marked. In practice, we often capitalize f and use F instead
of f� in our examples. For this reason, the dependency pair technique starts by
considering a new TRS DP(R) which contains all these dependency pairs for
each  → r ∈ R. The rules in R and DP(R) determine the so-called dependency
chains whose finiteness characterizes termination of R [8]. Furthermore, the
dependency pairs can be presented as a dependency graph, where the infinite
chains are captured by the cycles in the graph.

These intuitions are valid for CSR, but the subterms s of the right-hand sides
r of the rules  → r which are considered to build the context-sensitive de-
pendency pairs � → s� must be μ-replacing terms. In sharp contrast with the
dependency pair approach, though, we also need collapsing dependency pairs
u → x where u is obtained from the left-hand side  of a rule  → r in the
usual way, i.e., u = � but x is a migrating variable which is μ-replacing in r but
which only occurs at non-μ-replacing positions in  [7,9]. Collapsing pairs are
essential in our approach. They express that infinite context-sensitive rewrite
sequences can involve not only the kind of recursion which is represented by the
usual dependency pairs but also a new kind of recursion which is hidden inside

1 A symbol g ∈ F is defined in R if there is a rule � → r in R whose left-hand side �
is of the form g(�1, . . . , �k) for some k ≥ 0.



20 R. Gutiérrez and S. Lucas

(8)
��

�� (3) ��

��

(7)

�� ��
(1)��

(4)

��

��

		�
��





��

��
(5)



�����

��

��

��

��
(2) (10)��

��

��

��

��

��
(6)

(11)
��

��

		�
��

��

��

��

(12)
��

��

�����
��

��

��

(13)
��

��

��

�� ��

  

(9)

��

!!

(8)
��

�� (3) ��

��

(7)

"" ##
(1)��

(14)

��

$$
(15)

��

%%(2)

Fig. 1. Dependency graph for Example 1 following [6] (left) and [9] (right)

the non-μ-replacing parts of the terms involved in the infinite sequence until a
migrating variable within a rule  → r shows them up.

In [6], a transformation that replaces the collapsing pairs by a new set of
pairs that simulate their behavior was introduced. This new set of pairs is used
to simplify the definition of context-sensitive dependency chain; but, on the other
hand, we loose the intuition of what collapsing pairs mean in a context-sensitive
rewriting chain. And understanding the new dependency graph is harder.

Example 2. (Continuing Example 1) If we follow the transformational defini-
tion in [6], we have the following dependency pairs (a new symbol U is intro-
duced):

GT(s(x), s(y))→GT(x, y) (1) M(x, y)→ IF(gt(y, 0), minus(p(x), p(y)), x) (7)
M(x, y)→GT(y, 0) (2) D(s(x), s(y))→D(minus(x, y), s(y)) (8)

D(s(x), s(y))→M(x, y) (3) U(minus(p(x), p(y)))→M(p(x), p(y)) (9)
IF(true, x, y)→U(x) (4) U(p(x))→U(x) (10)
IF(false, x, y)→U(y) (5) U(p(y))→U(y) (11)

U(p(x))→P(x) (6) U(minus(x, y))→U(x) (12)
U(minus(x, y))→U(y) (13)

and the dependency graph has the unreadable aspect shown in Figure 1 (left).
In contrast, if we consider the original definition of CSDPs and CSDG in [7,9],
our set of dependency pairs is the following:

GT(s(x), s(y)) → GT(x, y) (1) M(x, y) → IF(gt(y, 0), minus(p(x),p(y)), x) (7)
M(x, y) → GT(y, 0) (2) D(s(x), s(y)) → D(minus(x, y), s(y)) (8)

D(s(x), s(y)) → M(x, y) (3) IF(true, x, y) → x (14)
IF(false, x, y) → y (15)

and the dependency graph is much more clear, see Figure 1 (right).

The work in [6] was motivated by the fact that mechanizing proofs of termination
of CSR according to the results in [7] can be difficult due to the presence of
collapsing dependency pairs. The problem is that [7] imposes hard restrictions
on the orderings which are used in proofs of termination of CSR when collapsing
dependency pairs are present. In this paper we address this problem in a different
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way. We keep collapsing CSDPs (and their descriptive power and simplicity)
while the practical problems for handling them are overcome.

After some preliminaries in Section 2, in Section 3 we introduce the notion
of hidden term and hiding context and discuss their role in infinite μ-rewrite
sequences. In Section 4 we introduce a new notion of CSDP chain which is well-
suited for mechanizing proofs of termination of CSR with CSDPs. In Section 5
we introduce our dependency pair framework for proving termination of CSR.
Furthermore, we show that with the new definition we can also use all the existing
processors from the two previous approaches and we can define new powerful
processors. Section 6 shows an specific example of the power of this framework.
Section 7 shows our experimental results. Section 8 discusses the differences
between our approach and the one in [6]. Section 9 concludes. Proofs can be
found in [10].

2 Preliminaries

We assume a basic knowledge about standard definitions and notations for term
rewriting as given in, e.g., [11]. Positions p, q, . . . are represented by chains of
positive natural numbers used to address subterms of t. Given positions p, q, we
denote its concatenation as p.q. If p is a position, and Q is a set of positions,
then p.Q = {p.q | q ∈ Q}. We denote the root or top position by Λ. The set
of positions of a term t is Pos(t). Positions of nonvariable symbols f ∈ F in
t ∈ T (F ,X ) are denoted as PosF (t). The subterm at position p of t is denoted
as t|p and t[s]p is the term t with the subterm at position p replaced by s. We
write t � s if s = t|p for some p ∈ Pos(t) and t � s if t � s and t �= s. The
symbol labeling the root of t is denoted as root(t). A substitution is a mapping
σ : X → T (F ,X ) from a set of variables X into the set T (F ,X ) of terms built
from the symbols in the signature F and the variables in X . A context is a
term C ∈ T (F ∪ {�},X ) with a ‘hole’ � (a fresh constant symbol). A rewrite
rule is an ordered pair (, r), written  → r, with , r ∈ T (F ,X ),  �∈ X and
Var(r) ⊆ Var(). The left-hand side (lhs) of the rule is  and r is the right-hand
side (rhs). A TRS is a pair R = (F , R) where F is a signature and R is a set
of rewrite rules over terms in T (F ,X ). Given R = (F , R), we consider F as the
disjoint union F = C � D of symbols c ∈ C, called constructors and symbols
f ∈ D, called defined symbols, where D = {root() |  → r ∈ R} and C = F \ D.

In the following, we introduce some notions and notation about CSR [1]. A
mapping μ : F → ℘(N) is a replacement map if ∀f ∈ F , μ(f) ⊆ {1, . . . , ar(f)}.
Let MF be the set of all replacement maps (or MR for the replacement maps
of a TRS R = (F , R)). The set of μ-replacing positions Posμ(t) of t ∈ T (F ,X )
is: Posμ(t) = {Λ}, if t ∈ X and Posμ(t) = {Λ} ∪

⋃
i∈μ(root(t)) i.Posμ(t|i), if

t �∈ X . The set of μ-replacing variables of t is Varμ(t) = {x ∈ Var(t) | ∃p ∈
Posμ(t), t|p = x} and Var�μ(t) = {x ∈ Var(t) | ∃p ∈ Pos(t) \ Posμ(t), t|p = x} is
the set of non-μ-replacing variables of t. Note that Varμ(t) and Var�μ(t) do not
need to be disjoint. The μ-replacing subterm relation �μ is given by t �μ s if
there is p ∈ Posμ(t) such that s = t|p. We write t�μs if t�μs and t �= s. We write
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t�
�μ
s to denote that s is a non-μ-replacing strict subterm of t, i.e., there is a non-

μ-replacing position p ∈ Pos(t) \ Posμ(t) such that s = t|p. In CSR, we (only)
contract μ-replacing redexes : t μ-rewrites to s, written t ↪→R,μ s (or t

p
↪→R,μ s to

make position p explicit), iff there are  → r ∈ R, p ∈ Posμ(t) and a substitution

σ such that t|p = σ() and s = t[σ(r)]p; t
>q
↪→R,μ s means that the μ-rewrite step

is applied below position q, i.e., p > q. We say that a variable x is migrating
in  → r ∈ R if x ∈ Varμ(r) \ Varμ(). A term t is μ-terminating if there is
no infinite μ-rewrite sequence t = t1 ↪→R,μ t2 ↪→R,μ · · · ↪→R,μ tn ↪→R,μ · · ·
starting from t. A TRS R = (F , R) is μ-terminating if ↪→R,μ is terminating. A
pair (R, μ) where R is a TRS and μ ∈ MR is often called a CS-TRS.

3 Infinite μ-Rewrite Sequences

Let M∞,μ be a set of minimal non-μ-terminating terms in the following sense: t
belongs to M∞,μ if t is non-μ-terminating and every strict μ-replacing subterm
s of t (i.e., t �μ s) is μ-terminating [7]. Minimal terms allow us to character-
ize infinite μ-rewrite sequences [9]. In [9], we show that if we have migrating
variables x that “unhide” infinite computations starting from terms u which are
introduced by the binding σ(x) of the variable, then we can obtain information
about the “incoming” term u if this term does not occur in the initial term of the
sequence. In order to formalize this, we need a restricted notion of minimality.

Definition 1 (Strongly Minimal Terms [9]). Let T∞,μ be a set of strongly
minimal non-μ-terminating terms in the following sense: t belongs to T∞,μ if t
is non-μ-terminating and every strict subterm u (i.e., t � u) is μ-terminating.
It is obvious that root(t) ∈ D for all t ∈ T∞,μ.

Every non-μ-terminating term has a subterm that is strongly minimal. Then,
given a non-μ-terminating term t we can always find a subterm t0 ∈ T∞,μ of

t which starts a minimal infinite μ-rewrite sequence of the form t0
>Λ
↪−→∗

R,μ

σ1(1)
Λ
↪→R,μ σ1(r1) �μ t1

>Λ
↪−→∗

R,μ σ2(2)
Λ
↪→R,μ σ2(r2) �μ t2

>Λ
↪−→∗

R,μ · · ·
where ti, σi(i) ∈M∞,μ for all i > 0 [9]. Theorem 1 below tells us that we have
two possibilities:

– The minimal non-μ-terminating terms ti ∈ M∞,μ in the sequence are par-
tially introduced by a μ-replacing nonvariable subterm of the right-hand
sides ri of the rules i → ri.

– The minimal non-μ-terminating terms ti ∈M∞,μ in the sequence are intro-
duced by instantiated migrating variables xi of (the respective) rules i → ri,
i.e., xi ∈ Varμ(ri)\Varμ(i). Then, ti is partially introduced by terms occur-
ring at non-μ-replacing positions in the right-hand sides of the rules (hidden
terms) within a given (hiding) context.

We use the following functions [7,9]: Renμ(t), which independently renames all
occurrences of μ-replacing variables by using new fresh variables which are not
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in Var(t), and Narrμ
R(t), which indicates whether t is μ-narrowable2 (w.r.t. the

intended TRS R).
A nonvariable term t ∈ T (F ,X ) \ X is a hidden term [6,9] if there is a rule

 → r ∈ R such that t is a non-μ-replacing subterm of r. In the following,
HT (R, μ) is the set of all hidden terms in (R, μ) and NHT (R, μ) the set of
μ-narrowable hidden terms headed by a defined symbol:

NHT (R, μ) = {t ∈ HT (R, μ) | root(t) ∈ D and Narrμ
R(Renμ(t))}

Definition 2 (Hiding Context). Let R be a TRS and μ ∈ MR. A function
symbol f hides position i in the rule  → r ∈ R if r�

�μ
f(r1, . . . , rn) for some terms

r1, . . . , rn, and there is i ∈ μ(f) such that ri contains a μ-replacing defined symbol
(i.e., Posμ

D(ri) �= ∅) or a variable x ∈ (Var�μ()∩Var�μ(r))\ (Varμ()∪Varμ(r))
which is μ-replacing in ri (i.e., x ∈ Varμ(ri)). A context C[�] is hiding [6] if
C[�] = �, or C[�] = f(t1, . . . , ti−1, C

′[�], ti+1, . . . , tk), where f hides position i
and C′[�] is a hiding context.

Definition 2 is a refinement of [6, Definition 7], where the new condition x ∈
(Var�μ() ∩ Var�μ(r)) \ (Varμ() ∪ Varμ(r)) is useful to discard contexts that are
not valid when minimality is considered.

Example 3. The hidden terms in Example 1 are minus(p(x), p(y)), p(x) and p(y).
Symbol minus hides positions 1 and 2, but p hides no position. Without the new
condition in Definition 2, p would hide position 1.

These notions are used and combined to model infinite context-sensitive rewrite
sequences starting from strongly minimal non-μ-terminating terms as follows.

Theorem 1 (Minimal Sequence). Let R be a TRS and μ ∈ MR. For all
t ∈ T∞,μ, there is an infinite sequence

t = t0
>Λ
↪−→∗

R,μ σ1(1)
Λ
↪→R,μ σ1(r1) �μ t1

>Λ
↪−→∗

R,μ σ2(2)
Λ
↪→R,μ · · ·

where, for all i ≥ 1, i → ri ∈ R are rewrite rules, σi are substitutions, and
terms ti ∈M∞,μ are minimal non-μ-terminating terms such that either

1. ti = σi(si) for some nonvariable term si such that ri �μ si, or
2. σi(xi) = θi(Ci[t′i]) and ti = θi(t′i) for some variable xi ∈ Varμ(ri)\Varμ(i),

t′i ∈ NHT (R, μ), hiding context Ci[�], and substitution θi.

4 Chains of Context-Sensitive Dependency Pairs

In this section, we revise the definition of chain of context-sensitive dependency
pairs given in [9]. First, we recall the notion of context-sensitive dependency
pair.
2 A term s μ-narrows to the term t if there is a nonvariable position p ∈ Posμ

F (s) and
a rule � → r such that s|p and � unify with mgu σ, and t = σ(s[r]p).
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Definition 3 (Context-Sensitive Dependency Pairs [9]). Let R = (F , R)
= (C � D, R) be a TRS and μ ∈ MF . We define DP(R, μ) = DPF(R, μ) ∪
DPX (R, μ) to be set of context-sensitive dependency pairs (CSDPs) where:

DPF (R, μ) = {�� → s� | � → r ∈ R, r �μ s, root(s) ∈ D, � �μ s,Narrμ
R(Renμ(s))}

DPX (R, μ) = {�� → x | � → r ∈ R, x ∈ Varμ(r) \ Varμ(�)}

We extend μ ∈ MF into μ� ∈ MF∪D� by μ�(f) = μ(f) if f ∈ F and μ�(f�) = μ(f)
if f ∈ D.

Now, we provide a new notion of chain of CSDPs. In contrast to [6], we store
the information about hidden terms and hiding contexts which is relevant to
model infinite minimal μ-rewrite sequences as a new unhiding TRS instead of
introducing them as new (transformed) pairs.

Definition 4 (Unhiding TRS). Let R be a TRS and μ ∈ MR. We define
unh(R, μ) as the TRS consisting of the following rules:

1. f(x1, . . . , xi, . . . , xk) → xi for all function symbols f of arity k, distinct vari-
ables x1, . . . , xk, and 1 ≤ i ≤ k such that f hides position i in  → r ∈ R,
and

2. t → t� for every t ∈ NHT (R, μ).

Example 4. The unhiding TRS unh(R, μ) for R and μ in Example 1 is:

minus(p(x),p(y))→M(p(x),p(y)) (16) minus(x, y)→ y (18)
p(x)→P(x) (17) minus(x, y)→ x (19)

Definitions 3 and 4 lead to a suitable notion of chain which captures minimal
infinite μ-rewrite sequences according to the description in Theorem 1. In the
following, given a TRS S, we let S�μ be the rules from S of the form s → t ∈ S
and s �μ t; and S� = S \ S�μ .

Definition 5 (Chain of Pairs - Minimal Chain). Let R, P and S be TRSs
and μ ∈ MR∪P∪S. A (P ,R,S, μ)-chain is a finite or infinite sequence of pairs
ui → vi ∈ P, together with a substitution σ satisfying that, for all i ≥ 1,

1. if vi /∈ Var(ui) \ Varμ(ui), then σ(vi) = ti ↪→∗
R,μ σ(ui+1), and

2. if vi ∈ Var(ui) \ Varμ(ui), then σ(vi)
Λ

↪−→∗
S�μ ,μ ◦

Λ
↪→S�,μ ti ↪→∗

R,μ σ(ui+1).

A (P ,R,S, μ)-chain is called minimal if for all i ≥ 1, ti is (R, μ)-terminating.

Notice that if rules f(x1, . . . , xk) → xi for all f ∈ D and i ∈ μ(f) (where x1, . . . , xk

are variables) are used in Item 1 of Definition 4, then Definition 5 yields the
notion of chain in [9]; and if, additionally, rules f(x1, . . . , xk) → f�(x1, . . . , xk)
for all f ∈ D are used in Item 2 of Definition 4, then we have the original notion
of chain in [7]. Thus, the new definition covers all previous ones.

Theorem 2 (Soundness and Completeness of CSDPs). Let R be a TRS
and μ ∈ MR. A CS-TRS (R, μ) is terminating if and only if there is no infinite
(DP(R, μ),R, unh(R, μ), μ�)-chain.
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5 Context-Sensitive Dependency Pair Framework

In the DP framework [12], proofs of termination are handled as termination
problems involving two TRSs P and R instead of just the ‘target’ TRS R. In
our setting we start with the following definition (see also [6,9]).

Definition 6 (CS Problem and CS Processor). A CS problem τ is a tuple
τ = (P ,R,S, μ), where R, P and S are TRSs, and μ ∈ MR∪P∪S. The CS
problem (P ,R,S, μ) is finite if there is no infinite (P ,R,S, μ)-chain. The CS
problem (P ,R,S, μ) is infinite if R is non-μ-terminating or there is an infinite
minimal (P ,R,S, μ)-chain.

A CS processor Proc is a mapping from CS problems into sets of CS problems.
Alternatively, it can also return “ no”. A CS processor Proc is sound if for all
CS problems τ , τ is finite whenever Proc(τ) �= no and ∀τ ′ ∈ Proc(τ), τ ′ is finite.
A CS processor Proc is complete if for all CS problems τ , τ is infinite whenever
Proc(τ) = no or ∃τ ′ ∈ Proc(τ) such that τ ′ is infinite.

In order to prove the μ-termination of a TRS R, we adapt the result from [12]
to CSR.

Theorem 3 (CSDP Framework). Let R be a TRS and μ ∈ MR. We con-
struct a tree whose nodes are labeled with CS problems or “yes” or “no”, and
whose root is labeled with (DP(R, μ),R, unh(R, μ), μ�). For every inner node
labeled with τ , there is a sound processor Proc satisfying one of the following
conditions:

1. Proc(τ) = no and the node has just one child, labeled with “no”.
2. Proc(τ) = ∅ and the node has just one child, labeled with “yes”.
3. Proc(τ) �= no, Proc(τ) �= ∅, and the children of the node are labeled with the

CS problems in Proc(τ).

If all leaves of the tree are labeled with “yes”, then R is μ-terminating. Otherwise,
if there is a leaf labeled with “no” and if all processors used on the path from the
root to this leaf are complete, then R is non-μ-terminating.

In the following subsections we describe a number of sound and complete CS
processors.

5.1 Collapsing Pair Processors

The following processor integrates the transformation of [6] into our framework.
The pairs in a CS-TRS (P , μ), where P = (G, P ), are partitioned as follows:
PX = {u → v ∈ P | v ∈ Var(u) \ Varμ(u)} and PG = P \ PX .

Theorem 4 (Collapsing Pair Transformation). Let τ = (P ,R,S, μ) be a
CS problem where P = (G, P ) and PU be given by the following rules:

• u → U(x) for every u → x ∈ PX ,
• U(s) → U(t) for every s → t ∈ S�μ , and
• U(s) → t for every s → t ∈ S�.
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Here, U is a new fresh symbol. Let P ′ = (G ∪{U}, P ′) where P ′ = (P \PX )∪PU,
and μ′ extends μ by μ′(U) = ∅. The processor ProceColl given by ProceColl (τ) =
{(P ′,R, ∅, μ′)} is sound and complete.

Now, we can apply all CS processors from [6] and [9] which did not consider any
S component in CS problems.

In our framework, we can also apply specific processors for collapsing pairs
that are very useful, but these only are used if we have collapsing pairs in the
chains (as in [9]). For instance, we can use the processor in Theorem 5 below,
which is often applied in proofs of termination of CSR with mu-term [13,14].
The subTRS of PX containing the rules whose migrating variables occur on non-
μ-replacing immediate subterms in the left-hand side is P1

X = {f(u1, . . . , uk) →
x ∈ PX | ∃i, 1 ≤ i ≤ k, i �∈ μ(f), x ∈ Var(ui)}.
Theorem 5 (Basic CS Processor for Collapsing Pairs). Let τ = (P ,R,S, μ)
be a CS problem where R = (C �D, R) and S = (H, S). Assume that (1) all the
rules in S� are noncollapsing, i.e., for all s → t ∈ S�, t /∈ X (2) {root(t) | s →
t ∈ S�} ∩ D = ∅ and (3) for all s → t ∈ S�, we have that s = f(s1, . . . , sk) and
t = g(s1, . . . , sk) for some k ∈ N, funtion symbols f, g ∈ H, and terms s1, . . . , sk.
Then, the processors ProcColl1 given by

ProcColl1 (τ ) =
{

∅ if P = P1
X and

{(P ,R,S , μ)} otherwise

is sound and complete.

Example 5. (Continuing Example 1) Consider the CS problem τ = (P4,R,S3, μ
�)

where P4 = {(14), (15)} and S3 = {(16), (18), (19)}. We can apply ProcColl1 (τ)
to conclude that the CS problem τ is finite.

5.2 Context-Sensitive Dependency Graph

In the DP-approach [8,12], a dependency graph is associated to the TRS R. The
nodes of the graph are the dependency pairs in DP(R) and there is an arc from
a dependency pair u → v to a dependency pair u′ → v′ if there are substitutions
θ and θ′ such that θ(v) →∗

R θ′(u′). In our setting, we have the following.

Definition 7 (Context-Sensitive Graph of Pairs). Let R, P and S be TRSs
and μ ∈ MR∪P∪S. The context-sensitive (CS) graph G(P ,R,S, μ) has P as the
set of nodes. Given u → v, u′ → v′ ∈ P, there is an arc from u → v to u′ → v′

if u → v, u′ → v′ is a minimal (P ,R,S, μ)-chain for some substitution σ.

In termination proofs, we are concerned with the so-called strongly connected
components (SCCs) of the dependency graph, rather than with the cycles them-
selves (which are exponentially many) [15]. The following result formalizes the
use of SCCs for dealing with CS problems.

Theorem 6 (SCC Processor). Let τ = (P ,R,S, μ) be a CS problem. Then,
the processor ProcSCC given by

ProcSCC (P ,R,S , μ) = {(Q,R,SQ, μ) | Q are the pairs of an SCC in G(P ,R,S , μ)}
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(where SQ are the rules from S involving a possible (Q,R,S, μ)-chain) is sound
and complete.

The CS graph is not computable. Thus, we have to use an over-approximation
of it. In the following definition, we use the function TCapμ

R(t), which renames
all subterms headed by a ‘defined’ symbol in R by new fresh variables if it can
be rewritten:
Definition 8 (TCapμ

R [9]). Given a TRS R and a replacement map μ, we let
TCapμ

R be as follows:

TCapμ
R(x) = y if x is a variable, and

TCapμ
R(f(t1, . . . , tk)) =

⎧⎨
⎩

f([t1]f1, . . . , [tk]fk) if f([t1]f1, . . . , [tk]fk) does not unify
with � for any � → r in R

y otherwise

where y is a new fresh variable, [s]fi = TCapμ
R(s) if i ∈ μ(f) and [s]fi = s if

i �∈ μ(f). We assume that  shares no variable with f([t1]f1, . . . , [tk]fk) when the
unification is attempted.

Definition 9 (Estimated CS Graph of Pairs). Let τ = (P ,R,S, μ) be
a CS problem. The estimated CS graph associated to R, P and S (denoted
EG(P ,R,S, μ)) has P as the set of nodes and arcs which connect them as fol-
lows:

1. there is an arc from u → v ∈ PG to u′ → v′ ∈ P if TCapμ
R(v) and u′ unify,

and
2. there is an arc from u → v ∈ PX to u′ → v′ ∈ P if there is s → t ∈ S� such

that TCapμ
R(t) and u′ unify.

We have the following.

Theorem 7 (Approximation of the CS Graph). Let R, P and S be TRSs
and μ ∈ MR∪P∪S. The estimated CS graph EG(P ,R,S, μ) contains the CS
graph G(P ,R,S, μ).

We also provide a computable definition of the SCC processor in Theorem 8.
Theorem 8 (SCC Processor using TCapμ

R). Let τ = (P ,R,S, μ) be a CS
problem. The CS processor ProcSCC given by

ProcSCC (τ ) = {(Q,R,SQ, μ) | Q contains the pairs of an SCC in EG(P ,R,S , μ)}
where

– SQ = ∅ if QX = ∅.
– SQ = S�μ ∪{s → t | s → t ∈ S�,TCapμ

R(t) and u′ unify for some u′ → v′ ∈
Q} if QX �= ∅.

is sound and complete.

Example 6. In Figure 1 (right) we show EG(DP(R, μ),R, unh(R, μ), μ�) for R
in Example 1. The graph has three SCCs P1 = {(1)}, P2 = {(8)}, and P3 =
{(7), (14), (15)}. If we apply the CS processor ProcSCC to the initial CS problem
(DP(R, μ),R, unh(R, μ), μ�) for (R, μ) in Example 1, then we obtain the prob-
lems: (P1,R, ∅, μ�), (P2,R, ∅, μ�), (P3,R,S3, μ

�), where S3 = {(16), (18), (19)}.
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5.3 Reduction Triple Processor

A μ-reduction pair (�, �) consists of a stable and μ-monotonic3 quasi-ordering
�, and a well-founded stable relation � on terms in T (F ,X ) which are compat-
ible, i.e., � ◦ �⊆� or � ◦ �⊆� [7].

In [7,9], when a collapsing pair u → x occurs in a chain, we have to look in-
side the instantiated right-hand side σ(x) for a μ-replacing subterm that, after
marking it, does μ-rewrite to the (instantiated) left-hand side of another pair.
For this reason, the quasi-orderings � of reduction pairs (�, �) which are used
in [7,9] are required to have the μ-subterm property, i.e. �μ⊆�. This is equiv-
alent to impose f(x1, . . . , xk) � xi for all projection rules f(x1, . . . , xk) → xi

with f ∈ F and i ∈ μ(f). This is similar for markings: in [7] we have to
ensure that f(x1, . . . , xk) � f�(x1, . . . , xk) for all defined symbols f in the sig-
nature. In [9], thanks to the notion of hidden term, we relaxed the last con-
dition: we require t � t� for all (narrowable) hidden terms t. In [6], thanks to
the notion of hiding context, we only require that � is compatible with the
projections f(x1, . . . , xk) → xi for those symbols f and positions i such that f
hides position i. However, this information is implicitly encoded as (new) pairs
U(f(x1, . . . , xk)) → U(xi) in the set P . The strict component � of the reduction
pair (�, �) is used with these new pairs now.

In this paper, since the rules in S are not considered as ordinary pairs (in the
sense of [6,9]) we can relax the conditions imposed to the orderings dealing with
these rules. Furthermore, since rules in S are applied only once to the root of
the terms, we only have to impose stability to the relation which is compatible
with these rules (no transitivity, reflexivity, well-foundedness or μ-monotonicity
is required).

Therefore, we can use μ-reduction triples (�, �,�) now, where (�, �) is a
μ-reduction pair and � is a stable relation on terms which is compatible with �
or �, i.e., � ◦ �⊆� or � ◦ � ⊆�.

Theorem 9 (μ-Reduction Triple Processor). Let τ = (P ,R,S, μ) be a CS
problem. Let (�, �,�) be a μ-reduction triple such that

1. P ⊆� ∪ �, R ⊆ �, and
2. whenever PX �= ∅ we have that S ⊆� ∪ � ∪ �.

Let P� = {u → v ∈ P | u � v} and S� = {s → t ∈ S | s � t}. Then, the
processor ProcRT given by

ProcRT (τ) =
{
{(P \ P�,R,S \ S�, μ)} if (1) and (2) hold
{(P ,R,S, μ)} otherwise

is sound and complete.

3 A binary relation R on terms is μ-monotonic if for all terms s, t, t1, . . . , tk,
and k-ary symbols f, whenever s R t and i ∈ μ(f) we have f(t1, . . . , ti−1,
s, . . . , tk) R f(t1, . . . , ti−1, t, . . . , tk).
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Since rules from S are only applied after using a collapsing pair, we only need to
make them compatible with some component of the triple if P contains collapsing
pairs, i.e., if PX �= ∅. Another advantage is that we can now remove rules from
S. Furthermore, we can increase the power of this definition by considering the
usable rules corresponding to P , instead of R as a whole (see [6,16]), and also
by using argument filterings [9].

Example 7. (Continuing Example 6) Consider the CS problem τ = (P3,R,S3, μ
�)

where P3 = {(7), (14), (15)}, S3 = {(16), (18), (19)} and R is the TRS in Exam-
ple 1. If we apply ProcRT to the CS problem τ by using the μ-reduction triple
(≥, >,≥) where ≥ and > are the orderings induced by the following polynomial
interpretation (see [17] for missing notation and definitions):

[if ](x, y, z) = (1/2 × x) + y + z [minus](x, y)= (2 × x) + (2 × y) + 1/2
[p](x) = (1/2 × x) [0] = 0
[false] = 0 [s](x) = (2 × x) + 2
[true] = 2 [gt](x, y) = (2 × x) + (1/2 × y)
[M](x, y) = (2 × x) + (2 × y) + 1/2 [IF](x, y, z) = (1/2 × x) + y + z

then, we have [] ≥ [r] for all (usable) rules in R and, for the rules in P3 and S3,
we have

[M(x, y)] ≥ [IF(gt(y, 0), minus(p(x), p(y)), x)] [minus(p(x), p(y))] ≥ [M(p(x), p(y))]
[IF(true, x, y)] > [x] [minus(x, y)] > [y]
[IF(false, x, y)] ≥ [y] [minus(x, y)] > [x]

Then, we get ProcRT (τ) = {({(7), (15)},R, {(16)}, μ�)}.

5.4 Subterm Processor

The subterm criterion was adapted to CSR in [7], but its use was restricted to
noncollapsing pairs [7, Theorem 5]. In [9], a new version for collapsing pairs
was defined, but in this version you can only remove all collapsing pairs and
the projection π is restricted to μ-replacing positions. Our new version is fully
general and able to remove collapsing and noncollapsing pairs at the same time.
Furthermore, we are also able to remove rules in S. Before introducing it, we
need the following definition.

Definition 10 (Root Symbols of a TRS [9]). Let R = (F , R) be a TRS.
The set of root symbols associated to R is:

Root(R) = {root() |  → r ∈ R} ∪ {root(r) |  → r ∈ R, r �∈ X}

Definition 11 (Simple Projection). Let R be a TRS. A simple projection for
R is a mapping π that assigns to every k-ary symbol f ∈ Root(R) an argument
position i ∈ {1, . . . , k}. This mapping is extended to terms by

π(t) =
{

t|π(f) if t = f(t1, . . . , tk) and f ∈ Root(R)
t otherwise
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Theorem 10 (Subterm Processor). Let τ = (P ,R,S, μ) be a CS problem
where R = (F , R) = (C � D, R), P = (G, P ) and S = (H, S). Assume that
(1) Root(P) ∩ D = ∅, (2) the rules in PG ∪ S� are noncollapsing, (3) for all
si → ti ∈ S�μ , root(si), root(ti) /∈ Root(P) and (4) for all si → ti ∈ S�,
root(si) /∈ Root(P) and root(ti) ∈ Root(P). Let π be a simple projection for P.
Let Pπ,�μ = {u → v ∈ P | π(u)�μπ(v)} and Sπ,�μ = {s → t ∈ S | π(s)�μπ(t)}.
Then, Procsubterm given by

Procsubterm(τ) =

⎧⎪⎪⎨
⎪⎪⎩
{(P \ Pπ,�μ ,R,S \ Sπ,�μ , μ)} if π(P) ⊆ �μ

and whenever PX �= ∅,
then π(S) ⊆ �μ

{(P ,R,S, μ)} otherwise

is sound and complete.

Notice that the conditions in Theorem 10 are not harmful in practice because
the CS problems which are obtained from CS-TRSs normally satisfy those con-
ditions.

Example 8. (Continuing Example 7) We have the CS problem (P5,R,S5, μ
�)

where P5 = {(7), (15)} and S5 = {(16)}. We can apply the subterm processor
Procsubterm by using the projection π(IF) = 3 and π(M) = 1:

π(M(x, y)) = x �μ x = π(IF(gt(y, 0), minus(p(x),p(y)), x))
π(IF(false, x, y)) = y �μ y = π(y)

π(minus(p(x),p(y))) = minus(p(x),p(y)) �μ p(x) = π(M(p(x),p(y)))

We obtain the CS problem τ ′ = ({(7), (15)},R, ∅, μ) for which we can use
ProcSCC to conclude that there is no cycle, i.e., ProcSCC (τ ′) = ∅.

6 Using the CSDP Framework in Maude

Proving termination of programs in sophisticated equational languages like OBJ,
CafeOBJ or Maude is difficult because these programs combine different features
that are not supported by state-of-the-art termination tools. For instance, the
following Maude program combines the use of an evaluation strategy and types
given as sorts in the specification [3].

fmod LengthOfFiniteLists is

sorts Nat NatList NatIList .

subsort NatList < NatIList .

op 0 : -> Nat .

op s : Nat -> Nat .

op zeros : -> NatIList .

op nil : -> NatList .

op cons : Nat NatIList -> NatIList [strat (1 0)] .

op cons : Nat NatList -> NatList [strat (1 0)] .

op length : NatList -> Nat .

vars M N : Nat .
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var IL : NatIList .

var L : NatList .

eq zeros = cons(0,zeros) .

eq length(nil) = 0 .

eq length(cons(N, L)) = s(length(L)) .

endfm

Nowadays, mu-term [14,13] can separately prove termination of order-sorted
rewriting[18]andCSR,butitisnotabletohandleprogramswhichcombinebothofthem.
Then,weuse the transformationdeveloped in [3] to transformthis system into aCS-
TRS(withoutsorts).SuchaCS-TRScanbefoundintheTerminationProblemsData
Base4 (TPDB): TRS/CSR Maude/LengthOfFiniteLists complete.trs.As far as
weknow,mu-term is theonly tool that canprove terminationof this systemthanks
totheCSDPframeworkpresentedinthispaper5.

7 Experimental Evaluation

From Friday to Saturday, December 18-19, 2009, the 2009 International Termi-
nation Competition took place and a CSR termination category was included.
In the termination competition, the benchmarks are executed in a completely
automatic way with a timeout of 60 seconds over a subset of 37 systems6

of the complete collection of the 109 CS-TRSs of the TPDB 7.0.
The results in this paper have been implemented as part of the termina-

tion tool mu-term. Our tool mu-term participated in the aforementioned CSR
category of the 2009 Termination Competition. The results of the competition
are summarized in Table 1. Tools AProVE [19] and VMTL [20] implement the
context-sensitive dependency pairs using the transformational approach in [6].
The techniques implemented by Jambox [21] to prove termination of CSR are
not documented yet, to our knowledge. As showed in Table 1, we are able to
prove the same number of systems than AProVE, but mu-term is almost two
and a half times faster. Furthermore, we prove termination of 95 of the 109 ex-
amples. To our knowledge, there is no tool that can prove more than those 95
examples from this collection of problems. And, as remarked in Section 6, there
are interesting examples which can be handled by mu-term only.

We have also executed the complete collection of systems of the CSR category7,
where we compare the 2009 and 2007 competition versions of mu-term. In the

4 http://www.lri.fr/~marche/tpdb/
5On May 12, 2010, we introduced this system in the online version of AProVE http://

aprove.informatik.rwth-aachen.de/,andatimeoutoccurredafter120seconds(max-
imum timeout).mu-termproof can be found in http://zenon.dsic.upv.es/muterm/
benchmarks/benchmarks-csr/benchmarks.html

6 See http://termcomp.uibk.ac.at/termcomp/competition/competitionResults.

seam?category=10230&competitionId=101722&actionMethod=competition

%2FcategoryList.xhtml%3AcompetitionCategories.forward&conversation

Propagation=begin
7 A complete report of our experiments can be found in http://zenon.dsic.upv.es/

muterm/benchmarks/

http://www.lri.fr/~marche/tpdb/
http://aprove.informatik.rwth-aachen.de/
http://aprove.informatik.rwth-aachen.de/
http://zenon.dsic.upv.es/muterm/benchmarks/benchmarks-csr/benchmarks.html
http://zenon.dsic.upv.es/muterm/benchmarks/benchmarks-csr/benchmarks.html
http://termcomp.uibk.ac.at/termcomp/competition/competitionResults.seam?category=10230 \&competitionId=101722\&actionMethod=competition%2FcategoryList.xhtml %3AcompetitionCategories.forward\&conversationPropagation=begin
http://termcomp.uibk.ac.at/termcomp/competition/competitionResults.seam?category=10230 \&competitionId=101722\&actionMethod=competition%2FcategoryList.xhtml %3AcompetitionCategories.forward\&conversationPropagation=begin
http://termcomp.uibk.ac.at/termcomp/competition/competitionResults.seam?category=10230 \&competitionId=101722\&actionMethod=competition%2FcategoryList.xhtml %3AcompetitionCategories.forward\&conversationPropagation=begin
http://termcomp.uibk.ac.at/termcomp/competition/competitionResults.seam?category=10230 \&competitionId=101722\&actionMethod=competition%2FcategoryList.xhtml %3AcompetitionCategories.forward\&conversationPropagation=begin
http://zenon.dsic.upv.es/muterm/benchmarks/
http://zenon.dsic.upv.es/muterm/benchmarks/
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Table 1. 2009 Termination Competition Results (Context-Sensitive Rewriting)

Tool Version Proved Average time
AProVE 34/37 3.084s
Jambox 28/37 2.292s
mu-term 34/37 1.277s
VMTL 29/37 6.708s

2007 version, the CSDP framework was not available. Now, we can prove 15
more examples and, when comparing the execution times which they took over
the 80 examples where both tools succeeded (84, 48 seconds vs. 15, 073 seconds),
we are more than 5, 5 times faster now.

8 Related Work

In [6], a transformation of collapsing pairs into ‘ordinary’ (i.e., noncollapsing)
pairs is introduced by using the new notion of hiding context [6, Definition 7]. We
easily and naturally included such a transformation as a new processor ProceColl

in our framework (see Theorem 4). The claimed advantage of [6] is that the notion
of chain is simplified to Item 1 in Definition 5. But, although the definition of
chain in [6] is apparently closer to the standard one [12, Definition 3], this does
not mean that we can use or easily ‘translate’ existing DP-processors (see [12])
to be used with CSR. Besides the narrowing processor in [9, Theorem 16], the
reduction pair processor with usable rules in [6, Theorem 21] is a clear example,
because the avoidance of collapsing pairs does not improve the previous results
about usable rules for CSR investigated in [16].

As we have seen in this paper, collapsing pairs are an essential part of the
theoretical description of termination of CSR. Actually, the transformational ap-
proach in [6] explicitly uses them for introducing the new unhiding pairs in [6,
Definition 9]. This shows that the most basic notion when modeling the termi-
nation behavior of CSR is that of collapsing pair and that unhiding pairs should
be better considered as an ingredient for handling collapsing pairs in proofs of
termination (as implemented by processor ProceColl above). Furthermore, the
application of such a transformation in the very beginning of the termination
analysis of CS-TRSs (as done in [6]) typically leads to obtain a more complex de-
pendency graph (see in Figure 1 (left)) which, as witnessed by our experimental
analysis in Section 7, can be more difficult to analyze when proving termination
in practice.

Our approach clarifies the role of collapsing pairs to model the termination
behavior of CSR. Furthermore, the new notions introduced in this paper lead
to a more ‘robust’ framework. For instance, in order to integrate in [6] the
new improvement in the notion of hiding context (see Definition 2), one has to
redefine the notion of context-sensitive dependency pair in [6]. In our approach,
the context-sensitive dependency pairs are always the same.
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9 Conclusions

When proofs of termination of CSR are mechanized following the context-sensi-
tive dependency pair approach [7], handling collapsing pairs is difficult. In [6]
this problem is solved by a transformation which disregards collapsing pairs (so
we loose their descriptive power), adds a new fresh symbol U which has nothing
to do with the original CS-TRS, and makes the dependency graph harder to
understand.

We have shown a different way to mechanize the context-sensitive dependency
pair approach. The idea is adding a new TRS, the unhiding TRS, which avoids
the extra requirements in [7]. Thanks to the flexibility of our framework, we can
use all existing processors in the literature, improve the existing ones by taking
advantage of having collapsing pairs, and define new processors. Furthermore, we
have improved the notion of hide given in [6]. Our experimental evaluation shows
that our techniques lead to an implementation which offers the best performance
in terms of solved problems and efficiency.
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sequences for rewrite theories whose equational part is a (free) combina-
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theories. Our analysis leads to a more accurate and optimized notion of
dependency pairs through the new notion of stably minimal term. Then,
we have developed a suitable dependency pair framework for proving
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Rewriting with rules R modulo axioms E is a widely used technique in both rule-
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fmod LIST&SET is

sorts Bool Nat List Set .

subsorts Nat < List Set .

ops true false : -> Bool .

ops _and_ _or_ : Bool Bool -> Bool [assoc comm] .

op 0 : -> Nat .

op s_ : Nat -> Nat .

op _;_ : List List -> List [assoc] .

op null : -> Set .

op __ : Set Set -> Set [assoc comm] .

op _in_ : Nat Set -> Bool .

op _==_ : List List -> Bool [comm] .

op list2set : List -> Set .

var B : Bool . vars N M : Nat .

vars L L’ : List . var S : Set .

eq N N = N .

eq true and B = B . eq false and B = false .

eq true or B = true . eq false or B = B .

eq 0 == s N = false . eq s N == s M = N == M .

eq N ; L == M = false . eq N ; L == M ; L’ = (N == M) and L == L’ .

eq L == L = true .

eq list2set(N) = N . eq list2set(N ; L) = N list2set(L) .

eq N in null = false . eq N in M S = (N == M) or N in S .

endfm

Fig. 1. Example in Maude syntax [3]

of axioms that fall outside their scope. For instance, they could not be applied
to prove termination of the TRS in Figure 1, (specified in Maude with self-
explanatory syntax; we would not care about sort information here) where we
have a (free) combination of associative and commutative axioms which we call
an A∨C-rewrite theory in this paper. Furthermore, the Dependency Pair Frame-
work (DP-framework [6]), which is the basis of state-of-the-art tools for proving
termination of (different variants of) term rewriting has not yet been adapted
to the AC case.

In this paper, we address these two problems. Giesl and Kapur generalized
the previous works on AC-termination with dependency pairs to deal with more
general kinds of equational theories E satisfying some restrictions [5]. In princi-
ple, the A∨C-theories that we are going to investigate here fit Giesl and Kapur’s
approach. However, as we discuss below, they did not provide any definition of
minimal chain needed for further developments in the DP-framework. In the
DP-framework, the central notion regarding termination proofs is that of DP
problem: the goal is checking the absence (or presence) of the so-called infinite
minimal chains, where the notion of minimal chain can be thought as an ab-
straction of the infinite rewrite sequences starting from minimal non-terminating
terms. The most important notion regarding mechanization of the proofs is that
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of processor. A (correct) processor basically transforms DP problems into (hope-
fully) simpler ones, in such a way that the existence of an infinite chain in the
original DP problem implies the existence of an infinite chain in the transformed
one. Here ‘simpler’ usually means that fewer pairs are involved. Processors are
used in a pipe (more precissely, a tree) to incrementally simplify the original
DP problem as much as possible, possibly decomposing it into smaller pieces
which are then independently treated in the very same way. This is the crucial
new feature of the DP-framework w.r.t. the DP-approach of [1]. This makes it
so powerful as a basis for implementing termination provers.

Before being able to adapt the DP-framework to deal with A∨C-theories,
we start by giving a more refined notion of minimality. In fact, the notion of
minimality which is used in [5] is the straightforward extension of the one which
is used to prove termination of standard rewriting but without dealing with
equivalence preservation which, as we show below, is essential to provide an
appropriate notion of minimal non-E-terminating term for A∨C-theories E which
can be used to define a suitable A∨C-DP-framework. We carefully analyze the
structure of infinite rewrite sequences for A∨C-rewrite theories. This leads to
appropriate definitions of A∨C-dependency pair and minimal chain.

After some technical preliminaries, in Section 3 we investigate the drawbacks
of previous notions of minimal term when modeling infinite A∨C-rewrite se-
quences. Then, we introduce the notion of stably minimal non-E-terminating
term which is the basis of our development. Section 4 investigates the struc-
ture of infinite sequences starting from such stably minimal terms. Section 5
uses these results to formalize our notion of A∨C-dependency pairs and minimal
chains. Section 6 introduces an A∨C-DP-framework for proving A∨C-termination
using A∨C-DPs. in particular, we introduce the notion of A∨C-dependency graph
and a first processor for proving termination in the A∨C-DP-framework. We also
show how to use orderings for defining a second processor. Section 7 compares
our approach with the related work and concludes.

2 Rewriting Modulo Equational Theories

Given a rewrite theory R = (Σ, E, R), we write s →R/E t if there exist u, v such
that s ∼E u, u →R v, and v ∼E t. We say that a rewrite theory R = (Σ, E, R)
is E-terminating, iff →R/E is terminating. In general, given terms s and t, the
problem of whether s →R/E t holds is undecidable: in order to check whether
s →R/E t we have to search through the possibly infinite equivalence classes
[s]E and [t]E to see whether a matching is found for a subterm of some u ∈ [s]E
and the result of rewriting u belongs to the equivalence class [t]E . For this
reason, a much simpler relation →R,E is defined, which becomes decidable if an
E-matching algorithm exists. For any terms s, t, s →R,E t holds iff there is a
position p in s, a rule l → r in R, and a substitution σ such that s|p ∼E σ(l)
and t = s[σ(r)]p (see [15]). We say that a rewrite theory R = (Σ, E, R) is
(R, E)-terminating, if →R,E is terminating.

Regarding E-termination analysis using dependency pairs (DPs), Kusakari
and Toyama observed that there is no simple extension of DPs to directly deal
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with →R/E-computations [11,9]. In contrast, several approaches have been de-
veloped for →R,E-computations [5,11,13]. Since →R,E⊆→R/E (but the opposite
inclusion does not hold, in general), E-termination cannot be concluded from
(R, E)-termination. Actually, Marché and Urbain showed that there are (R, E)-
terminating rewrite theories R which are not E-terminating.

Example 1. Consider the following rewrite theory R = (Σ, E, R), where ‘+’ is
an AC symbol [13]: a + b → a + (b + c). Note that t = a + (b + c) is an →R,E-
normal form (hence (R, E)-terminating). However, t ∼AC (a + b) + c which is
non-E-terminating.

Giesl and Kapur [5] proved the equivalence of both notions of termination with
respect to a notion of extension completion ExtE(R) of a rewrite theory R =
(Σ, E, R) which, for E being a set containing associative or commutative axioms,
goes back to Peterson and Stickel [15].

Theorem 1. [5, Theorem 11] Let R = (Σ, E, R) be a rewrite theory with E
a regular and linear equational theory and t ∈ T (Σ,X ). Then, t starts an in-
finite →R/E-reduction if and only if t starts an infinite →ExtE(R),E-reduction.
Therefore, R is E-terminating if and only if →ExtE(R),E is terminating.

2.1 Combination of Associative and Commutative Theories

Let E be a set of equations that has the modular decomposition E =
⋃

f∈Σ Ef ,
where if k = ar(f) �= 2, then Ef = ∅, and if k = 2, then Ef ⊆ {Af , Cf}, where:

– Af is the associativity axiom f(f(x, y), z) = f(x, f(y, z)),
– Cf is the commutativity axiom f(x, y) = f(y, x).

We also define Σ = ΣA � ΣC � ΣAC � Σ∅ where f ∈ ΣA ⇔ Ef = {Af},
f ∈ ΣC ⇔ Ef = {Cf}, f ∈ ΣAC ⇔ Ef = {Af , Cf}, f ∈ Σ∅ ⇔ Ef = ∅. In the
following, we often say that a symbol f ∈ Σ is associative if f ∈ ΣA ∪ΣAC .

Definition 1 (A∨C-rewrite theory). An equational theory E =
⋃

f∈Σ Ef ,
where if k = ar(f) �= 2, then Ef = ∅, and if k = 2, then Ef ⊆ {Af , Cf}
is called an A∨C-theory. A rewrite theory R = (Σ, E, R) such that E is an
A∨C-theory, is called an A∨C-rewrite theory.

To deal with rewriting modulo A∨C-theories by using (R, E)-rewriting we have
to extend R by following [15, Definition 10.4]:

ExtAC(R) = R ∪ {f(l, w) → f(r, w) | l → r ∈ R, f = root(l) ∈ ΣAC}
ExtA(R) = R ∪ {f(l, w) → f(r, w), f(w, l) → f(w, r), f(z, f(l, w)) → f(z, f(r,w))

| l → r ∈ R, f = root(l) ∈ ΣA}
ExtC(R) = R

where w and z are fresh variables which do not occur in the original rule of R.
Therefore, given an A∨C theory E, we let: ExtE(R) = ExtAC(R) ∪ ExtA(R) ∪
ExtC(R). Note that R ⊆ ExtE(R).
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2.2 Minimal Terms and Infinite Rewrite Sequences

Given a TRS R = (C � D, R), with C a subsignature of constructors and D a
subsignature of defined symbols, the minimal nonterminating terms associated
to R are nonterminating terms t whose proper subterms u (i.e., t � u) are ter-
minating; T∞ is the set of minimal nonterminating terms associated to R [7].
Minimal nonterminating terms have two important properties:

1. Every nonterminating term s contains a minimal nonterminating term t ∈
T∞ (i.e., s � t), and

2. minimal nonterminating terms t are always rooted by a defined symbol f ∈
D: ∀t ∈ T∞, root(t) ∈ D.

Considering the structure of the infinite rewrite sequences starting from a mini-
mal nonterminating term t = f(t1, . . . , tk) ∈ T∞ is helpful to arrive at the notion
of dependency pair. Such sequences proceed as follows (see, e.g., [7]):

1. a finite number of reductions can be performed below the root of t, thus
rewriting t into t′; then

2. a rule f(l1, . . . , lk) → r applies at the root of t′ (i.e., t′ = σ(f(l1, . . . , lk)) for
some substitution σ); and

3. there is a minimal nonterminating term u ∈ T∞ (hence root(u) ∈ D) at some
position p of σ(r) which is a nonvariable position of r which ‘continues’ the
infinite sequence initiated by t in a similar way.

This means that considering the occurrences of defined symbols in the right-hand
sides of the rewrite rules suffices to ‘catch’ every possible infinite rewrite sequence
starting from σ(r). In particular, no infinite sequence can be issued from t′ below
the variables of r (more precisely: all bindings σ(x) are terminating terms). The
standard definition of dependency pair [1] and (minimal) chain of dependency
pairs [6] relies on (1)–(3) above [7]. These facts are formalized as follows:

Proposition 1. [7, Lemma 1] Let R = (C � D, R) be a TRS. For all t ∈ T∞,
there exist l → r ∈ R, a substitution σ and a term u ∈ T∞ such that root(u) ∈ D,
t

>Λ−→∗ σ(l) Λ→ σ(r) � u and there is a nonvariable subterm v of r, r � v, such
that u = σ(v).

In the following section we begin the analysis of infinite E-rewrite sequences
according to this schema. We aim at providing an appropriate notion of minimal
non-E-terminating term (for A∨C-theories E) which allows us to reach a result
similar to Proposition 1.

3 Stably Minimal Non-E-Terminating Terms

In the dependency pair approach [1,7,6], the analysis of infinite rewrite sequences
is restricted to those starting from minimal nonterminating terms t ∈ T∞. The
following notion of minimal non-E-terminating term is implicit in [5, proof of
Theorem 16]. Similar definitions can be found in [10,11,9,14].
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Definition 2 (Minimal non-E-terminating term [5]). Let R
= (Σ, E, R) be a rewrite theory. A non-E-terminating term t ∈ T (Σ,X ) is
said to be minimal (written t ∈ T∞,R,E) if every strict subterm s of t (i.e., t�s)
is (ExtE(R), E)-terminating.

Remark 1. In Definition 2, if we assume that E is linear and regular (like A∨C-
theories), then, by Theorem 1, we could equivalently start by saying that t is
non-(ExtE(R), E)-terminating. This leads to a more symmetric definition which
we often use in the following without further comment.

Every non-E-terminating term s contains a minimal non-E-terminating term
t ∈ T∞,R,E (this is stated without proof in [5, proof of Theorem 16]).

Remark 2 (Root symbols of minimal terms). Note that, if E is an A∨C-equational
theory, then root(t) ∈ D whenever t ∈ T∞,R,E . As remarked by Giesl and Kapur
(see also Example 5 below) this is not true for arbitrary equational theories.

The problem with Giesl and Kapur’s Definition 2 is that minimality is not pre-
served under E-equivalence.

Example 2. Consider the following TRS R:

f(x, x) → f(0, f(1, 2)) (1)

where f ∈ ΣAC . Hence, ExtAC(R) only adds the following rule to R:

f(f(x, x), y) → f(f(0, f(1, 2)), y) (2)

Note that t = f(f(0, 1), f(0, f(1, 2))) is non-(ExtAC(R), AC)-terminating:

f(f(0, 1), f(0, f(1, 2))) ∼A f(0, f(1, f(0, f(1, 2)))) ∼A f(0, f(f(1, 0), f(1, 2))) ∼C

f(0, f(f(0, 1), f(1, 2))) ∼A f(0, f(0, f(1, f(1, 2)))) ∼A f(f(0, 0), f(1, f(1, 2))) Λ→ExtAC(R)

f(f(0, f(1, 2)), f(1, f(1, 2))) →ExtAC(R),AC · · ·

Since f(0, 1) and f(0, f(1, 2)) are in (ExtAC(R), AC)-normal form, we have that
t ∈ T∞,R,AC . However, t′ = f(f(0, 0), f(1, f(1, 2))), which is AC-equivalent to t
(i.e., t ∼AC t′), is non-AC-terminating but it is not minimal because its strict
subterm f(1, f(1, 2))) is non-(ExtAC(R), AC)-terminating:

f(1, f(1, 2))) ∼A f(f(1, 1), 2) Λ→ExtAC (R)f(f(0, f(1, 2)), 2) ∼A f(0, f(f(1, 2), 2))

∼A f(0, f(1, f(2, 2))) ∼A f(f(0, 1), f(2, 2)) ∼C f(f(2, 2), f(0, 1)) Λ→ExtAC (R)

f(f(0, f(1, 2)), f(0, 1)) →ExtAC(R),AC · · ·
Example 2 shows that an essential property of minimal terms when considered
as part of infinite (ExtE(R), E)-rewriting sequences for A∨C-theories E gets lost:
the application of (ExtE(R), E)-rewrite steps at the root of a minimal term s by
means of a rule l → r (i.e., s ∼AC σ(l) Λ→ExtE(R)σ(r)) does not guarantee that
there is a nonvariable subterm v of the right-hand side r which is a prefix of the
‘next’ minimal term in the infinite sequence.
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Example 3. Term t in Example 2 can be rewritten at the root only by rule (2)
of ExtAC(R). We can apply this rule to t′ in Example 2 (for instance) to obtain
s′ = σ(r) = f(f(0, f(1, 2)), f(1, f(1, 2))) (where r = f(f(0, f(1, 2)), y)), which
is non-(ExtAC(R), AC)-terminating. Note that s′ contains a minimal term u ∈
T∞,R,E . Since s′|2 = f(1, f(1, 2)) is non-(ExtAC(R), AC)-terminating, it follows
that s′ is not minimal. Since s′|1 = f(0, f(1, 2)) is (ExtAC(R), AC)-terminating,
the only possibility is that u occurs in s′|2. Actually, s′|2 is minimal already;
hence, u = s′|2. But note the absence of any nonvariable position p ∈ Pos(r) in
the right-hand side of the considered rule such that σ(r|p) = u = f(1, f(1, 2)).

This is in sharp contrast with the situation of the DP-approach for ordi-
nary rewriting. Furthermore, it is not difficult to see that for all t′′ ∼AC t such
t′′ = σ′(l) for some substitution σ′, we have a similar situation. Thus, the prob-
lem illustrated here cannot be solved by using a different ∼AC sequence before
performing the ExtAC(R)-root-step.

In the following we introduce a new notion of minimality which solves these
problems.

3.1 A New Notion of Minimal Non-E-Terminating Terms

The following definition solves the problems discussed above by explicitly requir-
ing that the condition defining minimality is preserved under E-equivalence.

Definition 3 (Stably minimal non-E-terminating term). Let R =
(Σ, E, R) be a rewrite theory. Let M∞,R,E be a set of stably minimal non-E-
terminating terms in the following sense: t ∈ T (Σ,X ) belongs to M∞,R,E if t
is non-E-terminating, and for all t′ ∼E t and every proper subterm s′ of t′ (i.e.,
t′ � s′), s′ is (ExtE(R), E)-terminating.

We have the following useful characterization of minimality.

Proposition 2 (Characterization of stably minimal terms). Let R =
(Σ, R, E) be a rewrite theory and t ∈ T (Σ,X ). Then, t ∈ M∞,R,E if and only
if [t]E ⊆ T∞,R,E . Therefore, M∞,R,E = {t ∈ T (Σ,X ) | [t]E ⊆ T∞,R,E}.

The problem in Example 2 disappears now: t is not minimal according to Defini-
tion 3. The following result shows how to find stably minimal non-E-terminating
terms associated to a given non-E-terminating term. This is essential in our de-
velopment.

Proposition 3. Let R = (Σ, E, R) be a rewrite theory such that [t]E = {t} for
all constant and variable terms t. Let s ∈ T (Σ,X ). If s is non-E-terminating,
then there is a subterm t of some s′ ∼E s (s′ � t) such that t ∈M∞,R,E.

Clearly, Proposition 3 holds whenever R is an A∨C-rewrite theory.

Example 4. Consider the term t in Example 2. Although t ∈ T∞,R,E , t /∈
M∞,R,E : the term t′ = f(f(0, 0), f(1, f(1, 2))), which is AC-equivalent to t,
contains a subterm u = f(1, f(1, 2)) which is non-E-terminating. It is not diffi-
cult to see that actually u ∈M∞,R,E .
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In general, Proposition 3 does not hold for arbitrary sets of equations E.

Example 5. Consider the following example [5, Example 13]:

R : f(x) → x E : f(a) = a

Note that a ∈ T∞,R,E . However, a is not stably minimal because a ∼E f(a) but
f(a) �∈ T∞,R,E . Thus, Proposition 3 does not hold.

Now we provide a more precise result about where we can find stably mini-
mal subterms within a non-E-terminating term for A∨C-rewrite theories R =
(Σ, E, R). In the following theorem, given a term s and a symbol f , by an f -
subterm t of s (written s �f t) we mean a subterm t of s such that t = s|p and
for all q < p, root(s|q) = f . We also write s �f t if s �f t and s �= t.

Theorem 2. Let R = (Σ, E, R) be an A∨C-rewrite theory. If s is non-E-
terminating, then there is a subterm t ∈ T∞,R,E of s (s � t) and

1. If (1) Aroot(t) /∈ Eroot(t) or (2) t = f(t1, t2), Af ∈ Ef , root(t1) �= f , and
root(t2) �= f , then t ∈ M∞,R,E.

2. If t = f(t1, t2), Af ∈ Ef , and root(t1) = f or root(t2) = f , and t �∈ M∞,R,E,
then there is s′ ∼E t and a strict f -subterm u of s′ (s′ �f u) such that
root(u) = f and u ∈ M∞,R,E.

The following result is just a convenient reformulation of the previous one.

Corollary 1. Let R = (Σ, E, R) be an A∨C-rewrite theory. If s is non-E-
terminating, then either there is a subterm t ∈ M∞,R,E of s (s� t), or there is a
subterm t ∈ T∞,R,E of s satisfying that t = f(t1, t2), Af ∈ Ef , and root(t1) = f
or root(t2) = f , and such that there is s′ ∼E t and a strict f -subterm u of s′

(s′ �f u) such that root(u) = f and u ∈ M∞,R,E.

4 Structure of (Stably) Minimal Infinite A∨C-Rewrite
Sequences

Now we analyze A∨C-rewrite sequences starting from stably minimal non-A∨C-
terminating terms. First we consider a restricted case.

Proposition 4. Let R = (Σ, E, R) = (C � D, E, R) be an A∨C-rewrite theory.
Let s ∈ M∞,R,E be such that f = root(s) and either (1) Af /∈ Ef , or (2) s =
f(s1, s2), Af ∈ Ef , and root(s1), root(s2) ∈ C. Assume that for all l → r ∈ R
such that root(l) = f and all subterms v of r (r � v) such that v = g(v1, v2)
for some associative symbol g, we have that root(v1), root(v2) /∈ X ∪ {g}. Then,
there exist l → r ∈ R, a substitution σ and terms t ∈ T (Σ,X ) and u ∈M∞,R,E

such that
s

>Λ−→∗
ExtE(R),E t ∼E σ(l) Λ→R σ(r) � u

and there is a nonvariable subterm v of r, r � v, such that u = σ(v).



A Dependency Pair Framework for A∨C-Termination 43

Unfortunately, stable minimality of (arbitrary) non-E-terminating terms s for
A∨C-theories E is not preserved under inner (ExtE(R), E)-rewritings.

Example 6. Term u = f(f(1, 1), 2) in Example 2 is stably minimal: u ∈M∞,R,E .

We have that f(f(1, 1), 2) >Λ−→R f(f(0, f(1, 2)), 2). Note that f(f(0, f(1, 2)), 2) /∈
M∞,R,E : we have f(f(0, f(1, 2)), 2) ∼A f(0, f(f(1, 2), 2)) ∼A f(0, f(1, f(2, 2)))
where f(0, f(1, f(2, 2))) contains a subterm f(1, f(2, 2)) which is
non-(ExtE(R), E)-terminating.

In the following, we show how to avoid this problem. We define deep reduction as
a restriction

>1,2−→ExtE(R),E of inner (ExtE(R), E)-rewriting which restricts reduc-
tions on terms like u above. We will show that deep reduction preserves stable
minimality of non-E-terminating terms for A∨C-rewrite theories R = (Σ, E, R).

Definition 4 (Deep reduction). Let R = (Σ, E, R) be an A∨C-rewrite theory.
Given t ∈ T (Σ,X ), t

>1,2−→ExtE(R),E s if t
q−→ExtE(R),E s for some position q ∈

Pos(t) such that q > p for p ∈ {1, 2} if t = σ(u) for some u = v ∈ E or
v = u ∈ E and u|p /∈ X ; otherwise, q > Λ.

Obviously, >1,2−→ExtE(R),E⊆
>Λ−→ExtE(R),E . The following proposition shows that

deep reduction preserves stable minimality.

Proposition 5. Let R = (Σ, E, R) be an A∨C-rewrite theory and t ∈ M∞,R,E.

If t
>1,2−→∗

Ext(R),E s and s is non-E-terminating, then s ∈M∞,R,E.

As a consequence, the following theorem establishes the desired property for
stable minimal non-A∨C-terminating terms.

Theorem 3. Let R = (Σ, E, R) be an A∨C-rewrite theory. For all s ∈ M∞,R,E,
there exist l → r ∈ ExtE(R) and a substitution σ such that

s (∼E ◦ >1,2−→ExtE(R),E)∗t ∼E σ(l) Λ→ExtE(R) σ(r)

and there is a nonvariable subterm v of r (r � v), such that either

1. v = f(v1, v2) for some associative symbol f , root(v1) ∈ X∪{f} or root(v2) ∈
X ∪ {f}, root(σ(v1)) = f or root(σ(v2)) = f , σ(v) ∈ T∞,R,E and there is a
term t′ ∼E σ(v) containing a strict f -subterm u = f(u1, u2) (t′ �f u) such
that u ∈ M∞,R,E, or

2. σ(v) ∈ M∞,R,E otherwise.

Example 2 shows that Theorem 3 does not hold for Giesl and Kapur’s minimal
terms s ∈ T∞,R,E .

5 A∨C-Dependency Pairs and Chains

Propositions 3 and 4 together with Theorem 3 are the basis for our definition
of A∨C-Dependency Pairs and the corresponding chains. Together, they show
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that given an A∨C-rewrite theory R = (Σ, E, R), every non-E-terminating
term s has an associated infinite (ExtE(R), E)-rewrite sequence starting from a
stably minimal subterm t ∈ M∞,R,E . Such a sequence proceeds as described in
Proposition 4 and Theorem 3, depending on the shape of t.

This process is abstracted in the following definition of A∨C-dependency pairs
(Definition 5) and in the definition of chain below (Definition 6).

Given a signature Σ and f ∈ Σ, we let f � denote a fresh new symbol (often
called tuple symbol or DP-symbol) associated to a symbol f [1]. Let Σ� be the
set of tuple symbols associated to symbols in Σ. As usual, for t = f(t1, . . . , tk) ∈
T (Σ,X ), we write t� to denote the marked term f �(t1, . . . , tk) (written sometimes
F (t1, . . . , tk)). Given a set of rules R and a symbol f ∈ Σ, we let Rf = {l →
r ∈ R | root(l) = f}. Given a set of rules R, the set DP(R) of dependency pairs
associated to R is [1]: DP(R) = {l� → s� | l → r ∈ R, r � s, root(s) ∈ D}.

Definition 5 (A∨C-Dependency Pairs). Let R = (Σ, E, R) = (C � D, E, R)
be an A∨C-rewrite theory. Then, DPE(R) = DP(ExtE(R)) is the set of A∨C-
dependency pairs (A∨C-DPs) of R.

In general, the set of A∨C-DPs which is obtained from Definition 5 is a subset
of those which are obtained by particularizing Giesl and Kapur’s definitions to
the A∨C case [5].

Example 7. Consider the AC-rewrite theory R = (Σ, E, R) in Example 2. The
set DPE(R) consists of the following pairs:

F (x, x) → F (0, f(1, 2)) (3)
F (x, x) → F (1, 2) (4)

F (f(x, x), y) → F (f(0, f(1, 2)), y) (5)
F (f(x, x), y) → F (0, f(1, 2)) (6)
F (f(x, x), y) → F (1, 2) (7)

5.1 Chains of A∨C-DPs

An essential property of the dependency pair method is that it provides a char-
acterization of termination of TRSsR as the absence of infinite (minimal) chains
of dependency pairs [1,6]. If we want to prove the same for A∨C-rewrite the-
ories, we have to introduce a suitable notion of chain which can be used with
A∨C-DPs. As in the DP-framework, where the origin of pairs does not matter,
we should rather think of another rewrite theory P = (Γ, F, P ) which is used
together with R to build the chains. According to the usual terminology [6], we
often call pairs to the rules u → v ∈ P .

Definition 6 (Chain of pairs - Minimal chain). Let P = (Γ, F, P ) and R =
(Σ, E, R) be rewrite theories, and S = (F , S) be a TRS. An (F, P, E, R, S)-chain
is a finite or infinite sequence of pairs ui → vi ∈ P , together with substitutions
σ and θi satisfying that, for all i ≥ 1:
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1. If σ(vi) = fi(vi1, vi2) satisfies σ(vi) = θi(u′
i) for some u′

i = v′i ∈ F or
v′i = u′

i ∈ F such that u′
i = fi(u′

i1, u
′
i2) satisfies u′

i1 /∈ X or u′
i2 /∈ X , then

σ(vi) ∼F ◦ Λ−→+
Sfi

ti (∼F ◦ >1,2−→ExtE(R),E)∗◦ ∼F σ(ui+1)

2. and σ(vi) = ti →∗
ExtE(R),E ◦ ∼F σ(ui+1), otherwise.

An (F, P, E, R, S)-chain is called minimal if for all i ≥ 1, and t′i ∈ [ti]F , t′i is
(ExtE(R), E)-terminating.

As usual, in Definition 6 we assume that different occurrences of dependency
pairs do not share any variable (renaming substitutions are used if necessary).

This more abstract notion of chain can be particularized to be used with A∨C-
DPs, by just taking

1. P = DPE(R),
2. F = E ∪ E�, where E� = {s� = t� | s = t ∈ E}, and
3. S = {f �(f(x, y), z) → f �(x, y), f �(x, f(y, z)) → f �(y, z) | f ∈ ΣA ∪ΣAC}.

Theorem 4 (Characterization of A∨C-termination). Let R = (Σ, E, R)
be an A∨C-rewrite theory. Let S = (Σ ∪ D�, S) be a TRS such that S =
{f �(f(x, y), z) → f �(x, y), f �(x, f(y, z)) → f �(y, z) | f ∈ ΣA ∪ ΣAC}. Then,
R is (ExtE(R), E)-terminating if and only if there is no infinite minimal (E� ∪
E, DPE(R), E, R, S)-chain.

6 An A∨C-Dependency Pair Framework

In the following, we adapt Giesl et al. DP-framework to provide a suitable frame-
work for mechanizing proofs of A∨C-termination using A∨C-DPs.

Definition 7 (A∨C problem). An A∨C problem τ is a tuple τ = (F, P, E, R, S),
where R = (Σ, E, R) is an A∨C-rewrite theory, P = (Γ, F, P ) is a rewrite theory,
and S = (F , S) is a TRS. An A∨C problem is finite if there is no infinite minimal
(F, P, E, R, S)-chain. An A∨C problem τ is infinite if R is non-A∨C-terminating
or there is an infinite minimal (F, P, E, R, S)-chain.

The following definition adapts the notion of processor [6] to prove termination
of A∨C-rewrite theories.

Definition 8 (A∨C processor). An A∨C processor Proc is a mapping from
A∨C problems into sets of A∨C problems. Alternatively, it can also return “no”.
An A∨C processor Proc is

– sound if for all A∨C problems τ , τ is finite whenever Proc(τ) �= no and
∀τ ′ ∈ Proc(τ), τ ′ is finite.

– complete if for all A∨C problems τ , τ is infinite whenever Proc(τ) = no or
∃τ ′ ∈ Proc(τ) such that τ ′ is infinite.
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Similar to [6] for the DP-framework, we construct a tree whose nodes are labeled
with A∨C problems or “yes” or “no”, and whose root is labeled with (E� ∪
E, DPE(R), E, R, S). Now we have the following result which adapts [6, Corollary
5] to A∨C-rewrite theories.

