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Preface

This volume contains papers presented at the 7th International Conference on
Modeling Decisions for Artificial Intelligence (MDAI 2010), held in Perpignan,
France, October 27–29. This conference followed MDAI 2004 (Barcelona, Cat-
alonia, Spain), MDAI 2005 (Tsukuba, Japan), MDAI 2006 (Tarragona, Catalo-
nia, Spain), MDAI 2007 (Kitakyushu, Japan), MDAI 2008 (Sabadell, Catalonia,
Spain), and MDAI 2009 (Awaji Island, Japan) with proceedings also published
in the LNAI series (Vols. 3131, 3558, 3885, 4617, 5285, and 5861).

The aim of this conference was to provide a forum for researchers to discuss
theory and tools for modeling decisions, as well as applications that encompass
decision-making processes and information fusion techniques.

The organizers received 43 papers from 12 different countries, from Europe,
Asia, Australia and Africa, 25 of which are published in this volume. Each sub-
mission received at least two reviews from the Program Committee and a few
external reviewers. We would like to express our gratitude to them for their work.
The plenary talks presented at the conference are also included in this volume.

The conference was supported by the CNRS: Centre National de la Recherche
Scientifique, the Université de Perpignan Via Domitia, the ELIAUS: Laboratoire
Electronique Informatique Automatique Systèmes, IMERIR: Ecole d’Ingénierie
Informatique et Robotique, the UNESCO Chair in Data Privacy, the Japan So-
ciety for Fuzzy Theory and Intelligent Informatics (SOFT), the Catalan Associa-
tion for Artificial Intelligence (ACIA), the European Society for Fuzzy Logic and
Technology (EUSFLAT), the Spanish MEC (ARES—CONSOLIDER INGENIO
2010 CSD2007-00004).

August 2010 Vicenç Torra
Yasuo Narukawa

Marc Daumas
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A Computational Intelligence Based Framework for One-Subsequence-
Ahead Forecasting of Nonstationary Time Series . . . . . . . . . . . . . . . . . . . . . 187

Vasile Georgescu

Non-hierarchical Clustering of Decision Tables toward Rough Set-Based
Group Decision Aid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Masahiro Inuiguchi, Ryuta Enomoto, and Yoshifumi Kusunoki

Revisiting Natural Actor-Critics with Value Function Approximation . . . 207
Matthieu Geist and Olivier Pietquin

A Cost-Continuity Model for Web Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
David F. Nettleton and Joan Codina

An Enhanced Framework of Subjective Logic for Semantic Document
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Sukanya Manna, B. Sumudu. U. Mendis, and Tom Gedeon



Table of Contents XI

Data Privacy

Ontology-Based Anonymization of Categorical Values . . . . . . . . . . . . . . . . 243
Sergio Mart́ınez, David Sánchez, and Aida Valls

Rational Privacy Disclosure in Social Networks . . . . . . . . . . . . . . . . . . . . . . 255
Josep Domingo-Ferrer

Towards Semantic Microaggregation of Categorical Data for
Confidential Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Daniel Abril, Guillermo Navarro-Arribas, and Vicenç Torra
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Relationships between Qualitative and
Quantitative Scales for Aggregation Operations:

The Example of Sugeno Integrals

Didier Dubois

IRIT, CNRS and Université de Toulouse

France

dubois@irit.fr

In decision applications, especially multicriteria decision- making, numerical ap-
proaches are often questionable because it is hard to elicit numerical values
quantifying preference, criteria importance or uncertainty. More often than not,
multicriteria decision-making methods come down to number-crunching recipes
with debatable foundations. One way out of this difficulty is to adopt a qual-
itative approach where only maximum and minimum are used. Such methods
enjoy a property of scale invariance that insures their robustness. One of the
most sophisticated aggregation operation making sense on qualitative scales is
Sugeno integral. It is not purely ordinal as it assumes commensurability between
preference intensity and criteria importance or similarly, utility and uncertainty.
However, since absolute qualitative value scales must have few levels so as to
remain cognitively plausible, there are as many classes of equivalent decisions as
value levels. Hence this approach suffers from a lack of discrimination power. In
particular, qualitative aggregations such as Sugeno integrals cannot be strictly
increasing and violate the strict Pareto property. In this talk, we report results
obtained when trying to increase the discrimination power of Sugeno integrals,
generalizing such refinements of the minimum and maximum as leximin and
leximax. The representation of leximin and leximax by sums of numbers of dif-
ferent orders of magnitude (forming a super-increasing sequence) can be gener-
alized to weighted max and min (yielding a “big-stepped” weighted average) and
Sugeno integral (yielding a “big-stepped” Choquet integral). This methodology
also requires qualitative monotonic set-functions to be refined by numerical set-
functions, and we show they can always be belief or plausibility functions in the
sense of Shafer.

References
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learning perpective. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS

2009. LNCS, vol. 5722, pp. 392–401. Springer, Heidelberg (2009)



User Privacy in Web Search

Josep Domingo-Ferrer

Universitat Rovira i Virgili

UNESCO Chair in Data Privacy

Department of Computer Engineering and Mathematics

Av. Päısos Catalans 26, E-43007 Tarragona, Catalonia

josep.domingo@urv.cat

Web search engines gather a lot of information on the preferences and interests of
users. They actually gather enough information to create detailed user profiles
which might enable re-identification of the individuals to which those profiles
correspond, e.g. thanks to the so-called vanity queries or to linkage of several
queries known to have been submitted by the same user. In this way, a broadly
used search engine like Google becomes a “big brother” in the purest Orwellian
style.

In this talk, a survey will be offered of the solutions which have been pro-
posed to preserve anonymity in web search and to fight profile creation. We will
start with Private Information Retrieval (PIR) and we will highlight its lack of
practicality. We will then look at some relaxations of PIR, based on standalone
defense by the user or on a defense based on a peer-to-peer community in which
one user submits queries by other users and viceversa.

Finally, we will sketch a new theory, called coprivacy or co-operative privacy,
whose goal is to find out under which conditions the best rational option for a
peer-to-peer user is to help other peers in preserving their privacy.

References

1. Aguilar-Melchor, C., Deswarte, Y.: Trustable relays for anonymous communication.

Transactions on Data Privacy 2(2), 101–130 (2009)

2. AOL Search Data Scandal (August 2006),

http://en.wikipedia.org/wiki/AOL_search_data_scandal

3. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers’ computation in private

information retrieval: Pir with preprocessing. Journal of Cryptology 17, 125–151

(2004)
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A Bibliometric Index Based on
Collaboration Distances

Maria Bras-Amorós1, Josep Domingo-Ferrer1, and Vicenç Torra2

1 Universitat Rovira i Virgili
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Department of Computer Engineering and Mathematics

Av. Päısos Catalans 26, E-43007 Tarragona, Catalonia

{maria.bras,josep.domingo}@urv.cat
2 IIIA, Institut d’Investigació en Intel·ligència Artificial

CSIC, Consejo Superior de Investigaciones Cient́ıficas,

Campus UAB s/n, E-08193 Bellaterra, Catalonia

vtorra@iiia.csic.es

The h-index by Hirsch[1] has recently earned a lot of popularity in bibliomet-
rics, being echoed in Nature and implemented in the Web of Science bibliometric
database. Previous indicators were the total number of papers or the total num-
ber of citations. Following the widely accepted idea that not all papers should
count equally, the h-index counts only those papers that are significant enough
according to their number of citations. However, as for qualifying the signifi-
cance of citations, beyond excluding self-citations by recent proposals[2,3,4,5,6],
the fact that not all citations should count equally has remained unaddressed,
with the exception of [7]. The h-index can be described in terms of a pool of
evaluated objects (papers), a quality function on the evaluated object (citations
received by each paper) and a sentencing line crossing the origin (y = x). When
the evaluated objects are ordered by descreasing quality, then the intersection of
the sentencing line with the graph of the quality function yields the index value.

Based on this abstraction, we present a new index, the c-index, in which the
evaluated objects are the citations received (by a paper, an author, a research
group, a journal, etc.), the quality of a citation is the collaboration distance
between the authors of the cited and the citing papers when the citation appears,
and the sentencing line takes a slope α between 0 and ∞. To mitigate the small
world effect we suggest taking α ≈ 1/4. As a result, the new index counts only
those citations which are significant enough, where significance is proportional
to the collaboration distance between the cited and the citing authors.

While an h-index x means that there are x papers with at least x citations
each and the rest of papers with at most x citations, a c-index x means that
there are x citations (regardless of the papers to which these citations refer)
at collaboration distance at least α x and the rest of citations at collaboration
distance at most α x.

If we want to differentiate between recurrent collaborations and occasional
collaborations, a refined version of the classical distance can be defined, where
the distance between two coauthors is inversely proportional to the number of
joint papers between them.

V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 5–6, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Some of the advantages of the new c-index are:

1. It gives a solution to the problem of few but seminal contributions, which
for instance means that Galois has h-index 2, and which is also especially
important when evaluating journals[6].

2. It neutralizes self-citations and citations by close authors.
3. It discourages gratuitous coauthorship.
4. The new index is not linear anymore with respect to the scientific age, re-

warding citations to and from novel authors and thus modernity.
5. Multiple spelling of one single reference in different citations or misspelling

reference data other than authorship, which decrease the h-index, do not
affect the c-index.

Together with the f-index [7], the c-index is a pioneer in the bibliometric lit-
erature in measuring the output of a scientist or a journal based at the same
time on the quantity and quality of the received citations: the more distant the
citing authors, the higher the quality of a citation (this notion of quality rewards
contributions of broad interest).

Since any bibliometric index is referred to a particular database, it should be
easy for any of the bibliometric databases to automate the computation of the
c-index, just like some of them have automated the computation of classical dis-
tances (MathSciNet of the American Mathematical Society) or the computation
of the h-index (Web of Science).

Being based only on citations, the c-index loses the feature of the h-index of
counting how many papers among those by an author have had a decent impact.
To remedy this, one might combine the h-index and the c-index by providing
both of them or by mixing them (e.g. as

√
hc) if required for ranking purposes.

In [8] one can find an extended version of this paper with a deeper discus-
sion on the c-index, a detailed comparison with the most recent indices, some
computational hints, and some experiments.

References

1. Ball, P.: Index aims for fair ranking of scientists. Nature 436, 900 (2005)

2. Schreiber, M.: Self-citation corrections for the Hirsch index. Europhysics Letters

(EPL) 78, 30002p1–30002p6 (2007)

3. Derby, B.: H-factors research metrics and self-citation. Nature Blogs (April 25, 2008)

4. Zhivotovsky, L.A., Krutovsky, K.V.: Self-citation can inflate h-index. Scientomet-

rics 77(2), 373–375 (2008)

5. Egghe, L.: An improvement of the h-index: the g-index. ISSI Newsletter 2(1), 8–9

(2006)

6. Braun, T., Glänzel, W., Schubert, A.: A Hirsch-type index for journals. Scientomet-

rics 69(1), 169–173 (2006)

7. Katsaros, D., Akritidis, L., Bozanis, P.: The f-index: quantifying the impact of coter-

minal citations on scientists’ ranking. Journal of the American Society for Informa-

tion Science and Technology 60(5), 1051–1056 (2009)

8. Bras-Amorós, M., Domingo-Ferrer, J., Torra, V.: A bibliometric index based on the

collaboration distance between cited and citing authors (submitted 2010)



Measuring the Influence of the kth Largest
Variable on Functions over the Unit Hypercube

Jean-Luc Marichal and Pierre Mathonet
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jean-luc.marichal@uni.lu, pierre.mathonet@uni.lu

Abstract. By considering a least squares approximation of a given

square integrable function f : [0, 1]n → IR by a shifted L-statistic func-

tion (a shifted linear combination of order statistics), we define an index

which measures the global influence of the kth largest variable on f . We

show that this influence index has appealing properties and we interpret

it as an average value of the difference quotient of f in the direction of

the kth largest variable or, under certain natural conditions on f , as an

average value of the derivative of f in the direction of the kth largest

variable. We also discuss a few applications of this index in statistics and

aggregation theory.

1 Introduction

Consider a real-valued function f of n variables x1, . . . , xn and suppose we want
to measure a global influence degree of every variable xi on f . A reasonable way
to define such an influence degree consists in considering the coefficient of xi in
the best least squares approximation of f by affine functions of the form

g(x1, . . . , xn) = c0 +
n∑

i=1

cixi.

This approach was considered in [6,10] for pseudo-Boolean functions f : {0, 1}n
→ IR and in [9] for square integrable functions f : [0, 1]n → IR. It turns out that,
in both cases, the influence index of xi on f is given by an average “derivative”
of f with respect to xi.

Now, it is also natural to consider and measure a global influence degree of
the smallest variable, or the largest variable, or even the kth largest variable for
some k ∈ {1, . . . , n}. As an application, suppose we are to choose an appropriate
aggregation function f : [0, 1]n → IR to compute an average value of [0, 1]-valued
grades obtained by a student. If, for instance, we use the arithmetic mean func-
tion, we might expect that both the smallest and the largest variables are equally
influent. However, if we use the geometric mean function, for which the value 0
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(the left endpoint of the scale) is multiplicatively absorbent, we might anticipate
that the smallest variable is more influent than the largest one.

Similarly to the previous problem, to define the influence of the kth largest
variable on f it is natural to consider the coefficient of x(k) in the best least
squares approximation of f by symmetric functions of the form

g(x1, . . . , xn) = a0 +
n∑

i=1

aix(i),

where x(1), . . . , x(n) are the order statistics obtained by rearranging the variables
in ascending order of magnitude.

In this paper we solve this problem for square integrable functions f : [0, 1]n →
IR. More precisely, we completely describe the least squares approximation prob-
lem above and derive an explicit expression for the corresponding influence index
(§2). We also show that this index has several natural properties, such as linear-
ity and continuity, and we give an interpretation of it as an average value of the
difference quotient of f in the direction of the kth largest variable. Under certain
natural conditions on f , we also interpret the index as an average value of the
derivative of f in the direction of the kth largest variable (§3). We then provide
some alternative formulas for the index to possibly simplify its computation (§4)
and we consider some examples including the case when f is the Lovász exten-
sion of a pseudo-Boolean function (§5). Finally, we discuss a few applications of
the index (§6).

We employ the following notation throughout the paper. Let In denote the n-
dimensional unit cube [0, 1]n. We denote by L2(In) the class of square integrable
functions f : In → IR modulo equality almost everywhere. For any S ⊆ [n] =
{1, . . . , n}, we denote by 1S the characteristic vector of S in {0, 1}n (with the
particular case 0 = 1∅).

Recall that if the I-valued variables x1, . . . , xn are rearranged in ascending
order of magnitude x(1) � · · · � x(n), then x(k) is called the kth order statistic
and the function osk : In → IR, defined as osk(x) = x(k), is the kth order statistic
function. As a matter of convenience, we also formally define os0 ≡ 0 and osn+1 ≡
1. To stress on the arity of the function, we can replace the symbols x(k) and osk

with xk:n and osk:n, respectively. For general background on order statistics, see
for instance [1,4].

Finally, we use the lattice notation ∧ and ∨ to denote the minimum and
maximum functions, respectively.

2 Influence Index for the kth Largest Variable

An L-statistic function is a linear combination of the functions os1, . . . , osn. A
shifted L-statistic function is a constant plus an L-statistic function. Denote by
VL the set of shifted L-statistic functions. Clearly, VL is spanned by the linearly
independent set

B = {os1, . . . , osn, osn+1} (1)
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and thus is a linear subspace of L2(In) of dimension n + 1. For a given function
f ∈ L2(In), we define the best shifted L-statistic approximation of f as the
function fL ∈ VL that minimizes the distance

‖f − g‖2 =
∫

In

(f(x)− g(x))2 dx

among all g ∈ VL, where ‖ · ‖ is the norm in L2(In) associated with the inner
product 〈f, g〉 =

∫
In f(x)g(x) dx. Using the general theory of Hilbert spaces, we

immediately see that the solution of this approximation problem exists and is
uniquely determined by the orthogonal projection of f onto VL. This projection
is given by

fL =
n+1∑
j=1

aj osj , (2)

where the coefficients aj (for j ∈ [n + 1]) are characterized by the conditions

〈f − fL, osi〉 = 0 for all i ∈ [n + 1]. (3)

The coefficient matrix of this sytem is the square matrix M of order n+1 defined
by (M)ij = 〈osi, osj〉 for all i, j ∈ [n + 1].

Lemma 1. For every i, j ∈ [n + 1], we have

(M)ij =
min(i, j)

(
max(i, j) + 1

)
(n + 1)(n + 2)

(4)

and

(M−1)ij

(n + 1)(n + 2)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 , if i = j < n + 1,
n+1
n+2 , if i = j = n + 1,
−1 , if |i− j| = 1,
0 , otherwise.

(5)

Recall that the central second difference operator is defined for any real sequence
(zk)k�1 as δ2

k zk = zk+1 − 2zk + zk−1. For every k ∈ [n], define the function
gk ∈ L2(In) as

gk = −(n + 1)(n + 2) δ2
k osk. (6)

We immediately obtain the following explicit forms for the components of fL in
the basis (1).

Proposition 1. The best shifted L-statistic approximation fL of a function f ∈
L2(In) is given by (2), where

ak =

{
〈f, gk〉 , if k ∈ [n],
(n + 1)2〈f, 1〉 − (n + 1)(n + 2)〈f, osn〉 , if k = n + 1.

(7)
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Now, to measure the global influence of the kth largest variable x(k) on an
arbitrary function f ∈ L2(In), we naturally define an index I : L2(In)× [n]→ IR
as I(f, k) = ak, where ak is obtained from f by (7). We will see in the next
section that this index indeed measures an influence degree.

Definition 1. Let I : L2(In)× [n]→ IR be defined as I(f, k) = 〈f, gk〉, that is

I(f, k) = −(n + 1)(n + 2)
∫

In

f(x) δ2
k x(k) dx. (8)

3 Properties and Interpretations

In this section we present various properties and interpretations of the index
I(f, k). The first result follows immediately from Definition 1.