Theorem 5 (A∨C-DP framework). Let R = (Σ, E, R) be an A∨C-theory. We
construct a tree whose nodes are labeled with A∨C problems or “yes” or “no”, and
whose root is labeled with (E�∪E, DPE(R), E, R, S), where S = {f �(f(x, y), z) →
f �(x, y), f �(x, f(y, z)) → f �(y, z) | f ∈ ΣA ∪ΣAC}. For every inner node labeled
with τ , there is a sound processor Proc satisfying one of the following conditions:

1. Proc(τ) = no and the node has just one child, labeled with “no”.
2. Proc(τ) = ∅ and the node has just one child, labeled with “yes”.
3. Proc(τ) �= no, Proc(τ) �= ∅, and the children of the node are labeled with the

A∨C problems in Proc(τ).

If all leaves of the tree are labeled with “yes”, then R is E-terminating. Other-
wise, if there is a leaf labeled with “no” and if all processors used on the path
from the root to this leaf are complete, then R is not E-terminating.

6.1 A∨C-Dependency Graph

A∨C problems focus our attention on the analysis of infinite minimal chains.
Our aim here is obtaining a notion of graph which is able to represent all infinite
minimal chains of pairs as given in Definition 6.

Definition 9 (A∨C-Graph of Pairs). Let R = (Σ, E, R) and P = (Γ, F, P )
be rewrite theories and S = (F , S) be a TRS. The A∨C-graph associated to
them (denoted G(F, P, E, R, S)) has P as the set of nodes. There is an arc from
u → v ∈ P to u′ → v′ ∈ P if u → v, u′ → v′ is an (F, P, E, R, S)-chain.

In termination proofs, we are concerned with the so-called strongly connected
components (SCCs) of the dependency graph, rather than with the cycles them-
selves (which are exponentially many) [8]. A strongly connected component in a
graph is a maximal cycle, i.e., a cycle which is not contained in any other cycle.
In the following result, given two sets of rules S and Q, we let SQ be the least
subset of S satisfying that whenever there is a rule u → v ∈ Q, such that v
unifies with s for some s = t ∈ F or t = s ∈ F such that s = f(s1, s2) and
s1 /∈ X or s2 /∈ X , then Sf ⊆ SQ.

Theorem 6 (SCC processor). Let R = (Σ, E, R) and P = (Γ, F, P ) be
rewrite theories and S = (F , S) be a TRS. Then, the processor ProcSCC given
by

ProcSCC (F, P, E, R, S) = {(F, Q, E, R, SQ) | Q are the pairs of an SCC in G(F, P, E, R, S)}

is sound and complete.
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As a consequence, we can separately work with the strongly connected compo-
nents of G(F, P, E, R, S), disregarding other parts of the graph. Now we can use
these notions to introduce the A∨C-dependency graph, i.e., the A∨C-graph
whose nodes are the A∨C-DPs instead of an arbitrary set of pairs.

Definition 10 (A∨C-Dependency Graph). Let R = (Σ, E, R) be an A∨C-
rewrite theory with Σ = C � D. Let S = (Σ ∪ D�, S) be a TRS such that S =
{f �(f(x, y), z) → f �(x, y), f �(x, f(y, z)) → f �(y, z) | f ∈ ΣA ∪ΣAC}. The A∨C-
Dependency Graph associated to R is: DG(R) = G(E� ∪ E, DPE(R), E, R, S).

6.2 Estimating the A∨C-Dependency Graph

As in standard rewriting, the A∨C-dependency graph of an A∨C-rewrite theory is
in general not computable. So, we need to use some approximation of it. For any
term t ∈ T (Σ,X ) let Cap(t) result from replacing all proper subterms rooted by
a defined symbol by fresh variables and let Ren(t) which independently renames
all occurrences of variables in t by using new fresh variables [1].

As usual, we do not have to talk about mgu when dealing with rewriting
modulo equations. Instead, it is used the notion of complete set of E-unifiers.
However, although in theory, all these unifiers have to be considered, for our
results of reachability it is enough to check the existence of one.

Proposition 6. Let R = (Σ, E, R) be an A∨C-rewrite theory with Σ = C � D.
Let u, t ∈ T (Σ,X ) be such that Var(u) ∩ Var(t) = ∅ and θ, θ′ be substitutions.
If θ(t) →∗

ExtE(R),E ◦ ∼E θ′(u), then Ren(Cap(t)) and u E-unify.

Now, we are ready to provide a correct estimation of our graph of pairs. Cor-
rectness of our definition relies on Proposition 6.

Definition 11 (Estimated A∨C-Graph of Pairs). Let R = (Σ, E, R) and
P = (Γ, F, P ) be rewrite theories and S = (F , S) be a TRS. The estimated
A∨C-graph associated to them (denoted EG(F, P, E, R, S)) has P as the set of
nodes and arcs which connect them as follows:

1. If v unifies with s for some s = t ∈ F or t = s ∈ F such that s = f(s1, s2)
and s1 /∈ X or s2 /∈ X , then, there is an arc from u → v ∈ P to u′ → v′ ∈ P
if root(u′) = f .

2. Otherwise, there is an arc from u → v ∈ P to u′ → v′ ∈ P if Ren(Cap(v))
and u′ E-unify.

According to Definition 9, we would have the corresponding one for the estimated
A∨C-DG: EDG(R) = EG(E� ∪ E, DPE(R), E, R, S), where

S = {f �(f(x, y), z) → f �(x, y), f �(x, f(y, z)) → f �(y, z) | f ∈ ΣA ∪ΣAC}.
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Example 8. For the A∨C-rewrite theory in Figure 1, the set DPE(R) is1:

LIST2SET (cons(N, L)) → UNION(N, list2set(L)) (8)

LIST2SET (cons(N, L)) → LIST2SET (L) (9)

IN(N, union(M, S)) → EQ(N, M) (10)

IN(N, union(M, S)) → OR(eq(N, M), in(N, S)) (11)

IN(N, union(M, S)) → IN(N, S) (12)

UNION(union(N, N), Z) → UNION(N, Z) (13)

AND(and(true, B), Z) → AND(B, Z) (14)

AND(and(false, B), Z) → AND(false, Z) (15)

OR(or(true, B), Z) → OR(true, Z) (16)

OR(or(false, B), Z) → OR(B, Z) (17)

EQ(s(N), s(M)) → EQ(N, M) (18)

EQ(cons(N, L), cons(M, L′)) → EQ(N, M) (19)

EQ(cons(N, L), cons(M, L′)) → EQ(L, L′) (20)

EQ(cons(N, L), cons(M, L′)) → AND(eq(N, M), eq(L, L′)) (21)

The (estimated) A∨C-DG is:
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By Theorem 6 we transform the A∨C problem (E ∪E�, DP(R), E, R, S) into
a set ProcSCC (E ∪ E�, DP(R), E, R, S) given by

{(E ∪ E�, {(9)}, E, R, ∅), (E ∪ E�, {(12)}, E, R, ∅), (E ∪ E�, {(13)}, E, R, Sunion),

(E∪E�, {(14), (15)}, E, R, Sand), (E∪E�, {(16), (17)}, E, R, Sor), (E∪E�, {(18), (19), (20)}, E, R, ∅)}

which contains six new (but simpler) A∨C problems.

6.3 Use of Reduction Pairs

A reduction pair (�, �) consists of a stable and monotonic quasi-ordering �, and
a stable and well-founded ordering � satisfying either � ◦ �⊆� or � ◦ �⊆�.
In the dependency pair framework reduction pairs are used to obtain smaller
1 We have introduced new ‘prefix’ symbols eq, cons and union instead of the original

‘infix’ ones == , ; , .
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sets of pairs P ′ ⊆ P by removing the strict pairs, i.e., those pairs u → v ∈ P
such that u � v. Stability is required both for � and � because, although we
only check the left- and right-hand sides of the rewrite rules l → r (with �)
and pairs u → v (with � or �), the chains of pairs involve instances σ(l), σ(r),
σ(u), and σ(v) of rules and pairs and we aim at concluding σ(l) � σ(r), and
σ(u) � σ(v) or σ(u) � σ(v), respectively. Monotonicity is required for � to
deal with the application of rules l → r to an arbitrary depth in terms. Since
the pairs are ‘applied’ only at the root level, no monotonicity is required for �

(but, for this reason, we cannot compare the rules in R using �). Dealing with
associative-commutative axioms, we will compare them with the equivalence
relation defined by the stable, reflexive, transitive, and symmetric equivalence
∼ induced by �, i.e., ∼ = � ∩ �, since we need to impose compatibility with
the equational theories E and F . The following theorem formalizes a generic
processor to remove pairs from P by using reduction pairs.

Theorem 7 (Reduction pair processor). Let P = (Γ, F, P ) be a rewrite
theory, R = (Σ, E, R) be an A∨C-rewrite theory, and S = (F , S) be a TRS. Let
(�, �) be a reduction pair such that

1. R ⊆�,
2. P ∪ S ⊆� ∪ �, and
3. E ∪ F ⊆∼.

Let P� = {u → v ∈ P | u � v}. Then, the processor ProcRP given by

ProcRP (F, P, E, R, S) =
{
{(F, P − P�, E, R, S)} if (1), (2), and (3) hold
{(F, P, E, R, S)} otherwise

is sound and complete.

7 Related Work and Conclusions

As remarked in the introduction, this is not the first work which tries to use
dependency pairs for proving termination of rewriting modulo an equational
theory, see [5,10,11,9,13,14]. Our work, however, is, as far as the authors know,
the first one which provides a correct notion of minimal non-terminating term
for an A∨C-rewrite theoryR = (Σ, E, R) which can be used to provide a suitable
definition of minimal chain of dependency pairs which can be used to characterize
A∨C-termination (Theorem 4). In order to substantiate this claim, consider the
AC-rewrite theory R = (Σ, E, R) in Example 2 again. The A∨C-DPs for R are
enumerated in Example 7. Such dependency pairs coincide with the ones which
would be computed by, e.g., [5,10,11]. Remember that t in Example 2 is minimal
in Giesl and Kapur’s sense (Definition 2). We should, then, be able to find an
infinite minimal chain of DPs starting from t�. According to [5,10,11], ‘minimal’
means that σ(vi) is (ExtE(R), E)-terminating for all pairs ui → vi ∈ DPE(R) in
the chain of dependency pairs induced by the substitution σ. However, this is
not possible: the marked version t� of t is F (f(0, 1), f(0, f(1, 2))), which is an
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(ExtE(R), E)-terminating term. After some E� ∪ E-equivalence steps we would
be able to apply one of the rules in DPE(R). Note, however, that no rule u →
v ∈ DPE(R) except (5) has a right-hand side v which can be rewritten (after
instantiation into σ(v)) into an instance σ(u′) of the left-hand side u′ of any other
pair in DPE(R) by means of (ExtE(R), E� ∪E)-rewriting steps. This means that
only the dependency pair (5) could be used in any infinite minimal chain of
dependency pairs starting from t�. But such a chain would start as follows:

F (f(0, 1), f(0, f(1, 2))) ∼
E�∪E

F (f(0, 0), f(1, f(1, 2))) →(5) F (f(0, f(1, 2)), f(1, f(1, 2)))

where F (f(0, f(1, 2)), f(1, f(1, 2))) contains a subterm f(1, f(1, 2)) which, as
showed in Example 2, is non-(ExtE(R), E)-terminating. Therefore, this chain of
dependency pairs is not minimal. We conclude that, according to the notion of
minimal chain in the aforementioned papers, there is no minimal chain of pairs
starting from t�. This means that no sound approach to proving AC-termination
on the basis of such notion of minimal chain is possible. In this paper we have
introduced the notion of stably minimal term (Definition 3) which overcomes
these problems (Proposition 4 and Theorem 3) and leads to an appropriate
characterization of A∨C-termination as the absence of infinite minimal chains
of A∨C-DPs (Definitions 5 and 6, and Theorem 4).

Furthermore, we note that [10,11] deal with AC-rewrite theories only, and that
[5], which considers more general rewrite theories E including A∨C-theories do
not cover our work in a second respect: when purely associative theories are
considered (i.e., rewrite theories R = (Σ, E, R) such that Ef ⊆ {Af} for all
f ∈ Σ), then Giesl and Kapur’s technique requires the computation of instances
of the rules in ExtE(R) for which the computation of all the E-unifiers uniE(v, l)
of v and l for the rules l → r in ExtE(R) and equations u = v ∈ E or v =
u ∈ E is required. It is well-known, however, that the E-unification problem for
associative theories E is infinitary, which means that uniE(v, l) is not guaranteed
to be finite, in general. In sharp contrast, we do not have to do that for dealing
with purely associative rewrite theories R.

Our second main (and novel) contribution is the formalization of an A∨C-
dependency pair framework (Definitions 7 and 8) which, on the basis of the
previously developed theory, can be used to develop automatic tools for proving
termination of A∨C-rewrite theories (Theorem 5). Two important processors
have been adapted as well: the SCC processor (Theorem 6) and the reduction
pair processor (Theorem 7).

Much work remains ahead both in terms of further developing the new A∨C-
dependency pair framework and in tool support. Appropriate reduction orderings
which are well-suited for being used in the reduction pair processor should be
investigated. It would also be very useful to explore how the requirements on
E can be relaxed to handle even more general sets of axioms. Regarding tool
support for the method we have presented, we plan to integrate it within the
tool mu-term [2]. In this way, our termination technique modulo combinations
of associative and commutative axioms will become applicable to an even wider
range of rewrite theories, that can be transformed into A∨C-theories by non-
termination-preserving transformations [3,4,12].
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Abstract. If a set of equations E∪Ax is such that E is confluent, termi-
nating, and coherent modulo Ax, narrowing with E modulo Ax provides
a complete E∪Ax-unification algorithm. However, except for the hope-
lessly inefficient case of full narrowing, nothing seems to be known about
effective narrowing strategies in the general modulo case beyond the quite
depressing observation that basic narrowing is incomplete modulo AC.
In this work we propose an effective strategy based on the idea of the
E∪Ax-variants of a term that we call folding variant narrowing. This
strategy is complete, both for computing E∪Ax-unifiers and for com-
puting a minimal complete set of variants for any input term. And it
is optimally variant terminating in the sense of terminating for an in-
put term t iff t has a finite, complete set of variants. The applications
of folding variant narrowing go beyond providing a complete E ∪Ax-
unification algorithm: computing the E∪Ax-variants of a term may be
just as important as computing E∪Ax-unifiers in recent applications of
folding variant narrowing such as termination methods modulo axioms,
and checking confluence and coherence of rules modulo axioms.

1 Introduction

Narrowing is a fundamental rewriting technique useful for many purposes, in-
cluding equational unification and equational theorem proving [15], combinations
of functional and logic programming [12,13], partial evaluation [2], symbolic
reachability analysis of rewrite theories understood as transition systems [19],
and symbolic model checking [7].

Narrowing with confluent and terminating equations E enjoys key complete-
ness results, including the generation of a complete set of E-unifiers and the cov-
ering of all rewrite sequences starting at an instance of term t by a normalized
substitution, see [15]. However, full narrowing (i.e., narrowing at all non-variable
term positions) can be quite inefficient both in space and time. Therefore, much
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work has been devoted to narrowing strategies that, while remaining complete,
can have a much smaller search space. For instance, the basic narrowing strat-
egy [15] was shown to be complete w.r.t. a complete set of E-unifiers for confluent
and terminating equations E.

Termination aspects are another important potential benefit of narrowing
strategies, since they can sometimes terminate, generating a finite search tree
when narrowing an input term t, while full narrowing may generate an infinite
search tree on the same input term. For example, works such as [15,1] investigate
conditions under which basic narrowing, one of the most fully studied strategies
for termination purposes, terminates. Similarly, so-called lazy narrowing strate-
gies also seek to both reduce the search space and to increase the chances of
termination [10], but we are not aware of lazy narrowing strategies for the
modulo case.

By decomposing an equational theory E into a set of rules E and a set of
equational axioms Ax for which a finite and complete Ax-unification algorithm
exists, and imposing natural requirements such as confluence, termination and
coherence of the rules E modulo Ax, narrowing can be generalized to narrowing
modulo axioms Ax. As known since the original study [16], the good complete-
ness properties of standard narrowing extend naturally to similar completeness
properties for narrowing modulo Ax. This generalization of narrowing to the
modulo case has many applications. It is, to begin with, a key component of
theorem proving systems that often reason modulo axioms such as associativity–
commutativity, and greatly improves the efficiency of general paramodulation.
It is, furthermore, very important for adding functional-logical features to alge-
braic functional languages supporting rewriting modulo combinations of equa-
tional axioms. Yet another recent area with many applications is cryptographic
protocol analysis, where there is strong interest in analyzing protocol security
modulo the algebraic theory E of a protocol’s cryptographic functions, since pro-
tocols deemed to be secure under the standard Dolev-Yao model, which treats
the underlying cryptography as a black box, can sometimes be broken by clever
use of algebraic properties, e.g., [22].

However, very little is known at present about effective narrowing strategies
in the modulo case, and some of the known anomalies ring a cautionary note,
to the effect that the naive extensions of standard narrowing strategies can fail
rather badly in the modulo case. Indeed, except for [16,24], we are not aware of
any studies about narrowing strategies in the modulo case. Furthermore, as work
in [4,24] shows, narrowing modulo axioms such as associativity-commutativity
(AC) can very easily lead to non-terminating behavior and, what is worse, as
shown in the Example 1 below, due to Comon-Lundh and Delaune, basic nar-
rowing modulo AC is not complete.

Example 1. [4] Consider the equational theory (Σ, E � Ax) where E contains
the following equations and Ax contains associativity and commutativity for +:

a + a = 0 (1)
b + b = 0 (2)

a + a + X = X (3)
b + b + X = X (4)

0 + X = X (5)
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The set E is terminating, AC-convergent, and AC-coherent. Consider now the
unification problem X1 + X2

?= 0 and one of the possible solutions σ = {X1 �→
a+b; X2 �→ a+b}, which is a normalized solution. It is well-known that in the free
case (when Ax = ∅) basic narrowing is complete for unification in the sense of
lifting all innermost rewriting sequences (see [20]). That is, given a term t and a
substitution σ, every innermost rewriting sequence starting from tσ can be lifted
to a basic narrowing sequence from t computing a substitution more general than
σ. This completeness property fails for basic narrowing modulo AC as shown
by the above example when we consider the term t = X1 + X2 instantiated
with σ and the following innermost rewriting sequence modulo AC from tσ (we
underline the redex at each step): (a + b) + (a + b) →E,AC b + b →E,AC 0. As
further explained in Example 3 below, basic narrowing modulo AC, i.e., the
extension of basic narrowing to AC where we just replace syntactic unification
by AC-unification, cannot lift the above innermost sequence for tσ, because it is
necessary to narrow inside the term generated by instantiation. Therefore, basic
narrowing modulo AC is incomplete in the sense of not providing a complete
E∪AC-unification algorithm, even though E may be confluent, terminating, and
coherent modulo AC.

It seems clear that full narrowing, although complete, is hopelessly inefficient in
the free case, and even more so modulo a set Ax of axioms. The above example
shows that known efficient strategies like basic narrowing can totally fail to
enjoy the desired completeness properties modulo axioms. What can be done?
For equational theories of the form E∪Ax, where E is confluent, terminating, and
coherent modulo Ax, and such that E∪Ax has the finite variant property (FVP)
in the sense of [4], we proposed in [9] a narrowing strategy that is complete
in the sense of generating a complete set of most general E∪Ax-unifiers, and
terminates for any input term computing its complete set of variants. And in
[8] we gave a method that can be used to check if E∪Ax is FVP. However,
FVP is a quite strong restriction. To the best of our knowledge, except for the
hopelessly inefficient case of full narrowing, nothing is known at present about a
general narrowing strategy that is effective and complete in an adequate sense,
including being complete for computing E∪Ax-unifiers, for any theory E∪Ax
under the minimum requirements that E is confluent, terminating, and coherent
modulo Ax. It turns out that the notion of variant, which makes sense for any
such theory E∪Ax and does not depend on FVP, provides the key to obtaining
a strategy meeting these requirements, and sheds considerable light on the very
process of computing E∪Ax-unifiers by narrowing.

Our contributions. In this paper, for any theory E∪Ax with E confluent,
terminating, and coherent modulo Ax, we propose folding variant narrowing as
such a general and effective strategy satisfying the following properties:

1. It is complete, both in the sense of computing a complete set of E∪Ax-
unifiers, and of computing a minimal and complete set of variants for any
input term t.
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2. It is optimal variant terminating, in the sense that it will terminate for an
input term t if and only if t has a finite, complete set of variants (in particular,
it will terminate for any term t iff E∪Ax is FVP).

Furthermore, we show that basic narrowing, both in the free case (Ax = ∅) and
in the AC case, fails to satisfy properties (1) and/or (2).

The rest of the paper is organized as follows. After some preliminaries in
Section 2, we present in Section 3 the notion of variant of a term w.r.t. an order-
sorted equational theory and its application to equational unification. Then, we
study in Section 4 how to effectively compute the set of variants of a term and
provide the folding variant narrowing strategy. In Section 5 we describe future
work and conclude the paper.

2 Preliminaries

We follow the classical notation and terminology from [23] for term rewriting
and from [18] for rewriting logic and order-sorted notions. We assume an order-
sorted signature Σ = (S,≤, Σ) with poset of sorts (S,≤) and for each sort s ∈ S
where the connected component of s in (S,≤) has a top sort, denoted [s], and
all f : s1 · · · sn → s with n ≥ 1 have a top sort overloading f : [s1] · · · [sn] → [s].
We also assume an S-sorted family X = {Xs}s∈S of disjoint variable sets with
each Xs countably infinite. TΣ(X )s is the set of terms of sort s, and TΣ,s is the
set of ground terms of sort s. We write TΣ(X ) and TΣ for the corresponding
order-sorted term algebras.

For a term t we write Var(t) for the set of all variables in t. The set of positions
of a term t is written Pos(t), and the set of non-variable positions PosΣ(t). The
root position of a term is Λ. The subterm of t at position p is t|p and t[u]p is the
term t where t|p is replaced by u.

A substitution σ ∈ Subst(Σ,X ) is a sorted mapping from a finite subset of
X , written Dom(σ), to TΣ(X ). The set of variables introduced by σ is Ran(σ).
The identity substitution is id. Substitutions are homomorphically extended to
TΣ(X ). The application of a substitution σ to a term t is denoted by tσ. For
simplicity, we assume that every substitution is idempotent, i.e., for σ, Dom(σ)∩
Ran(σ) = ∅. Substitution idempotency ensures tσ = (tσ)σ. The restriction of
σ to a set of variables V is σ|V ; sometimes we write σ|t1,...,tn to denote σ|V
where V = Var(t1)∪ · · · ∪Var(tn). Composition of two substitutions is denoted
by σσ′. We call an idempotent substitution σ a variable renaming if there is
another substitution σ−1 such that (σσ−1)|Dom(σ) = id.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )[s] for some
sort s ∈ S. Given Σ and a set E of Σ-equations such that TΣ,s �= ∅ for every
sort s, order-sorted equational logic induces a congruence relation =E on terms
t, t′ ∈ TΣ(X ). Throughout this paper we assume that TΣ,s �= ∅ for every sort s.
An equational theory (Σ, E) is a pair with Σ an order-sorted signature and E a
set of Σ-equations.

The E-subsumption preorder �E (or � if E is understood) holds between
t, t′ ∈ TΣ(X ), denoted t �E t′ (meaning that t′ is more general than t modulo E),
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if there is a substitution σ such that t =E t′σ; such a substitution σ is said to
be an E-match from t to t′. The E-renaming equivalence t ≈E t′, holds if there
is a variable renaming θ such that tθ =E t′θ. For substitutions σ, ρ and a set
of variables V we define σ|V =E ρ|V if xσ =E xρ for all x ∈ V ; σ|V �E ρ|V if
there is a substitution η such that σ|V =E (ρη)|V ; and σ|V ≈E ρ|V if there is a
renaming η such that (ση)|V =E ρ|V .

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSU W

E (t = t′) is said to be
a complete set of unifiers of the equation t =E t′ away from W if: (i) each
σ ∈ CSU W

E (t = t′) is an E-unifier of t =E t′; (ii) for any E-unifier ρ of t =E t′ there
is a σ ∈ CSU W

E (t = t′) such that ρ|W �E σ|W ; (iii) for all σ ∈ CSU W
E (t = t′),

Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩ W = ∅. If the set of variables W
is irrelevant or understood from the context, we write CSUE(t = t′) instead of
CSU W

E (t = t′). An E-unification algorithm is complete if for any equation t = t′

it generates a complete set of E-unifiers. Note that this set needs not be finite. A
unification algorithm is said to be finitary and complete if it always terminates
after generating a finite and complete set of solutions. A unification algorithm
is said to be minimal if it always provides a maximal (w.r.t. �E) set of unifiers.

A rewrite rule is an oriented pair l → r, where l �∈ X and l, r ∈ TΣ(X )[s]
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ, Ax, R) with Σ an order-sorted signature, Ax a set of Σ-equations, and R a
set of rewrite rules. The rewriting relation on TΣ(X ), written t →R t′ or t →p,R t′

holds between t and t′ iff there exist p ∈ PosΣ(t), l → r ∈ R and a substitution
σ, such that t|p = lσ, and t′ = t[rσ]p. The subterm t|p is called a redex. The
relation →R/Ax on TΣ(X ) is =Ax;→R; =Ax. Note that →R/Ax on TΣ(X ) induces
a relation →R/Ax on the free (Σ, Ax)-algebra TΣ/Ax(X ) by [t]Ax →R/Ax [t′]Ax

iff t →R/Ax t′. The transitive closure of →R/Ax is denoted by →+
R/Ax and the

transitive and reflexive closure of →R/Ax is denoted by →∗
R/Ax. We say that a

term t is →R/Ax-irreducible (or just R/Ax-irreducible) if there is no term t′ such
that t →R/Ax t′.

For substitutions σ, ρ and a set of variables V we define σ|V →R/Ax ρ|V
if there is x ∈ V such that xσ →R/Ax xρ and for all other y ∈ V we have
yσ =Ax yρ. A substitution σ is called R/Ax-normalized (or normalized) if xσ is
R/Ax-irreducible for all x ∈ V .

We say that the relation →R/Ax is terminating if there is no infinite sequence
t1 →R/Ax t2 →R/Ax · · · tn →R/Ax tn+1 · · · . We say that the relation →R/Ax is
confluent if whenever t →∗

R/Ax t′ and t →∗
R/Ax t′′, there exists a term t′′′ such

that t′ →∗
R/Ax t′′′ and t′′ →∗

R/Ax t′′′. An order-sorted rewrite theory (Σ, Ax, R)
is confluent (resp. terminating) if the relation →R/Ax is confluent (resp. termi-
nating). In a confluent, terminating, order-sorted rewrite theory, for each term
t ∈ TΣ(X ), there is a unique (up to Ax-equivalence) R/Ax-irreducible term t′

obtained from t by rewriting to canonical form, which is denoted by t →!
R/Ax t′

or t↓R/Ax (when t′ is not relevant).
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2.1 R, Ax-Rewriting

Since Ax-congruence classes can be infinite, →R/Ax-reducibility is undecidable
in general. Therefore, R/Ax-rewriting is usually implemented [16] by R, Ax-
rewriting. We assume the following properties on R and Ax:

1. Ax is regular, i.e., for each t = t′ in Ax, we have Var(t) = Var(t′), and
sort-preserving, i.e., for each substitution σ, we have tσ ∈ TΣ(X )s iff t′σ ∈
TΣ(X )s; furthermore all variables in Var(t) have a top sort.

2. Ax has a finitary and complete unification algorithm.
3. For each t → t′ in R we have Var(t′) ⊆ Var(t).
4. R is sort-decreasing, i.e., for each t → t′ in R, each s ∈ S, and each substitu-

tion σ, t′σ ∈ TΣ(X )s implies tσ ∈ TΣ(X )s.
5. The rewrite rules R are confluent and terminating modulo Ax, i.e., the rela-

tion →R/Ax is confluent and terminating.

Definition 1 (Rewriting modulo [25]). Let (Σ, Ax, R) be an order-sorted
rewrite theory satisfying properties (1)–(5). We define the relation →R,Ax on
TΣ(X ) by t →p,R,Ax t′ (or just t →R,Ax t′) iff there is a p ∈ PosΣ(t), l → r in
R and substitution σ such that t|p =Ax lσ and t′ = t[rσ]p.

Note that, since Ax-matching is decidable, →R,Ax is decidable. Notions such
as confluence, termination, irreducible terms, and normalized substitution, are
defined in a straightforward manner for →R,Ax. Note that since R is confluent
and terminating modulo Ax, the relation →!

R,Ax is decidable, i.e., it terminates
and produces a unique term (up to Ax-equivalence) for each initial term t, de-
noted by t↓R,Ax. Of course t →R,Ax t′ implies t →R/Ax t′, but the converse does
not need to hold. To prove completeness of →R,Ax w.r.t. →R/Ax we need the
following additional coherence assumption; we refer the reader to [11,25,17] for
coherence completion algorithms.

6. →R,Ax is Ax-coherent [16], i.e., ∀t1, t2, t3 we have t1 →R,Ax t2 and t1 =Ax t3
implies ∃t4, t5 such that t2 →∗

R,Ax t4, t3 →+
R,Ax t5, and t4 =Ax t5.

The following theorem in [16, Proposition 1] that generalizes ideas in [21] and
has an easy extension to order-sorted theories, links →R/Ax with →R,Ax.

Theorem 1 (Correspondence [21,16]). Let (Σ, Ax, R) be an order-sorted
rewrite theory satisfying properties (1)–(6). Then t1 →!

R/Ax t2 iff t1 →!
R,Ax t3,

where t2 =Ax t3.

Finally, we provide the notion of decomposition of an equational theory into
rules and axioms.

Definition 2 (Decomposition [9]). Let (Σ, E) be an order-sorted equational
theory. We call (Σ, Ax, E) a decomposition of (Σ, E) if E = E � Ax and
(Σ, Ax, E) is an order-sorted rewrite theory satisfying properties (1)–(6).
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3 Variants and Equational Unification

Suppose that an equational theory E is decomposed into a set of rules E and
a set of equational axioms Ax such that a finite and complete Ax-unification
algorithm exists, and the rules E are confluent, terminating, sort-decreasing,
and coherent modulo Ax. Given a term t, an E,Ax-variant of t is a pair (t′, θ)
with t′ an E,Ax-canonical form of the term tθ. That is, the variants of a term
intuitively give us all the irreducible patterns that instances of t can reduce
to. Of course, some variants are more general than others, that is, there is a
natural preorder (t′, θ′) �E,Ax (t′′, θ′′) defining when variant (t′′, θ′′) is more
general than variant (t′, θ′). This is important, because even though the set of
E,Ax-variants of a term t may be infinite, the set of most general variants (that
is maximal elements in the generalization preorder up to Ax-equivalence and
variable renaming) may be finite.

The intimate connection of variants with E-unification is then as follows. Sup-
pose that we add to our theory decomposition E�Ax a binary equality predicate
eq, a new constant tt1 and for each top sort [s] and x of sort [s] an extra rule
eq(x, x) → tt . Then, given any two terms t, t′, if θ is a E-unifier of t and t′, then
the E,Ax canonical forms of tθ and t′θ must be Ax-equal and therefore the pair
(tt , θ) must be a variant of the term eq(t, t′). Furthermore, if the term eq(t, t′)
has a finite set of most general variants, then we are guaranteed that the set of
most general E-unifiers of t and t′ is finite.

We characterize a notion of variant semantics for equational theories.

Definition 3 (Variant Semantics). Let (Σ, Ax, E) be a decomposition of an
equational theory and t be a term. We define the set of variants of t as [[t]]�E,Ax =
{(t′, θ) | θ ∈ Subst(Σ,X ), tθ →!

E,Ax t′′, and t′′ =Ax t′}.

Let us make explicit the relation between variants and E-unification.

Proposition 1 (Variant-based Unification). Let (Σ, Ax, E) be a decomposi-
tion of an equational theory (Σ, E). Let t1, t2 be two terms. Then, ρ is a E-unifier
of t1 and t2 iff ∃(t′, ρ) ∈ [[t1]]

�
E,Ax ∩ [[t2]]

�
E,Ax.

Some variants are more general than others. We write (t1, θ1) �E,Ax (t2, θ2)
to denote that variant (t2, θ2) is more general than variant (t1, θ1). Our notion of
being more general takes into account not only the instantiation relation between
the two substitutions θ1 and θ2 and the two normal forms t1 and t2 of a term
t, but also whether θ2 is already an E,Ax-normalized substitution, since, for a
substitution, the less E,Ax rewrite steps, the better.

Definition 4 (Variant Preordering). Let (Σ, Ax, E) be a decomposition of
an equational theory and t be a term. Given two variants (t1, θ1), (t2, θ2) ∈
[[t]]�E,Ax, we write (t1, θ1) �E,Ax (t2, θ2), meaning (t2, θ2) is more general than

1 We extend Σ to Σ̂ by adding a new sort Truth, not related to any sort in Σ, with
constant tt, and for each top sort of a connected component [s], an operator eq : [s]
× [s] → Truth.



Folding Variant Narrowing and Optimal Variant Termination 59

(t1, θ1), iff there is a substitution ρ such that t1 =Ax t2ρ and θ1↓E,Ax =Ax θ2ρ.
We write (t1, θ1) �E,Ax (t2, θ2) if for every substitution ρ such that t1 =Ax t2ρ
and θ1↓E,Ax =Ax θ2ρ, then ρ is not a renaming.

We are, indeed, interested in equivalence classes for variant semantics and pro-
vide a notion of semantic equality, written �E,Ax, based on �E,Ax.

Definition 5 (Variant Equality). Let (Σ, Ax, E) be a decomposition of an
equational theory and t be a term. For S1, S2 ⊆ [[t]]�E,Ax, we write S1 �E,Ax S2
iff for each (t1, θ1) ∈ S1, there exists (t2, θ2) ∈ S2 s.t. (t1, θ1) �E,Ax (t2, θ2). We
write S1 �E,Ax S2 iff S1 �E,Ax S2 and S2 �E,Ax S1.

Despite the previous semantic notion of equivalence, the following, more syntac-
tic notion of equality of variants up to renaming is useful.

Definition 6 (Ax-Equality). Let (Σ, Ax, E) be a decomposition of an equa-
tional theory and t be a term. For (t1, θ1), (t2, θ2) ∈ [[t]]�E,Ax, we write (t1, θ1) ≈Ax

(t2, θ2) if there is a renaming ρ such that t1ρ =Ax t2ρ and θ1ρ =Ax θ2ρ. For
S1, S2 ⊆ [[t]]�E,Ax, we write S1 ≈Ax S2 if for each (t1, θ1) ∈ S1, there exists
(t2, θ2) ∈ S2 s.t. (t1, θ1) ≈Ax (t2, θ2), and for each (t2, θ2) ∈ S2, there exists
(t1, θ1) ∈ S1 s.t. (t2, θ2) ≈Ax (t1, θ1).

The preorder of Definition 4 allows us to provide a most general and complete
set of variants that encompasses all the variants for a term t.

Definition 7 (Most General and Complete Variant Semantics). Let
(Σ, Ax, E)beadecompositionofanequational theoryand tbea term.Amostgeneral
and complete variant semantics of t, denoted [[t]]E,Ax, is a subset [[t]]E,Ax ⊆ [[t]]�E,Ax

such that: (i) [[t]]�E,Ax �E,Ax [[t]]E,Ax, and (ii) for each (t1, θ1) ∈ [[t]]E,Ax, there is no
(t2, θ2) ∈ [[t]]E,Ax s.t.(t1, θ1) �≈Ax (t2, θ2)and(t1, θ1) �E,Ax (t2, θ2).

Note that, for any term t, [[t]]�E,Ax �E,Ax [[t]]E,Ax but, in general, [[t]]�E,Ax �≈Ax

[[t]]E,Ax. Also, by definition, all the substitutions in [[t]]E,Ax are E,Ax-normalized.
Moreover, [[t]]E,Ax is unique up to ≈Ax and provides a very succinct description
of [[t]]�E,Ax. Indeed, up to Ax-equality, [[t]]E,Ax characterizes the set of maximal
elements (therefore, most general variants) of the preorder ([[t]]E,Ax,�E,Ax).

Again, let us make explicit the relation between variants and E-unification.

Proposition 2 (Minimal and Complete E-unification). Let (Σ, Ax, E) be
a decomposition of an equational theory (Σ, E). Let t, t′ be two terms. Then,
S = {θ | (tt, θ) ∈ [[eq(t, t′)]]Ê,Ax} is a minimal and complete set of E-unifiers

for t = t′, where eq and tt are new symbols defined in Footnote 1 and Ê =
E ∪ {eq(X, X) → tt}.

Example 2. Let us consider the following equational theory for the exclusive or
operator and the cancellation equations for public encryption/decryption, which
is actually useful for protocol verification (see [19]). This equational theory is
relevant because there are no unification procedures directly applicable to it, e.g.
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unification algorithms for exclusive-or such as [3] do not directly apply if extra
equations are added. The exclusive or symbol ⊕ has associative and commuta-
tive (AC) properties with 0 as its unit. The symbol pk is used for public key
encryption and the symbol sk for private key encryption. The equational theory
(Σ, E) has a decomposition into E containing the following oriented equations
and Ax containing associativity and commutativity for ⊕:

X ⊕ 0 = X (6) X ⊕X = 0 (7)
X ⊕X ⊕ Y = Y (8)

pk(K, sk(K, M)) = M (9)
sk(K, pk(K, M)) = M (10)

Note that equations (6)–(7) are not AC-coherent, but adding equation (8) is
sufficient to recover that property. For t = M ⊕ sk(K, pk(K, M)) and s =
X ⊕ sk(K, pk(K, Y )), we have that [[t]]E,Ax = {(0, id)} and [[s]]E,Ax = {(X ⊕
Y, id), (Z, {X �→ 0, Y �→ Z}), (Z, {X �→ Z, Y �→ 0}), (Z, {X �→ Z ⊕ U, Y �→
U}), (Z, {X �→ U, Y �→ Z ⊕ U}), (0, {X �→ U, Y �→ U}), (Z1 ⊕ Z2, {X �→
U ⊕ Z1, Y �→ U ⊕ Z2})}. This set is the most general one w.r.t. �E,Ax.

The finite variant property defined by Comon-Lundh and Delaune [4], provides
a useful sufficient condition for finitary E-unification. Essentially, it determines
whether every term has a finite number of most general variants.

Definition 8 (Finite variant property [4]). Let (Σ, Ax, E) be a decomposi-
tion of an equational theory (Σ, E). Then (Σ, E), and thus (Σ, Ax, E), has the
finite variant property iff for each term t, the set [[t]]E,Ax is finite. We will call
(Σ, Ax, E) a finite variant decomposition of (Σ, E) iff (Σ, Ax, E) has the finite
variant property.

In [8] we developed a technique to check whether an equational theory has the
finite variant property. Using our technique it is easy to check that Example 2
has the finite variant property, as every right–hand side is a constant symbol or
a variable.

Finally, it is clear that when we consider a finite variant decomposition, we
have a decidable unification algorithm.

Corollary 1 (Finitary E-unification). Let (Σ, Ax, E) be a finite variant de-
composition of an equational theory (Σ, E). Then, for any two given terms t, t′,
S = {θ | (tt, θ) ∈ [[eq(t, t′)]]Ê,Ax} is a finite, minimal, and complete set of

E-unifiers for t = t′, where Ê, eq, and tt are defined as in Proposition 2.

Note that the opposite does not hold: given two terms t, t′ that have a finite,
minimal, and complete set of E-unifiers, the equational theory (Σ, E) may not
have a finite variant decomposition (Σ, Ax, E). An example is the unification
under homomorphism (or one-side distributivity), where there is a finite number
of unifiers of two terms but the theory does not satisfy the finite variant property
(see [4,8]); the key idea is that the term eq(t, t′) may have an infinite number
of variants even though there is only a finite set of most general variants of the
form (tt, θ).

Once we have clarified the intimate relation between variants and equational
unification, we consider in the next section how to compute a complete set of
variants of a term.
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4 Variants and Narrowing-Based Equational Unification

Narrowing generalizes rewriting by performing unification at non-variable po-
sitions instead of the usual matching. The essential idea behind narrowing is
to symbolically represent the rewriting relation between terms as a narrowing
relation between more general terms with variables.

Definition 9 (Narrowing modulo [16,19]). Let (Σ, Ax, R) be an order-sorted
rewrite theory. Let CSUAx(u = u′) provide a finitary and complete set of Ax-
unifiers for any pair of terms u, u′ with the same top sort. Let t be a term and
W be a set of variables such that Var(t) ⊆ W . The R, Ax-narrowing relation on
TΣ(X ) is defined as t 	p,σ,R,Ax t′ (	σ,R,Ax if p is understood, and 	 if σ, R, Ax
are understood) if there is p ∈ PosΣ(t), a rule l → r ∈ R properly renamed s.t.
Var(l) ∩ W = ∅, and σ ∈ CSU W ′

Ax (t|p = l) for W ′ = W ∪ Var(l) such that
t′ = (t[r]p)σ.

For convenience, in each narrowing step t 	σ t′ we only provide the part of σ that
binds variables of t. The transitive closure of 	 is denoted by 	+ and the transi-
tive and reflexive closure by 	∗. We may write t 	∗

σ t′ instead of t 	∗ t′ if there
are s1, . . . , sk−1 and substitutions ρ1, . . . , ρk such that t 	ρ1 s1 · · · sk−1 	ρk

t′,
k ≥ 0, and σ = ρ1 · · · ρk. Several notions of completeness of narrowing w.r.t.
rewriting have been given in the literature (e.g. [15,16,19]).

Theorem 2 (Completeness of Full Narrowing Modulo [16]). Let
(Σ, Ax, E) be a decomposition of an equational theory. Let t1 be a term and θ be
an E,Ax-normalized substitution. If t1θ →!

E,Ax t2, then there exists a term t′2 and
two E,Ax-normalized substitutions θ′ and ρ s.t. t1 	∗

θ′,E,Ax t′2,
θ|Var(t1) =Ax (θ′ρ)|Var(t1), and t2 =Ax t′2ρ. Furthermore, the rewriting sequence
and the narrowing sequence have the same number of steps, with the same rules
and at the same positions.

Narrowing completeness ensures complete generation of all the variants of a
term and, thus, an E-unification algorithm: if the term eq(t, t′) has a finite set
of most general variants, then we are guaranteed that the set of most general
substitutions computed by E,Ax-narrowing is finite and provides the set of most
general E-unifiers of t and t′. However, can we compute the set of most general E-
unifiers of t and t′ effectively? This is not entirely obvious. Full E,Ax-narrowing
may never terminate, since it will compute a complete set of variants of the form
(tt , θ) for the term eq(t, t′), but that set may easily be infinite, even though a
finite set of most general elements for it exists. The solution, of course, is that we
should look for adequate narrowing strategies that have better properties than
full E,Ax-narrowing so that, in the end, we can obtain a terminating narrowing-
based E-unification algorithm to unify t and t′ whenever any term eq(t, t′) has
a finite set of most general variants.

4.1 Narrowing Strategies and Their Properties

In order to provide an appropriate narrowing strategy that enjoys better proper-
ties than full E,Ax-narrowing, we need to characterize what a narrowing strategy
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is and which properties it must satisfy. E.g., the notion of variant–completeness
rather than the standard full narrowing completeness becomes essential.

First, we define the notion of a narrowing strategy and several useful proper-
ties. Given a narrowing sequence α : (t0 	σ0,p0,R,Ax t1 · · ·	σn−1,pn−1,R,Ax tn), we
denote by αi the narrowing sequence αi : (t0 	σ0,p0,R,Ax t1 · · ·	σi−1,pi−1,R,Ax ti)
which is a prefix of α. We denote by FullR(t) the set of all narrowing sequences
starting at term t.

Definition 10 (Narrowing Strategy). A narrowing strategy S is a function
of two arguments, namely, a rewrite theory R = (Σ, Ax, R) and a term t ∈
TΣ(X ), which we denote by SR(t), such that SR(t) ⊆ FullR(t). We require
SR(t) to be prefix closed, i.e., for each narrowing sequence α ∈ SR(t), and each
i ∈ {1, . . . , n}, we also have αi ∈ SR(t).

We say a narrowing strategy S is complete if it satisfies Theorem 2. In this paper
we are interested in a notion of completeness of a narrowing strategy slightly
different than previous notions, which we call variant-completeness. First, we
extend the variant semantics to narrowing and consider only narrowing sequences
to normalized terms.

Definition 11 (Narrowing Semantics). Let R = (Σ, Ax, E) be a decompo-
sition of an equational theory (Σ, E) and S be a narrowing strategy. We de-
fine the set of narrowing variants of a term t w.r.t. S as [[t]]SE,Ax = {(t′, θ) |
(t 	∗

θ,E,Ax t′) ∈ SR(t) and t′ = t′↓E,Ax}.

Now, we can define our notion of variant–completeness.

Definition 12 (Variant Completeness and Minimality). Let (Σ, Ax, E) be
a decomposition of an equational theory (Σ, E). A narrowing strategy S is called
E-variant–complete (or just variant–complete) iff for any term t [[t]]E,Ax �E,Ax

[[t]]SE,Ax. The narrowing strategy S is called E-variant–minimal (or just variant–
minimal) iff, in addition, we have that for any term t [[t]]E,Ax ≈Ax [[t]]SE,Ax and
for each pair of variants (t1, θ1), (t2, θ2) ∈ [[t]]SE,Ax such that (t1, θ1) �=Ax (t2, θ2),
we have that (t1, θ1) �≈Ax (t2, θ2).

This minimality property motivates the following corollary.

Corollary 2. Let (Σ, Ax, E) be a decomposition of an equational theory (Σ, E)
and S be an E-variant-complete narrowing strategy. For any two terms t, t′ with
the same top sort, the set S = {θ | (tt, θ) ∈ [[eq(t, t′)]]SÊ,Ax} is a complete set

of E-unifiers for t = t′, where Ê, eq, and tt are defined as in Proposition 2.
If, in addition, S is a E-variant-minimal narrowing strategy, then the set S is a
minimal set of E-unifiers for t = t′.

In practice, the set SR(t) of narrowing sequences from a term t will be generated
by an algorithm AS . That is, AS is a computable function such that, given a
pair (R, t), enumerates the set SR(t). If E = (Σ, Ax, E) is a decomposition of
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an equational theory, the strategy SE is variant–complete, and [[t]]E,Ax is finite
on an input term t, then [[t]]SE,Ax may not be finite. Furthermore, even if [[t]]SE,Ax

is finite, its enumeration using the algorithm AS might not terminate. We are
of course interested in variant–complete narrowing strategies that will always
terminate on an input term t whenever [[t]]E,Ax is finite, since by Corollary 2
such strategies will provide a finitary E-unification algorithm whenever E has the
finite variant property. This leads to the following notion of variant–termination
for an algorithm AS restricting the class of algorithms we are interested in.

Definition 13 (Optimal Variant Termination). Let (Σ, Ax, E) be a decom-
position of an equational theory (Σ, E) and S be an E-variant-complete narrowing
strategy. An algorithm AS is variant terminating iff AS(E , t) terminates on in-
put (E , t) iff [[t]]SE,Ax is finite. An algorithm AS is optimally variant terminating
iff AS is variant terminating and [[t]]SE,Ax is variant–minimal for every term t.

By abuse of language, we say that a narrowing strategy S is variant terminat-
ing (resp. optimally variant terminating) whenever AS is. The term “optimally
variant terminating” is justified as follows.

Corollary 3. Let E = (Σ, Ax, E) be a decomposition of an equational theory
(Σ, E). Let S be a E-variant–complete narrowing strategy and S′ be an optimally
variant terminating narrowing strategy. Then, for each term t such that SE(t) is
finite, then S′

E(t) is also finite.

4.2 Basic Narrowing Modulo Is Neither Variant–Complete Nor
Optimally Variant–Terminating

In this section we show that basic narrowing modulo AC is not variant–complete.
Furthermore, we show that even basic narrowing without axioms is not optimally
variant–terminating, thus motivating that there is room for improvement even
in the free case. We extend the standard definition of basic narrowing given in
[14] to the modulo case.

Definition 14 (Basic Narrowing modulo Ax). Let (Σ, Ax, R) be an order-
sorted rewrite theory. Given a term t ∈ TΣ(X ), a substitution ρ, and a set W of
variables such that Var(t) ⊆ W and Var(ρ) ⊆ W , a basic narrowing modulo Ax

step for 〈t, ρ〉 is defined by 〈t, ρ〉 b	p,θ,R,Ax 〈t′, ρ′〉 if there is p ∈ PosΣ(t), a rule

l → r ∈ R properly renamed s.t. Var(l) ∩W = ∅, and θ ∈ CSU W ′
Ax (t|pρ = l) for

W ′ = W ∪ Var(l) such that t′ = t[r]p, and ρ′ = ρθ.

Basic narrowing modulo AC is incomplete w.r.t. innermost rewriting modulo AC
despite the free case [20], i.e., there are innermost rewriting sequences modulo
AC that are not lifted to basic narrowing modulo Ax. And, therefore, basic
narrowing modulo AC is not variant–complete.

Example 3. The narrowing sequence shown in Example 1 is not a basic nar-
rowing sequence modulo AC, as after the first step it results in 〈X, ρ1〉 and no
further basic narrowing modulo AC step is possible:
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〈X1 + X2, id〉
b	

Λ,ρ1,E,Ax 〈X, ρ1〉
using ρ1 = {X1 �→ a + X ′, X2 �→ a + X ′′, X �→ X ′ + X ′′} and rule (3)

Therefore, basic narrowing modulo AC is not variant–complete, since the pair
(0, σ) is a variant of t. The (full or unrestricted) narrowing sequence associated
to the unification problem X1 + X2

?= 0 in the extended equational theory Ê
defined in Proposition 2 is:

eq(X1 + X2, 0)	ρ1,Ê,Ax eq(X
′ + X ′′, 0)

using ρ1 = {X1 �→ a + X ′, X2 �→ a + X ′′} and rule (3)

eq(X ′ + X ′′, 0)	ρ2,Ê,Ax eq(0, 0) using ρ2 = {X ′ �→ b, X ′′ �→ b} and rule (2)

eq(0, 0)	id,Ê,Ax tt using rule eq(X, X) → tt

Furthermore, if we add a new equation 0+0+X = 0+X basic narrowing modulo
AC does not terminate though the number of variants does not change at all, due
to the following always available narrowing step 0 + X2 	θ1,E,Ax 0 + X ′

2 using
θ1 = {X2 �→ 0 + X ′

2, X �→ X ′
2}.

Moreover, basic narrowing in the free case is not optimally variant–terminating,
as shown by the following example.

Example 4. Consider the rewrite theory R = (Σ, ∅, E) where E is the set of
convergent rules E = {f(x) → x, f(f(x)) → f(x)} and Σ contains only the
unary symbol f and a constant a. The term t = f(x) has only one vari-
ant: [[f(x)]]E,Ax = {(x, id)}. Indeed, the theory has the finite variant property
(see [8]). Basic narrowing performs the following two narrowing steps:

(i) 〈f(x), id〉 b	{x �→x′},E 〈x′, {x �→ x′}〉 and

(ii) 〈f(x), id〉 b	{x �→f(x′)},E 〈f(x′), {x �→ f(x′)}〉.

However, the second narrowing step leads to the following non-terminating basic
narrowing sequence:

〈f(x), id〉 b	{x �→f(x′)},E 〈f(x′), {x �→ f(x′)}〉
b	{x′ �→f(x′′)},E 〈f(x′′), {x �→ f(f(x′′)), x′ �→ f(x′′)}〉

· · ·

and basic narrowing is unable to terminate and provide the finite number of
variants associated to the term t.

In the following section we provide a narrowing strategy to compute the variants
of a term that is variant–complete, variant–minimal, and optimally variant–
terminating.

4.3 An Optimally Variant–Terminating, and Variant–Minimal
Narrowing Strategy for Finite Variant Decompositions

For a finite variant decomposition, we achieve optimal variant termination by
simply keeping track of all the variants generated so far, since we know that there
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is a finite set of more general variants and sooner or later narrowing will generate
all the most general variants. We have developed in [7] a way of detecting such
repetitions.

Definition 15 (Transition System). [7] A transition system is written A =
(A,→), where A is a set of states, and → is a transition relation between states,
i.e., →⊆ A×A. We write A = (A,→, I) when I ⊆ A is a set of initial states.

Intuitively, we define a global strategy that keeps track of previously computed
variants and discards narrowing steps that compute a previously met variant.

Definition 16 (Folding Reachable Transition Subsystem [7]). Given a
transition system A = (A,→, I) and a relation G ⊆ A × A, the reachable sub-
system from I in A with folding G is written ReachG

A(I) = (ReachG
→(I),→G, I),

where ReachG→(I) =
⋃

n∈N
FrontierG→(I)n and

FrontierG
→(I)0 = I,

FrontierG
→(I)n+1 = {y ∈ A | (∃z ∈ FrontierG

→(I)n : z → y)∧
(�k ≤ n, w ∈ FrontierG→(I)k : y G w)},

→G=
⋃

n∈N
→G

n+1,

x →G
n+1 y

⎧⎪⎪⎨
⎪⎪⎩

if x ∈ FrontierG→(I)n, y ∈ FrontierG→(I)n+1,
x → y;

if x ∈ FrontierG
→(I)n, y �∈ FrontierG

→(I)n+1,
∃k ≤ n : y ∈ FrontierG→(I)k, ∃w : (x → w ∧w G y)

Note that, the more general relation G, the greater the chances of ReachG
A(I)

being a finite transition system. In [7], we study different relations G such as �Ax

or ≈Ax and its properties. For computing the variants, G is just the preorder
�E,Ax between variants. Given a decomposition (Σ, Ax, E) of an equational the-
ory (Σ, E) and a narrowing strategy SE , we extend SE to variants as follows: given
a term t and a substitution ρ s.t. tρ =Ax t, SE((t, ρ)) = {(t, ρ)	k

σ,E,Ax(t′, ρσ) |
(t 	k

σ,E,Ax t′) ∈ SE(t)}. Given a narrowing strategy SR, we write S1
R to denote

narrowing derivations produced by SR of length exactly 1.

Definition 17 (Folding Narrowing Strategy). Let (Σ, Ax, E) be a decompo-
sition of an equational theory (Σ, E) and SE a narrowing strategy. Let t be a term.
Let us consider the transition system (TΣ(X ) ×Subst(Σ,X ),S1

E , I) for variants
with the one-step version of the strategy SE and the initial state I = (t, id). The
folding SE–narrowing strategy, denoted by S�

E (t), is defined as

S�
E (t) = {t 	k

σ,E,Ax t′ | ((t, id)	k
σ,E,Ax(t′, σ)) ∈ SE(t) ∧

(t′, σ) ∈ Frontier
�E,Ax

S1
E

(I)k}

We write Full�
R for the folding version of the full narrowing strategy.

The following example shows that basic narrowing may be non-terminating
in cases when variant narrowing does terminate.
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Example 5. Considering Example 4 and using the Full�
R strategy we only get

step (i). Step (ii) is subsumed as (f(x′), {x �→ f(x′)}) �E,∅ (x′, {x �→ x′}). So
even though basic narrowing does not terminate in this case, Full�

R does.

The following example shows what steps can be done by Full�
R and termination

of it on the given example.

Example 6. Using the theory from Example 2, for t = X⊕Y we get the following
Full�

R steps. Note that we only need to consider steps with normalized substi-
tutions as otherwise the resulting variant would be subsumed by the variant
reachable using the normalized form of the same substitution.

(i) (t, id)	φ1(Z, φ1), with φ1 = {X �→ 0, Y �→ Z},
(ii) (t, id)	φ2(Z, φ2), with φ2 = {X �→ Z, Y �→ 0},
(iii) (t, id)	φ3(Z, φ3), with φ3 = {X �→ Z ⊕ U, Y �→ U},
(iv) (t, id)	φ4(Z, φ4), with φ4 = {X �→ U, Y �→ Z ⊕ U},
(v) (t, id)	φ5(0, φ5), with φ5 = {X �→ U, Y �→ U},
(vi) (t, id)	φ6(Z1 ⊕ Z2, φ6), with φ6 = {X �→ U ⊕ Z1, Y �→ U ⊕ Z2}.

There are no further steps possible from (i)-(v) as any instantiation of Z for which
a narrowing step is possible would mean that the substitution is not normalized,
and 0 is a normal form without variables. For the result of (vi), (Z1⊕Z2, φ6), we
are back at the beginning and can repeat all of the steps possible for (t, id), but
all of the results are subsumed by the same step we already have from (t, id).
So, Full�

R terminates for t.

Note that by the use of the folding definition we get only the shortest paths to
each possible term (depending on the substitution), since the longer paths are
simply subsumed by shorter ones using �E,Ax. Any folding narrowing strategy
is sound as it is a further restriction of the narrowing strategy. We prove that
any folding narrowing strategy is variant–complete provided the given narrowing
strategy is complete according to Theorem 2.

Theorem 3 (Variant Completeness of Folding Narrowing). Let (Σ,
Ax, E) be a decomposition of an equational theory (Σ, E). Let t1 be a term and θ
be an E,Ax-normalized substitution. Let SE be a complete narrowing strategy. If
t1θ →!

E,Ax t2 then there exists a term t′2 and two E,Ax-normalized substitutions
θ′ and ρ s.t. (t1 	∗

θ′,E,Ax t′2) ∈ S�
E (t), θ|Var(t1) =Ax (θ′ρ)|Var(t1), and t2 =Ax t′2ρ.

The following corollary establishes that folding full-narrowing is an optimally
variant–terminating, and variant–minimal narrowing strategy for finite variant
decompositions.

Corollary 4. Let (Σ, Ax, E) be a decomposition of an equational theory (Σ, E).
The folding full–narrowing Full�

E is variant–complete and variant–minimal, i.e.,

for any term t, [[t]]E,Ax ≈Ax [[t]]Full �
E

E,Ax . Moreover, if (Σ, Ax, E) is a finite variant
decomposition of (Σ, E), then Full�

E is also optimally variant–terminating.
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5 Conclusions

To the best our knowledge, the general problem of finding effective strategies
for narrowing modulo axioms that avoid the hopeless inefficiency of full narrow-
ing and the incompleteness in general of basic narrowing for the modulo case,
has remained unsolved up to now. We have presented folding variant narrowing
as an effective strategy that, by computing exactly and only a mimimal com-
plete set of variants for a term t, is optimally variant terminating, and complete
both for unification purposes and for computing variants. Besides yielding in
particular a new finitary unification algorithm for FVP equational theories that
improves upon the variant algorithm presented in [9], and does not require any-
more prior checking of FVP as described in [8], by being applicable to any equa-
tional theory modulo under minimal assumptions of confluence, termination,
and coherence, many more applications than just cryptographic protocol anal-
ysis modulo algebraic properties in the style of the Maude-NPA [6] are opened
up. In fact, several such applications, to termination methods modulo axioms
[5], and to the most recent Maude CRC and ChC tools modulo axioms (see
http://maude.lcc.uma.es/CRChC/), are already exploiting the general power
of folding variant narrowing.

As always, however, much work remains ahead, particularly in the two closely-
related areas of refining and optimizing the folding variant narrowing strategy,
and of developing an efficient implementation. There is already an existing im-
plementation in Maude of variant narrowing under the FVP assumption that
has been shown effective in formally analyzing a good number of cryptographic
protocols modulo a variety of algebraic theories describing their cryptographic
infrastructure (see [6] and references there). We expect that a good part of the
infrastructure of the current FVP variant narrowing strategy will be easily exten-
sible to an optimized form of the folding variant narrowing strategy; but this will
require substantial new work in design, implementation, and experimentation.
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1 Universidad de Málaga, Spain
2 University of Illinois at Urbana-Champaign, IL, USA

Abstract. The Church-Rosser property, together with termination, is
essential for an equational specification to have good executability
conditions, and also for having a complete agreement between the spec-
ification’s initial algebra, mathematical semantics, and its operational
semantics by rewriting. Checking this property for expressive specifi-
cations that are order-sorted, conditional with possibly extra variables
in their condition, and whose equations can be applied modulo differ-
ent combinations of associativity, commutativity and identity axioms
is challenging. In particular, the resulting conditional critical pairs that
cannot be joined have often an intuitively unsatisfiable condition or seem
intuitively joinable, so that sophisticated tool support is needed to elim-
inate them. Another challenge is the presence of different combinations
of associativity, commutativity and identity axioms, including the very
challenging case of associativity without commutativity for which no
finitary unification algorithms exist. In this paper we present the foun-
dations and illustrate the design and use of a completely new version
of the Maude Church-Rosser Checker tool that addresses all the above-
mentioned challenges and can deal effectively with complex conditional
specifications modulo axioms.

1 Introduction

The goal of executable equational specification languages is to make computable
the abstract data types specified in them by initial algebra semantics. In practice
this is accomplished by using specifications that are Church-Rosser (or at least
ground Church-Rosser) and terminating, so that the equations can be used from
left to right as simplification rules; the result of evaluating an expression is then
the canonical form that stands as a unique representative for the equivalence class
of terms equal to the original term according to the equations. This approach is
fully general; indeed, a well-known result of Bergstra and Tucker [5] shows that
any computable algebraic data type can be specified by means of a finite set
of ground-Church-Rosser and terminating equations, perhaps with the help of
some auxiliary functions added to the original signature. For order-sorted spec-
ifications, being Church-Rosser and terminating means not only confluence—so
that a unique normal form will be reached—but also a descent property ensuring
that the normal form will have the least possible sort among those of all other
equivalent terms.
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Therefore, for computational purposes it becomes very important to know
whether a given specification is indeed (ground-)Church-Rosser and terminat-
ing. A nontrivial question is how to best support this with adequate tools. One
can prove the operational termination of his/her (possibly conditional) Maude
equational specification by using the MTT tool [14]. A thornier issue is what to
do for establishing the ground-Church-Rosser property for a terminating spec-
ification. The problem is that a specification with an initial algebra semantics
can be ground-Church-Rosser even though some of its critical pairs may not
be joinable. That is, the specification can often be ground-Church-Rosser with-
out being Church-Rosser for arbitrary terms with variables. In such a situation,
blindly applying a completion procedure that is trying to establish the Church-
Rosser property for arbitrary terms may be both quite hopeless—the procedure
may diverge or get stuck because of unorientable rules, and even with success
may return a specification that is quite different from the original one—and
even unnecessary, if the specification was already ground-Church-Rosser. As we
further explain in Section 3, several methods that do not alter the mathemati-
cal semantics of the original specification may allow us to either prove that the
specification is ground Church-Rosser, or to transform it into an equivalent one
that is Church-Rosser; typically with minimal changes.

Here, we present CRC, a Church-Rosser checker to check whether a (possi-
bly conditional) order-sorted equational specification modulo equational axioms
satisfies the Church-Rosser property. Our Church-Rosser checker tool is partic-
ularly well-suited for checking specifications with an initial algebra semantics
that have already been proved terminating and now need to be checked to be
Church-Rosser, or at least ground-Church-Rosser. Of course, the CRC tool can
also be used to check the Church-Rosser property of conditional order-sorted
specifications that do not have an initial algebra semantics, such as, for ex-
ample, those specified in Maude functional theories [9]. Since, for the reasons
mentioned above, user interaction will typically be quite essential, completion is
not attempted. Instead, if the specification cannot be shown to be Church-Rosser
by the tool, proof obligations are generated and are given back to the user as
a guide in the attempt to establish the ground-Church-Rosser property. Since
this property is in fact inductive, in some cases the Maude inductive theorem
prover can be enlisted to prove some of these proof obligations. In other cases,
the user may have to modify the original specification by carefully considering
the information conveyed by the proof obligations. We give in Section 3 some
methodological guidelines for the use of the tool, and illustrate the use of the
tool with some examples (additional examples can be found in [17]).

The present CRC tool accepts order-sorted conditional specifications, where
each of the operation symbols has either no equational attributes, or any com-
bination of associativity/commutativity/identity. To deal with the various com-
binations of associativity, commutativity, and identity axioms we make use of
different techniques now available. Maude 2.4 supports unification modulo com-
mutativity and modulo associativity and commutativity [10]. Identity axioms
and associativity without commutativity are handled using the variant-based
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theory transformations presented in [15]. As pointed out in [15], the transforma-
tion cannot be used in general for the associativity without commutativity case
because it does not have the finite variant property. However, the alternative
semi-algorithm given there can be used in many practical situations in which
the lefthand sides do have a finite set of variants. We refer the reader to [15] for
further details, but the idea is that if for each operator in a module we cannot
narrow on any equation’s lefthand side using one of the two possible orientations
of the associativity equation, then the only variant of the term is the term itself,
and we can handle it just by adding the corresponding associativity equation.
All this means that in practice we can often handle specifications whose oper-
ators can have any combination of associativity and/or commutativity and/or
identity axioms. See Section 3.2 for an example.

Furthermore, it is assumed that such specifications do not contain any built-
in function, do not use the owise attribute,1 and that they have already been
proved (operationally) terminating. The tool attempts to establish the ground-
Church-Rosser property modulo the equational axioms specified for each of the
operators by checking a sufficient condition. Therefore, the tool’s output consists
of a set of critical pairs and a set of membership assertions that must be shown,
respectively, ground-joinable, and ground-rewritable to a term with the required
sort.

The CRC tool has been implemented as an extension of Full Maude [16,13],
as other tools in the Maude formal environment [11,20], and can be used on
any Full Maude module satisfying the above restrictions, including structured
modules, parameterized modules, etc.

The rest of the paper is structured as follows. Section 2 introduces the no-
tion of Church-Rosser conditional order-sorted specifications modulo axioms.
Section 3 presents some guidelines on how to use the tool and illustrates them
with some examples. Section 4 concludes and presents some future work. Proofs
of technical results are not included here for space reasons. They can be found
in [19].

2 Church-Rosser (Conditional) Order-Sorted
Specifications Modulo Axioms

In this section we introduce the notion of Church-Rosser order-sorted specifica-
tion [23] and some standard notation on conditional rewriting (see, e.g., [29] for
further details). We assume specifications of the formR = (Σ, A, R) where Σ is an
A-preregular order-sorted signature, A is a set of equational axioms that are both
regular and linear,2 and R is an A-coherent set of (possibly conditional) rewrite

1 In Maude, the owise attribute can be used to specify otherwise equations, i.e.,
equations that will be applied only if no other equation for that symbol can be
applied.

2 An equational axiom u = v is regular if Var(u) = Var(v), and linear if there are no
repeated variables in either u or v.
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rules. Let us start by introducing the notions of A-preregularity and A-coherence.
An order-sorted signature (Σ, S,≤) consists of a poset of sorts (S,≤) and an

S∗×S-indexed family of sets Σ = {Σs1...sn,s}(s1...sn,s)∈S∗×S of function symbols.
Given an S-sorted set X = {Xs | s ∈ S} of disjoint sets of variables, the set
T (Σ,X )s denotes the Σ-algebra of Σ-terms of sort s with variables in X . We
denote [t]A the A-equivalence class of t.

We call an order-sorted signature A-preregular if for each term w the set of
sorts {s ∈ S | ∃w′ ∈ [w]A s.t. w′ ∈ T (Σ,X )s} has a least upper bound, denoted
ls[w]A, which can be effectively computed.3

We denote by P(t) the set of positions of a term t, and by t|p the subterm of
t at position p (with p ∈ P(t)). A term t with its subterm t|p replaced by the
term t′ is denoted by t[t′]p.

Given a set of equational axioms A, a substitution σ is an A-unifier of t and
t′ if tσ =A t′σ, and it is an A-match from t to t′ if t′ =A tσ.

Given a rewrite theory R as above, we define the relation →R/A, either by
the inference system of rewriting logic (see [8]), or by the usual inductive de-
scription: →R/A=

⋃
n →R/A,n, where →R/A,0= ∅, and for each n ∈ N, we have

→R/A,n+1=→R/A,n ∪ {(u, v) | u =A lσ → rσ =A v ∧ l → r if
∧

i ui →
vi ∈ R ∧ ∀i, uiσ →∗

R/A,n viσ}. In general, of course, given terms t and t′ with
sorts in the same connected component, the problem of whether t →R/A t′

holds is undecidable. For this reason, a much simpler relation →R,A is defined,
which becomes decidable if an A-matching algorithm exists. We define (see [30])
→R,A=

⋃
n →R,A,n where →R,A,0= ∅, and for each n ∈ N and any terms u, v

with sorts in the same connected component the relation u →R,A,n+1 v holds if
either u →R,A,n v, or there is a position p in u, a rule l → r if

∧
i ui → vi in

R, and a substitution σ such that u|p =A lσ, v = u[rσ]p, and ∀i, uiσ →∗
R,A,n wi

with wi =A viσ.
Of course, →R,A⊆→R/A, but the question is whether any →R/A-step can be

simulated by a →R,A-step. We say that R satisfies this A-completeness property
if for any u, v with sorts in the same connected component we have:

u
R/A

��

R,A
66

v
A

v′

where here and in what follows dotted lines indicate existential quantification.
It is easy to check that A-completeness is equivalent to the following (strong)

A-coherence property:

u
R/A

��

A

v
A

u′
R,A

�� v′

3 The Maude system automatically checks the A-preregularity of a signature Σ for A
any combination of associativity/commutativity/identity (see [9, Section 22.2.5]).
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If a theory R is not coherent, we can try to make it so by completing the set
of rules R to a set of rules R̃ by a Knuth-Bendix-like completion procedure (see,
e.g., [25,33,21]). For theories A that are combinations of associativity, commuta-
tivity, and identity axioms, we can make any specification A-coherent by using
a very simple procedure (see, e.g., [17]).

The problem, then, is to check whether our specification R, satisfying the
above requirements, has the Church-Rosser property. As said above, for order-
sorted specifications, being Church-Rosser and terminating means not only con-
fluence, but also a descent property. After giving some auxiliary definitions, we
introduce the notion of Church-Rosser conditional order-sorted specifications,
and describe the sufficient conditions used by our tool to attempt checking the
Church-Rosser property.

2.1 The Confluence Property

We say that a term t A-overlaps another term with distinct variables t′ if there
is a nonvariable subterm t′|p of t′ for some position p ∈ P(t′) such that the terms
t and t′|p can be A-unified.

Definition 1. Given an order-sorted equational specificationR = (Σ, A, R), with
Σ A-preregular and R A-coherent, and given conditional rewrite rules l → r if C
and l′ → r′ if C′ in R such that (Var(l)∪Var(r)∪Var(C))∩ (Var(l′)∪Var(r′)∪
Var(C′)) = ∅ and l|pσ =A l′σ, for some nonvariable position p ∈ P(l) and A-
unifier σ of l|p and l′, then the triple

C σ ∧ C′σ ⇒ lσ[r′σ]p = rσ

is called a (conditional) critical pair.