Proposition 2. For every k ∈ [n], the mapping f �→ I(f, k) is linear and con-
tinuous.

We now present an interpretation of I(f, k) as a covariance. Considering the
unit cube In as a probability space with respect to the Lebesgue measure, we see
that, for any k ∈ [n], the index I(f, k) is the covariance of the random variables
f and gk. Indeed, we have I(f, k) = E(f gk) = cov(f, gk) + E(f)E(gk), where
E(gk) = 〈1, gk〉 = I(1, k) = 0. From the usual interpretation of the concept of
covariance, we see that I(f, k) is positive whenever the values of f − E(f) and
gk−E(gk) = gk have the same sign. Note that gk(x) is positive whenever x(k) is
greater than 1

2 (x(k+1) +x(k−1)), which is the midpoint of the range of x(k) when
the other order statistics are fixed at x.

We now provide an interpretation of I(f, k) as an expected value of the deriva-
tive of f in the direction of the kth largest variable (see Proposition 3).

Let Sn denote the group of permutations of [n]. Recall that the unit cube In

can be partitioned almost everywhere into the open standard simplexes

I
n
π = {x ∈ I

n : xπ(1) < · · · < xπ(n)} (π ∈ Sn).

Definition 2. Given k ∈ [n], let f : ∪π∈Sn In
π → IR be a function such that the

partial derivative Dπ(k)f |In
π

exists for every π ∈ Sn. The derivative of f in the
direction (k) is the function D(k)f : ∪π∈Sn In

π → IR defined as

D(k)f(x) = Dπ(k)f(x) for all x ∈ I
n
π.

Now, for every k ∈ [n], consider the function hk ∈ L2(In) defined as

hk = (n + 1)(n + 2)(osk+1 − osk)(osk − osk−1).

We easily see that hk is a probability density function on In. This fact can also
be derived by choosing f = osk in the following result.
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Proposition 3. For every k ∈ [n] and every f ∈ L2(In) such that D(k)f is
continuous and integrable on ∪π∈SnIn

π, we have

I(f, k) =
∫

In

hk(x)D(k)f(x) dx. (9)

We now give an alternative interpretation of I(f, k) as an expected value, which
does not require the additional assumptions of Proposition 3. In this more general
framework, we naturally replace the derivative with a difference quotient. To this
extent, we introduce some further notation. As usual, we denote by ei the ith
vector of the standard basis for IRn. For every k ∈ [n] and every h ∈ [0, 1], we
define the (k)-difference (or discrete (k)-derivative) operator Δ(k),h over the set
of real functions on In by

Δ(k),hf(x) = f(x + h eπ(k))− f(x)

for every x ∈ In
π such that x + heπ(k) ∈ In

π. Thus defined, the value Δ(k),hf(x)
can be interpreted as the marginal contribution of x(k) on f at x with respect
to the increase h. For instance, we have Δ(k),h x(k) = h.

Similarly, we define the (k)-difference quotient operator Q(k),h over the set of
real functions on In by Q(k),hf(x) = 1

hΔ(k),hf(x).

Theorem 1. For every k ∈ [n] and every f ∈ L2(In), we have

I(f, k) = (n + 1)(n + 2)
∫

In

∫ x(k+1)

x(k)

Δ(k),y−x(k)
f(x) dy dx. (10)

In view of Eq. (10), the index I(f, k) can be interpreted (up to normalization) as
a summation over all points x ∈ In of the importance of the kth largest variable
at x, given by ∫ x(k+1)

x(k)

Δ(k),y−x(k)
f(x) dy.

As an immediate consequence of Theorem 1, we have the following interpretation
of the index I(f, k) as an expected value of a difference quotient with respect to
some distribution.

Corollary 1. For every k ∈ [n] and every f ∈ L2(In), we have

I(f, k) =
∫

In

∫ x(k+1)

x(k)

pk(x, y)Q(k),y−x(k)
f(x) dy dx,

where pk(x, y) = (n + 1)(n + 2)(y − x(k)) defines a probability density function
on the set {(x, y) : x ∈ In, y ∈ [x(k), x(k+1)]}.

Another important feature of the index is its invariance under the action of
permutations. Recall that a permutation π ∈ Sn acts on a function f : In →
IR by π(f)(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)). By the change of variables theo-
rem, we immediately see that every π ∈ Sn is an isometry of L2(In), that is,
〈π(f), π(g)〉 = 〈f, g〉. From this fact, we derive the following result.
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Proposition 4. For every f ∈ L2(In) and every π ∈ Sn, both functions f and
π(f) have the same best shifted L-statistic approximation fL. Moreover, we have
‖π(f)− fL‖ = ‖f − fL‖.
With any function f : In → IR we can associate the following symmetric function

Sym(f) =
1
n!

∑
π∈Sn

π(f).

It follows immediately from Propositions 2 and 4 that both functions f and
Sym(f) have the same best shifted L-statistic approximation fL. Combining this
observation with Proposition 4, we derive immediately the following corollary.

Corollary 2. For every k ∈ [n], every f ∈ L2(In), and every π ∈ Sn, we have
I(f, k) = I(π(f), k) = I(Sym(f), k).

Remark 1. Corollary 2 shows that, to compute I(f, k), we can replace f with
Sym(f). For instance, if f(x) = xi for some i ∈ [n] then Sym(f) = 1

n

∑n
i=1 xi =

1
n

∑n
i=1 x(i) and hence, using Proposition 3, we obtain I(f, k) = 1

n .

Given k ∈ [n], we say that the order statistic x(k) is ineffective almost everywhere
for a function f : In → IR if Δ(k),y−x(k)

f(x) = 0 for almost all x ∈ ∪π∈SnIn
π and

almost all y ∈
]
x(k−1), x(k+1)

[
. For instance, given unary functions f1, f2 ∈ L2(I),

the order statistic x(1) is ineffective almost everywhere for the function f : I2 →
IR such that

f(x1, x2) =

{
f1(x1), if x1 > x2,
f2(x2), if x1 < x2.

The following result immediately follows from Theorem 1.

Proposition 5. Let k ∈ [n] and f ∈ L2(In). If x(k) is ineffective almost every-
where for f , then I(f, k) = 0.

The dual of a function f : I
n → IR is the function fd : I

n → IR defined by
fd(x) = 1− f(1[n] − x). A function f : In → IR is said to be self-dual if fd = f .
By using the change of variables theorem, we immediately derive the following
result.

Proposition 6. For every f ∈ L2(In) and every k ∈ [n], we have I(fd, k) =
I(f, n− k + 1). In particular, if f is self-dual, then I(f, k) = I(f, n− k + 1).

4 Alternative Expressions for the Index

The computation of the index I(f, k) by means of (8) or (9) might be not very
convenient due to the presence of the order statistic functions. To make those
integrals either more tractable or easier to evaluate numerically, we provide in
this section some alternative expressions for the index I(f, k) that do not involve
any order statistic.

We first derive useful formulas for the computation of the integral 〈f, osk〉
(Proposition 7). To this extent, we consider the following direct generalization
of order statistic functions.
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Definition 3. For every nonempty S = {i1, . . . , is} ⊆ [n], s = |S|, and every
k ∈ [s], we define the function osk:S : In → IR as osk:S(x) = osk:s(xi1 , . . . , xis).

To simplify the notation, we will write xk:S for osk:S(x). Thus xk:S is the kth
order statistic of the variables in S.

Lemma 2. For every s ∈ [n] and every k ∈ [s], we have∑
S⊆[n]
|S|=s

xk:S =
n∑

j=k

(
j − 1
k − 1

)(
n− j

s− k

)
xj:n. (11)

Lemma 3. For every k ∈ [n], we have

xk:n =
∑

S⊆[n]
|S|�k

(−1)|S|−k

(
|S| − 1
k − 1

)
x|S|:S (12)

xk:n =
∑

S⊆[n]
|S|�n−k+1

(−1)|S|−n+k−1

(
|S| − 1
n− k

)
x1:S (13)

Combining Lemma 3 with some classical results in measure theory, we compute
several expressions of

∫
In f(x)x(k) dx :

Proposition 7. For every function f ∈ L2(In) and every k ∈ [n], the integral
Jk:n =

∫
In f(x)x(k) dx is given by each of the following expressions:∫

In f(x) dx−
∑

S⊆[n]:|S|�k(−1)|S|−k
(|S|−1

k−1

) ∫ 1

0

∫
[0,y]S

∫
[0,1][n]\S f(x) dx dy(14)∑

S⊆[n]:|S|�n−k+1(−1)|S|−n+k−1
(|S|−1

n−k

) ∫ 1

0

∫
[y,1]S

∫
[0,1][n]\S f(x) dx dy (15)∫

In f(x) dx−
∑

S⊆[n]:|S|�k

∫ 1

0

∫
[0,y]S

∫
[y,1][n]\S f(x) dx dy (16)∑

S⊆[n]:|S|<k

∫ 1

0

∫
[0,y]S

∫
[y,1][n]\S f(x) dx dy (17)

From Definition 1 and Proposition 7, we derive the following expressions for
the quantity I(f,k)

(n+1)(n+2) :

∑
S⊆[n]:|S|�k−1(−1)|S|+1−k

(|S|+1
k

) ∫ 1

0

∫
[0,y]S

∫
[0,1][n]\S f(x) dx dy (18)∑

S⊆[n]:|S|�n−k(−1)|S|−n+k−1
( |S|+1
n−k+1

) ∫ 1

0

∫
[y,1]S

∫
[0,1][n]\S f(x) dx dy (19)(∑

S⊆[n]:|S|=k−1−
∑

S⊆[n]:|S|=k

) ∫ 1

0

∫
[0,y]S

∫
[y,1][n]\S f(x) dx dy. (20)

5 Some Examples

We now apply our results to two special classes of functions, namely the multi-
plicative functions and the Lovász extensions of pseudo-Boolean functions. The
latter class includes the so-called discrete Choquet integrals, well-known in ag-
gregation function theory.
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5.1 Multiplicative Functions

Consider the function f(x) =
∏n

i=1 ϕi(xi), where ϕi ∈ L2(I), and set Φi(x) =∫ x

0
ϕi(t) dt for i = 1, . . . , n. By using (18), we obtain

I(f, k)
(n + 1)(n + 2)

=
∑

S⊆[n]
|S|�k−1

(−1)|S|+1−k

(
|S|+ 1

k

) ∏
i∈[n]\S

Φi(1)
∫ 1

0

∏
i∈S

Φi(y) dy

(21)
The following result gives a concise expression for I(f, k) when f is symmetric.

Proposition 8. Let f : In → IR be given by f(x) =
∏n

i=1 ϕ(xi), where ϕ ∈
L2(I), and let Φ(x) =

∫ x

0 ϕ(t) dt. Then, for every k ∈ [n], we have

I(f, k) =

{
Φ(1)n

∫ 1

0 Dzh(z; k + 1, n− k + 2)|z=Φ(y)/Φ(1) dy, if Φ(1) �= 0,
(−1)n−k+1(n + 1) Γ (n+3)

Γ (k+1) Γ (n−k+2)

∫ 1

0 Φ(y)n dy, if Φ(1) = 0,

where h(z; a, b) = za−1(1 − z)b−1/B(a, b) is the probability density function of
the beta distribution with parameters a and b.

Example 1. Let f : In → IR be given by f(x) =
(∏n

i=1 xi

)c, where c > − 1
2 .

For instance, the product function corresponds to c = 1 and the geometric
mean function to c = 1/n. We can calculate I(f, k) by using Proposition 8 with
ϕ(x) = xc. Using the substitution z = yc+1 and then integrating by parts, we
obtain

I(f, k) = c
( 1

c + 1

)n+2 Γ (n + 3)Γ (k − 1 + 1
c+1 )

Γ (k + 1)Γ (n + 1 + 1
c+1 )

=
Γ (k − 1 + 1

c+1 )

Γ (k + 1)Γ ( 1
c+1)

I(f, 1),

with

I(f, 1) = c
( 1
c + 1

)n+2 Γ (n + 3)Γ ( 1
c+1 )

Γ (n + 1 + 1
c+1)

.

We observe that I(f, k)→ I(f, 1) as c → − 1
2 . Also, for c > 0, we have I(f, k +

1) < I(f, k) for every k ∈ [n−1]. As expected in this case, the smallest variables
are more influent on f than the largest ones.

5.2 Lovász Extensions

Recall that an n-place (lattice) term function p : In → I is a combination of
projections x �→ xi (i ∈ [n]) using the fundamental lattice operations ∧ and ∨;
see [2]. For instance,

p(x1, x2, x3) = (x1 ∧ x2) ∨ x3

is a 3-place term function. Note that, since I is a bounded chain, here the lattice
operations ∧ and ∨ reduce to the minimum and maximum functions, respectively.
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Clearly, any shifted linear combination of n-place term functions

f(x) = c0 +
m∑

i=1

ci pi(x)

is a continuous function whose restriction to any standard simplex In
π (π ∈ Sn)

is a shifted linear function. According to Singer [11, §2], f is then the Lovász ex-
tension of the pseudo-Boolean function f |{0,1}n , that is, the continuous function
f : In → IR which is defined on each standard simplex In

π as the unique affine
function that coincides with f |{0,1}n at the n + 1 vertices of In

π . Singer showed
that a Lovász extension can always be written as

f(x) = fπ
n+1 +

n∑
i=1

(fπ
i − fπ

i+1)xπ(i) (x ∈ I
n
π), (22)

with fπ
i = f(1{π(i),...,π(n)}) = vf ({π(i), . . . , π(n)}) for i ∈ [n + 1], where the

set function vf : 2[n] → IR is defined as vf (S) = f(1S). In particular, fπ
n+1 =

c0 = f(0). Conversely, any continuous function f : In → IR that reduces to an
affine function on each standard simplex is a shifted linear combination of term
functions:

f(x) =
∑

S⊆[n]

mf (S)x1:S , (23)

where mf : 2[n] → IR is the Möbius transform of vf , defined as

mf (S) =
∑
T⊆S

(−1)|S|−|T | vf (T ).

Indeed, expression (23) reduces to an affine function on each standard simplex
and agrees with f(1S) at 1S for every S ⊆ [n]. Thus the class of shifted linear
combinations of n-place term functions is precisely the class of n-place Lovász
extensions.

Remark 2. A nondecreasing Lovász extension f : In → IR such that f(0) = 0 is
also called a discrete Choquet integral. For general background, see for instance
[5].

For every nonempty S ⊆ [n] and every k ∈ [|S|], the function osk:S is a Lovász
extension and, from (12), we have

xk:S =
∑
T⊆S
|T |�k

(−1)|T |−k

(
|T | − 1
k − 1

)
x|T |:T

The following proposition gives a concise expression for the index I(osj:S , k).
We first compute the action of the symmetrizer Sym on such functions.
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Lemma 4. For every nonempty S ⊆ [n] and every j ∈ [|S|], we have

Sym(osj:S) =
1(
n
|S|
) ∑

T⊆[n]
|T |=|S|

osj:T .

Proposition 9. For every nonempty S ⊆ [n], every j ∈ [|S|], and every k ∈ [n],
we have

I(osj:S , k) =

(
k−1
j−1

)(
n−k
|S|−j

)(
n
|S|
) (24)

if 0 � k − j � n− |S|, and 0, otherwise.

The following proposition gives an explicit expression for the index I(f, k) when
f is a Lovász extension.

Proposition 10. If f : In → IR is a Lovász extension, then

f(x) = f(0) +
n∑

i=1

x(i) D(i)f(x). (25)

Moreover, for every k ∈ [n], we have

I(f, k) = vf (n− k + 1)− vf (n− k) =
n−k+1∑

s=1

(
n− k

s− 1

)
mf (s) , (26)

where vf (s) =
(
n
s

)−1∑
S⊆[n]:|S|=s vf (S) and mf (s) =

(
n
s

)−1∑
S⊆[n]:|S|=s mf (S).

We can readily see that the shifted L-statistic functions are precisely the sym-
metric Lovász extensions. From this observation we derive the following result.

Proposition 11. For any Lovász extension f : I
n → IR, we have fL = Sym(f)

and

Sym(f) = f(0) +
n∑

i=1

I(f, i) osi.

6 Applications

We briefly discuss some applications of the influence index in aggregation theory
and statistics.

6.1 Influence Index in Aggregation Theory

Several indexes (such as interaction, tolerance, and dispersion indexes) have
been proposed and investigated in aggregation theory to better understand the
general behavior of aggregation functions with respect to their variables; see
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[5, Chap. 10]. These indexes enable one to classify the aggregation functions
according to their behavioral properties. The index I(f, k) can also be very
informative and thus contribute to such a classification. As an example, we have
computed this index for the arithmetic mean and geometric mean functions (see
Remark 1 and Example 1) and we can observe for instance that the smallest
variable x(1) has a larger influence on the latter function.

Remark 3. Noteworthy aggregation functions are the so-called conjunctive ag-
gregation functions, that is, nondecreasing functions f : In → IR satisfying 0 �
f(x) � x(1); see [5, Chap. 3]. Although these functions are bounded from above
by x(1), the index I(f, k) need not be maximum for k = 1. For instance, for the
binary conjunctive aggregation function

f(x1, x2) =

{
0, if x1 ∨ x2 < 3

4 ,

x1 ∧ x2 ∧ 1
4 , otherwise,

we have I(f, 1) = 17
128 and I(f, 2) = 19

64 , and hence I(f, 1) < I(f, 2).

In the framework of aggregation functions, it can be natural to consider and
identify the functions f ∈ L2(In) for which the order statistics are equally in-
fluent, that is, such that I(f, k) = I(f, 1) for all k ∈ [n]. As far as the Lovász
extensions are concerned, we have the following result, which can be easily de-
rived from Proposition 10 and the immediate identities

vf (s) =
s∑

t=0

(
s

t

)
mf (t) and mf (s) =

s∑
t=0

(−1)s−t

(
s

t

)
vf (t).