In the uses we will make of the above definition we will always assume that
the unification and the comparison for equality have been performed modulo A.
Note also that the critical pairs accumulate the substitution instances of the
conditions in the two rules, as in [7].

Given a rewrite theory R = (Σ, A, R), a critical pair C ⇒ u = v is more
general than another critical pair C′ ⇒ u′ = v′ if there exists a substitution
σ such that uσ =A u′, vσ =A v′, and C σ =A C′, where C σ =A C′, with
C =

∧
i=1..n ui → vi and C′ =

∧
i=1..m u′

i → v′i, iff n = m and uiσ =A u′
i and

viσ =A v′i for every i ∈ [1..n].
Then, given a specification R, let MCP(R) denote the set of most general

critical pairs between rules in R that, after simplifying both sides of the critical
pair using the equational rules in R, are not identical critical pairs modulo A
of the form C ⇒ t = t. Under the assumption that the order-sorted equational
specification R is operationally terminating, then, if MCP(R) = ∅, we are guar-
anteed that the specification R is confluent modulo A—in the obvious sense that
if t can be rewritten modulo A to u and v using the rules in R, then u and v can
be rewritten modulo A to some w up to A-equality—and therefore, each term
t has a unique canonical form modulo A t↓R. Note that, due to the presence
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of conditional equations, we can have MCP(R) �= ∅ with R still confluent, but
establishing that fact may require additional reasoning. More importantly for
our purposes, even in the unconditional case we can have MCP(R) �= ∅ with
R ground -confluent, that is, confluent for all ground terms. Therefore, assum-
ing termination, MCP(R) = ∅ will ensure the confluence and, a fortiori, the
ground-confluence of R, but this is only a sufficient condition.

2.2 Context-Joinability and Unfeasible Conditional Critical Pairs

From those conditional critical pairs which are not joinable, our tool can cur-
rently discard those that are either context-joinable or unfeasible, based on a
result by Avenhaus and Loŕıa-Sáenz [2], which we generalize here to the order-
sorted modulo A case. Let us first introduce some notation.

A rule l → un+1 if
∧

i=1..n ui → vi is said to be deterministic if ∀j ∈
[1..n + 1],Var(uj) ⊆ Var(l) ∪

⋃
k<j Var(vk). A conditional rewrite theory is

deterministic if each of its rules is deterministic. Given a rewrite theory R, a
term t is called strongly irreducible with respect to R modulo A (or strongly R, A-
irreducible) if tσ is a normal form for every normalized substitution σ. A rewrite
theoryR is called strongly deterministic if for every rule l → r if

∧
i=1..n ui → vi

in R each vi is strongly R, A-irreducible.
An admissible conditional order-sorted Maude functional specification can be

transformed into an equivalent deterministic rewrite theory by a very simple
procedure, in which equations are turned into rewrite rules and equational con-
ditions (ordinary and matching equations) are turned into rewrites (see [17] for
a detailed algorithm).

We denote by � the proper subterm relation. Then, given an order �, we
denote by �st = (� ∪ �)+ the smallest ordering that contains � and �. A
partial ordering � on TΣ(X ) is well founded if there is no infinite sequence
t0 � t1 � . . .. A partial ordering � is compatible with substitutions if u � u′

implies uσ � u′σ for any substitution σ. A partial ordering � is compatible with
the term structure if u � u′ implies t[u]p � t[u′]p for any term t and position p
in t. A partial ordering � is compatible with the axioms A if v =A u � u′ =A v′

implies v � v′ for all terms u, u′, v, and v′ in TΣ(X ). A partial ordering � is
A-compatible if it is compatible with substitutions, compatible with the term
structure, and compatible with the axioms A. Then, a reduction ordering is a
partial ordering that is well founded and A-compatible.

A deterministic rewrite theory R is quasi-reductive w.r.t. a reduction ordering
� on TΣ(X ) if for every substitution σ, every rule l → un+1 if

∧
i=1...n ui → vi

in R, and every i ∈ [1..n], ujσ � vjσ for every j ∈ [1..i] implies lσ �st ui+1σ.
Let a context C = {u1 → v1, . . . , un → vn} be a set of oriented equations.

We denote by C the result of replacing each variable x in C by a new constant
x. And given a term t, t results from replacing each variable x ∈ Var(C) by the
new constant x.

Definition 2. Let R = (Σ, A, R) be a deterministic rewrite theory that is quasi-
reductive w.r.t. an A-compatible well-founded relation �, and let C ⇒ s = t be a
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critical pair resulting from li → ri if Ci for i = 1, 2, and σ ∈ UnifA(l1|p, l2). We
call C ⇒ s = t unfeasible if there is some u → v in C such that u →R∪C,A w1,
u →R∪C,A w2, and UnifA(w1, w2) = ∅ and w1 and w2 are strongly irreducible
with R modulo A. We call C ⇒ s = t context-joinable if s↓R∪Ct.

Theorem 1. Let R = (Σ, A, R) be a strongly deterministic rewrite theory that
is quasi-reductive w.r.t. an A-compatible well-founded relation �. If every critical
pair C ⇒ s = t of R is either unfeasible or context-joinable, then R is confluent.

Once all critical pairs are computed, the tool proceeds as follows. It first checks
whether each conditional critical pair C ⇒ s = t is context joinable:

(i) Variables in C ⇒ s = t are added as new constants X.
(ii) New ground rewrite rules C plus an equality operator eq with rules eq(x, x) →

tt are added to the rules R. Call this theory R̂C .
(iii) In R̂C , we search eq(s, t) →+ tt up to some predetermined depth (using the

search command).

If the search is successful, then the conditional critical pair is context joinable.
Otherwise, we then check whether C ⇒ s = t is unfeasible as follows: For each
condition ui → vi, we perform in R̂C the search ui →! x : [k]. Let w1 . . .wm be
the terms one obtains. If m = 1, then discard this term ui and look for the next
condition ui+1 → vi+1. Otherwise, try to find two different terms wj , wk such
that (a) UnifA(wj , wk) = ∅, and (b) wj and wk are strongly irreducible with R
modulo A. If we succeed in finding a condition ui → vi for which associated wj ,
wk satisfy (a) and (b), then the conditional critical pair C ⇒ s = t is unfeasible.4

2.3 The Descent Property

For an order-sorted specification it is not enough to be confluent for being
Church-Rosser. The canonical form should also provide the most complete in-
formation possible about the sort of a term. This intuition is captured by our
notion of Church-Rosser specifications.

Definition 3. We call a confluent and terminating conditional order-sorted re-
write theory R = (Σ, A, R) Church-Rosser modulo A iff it additionally satisfies
the following descent property: for each term t we have ls[t]A ≥ ls[t↓R]A. Simi-
larly, we call a ground-confluent and terminating conditional order-sorted rewrite
theory R = (Σ, A, R) ground-Church-Rosser modulo A iff for each ground term
t we have ls[t]A ≥ ls[t↓R]A.

Note that these notions are more general and flexible than the requirement of
confluence and sort-decreasingness [27,22]. The issue is how to find checkable
conditions for descent that, in addition to the computation of critical pairs, will
ensure the Church-Rosser property. This leads us into the topic of specializations.

4 Several optimizations, not currently available in the CRC tool are described in [17].
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Given an order-sorted signature (Σ, S,≤), a sorted set of variables X can
be viewed as a pair (X̂, μ) where X̂ is a set of variable names and μ is a sort
assignment μ : X̂ → S. Thus, a sort assignment μ for X is a function mapping
the names of the variables in X̂ to their sorts. The ordering ≤ on S is extended
to sort assignments by

μ ≤ μ′ ⇔ ∀x ∈ X̂, μ(x) ≤ μ′(x).

We then say that such a μ′ specializes to μ, via the substitution

ρ : (x : μ(x)) ← (x : μ′(x))

called a specialization of X = (X̂, μ′) into ρ(X) = (X̂, μ). Note that if the set
of sorts is finite, or if each sort has only a finite number of sorts below it, then
a finite sorted set of variables has a finite number of specializations.

The notion of specialization can be extended to axioms and rewrite rules. A
specialization of an equation (∀X, l = r) is another equation (∀ρ(X), ρ(l) = ρ(r))
where ρ is a specialization of X . A specialization of a rule (∀X, l → r if C) is a
rule (∀ρ(X), ρ(l) → ρ(r) if ρ(C)) where ρ is a specialization of X .

Thus, being A-sort-decreasing means that, for each rewrite rule l → r and
for each specialization substitution ν, we have ls[rν]A ≤ ls[lν]A. The checkable
conditions that we have to add to the critical pairs to test for the descent property
are called membership assertions.

Definition 4. Let R be an order-sorted specification whose signature satisfies
the assumptions already mentioned. Then, the set of (conditional) membership
assertions for a conditional rule t → t′ if C is defined as

{ t′θ : ls[tθ]A if C θ | θ is a specialization of Var(t)
and ls[t′θ↓R]A �≤ ls[tθ]A }

A membership assertion t : s if C is more general than another membership
assertion t′ : s′ if C′ if there exists a substitution σ such that tσ =A t′, s ≤ s′,
and C σ =A C′.

Example 1. Given a specification of natural numbers and integers with the typ-
ical operations and definitions, and in particular a square operation defined
as

op square : Int -> Nat .

eq square(I:Int) = I:Int * I:Int .

this equation gives rise to a membership assertion, because the least sort of the
term square(I:Int) is Nat, but it is Int for the term in the righthand side.
The proof obligation generated by the tool is

mb I:Int * I:Int : Nat .
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This membership assertion must be proved inductively. That is, we have to treat
it as the proof obligation that has to be satisfied in order to be able to assert
that the specification is ground-decreasing. In this case, we have to prove that
(for I and J variables of sort Nat) we have INT �ind (∀I)(∃J) I * I →∗ J,
where INT here denotes the rewrite theory obtained from the original equational
theory by turning each equation into a rewrite tule. This can be done using the
constructor-based methods for proofs of ground reachability described in [32].

2.4 The Result of the Check

Let MMA(R) denote the set of most general membership assertions of all of the
equations in the specification R. Then, given a specification R, the tool returns a
tuple 〈 MCP(R), MMA(R) 〉. A fundamental result underlying our tool is that
the absence of critical pairs and of membership assertions in such an output
is a sufficient condition for an operationally terminating specification R to be
Church-Rosser.5 In fact, for terminating unconditional specifications this check
is a necessary and sufficient condition; however, for conditional specifications, the
check is only a sufficient condition, because if the specification has conditional
equations we can have unsatisfiable conditions in the critical pairs or in the mem-
bership assertions; that is, we can have 〈 MCP(R), MMA(R) 〉 �= 〈 ∅, ∅ 〉 with
R still Church-Rosser. Furthermore, even if we assume that the specification is
unconditional, since for specifications with an initial algebra semantics we only
need to check that R is ground-Church-Rosser, we may sometimes have specifi-
cations that satisfy this property, but for which the tool returns a nonempty set
of critical pairs or of membership assertions as proof obligations.

Of course, in other cases it may in fact be a matter of some error in the user’s
specification that the tool uncovers. In any case, the user has complete control
on how to modify his/her specification, using the proof obligations in the output
of the tool as a guide. In fact, as we explain below, several possibilities exist.

3 How to Use the Church-Rosser Checker

This section illustrates with examples the use of the Church-Rosser checker tool,
and suggests some methods that—using the feedback provided by the tool—can
help the user establish that his/her specification is ground-Church-Rosser.

We assume a context of use quite different from the usual context for com-
pleting an arbitrary equational theory. In our case we assume that the user has
developed an executable specification of his/her intended system with an ini-
tial algebra semantics, and that this specification has already been tested with
examples, so that the user is in fact confident that the specification is ground-
Church-Rosser, and wants only to check this property with the tool.

5 A detailed proof of this result will be presented elsewhere. In essence, it is a gener-
alization of the result by Avenhaus and Loŕıa-Sáenz [2, Theorem 4.1] to the order-
sorted and modulo A case. For related results in membership equational logic see [7].
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The tool can only guarantee success when the user’s specification is uncon-
ditional and Church-Rosser and, furthermore, any associativity axiom in A for
an operator has a corresponding commutativity axiom. In all other cases, the
fact that the tool does not generate any proof obligations is only a sufficient
condition, so that even when the CRC returns a collection of critical pairs and
of membership assertions as proof obligations, the specification may be ground
Church-Rosser, or for a conditional specification it may even be Church-Rosser.

An important methodological question is what to do, or not do, with these
proof obligations. What should not be done is to let an automatic completion
process add new equations to the user’s specification in a mindless way. In some
cases this is even impossible, because the critical pair in question cannot be
oriented. In many cases it will certainly lead to a nonterminating process. In
any case, it will modify the user’s specification in ways that can make it difficult
for the user to recognize the final result, if any, as intuitively equivalent to the
original specification.

The feedback of the tool should instead be used as a guide for careful analysis
of one’s specification. As many of the examples we have studied indicate, by
analyzing the critical pairs returned, the user can understand why they could
not be joined. It may be a mistake that must be corrected. More often, however,
it is not a matter of a mistake, but of a rule that is either too general—so that its
very generality makes joining an associated critical pair impossible, because no
more equations can apply to it—or amenable to an equivalent formulation that
is unproblematic—for example, by reordering the parentheses for an operator
that is ground-associative—or both. In any case, it is the user himself/herself
who must study where the problem comes from, and how to fix it by correcting
or modifying the specification. Interaction with the tool then provides a way of
modifying the original specification and ascertaining whether the new version
passes the test or is a good step towards that goal.

If the user’s attempts to correct or modify the specification do not yet achieve
a complete success, so that some proof obligations are left, inductive methods to
discharge the remaining proof obligations may be used. Indeed, since the user’s
specification typically has an initial algebra semantics and the most common
property of interest is checking that it is ground Church-Rosser, the proof obli-
gations returned by the tool are inductive proof obligations. There are essentially
two basic lines of approach, which may even be combined:

– The user may conjecture that adding a new equation t = t′ (or set of equa-
tions) to its specification T will make it Church-Rosser. If he can prove
termination with the added equation(s) and the CRC does not generate any
proof obligations for the extended specification, all is well. The only remain-
ing issue is wether the new equation(s) have changed the module’s initial
algebra semantics. This can be checked by using a tool such as the Maude
ITP (which does not require an equational specification to be Church-Rosser
in order to perform sound inductive proofs) to verify that T �ind t = t′. A
variant of this method when t = t′ is an associativity, or commutativity, or
identity axiom, is to add it to T not as a simplification rule, but as an axiom.
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– The other alternative is to reason inductively about the ground joinablity
of the critical pairs, and also about the inductive descent property of the
memberships, returned by the tool. The key point in both cases is that we
should reason inductively not with the equational theory T (a critical pair
is by construction an equational theorem in T ), but with the rewrite theory
−→
T obtained by turning the equations of T into rewrite rules. An approach
to inductive descent proofs with

−→
T has already been sketched in Section 2.3.

For proving ground joinability, several proof methods, e.g., [31,3,26,28,4,1,6],
can be used. In particular, for order-sorted specifications, constructor-based
methods such as those described in [32] can be used.

A related unresolved methodological issue is what to do with conditional critical
pairs, or conditional membership assertions, whose conditions are unsatisfiable.
We currently discard critical pairs which the tool can show are unfeasible or
context-joinable, but all remaining unjoinable pairs are left to the user. Per-
haps a modular/hierarchical approach could be used, in conjunction with the
inductive proof methods described above, to establish the unsatisfiability of such
conditions and then discard the corresponding proof obligations.

We give in the following sections examples illustrating the use of the tool.
The examples have been chosen trying to highlight those features not simultane-
ously supported by previous similar tools, namely, order-sortedness, conditional
equations, and rewriting modulo axioms.

3.1 Hereditarily Finite Sets

The following module HF-SETS specifies hereditarily finite sets, that is, sets that
are finite and, furthermore, their elements, the elements of those elements, and
so on recursively, are all finite sets. It was developed by Ralf Sasse and José
Meseguer and is inspired by the generalized sets module in Maude’s prelude [9,
Section 9.12.5]. It declares sorts Set and Magma, with Set a subsort of Magma.
Terms of sort Set are generated by constructors {}, the empty set, and {_},
which makes a set out of a term of sort Magma. Magmas have an associative-
commutative operator _,_. The commutative operator _~_ checks whether two
sets are equivalent. The membership relation ∈ holding between two sets is
here generalized by a predicate _in_ holding between two magmas, and the
containment relation ⊆ is here modeled by a predicate _<=_ holding between
two sets.

(fmod HF−SETS i s
protecting BOOL−OPS .
sorts Magma Set .
subsort Set < Magma .
op _ ‘ , _ : Magma Magma −> Magma [ ctor assoc comm ] .
op ‘{_ ‘} : Magma −> Set [ ctor ] .
op ‘{ ‘} : −> Set [ ctor ] .

vars M M ’ N : Magma . vars S S ’ : Set .

eq [ 0 1 ] : M , M , M ’ = M , M ’ . eq [ 0 2 ] : M , M = M .

op _in_ : Magma Magma −> Bool .
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eq [ 0 3 ] : M in {} = false .
eq [ 0 4 ] : {} in {{M}} = false .
eq [ 0 5 ] : {} in {{}} = true .
eq [ 0 6 ] : {} in {{} , M} = true .
eq [ 0 7 ] : {} in {{M } , N} = {} in {N} .
eq [ 0 8 ] : S in {S ’} = S ˜ S ’ .

ceq [ 0 9 ] : S in {S ’ , M} = true i f S ˜ S ’ = true .
ceq [ 1 0 ] : S in {S ’ , M} = S in {M} i f S ˜ S ’ = false .
ceq [ 1 1 ] : S in S ’ , N = true i f S in S ’ = true .
ceq [ 1 2 ] : S in S ’ , N = S in N i f S in S ’ = false .
ceq [ 1 3 ] : S , M in M ’ = M in M ’ i f S in M ’ = true .
ceq [ 1 4 ] : S , M in M ’ = false i f S in M ’ = false .

op _<=_ : Set Set −> Bool .
eq [ 1 5 ] : {} <= S = true .
eq [ 1 6 ] : {M} <= S = M in S .

op _˜_ : Set Set −> Bool .
eq [ 1 7 ] : S ˜ S ’ = ( S <= S ’ ) and ( S ’ <= S ) .

endfm)

Notice the labeling of the equations. The critical pairs returned by the tool
will use them to provide information about the equations they come from. Notice
also the importation of the predefined module BOOL-OPS, where the sort Bool
is defined with constants true and false, and boolean operations _and_, _or_,
_xor_, not_, and _implies_. The operators _and_, _or_, and _xor_ are declared
associative and commutative.

The Church-Rosser check gives the following result:

Maude> ( check Church−Rosser HF−SETS . )
Church−Rosser checking of HF−SETS
Checking solution :
The following critical pairs cannot be joined :

ccp for 07 and 09
S ’ : Set <= {} = true i f {} ˜ S ’ : Set = true .

ccp for 07 and 10
S ’ : Set <= {} = false i f {} ˜ S ’ : Set = false .

ccp for 02 and 09
S : Set <= S ’ : Set and S ’ : Set <= S : Set = true
i f S : Set ˜ S ’ : Set = true .

ccp for 09 and 10
true = S : Set <= #2:Set and #2:Set <= S : Set
i f S : Set ˜ S ’ : Set = false /\ S : Set ˜ #2: Set = true .

ccp for 10 and 09
S : Set <= S ’ : Set and S ’ : Set <= S : Set = true
i f S : Set ˜ S ’ : Set = true /\ S : Set ˜ #2: Set = false .

ccp for 10 and 10
S : Set <= S ’ : Set and S ’ : Set <= S : Set
= S : Set <= #2: Set and #2: Set <= S : Set
i f S : Set ˜ S ’ : Set = false /\ S : Set ˜ #2: Set = false .

The specification i s sort−decreasing .

The tool generates 3725 critical pairs. Most of them are joinable, and therefore
discarded. From the remaining 27 critical pairs, all of which are conditional, 21
are discarded because they can be proved either context-joinable or unfeasible.
Let us take a look at some of these.

Let us consider the following context-joinable critical pair:

ccp for 16 and 11
S : Set in ( S ’ : Set , N : Magma ) = true
i f S : Set in S ’ : Set = true .
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If we add the condition of this critical pair as an equation with its variables S
and S’ turned into constants, of sort Set, #S and #S’, then, the terms true and
#S in (##1, #S’), with ##1 a new constant of sort Magma, can be joined.

The following critical pair is discarded because it is unfeasible.

ccp for 11 and 12
true = S : Set in N : Magma
i f S : Set in S ’ : Set = false /\ S : Set in S ’ : Set = true .

To prove unfeasibility we focus on the conditions. With the rules

#S in #S ’ = false
#S in #S ’ = true

the term #S in #S’ can be rewritten both to false and true. Since they do not
unify and are strongly irreducible, we conclude that the critical pair is unfeasible.

Most other critical pairs are discarded for similar reasons. The only ones left
are those finally returned by the tool. These critical pairs are neither context-
joinable nor unfeasible. However, we can introduce new equations, that should
be inductively deducible from the specification, or replace the ones we have by
alternative equations, in order to eliminate such critical pairs.

Let us start with the first critical pair in the CRC output. We may argue
that if the set S’ is such that the condition is satisfied, then the term S’ <= {}
should be reducible to true, and try to add equations to allow this rewrite. But
more easily, we may observe that the critical pair comes from equations 07 and
09 at the top, because 09 is more general than necessary. Since a set is either of
the form {} or {M}, and the {} case is covered by equations 06 and 07, we can
eliminate this critical pair by replacing equation 09 with

ceq [ 0 9 ’ ] : {M} in {S , M ’} = true i f {M} ˜ S = true .

A new execution of the check shows that the critical pair for equations 07 and
10 is no longer given. The critical pair for equations 07 and 10 suggests a similar
change for equation 10:

ceq [ 1 0 ’ ] : {M} in {S , M ’} = {M} in {M ’} i f {M} ˜ S = false .

It is not enough, however. With these new two equations, the tool gives us now
four conditional critical pairs. Given these critical pairs, we realize that equations
09’ and 10’ are still problematic. The simplest change is to replace these two
equations by one unconditional equation covering the two cases:

eq [ 09 −10 ] : {M} in {S , M ’} = {M} ˜ S or {M} in {M ’} .

Replacing 09’ and 10’ by 09-10 now succeeds:

Maude> ( check Church−Rosser HF−SETS−3 . )
Church−Rosser checking of HF−SETS−3
Checking solution :
All critical pairs have been joined .
The specification i s locally−confluent .
The specification i s sort−decreasing .

Therefore, once proved operationally terminating, we can conclude that the
module HF-SETS-3 is confluent.
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3.2 Lists and Sets

Let us consider now the following specification of lists and sets.
(fmod LIST&SET i s

sorts MBool Nat List Set .
subsorts Nat < List Set .
ops true false : −> MBool .
ops _and_ _or_ : MBool MBool −> MBool [ assoc comm ] .
op 0 : −> Nat .
op s_ : Nat −> Nat .
op _ ; _ : List List −> List [ assoc ] .
op null : −> Set .
op __ : Set Set −> Set [ assoc comm id : null ] .
op _in_ : Nat Set −> MBool .
op _==_ : List List −> MBool [ comm ] .
op list2set : List −> Set .

var B : MBool . vars N M : Nat .
vars L L ’ : List . var S : Set .

eq [ 0 1 ] : N N = N .
eq [ 0 2 ] : true and B = B .
eq [ 0 3 ] : false and B = false .
eq [ 0 4 ] : true or B = true .
eq [ 0 5 ] : false or B = B .
eq [ 0 6 ] : 0 == s N = false .
eq [ 0 7 ] : s N == s M = N == M .
eq [ 0 8 ] : N ; L == M = false .
eq [ 0 9 ] : N ; L == M ; L ’ = ( N == M ) and L == L ’ .
eq [ 1 0 ] : L == L = true .
eq [ 1 1 ] : list2set ( N ) = N .
eq [ 1 2 ] : list2set ( N ; L ) = N list2set ( L ) .
eq [ 1 3 ] : N in null = false .
eq [ 1 4 ] : N in M S = ( N == M ) or N in S .

endfm)

It has four sorts: MBool, Nat, List, and Set, with Nat included in both List
and Set as a subsort. The terms of each sort are, respectively, Booleans, natural
numbers (in Peano notation), lists of natural numbers, and finite sets of natural
numbers. The rewrite rules in this module then define various functions such as
_and_ and _or_, a function list2set associating to each list its corresponding
set, the set membership predicate _in_, and an equality predicate _==_ on lists.
Furthermore, the idempotency of set union is specified by the first equation.
The operators _and_ and _or_ have been declared associative and commuta-
tive, the list concatenation operator _;_ has been declared associative, the set
union operator __ has been declared associative, commutative and with null
as its identity, and the _==_ equality predicate has been declared commutative
using the comm keyword. This module therefore illustrates how our tool can deal
in principle with arbitrary combinations of associativity and/or commutativity
and/or identity axioms, even though it may not succeed in some cases when
some operators are associative but not commutative.

The tool gives us the following result.
Maude> ( check Church−Rosser . )
Church−Rosser checking of LIST&SET
Checking solution :
The following critical pairs cannot be joined :

cp for 01 and 14
N : Nat == M : Nat = ( N : Nat == M : Nat ) or N : Nat == M : Nat .

cp for 01 and 14
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( N : Nat == M : Nat ) or N : Nat in #5: Set
= ( N : Nat == M : Nat ) or ( N : Nat == M : Nat ) or N : Nat in #5:Set .

The specification i s sort−decreasing .

These critical pairs are completely harmless. They can in fact be removed by
introducing an idempotency equation for the _or_ operator.

(fmod LIST&SET−2 i s pr LIST&SET .
var B : MBool .
eq [ 1 5 ] : B or B = B .

endfm)

The tool now tells us that the specification is locally confluent and sort-
decreasing, and since it is terminating (see [15]), we can conclude that it is
Church-Rosser.

As explained in Section 1, to handle this specification, we apply several trans-
formations on the original module to remove identity attributes and associativity
attributes that do not come with commutativity ones. We refer the interested
reader to [17] for details on the use of this transformation in the CRC, and to [15]
for a detailed description of the variant transformation used.

4 Conclusions and Future Work

We have presented the foundations, design, and use of the Maude CRC 3 tool,
showing how it can deal effectively with complex equational specifications that
are order-sorted, conditional (possibly with extra variables in their condition),
and whose equations can be applied modulo different combinations of associativ-
ity, commutativity and identity axioms and are specified in Maude as functional
modules or theories. Our tool attempts to prove such specifications Church-
Rosser or ground Church-Rosser under the assumption of their operational ter-
mination. Besides the much greater generality of our tool when compared with
its earlier versions or with other similar tools, two very useful new features
are: (i) the capacity to discharge unjoinable critical pairs by proving them to
be either unfeasible or context-joinable; and (ii) the capacity to deal in princi-
ple with any combination of associativity and/or commutativity and/or iden-
tity axioms. The CRC 3 tool together with its documentation is available at
http://maude.lcc.uma.es/CRChC.

As future work, we would like to remove the current restrictions of the CRC
tool, and to provide new methods to handle conditional critical pairs (or condi-
tional membership assertions) whose conditions are unsatisfiable. The integra-
tion of the different tools in the Maude formal environment [11], namely the
ITP [12], MTT [14], CRC, ChC [18], and SCC [24] tools, in a real formal tool
environment is another important pending goal. It will make it easy for the CRC
to interact with other tools that can be used to discharge some of its generated
proof obligations.
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Conditional Order-Sorted Rewrite Theories
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Abstract. For a rewrite theory to be executable, its equations E should
be (ground) confluent and terminating modulo the given axioms A, and
their rules should be (ground) coherent with E modulo A. The correct-
ness of many important formal verification tasks, including search, LTL
model checking, and the development of abstractions, crucially depends
on the theory being ground coherent. Furthermore, many specifications
of interest are typed, have equations E and rules R that are both con-
ditional, have axioms A involving various combinations of associativ-
ity, commutativity and identity, and may contain frozenness restrictions.
This makes it essential to extend the known coherence checking methods
from the untyped, unconditional, and AC or free case, to this much more
general setting. We present the mathematical foundations of the Maude
ChC 3 tool, which provide such a generalization to support coherence
and ground coherence checking for order-sorted rewrite theories under
these general assumptions. We also explain and illustrate the use of the
ChC 3 tool with a nontrivial example.

1 Introduction

Traditionally, a rewrite system is a set of directed equations used to compute
a value by repeatedly replacing subterms of a given formula with equal terms
until a (typically unique) simplest possible form is obtained. This interpretation
of a rewrite system gives an equational semantics to it, and a way of execut-
ing functional programs by rewriting. But rewriting is also useful for specifying
non-equational relations, such as transitions between states. Rewriting logic [21]
suggests keeping all rules with an equational interpretation as a distinguished set
E of equations, and considering the remaining rules R as defining state transition
steps over equivalence classes modulo E.

A rewriting logic signature is an equational specification. But, rewriting logic
is parameterized by the choice of its underlying equational logic. For example,
for Maude [3], the underlying equational logic is membership equational logic,
so that signatures are of the form (Ω, E), where Ω = (K, Σ, S) is a membership
equational logic signature and E is a set of (conditional) membership axioms
and equations. Such a signature (Ω, E) makes explicit the set of equations in
order to emphasize that rewriting will operate on congruence classes of terms
modulo E.

P.C. Ölveczky (Ed.): WRLA 2010, LNCS 6381, pp. 86–103, 2010.
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Thus, a rewrite theory has both rules and equations, so that rewriting is per-
formed modulo such equations. However, this does not mean that an implemen-
tation of rewriting logic must have an E-matching algorithm for each equational
theory E that a user might specify, which is impossible, since matching mod-
ulo an arbitrary theory is undecidable. What, e.g., Maude instead requires for
rewrite theories in system modules is that:

– The equations are divided into a set A of structural axioms, for which
matching algorithms exist and a set E of equations that are (ground) Church-
Rosser and terminating modulo A. For some equations E, termination mod-
ulo A can be checked using the Maude Termination Tool (MTT) [9,5] and
the Church-Rosser property can be checked using a Church-Rosser checker
as the one presented in [15,14].

– The rules R in the module are (ground) coherent [22,25] with the equations
E modulo A. This means that appropriate critical pairs can be filled in be-
tween rules and equations, allowing us to intermix rewriting with rules and
rewriting with equations without losing completeness of rule computations
by failing to perform a rewrite that would have been possible before an equa-
tional deduction step was taken. In this way, we get the effect of rewriting
modulo E ∪A with just a matching algorithm for A. In particular, a simple
strategy available in these circumstances is to always reduce to canonical
form using E before applying any rule in R. This is precisely the strategy
adopted by the Maude interpreter.

Therefore, it is very important to know whether a given Church-Rosser and
terminating specification is indeed ground-coherent. For this purpose, the coher-
ence checking methods proposed by Viry [25] must be substantially generalized
because: (i) they are restricted to the AC or free cases; (ii) assume that both the
equations and the rules are unconditional; (iii) always require the very restric-
tive condition that the right-hand and left-hand sides of any equation are both
linear; and (iv) are untyped. Instead, what we need to handle more expressive
specifications are generalized rewrite theories R = (Σ, E∪A, R, φ) [2] such that:
(i) have an initial model semantics; (ii) the equations E and the rules R can
both be conditional ; (iii) Σ is typed (here we assume Σ order-sorted); (iv) the
set A of axioms may involve associativity and/or commutativity and/or identity
axioms; and (v) rewriting with rules is restricted by frozenness information φ.

At first sight, checking coherence under these more general conditions may
appear to be an even more challenging task than in the simpler situations con-
templated by Viry in [25]. However, as we show in this paper, some of these more
general conditions can make it much easier to check coherence. In particular:

(1) frozenness can eliminate many critical pairs and greatly reduce the linearity
requirements on variables of equations;

(2) order-sorted type structure can: (i) eliminate many critical pairs, (ii) further
relax linearity conditions on variables of equations, and (iii) eliminate many
problematic non-overlap situations between equations and rules;
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(3) the initial model semantics substantially relaxes the coherence requirement
into a ground coherence one where: (i) unjoinable critical pairs can be shown
ground joinable if some equational inductive proof obligations can be dis-
charged; and (ii) by checking sufficient completeness of the equations with
respect to a constructor subsignature, defined function symbols can safely
be assumed to be frozen, which by (1) can further reduce the number of
critical pairs that need to be considered and the linearity requirements on
equations.

A further point to emphasize is that the present ChC tool can in principle
deal with any combination of associativity, commutativity, and identity axioms,
including the thorny cases of associativity without commutativity for which no
finitary unification algorithms exist. Although in general computing critical pairs
for the associativity without commutativity cases may not be possible, in many
practical cases our tool can show that the relevant left-hand sides have a finite
set of variants [6,18] when associativity is used as a rule. This then allows the
application of a theory transformation described in [10] thanks to which associa-
tivity without commutativity axioms need not be used when computing critical
pairs.

Our coherence checker tool (ChC) [13] is particularly well-suited for checking
Maude specifications with an initial model semantics whose equations E have al-
ready been proved Church-Rosser and terminating modulo A, and now we need
to check that its rules R are ground-coherent with E modulo A. Our methods
can also be used to check the coherence property of conditional order-sorted
specifications that do not have an initial model semantics, such as, for example,
those specified in Maude system theories [4]. Since, for the reasons mentioned
above, user interaction will typically be quite essential, coherence completion is
not attempted. Instead, if the specification cannot be shown to be coherent or
ground-coherent by the tool, proof obligations are generated and are given back
to the user as a guide in the attempt to establish the ground-coherence prop-
erty. Since this property is in fact inductive, in some cases the Maude inductive
theorem prover can be enlisted to prove some of these proof obligations. In other
cases, the user may in fact have to modify the original specification by carefully
considering the information conveyed by the proof obligations. We give in Sec-
tion 3 some methodological guidelines for the use of the tool, and illustrate the
use of the tool with some examples.

The present ChC tool only accepts order-sorted conditional specifications,
where each of the operation symbols has either no equational attributes, or
any combination of associativity/commutativity/identity.1 Furthermore, it is as-
sumed that such specifications do not contain any built-in function, do not use
the owise attribute, and that they have already been proved Church-Rosser
and terminating. The tool attempts to establish the ground-coherence property

1 The associativity without commutativity case is handled using a semi-algorithm
proposed in [10], which works in many practical situations but not always. We refer
the reader to [10] for further details.
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modulo the equational axioms specified for each of the operators by checking a
sufficient condition. Therefore, the tool’s output consists of a set of critical pairs
that the tool has not been able to join and must be shown ground-joinable.

As other tools in the Maude formal environment [5], the ChC tool has been
implemented as an extension of Full Maude [12,7]. Details on how to extend
Full Maude in different forms can be found in, e.g., [17,12,7,8]. Following these
techniques, the ChC has been integrated within the Full Maude environment,
to allow checking of modules defined in Full Maude and to get a much more
convenient user interface. Of course, it would have been possible to define an
interface for the tool without integrating it with Full Maude. Since all the
infrastructure built for Full Maude can be used by itself, just by selecting
functions from that infrastructure in the needed modules, any of the two pos-
sibilities can give rise to an interface in a very short time. However, by inte-
grating the specifications of Full Maude and of the ChC we not only have such
a needed infrastructure, but in addition we can, for example, check the coher-
ence property of any module in Full Maude’s database. We can therefore use
the tool on any module accepted by Full Maude, including structured modules,
parameterized modules, etc. We still have, of course, the restrictions mentioned
above.

The rest of the paper is structured as follows. Section 2 introduces the notion
of coherent order-sorted specification modulo axioms. Section 3 presents some
directions on how to use the tool and illustrates it with an example. Section
4 concludes and presents some future work. Proofs of technical results are not
included here for space reasons. They can be found in [16]. We assume that the
reader is familiar with basic rewriting terminology and notations. Although we
have tried to make the paper self contained, we refer the interested reader to [23]
for additional details on rewriting techniques.

2 Coherent Order-Sorted Specifications Modulo Axioms

This section presents the theoretical foundations of the ChC.

2.1 Conditional Rewriting Modulo Linear and Regular Axioms A

Given an order-sorted rewrite theory R = (Σ, A, R), where A is a collection of
unconditional equational axioms of the form u = v that are linear (no repeated
variables in either u or v), and regular (vars(u) = vars(v)), we define the relation
→R/A, either by the inference system of rewriting logic (see [2]), or by the usual
inductive description: →R/A=

⋃
n →R/A,n, where →R/A,0 = ∅, and for each

n ∈ N, we have →R/A,n+1 = →R/A,n ∪ {(u, v) | u =A lσ → rσ =A v ∧ l →
r if

∧
i ui → vi ∈ R ∧ ∀i, uiσ →∗

R/A,n viσ}. In general, of course, given terms
t and t′ with sorts in the same connected component, the problem of whether
t →R/A t′ holds is undecidable.
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Even if there is an effective A-matching algorithm, the relation u →R/A v
still remains undecidable in general, since to see if u →R/A v involves searching
through the possibly infinite equivalence classes [u]A and [v]A to see whether an
A-match is found for a subterm of some u′ ∈ [u]A and the result of rewriting u′

belongs to the equivalence class [v]A. For this reason, a much simpler relation
→R,A is defined, which becomes decidable if an A-matching algorithm exists.
We define (see [24]) →R,A=

⋃
n →R,A,n where →R,A,0= ∅, and for each n ∈ N

and any terms u, v with sorts in the same connected component the relation
u →R,A,n+1 v holds if either u →R,A,n v, or there is a position p in u, a rule
l → r if

∧
i ui → vi in R, and a substitution σ such that u|p =A lσ, v = u[rσ]p,

and ∀i, uiσ →∗
R,A,n wi with wi =A viσ. Of course, →R,A⊆→R/A. The important

question is the completeness question: can any →R/A-step be simulated by a
→R,A-step? We say that R satisfies the A-completeness property if for any u, v
with sorts in the same connected component we have:

u
R/A

��

R,A
77

v

A

v′

where here and in what follows dotted lines indicate existential quantification.
It is easy to check that A-completeness is equivalent to the following (strong)

A-coherence2 (or just coherence when A is understood) property:

u
R/A

��

A

v

A

u′
R,A

�� v′

If a theory R is not coherent, we can try to make it so by completing the
set of rules R to a set of rules R̃ by a Knuth-Bendix-like completion proce-
dure that computes critical pairs between equations in A and rules in R (see,
e.g., [20,25] for the strong coherence completion that we use here, and [19] for
the equivalent notion of extension completion). For theories A that are com-
binations of associativity, commutativity, left identity, and right identity ax-
ioms, the coherence completion procedure always terminates and has a very
simple description (see [24], and for a more informal explanation [4, Section
4.8]).

We say that R = (Σ, A, R) is A-confluent, resp. A-terminating, if the relation
→R/A is confluent, resp. terminating. If R is A-coherent, then A-confluence is
equivalent to asserting that, for any t →∗

R,A u, t →∗
R,A v, we have:

2 Note that the assumption of A being regular and linear is essential for one →R/A-step
to exactly correspond to one →R,A-step. For this reason, some authors (e.g., [20,25])
call conditions as the one above strong coherence, and consider also weaker notions
of coherence.
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t

R,A

∗
88����������

∗
R,A 99



u

∗
R,A 99

v

∗
R,A88

w =A w′

and A-termination is equivalent to the termination of the →R,A relation. In what
follows, given a rewrite theory R = (Σ, A, R), saying that R is A-coherent is
equivalent to saying that the rules R are A-coherent.

The fact that we are performing order-sorted rewriting makes one more re-
quirement necessary. When A-matching a subterm t|p against a rule’s left-hand
side to obtain a matching substitution σ, we need to check that σ is well-sorted,
that is, that if a variable x has sort s, then the term xσ has also sort s. This
may however fail to be the case even though there is a term w ∈ [xσ]A which
does have sort s. We call an order-sorted signature A-preregular if the set of
sorts {s ∈ S | ∀w ∈ TΣ(X ), ∃w′ ∈ [w]A s.t. w′ ∈ TΣ(X )s} has a least upper
bound, denoted ls[w]A which can be effectively computed.3 Then we can check
the well-sortedness of the substitution σ not based on xσ above, but, implicitly,
on all the terms in [w]A.

Yet another property required for the good behavior of confluent and termi-
nating rewrite theories modulo A is their being A-sort-decreasing. This means
that R is A-preregular, and for each term t we have ls[t]A ≥ ls[t↓R]A.

From this, the following lemma follows.

Lemma 1. For R A-coherent rules, if t →R,A t′, then

t
R,A

��

A

t′

A

u
R,A

�� u′

As mentioned above, for →R,A to be decidable we need an A-matching algo-
rithm. Therefore, we will consider the set of equations to be a union E ∪A with
A a set of axioms for which there exists a matching algorithm (as associativity,
commutativity, and identity), and E the remaining equations.

2.2 Coherence of Conditional Rewrite Theories

A rule l → un+1 if
∧

i=1..n ui → vi is said to be deterministic if ∀j ∈ [1..n],
Var(uj) ⊆ Var(l) ∪

⋃
k<j Var(vk). A conditional rewrite theory is deterministic

3 The Maude system automatically checks the A-preregularity of a signature Σ for
A any combination of associativity, commutativity, left identity, and right identity
axioms (see [4, Chapter 22.2.5]).
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if each of its rules is deterministic. Given a rewrite theory R, a term t is called
strongly irreducible with respect to R modulo A (or strongly R, A-irreducible) if
tσ is a normal form for every normalized substitution σ. A rewrite theory R is
called strongly deterministic if for every rule l → r if

∧
i=1..n ui → vi in R each

vi is strongly R, A-irreducible.
We assume an order-sorted rewrite theory of the form R = (Σ, E ∪A, R, φ),

where:

(1) φ is the frozenness information [2].
(2) (Σ, E ∪ A) is an order-sorted equational theory with possibly conditional

equations, which can be converted into a strongly deterministic rewrite the-
ory that is operationally terminating modulo A. Furthermore, the equations
E are confluent modulo A. Also, the axioms in A are a collection of regular
and linear unconditional equational axioms and are all at the kind level, i.e.,
each connected component in the poset (S,≤) of sorts has a top sort, and
the variables in the axioms A all have such top sorts.

(3) R is a collection of rewrite rules l → r if C, where C is an equational con-
dition, which again can be turned into a deterministic rewrite rule of the
form l → r if u1 →E v1 ∧ . . . ∧ un →E vn with the v1, . . . , vn strongly
E, A-irreducible.

(4) Both the equations E and the rules R are A-coherent. Therefore, the relations
→R/A (resp. →E/A) and →R,A (resp. →E,A) essentially coincide.

Definition 1. A rewrite theory R = (Σ, E ∪ A, R, φ) satisfying (1)-(4) above
is called coherent (resp. ground coherent) iff for each Σ-term t (resp. ground
Σ-term t) such that t →E,A u, and t →R,A v we have

t
R,A

��
E,A ��

v

∗
E,A
77

u

∗E,A ��

w
A

w′

u′
R,A

�� u′′

∗
E,A

::
(C)

Likewise, R is called locally coherent (resp. ground locally coherent) iff for each
Σ-term t (resp. ground Σ-term t) such that t →E,A u, and t →R,A v we have

t
R,A

��
E,A ��

v

∗
E,A
77

u

!E,A ��

w
A

w′

u′
R,A

�� u′′

∗
E,A

::
(LC)
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where dotted arrows are existentially quantified, and s →!
E,A t iff s →∗

E,A t and
t is E, A-irreducible.

Theorem 1. R is coherent (resp. ground coherent) iff R is locally coherent
(resp. locally ground coherent).

Since for all terms t, t is coherent iff t is locally coherent, we can approach
the verification of coherence for R as follows: We can reason by cases on the

situations
t

E,A $$�� R,A;;�
�

u v
depending on whether they are or not overlap situ-

ations. For this we need the notion of a conditional critical pair, and the notion
of conditional critical pair joinability.

Definition 2. Given conditional rewrite rules with disjoint variables l → r if C
in R and l′ → r′ if C′ in E, their set of conditional critical pairs modulo A
is defined as usual: either we find a non-variable position p in l such that α ∈
UnifA(l|p, l′) and then we form the conditional critical pair

α(C) ∧ α(C′) ⇒ α(l[l′]p)

E ��

A
α(l)

R
�� α(r)

α(l[r′]p)

(I)

or we have a non-variable and nonfrozen position p′ in l′ such that α ∈ UnifA(l′|p′ , l)
and we form the conditional critical pair:

α(C) ∧ α(C′) ⇒ α(l′)

E ��

A
α(l′[l]p′)

R
�� α(l′[r]p′ )

α(r′)

(II)

We typically write these critical pairs as α(C) ∧ α(C′) ⇒ α(l[r′]p) → α(r) and
α(C) ∧ α(C′) ⇒ α(r′) → α(l′[r]p′).

We say that a critical pair of type (I) is joinable iff for any substitution τ such
that E ∪A � τα(C) ∧ τα(C′) we then have

τ(α(l))
R,A

��

E,A ��

A
�������
�������

τ(α(r))
∗

E,A
��

τ(α(l[l′]p))
E,A ��

w

A

u
A

∗E,A ��

τ(α(l[r′]p))
∗E,A ��

w′
A

u′′′
R,A

�� uiv

A

∗
E,A ��

w′′

u′ A

������������

������������
R,A

�� u′′

∗
E,A

<<
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Of course, by (C) ⇔ (LC) it is enough to make this check with u′′′ = u′′′↓E,A.
Similarly, we say that a critical pair of type (II) is joinable iff for any substi-

tution τ such that E ∪A |− τα(C) ∧ τα(C′) we then have

τ(α(l′))
R,A

��

E,A ��

A
�������
�������

v

A ∗
E,A

==
τ(α(l′[l]p))

R,A
�� τ(α(l′[r]p))

∗
E,A

==

w

A

τ(α(r′))

∗E,A ��

w′
A

w′′

u′
R,A

�� u′′

∗
E,A

>>

where, again, by (C) ⇔ (LC) it is enough to perform the check with u′ = u′↓E,A.
Of course, joinability of all conditional critical pairs is a necessary condition

for coherence. The challenge now is to find a set of sufficient conditions for
coherence that includes the joinability of conditional critical pairs.

Specifically, non-overlapping situations between equations and rules require
additional conditions. In the case of coherence checking, we need to worry about
non-overlapping of R under E, that is, for l′ →E r′ if C′ in E and l →R r if C
in R we need to worry about situations of the form:

l′
x

l

��������������� ��
��

��
��

��
��

��
�

��������� ��
��

��
��

�

����

���� ��
��

��
��

E
��

R ��

r′
��������������� ��

��
��

��
��

��
��

�

This situation can be problematic in two related ways: (1) when l′ →E r′

is unconditional but not linear, or (2) when l′ →E r′ if C′ is conditional. The
problem with (1) is well-understood since [25]. The problem with (2) was also
mentioned by Viry in [25]; it has to do with the fact that the satisfiability of the
condition C′ in an equation l′ →E r′ if C′ depends on the substitution θ (may
hold or not depending on the given θ). But since R rewrites the substitution θ,
we do not know if C′ will hold anymore after a one-step rewrite with the rule
l →R r if C.4

Theorem 2. Given R as above, then if:

(i) all conditional critical pairs are joinable and
4 Note that we can view cases of unconditional l → r with l non-linear as special cases

of (2), since we can linearize l, and give an explicit equality condition instead. E.g.,
x + x = x becomes x + y = x if x = y.
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(ii) for any equation l′ → r′ if C′ in E, for each x ∈ Var(l′) such that x is
non-frozen in l′, then either
(a) x is such that x �∈ vars(C′), x is also non-frozen in r′, and x is linear

in both l′ and r′, or
(b) the sort s of x is such that no rewriting with →R,A is possible for terms

of such sort s,

then R is coherent.

Condition (ii)-(b) of Theorem 2 requires a fixpoint calculation. An algorithm
that checks that situations where a non-frozen variable x in a left-hand side of
an equation fails to satisfy (ii)-(a) or (ii)-(b) is impossible is provided in [13].

2.3 Context-Joinability and Unfeasibility of Conditional Critical
Pairs

From those conditional critical pairs which cannot be joined, the tool can cur-
rently automatically discard those that are context-joinable or unfeasible, based
on a result by Avenhaus and Loŕıa-Sáenz [1], which we generalize here to the
order-sorted case and modulo A. Let us first introduce some notation.

Let a context C = {u1 →E v1, . . . , un →E vn} be a set of oriented equations.
We denote by C the result of replacing each variable x by a new constant x,
and by X the set of such new constants. Given a term t, t results from replacing
each variable x ∈ Var(C) by the constant x.

We denote by � the proper subterm relation. Then, given an order �, we
denote by �st = (� ∪ �)+ the smallest ordering that contains � and �. A
partial ordering � on TΣ(X ) is well founded if there is no infinite sequence
t0 � t1 � . . .. A partial ordering � is compatible with substitutions if u � u′

implies uσ � u′σ for any substitution σ. A partial ordering � is compatible with
the term structure if u � u′ implies t[u]p � t[u′]p for any term t and position p
in t. A partial ordering � is compatible with the axioms A if v =A u � u′ =A v′

implies v � v′ for all terms u, u′, v, and v′ in TΣ(X ). A partial ordering � is
A-compatible if it is compatible with substitutions, compatible with the term
structure, and compatible with the axioms A. Then, a reduction ordering is a
partial ordering that is well founded and A-compatible.

A deterministic rewrite theory R is quasi-reductive w.r.t. a reduction ordering
� on TΣ(X ) if for every substitution σ, every rule l → un+1 if u1 → v1 ∧ . . . ∧
un → vn in R , and every i ∈ [1..n], ujσ � vjσ for every j ∈ [1..i] implies
lσ �st ui+1σ.

Definition 3. Let E be an order-sorted deterministic term rewrite systems that
is quasi-reductive modulo A w.r.t. an A-compatible order �, and let C ⇒ s → t be
a conditional critical pair resulting from l → r if C1 in R and l′ → r′ if C2 in E,
and σ ∈ UnifA(l|p, l′) (resp. σ ∈ UnifA(l′|q, l)). We call C ⇒ s → t unfeasible if
there are terms t0, t1, t2 such that σ(l) �st t0 (resp. σ(l′) �st t0), t0 →∗

E∪C,A
t1,

t0 →∗
E∪C,A

t2, and t1, t2 are not unifyable and strongly E ∪C, A-irreducible.
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A Maude order-sorted conditional specification can be converted into an order-
sorted deterministic rewrite theory with a simple procedure (see, e.g., [13]).
Maude checks that the conditional equational specifications entered are deter-
ministic (c.f. [4]), and we assume it is operationally terminating, and therefore
there exists a well-founded A-compatible order �st such that we can use the
results in [1] and their extension to the Maude case [15], to discard those condi-
tional critical pairs generated that are unfeasible.

Definition 4. Given a rewrite theory R = (Σ, E ∪ A, R), a non-joinable con-
ditional critical pair C ⇒ u → v (coming from a conditional critical pair C ⇒

t
E,A $$�� R,A;;�

�

u v
) is context-joinable if and only if in the extended rewrite theory

RC = (Σ ∪X, E ∪C ∪A, R) we have:

u

!E∪C,A ��

v

∗
E∪C,A
��
w

A

w′

u′
R,A

�� u′′

∗
E∪C,A

::

Lemma 2. If the conditional critical pair C ⇒ u → v is context joinable, then
for all substitutions σ such that σC holds we have

σu

∗E∪C,A ��

σv

∗
E∪C,A

==
σw

A

σw′

σu′
R,A

�� σu′′

∗
E∪C,A

��

and therefore, the coherence property holds for the conditional critical pair C ⇒
t

E,A $$�� R,A;;�
�

u v
.

2.4 The Ground Coherence Case

Assume that Σ has a sub-signature of constructors Ω that has been verified to
be sufficiently complete with respect to the equations E modulo A. Then, we
can view each f ∈ Σ with a different syntactic form from Ω as a frozen operator,
since any ground term in E, A-canonical form will not contain the symbol f . This
automatically excludes all problematic non-overlaps with R below E except for:

(i) constructor equations, and
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(ii) equations f(t1, . . . , tn) → r if C in E with f ∈ Σ − Ω, and with f having
the identity, left identity, or right identity attributes, and such that the left-
hand side of the equation resulting from the variant-based transformation to
remove the identity attributes has a non-frozen variable (see [10] for details
on the variant-based transformation).

Therefore, for ground coherence under the assumption of frozenness of defined
symbols, we only have to check condition (ii) in Theorem 2 on equations of types
(i) and (ii) above.

Furthermore, for a conditional critical pair α(C) ∧ α(C′) ⇒ u → v which
we have not been able to show context-joinable, we can use constructor-based
inductive methods to try to prove its inductive one-step reachability, that is, that
R |−ind α(C) ∧ α(C′) ⇒ u → v. We can illustrate such inductive proof methods
with a simple example of a rewrite theory operating on cells containing numbers
modulo 4, where the rules double the cell’s contents each time.
(mod DOUBLE i s

sorts Nat /4 State .
op 0 : −> Nat /4 [ ctor ] .
op s : Nat /4 −> Nat /4 [ ctor ] .
op ‘ [ _ ‘ ] : Nat /4 −> State [ ctor ] .
op _+_ : Nat /4 Nat /4 −> Nat /4 .

vars N M : Nat /4 .

eq s ( s ( s ( s ( N ) ) ) ) = N .
eq N + 0 = N .
eq N + s ( M ) = s ( N + M ) .

r l [ double −0] : [ 0 ] => [ 0 ] .
r l [ double−s ] : [ s ( N ) ] => [ s ( N ) + s ( N ) ] .

endm)

The equations in this theory can be proved terminating using Maude’s MTT,
Church-Rosser using Maude’s CRC, and sufficiently complete using Maude’s
SCC. The ChC gives a nontrivial critical pair:
Maude> ( check ground coherence . )

Coherence checking of DOUBLE
Coherence checking solution :
The following critical pairs cannot be rewritten :

cp [#1: Nat /4 ]
=> [#1: Nat /4 + #1: Nat / 4 ] .

However, a simple constructor-based induction on N proves that

DOUBLE |−ind [N] → [N + N].

Indeed, using rule double-0 we can reduce the base case to checking

DOUBLE |−ind [0] = [0 + 0],

which can be trivially discharged; and the inductive step can be proved by using
rule double-s and discharging the trivial equality

DOUBLE |−ind [s(N) + s(N)] = [s(N) + s(N)].
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In general, the inductive equational goals generated this way may not be so trivial
as in this example, and may require additional steps of inductive equational
reasoning. Also, it may be the case that more than one rule can be applied to
rewrite the constructor-instantiated lefthand side of a critical pair, so that we
get a disjunctive proof obligation. For example, if we had added to the DOUBLE
module a rule to reset any cell contents to 1, namely,

r l [ reset ] : [ N ] => [ s ( 0 ) ] .

then, in the induction step of the inductive proof for the same critical pair [N] →
[N + N], we would now get the (still equally trivial in this case) disjunctive goal

DOUBLE |−ind [s(N) + s(N)] = [s(N) + s(N)] ∨ [s(0)] = [s(N) + s(N)].

3 How to Use the Maude Coherence Checker

This section illustrates the use of the Maude ChC tool, and suggests some meth-
ods that—using the feedback provided by the tool—can help the user establish
that his/her specification is ground-coherent.

We assume a context of use in which the user has already developed an exe-
cutable specification of his/her intended system with an initial model semantics,
and that this specification has already been checked to have confluent and ter-
minating equations and to have been tested with examples, so that the user is in
fact confident that the specification is ground-coherent, and wants only to check
this property with the tool.

The ChC tool not generating any proof obligations is only a sufficient con-
dition: in some cases of interest the specification may be ground coherent, but
not coherent; or may be coherent but the ChC cannot check this automatically
because of conditional rules or equations. Then, a collection of critical pairs will
be returned by the tool as proof obligations. The ChC does not attempt an au-
tomatic completion process to add new rules to the user’s specification. In many
cases this could easily lead to a nonterminating process. Even if such a comple-
tion were to terminate, it could easily modify and enlarge the user’s specification
in undesirable ways. Instead, the feedback of the ChC tool should be used as
a guide for careful analysis about one’s specification. By analyzing the critical
pairs returned, the user can understand why they could not be joined. In any
case, it is the user himself/herself who must study where the coherence problems
come from, and how to fix them by modifying the specification. Interaction with
the tool then provides a way of modifying the original specification and ascer-
taining whether the new version passes the test or is a good step towards that
goal.

We present in the following section a simple example that illustrates the use
of the tool for different combinations of the associativity, commutativity, and
identity axioms. The interested reader can find in [14] additional examples in
which conditional equations and rules are used, cases in which conditional critical
pairs are discarded using inductive proofs, and so on.
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3.1 An Unordered Communication Channel

Consider a communication channel in which messages can get out of order. There
is a sender and a receiver. The sender is sending a sequence of data items, for
example numbers. The receiver is supposed to get the sequence in the exact
same order in which they were in the sender’s sequence. To achieve this in-order
communication in spite of the unordered nature of the channel, the sender sends
each data item in a message together with a sequence number; and the receiver
sends back an ack message indicating that has received the item. The Full Maude
specification of the protocol is as follows:
(mod UNORDERED−CHANNEL i s

sorts Nat NatList Msg Conf State .
subsort Msg < Conf .
op 0 : −> Nat [ ctor ] .
op s : Nat −> Nat [ ctor ] .
op nil : −> NatList [ ctor ] .
op _ ; _ : Nat NatList −> NatList [ ctor ] . ∗∗∗ list constructor
op _@_ : NatList NatList −> NatList . ∗∗∗ list append
op ‘ [ _ ‘ , _ ‘ ] : Nat Nat −> Msg [ ctor ] .
op ack : Nat −> Msg [ ctor ] .
op null : −> Conf [ ctor ] .
op __ : Conf Conf −> Conf [ ctor assoc comm id : null ] .
op ‘{ _ ‘ , _ | _ | _ ‘ , _ ‘} : NatList Nat Conf NatList Nat −> State [ ctor ] .

vars N M J K : Nat . var C : Conf .
vars L P Q : NatList .

eq nil @ L = L . eq ( N ; L ) @ P = N ; ( L @ P ) .

r l [ snd ] : {N ; L , M | C | P , K} => {N ; L , M | [ N , M ] C | P , K} .
r l [ rec ] : {L , M | [ N , J ] C | P , J}

=> {L , M | ack ( J ) C | P @ ( N ; nil ) , s ( J )} .
r l [ rec−ack ] : {N ; L , J | ack ( J ) C | P , M} => {L , s ( J ) | C | P , M} .

endm)

The contents of the unordered channel is modeled as a multiset of messages
of sort Conf. The entire system state, involving the sender, the channel, and the
receiver is a 5-tuple of sort State, where the components are:

– a buffer for the sender containing the current list of items to be sent,
– a counter for the sender keeping track of the sequence number for items to

be sent,
– the contents of the unordered channel,
– a buffer for the receiver storing the sequence of items already received, and
– a counter for the receiver keeping track of the sequence number for items

received.

One essential property of this protocol is of course that it achieves in-order
communication in spite of the unordered communication medium. We can specify
this in-order communication property as an invariant in Maude. We will assume
that all initial states are of the form:

{n1 ; . . . ; nk ; nil , 0 | null | nil , 0}

That is, the sender’s buffer contains a list of numbers n1 ; ... ; nk ; nil
and has the counter set to 0, the channel is empty, and the receiver’s buffer is
also empty. Also, the receiver’s counter is initially set to 0.
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In specifying the invariant, the auxiliary notion of a list prefix may be useful.
Given lists L and L′ we say that L is a prefix of L′ iff either: (1) L = L′, or (2)
there is a nonempty list L′′ such that L @ L′′ = L′.

(mod UNORDERED−CHANNEL−INVARIANT i s inc UNORDERED−CHANNEL .
sort Truth .
ops tt ff : −> Truth [ ctor ] .
op _˜_ : Nat Nat −> Truth [ comm ] . ∗∗∗ equality predicate
op _and_ : Truth Truth −> Truth [ assoc comm id : tt ] .

vars M N K P : Nat . var C : Conf .
vars L L ’ L ’ ’ : NatList . var B : Truth .

eq 0 ˜ 0 = tt .
eq 0 ˜ s ( N ) = ff .
eq s ( N ) ˜ s ( M ) = N ˜ N .
eq ff and ff = ff .

op prefix : NatList State −> Truth .
eq [ I1 ] : prefix ( M ; L , {L ’ , N | C | K ; L ’ ’ , P })

= ( M ˜ K ) and prefix ( L , {L ’ , N | C | L ’ ’ , P }) .
eq [ I3 ] : prefix ( L , {L , N | C | nil , K }) = tt .
eq [ I4 ] : prefix ( nil , {L ’ , N | C | M ; L ’ ’ , K }) = ff .

endm)

The equational part of the specification can be checked terminating and
Church-Rosser using the MTT [9] and the CRC [14]. And the rules can be
shown to be ground coherent with the equations by using the ChC tool.
Maude> ( check ground coherence . )

Coherence checking of UNORDERED−CHANNEL
Coherence checking solution :
All critical pairs have been rewritten and all equations are non−

↪→constructor .
The specification i s ground coherent .

The problem with this simple example is that one cannot verify the invariant
using the search command in Maude, because, due to the snd rule, the number
of messages that can be present in the channel is unbounded, so that there is an
infinite number of reachable states. One should therefore use an abstraction.
(mod UNORDERED−CHANNEL−ABSTRACTION i s

pr UNORDERED−CHANNEL−INVARIANT .
vars M N P K : Nat .
vars L L ’ L ’ ’ : NatList .
var C : Conf .

eq [ A1 ] : {L , M | [ N , P ] [ N , P ] C | L ’ , K}
= {L , M | [ N , P ] C | L ’ , K} .

endm)

There are of course several key properties that such an abstraction should
satisfy:

(1) the set of states reachable from any initial state should be finite,
(2) the equational theory should be confluent and terminating,
(3) the rules should be coherent with the equations, and
(4) the abstraction should preserve the invariant.

Properties (1), (2) and (4) can easily be checked. For (3) we can use the ChC.
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Maude> ( check ground coherence . )

Coherence checking of UNORDERED−CHANNEL−ABSTRACTION
Coherence checking solution :
The following critical pairs cannot be rewritten :

cp for A1 and rec
{L : NatList , M : Nat | #3: Conf [ N : Nat , J : Nat ] | P : NatList , J : Nat}
=> {L : NatList , M : Nat | #3: Conf ack ( J : Nat ) [ N : Nat , J : Nat ]

| P : NatList ; N : Nat , s ( J : Nat ) } .
cp for A1 and rec

{L : NatList , M : Nat | [ N : Nat , J : Nat ] | P : NatList , J : Nat}
=> {L : NatList , M : Nat | ack ( J : Nat ) [ N : Nat , J : Nat ]

| P : NatList ; N : Nat , s ( J : Nat ) } .

These critical pairs indicate that a rule is missing. We can add the rule:
(mod UNORDERED−CHANNEL−ABSTRACTION −2 i s

inc UNORDERED−CHANNEL−ABSTRACTION .
vars M N K : Nat . vars L L ’ : NatList . var C : Conf .

r l [ rec2 ] : {L , M | [ N , K ] C | L ’ , K}
=> {L , M | [ N , K ] ack ( K ) C | L ’ ; N , s ( K )} .

endm)

After checking properties (1), (2) and (4) above, we can check also he coher-
ence of the specification.
Maude> ( check ground coherence . )

Coherence checking of UNORDERED−CHANNEL−ABSTRACTION −2
Coherence checking solution :
All critical pairs have been rewritten , and no rule can be applied
below non−frozen and non−linear variables of equations .

4 Conclusions and Future Work

We have presented the theoretical foundations and design of the Maude Coher-
ence Checker. This tool addresses an important need of rewriting logic spec-
ifications, namely, checking coherence and ground coherence for very general
order-sorted rewrite theories whose equations and rules can be conditional and
can be applied modulo various combinations of associativity and/or commuta-
tivity and/or identity axioms, and whose operators may have frozenness restric-
tions. As we have shown, some of these more general requirements, plus the
initial model semantics of rewrite theories, can make it in fact easier to check
coherence and ground coherence than in the much more restrictive untyped, un-
conditional, and unfrozen case considered by Viry [25]. The tool, together with
its documentation, is available at http://maude.lcc.uma.es/CRChC.

More work remains ahead. An important issue is that of formal tool integra-
tion. The ChC and the CRC are already integrated within a single tool; but
as we have explained, the checking of ground coherence can generate inductive
equational goals that should be discharged by the Maude ITP. Therefore, a closer
integration between the ChC and the ITP would be highly desirable.
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K-Maude: A Rewriting Based Tool for
Semantics of Programming Languages�
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Abstract. K is a rewriting-based framework for defining programming
languages. K-Maude is a tool implementing K on top of Maude. K-Maude
provides an interface accepting K modules along with regular Maude
modules and a collection of tools for transforming K language defini-
tions into Maude rewrite theories for execution or analysis, or into LATEX
for documentation purposes. The current K-Maude prototype was suc-
cessfully used in defining several languages and language analysis tools,
both for research and for teaching purposes. This paper describes the
K-Maude tool, both from a user and from an implementer perspective.

1 Introduction

There is overwhelming evidence by now that rewriting logic [4] is a powerful
framework for programming language design, semantics and analysis (there are
too many papers on these topics to cite; we recommend the interested reader
to consult the rewriting logic semantics project [5,12] and the references there).
There are two major reasons for that: (1) on the one hand, existing language
definitional approaches such as structural operational semantics (with [14] or
without [7] evaluation contexts, modular [6] or not) and natural semantics [3]
can be faithfully captured by rewriting logic, so one can use rewriting logic and
Maude [2] to define and analyze languages using these formalisms, and (2) on the
other hand, rewriting logic, thanks to its generality and powerful tool support,
encourages the development of new language definitional approaches.

The K framework [11,9] is a semantic definitional framework inspired from
rewriting logic but specialized and optimized for programming languages. It
consists of three components: a concurrent rewrite abstract machine, a language
definitional technique, and a specialized notation. The aim of the concurrent
rewrite abstract machine is to increase the potential for concurrency of a rewrite
theory by allowing rules which overlap but do not change the overlapped sub-
term (e.g., two threads writing in different locations in the store) to apply con-
currently; the concurrency aspect of K is beyond the scope of this paper, so we
do not discuss it here. We will briefly recall the K language definitional technique
in Sec. 2, but this paper is essentially related to the K specialized notation. Ros,u
and S, erbănut, ă [11] present an overview of the K framework in its full generality,
while Ros,u [9] discusses K in depth, relating it to other definitional frameworks.
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K modules

Maude Modules

Meta-data annotated
Maude Modules

Executable
Maude Modules

LATEX

K core

K-Maude
interface

Intermediate
representation

Fig. 1. K-Maude overview. Grayed arrows correspond to translating tools.

The K technique has been manually (without automated tool support) used
in the context of rewriting logic and Maude for more than five years, for teaching
programming language and program verification courses as well as for several
research projects. Such manual uses of K in Maude turned our to be verbose and
error prone, because Maude is a general purpose rewrite engine not specifically
optimized for programming languages. Thus, the idea of developing a K special-
ized layer on top of Maude came naturally. The resulting integrated toolkit is
called K-Maude and is the subject of this paper. Figure 1 shows the architecture
of K-Maude. The gray arrows represent translators implemented as part of the
toolkit. The K core contains the ingredients of the K technique, that are handy in
most language definitions, such as ones for defining computations, configurations,
environments, stores, etc. The K-Maude interface is what the user typically sees:
besides usual Maude modules (K-Maude fully extends Maude), one can also in-
clude K-Maude files (with extension .kmaude) containing modules using the K
specialized notation.

A first component of K-Maude translates K modules to Maude modules. The
resulting Maude modules encode K-specific features as meta-data attributes and
serve as an intermediate representation of K-Maude definitions. Since this rep-
resentation is just an artifact of using Maude, we will refrain from describing
it and we will identify it with the K module it stands for. This intermediate
representation can be further translated to different back-ends. We provide two
such translators, one to executable/analyzable Maude and one to LATEX. The
former yields actual executable language definitions in Maude which can serve
as interpreters for the defined languages or as a basis for formal analysis. This
paper addresses only the K-Maude interface and the translation from K-Maude
definitions to executable Maude definitions; the specific analysis efforts within
the K framework [8,10] are out of the scope of this paper.

The K-Maude to LATEX translator is meant to serve for documentation pur-
poses. Indeed, we believe that K can be used by ordinary language designers as
a formal notation for rigorously specifying the semantics of their languages, the
same way context-free grammars are used for formally specifying syntax, so a
user-friendly LATEX notation may be preferred.

Section 2 briefly discusses the K definitional framework. Section 3 gives a
user perspective of K-Maude, both w.r.t. its built-in features and how it can be
used. Section 4 describes how K-Maude is translated to Maude, so that language
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designers can execute and formally analyze their K language definitions using
Maude, and Section 5 describes how K-Maude is translated to LATEX, so that
language designers can visualize their language definitions.

2 K: A Rewriting-Based Framework for Computations

K [11,9] is a rewriting-based language definitional framework based on intuitions
from the chemical abstract machine (CHAM) [1], evaluation contexts [14] and
continuations [13]. The idea underlying language semantics in K is to repre-
sent the program configuration as a “nested soup” structure, which contains the
context needed for the computation, with elements of the context represented as
multisets or lists each wrapped inside a corresponding cell; a cell may also contain
other cells. Objects wrapped by cells generally include standard items such as
environments, stores, etc, as well as items specific to the given semantics. Math-
ematically, cells are written using the notation 〈. . . 〉env; here ‘env’ denotes the
cell label and ‘. . . ’ will represent the contents of the cell. When written in ASCII,
such as in K-Maude, we prefer to use the XML-like notation 〈env〉 ... 〈/env〉. One
regularly used cell, labeled by ‘k’, represents the current computations structure
of sort K, or simply the computation, which is a �-separated list of tasks, such
as t1 � t2 � . . . � tn. Another, labeled by �, represents the entire configuration
structure.

Figure 2 presents the definition of Imp++, a concurrent imperative language
using the K framework, as written in K-Maude. The definition follows the gen-
eral Maude module syntax, but, in addition to Maude syntax, it uses several K
specific constructs which will be detailed in the sequel. Although the definition
is written using pure ASCII in the K-Maude tool, we have replaced some of the
ASCII symbols with mathematical symbols when typesetting, to improve read-
ability. That is, we have replaced, here, and everywhere else in the paper, the
following: the mapping construct ‘|−>’ by ‘�→’, the K arrow ‘∼>’ by ‘�’, the
operation definition keyword ‘−>’ by ‘→’, and the rewriting construct ‘=>’ by
‘⇒’.

Although not enforced by the K-Maude tool, the Imp++ presented below is
divided into three modules: syntax, configuration, and semantics. The K mod-
ules are introduced by the special keywords kmod is endkm. The left column
presents the syntax of Imp++ (lines 1–31) and the default configuration of a
running program (lines 33–46), while the right column presents the executable
semantics of Imp++. Let us start describing Imp++ from its configuration mod-
ule (lines 33–46). Imp++’s computations consist of expressions (both arithmetic
and boolean), and statements (line 35). Among them, booleans and integers are
distinguished as results, that is, finished computations (line 36). Execution-wise,
Imp++ is an environment-based multi-threaded language (lines 39–41); The ∗
postfixed to the name of the thread cell indicates its multiplicity. All threads are
grouped in a threads cell and share a common store (line 42), as well as an input
and an output stream (line 44). The entire configuration is contained in a top
cell T.



K-Maude: A Rewriting Based Tool for Semantics of Programming Languages 107

kmod IMPPP−SYNTAX is
1 including PL−INT + PL−ID

sort AExp subsorts Int Id < AExp
3 op + : AExp AExp →AExp

[gather(E e) prec 33 strict ]
5 op / : AExp AExp →AExp

[gather(E e) prec 31 strict ]
7 op ++ : Id → AExp [prec 0]

op read : → AExp
9 sort BExp subsort Bool <BExp

op <= : AExp AExp →BExp
11 [prec 37 seqstrict]

op not : BExp → BExp
13 [prec 53 strict ]

op and : BExp BExp →BExp
15 [gather(E e) prec 55 strict (1)]

sort Stmt op ‘{‘} : → Stmt
17 op ; : AExp → Stmt [prec 90 strict ]

op : Stmt Stmt → Stmt
19 [prec 100 gather(e E)]

op = ; : Id AExp → Stmt
21 [prec 80 gather (e E) strict (2)]

op if then else : BExp Stmt Stmt
23 → Stmt [strict (1)]

op while do : BExp Stmt → Stmt
25 op print ; : AExp → Stmt [strict ]

op spawn : Stmt → Stmt [prec 90]
27 op haltThread ; : → Stmt

op var ; : Id → Stmt [prec 2]
29 op ‘{ ‘} : Stmt → Stmt [gather(&)]

endkm
31

kmod IMPPP−CONFIGURATION is
33 including IMPPP−SYNTAX + K

subsort AExp BExp Stmt <K
35 subsort Bool Int < KResult

configuration
37 〈T〉

〈threads〉〈thread∗〉
39 〈k〉 .K〈/k〉 〈env〉.Map〈/env〉

〈/thread∗〉〈/threads〉
41 〈 store 〉 .Map〈/store〉

〈nextLoc〉0〈/nextLoc〉
43 〈 in〉 .List〈/in〉 〈out〉 .List〈/out〉

〈/T〉
45 endkm

45 kmod IMPPP−SEMANTICS is
including IMPPP−CONFIGURATION

47 rule 〈k〉X:Id ⇒ I : Int〈 /k〉
〈env 〉X �→N:Nat〈 /env〉

49 〈 store 〉N �→ I〈 /store 〉
rule I1: Int + I2:Int ⇒ I1 +Int I2

51 rule I1 / I2 ⇒ I1 /Int I2 if I2 = / =Bool0
rule 〈k〉++ X ⇒ I +Int 1〈 /k〉

53 〈env 〉X �→N〈 /env〉
〈 store 〉N �→(I ⇒ I +Int 1)〈 /store 〉

55 rule 〈k〉read ⇒ I〈 /k〉
〈 in〉ListItem(I) ⇒ . 〈 /in〉

57 rule I1 <= I2 ⇒ I1 <=Int I2
rule not T:Bool ⇒ notBoolT

59 rule true and B:BExp ⇒B
rule false and ⇒ false

61 rule {} ⇒ . rule I ; ⇒ .
rule S1:Stmt S2:Stmt ⇒ S1 � S2

63 rule 〈k〉X = I ; ⇒ . 〈 /k〉
〈env 〉X �→N〈 /env〉

65 〈 store 〉N �→( ⇒ I)〈 /store 〉
rule if true then S1 else ⇒ S1

67 rule if false then else S2 ⇒ S2
rule 〈k〉while B do S:Stmt ⇒

69 if B then S while B do S else {}〈 /k〉
rule 〈k〉print I ; ⇒ . 〈 /k〉

71 〈out 〉 . ⇒ ListItem(I)〈/out〉
rule 〈k〉spawn S ⇒ . 〈 /k〉

73 〈env〉Env:Map〈/env〉
(. ⇒ 〈thread 〉

75 〈k〉S〈/k〉
〈env〉Env〈/env〉

77 〈 /thread〉)
rule 〈thread 〉〈k〉 .K〈/k〉 〈 /thread〉⇒ .

79 rule 〈k〉haltThread ; � ⇒ . 〈/k〉
rule 〈k〉var X ; ⇒ . 〈 /k〉

81 〈env〉Env ⇒ Env[N / X]〈/env〉
〈 store 〉 . ⇒ N �→ 0〈 /store 〉

83 〈nextLoc〉N ⇒ N +Nat 1〈/nextLoc〉
rule 〈k〉{S} ⇒ S � env(Env)〈 /k〉

85 〈env〉Env〈/env〉
op env : Map → K

87 rule env( ) � env(Env) ⇒ env(Env)
rule 〈k〉env(Env) ⇒ . 〈 /k〉

89 〈env〉 ⇒ Env〈/env〉
endkm

Fig. 2. Full definition of Imp++ in K-Maude
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Arithmetic expressions are constructed from variables and integers with addi-
tion and division (lines 2–7, 49–53), but additionally include variable increment
(lines 8, 54–56), to exhibit side effects, and external input (lines 9,57–58). Boolean
expressions (lines 10–16, 59–62) are constructed from comparing arithmetic ex-
pressions, with conjunction and negation as connectives. Statements consists
of standard constructs as the empty statement, the expression statement, se-
quential composition, assignment, conditional, and loop (lines 17–25, 63–71), to
which were added the following: output (lines 26, 72–73), thread creation and
dissolution (lines 27, 74–80), abrupt thread termination (lines 28, 81), as well as
local variable declarations and blocks (lines 29–30, 82–91). To exhibit features
of K (and K-Maude) not shown by the Imp++ definition, we will also discuss
features from the Challenge [11] definition, an elaborate extension of Imp++.

Due to K’s own use of the ‘.’ symbol (for generic unit), we do not use ‘.’ as
terminator in K modules, as mandatory in Maude modules; instead, we rely on
reserved keywords such as including, sort[s], subsort[s], op[s], configuration,
context, and rule, to disambiguate declarations. The syntax uses mostly stan-
dard Maude syntax and conventions for expressing the CFG as a collection
of sorts (for non-terminals), and subsorts and (mixfix) operation declarations
(for grammar productions). However, in addition to Maude’s attributes (such as
precedence and gathering), K specific attributes can be added, such as strict,
which is used to specify that (certain) arguments of a language construct need
to be evaluated first (and their effects on the global state be propagated) before
giving semantics to the construct itself.

K Rewrite Rules

A K definition consists of two types of sentences: structural rules (often reversible,
like equations) and computational rules (typically non-reversible).

Structural rules carry no computational meaning; instead, borrowing a concept
from CHAMs, structural rules can heat and cool computations. When a compu-
tation is heated, it breaks into smaller pieces, exposing subexpressions of more
complex expressions for evaluation. Cooling reverses this process, reassembling
the (potentially modified) pieces into a computation with the same “shape”. The
following are examples of structural rules:

a1 + a2 
 a2 � a1 + �
a1 + a2 
 a1 � � + a2

if b then s1 else s2 
 b � if � then s1 else s2

Language syntax is completely abstract in K, in the sense that each language
construct is a ‘KLabel’ which is applied to other computations, i.e., terms of sort
K; for convenience, and also supported by the K-Maude tool, we continue to use
the mix-fix notation for syntax, like above. Unlike in evaluation contexts, � is
not a “hole”, but rather part of a KLabel, carrying the obvious “plug” intuition;
e.g., the KLabels involving � above are ‘� + ’, ‘ + �’, and ‘ if � then else ’.
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Many structural rules can be automatically generated by annotating con-
structs in the language syntax with strict attributes: a strict attribute gen-
erates the appropriate structural rules for each strict argument. If an operator
is intended to be strict in only some of its arguments, then the positions of the
strict arguments are listed as arguments of the strict attribute; for example, the
first two equations above directly correspond to the attribute strict for addition
in Imp++ (line 5), i.e., strict in all arguments, while the last one corresponds to
strict(1) attribute used for the Imp++ conditional (line 24). One can also de-
fine evaluation contexts in K, by indicating the “hole” where evaluation should
take place; for example, assuming an extension of Imp++ with pointers and a
C-like dereferencing operator ∗ (like the Challenge definition [11]), a context
declaration ‘context ∗ [HOLE] = ;’ says that the argument of ∗ needs to be
evaluated before the assignment can be defined.

Computational rules represent actual steps of computation. However, to account
for the differences between K rules and regular rewrite rules, we chose to intro-
duce K rules with the rule keyword, even when they have the form of regular
rewrite rules, e.g., the rules for addition and conditional (line 52, and lines 68–69,
respectively). rule can also be used to express structural rules, by adding the
structural attribute to the end of the rule.

In-place rewriting. In addition to regular rewrite rules, of the form ‘rule l ⇒ r’,
K allows one to also write rules using the following contextual notation:

C[t1
t′1

, t2
t′2

, ..., tn
t′n

]

which says that in (multi-)context C (that is a term with multiple, ordered holes),
each pattern ti rewrites to t′i for each i ∈ {1, ..., n}. An n-hole context could
formally be described as a term over the set of variables {�i}1≤i≤n containing
exactly one occurrence of each variable �i. An instantiation of an n-context
C with terms t1, . . . , tn, written C[t1, . . . , tn] is obtained by applying on C the
substitution yielding ti for each �i.

One motivation for in-place rewriting rules is that they allow for a more
compact and less error-prone representation for rules matching large configura-
tions but effecting only small changes. Another motivation is that the context
C can be concurrently shared by various rules, which can apply concurrently
provided that none of them changes C (C is “read only”). If one ignores this
concurrency aspect, then one can translate each K contextual rule into a rewrite
rule C[t1, t2, ..., tn] → C[t′1, t

′
2, ..., t

′
n]; this is precisely what K-Maude does. In

K-Maude, the mathematical in-place rewriting l
r is injected in-place as ‘ l ⇒ r’.

By default, the in-place rewriting construct ‘ ⇒ ’ is greedy; parenthesis can be
used for disambiguation purposes (see, e.g., lines 56, and 76–79).

Anonymous variables. Another advantage emerging from the single-term rep-
resentation of rules induced by in-place rewriting is that variables occurring
only once in the rule can now be “anonymized”, that is, replaced by the
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anonymous variable symbol ‘ ’, since they are only used for matching pur-
poses. This is especially true in the case of matching inside cells, of which
we usually use/replace only one object in a rule, but we need to match the
contents of the entire cell. A special notation for cells is used to help the in-
tuition that the cells might be “open” at one end, or both. For example, in
the rule for reading a variable from the store (lines 49–51), one can either use
〈k〉X ⇒ I〈 /k〉 or 〈k〉(X ⇒ I) � 〈/k〉 to specify that X is to be matched and
replaced at the beginning of computation, and use either 〈env 〉X�→N〈 /env〉
or 〈env〉 X �→N 〈/env〉 to specify that X �→N is to be matched in the middle
of the environment; also, one can use either 〈out 〉 . ⇒ ListItem(I)〈/out〉 or
〈out〉 (. ⇒ ListItem(I))〈/out〉 to add an integer to the end of the output list
(line 73). One could think of this notation as having the following intuition: 〈〉
is a membrane delimiter, which can carry inside attributes such as name (e.g.,
‘out’), visual information specifying that a membrane is closing the cell (‘/’), as
well as information specifying whether a part of the cell (the left, the right, or
both) is subsumed by the pattern (‘ ’). Therefore one can read the “tag” 〈 /k〉
as: the membrane closing the k cell while subsuming the final part of the cell.
By convention we will always attach ‘/’ to the name of the cell, and ‘ ’ to the
membrane wall closest to the cell contents.

As previously mentioned, the unit elements for the List, Set, Map, and even
K sorts is ‘.’; however, since cells are not typed, whenever disambiguation is
needed, one can postfix the name of the sort to the ‘.’; e.g., the initial values in
the configuration term (lines 37–45), or the empty computation ‘.K’ used in the
rule for dissolving a thread (line 80). The preprocessor transforms them to the
right constants used in the Maude representation. Also, the preprocessor allows
one to avoid variable declarations by declaring variables inline in the rules, using
the Maude syntax, e.g., I : Int. However, once a variable was declared inline, the
other apparitions of the variable in the module need not be sorted anymore, as
they would assume the already declared sort.

The notation used by the K-Maude tool is a one-dimensional ASCII rendition
of the K mathematical notation [11]. For example, the K mathematical rendering
of the Imp++ assignment rule (lines 65–67) is:

〈X = I;
·

〉k 〈 X �→ N 〉env 〈 N �→
I

〉store

The above rule says that if the assignment X = I is the first computational task,
and if X is at location N in the environment, then replace whatever is at location
N in the store by I and discard the assignment. Note that in the mathematical
notation the membranes wrapping the cells, e.g., 〈env 〉 〈 /env〉 are replaced by
“thinner” membranes, e.g., 〈 〉env, but still maintain all relevant information.

3 K-Maude Interface

For the purpose of this paper, K can be regarded as a notational layer on top
of rewriting logic, specialized and optimized for writing definitions of complex
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programming languages and models. Since our aim for K-Maude is to fully sup-
port rewriting logic and Maude, we implemented it as an extension of Maude.
Consequently, one is free to use or not the K notation when writing language
definitions. An extreme approach, which could be convenient for existing Maude
users who want to gradually get exposed to K, is to only include the provided
K-Maude core and then follow the K language definitional technique but use
plain Maude, the same way one can give SOS or other semantic definitions using
plain Maude [12]. This section presents the ingredients of both the K technique
and the specific K notation used by the K-Maude tool. However, we will insist
more on notation here, and refer the interested reader to the relevant material
discussing in depth the corresponding concepts within the K technique [11].

3.1 K-Maude Core

The core syntax of K-Maude can be found in file ‘k-prelude.maude’, module
K-TECHNIQUE. It starts by providing means to build computations as sequences
of abstract syntax trees, as well as distinguishing the result computations among
them. Then it defines lists, bags, sets, and maps as sorts, together with means
to inject computations as elements in these data-structures. Finally, the core
provides minimal support for describing configurations as “nested soups” of cells,
along with two default cell names, ‘k’ and ‘T’.

Basic K syntax [11, Sec. 5.2]. A computation is a term of a specific sort K,
and is defined as a list of tasks with identity ‘.’ and constructor ‘ � ’ as well as
a way of building structured computations by applying labels (one per language
construct) on top of lists of computations:

op � : K K → K [prec 100 assoc id : .] .
op ( ) : KLabel List{K} → K [prec 0 gather(& &)] .

In K-Maude, the sort List{K} is built from K using ‘ ,, ’ as a constructor (to
allow us to use the single ‘,’ in language definitions) and ‘ . List{K}’ as unit (to
disambiguate from the unit of computations). Finished computations are dis-
tinguished to allow for a computational treatment of strictness rules. The sort
KResult is meant to describe results, or computations which need no further eval-
uation, and the sort List{KResult} is the corresponding subsort of List{K}. We
additionally introduce KResultLabel and KHybridLabel, as subsorts of KLabel,
together with their corresponding application constructors:

op ( ) : KResultLabel List{K} →KResult [ditto ] .
op ( ) : KHybridLabel List{KResult} →KResult [ditto] .

The distinction between the two is that, while the first encapsulates the entire
list of computations below into a result, the second is “hybrid”, that is, it only
becomes a result when all the computations it “wraps” become results.

Lists, bags, sets, and maps. K-Maude provides generic sorts List, Set, Bag
and Map, constructed from their corresponding element sorts ListItem, SetItem,
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BagItem and MapItem, with constructor ‘ ’ and having unit ‘.’. Moreover, the
following injections of K into the element sorts are provided: ListItem, SetItem,
BagItem, and ‘ �→ ’ (to inject a pair of K’s into MapItem).

Labelled Cells. The configuration is defined as a structured “soup” of cells.
Therefore, we use the already defined sort Bag to hold such a collection of
cells. Having a unique sort for cells makes cell nesting easy; a cell holding other
cells simply needs to take a Bag as an argument. To declare a cell, one only
needs to specify its label, as a ‘CellLabel’.

sort CellLabel .

op 〈 〉 〈/ 〉 : CellLabel K CellLabel → BagItem [prec 0] .
op 〈 〉 〈/ 〉 : CellLabel List CellLabel → BagItem [prec 0] .
op 〈 〉 〈/ 〉 : CellLabel Bag CellLabel → BagItem [prec 0] .
op 〈 〉 〈/ 〉 : CellLabel Set CellLabel → BagItem [prec 0] .
op 〈 〉 〈/ 〉 : CellLabel Map CellLabel → BagItem [prec 0] .

ops k T : → CellLabel .

K-Maude currently allows five kinds of cells, each containing either a compu-
tation, a list, a bag, a set, or a map. The syntax for the cells is defined as that
of an XML element, with an opening and a closing tag, which must match (i.e.,
the corresponding CellLabels must be equal).

3.2 K-Maude Specific Modules

The K-Maude modules are introduced by kmod is endkm, to distinguish them
from usual Maude modules. A script, external to Maude, is used to preprocess the
K-modules into a form which can be parsed by Maude, for example by a adding
the terminator ‘.’ at the end of declarations, by changing kmod into ‘mod’ and
endkm into ‘endm’, and by wrapping specific K attributes in ‘metadata’ strings.

3.3 Language Syntax and Annotations

As already mentioned, the syntax of the language is defined as an al-
gebraic signature, associating to each language construct a mix-fix opera-
tion, following the equivalence between CFG grammars and mix-fix alge-
braic signatures. For example, the BNF rule for conditional Stmt ::=if
BExp then Stmt else Stmt translates into the operation declaration
op if then else : BExp Stmt Stmt →Stmt.

Syntax attributes [11, Sec. 5.4]. In addition to the existing operation declara-
tion attributes provided by Maude, K-Maude introduces several new attributes:
– strict specifies what arguments need to be evaluated before evaluating the
language construct itself. For example, the strict(2) attribute of the assignment
declaration in Imp++ (line 22) states that the semantic rule for assignment can
assume that the second argument is evaluated;
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– seqstrict is similar, but also states the evaluation sequence of the arguments;
– hybrid specifies that the language construct would become a value once all its
arguments have been fully evaluated.

3.4 Defining the Program Configuration [11, Sec. 5.1]

Currently, the program configuration is specified by providing a term which
should stand for the initial configuration, introduced by the configuration key-
word. The cell labels present in the configuration are then inferred and declared
as CellLabel constants by the preprocessing tool.

Specifying the structure of the configuration serves not only for documentation
purposes, but has consequences in both the modularity and the compactness of
definitions, since the semantics rules need to mention only the context required
for them to apply, as detailed in the next section.

3.5 Defining Language Semantics

The K-specific semantic constructs which are supported by K-Maude are the K
contexts and the K (structural or computational) rules. Contexts can be thought
of as evaluation contexts, specifying the order of evaluation, while K rules provide
notational shortcuts to make definitions more compact.

Context strictness. K-contexts are usually used for specifying strictness
constraints which depend on a context rather than on a single construct. For
example, the context strictness declaration ‘context ∗ [HOLE] = ’ (see the
Challenge definition [11]) specifies the evaluation to an L-value of a pointer
in the assignment construct, allowing the rule for pointer-assignment to assume
it has a value in place of the first argument (the hole); the fact that it would
also have a value instead of the second argument was specified by the strictness
annotation for ‘ = ’. Actually, all strictness annotations are turned by the tool
into context strictness ones during the compilation process, before the actual
heating and cooling equations are being generated.

K rules [11, Sec. 5.3]. K rules are introduced by the rule keyword, and
basically describe a special pattern term enriched with syntax for expressing the
K-specific features described below. There are two types of K rules, structural
and computational; in K-Maude we distinguish them by adding the attribute
structural to the former. The intuition is that the structural rules prepare the
program state for a computational step. Therefore, the K-Maude tool translates
the former into equations and the latter into rules.

In-place rewriting. A K rule is a term which should contain at least one occur-
rence of the T1 ⇒ T2 construct, which is used as a textual representation for
the K visual replacement pattern: T1

T2 . For example, the increment rule of Imp++
(lines 54–56) contains two non-trivial in-place replacements, while also sharing
quite a bit of the context: if the construct ‘++ X’ is found on top of the com-
putation, and the environment contains the mapping of X to a location N , and
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the store maps N to an integer I, then ‘++ X’ is locally replaced by the value
associated to I +1, and I is locally replaced by I +1 in the store. The ‘ ⇒ ’ ar-
row is greedy, i.e., it will expand to the nearest enclosing boundaries. Therefore,
one might sometimes need to use parenthesis to clearly fix those boundaries for
parsing reasons, e.g., changing the value at a location in the store in line 56, but
also semantic reasons, e.g., new thread creation in lines 76–79.

Anonymous variables. Specified by ‘ ’, anonymous variables can be used to re-
place all variables whose name is not needed in the match-and-replace process.
For example, the Imp++ ‘haltThread’ rule (line 81) uses an anonymous variable
to abstract the remainder of the computation, since it will be discarded by the
rule.

Cell comprehension. Maude-K allows partial specification of the contents of a
cell, by adding ‘ ’ as an attribute inside the membrane delimiter ‘〈〉’ on the side
of the cell which should be abstracted away. For example, the Imp++ rule for
output (lines 72–73), saying that the integer argument of a ‘print’ statement is
appended to the contents of the ‘output’ cell, abstracts away both the rest of
the computation and the existing output list; these are not changed by the rule.

Context abstraction and context transformation [11, Sec. 5.5]. The
main reason for specifying the structure of the configuration is that one does not
need to mention the full context required for the application of a rule, but only
the parts which are relevant. Within a rigid configuration structure in which
the path to each cell is unambiguous, it becomes straight-forward to infer what
context needs to be added to a rule to adapt it to the running configuration. A
simple instance of using context abstraction is the Imp++ assignment rule (lines
65–67). The rule for assignment should be the same in any definition containing
an environment and a store. Although in our definition the store is not at the
same level with the computation and the environment, we can still use this rule in
the specification, because it can be easily inferred which store the rule refers to.

The following rule could be used to define a rendez-vous synchronization con-
struct (see the Challenge definition [11, Sec. 6]) as follows:

rule 〈k〉 rv I ⇒ . 〈 /k〉 〈k〉 rv I ⇒ . 〈 /k〉 .

Note that, although the two computation cells need to be in two different threads,
there is no danger of confusion, since the multiplicity of the ‘k’ cell is one, so
the only way to make sense of this rule is to have each computation in its own
thread, since the multiplicity of the ‘thread’ cell may vary.

Default contexts. Another aspect of the context abstraction with impact on
modularity is filling the context with default values on the right-hand-side of
an (in-place) rewriting pattern. One such example is the Imp++ rule for thread
creation (lines 74–79). Note that we have specified the thread cell as being in-
complete in both sides. This is used as a notation to specify that the thread cell
is incompletely specified, and thus it should be context-transformed, filling all
gaps with default values. For this specific configuration, this notation was not
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necessary, but this allows for modular changes of configuration when adding cells
having constant initial values when a thread is started, such as a function call
stack or a set of locks hold by the thread—see the Challenge definition [11,
Sec. 6] for a complex example.

It is arguable that context abstraction could have undesirable effects on badly
written specifications. However, due to its deterministic nature, we believe it to
be rather useful and intuitive. Besides saving the need for providing additional
context (which could get quite large and tedious to write), and thus providing
brevity to specification, it also enables reusing, since now a rule specifies only the
minimal needed context. Moreover, K-Maude desugars K rules to pure rewriting
logic rules and equations, so one could always inspect the resulting rules to ensure
no unexpected behaviors are introduced when resolving the context abstraction.

Rewrite rules. One can additionally use regular rewrite rules and equations
when giving semantics to the language constructs. The K-specific syntactic con-
ventions presented above also apply to them; e.g., one can use ‘ ’ as an anony-
mous variable in the left-hand-side of a rule, and even context abstraction in the
right-hand-side, which is useful, for example, to set up the initial configuration
when starting the execution of a program.

4 From K-Maude to Maude

This section describes the technical part of the K-Maude tool. As the semantics
of the K framework itself is given using rewriting logic, it comes natural that the
executable semantics of K, as given by the K-Maude tool, is given by reduction to
pure Maude (executable) rewrite theories. That is, each of the K-specific features
is transformed into its rewriting logic representation.

Syntax. As mentioned in Sec. 3.3, the K-Maude interface allows for the defini-
tion of syntax as an algebraic signature, using subsorting and mixfix operations
to emulate CFG grammar descriptions. This allows the programs to look more
natural, but also, more importantly, it improves the readiness of the semantic
rules. Nevertheless, as previously mentioned, the K framework takes a fairly ab-
stract view on syntax, that is, a tree built as labels applied to (possibly empty)
lists of subtrees. To achieve that, the K-Maude tool transforms all syntax into
labels. With syntax being just labels and with the distinction between value (of
sort KResult) and non-value computations, the strictness attributes are easily
desugared as heating only on non-value computations and cooling only on values.

Semantics. The semantic part of a K definition is gradually transformed into an
executable Maude module as follows: First, the configuration term is used to re-
solve context abstraction. Next, cell comprehension is resolved by adding anony-
mous variables, which, in their turn are replaced with proper (fresh) variables
of the right sort. Then, K rules are transformed into rewriting logic equations
and rules, by resolving the in-place rewriting. Finally, all computation terms
(including the test programs specified by the user) are transformed into ASTs.
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Besides the original preprocessor, which wraps the K definitions so that they
can be recognized and parsed by Maude, all syntax and semantic transformations
are entirely defined within Maude, taking advantage of its reflective capabilities
and of the predefined Maude modules used to represent and transform meta-
terms and meta-modules. In the sequel we give more details.

4.1 From Syntax to K Syntax and K Representation

To take advantage of Maude’s parsing capabilities and to keep semantics as hu-
man readable as possible, the user of K-Maude is allowed to use Maude’s mix-fix
multi-sorted algebraic signatures to define the syntax of the desired language or
calculus. However, in K we want to keep computations to a minimal structure
to facilitate easy and generic traversal functions, which are crucial for advanced
reflective features such as code generation (see, e.g., the CHALLENGE defini-
tion [11, Sec.6]). To achieve this, the K-Maude tool automatically generates the
labels for the abstract (running) syntax from the input (user) syntax.

Abstract syntax. The K running syntax only consists of K labels, as defined in
the core syntax of computations presented above. Since the semantic rules mix
the syntax with semantics-specific constructs and use them in contexts where
computations are required, the user has to subsort all syntactic categories to
computation sorts K and KResult, depending on whether they represent proper
computations or values, respectively. The tool uses this information to generate
the appropriate labels, i.e., constants of the ‘KLabel’ or the ‘KResultLabel’ sorts,
for each operation symbol. For example, for the conditional construct, its cor-
responding K label declaration is “op ’ if then else : → KLabel”. To avoid
label symbol conflicts, the K label symbols are generated by simply quoting the
identifier used to declare the mixfix syntactic construct.

Handling data types. There are certain sorts, such as integers, booleans,
and identifiers, which need to be handled in a special way, to be able to iden-
tify them when giving the semantics. To address that, we allow certain sorts
to be identified as builtins at the user level, by introducing a new computa-
tion sort Builtins and subsorting all such sorts to it. These sorts will be in-
jected into labels in an appropriate manner, following the subsorting chain to
either KResult or K. For example, integers are injected into KResultLabel as
‘op Int : Int → KResultLabel’, since they are subsorted to KResult, while
identifiers are injected to KLabel through ‘op Id : Id → KLabel’.

Translating terms. The constant labels and constant injections defined above
are used to completely replace the original syntax. For example, the fragment

if a <= 2 then a = 2 ; else {}
gets translated to:

’if then else(’ <= (Id a(.List{K}),,Int 2(.List{K})),,
’ = ;(Id a(.List{K}),,Int 2(.List{K })),,’‘{‘}(. List{K}))
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4.2 Strictness

Strictness annotations provided as attributes to operator declarations are trans-
lated into K context declarations, one for each position in which the operation
should be strict. Then, each context is transformed into two equations: one which
pulls the strict argument (represented by the hole) out of the context for evalu-
ation, and another one which, once the argument becomes a value, plugs it back
into its original context.

Strict operator attributes. For each argument position declared strict for an
operation, a context declaration is generated, containing a hole. For example, the
strict(2) declaration for the assignment operation in Imp++ (line 22) would gen-
erate the following context declaration: ‘context ’ = ;(K1:K,,[HOLE])’, while
the seqstrict declaration for ‘ <= ’ is desugared into two context declarations,
‘context ’ <= ([HOLE],,K1:K)’ and ‘context ’ <= (K1:KResult,,[HOLE])’.
Sequential strictness in ensured by requiring the first argument of the last con-
text above to be an evaluated computation.

Strict contexts. Although we could identify proper computations by a side
condition testing that they are not of sort KResult, we prefer to introduce a
new category of computations, KProper, with the intuition that KProper and
KResult form a partition of the K sort. Since all computations are built by
applying labels on other lists of computations, we therefore also introduce the
sort KProperLabel, and change all existing label definitions such that any K
label which is not a result label will be a proper label. For example, the label
associated to the conditional would now have KProperLabel as its resulting sort;
the same holds for the ‘Id ’ injection. Having KProper computations, the strict
contexts are desugared as follows: two equations are generated for each context,
one for pulling out the proper computation for evaluation and the other for
plugging in the result computation. For the assignment operation declared strict
in the second argument, the generated equations are:

eq 〈 k 〉 K1:K = Kcxt:KProper �Rest:K 〈/ k 〉
= 〈 k 〉 Kcxt:KProper � freezer (”’ = ;(K1:K,,‘[HOLE‘]:K)”)(

freezeVar(”K1:K”)(K1:K)) �Rest:K 〈/ k 〉 .
eq 〈 k 〉 Kcxt:KResult � freezer (”’ = ;(K1:K,,‘[HOLE‘]:K)”)(

freezeVar(”K1:K”)(K1:K)) �Rest:K 〈/ k 〉 .
= 〈 k 〉 K1:K = Kcxt:KResult �Rest:K 〈/ k 〉

These equations apply only at the top of the continuation, because they should
only affect the current evaluation redex. Again, as a way to generate unique and
meaningful identifiers, we have chosen to have a generic wrapper freezer which
takes the printed form of an entire context, represented as a string, and returns
a K label. Moreover, all the variable arguments are wrapped by a label obtained
from applying the special freezeVar constructor over the string representation
of the variable name. This serves not only to easily identify variables visually,
but also to prevent variable contents from mixing in the case of variables of sort
List{K}.
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4.3 K Semantics

This section describes and exemplifies the process of translating the K semantic
constructs to Maude constructs, obtaining an executable definition as a result.

Applying Context Transformers. Although K-Maude allows the specifica-
tion to omit the configuration context (for modularity and compactness pur-
poses), this context needs to be filled in by the tool as a first step towards
obtaining a runnable definition. To do that, we use the tree associated to the
configuration declaration to iteratively match the cells having the maximal
level in the tree, and to wrap them (if not already wrapped) by their corre-
sponding parent cell in the configuration tree, and then continue. Let us present
how the context transformers algorithm works on the examples discussed in
Sec. 3.5.

The assignment rule. For this rule, the ‘k’ and ‘env’ cells are the deepest in the
configuration tree; they both are subcells of the ‘thread’ cell. Since the ‘store’
cell corresponds to a higher level in the configuration tree, the ‘k’ and ‘env’ cells
are wrapped by a ‘thread’ cell in the first iteration of the algorithm:

rule 〈thread 〉 〈k〉 X = I ; ⇒ . 〈 /k〉 〈env 〉 X �→N 〈 /env〉 〈 /thread〉
〈 store 〉 N �→ ( ⇒ I) 〈 /store 〉

However, the ‘store’ cell is still higher in the configuration than the ‘thread’ cell,
so the ‘thread’ cell itself needs to be wrapped by the ‘threads’ cell:

rule 〈threads 〉 〈thread 〉 〈k〉 X = I ; ⇒ . 〈 /k〉 〈env 〉 X �→N 〈 /env〉
〈/ thread〉 〈/ threads〉 〈 store 〉 N �→ ( ⇒ I) 〈 /store 〉

The levels of the cells in the new term correspond to their levels in the configu-
ration term; therefore the algorithm concludes successfully.

The rendez-vous rule. rule 〈k〉 rv I ⇒ . 〈 /k〉 〈k〉 rv I ⇒ . 〈 /k〉
Although the two computations are here at the same level, their multiplicity
does not correspond to the one declared in the configuration term. Therefore
the context transformers will wrap each of them in their container ‘thread’ cell:

rule 〈thread 〉 〈k〉 rv I ⇒ . 〈 /k〉 〈 /thread〉
〈thread 〉 〈k〉 rv I ⇒ . 〈 /k〉 〈 /thread〉

Since the thread cell has variable multiplicity, the process is complete.

Default cell values. Consider a simple ‘run’ construct, which given the program
to be run and a list of input values creates an initial configuration for running
the program with the given input. As only the ‘k’ cell and the ‘in’ cell would
have non-default values in the initial configuration, we can write the rule for
initiating the computation as:

rule run(P,L) ⇒ 〈T 〉 〈k〉 P 〈/k〉 〈 in〉 L 〈/in〉 〈 T〉
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Since an incomplete cell appears in the right-hand-side, it will be replaced by the
corresponding default configuration (sub)term in which the user-specified cells
substitute their corresponding cell in the configuration. Moreover, a cell having
multiplicity zero or more is only included only if one of its sub-cells was specified
by the user. For our example, the generated rule would be:

rule run(P,L) ⇒ 〈T〉
〈threads〉 〈thread〉 〈k〉 P 〈/k〉 〈env〉.Map〈/env〉 〈/thread〉〈/threads〉
〈 store 〉 .Map〈/store〉 〈nextLoc〉0〈/nextLoc〉 〈in〉 L 〈/in〉 〈out〉 .List〈/out〉

〈/T〉

Resolving variables. Once the context transformations have been applied
(taking advantage of the cell comprehension feature), the next step towards ob-
taining a standard rewriting theory is to resolve cell comprehension and anony-
mous variables by replacing them with variables of the right sort. To do that,
the K definition is traversed, and each term is recursively visited. The visitor
uses contextual information to infer the constructor and the variables needed
to resolve cell comprehension, and then it uses the full signature to resolve the
anonymous variables. For example, the assignment rule presented above will look
as follows after this step:

rule 〈threads〉 ?1:Bag 〈thread〉 ?2:Bag
〈k〉 (X = I ; ⇒ .) � ?3:K 〈/k〉 〈env〉 ?4:Map X �→N 〈/env〉

〈/thread〉 〈/threads〉 〈 store 〉 ?5:Map N �→(?6:Int ⇒ I) 〈/store 〉
Note that although set comprehension uses ellipses on both sides of the cell, we
only need one variable, since the constructor is associative and commutative. The
names for the replacement variables start with ‘?’ and have appended numbers
for disambiguation.

Resolving in-place rewriting. Transforming K rules into rewrite rules and
equations becomes relatively simple upon the completion of the steps above.
From each K rule C[ l1 ⇒ r1 ,..., ln ⇒ rn ], the two terms of the corre-
sponding rewrite rule (l ⇒ r) or equation (l = r), can be inferred as being
l = C[l1 ,..., ln ] , and r = C[r1 ,..., rn]. This inference process is defined by
building the two terms l and r together while traversing the K rules. If the
rule has the structural attribute, then it would be transformed into an equation;
otherwise, into a rewrite rule. At the completion of this step, the assignment
rule is:

rl 〈threads〉 ?1:Bag 〈thread〉 ?2:Bag
〈k〉 X = I ; � ?3:K 〈/k〉 〈env〉 ?4:Map X �→N 〈/env〉

〈/thread〉 〈/threads〉 〈 store 〉 ?5:Map N �→?6:Int 〈/store 〉
⇒ 〈threads〉 ?1:Bag 〈thread〉 ?2:Bag

〈k〉 . � ?3:K 〈/k〉 〈env〉 ?4:Map X �→N 〈/env〉
〈/thread〉 〈/threads〉 〈 store 〉 ?5:Map N �→I 〈/store 〉
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Reduction to the K abstract syntax. After all previous transformation
have applied, the rule is transformed to the AST form. Additionally, this step
reduces the compositions of constructors with their identities (due to the use of
· in rules) which were introduced at the previous step. The final running version
of the assignment rule would thus be:

rl 〈threads〉 ?1:Bag 〈thread〉 ?2:Bag
〈k〉 ’ = ;(Id X(.List{K}),,Int I (. List{K})) � ?3:K 〈/k〉
〈env〉 ?4:Map Id X(.List{K}) �→Int N(.List{K}) 〈/env〉

〈/thread〉 〈/threads〉
〈 store 〉 ?5:Map Int N(.List{K}) �→Int ?6:Int (. List{K}) 〈/store〉

⇒ 〈threads〉 ?1:Bag 〈thread〉 ?2:Bag
〈k〉 ?3:K 〈/k〉 〈env〉 ?4:Map Id X(.List{K}) �→Int N(.List{K}) 〈/env〉
〈/thread〉 〈/threads〉
〈 store 〉 ?5:Map Int N(.List{K}) �→Int I (. List{K})) 〈/store〉

5 From K-Maude to LATEX

To facilitate the visualization, understanding, and debugging of K definitions,
as well as their inclusion in research papers and presentations, K-Maude allows
for annotations (as special attributes) specifying how various constructs should
be represented in LATEX, and provides a tool (written in Maude, as well) which
automatically generates a LATEX document from a provided K-Maude definition.
The LATEX-specific annotation is wrapped in the latex attribute. For example,
the following environment cell definition requires that ‘<=’ be typeset as ‘≤’.

op <= : AExp AExp →BExp [latex({#1}\leq{#2})]

Typesetting styles. The LATEX generated from K modules is fully configurable,
as each specific part of a definition is enclosed in LATEX macros. The compilation
script then takes the output produced by Maude and includes a style file in the
preamble, containing definitions for all the macros. Moreover, it allows for the
user to provide its own style file which is loaded after the main one, and can
customize part of the macros. K-Maude currently provides two such main styles,
differing only in the way they typeset cells. One of them typesets rules using only
the mathematical K notation, producing rules as the one at the end of Sec. 2,
or the ones in [11]. The other, presented below, uses a more graphical notation
for cells, and it is thus better for visualizing definitions.

Formatted output. Sort, subsort, and operation declarations are converted to
their equivalent BNF notation, since this notation is prevalent in programming
languages definitions. For example, the Imp++ syntax for arithmetic expressions
(lines 11–22) is automatically typeset to:

AExp ::= Int | Id
AExp :: | AExp + AExp [strict]
AExp :: | AExp / AExp [strict]
AExp :: | ++ Id
AExp :: | read
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K cells are represented using the tikz package as rectangles with rounded
sides and with the cell label attached to the top. Completely specified cells have
both sides rounded. Incomplete cells, on either side, have the corresponding side
“ripped”. For example, the Imp++ assignment rule (lines 39–41) is typeset as:

X = I ;
.

k

X �→ N

env
N �→ —

I

store

The configuration term for Imp++ (lines 38–45) is typeset to:

.K
k

.Map

env

thread*

threads

.Map
store

0

nextLoc
.List

in
.List

out

T

To ensure that the definition is typeset in the order it was written in, and
that the cells inside a rule are typeset in the order specified by the user, we use
modified versions of the K-TECHNIQUE module and of the Maude META-MODULE
module for the K to LATEX transformation. More precisely, both modules are
altered by removing all commutativity attributes. This basically means that,
for the purpose of this transformation, bags and sets of (meta-) rules, equations,
membership axioms, operation declarations, subsorts, and sorts, are all regarded
as lists.

6 Conclusions

We described K-Maude, an implementation of the K language definitional frame-
work in Maude. The K-Maude interface comes as an extension of Maude, allowing
users to define a language using K modules with specific K syntax in addition
to the existing Maude modules. The K-specific modules extend the Maude mod-
ule syntax with constructs aiming at simplifying the language definition task
by abstracting away irrelevant details. These multi-layered abstractions allow
for concise language definitions with a high potential for reuse of language fea-
tures. K-Maude defines several meta-transformations which gradually translate
K modules into either executable Maude modules, to obtain interpreters, or into
LATEX, to obtain formal language semantics documentation.
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Abstract. The K framework is a specialization of rewriting logic for
defining programming language semantics. This paper introduces the
model checking with predicate abstraction technique into the K frame-
work. To express this technique in K, we go to the foundations of pred-
icate abstraction, that is abstract interpretation, and use its collecting
semantics. As such, we propose a suitable description in K for collecting
semantics under predicate abstraction of a simple imperative language.
Next, we prove that our K specification for collecting semantics is a sound
approximation of the K specification for concrete semantics. This work
makes a further step towards the development of program verification
methodologies in rewriting logic semantics project in general and the K
framework in particular.

1 Introduction

Programs are expected to work correctly with respect to certain requirements.
To ensure their desired behavior, one needs to be able to formally reason about
programs and about programming languages. Existing formal approaches range
from manually-constructed proofs to highly automated techniques. The latter
includes model checking [2] and static analysis [15] as methods of ensuring cor-
rectness and finding certain classes of bugs.

In the context of software model checking, a program is translated, via con-
venient abstractions, into a state transition system. Abstraction helps to reduce
the space size and therefore to improve the chances of a runnable/terminating
verification process. However, the reduction in the number of states introduces
additional behaviors, and leads to an over-approximation of the initial program.

Abstract interpretation [3] makes precise the fact that formal verification of
the concrete program is reduced to verification of the simplified, abstract pro-
gram, if the abstraction is sound. Several program reasoning methods make use
of collecting semantics. Essentially, collecting semantics [3] abstracts each pro-
gram point by set of states, and stores the collected information according to
the property of interest.
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Predicate abstraction [6] is a popular technique to build abstract models for
programs which relies on defining a set of predicates over program variables.
Valid executions in the abstract representation correspond to valid executions
in the original program, whereas invalid runs in the abstract semantics need to
be checked for feasibility in the concrete counterpart.

The K framework [17,19] proposes a rewrite logic-based approach specialized
for the design and analysis of programming languages. A definition (or speci-
fication) of a programming language in K consists of a multiset of cells called
program configuration, together with semantic sentences. A program configura-
tion represents the structural support to define program executions. Semantic
sentences include equations and rewrite rules, with equations controlling the ab-
straction degree and with rewrite rules controlling the observability degree of
a K definition. The resulting specification is modular, semantics-based and ex-
ecutable. Therefore, K permits, in a unified framework, “evaluations” of both
programs written in a defined programming language and the corresponding
reasoning tools developed for the particular language.

In this paper we explore the potential of the K framework to define program
reasoning methods. More specifically, we use K to define model checking with
predicate abstraction. Because of the semantics-based characteristic of K speci-
fications, we use collecting semantics as a means of delivering the work. As such,
we propose a K description for the collecting semantics under predicate abstrac-
tion for a simple imperative language. In order to check the consistency of this
K specification, we go along the lines of abstract interpretation standards, and
prove that the defined programs’ abstract executions are a sound approximation
of the programs’ concrete executions (the latter is also specified in K [19]). The
present work is meant to be the incipient part of a larger project which aims to
define K specifications for program analysis and verification.

Even though we frame our work in this paper within K for notational con-
venience, since K can be “desugared” to a large extent into rewriting logic (see
[17,19]), the results in this paper apply very well also to rewriting logic. In fact,
we fully adhere to the rewriting logic project [14,21].

Related work. There is extensive work in software model checking, and most of
it spawned from abstract interpretation [3] and model checking [2]. If we follow
the line of predicate abstraction that emerged in [6], we could mention only a few
and important forward steps in improving the technique with counterexample-
based refinement [4], localized, on-demand abstraction refinement [7], and then
optimization of abstract computation using Craig interpolants [10].

Rewriting logic [12,9] theories allow for nondeterminism and concurrency,
while a LTL Model Checker for Maude is described in [5], and used in [1] for Java
programs. A methodology for equational abstraction in the context of rewrite
logic, with direct application to the Maude model checker, is proposed in [13].
An alternative (to ours) predicate abstraction approach is introduced to model
checking under rewriting logic in [16]. A comparative study of various program
semantics defined in the context of rewriting logic can be found in [21].
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The K framework is extensively described in [17,19], and it is used to define
a series of languages, such as Scheme in [11], and a non-trivial object oriented
language called KOOL in [8], as well as type systems, explicit state model check-
ers, and Hoare style program verifier [18]. The latest development within the K
framework is K-Maude, a rewriting based tool for semantics of programing lan-
guages, introduced in [20].

Having the above brief history map, let us pinpoint a few correlations with the
current work. In the K framework area, this paper contributes with
incorporation of model checking under predicate abstraction as program meta-
executions, showing that the K definitional style for concrete semantics of pro-
gramming languages can be consistently used for program verification methods.
However, since K is a rewrite-based framework, a question arises about how is
our work positioned with respect to previously described abstractions in rewrit-
ing logic systems. Firstly, the equational abstraction creates the abstract state
space via equivalence classes, which inherently introduces the overhead of equiv-
alence checking in the infrastructure. In our case, the abstract state is denoted
and calculated in the traditional predicate abstraction style (as predicates con-
junction), the overhead being transferred to the specialized SMT-solver for the
calculation of the abstract transition. Here we need to boast only the poten-
tial benefits our approach could bring into rewriting logic from state of the art
abstraction based model checking techniques. Secondly, predicate abstraction
support is already introduced in rewriting logic systems by [16]. There, the con-
crete transitional system is provided as a rewrite theory, which is injected with
the abstraction predicates to produce the rewrite theory for the abstract transi-
tional system. Then, model checking is performed on the latter theory. There is
an important aspect of our approach, which does not seem to be easy to address
with the technique in [16]: we are able to also obtain the inverse transformation,
from abstract to concrete. This aspect is particularly important when the model
checking in the abstract system fails to verify the property, and a refinement of
the abstraction needs to be performed.

Outline of the paper. The structure of the paper is as follows: Section 2 intro-
duces the K framework by defining concrete semantics for a simple imperative
programming language, SIMP. Section 3 defines a collecting semantics under
predicate abstraction for SIMP, which can be used to reason about program
correctness. Section 4 states the formal correspondence between the concrete se-
mantics and the collecting semantics of SIMP, as defined in K. Finally, in Section
5 we draw conclusions and present directions for further work.

2 Preliminaries

K is a rewrite logic-based framework for design and analysis of programming
languages. A K specification consists of configurations and rules. The configu-
rations, formed of K cells, are (potentially) labeled and nested structures that
represent program states. The rules in K are divided into two classes: compu-
tational rules, that may be interpreted as transitions in a program execution,
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and structural rules, that modify a term to enable the application of a compu-
tational rule. The K framework allows one to define modular and executable
programming language semantics.

We present the K framework by means of an example - a simple imperative
language SIMP with simple integer arithmetic, basic boolean expressions, as-
signments, if statements, while statements, sequential composition, and blocks.
For this purpose we rely extensively on [19].

The K syntax with annotations and semantics of SIMP is given in Fig. 1. The
left column states the SIMP abstract syntax, the middle column introduces a
special K notation, called strictness attribute, and the right column presents the
K rules for SIMP language semantics. Because the abstract syntax is given in
a standard way, we proceed explaining, via an example, the strictness attribute
called seqstrict (denoted here as sq for space efficiency). The strictness attribute
that corresponds to the addition rule Aexp + Aexp is translated into the set
of heating/cooling rule pairs: a1 + a2 
 a1 � � + a2 and i1 + a2 
 a2 � i1 +
�. These structural rules state how an arithmetic expression with addition is
evaluated sequentially: first the lefthand side term (here a1) is reduced to an
integer, and only then the righthand side term a2 is reduced to some integer.
The resulted integers are added using the internal operation of integer addition
+Int as represented by the rule i1 + i2 → i1 +Int i2 in the SIMP semantics (right
column). The assignment statement has the attribute sq(2) which means that
strictness attribute seqtrict is applied only to the second argument.

The K modeling of a program configuration is a wrapped multiset of cells
written 〈c〉l , where c is the multiset of cells and l is the cell label. Examples
of labels include: top �, current computation k, store, call stack, output, formal
analysis results, etc. The SIMP program configuration is:

Configuration ≡ 〈 〈K 〉k 〈Map[Var �→ Int ]〉state 〉�
where the top cell 〈 . . .〉� contains two other cells: the computation 〈K 〉k and the
store 〈Map[Var �→ Int ]〉state . The k cell has a special meaning in K, maintaining
computational contents, much as programs or fragments of programs. The com-
putations, i.e. terms of special sort k, are nested list structures of computational
tasks. Elements of such a list are separated by an associative operator “ �”, as
in s1 � s2, and are processed sequentially: s2 is computed after s1. The “·” is the
identity of “ � ”. The contents of state cell is an element from Map[Var �→ Int ],
namely a mapping from program variables to integer values (maps are easy to
define algebraically and, like lists and sets, they are considered builtins in K).

The third column in Fig. 1 contains the semantic rules of SIMP. The K rules
generalize the usual rewrite rules, namely K rules manipulate parts of the rewrite
term in different ways: write, read, and don’t care. This special type of rewrite
rule is conveniently represented in a bidimensional form. In this notation, the
lefthand side of the rewrite rule is placed above a horizontal line and the right-
hand side is placed below. The bidirectional notation is flexible and concise, one
could underline only the parts of the term that are to be modified. Ordinary
rewrite rules are a special case of K rules, when the entire term is replaced; in
this case, the standard notation left → right is used.
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AExp ::= Var | Int
〈 x 〉k 〈σ 〉state
σ[x]

| AExp + AExp | . . . sq i1 + i2 → i1 +Int i2
BExp ::= AExp <= AExp sq i1 <= i2 → i1 ≤Int i2

| AExp = AExp sq i1 = i2 → i1 =Int i2
| not BExp sq not t→¬Bool t
| BExp and BExp sq(1) true and b→ b

false and b→ false
Stmt ::= skip skip→ ·

| Var := AExp sq(2)
〈x := i 〉k

·
〈 x �→ 〉state

i
| Stmt ; Stmt s1; s2 ⇀s1 � s2

| {Stmt} {s}⇀ s
| if BExp then Stmt else Stmt sq(1) if true then s1 else s2 → s1

if false then s1 else s2 → s2

| while BExp do Stmt
〈 while b do s

if b then{s; while b do s} else ·
〉k

Pgm ::= vars Set[Var ]; Stmt
〈vars xs; s

s

〉k 〈 ·
xs �→ is

〉state

Fig. 1. K syntax of SIMP (left) with annotations (middle) and semantics (right) with
x ∈ Var , xs ∈ Set[Var ], i, i1, i2 ∈ Int , is ∈ Set[Int ], b ∈ BExp, s, s1, s2 ∈ Stmt

The first K rule is a computational rule using bidimensional notation to de-
scribe the variable lookup operation. The underlined term x in cell k means that
x is a “write” term, and is to be replaced by σ[x] from the state cell. The absence
of the horizontal line under σ indicates that this is a “read” term and the state
remains unchanged. The notation “〈x 〉” in cell k says that x is placed in the
beginning of the term contained by this cell.

The assignment rule has the statement x := i as the current computation task
(the first element in cell k), with a “don’t care” value “ ” for x somewhere in the
store (as shown by the notation 〈 x 〉state ). The value of x is updated with i
in the store and the assignment is replaced by the empty computation.

The variable lookup and assignment rules are computational rules. Recall that
structural rules are used to only rearrange the term to enable the application
of the computational rules. One such example is the “while” rule from the right
column in Fig. 1, which unfolds one step of a while-loop statement into a con-
ditional statement. The structural transformation is represented with a dotted
line to convey the idea that this transformation is lighter-weight than in com-
putational rules. We recall that the usual rewrite rules are special cases of K
rules and the K framework proposes “→” for computational rules, and “⇀” for
structural rules. The former notation is used for “if” rules, while the latter is
used for the sequential composition.

The application of the initialization rule of a program (last rule in the right
column in Fig. 1) leaves the computation cell containing the entire set of state-
ments, and the memory cell containing an initial mapping of program variables
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vars x, y, err;
x := 0; err := x;
while (y <= 0) do {
x := x + 1; y := y + x; x := −1 + x;
if not (x = 0) then err := 1 else skip;

}

Fig. 2. Example of a SIMP program

xs into integers. The program terminates when computation is completely con-
sumed, meaning when the computation cell is 〈 ·〉k .

Example 1. A SIMP program pgmX is given in Fig. 2 as vars x, y, err; sX ,
where sX denotes the statements of the program. In a concrete execution, initial-
ized with 〈 〈sX 〉k 〈 y �→ −3 〉state 〉� , the first computational rule applied is the
rule for assignments, such that the state cell becomes 〈 y �→ −3, x �→ 0 〉state .
This execution terminates with 〈x �→ 0, y �→ 0, err �→ 0〉state . However, if the
while condition in the program is (0 <= y) and the program is initialized with
〈 〈sX 〉k 〈 y �→ 3 〉state 〉� , then the execution does not terminate.

3 Collecting Semantics under Predicate Abstraction

Collecting semantics defines the set of program executions from the property of
interest point of view and has several instantiations: computation traces, transi-
tive closure of the program transition relation, reachable states, and so on. In this
work we collect forward abstract computation traces using predicate abstraction.
We describe next the details of this setting.

First, we recall the notion of abstract computation in the predicate abstrac-
tion environment. Abstraction is a mapping from a set of concrete states to
an abstract state. An abstract transition between two abstract states exists if
there is at least a concrete transition between concrete states from the preim-
age of each abstract state, respectively. In predicate abstraction, an abstract
state is represented by a predicate ϕ. The formal definition for ϕ is ϕ ::=
p ∈ Π | ¬p | ϕ ∧ ϕ | true | false, where Π is a finite set of predicates from
AtomPreds - all atomic predicates of interest over program variables. In other
words, ϕ ∈ L(Π) = the lattice generated by the atomic predicates from Π . For-
mally, this lattice is defined as 〈L(Π),�, ,⊥,�〉 where � stands for the logic
operator ∨,  stands for the logic operator ∧, while ⊥ and � stand for true
and false, respectively (more details on this can be found in [15]). Intuitively, an
abstract state ϕ corresponds to the set of concrete states for which the values
of the program variables make the formula ϕ true. The correspondence between
the concrete states and the predicates ϕ is provided by a Galois connection from
the powerset of all concrete states to L(Π). (Additional details on this Galois
connection are given in Section 4, where are of use.) We denote a transition in
predicate abstraction by a function post � standing for the abstract transition
ϕ s→ post �(ϕ, s). The formal definition of post � is in Fig. 4. We do not elaborate
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on it now, since it makes use of notations introduced later in this section. Of
importance here is to have an understanding of the abstract computation with
predicate abstraction, as this is a component of the collecting semantics.

We proceed to define in K the program meta-executions using collecting se-
mantics under a fixed predicate abstraction. The finite set of predicates Π is
given, as well as the property of interest AGφ. (We refer meta-executions also
as abstract executions.)

The abstract configuration in K is defined as:

Configuration�≡〈〈〈K�〉k� 〈State�〉state� 〈List[Label]〉path〉trace�∗〈Store�〉store� 〈Φ〉inv〉��

In order to have the intuition behind Configuration�, imagine that PdcT is a
parallel divide and conquer algorithm performing the traversal of a digraph.
PdcT traverses the digraph in a standard fashion but, when it encounters a
node with more than one neighbor, it is going to clone itself on each neighbor-
ing direction. The instances of PdcT communicate via a shared memory where
everyone deposits its own visited nodes. When an instance of PdcT encounters
a node existing in the shared memory, it terminates its job, as that part of the
digraph is already under the administration of another instance. Configuration�

is similar to a state in the running of PdcT. Namely, a trace� cell resembles with
the state of an instance of PdcT, and the store� cell resembles with the state of
the shared memory. Moreover, the rules for collecting semantics under predicate
abstraction, from Fig. 6, are similar with the transitions between states of PdcT.

Next, we provide detailed description of each cell of the K configuration for
collecting semantics under predicate abstraction.

The k� cell maintains the “abstract” computation of the program to be ver-
ified. This is in essence the control flow graph of a program, or of a program
fragment. More formally, we provide the definition of an abstract computation
K� as follows:

〈K� 〉k�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Label ::= positive integers representing program points
Var ::= symbols denoting program variables
Asg ::= asg(Var ,AExp)
Cnd ::= cnd(BExp)
TransAsg ::= Label : Asg
TransCnd ::= Label : Cnd
Trans ::= TransAsg | TransCnd
Ks ::= Trans | if (Ks ,Ks) | while(TransCnd ,Ks) | skip | List� [Ks]
K� ::= Ks � !Label"

There is no obvious novelty in the abstract computation k� besides adding labels
to each basic statement - assignments and conditions. However, a closer look
shows that we categorize the statements into basic statements (Trans, involved
in computational rules), and composed statements (ifs and whiles, involved in
structural rules). Moreover, note that after constructing the list of abstract com-
putational tasks Ks we finalize by tailing !Label" to it (!Label" marks the end of
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stmt� : Label × Stmt →LabelK �Pair

| , | : K� × Label →LabelK �Pair
: : Label × (Asg ∪ Cnd)→Trans

k� : Stmt →K�

� � : Label →K�

� : K� × K� →K�

stmt�(�in , ·) = | ·, �in |
stmt�(�in , skip; S) = stmt�(�in , S)
stmt�(�in , X := A; S) = |�in : asg(X, A) � K, �fin |

if |K, �fin | := stmt�(�in + 1, S)
stmt�(�in , S1; S2) = |K1 � K2, �fin |

if |K1, �aux | := stmt �(�in , S1) and |K2, �fin | := stmt�(�aux , S2)
stmt�(�in , {S}) = stmt�(�in , S)
stmt�(�in , if B then S1 else S2) = |�in : cnd(B) � if (K1, K2), �fin |

if |K1, �aux | := stmt�(�in + 1, S1) and |K2, �fin | := stmt�(�aux , S2)
stmt�(�in , while B do S) = |while( �in : cnd(B),K), �fin |

if |K, �fin | := stmt�(�in + 1, S) )

k�(S) = K � ��fin� if |K, �fin | := stmt�(1, S)

Fig. 3. The rewrite-based rules for abstract computation k� of a SIMP program

the program, and provides base case computational rules). Then, this is delivered
as K� - the content of the abstract computation cell k�.

In Fig. 3 we give an explicit rewrite-based method for labeling a program,
and its transformation into an abstract computation (the last rule).

Example 2. The abstract computation for the program in Fig. 2 is:

1 :asg(x, 0)�2 :asg(err, x)�while(3 :cnd(y ≤ 0),4 :asg(x, x+1)�5:asg(y, y+x)
�6:asg(x,−1+x)�7 :cnd(¬(x = 0))�if (8 :asg(err, 1), ·))� !9"

A state� cell is an abstract state which actually stands for a subset of states
in the concrete execution. Since we use predicate abstraction with atomic pred-
icates Π , the abstract state is a formula ϕ ∈ L(Π). However, here we prefer
an equivalent representation which writes a formula in ϕ ∈ L(Π) − {�} as
∧p∈Πop(ϕ, p), where op is defined as:

op(ϕ, p) =

⎧⎨
⎩

p, if ϕ ⇒ p
¬p, if ϕ ⇒ ¬p
⊥p, otherwise

Obviously, true is (⊥p)p∈Π , and for example, if the set of atomic predicates
Π is {x ≥ 0, x = 0, y = 1}, then the formula ϕ := x > 0 is defined with the
above representation as 〈(x ≥ 0) ¬(x = 0) ⊥(y=1) 〉state� . Also, we recall that this
abstract state corresponds to the set of concrete states which map x to a positive
integer. Hence, we use the equivalent representation of an abstract state:

〈State� 〉state�

{
State� ::= Valid | False
Valid ::= Map[Π �→ {(),¬(),⊥()}]
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In this representation, the set of predicates Π defining the abstraction is im-
plicitly contained in a state� cell. Note that False stands for the top element of
L(Π), and is actually the abstract state corresponding to the empty set of con-
crete states. Meanwhile, Valid stands for any element from L(Π)−{�}. Because
it represents a nonempty set of concrete states, we say that Γ ∈ Valid is a “valid”
abstract state. Moreover, we make the implicit assumption that false ∈ False is
always differentiated from a valid abstract state Γ , as if false and Γ are cells
with distinct labels (while state� cell can contain either of them). However, for
simplicity, we do not embellish the notation any further. Finally, in Fig. 4 we
define post �, the update operator for the abstract state.

post�
φ : Valid × (Asg ∪ Cnd)→State� is defined as follows:

post�
φ(Γ, s) =

{∧p∈Π post (Γ,s)(p), if ∧p∈Π post (Γ,s)(p) ⇒ φ

false, otherwise

with post (Γ,cnd(b))(p) =

⎧⎪⎪⎨
⎪⎪⎩

false, if ∧p∈ΠΓ (p) ∧ b ⇒ false
p, if ∧p∈ΠΓ (p) ∧ b ⇒ p

¬p, if ∧p∈ΠΓ (p) ∧ b ⇒ ¬p
⊥p, otherwise

and post (Γ,asg(x,a))(p) =

⎧⎨
⎩

p, if ∧p∈ΠΓ (p) ∧ (x′ = a) ⇒ p[x′/x]
¬p, if ∧p∈ΠΓ (p) ∧ (x′ = x) ⇒ ¬p[x′/x]
⊥p, otherwise

Fig. 4. The update operator post � for the abstract state cell state�

A cell of type path is a list of labels which represents a trace of a possible ab-
stract execution. Note that we refer to this as trace because many details are cut
out from the abstract execution. Instead, we keep as representative the program
points where the abstract execution took place, in their order of appearance.

We finalize the description of the trace� cell with the observation that trace�

models a forward abstract computation trace. Namely, the cells k� and state�

capture the abstract computation, the cell path stands for trace, while forward
comes from post �, the abstract state update operator. Note that trace�∗ in
Configuration� indicates the existence of many trace� cells, and this encapsu-
lates the collecting attribute of the semantics.

The content of a store� cell, denoted as Σ, is a set of pairs (|, Γ |) of labels
from the abstract computation and elements from L(Π)−{�}, formally defined
as Store� ::= Set[Pair(Label , Valid)]. The abstract store update is defined as
Σ[�Γ ] = Σ ∪ {(|, Γ |)}. A more standard definition for the abstract store
would involve a mapping, such as Store� ::= Map[Label �→ Set[Valid ]]. Note that
the two representations are equivalent. However, we prefer the former one in
order to suggest the collecting nature of the current semantics.

An inv cell maintains the formula to be validated. In this work we restrict this
formula to invariants AGφ, where φ ::= p ∈ AtomPreds | ¬p | φ∧φ | false | true,
and A, G are the CTL operators “always” and “general”. On short, AGφ is
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translated as “formula φ is satisfied in any (abstract) state, on any computational
path”. Φ is defined similarly with State� (Π is replaced by the set of atomic
predicates from φ). Usually, Π includes the atomic predicates from φ.

Initialization� ≡ pgmφ
Π⇀〈〈〈k�(s)〉k�〈�{ϕ∈L(Π)|φ ⇒ϕ}〉state�〈 · 〉path〉trace� 〈 · 〉store�〈φ〉inv〉��

Termination� ≡
{ 〈 〈 〈 · 〉k� 〈 · 〉state� 〈P 〉path 〉trace� 〉�� ⇀ 〈P 〉CE

〈 〈 〉store� 〈φ〉inv 〉�� ⇀ 〈 · 〉CE

Fig. 5. Initialization and termination for K abstract executions of SIMP

Fig. 5 provides the K structural rules for initialization and termination of the
abstract executions, where pgmφ

Π is a shorthand for the input cell containing the
program pgm = vars xs; s, the abstraction predicates set Π , and the formula to
verify φ. The initialization of an execution in collecting semantics for the program
pgm has one trace� cell containing the abstract computation of the program,
an initial abstract state corresponding to the best over-approximation of the
property φ in the lattice L(Π), an empty path, an empty abstract store, and the
property to be verified upon the program. (Note that we consider “·” as the unit
element for any cell.) The choice of the initial state� cell, �{ϕ ∈ Π | φ ⇒ ϕ},
is the abstract representation of all concrete states σ0, where φ is true (i.e.
{σ0 | σ0 � φ}). As a matter of fact, we could as well generalize the initial abstract
state cell state� to contain any element from the lattice L(Π). The termination
of an execution in collecting semantics is expected to provide a path representing
a potential counterexample to the validity of the property φ for pgm. In the case
when there is no counterexample, the property is valid in the abstract model,
and also in the program. Otherwise, no conclusion could be derived with respect
to the validity of property φ for the given program.

The semantic rules for an execution with collecting semantics under predicate
abstraction are described in Fig. 6. Note that in these rules the cells are consid-
ered to appear in the inner most environment wrapping them, according with
the locality principle [19]. Next, we explain in details each of these rules.

The first two rules, (R1-2), deal with the case when the abstract computation
reaches the final label of the program either with a valid abstract state Γ or with
false. If the abstract state is valid then its containing trace� cell is voided (because
there is no abstract computation left for it, and along the current abstract trace
only valid states were encountered, meaning that the property φ is satisfied in
any abstract state along this trace). If the abstract state is false then an error is
found just before the end of the program. Whenever an error is found, meaning
an abstract state where φ is not valid, we end the abstract execution from that
particular trace� cell and keep its representation in the path cell as a witness to
the potential discovery of a bug (so called counterexample). This happens in the
rules annotated with �. (Note that � annotation stands for “good” termination.)

The rules (R3-4) present two other base cases, when the statement labeled 
is at the top of the abstract computation (i.e. 〈 : 〉k� ). The rule (R3) cov-
ers the case when a particular program point is reached again, with the same
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(R1)� :
〈 〈���〉k� 〈Γ 〉state� 〈 〉path 〉trace� → ·

(R2)� :
〈���〉k� 〈 false 〉state� 〈 · 〉path

· · �

(R3)�� :
〈 〈� : 〉k� 〈Γ 〉state� 〈 〉path 〉trace� 〈 (|�, Γ |) 〉store�

·
(R4)� :
〈� : � 〉k� 〈 false 〉state� 〈 · 〉path

· · �

(R5) � :
〈� : asg(x, a) 〉k� 〈 Γ 〉state� 〈 · 〉path 〈 Σ 〉store� 〈φ〉inv

· post�
φ(Γ, asg(x, a)) � Σ[� � Γ ]

if (|�, Γ |) /∈ Σ

(R6) � :
〈� : cnd(b) � if (K1, K2) � K〉k� 〈 Γ 〉state� 〈 P 〉path

skip � K1 post�
φ(Γ, cnd(b)) P, �

· 〈 Σ 〉store� 〈φ〉inv

〈〈skip � K2 � K〉k� 〈post �
φ(Γ, cnd(¬b))〉state� 〈P, �〉path〉trace� Σ[� � Γ ]

if (|�, Γ |) /∈ Σ

(R7)	:
〈 〈skip � 〉k� 〈 false 〉state� 〈 〉path 〉trace� ⇀ ·

(R8)	:
〈skip

·
〉k� 〈Γ 〉state�

(R9)
 :
〈 while(� : cnd(b), K)

� : cnd(b) � if (K � while(� : cnd(b), K), ·)
〉k�

Fig. 6. K rules for collecting semantics under predicate abstraction of SIMP
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abstract state Γ . This is expressed by the fact that the abstract store, store�

cell, contains the pair (|, Γ |). We can void the current trace� cell, because this
particular abstract trace will not increment the store� cell any further. However,
if a particular program point is reached with the false abstract state, as in (R4),
we maintain the path as a counterexample.

Rule (R5)� performs an abstract execution of an assignment statement en-
countered at the top of the abstract computation, k� cell. This means that the
abstract state is updated by the abstract postcondition post �, while the current
abstract state is used to update store�, by adding the pair (|, Γ |) to it. Note
that this addition is made only if the pair is not already in the abstract store,
according to the definition of the store� update.

The rules (R7-8)	, containing skip at the top of the abstract computation, are
both following a branching rule (R6)�. When the abstract execution encounters
a branching condition, denoted by  : cnd(b)� if (K1, K2), the rule (R6)� spawns
another abstract trace newt�. In this way, the current abstract trace maintains
the “then” branch, with the boolean condition b, while newt� maintains the
“else” branch, with the boolean condition ¬b. However, it might be the case
that not both branches are possible executions (e.g. if the boolean condition
is false , then only the “else” branch is feasible). In order to filter these cases,
when spawning the two traces, we also add a skip flag at the top of the abstract
computation. The structural rules (R7-8)	 filter the skip flag: if the abstract
state obtained by adding the conditional evaluates to false, then we remove this
trace� cell, otherwise we continue the execution removing the skip flag.

The last rule, (R9)
 unfolds the while statement once. Note that the last three
rules, (R7-9), are structural rules that transform the abstract computation. Also,
we emphasize the R’s annotations provide additional rules’ classification.

Example 3. For the program in Fig. 2 and the property AG(err=0) the abstract
execution with the predicate abstraction given by Π = {err = 0} terminates
with 〈1, 2, 3〉CE , while if Π ={err=0, x=0} the abstract execution terminates
with 〈1, 2, 3, 4, 5, 6, 7, 8, 3〉CE . However, with the predicate abstraction given by
Π ={err=0, x=0, x=1} the abstract execution ends with 〈 ·〉CE .

The abstract execution with Π = {err = 0, x = 0} starts with the abstract
computation described in Example 2, and proceeds as described in Fig. 7.

4 Correspondence between Concrete and Collecting
Semantics

In this part we focus on proving the correctness of the K definition of SIMP
collecting semantics under predicate abstraction with respect to the K definition
of the concrete semantics. In other words, we investigate if our K description of
model checking with predicate abstraction can be soundly used to prove certain
properties for SIMP programs.