Proposition 12. If f : In → IR is a Lovász extension, then the following are
equivalent.

(a) We have I(f, k) = I(f, 1) for all k ∈ [n].
(b) The sequence (vf (s))n

s=0 is in arithmetic progression.
(c) We have mf (s) = 0 for s = 2, . . . , n.

This proposition can be easily interpreted. In view of Corollary 2, Lemma 4 and
Proposition 11, we see that conditions (b) and (c) above are two equivalent ways
to express that the symmetric part of the Lovász extension f is the arithmetic
mean, up to a multiplicative and an additive constant.

6.2 Influence Index in Statistics

It can be informative to assess the influence of every order statistic on a given
statistic to measure, e.g., its behavior with respect to the extreme values. From
this information we can also approximate the given statistic by a shifted L-
statistic. Of course, for L-statistics (such as Winsorized means, trimmed means,
linearly weighted means, quasi-ranges, Gini’s mean difference; see [4, §6.3, §8.8,
§9.4]), the computation of the influence indexes is immediate. However, for some
other statistics such as the central moments, the indexes can be computed via
(18)–(20).
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Example 2. The closest shifted L-statistic to the variance σ2 = 1
n

∑n
i=1(Xi−X)2

is given by

σ2
L =

1− n2

12n(n + 3)
+

n∑
k=1

I(σ2, k)X(k),

with I(σ2, k) = (n + 2)(2k − n − 1)/(n2(n + 3)), which can be computed from
(20). We then immediately see that the smallest and largest variables are the
most influent.
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Abstract. By considering a least squares approximation of a given

square integrable function f : [0, 1]n → IR by a multilinear polynomial

of a specified degree, we define an index which measures the overall in-

teraction among variables of f . This definition extends the concept of

Banzhaf interaction index introduced in cooperative game theory. Our

approach is partly inspired from multilinear regression analysis, where

interactions among the independent variables are taken into considera-

tion. We show that this interaction index has appealing properties which

naturally generalize the properties of the Banzhaf interaction index. In

particular, we interpret this index as an expected value of the difference

quotients of f or, under certain natural conditions on f , as an expected

value of the derivatives of f . These interpretations show a strong anal-

ogy between the introduced interaction index and the overall importance

index defined by Grabisch and Labreuche [7]. Finally, we discuss a few

applications of the interaction index.

1 Introduction

Sophisticated mathematical models are extensively used in a variety of areas of
mathematics and physics, and especially in applied fields such as engineering,
life sciences, economics, finance, and many others. Here we consider the simple
situation where the model aims at explaining a single dependent variable, call
it y, in terms of n independent variables x1, . . . , xn. Such a model is usually
described through an equation of the form

y = f(x1, . . . , xn),

where f is a real function of n variables.
Now, suppose that the function f describing the model is given and that we

want to investigate its behavior through simple terms. For instance, suppose we
want to measure the overall contribution (importance or influence) of each inde-
pendent variable to the model. A natural approach to this problem consists in
defining the overall importance of each variable as the coefficient of this variable

V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 19–30, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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in the least squares linear approximation of f . This approach was considered by
Hammer and Holzman [11] for pseudo-Boolean functions and cooperative games
f : {0, 1}n → IR. Interestingly enough, they observed that the coefficient of each
variable in the linear approximation is exactly the Banzhaf power index [2,5] of
the corresponding player in the game f .

In many practical situations, the information provided by the overall impor-
tance degree of each variable may be far insufficient due to the possible inter-
actions among the variables. Then, a more flexible approach to investigate the
behavior of f consists in measuring an overall importance degree for each com-
bination (subset) of variables. Such a concept was first introduced in [13] for
Boolean functions f : {0, 1}n → {0, 1} (see also [3,4]), then in [14] for pseudo-
Boolean functions and games f : {0, 1}n → IR (see also [15]), and in [7] for square
integrable functions f : [0, 1]n → IR.

In addition to these importance indexes, we can also measure directly the
interaction degree among the variables by defining an overall interaction index
for each combination of variables. This concept was introduced axiomatically
in [10] (see also [6]) for games f : {0, 1}n → IR. However, it has not yet been
extended to real functions defined on [0, 1]n. In this paper we intend to fill this
gap by defining and investigating an appropriate index to measure the interaction
degree among variables of a given square integrable function f : [0, 1]n → IR. Our
sources of inspiration to define such an index are actually threefold:

In cooperative game theory. Interaction indexes were introduced axiomat-
ically a decade ago [10] for games f : {0, 1}n → IR (see also [6]). The best
known interaction indexes are the Banzhaf and Shapley interaction indexes,
which extend the Banzhaf and Shapley power indexes. Following Hammer
and Holzman’s approach [11], it was shown in [9] that the Banzhaf interac-
tion index can be obtained from least squares approximations of the game
under consideration by games whose multilinear representations are of lower
degrees.

In analysis. Considering a sufficiently differentiable real function f of several
variables, the local interaction among certain variables at a given point a can
be obtained through the coefficients of the Taylor expansion of f at a, that
is, through the coefficients of the local polynomial approximation of f at a.
By contrast, if we want to define an overall interaction index, we naturally
have to consider a global approximation of f by a polynomial function.

In statistics. Multilinear statistical models have been proposed to take into ac-
count the interaction among the independent variables (see for instance [1]):
two-way interactions appear as the coefficients of leading terms in quadratic
models, three-way interactions appear as the coefficients of leading terms in
cubic models, and so forth.

On the basis of these observations, we naturally consider the least squares ap-
proximation problem of a given square integrable function f : [0, 1]n → IR by a
polynomial of a given degree. As multiple occurrences in combinations of vari-
ables are not relevant, we will only consider multilinear polynomial functions.
Then, given a subset S ⊆ {1, . . . , n}, an index I(f, S) measuring the interaction
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among the variables {xi : i ∈ S} of f is defined as the coefficient of the monomial∏
i∈S xi in the best approximation of f by a multilinear polynomial of degree at

most |S|. This definition is given and discussed in Section 2.
In Section 3 we show that this new index has many appealing properties, such

as linearity, continuity, and symmetry. In particular, we show that, similarly to
the Banzhaf interaction index introduced for games, the index I(f, S) can be
interpreted in a sense as an expected value of the discrete derivative of f in the
direction of S (Theorem 2) or, equivalently, as an expected value of the difference
quotient of f in the direction of S (Corollary 1). Under certain natural conditions
on f , the index can also be interpreted as an expected value of the derivative of f
in the direction of S (Proposition 4). These latter results reveal a strong analogy
between the interaction index and the overall importance index introduced by
Grabisch and Labreuche [7].

In Section 4 we discuss the computation of explicit expressions of the interac-
tion index for certain classes of functions, namely pseudo-multilinear polynomials
and discrete Choquet integrals.

We employ the following notation throughout the paper. Let I
n denote the

n-dimensional unit cube [0, 1]n. We denote by F (In) the class of all functions
f : In → IR and by L2(In) the subclass of square integrable functions f : In → IR
modulo equality almost everywhere. For any S ⊆ N = {1, . . . , n}, we denote by
1S the characteristic vector of S in {0, 1}n.

2 Interaction Indexes

In this section we first recall the concepts of power and interaction indexes intro-
duced in cooperative game theory and how the Banzhaf index can be obtained
from the solution of a least squares approximation problem. Then we show how
this approximation problem can be extended to functions in L2(In) and, from
this extension, we introduce an interaction index for such functions.

Recall that a (cooperative) game on a finite set of players N = {1, . . . , n} is
a set function v : 2N → IR which assigns to each coalition S of players a real
number v(S) representing the worth of S.1 Through the usual identification of the
subsets of N with the elements of {0, 1}n, a game v : 2N → IR can be equivalently
described by a pseudo-Boolean function f : {0, 1}n → IR. The correspondence is
given by v(S) = f(1S) and

f(x) =
∑
S⊆N

v(S)
∏
i∈S

xi

∏
i∈N\S

(1 − xi). (1)

Equation (1) shows that any pseudo-Boolean function f : {0, 1}n → IR can al-
ways be represented by a multilinear polynomial of degree at most n (see [12]),
which can be further simplified into

f(x) =
∑
S⊆N

a(S)
∏
i∈S

xi , (2)

1 Usually, the condition v(∅) = 0 is required for v to define a game. However, we do

not need this restriction in the present paper.
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where the set function a : 2N → IR, called the Möbius transform of v, is defined
by

a(S) =
∑
T⊆S

(−1)|S|−|T | v(T ).

Let GN denote the set of games on N . A power index [17] on N is a function
φ : GN ×N → IR that assigns to every player i ∈ N in a game f ∈ GN his/her
prospect φ(f, i) from playing the game. An interaction index [10] on N is a
function I : GN × 2N → IR that measures in a game f ∈ GN the interaction
degree among the players of a coalition S ⊆ N .

For instance, the Banzhaf interaction index [10] of a coalition S ⊆ N in a
game f ∈ GN can be defined (in terms of the Möbius transformation of f) by

IB(f, S) =
∑
T⊇S

(1
2

)|T |−|S|
a(T ), (3)

and the Banzhaf power index [5] of a player i ∈ N in a game f ∈ GN is defined
by φB(f, i) = IB(f, {i}).

It is noteworthy that IB(f, S) can be interpreted as an average of the S-
difference (or discrete S-derivative) ΔSf of f . Indeed, it also writes (see [9, §2])

IB(f, S) =
1
2n

∑
x∈{0,1}n

(ΔSf)(x), (4)

where ΔSf is defined inductively by Δ∅f = f and ΔSf = Δ{i}ΔS\{i}f for
i ∈ S, with Δ{i}f(x) = f(x | xi = 1)− f(x | xi = 0).

We now recall how the Banzhaf interaction index can be obtained from a least
squares approximation problem. For k ∈ {0, . . . , n}, denote by Vk the set of all
multilinear polynomials g : {0, 1}n → IR of degree at most k, that is of the form

g(x) =
∑
S⊆N
|S|�k

c(S)
∏
i∈S

xi , (5)

where the coefficients c(S) are real numbers. For a given pseudo-Boolean function
f : {0, 1}n → IR, the best kth approximation of f is the unique multilinear
polynomial fk ∈ Vk that minimizes the distance

∑
x∈{0,1}n(f(x)−g(x))2 among

all g ∈ Vk. A closed-form expression of fk was given in [11] for k = 1 and k = 2
and in [9] for arbitrary k � n. In fact, when f is given in its multilinear form
(2) we obtain

fk(x) =
∑
S⊆N
|S|�k

ak(S)
∏
i∈S

xi,

where

ak(S) = a(S) + (−1)k−|S| ∑
T⊇S
|T |>k

(
|T | − |S| − 1

k − |S|

)(1
2

)|T |−|S|
a(T ).
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It is then easy to see that
IB(f, S) = a|S|(S). (6)

Thus, IB(f, S) is exactly the coefficient of the monomial
∏

i∈S xi in the best
approximation of f by a multilinear polynomial of degree at most |S|.

Taking into account this approximation problem, we now define an interaction
index for functions in L2(In) as follows. Denote by Wk the set of all multilinear
polynomials g : In → IR of degree at most k. Clearly, these functions are also of
the form (5). For a given function f ∈ L2(In), we define the best kth (multilinear)
approximation of f as the multilinear polynomial fk ∈ Wk that minimizes the
distance ∫

In

(
f(x)− g(x)

)2
dx (7)

among all g ∈ Wk.
It is easy to see that Wk is a linear subspace of L2(In) of dimension

∑k
s=0

(
n
s

)
.

Indeed, Wk is the linear span of the basis Bk = {vS : S ⊆ N, |S| � k}, where the
functions vS : In → IR are defined by vS(x) =

∏
i∈S xi. Note that formula (7)

also writes ‖f − g‖2 where ‖ · ‖ is the standard norm of L2(In) associated with
the inner product 〈f, g〉 =

∫
In f(x)g(x) dx. Therefore, using the general theory of

Hilbert spaces, the solution of this approximation problem exists and is uniquely
determined by the orthogonal projection of f onto Wk. This projection can be
easily expressed in any orthonormal basis of Wk. But here it is very easy to see
that the set B′

k = {wS : S ⊆ N, |S| � k}, where wS : In → IR is given by

wS(x) = 12|S|/2
∏
i∈S

(
xi −

1
2

)
= 12|S|/2

∑
T⊆S

(
− 1

2

)|S|−|T |
vT (x),

forms such an orthonormal basis for Wk (actually, this basis can be obtained
from Bk via Gram Schmidt orthogonalization).

The following immediate theorem gives the components of the best kth ap-
proximation of a function f ∈ L2(In) in the bases Bk and B′

k.

Theorem 1. For every k ∈ {0, . . . , n}, the best kth approximation of f ∈ L2(In)
is the function

fk =
∑
T⊆N
|T |�k

〈f, wT 〉wT =
∑
S⊆N
|S|�k

ak(S) vS , (8)

where

ak(S) =
∑
T⊇S
|T |�k

(
− 1

2

)|T |−|S|
12|T |/2 〈f, wT 〉. (9)

By analogy with (6), to measure the interaction degree among variables of an
arbitrary function f ∈ L2(In), we naturally define an index I : L2(In)×2N → IR
as I(f, S) = a|S|(S), where a|S|(S) is obtained from f by (9). We will see in the
next section that this index indeed measures an importance degree when |S| = 1
and an interaction degree when |S| � 2.
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Definition 1. Let I : L2(In) × 2N → IR be defined as I(f, S) = 12|S|/2〈f, wS〉,
that is,

I(f, S) = 12|S|
∫

In

f(x)
∏
i∈S

(
xi −

1
2

)
dx. (10)

Thus we have defined an interaction index from an approximation (projection)
problem. Conversely, this index characterizes this approximation problem. In-
deed, as the following result shows, the best kth approximation of f ∈ L2(In)
is the unique function of Wk that preserves the interaction index for all the s-
subsets such that s � k. The discrete analogue of this result was established in
[9] for the Banzhaf interaction index (3).

Proposition 1. A function fk ∈Wk is the best kth approximation of f ∈ L2(In)
if and only if I(f, S) = I(fk, S) for all S ⊆ N such that |S| � k.

3 Properties and Interpretations

Most of the interaction indexes defined for games, including the Banzhaf inter-
action index, share a set of fundamental properties such as linearity, symmetry,
and k-monotonicity (see [6]). Many of them can also be expressed as expected
values of the discrete derivatives (differences) of their arguments (see for instance
(4)). In this section we show that the index I fulfills direct generalizations of
these properties to the framework of functions of L2(In). In particular, we show
that I(f, S) can be interpreted as an expected value of the difference quotient of
f in the direction of S or, under certain natural conditions on f , as an expected
value of the derivative of f in the direction of S.

The first result follows from the very definition of the index.

Proposition 2. For every S ⊆ N , the mapping f �→ I(f, S) is linear and
continuous.

Recall that if π is a permutation on N , then, for every function f ∈ F (In), the
permutation π acts on f by π(f)(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)). The following
result is then an easy consequence of the change of variables theorem.

Proposition 3. The index I is symmetric. That is, for every permutation π on
N , every f ∈ L2(In), and every S ⊆ N , we have I(π(f), π(S)) = I(f, S).

We now provide an interpretation of I(f, S) as an expected value of the S-
derivative DSf of f . The proof immediately follows from repeated integrations
by parts of (10) and thus is omitted.

For S ⊆ N , denote by hS the probability density function of independent beta
distributions on In with parameters α = β = 2, that is, hS(x) = 6|S|∏

i∈S xi

(1− xi).

Proposition 4. For every S ⊆ N and every f ∈ L2(In) such that DT f is
continuous and integrable on ]0, 1[n for all T ⊆ S, we have

I(f, S) =
∫

In

hS(x)DSf(x) dx. (11)
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Remark 1. (a) Formulas (4) and (11) show a strong analogy between the indexes
IB and I. Indeed, IB(f, S) is the expected value of the S-difference of f with
respect to the discrete uniform distribution whereas I(f, S) is the expected
value of the S-derivative of f with respect to a beta distribution. We will
see in Theorem 2 a similar interpretation of I(f, S) which does not require
all the assumptions of Proposition 4.

(b) Propositions 1 and 4 reveal an analogy between least squares approximations
and Taylor expansion formula. Indeed, while the k-degree Taylor expansion
of f at a given point a can be seen as the unique polynomial of degree at
most k whose derivatives at a coincide with the derivatives of f at the same
point, the best kth approximation of f is the unique multilinear polynomial
of degree at most k that agrees with f in all average S-derivatives for |S| � k.

We now give an alternative interpretation of I(f, S) as an expected value, which
does not require the additional assumptions of Proposition 4. In this more general
framework, we naturally replace the derivative with a difference quotient. To this
extent, we introduce some further notation. As usual, we denote by ei the ith
vector of the standard basis for IRn. For every S ⊆ N and every h ∈ In, we
define the S-shift operator ES

h on F (In) by

ES
hf(x) = f

(
x +
∑
j∈S

hjej

)

for every x ∈ In such that x + h ∈ In.
We also define the S-difference (or discrete S-derivative) operator ΔS

h on
F (In) inductively by Δ∅

h f = f and ΔS
hf = Δ

{i}
h Δ

S\{i}
h f for i ∈ S, with

Δ
{i}
h f(x) = E

{i}
h f(x) − f(x). Similarly, we define the S-difference quotient op-

erator QS
h on F (In) by Q∅

h f = f and QS
hf = Q

{i}
h Q

S\{i}
h f for i ∈ S, with

Q
{i}
h f(x) = 1

hi
Δ

{i}
h f(x).

The next straightforward lemma provides a direct link between the difference
operators and the shift operators. It actually shows that, for every fixed h ∈ In,
the map S �→ ΔS

h is nothing other than the Möbius transform of the map S �→
ES

h .

Lemma 1. For every f ∈ F (In) and every S ⊆ N , we have

ΔS
hf(x) =

∑
T⊆S

(−1)|S|−|T | ET
h f(x). (12)

Let us interpret the S-difference operator through a simple example. For n = 3
and S = {1, 2}, we have

ΔS
hf(x) = f(x1 +h1, x2 +h2, x3)−f(x1 +h1, x2, x3)−f(x1, x2 +h2, x3)+f(x1, x2, x3).

In complete analogy with the discrete concept of marginal interaction among
players in a coalition S ⊆ N (see [9, §2]), the value ΔS

hf(x) can be interpreted
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as the marginal interaction among variables xi (i ∈ S) at x with respect to the
increases hi for i ∈ S.

Setting h = y − x in the example above, we obtain

ΔS
y−xf(x) = f(y1, y2, x3)− f(y1, x2, x3)− f(x1, y2, x3) + f(x1, x2, x3).

If xi � yi for every i ∈ S, then ΔS
y−xf(x) is naturally called the f -volume of the

box
∏

i∈S [xi, yi]. The following straightforward lemma shows that, when f = vS ,
ΔS

y−xf(x) is exactly the volume of the box
∏

i∈S [xi, yi].

Lemma 2. For every S ⊆ N , we have ΔS
y−xvS(x) =

∏
i∈S(yi − xi).

In the remaining part of this paper, the notation yS ∈ [xS ,1] means that yi ∈
[xi, 1] for every i ∈ S.

Theorem 2. For every f ∈ L2(In) and every S ⊆ N , we have

I(f, S) =
1

μ(S)

∫
x∈In

∫
yS∈[xS,1]

ΔS
y−xf(x) dyS dx, (13)

where
μ(S) =

∫
x∈In

∫
yS∈[xS,1]

ΔS
y−xvS(x) dyS dx = 6−|S|.

Remark 2. (a) By Lemma 2, we see that I(f, S) can be interpreted as the av-
erage f -volume of the box

∏
i∈S [xi, yi] divided by its average volume, when

x and yS are chosen at random with the uniform distribution.
(b) As already mentioned in Remark 1(a), Theorem 2 appears as a natural

generalization of formula (4) (similarly to Proposition 4) in the sense that
the marginal interaction ΔS

hf(x) at x is averaged over the whole domain In

(instead of its vertices).
(c) We note an analogy between formula (13) and the importance index defined

by Grabisch and Labreuche in [7, Theorem 1]. Indeed, up to the normal-
ization constant, this importance index is obtained by replacing in formula
(13) the operator ΔS

y−x by ES
y−x− I. Moreover, when S is a singleton, both

operators coincide and so do the normalization constants.

As an immediate consequence of Theorem 2, we have the following interpretation
of the index I as an expected value of the difference quotients of its argument
with respect to some probability distribution.

Corollary 1. For every f ∈ L2(In) and every S ⊆ N , we have

I(f, S) =
∫
x∈In

∫
yS∈[xS,1]

pS(x,yS)QS
y−xf(x) dyS dx,

where the function pS(x,yS) = 6|S|∏
i∈S(yi − xi) defines a probability density

function on the set {(x,yS) : x ∈ I
n,yS ∈ [xS ,1]}.
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Let us now analyze the behavior of the interaction index I on some special
classes of functions. The following properties generalize in a very natural way to
our setting the behavior of the Banzhaf interaction index IB with respect to the
presence of null players and dummy coalitions.

Recall that a null player in a game (or a set function) v ∈ GN is a player i ∈ N
such that v(T∪{i}) = v(T ) for every T ⊆ N\{i}. Equivalently, the corresponding
pseudo-Boolean function f : {0, 1}n → IR, given by (1), is independent of xi. The
notion of null player for games is then naturally extended through the notion
of ineffective variables for functions in F (In) as follows. A variable xi (i ∈ N)
is said to be ineffective for a function f in F (In) if f(x) = E

{i}
−xf(x) for every

x ∈ In, or equivalently, if Δ
{i}
y−xf(x) = 0 for every x,y ∈ In.

Define If = {i ∈ N : xi ineffective for f}. From either (10) or (13), we imme-
diately derive the following result, which states that any combination of variables
containing at least one ineffective variable for a function f ∈ L2(In) has neces-
sarily a zero interaction.

Proposition 5. For every f ∈ L2(In) and every S ⊆ N such that S ∩ If �= ∅,
we have I(f, S) = 0.

We say that a coalition S ⊆ N is dummy in a game (or a set function) v ∈ GN if
v(R∪T ) = v(R)+v(T )−v(∅) for every R ⊆ S and every T ⊆ N \S. This means
that {S, N \S} forms a partition of N such that, for every coalition K ⊆ N , the
relative worth v(K)− v(∅) is the sum of the relative worths of its intersections
with S and N \ S. It follows that a coalition S and its complement N \ S are
simultaneously dummy in any game v ∈ GN .

We propose the following extension of this concept.

Definition 2. We say that a subset S ⊆ N is dummy for a function f ∈ F (In)
if f(x) = ES

−xf(x) + E
N\S
−x f(x)− f(0) for every x ∈ In.

The following proposition gives an immediate interpretation of this definition.

Proposition 6. A subset S ⊆ N is dummy for a function f ∈ F (In) if and
only if there exist functions fS , fN\S ∈ F (In) such that IfS ⊇ N \ S, IfN\S

⊇ S
and f = fS + fN\S.

The following result expresses the natural idea that interaction index for subsets
that are properly partitioned by a dummy subset must be zero. It is an immediate
consequence of Propositions 2, 5, and 6.

Proposition 7. For every f ∈ L2(In), every nonempty subset S ⊆ N that is
dummy for f , and every subset K ⊆ N such that K ∩ S �= ∅ and K \ S �= ∅,
we have I(f, K) = 0.

4 Applications

We now calculate explicit expressions of the interaction index for two classes of
functions, namely pseudo-multilinear polynomials and discrete Choquet integrals.
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4.1 Pseudo-multilinear polynomials

As a first application, we derive an explicit expression of the index I for the class
of pseudo-multilinear polynomials, that is, the class of multilinear polynomials
with transformed variables.

Definition 3. We say that a function f ∈ L2(In) is a pseudo-multilinear poly-
nomial if there exists a multilinear polynomial g ∈ F (IRn) and n unary func-
tions ϕ1, . . . , ϕn ∈ L2(I) such that f(x) = g(ϕ1(x1), . . . , ϕn(xn)) for every
x = (x1, . . . , xn) ∈ In.

Using expression (5) of multilinear polynomials, we immediately see that any
pseudo-multilinear polynomial f ∈ L2(In) can be written in the form

f(x) =
∑

T⊆N

a(T )
∏
i∈T

ϕi(xi).

The following result yields an explicit expression of the interaction index
for this function in terms of the interaction indexes for the unary functions
ϕ1, . . . , ϕn.

Proposition 8. For every pseudo-multilinear polynomial f ∈ L2(In) and every
S ⊆ N , we have

I(f, S) =
∑
T⊇S

a(T )
∏

i∈T\S

I(ϕi, ∅)
∏
i∈S

I(ϕi, {i}).

Remark 3. Proposition 8 can actually be easily extended to functions of the form

f(x) =
∑

T⊆N

a(T )
∏
i∈T

ϕT
i (xi),

where ϕT
i ∈ L2(I) for i = 1, . . . , n and T ⊆ N .

An interesting subclass of pseudo-multilinear polynomials is the class of mul-
tiplicative functions, that is, functions of the form f(x) =

∏n
i=1 ϕi(xi), where

ϕ1, . . . , ϕn ∈ L2(I). For every multiplicative function f ∈ L2(In) and every
S ⊆ N , assuming I(f, ∅) �= 0, the ratio I(f, S)/I(f, ∅) is also multiplicative in
the sense that

I(f, S)
I(f, ∅)

=
∏
i∈S

I(ϕi, {i})
I(ϕi, ∅)

. (14)

4.2 The Discrete Choquet Integrals

A discrete Choquet integral is a function f ∈ F (In) of the form

f(x) =
∑
T⊆N

a(T ) min
i∈T

xi, (15)
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where the set function a : 2N → IR is nondecreasing with respect to set inclusion
and such that a(∅) = 0 and

∑
S⊆N a(S) = 1.2 These functions are mainly used

in aggregation function theory and decision making. For general background, see
for instance [8, Section 5.4].

The following proposition yields an explicit expression of the interaction index
for the class of discrete Choquet integrals. We first consider a lemma and recall
that the beta function is defined, for any integers p, q > 0, by

B(p, q) =
∫ 1

0

tp−1(1− t)q−1 dt =
(p− 1)!(q − 1)!

(p + q − 1)!
.

Proposition 9. If f ∈ F (In) is of the form (15), then we have

I(f, S) = 6|S|∑
T⊇S

a(T )B(|S|+ 1, |T |+ 1).

Remark 4. The map a �→ I(f, S) = 6|S|∑
T⊇S a(T )B(|S| + 1, |T | + 1) defines

an interaction index, in the sense of [6], that is not a probabilistic index (see [6,
Section 3.3]). However, if we normalize this interaction index (with respect to |S|)
to get a probabilistic index, we actually divide I(f, S) by 6|S|B(|S|+ 1, |S|+ 1)
and retrieve the index IM defined in [16].
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Abstract. In this paper, the weighted quasi-arithmetic means are dis-

cussed from the viewpoint of utility functions and background risks in

economics, and they are represented by weighting functions and condi-

tional expectations. Using these representations, an index for background

risks in stochastic environments is derived through the weighted quasi-

arithmetic means. The first-order stochastic dominance and the risk pre-

mium are demonstrated using the weighted quasi-arithmetic means and

the aggregated mean ratios, and they are characterized by the back-

ground risk index. Finally, examples of the weighted quasi-arithmetic

mean and the aggregated mean ratio for various typical utility functions

are given.

1 Introduction

Weighted quasi-arithmetic means are important tools in the subjective estima-
tion of data in decision making such as management, artificial intelligence and
so on ([3,4,5]), and it is also strongly related to utility functions and background
risks in economics ([6]). This paper analyzes quasi-arithmetic means of an inter-
val through utility functions and weighting functions. Yoshida [12,13] has studied
weighted quasi-arithmetic means of an interval by weighted aggregation oper-
ations from the viewpoint of subjective decision making where Kolmogorov [9]
and Nagumo [10] studied the aggregation operators and Aczél [1] developed
the theory regarding weighted aggregation. In this paper, we take a continuous
strictly increasing function f : [a, b] �→ (−∞,∞) as a decision maker’s utility
function, and we put a continuous function w : [a, b] �→ (0,∞) as a weighting
function. Then we define a weighted quasi-arithmetic mean on a closed interval
[a, b] with the utility f in the background risk w by

f−1

(∫ b

a

f(x)w(x)dx

/∫ b

a

w(x)dx

)
.

Hence, it represents a mean value given by a real number c(∈ [a, b]) satisfying

f(c)
∫ b

a

w(x)dx =
∫ b

a

f(x)w(x)dx

V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 31–42, 2010.
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in the mean value theorem. This paper discusses the weighted quasi-arithmetic
means from the viewpoint of utility functions and background risks in economics.
Representing the weighted quasi-arithmetic means by conditional expectations,
we derive an index for risks in stochastic environments, and we also discuss
the first-order stochastic dominance and the risk premium using the weighted
quasi-arithmetic means and the aggregated mean ratios.

In Section 2, we give definitions of the weighted quasi-arithmetic mean and
an aggregated mean ratio of the weighted quasi-arithmetic mean by an inte-
rior ratio on the interval, and we demonstrate the relation among the weighted
quasi-arithmetic mean, the aggregated mean ratio and the decision maker’s pref-
erence/attitude based on his utility. In economics, the decision maker’s attitudes,
for example neutral, risk averse and risk loving, are characterized to Arrow-Pratt
index of the utility function([2,11,7,8]). In Section 3, this paper characterizes
the weighted quasi-arithmetic means and the mean ratios by not only utility
functions but also weighing functions as an index for risks in stochastic environ-
ments. Next we investigate the properties of the weighted quasi-arithmetic means
and the aggregated mean ratios regarding combinations of utility functions and
weighting functions. Representing the weighted quasi-arithmetic means by con-
ditional expectations, we investigate the relation between the index for back-
ground risks and the risk premium in economics. We also discuss the first-order
stochastic dominance through the weighted quasi-arithmetic means. Finally, in
Section 4, we show a lot of examples of the weighted quasi-arithmetic means
and the aggregated mean ratios with various typical utility functions, and we
demonstrate their relations with the classical quasi-arithmetic means.

2 Weighted Quasi-arithmetic Means and Their Properties

In this section, we introduce weighted quasi-arithmetic means and aggregated
mean ratios regarding with utility functions and weighting functions, and we
discuss sufficient conditions on utility functions and weighting functions to char-
acterize the decision maker’s attitude based on the quasi-arithmetic mean and
the aggregated mean ratio. Let D be a fixed interval which is not a singleton
and we call it a domain. Let C(D) be the set of all nonempty bounded closed
subintervals of D and let C(D)< := {[a, b] ∈ C(D)|a < b}. Let f : D �→ (−∞,∞)
be a continuous strictly increasing function for utility, and let w : D �→ (0,∞)
be a continuous function for weighting. For a closed interval [a, b] ∈ C(D)<, a
mapping Mf

w : C(D) �→ D given by

Mf
w([a, b]) := f−1

(∫ b

a

f(x)w(x)dx

/∫ b

a

w(x)dx

)
(1)

is called the weighted quasi-arithmetic mean with a specified weighting w. Next
for a closed interval [a, b] ∈ C(D)< we define an interior ratio θf

w(a, b) from a
position of the weighted quasi-arithmetic mean Mf

w([a, b]) on the interval [a, b]
by

θf
w(a, b) :=

Mf
w([a, b])− a

b− a
. (2)
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Dujmović [3,4,5] studied a conjunction/disjunction degree, which is a similar
type of ratio in the power case, for computer science. This paper discusses their
characterizations from the viewpoint of economics by conditional expectations.
Now we let g : D �→ (−∞,∞) be another continuous strictly increasing function
for utility. Let Mg

w : C(D) �→ D be the weighted quasi-arithmetic mean defined
by g instead of f in the way of (1) and we put the aggregated mean ratio θg

w for
Mg

w. Then we obtain the following results.

Lemma 1 ([13]). Let f and g be C2-class utility functions on D. Let [a, b] ∈
C(D)<. Then the following (a) – (c) are equivalent.

(a) f ′′/f ′ ≤ g′′/g′ on (a, b).
(b) Mf

w([c, d]) ≤Mg
w([c, d]) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

(c) θf
w(c, d) ≤ θg

w(c, d) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

When we may choose two utility functions f and g as decision maker’s utilities,
Lemma 1 implies that the utility f yields more risk averse results than g if
f ′′/f ′ ≤ g′′/g′ on (a, b). Thus, the inequality θf

w(a, b) ≤ θg
w(a, b) implies that the

aggregated mean ratio θf
w(a, b) is more risk averse than θg

w(a, b). The function
−f ′′/f ′ is called the Arrow-Pratt index and it implies the degree of absolute risk
aversion in economics ([2,11]).

3 Weighted Quasi-arithmetic Means and Background
Risks

In this paper, we focus on weighting functions w as risk factors of stochastic
environments in the weighted quasi-arithmetic mean (1) and we characterize
it in relation to the conditional expectation. Let D be a fixed domain and let
f : D �→ (−∞,∞) be a fixed continuous strictly increasing function for utility.
The following theorem implies the properties of the weighted quasi-arithmetic
mean Mf

w and the ratio θf
w concerning weighting w.

Theorem 1. Let w : D �→ (0,∞) and v : D �→ (0,∞) be C1-class weighting
functions. Let [a, b] ∈ C(D)<. Then the following (i) and (ii) hold.

(i) If w and v satisfy w′/w < v′/v on (a, b), it holds that Mf
w([a, b]) < Mf

v ([a, b])
and θf

w([a, b]) < θf
v ([a, b]).

(ii) If w and v satisfy w′/w ≤ v′/v on (a, b), it holds that Mf
w([a, b]) ≤Mf

v ([a, b])
and θf

w([a, b]) ≤ θf
v ([a, b]).

In Theorem 1, we note that w′/w ≤ v′/v on (a, b) is a sufficient condition so
that the weighting w yields lower estimation than the weighting v. Further, the
following Theorem 2 shows an equivalence regarding the assertion ‘if - then’ in
Theorem 1(ii).

Theorem 2. Let w : D �→ (0,∞) and v : D �→ (0,∞) be C1-class weighting
functions. Let [a, b] ∈ C(D)<. Then the following (a) – (c) are equivalent.
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(a) w′/w ≤ v′/v on (a, b).
(b) Mf

w([c, d]) ≤Mf
v ([c, d]) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

(c) θf
w(c, d) ≤ θf

v (c, d) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

In the following proposition, (i) implies that the estimation by a utility h =
(f + g)/2 gives a middle attitude by the both utilities f and g and (ii) shows
that a weighting function u = (w + v)/2 gives a middle-level risk of the both
risks w and v in stochastic environments.

Proposition 1. Let [a, b] ∈ C(D)<. Then the following (i) and (ii) holds.

(i) Let f and g be C2-class utility functions on D. Let h := (f + g)/2. If f and
g satisfy f ′′/f ′ ≤ g′′/g′ on (a, b), then Mf

w([a, b]) ≤ Mh
w([a, b]) ≤ Mg

w([a, b])
and θf

w(a, b) ≤ θh
w(a, b) ≤ θg

w(a, b).
(ii) Let w : D �→ (0,∞) and v : D �→ (0,∞) be C1-class weighting functions. Let

u := (w + v)/2. If w and v satisfy w′/w ≤ v′/v on (a, b), then Mf
w([a, b]) ≤

Mf
u ([a, b]) ≤Mf

v ([a, b]) and θf
w(a, b) ≤ θf

u(a, b) ≤ θf
v (a, b).