We revise first some basics of predicate abstraction, namely the Galois con-
nection. In the context of predicate abstraction, the Galois connection is defined
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〈 〈 〈1 : asg(x, 0) 〉k� 〈(err = 0)⊥(x=0) 〉state� 〈 · 〉path 〉trace� 〈 · 〉store� 〈err = 0〉inv 〉��

R5−−→ 〈〈〈2 : asg(err, x) 〉k� 〈 (err = 0)(x = 0) 〉state� 〈1〉path 〉trace�

〈(|1, (err = 0)⊥(x=0)|) 〉store� 〈err = 0〉inv 〉��

R5−−→ 〈〈〈while(3 : cnd(y ≤ 0), K) 〉k� 〈(err = 0)(x = 0) 〉state� 〈1, 2〉path 〉trace�

〈(|1, (err = 0)⊥(x=0)|), (|2, (err = 0)(x = 0)|) 〉store� 〉��

where K is 4 : asg(x, x + 1) � 5 : asg(y, y + x) � 6 : asg(x,−1 + x)
� 7 : cnd(¬(x = 0)) � if (8 : asg(err, 1), ·)

R9
⇀ 〈〈〈3 : cnd(y ≤ 0) � if (K � while(3 : cnd(y ≤ 0), K), ·) 〉k� 〉trace�

〈(|1, (err = 0)⊥(x=0)|), (|2, (err = 0)(x = 0)|) 〉store� 〉��

R6−−→ 〈〈〈skip � K 〉k� 〈(err = 0)(x = 0)〉state� 〈1, 2, 3〉path 〉trace�

〈〈skip� · ��9�〉k� 〈(err = 0)(x = 0)〉state� 〈1, 2, 3〉path 〉trace�

〈(|1, (err = 0)⊥(x=0)|), (|2, (err = 0)(x = 0)|), (|3, (err = 0)(x = 0)|) 〉store� 〉��

R8
⇀ 〈〈〈K 〉k� 〈(err = 0)(x = 0)〉state� 〈1, 2, 3〉path〉trace�

〈〈skip � �9�〉k� 〈 (err = 0)(x = 0) 〉state� 〈1, 2, 3〉path 〉trace� 〉��

R8
⇀ 〈〈〈4 : asg(err, x) 〉k� 〈(err = 0)(x = 0)〉state� 〈1, 2, 3〉path〉trace�

〈〈�9�〉k� 〈(err = 0)(x = 0) 〉state� 〈1, 2, 3〉path 〉trace� 〉��

R1−−→ 〈〈〈4 : asg(x, x + 1) 〉k� 〈(err = 0)(x = 0) 〉state� 〈1, 2, 3〉path〉trace�

〈(|1, (err = 0)⊥(x=0)|), (|2, (err = 0)(x = 0)|), (|3, (err = 0)(x = 0)|) 〉store� 〉��

R5−−→ 〈〈〈5 : asg(y, y + x) 〉k� 〈(err = 0) ¬(x = 0)〉state� 〈1, 2, 3, 4〉path〉trace�

〈 (|4, (err = 0)(x = 0)|) 〉store� 〉��

R5−−→ 〈〈〈6 : asg(x,−1 + x) 〉k� 〈(err = 0) ¬(x = 0) 〉state� 〈1, 2, 3, 4, 5〉path〉trace�

〈 (|5, (err = 0) ¬(x = 0)|)〉store� 〉��

R5−−→ 〈〈〈7:cnd(¬(x = 0))�if (8 :asg(err,1), ·) 〉k�〈(err=0)⊥(x=0)〉state�〈 6〉path〉trace�

〈 (|6, (err = 0) ¬(x = 0)|)〉store� 〉��

R6−−→ 〈〈〈skip�8:asg(err,1) 〉k�〈(err=0) ¬(x = 0)〉state�〈 7〉path〉trace�

〈〈skip � · � while(3 :cnd(y≤0),K) 〉k�〈(err=0)(x = 0)〉state�〈 7〉path〉trace�

〈 (|7, (err = 0) ⊥(x=0)|) 〉store� 〉��

R8
⇀ 〈〈〈skip�8:asg(err,1) 〉k�〈(err=0) ¬(x = 0)〉state�〈 7〉path〉trace�

〈〈while(3 :cnd(y≤0), K) 〉k�〈(err=0)(x = 0) 〉state�〈 7〉path〉trace�

〈 (|3, (err = 0)(x = 0)|) 〉store� 〉��

R3−−→ 〈〈〈skip�8:asg(err,1) 〉k�〈(err=0) ¬(x = 0)〉state�〈 7〉path〉trace� 〉��

R8
⇀ 〈〈〈8 : asg(err,1) 〉k� 〈(err=0) ¬(x = 0) 〉state� 〈 7〉path〉trace� 〉��

R5−−→ 〈〈〈while(3 :cnd(y≤0),K) 〉k� 〈false 〉state� 〈 8〉path〉trace�

〈 (|7, (err = 0) ¬(x = 0)|)〉store� 〉��

R9
⇀ 〈〈〈3 : cnd(y ≤ 0) � if (. . . ) 〉k� 〈false 〉state� 〈1, 2, 3, 4, 5, 6, 7, 8〉path〉trace� 〉��

R4−−→ 〈〈〈·〉k� 〈 ·〉state� 〈1, 2, 3, 4, 5, 6, 7, 8, 3〉path〉trace� 〉�� ⇀ 〈1, 2, 3, 4, 5, 6, 7, 8, 3〉CE

Fig. 7. Example of a K abstract execution
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as P(S) α �γ L(Π) where S = {σ : V �→ Z} is the set of all states for a SIMP
program. The abstraction-concretization pair 〈α, γ〉 is defined as follows:

α(S) := �{ϕ | (∀σ ∈ S) σ � ϕ}, for any subset of states S ⊆ S
γ(ϕ) := {σ ∈ S | σ � ϕ}, for any formula ϕ ∈ L(Π)

It is easy to verify that 〈α, γ〉 forms a Galois connection. Also, it is standard
that post � is a sound approximation of the strongest postcondition (i.e. if σ � ϕ
and σ′ ∈ post(σ) then σ′ � post �(ϕ)). More on these can be found in [6].

In what follows we prove a similar property about K executions of programs
in concrete semantics and collecting semantics under predicate abstraction, re-
spectively. In other words, we check that any concrete execution of a program
can be retrieved from the meta-execution, and we state what conditions need to
be satisfied such that we can derive from the meta-execution the validity of the
property of interest for the given SIMP program. We assume as given the SIMP
program pgm = vars xs; s, the finite set of predicates Π , and the invariant AGφ.

Theorem 1. Any K execution in collecting semantics under predicate abstrac-
tion is finite.

This theorem essentially ensures the termination of the program verification
method described in the previous section.

Lemma 1. For any 〈 〈Σ1 〉store� 〉��
∗→ 〈 〈Σ2 〉store� 〉�� , a fragment of exe-

cution in collecting semantics, we have Σ1 ⊆ Σ2.

This is easy to see from the fact that any rule (R1-9) produces transitions that
preserve the ascending inclusion of the store� terms.

Lemma 2. If the K execution in collecting semantics encounters a transition
that does not change the store� cell, as 〈 〈Σ1 〉store� 〉��

Ri
⇀ 〈 〈Σ1 〉store� 〉��

where i = 7, 8, 9, then the execution evolves either into a terminal configuration,
with the rules (R1−4), or into a configuration 〈 〈Σ2 〉store� 〉�� where Σ1 ⊂ Σ2,
with the rules (R5− 6).

This lemma ensures that any structural rule enables a computational rule, and,
consequently, there is no execution in collecting semantics with a suffix that does
not increment the content of the store� cell.

Proof of Theorem 1 (sketch). The proof follows from Lemma 1 and Lemma 2,
coupled with the fact that there is an upper bound for any store� term (because
any SIMP program has a finite number of labels, and Π has a finite number of
predicates, hence L(Π) has a finite number of elements). � 

Theorem 2. If the concrete execution initialized with a 〈σ0 〉state evolves into a
concrete configuration with 〈σ 〉state , namely 〈 〈s 〉k 〈σ0 〉state 〉� ∗→ 〈 〈σ 〉state 〉� ,
and if σ0 � Γ0 (i.e. σ0 is contained in the subset of abstract states denoted by Γ0),
then the abstract execution starting with the abstract state 〈Γ0 〉state� evolves into
an abstract configuration with 〈Γ 〉state� , namely 〈 〈k �(s)〉k� 〈Γ0 〉state� 〉��

∗→
〈 〈Γ 〉state� 〉�� , such that 〈 〈σ 〉state 〉� � 〈 〈Γ 〉state� 〉�� holds true.
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This theorem states that any K execution in the concrete semantics is sinked
into a K execution in the collecting semantics under predicate abstraction (in
case we take Γ0 to be true, then σ0 � Γ0 for any initial concrete state σ0).

Remark 1. By 〈 〈σ 〉state 〉� � 〈 〈Γ 〉state� 〉�� we understand that σ � Γ , and
that the abstract computation 〈k� 〉k� from the trace� cell containing 〈Γ 〉state� is
the abstract computation of the program fragment obtained from the cell 〈k 〉k
in 〈 〈σ 〉state 〉� .

Lemma 3. For any 〈 〈σ 〉state 〉� → 〈 〈σ′ 〉state 〉� a concrete transition in
a concrete execution, if there is an abstract configuration 〈 〈Γ 〉state� 〉�� such
that 〈 〈σ 〉state 〉� � 〈 〈Γ 〉state� 〉�� , then there is 〈 〈Γ ′ 〉state� 〉�� an abstract
configuration satisfying the following two properties:
(1) 〈 〈Γ 〉state� 〉��

∗→ 〈 〈Γ ′ 〉state� 〉�� and
(2) 〈 〈σ′ 〉state 〉� � 〈 〈Γ ′ 〉state� 〉�� .

Proof (Lemma 3). The proof goes by case analysis over the rules in the concrete
semantics. For example, let us consider that the concrete transition from the
hypothesis, 〈 〈σ 〉state 〉� → 〈 〈σ′ 〉state 〉� , is the result of the application of
the assignment rule x := a. Then, in the abstract semantics, the transition is
made via application of the rule (R5), and in the next configuration the state�

cell contains Γ ′ = post �
φ(Γ, asg(x, a)). However, from the definition of post �

φ we
see that Γ [x′/x] ∧ (x = a[x′/x]) ⇒ Γ ′. But, from hypothesis we have σ � Γ , so
σ′ � Γ ∧ (x = a[x′/x]), hence σ′ � Γ ′. � 

Proof of Theorem 2 (sketch). The proof uses induction on the length of the
concrete derivation and Lemma 3. � 

Theorem 3. For any pgm, Π, and AGφ, if we have the abstract execution

pgmφ
Π ⇀ 〈 〈 〈k �(s)〉k� 〈�{ϕ | φ ⇒ ϕ}〉state� 〈 ·〉path 〉trace� 〈 ·〉store� 〈φ〉inv 〉��

∗−→
〈 〈 〉store� 〈φ〉inv 〉�� ⇀ 〈 ·〉CE

then, for all 〈σ0 〉state and 〈σ 〉state concrete states from a concrete execution
pgm ⇀〈 〈s〉k 〈σ0 〉state 〉� ∗−→ 〈 〈σ 〉state 〉� , if σ0 � φ, then σ � φ holds true.

This theorem says that if the K execution in collecting semantics under predicate
abstraction terminates without finding any counterexample, then the property
φ is an invariant for any concrete execution of the program pgm.

Proof of Theorem 3 (sketch). We observe that since all trace� terms disappear in
the final state of the abstract execution, then it means that rules (R2,4)� were
never executed. We can apply Theorem 2 (we know that σ0 � �{ϕ | φ ⇒ ϕ}
because σ0 � φ and φ ⇒ �{ϕ | φ ⇒ ϕ}). Hence, there exists a valid abstract
state Γ such that σ � Γ . Moreover, because any intermediate 〈Γ 〉state� is a post �

φ
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result, it means that Γ ⇒ φ. From these two, namely σ � Γ and Γ ⇒ φ, we
conclude that σ � φ. � 

It is notorious that model checking with abstraction is not a complete proce-
dure. Essentially, this comes from the false negative answers the model checking
with abstraction can issue. Nevertheless, the incompleteness of abstract model
checking gives rise to a bundle of work known as “abstraction refinement”.

5 Conclusions and Future Work

In this paper we study the embedding of predicate abstraction model check-
ing into the K framework. This work makes two contributions: first, it shows
that model checking with predicate abstraction can be incorporated as a formal
analysis approach following the very same definitional style used for concrete
semantics of programming languages in K; second, it shows how to relate the
concrete semantics and the predicate abstracted semantics (i.e. collecting seman-
tics), and proves that the latter is correct for the original language.

In near future we plan to give a K definition for symbolic executions of pro-
grams, such that we could embed also predicate abstraction CEGAR into the K
framework. Another line to pursue is enriching the class of properties we want
to verify. However, it is well known that under predicate abstraction we are
forced to limit the properties of interest to safety properties. To overcome this,
we should investigate the transition predicate abstraction which enables verifi-
cation of liveness properties. Ultimately, these steps would lead to an automated
and founded system in K for defining program reasoning techniques.
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11. Meredith, P., Hills, M., Roşu, G.: An executable rewriting logic semantics of K-
scheme. In: Dube, D. (ed.) Proceedings of the 2007 Workshop on Scheme and
Functional Programming (SCHEME 2007), Technical Report DIUL-RT-0701, pp.
91–103. Laval University (2007)

12. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96(1), 73–155 (1992)

13. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstraction. In: Baader, F.
(ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 2–16. Springer, Heidelberg (2003)
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Abstract. Modern asynchronous digital circuits are highly concurrent
systems composed largely of customized gates, and can be elegantly mod-
eled using the language of production rules (PRs). One of the present
limitations of the state of the art in asynchronous circuit design is that
no formal executable semantics of asynchronous circuits has yet been
given at the PR level. The primary contribution of this paper is to de-
fine, using rewriting logic and Maude, an executable formal semantics
of asynchronous circuits at the PR level under three common timing
assumptions. Our semantics provides a circuit designer with a PR-level
circuit interpreter and with a decision procedure for checking key circuit
properties, including hazard-freedom and deadlock-freedom. We describe
several reductions and optimizations that can be used to reduce the state
space of circuits in our formal semantics and investigate the impact of
these reductions experimentally. The analysis scales up to circuits of over
100 PRs in spite of the high levels of concurrency involved.

1 Introduction

Asynchronous digital circuits have been employed to design low-power, high-
performance microprocessors, e.g. [1], as well as in emerging applications such
as systems-on-chip (SOCs), e.g. [2], soft-error tolerant systems, e.g. [3], and
nano-electronics, e.g. [4]. The critical property that makes asynchronous cir-
cuits advantageous in these applications is enormous immunity to both intrinsic
and extrinsic timing variation. Unfortunately, there are very few commercially
supported asynchronous EDA (electronic design automation) tools, making the
design and implementation of asynchronous circuits more challenging than that
of synchronous ones.

At the highest level of asynchronous circuit design one finds a variety of lan-
guages, e.g. CHP [5], Tangram [6], Balsa [7], and, more recently, VHDL with
handshaking packages [8], all of which are derived from Hoare’s CSP (communi-
cating sequential processes) [9] and exhibit a number of syntactic and semantic
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commonalities. All of these high-level languages allow the designer to describe
separate asynchronous processes that run concurrently and, in lieu of a global
clock, communicate with each other by way of local synchronization via hand-
shaking. In order to generate actual hardware, however, programs in all of these
languages must ultimately be “compiled” or “synthesized” into networks of gates
or transistors. The low-level language of production rules [10] is a suitable target
language for this synthesis step.

In addition to the choice of design language, asynchronous circuit designers
use different “timing” simplifications to abstract away the notion of the rela-
tive delays between gates/wires. These timing assumptions directly affect the
difficulty in forming a timing-closure during the place-and-route step, and they
range from the most permissive assumption of delay-insensitivity, where timing
closure is easy, to much more restrictive assumptions of relative delays, where
timing closure is substantially more difficult to achieve. When constructing new
circuits and templates, it is important to be able to prove that the new design
operates correctly under a particular timing assumption of interest.

Sets of production rules are suitable for analyzing asynchronous circuits de-
signed in any of the high-level languages above. That is, from any of the afore-
mentioned languages it is possible to synthesize a production rule set (PRS)
directly corresponding to a network of transistors, and to impose the relevant
timing assumption; production rule sets are truly universal. Furthermore, it is
exactly because of the low-level nature of a PRS that the representation is suit-
able to address the subtle timing assumptions involved in asynchronous circuits,
as well as detect hazards and other problems, such as deadlock, that may exist
in the circuit.

To the best of our knowledge, no formal executable semantics has previously
been given for asynchronous circuits at the PRS level. Because of the intrinsi-
cally concurrent semantics of rewriting logic, a rewriting semantics is a perfect
candidate for this task. Therefore, in this paper we provide the first ever formal
executable semantics of asynchronous circuits at the PRS level using rewriting
logic and Maude [11]. The semantics comes in three flavors, corresponding to
three common timing assumptions: delay-insensitivity (DI), speed-independence
(SI), and quasi-delay-insensitivity (QDI). By virtue of Maude being executable,
we are automatically furnished with a simulator for asynchronous circuits at the
PRS level; and, via Maude’s breadth-first search capabilities, it is possible to
formally analyze asynchronous circuits and verify a range of correctness criteria,
such as deadlock-free and hazard-free operation.

Without imposing any constraints on the structure of an asynchronous cir-
cuit, it becomes difficult to give strong guarantees about its behavior. For this
reason, after giving a formal definition of an asynchronous circuit at the PRS
level and explaining interference and instability hazards in Section 2.1, we de-
fine a “proper” PRS format that enforces a conceptual distinction between
wires and gates in Section 2.2. Our formal, executable semantics for PRS is
then given in Section 3. Specifically, we first give an unconstrained semantics
(delay-insensitive) without hazards in Section 3.2, and then we extend this basic



142 M. Katelman, S. Keller, and J. Meseguer

semantics to account for interference and instability hazards in Section 3.3. We
then provide semantics for PRS under two other timing assumptions; speed-
independence in Section 4.1, and quasi-delay-insensitivity in Section 4.2. A cru-
cial contribution of our semantics, under each of the timing assumptions, is that
it directly provides a decision procedure for a very wide class of properties; in-
cluding hazard-free and deadlock-free operation, but also much more generally.
Through Maude’s search command [11, Ch. 12], general invariants can be veri-
fied, and with Maude’s LTL (linear temporal logic) model checker [11, Ch. 13]
one can verify LTL formulas against an asynchronous circuit.

The QDI timing assumption is the most realistic timing assumption used for
modern design [4], but is quite complex [12]. In our semantics, decidability of
hazard-freedom and deadlock-freedom is achieved by model checking, via search,
and, for dealing with QDI directly, requires the development of a finitary encod-
ing of the timing assumption that makes model checking possible. However, by a
reduction based on a theorem of [12], we are able to reduce the hazard-freedom
check under the QDI assumption to the same check under the SI timing as-
sumption, which has a considerably smaller state space. For deadlock-freedom
and other properties the encoding is still necessary since the theorem of [12] only
addresses hazards. Based on these results and on an additional optimization, we
then show that our semantics is able to analyze in practice a number of well-
known small asynchronous circuits of up to 130 PRs, both for hazard-freedom
and for deadlocks. We consider this a highly nontrivial result, because of the very
high levels of concurrency involved and the detailed PRS level of description. We
end the paper with a discussion of related work and of some future directions.
All source code and circuits used for experimentation are available at [13].

2 Production Rule Sets

The goal of this section is to formally define production rules, and to give some
intuition about the circuit abstraction that production rules are designed to
represent. In addition, we describe hazard-free circuit operation, one of the cor-
rectness criteria under consideration, and its connection to timing assumptions.

Section 2.1 reviews the basic concepts of production rules and the associated
model of computation. Section 2.2 describes a set of structural constraints on
production rule sets that are needed to accurately define the two timing assump-
tions that we are most concerned with.

2.1 Overview

To simplify the exposition we assume a fixed set Y of variables from which
circuits will draw node names; we let TB(Y ) denote the set of propositional
formulas over Y ; and for any g ∈ TB(Y ) we let

vars(g) = {x ∈ Y | x occurs in g}.

The following definition of production rule is derived from [10].
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¬d �→ a ↑ ¬a ∧ ¬c �→ b ↑ ¬a ∨ ¬b �→ x ↑
d �→ a ↓ a ∧ c �→ b ↓ a ∧ b �→ x ↓

(c) PRS representation (without wires).

Fig. 1. Various representations of the same circuit segment

Definition 1. A production rule is a triple

(g, x, d) ∈ TB(Y )× Y × {↑, ↓}.

Typically, we denote a production rule (g, x, d) using the more suggestive nota-
tion g �→ xd. A production rule set (PRS) is any finite set of production rules.

Intuitively, we want a PRS to define a circuit at the level of switching, where
transistors function as perfect switches but the wires connected to the output of
a gate may take arbitrarily long to transition. Any wire connected to the output
of an enabled gate may switch, and may do so in any order, non-deterministically.
A gate x is enabled whenever either (i) its has value 0 in the current state and
there is a rule g+ �→ x ↑ with g+ evaluating to logical-true in the current state,
or (ii) x is 1 in the current state and there is a rule g− �→ x ↓ with g− evaluating
to logical-true in the current state.

Fig. 1 shows a segment of digital logic presented in three different formats: (a)
as an interconnection of gates, (b) as a CMOS transistor diagram, and (c) as a
PRS. The gate marked with a “C” is state-holding and is known as a C-element;
when both inputs are 0 it is enabled to switch to 1, when both inputs are 1 it
is enabled to switch to 0, and when the inputs are different it holds its current
state. Therefore, if the current state of the circuit is

a �→ 0, b �→ 0, c �→ 0, d �→ 0, x �→ 1 (1)

then there are 24 possible next states: any subset of {a, b, c, d} can switch, but
the nand gate x is not enabled.

There are two types of hazards that must be avoided for an asynchronous
circuit to function correctly. Of course, hazard-free operation is only a neces-
sary condition for correct operation, the circuit must still satisfy its functional
specification.

The first kind of hazard is the interference hazard. It occurs when a gate
is simultaneously being pulled both up and down. That is, there are two rules
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g+ �→ x ↑, g− �→ x ↓ such that both g+ and g− evaluate to logical-true in the
current state. Note that the PRS given in Fig. 1 does not contain any hazards
of this form because all pairs of guards g+, g−, as above, are mutually exclusive.
However, the custom gates used in practice often do have pull-up and pull-down
networks which can be simultaneously conducting, i.e. interfering.

The second kind of hazard is the instability hazard. This occurs when a gate is
enabled to switch, but before it actually switches the inputs to the gate change
and disable it. For example, in Fig. 1 and state (1) above, if the immediately
next state of the system is given by the mappings

a �→ 0, b �→ 0, c �→ 0, d �→ 1, x �→ 1 (2)

then the inverter a becomes disabled and an instability hazard occurs.

2.2 “Proper” PRS

Asynchronous circuits must be designed so as to avoid hazards. This is done
by careful structuring and by imposing some constraints on the relative delays
through wire and transistor paths, called timing assumptions. The simplest as-
sumption, called delay insensitivity (DI), is the degenerate case where arbitrary
switching is allowed as described above. Most timing assumptions used in prac-
tice typically impose constraints on forks, i.e. on connections from the output
of a gate to the inputs of multiple subsequent gates.

In order to give a precise definition of common timing assumptions imposed
on forks, we will enforce that our PRSs be structured as a set of gates which are
connected explicitly by wires. By explicitly we mean that the wire connecting
the output x of a gate to the input w of another gate is specified by a pair of
production rules x �→ w ↑,¬x �→ w ↓; intuitively, w is a wire branch of x. Such
well-structured PRSs are called proper [12].

Definition 2. Let P be a PRS and x ∈ Y ; we denote by Ox,P the subset of P

{g �→ x′d ∈ P | x′ = x};

when Ox,P �= ∅ we call it the x operator with respect to P , and x an operator
variable. In cases where P is known from context, we may simply write Ox.

Definition 3. Let P be a PRS. We say that P has simple operators if and only
if for all operator variables x in Y , Ox is of the form {g+ �→ x ↑, g− �→ x ↓}.

Definition 4. Let P be a PRS having simple operators. Then, for each operator
variable y in Y ;

1. we call Oy a wire whenever Oy = {x �→ y ↑,¬x �→ y ↓} for some x ∈ Y ; and
2. we call Oy a gate otherwise.

One of the main reasons for structural constraints is to enforce a regular
forking structure; a fork being a set of wires with the same variable in the guard
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(a) CMOS-level representation.

a �→ a1 ↑ ¬a1 ∨ ¬b �→ x ↑
¬a �→ a1 ↓ a ∧ b �→ x ↓

(b) PRS representation.

Fig. 2. CMOS nand gate with a superfluous wire

of their corresponding production rules. The goal of these requirements is to
guarantee a one-to-one correspondence between inter-gate forks in the physical
circuit and the wires in its description as a PRS. Formalizing the requirements
necessitates a clean way of expressing variable sharing within and between the
operators, as such sharing can imply forking.

Definition 5. Let P be a PRS with simple operators. We associate to P a
relation −→P⊆ Y × Y defined for all x, y as follows:

x −→P y ⇔ x ∈ vars(g+) ∪ vars(g−), where {g+ �→ y ↑, g− �→ y ↓} = Oy.

Again, when P is clear from context we simply write −→.

Given a PRS and its associated −→ relation, we write · −→ x, x −→ · to
denote the sets {y ∈ Y | y −→ x}, {y ∈ Y | x −→ y} respectively; this notion
usefully extends to multiple arrows and multiple dots in the obvious way. E.g.,
consider the modified nand gate in Fig. 2 having a superfluous wire, i.e., a and
a1 are both wires, with a1 connected directly to a. Then,

· −→ x = {a, a1, b}
b −→ · = {x}

Superfluous wires like Oa1 in Fig. 2 will not be allowed in a proper PRS ; the
output of gates will always connect to wires, and the output of wires will always
connect to the input of gates. In addition, a proper PRS will always be a closed
system, and all forks must have a regular structure.

Definition 6. Let P be a PRS. We say that P is proper whenever it satisfies
all of the following conditions:

1. has simple operators and all guards are in disjunctive normal form.
2. for all x ∈ Y , x −→ · �= ∅ iff · −→ x �= ∅; i.e. P is closed.
3. for all x, y ∈ Y , whenever x −→ y exactly one of Ox, Oy is a gate; i.e. gates

and wires alternate.
4. for all gates Ox, Oy, |x −→ · −→ y| ≤ 1; i.e. P has no intra-operator forks.
5. for all wires Ow, |w −→ ·| = 1; i.e. all inter-operator forks are explicit.
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3 Executable Semantics of PRS

This section presents the executable semantics of PRS. The formalization is in
rewriting logic and uses the notation of the rewriting logic language Maude [11].
Section 3.1 defines the data types associated with PRS; Section 3.2 then presents
the semantics of PRS without hazards or timing assumptions; Section 3.3 deals
with hazards and completes the PRS semantics under the DI assumption. The
SI and QDI timing assumptions are added in Section 4. The full source code of
the semantics, for each of the timing assumptions, as well as the circuits used for
experimentation in Section 4 are available at [13] (note: [13] and the presentation
in this paper have a few small, mostly syntactic, differences).

3.1 Syntax

The syntax of PRS is quite straightforward: it consists of types for the guard
expressions, actions, production rules, and sets of production rules. Recall that in
a proper PRS, the guards of each production rule are required to be in disjunctive
normal form.

sorts Literal Clause Guard .

subsort Variable < Literal < Clause < Guard .

op ~_ : Variable -> Literal .

op _&_ : Clause Clause -> Clause .

op _|_ : Guard Guard -> Guard .

The “action” part of each production rule is everything but the guard; that
is, the transition variable and a direction for the transition (x ↑, x ↓).

sort Action . ops _+ _- : Variable -> Action .

We compose production rules using mix-fix syntax similar to the textual rep-
resentation used for production rules, i.e. “g �→ x ↑”.

sort ProductionRule . op [_->_] : Guard Action -> ProductionRule .

The resulting data type for production rule sets is then obtained by instanti-
ating the parameterized set module with the appropriate view as follows.

fmod SYNTAX is

pr SET{ProductionRule} * (sort Set{ProductionRule} to PRS,

op _,_ to __) .

endfm

In Maude, we can now specify the nand gate above as follows, where we take
quoted identifiers (e.g. ’x) as a subsort of Variable.

op nand : -> PRS .

eq nand = [ ~ ’a | ~ ’b -> ’x +]

[ ’a & ’b -> ’x -] .
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3.2 Unconstrained Semantics without Hazards

We have previously defined a formal semantics for PRS using just notions from
naive set theory [12]. The executable semantics given here builds on that work,
but certain details are omitted which are already spelled out in detail there.
For expository purposes we first define those portions of the semantics that are
concerned with normal operation, that is, without hazards ; we then add hazards
separately in Section 3.3.

PRS semantics operates as follows: at each step, for each operator Ox make
a non-deterministic choice about whether to change the value of x. The possible
values that x can be changed to are dictated by the rules comprising Ox and the
current state of the circuit. For example, when the state of nand gate above is
(note, the nand gate is enabled)

a �→ 1, b �→ 1, x �→ 1,

a non-deterministic choice is made to either update the value of x to 0, meaning
that the gate has responded to its inputs and switched, or to maintain the value
1, indicating that the voltage on x is not yet low enough to be read as a 0 on
any of the wires connected to x.

The state of a PRS is represented as a mapping χ : Y −→ {0, 1}; and a
configuration is just a PRS and its current state. In rewriting logic

sorts Value Configuration .

ops 1 0 : -> Value .

op <_,_> : PRS Map{Variable,Value} -> Configuration .

Map is as defined in Maude [11, §9.13.1]. The top-level rewrite rule is a conditional
rule that gathers up all of the non-deterministic “intra-step” level changes for
each operator and commits them all at once at the top, yielding a single “step”.

op [*_,_*] : PRS Map{Variable,Value} -> [Map{Variable,Value}] .

crl < P, CHI > => < P, CHI’ > if [* P, CHI *] => CHI’ .
(�)

Note that the [* , *] operator is only given a kind, and not a sort. This makes
it so that only fully determined states are reflected at the top. Also, note that
in [13] the [* , *] operator uses slightly different syntax (<< , >>).

The rewrite rules defining the intra-step semantics are given in Fig. 3. Given
a configuration 〈P, χ〉, the essential idea is to: (i) generate a list of all variables
occurring in P , and (ii) iterate over these variables, making a choice about
whether to update the associated value or not. An equation removes the extra
intra-step operator symbols when there are no more variables to iterate over,
yielding a term of the appropriate sort to be used as the new state value in (�).

A separate intermediate operator is introduced ([* , , , *]) to iterate over
the variables and gather up all of the gate changes. Like [* , *], the auxiliary
operator [* , , , *] is defined at the kind level. The A+ and A- predicates
simply define when a gate is being pulled-up and pulled-down, respectively;
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--- empty is the identity for Map

eq [* P, CHI *] = [* mkListOfVars(P), P, CHI, CHI *] .

eq [* empty, P, CHI, CHI’ *] = CHI’ .

--- choose to switch Y to 1

crl [* (Y YS), P, CHI, CHI’ *] => [* YS, P, CHI, CHI’[1 / Y] *]

if A+(Y, P, CHI) .

--- choose to switch Y to 0

crl [* (Y YS), P, CHI, CHI’ *] => [* YS, P, CHI, CHI’[0 / Y] *]

if A-(Y, P, CHI) .

--- choose to hold Y

rl [* (Y YS), P, CHI, CHI’ *] => [* YS, P, CHI, CHI’ *] .

Fig. 3. Rewrite rules defining the semantics of PRS, omitting hazards from consideration

eq A+ (Y, P, CHI) = eval(pullUpG (Y, P), CHI) == 1 and

eval(pullDownG(Y, P), CHI) == 0 .

eq A- (Y, P, CHI) = eval(pullUpG (Y, P), CHI) == 0 and

eval(pullDownG(Y, P), CHI) == 1 .

that is, pullUpG evaluates to the guard of the pull-up rule for the variable given,
pullDownG the guard of the pull-down rule, and eval evaluates a guard relative
to a mapping χ : Y −→ {0, 1} as usual for the Boolean operators.

3.3 Hazards

Automatically checking that an asynchronous circuit is hazard-free is one of the
primary goals of this paper, so the expression of hazards is a crucial aspect of
the PRS semantics. We now extend the rewriting logic definition given in the
previous section so as to account for both types of hazards: interference and
instability hazards.

Hazards ultimately get expressed by setting the current value of a gate to
a special, intermediate value X. Therefore, we must extend the sort Value by
adding:

op X : -> Value .

Interference hazards are very simple to characterize; they occur whenever
both the guard of the pull-up rule (g+ �→ x ↑) and the guard of the pull-down
rule (g− �→ x ↓) for an operator are simultaneously enabled. Then,

eq interfering(Y, P, CHI) =

eval(pullUpG (Y, P), CHI) == 1 and

eval(pullDownG(Y, P), CHI) == 1 .

The second type of hazard, instability hazards, are more complicated because
they are characterized with respect to a pair of successive states

χ, χ′ : Y −→ {0, 1, X}.
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An instability hazard is triggered whenever a gate is enabled to switch in χ, but
does not switch in stepping from χ to χ′ while at the same time the inputs to
the gate do change and the gate is no longer enabled in χ′. This can be specified
as follows.

eq unstable(Y, P, CHI, CHI’) =

(A+(Y, P, CHI) and eval(Y, CHI’) =/= 1 and --- was enabled

not A+(Y, P, CHI’)) or --- no longer enabled

(A-(Y, P, CHI) and eval(Y, CHI’) =/= 0 and --- was enabled

not A-(Y, P, CHI’)) . --- no longer enabled

Instability hazards persist from the first point when the unstable predicate
above becomes true until it is either expressed as an X on the output of the gate,
or the gate becomes enabled again.

To track instability hazards we add a new component to the state context.
Specifically, in addition to χ we also keep a set I ⊆ Y of variables that can
switch to X

sort State .

op (_;_) : Map{Variable,Value} Set{Variable} -> State .

op <_,_> : PRS State -> Configuration .

Similarly, we need to change the top-level rewrite rule (�) to include the set of
pending hazards and generate the updated I set

crl < P, (CHI;I) > => < P, (CHI’;I’) > if [* P, CHI, I *] => (CHI’;I’) .

and add a new intra-step conditional rule to those in Fig. 3 for the expression
of hazards (note, the expansion of [* , *] and [* , , , *] for I):

crl [* (Y YS), P, CHI, I, CHI’ *] => [* YS, P, CHI, I, CHI’[X / Y] *]

if Y in I .

Of course, the rules in Fig. 3 need to be modified slightly to carry the I com-
ponent and we must also modify the equations for [* , , , *] to compute the
updated I set when there are no more variables left to update during the intra-
step computation. The test used to determine whether a given variable x should
be included in I ′ is given in Fig. 4. The full set I ′ is calculated by performing
this test for every variable in the PRS; full details are in our Maude source [13].

4 QDI, SI, and Decidability

It has been shown that the set of hazard-free circuits is extremely limited under
the unconstrained, or delay-insensitive, semantics given in Section 3 (see [14]).
Therefore, most designs are engineered using stronger timing assumptions than
delay-insensitivity. Two common timing assumptions used in practice are the
quasi-delay-insensitivity (QDI) assumption [10,4,12], and the speed-independence
(SI) assumption [15,16]. The QDI timing assumption is strictly weaker than the
SI assumption, and therefore has benefits in terms of forming a timing closure.
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--- top-level predicate

eq I’Pred(Y, P, CHI, I, CHI’) =

I+Pred(Y, P, CHI, CHI’) or --- Y in I+

(Y in I and not I-Pred(Y, CHI, CHI’)) . --- Y in I minus I-

--- auxiliary predicates

eq I+Pred(Y, P, CHI, CHI’) =

interfering(Y, P, CHI’) --- hazard type 1

or unstable(Y, P, CHI, CHI’) --- hazard type 2

or A*(Y, P, CHI’) . --- propagation of hazards.

eq I-Pred(Y, CHI, CHI’) = CHI[Y] =/= CHI’[Y] .

Fig. 4. Update calculation for the I component of the PRS state

It is the timing assumption that we are most interested in from the standpoint
of pragmatic asynchronous circuit design.

The question becomes: can we decide interesting properties of PRS under QDI
operation? The answer is yes, both directly using a finitary encoding of the as-
sumption into our executable semantics and, in the case of verifying hazard-free
operation, indirectly using a result from [12]. Although in this paper we exper-
iment only with hazard-free and deadlock-free operation, it is possible to use
our semantics to verify a wide range of properties, under any of the timings
assumptions we have considered. Indeed, Maude’s search command permits gen-
eral safety properties to be verified, and with Maude’s LTL model checker one
can verify propositional LTL formulas against the circuit. Without the finitary
encoding, the formalization of [12] does not permit this general decidability in
QDI.

In Section 4.1 we define PRS semantics under the SI timing assumption, and
show that it can easily be imposed using the infrastructure from Section 3.
Then, in Section 4.2 we describe the QDI timing assumption at a high level and
explain how it can be encoded in a finitary way within our rewriting semantics. A
detailed discussion of QDI is made in [12], and is omitted here for space reasons.

4.1 Speed-Independence

The speed-independence timing assumption [15,16] forces all wires connected to
a gate to switch in unison. Equivalently, it must never be the case that two wires
connected to the same gate have a different value

ceq SI([Y -> W1 +] [~ Y -> W1 -] [Y -> W2 +] [~ Y -> W2 -] P, CHI)

= false if CHI[W1] =/= CHI[W2] .

eq SI(P, CHI) = true [owise] .

To enforce the SI timing assumption, we simply add the SI predicate to the
conditions of the top-level rewrite rule (�).

crl < P, (CHI;I) > => < P, (CHI’;I’) >

if [* P, CHI, I *] => (CHI’;I’) /\ SI(CHI’) .
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4.2 Quasi-Delay-Insensitivity

The QDI timing assumption is substantially more complicated than the SI timing
assumption. The basic idea in QDI is that different branches of a fork may have
different values, unlike SI, but once an acknowledgment path from one branch
of the fork reaches a gate on an unacknowledged branch, the unacknowledged
branch must have switched. When a gate switches, it acknowledges any inputs
in the guard of the corresponding production rule which are part of an enabled
disjunctive clause. This is why guards are assumed to be in disjunctive normal
form in a proper PRS: to facilitate the definition of acknowledgment. The full
formal definition of acknowledgment, and its transitive extension, is given in [12].

Given a state χ : Y −→ {0, 1, X}, the function ackableOf gathers up all of
the variables that would be acknowledged if the gate corresponding to the given
guard were to switch.

op ackableOf : Guard Map{Variable,Value} -> Set{Variable} .

eq ackableOf(C | G, CHI) = if eval(C, CHI) == 1

then varsOf(C)

else empty fi

, ackableOf(G, CHI) .

eq ackableOf(C , CHI) = if eval(C, CHI) == 1

then varsOf(C)

else empty fi .

Encoding the QDI timing assumption as defined in [12] and checking hazard
and deadlock-free operation by search, i.e. by explicit enumeration of all states,
is not possible because the resulting state space is infinite. The basic reason for
this is that sequences of acknowledgments are tagged with indices from ω. QDI
is imposed on an execution sequence given as a set of configurations {ci}i∈ω;
where ci −→1 ci+1 for all i ∈ ω using the rewrite rule (�) from Section 3.2. The
assumption is satisfied in {ci}i∈ω if there are no indices j, k ∈ ω such that there
is a sequence of acknowledgments starting at some gate, Ox, in cj and ending at
another gate, say Oy, at ck, and where an unacknowledged branch from Ox also
reaches Oy. A mathematically precise definition is given in [12].

Careful study of the QDI assumption yields up a solution, however, because
between j and k, acknowledged wires connected to x cannot switch. If one does, it
kills the unacknowledged branches of the fork at index j, and the QDI assumption
cannot be violated. Therefore, to encode the QDI assumption in a finitary way
we record, for every fork, the set of nodes which transitively acknowledge the
current value on that fork. That is, we endow the configuration state with a new
component called an acknowledgment map

op (_;_;_) : Map{Variable,Value} Set{Variable} Map{Variable,VariableSet}

-> State .

that records for each fork, f , the set of nodes acknowledging f . The details of the
update to the acknowledgment map are omitted for space reasons, but the key
idea is applying ackableOf to every operator that switches during the current
step (defined by rule (�) above) and adding the new transitive acknowledgments



152 M. Katelman, S. Keller, and J. Meseguer

into the map. A separate function handles the case when a gate switches and
propagates a new value to its wires; we then simply clear the mapping for the
fork, except for those wires that are part of the fork and equal to the current
value of the gate. The QDI timing assumption is then defined as

eq QDI(P, empty, CHI) = true .

eq QDI(P, (F |-> YS,ACK), CHI) =

if empty =/= intersection(

unackToGate(F, YS, P) --- unacknowledged branches of F

, ackToGate( YS, P) --- acknowledged branches of F

) then false else QDI(P, ACK, CHI) fi .

That is, for every fork we take the intersection of (i) those gates connected to
unacknowledged branches of f and (ii) the set of gates connected to nodes which
transitively acknowledge f and we make sure that these two sets contain no gates
in common. If so, QDI is violated. Additional details are in the source code [13].

4.3 Decidability and Experimental Results

One of the compelling advantages of a rewriting logic semantics for PRS is the
possibility of using rewriting logic tools such as Maude to simulate and model
check a PRS against important correctness criteria. Of course, in most cases
decidability is contingent upon having a finite state space, which is why the
encoding for QDI given above is crucial. This section reports on experiments
in Maude to decide hazard-free and deadlock-free operation for several small
asynchronous circuits. We successfully check circuits up-to 130 production rules,
after which the state space so large that the check did not finish after several
days on a machine with 2.33GHz (Intel E5410)/8GB RAM/64-bit Linux.

Using the encoding above, we decide hazard-free operation for QDI by enumer-
ating all possible configurations from an initial, reset configuration and checking
for hazards

op hazard! : Configuration -> Bool [frozen] .

eq hazard!(< P, (Y |-> X, CHI ; I ; ACK) >) = true .

eq hazard!(< P, (CHI; I ; ACK) >) = false [owise] .

In Maude, we simply use the search command [11, §12]

search [1] in QDI-SEMANTICS : initCnfg =>* C:Configuration

such that hazard!(C:Configuration) .

delay-insensitivity and speed-independence assumptions are handled similarly.
Fig. 5 presents the results of checking hazard-free operation for several small

asynchronous circuits according to our semantics and the implementation of the
timing assumptions described above. Clearly, the SI timing assumption yields a
significantly smaller state space and is therefore easier to check for hazard-free
operation. The main result of [12] allows us to reduce the QDI check to checking
hazard-free operation in the same circuit under SI. As shown in [17], though
verifying hazard-free operation under SI is NP-complete.
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Circuit Name Size DI SI QDI

3InverterRing 12rl yes yes
12st – 20ms
– 55, 254rw

yes
17st – 32ms
– 100, 313rw

ClosedBuffer 26rl no yes
20st – 192ms
– 513, 522rw

yes
59st – 1, 040ms
– 2, 561, 312rw

Toggle 28rl no yes
28st – 128ms
– 392, 887rw

yes
139st – 944ms
– 2, 648, 172rw

PCHBAndFixed 66rl no yes
681st – 21, 081ms
– 55, 564, 688rw

yes
2, 679st –
213, 869ms

– 409, 224, 700rw

1BitFullAdderFixed 118rl – – –
PCHBAndToggle 130rl – – –

Fig. 5. Analysis of hazard-freedom for several small circuits. Benchmark Ma-
chine: Xeon @2.33GHz (E5410), 8GB RAM, 64-Bit Linux. Key: rl=rules,
st=states, ms=milliseconds, rw=rewrites, DI=delay insensitive, SI=speed independent,
QDI=quasi-delay insensitive.

Theorem 1 (main result of [12]). Let P be a proper PRS. P is hazard-free
under QDI if and only if it is hazard-free under SI.

This reduction clearly results in faster checking of hazard-free operation; e.g.
the PCHBAndFixed circuit runs an order of magnitude faster under the SI
assumption. But, it is disappointing that the reduction does not provide enough
leverage to successfully check either 1BitFullAdderFixed or PCHBAndToggle.

To gain additional leverage, we tried a number of strategies. First, we modified
our semantics to get rid of all of the conditional rewriting rules, resulting in just
three unconditional rewrite rules. The cost of this transformation is that we
had a large increase in state space considered by Maude, because the intra-step
semantics needed to occur at the top. This resulted in much slower run times
since Maude now had to check for duplicate states in a much larger top-level
state space. We also tried an intermediate approach, with just a single conditional
rewrite rule at the top; the performance of this solution was about the same as
the original, highly conditional system.

Finally, we applied a transformation to remove all wires from the PRS and
wire the output of each gate directly to subsequent gates.

Conjecture 2. Let P be a proper PRS and let P gate be the PRS obtained by
removing wires from P and connecting the output of each gate directly to the
inputs of subsequent gates by modifying the guards. P is hazard-free under SI if
and only if P gate is hazard-free under the unconstrained semantics.

We conjecture that this transformation is sound, although we have not yet de-
veloped a detailed formal proof. This provided enough leverage to successfully
check hazard-free operation for the PCHB-And connected to a circuit that tog-
gles the input, and also to do the same check for the 1-bit full-adder with fixed
inputs. The additional model checking results are given in Fig. 6.
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Circuit Name Size NO-WIRE

3InverterRing 12rl yes
6st – < 1ms
– 9, 514rw

ClosedBuffer 26rl yes
10st – < 1ms
– 37, 596rw

Toggle 28rl yes
12st – < 1ms
– 42, 546rw

PCHBAndFixed 66rl yes
114st – 1ms

– 4Mrw

1BitFullAdderFixed 118rl yes
1, 800st – 239ms

– 453Mrw

PCHBAndToggle 130rl yes
2, 844st – 159ms

– 299Mrw

(a) Hazard-freedom check when we omit
all wires.

Circuit Name Size SI

Toggle 28rl yes
28st – < 1ms

– 393Krw

ToggleMod 69rl no
459st – 13ms

– 31Mrw

(b) Deadlock-freedom check on the tog-
gle circuit.

Fig. 6. Hazard-freedom check omitting wires, and deadlock-freedom check for a toggle
circuit

In addition, we checked the toggle circuit for deadlock-freedom, and a modified
toggle circuit with a deadlock. The results are given in Fig. 6. For this, we used
the following Maude command.

search [1] in SI-SEMANTICS : initCnfg =>! C:Configuration .

The full Maude code for the semantics under all of three timing assumptions,
the system with unconditional rules, and the transformation to remove wires,
can be found at [13], as can all of the PRSs used in the experiments above.

5 Related Work and Conclusions

A sophisticated method for formally verifying hazard-free operation in asyn-
chronous circuits is given in [18]. The methods developed there rely on the exis-
tence of two designs of the circuit; one high-level and one low-level. Both designs
are given as specialized automata, and while a full enumeration of the reachable
state space in the high-level design is necessary, a careful analysis shows how
to avoid doing the same for the low-level design. This yields a more efficient
analysis of hazard-free operation since the high-level design has a smaller state
space than the more detailed, low-level design.

It is not entirely clear how to apply the methods of [18] to PRS. As used in
this paper, PRS is a very low-level representation of a circuit and no method has
been developed to generate the high-level design required by [18] from PRS. Even
with the high-level design, it is likely that if the enumeration of reachable states
is done naively, it will result in a combinatorial explosion that precludes analysis
of complex, modern circuits. We have some ideas about how this could be done
efficiently with a combination of CHP, PRS, and common circuit templates; but
this is left for future work.

A use of symbolic model checking for checking hazard-free operation of SI
circuits is given in [19]. However, comparison with the results presented here
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is difficult, because the circuits analyzed were only described informally. By
contrast, our analysis is based on a formal semantics for PRS and can be applied
directly to any circuit given in PRS, and also used in more general kinds of
analysis. The other tool that we know of to verify hazard-free operation is called
prlint (see [17]). However, the tool is not readily available and we were unable to
acquire a version capable of running on a modern Linux workstation. In practice,
statistical methods based on Monte Carlo methods are normally used to analyze
large circuits.

To the best of our knowledge, this work provides the first formal executable
semantics of asynchronous circuits at the PRS level. The realization of our se-
mantics in Maude also provides a PRS-level simulator and a model checker to
verify other properties such as deadlock freedom. Another important contribu-
tion of this work is the finitary encoding of the QDI timing assumption. Although
Theorem 1 makes it unnecessary for deciding hazard-free operation, the finitary
encoding is instrumental in making it feasible to model check other interesting
properties.

The primary current limitation of our semantics and model checking methods
is of course the high level of concurrency intrinsic in the operation of an asyn-
chronous circuit, and the resulting state space explosion. Although the reduction
and optimization methods we have presented here have allowed us to scale the
model checking up to the level of over one hundred PRs, new reduction meth-
ods are needed to scale up to bigger asynchronous circuits. The investigation
of new reduction methods, intuitively collapsing many uninteresting “interme-
diate states” of the asynchronous computation and possibly taking the form of
a stuttering bisimulation reduction, is left for future research.
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A Formal Pattern Architecture
for Safe Medical Systems
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Abstract. Design patterns have demonstrated major practical uses for
cost savings and modular design in software engineering. For safety-
critical systems, however, such patterns should also provide formal guar-
antees that critical safety properties are met. We leverage the power of
rewriting logic and parameterization available in Real-Time Maude to
add a formal basis for analysis of a novel safety pattern for medical de-
vices. We demonstrate practicality and applicability of our pattern by
instantiating it to a pacemaker specification, and we validate our pattern
by verifying the safety invariant in the pacemaker instantiation.

1 Introduction

In life, we naturally use patterns as a powerful form of abstraction that not only
serves to concisely represent the large amounts of information around us, but also
provides a reasoning mechanism for situations that we have not yet encountered.
In the same spirit, engineers have also realized, that after successfully designing
many similar systems, a common part of these designs can be extracted as a
pattern. Future engineers can then use these patterns as a starting point and
benefit from the tried and true experience of successful designs in the past.

Patterns have been enormously useful in software engineering after being in-
troduced through the gang of four book [4]. However, current design patterns are
used mostly to ensure modularity, portability, scalability, and maintainability of
code. There have been many works formalizing software design patterns includ-
ing: [6] using high level temporal behaviors, [3] using UML-based semantics, [10]
using the concept of responsibilities and rewards, etc. However, most of these
focus on formalizing structural constraints and interaction properties between
different objects. For safety-critical systems, we need patterns with provable
safety properties for the system as a whole. For example, even if we verify the
correct use of the observer pattern [4] in a system design, this does not provide
any guarantees on the safety of the system. We need to have a clear way to at-
tach to patterns formal conditions for their applicability and formal guarantees
for their behavior when such conditions are met. Clearly, to harness the notion
of patterns in safety-critical systems which require verifiable properties, a more
precise notion of pattern is needed.

We show that the notion of a safety-pattern can be captured by parameter-
ization in rewriting logic as supported by Maude [1]. In particular, we present
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in detail a pattern for medical devices, which is actually applicable to a wide
range of safe medical device operations. To do this, we first formalize a notion
of medical device safety, SR-safety, characterized by stress and relax events, and
second, we specify a Command-Shaper Pattern in the form of an object wrapper
which is able to manipulate input commands to a medical device in order to
satisfy a given SR-safety definition.

We present a condensed description of all the elements necessary for our pat-
tern specification. We first highlight some important safety requirements for
various medical devices that we have considered (Section 2) along with high
level intuitions behind our Command-Shaper Pattern (Section 3). We provide
a brief background on Real-Time Maude and parameterization (Section 4) be-
fore delving into the specification details. We then formally define our notion
of medical device safety (Section 5), which sets up the ground work to finally
present our pattern (Section 6). We also provide an example instantiation to a
pacemaker system which we have validated via timed search (Section 7).

We focus on the specification and instantiation of our medical device pattern.
This requires us to leave out some details including the correctness proof for
our pattern and the distributed emulation of the pattern. These complementary
topics and the full specification can be found in our technical report [11].

2 Safety of Life-Critical Medical Devices

In this paper we describe in detail a safety pattern called the Command-Shaper
Pattern that we have found applicable to a wide range of medical devices. Before
we can talk about a generic safety pattern, we must first discuss a generic notion
of safety for medical devices.

When studying medical device operation, we have found a recurring pattern
of command restrictions. Consider the following three examples:

– Infusion pumps for pain medication are normally incorporated into Patient
Controlled Analgesia (PCA) systems, where the patient can demand addi-
tional bolus doses of drugs with the push of a button. If the patient pushes
the button too often without safety checks, this will clearly lead to depres-
sion of the nervous system, and even death. The PCA needs some safety
mechanism to make sure that not too many bolus doses are administered.

– Pacemakers normally need to adapt the heart rate to the degree of patient
activity. However, pacemaker activity sensors often pick up false positives
during bumpy car rides. Pacing a heart at high rates for a prolonged period
of time could lead to patient discomfort or even cardiac arrest. Thus, pace-
makers must have safety mechanisms to prevent them from pacing too fast
for too long.

– A ventilator machine may need to be turned off temporarily for another
piece of equipment to work on a patient. Sometimes humans forget to turn
ventilator machines back on, potentially causing brain damage to the patient
due to oxygen deprivation. The ventilator should have time triggers to make
sure that it does not turn off too often or for too long.
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Intuitively, all these examples illustrate a common theme with medical de-
vices: human bodies are normally self stabilizing, and our bodies can normally
be placed under some stress temporarily, provided they are given sufficient time
to recover.

Thus, for the medical device examples presented, all of the device states can
be partitioned into two classes: stressed states and relaxed states. Stressed states
are states where the patient cannot stay for too long (heart pacing too fast,
holding breath for too long, etc.), since otherwise permanent physical harm may
result for the patient. Relaxed states are states that allow the patient to recover
over time from a previous period of stressed states.

Although the partitioning of device states into stressed and relaxed states is
common to many devices, it should be noted that not all devices can be placed
into this category. For example, a glucose-insulin pump does not have any static
relaxed states. There always exist patient contexts where any potential device
state: infuse insulin, infuse glucose, or do nothing could be considered an unsafe
action. Such devices, which depend on external context and sensor informa-
tion for their safety, are not addressed by the pattern that we present in this
paper.

3 Command-Shaper Pattern for Safety Monitoring

The key idea of the command-shaper pattern is that commands from external
devices should only be taken as suggestions. Figure 1 shows this pattern applied
in the form of a wrapper around a pacing module in a cardiac pacemaker. If a
command is detected to be deviating or unsafe, the command-shaper can either
ignore the command, or more generally, modify the command into a safe variant.
To do this, we must first come up with a reasonably general definition of which
commands are safe and, also, of how to respond to the actions of commands that
are unsafe.

Fig. 1. Command-Shaper Wrapper Pattern for the Pacemaker

The notion of safety in medical systems is of course very broad: ranging from
biological conditions to electronic interference. We consider an important aspect
of medical device safety which applies to medical device controllers. This notion
of safety is definable via stressed and relaxed states, which we call SR-safety.
Consider the heart rate at which a pacemaker is pacing the patient’s heart shown
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in Figure 2. We assume that the doctors customized the pacemaker’s parameters
to adapt to the patient’s normal expected heart rhythm. For this patient a safe
minimal heart rate is 60 bpm when inactive. Furthermore, a critical heart rate is
defined to be at 100 bpm, so that any heart rate above 100 bpm will be considered
stressed, and any heart rate at or below 100 bpm will be considered relaxed. The
key idea is that the pacemaker can pace at relaxed rates indefinitely without
compromising patient safety, but the pacemaker should not pace at stressed
rates for prolonged periods of time. These constraints can expressed as upper
bounds on stress durations over time. Of course, the maximum allowable stress
duration at any instant in time may depend on relax durations also. For example,
if the pacemaker’s pace drops below 100 bpm after a long stress duration, it will
need to stay in the relaxed region for some time before allowing the pace to
become stressed again. In this pacemaker example, we have abstracted away the
device states into stress and relax regions, and the safety property can be defined
as a predicate on the history of stress and relax intervals. We call this type of
safety property SR-safety.

Fig. 2. Characterizing Medical Device Safety

There is also another important point for safe device operation: device states
reflecting continuous physiological parameters should change gradually in order
for the patient to slowly adapt to the effects. For example, in a pacemaker, if
the pacing rate of 100 bpm immediately drops to 60 bpm over 1 second, the
patient may start to feel a bit light-headed. Patient safety in this case requires
constraining how fast the pacing rate can change over time shown by the slope
in Figure 2. The maximum rate of change could in general be a function of the
current state and whether the change is increasing or decreasing.

After the notion of safety is defined, a system can be designed to detect if an
issued command to a device is safe or not. Any command that takes the device
into a relaxed state is safe by default. The only commands we need to worry
about are the commands that take the device into a stressed state or keep the
device in a stressed state. From the definition of SR-safety we know that, once
the device enters a stressed state, the time that it remains in stressful states
must be shorter than some maximum duration. Figure 3 intuitively shows how
this type of safety can be enforced in the system design. Given a maximum stress
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duration, we can construct an envelope such that any state in the envelope can
transition to a relaxed state (satisfying the rate of change constraints) before
the maximum stress duration ends. Now to check whether a new command is
safe or not, we just need to perform a one step look-ahead to detect whether
the command will keep the device state in the envelope. If the look-ahead device
state is outside the stress-envelope, then the command should be ignored and a
default safe command should be issued to gradually transition back to a relaxed
state. This describes the essence of the operations performed by the command-
shaper pattern to enforce SR-safety.

Fig. 3. Stress Envelope for Enforcing Safety

4 Real-Time Maude and Parameterized Modules

We have informally covered the concepts of medical device SR-safety and the
command-shaper pattern. To formally define these concepts, we have used the
Maude rewriting logic framework [1]. In this section we briefly cover the im-
portant constructs we used from Real-Time Maude and parameterized modules.
We assume the reader is familiar with basic Maude constructs including modules
(mod), sorts (sort), operators (op), unconditional and conditional equations (eq
and ceq) and unconditional and conditional rules (rl and crl).

4.1 Full Maude and Real-Time Maude

Full Maude [2] is a Maude interpreter written in Maude, which in addition to
the Core Maude constructs provides syntactic constructs such as object oriented
modules. Object oriented modules implicitly add in sorts Object and Msg. Fur-
thermore, OO-modules add a sort called Configuration which consists of a
multiset of terms of sort Object or Msg.

Objects are represented as records:

< objectID : classID | AttributeName : Attribute, ... >
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Rewriting logic rules are then used to describe state transitions of objects based
on consumption of messages. For example, the following rule expresses the fact
that a pacemaker object consumes a message to set the pacing period to T:

rl setPeriod(pm, T)

< pm : Pacing-Module | pacing-period : PERIOD >

=> < pm : Pacing-Module | pacing-period : T > .

Real-time Maude [8] is a real time extension of Maude in Full Maude. It adds
syntactic constructs for defining timed modules. Timed modules automatically
import the TIME module, which defines the sort Time (which can be chosen to
be discrete or continuous) along with various arithmetic and comparison oper-
ations on Time. Timed modules also provide a sort System which encapsulates
a Configuration and implicitly associates with it a time stamp of sort Time.
After defining a time-advancing strategy, Real-time Maude provides timed exe-
cution (trew), timed search (tsearch), which performs search on a term of sort
System based on the time advancement strategy, and timed and untimed LTL
model checking commands.

4.2 Parameterized Modules

Modules in Maude use initial model semantics for execution. Maude also sup-
ports theories which are given a loose semantics. Normally theories are instan-
tiated via views to other theories or to modules. In particular, a theory can be
instantiated to any module whose initial model satisfies all equational, member-
ship, and rewrite sentences of the theory. For example, if we defined a theory
SAFE-STATE and a module SAFE-PACEMAKER-DURATION satisfying all the sen-
tences of the theory (after renaming), then we can define a view from SAFE-STATE
to SAFE-PACEMAKER-DURATION. Below we show one equational sentence in the
SAFE-STATE theory that is satisfied by the module SAFE-PACEMAKER-DURATION
through view Safe-PD.

(fth SAFE-STATE ...

eq min-val <=risk safe-val = true .

... endfth)

(fth SAFE-PACEMAKER-DURATION ...

eq D <=risk D’ = D >= D’ .

eq min-risk-dur = 100 .

eq safe-dur = 75 .

... endfth)

(view Safe-PD from SAFE-STATE to SAFE-PACEMAKER-DURATION is ...

op min-val to min-risk-dur .

op safe-val to safe-dur .

... endv)

Parameterized modules are modules which take theories as input param-
eters and define operations (parametrically) in terms of the input theories.
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Parametrized modules are instantiated by providing views to concrete modules
for the corresponding input theories. Once instantiated, the parametrized module
is given the free extension semantics for the initial models of the targets of the
input views. For example, a parameterized module PATTERN{X :: SAFE-STATE}
can be instantiated with the view Safe-PD using the syntax PATTERN{Safe-PD}.

Patterns as Parameterized Specifications. Parameterized modules are very
powerful constructs as defining a parameterized module really defines a wide
range of modules, one for each possible correct instantiation of its input theories.
This means that any theorems we prove about a parameterized module should
hold no matter what instantiation of the input theories is given. This has a nice
correspondence with design patterns (design structures that can be reused within
different contexts). If a design pattern can be formalized as a parameterized
module and we prove a safety property for it, then any time we apply the pattern
to a system (assuming the context satisfies all the preconditions specified by the
input theories), we can be sure that the safety property holds in the instantiated
system also. We present the specification of our command-shaper pattern using
parameterization in this paper. A detailed the proof of its safety properties can
be found in our technical report [11].

5 Preliminary Definitions and the Safety Theory

To aid discussion, this and following sections contain various snippets from our
formal specifications in Maude. More detailed specifications can be found in [11],
and the full specification can also be downloaded from:

https://netfiles.uiuc.edu/musun/www/medical pattern/specification.zip.

5.1 Formal Models Stress-Relax Event Streams

The medical device safety model starts by defining the notion of time advance-
ment. We use the conventions of defining tick and mte described in the Real-Time
Maude documentation [9] to ensure deterministic timed rewriting. The detailed
definitions can be found in module TICK-MTE-SEM (see [11] Section 4.3).

We have already discussed earlier that SR-Safety for a medical device can
be specified as a predicate on the history of stress and relaxed intervals. This
history can be captured by recording the time instances when the device state
changes from a relaxed state to stressed state (a !stress event) and when the
device state changes from a stressed state to a relaxed (a !relax event). This
idea is shown in Figure 4, where logging two types of events over time gives us
all the information of when the device is in stressed states and in relaxed states.

We formally define (see [11] Section 4.3) the log of events as a parameterized
module EVENT-LOG (parameterized on the set of events). To illustrate how event
logs are represented, Figure 5 provides a graphical representation of the term
events. The clock c for each event keeps track of the time elapsed until the next
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Fig. 4. Stress Relax Event Log

Fig. 5. Event Example

event (or the current time if there is not next event). Notice that only the clock
for the latest event needs to be running, since the time interval between two
consecutive events will remain fixed.

events = E(D!, c(4, run)) E(C!, c(6, stop))

E(B!, c(4, stop)) E(A!, c(5, stop)) nil .

Now for the stress-relax log shown in Figure 4, we assume that the system
initially starts at a value below the threshold. This means that a stress-relax log
imposes additional structure on top of event logs:

1. The first event logged must be a !stress event.
2. Events must alternate between !stress and !relax events over time.

These constraints, and the notion of a stress-relax log, are both captured by
the parameterized instantiation STRESS-RELAX-LOG (see [11] Section 4.3).
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5.2 Formal Definition of Safety

We now formally define the notion of SR-safety motivated in Section 3. For
devices that have an SR-safety property (recall Figure 2), we start by character-
izing device states by a set Val of values and an order relation ≤risk) as shown
in the theory SAFE-STATE.

(fth SAFE-STATE is

pr TOTAL-ORDER * (sort Elt to Val, op _<=_ to _<=risk_) ...

ops min-val max-val crit-val safe-val : -> Val .

op period : -> Time . --- period of wrapper dispatch

op del : Val Val -> Val .

op tdel-min : Val Val -> TimeInf .

op safe? : Stress-Relax-Log -> Bool .

op norm : Stress-Relax-Log -> Stress-Relax-Log .

... endfth)

Intuitively, the total order ≤risk relates the relative safety of two states. Fur-
thermore, in terms of risk there are three key constants vmin ≤risk vcrit ≤risk

vmax with the given ordering corresponding to the minimum, critical, and maxi-
mum values in Figure 2 respectively. That is, value v is considered relaxed when
vmin ≤risk v ≤risk vcrit and is considered stressed when vmax ≥risk v >risk vcrit.
In addition, we define vsafe (vmin ≤risk vsafe ≤risk vcrit) as a default safe state
to eventually transition to when input commands to the device are unsafe.

The theory SAFE-STATE defines period indicating a constant period
for execution dispatch. For two states V, V ′, the operator del(V, V ′) defines
the value maximally changed from V towards the direction of V ′ in one period.
tdel-min(V, V ′) defines the minimum amount of time it will takes to change
from V to V ′. Operators del and tdel-min provide a discrete way of defining
bounds on the rate of change for the device state.

We want to have a generic way of characterizing the amount of time that
devices may safely remain in relaxed and stressed states. This is captured by
a predicate safe? on Stress-Relax-Log. For the Stress-Relax-Log, it is as-
sumed that a !stress event is recorded when the device state rises above vcrit,
and a !relax event is recorded when the state falls to or below vcrit. The safe?
predicate is left generic, so that arbitrarily complex conditions on time bounds
can be defined on stress and relax intervals. However, safe? should satisfy some
monotonicity assumptions. These assumptions include the fact that staying in
a stress situation for a longer amount of time cannot make a device safe when
it was unsafe before. Also, staying in a relax situation for a longer amount of
time should keep the device safe if it was safe before. We show a subset of the
monitonicity properties below.

ceq [stress-safe] :

safe?(E(!stress, c(T’, CA)) L) implies safe?(E(!stress, c(T, CA)) L)

= true if T’ ge T .

eq [relax-safe] : safe?(E(!relax, c(T, CA)) L) = safe?(L) .
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Finally, we define a norm operator which is really a modeling construct used for
efficiency of representation. Instead of maintaining an unbounded list of events
that grows over time, many times it is possible to contract or normalize the
history of events to a bounded-sized list.

6 Command Shaper Pattern as a Parameterized
Specification

The Command Shaper Pattern is expressed as a wrapper object around an ex-
isting device object. To the external environment its interface looks exactly like
interface for the internal wrapped device, but it also has the capability to ignore
unsafe commands.

The precise definition of what types of objects can be wrapped is provided by
the theory WRAPPED-OBJECT (see [11] Section 5.1). A wrapped object is of class
Wrapped and has a single attribute set-val for its state. We classify messages
into input and output messages. This is so that the wrapper knows which mes-
sages to forward to the external configuration. The message set-val, to set the
device state, is assumed to be the only message of sort InMsg.

(oth WRAPPED-OBJECT is inc SAFE-STATE .

class Wrapped | set-val : Val .

sort InMsg OutMsg . ...

msg set-val : Oid Val -> InMsg .

... endoth)

6.1 Parameterized Wrapper Object

The wrapper class structure is parameterized by the theory WRAPPED-OBJECT.
The definition of the wrapper is split up into three modules for ease of readability.
The first part EPR-WRAPPER (see [11] Section 5.2) defines the wrapper class with
the appropriate accessor and modifier operations for each attribute.

class EPR-Wrapper{X} | inside : NEConfiguration,

next-val : X$Val, val : X$Val, disp : Timer,

stress-intervals : Stress-Relax-Log .

The EPR-Wrapper class has four attributes. The inside attribute defines
the internal wrapped configuration. This is assumed to contain an instance of
an object of the instantiated class Wrapped and possibly various messages of
type InMsg and OutMsg. The next-val and val attributes describe the next
requested (target) state and the current state, respectively. The last attribute
stress-intervals is the log of stress and relaxed events used to evaluate safety.

Safety Envelope Calculations for the Wrapper. The parameterized mod-
ule WRAPPER-AUX describes auxiliary operations based on the operations defined
in the theory SAFE-STATE:
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(fmod WRAPPER-AUX{X :: WRAPPED-OBJECT} is inc EPR-WRAPPER{X} .

op cap : X$Val -> X$Val .

op stress? : X$Val -> Bool .

ops toStress? toRelax? : X$Val X$Val -> Bool .

op inEv? : X$Val Stress-Relax-Log -> Bool .

... endfm)

The operator cap changes the state to be within the min and max risk range, if
it was originally outside of this range. The predicates toStress? and toRelax?
describe when a value has crossed the crit-val threshold in the more risky
direction or less risky direction, respectively. The last predicate inEv?, which
is an abbreviation for inside the envelope, is the most important predicate. It
detects whether a configuration can persistently satisfy the safe? predicate in
the future by performing a look ahead to see the shortest time it will take to
reach a relaxed state.

ceq [inev-unreachable] : inEv?(V, L) = false

if tdel-min(V, crit-val) == INF /\ stress?(V) .

ceq [inev-stress] : inEv?(V, L) = safe?(L) and

safe?(log(tick(L, tdel-min(V, crit-val) plus period), !relax))

if stress?(V) /\ tdel-min(V, crit-val) :: Time .

ceq [inev-relax] : inEv?(V, L) = safe?(L) if not stress?(V) .

It is easy to see that inEv? is a stronger predicate than safe?. All the equa-
tions have the form inEv?(V, L) = false or inEv?(V, L) = safe?(L) ∧ term.
Essentially, inEv? strengthens safe? enough for it to become stable over time.
That is, if inEv?(V, L) = true, then there always exists a controllable path of
operation for the system to remain safe (recall the intuition provided in Figure
3). Equations inev-unreachable and inev-stress specify that if the device is in a
stress state, then it is in the envelope iff it can transition to a relaxed state before
the safe? predicate is violated. Equation inev-relax says that relaxed states are
always in the envelope.

Wrapper Execution. Finally, with all the auxiliary functions and the wrapper
object fully defined, EPR-WRAPPER-EXEC (see [11] Section 5.4) describes how a
wrapper object executes. Intuitively, the wrapper should filter and correct im-
proper settings for the state, so that the system always remains safe. Aside from
defining standard timed behavior via mte and tick and delivering and forward-
ing messages to and from the internal wrapped object. The most important part
of the EPR-WRAPPER-EXEC specification states that if the next state value V’ is
outside the extended safety envelope, then the wrapper object will ignore it and
use a safe value safe-val as the next target value.

ceq next-val(< O : EPR-Wrapper{X} |

val : V, next-val : V’, stress-intervals : L >)

= del(V, safe-val)

if not inEv?(del(V, V’),

log(L, log-entry(V, del(V, V’)))) .
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Notice that the statement in the condition performs a look-ahead by precom-
puting del(V, V’) and logging any new events. If the precomputed next state
and event log are not in the envelope, then the next requested state V’ is ignored,
and a default safe-val is used as a target for transitioning to the next state
(again recall Figure 3). Of course, under normal operation, when commands are
actually safe to perform, the wrapper will not change the behavior of the device.

6.2 Pattern Instantiation

At this point we have fully defined the formal Command Shaper Pattern. Fur-
thermore, any instantiation of the pattern has provably correct properties for
safety [11]. In this subsection we demonstrate an instantiation of the pattern
to a cardiac pacemaker. Once instantiated, the specifications also become exe-
cutable, so we are able to use model checking to validate that our specifications
are safe.