The Arrow-Pratt index −f ′′/f ′ implies the degree of absolute risk aversion. On
the other hand, the index −w′/w, which is introduced in this paper, is related to
the background risks of stochastic environments in economics ([8]). In the rest of
this section, using the representation of conditional expectations, we investigate
the relation between the index −w′/w and the background risks. Let (Ω, P ) be a
probability space, where P is a non-atomic probability measure on Ω.

Definition 1. For random variables X and Y on Ω, it is said that the random
variable X is dominated by the random variable Y in the sense of the first-order
stochastic dominance if

P (X < x) ≥ P (Y < x) for any real number x. (3)

Then the following result is well-known for the first-order stochastic domi-
nance in economics (Arrow [2], Gollier [7], Eeckhoudt et al. [8]).

Proposition 2. Let X and Y be random variables on Ω. Then, the random
variable X is dominated by the random variable Y in the sense of the first-order
stochastic dominance if and only if it holds that

E(f(X)) ≤ E(f(Y )) (4)

for any increasing utility function f : (−∞,∞) �→ (−∞,∞) satisfying a tail
condition limx→±∞ f(x)(P (X < x)− P (Y < x)) = 0.

The first-order stochastic dominance (3) means that the stochastic environment
X is risky than the stochastic environment Y , and it shows in (4) that all de-
cision makers estimate the stochastic environment X lower than the stochastic
environment Y . Then the decision makers prefer the stochastic environment Y
to the stochastic environment X with their any increasing utility functions f .
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Let X be a real random variable on Ω with a C1-class density function w on
(−∞,∞). Since the conditional expectation of the utility f(X) is

E(f(X) | a < X < b) =
E(f(X)1{a<X<b})

P (a < X < b)
=

∫ b

a
f(x)w(x)dx∫ b

a w(x)dx
, (5)

it holds that

Mf
w([a, b]) = f−1

(∫ b

a f(x)w(x)dx∫ b

a
w(x)dx

)
= f−1(E(f(X) | a < X < b)) (6)

for real numbers a, b (a < b), where 1{·} implies the characteristic function of
a set. From Theorem 2 and (6), we obtain the following result together with
Proposition 2.

Corollary 1. Let X and Y be random variables on Ω which have C1-class
density functions w and v on (−∞,∞) respectively. If

w′

w
≤ v′

v
on (−∞,∞), (7)

then the random variable X is dominated by the random variable Y in the sense
of the first-order stochastic dominance.

From this corollary, (7) is a sufficient condition for the first-order stochastic
dominance (3) where the stochastic environment X is risky than the stochastic
environment Y . Hence we find that (7) is useful to estimate the risk-level of
stochastic environments and it is easy to check in actual problems (Example 3).
In this paper, we call −w′/w the background risk index. We note that the first-
order stochastic dominance (3) is a risk criterion in a global area D = (−∞,∞)
for stochastic environments and it is represented by integrals in (4), however the
background risk index −w′/w can measure risks even in local areas since it is
represented by differentials.

Next we discuss risk premiums regarding risk averse in financial management
([7,8]). Let z ∈ D, which implies an initial wealth, and let [a, b] ∈ C(Dz)<, where
Dz := {x − z | x ∈ D}. Let X be a random variable on Ω, which implies
a stochastic environment with some risk. A decision maker with a utility f is
called risk averse on (a, b) if

E(f(z + X) | a < X < b) ≤ f(E(z + X | a < X < b)). (8)

A sufficient condition for the risk averse is that the utility function f is concave.
Let w be a density function on D for the random variable X . Hence, in the
following (9), a real number πf

w(a, b) is called the risk premium on (a, b) ([7,8])
if it satisfies

E(f(z + X) | a < X < b) = f(z − πf
w(a, b)). (9)

Eq.(9) means that the decision maker accepts the risk arising from the random
variable X by paying the risk premium πf

w(a, b).
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Theorem 3. Let f be a continuous strictly increasing utility function on D.
Let X be a random variable on Ω which has a C1-class density function w on
D. The risk premium in (9) is given by

πf
w(a, b) = −Mh

w([a, b]), (10)

where h(x) := f(z + x) for x ∈ (a− z, b− z).

Then we obtain the following two theorems. Theorem 4 is from Lemma 1 and
Theorem 3, and it gives the relation between the Arrow-Pratt index and the risk
premium. On the other hand, Theorem 4 is from Theorems 2 and 3, and it gives
the relation between the background risk index and the risk premium.

Theorem 4. Let an initial wealth z ∈ D and let [a, b] ∈ C(Dz)<. Let f and g be
continuous strictly increasing utility functions on D. Let X be random variable
on Ω which has a C1-class density function w. Then the following (a) and (b)
are equivalent.

(a) f ′′/f ′ ≤ g′′/g′ on (z + a, z + b).
(b) πf

w(c, d) ≥ πg
w(c, d) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

Theorem 5. Let f be a continuous strictly increasing utility function on D.
Let X and Y be random variables on Ω which have C1-class density functions
w and v respectively. Then the following (a) and (b) are equivalent.

(a) w′/w ≤ v′/v on (a, b).
(b) πf

w(c, d) ≥ πf
v (c, d) for all [c, d] satisfying [c, d] ⊂ [a, b] and c < d.

4 Examples

In this section, we give examples for weighted quasi-arithmetic means Mf
w([a, b])

and the aggregated mean ratio θf
w(a, b) which are presented in the previous

sections. First we investigate examples of weighting functions w, and next we
discuss examples of utility functions f .

Example 1. We deal with a utility function f(x) = x for x ∈ (−∞,∞). Then
f ′′(x)/f ′(x) = 0. For a closed interval [a, b] ∈ C(D)<, we define the neutral
weighted mean Nw([a, b]) and its aggregated mean ratio νw(a, b) by

Nw([a, b]) :=
∫ b

a

x w(x)dx

/∫ b

a

w(x)dx (11)

and

νw(a, b) :=
Nw([a, b])− a

b− a
=
∫ b

a

(x − a)w(x)dx

/∫ b

a

(b − a)w(x)dx. (12)



Weighted Quasi-arithmetic Means and Conditional Expectations 37

(i) Take a weighting function w(x) = xα on D = (0,∞) with a constant α such
that α �= −2 and α �= −1. Then w′(x)/w(x) = α/x. Let [a, b] ⊂ D = (0,∞)
such that a < b. Then, we have

Nw([a, b]) =
(α + 1)(bα+2 − aα+2)
(α + 2)(bα+1 − aα+1)

.

Further, it holds that limb↓a νw(a, b) = lima↑b νw(a, b) = 1/2 ([13, Theorem
5.9]) and lima↓0 νw(a, b) = limb→∞ νw(a, b) = (α + 1)/(α + 2). Weighted
quasi-arithmetic means Mf

w([a, b]) for other utility functions f are given by
Table 1.

Table 1. Weighted quasi-arithmetic means for utility functions f (w(x) = xα)

f f ′′/f ′ Mf
w([a, b])

rx + s
(r > 0)

0
(α + 1)(bα+2 − aα+2)

(α + 2)(bα+1 − aα+1)

xr

(r �= 0)

r − 1

x

(
(α + 1)(br+α+1 − ar+α+1)

(r + α + 1)(bα+1 − aα+1)

)1/r

r log x
(r > 0)

− 1

x
exp

(
bα+1 log b − aα+1 log a

bα+1 − aα+1
− 1

α + 1

)
esx

(s �= 0)
s

1

s
log

(
(α + 1)(Γ (α + 1,−sb) − Γ (α + 1,−sa))

sα+1(bα+1 − aα+1)

)

Here in Table 1 we put

Γ (α + 1, c) :=
∫ ∞

c

tαe−tdt

for real numbers c.

(ii) Take a weighting function w(x) = x−2 on D = (0,∞) with α = −2. Then
w′(x)/w(x) = −2/x. Let [a, b] ⊂ D = (0,∞) such that a < b. Then, we
have

Nw([a, b]) =
ab(log b− log a)

b − a
.

Further, it holds that limb↓a νw(a, b) = lima↑b νw(a, b) = 1/2 ([13, Theorem
5.9]) and lima↓0 νw(a, b) = limb→∞ νw(a, b) = 0.
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(iii) Take a weighting function w(x) = x−1 on D = (0,∞) with α = −1. Then
w′(x)/w(x) = −1/x. Let [a, b] ⊂ D = (0,∞) such that a < b. Then, we
have

Nw([a, b]) =
b − a

log b − log a
.

Further, it holds that limb↓a νw(a, b) = lima↑b νw(a, b) = 1/2 ([13, Theorem
5.9]) and lima↓0 νw(a, b) = limb→∞ νw(a, b) = 0.

(iv) Take a weighting function w(x) = c0 + c1x + c2x
2 on D = (0,∞) with

positive constants c0, c1.c2. Then

w′(x)
w(x)

=
c1 + 2c2x

c0 + c1x + c2x2
.

Let [a, b] ⊂ D = (0,∞) such that a < b. Then, we have

Nw([a, b]) =
1
2c0(b2 − a2) + 1

3c1(b3 − a3) + 1
4c2(b4 − a4)

c0(b− a) + 1
2c1(b2 − a2) + 1

3c2(b3 − a3)
.

Further, it holds that limb↓a νw(a, b) = lima↑b νw(a, b) = 1/2,

lim
a↓0

νw(a, b) =
6c0 + 4c1b + 3c2b

2

12c0 + 6c1b + 4c2b2
and lim

b→∞
νw(a, b) =

3
4
.

(v) Take a weighting function w(x) = c0+c1x+c2x
2+· · ·+cnxn on D = (0,∞)

with positive constants c0, c1.c2, · · · , cn. Then

w′(x)
w(x)

=
∑n−1

k=0 (k + 1)ck+1x
k∑n

k=0 ckxk
.

Let [a, b] ⊂ D = (0,∞) such that a < b. Then, we have

Nw([a, b]) =

∑n
k=0

1
k+2ck(bk+2 − ak+2)∑n

k=0
1

k+1ck(bk+1 − ak+1)
.

Further, it holds that limb↓a νw(a, b) = lima↑b νw(a, b) = 1/2,

lim
a↓0

νw(a, b) =

∑n
k=0

1
k+2ckbk+2∑n

k=0
1

k+1ckbk+1
and lim

b→∞
νw(a, b) =

n + 1
n + 2

.

(vi) Take a weighting function w(x) = e−βx on D = (−∞,∞) with a non-zero
constant β. Then w′(x)/w(x) = −β. Let [a, b] ⊂ D = (−∞,∞) such that
a < b. Then, we have

Nw([a, b]) =
e−βb(βb + 1)− e−βa(βa + 1)

β(e−βb − e−βa)
.

Further, limb↓a νw(a, b) = lima↑b νw(a, b) = 1/2 and lima→−∞ νw(a, b) =
limb→∞ νw(a, b) = 1.
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(vii) Take a weighting function w(x) = e−γ2x2
on D = (−∞,∞) with a positive

constant γ. Then w′(x)/w(x) = −2γ2x. Let [a, b] ⊂ D = (−∞,∞) such
that a < b. Then, we have

Nw([a, b]) =
e−γ2a2 − e−γ2b2

2γ
∫ γb

γa e−x2 dx
.

Further, limb↓a νw(a, b) = lima↑b νw(a, b) = 1/2, lima→−∞ νw(a, b) = 1 and
limb→∞ νw(a, b) = 0.

Table 2. Neutral weighted means for weighting functions w (f(x) = x)

w w′/w Nw([a, b])

xα

(α �= −2,−1)

α

x

(α + 1)(bα+2 − aα+2)

(α + 2)(bα+1 − aα+1)

∑n
k=0 ckxk

(c0, c1, · · · , cn > 0)

∑n−1
k=0 (k + 1)ck+1x

k∑n
k=0 ckxk

∑n
k=0

1
k+2

ck(bk+2 − ak+2)∑n
k=0

1
k+1

ck(bk+1 − ak+1)

e−βx

(β �= 0)
−β

e−βb(βb + 1) − e−βa(βa + 1)

β(e−βb − e−βa)

e−γ2x2

(γ > 0)
−2γ2x

e−γ2a2 − e−γ2b2

2γ
∫ γb

γa
e−x2

dx

Some results in Example 1 are listed in Table 2. Next we show the relation
between the weighted quasi-arithmetic means and the typical means.

Example 2. Let the domain D = (0,∞). Take a function f(x) = xr and w(x) =
xα on D with constants r, α satisfying r �= 0. Then f ′′(x)/f ′(x) = (r− 1)/x and
w′(x)/w(x) = α/x. Hence we can deal with not only r > 0 for increasing function
f = xr but also r < 0 for decreasing function f(x) = xr ([13, Remark 3.2(1)]).
Then, for [a, b] ⊂ D such that a < b, the weighted quasi-arithmetic mean is given
by the following M

(r)
(α)([a, b]) := Mf

w([a, b]):

M
(r)
(α)([a, b]) =

(
(α + 1)(br+α+1 − ar+α+1)
(r + α + 1)(bα+1 − aα+1)

)1/r
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if r �= 0, α �= −1, r + α �= −1. The limiting values regrading r and α are

lim
α→−r−1

M
(r)
(α)([a, b]) = ab

(
r(log b− log a)

br − ar

)1/r

if r �= 0,

lim
α→−1

M
(r)
(α)([a, b]) =

(
r(log b− log a)

br − ar

)−1/r

if r �= 0,

lim
r→0

M
(r)
(α)([a, b]) = exp

(
bα+1 log b− aα+1 log a

bα+1 − aα+1
− 1

α + 1

)
if α �= −1,

lim
α→−1

lim
r→0

M
(r)
(α)([a, b]) =

√
ab,

lim
r→−∞M

(r)
(α)([a, b]) = a,

lim
r→∞M

(r)
(α)([a, b]) = b.

Finally we show the relation between the weighted quasi-arithmetic means and
their application to economics.

Example 3. We give an example for Corollary 1 by normal distributions on
stochastic environments. Let random variables X and Y have normal distribu-
tions on Ω with density functions w and v respectively as follows. Let μX and
μX be the means and let σX and σY be the standard deviations for w and v
respectively, i.e.,

w(x) =
1√

2πσ2
X

exp
(
− (x− μX)2

2 σ2
X

)
and v(x) =

1√
2πσ2

Y

exp
(
− (x− μY )2

2 σ2
Y

)
for real numbers x. Then we have

w′(x)
w(x)

≤ v′(x)
v(x)

⇐⇒ −x− μX

σ2
X

≤ −x− μY

σ2
Y

⇐⇒ σ2
XμY − σ2

Y μX ≥ (σ2
X − σ2

Y )x

⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x ≥ σ2

XμY −σ2
Y μX

σ2
X−σ2

Y
if σX < σY

x ≤ σ2
XμY −σ2

Y μX

σ2
X−σ2

Y
if σX > σY

all x ∈ (−∞,∞) if σX = σY and μX ≤ μY

no x if σX = σY and μX > μY .

Define a domain D by

D :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
σ2

XμY −σ2
Y μX

σ2
X−σ2

Y
,∞
)

if σX < σY(
−∞,

σ2
XμY −σ2

Y μX

σ2
X−σ2

Y

)
if σX > σY

(−∞,∞) if σX = σY and μX ≤ μY

∅ if σX = σY and μX > μY .
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From Theorems 2 and 5, we get Mf
w([a, b]) ≤ Mf

v ([a, b]) and πf
w(a, b) =

−Mf
w([a, b]) ≥ −Mf

v ([a, b]) = πf
v (a, b) for subintervals [a, b] ⊂ D. By Theorem

3, we can also calculate the risk premium πf
w(a, b) for a classical utility function

f(x) = 1− e−x as follows:

πf
w(a, b) =

Erf
(

a−μX√
2σX

)
− Erf

(
b−μX√

2σX

)
2(−a + b + ea+z − eb+z)

+
ez+μX+

σ2
X
2

(
Erf
(−a+μX+σ2

X√
2σX

)
− Erf

(−b+μX+σ2
X√

2σX

))
2(−a + b + ea+z − eb+z)

,

where
Erf(x) :=

2√
π

∫ x

0

e−t2 dt

for real numbers x. Further, by Corollary 1, if σX = σY and μX ≤ μY , all decision
makers prefers the stochastic environment Y to the stochastic environment X
for his any increasing utility f , i.e. it holds that E(f(X)) ≤ E(f(Y )) for any
increasing utility function f , which is equivalent that X is dominated by Y in
the sense of the first-order stochastic dominance (Proposition 1).

5 Conclusions

We have analyzed the weighted quasi-arithmetic means with utility functions
and weighting for random factors in stochastic environments. The background
risk index is first introduced through weighting functions as an index of risk-
levels for stochastic environments, and its relations to the first-order stochastic
dominance and the risk premium are demonstrated with conditional expecta-
tions. We have investigated a lot of examples of the weighted quasi-arithmetic
mean and the aggregated mean ratio for various typical utility functions. The
stochastic dominance is a risk criterion in a global area for stochastic environ-
ments however using the background risk index −w′/w we can analyze risks
even in local areas. The background risk index −w′/w will be useful and easy
to calculate in actual problems.
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Abstract. The aim of this paper is to present a new group decision making model
with two important characteristics: i) we apply mobile technologies in the deci-
sion process and ii) the set of alternatives is not constant through time. We imple-
ment a prototype of a mobile decision support system based on changeable sets of
alternatives. Using their mobile devices (as mobile phones or PDAs), experts can
provide/receive information in anywhere and anytime. The prototype also incor-
porates a new system to manage the alternatives and thus, to give more realism to
decision processes allowing to manage changeable set of alternatives, focussing
the discussion in a subset of them that changes in each stage of the process.

Keywords: Group decision making, mobile internet, dynamic environment.

1 Introduction

Group Decision Making (GDM) arises from many real world situations [1, 2]. As a
result, the study of decision making is necessary and important not only in Decision
Theory but also in areas such as Management Science, Operations Research, Politics,
Social Psychology, and so on. In such problems, there are a set of alternatives to solve
a problem and a group of experts trying to achieve a common solution. To do this,
experts have to express their preferences by means of a set of evaluations over the set
of alternatives.