Pacemaker Instantiation. The pacemaker system represents a very generic
application of the Command Shaper Pattern. It preserves the structure of the
pattern without introducing any collapsing of terms or degeneracies, so it is a
good test case to completely cover most constructs of the pattern.

We assume that the instantiation is customized for a specific patient, so the
specific patient safety properties are as follows (since pacing periods are modeled
more naturally than a pacing rate, we set the constraints on pacing periods):

1. Only pacing periods in the range between 500ms (120 bpm) and 1000ms (60
bpm) are considered valid.

2. Any pacing period below 660ms (above 90bpm) is considered stressful.
3. The pacemaker should not pace continuously at stressful rates for more than

1 minute.
4. Once the pacemaker’s pacing rate drops down from stressful rates, the pacing

rate should remain relaxed for a duration proportional to twice the previous
stress interval.

5. The pacing period can be updated at most once every second
6. An updated pacing period can increase the period by at most 30ms from the

previous pacing period, or it can decrease the period by at most 20ms from
the previous pacing period.

These requirements are captured in the module SAFE-PACEMAKER-DURATION (see
[11] Section 5.5) with each time unit representing 10ms. Requirements 1 and 2
constraining the pacing periods are easily specified.

eq min-risk-dur = 100 . --- x 10ms = 60 bpm

eq safe-dur = 75 . --- x 10ms = 80 bpm

eq crit-dur = 66 . --- x 10ms = 90 bpm

eq max-risk-dur = 50 . --- x 10ms = 120 bpm
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Requirements 5 and 6 constraining the rate of change can also be easily spec-
ified. We have to consider two cases based on whether the pacing period is
increasing or decreasing.

eq period = 100 . --- x 10ms = 1s

eq risk-dec-max(D) = 2 . --- x 10ms = 20ms

eq risk-inc-max(D) = 3 . --- x 10ms = 30ms ...

ceq del(D, D’) = del-inc-risk(D, D’) if (D <=risk D’) ...

ceq del-inc-risk(D, D’) = D’ if (D - D’ <= risk-inc-max(D)) ...

ceq del-dec-risk(D, D’) = D’ if (D’ - D <= risk-dec-max(D)) ...

Finally, requirements 3 and 4 are a bit more verbose to specify due to the gen-
erality and flexibility of the safe? predicate. Essentially, we have to go through
the log of events to check whether some time duration in the past has violated
safety.

eq max-stress-interval = 6000 . --- x 10ms = 1 min

eq min-relax-interval(T) = 2 * T . ...

eq safe?(E(!stress, C) L) = safe?(L) and

value(C) <= max-stress-interval .

eq safe?(E(!stress, C’’) E(!relax, C) E(!stress, C’) L) =

safe?(E(!stress, C’) L) and

value(C’’) <= max-stress-interval and

value(C) >= min-relax-interval(value(C’)) . ...

ceq norm(E(!stress, C) L) = E(!stress, C) nil if

safe?(E(!stress, C) L) .

In addition to requirements 3 and 4, we also include a definition of a normal-
ization function norm which will throw away all history aside from the current
stress duration if everything is already safe. This makes sense since for the de-
fined pacemaker safety properties, there is no need to keep track of previous
stress durations that the patient has already had sufficient time to recover from.

After safety has been defined for the pacemaker, we can specify how the
internal (wrapped) pacing module behaves in WRAPPED-PACING-MODULE (see [11]
Section 5.5). The core functionality is just to send a pace event whenever the
pacing timer expires.

rl [reset-next-pace] :

< O : Pacing-Module | nextPace : t(0), period : T >

=> < O : Pacing-Module | nextPace : t(T) > pace .

We have defined WRAPPED-PACING-MODULE to satisfy all the sentences in the
theory WRAPPED-OBJECT, so we can now define the view Safe-Pacer (see [11]
Section 5.5) from WRAPPED-OBJECT to WRAPPED-PACING-MODULE which specifies
some renaming of sorts and operators. With a view defined for the pattern’s
input theory, we can finally instantiate the wrapper to an executable system
specification:



170 M. Sun, J. Meseguer, and L. Sha

(tomod PARAM-PACEMAKER is

pr EPR-WRAPPER-EXEC{Safe-Pacer} . ...

eq wrapper-init =

< pacing-module : EPR-Wrapper{Safe-Pacer} |

inside : < pacing-module : Pacing-Module |

nextPace : t(0), period : safe-dur >,

val : safe-dur, next-val : safe-dur, disp : t(period),

stress-intervals : (nil).Event-Log{Stress-Relax} > .

... endtom)

An important thing to notice is that the object ID of the wrapper module
is exactly the same as the internal module being wrapped. This is needed for
modularity and allows the wrapper object to be used anywhere the original
(internal) object can be used, receiving the exact same set of input messages.
The model also includes a set of initial delayed messages msgs-init to simulate
external input and an external environment model extern-init which includes
the pacemaker lead being shocked.

7 Verification of an Instantiation

Our Command Shaper Pattern is provably safe [11], so naturally, all instantia-
tions should satisfy the necessary safety properties. However, since we already
have executable instantiations available for certain medical devices, we can also
use timed search or model checking as an extra level of validation for the correct-
ness of our pattern given certain initial states. However, we cannot say anything
about the completeness of these verification results without some additional re-
quirements on the system specification.

7.1 Verification Completeness for Compositional Nested Systems

In general, Real-Time Maude provides sound but incomplete model checking
for system specifications [7]. That is, any counterexample found will be a real
counterexample, but some real counterexamples may be missed. However, if time
advancement strategies and propositions satisfy the properties of time robustness
and tick invariance (i.e. no important system states are missed due to the time
advancement strategy), then the timed model checking results are sound and
complete [7]. In [7], Theorem 14 provides a simple criterion for verifying that
flat object-oriented specifications are time-robust. However, for many practical
application we have nested or wrapped objects, to which Theorem 14 does not
apply. We provide a proof sketch of a refined time-robust criterion for nested
configurations as a Theorem in [11] which gives sufficient conditions for ensuring
completeness of model checking in configurations with nested objects. In this
section we are concerned with checking the non-reachability of unsafe states.
This can be verified just using timed search, and with time robustness and tick
invariance of the safety property, we are guaranteed not to miss intermediate
states where the safety property may be violated.
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Verifying the Pacemaker. Given the module PARAM-PACEMAKER described in
Section 6.2, we can immediately model check that the safety log of events in the
wrapper satisfies the defined safety properties of the pacemaker using a timed
search.

Maude> (tsearch [1] in PARAM-PACEMAKER : {init} =>*

{C:Configuration

< pacing-module : EPR-Wrapper{Safe-Pacer} |

A:AttributeSet, stress-intervals : L::Stress-Relax-Log >}

such that not safe?(L::Stress-Relax-Log) in time <= 10000 .)

...

No solution

This tells us that the pattern instantiation does indeed perform what it is meant to
do with the given initial state and up to a given time. However, safety is defined for
the patient and not the device, so is patient safety the same as device safety? For
pacemaker operation, patient safety is close to device safety but there may be some
time delays. For example, if the pacemaker’s rate changes between heart beats,
then the patient would not notice it until the next heart beat. Thus, to capture the
actual events affecting the patient, we have created a model of a pacemaker lead
(the bioelectrical element that actually stimulates heart contractions by creating
an activation potential on muscle tissue). In our case, the model of the lead is quite
simple: whenever it receives a !shock event (from the pacing module), it will log
the event. Thus, the model of the lead effectively keeps track of all the heart beats
stimulated by the pacemaker PM-LEAD (see [11] Section 6.2). With a lead model,
it is now necessary to define patient safety in terms of heart beat intervals. These
corresponding safety properties are somewhat more tedious to specify, since we are
at a much lower level of abstraction, but it is still reasonably straightforward.

(omod PM-LEAD-SAFETY-PROP is pr PM-LEAD ...

eq max-period = 100 . --- x 10ms = 60 bpm

eq min-period = 50 . --- x 10ms = 120 bpm

eq crit-period = 66 . --- x 10ms = 90 bpm ...

eq stressed?(T) = T < crit-period ...

eq dec-max = 3 . --- x 10ms = 20ms

eq inc-max = 2 . --- x 10ms = 30ms ...

eq max-stress-dur = 6000 . --- x 10ms = 1 min

eq min-relax-dur(T) = 2 * T . ...

--- periods must be within range ...

eq range-safe?(T) = T >= min-period and T <= max-period .

--- periods cannot change too fast ...

eq log-change-safe?(E E’ L) =

(not stopped?(E) or change-safe?(elapsed(E), elapsed(E’)))

and log-change-safe?(E’ L) ...

--- periods cannot remain stressed too often ...

ceq log-stress-safe?(E L, T, T’) =

log-stress-safe?(L, T, T’ + elapsed(E))

and stress-safe?(T, T’ + elapsed(E))

if stressed?(elapsed(E)) and stopped?(E) ...

endom)
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Now, we can perform model checking using the patient’s safety requirements,
and check that the system indeed still satisfies the true safety requirements.

Maude> (tsearch [1] in PARAM-PACEMAKER : {init} =>*

{C:Configuration < lead : Lead | A:AttributeSet >}

such that not pm-safe?(< lead : Lead | A:AttributeSet >) in time

<= 10000 .

...

No solution

The reason that safety still holds despite delays is because the wrapper pat-
tern implicitly assumed that a delay of at most one period may be required
for actuation (in module WRAPPER-AUX equation inev-stress there is a plus
period in the evaluation of inEv?). In the pacemaker the period was 1 second,
and each heart beat was at most 1 second apart (60 bpm), so the delay in pacing
could not exceed 1 second.

8 Conclusions

In the world of medical device plug-and-play [5], it is essential that any med-
ical devices inside a system adapt to a diverse and varied environment with-
out compromising safety. Throughout this paper we have described in detail a
command-shaper pattern to ensure that certain safety properties hold for a sub-
class of medical devices (including ventilators, infusion pumps, and pacemakers
[11]). For devices that can be partitioned into a set of stressed and relaxed states,
we can provably guarantee the safety requirements for the device state: always
stay in a valid state, always change the devices state based on a bounded rate
of change, and do not remain in stressed states for too long. A main concern of
medical device plug-and-play is that connecting more devices may lead to more
points of failure. We have shown through our pattern that some essential safety
properties can be isolated inside individual devices independent of the network
communication. Thus, by introducing a provably safe medical design pattern,
we are one step closer towards the goal of safe and reliable medical systems.
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9. Ölveczky, P.: Real-Time Maude 2.3 Manual (August 2007)
10. Soundarajan, N., Hallstrom, J.O.: Responsibilities and Rewards: Specifying Design

Patterns. In: ICSE 2004: Proceedings of the 26th International Conference on Soft-
ware Engineering, Washington, DC, USA, pp. 666–675. IEEE Computer Society,
Los Alamitos (2004)

11. Sun, M., Meseguer, J., Sha, L.: A Formal Pattern Architecture for Safe Medical Sys-
tems, https://netfiles.uiuc.edu/musun/www/medical_pattern/techrep.pdf

http://mdpnp.org/uploads/ICE_Part_I_draft_21Dec2008_N30_web.pdf
https://netfiles.uiuc.edu/musun/www/medical_pattern/techrep.pdf


On the Behavioral Semantics of Real-Time
Domain Specific Visual Languages
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Abstract. Domain specific visual languages (DSVLs) are becoming common-
place for specifying systems at a high-level of abstraction, using a notation very
close to the problem domain and quite intuitive for domain experts. Usually,
DSVLs are defined only in terms of their abstract and concrete syntaxes, with
no precise semantics—something that may hamper the use of tools to simulate or
analyze the produced models. In this paper we show how rewriting logic, and in
particular Real-Time Maude, can be effectively used to provide semantics to real-
time DSVLs, and how these Maude specifications can be automatically generated
from the visual specifications. The use of Real-Time Maude provides additional
interesting benefits, such as being able to simulate the DSVL specifications or to
conduct formal analysis on them.

1 Introduction

Domain specific visual languages (DSVLs) are becoming essential elements of Model-
Driven Engineering (MDE). DSVLs are normally defined in terms of their abstract and
concrete syntaxes. The abstract syntax of a DSVL is defined as a metamodel, which de-
scribes the concepts of the language, the relationships between them, and the structuring
rules that constrain the combination of model elements according to the domain rules.
The concrete syntax specifies how the domain concepts included in its metamodel are
represented, and is usually defined as a mapping between the metamodel and a textual
or graphical notation. Explicit and formal specification of model semantics is receiving
more attention recently, since the lack of explicit behavioral semantics strongly hampers
the development of simulation and formal analysis tools. This is particularly important
in certain domains that require rigorous and precise specifications (e.g., safety-critical
real-time and embedded systems).

There are different ways of providing semantics to DSVLs, from operational (inter-
preting the language as sequences of computational steps) to translational approaches
(providing a mapping to another language with precisely defined semantics) [6]. One
way of specifying the dynamic behavior of a DSVL is by describing the evolution of the
modeled artifacts along some time model. This can be done, for instance, using model
transformations supporting in-place update [8].

In this paper we investigate the use of rewriting logic [11], and specifically Real-
Time Maude [13,12], for giving semantics to real-time DSVLs. More precisely, we
give semantics to the DSVLs that can be defined with e-Motions [1], a tool for defining
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the behavior of visual languages. In particular, we present a mapping from these time-
dependent behavioral specifications into Real-Time Maude specifications. The use of
Maude as a target semantic domain brings very interesting benefits, because it enables,
e.g., simulation of the real-time specifications and the conduction of reachability anal-
ysis and model checking.

The expressiveness of Real-Time Maude enables many possible ways of specifying
real-time systems, and selecting the one that best fits our DSVL is not always obvi-
ous; we present here an encoding of the constructs of a real-time DSVL into Real-Time
Maude that aims at allowing the simulation and analysis of specifications. We have
defined a mapping from the e-Motions specifications to the corresponding Real-Time
Maude specifications, that provides the semantics in Maude of any DSVL defined with
e-Motions. Such an automatic mapping has been implemented as a set of ATL [22]
model transformations from the e-Motions metamodel to the Real-Time Maude meta-
model.

After this introduction, Section 2 presents our proposal for defining real-time DSVLs.
Section 3 presents how the language constructs can be represented in Real-Time Maude.
Section 4 describes the current tool support. Finally, Sections 5 and 6, respectively, com-
pares our work with related proposals, and draws some conclusions and outlines some
future research activities.

2 Real-Time DSVLs with e-Motions

Let us introduce a modeling language for mobile phone networks (MPNs), which will
serve as the motivating example to show how we provide semantics to real-time DSVLs.
A more detailed version of this example was originally presented in [15] to illustrate
the use of e-Motions to define real-time DSVLs.

The Structure of the System. The MPN metamodel is shown in Fig. 1 (a). An MPN
has cell phones and antennas. Antennas provide coverage to cell phones, depending
on their relative distance. A cell phone is identified by its number, and can perform
calls to other phones of its contact list. Dialed and received calls are registered. Phone’s
attribute bps represents the battery consumption per time unit. Fig. 1 (b) shows an MPN
example using a visual concrete syntax. This model consists of three cell phones and
one antenna. The position of each element is dictated by its position on a grid. All
phones are initially off, and their contacts are represented by arrows between them.

Dynamic Behavior. The dynamic behavior of the system is described as an in-place
model transformation, which is composed of a set of rules. Each one of these rules rep-
resents a possible action of the system. These rules are of the form l : [NAC]∗×LHS →
RHS, where l is the rule’s label (its name); LHS (left-hand side), RHS (right-hand side),
and NAC (negative application conditions) are model patterns that represent certain
(sub-)states of the system. The LHS and NAC patterns express the precondition for the
rule to be applied, whereas the RHS one represents its postcondition, i.e., the effect of
the corresponding action. Thus, a rule can be applied, i.e., triggered, if an occurrence
(or match) of the LHS is found in the model and none of its NAC patterns occurs.
Generally, if several matches are found, one of them is non-deterministically selected
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Fig. 1. A Mobile Phone Network Model and Metamodel

and applied, producing a new model where the match is substituted by the appropri-
ate instantiation of its RHS pattern (the rule’s realization). The model transformation
proceeds by applying the rules in a non-deterministic order, until none is applicable—
although this behavior can be usually modified by some execution control mechanism
(e.g., Maude’s strategies [9] were used in [18] to control model transformations).

Time-Dependent Behavior. One natural way to model time-dependent behavior quan-
titatively consists in decorating the rules with the time they consume, i.e., by assigning
to each action the time it takes. Thus, we define atomic rules as in-place transformation

rules of the form l : [NAC]∗ × LHS
t→ RHS, where t expresses the duration of the

action modeled by the rule.
As normal in-place transformation rules, an atomic rule can be triggered whenever an

occurrence (or match) of its LHS, and none of its NAC patterns, is found in the model.
Then, the action specified by such rule is scheduled to be realized after t time units.
At that time, the rule is applied by substituting the match by its RHS and performing
the attribute computations. Since actions have now a duration, elements can be then
engaged in several actions at the same time. The triggering of an atomic rule is only
forbidden if another occurrence of the same rule is already being executed with the same
participants. Note that the states of the elements that participate in a timed action may
vary during the action’s time elapse, since the states of the elements may be modified
by other actions. The only condition for the final application of an atomic rule is that
the elements involved are still there; otherwise the action will be aborted. If we want
to make sure that something happens (or does not happen) during the execution of
an action, we can make use of action execution objects to model the corresponding
exceptional behavior (see below).

As first examples, Fig. 2 shows the SwitchOn and BatteryOff atomic rules. When a
phone is off, it can be switched on if it has enough battery (see the condition specified
in the WITH clause). This action takes ten time units. Whenever a phone is on and has
no battery, it is switched off—as modeled by the BatteryOff rule, whose duration is one
time unit.
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Fig. 2. The SwitchOn and BatteryOff atomic rules

Fig. 3. The Coverage atomic rule

We distinguish normal rules, which are triggered as soon as possible, from soft rules,
which are not necessarily triggered immediately, but in a non-deterministic moment
in time in the near future. The SwitchOn action in Fig. 2 is modeled by a soft rule
(notice the soft label in the rule’s header): we allow phones to be switched on at a non-
deterministic moment in time. However, mobile phones must go off as soon as they run
out of battery.

Another essential aspect for modeling time-dependent behavior is periodicity. Ato-
mic rules admit a parameter that specifies an amount of time after which the triggering
of the action is periodically attempted. Normal periodic rules are tried to be triggered at
the beginning of the period, while soft periodic rules can be triggered at any time within
the period (only once per period). Fig. 3 shows the Coverage rule, which specifies
the way in which antenna coverage changes. Coverage is updated every ten time units
(notice the loop icon in the header of the Coverage rule). Each cell phone is covered by
the closest antenna: as specified in its NAC pattern, the rule cannot be applied if there
exists another antenna closer to the phone. To compute the distance between the two
objects, we have the following helper (OCL operation):
c o n t e x t Antenna : : distance (p : Phone ) : I n t e g e r
body : ( s e l f .xPos p . xPos ) .abs ( ) + ( s e l f . yPos p .yPos ) . abs ( )

Helper invocations in LHS and NAC patterns are computed at the triggering of ac-
tions, while helper invocations in RHS patterns are computed in their finalization. Thus,
note that the distance between the antenna and the phone may vary on these two differ-
ent moments of time.

In addition to atomic rules, we also count on rules to model actions that are continu-
ously progressing, perhaps without a specific duration. Think for instance of an action
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Fig. 4. The BatteryConsumption ongoing rule

that models the consumption of a phone battery, whose level decreases continuously
with time. Actions of this kind do not have a specific duration, but are required to be
continuously updated. Ongoing rules model this kind of behavior. They do not have any
a priori duration time: they progress with time while the rule preconditions (LHS and
NACs) hold, or until the time limit (maximal duration) of the action is reached. Note
that rule preconditions act as a kind of invariants for this kind of actions.

For example, Fig. 4 shows the BatteryConsumption ongoing rule, which models
phone battery consumption (note the use of dotted box to distinguish ongoing actions
from atomic ones). According to this rule, the battery power is decreased bps battery
units per time unit. To explicitly identify the state in which a phone runs out of battery,
and not to decrease the battery power below zero, we limit the duration of the rule (see
the expression on the righthand side of symbol≤). Since ongoing actions progress with
time, phones’ battery will always be updated whenever an atomic rule is tried to be
triggered.

Action Executions. In standard in-place transformation approaches, LHS, RHS, and
NAC patterns are defined in terms of system states. This is a strong limitation in those
situations in which we need to refer to actions currently under execution, or to those
that have been executed in the past. For example, we can be interested in knowing
whether an object is currently performing a given action to take some decision, e.g.,
to interrupt the action (e.g., in case an exception occurs), or not to allow the object to
perform another action. In general, the inability of being able to model and deal with
action occurrences hinders the specification of some useful action properties, unless
some unnatural changes are introduced in the system model—such as extending the
system state with information about the actions currently happening.

In order to be able to model both state-based and action-based properties, we propose
extending model patterns with action executions to specify action occurrences. These
action executions represent actions that are currently happening or that were previously
performed (by using the past attribute). Action executions describe the type of the action
(given by the name of the atomic rule that represents the action), its identifier, its starting
and ending time, and the set of objects involved in such an action.

For example, Fig. 5 shows the Call atomic rule, which models the behavior of a
call from a cell phone to one of its contacts. To make a call, both phones must be on
and have coverage. The two NAC patterns forbid the execution of the rule whenever
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Fig. 5. The Call atomic rule

one of the phones is participating in another call (we do not allow call waiting). This
is explicitly described with two action execution elements that specify that phone p1
(or p2, respectively) is participating in a Call action. At the end of the talk, the call is
registered in both phones (as a dialed call in phone p1 and as a received call in phone
p2) including the duration of the call (talkTime) and its starting time (initTime). The
values of talkTime and initTime are computed, as every variable value, when the rule
is triggered. The context of a user-defined variable is the rule in which it is defined.
We assume that a conversation will take 25 time units. The starting time is computed
by using a special kind of object, named clock, that represents the current global time
elapse (using its attribute time). A unique and read-only clock instance is provided by
the system to model time elapse through the underlying platform.

3 The Encoding in Real-Time Maude

In the previous sections, we have introduced the e-Motions language to define
time-dependent behavior of DSVLs in an intuitive and informal manner, by means of
descriptions of its main features in natural language. However, this lack of rigorous def-
initions may lead to imprecisions and misunderstandings that might hinder the proper
usage and analysis of the language. In this section, we provide a precise semantics to
models, metamodel, and this behavioral language by defining how they are represented
in terms of Real-Time Maude constructs.

3.1 Real-Time Maude

Real-Time Maude [13,12] is a rewriting-logic-based specification language and formal
analysis tool that extends the Maude system [7] to support the formal specification
and analysis of real-time systems. Real-Time Maude provides support for symbolic
simulation through timed rewriting, and time-bounded temporal logic model checking
and search for reachability analysis.
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Rewriting logic [11] is a logic of change that can naturally deal with states and non-
deterministic concurrent computations. A rewrite logic theory is a tuple (Σ,E ∪A,R),
where (Σ,E ∪ A) is a membership equational logic [4] theory with Σ its signature,
E a set of conditional equations, A a set of equational axioms such as associativity,
commutativity and identity, so that rewriting is performed modulo A, and R is a set of
labeled conditional rules. In rewriting logic, a distributed system is axiomatized by an
equational theory (Σ,E ∪ A), describing its set of states as an algebraic data type, and
a collection of conditional rewrite rules, specifying its dynamics. Rewrite rules, which
are written:

crl [l ] : t => t ′ if C .

with l the rule label, t and t ′ terms, and C a condition, describe the local, concurrent
transitions that are possible in the system, i.e., when a part of the system state fits the
pattern t , then it can be replaced by the corresponding instantiation of t ′. The guard C
acts as a blocking precondition, in the sense that a conditional rule can only be fired if
its condition is satisfied. The form of conditions is EqC1 /\ ... /\ EqCn where each
of the EqC i is either an ordinary equation t = t ′, a matching equation t := t ′, a sort
constraint t : s, or a term t of sort Bool, abbreviating t = true. In the execution
of a matching equation t := t ′, the variables of the term t , which may not appear
in the lefthand side of the corresponding conditional equation, become instantiated by
matching the term t against the canonical form of the bounded term t ′. See [7] for
further details on Maude.

Real-Time Maude provides a sort Time to model the time domain, which can be
either discrete or dense time (users can also define their own time domains). It also
provides a sort TimeInf to extend the time domain with an infinity value INF. Moreover,
there is a predefined constructor { } of sort GlobalSystem, and an extended form of
rewrite rules, known as tick rules, with syntax:

crl [l ] : {t} => {t ′} in time τ if C .

where τ is a term of sort Time that denotes the duration of the rewrite, and that affects
the global time elapse.

3.2 Encoding Models and Metamodels in Real-Time Maude

The representation of models used here is inspired by the Maude representation of object-
oriented systems [7]. It was first introduced in [20] and further developed in [18,1].
Boronat and Meseguer use a similar representation in [2].

We represent models in Real-Time Maude as structures of sort @Model of the form
mm{obj1 obj2 ... objN }, where mm is the name of its metamodel and obji are
the objects that constitute the model. An object is a record-like structure of the form
< o : c | a1 : v1, ..., an : vn > (of sort @Object), where o is the object identifier (of
sort Oid), c is the class the object belongs to (of sort @Class), and ai : vi are attribute-
value pairs (of sort @StructuralFeatureInstance). Given the appropriate definitions for
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all classes, attributes and references in its corresponding metamodel (see below), the
following Real-Time Maude term describes the MPN model shown in Fig. 1 (b):
op initModel : −> @Model .
eq initModel = MPN_MM {

< ’mpn : MPN | els : Set{ ’a , ’p1 , ’p2 , ’p3} >
< ’a : Antenna | xPos : 100 , yPos : 50 >
< ’p1 : Phone | dialedCalls : OrderedSet [ ] , receivedCalls : OrderedSet [ ] ,

contacts : OrderedSet [ ’p2 ; ’p3 ] , number : 1111 , on : false , battery : 75 ,
coverage : 0 , bps : 1 , xPos : 25 , yPos : 25 >

< ’p2 : Phone | dialedCalls : OrderedSet [ ] , receivedCalls : OrderedSet [ ] ,
contacts : OrderedSet [ ’p1 ; ’p3 ] , number : 2222 , on : false , battery : 75 ,
coverage : 0 , bps : 1 , xPos : 100 , yPos : 100 >

< ’p3 : Phone | dialedCalls : OrderedSet [ ] , receivedCalls : OrderedSet [ ] ,
contacts : OrderedSet [ ’p1 ; ’p2 ] , number : 3333 , on : false , battery : 50 ,
coverage : 0 , bps : 1 , xPos : 175 , yPos : 50 > } .

Note that quoted identifiers are used as object identifiers; references are represented as
object attributes by means of object identifiers; and OCL collections (Set, OrderedSet,
Sequence, and Bag) are supported by means of mOdCL [19].

Metamodels are encoded using a sort for every metamodel element: sort @Class
for classes, sort @Attribute for attributes, sort @Reference for references, etc. Thus, a
metamodel is represented by declaring a constant of the corresponding sort for each
metamodel element. More precisely, each class is represented by a constant of a sort
named after the class. This sort, which will be declared as subsort of @Class, is defined
to support class inheritance through Maude’s order-sorted type structure. The following
Maude specification describes a fragment of the MPN metamodel depicted in Fig. 1 (a):
(mod MPN_MM i s extending ECORE_MM .

op MPN_MM : −> @Metamodel . s o r t Antenna .
op MPN_Pack : −> @Package . s u b s o r t Antenna < PositionedEl .

op Antenna : −> Antenna .
s o r t MPN .
s u b s o r t MPN < @Class . s o r t Phone .
op MPN : −> MPN . s u b s o r t Phone < PositionedEl .
els : −> @Reference . op Phone : −> Phone .

op on : −> @Attribute .
s o r t PositionedEl . op battery : −> @Attribute .
s u b s o r t PositionedEl < @Class . op coverage : −> @Attribute .
op PositionedEl : −> PositionedEl . op number : −> @Attribute .

op xPos : −> @Attribute . op bps : −> @Attribute .
op yPos : −> @Attribute .

. . .
endm )

Other properties of metamodel elements, such as whether a class is abstract or not,
the opposite of a reference (to represent bidirectional associations), or attributes and
reference types, are expressed by means of equations defined over the constant that
represents the corresponding metamodel element. Classes, attributes and references are
qualified with their containers’ names, so that classes with the same name belonging
to different packages, as well as attributes and references of different classes, are dis-
tinguished. These qualifications are omitted here to improve readability. See [18] for
further details.

3.3 Encoding e-Motions Timed Rules in Real-Time Maude

Since tick rules affect the global time, in Real-Time Maude time elapse is usually
modeled by one single tick rule, and the system dynamic behavior by instantaneous
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transitions [13]. This single tick rule models time elapse by using two functions: the
delta function, that defines the effect of time elapse over every model element, and the
mte (maximal time elapse) function, that defines the maximum amount of time that
can elapse before any action is performed. Then, time advances non-deterministically
by any amount T, which must be equal or less than the maximum time elapse of the
system.

var MODEL : @Model . var T : Time .

c r l [tick ] : {MODEL} => {delta (MODEL , T )} in time T i f T <= mte (MODEL ) [nonexec ] .

The delta and mte functions are applied over the whole model. However, we want DSVL
objects to be completely unaware of time. In the same way that DSVL designers de-
scribe the structural aspects of the language (in terms of its metamodel) separately from
its dynamic behavior (defined by means of in-place transformations) we think that time
and action concerns, which are behavioral aspects, should also be defined separately
from the DSVL metamodel, and then added to the specification.

With this goal in mind, we introduce classes whose instances represent time and ac-
tion properties: a Clock instance will represent the current time elapse (time attribute);
and ActionExec objects will gather all the information related to a rule execution and in-
clude a timer to the finalization of the corresponding action. This representation allows
us to: (a) reason about and refer to actions, and (b) define time elapse only over these
special objects, making DSVL objects completely unaware of it (see below). We show
in what follows a more specific encoding of the main features of our approach.

Atomic Rules. Atomic rules can be naturally represented as two Real-Time Maude
instantaneous rules, one modeling its triggering and one modeling its actual realization.

The triggering rule. When a rule’s precondition is satisfied, an AtomicActionExec object
is created. AtomicActionExec objects represent atomic rules’ executions, each one acting
as a countdown (timer attribute) to the finalization of the action. They gather all the
information needed for its instantiation, such as the rule’s name (action attribute), the
identifiers of the elements involved in the action (participants attribute), the starting
time (startingTime attribute), the ending time (endingTime attribute), and the variable
definitions (variables attribute). Initially, the timer is set to the given duration of the rule,
and its ending time is left undefined. For instance, the following Maude rule corresponds
to the encoding of the SwitchOn action’s triggering rule (see Fig. 2):

vars p CLK@ CNT@ ACTEXC@ OR1@ : Oid .
vars p@SFS ACTEXC@@SFS SFS : Set{@StructuralFeatureInstance} .
var OBJSET@ : Set{@Object} . var PHONE : Phone . var @CNT@ : Nat .
vars @TIME@ DURATION@ : Time . var ON@p@ATT : OCL−Type . var MODEL@ : @Model .

c r l [SwitchOn@Triggering] :
MM@ { < p : PHONE | on : ON@p@ATT , p@SFS >

< CLK@ : Clock | time : @TIME@ >
< CNT@ : Counter | value : @CNT@ >
OBJSET@ }

=>
MM@ { < p : PHONE | on : ON@p@ATT , p@SFS >

< CLK@ : Clock | time : @TIME@ >
< CNT@ : Counter | value : (@CNT@ + 2) >
< ACTEXC@ : AtomicActionExec | action : "SwitchOn" , timer : DURATION@ ,

startingTime : @TIME@ , endingTime : undefined ,
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participants : Set{OR1@} , variables : Set{} ) >
< OR1@ : ObjectRole | actualObject : p , role : "p" >
OBJSET@ }

i f MODEL@ := MM@ { < p : PHONE | on : ON@p@ATT , p@SFS >
< CLK@ : Clock | time : @TIME@ >
< CNT@ : Counter | value : @CNT@ >
OBJSET@ }

/\ not currentExec@SwitchOn(Set{p} , MODEL@ )
/\ eval (p . battery > 10 ∗ p . bps , empty , MODEL@ )
/\ ACTEXC@ := newId (@CNT@ )
/\ OR1@ := newId (@CNT@ + 1)
/\ ON@p@ATT = eval (false , ctx (self , p ) , MODEL@ )
/\ DURATION@ := toRat (eval ( 1 0 , empty , MODEL@ ) ) .

Note the use of the MODEL@ variable matched in the condition of the rule to avoid
repeating the configuration in the righthand side of the rule. In the rules below, we will
write dots to abbreviate their presentations.

Objects of transformation rules’ LHS patterns are encoded as Real-Time Maude ob-
jects placed in the left-hand side of the Real-Time Maude rule; they are also included
in the right-hand side so that they remain as such. LHS conditions and attribute-value
pairs are encoded as rule conditions, which are computed by the mOdCL’s eval opera-
tion [19]. The arguments of the eval operation are an OCL expression, a context, and the
model in which such OCL expression is to be evaluated. The Clock object is included
to set the starting time of the ActionExec element ACTEXC@ that represents the rule
execution. The Counter object is included to compute the identifiers of the new created
objects with different natural numbers (see the newId operation). ObjectRole elements
represent the participants of the rule execution (with their corresponding roles). Addi-
tionally, the currentExec@SwitchOn operation is included to forbid the triggering of the
rule whenever another occurrence of the same rule is already being executed with the
same set of participants. This operation checks the existence of an AtomicActionExec
object that refers to the rule (SwitchOn) with the same participants (Set{p}) and with an
undefined endingTime in the model (@MODEL). Although there is no NAC patterns in
this case, they are encoded as invocations to predicates in the corresponding rule con-
dition that check whether occurrences of the specified patterns are found in the model.

The realization rule. Once an action’s timer is consumed (i.e., there is an AtomicAc-
tionExec object whose timer attribute’s value is 0) the corresponding action can be per-
formed if none of the action’s participants has been deleted. Then, the matching of
the LHS is substituted by the corresponding instantiation of the RHS and the attribute
values are computed. To keep track of the performed actions, the AtomicActionExec ob-
jects are not deleted and their ending times are set. The realization rule of the SwitchOn
action is as follows:
r l [SwitchOn@Realization] :
MM@ { < p PHONE | on : ON@p@ATT , p@SFS >

< ACTEXC@ : AtomicActionExec | action : "SwitchOn" ,endingTime : undefined ,
timer : 0 , participants : Set{OR1@} , variables : Set{} , ACTEXC@@SFS >

< OR1@ : ObjectRole | actualObject : p , role : "p" >
< CLK@ : Clock | time : @TIME@ >
< CNT@ : Counter | value : @CNT@ >
OBJSET@ }

=>
readjust (Set{} , mt−ord ,
MM@{ < p : PHONE | on : eval (true , ctx (self , p ) , MODEL@ ) , p@SFS >

< ACTEXC@ : AtomicActionExec | action : "SwitchOn" , endingTime : @TIME@ ,
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timer : 0 , participants : Set{OR1@} , variables : Set{} , ACTEXC@@SFS >
< OR1@ : ObjectRole | actualObject : p , role : "p" >
< CLK@ : Clock | time : @TIME@ >
< CNT@ : Counter | value : @CNT@ >
OBJSET@ }) .

Attribute-value pairs in RHS patterns are encoded as computations in the right-hand
side of the rule. The readjust operation deletes objects (first parameter) and links (sec-
ond parameter) that are specified in the in-place rule to be deleted (an empty set and an
empty list in this case, respectively). It also deletes contained objects, dangling refer-
ences, and current action executions of this set of deleted objects.1

Ongoing rules. Ongoing rules are typically used to model actions that progress with
time, and their realization will then depend on the time elapsed. Since the delta function
defines the effect of time on the model objects, and because of the form of the tick rule,
that makes the time elapse to be computed in the mte function before the delta function
is applied, we encode the realization of the ongoing rules into the delta function itself.
The values required for the calculations in the mte function are provided by correspond-
ing OngoingActionExec objects created in instantaneous rules fired at the beginning of
the action.

The initial instantaneous rule. These are encoded as the triggering rules of atomic ac-
tions. When the rule precondition is satisfied, an OngoingActionExec object is created,
indicating that the corresponding ongoing rule can be executed at that moment of time.
It also gathers information about its instantiation, including a new timer that represents
a countdown to the rule’s upper bound (upperBoundTimer attribute), and the OCL ex-
pression that represents the maximal duration (maxDuration attribute). As an example,
the following Real-Time Maude specification corresponds to the encoding of the Bat-
teryConsumption action’s instantaneous rule (see Fig. 4):

c r l [BatteryConsumption@Triggering] :
MM@ { < p : PHONE | on : ON@p@ATT , p@SFS >

< CLK@ : Clock | time : @CLK@ >
< CNT@ : Counter | value : @CNT@ >
OBJSET@ }

=>
MM@ { < p : PHONE | on : ON@p@ATT , p@SFS >

< CLK@ : Clock | time : @TIME@ >
< CNT@ : Counter | value : (@CNT@ + 2) >
< ACTEXC@ : OngoingActionExec | action : "BatteryConsumption" ,

maxDuration : freeze (p . battery / p . bps ) , variables : Set{} ,
startingTime : @TIME@ , endingTime : undefined ,
participants : Set{OR1@} , upperBoundTimer : undefined >

< OR1@ : ObjectRole | actualObject : p , role : "p" >
OBJSET@ }

i f MODEL@ := MM@ { < p : PHONE | on : ON , p@SFS > . . . OBJSET@ }
/\ not currentExec@BatteryConsumption(Set{p} , MODEL@ )
/\ ACTEXC@ := newId (@CNT@ )
/\ OR1@ := newId (@CNT@ + 1)
/\ ON@p@ATT := eval (true , ctx (self , p ) , MODEL@ ) .

1 Note that dangling references are only deleted with the spo formalization, since dpo forbids the
application of rules (by means of rule conditions) that may result in dangling references [16].
Both spo and dpo formalizations are available in e-Motions as alternative options.
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Ongoing rules’ maximal duration expressions are not evaluated in their triggering
rules: they are frozen (i.e., maintained with the freeze operation) to be later computed
in the mte function to get the real values at that moment of time. Furthermore, in this
case the upperBoundTimer attribute is set to undefined, since the BatteryConsumption
rule’s upper bound is not specified.

Finally, note that Real-Time Maude rules are applied in a non-deterministic order.
Therefore, the realization rule of an atomic action can be applied, e.g., after the exe-
cution of the triggering rule of an ongoing action. This application can make an On-
goingActionExec object to represent an invalid action execution: since the state of the
system may change from the moment of the generation of an OngoingActionExec ob-
ject to the moment in which the ongoing action is in fact realized (the moment in which
the delta operation is applied), the precondition of the action that represent the Ongoin-
gActionExec object may be violated. These invalid OngoingActionExec objects will be
removed from the specifications, as we shall see below.

The applyOngoingRules operator. In the following time elapse, the delta equation calls
the applyOngoingRules function. One applyOngoingRules equation is added per ongo-
ing rule. This equation substitutes the LHS matching by its RHS, if applicable, and sets
the OngoingActionExec object’s ending time and maximal duration, which has already
been computed by the mte function.
var BATTERY@p@ATT MAXDURATION@ : OCL−Exp .

op applyOngoingRules : @Model TimeInf −> @Model .
ceq applyOngoingRules (

MM@ {< p : PHONE | on : ON@p@ATT , battery : BATTERY@p@ATT , p@SFS >
< ACTEXC@ : OngoingActionExec | action : "BatteryConsumption" ,

endingTime : undefined , participants : Set{OR1@} , variables : Set{} ,
maxDuration : freeze (MAXDURATION@ ) , ACTEXC@@SFS >

< OR1@ : ObjectRole | actualObject : p , role : "p" >
< CLK@ : Clock | time : @TIME@ >
< CNT@ : Counter | value : @CNT@ >
OBJSET@ } ,

T )
= applyOngoingRules (

readjust (Set{} , mt−ord ,
MM@ { < p : PHONE | on : ON@p@ATT , battery :

eval (p . battery − T ∗ p . bps , ctx (self , p ) , MODEL@ ) , p@SFS >
< ACTEXC@ : OngoingActionExec | action : "BatteryConsumption" ,

maxDuration : eval (MAXDURATION@ , empty , MODEL@ ) ,
variables : Set{} , participants : Set{OR1@} ,
endingTime : (@TIME@ plus T ) , ACTEXC@@SFS >

< OR1@ : ObjectRole | actualObject : p , role : "p" >
< CLK@ : Clock | time : @TIME@ >
< CNT@ : Counter | value : @CNT@ >
OBJSET@ }) ,

T )
i f MODEL@ := MM@ { . . . OBJSET@ }
/\ ON@p@ATT := eval (true , ctx (self , p ) , MODEL@ ) .

--- Remaining applyOngoingRules equations ...
eq applyOngoingRules (MODEL@ , T ) = deleteOngoingActionExecs(MODEL ) [owise ] .

The applyOngoingRules operation is recursively called until every possible execu-
tion of an ongoing action is realized, and therefore the endingTime of the OngoingAc-
tionExec objects that represent them set. Remaining OngoingActionExec objects with an
undefined endingTime represent current invalid actions, i.e., actions that cannot be per-
formed in that moment of time. These invalid applyOngoingRules objects are deleted in
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the owise equation. This operation needs the current time elapse T, which is provided
by the delta operation: (a) to set the rule’s ending time, and (b) to perform the attribute
computations. Attributes in this kind of actions typically depend on such time elapse.
See for instance the battery attribute computation that progresses with time T by means
of the expression (p . battery - T * p . bps).

Time elapse. As previously mentioned, time elapse is modeled by using the delta and
mte functions. Both functions need to be defined only over time-dependent elements,
namely the Clock instance, and AtomicActionExec and OngoingActionExec objects.

The delta function applies ongoing actions (with the applyOngoingRules auxiliary
operation), and then decreases AtomicActionExec timers and increases the clock value.
The DSVL objects remain unchanged.
vars T T ’ : Time . vars OBJECT OBJECT ’ : @Object .

op delta : @Model Time −> @Model [frozen ] .
op deltaAux : @Model Time −> @Model [frozen ] .
op delta : Set{@Object} Time −> Set{@Object} [frozen ] .
eq delta (MODEL@ , T ) = deltaAux (applyOngoingRules(MODEL@ , T ) , T ) .
eq deltaAux (MM@ { OBJSET@ } , T ) = MM { delta (OBJSET@ , T ) } .
eq delta(< O : AtomicActionExec | timer : T ’ , SFS > OBJSET@ , T )

= < O : AtomicActionExec | timer : (T ’ monus T ) , SFS > delta (OBJSET@ , T ) .
eq delta(< O : Clock | time : T ’ , SFS > OBJSET@ , T )

= < O : Clock | time : (T ’ plus T ) , SFS > delta (OBJSET@ , T ) .
eq delta (OBJSET@ , T ) = OBJSET@ [owise ] .

Note the use of the owise attribute: we act on time-dependent elements and we leave
the rest unaffected. Note as well that the frozen attribute guarantees that no rule is
applied on any of the arguments of a delta function.

The mte function is defined as the minimum of (a) timer values of current AtomicAc-
tionExec objects, (b) maxDuration and upperBoundTimer values of current OngoingAc-
tionExec objects, and (c) the difference between the following beginning of rule period
or lower bound and the current time elapse. We make sure that time does not pass if
something can happen by adding an extra mte equation for every (non-soft) atomic
rule. This equation forbids time to elapse (mte = 0) whenever the rule can be applied
and it has not been so. Note the use of the owise attribute.
var OCLEXP : OCL−Exp .

op mte : @Model −> TimeInf [frozen ] .
op mteAux : @Model @Model −> TimeInf [frozen ] .
---- (mte = 0) equation of the SwitchOn rule
ceq mte ( MM@ { < p : PHONE | on : ON@p@ATT , p@SFS >

< CLK@ : Clock | time : @TIME@ >
< CNT@ : Counter | value : CNT@ >
OBJSET@ })

= 0
i f MODEL@ := MM@ { < p : PHONE | on : ON@p@ATT , p@SFS > . . . OBJSET@ }
/\ ON@p@ATT := eval (false , (ctx (self , p ) ) , MODEL@ )
/\ eval (p . battery > 10 ∗ p . bps , empty , MODEL@ )
/\ not currentExec@SwitchOn(Set{p} , MODEL@ ) .

---- Remaining (mte = 0) equations ...
eq mte (MODEL@ ) = mteAux (MODEL@ , MODEL@ ) [owise ] .
eq mteAux (MM@ { < O : AtomicActionExec | timer : T ,

endingTime : undefined , SFS ) > OBJSET@ } , MODEL@ )
= minimum (T , mteAux (MM@ { OBJSET@ } , MODEL@ ) ) .

eq mteAux (MM@ { < O : OngoingActionExec | maxDuration : freeze (OCLEXP ) ,
endingTime : undefined , upperBoundTimer : T ’ , SFS > OBJSET@ } ,

MODEL@ )
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= minimum (toRat (eval (OCLEXP , empty , MODEL@ ) ) ,
minimum (T ’ , mteAux (MM@ { OBJSET@ } , MODEL@ ) ) ) .

eq mteAux (MM@ { < O : Clock | time : T > OBJSET@ } , MODEL@ )
= minimum (minimum (nextLowerBound (T , rulesInformation ) ,

nextPeriod (T , rulesInformation ) ) monus T ,
mteAux (MM@ { OBJSET@ } , MODEL@ ) ) .

eq mteAux (MODEL@ , MODEL@ ’ ) = INF [owise ] .

The rulesInformation constant is defined as a model that gathers all the rule proper-
ties, such as their periodicity and lower and upper lower bounds. Operations nextPeriod
and nextLowerBound make use of it to compute the following beginning of rule’s pe-
riod and lower bound, forcing time to stop in these moments in time. In this way, we
allow periodic and time-bounded rules to be applied in their corresponding interval and
period, respectively. Additionally, the triggering rules of actions of these kinds will also
include conditions to forbid several applications of the same rule with the same partici-
pants in the same period (in case of periodic rules) or to be triggered out of its interval
of time (in case of time-bounded rules).

Analysis and Simulation. Once the specification of our system is encoded in Real-
Time Maude, what we get is a rewriting logic specification of such a system. Since the
rewriting logic specification produced is executable, this specification can be used as a
prototype of the system, which allows us to simulate and analyze it.

Our model encoding enables, e.g., the use of Real-Time Maude’s model simulation,
reachability analysis and model checking tools. These tools are the timed versions of
Maude’s rewriting, search, and model-checking commands (see, e.g., [16,12,18] for
examples of the kinds of analyses that can be accomplished on Real-Time Maude and
on models and metamodels like the ones considered here). In particular, they extend
them to consider the non-deterministic time advance, and to allow to, e.g., include time
bounds in the analysis and simulation.

For instance, the Real-Time Maude tsearch command allows us to explore (follow-
ing a breadth-first strategy up to a specified bound) the reachable state space in a cer-
tain time interval from an initial model. This command is useful, e.g., to check safety
properties. For example, given variables O of sort Oid, BAT of sort Int, SFS of sort
Set{@StructuralFeatureInstance} and OBJSET of sort Set{@Object}, we can check
whether, starting from initModel (the model depicted in Fig. 1 (b)), the battery power of
any cell phone is decreased below zero:

( t s e a r c h {initModel} =>∗ {MPN_MM { < O : Phone | battery : BAT , SFS > OBJSET }}
such t h a t BAT < 0 in time < 200 . )

No solution .

Although all phones will probably run out of battery before 200 time units, since
there is a periodic action the system can run for ever if we do not bound the search.
Since no solutions are found, we can state that (starting from initModel, and in 100 time
units) the battery power of the phones are never decreased below zero.

We refer the interested reader to [13,12] for details on Real-Time Maude analysis
tools, and to [15,18] for examples of use on models as the ones presented here.
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4 Tool Support

The representation of the e-Motions behavioral specifications in Real-Time Maude pro-
vide their precise semantics. However, it is unrealistic to think that average system
modelers will write such Real-Time Maude specifications. What we have defined is a
mapping between the e-Motions and the Real-Time Maude metamodels (i.e., a semantic
mapping between these two semantic domains) that realizes the automatic generation of
the Real-Time Maude specifications corresponding to a DSVL defined with e-Motions.

Such mapping to Real-Time Maude has been defined and implemented by means of
a set of ATL [22] transformations. In particular, we have specified three model trans-
formations to encode (EMF) models, (EMF) metamodels, and Behavior models (con-
forming to the e-Motions Behavior metamodel [15]). For this purpose, we adapted the
metamodel of Maude in [14] to cover Real-Time Maude specifications. The tool and
the ATL transformations can be downloaded from the e-Motions website [1].

At this moment, the simulation and analysis of the DSVL models needs to be per-
formed in the Real-Time Maude environment. We are currently working on the inte-
gration of Real-Time Maude analysis tools into the e-Motions environment, so that a
system modeler can perform the simulation and formal analysis of the visual models
inside such environment.

5 Related Work

Maude has already been proposed as a formal notation and environment for specifying
and effectively analyzing models and metamodels [20,17,2]. Simulation, reachability
and model-checking analysis are then possible on the models using the tools and tech-
niques provided by Maude. In [16] we showed how Maude is also suitable as a semantic
domain for standard in-place rules, formalizing graph transformations using rewriting
logic. In this paper we have shown how Real-Time Maude can provide a target seman-
tic domain for providing semantics to real-time domain specific visual languages whose
behavior is expressed in terms of in-place rules extended with time properties.

There are several approaches that propose in-place model transformations to deal
with the behavior of DSVLs, from textual to graphical. Furthermore, several formaliza-
tions of graph transformation to perform different kinds of system analysis have been
proposed (see [16] for a discussion on these topics). However, none of them includes a
quantitative model of time. When time is needed, it is usually modeled in an intrusive
way, by adding clocks or timers to the DSVL metamodel. This is, for example, the ap-
proach followed in [10], where graph transformation systems are provided with a model
of time by representing logical clocks as a special kind of node attributes.

Syriani and Vangheluwe propose in [21] to complement graph grammar rules with
the Discrete EVent system Specification (DEVS) formalism to model time-dependent
behavior. Although it allows modular designs, this approach requires specialized knowl-
edge and expertise on the DEVS formalism. Furthermore, they do not provide analysis
capabilities: system evaluation is accomplished through simulation.

Real-Time Fujaba [5] aims at supporting the model-driven development of correct
software for safety-critical, networked, real-time systems. A restricted UML model



On the Behavioral Semantics of Real-Time DSVLs 189

serves as the basis for model checking. The tool supports the modeling of the sys-
tem structure by means of UML component diagrams, and the modeling of real-time
behavior by means of real-time extended UML state machines.

Boronat and Ölveczky have recently proposed in [3] a collection of built-in timed
constructs for defining the timed behavior of model-based systems that are specified
with in-place model transformations. These timed constructs can be added to the DSVL
metamodel itself, or separately defined in another metamodel (in a non-intrusive way).
They also formalize in-place model transformations into Real-Time Maude. In fact,
the model of time they use can be considered as a straightforward translation from the
Real-Time Maude model of time: opposite to our approach, in which in-place rules
are extended with time-related constructs and then transparently encoded in Real-Time
Maude with timer objects, they propose handling these timers directly in the model
transformation.

6 Conclusions and Future Work

In a previous work [15] we showed how some timed behavioral specifications can be
supported, extending in-place rules with a quantitative model of time and with mech-
anisms that allow designers to state action properties, easing the design of real-time
complex systems. In this paper we have shown how it is possible to provide a formal
semantics to our visual notation, using a mapping from this timed-dependent behavioral
specifications to Real-Time Maude specifications. We are then able to perform the same
kind of analysis we were able to perform for time-unaware systems [18,20]. Such an
encoding in Maude can be useful to other DSVLs, which can make use of it by sim-
ply providing model transformations from their models to it. This mapping will help
providing these languages with precise semantics, and also gaining access to Maude’s
formal environment.

We are currently working on further extensions of our graphical tool to automate the
interaction with Real-Time Maude and its analysis tools using the native visual notation
of the DSVL. This will make the use of Real-Time Maude completely transparent to
users.
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13. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. Higher-Order
and Symbolic Computation 20(1-2), 161–196 (2007)

14. Rivera, J.E., Durán, F., Vallecillo, A.: A metamodel for maude. Technical report, University
of Málaga (2008), http://atenea.lcc.uma.es/images/e/e0/MaudeMM.pdf

15. Rivera, J.E., Durán, F., Vallecillo, A.: A graphical approach for modeling time-dependent
behavior of DSLs. In: Proc. of VL/HCC 2009. IEEE Computer Society, Los Alamitos (2009)

16. Rivera, J.E., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing rule-based behavioral semantics
of visual modeling languages with Maude. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.)
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Universidad Complutense de Madrid

fernandorosa@sip.ucm.es

Abstract. We revise multiset rewriting with name binding, by combin-
ing the two main existing approaches to the study of concurrency by
means of multiset rewriting: multiset rewriting with existential quantifi-
cation and constrained multiset rewriting. We obtain ν-MSRs, where we
rewrite multisets of atomic formulae, in which some names may be re-
stricted. We prove that ν-MSRs are equivalent to a class of Petri nets in
which tokens are tuples of pure names, called pν-APNs. Then we encode
π-calculus processes into ν-MSRs in a very direct way, that preserves
the topology of bound names, by using the concept of derivatives of a π-
calculus process. Finally, we discuss how the recent results on decidable
subclasses of the π-calculus are independent of the particular reaction
rule of the π-calculus, so that they can be obtained in the more general
framework of ν-MSRs. Thus, those results carry over not only to the
π-calculus, but to any other formalism that can be encoded within it, as
pν-APNs.

1 Introduction

Dynamic name generation has been thoroughly studied in the last decade, mainly
in the field of security [9,1] and mobility [16]. The paper [9] presents a meta-
notation for the specification and analysis of security protocols. This meta-
notation involves facts and transitions, where facts are first-order atomic
formulae and transitions are given by means of rewriting rules, with a precondi-
tion and a postcondition. For instance, the rule

A0(k), Ann(k′) → ∃x.(A1(k, x), N(enc(k′, 〈x, k〉)), Ann(k′))

specifies the first rule of the Needham-Schroeder protocol, in which a principal
A with key k (A0(k)) decides to talk to another principal, with a key k′ that
has been announced (Ann(k′)), for which it creates a nonce x and sends to
the network the pair 〈x, k〉 ciphered under k′. This notation gave rise to the
specification language for security protocols MSR [8].
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In [12] Constraint Multiset Rewriting Systems (CMRS) are defined. As in [9],
facts are first-order atomic formulae, but the terms that can appear as part
of such formulae must belong to a constraint system. For instance, the rule
count(x), visit → count(x + 1), enter(x + 1) could be used to count the number
of visits to a web site. For a comprehensive survey of CMRS see [13]. In CMRS,
there is no mechanism for name binding or name creation, so that it has to be
simulated using the order in the constraint system (for instance, simulating the
creation of a fresh name by taking a value greater than any of the values that
have appeared so far). Thus, in an unordered version of CMRS, in which only
the equality predicate between atoms is used, there is no way of ensuring that a
name is fresh.

It is our goal in this paper to find a minimal set of primitives that allow us
to specify concurrent formalisms with name binding. This specification may be
achieved by means of some encoding, provided this encoding preserves concur-
rency and name topology. Let us remark that our goal is therefore different to
the one expressed in [18]:

The goal (...) is to express as faithfully as possible a very wide range of
concurrency models, each on its own terms,

avoiding any encodings or translations.

We combine the features of the meta-notation in [9] and CMRS, obtaining
ν-MSRs. On the one hand, we maintain the existential quantifications in [9] to
keep a compositional approach, closer to that followed in process algebra with
name binding. On the other hand, we restrict terms in atomic formulae to be
pure names, that can only be compared with equality or inequality, unlike the
arbitrary terms over some syntax, as in [9], or terms in a constraint system, as
in CMRS.

The formalism obtained can be seen as a particular instance of the Chemical
Abstract Machine [4], in which a configuration is given by a multiset of molecules,
atomic formulae in our case. In the terminology of [4], the heating reactions in
ν-MSRs are given by a structural congruence that, essentially, deals with name
binding, as is usual in process algebras with name binding.

Two of the most well established models for concurrency are Petri nets and
process algebra. The π-calculus is the paradigmatic example of process algebra
with name binding. Names in the π-calculus can be used to build a dynamic
communication topology. To our knowledge, the only approach to dynamic name
generation in the field of Petri nets are the ν-APNs [23] and Data Nets [17]. In
ν-APNs, tokens are pure names that can move along the places of the net,
be used to restrict the firing of transitions to happen only when some names
match, and be created fresh. ν-APNs are Well Structured Transition Systems
(WSTS) [25,14], but pν-APNs, its polyadic version, in which tokens are tuples
of pure names, are not. Actually, pν-APNs are Turing-complete [24], even if
restricted to the binary case, in which tokens are just pairs of names. In Data
Nets, tokens are taken from a linearly ordered and dense domain, and whole-
place operations (like transfers or resets) are allowed. However, in Data Nets
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(which are also WSTS), fresh name creation has to be simulated using the linear
order, as happens in CMRS. Actually, the paper [2] proves that CMRS and Data
Nets are equivalent, even if the former cannot perform whole-place operations
(using a language-based comparison, where the criterion for accepting words is
a coverability one, instead of the more standard reachability criterion).

We will first prove that ν-MSRs are equivalent to pν-APNs. We will see that
this equivalence is a rather strong one (isomorphism between the transitions sys-
tems). As an immediate consequence, we obtain Turing-completeness of ν-MSRs.
Moreover, the subclass of monadic ν-MSRs, that are equivalent to ν-APNs, are
WSTS, so that coverability, boundedness and termination are decidable for them.

Next, we will see that processes of the π-calculus can be simulated, in a very
natural way, by ν-MSRs. This translation is inspired by the results by Meyer
about structural stationary π-calculus processes, that can be mapped to P/T
nets [21].

The search for a subclass of the π-calculus in which some interesting proper-
ties (like reachability or termination) that are undecidable in the general model
become decidable, is an active field of research [5,21,20,22,3]. Usually, decidabil-
ity of such properties is achieved by mapping the considered subclass to Petri
Nets, or some extension of Petri nets. Most of the restrictions considered in the
π-calculus, are restrictions on the dynamic topology of names in all reachable
markings. We claim that these properties are independent of the particular re-
action rule of the π-calculus, so that they can be specified in ν-MSRs, obtaining
the analogous results in a more general framework. Therefore, those results carry
over to other formalisms that can be encoded within ν-MSR, as pν-APNs. As
an example, depth-boundedness in π-calculus processes (boundedness of the in-
terdependence of names) can also be defined for ν-MSR terms. Moreover, the
proof of Well Structuredness of depth-bounded processes carries over to depth-
bounded ν-MSR terms so that, as a corollary, we know that depth-bounded
pν-APNs are also WSTS.

The rest of the paper is organized as follows. Section 2 defines ν-MSRs. In
Section 3 the equivalence between ν-MSRs and pν-APNs is proved. Section 4
presents the encoding of π-calculus terms within ν-MSR. In Section 5 we briefly
show how ν-MSRs can be specified using Maude in a straightforward manner.
Finally, Section 6 presents our conclusions and some directions for future work.

2 ν-MSRs

We fix a finite set of predicate symbols P , a denumerable set Id of names and a
denumerable set Var of variables. We use a, b, c, . . . to range over Id , x, y, . . . to
range over Var , and η, η′ . . . to range over Id ∪ Var .

An atomic formula over P and Var has the form p(η1, . . . , ηn), where p ∈ P
and ηi ∈ Var ∪ Id for all i. A ground atomic formula has the form p(a1, . . . , an),
where p ∈ P and ai ∈ Id for all i. We use X, Y, . . . to range over atomic formulae
and A, B, . . . to range over atomic ground formulae. We denote by Var(X) and
Id(X) the set of variables and names appearing in X , respectively. We will write
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x̃ and ã to denote finite sequences of variables and names, respectively, so that we
will sometimes write p(x̃) or p(ã). Moreover, we will sometimes use set notation
with these sequences and write, for instance, x ∈ x̃ or x̃1 ∪ x̃2.

Definition 1. A ν-MSR term is given by the following grammar:

M ::= 0 � A � M1 + M2 � νa.M

We denote by M the set of ν-MSR terms, and use M , M ′, M1, . . . to range over
M. We define fn : M→ P(Var) as fn(0) = ∅, fn(A) = Id(A), fn(M1 +M2) =
fn(M1) ∪ fn(M2), and fn(νa.M) = fn(M) \ {a}.

Definition 2. A rule t is an expression of the form

t : X1 + . . . + Xn → νã.(Y1 + . . . + Ym)

such that if x ∈ Var(Yj) for some j then x ∈ Var(Xi) for some i. A ν-MSR is
a tuple 〈R, M0〉, where M0 is the initial ν-MSR term and R is a finite set of
rules.

In examples, we will use commas instead of the symbol +. For instance, we
will write p(x, y), q(y, y) → νa.q(x, a) instead of p(x, y) + q(y, y) → νa.q(x, a).
For a rule t : X1, . . . , Xn → νã.(Y1, . . . , Ym) we write pre(t) =

⋃n
i=1 Var(Xi),

post(t) =
⋃m

j=1 Var(Ym), and Var(t) = pre(t) ∪ post(t). With these notations,
every rule t satisfies post(t) ⊆ pre(t).

We will identify ν-MSR terms up to ≡, defined as the least congruence on
M where α-conversion of bound names is allowed, such that (M, +,0) is a
commutative monoid and:

νa.νb.M ≡ νb.νa.M νa.0 ≡ 0

νa.(M1 + M2) ≡ νa.M1 + M2 if a /∈ fn(M2)

The first rule justifies our notation νã.M . The last rule is usually called name
extrusion when applied from right to left. A mode for t : X1 + . . . + Xn →
νã.(Y1 + . . . + Ym) is any substitution σ : Var(t) → Id . We use the term mode
for analogy with the modes in high level Petri nets, since a rewrite rule can
be applied in different modes. We write pret(σ) = σ(X1) + . . . + σ(Xn), where
σ(p(η1, . . . , ηn)) = p(a1, . . . , an), with ai = σ(ηi) if ηi ∈ Var , or ai = ηi if
ηi ∈ Id .

In order to define the analogous post t(σ), and to avoid capturing free names,
we consider a sequence of pairwise different names b̃ (of the same length as ã)
such that σ(Var (t)) ∩ b̃ = ∅. Then, we take σ′ = σ ◦ {ã/b̃} and post t(σ) =
νb̃.(σ′(Y1) + . . . + σ′(Ym)), where {ã/b̃} denotes the simultaneous substitution
of each ai ∈ ã by the corresponding bi ∈ b̃. Let us define the transition system
(M,→, M0), where → is the least relation such that:

(t)
σ mode for t

pret(σ) → post t(σ)
M1 ≡ M ′

1 → M ′
2 ≡ M2

M1 → M2
(≡)
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(+)
M1 → M2

M1 + M → M2 + M

M1 → M2

νa.M1 → νa.M2
(ν)

Rules (+) and (ν) state that transitions can happen inside a sum or inside a
restriction, respectively. Rule (≡) is also standard, and formalizes that we are
rewriting terms modulo ≡. Then we have a rule schema (t) for each t ∈ R.
For instance, let t : p(x), q(x) → νb.p(b) be a rule in R. Then the rewriting
p(a), q(a) → νb.p(b) can take place by taking σ(x) = a, which satisfies the
conditions for modes and pret(σ) = p(a), q(a) and post t(σ) = νb.p(b). Consider
now the term p(b), q(b). In order to apply the previous rule, one must necessarily
consider the mode given by σ(x) = b, that does not satisfy σ(Var(t)) ∩ {b} = ∅.
Therefore, we need to first rename b in the right handside of the rule, obtaining
(e.g. if we replace b by a) νa.p(a).

As in the π-calculus, we can consider several normal forms, that force a certain
rearrangement of bound names.

Definition 3. A term M is in standard normal form if there is a set of names
ã and atomic formulae A1, . . . , An such that M = νã.(A1 + . . . + An).

Clearly, every term is equivalent to some term in standard form. To obtain it, it
is enough to apply the extrusion rule (from right to left) as much as necessary.
The standard form is unique up to commutativity and associativity of +, and
α-conversion and commutativity of the names in ã. Moreover, we can prove the
following result, that relates the transition relation with the standard normal
form.

Proposition 1. M1 → M2 iff Mi ≡ νãi.(Ai
1 + . . . + Ai

ni
+ M) for i = 1, 2, and

there is t : X1
1 + . . .+ X1

n1
→ νã.(X2

1 + . . .+ X2
n2

) in R, σ mode for t and b̃ with
σ(Var(t)) ∩ b̃ = ∅ such that σ(X1

j ) = A1
j , σ(X2

j ){ã/b̃} = A2
j and ã1  b̃ = ã2.

Proof. We prove the if implication by induction on the rules proving M1 → M2.
– If M1 = pret(σ) and M2 = post t(σ) for some rule t and some mode σ for t,

then trivially both M1 and M2 are in standard form, and ã1 = ∅ and ã2 = b̃,
so that clearly ã1  b̃ = ã2.

– Let Mi = M ′+M ′
i with M ′

1 → M ′
2, so that by the induction hypothesis, M ′

i ≡
νãi.(Ai

1 + . . .+Ai
ni

+M) and ã1 b̃ = ã2. We assume fn(M ′)∩ ãi = ∅, or we
rename the names in ãi that are free in M , obtaining a term that is equivalent
modulo ≡. Let M ≡ c̃.M ′′ in standard form. As before, we can assume that
ãi∩ c̃ = ∅. Then, Mi = M ′

i +M ′ ≡ νãi.(Ai
1 + . . .+Ai

ni
+M)+ νc̃.M ′′, which

by the extrusion rule is equivalent to νãi, c̃.(Ai
1 + . . . + Ai

ni
+ M + M ′′).

Moreover, ã2  c̃ = ã1  b̃  c̃.
– The cases for (ν) and (≡) are straightforward.

Conversely, A1
1 + . . .+Ai

n1
→ νb̃.(A2

1 + . . .+A2
n2

) holds by rule (t). Rules (+) and
(≡) for the extrusion, tells us that A1

1+ . . .+Ai
n1

+M → νb̃.(A2
1+ . . .+A2

n2
+M),

and by successively applying rule (ν) for all the names in ã1, we obtain that
νã1.(A1

1 + . . . + A1
n1

+ M1) → νã2.(A2
1 + . . . + A2

n2
+ M2). Finally, again by rule

(≡) we can conclude that M1 → M2.
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Let us now define in our setting the restricted normal form of a term, which
can be seen as the opposite concept to standard form. Intuitively, a term is
in restricted form if the scope of its restrictions is minimal, that is, if every
expression νa.(A1 + . . . + Am) satisfies a ∈ fn(Ai) for all i, so that no extrusion
rule can be applied from left to right.

Definition 4. Let us define ≡̂ as the least congruence on M such that + is com-
mutative and associative with 0 as identity, and 	 as the least binary relation
on M such that:

a /∈ fn(M2)
νa.(M1 + M2) 	 νa.M1 + M2

M1≡̂M ′
1 	 M ′

2≡̂M2

M1 	 M2

M1 	 M2

M1 + M 	 M2 + M

M1 	 M2

νa.M1 	 νa.M2

We say M is in restricted form if there is no M ′ with M 	 M ′.

The relation 	 is confluent, up to ≡̂. Moreover, if M 	 M ′ then M ≡ M ′. We
do not have a result analogous to Prop. 1, that is, the restricted normal form is
not compatible with the transition relation. However, restricted forms give more
insight about the topology of pure names. In particular, they are the basis of
the proof that depth-bounded ν-MSR terms yield WSTS.

As in [20], we can use the restricted form to define the so called fragments
of a term. We say a marking M in restricted form is a fragment if it cannot be
decomposed as M = M1 + M2. Obviously, any M in restricted form satisfies
M = F1 + . . .+Fn with Fi fragments. Intuitively, within a fragment some bound
names are shared. Let us consider the following hypergraph interpretation of a
ν-MSR term. Given a term M , we consider the hypergraph whose nodes are the
atomic formulae in M , and an edge between two such formulae labelled by a
name when they share that name. Then, the fragments of M correspond to the
connected components of its hypergraph. When the process is depth-bounded,
the paths in the hypergraph are also bounded, which can be used to endow
depth-bounded ν-MSR terms with a well-structure.

3 ν-MSRs and pν-APNs

A pν-APN is a Petri net in which tokens are tuples of pure names. Arcs are
labelled by tuples of variables (or multiset of such tuples, if we allow weights)
that specify how tokens flow from preconditions to postconditions. Variables are
taken from a set Var . Some of the variable in postarcs can be in the set of special
variables Υ ⊂ Var that can only be instantiated to names that do not occur in
the current marking, thus creating fresh names. We use ν, ν′, ν1, . . . to range
over Υ . We take L =

⋃
i>0 Var i, that is, the set of tuples of variables of arbitrary

length. We will sometimes use set notation for tuples, so that we will write, for
instance, x ∈ (x, y). Moreover, we will use an arbitrary set Id of names.

Given an arbitrary set A, we will denote by MS(A) the set of finite multisets
of A, that is, the set of mappings m : A → N such that the set S(m) = {a ∈
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A | m(a) > 0} (called support of m) is finite. We denote by m1 + m2, m1 ⊆ m2
and m1 − m2 the multiset addition, inclusion, and substraction, respectively.
Given f : A → B and m ∈ MS(A) then we can define f(m) ∈ MS(B) by
f(m)(b) =

∑
f(a)=b m(a).

Definition 5. A pν-APN is a tuple N = (P, T, F ), where P and T are finite
disjoint sets of elements called places and transitions, respectively,

F : (P × T ) ∪ (T × P ) →MS(L)

is such that for every t ∈ T , pre(t) ∩ Υ = ∅, and post(t) \ Υ ⊆ pre(t), where
pre(t) =

⋃
p∈P

S(F (p, t)), post(t) =
⋃

p∈P

S(F (t, p)) and Var(t) = pre(t) ∪ post(t).

Let us denote by T the set of tuples of names of arbitrary length, that is,
T =

⋃
i>0 Id i. The tokens of a pν-APN are taken from T . We will use ϕ, ϕ′,

ϕ1, . . . to range over tokens.

Definition 6. A marking of a pν-APN N = (P, T, F ) is any M : P →MS(T ).

We define Id(M) = {a ∈ Id | there are p ∈ P and ϕ st a ∈ ϕ ∈ M(p)} ⊂ Id ,
the set of all the names appearing in some token in some place, according to the
marking M .

Transitions are fired with respect to a mode, that chooses which tokens are
taken from preconditions and which are put in postconditions. Given a transition
t of a net N , a mode of t is a mapping σ : Var(t) → Id , that instantiates each
variable involved in the firing of t to an identifier. We will use σ, σ′, σ1 . . . to range
over modes. We extend modes to tuples of variables by taking σ((x1, . . . , xn)) =
(σ(x1), . . . , σ(xn)).

Definition 7. Let N be a pν-APN, M a marking of N , t a transition of N
and σ a mode of t. We say t is enabled with mode σ if σ(ν) /∈ Id(M) for all
ν ∈ Var(t) ∩ Υ , and σ(F (p, t)) ⊆ M(p) for all p ∈ P . The reached state of N
after the firing of t with mode σ is the marking M ′, given by

M ′(p) = (M(p)− σ(F (p, t))) + σ(F (t, p)) ∀p ∈ P

We will write M
t(σ)−→ M ′ if M ′ is reached from M when t is fired with mode σ. We

also define the relations −→ and −→∗, as usual. Fig. 1 depicts a simple example
of a pν-APN and the firing of its only transition. Notice that the transition can
be fired because the second component of the pair (a, b) in p1 matches the name
in p2, as demanded by the labels in the arcs.

In order to capture the intuition that the names in Id are pure, we work mod-
ulo ≡α, which allows consistent renaming of names in markings. Accordingly, the
order �α that induces coverability for pν-APNs is defined as follows: M �α M ′

if there is an injection ι : Id(M) → Id(M ′) such that for every place p ∈ P ,
ι(M(p)) ⊆ M ′(p), where ι((a1, . . . , an)) = (ι(a1), . . . , ι(an)).
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(x, y) x

y ν

Fig. 1. A simple pν-APN

Proposition 2. For any pν-APN N there is a ν-MSR F (N) (with F com-
putable) such that N and F (N) are isomorphic (as transition systems).

Proof. Let N = (P, T, F, M0) be a pν-APN. For every t ∈ T , if ν̃ is a sequence
formed by the special variables in postarcs of t, let us take any sequence (of the
same length) of arbitrary names ã, and let us define the rule

F (t) :
∑
p∈P

∑
x̃∈F (p,t)

p(x̃) → νã.
∑
p∈P

∑
x̃∈F (t,p)

p(x̃{ã/ν̃})

For every marking M with b̃ = Id(M), we define M∗ as the ν-MSR term
νb̃.(

∑
p∈P

∑
ãi∈M(p) p(ãi)). Then, we define R = {F (t) | t ∈ T } and F (N) =

〈R, M∗
0 〉. For two markings M1 and M2 with M1 → M2, it holds that M∗

1 → M∗
2 .

On the other hand, for two ν-MSR terms M1 and M2 such that M1 → M2,
Prop. 1 tells us that Mi ≡ νãi(Ai

1 + . . .+Ai
ni

+M), so that Mi is equivalent to a
M ′∗

i for some markings M ′
i and M ′

2. Moreover, M ′
1 → M ′

2 and the thesis follows.

For instance, consider the pν-APN in Fig. 1. The previous construction yields
the ν-MSR given by the rule t : p1(x, y), p2(y) → νa.(q1(x), q2(a)). The ini-
tial marking is represented by the term νa, b.(p1(a, b), p2(b)), which evolves to
νa, c.(q1(a), q2(c)).

Therefore, pν-APNs can be just thought of as a graphical representation of
ν-MSRs. However, since pν-APNs lack a name binding operator, intuitively they
always work with terms in their standard normal form. Indeed, for a marking
M , the term M∗ is in standard form. Let us now prove the converse result.

Proposition 3. For any ν-MSR S there is a pν-APN G(S) (with G computable)
such that S and G(S) are isomorphic (as transition systems).

Proof. Let S = 〈R, M0〉 be a ν-MSR. We define G(S) = (P ,R, F, M∗
0 ) as follows.

Let t :
∑n

i=1 pi(x̃i) → νã.(
∑m

i=1 qi(ηi)) be a rule in R. We assume for the sake of
readability that no names appear in the tuples of the left handside of the rule,
and that the only names appearing in the right handside are those in ã. Let ν̃
be a sequence (of the same length of ã) of pairwise different special variables.
We define F (p, t) =

∑
p=pi

x̃i and F (t, p) =
∑

p=qi

ηi{ν̃/ã}. For a ν-MSR term M ≡

νã.(
∑n

i=1 pi(ãi)) we define M∗ as the marking given by M∗(p) = {ãi | p = pi}.
As in the previous result, for two terms M1 and M2, thanks to Prop. 1, it holds
that M∗

1 → M∗
2 . Moreover, for two markings M1 and M2 such that M1 → M2,

Mi = M ′∗
i for some terms M ′

1 and M ′
2, with M ′

1 → M ′
2.
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In [24] we proved that pν-APNs are Turing complete. Therefore, Prop. 2 tells
us that so are ν-MSRs. It is easy to devise some decidable subclasses of ν-
MSRs. For instance, if a ν-MSR S is monadic, that is, if atomic formulae have
the form p(η), then the pν-APN G(S) obtained in Prop. 3 is a ν-APN [23],
that is, a Petri net in which tokens are pure names. In [25] we proved that
coverability is decidable for them, so that they are also decidable for monadic
ν-MSRs. Moreover, if we consider a ν-MSR with only binary predicates and so
that for every formula p(a, b) there are only finitely many bi such that p(a, bi)
appears in any reachable term, then G(S) is a restricted binary pν-APN [24], for
which coverability is also decidable. We claim that these results could have been
obtained directly for the restricted classes of ν-MSRs, so that the corresponding
results for Petri nets could have been obtained as a corollary instead. Finally, let
us remark that in the case of ordinary P/T nets (that are a subclass of ν-APNs,
in which only one element of Id is used) our translation yields a ν-MSR that
coincides with the rewriting logic specification obtained in [29].

4 ν-MSRs and the π-calculus

Let us see that ν-MSRs can simulate any π-calculus process. We use the monadic
version of the π-calculus used in [21,20,27], with parameterized recursion. The
prefixes of the π-calculus are defined by

π ::= x〈y〉 � x(y) � τ

The set of the π-calculus processes is defined by

P ::=
n∑

i=1

πi.Pi � P1 | P2 � νa.P � K!ã"

The empty sum (with n = 0) is denoted as 0. As usual, we identify processes
up to ≡, which is the least congruence that allows α-conversion of bound names,
such that + and | are commutative and associative with 0 as neutral element,
and the following equations hold: νa.0 ≡ 0, νa.νb.P ≡ νb.νa.P and νa.(P | Q) ≡
νa.P | Q, if a /∈ fn(Q), where fn(P ) is the set of names that occur free in P .
If a name in P is not free then it is bound. As usual, we omit pending 0 in the
examples. The reaction relation is defined by the following rules:

τ.P + M → P x(y).P + M | x〈z〉.Q + N → P{z/y} | Q

K!ã"→ P{ã/x̃}, if K(x̃) := P

P → P ′

P | Q → P ′ | Q
P → P ′

νa.P → νa.P ′
P ≡ Q → Q′ ≡ P ′

P → P ′

We will use the notion of derivatives of a process introduced in [21]. For
a process P with recursive definitions Ki(x̃i) := Pi for i = 1, . . . , n, we de-
fine derivatives(P ) = der (P ) ∪

⋃n
i=1 der (Pi), where der(0) = ∅, der (K!ã") =
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{K!ã"}, der (
∑n

i=1 πi.Pi) = {
∑n

i=1 πi.Pi} ∪
⋃n

i=1 der (Pi) for n > 0, der(P1 |
P2) = der (P1) ∪ der (P2), and der (νa.P ) = der (P ).

The set of derivatives of a process is always finite, and it essentially corre-
sponds to the set of its sequential subprocesses, but disregarding name restric-
tion. As proved in [21], every reachable process can be built up by composing
derivatives with its free names renamed.

Proposition 4. [21, Proposition 3] Let P be a π-calculus process. Every Q
reachable from P is structurally congruent with νã.(Q1σ1 | · · · | Qnσn), where
Qi ∈ derivatives(P ) and σi : fn(Qi) → fn(P ) ∪ ã.

We will heavily rely on this result for our simulation of π-calculus processes by
means of ν-MSRs. More precisely, we will consider the finite set of derivatives
as predicates. If a derivative p has x1, . . . , xn as free names, then we will write
p(a1, . . . , an) to represent the derivative p{x̃i/ãi}.

We assume that the sets of free names of derivatives are pairwise disjoint.
Moreover, we remove repeated derivatives, in the sense that one can be obtained
from another by renaming its free names.

Next we introduce some notations to deal with derivatives. In the first place,
for a derivative τ.P + M with P equivalent to the process in standard form
νã.(D1 | · · · | Dk) we write τ.P + M �→ νã.(D1 | · · · | Dk). Let K!x̃" be a
derivative with K(x̃) ::= P , where P is equivalent to a process in standard form
νã.(D1 | · · · | Dk). Then we will write K!x̃" �→ νã.(D1 | · · · | Dk).

Finally, if two derivatives D1 and D2 are equivalent to M1 + x1〈y1〉.P1 and
M2 + x2(y2).P2, respectively, and Pi ≡ νãi.(D1

1 | · · · | Di
ki

) for i = 1, 2 then we
will write

D1 | D2
x1=x2�−→ νã1, ã2.(D1

1 | · · · | D1
k1
| D2

1{y2/y1} | · · · | D2
k2
{y2/y1})

Proposition 5. For every π-calulus process P0 there is a ν-MSR H(P0) (with
H computable) such that P0 and H(P0) are isomorphic (as transition systems).

Proof. Let P = Derivatives(P0) be the set of derivatives of P0, which is finite.
For any P ∈ P , we use the atomic formula P (x1, . . . , xn) to represent P , provided
fn(P ) = {x1, . . . , xn}. We will consider the following rules:

– For each D �→ νã.(D1 | · · · | Dk) with fn(D) = x̃ and fn(Di) = x̃i, we
consider the rule D(x̃) → νã.(D1(x̃1), . . . , Dk(x̃k)).

– For each D1 | D2
x=y�−→ νã.(D′

1 | · · · | D′
k) with fn(Di) = x̃i and fn(D′

i) = ỹi,
we consider the rule D1(x̃1), D2(x̃2){y/x}→ νã.(D′

1{y/x}, . . . , D′
k{y/x}).

By Prop. 4, any reachable process P is equivalent to νã.(D1σ1 | · · · | Dnσn), with
Di ∈ P , fn(Di) = x̃i, and σi : x̃i → fn(P0) ∪ ã. Then, for any reachable P we
can define the ν-MSR term P ∗ over P by structural induction: K!ã"∗ = D(ã) for

some D(x̃) ∈ P , (
n∑

i=1
πi.Pi)∗ = D(ã) for some D(x̃) ∈ P , (P1 | P2)∗ = P ∗

1 | P ∗
2 ,

and (νa.P ) = νa.P ∗. The mapping (·)∗ is an isomorphism (between the quotients
modulo ≡) and P1 → P2 if and only if P ∗

1 → P ∗
2 .
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Fig. 2. pν-APN simulating the process in Example 1

Let us see that if P1 is a reachable process and P1 → P2 then P ∗
1 → P ∗

2 .
We see it by induction on the rules used to derive P1 → P2. If P1 = K!ã" and
P2 = P{x̃/ã} with K(x̃) ::= P then there are derivatives D1, D′

1, . . . , D
′
k such

that P ∗
1 = D1(ã) and P ∗

2 = νb̃.(D′
1(ã1, b̃1), . . . , D′

k(ãk, b̃k) with
⋃

ãi ⊆ ã and⋃
b̃i ⊆ b̃ (assuming that ã∩ b̃ = ∅; otherwise, we just need to rename the names

in b̃). By construction, we have a rule D1(x̃) → νb̃.(D′
1(x̃1, b̃1), . . . , D′

k(x̃k, b̃k)),
that can be applied for P ∗

1 = D1(ã), producing P ∗
2 . Let us now consider the

case in which P1 = x(y).P ′
1 + M | x〈z〉.P ′

2 + N and P2 = P ′
1{y/z} | P ′

2. By
Prop. 4 there are derivatives such that P1 = D1{x̃i/ãi} | D2{x̃2/ã2}, P ′

i =
Πki

j=1D
i
j{ỹi/ã′

i}, for i = 1, 2, and D1 | D2
x1=x2�−→ D′

1 | D′
2. By construction, there

is a rule D1(x̃1), D2(x̃2){x2/x1} → νã.(D′
1{x2/x1}, . . . , D′

k{x2/x1}), that can
be instantiated for P ∗

1 = D1(ã1), D2(ã2), yielding the term νã.(D′
1(ã

′
1), D

′
2(ã

′
2)),

which is P ∗
2 .

The rules for parallel composition and restriction are easy to check (they cor-
respond to rules (+) and (ν), respectively). The rule for ≡ is trivial, because P ∗

is defined in the same way for all the processes belonging to the same equivalence
class than P .

For the converse implication, it is enough to consider that any reachable term
is of the form M = νã.(D1(ã1), . . . , Dn(ãn)) for some derivatives Di. Then,
M = P ∗, with P = νã.(D1{x̃1/ã1} | . . . | Dn{x̃n/ãn}). Similarly as before, we
can prove that M1 → M2 implies Mi = P ∗

i with P1 → P2.

Example 1. Let us consider P = νb.a〈b〉.b(x) | a(y).K!a, y", where K(x, y) :=
y〈x〉. The set of derivatives of P is {p1, p2, p3, p4, p5}, where p1 = x1〈y1〉.y1(z),
p2 = x2(z), p3 = x3(z).K!x3, z", p4 = K!x4, y4", and p5 = x5〈y5〉. The ν-MSR
term corresponding to P is P ∗ = νb.p1(a, b), p3(a). The derivatives can react in
the following way:

1. K!x4, y4" �→ y4〈x4〉
2. x1〈y1〉.y1(z) | x2(z) x1=x2�−→ y1(z)
3. x1〈y1〉.y1(z) | x3(z).K!x3, z"

x1=x3�−→ y1(z) | K!x3, y1"
4. x2(z) | x5〈y5〉

x2=x5�−→ 0
5. x3(z).K!x3, y3" | x5〈y5〉

x3=x5�−→ K!x3, y5"
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Fig. 3. pν-APNs simulating the processes in Example 2

These reactions give rise to the following rules:

t1 : p4(x, y) → p5(y, x)
t2 : p1(x, y), p2(x) → p2(y)
t3 : p1(x, y), p3(x) → p2(y), p4(x, y)
t4 : p2(x), p5(x, y) → 0
t5 : p3(x), p5(x, y) → p4(x, y)

In turn, according to Prop. 3, we can write these rules as a pν-APN, which is
depicted in Fig. 2. Its initial marking corresponds to the term P ∗, with a token
(a, b) in p1 and a token a in p3. Actually, the rules (and the net) obtained are
the same for any process with derivatives in p1, . . . , p5. Indeed, starting from the
process P , one can check that the derivatives p1 and p2, or p3 and p5, will never
be in parallel. Our construction is safe, so that it does consider the reaction
rules t2 and t5, though they will never be enabled. Thus, any process whose set
of derivatives coincides with that of P , is simulated by the same net, though
with a different initial marking. Finally, notice that the resulting net does not
have any arc labelled with any special variable, so that the names appearing
in any reachable markings are taken from the finite set of names in the initial
markings. In this situation, the net can be flattened to an equivalent P/T net.

Example 2. Let us consider the processes P1 = νa.L!a" and P2 = νa.K!a",
with L(x) := νb.(x〈b〉 | L!x") and K(x) := νa.(a〈x〉 | K!a"). derivatives(P1) =
{L!x", y〈z〉} and derivatives(P2) = {K!x", y〈z〉}. The only reaction of deriva-
tives of P1 is L!x" �→ νb.(x〈b〉 | L!x"), where the call to procedure L is done.
Analogously, the only reaction of derivatives of P2 is K!x" �→ νa.(a〈x〉 | K!a"),
where procedure K is called. These reactions are simulated by the rules p1(x) →
νb.(p1(x), p2(x, b)) and p1(x) → νa.(p1(a), p2(a, x)). The corresponding ν-MSRs
give rise to two pν-APNs, which are shown in Fig. 3. Since each process has only
two derivatives, the corresponding nets have two places, and since they can only
react in one way, only one transition is produced for each.

The study of subclasses of the π-calculus where some properties become decid-
able is an active field of research. For instance, [5] considers restriction-bounded
processes, which generate a finite number of restricted names. In the paper [22]
mix-bounded processes are defined, which are the most expressive subclass of the
π-calculus that can be mapped to finite P/T nets. Depth-bounded processes [20]
are processes where the interdependence of names is bounded. We can consider
this restriction in ν-MSR terms, thus obtaining depth-bounded terms. For in-
stance, in the net on the right of Fig. 3, sequences of tokens or arbitrary length
of the form (a0, a1), (a1, a2), (a2, a3), . . . can appear, so that the interdependence
of names is not bounded (all the ais are interdependent). Therefore, that net (or
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the corresponding ν-MSR) is not depth-bounded, but the one in the left of the
same figure is depth-bounded.

In [20], it is proved that depth-bounded processes in the π-calculus produce
WSTS. Actually, the same steps can be followed to prove that depth-bounded
ν-MSR terms are WSTS, though we do not show the details in this paper due
to lack of space. Thus, coverability, boundedness and termination are decidable
for them. Therefore, this result carries over to any model that can be speci-
fied within ν-MSRs. Thus, depth-bounded pν-APNs, that is, pν-APNs in which
the interdependence of names is bounded, are also WSTS, so that coverability,
termination and boundedness are decidable for them.

5 ν-MSRs in Maude

Since the behavior of ν-MSR systems is specified in terms of a congruent rewrit-
ing relation (with respect to all the constructors), modulo the equational theory
defined by ≡, the translation from a ν-MSR specification to an equivalent rewrite
specification is straightforward. Let us see some of the details of their represen-
tation in Maude. Moreover, the representation of ν-MSRs within Maude will
allow us to use all the analysis machinery available for it. The syntax of terms
is simply defined as follows:

sorts Predicate Term .
subsorts Predicate < Term .

op nil : -> Term .
op _(_) : Qid Tuple -> Predicate .
op __ : Term Term -> Term [comm assoc id: nil] .
op nu(_)_ : SeqQid Term -> Term .

As we proved in Prop. 1, we can use the standard normal form of a ν-MSR
term to specify its full behavior, that is, an equational theory to obtain such
a standard normal from is coherent with any set of rewriting rules. Therefore,
our equational theory will reduce any term to its standard normal form, which
amounts to pushing restrictions to the outermost position.

In order to deal with bound names, we can use de Bruijns indexes [11] in
order to distinguish occurrences of the same name that are bound by differ-
ent binding operators. Consider for instance a ν-MSR system composed of a
single rule p(x) → νa.q(a). In that system, the term p(a)p(b) rewrites in two
steps to νa.νb.q(a)q(b), which, using de Bruijn’s indexes can be written as
νa.νa.q(a0)q(a1). Intuitively, for an indexed name ai, i represents the number of
intermediate a-bindings between the free occurrence and its binding occurrence.
Therefore, names are defined as follows:

sort Name .
op _‘{_‘} : Qid Nat -> Name [prec 1] .

The side condition in the extrusion rule does not act like a restriction, since
we are working modulo α-conversion. Instead, for the extrusion to happen, it
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enforces a renaming of a in case it occurs free in M2, replacing in M1 the name a
by some fresh b (not free in M2). In order to manage substitutions and indexed
names, we use the explicit calculus for substitutions of [28], as done in other
specifications of process algebra with name binding, as the π-calculus [30] or the
Ambient Calculus [26].

eq [ shiftup a ] a{n} = a{s(n)} .
ceq [ shiftup a ] b{n} = b{n} if a =/= b .
eq ( nu(x) NSP ) NSQ = nu(x)(NSP ([shiftup x] NSQ)) .

The standard normal form is unique not only up to commutativity, associa-
tivity and identity (which are the equational attributes of the multiset addition
operator), but also up to rearrangement of the bounded names. In other words,
the rule νa.νb.M ≡ νb.νa.M cannot be directly specified in Maude, or the cor-
responding equational theory would be non-terminating. Instead of considering
an artificial order (like lexicographic order over quoted identifiers) to obtain a
unique normal form up to the equational attributes, we have chosen to allow
sequences of quoted identifiers in restrictions, analogously to the νã.M nota-
tion. Therefore, SeqQid is a commutative domain with a constant eps as empty
sequence, and the standard normal form is unique up to commutativity of re-
stricted names.

eq nu(at) nu(bt) P = nu(at . bt) P .
eq nu(eps) P = P .

Notice that our equational theory is an order-sorted equational specification
(without membership equations). Each rule in a ν-MSR gives rise to an uncon-
ditional rewrite rule. For instance, the two ν-MSR systems obtained from the
two π-calculus processes P1 and P2 in Example 2 (the corresponding equivalent
pν-APNs are depicted in Figure 3), can be represented by the two following
rules, respectively.
var x : Name .

rl [t] : ’p1(x) => nu(’b)( ’p1( [shiftup ’b] x)
’p2( [shiftup ’b] x , ’b{0}) ) .

rl [t] : ’p1(x) => nu(’a)( ’p1( ’a{0})
’p2( ’a{0} , [shiftup ’a] x ) ) .

Notice the application of the shiftup substitution in the right hand side of
the rules. It ensures that the rules are applied without capturing free names.
This is justified by the definition of the application of a rule in ν-MSR, where
it may be necessary to rename some of the new bound names. Moreover, the
variables in Var used in ν-MSR rules are just variables in the system module
(that is, they are in the meta-level).

When we rewrite starting from the initial marking of the net in the left of
Fig. 3 we obtain:
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Maude> rew [3] ’p1( ’a{0} ) .
rewrite [3] in EX1 : ’p1(’a{0}) .
rewrites: 114 in 0ms cpu (0ms real) (~ rewrites/second)
result NSTerm: nu(’b . ’b . ’b)(’p1(’a{0})

’p2(’a{0},’b{0}) ’p2(’a{0},’b{1}) ’p2(’a{0},’b{2}))

In the case of the net in the right handside of Fig. 3, we get the following:

Maude> rew [3] ’p1( ’a{0} ) .
rewrite [3] in EX1 : ’p1(’a{0}) .
rewrites: 108 in 0ms cpu (0ms real) (~ rewrites/second)
result NSTerm: nu(’a . ’a . ’a)(’p1(’a{0})

’p2(’a{0},’a{1}) ’p2(’a{1},’a{2}) ’p2(’a{2},’a{3}))

Finally, let us comment that, in the case in which all predicates are 0-ary, that
is, if only predicates are used in terms (instead of variables and names), then we
simply have the classical interpretation of P/T nets as rewritings of multisets of
elements taken from a finite set, and the implementation in Maude is equivalent
to the one shown for instance in [18].

6 Conclusions and Future Work

In this paper we have defined ν-MSRs, where MSR stands for Multiset Rewriting.
ν-MSRs encompass the multiset rewriting approach for concurrency, followed
in [13], and the multiset rewriting approach for security, or name binding in
general, followed in [9,8].

We have proved that ν-MSRs simulate, in a very natural way, two models
of concurrency with name binding, as is the case of pν-APNs and π-calculus
processes. The previous simulations establish that any result obtained for ν-
MSRs can be translated both to the π-calculus and pν-APNs. For instance, we
show that depth-boundedness, that was studied in [20] for the π-calculus, can
be studied in the more general setting of ν-MSRs, thus obtaining the analogous
results for ν-MSR in general, and pν-APNs in particular.

ν-MSRs establish a clean bridge between Petri nets and process algebra, that
could be interesting in order to compare the natural concurrent (process) se-
mantics of Petri nets to π-calculus processes.

As future work, we plan on coding the spi calculus and mobile ambients into
ν-MSRs. Regarding the spi calculus, we believe that an analogous translation
to the one carried out for π-calculus processes can be achieved for spi-calculus
processes, thus bringing together two different approaches for the specification
and analysis of security protocols, namely the spi-calculus and multiset rewriting.

We also plan to study how Mobile Ambient [7] processes can be encoded within
ν-MSR. As a first approach for the translation of mobile ambients, it seems that
a transfer (or broadcast) operation is needed to encode mobile ambients (since
all the sequential processes within an ambient are affected by some operations
on that ambient). However, under some conditions, transfers do not add any
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expressive power [2]. In the case of mobile ambients, it would certainly be inter-
esting to compare in the common framework the decidability results obtained
for restricted classes of mobile ambients, for instance in [6], to those obtained
for the π-calculus.

Regarding the Maude implementation, we could use the π-calculus specifica-
tion of [30] to automatically generate the system module corresponding to the
ν-MSR that encode a process.

Finally, let us remark that it would be interesting to have an alternative
presentation of ν-MSR in terms of monoidal constructions in named sets, or any
equivalent theoretical model for name binding, like nominal sets or presheaves
[10,15], which would allow us to obtain the analogous constructions to those
studied in [19]. Moreover, this construction could allow us to formalize when
name interdependence is preserved by an encoding.

Moreover, we argue that the results in [20] can also be obtained in the more
general setting of ν-MSRs. Thus, we define depth-bounded ν-MSRs, that, in-
tuitively, have a bounded interdependence of bounded names. Depth-bounded
ν-MSRs can be proven to produce WSTS by following the same steps as in [20].
Moreover, this result can be translated to pν-APNs, so that depth-bounded pν-
APNs are also WSTS, and coverability, boundedness and termination are also
decidable for them.
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Abstract. This paper presents the foundation, design, and implemen-
tation of the Linear Temporal Logic of Rewriting model checker as an
extension of the Maude system. The Linear Temporal Logic of Rewrit-
ing (LTLR) extends linear temporal logic with spatial action patterns
which represent rewriting events. LTLR generalizes and extends vari-
ous state-based and event-based logics and aims to avoid certain types
of mismatches between a system and its temporal logic properties. We
have implemented the LTLR model checker at the C++ level within the
Maude system by extending the existing Maude LTL model checker. Our
LTLR model checker provides very expressive methods to define event-
related properties as well as state-related properties, or, more generally,
properties involving both events and state predicates. This greater ex-
pressiveness is gained without compromising performance, because the
LTLR implementation minimizes the extra costs involved in handling
the events of systems.

Keywords: Model checking, Rewriting Logic, Maude, Automata.

1 Introduction

The main motivation for the temporal logic of rewriting (TLR) [27] is to have a
simple, yet expressive, temporal logic that can: (i) support state-based properties
with all the good advantages of logics such as LTL, CTL, and CTL∗; (ii) sup-
port just as easily event-based properties and, more generally, mixed properties
involving states and events; and (iii) lift to the temporal logic level the extra
expressiveness of rewriting logic specifications to describe events by spatial ac-
tion patterns, that indicate not just that a rewrite event labeled l has happened,
but where in the terms’s geometry, and how (with what kind of instantiation).
As explained in [27], meeting goals (i)–(iii) is a good way to obtain a suitable
tandem between two logics: a system specification logic, where concurrent system
models are specified —in this case rewriting logic— and a property specification
logic, in which properties about such a model are specified —in this case TLR.

The problem with unsuitable tandems, is that there is a mismatch between
the two logics, and this forces the specifier to “cook” the system specification
in unnatural ways just to be able to encode in the model features not directly

P.C. Ölveczky (Ed.): WRLA 2010, LNCS 6381, pp. 208–225, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



The Maude LTLR Model checker 209

expressible in the property logic. In this sense, purely state-based logics, resp.
purely event-based logics, are good as far as they go, but they become unsuitable
tandem partners when event-based properties, resp. state-based properties, need
to be dealt with. Section 5 describes in detail an example illustrating this kind
of tandem mismatch, namely, the well-known bounded retransmission protocol
(BRP). The point about BRP is that many of its relevant properties are related
to various signaling messages exchanged between a sender and a receiver to
inform each other about the status of the communication at each end. Since
state-based temporal logics like LTL and CTL∗ have no way to directly express
the sending of such signaling messages, a system specification of BRP has to
encode such events in the system state in a way that makes the specification
unnecessarily complex and obscures its meaning. With LTLR, as we explain, the
problem completely disappears: all the BRP properties can be directly expressed
without any need for complicating the protocol specification.

The linear temporal logic of rewriting (LTLR) is an attractive subset of TLR,
because it extends naturally the quite easy-to-understand and widely used linear
temporal logic (LTL). It is particularly attractive for the Maude system [10], be-
cause Maude already supports efficient explicit-state on-the-fly model checking of
LTL formulas. Endowing Maude with LTLR model checking capabilities means
keeping all the good state-based features of LTL and gaining the substantial
expressiveness of spatial action patterns for rewrite events. In [2], a first imple-
mentation of an LTLR model checker for Maude was presented. However, the
implementation in [2] reused the Maude LTL model checker as given, without any
changes in its algorithm. It relied instead on a theory and formula transformation
(see [2,27]), so that the LTLR model checking problem was transformed into an
equivalent LTL model checking problem for a transformed Maude specification
using Maude’s metalevel features. While quite useful for experimental purposes,
and still keeping the exact same performance as Maude’s LTL model checker
for its LTL fragment, the solution was less than optimal for event-based prop-
erties, because rewrite events had to be encoded in the state of the transformed
Maude specification, leading to a considerable increase of the state space. In this
work we present a completely new implementation and system that is based on
a new LTLR model checking algorithm that does not change the given Maude
specification, and therefore does not cause any increase in the state space. With
this new algorithm we can have the best of both worlds: for state-based proper-
ties, we keep the exact same good performance as Maude’s original LTL model
checker; but, we gain also very good performance for event-based properties and
for mixed state-and-event ones for two reasons: (i) the state space is exactly
that of the given system; and (ii) the new LTLR model checking algorithm is
implemented at the C++ level as an extension of Maude’s C++ implementation
of its LTL model checker.

This paper presents not only the implementation of the new LTLR model
checker, but also the automata-theoretic foundations for its algorithm and its
associated computational complexity. Specifically, these foundations show that
model checking an LTLR formula ϕ for a given rewrite theory R is equivalent
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to deciding a language emptiness problem for a Büchi automaton obtained as
a special synchronous product of the Büchi automaton B¬ϕ for the negation of
ϕ and a labeled Kripke structure naturally associated to R. Our approach is
closely related to the automata-theoretic solution for model checking properties
that are both state- and event-based proposed in [6]. Another topic studied
in detail is the tool’s support for both automated and user-defined language
extensions to express LTLR properties. This is analogous to the need to extend
the language of a given Maude specification with the desired state predicates for
LTL model checking. The point is that something akin to a language of proof
terms for the given rewrite theory R must be made available to the user in
order to include spatial action patterns for R in LTLR formulas. The use of
the LTLR model checker is then illustrated with the already-mentioned BRP
protocol, and we give some the experimental results. We end the paper with
a discussion of related work and some concluding remarks. The LTLR model
checker itself, as well as some examples and some preliminary documentation is
available at http://www.cs.uiuc.edu/homes/kbae4/tlr.

2 The Linear Temporal Logic of Rewriting

The linear temporal logic of rewriting (LTLR) extends LTL with spatial action
patterns that describe the event of a rewrite step under certain spatial con-
straints. LTLR has the same syntax as LTL, except that an LTLR atom can
be either a spatial action pattern or a state predicate. The semantics of LTLR
is defined on a model of a rewrite theory described by Rewriting Logic, con-
stituting the Rewriting Logic/LTLR tandem [29], similar to the usual tandem
Kripke/LTL.

2.1 Rewrite Theories

A rewrite theory is a formal specification of a concurrent system [28], defined by
a triple R = (Σ, E, R) such that:

– (Σ, E) is an underlying theory in membership equational logic [10] with Σ a
signature and E a set of conditional equations and memberships. The initial
algebra TΣ/E of (Σ, E) specifies the system’s state space.

– R is a set of (possibly conditional) rewrite rules specifying the system’s
concurrent transitions between states, written l : q → r, where l is a label,
and q and r are Σ-terms.

Each concurrent state is modeled as an E-equivalence class [t]E of ground terms,
and rewriting happens modulo E. A one-step rewrite [t]E →R [t′]E exists in R
iff there exists u ∈ [t]E that can be rewritten to v ∈ [t′]E using some rule in
R. More precisely, if the one-step rewrite exists with a rule l : q → r , there
is a subterm u′ of u ∈ [t]E at a position p which is an instance of q with a
substitution φ, and u[φ(r)]p ∈ [t′]E . Then, the one-step rewrite [t]E →R [t′]E
has the corresponding one-step proof term λ = [u[l(φ)]p]E , and is denoted by
[t]E λ−→ [t′]E . Since [t]E →∗

R [t′]E is undecidable in general, we need to consider
additional computability assumptions for a rewrite theory R.

http://www.cs.uiuc.edu/homes/kbae4/tlr


The Maude LTLR Model checker 211

A rewrite theory R = (Σ, E ∪ A, R) is computable, iff: (i) (Σ, E ∪ A) is
ground terminating and confluent modulo the equational axioms A [11],1 and
(ii) R is ground coherent relative to E modulo A [35]. If R is computable, each
[t]E∪A has a unique E-canonical form [canE/A(t)]A ∈ TΣ/A which cannot be
further rewritten with E modulo A. Moreover, each rewrite [t]E∪A

λ−→ [t′]E∪A has
an equivalent transition [canE/A(t)]A λ′

−→ [canE/A(t′)]A in the canonical initial
model associated to R with the corresponding canonical proof term λ′ [29].

A computation (π, γ) in R is then a path π(0) γ(0)−−→ π(1) γ(1)−−→ π(2) γ(1)−−→ · · ·
where π(i) = [canE/A(ti)]A, γ(i) = λ′

i, π(i) γ(i)−−→ π(i + 1) for each i ∈ N, and
all the ti belong to the chosen kind k of states. Any computation in R expands
infinitely if R is deadlock-free, i.e., there is no state that cannot be further
rewritten by a rule in R. This is not a strong restriction since any rewrite theory
whose rules do not have rewrites in their conditions can be transformed into a
semantically equivalent deadlock-free theory [10,30]. Actually, our model checker
does a similar transformation automatically (see Section 3.1).

2.2 Syntax and Semantics of LTLR Formulas

The only syntactic difference between LTLR and LTL is that an LTLR formula
may include some spatial action patterns δ1, . . . , δn as well as state proposi-
tions p1, . . . , pm, and therefore may describe properties involving both states
and events. The syntax of LTLR formulas is the following, where p ranges over
atomic state propositions Π and δ ranges over spatial action patterns W :

ϕ ::= p | δ | ¬ϕ | ϕ ∧ ϕ | ©ϕ | ♦ϕ | �ϕ | ϕUϕ

Spatial action patterns describe properties of one-step rewrites (equivalently,
one-step proof terms) in R. For example, spatial action patterns to describe one-
step rewrites with partial information are defined as follows [2], where u1, . . . , um

are ground terms,2 and where if l : t → t′ ∈ R, then {x1, . . . , xn} ⊆ vars(t):

– l : one-step proof terms involving a rule in R with label l.
– l(x1\u1; · · · ; xm\um) : one-step proof terms with a rule label l whose match-

ing substitution φ satisfies [φ(xi)]E∪A = [ui]E∪A.
– t[l(x1\u1; · · · ; xm\um)]p : one-step proof terms that are instances of the

pattern l(x1\u1; · · · ; xm\um) where the corresponding rewrites happen at
position p of [t]E∪A.

Many other examples of spatial action patterns are given in Section 5.

1 In Maude, the axioms A are any combination of associativity, commutativity, and
identity axioms for different binary operators. We assume that there exists a match-
ing algorithm modulo A as part of the computability assumption for R.

2 The original definition in [27] allows spatial action patterns to have variables, and its
semantics was specified by the matching relation with one-step proof terms. In this
paper, we assume that spatial action patterns are ground terms. However, we do not
lose any expressive power thanks to using equational semantics, since a matching
relation can be defined by equations (see Definition 1).
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To integrate rewriting logic and LTLR, a signature for actions and for state
predicates, and their satisfaction definition are required. A rewrite theory R =
(Σ ∪Σ′, E ∪A ∪D, R) has a support signature Σ′ with respect to equations D
iff (i) (Σ ∪Σ′, E ∪A ∪D) protects (Σ, E ∪A),3 (ii) Σ′ contains the following:

– a sort State for states of the system.
– a sort ProofTerm for one-step proof terms, and corresponding operators for

rule labels and substitutions in proof terms.
– sorts Prop and Action, respectively, for state propositions Π and spatial

action patterns W , with corresponding operators for predicates.
– a sort Bool with two distinct constants true and false.
– operators |= : State Prop -> Bool and |= : ProofTerm Action ->

Bool to define the satisfaction relations for atoms.

and, (iii) the equations in D define the truth of each state predicate (resp., spatial
action pattern) on each state (resp., one-step proof term) by means of the |=
operators (see Section 4.1 for more details on the definition of satisfaction of
action patterns). We assume that R has a support signature from now on.

On a computable deadlock-free rewrite theory R, the semantics of LTLR
formulas ϕ is defined by the satisfaction relation R, [t]E∪A |= ϕ. By definition,
R, [t]E∪A |= ϕ holds if and only if for each infinite computation (π, γ) starting
at [t]E∪A in R, the path satisfaction relation R, (π, γ) |= ϕ holds. The path
satisfaction relation for LTLR is quite similar to that of LTL. The key difference
between the LTLR and the LTL semantics is the semantics of spatial action
patterns. Specifically, the relation R, (π, γ) |= δ holds iff the first proof term γ(0)
of the current computation satisfies the spatial action pattern δ.

Definition 1. The path satisfaction relation R, (π, γ) |= ϕ for an LTLR formula
ϕ is defined inductively as follows:

– R, (π, γ) |= p iff [π(0) |= p]E∪A = [true]E∪A

– R, (π, γ) |= δ iff [γ(0) |= δ]E∪A = [true]E∪A

– R, (π, γ) |= ¬ϕ iff R, (π, γ) �|= ϕ
– R, (π, γ) |= ϕ ∧ ϕ′ iff R, (π, γ) |= ϕ and R, (π, γ) |= ϕ′

– R, (π, γ) |= ©ϕ iff R, (π, γ)1 |= ϕ 4

– R, (π, γ) |= ♦ϕ iff for some k ≥ 0, R, (π, γ)k |= ϕ
– R, (π, γ) |= �ϕ iff for all k ≥ 0, R, (π, γ)k |= ϕ
– R, (π, γ) |= ϕUϕ′ iff there is some k ≥ 0 such that R, (π, γ)k |= ϕ′ and for

all 0 ≤ i < k, R, (π, γ)i |= ϕ

Note that the above semantic definition of LTLR extends the semantics of LTL.
Indeed, the semantics of an LTLR formula with no spatial action patterns is
exactly the same as that of one of LTL on the underlying Kripke structure
associated to the given rewrite theory [10,29].
3 The unique Σ-homomorphism TΣ/E → TΣ∪Σ′/E∪D|Σ induced by the theory inclu-

sion (Σ, E) ⊆ (Σ ∪ Σ′, E ∪ D) should be bijective at each sort s ∈ Σ.
4 (π, γ)i denotes the suffix of (π, γ) beginning at position i ∈ N, i.e., (π, γ)i = (π ◦

si, γ ◦ si) with s the successor function.
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3 Model Checking LTLR Formulas

In our previous work, we converted the LTLR model checking problem into an
LTL model checking one by an automatic theory transformation to construct
an associated Kripke structure [2,29]. In spite of the simplicity of the previous
LTLR model checker, there is the problem of a blowup in the number of states,5

and also some increase in the formula itself by addition of © operators. In
the approach presented below, we avoid such a state-space blowup by directly
constructing the labeled Kripke structure corresponding to a rewrite theory R.

3.1 The Labeled Kripke Structure of a Rewrite Theory

A rewrite theory R in which atomic predicates have been defined has an under-
lying Kripke structure given by the total binary relation extending its one-step
sequential rewrites [10,13]. Similarly, we can associate a labeled Kripke structure
to a rewrite theory R. A labeled Kripke structure (LKS) is a natural extension
of a Kripke structure with transition labels [6], defined as follows:

Definition 2. A labeled Kripke structure is a 6-tuple (S, S0,AP ,L,ACT , T )
with S a set of states, S0 ⊆ S a set of initial states, AP a set of atomic state
propositions, L : S → P(AP) a state-labeling function, ACT a set of atomic
events, and T ⊆ S × P(ACT )× S a labeled transition relation.

Note that each transition of an LKS is labeled by a set A of atomic events,
which could be empty. We assume that the transition relation of a labeled Kripke
structure is total so that every state has a next state, i.e., no deadlocks exist. A
labeled transition (s, A, s′) ∈ T is often denoted by s A−→ s′.

A path (π, α) of an LKS is an infinite sequence 〈π(0), α(0), π(1), α(1), . . .〉
such that π(i) ∈ S, α(i) ⊆ ACT , and π(i) α(i)−−→ π(i + 1) for each i ≥ 0. A trace
(L(π), α) of a path (π, α) is an infinite sequence 〈L(π(0)), α(0),L(π(1)), α(1), . . .〉.

Given a computable rewrite theory R = (Σ, E, R), an initial state [t]E of
sort State, a finite set P ⊆ TΣ/E,Prop of atomic propositions, and a finite set
W ⊆ TΣ/E,Action of spatial action patterns, we can associate to R the LKS
KP,W (R)[t]E = (S, {[t]E}, P,L, W � {�}, T ) such that:

– S = TΣ/E,[State], represented by the canonical terms of kind [State].
– L(s) is the set of atomic state propositions in P that hold in the state s,

that is, L([t]E) = {p ∈ P : [t |= p]E = [true]E}.
– The labeled transition relation T specifies the corresponding transitions,

labeled with events from W which are satisfied by a given one-step rewrite
proof λ in R. In addition, T has a self-loop for each deadlock state in order
to be a total relation. That is, � is an event denoting a deadlock,

[t]E
A−→ [t′]E ∈ T iff [t]E

λ−→R [t′]E and A = {δ ∈ W : [λ |= δ]E = [true]E}.
[t]E

{�}−−→ [t]E ∈ T iff [t]E cannot be further rewritten.

5 If R has n states and m transitions, the associated Kripke structure has O(nm)
states [29].
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The semantics of an LTLR formula ϕ whose set of spatial action patterns is
W and whose set of atomic propositions is P can be also defined over an LKS
KP,W (R)[t]E . By construction, for each computation (π, γ) of R, there is a path
(π, α) of KP,W (R)π(0) with α(i) = {δ ∈ W : [γ(i) |= δ]E = [true]E} for each
i ∈ N. Then, the LTLR semantics can be defined directly on KP,W (R)π(0) in
a way entirely similar to Definition 1. For example, KP,W (R)π(0), (π, α) |= p iff
p ∈ L(π(0)), and KP,W (R)π(0), (π, α) |= δ iff δ ∈ α(0). This definition clearly
satisfies the following equivalence lemma:

Lemma 1. Given a computable deadlock-free rewrite theory R, and an LTLR
formula ϕ with set of atomic propositions P and set of action patterns W ,
R, (π, γ) |= ϕ iff KP,W (R)π(0), (π, α) |= ϕ.

If R has deadlock states, we can first transform R to the equivalent deadlock-
free rewrite theory for the same result. In fact, the deadlock-free translation is
similar to the deadlock completion in the above KP,W (R)[t]E construction [30].

3.2 Automata-Based Verification of LTLR Formulas

The model checking problem of an LTLR formula ϕ on a rewrite theory R is now
reduced to the satisfiability of ϕ on its associated LKS KP,W (R)[t]E . Given an
LKS M = (S, S0,AP ,L,ACT , T ) and an LTLR formula ϕ, we need to determine
whether M |= ϕ, that is, to check the satisfaction relation M, (π, α) |= ϕ for all
paths (π, α) of M starting at some s ∈ S0.

The automata-based verification of an LTL formula ϕ on a given Kripke
structure K = (S, S0,AP ,L, T ) uses the Büchi automaton B¬ϕ associated to
the negated formula ¬ϕ, and checks the emptiness of the synchronous product
K ×B¬ϕ to determine whether B¬ϕ accepts any trace of K [3].

Definition 3. A Büchi automaton is a 5-tuple (SB, SB0 , P, TB, F ) such that SB

is a finite set of states, SB0 ⊆ SB is a set of initial states, P is an alphabet of
transition labels, TB ⊆ SB × P × SB is a transition relation, and F ⊆ SB is a
set of accept states.

The synchronous product of a Kripke structure K and a Büchi automaton B with
an alphabet P(AP) is a Büchi automaton (S ×SB, S0×SB0 ,P(AP), T ′, S×F )
such that (s, b) L(s)−−→ (s′, b′) ∈ T ′ iff s → s′ ∈ T ∧ b L(s)−−→ b′ ∈ TB. The essence
of LTL model checking is expressed by the following theorem [9].

Theorem 1. Given a Kripke structure M and an LTL formula ϕ, there is a
Büchi automaton B¬ϕ such that M |= ϕ iff L(M ×B¬ϕ) = ∅.

We generalize this automaton-based approach to characterize the LTLR model
checking problem, following an approach similar to that of SE-LTL model check-
ing [6]. If AP and ACT are disjoint, then there is a one-to-one correspondence
between a trace (L(π), α) and a union trace L(π) ∪ α, where (L(π) ∪ α)(i) =
L(π)(i) ∪ α(i) for each i ≥ 0. In such union traces, there is no difference be-
tween events and state propositions. Hence, we can check whether a union trace
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L(π) ∪ α is accepted by a Büchi automaton for a formula ¬ϕ, using the same
Büchi automata construction as in the LTL case. In fact, union traces of an
LKS M induce an equivalent Kripke structure D(M), whose states are pairs
consisting of a state and a transition label of M .

Definition 4. Given an LKS M = (S, S0,AP ,L,ACT , T ) with AP∩ACT = ∅,
its associated Kripke structure D(M) is (S′, S′

0,AP ∪ ACT ,L′, T ′) where

– S′ = {〈s, A〉 ∈ S × P(ACT ) : ∃s′ ∈ S. s
A−→ s′}

– S′
0 = (S0 × P(ACT )) ∩ S′

– L′(〈s, A〉) = L(s) ∪A
– 〈s, A〉→ 〈s′, A′〉 ∈ T ′ iff s

A−→ s′ ∈ T and 〈s′, A′〉 ∈ S′

It is clear that each trace of D(M) is a union trace of M . Furthermore, M and
D(M) are equivalent in the sense of the satisfiability of a formula.

Lemma 2. Given an LKS M and an LTLR formula ϕ, M |= ϕ iff D(M) |= ϕ,
where any event in ϕ is regarded as a state proposition of D(M).

Proof. It suffices to show that M, (π, α) |= ϕ iff D(M), π ∪ α |= ϕ for each
path (π, α) of M . We can prove this by structural induction on ϕ. If ϕ is a
spatial action pattern δ, then M, (π, α) |= δ iff δ ∈ α(0). Equivalently, δ ∈
L(π(0)) ∪ α(0) = L′(〈π(0), α(0)〉). Therefore, D(M), π ∪ α |= δ. The other cases
are similar or follow easily from the induction hypothesis. � 

In order to determine whether a Büchi automaton B¬ϕ accepts a union trace
of an LKS M , we avoid the use of D(M)×B directly since it produces a state-
space blowup. Instead, we define a special synchronous product M⊗B¬ϕ, which
advances to the next state only if both state labels and event labels are accepted
by the current transition of B¬ϕ.

Definition 5. Given an LKS M = (S, S0,AP ,L,ACT , T ) and a Büchi au-
tomaton B = (SB, SB0 , P, TB, F ) with P = P(AP ∪ ACT ), the state/event
product is a Büchi automaton M ⊗ B = (S × SB, S0 × SB0 , P, T ′, S × F ) such
that (s, b) L(s)∪A−−−−→ (s′, b′) ∈ T ′ iff s A−→ s′ ∈ T and b L(s)∪A−−−−→ b′ ∈ TB.

The following lemma shows that the language emptiness problem for M ⊗B is
equivalent to that of D(M)×B.

Lemma 3. Given an LKS M and a Büchi automaton B, L(M ⊗ B) = ∅ iff
L(D(M)×B) = ∅.

Proof. Let ρ ∈ L(M ⊗B). By definition, ρ = (L(s1), b1)(L(s2), b2) . . . such that
L(s1)L(s2)L(s3) . . . is a trace of M and b1b2 . . . ∈ L(B), where si

Ai−→ si+1 and
bi

L(si)∪Ai−−−−−→ bi+1 for each i ≥ 0. Clearly, (L(s1)∪A1) (L(s2)∪A2) . . . is a trace of
D(M). Therefore, the union trace ρ′ = (L(s1) ∪ A1, b1)(L(s2) ∪ A2, b2) . . . is in
L(D(M)×B). The proof for the implication in the other direction is similar. � 

As a result, for an LTLR formula ϕ and an LKS M , we can conclude that M |= ϕ
iff L(M ⊗B¬ϕ) = ∅, where B¬ϕ is a Büchi automaton for ¬ϕ constructed in
exactly the same way as in the LTL case. Consequently, by the LKS construction
associated to a rewrite theory R, we have:
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Theorem 2. Given an LTLR formula ϕ with set of atomic propositions P and
set of spatial action patterns W , a computable deadlock-free rewrite theory R,
and an initial state [t]E ,

R, [t]E |= ϕ ⇔ L(KP,W (R)[t]E ⊗B¬ϕ) = ∅

Note that the cost for LTLR model checking using an LKS is O((n + m) · 2f)
with n states, m transitions, and f the size of the formula. The m factor here
is added since each transition needs to test each spatial action pattern in a
formula, where a labeled Kripke structure may have several transitions with
different labels between two states. If there are no spatial action patterns in a
formula, then the cost is O(n · 2f), exactly the same as for LTL model checking.
Recall that our previous implementation leads to a model checking complexity
of O(n ·m · 2f ).

4 The Maude LTLR Model Checker

The Maude LTLR model checker extends the existing LTL model checker in
Maude, which contains support signatures for LTL model checking in the prede-
fined module MODEL-CHECKER. The Maude LTL model checker supports on-the-
fly LTL model checking for an initial state [t]E with sort State of a computable
rewrite theory R = (Σ, E, R) such that the set of all states reachable from [t]E is
finite [13]. If such a rewrite theory R is specified in Maude by a system module
M with an initial state init of sort StateM , the following procedure is used for
model checking of LTL properties beginning at the initial state init:

– Define a new module, say CHECK-M, which includes both the module M and
the module MODEL-CHECKER.

– Give a subsort declaration, subsort StateM < State, where the sort State
is in the support signature in MODEL-CHECKER.

– Define the syntax of (parameterized) state predicates of sort Prop, which is
a subsort of the sort Formula for LTL formulas.

– Define the semantics of the state predicates using the operator |= : State
Prop -> Bool. The semantics of each (parameterized) state predicate p is
then given by a set of (conditional) equations of the form:

ceq Statei |= p(arg i1, . . . , arg im) = true if Cond i .

where Statei are patterns of sort StateM , p(argi1, . . . , arg im) are patterns
of sort Prop, and Cond i are conjunctions of equalities and memberships.

– The model checking command reduce modelCheck(init,formula) returns
true or a counterexample.

Our LTLR model checker involves a similar process and interface as that sum-
marized above for an LTL formula. However, for LTLR formulas we need to
extend the module’s signature to support spatial action patterns.
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4.1 Support Signature for LTLR Formulas

The support signature for the LTLR model checker is defined in the system mod-
ule LTLR-MODEL-CHECKER which includes the definitions of one-step proof terms
and spatial action patterns. A one-step proof term u[l(φ)]p is represented as a
triple consisting of a rule label l, a substitution φ as a set of single assignments,
and a context term of u that has a hole [] at position p. A substitution has the
form var1\value1 ; ... ; vark\valuek. In our LTLR model checker, one-step
proof terms have sort ProofTerm and are defined by the following operator:

op {_|_:_} : StateContext RuleName Substitution -> ProofTerm [ctor...] .

To denote a deadlock event � in the LKS construction (see Section 3.1), the
deadlock constant with sort ProofTerm is defined as well.

Spatial action patterns have sort Action, and both Prop and Action are
subsorts of Formula. The syntax and the semantics of spatial action patterns is
defined in a way similar to that of state propositions. By default, we define useful
spatial action patterns related to partial information of one-step proof terms.

subsorts ProofTerm < Action . --- {u[]p | l : x1\t1;...}
op {_} : RuleName -> Action . --- {l}
op {_:_} : RuleName Substitution -> Action . --- {l : x1\t1;...}
op {_|_} : StateContext RuleName -> Action . --- {u[]p | l}
op top : RuleName -> Action . --- top(l)

op top : RuleName Substitution -> Action . --- top(l, x1\t1;...)

Terms of sort ProofTerm are also viewed as spatial action patterns that describe
one-step proof terms containing the given partial substitution in the spatial
action pattern. Furthermore, other action patterns are described by rule labels,
or by rule labels with an associated substitution. Sometimes we also want to
consider patterns corresponding to rewrites at the top level. The satisfaction
relation between a proof term and a spatial action pattern is then defined by
equations involving the operator |= : ProofTerm Action -> Bool.

var C : StateContext . var R : RuleName . var S S’ : Substitution .

eq {C | R : S} |= {R} = true .

eq {C | R : S ; S’} |= {R : S} = true .

eq {C | R : S ; S’} |= {C | R : S} = true .

eq {C | R : S} |= {C | R} = true .

eq {[] | R : S} |= top(R) = true .

eq {[] | R : S ; S’} |= top(R, S) = true .

In addition, users can define their own (parameterized) spatial action pattern sp
by giving a set of (conditional) equations of the form:

ceq Proofterm i |= sp(arg i,1, . . . , arg i,m) = true if Cond i .

where Proofterm i are patterns for one-step proof terms.

4.2 Theory Extension for One-Step Proof Terms

The signature of context terms and substitutions for one-step proof terms de-
pends on the given rewrite theory R. A rewrite can happen at any position of
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a state term by a rule in R, which implies that a hole symbol [] in a context
term can have any sort of the left-sides of the rules in R. Moreover, variables in
rules can have any sort in Σ, and this is needed for assignments in substitutions.
Therefore, additional operators regarding context holes and assignment symbols
are required to generate one-step proof terms for model checking purposes.

Given a computable rewrite theory R = (Σ, E, R), the maximal signature
PΩ(R) required for one-step proof terms can be generated from the rules R and
the subsignature Ω of constructors6. For each rewrite rule7 l : q → r with q, r of
sort B, the signature PΩ(R) extends Ω by adding incrementally:

– assignment operators for each sort Bi of variables xi in q.
op \ : Qid Bi -> Assignment [ctor...] .

– A hole operator with a new sort Context$B related to the sort B:
op [] : -> Context$B [ctor...] .

– For each operator o : A1 ...Am -> A in Ω, a set of operators:
op o : Context$A1 A2 A3 ... Am -> Context$A [ditto] .

op o : A1 Context$A2 A3 ... Am -> Context$A [ditto] .

...

op o : A1 A2 A3 ... Context$Am -> Context$A [ditto] .

where Context$A1,. . . , Context$Am and Context$A are new sorts related to
each sort in the operator declaration. These operator declarations guarantee
that each context term should contain only one hole symbol.

The new signature PΩ(R) defines sorts of context terms for all operators in
Ω. Since one-step proof terms contain only context terms of states, the sort
Context$StateM corresponding to sort StateM for states should be finally de-
fined as a subsort of StateContext. Note that the full signature of PΩ(R) is not
needed in general; only those operators involved in the spatial action patterns
of a given LTLR formula φ are needed.

The theory extension for one-step proof terms is either manually defined by
the user, or automatically generated. A user can define the minimal required
subset of PΩ(R) for a given LTLR formulas at the Core Maude level. The auto-
matic generation of PΩ(R) is also provided at the Full Maude level. We define a
theory transformation PROOF : R → R ∪ PΩ(R), by extending Full Maude [12]
using Maude’s reflective capability [10]. In the Full Maude interface, a module
PROOF[M] contains the signature PΩ(R) where R is specified by a system mod-
ule M in Maude. In addition, the Full Maude interface provides the function
to selectively generate context terms for optimization purposes, since spatial ac-
tion patterns do not use context information in many cases according to our
experience, as illustrated by the example in Section 5.
6 If Ω ⊆ Σ is the subsignature of constructors (specified with the [ctor] keyword),

then every canonical ground term in R should be an Ω-term.
7 We do not consider the condition part of a rewrite rule for a one-step proof term.
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4.3 The LTLR Model Checker Implementation

Our LTLR model checker reuses the modules of the existing C++ LTL model
checker implementation, which uses a very weak alternating automaton to gener-
ate the Büchi automaton [17] with the strongly connected component optimiza-
tions [34], and the nested depth first method [20] for the emptiness checking
algorithm (see [13,14] for the details). For automata-based verification of LTLR
formulas, since events do not need to be distinguished from state propositions as
discussed in Section 3.2, an LTLR formula is transformed into an LTL formula
by regarding events as state propositions, and the same algorithm as in the LTL
case is then used to generate a Büchi automaton. The emptiness checking algo-
rithm is also the same as the one for the LTL model checker, but the synchronous
product is constructed from an LKS instead of from a Kripke structure.

A labeled Kripke structure is generated on-the-fly, so that only requested (or
reachable) states or transitions are created. Each state or transition generated
keeps two bit vectors to record:

1. which state propositions (or events) have been tested, and
2. which state propositions (or events) were satisfied in the state (or transition).

In addition, both the LTL and the LTLR implementations require three extra bit
vectors for each state regarding the synchronous product search, which depends
on the search algorithm. For space optimization, whenever the one-step proof
term is generated, we test all possible spatial action patterns, and the full term
graph representation of the one-step proof term is discarded, except that we
need it later to generate a counterexample with one-step proof terms.

5 Example: The Bounded Retransmission Protocol

In this example we show how a complex system description under only state-
based design can be greatly simplified using our LTLR model checker. We show
the modeling of the bounded retransmission protocol (BRP), which is an ex-
tension of the alternating bit protocol where a limit is placed on the number
of transmissions of the messages [1]. Descriptions of this protocol such as those
given in [30] are quite complex due to the use of a state-based logic, which forces
the specification of the protocol to encode a lot of action information in the
state. With LTLR this encoding need completely disappears, leading to a much
simpler protocol specification. For example, the previous rewriting logic speci-
fication had 36 rewrite rules,8 but we show here the same model with only 14
rewrite rules and with a more readable state representation.

The BRP protocol description is as follows [1]. At the sender side the protocol
requests a sequence of data elements d1, . . . , dn (action REQ) and communicates
a confirmation which can be either SOK, SNOK, or SDNK. SOK means that
the file has been transferred successfully, SNOK means that the file has not
8 The specification in [30] has 35 rules, however, by comparing with our new specifi-

cation, we found that one rule was missing there.
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been transferred completely, and SDNK means that the file may not have been
transferred completely. At the receiver side the protocol delivers each correctly
received datum with an indication which can be either RFST, RINC, ROK,
or RNOK. RFST means that the delivered datum is the first one and more
data will follow, RINC means that the datum is an intermediate one, and ROK
means that this was the last datum and the file is completed. However, when
the connection with the sender is broken, an indication RNOK is delivered. The
Maude specification of BRP in [30] is adapted from the untimed model which
appeared in [1], and our following specification simplifies it.

States of the system are represented by terms of sort Conf with a 6-tuple oper-
ator < , , , , , > : Sender Bool MsgL MsgL Bool Receiver -> Conf. The
first and the sixth components describe the current status of the sender and
the receiver, respectively. The second and fifth components are boolean values
used by the sender and the receiver for synchronization purposes. The third
and fourth components correspond to the two (ordered) lossy channels through
which the sender and the receiver communicate.

Each message is one of 0, 1, fst , last , where fst denotes the first datum and last
the last datum. The sender’s status is one of idle, snd(α) and acc(α), where
snd(α) means that the sender is sending a message α, and acc(α) indicates
that the sender gets an acknowledgement of the acceptance of a message α.
The receiver can have status wait or rec(α), where rec(α) denotes that the
receiver gets a message α. The initial state is a 6-tuple < idle, false, nil,
nil, false, wait >.

The behavior of the protocol is described by rewrite rules. The client side
behavior of the protocol is defined by the following rewrite rules. The auxiliary
status set(α) denotes that the sender is about to send a message α, and it is
equationally reduced to the state with status snd(α) with one α sent.

var S : Sender . var R : Receiver .

vars M M’ : Msg . vars K L : MsgL . vars A T : Bool .

rl [req] : < idle, A, nil, nil, false, R >

=> < set(fst), false, nil, nil, false, R > .

rl [snd] : < snd(M), A, K, L, T, R >

=> < snd(M), A, K ; M, L, T, R > .

rl [acc] : < snd(M), A, K, M’ ; L, T, R >

=> < M # M’, A, K, L, T, R > .

crl [loss] : < snd(M), A, K, nil, T, R >

=> < idle, true, K, nil, T, R > if M =/= fst .

eq M # M’ = if M == M’ then acc(M) else snd(M) fi .

eq < set(M), A, K, L, T, R > = < snd(M), A, K ; M, L, T, R > .

The following rewrite rules describe the choice of the next message.

rl [sel] : acc(fst) => set(0) . rl [sel] : acc(fst) => set(last) .

rl [sel] : acc(0) => set(1) . rl [sel] : acc(0) => set(last) .

rl [sel] : acc(1) => set(0) . rl [sel] : acc(1) => set(last) .

rl [sel] : acc(last) => idle .
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The server-side behavior of the protocol is defined as follows. In the rule rec,
when a received datum is fst, the server flag is set to true.

crl [rec] : < S, false, M ; K, L, T, R >

=> < S, false, K, L ; M, M ? T, rec(M) > if R =/= rec(M) .

rl [ign] : < S, A, M ; K, L, T, rec(M) >

=> < S, A, K, L ; M, T, rec(M) > .

crl [nil] : < S, A, nil, L, T, rec(M) >

=> < S, A, nil, L, false, wait > if M == last or

A == true .

eq M ? T = if M == fst then true else T fi .

The BRP protocol should satisfy the following properties:

1. A request REQ must be followed by a confirmation (SOK, SNOK, or SDNK)
before the next request.

2. An RFST indication must be followed by one of the two indications ROK or
RNOK before the beginning of a new transmission (new request of a sender).

3. An SOK confirmation must be preceded by an ROK indication.
4. An RNOK indication must be preceded by an SNOK or SDNK confirmation

(abortion).

Events occurring in the above properties can be defined by equations as follows:

(mod BRP-CHECK is

protecting PROOF[BRP] .

including LTLR-MODEL-CHECKER .

subsort Conf < State .

subsorts Context$Conf < StateContext .

ops req sok snok sdnk rfst rinc rok rnok : -> Action .

var M : Msg . var C : StateContext . var SS : Substitution .

eq {C | ’req : SS} |= req = true .

eq {C | ’acc : ’M \ last ;

’M’ \ last ; SS} |= sok = true .

ceq {C | ’loss : ’M \ M ; SS} |= snok = true if M =/= last .

eq {C | ’loss : ’M \ last ; SS} |= sdnk = true .

eq {C | ’rec : ’M \ fst ; SS} |= rfst = true .

ceq {C | ’rec : ’M \ M ; SS} |= rinc = true if M == 0 or M == 1 .

eq {C | ’rec : ’M \ last ; SS} |= rok = true .

ceq {C | ’nil : ’M \ M ; SS} |= rnok = true if M =/= last .

endm)

The system has an infinite number of states, but by equational abstraction, we
can collapse the set of states to a finite number (see [30]). Then, the properties
(1)–(4) can be model-checked as follows:

Maude> (red modelCheck(init,[](req -> O(~ req W(sok \/ snok \/ sdnk)))).)

result Bool : true

Maude> (red modelCheck(init,[](rfst -> (~ req W(rok \/ rnok)))) .)

result Bool : true
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Maude> (red modelCheck(init,[](req -> (~ sok W rok))) .)

result Bool : true

Maude> (red modelCheck(init,[](req -> (~ rnok W(snok \/ sdnk)))) .)

result Bool : true

6 Experimental Results

We experiment with three LTLR model checking cases to compare the perfor-
mance of the new algorithm in contrast to our old implementation. As both
LTL and LTLR model checking use the same algorithms for the Büchi automata
generation and the emptiness checking, only the size of the model is important
to evaluate the performance. To compute the size of models for the old imple-
mentation, we count the number of states and transitions in the transition graph
induced by a rewrite theory, for the reason that a Kripke structure associated
to the rewrite theory is created from the transition graph. The size of models in
the new implementation is measured by the number of states and transitions in
the labeled Kripke structure.

The models and properties that we experimented with are: (i) the BRP pro-
tocol and the first property in Section 5, (ii) a simple client-server model and the
liveness property described in [29], and (iii) Dekker’s mutual exclusion algorithm
and the weak fairness property from [2]. Table 1 summarizes the results for each
model. We can see that both the number of states and transitions for the new
algorithm are considerably smaller than those for the old algorithm.

Table 1. The number of states and transitions

Model
Old New

#state/#trans #state/#trans
BRP protocol 283/ 1034 122/ 372
Client-Server 141/ 1140 48/ 272

Dekker’s algorithm 263/ 586 152/ 336

Besides, the previous specification of BRP in [30] has 122 states and 539 tran-
sitions for the same property. In this case, the number of states is not increased
since the specification itself is optimized, but the number of transition is still
increased due to the large number of rules.

7 Related Work and Conclusions

The family of TLR logics incorporating spatial action patterns is introduced
in [27,29]. Besides LTLR, the most general one of these logics is TLR∗, which
generalizes the state-based logic CTL∗. Many well-known state-based logics such
as LTL, CTL, and CTL∗ [9,25], and event-based logics such as Hennessy-Milner’s
logic [19], or De Nicola and Vaandrager’s A-CTL∗ [32], can be viewed as spatial
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cases of TLR∗, either in the literal sense or in the sense of existing faithful
mappings of tandems [27]. The mixed state/event logic SE -LTL in [6,7] can be
also considered as a special case of TLR∗, in particular, LTLR, and our model
checking algorithm are clearly related to the one in [6].

There are many approaches to combine state-based and event-based formulas.
In [4,15,18,33], several extensions of either A-CTL∗ or A-CTL are discussed. Three
other approaches proposing mixed logics with both state-predicates and actions
are: (i) the extension of the SE -LTL in [6,7] to a universally path quantified logic
involving ω-regular expressions [5]; (ii) the ESTL logic of events and states for
Petri nets of [22]; and (iii) the Kripke modal transition systems of [21], and their
use in the verification of safety and liveness properties in the context of the modal
μ-calculus [23] (μL).9 Two other logics that combine actions and state-based for-
mulas are the UNITY logic of Chandy and Misra [8], and Misra’s logic for Seuss
[31]; however, actions as such do not appear in temporal logic formulas, which re-
main state-based. The work most closely related to TLR∗ is that on VLRL [16,26],
but the VLRL solution was less general and did not consider model checking as-
pects. Lamport’s Temporal Logic of Actions (TLA) [24] is also able to specify
properties related to both states and events, however, there is no division of labor
between system and property specification logics. Additionally, actions in TLA
are interpreted as binary relations between states, so that one cannot distinguish
between two actions having the same outcomes from a given state.

After reviewing the syntax and semantics of LTLR, we have presented the
automata-theoretic foundations and the implementation of the new Maude LTLR
model checker, explained its support of language extensions for spatial action
patterns, and illustrated its use with the BRP example. The tool’s implementa-
tion is already quite mature; after a more detailed documentation is completed,
we plan to make it available to Maude users before WRLA 2010. This will make
possible a much wider range of experiments by different users, which will provide
very valuable experience for further improving both its implementation and its
user interface.
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Abstract. Declarative debugging is a semi-automatic technique that
locates a program fragment responsible for the error by building a tree
representing the computation and guiding the user through it to find the
error. Two different kinds of errors are considered for debugging: wrong
answers—a wrong result obtained from an initial value—and missing
answers—a term that should be reachable but cannot be obtained from
an initial value—, where the latter has only been considered in nonde-
terministic systems. However, we consider that missing answers can also
appear in deterministic systems, when we obtain correct results that do
not provide all the expected information, which corresponds, in the con-
text of Maude modules, to terms whose normal form is not reached and
to terms whose computed least sort is, although correct, bigger than the
expected one. We present in this paper a calculus to deduce normal forms
and least sorts, and a proper abbreviation of the trees obtained with it.
These trees increase both the causes (missing equations and member-
ships) and the errors (erroneous normal forms and least sorts) detected
in our debugging framework.

Keywords: declarative debugging, Maude, rewriting logic, membership
equational logic, wrong answers, missing answers.

1 Introduction

Declarative debugging (also known as declarative diagnosis or algorithmic de-
bugging) [17] is a debugging technique that abstracts the computation details
to focus on results. It starts from an incorrect computation, the error symp-
tom, and locates a program fragment responsible for the error. To find this error
the debugger represents the computation as a debugging tree [10], where each
node stands for a computation step and must follow from the results of its child
nodes by some logical inference. This tree is traversed by asking questions to
an external oracle (generally the user) until a buggy node—a node containing
an erroneous result, but whose children are all correct—is found. Traditional
debugging techniques are devoted to fixing errors in specifications when an er-
roneous result, called a wrong answer, is found. Declarative debugging of this
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kind of errors has been widely studied in the logic [9,19], functional [11,12],
and multi-paradigm [3,7] programming languages. Another kind of errors, called
missing answers [4,1], appears in nondeterministic systems when a term that
should be reachable cannot be obtained from an initial one. This kind of errors
has been less studied because it can only be applied to nondeterministic systems
and because the associated calculus may be much more complicated than the
one associated to wrong answers, making the debugging process unbearable.

Maude [5] is a high-level language and high-performance system supporting
both equational and rewriting logic computation. Maude modules correspond
to specifications in rewriting logic [8], a logic that allows the representation of
many models of concurrent and distributed systems. This logic is an extension
of membership equational logic [2], an equational logic that, in addition to equa-
tions, allows to state membership axioms characterizing the elements of a sort.
Rewriting logic extends membership equational logic by adding rewrite rules,
that represent transitions in a concurrent system. The Maude system supports
several approaches for debugging: tracing, term coloring, and using an internal
debugger [5, Chap. 22]. As part of an ongoing project to develop a declarative de-
bugger for Maude specifications, we have already studied wrong answers in both
functional and system modules [14] and missing answers in rewrites [15]. We now
extend our framework by developing a calculus to deduce normal forms and least
sorts seeing that the errors associated to these deductions correspond to missing
answers in a deterministic framework. With this calculus we can detect errors due
not only to wrong statements in a given specification but also to statements that
the user forgot to specify,1 indicating in this last case the operator at the top that
the statement needs. These features improve our debugger in two ways: allowing
to debug missing answers in the equational part of Maude modules and increas-
ing the range of errors detected by the tool. For example, we can now debug
missing answers when a rule cannot be applied because the term does not reach
its normal form due to a missing equation or because the lefthand side does not
match the term because it has a wrong least sort. We illustrate this improvement
in Section 3 with a system module that, if debugged with the previous version
of our tool, would print Error: With the given information (labeling,
correct module, and answers) it is impossible to debug., while in the
current version the error is located.