Nowadays, we are realizing many significant advances in the way human interact
with technology. The spread of e-services and wireless or mobile devices has increased
accessibility to data and, in turn, influenced the way in which users make decisions
while they are on the move. Users can make real-time decisions based on the most up-
to-date data accessed via wireless devices, such as portable computers, mobile phones,
and personal digital assistants (PDAs), which are usually carried all the time and al-
lows to make decisions anytime and anywhere. Thus, the adoption of the latest mobil
technologies extends opportunities and allows to carry out consensus processes where
previously could not be correctly addressed. Such adoption is based on the assump-
tion that if the communications are improved the decisions will be upgraded, because

V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 43–54, 2010.
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the discussion could be focussed on the problem with less time wasted on unimportant
issues [3, 4].

Usually, resolution methods for GDM problems are static, that is, it is assumed
that the number of alternatives and experts acting in the GDM problem remains fixed
throughout the decision making process. However, in real decision situations we find
dynamic GDM problems in which the number of alternatives and/or experts could vary
during the decision making process. Sometimes, where the decision process is slow
or it takes a long time, the set of feasible alternatives is dynamic because their avail-
ability or feasibility could change through the decision making time. For example, in
e-commerce decision frameworks, where the alternatives are the items that could be
bought, it is possible that the availability of some of these items changes while experts
are discussing and making the decision, even, new good items might become available.
In this paper, we assume GDM problems with changeable set of alternatives.

The aim of this paper is to present a prototype of Decision Support System (DSS) to
deal automatically with dynamic GDM problems assuming different preference repre-
sentations and based on mobile technologies. We present a tool to control the possible
changes of alternatives that could appear through the decision making process. At every
stage of the decision process, the users (i) will be informed with updated data about the
current stage of the decision process, (ii) will receive recommendations to help them
to change their preferences, and (iii) will be able to send their updated preferences at
any moment, thus improving the user participation in the GDM process. . In order to
build a flexible framework and give a high degree of freedom to represent the pref-
erences, experts are allowed to provide their preferences in any of the following four
ways: (i) as a preference ordering of the alternatives, (ii) as an utility function, (iii) as a
fuzzy preference relation, or (iv) as a multiplicative preference relation.

To do so, the paper is set out as follows: Some considerations about GDM problems
and mobile technologies are presented in Section 2. Section 3 deals with the prototype
which implements such mobile DSS. Finally, in Section 4 we point out our conclusions.

2 Preliminaries

In this section we present the classical GDM model and the advantages of using mobile
technology in GDM problems.

2.1 Group Decision Making Models

In a GDM problem we have a finite set of feasible alternatives, X = {x1, x2, . . . , xn},
(n ≥ 2), to be ranked from best to worst using the information given by a set of experts,
E = {e1, e2, . . . , em}, (m ≥ 2).

Usual resolution methods for GDM problems include two different processes [5, 6]
(see Figure 1):

1. Consensus process: Clearly, in any decision process, it is preferable that the experts
reach a high degree of consensus on the solution set of alternatives. Thus, this
process refers to how to obtain the maximum degree of consensus or agreement
between the set of experts on the solution alternatives.
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2. Selection process: This process consists in how to obtain the solution set of alter-
natives from the opinions on the alternatives given by the experts.

Fig. 1. Resolution process of a GDM

Usually, resolution methods for GDM problems are static, that is, it is assumed
that the number of alternatives and experts acting in the GDM problem remains fixed
throughout the decision making process. However, in real decision situations we find
dynamic GDM problems in which the number of alternatives and/or experts could vary
during the decision making process. In this paper, we assume GDM problems with
changeable sets of alternatives.

On the other hand, as each expert, ek ∈ E, has his own ideas, attitudes, motivations
and personality, it is quite natural to think that different experts could express their
preferences in a different way. This fact has led some authors [7, 8, 9, 10, 11, 12]
to assume that experts’ preferences over the set of alternatives may be represented in
different ways. Amongst these, the most frequently used in decision making theory are:

– Preference orderings of alternatives: Ok = {ok(1), ..., ok(n)}, where ok(·) is a
permutation function over the index set, {1, ..., n}, for the expert, ek, defining an
ordered vector of alternatives, from best to worst.

– Utility functions: Uk = {uk
1 , ..., u

k
n}, uk

i ∈ [0, 1], where uk
i represents the utility

evaluation given by the expert ek to xi.
– Fuzzy preference relations: P k ⊂ XxX , with a membership function, μP k :

XxX → [0, 1], where μP k(xi, xj) = pk
ij denotes the preference degree of xi

over xj .
– Multiplicative preference relations: Ak ⊂ XxX , where the intensity of preference,

ak
ij , is measured using a ratio scale, particularly the 1/9 to 9 scale;

2.2 Mobile Technologies Usage in GDM Problems

During the last decade, organizations have moved from face-to-face group environ-
ments to virtual group environments using communication technology. More and more
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workers use mobile devices to coordinate and share information with other people. The
main objective is that the members of the group could work in an ideal way where they
are, having all the necessary information to take the right decisions [3, 4, 13, 14].

To support the new generation of decision makers and to add real-time process in
the GDM problem field, many authors have proposed to develop decision support sys-
tems based on mobile technologies [15, 16]. Similarly, we propose to incorporate mo-
bile technologies in a DSS obtaining a Mobile DSS (MDSS). Using such a technology
should enable a user to maximize the advantages and minimize the drawbacks of DSSs.

The need of a face-to-face meeting disappears with the use of this model, being the
own computer system who acts as moderator. Experts can communicate with the system
directly using their mobile device from any place in the world and at any time. Hereby,
a continuous information flow among the system and each member of the group is
produced, which can help to reach the consensus between the experts on a faster way
and to obtain better decisions.

In addition, MDSS can help to reduce the time constraint in the decision process.
Thus, the time saved by using the MDSS can be used to do an exhaustive analysis of
the problem and obtain a better problem definition. This time also could be used to
identify more feasible alternative solutions to the problem, and thus, the evaluation of a
large set of alternatives would increase the possibility of finding a better solution. The
MDSS helps to the resolution of GDM problems providing a propitious environment for
the communication, increasing the satisfaction of the user and, in this way, improving
the final decisions.

3 A Mobile DSS Based on Changeable Sets of Alternatives

In this section we describe the mobile DSS that incorporates a tool to manage GDM
problems in which the set of alternatives could change throughout the decision process.
It allows to develop GDM processes at anytime and anywhere, and simulate with more
accuracy level the real processes of human decision making which are developed in
dynamic environments as the Web, financial investment, health, etc. In what follows we
explain the “client/server” architecture of the mobile DSS and the communication and
work flow that summarizes the functions of the DSS.

3.1 Server Side

We assume that before to start the GDM process, the moderator selects the feasible set
of experts and alternatives and establishes the remaining parameters of the problem.
Thus, the structure of the proposed Mobile DSS server is composed of the following
five processes: (i) uniformization process, (ii) selection process, (iii) consensus process,
(iv) dynamic choice process of alternatives, and (v) feedback process (Figure 2).

Uniformization Process: To give a higher degree of freedom to the system, we as-
sume that experts can present their preferences using any of the preference represen-
tations presented in section 2.1. Therefore, it is necessary to make the information
uniform before applying the consensus and selection processes. As in [8] we propose to
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Fig. 2. Structure of the DSS server with multiple preference representation structures

use fuzzy preference relations as the base element to uniform experts’ preferences and

the following transformation functions are used [8]: f1
(
ok

i , ok
j

)
= 1

2

(
1 +

ok
j −ok

i

n−1

)
,

f2
(
uk

i , uk
j

)
= (uk

i )
2

(uk
i )

2
+(uk

j )
2 , f3
(
ak

ij

)
= 1

2

(
1 + log9 ak

ij

)
.

Selection Process: Once the information is made uniform, we have a set of m indi-
vidual fuzzy preference relations and then we apply a selection process which has two
phases [2, 17]: (i) aggregation and (ii) exploitation.

– Aggregation phase:
This phase defines a collective preference relation, P c =

(
pc

ij

)
, obtained by means

of the aggregation of all individual fuzzy preference relations
{
P 1, P 2, . . . , Pm

}
.

It indicates the global preference between every pair of alternatives according to
the majority of experts’ opinions. For example, the aggregation could be carried
out by means of an OWA operator [18, 19].

– Exploitation phase:
This phase transforms the global information about the alternatives into a global
ranking of them, from which the set of solution alternatives is obtained. The global
ranking is obtained applying two choice degrees of alternatives to the collective
fuzzy preference relation [20]: the quantifier guided dominance degree (QGDD)
and the quantifier guided non dominance degree (QGNDD).
Finally, the solution Xsol is obtained by applying these two choice degrees, and
thus, selecting the alternatives with maximum choice degrees.

Consensus Process: In our mobile DSS, we use a consensus model for GDM problems
with different preference representations as it was done in [21]. This model presents the
following main characteristics:

– It is based on two soft consensus criteria: global consensus measure on the set of
alternatives X , symbolized as CX , and the proximity measures of each expert ei

on X , called P i
X .
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– Both consensus criteria are defined by comparing the individual solutions with the
collective solution using as comparison criterion the positions of the alternatives in
each solution.

Initially, in this consensus model we consider that in any nontrivial GDM problem the
experts disagree in their opinions so that consensus has to be viewed as an iterated
process. This means that agreement is obtained only after some rounds of consultation.
In each round, the DSS calculates both the consensus and the proximity measures. The
consensus measures evaluate the agreement existing among experts and the proximity
measures are used in the feedback mechanism to support the group discussion phase of
the consensus process.

Dynamic Choice Process of Alternatives: In real world we find many dynamic deci-
sion frameworks: health, financial investment, military operations, Web. In such cases,
due to different factors the set of solution alternatives could vary throughout the deci-
sion process.

Classical GDM models are defined within static frameworks. In order to make the
decision making process more realistic, we provide a new tool to deal with dynamic
alternatives in decision making. In such a way, we can solve dynamic decision problems
in which, at every stage of the process, the discussion could be centered on different
alternatives.

To do so, we define a method which allows us to remove and insert new alternatives
into the discussion process. Firstly, the system identifies those worst alternatives that
might be removed and the new alternatives to include in the set. This new alternatives
can be obtained from a set of new alternatives appeared at a time or from the supply
set of alternatives that includes all the alternatives that we had at the beginning of the
process but that were not included in the discussion subset because the limitation of
this due to specific parameters of the problem. It is worth noting that we assume that
alternatives are independent and the inclusion or elimination of one alternative can not
change the ranking of other pairs of alternatives.

Thus, the method has two different phases: (1) Remove old bad alternatives and and
(2) Insert new good alternatives.

1. The first phase manages situations in which some alternatives of the discussion
subset are not available at the moment due to some dynamic external factors or
because the experts have evaluated them poorly and they have a low dominance
degree (QGDD). Therefore, the system checks the availability and the QGDD of
each alternative in the current discussion subset. If some alternative is not available
or has a QGDD lower than a threshold (minQGDD), the system looks for a
new good alternative in the new alternatives subset. If this subset is empty, the
system uses the supply subset of alternatives provided by the expert at the beginning
of the decision process and that were not taken into account then because of the
impossibility to compare all the alternatives at the same time. Then, the system
asks for the experts’ opinions about the replacement and acts according to them
(see Figure 3).

2. The second case manages the opposite situation, that is, when some new alterna-
tives have emerged. Basically, the system checks if some new good alternatives
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Fig. 3. Dynamic choice process of alternatives: Case 1

have appeared in the new alternatives subset due to some dynamic external factors.
If this is the case, the system has to identify the worst alternatives of the current
discussion subset. To do this, the system uses the dominance degree QGDD of all
alternatives again to choose the worst alternatives. Then, the system asks for the
experts’ opinions about the replacement and acts according to them (see Figure 4).

Fig. 4. Dynamic choice process of alternatives: Case 2

Feedback Process: To guide the change of the experts’ opinions, the DSS simulates a
group discussion session in which a feedback mechanism is applied to quickly obtain
a high level of consensus. This mechanism is able to substitute the moderator’s actions
in the consensus reaching process. The main problem is how to find a way of making
individual positions converge and, therefore, how to support the experts in obtaining
and agreeing with a particular solution.

When the consensus measure CX has not reached the required consensus level (CL)
and the number of rounds has not reached a maximum number of iterations (MAXCY-
CLE), defined prior to the beginning of the decision process, the experts’ opinions must
be modified. As aforementioned, we are using the proximity measures to build a feed-
back mechanism so that experts can change their opinions and narrow their positions.
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3.2 Client Side

For the implementation of the DSS we have chosen a thin client model. This model
depends primarily on the central server for the processing activities. This prototype is
designed to operate on mobile devices with Internet connection.

The client software has to show to the experts the next eight interfaces:

– Connection: The device must be connected to the network to send/receive informa-
tion to the server.

– Authentication: The device will ask for a user and password data to access the
system.

– Problem description: When a decision process is started, the device shows to the
experts a brief description of the problem and the discussion subset of alternatives
(see Figure 5 a).

– Selection of preference representations (see Figure 5 b).

Fig. 5. Problem description and selection of preference representations

– Insertion of preferences: The device will have four different interfaces, one for each
different format of preference representation (see Figure 6).

– Change of alternatives: When a bad or not available alternative deserves to be re-
moved from the discussion subset, or a new alternative deserves be inserted in the
discussion subset, using the new management process of alternatives, the experts
can assess if they want to update the discussion subset by changing these alterna-
tives (see Figure 7).

– Feedback: When opinions should be modified, the device shows to the experts the
recommendations and lets them send their new preferences (see Figure 8 a).

– Output: At the end of the decision process, the device will show to the experts
the set of solution alternatives as an ordered set of alternatives marking the most
relevant ones (see Figure 8 b). The system shows an additional scoring (QGDD)
of each alternative when the problem needs more than one of them to be solved.
Moreover, if the minimum consensus level is not reached and temporary solution
becomes final solution because the maximum number of feedback cycles has been
reached, the system notes this situation and it shows the current consensus level on
the screen.
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Fig. 6. Insertion of preferences

Fig. 7. Change of alternatives question

On the technical side of the development of the client part of the DSS, it is worth
noting that the client application complies with the MIDP 2.0 specifications [22], and
that the J2ME Wireless Toolkit 2.2 [23] provided by SUN was used in the development
phase. This wireless toolkit is a set of tools that provide J2ME developers with some
emulation environments, documentation, and examples to develop MIDP-compliant ap-
plications. The application was later tested with a toy example using a JAVA-enabled
mobile phone on a GSM network using a GPRS-enabled SIM card. If the discussion
subset of alternatives is large and can not be displayed on the screen, Java interface
provides scrolling tools that allows displaying bigger interfaces on small screens. The
MIDP application is packaged inside a JAVA archive (JAR) file, which contains the ap-
plications classes and resource files. This JAR file is the one that actually is downloaded
to the physical device (mobile phone) along with the JAVA application descriptor file
when an expert wants to use the MDSS.
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Fig. 8. Recommendations and Final Solution

3.3 Communication and Work Flow

The DSS has to carry out the following functions, also represented in figure 9. In the
diagram we can see all the functions of the system, the form in which they are connected
together with the database, and the order in which each of them is executed.

0. Database initialization
1. Verify the user messages and store the main information
2. Make the experts’ preferences uniform
3. Computation of the set of solution alternatives
4. Computation of the consensus measures
5. Control the consensus state
6. Control the change of alternatives

Fig. 9. Functions Scheme of the System
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7. Generate the recommendations
8. Go to step 1

4 Conclusions

We have presented a prototype of mobile DSS for GDM problems based on dynamic
decision environments which uses the advantages of mobile Internet technologies to
improve the user satisfaction with the decision process and develop decision processes
at anytime and anywhere. The system allows to model dynamic decision environments
because it incorporates a new tool to manage the changes of alternatives in the set
of solution alternatives through decision process. We have used mobile phones as the
device used by the experts to send their preferences but the structure of the prototype is
designed to use any other mobile device as PDAs.
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Abstract. Judgment aggregation is a recent formal discipline that stud-

ies how to aggregate individual judgments on logically connected propo-

sitions to form collective decisions on the same propositions. Despite

the apparent simplicity of the problem, the aggregation of individual

judgments can result in an inconsistent outcome. This seriously trou-

bles this research field. Expert panels, legal courts, boards, and councils

are only some examples of group decision situations that confront them-

selves with such aggregation problems. So far, the existing framework

and procedures considered in the literature are idealized. Our goal is

to enrich standard judgment aggregation by allowing the individuals to

agree or disagree on the decision rule. Moreover, the group members have

the possibility to abstain or express neutral judgments. This provides a

more realistic framework and, at the same time, consents the definition of

an aggregation procedure that escapes the inconsistent group outcome.

1 Introduction

Judgment aggregation is a recent formal discipline that studies how to aggregate
individual judgments to form collective decisions. Examples are expert panels,
legal courts, boards, and councils [7]. This field has recently attracted attention
in multi-agent systems and artificial intelligence, in particular due to the relations
with belief merging [13], for example for the combination of opinions of equally
reliable individuals.

Judgment aggregation problems consider a group of people stating their views
(in the binary form of 1 or 0) on some logically interconnected propositions. As an
example, consider the board of a research funding agency whose members have to
decide whether to support a research project (conclusion D) on the basis of three
criteria : originality (P ), quality (Q), and applicability (R), that is the decision
rule can be expressed as (P ∧Q∧R)↔ D. As we will see, problems arise because
seemingly reasonable aggregation procedures lead to paradoxical outcomes.

Clearly, the problems investigated in this new field are relevant and common
to many situations. Nevertheless, the procedures considered so far in the lit-
erature are idealized. To provide a more realistic framework and to provide an
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aggregation procedure that does not run into inconsistent social outcomes are the
goals of the paper. More specifically, we propose to extend standard judgment
aggregation to take into account two main considerations.