The rest of the paper is organized as follows: after briefly introducing Maude
modules with an example, Section 2 presents the calculus for missing answers
and how the proof trees built with it are pruned in order to obtain appropriate
debugging trees. Section 3 presents our tool by debugging some examples, while
Section 4 concludes and outlines some future work.

The Maude source of the debugger, a user guide [13], additional examples,
and other papers on this subject, including detailed proofs of the results [16],
are all available from the webpage http://maude.sip.ucm.es/debugging.

1 Note that the treatment of these missing statements is more powerful than the one
currently applied in the Maude sufficient completeness checker [6], because it can be
used with conditional and non left-linear statements.

http://maude.sip.ucm.es/debugging
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1.1 An Example: Heaps

We show in this section how to specify in Maude binary heaps, that is, binary
trees fulfilling that (1) all levels of the tree, except possibly the last one, are
complete and, if the last level of the tree is not complete, the nodes of that level
are filled from left to right; and (2) the value in each node is greater than the
value in each of its children. The module HEAP defines binary trees (BTree) and
Heaps and its nonempty variants (NeBTree and NeHeap), using a theory TH (not
shown here) that defines the functions min, max, and a total order _<_ over the
elements of the sort Elt:

(fmod HEAP{X :: TH} is

pr NAT .

sorts BTree Heap NeBTree NeHeap .

subsort NeHeap < NeBTree Heap < BTree .

op mt : -> Heap [ctor] .

op ___ : BTree X$Elt BTree -> NeBTree [ctor] .

We state by means of memberships when a binary tree is a heap:

vars E E’ : X$Elt . vars BT BT’ : BTree .

vars L L’ R R’ : Heap . vars NL NR : NeHeap .

cmb [h1] : NL E mt : NeHeap

if max(NL) < E /\ depth(NL) == 1 .

cmb [h2] : NL E NR : NeHeap

if max(NL) < E /\ max(NR) < E /\

(depth(NL) == depth(NR) and complete(NL)) or

(depth(NL) == s(depth(NR)) and complete(NR)) .

where the auxiliary function depth computes the depth of a binary tree; max re-
turns the value at the root of a nonempty heap (i.e., its maximum); and complete
checks whether a binary tree is complete:

op depth : BTree -> Nat .

eq [dp1] : depth(mt) = 0 .

eq [dp2] : depth(BT N BT’) = max(depth(BT), depth(BT’)) + 1 .

op max : NeHeap -> X$Elt .

ceq [max] : max(L E R) = E if L E R : NeHeap .

op complete : BTree -> Bool .

eq [cmp1] : complete(mt) = true .

eq [cmp2] : complete(BT E BT’) = complete(BT) and complete(BT’) and

depth(BT) == depth(BT’) .

The function insert introduces a new element in a heap by sinking it to the
appropriate position:
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op insert : X$Elt Heap ~> NeHeap .

eq [ins1] : insert(E, mt) = mt E mt .

ceq [ins2] : insert(E, L E’ R) = L’ max(E, E’) R

if L E’ R : NeHeap /\

not complete(L) or ((depth(L) > depth(R)) and complete(R)) /\

L’ := insert(min(E, E’), L) .

ceq [ins3] : insert(E, L E’ R) = L max(E, E’) R’

if L E’ R : NeHeap /\

not complete(R) or (depth(L) > depth(R)) and complete(L) /\

R’ := insert(min(E, E’), R) .

endfm)

We use a view HN (not shown here) to instantiate the values of the heap as
natural numbers and we define a constant heap for testing:

(fmod NAT-HEAP is

pr HEAP{HN} .

op heap : -> NeHeap .

eq heap = (mt 4 mt) 5 (mt 3 mt) .

endfm)

If we check in our specification the type of the constant heap:

Maude> (red heap .)

result NeBTree : (mt 4 mt) 5 (mt 3 mt)

we realize that although it has a correct sort (it is a NeBTree) its expected least
sort, NeHeap, has not been obtained. We will show in Section 3 how to debug it.

2 Debugging Trees for Normal Forms and Least Sorts

We present in this section a calculus to compute the normal form and the least
sort of a given term. The proof trees computed with this calculus contain the
information proving why the term has been reduced to this normal form or this
sort has been inferred (positive information) and also why the term has not been
further reduced or a lesser sort has not been computed (negative information).
The calculus is introduced as an extension of the calculus in [14] that allowed to
deduce judgments corresponding to oriented equations t → t′ and memberships
t : s, and improves the calculus of missing answers of [15] by adding new causes
to the errors debugged thus far. Once this extended calculus is presented, we
show how to use it to define appropriate debugging trees.

2.1 A Calculus for Normal Forms and Least Sorts

From now on, we assume a rewrite theory R = (Σ, E, R) satisfying the Maude
executability requirements, i.e., E is confluent and terminating, maybe modulo
some equational attributes such as associativity and commutativity, while R is
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coherent with respect to E. Equations corresponding to the equational attributes
form the set A and the equations in E −A can be oriented from left to right.

Throughout this paper we only consider a special kind of conditions and
substitutions that operate over them, called admissible. They correspond to the
ones used in Maude modules and are defined as follows:

Definition 1. A condition C1 ∧ · · · ∧ Cn is admissible if, for 1 ≤ i ≤ n, Ci is

– an equation ui = u′
i or a membership ui : s and vars(Ci) ⊆

⋃i−1
j=1 vars(Cj),

or
– a matching condition ui := u′

i, ui is a pattern and vars(u′
i) ⊆

⋃i−1
j=1 vars(Cj),

or
– a rewrite condition ui ⇒ u′

i, u′
i is a pattern and vars(ui) ⊆

⋃i−1
j=1 vars(Cj).

Note that the lefthand side of matching conditions and the righthand side of
rewrite conditions can contain extra variables that will be instantiated once the
condition is solved.

Definition 2. A kind-substitution, denoted by κ, is a mapping from variables
to terms of the form v1 �→ t1; . . . ; vn �→ tn such that ∀1≤i≤n . kind(vi) = kind(ti),
that is, each variable has the same kind as the term it binds.

Definition 3. A substitution, denoted by θ, is a mapping from variables to
terms of the form v1 �→ t1; . . . ; vn �→ tn such that ∀1≤i≤n . sort(vi) ≥ ls(ti), that
is, the sort of each variable is greater than or equal to the least sort of the term
it binds. Note that a substitution is a special type of kind-substitution where each
term has the sort appropriate to its variable.

Definition 4. Given an atomic condition C, we say that a substitution θ is
admissible for C if

– C is an equation u = u′ or a membership u : s and vars(C) ⊆ dom(θ), or
– C is a matching condition u := u′ and vars(u′) ⊆ dom(θ), or
– C is a rewrite condition u ⇒ u′ and vars(u) ⊆ dom(θ).

The calculus presented in this section (Figures 1 and 2) will be used to deduce
the following judgments, that we introduce together with their meaning for a
Σ-term model [8,16] T ′ = TΣ/E′,R′ defined by equations and memberships E′

and by rules R′:

– Given a term t and a kind-substitution κ, T ′ |= adequateSorts(κ) 	 Θ
when either Θ = {κ} ∧ ∀v ∈ dom(κ).T ′ |= κ[v] : sort(v) or Θ = ∅ ∧ ∃v ∈
dom(κ).T ′ �|= κ[v] : sort(v), where κ[v] denotes the term bound by v in
κ. That is, when all the terms bound in the kind-substitution κ have the
appropriate sort, then κ is a substitution and it is returned; otherwise (at
least one of the terms has an incorrect sort), the kind-substitution is not a
substitution and the empty set is returned.

– Given an admissible substitution θ for an atomic condition C, T ′ |= [C, θ] 	
Θ when Θ = {θ′ | T ′, θ′ |= C and θ′ dom(θ)= θ}, that is, Θ is the set of
substitutions that fulfill the atomic condition C and extend θ.
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θ(t2) →norm t′ adequateSorts(κ1) � Θ1 . . . adequateSorts(κn) � Θn

[t1 := t2, θ] � ⋃n
i=1 Θi

PatC

if {κ1, . . . , κn} = {κθ | κ(θ(t1)) ≡A t′}
t1 : sort(v1) . . . tn : sort(vn)

adequateSorts(v1 �→ t1; . . . ; vn �→ tn) � {v1 �→ t1; . . . ; vn �→ tn}
AS1

ti :ls si

adequateSorts(v1 �→ t1; . . . ; vn �→ tn) � ∅ AS2 if si �≤ sort(vi)

θ(t) : s

[t : s, θ] � {θ} MbC1
θ(t) :ls s′

[t : s, θ] � ∅ MbC2 if s′ �≤ s

θ(t1) ↓ θ(t2)

[t1 = t2, θ] � {θ} EqC1

θ(t1) →norm t′1 θ(t2) →norm t′2
[t1 = t2, θ] � ∅ EqC2 if t′1 �≡A t′2

θ(t1) �t2 := �
n+1 S

[t1 ⇒ t2, θ] � {θ′θ | θ′(θ(t2)) ∈ S} RlC

if n = min(x ∈ N : ∀i ≥ 0 (θ(t1) �t2 := �
x+i S))

[C, θ1] � Θ1 · · · [C, θm] � Θm

〈C, {θ1, . . . , θm}〉 �
m⋃

i=1

Θi

SubsCond

Fig. 1. Calculus for substitutions

– Given a set of admissible substitutions Θ for an atomic condition C, T ′ |=
〈C, Θ〉 	 Θ′ when Θ′ = {θ′ | T ′, θ′ |= C and θ′ dom(θ)= θ for some θ ∈ Θ},
that is, Θ′ is the set of substitutions that fulfill the condition C and extend
any of the admissible substitutions in Θ.

– Given an equation or membership a and a term t, T ′ |= disabled(a, t) when
a cannot be applied to t at the top.

– Given two terms t and t′, T ′ |= t →red t′ when T ′ |= t →1
E′ t′ or T ′ |= ti →!

E′

t′i, with ti �= t′i, for some subterm ti of t such that t′ = t[ti �→ t′i], that is,
the term t is either reduced one step at the top or reduced by substituting
a subterm by its normal form.

– Given two terms t and t′, T ′ |= t →norm t′ when T ′ |= t →!
E′ t′, that is, t′ is

in normal form with respect to the equations E′.
– Given a term t and a sort s, T ′ |= t :ls s when T ′ |= t : s and moreover s is the

least sort with this property (with respect to the ordering on sorts obtained
from the signature Σ and the equations and memberships E′ defining the
Σ-term model T ′).

We introduce in Figure 1 the inference rules defining the relations [C, θ] 	
Θ, 〈C, Θ〉 	 Θ′, and adequateSorts(κ) 	 Θ. Intuitively, these judgments will
provide positive information when they lead to nonempty sets (indicating that
the condition holds in the first two judgments or that the kind-substitution
is a substitution in the third one) and negative information when they lead
to the empty set (indicating respectively that the condition fails or the kind-
substitution is not a substitution):
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– Rule PatC computes all the possible substitutions that extend θ and satisfy
the matching of the term t2 with the pattern t1 by first computing the normal
form t′ of t2, obtaining then all the possible kind-substitutions κ that make
t′ and θ(t1) equal modulo axioms (indicated by ≡A), and finally checking
that the terms assigned to each variable in the kind-substitutions have the
appropriate sort with adequateSorts(κ). The union of the set of substitutions
thus obtained constitutes the set of substitutions that satisfy the matching.

– Rule AS1 checks whether the terms of the kind-substitution have the ap-
propriate sort to match the variables. In this case the kind-substitution is a
substitution and it is returned.

– Rule AS2 indicates that, if the least sort of any of the terms in the kind-
substitution is bigger than the required one, then it is not a substitution and
thus the empty set of substitutions is returned.

– Rule MbC1 returns the current substitution if a membership condition holds.
– Rule MbC2 is used when the membership condition is not satisfied. It checks

that the least sort of the term is not less than or equal to the required one,
and thus the substitution does not satisfy the condition and the empty set
is returned.

– Rule EqC1 returns the current substitution when an equality condition holds,
that is, when the two terms can be joined with equations, abbreviated as
t1 ↓ t2.

– Rule EqC2 checks that an equality condition fails by obtaining the normal
forms of both terms and then examining that they are different.

– Rewrite conditions are handled by rule RlC. This rule extends the set of
substitutions by computing all the reachable terms that satisfy the pattern
(using the relation t 	C

n S explained in [16]) and then using these terms to
obtain the new substitutions.

– Finally, rule SubsCond computes the extensions of a set of admissible sub-
stitutions {θ1, . . . , θn} by using the rules above with each of them.

We use these judgments to define the inference rules of Figure 2, that describe
how the normal form and the least sort of a term are computed:

– Rule Dsb indicates when an equation or membership a cannot be applied to a
term t. It checks that there are no substitutions that satisfy the matching of
the term with the lefthand side of the statement and that fulfill its condition.
Note that we check the conditions from left to right, following the same order
as Maude and making all the substitutions admissible.

– Rule Rdc1 reduces a term by applying one equation when it checks that
the conditions can be satisfied, where the matching conditions are included
in the equality conditions. While in the previous rule we made explicit the
evaluation from left to right of the condition to show that finally the set of
substitutions fulfilling it was empty, in this case we only need one substitu-
tion to fulfill the condition and the order is unimportant.

– Rule Rdc2 reduces a term by reducing a subterm to normal form (checking
in the side condition that it is not already in normal form).
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[l := t, ∅] � Θ0 〈C1, Θ0〉 � Θ1 . . . 〈Cn, Θn−1〉 � ∅
disabled(a, t)

Dsb

if a ≡ l → r ⇐ C1 ∧ . . . ∧ Cn ∈ E or
a ≡ l : s ⇐ C1 ∧ . . . ∧ Cn ∈ E

{θ(ui) ↓ θ(u′
i)}n

i=1 {θ(vj) : sj}m
j=1

θ(l) →red θ(r)
Rdc1 if l → r ⇐ ∧n

i=1 ui = u′
i ∧ ∧m

j=1 vj : sj ∈ E

t →norm t′

f(t1, . . . , t, . . . , tn) →red f(t1, . . . , t′, . . . , tn)
Rdc2 if t �≡A t′

disabled(e1, f(t1, . . . , tn)) . . . disabled(el, f(t1, . . . , tn)) t1 →norm t1 . . . tn →norm tn

f(t1, . . . , tn) →norm f(t1, . . . , tn)
Norm

if {e1, . . . , el} = {e ∈ E | e �top
K f(t1, . . . , tn)}

t →red t1 t1 →norm t′

t →norm t′
NTr

t →norm t′ t′ : s disabled(m1, t′) . . . disabled(ml, t′)
t :ls s

Ls

if {m1, . . . , ml} = {m ∈ E | m �top
K t′ ∧ sort(m) < s}

Fig. 2. Calculus for normal forms and least sorts

– Rule Norm states that the term is in normal form by checking that no equations
can be applied at the top considering the variables at the kind level (which is
indicated by 'top

K ) and that all its subterms are already in normal form.
– Rule NTr describes the transitivity for the reduction to normal form. It

reduces the term with the relation →red and the term thus obtained then is
reduced to normal form by using again →norm .

– Rule Ls computes the least sort of the term t. It computes a sort for its
normal form (that has the least sort of the terms in the equivalence class)
and then checks that memberships deducing lesser sorts, applicable at the
top with the variables considered at the kind level, cannot be applied.

In these rules Dsb provides the negative information, proving why the statements
(either equations or membership axioms) cannot be applied, while the remaining
rules provide the positive information indicating why the normal form and the
least sort are obtained.

Theorem 1. The calculus of Figures 1 and 2 is correct w.r.t. R = (Σ, E, R) in
the sense that for any judgment ϕ, ϕ is derivable in the calculus if and only if
TΣ/E,R |= ϕ, with TΣ/E,R being the corresponding initial model.

Once these rules have been presented, we can compute the proof tree associ-
ated to the erroneous computation shown in Section 1.1 for the heaps example.
Remember that the least sort of the term heap, that should be NeHeap, was
instead NeBTree. Figures 3 and 4 show the associated proof tree, where h stands
for the term (mt 4 mt) 5 (mt 3 mt), l for the lefthand side of the membership
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heap →red h
Rdc1

h →norm h
Norm

heap →norm h
NTr

h : NeBTree
Mb

T1

heap :ls NeBTree
Ls

Fig. 3. Proof tree for the heap example

h →norm h
Norm

�
mt 4 mt :ls NeBTree

Ls

adequateSorts (l, θ)
AS2

[l := h] 	 ∅ PatC 〈C1, ∅〉 	 ∅ SubsCond
. . . 〈Cn, ∅〉 	 ∅ SubsCond

disabled(h2, h)
Dsb

Fig. 4. Proof tree T1, proving the matching with h2

h2, namely NL E NR with NL and NR variables of sort NeHeap and E a natural
number, C1 and Cn are respectively the first condition and last condition of h2,
θ is NL �→ mt 4 mt; E �→ 5; NR �→ mt 3 mt, and � represents a tree similar to the
one depicted in Figure 3.

The tree shown in Figure 3 illustrates that to compute the least sort of heap
first it obtains its normal form and then it checks that no memberships can
be applied to this term (and thus the sort is inferred by using the operator
declarations). To check that no memberships are applied it only checks whether
h2 is used, because the other membership does not match the term with the
variables at the kind level. The tree T1, depicted in Figure 4, is in charge of this
proof, that is, it provides the negative information proving that the membership
cannot be applied. First, it checks that the lefthand side of the membership
does not match the term because mt 4 mt has as least sort NeBTree and hence
it does not match the variable NL, that has sort NeHeap. Since the empty set
of substitutions is computed for this matching, the rest of conditions of the
membership cannot be fulfilled, which is proved by the nodes associated with
the rule SubsCond.

Following the approach shown in [14], we assume the existence of an intended
interpretation I of the given rewrite theory R = (Σ, E, R). This intended inter-
pretation is a Σ-term model corresponding to the model that the user had in
mind while writing the specification R. We say that a judgment is valid when it
holds in I, and invalid otherwise. The basis of declarative debugging consists in
searching buggy nodes (invalid nodes with all its children valid) [10] in a debug-
ging tree standing for a problematic computation. In our debugging framework,
we are able to locate wrong equations, wrong memberships, missing equations,
and missing memberships,2 which are defined as follows:

2 It is important not to confuse wrong and missing answers with wrong and missing
statements. The former are the initial symptoms that indicate the specifications fails,
while the latter are the errors that generated this misbehavior.
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– Given a statement A ⇐ C1 ∧ · · · ∧ Cn (where A is either an equation l = r
or a membership l : s) and a substitution θ, the statement instance θ(A) ⇐
θ(C1) ∧ · · · ∧ θ(Cn) is wrong when all the atomic conditions θ(Ci) are valid
in I but θ(A) is not.

– Given a term t, there is a missing equation for t if the computed normal
form of t does not correspond with the one expected in I.

– A specification has a missing equation if there exists a term t such that there
is a missing equation for t.

– Given a term t, there is a missing membership for t if the computed least
sort for t does not correspond with the one expected in I.

– A specification has a missing membership if there exists a term t such that
there is a missing membership for t.

Regarding missing statements, what the debugger reports is that a statement is
missing or the conditions in the remaining statements are not the intended ones
(thus they are not applied when expected and another one would be needed),
but the error is not located in the statements used in the conditions, since they
are also checked during the debugging process.

Proposition 1. Let N be a buggy node in some proof tree in the calculus of
Figures 1 and 2 w.r.t. an intended interpretation I. Then the error associated
to N is a wrong equation, a missing equation, or a missing membership.

Although these are the errors detected by the calculus presented in this paper,
since it is integrated with both the calculus of wrong answers [14] and the cal-
culus for missing answers [15], the debugger as a whole can also detect wrong
memberships and wrong and missing rules.

2.2 Abbreviated Proof Trees

We describe in this section how the proof trees shown in the previous section can
be abbreviated in order to ease the questions posed to the user while keeping
the completeness and correctness of the technique. To achieve this aim we ex-
tend the notion of APT (T ) introduced in [14]; APT (T ) (from Abbreviated Proof
Tree) is obtained by a transformation based on deleting nodes whose correctness
only depends on the correctness of their children. For example, nodes related to
judgments about sets of substitutions, that can be complicated due to matching
modulo, are removed.

The rules to compute the abbreviated proof tree, which are assumed to be
applied in order (i.e., a rule cannot be applied if there is another one with a
lower index that can be used), are described in Figure 5:

– Rule (APT1) keeps the root of the tree and applies the general function
APT ′, that returns a set of trees, to the tree.

– Rule (APT2) improves the questions presented to the user when the inference
rule NTr is used. This abbreviation associates the equation applied in the left
branch (in the inference rule Rdc1) to the judgment rooting the tree. In this
way we ask about reductions to normal form instead of reductions in one step.
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(APT1) APT

(
T1 . . . Tn

aj
R1

)
= APT ′

(
T1 . . . Tn

aj
R1

)
aj

R1

(APT2) APT ′

⎛
⎝ T1 . . . Tn

t → t′′ Rdc1 T ′

t → t′
NTr

⎞
⎠ =

{
APT ′ (T1) . . . APT ′ (Tn) APT ′ (

T ′)
t → t′ Rdc1

}

(APT3) APT ′
(

Tt→norm t′ T1 . . . Tn

t :ls s
Ls

)
=

{
APT ′ (

Tt→norm t′
)

APT ′ (T1) . . . APT ′ (Tn)
t′ :ls s

Ls

}

(APT4) APT ′
(

T1 . . . Tn

aj
R2

)
=

{
APT ′ (T1) . . . APT ′ (Tn)

aj
R2

}

(APT5) APT ′
(

T1 . . . Tn

aj
R1

)
= APT ′ (T1)

⋃
. . .

⋃
APT ′ (Tn)

R1 any inference rule R2 Rdc1, or Norm aj any judgment

Fig. 5. APT rules

– Rule (APT3) improves the questions about least sorts by asking about the
normal form of the term and thus the user is not in charge of computing it.

– Rule (APT4) keeps the conclusion of the inference rules that contain de-
bugging information.

– Rule (APT5) discards the conclusion of the rules which do not contain
debugging information.

Theorem 2. Let T be a finite proof tree representing an inference in the cal-
culus of Figures 1 and 2 w.r.t. some rewrite theory R. Let I be an intended
interpretation of R such that the root of T is invalid in I. Then:

– APT (T ) contains at least one buggy node (completeness).
– Any buggy node in APT (T ) has an associated wrong equation, missing equa-

tion, or missing membership axiom in R (correctness).

The abbreviated proof tree obtained by applying these rules to the proof tree
depicted in Figures 3 and 4 is shown in Figure 6. This proof tree has been
obtained by combining different features available in our tool:

– Judgments of the form t →norm t, that indicate that t is in normal form, are
dropped from the proof tree if they are built only with constructors. In our
example, the nodes corresponding to h →norm h have been removed.

– Only labeled statements generate nodes in the abbreviated proof tree. For
example, the equation to reduce the constant heap is not labeled and thus
the node heap →red h (or its corresponding abbreviation) does not appear in
the abbreviated tree. Moreover, the debugger provides some other trusting
mechanisms: statements and imported modules can be trusted before start-
ing the debugging process; statements can also be trusted on the fly; and
a correct module, introduced before starting the debugging process, can be
used as oracle before asking the user.
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(‡) mt :ls Heap
Ls

(†) h :ls NeBTree
Ls

heap :ls NeBTree
Ls

Fig. 6. Abbreviated proof tree for the heap example

– The signature is always considered correct, and hence judgments inferred by
using it do not appear in the abbreviated tree. For example, the membership
inference h : BTree only uses operator declarations and thus it does not
appear in the final tree.

– The rest of nodes have been pruned by the APT rules. For example, they
prevent all the judgments using substitutions from being asked.

Furthermore, the user can also follow some strategies to reduce the size of the
debugging tree:

– If an error is found using a complex initial term, this error can probably
be reproduced with a simpler one. Using this simpler term leads to easier
debugging sessions.

– When facing a problem with both wrong and missing answers, it is usually
better to debug first the wrong answers, because questions related to them
are easier to answer and fixing them can also solve the missing answers
problem.

– The Maude profiler [5, Chap. 22] indicates the most frequently used state-
ments for a given computation. Trusting these statements will greatly reduce
the size of the tree, although it requires the user to make sure that these
statements are indeed correct.

Once the tree has been abbreviated we only have a subset of the original nodes
and hence only the correctness of the judgments in these nodes concerns the
debugging process. We present here the questions derived only from the calculus
presented here, while the rest of the questions asked by the debugger can be
found in [13]:

– When a term cannot be further reduced and it is not built only by construc-
tors the debugger asks “Is t in normal form?,” which is correct if the user
expected t to be a normal form.

– When a term t has been reduced by using equations to another term t′,
the debugger asks questions of the form “Is this reduction correct? t → t′.”
These judgments are correct if the user expected t to be reduced to t′.

– When a sort s is inferred for a term t, the debugger prompts questions of
the form “Is this membership correct? t : s.” This judgment is correct if t
has sort s.

– When the judgment refers to the least sort ls of a term t, the tool makes
questions of the form “Did you expect t to have least sort ls?.” In this case,
the judgment is correct if the intended least sort of t is exactly ls .
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3 A Debugging Session

We describe in this section how to debug the specification shown in Section 1.1.
To debug the error discovered in this specification (the least sort of the term
heap is NeBTree) we use the command:

Maude> (missing heap : NeBTree .)

This command builds the tree depicted in Figure 6 and asks the following
question, associated with the node marked with (†) in the figure:3

Is NeBTree the least sort of mt 4 mt ?

Maude> (no .)

Since we expected the term to have sort NeHeap the judgment is erroneous
and the next question, that is associated to the node (‡) in Figure 6, is:

Is Heap the least sort of mt ?

Maude> (yes .)

With this answer the node (‡) disappears from the tree and the node (†)
becomes buggy, because it is associated to an incorrect judgment and it has no
children. The debugger presents the following message:

The buggy node is:

The least sort of mt 4 mt is NeBTree

Either the operator ___ needs more membership axioms or the conditions of

the current axioms are not written in the intended way.

Actually, if we check the specification we notice that the membership corre-
sponding to the case when both heaps are empty was not stated. We should add
to the specification the membership axiom:

mb [h3] : mt E mt : NeHeap .

We can use now these heaps to implement another application. We present
here a very simple specification of an auction. The module AUCTION defines the
sort People as a multiset of Person (a pair of names and bids) and an Auction
as some people and a heap, defined in NS-HEAP, containing elements of the form
[N,S], where N is a natural number standing for the bid and S a String with
the name of the bidder. The winner of the auction will be the person on the top
of the heap:

(mod AUCTION is

pr NS-HEAP .

sorts Person People Auction .

3 Although the debugger provides two different navigation strategies, in this simple
tree both of them choose the same node.
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subsort Person < People .

op <_‘,_> : String Nat -> Person [ctor] .

op nobody : -> People [ctor] .

op __ : People People -> People [ctor comm assoc id: nobody] .

op _‘[_‘] : People Heap -> Auction [ctor] .

The rule bid inserts a bid into the heap:

var N : Nat . var H : Heap .

var P : People . var S : String .

rl [bid] : (P < S, N >) [H] => P [insert([N,S], H)] .

endm)

If we search now for the possible winners of an auction, where initial stands
for < "aida", 5 > < "nacho", 4 > < "charlie", 3 > [mt]:

Maude> (search in AUCTION : initial =>!

nobody [L:Heap [N:Nat, S:String] R:Heap] .)

No solution.

no solutions are found. Since one solution is expected, we debug the specification
with the command:

Maude> (missing initial =>! nobody [ L:Heap [N:Nat, S:String] R:Heap ] .)

This command builds the corresponding debugging tree and traverses it with
the default divide and query strategy, that each time selects the node whose
subtree’s size is the closest one to half the size of the whole tree, keeping only
this subtree if its root is incorrect, and deleting the whole subtree otherwise.
The first question is:

Are the following terms all the reachable terms from

(< "aida", 5 > < "charlie", 3 > < "nacho", 4 >)[mt] in one step?

1 (< "aida", 5 > < "nacho", 4 >)[mt [3, "charlie"] mt]

2 (< "aida", 5 > < "charlie", 3 >)[mt [4, "nacho"] mt]

3 (< "charlie", 3 > < "nacho", 4 >)[mt [5, "aida"] mt]

Maude> (yes .)

The rule has inserted each person into the heap and thus the transition is
correct. After some other questions related to rewrites in the style of [15], the
debugger asks:

Is insert([4,"nacho"],mt[3,"charlie"]mt) in normal form?

Maude> (no .)

This term is not in normal form because we expected insert to be reduced.
The next questions are also related to normal forms:4

4 Note that, in these cases, the String values are not built with constructors and thus
this question is not automatically removed by the debugger. If we defined our own
constants for the names with the ctor attribute, these questions would not appear.
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Is mt [3, "charlie"] mt in normal form?

Maude> (yes .)

Is [4,"nacho"] in normal form?

Maude> (yes .)

In these cases the judgment is correct because no equations should be applied
to them. The next questions refer to reductions:

Is this reduction (associated with the equation dp1) correct?

depth(mt) -> 0

Maude> (trust .)

Is this reduction (associated with the equation cmp1) correct?

complete(mt) -> true

Maude> (trust .)

Since these reductions were associated to simple equations we have used the
command trust to prevent the debugger from asking questions related to these
equations again. The next question deals with memberships:

Is this membership (associated with the membership h3) correct?

mt [3, "charlie"] mt : NeHeap

Maude> (yes .)

The membership is correct because it only contains the value at the root.
With this information the debugger finds the following bug:

The buggy node is:

insert([4,"nacho"], mt [3, "charlie"] mt) is in normal form.

Either the operator insert needs more equations or the conditions of

the current equations are not written in the intended way.

If we carefully inspect the equations for insert we notice that we have not
treated the case where the tree is complete and a new level has to be started. We
can add the appropriate equation or fix the equation ins2, that distinguishes a
case that cannot occur in heaps. If we choose the latter, it should be fixed as
follows:

ceq [ins2] : insert(E, L E’ R) = L’ max(E, E’) R

if L E’ R : NeHeap /\

not complete(L) or ((depth(L) == depth(R)) and complete(R)) /\

L’ := insert(min(E, E’), L) .

4 Future Work

In this paper we have presented a calculus to debug erroneous normal forms
and least sorts by abbreviating the proof trees obtained with it. This calculus,
besides allowing to debug these new errors, improves the former versions of our
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debugger by allowing the debugging of new causes of missing answers in rewrites:
missing equations and memberships. These debugging features have also been
integrated with the graphical user interface [13].

Although the current version of the tool allows the user to introduce a correct
but maybe incomplete module in order to shorten the debugging session [14], we
also want to add a new command to introduce complete modules, which would
greatly reduce the number of questions asked to the user. We also intend to add
new navigation strategies like the ones shown in [18] that take into account the
number of different potential errors in the subtrees, instead of their size.

Finally, we plan to use the new narrowing features of Maude to implement
a test generator for Maude specifications. This generator would allow to check
Maude specifications and then to invoke the debugger when one of the test cases
fails.

Acknowledgements. We cordially thank Martin Wirsing for encouraging us
to investigate the causes for missing answers in a deterministic context, and the
referees for their useful comments.
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Abstract. This paper presents the main results and conclusions of the
Third Rewrite Engines Competition (REC III). This edition of the com-
petition took place as part of the 8th Workshop on Rewriting Logic
and its Applications (WRLA 2010), and the systems ASF+SDF, Maude,
Stratego/XT, Tom, and TXL participated in it.

1 Introduction

As in the 2006 and 2008 editions of the Workshop on Rewriting Logic and its
Applications [9,13], in WRLA 2010 a rewrite engines competition was organized,
with the aim of bringing to the community the different rewrite engines available,
with the main purpose of showing the strengths of each of the participating sys-
tems. And as in WRLA 2006 and WRLA 2008, the 2010 edition of the workshop
included a session on the competition, in which, in addition to a presentation
on the organization, development, and results of the competition, the developers
of each of the systems in it had the opportunity of presenting their systems.
The discussion and questions from the audience where without any doubt the
most interesting part of the session. The present paper tries to summarize such
a competition and session, providing additional details on the way the competi-
tion was organized and conducted, and trying to complete on the discussion and
comparison of the different systems and the results obtained.

The Third Rewrite Engines Competition counted with the particiption of five
systems, namely ASF+SDF [20,19], represented by M. van den Brand and L.
Engelen; Maude [4,5], represented by F. Durán and S. Eker; Stratego/XT [22,2],
represented by M. de Jonge, K. T. Kalleberg, L. Kats, and E. Visser; Tom [1],
represented by J.-C. Bach, E. Balland, and P.-E. Moreau; and TXL [7,6], rep-
resented by J. Cordy. The second edition gathered the same number of partic-
ipants (ASF+SDF, Maude, Stratego, TermWare [14] and Tom) and two in the
first one (ASF+SDF and Maude). We would have liked to gather more systems,

P.C. Ölveczky (Ed.): WRLA 2010, LNCS 6381, pp. 243–261, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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although it is not easy, for different reasons. We would like to thank the devel-
opers of Kiama [15], Rascal [12] and TermWare, who showed their interest in
being involved, but for one reason or another, were not able to get to the end.
Developers of other systems were also invited, but kindly refused their partic-
ipation. Our apologies to any other system that should have been invited but
was not... perhaps in the next one!

This edition of the competition, as the previous ones, was very illustrative,
since it showed that each of the engines focusses on very specific problems,
and that they are very good at them. More than a competition, REC is an
opportunity to show the different systems and their strengths, and why not,
their weaknesses, to the rewriting community.

The first competition [10], which was organized by G. Roşu, focused on ef-
ficiency, specifically speed, memory management and built-ins use. There were
only two participants, ASF+SDF, represented by M. van den Brand, and Maude,
represented by S. Eker, but awoke interest on such a kind of event and opened the
door to the subsequent competitions. For this first edition of the competition, a
number of test examples were compiled, all of them using features supported by
both systems. Most of the problems used came from the benchmarks of the two
systems. The paper [10] includes very interesting discussions on the technical
details why Maude and ASF+SDF behaved like they did on the different tests
run in the 1st REC. Since many of the problems used in it are again in this 3rd
REC, the discussions there are a very useful complement to the present paper.

For the second edition [11], the possibility of having some bigger problems
to develop was considered. Several ideas were considered, as the development
of a small theorem prover, the exploration of a search space, a transformation
of XML or a tree... Among all these problems, first steps in the world of pro-
gram transformations were taken. In the end, a common language to specify
term rewrite systems, called REC, was developed, and the development of an
interpreter for REC was proposed. Then, the set of rewrite problems proposed
was expressed in this REC language.

The REC language and its use to run the problems in the competition was
maintained on this 3rd competition. Some new problems were included in our
benchmark, but basically the efficiency of the systems was compared running the
different problems in this REC syntax on the interpreters developed for REC
in the participating systems. To be able to reuse the interpreters developed for
the 2008 competition, the syntax of the REC language, which is described in
Section 3.1, was not modified.

After the experience with the REC language, and since some of the systems in
the competition specialize on program transformation, we decided to include in
this edition some additional problems related to the definition of programming
languages, and to the generation, analysis and transformation of programs, which
is one of the key application areas of term rewriting. Following a suggestion
by J. Cordy, we decided to include some problems from the TIL Chairmarks,
developed by J. Cordy and E. Visser. The TIL language and the TIL Chairmarks
problems used in the competition are described in Sections 3.2 and 5.
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2 The Systems in the Competition

The systems in the 3rd REC are of a very different nature. We have compil-
ers and interpreters, we have specific-purpose and general-purpose systems, we
have embedded rewriting systems and stand-alone systems, ... The results here
should not be taken as a final comparison of the systems, but just as a start-
ing point on some very specific issues. In fact, there are many strong points in
each of the systems that are not considered in the competition. For example,
SDF+SDF, Stratego, Tom, and TXL have very sophisticated facilities for pro-
gram manipulation, with, e.g., very powerful parsers and pretty-printing tools;
Tom is embedded into different generalist programming languages (e.g. C, Java,
Python, C++, C#); Maude supports matching modulo any combination of as-
sociativity, commutativity, and identity, and unification modulo commutativity
and associativity-commutativity, and provides a suite of formal tools. In this
section we introduce the main features of each of the systems.

2.1 ASF+SDF

ASF+SDF is a general-purpose, executable, algebraic specification formalism
based on (conditional) term rewriting. Its main application areas are the defini-
tion of the syntax and the static semantics of (programming) languages, program
transformations and analysis, and for defining translations between languages.

The ASF+SDF formalism [21] is a combination of two formalisms: ASF (the
Algebraic Specification Formalism) and SDF (the Syntax Definition Formalism).
SDF is used to define the concrete syntax of a language, whereas ASF is used to
define conditional rewrite rules; the combination ASF+SDF allows the syntax
defined in the SDF part of a specification to be used in the ASF part, thus sup-
porting the use of user-defined syntax when writing ASF equations. ASF+SDF
also supports modular structuring of specifications using names modules, and
thus enabling reuse.

The ASF+SDF and the ASF+SDF Meta-Environment have been applied in
a broad range of applications. The application areas can be characterized as:
prototyping of domain specific languages, software renovation, and code gener-
ation. An overview of some of the applications is given in [17]. The ASF+SDF
system, its documentation, and related papers are available at http://www.
meta-environment.org/. ASF+SDF is no longer maintained and is replaced
by Rascal, see http://www.rascal-mpl.org/.

2.2 Maude

Maude is a language and a system based on rewriting logic [4,5,3]. Maude mod-
ules are rewrite theories, while computation with such modules corresponds to
efficient deduction by rewriting. Since rewriting logic contains equational logic,
Maude also supports equational specification and programming in its sublan-
guage of functional modules and theories. The underlying equational logic of

http://www.meta-environment.org/
http://www.meta-environment.org/
http://www.rascal-mpl.org/
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Maude is membership equational logic, that has sorts, subsorts, operator over-
loading, and partiality definable by membership and equality conditions. Be-
cause of its logical basis and its initial model semantics, a Maude module defines
a precise mathematical model. This means that Maude and its formal tool en-
vironment can be used in three, mutually reinforcing ways: as a declarative
programming language, as an executable formal specification language, and as a
formal verification system. The Maude system, its documentation, and related
papers and applications are available from the Maude website http://maude.
cs.uiuc.edu.

Maude provides very efficient support for rewriting modulo any combination
of associativity, commutativity, and identity axioms, and provides two built-in
rewrite strategies: top-down rule fair and position fair. Maude’s rewrite engine
makes extensive use of advanced semi-compilation techniques and sophisticated
data structures supporting rewriting modulo. Besides supporting efficient exe-
cution, Maude also provides a range of formal tools and algorithms to analyze
rewrite theories and verify their properties including a search facility for doing
breadth first search with cycle detection, and a linear time temporal logic model
checker.

2.3 Stratego/XT

Stratego/XT is a language and toolset for program transformation. The Strat-
ego language provides rewrite rules for expressing basic transformations, pro-
grammable rewriting strategies for controlling the application of rules, concrete
syntax for expressing the patterns of rules in the syntax of the object language,
and dynamic rewrite rules for expressing context-sensitive transformations, thus
supporting the development of transformation components at a high level of
abstraction.

The XT toolset offers a collection of extensible, reusable transformation tools,
such as powerful parser and pretty-printer generators and grammar engineering
tools. Stratego/XT supports the development of program transformation infras-
tructure, domain-specific languages, compilers, program generators, and a wide
range of meta-programming tasks.

Stratego has two backends: one for generating C code (StrC), and another for
generating Java code (StrJ). The Stratego/XT system, its documentation, and
related papers are available at http://strategoxt.org/.

2.4 Tom

Tom [1] is an extension of Java which adds support for algebraic data-types
and pattern matching. Contrary to other languages, Tom does not enforce any
particular tree representation for the objects being matched. To make this pos-
sible, Tom provides a mapping definition formalism to describe the relationship
between the concrete Java implementation and the algebraic view, which allows
to define transformations directly on existing Java data-structures. The other
features of the Tom language are mainly a powerful pattern-matching construct

http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu
http://strategoxt.org/
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(matching modulo theory, list-matching, anti-patterns, XML notation,. . . ); sup-
port for private types in Java; an efficient implementation of typed and maxi-
mally shared terms, an extension for term-graph rewriting and a strategy lan-
guage inspired by Elan and Stratego.

To conclude, the main originality of Tom is that it is piggybacked on top
of Java, which allows to integrate smoothly declarative transformation code in
existing Java programs. It has been used to implement many large and complex
applications, among them the compiler itself. Tom is used in academic projects
to prototype models based on rewriting but it is also successfully integrated in in-
dustrial products (for example, database request translation in SAP’s software).
The Tom systems is available at http://tom.loria.fr/.

2.5 TXL

TXL [6,7] is a special-purpose programming language designed for creating, ma-
nipulating and rapidly prototyping language descriptions, tools and applications
using source transformation. TXL is designed to allow explicit programmer con-
trol over the interpretation, application, order and backtracking of both parsing
and rewriting rules. Using first order functional programming at the higher level
and term rewriting at the lower level, TXL provides for flexible programming
of traversals, guards, scope of application and parameterized context. This flex-
ibility has allowed TXL users to express and experiment with both new ideas in
parsing, such as robust, island and agile parsing, and new paradigms in rewrit-
ing, such as XML markup, rewriting strategies and contextualized rules, without
any change to TXL itself. TXL’s website is http://txl.ca.

3 The REC and TIL Languages

With different goals in mind, two different languages, REC and TIL, have been
used in the competition. We present these simple languages in the following
sections. Section 3.3 discusses the lexical analysis and parsing tools developed
for these languages as part of the competition.

3.1 The REC Language

REC is a term rewriting language, that was defined for the second rewrite engines
competition as a common language in which to write the rewrite tasks to pose to
the participant systems. The REC language is many-sorted, does not have any
built-ins, uses prefix syntax, does not support overloading, allows conditional
rules, and includes syntax for assoc, comm, id, and strat attributes à la OBJ.
A BNF description of the syntax of the language is given in Figure 1. Figure 2
shows the REC specification of the factorial function, with the natural numbers,
with plus and times operations, represented using Peano notation.

Each of the participants was asked to build a program transforming the prob-
lems in this REC syntax to the language of their corresponding tools. Those

http://tom.loria.fr/
http://txl.ca
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〈spec 〉 ::= REC-SPEC 〈id 〉
[ SORTS 〈idlist 〉 ]
[ VARS 〈vardecllist 〉 ]
[ OPS 〈opdecllist 〉 ]
[ RULES 〈rulelist 〉 ]

END-SPEC

〈idlist 〉 ::= 〈id 〉 〈idlist 〉 | ε
〈vardecllist 〉 ::= 〈idlist 〉 : 〈id 〉 〈vardecllist 〉 | ε
〈opdecllist 〉 ::= 〈opdecl 〉 〈opdecllist 〉 | ε
〈opdecl 〉 ::= op 〈id 〉 : 〈idlist 〉 -> 〈id 〉

| op 〈id 〉 : 〈idlist 〉 -> 〈id 〉 〈opattrlist 〉
〈opattrlist 〉 ::= 〈opattr 〉 〈opattrlist 〉 | ε
〈opattr 〉 ::= assoc | comm | id( 〈term 〉 ) | strat( 〈intlist 〉 )

〈rulelist 〉 ::= 〈rule 〉 〈ruleslist 〉 | ε
〈rule 〉 ::= 〈term 〉 -> 〈term 〉 | 〈term 〉 -> 〈term 〉 if 〈condlist 〉
〈condlist 〉 ::= 〈cond 〉 | 〈cond 〉 , 〈condlist 〉
〈cond 〉 ::= 〈term 〉 -><- 〈term 〉 % ==

| 〈term 〉 ->/<- 〈term 〉 % =/=

〈term 〉 ::= 〈id 〉 | 〈id 〉 ( ) | 〈id 〉 ( 〈termlist 〉 )

〈termlist 〉 ::= 〈term 〉 | 〈term 〉 , 〈termlist 〉
〈intlist 〉 ::= 〈int 〉 〈intlist 〉 | ε
〈command 〉 ::= get normal form for: 〈term 〉

| check the confluence of: 〈term 〉 -><- 〈term 〉

〈id〉 are non-empty sequences of any characters except ‘ ’, ‘(’, ‘)’, ‘{’, ‘}’, ‘"’
and ‘,’; and excluding ‘:’, ‘->’, ‘-><-’, ‘->/<-’, ‘if’, and keywords REC-SPEC,
SORTS, VARS, OPS, RULES, and END-SPEC.
〈int〉 are non-empty sequences of digits.
Comments are given using ‘%’. Text written in the line after a ‘%’ is discarded.

Fig. 1. BNF description of the syntax of the REC language

that already developed this program transformer for REC II were able to use
the same tool, since the syntax of the language did not change. This was one of
the reasons for developing such a language in 2008. ASF+SDF and TXL had to
build it from scratch for REC III.

3.2 TIL

The Tiny Imperative Language (TIL) is a very small imperative language with
assignments, conditionals, and loops, designed by J. Cordy and E. Visser, as
a basis for small illustrative example transformations. These example transfor-
mations define the benchmark transformation tasks they propose as the TIL
Chairmarks. As we will explain in Section 5, a selection of the TIL Chairmarks
has been used in this 3rd REC. The syntax of TIL is given in Figure 3. A
some more detailed description of the language is available at http://www.
program-transformation.org/Sts/TinyImperativeLanguage.

http://www.program-transformation.org/Sts/TinyImperativeLanguage
http://www.program-transformation.org/Sts/TinyImperativeLanguage
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REC-SPEC Factorial

SORTS Nat

OPS

0 : -> Nat % zero

s : Nat -> Nat % succesor

plus : Nat Nat -> Nat % addition

times : Nat Nat -> Nat % product

fact : Nat -> Nat % factorial

VARS N M : Nat

RULES

plus(0, N) -> N

plus(s(N), M) -> s(plus(N, M))

times(0, N) -> 0

times(s(N), M) -> plus(M, times(N, M))

fact(0) -> s(0)

fact(s(N)) -> times(s(N), fact(N))

END-SPEC

Fig. 2. REC specification of the factorial function

3.3 Lexical Analysis and Parsing

We had two different approaches in the competition for the implementation of the
translators requested for REC and TIL. While ASF+SDF, Stratego/XT, Tom,
and TXL representatives built programs that transformed the original programs
and commands, and were later loaded and executed, in Maude a programming
environment was built, able to read REC programs and commands and give
outputs. Maude does not have facilities to handle files, what complicates the
reading of input files and the generation of output files with the resulting pro-
grams. However, Maude has some facilities for building execution environments,
that was the approach followed in that case.

Maude has some limitations at the lexical level, what forced the Maude rep-
resentatives to alter the input files (enclosing the input programs in parentheses
and removing comments). Maude and ASF+SDF does not offer constructs to
read input from the command line while rewriting, which makes it impossible to
implement the interpreter for TIL as it is implemented in Tom or TXL. Alter-
natively, in the Maude and ASF+SDF cases, interpreters that take a program
and a list of values as input, and provide the output for that program given the
input as its result, were implemented.

No lexical or parsing problems were encountered in the cases of ASF+SDF,
Stratego/XT, Tom, and TXL. ASF+SDF and Stratego/XT are based on SDF
and SGLR,1 and support the full class of context-free grammars. Tom uses the
ANTLR parser generator;2 the abstract syntax tree (AST) produced by ANTLR

1 SGLR (Scannerless Generalized LR Parser) is an implementation of the Generalized
LR algorithm [16] with extensions for scannerless parsing.

2 The web site of ANTLR (ANother Tool for Language Recognition) is at http://

www.antlr.org/

http://www.antlr.org/
http://www.antlr.org/
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〈program 〉 ::= 〈statement_list 〉
〈statement_list 〉 ::= 〈statement 〉 〈statement_list 〉 | ε
〈statement 〉 ::= 〈declaration 〉 | 〈assignment_statement 〉 | 〈if_statement 〉

| 〈while_statement 〉 | 〈for_statement 〉 | 〈read_statement 〉
| 〈write_statement 〉

〈declaration 〉 ::= var 〈identifier 〉 ; % Untyped variables

〈assignment_statement 〉 ::= 〈identifier 〉 := 〈expression 〉 ;

〈if_statement 〉 ::= if 〈expression 〉 then 〈statement_list 〉 end

| if 〈expression 〉 then 〈statement_list 〉
else 〈statement_list 〉 end

〈while_statement 〉 ::= while 〈expression 〉 do 〈statement_list 〉 end

〈for_statement 〉 ::= for 〈identifier 〉 := 〈expression 〉 to 〈expression 〉 do

〈statement_list 〉
end

〈read_statement 〉 ::= read 〈identifier 〉 ;

〈write_statement 〉 ::= write 〈expression 〉 ;

〈expression 〉 ::= 〈primary 〉 | 〈expression 〉 〈op 〉 〈expression 〉
〈primary 〉 ::= 〈identifier 〉 | 〈integer 〉 | 〈string 〉 | ( 〈expression 〉 )

〈op 〉 ::= = | != | + | - | * | / % from lowest to highest priority

Fig. 3. Grammar for Tiny Imperative Language (TIL)

can be directly reused in the Tom system. TXL has its own top-down pro-
grammable parser that the user can control directly [8] as part of the TXL
program.

4 The REC Problems

The REC language presented in Section 3.1 has been used in two different ways in
this 3rd rewrite engines competition. First, the participants were asked to write
interpreters for it, so that REC can be used as a common language in which to
write the problems used to compare their performance. Since all interpreters for
all the systems were provided, there was no need for hand-made transformations.
In the 2008 competition some of the systems did not develop such interpreters,
and solutions were provided by hand; the rest of the systems were allowed to
provide optimizations of the automatically generated rewrite systems. In the
2006 competition all the specifications were written by hand in each of the
participating systems.

Translating the REC specifications to their counterparts in the different sys-
tems is an easy task, and the automatic translations take little time. The im-
plementations of these translations are quite straightforward in all the systems,
and optimization was not attempted in any case. In all the cases, all terms are
represented by their concrete syntax all the time. E.g., natural numbers are
represented using Peano notation. Manual optimizations using built-ins, memo-
ization, etc. could have been considered for all the systems but were not.
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4.1 Disclaimer

We must acknowledge that there was perhaps somewhat of a mismatch between
the REC test cases and the normal applications of the Stratego and TXL sys-
tems. These systems are not traditional rewrite engines, and are typically not
applied for traditional rewriting problems but for other applications such as pro-
gram transformation and analysis. Our test set in this section focuses purely on
raw rewriting power, and as such may be biased towards traditional rewriting
systems.

For Stratego, an innermost strategy is used to emulate the behavior of a true
term rewriting engine. Likewise, for TXL, term rewriting is implemented using a
global transformation rule that globally applies the entire ruleset to a fixed point.
REC rewrite rules are directly mapped to rules in the different systems, but in
the case of Stratego and TXL, the individual rules are combined using functional
composition. Although the order of application can affect performance, no at-
tempt has been made to optimize this order in the mechanical translation from
REC. Stratego and TXL do not apply memoization when evaluating the rules.

Maximal sharing of identical subterms ensures efficient memory usage and
constant time comparison at the cost of slightly increased time spent when con-
structing new terms. Since the tests in our benchmark involve large terms with
repeating subterms and do not use line numbers or other context information,
systems that employ maximal sharing may be at the advantage. Stratego (when
compiled to C) and ASF+SDF implement maximal sharing based on the ATerm
library [18]. TXL and the Java version of Stratego do not employ maximal shar-
ing. Tom provides an efficient implementation of typed and maximally shared
terms in Java.

As in REC II, the rewriting problems are organized in four categories: un-
conditional rewriting (TRS), conditional rewriting (CTRS), rewriting modulo
(Modulo), and context-sensitive rewriting/rewriting with local strategies (CS).
Only Maude has support for the features needed to be in all these categories.
ASF+SDF, Stratego and TXL only participate in the TRS and CTRS categories.
Tom supports rewriting modulo associativity since its first version. In a recent re-
lease it also provides support for rewriting modulo associativity-commutativity.
However, although the implementation is correct, it is not yet very efficient.

4.2 Results for the Rewriting Problems

We now present the results for each of the rewrite examples considered in the
competition. Although we have five participants, namely ASF+SDF, Maude,
Stratego, Tom and TXL, two different versions were considered for both Maude
and Stratego. In the case of Maude we used 32-bits and 64-bits binaries, and for
Stratego we tested a C implementation and a newly developed Java version.

The five systems were installed on a 64-bits Linux 2.40GHz/4GB Intel Core 2
Quad. The installation of the systems was done by M. Roldán, who also ran
most of the tests.

For each case, after a brief description of the problem, a table with the times
used in the computations is presented. In these tables, all times are given in
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milliseconds. Those test cases that either took long (more than one hour), ran
out of memory, or produced an internal error show as ‘—’.

In most of these cases, a manual implementation in the system’s language,
rather than a (naive) automatic translation of the REC specification, would be
more appropriate. In some cases we may get huge improvements by reordering
the equations, saving partial computations, using memoization, etc. In the 2nd
REC we consider both an automatic translation and a handwritten optimized
version for each of the problems in the competition. In this edition we are only
considering the automatic translation. See [10] for the results and comparison in
the 2008 edition of the competition.

In most cases, the numbers are self explanatory. In some of them we give some
explanations or provide some pointers for a discussion on them. We present a
selection of the results in this paper, and refer to the web site of the competition,
at http://www.lcc.uma.es/rewriting_competition, for further details. All
the files and results of the competition are available in this web site, where
one can find a table that includes, for each of the problems, the specification
and the tests run on it in REC syntax, and the corresponding problems in the
syntax of each the participant systems, together with the times consumed in
their computation and the solutions given.

TRS: unconditional rewriting. In this category we have rewrite systems for
the calculation of the factorial of a natural number, the n-th number in the
Fibonacci sequence, a function reversing a list, an artificial rewrite system to
test garbage collection algorithms, and an ASF+SDF benchmark for the study
of resource usage in brute-force rewriting (no built-ins, no strategies).

Factorial. The specification of the factorial of a natural number was presented
in Figure 2. The factorial function is calculated for values 6, 8, 10, and 12.

ASF+SDF Maude32 Maude64 StrC StrJ Tom TXL
6 17 0 0 0 20 5 4,566
8 26 4 5 50 170 — —
10 32,466 544 754 — — — —
12 — — — — — — —

The reason why the Maude interpreter outperforms the ASF+SDF and Tom
compilers is probably because of the term representation they used. See [10] for
a more in depth discussion on this case for the ASF+SDF and Maude systems.

Fibonacci. The Fibonacci sequence is specified by the following three rules:

fibb(0) -> s(0)

fibb(s(0)) -> s(0)

fibb(s(s(N))) -> plus(fibb(s(N)), fibb(N))

The fibb function is calculated for values 10, 20, 30, 40, and 50.

http://www.lcc.uma.es/rewriting_competition
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ASF+SDF Maude32 Maude64 StrC StrJ Tom TXL
10 10 0 0 0 20 2 7
20 86 10 7 20 90 — 108,196
30 10,788 2,273 2,505 — — — —
40 — — — — — — —

Garbage collection. This rewrite system consists of the following rules:

c(0, Y) -> Y

c(s(X), Y) -> s(c(X,Y))

f(X, Y, Z, T, U) -> f(X, Y, Z, Y, Z, T, U)

f(X, Y, s(Z), N, P, T, U) -> f(X, Y, Z, N, P, c(T, T), U)

f(X, s(Y), 0, N, P, T, U) -> f(X, Y, P, N, P, T, T)

f(s(X), 0, 0, N, P, T, U) -> f(X, N, P, N, P, 1, 0)

f(0, 0, 0, N, P, T, U) -> T

The different tests run consist in the reduction of terms of the form f(m,n,p,0,1),
with different values for m, n, and p.

ASF+SDF Maude32 Maude64 StrC StrJ Tom TXL
f(2,2,2,0,1) 14 0 0 0 10 17 7
f(2,2,4,0,1) 39 1 1 0 0 50 13,378
f(2,4,2,0,1) 20 0 1 — — 26 661
f(2,4,4,0,1) 9,019 261 300 — — — —
f(4,2,2,0,1) 15 0 0 — — 18 8
f(4,2,4,0,1) 44 2 1 — — 57 14,495
f(4,4,2,0,1) 16 1 0 — — 26 727
f(4,4,4,0,1) 8,918 459 512 — — — —

Notice that all the systems behave quite well for all the tests except for those
with n = 4 and p = 4.

List reverse. Given lists represented with constructors cons : Nat List -> List
and nil : -> List, the following rev function reverses the elements of a list of
natural numbers.

conc(cons(E, L), L’) -> cons(E, conc(L, L’))

conc(nil, L’) -> L’

reverse(cons(E, L)) -> conc(reverse(L), cons(E, nil))

reverse(nil) -> nil

The tests are run on lists of 102, 103, and 104 elements.

ASF+SDF Maude32 Maude64 StrC StrJ Tom TXL
102 23 0 0 0 10 39 1,495
103 780 46 31 — — 622 —
104 69,403 4,520 3,714 — — 105,930 —
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ASF+SDF benchmark for brute force rewriting. In these tests we include three
different functions: symbolic evaluation of 2n modulo 17 (sym), for testing speed
of rewriting with almost no memory usage; symbolic evaluation of 2n modulo 17
after expanding the expression (eval), to test memory management; and compu-
tation on huge 2n, not-alike trees (tree), also to test memory management. The
specification of these problems can be found in [19]. An interesting discussion
on the behavior of ASF+SDF and Maude on these tests can be found in [10].

ASF+SDF Maude32 Maude64 StrC StrJ Tom TXL
sym(10) 22 3 3 0 10 90 4,714
sym(20) 337 3,162 2,506 1,830 4,480 5,877 —
eval(10) 16 — — 0 80 84 —
eval(20) 346 — — 2,190 10,210 4,488 —
tree(10) 56,734 5 5 — — 113 —
tree(20) — 9,674 12,480 — — 5,818 —

ASF+SDF performs much better than the others for sym and eval. However,
rewriting tree(10) and tree(20) take a lot of time in all the systems using the
automatically generated specifications because many computations are repeated.
It is remarkable that Tom and Maude perform better than ASF+SDF in these
tests. Saving the computations to avoid the repetition of the evaluations would
result in big improvements for all the systems. E.g., just by introducing variables
that store the rewritten result of such subterms tree(20) takes 15 milliseconds
in ASF+SDF.

CTRS: conditional term rewrite systems. In this category we find bubble-
sort, mergesort, quicksort, a bit matrix closure algorithm, an odd/even artificial
problem, and a specification of the towers of Hanoi problem.

Bubblesort. Given lists of natural numbers defined by cons and nil as above,
and given a less-than function lt, the bubblesort algorithm is specified by the
single following rule:

cons(N, cons(M, L)) -> cons(M, cons(N, L)) if lt(M, N) -><- true

The following results are obtained for lists of 10, 100, and 1,000 elements in
reverse order:

ASF+SDF Maude32 Maude64 StrC StrJ Tom TXL
10 13 0 0 0 50 35 19
100 26 85 74 110 500 88 —

1,000 1,550 383,815 450,887 130 330 5,299 —

Maude performs so badly in this case because of the very ineffective way in which
it treats conditional rules.
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Mergesort. Given lists of natural numbers defined by cons and nil as above, and
a less-than-or-equal predicate on natural numbers lte, the mergesort function
is specified as follows:

merge(nil, L) -> L

merge(L, nil) -> L

merge(cons(X, L1), cons(Y, L2)) -> cons(X, merge(L1, cons(Y, L2)))

if lte(X, Y) -><- true

merge(cons(X, L1), cons(Y, L2)) -> cons(Y, merge(cons(X, L1), L2))

if lte(X, Y) -><- false

split(cons(X, cons(Y, L)))

-> pair(cons(X, p1(split(L))), cons(Y, p2(split(L))))

split(nil) -> pair(nil, nil)

split(cons(X, nil)) -> pair(cons(X, nil), nil)

mergesort(nil) -> nil

mergesort(cons(X, nil)) -> cons(X, nil)

mergesort(cons(X, cons(Y, L)))

-> merge(mergesort(cons(X, p1(split(L)))),

mergesort(cons(Y, p2(split(L)))))

p1(pair(L1, L2)) -> L1

p2(pair(L1, L2)) -> L2

The following results are obtained for lists of 10, 100, and 1,000 elements in
reverse order:

ASF+SDF Maude32 Maude64 StrC StrJ Tom TXL
10 9 1 0 0 70 50 8
100 — 9 9 — — — —

1,000 — 9,134 10,721 — — — —

The reason why most of the systems perform so badly is because the equations
for split and merge are not right-linear. The rewriting of the split(L) terms
is repeated if the sharing is not detected as in Maude. Simple modifications
in the specifications, using memoization or intermediate variables, would lead
to big improvements. E.g., in ASF+SDF, the use of these variables takes the
computation times to 11/7/20.

Quicksort. The following results are obtained for lists of 10, 100, and 1,000
elements in reverse order:

ASF+SDF Maude32 Maude64 StrC StrJ Tom TXL
10 10 0 1 0 230 — 305
100 — 42 39 — — — —

1,000 — 193,616 227,166 — — — —

As for the mergesort function above, the reason for such results is that many
computations are repeated many times. By introducing new variables to avoid
re-computations in, e.g., ASF+SDF makes the times to go down to 15/19/32.
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Bit matrix closure. This rewrite system calculates the reflective and transitive
closure of a bits matrix. The results for sizes 10x10, 20x20 and 30x30 are:

ASF+SDF Maude32 Maude64 StrC StrJ Tom TXL
10x10 19 2 1 — — 28 1,504
20x20 32 12 10 — — 84 56,907
30x30 8 59 43 — — 103 809,494

Odd/even. This is an artificial example to test the exponential explosion that
can result due to conditional rewriting.

odd(0) -> false

even(0) -> true

odd(s(N)) -> true if even(N) -><- true

even(s(N)) -> true if odd(N) -><- true

odd(s(N)) -> false if even(N) -><- false

even(s(N)) -> false if odd(N) -><- false

The results obtained are the following:

ASF+SDF Maude32 Maude64 StrC StrJ Tom TXL
odd(15) 13 69 60 0 10 15 0
odd(20) 11 0 0 0 0 14 5,880
odd(25) 14 66,828 53,864 0 0 18 0

ASF+SDF and Tom do well in this example because they optimize the compiled
code to avoid re-computation in conditions. Maude rewrites the computations
as given. In the case of TXL, evaluating the odd function on an odd number
results in an almost immediate success, while evaluating it on an even number
results in an exponential search. In the case of Maude it is the other way around,
because the rules are considered is a different order.3 The use of memoization,
or simply changing the order of the rules, significantly improves the efficiency of
Maude in this case.

Hanoi towers. This rewrite system solves the traditional problem of the towers
of Hanoi. The solutions were executed for 4 and 16 disks.

ASF+SDF Maude32 Maude64 StrC StrJ Tom TXL
4 8 0 0 0 20 26 6
16 950 188 210 — — 378 —

Modulo: rewriting modulo associativity and/or commutativity and/or
identity. Maude and Tom are the only systems between the participants pro-
viding some form of rewriting modulo. Maude supports rewriting modulo any
combination of associativity, commutativity and identity. Tom supports rewrit-
ing modulo associativity, and a first attempt for rewriting modulo associativity-
commutativity in its latest release.
3 The program transformation implemented for Maude uses a set of rules instead of a

list, and in cases like this it may change the order in which the rules are considered.
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Tautology-hard, darts, 3-value logic, and permutations. The tautology-hard re-
write system evaluates Boolean expressions with associative and commutative
and, xor, or, and iff operations. Logic3 defines a 3-value logic, and darts op-
erates on sets. Their specifications include several associative and commutative
operators. The permutations specification defines a function that calculates all
the permutations of a list. It uses two operators which are declared associative
and with identity element. The tautology-hard rewrite system is evaluated on
three expressions of different sizes. These are all the results obtained:

Maude32 Maude64 Tom
tautology-hard 1 10 9 451
tautology-hard 2 200 173 —
tautology-hard 3 523 471 —

darts 2 2 56
logic 3 11 10 —

permutations 14 20 21

CS: context sensitive rewriting. Although other participants provide sup-
port for very sophisticated strategies, Maude is the only system among the par-
ticipants supporting local strategies à la OBJ.

Sieve of Eratosthenes. The specification of the sieve of Erathostenes algorithm
is used to compute the first 20, 100, and 1,000 prime numbers.

Maude32 Maude64
20 2 2
100 152 125

1,000 165,039 135,639

5 The TIL Chairmarks

In addition to the problems used in the previous competition (see Section 4), we
included a few transformation problems from the TIL Chairmarks, by J. Cordy
and E. Visser. Detailed information on the TIL Chairmark is available in the
web site at http://www.program-transformation.org/Sts/TILChairmarks.
As Cordy and Visser explain in this web page, “They are called chairmarks
because they are too small to be called benchmarks”. From all the tests proposed
there, we chose six of them, trying to cover different kinds of problems. Examples
illustrating some of the transformations proposed are included here, see http://
www.pro\discretionary-gram-transformation.org/Sts/TILChairmarks for
examples and additional explanations on the rest, and also for the rest of the
transformations proposed.

The problems chosen, with the numbers as in the TIL Chairmarks site, are:

2.2 For to whiles: This transformation restructures all for-loops in a TIL pro-
gram to their while equivalents. Figure 4 shows an example of the application
on this transformation to a TIL program.

http://www.program-transformation.org/Sts/TILChairmarks
http://www.prodiscretionary {-}{}{}gram-transformation.org/Sts/TILChairmarks
http://www.prodiscretionary {-}{}{}gram-transformation.org/Sts/TILChairmarks
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for i := 1 to 9 do var i;

for j := 1 to 10 do i := 1;

write i * j; while i != 9 + 1 do

end var j;

end var j;

j := 1;

while j != 10 + 1 do

write i * j;

j := j + 1;

end

i := i + 1;

end

Fig. 4. Program that outputs the first 10 multiples of numbers 1 through 9. The
program in the right-hand side is the result of applying transformation 2.2 to the
program on the left.

2.4 Declarations to local: Declaration are moved to its most local context.
3.2 Common subexpression elimination: Common subexpressions are rec-

ognized and factored out to new temporary variables.
4.1 Redundant declarations: Unused declarations are detected and removed.
4.2 Statistics: The number of statements of different kinds (declarations, as-

signments, ifs, whiles, fors, reads, and writes) in a program are counted.
5.1 Interpretation: TIL programs are executed by source transformation/re-

writing.

Notice that, although clearly stated, the problems can be solved in different ways,
and the outputs given in different forms. The outputs were not systematically
checked. The outputs given and the program transformations proposed by the
different systems are available at the competition’s web site at http://www.lcc.
uma.es/rewriting_competition. Given the interpreter provided as solution of
the task 5.1, we can at least think of checking that both programs give the same
result. But it was not done in this edition.

In ASF+SDF, implementing Tasks 2.2, 4.1 and 4.2 is straightforward. Task
2.4 requires a way of swapping statements; once it is clear how this should be
done, the solution can be specified quite easily. The algorithmics needed to solve
Task 3.2 are not trivial. Indeed, in the case of ASF+SDF most of the time was
spent on implementing this ‘chairmark’. Finally, the interpreter for Task 5.1
would take some time to implement without prior experience, but there exists
an interpreter specified using ASF+SDF for a similar imperative language that
can be used to understand the general idea behind such an interpreter.

For Maude the situation is very similar to the one for ASF+SDF. In this
case, all the experience gathered along the years in giving semantics and defining
execution environments for different languages is of great help.

Stratego appears to be a suitable language for the implementation of the TIL
chairmarks. Simple transformations like 2.2 are defined with help of rewrite rules
that are applied in a traversal strategy. This can be a general traversal strategy

http://www.lcc.uma.es/rewriting_competition
http://www.lcc.uma.es/rewriting_competition
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like topdown (2.2), or a custom traversal (for example 5.1). The separation of
rules and strategies enables reuse. An example of reuse can be found in Task 4.2
where the occurrences strategy is used to collect statistic data. Sometimes the
application of a rewrite rule depends on contextual information. Context infor-
mation is handled with help of dynamic rules which are created during a traversal
and can be scoped. Dynamic rules have been specifically designed for concisely
handling problems as seen in the chairmarks, making Stratego highly effective
at solving these problems. Dynamic rules are used in Tasks 2.4, 3.2, and 4.1 to
implement lookup tables for variables and declarations.

The TIL chairmarks are typical applications for the Tom system. By using
ANTLR it was straightforward to implement a parser. Then, given the produced
AST, Tom appeared very appropriate to describe and implement the various
transformations and optimizations: we have used the notion of rule (elementary
strategy) to describe the transformations, and the user defined strategy language
to describe how to apply the rules. E.g, Task 3.2 was solved using two strategies
and a Java HashMap; Task 4.1 was solved, in less than 100 lines, using two
strategies (one parameterized by a String) and a topdown Task 4.2 was solved,
in around 70 lines, using a count strategy, integer counters and a topdown.

The TIL source transformation tasks are the kind of problems that TXL was
designed for, and all of them are relatively straightforward for an experienced
TXL programmer as self-contained TXL programs with no need for external tools
or support routines. Task 4.1 is a single rewrite rule of 9 lines in TXL’s vertical
rule layout, using a scoped searching guard. Task 2.4 in TXL uses a sorting
strategy in two parts, moving declarations to the first statement that uses them,
and then moving them inside if it is a compound statement, using about 100
lines. Task 3.2 is a bit more challenging, using TXL rule parameters and scoped
application to find and replace subexpressions with a searching guard to insure
non-interference, for a total of 80 lines. Task 4.2 exploits the TXL built-in type
extract and count rules to solve the problem in one rule of 37 lines. Finally, the
full TIL interpreter in TXL (Task 5.1) uses a pure rewriting interpretation with
global terms to store the state, taking 286 lines.

Given the facilities provided by the different systems and the simplicity of
most of the tasks, the tasks were solved in a short time, being most of the time
spent in designing the solutions and debugging them.

6 Conclusions

As in the previous Rewrite Engines Competitions, we believe that both rewrite
engines users and developers have benefited from this third edition of the compe-
tition. Although in edition we took a great step forward, by having five systems,
focusing on program transformations without forgetting performance, and on
automation, there is still a lot to be done towards having a real competition
and really showing the potential of all the participating systems. In any case,
our main goals were satisfied: we got to know each of the systems better, some
of the strengths and weaknesses of the engines were shown, and we got more
motivation to go on working on our respective systems.
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And one wish for the competition: More automatization is required! For en-
tering the programs, time capturing, results table generation, etc.

Acknowledgements
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