First, we introduce the notion of judgment status. It is not realistic to expect
that group members state their judgments on each proposition, or that they
always have a clear position on each proposition. Our model allows members
to express classical binary judgment, a neutral judgment or to abstain on some
or all propositions that the individuals consider as irrelevant. In our example
of the project funding, suppose that the applicability criterion (R) has been
introduced only recently following some new regulation that impose all research
funding agency to be evaluated on the basis of likeness to attract the interest
of private funding. Suppose also that some members dissent with the criterion
R because they believe that this will damage pure theoretical projects to the
benefit of pure applied ones. Some members can believe that R is completely
irrelevant and thus abstain to give a judgment on R. On the other hand, some
other members can believe that the criterion R is relevant but they prefer to be
neutral because they are not able to assess its applicability, or because they are
indifferent to its value. It is worth noticing that abstention and neutral judgments
denote distinct positions. The difference will be clarified later in the paper.

Second, we introduce the notion of acceptance of the decision rule. Our frame-
work allows the group members to state whether or not they agree on the rule
governing the decision. In our example, some members may disagree on the way
the propositions are logically connected whereas some other members can accept
the decision rule even if they believe that some propositions are irrelevant.

We present a flexible judgment aggregation approach, in which individuals can
express 0/1 judgments as well as being neutral or abstain on some propositions,
and can participate in the group decision procedure while disagreeing on the
imposed decision rule. What kind of aggregation procedure does such a new
framework advocate for? We suggest that the group decision procedure should
be responsive of the group’s opinion about the decision rule. If the majority (or
a pre-fixed quota) of the individuals accepts the decision rule, the aggregation
procedure will be based on the criteria of the rule. If the group rejects the
rule, the only issue the group can confidently express its opinion about is the
conclusion D.

The remainder of this paper is organized as follows. After necessary background
on the problem of judgment aggregation, we present our general framework. We
then introduce the formal representation, the aggregation procedure and show
that our framework offers a solution to the judgment aggregationdilemma. Lastly,
we compare our approach to some related work and then we conclude.

2 Judgment Aggregation

In the original problem of judgment aggregation [5,6], a court has to make a
decision on whether a person is liable of breaching a contract (proposition D).
The judges have to reach a verdict following the legal doctrine. This states that



Individual Opinions-Based Judgment Aggregation Procedures 57

a person is liable if and only if there was a contract (P ) and there was a conduct
constituting breach of such a contract (Q). The legal doctrine can be formally
expressed by the rule (P ∧ Q) ↔ D. Each member of the court expresses her
judgment on the propositions P , Q and D such that the rule (P ∧ Q) ↔ D is
satisfied.

Suppose now that the three members of the court make their judgments ac-
cording to Table 1.

Table 1. Doctrinal paradox. Premises: P = There was a contract, Q = There was

conduct constituting breach of such a contract. Conclusion: D = (P ∧Q) = There was

a breach of contract.

P Q D = (P ∧ Q)

Judge A 1 0 0

Judge B 0 1 0

Judge C 1 1 1

Majority 1 1 0

Each judge expresses a consistent judgment, i.e., she says yes to D if and
only if she says yes to both P and Q. However, proposition-wise majority vot-
ing (consisting in the separate aggregation of the votes for each proposition
P , Q and D via majority rule) results in a majority for P and Q and yet
a majority for ¬D. This is an inconsistent collective result, in the sense that
{P, Q,¬D, (P ∧Q)↔ D} is inconsistent in propositional logic. The paradox lies
in the fact that majority voting can lead a group of rational agents to endorse
an irrational collective judgment, i.e., to have a majority believing that the de-
fendant should be left free while another majority deems there are reasons to
sentence her. The literature on judgment aggregation refers to such problem as
the doctrinal paradox. Clearly, the relevance of such aggregation problems goes
beyond the specific court example and affects all collective decisions on logically
interconnected propositions.

The first two ways to avoid the inconsistency that have been suggested are
the premise-based procedure (PBP) and the conclusion-based procedure (CBP)
[12]. According to the PBP, each member casts her judgment on each premise.
The conclusion is then inferred from the judgment of the majority of the group
on the premises using the rule (P ∧ Q) ↔ D. In the example above, the PBP
would declare the defendant liable of breaching the contract.

According to the CBP, the members decide privately on P and Q and only
express their opinions on D publicly. The judgment of the group is then inferred
from applying the majority rule to the agent judgments on the conclusion. The
defendant will be declared liable if and only if a majority of the judges actually
believes that she is liable, and no reasons for the court decision could be supplied.
In the example, contrary to the PBP, the application of the CBP would free the
defendant.
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3 General Framework

Let us first introduce some terminology from standard judgment aggregation. A
set of agents N = {1, 2, . . . , k}, with k ≥ 3, has to make judgments on logically
interconnected propositions of a language L. The set of propositions on which
the judgments have to be made is called agenda (denoted by A), and this is
divided between premises and conclusion. A (individual or collective) judgment
set is the set of propositions believed by the agents or the group. An k-tuple
(J1, J2, . . . , Jk) of agents judgment sets is called profile. A judgment aggregation
rule F assigns a collective judgment set J to each profile (J1, J2, . . . , Jk) of agents
judgment sets. A judgment set J is consistent if it is a consistent set in L, and
is complete if, for any P ∈ L, P ∈ J or ¬P ∈ J but not both.

In our framework a judgment aggregation has the form:

C ↔ D, (1)

where C is a general propositional formula built on literals representing crite-
ria Pi and D is a literal representing the final decision (or conclusion). In the
following (1) is referred to as the decision rule. We assume that C is neither
a tautology nor a contradiction, this ensures that the criteria are logically in-
dependent (as in the standard framework). Moreover, if one of the criteria is
the negation of a propositional variable (e.g. ¬Q), the members express their
judgments on criteria as given, i.e., on P , ¬Q, etc. Considering decision rules
where C is a conjunction is not a limitation of our approach. Notably, our anal-
ysis extends to other truth-functional combinations of literals as well, e.g. the
disjunctive decision rule (P ∨ Q ∨ R) ↔ D, because this rule is equivalent to
(¬P ∧ ¬Q ∧ ¬R)↔ ¬D.

Let us now formalize the extensions we intend to give to standard judgments
aggregation, namely: judgment status and acceptance of the decision rule.

3.1 Judgment Status

We distinguish four possible judgments: classical binary judgment 1 (for) or
0 (against), neutral judgment and abstention. As classical binary judgment is
already at work, we only detail abstention and neutral judgments.

Neutral judgments. Neutrality captures those situations in which members
do not have a clear position on a specific issue, do not feel competent, or simply
prefer not to take position on that matter. We represent a neutral judgment by
a question mark “?”. For example, given (P ∧Q)↔ D, if a member believes P
to be true but does not know about Q, then her judgment set will be {(1, ?, 0)}.
A group member may express a neutral judgment w.r.t. some or all criteria, and
on the conclusion as well.

Abstention. We represent an abstention by a cross “X”. The difference between
abstention and a neutral judgment is that a member abstains on a criterion
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Pi when she deems that criterion irrelevant for the decision D. Consequently,
abstention on criteria are ignored in the decision process. However, a member
cannot abstain on the decision D. When a member takes part into a collective
decision process, she is expected to express her judgment on D.

3.2 Acceptance/Rejection of the Decision Rule

Each member j says whether she accepts (Acceptj = 1) or rejects (Acceptj = 0)
the decision rule.

Acceptance of the decision rule. This means that either, for a member j,
the criteria P1, · · · , Pn are the all and only relevant ones to make a judgment on
D, or that (1) contains some irrelevant criteria together with all relevant ones.
In the first case, j will give 1/0 or neutral judgments on each criterion. In the
second case, she will abstain on the criteria that she deems to be irrelevant and
will give a judgment only on the relevant criteria. Of course, D is computed
only on the basis of the criteria on which she expressed a judgment, i.e., she did
not abstain. It is worth observing that the original legal paradox of judgment
aggregation is an instance of this case, where all group members (the judges)
have to endorse the legal code, or behave as if this is the case.

Rejection of the decision rule. There are two cases under which a member
can reject the decision rule. The first is when she believes that criteria Pi are
not adequate, i.e., some criteria are missing. In this case, j fixes the value of D
according also to the missing criteria. The intuition is that, if a member wants
to have her saying in a decision process, but considers the adopted rule unable
to capture the relevant criteria for the decision, she must be able to express her
judgment on the conclusion while making explicit that she deems the rule to be
not appropriate.

The second situation is when j agrees on the criteria Pi in the decision rule,
but disagrees on the way these criteria are logically connected. For e.g. the rule is
(P∧Q)↔ D and according to j the decision rule should instead be (P ∨Q)↔ D.
Member j will therefore assign 0/1 or neutral judgments on the criteria while
deciding on the value of D according to (P ∨Q)↔ D.

It is important to notice that members may express judgments on the premises
even when they reject the rule. The reason is that in case they are the only one
to reject the rule (or in any case there is not majority rejecting the rule), the
decision procedure will be PBP (see Section 4) in which case they can have their
saying on the premises.

Example 1. Consider our running example of the board of a research funding
agency whose members have to decide which research project to support on
the basis of three criteria: originality (P ), quality (Q), and applicability (R).
Suppose that the decision rule is (P ∧Q∧R)↔ D. The five members state their
judgments on P , Q and R as in Table 2.
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Table 2. Acceptance of the general rule and individual judgments

Acceptance P Q R D

M1 1 0 0 1 0

M2 1 1 X 1 1

M3 1 ? 0 0 0

M4 0 1 X 1 ?

M5 0 0 1 1 1

The first three members agree with the decision rule (P ∧Q∧R)↔ D since for
them Acceptj = 1 (for j = 1, 2, 3). M1 thinks that the criteria P , Q, and R are
the all and only relevant attributes for funding a project whereas M2 thinks that
the criterion Q is irrelevant and decides then to abstain to give any judgement
on Q. The decision of M2 is derived on the basis of P and R only. The third
member also agrees on the decision rule, but unlike the first two, she is neutral on
P . Since for M3, Q and R false and she accepts the rule, D is also false. Finally,
M4 and M5 reject the decision rule. M4 thinks that Q is irrelevant and that
there are missing criteria. So she abstains to give any judgement on Q and gives
neutral judgement on D according to P , R and the missing criteria. M5 does not
accept the rule for other reasons: she thinks that the criteria are relevant but
not correctly linked. Indeed she expresses her opinions on all the propositions
but she gives her judgement to D following the rule (P ∨Q ∨R)↔ D.

4 Representation and Aggregation Procedure

We represent a judgment expressed by a member j by the following tuple

Jj = (Acceptj , P1j , · · · , Pnj , Dj),

where Pij ∈ {0, 1, ?, X} and Dj ∈ {0, 1, ?}.
Dj is either derived following the decision rule or fixed by the group member

depending on whether she accepts the general rule or not.
Given a set of judgments {J1, · · · , Jk}, the collective decision is represented

as follows:
D = (Acceptagg, Pagg1 , · · · , Paggn , Dagg),

such that:

– Acceptagg is the majority (or any other quota rule) of Accept1, · · · , Acceptk.
If there are as many members accepting the rule as members rejecting it,
we fix Acceptagg = 0. In social choice theory, tie-breaking rules are usually
random. Since in our approach, all members assign a value to the conclusion,
it is preferable to break the tie in favour of Acceptagg = 0 (so turning to CBP)
than by a random choice (this will be detailed later in this section).

– Paggi is the majority of Pi1, · · · , Pik following proposition-wise majority vot-
ing. Abstentions on Pi are ignored when computing Paggi since those criteria
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are irrelevant. Neutral judgments simply follow the majority. In case of in-
decision, i.e., a tie between the number of Pij = 1 and Pij = 0, we put
Paggi =?.

– Dagg is computed by PBP or CBP. The procedure is fixed according to
Acceptagg as follows :

• if Acceptagg = 0 then we use CBP and Dagg is computed on the basis
of D1, · · · , Dk. This is intuitively meaningful since Acceptagg = 0 means
that the group members thought that the decision rule was not the right
one for that decision, so the only reasonable thing they can say is the
final conclusion. Dagg is calculated by simple majority voting. Neutral
judgments simply follow the majority. In case of indecision, we have the
following subcases:
∗ if indecision is not allowed, then we do not accept neutrality on D.

We then propose to have either a ‘pessimistic’ (Dagg = 0) or an
‘optimistic’ (Dagg = 1) solution on the conclusion. Such a choice is
publicly stated at the begining of the decision process and is fixed
by the same person or organization that fixed the decision rule. It is
reasonable to expect that the way the conclusion is decided in case of
indecision depends on the context: In a legal context, for example, it
is preferred to release a culprit rather than condemn an innocent. On
the other hand, if we must hire a person, it is reasonable to opt for
the optimistic solution, i.e., the indecision is interpreted as a positive
decision.
∗ if indecision is allowed at the begining of the decision process then

we put Dagg =?
• if Acceptagg = 1 then PBP is used and Dagg is derived by the collective

judgments on the premises following the decision rule. If the aggregation
of Pagg1 , ·..., Paggn results in ? following the decision rule and indecision is
not allowed then we will have Dagg = 1 in case of an optimistic reasoning
or Dagg = 0 in case of an pessimistic reasoning.
• In case there are as many members who accept the rule as individuals

who reject the rule, CBP is used. The reason is that those who reject
the rule derive the value of Dagg using also the missing criteria or what
they think are the correct logical relations among criteria. In both cases,
using PBP and deriving Dagg by the given decision rule would not reflect
their opinions. If CBP returns a tie between D = 0 and D = 1, this is
handled in the same way as in the case where Acceptagg = 0.

We now illustrate the procedure with our running example.

Example 2. Table 3 gives the judgments expressed by five members of our fund-
ing board. Only M1 rejects the rule because she believes that some criteria are
missing. She fixes the value of D according also to the missing criteria, this is
why D = 0 despite the fact that we have P = 1 and Q = 1. Since Acceptagg = 1
we use premise-based procedure. We get Dagg = 1 following the decision rule.
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Table 3. Example of judgment aggregation with acceptance of the general rule

Acceptance P Q R D

M1 0 1 1 ? 0

M2 1 0 1 1 0

M3 1 X 1 1 1

M4 1 1 1 1 1

M5 1 1 0 1 0

collective decision 1 1 1 1 1

Example 3. Let us now consider individuals who have to make a collective de-
cision using the rule (P ∧ Q ∧ R) ↔ D, with a majority thinking that it is not
appropriate, i.e., Acceptagg = 0. Suppose that their judgments are as in Table 4.

Table 4. Example of judgment aggregation with rejection of the general rule

Acceptance P Q R D

M1 0 1 0 0 1

M2 1 1 1 1 1

M3 0 0 0 1 1

M4 0 X 0 X 0

M5 1 1 0 1 0

collective decision 0 1 0 1 1

A majority of members do not accept the decision rule. As we have seen,
when Acceptagg = 0 it means that the group members believe that the most
important criteria for the decision are missing or that criteria are relevant but
not well connected. Therefore, they express their judgments on the criteria in
the rule, but their decision on the conclusion D takes into account what they
believe are the missing attributes or the right decision rule. For example, M3

states that D = 1 despite the fact that P = 0 and Q = 0 because she thinks that
the rule is (P ∨Q∨R)↔ D. In this situation, the group will conclude Dagg = 1
following a CBP.

Please note that letting the majority deciding on the group acceptance of
the decision rule is just one possibility. Nothing forbids to fix a different quota,
such as unanimity or a quota of 2/3 of the agents in order to accept or reject
the decision rule at the group level. According to our framework, the original
doctrinal paradox would be solved by PBP. In the court example, all judges
have to give judgments according to the legal doctrine. Hence, PBP would be
enforced. This would be in line with what advocated by some legal theorists,
that is in a legal verdict reasons are more important than the final decision as
these will form the legal corpus for future verdicts.
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5 A Solution to the Dilemma

In this section we compare our approach to standard judgment aggregation. In
particular, our approach can be seen not only as a more realistic and flexible
framework for judgment aggregation problems, but also as an escape route from
the paradoxes that trouble judgment aggregation. In order to illustrate why this
is the case, we will state the first impossibility theorem [8], recall why PBP and
CBP are considered escape routes from the dilemma and, finally, show that our
approach is an alternative solution.

The first impossibility theorem of judgment aggregation1 showed that there
exists no aggregation function F that satisfies the following few desirable
conditions:

Universal Domain: The domain of F is the set of all profiles of consistent
and complete judgment sets.

Anonymity: For any profiles (J1, . . . , Jk), (J ′
1, . . . , J

′
k) in the domain that are

permutations of each other, F (J1, . . . , Jk) = F (J ′
1, . . . , J

′
k). Intuitively, this

means that all agents have equal weight.
Systematicity: For any P, Q ∈ A and any profiles (J1, . . . , Jk), (J ′

1, . . . , J
′
k) in

the domain, if ∀j ∈ N, P ∈ Jj ↔ Q ∈ J ′
j , then P ∈ F (J1, . . . , Jk) ↔ Q ∈

F (J ′
1, . . . J

′
k). This condition ensures that the collective judgment on each

proposition depends only on the agent judgments on that proposition, and
that the aggregation rule is the same across all propositions. Systematicity
is clearly a very strong condition. In subsequent impossibility results, sys-
tematicity has been weakened to the independence of irrelevant alternatives:

Independence of Irrelevant Alternatives (IIA): For any P ∈ A and any
profiles (J1, . . . , Jk), (J ′

1, . . . , J
′
k) in the domain, if ∀j ∈ N, P ∈ Jj ↔ P ∈ J ′

j ,
then P ∈ F (J1, . . . , Jk)↔ P ∈ F (J ′

1, . . . J
′
k). In other words, IIA is system-

aticity without the neutrality condition, requiring that all propositions are
equally treated.

It should be now clear why PBP and CBP are escape routes to the dilemmas
of judgment aggregation. PBP is a procedure that relaxes the independence of
irrelevant alternatives condition: The individuals are requested to express their
judgments only on the premises and the collective value of the conclusion is
derived by the aggregated values on the premises following the decision rule. On
the other hand, CBP can never generate a paradoxical outcome as the conclusion
is a literal.

However, as attractive as these procedures can appear, they leave a major
open problem: When proposition-wise majority voting collapses into an incon-
sistent group outcome, PBP and CBP give opposite solutions, as we have seen
in the court example. The question is then how we can decide between these two
solutions.

1 For other impossibility theorems that strengthened and expanded the original for-

mulation, see [9].
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Our approach is an attempt to provide an answer to this question. By ex-
tending the standard judgment aggregation framework and allowing the group
members to accept or reject the given decision rule, we introduce a way to decide
between PBP and CBP. When the majority (or any other pre-fixed quota of the
voters) agrees with the decision rule, the individual judgments are aggregated
by PBP. On the other hand, when the group does not agree with the rule, the
only opinion the group can provide is about the final decision, so the aggregation
procedure will turn to CBP.

Since our approach can always decide whether the aggregation function is
PBP or CBP, we provide an escape from the paradoxes that plague standard
judgment aggregation.

6 Related Works

In this section we refer to works that proposed to relax some of the assumptions
made in the classical judgment aggregation framework. However, our model is
the first that combines all these different aspects and introduces new ones.

Results in judgment aggregation usually assume complete judgment sets both
at the individual and collective level. Gärdenfors [4] was the first to criticize
such assumption as being too strong and unrealistic. He allows voters to abstain
from expressing judgments on some propositions in the agenda. He proves that,
if the judgment sets may not be complete (but logically closed and consistent),
then every aggregation function that is IIA and Paretian2, must be oligarchic3.
Gärdenfors’ framework requires the agenda to have a very rich logical struc-
ture (with an infinite number of issues). More recently, Dokow and Holzman [3]
extended Gärdenfors’ result and consider finite agendas. Again, impossibility re-
sults are obtained. Hence, relaxing the completeness assumption does not avoid
the impossibility results.

Nevertheless, allowing the voters to not express their judgments on some of
the issues in the agenda provides a more realistic model of judgment aggregation,
which is the aim of our paper. In order to avoid confusion, we must observe that
we distinguish abstaining from being neutral with respect to an issue in the
agenda. Abstentions in Gärdenfors and Dokow and Holzman’ works correspond
to what we call “neutral judgments”. In our model, a voter abstains on a criterion
when she deems that this criterion is irrelevant. In this case, she does not state
her judgments on a criterion.

In a recent paper, Miller [10] considers judgment aggregation problems in
which members have different views on how the premises are connected to

2 A Paretian aggregation function is such that, if all the members in the group adopt

the same position on a certain issue, this position will be adopted at the collective

level as well.
3 An aggregation function is oligarchic if, for every issue in the agenda, the group

adopts a position 0 (resp. 1) if and only if all the members of a subset of the group

(the oligarchy) adopt position 0 (resp. 1) on that issue. Clearly, when there is only

one member in the oligarchy, it corresponds to dictatorship.
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the conclusion. This means that there is no imposed decision rule but, given
a set of premises and a conclusion, each member expresses her judgments on
the propositions in the agenda as well as providing the decision rule she has
used. Miller’s framework allows members to use decision rules in which only
some of the premises appear. However, group members are requested to express
judgments also on criteria that they deem irrelevant for the final decision. The
question addressed is whether, once the members have voted following their own
decision rules, it is possible to determine a group decision rule that represents
how the group see the logical relations between premises and conclusion. Unless
the unanimity rule is used, the answer is negative.

Another related work is [11], which considers judgment aggregation situations
in which there is a gap between necessary and sufficient conditions to justify a
certain decision on the conclusion. An example is the reviewing process for the
publication of a paper. Suppose that the criteria for recommending publication
of a manuscript (D) are correctness of the results (P ) and originality of the
ideas (Q). We may agree that P is necessary for recommending publication
(¬P → ¬D), and also that P ∧Q→ D. However, the gap between necessary and
sufficient conditions is the situation in which we judge the results contained in the
submission to be correct but the ideas not original: P∧¬Q is consistent with both
acceptance and rejection of a paper. Members may have different views on such
gaps. The question posed in [11] is how to justify such individual discrepancies
at the group level. Possibilities results are explored, in which majority voting on
the conclusion is combined with no veto power on the premises.

Despite the similarities of the above contributions with our approach, the key
feature of our proposal is to present a normative procedure: the aggregation rule
is PBP or CBP depending on the members view on the given decision rule. The
group will always be able to take a decision and, when most of them consider the
decision rule to be appropriate, the group will also be able to provide reasons
for that decision.

Another way to make the aggregation procedure reactive to the individual
opinions about the decision rule is to allow the group members to assign weights
to the criteria, as in [2]. The way the group decision is derived (PBP or CBP)
depends on whether the final weights are above or below a fixed threshold.
The problem of fixing a threshold is common to other frameworks that use
similar quantitative approach (see for example, the work by (Dietrich and List
2005) using quota rules). Even if these approaches also provides a more realistic
framework to judgment aggregation, problems have to be solved such as : where
do the weights come from and how/who should fix the threshold.

7 Conclusion and Future Work

We extended standard judgment aggregation procedure in order to take into ac-
count the judgement status and the acceptance of the decision rule. Our frame-
work allows group members to express 0/1 judgments as well as being neutral or
abstain on some propositions. In addition, it allows individuals to state whether
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or not they agree on the rule governing the decision. The aggregation procedure
we propose is more reactive to individual opinions since we use a flexible decision
rule (conclusion-based or premises-based) according to the acceptance/rejection
of the rule by the group members. Our approach is more realistic and flexible
compared to standard judgment aggregation procedure. In addition, it provides
an escape route from the paradoxes that trouble judgment aggregation.

This work can be extended in different directions, among which we plan to
investigate the relationship between acceptance of the decision rule in our frame-
work and works on coalitions [14]. More precisely, we intend to study how group
members can form coalitions and manipulate their judgments in order to drive
the decision process in a particular direction. In addition, we plan to investigate
the relationship with opinion aggregation in order to go beyond binary judg-
ments [1]. A fuzzy approach would also allow to express the degree of confidence
in the decision rule.
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Abstract. Multisets (also called bags) are like-structures where an ele-

ment can appear more than once. Recently, several generalizations of this

concept have been studied. In this article we deal with a new extension

of this concept, the bounded fuzzy natural number-valued multisets. On

this kind of bags, a bounded distributive lattice structure is presented

and a partial order is defined. Moreover, we study operations of aggre-

gations (t-norms and t-conorms) and we provide two methods for their

construction.

1 Introduction

Multisets (also called bags in the literature [25]) are like-structures where an
element can appear more than once. Formally, a multiset over a set of types X
is a mapping M defined from X to the set N = {1, 2, · · · , } of natural numbers.
A survey of the mathematics of multisets, including their axiomatic foundation,
can be found in [2]. The multisets have been studied by several researchers in
computer science from different points of view. For example, their applications
to data analysis and decision making [19], their applications to flexible querying
[22] or the monograph on multiset processing [13].

According to the interpretation of a multiset M : X → N, it describes a
set or universe, Ω, which consists of M(x) “exact” copies of each type x ∈ X .
Specifically, for each x ∈ X , M(x) is the account of elements or cardinal of
the subset Ωx ⊂ Ω. The number M(x) is usually called the multiplicity of x in
the multiset M . One of the most natural and simple example is the multiset of
prime factors of a natural number n. Thus, the number 504 has the factorization
504 = 23 · 32 · 71 which gives the multiset {2, 2, 2, 3, 3, 7}.

Notice that all properties (inclusion, equality, etc.) and operations (addition,
union, intersection, etc.) between multisets stem from similar properties and
operations of the set of natural numbers. So, a deep study of the valuation set
of multisets over a universe X allow us to obtain new properties. And a change
of this valuation set allows us to get new extensions.

In [3], the authors introduced a more general definition of ”extended multiset”
as mappings M : X → L, where L is a finite or infinite chain of natural numbers,
or, even, it can be N = N ∪ {∞}, with the usual operations and order. This
definition allows to extend several aggregation operators defined in L, such as
t-norms or t-conorms, to multisets.

V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 67–78, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Another natural generalization of this interpretation of multisets leads to the
notions Real-Valued Bags and bag relations [20] or multisets with fuzzy values
[16,20] over a set of types X . Such a multiset describes for each x ∈ X , a set Ωx

consisting this time of ”possibly inexact” copies of x with a degree of similarity
valued in [0,1]. In this way, in [18] an immediate generalization of crisp multisets
using fuzzy numbers instead of natural numbers is proposed. So, provided a
suitable definition of fuzzy number (triangular, trapezoidal, Gauss-shaped, etc
[15]), it is possible to consider fuzzy Number-Valued multisets defined over X .

Analogously to the crisp case and in order to define a “multiplicity” or fuzzy
multiplicity of each type for a fuzzy multiset over X , we need to associate to
each x ∈ X the cardinality of the fuzzy set Ωx. The problem of “counting”
fuzzy sets has generated a lot of literature since Zadeh’s first definition of the
cardinality of fuzzy sets [14,15]. In particular, the scalar cardinalities of fuzzy
sets, which associate to each fuzzy set a positive real number, have been studied
from the axiomatic point of view [12] with the aim of capturing different ways
of counting additive aspects of fuzzy sets like the cardinalities of supports, of
levels, of cores, etc. In a similar way, the fuzzy cardinalities of fuzzy sets [11,14],
which associate to any fuzzy set a fuzzy natural number, have also been studied
from the axiomatic point of view.

Taking into account that the fuzzy cardinality of a fuzzy set is a fuzzy natural
number, i.e., a discrete fuzzy number whose support is a subset of consecu-
tive natural numbers, in [10] the authors defined Fuzzy Natural Number-Valued
multiset as mappings M : X → FNN where FNN is the set of fuzzy natural
numbers. On this type of multisets, monoidal and lattice structures were studied.

On the other hand, in [3] the authors deal with multisets whose multiplicities
are possibly bounded due to circumstances of the framework where they are de-
fined. As a consequence, in this paper we propose a new extension of the concept
of multiset, the bounded fuzzy natural number-valued multisets. On this new set
of multisets we define a structure of bounded distributive lattice. And, on this
bounded partially ordered set we define triangular norms and conorms. More-
over, we propose two methods to get t-norms and t-conorms. The first method
uses t-norms(t-conorms) on AL

1 = {u ∈ FNN | supp(u) ⊆ L = {0, 1, · · · , m}}.
And the second one uses divisible t-norms(t-conorms) on the finite chain L =
{0, 1, · · · , m} of natural numbers.

2 Preliminaries

2.1 Multisets

Let X be a crisp set. A (crisp) multiset over X is a mapping M : X → N, where
N stands for the set of natural numbers including the 0. A multiset M over X
is finite if its support

supp(M) = {x ∈ X |M(x) > 0}

is a finite subset of X . We shall denote the sets of all multisets over a set X by
MS(X), and by ⊥ the null multiset, defined by ⊥(x) = 0 for each x ∈ X .



Aggregation of Bounded Fuzzy Natural Number-Valued Multisets 69

For every A, B ∈MS(X), their sum [21] A + B is the multiset defined point-
wise by

(A + B)(x) = A(x) + B(x), x ∈ X.

Let us mention here that it has been argued that this sum +, also called additive
union, is the right notion of union of multisets. According to the interpretation
of multisets as sets of copies of types explained in the introduction, this sum
corresponds to the disjoint union of sets, as it interprets that all copies of each x
in the set represented by A are different from all copies of it in the set represented
by B. This additive sum has quite different properties from the ordinary union
of sets. For instance, the collection of submultisets of a given multiset is not
closed under this operation and consequently no sensible notion of complement
within this collection exists.

For every A, B ∈ MS(X), their join A ∨B and meet A ∧B are respectively
the multisets over X defined pointwise by (A ∨ B)(x) = max(A(x), B(x)) and
(A ∧ B)(x) = min(A(x), B(x)) , x ∈ X . If A and B are finite, then A + B,
A ∨ B and A ∧ B are also finite. A partial order ≤ on MS(X) is defined by
A ≤ B if and only if A(x) ≤ B(x) for every x ∈ X . If A ≤ B, then their
difference B −A is the multiset defined pointwise by

(B −A)(x) = B(x) −A(x).

2.2 Triangular Norms and Conorms on Partially Ordered Sets

Let (P ;≤) be a non-trivial bounded partially ordered set (poset) with ”e” and
”m” as minimum and maximum elements respectively.

Definition 2.1. [1] A triangular norm (briefly t-norm) on P is a binary op-
eration T : P × P → P such that for all x, y, z ∈ P the following axioms are
satisfied:

1. T (x, y) = T (y, x) (commutativity)
2. T (T (x, y), z) = T (x, T (y, z)) (associativity)
3. T (x, y) ≤ T (x′, y′) whenever x ≤ x′, y ≤ y′ (monotonicity)
4. T (x, m) = x (boundary condition)

Definition 2.2. A triangular conorm (t-conorm for short) on P is a binary
operation S : P × P → P which, for all x, y, z ∈ P satisfies (1), (2), (3) and
(4′): S(x, e) = x, as boundary condition.

2.3 Triangular Norms and Conorms on Discrete Settings

Let L be the totally ordered set L = {0, 1, . . . , m} ⊂ N. A t-norm(t-conorm)
defined on L will be called a discrete t-norm(t-conorm).

Definition 2.3. [17] A t-norm(t-conorm) T (S) : L×L→ L is said to be smooth
if it satisfies T (S)(x+1, y)−T (S)(x, y) ≤ 1 and T (S)(x, y+1)−T (S)(x, y) ≤ 1.

Definition 2.4. [17] A t-norm(t-conorm) T : L×L→ L is said to be divisible if
it satisfies: For all x, y ∈ L with x ≤ y, there is z ∈ L such that x = T (y, z)(y =
S(x, z)).
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2.4 Discrete Fuzzy Numbers

By a fuzzy subset of the set of real numbers, we mean a function u : R→ [0, 1].
For each fuzzy subset u, let uα = {x ∈ R :u(x) ≥ α} for any α ∈ (0, 1] be
its α-level set (or α-cut). By supp(u), we mean the support of u, i.e. the set
{x ∈ R :u(x) > 0}. By u0, we mean the closure of supp(u).

Definition 2.5. [23] A fuzzy subset u of the set of real numbers R with mem-
bership mapping u : R →[0, 1] is called discrete fuzzy number if its support
is finite, i.e., there are x1, ..., xn ∈ R with x1 < x2 < ... < xn such that
supp(u) = {x1, ..., xn}, and there are natural numbers s, t with 1 ≤ s ≤ t ≤ n
such that:

1. u(xi)=1 for any natural number i with s ≤ i ≤ t ( core)
2. u(xi) ≤ u(xj) for each natural number i, j with 1 ≤ i ≤ j ≤ s
3. u(xi) ≥ u(xj) for each natural number i, j with t ≤ i ≤ j ≤ n

Remark 2.1. If the fuzzy subset u is a discrete fuzzy number then the support
of u coincides with its closure, i.e. supp(u) = u0.

From now on, the notation DFN stands for the set of discrete fuzzy numbers.
The operations addition, maximum and minimum between discrete fuzzy

numbers defined through Extension principle [15] can yield fuzzy subsets that do
not satisfy the conditions to be discrete fuzzy numbers [4,24]. In [4,5,6,24], this
drawback is studied and a new method to define these operations is proposed.
So, the next result holds [24]:

Theorem 2.1. Let u, v ∈ DFN , the fuzzy subset denoted by u⊕
W

v, such that

it has as r-cuts the sets [u⊕
W

v]r = {x ∈ supp(u) + supp(v) : min([u]r + [v]r) ≤
x ≤ max([u]r + [v]r)} for each r ∈ [0, 1] where min([u]r + [v]r) = min{x : x ∈
[u]r +[v]r}, max([u]r +[v]r) = max{x : x ∈ [u]r +[v]r} and (u⊕

W
v)(x) = sup{r ∈

[0, 1] such that x ∈ [u⊕
W

v]r} is a discrete fuzzy number.

On the other hand, in [6], the following result is obtained:

Proposition 2.1. For each u, v ∈ DFN , there exist two unique discrete fuzzy
numbers, which we will denote by MINw(u, v) and MAXw(u, v), such that they
have the sets MINw(u, v)α and MAXw(u, v)α as α-cuts respectively, where

MINw(u, v)α = {z ∈ supp(u)
∧

supp(v)|min(xα
1 , yα

1 ) ≤ z ≤ min(xα
p , yα

k )}

MAXw(u, v)α = {z ∈ supp(u)
∨

supp(v)|max(xα
1 , yα

1 ) ≤ z ≤ max(xα
p , yα

k )}

for each α ∈ [0, 1], being uα = {xα
1 , · · · , xα

p }, vα = {yα
1 , · · · , yα

k } the α-cuts of u
and v respectively. And, supp(u)

∧
supp(v) = {z = min(x, y)|x ∈ supp(u), y ∈

supp(v)} and supp(u)
∨

supp(v) = {z = max(x, y)|x ∈ supp(u), y ∈ supp(v)}
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3 Operations on Fuzzy Natural Numbers

From now on, the notation fnn stands for a fuzzy natural number (i.e. discrete
fuzzy numbers whose support only includes consecutive natural numbers) and
FNN stands for the set of fuzzy natural numbers.

3.1 Addition of Fuzzy Natural Numbers

It is well known [15] that, in the case of continuous fuzzy numbers the addition
obtained by extending the usual addition of real numbers through the extension
principle is associative and commutative. But the fuzzy natural numbers are not
continuous on R.

In [5], the authors proved that in the case in which the discrete fuzzy numbers
have as support an arithmetic sequence or a subset of consecutive natural num-
bers it is possible to use the Zadeh’s extension principle to obtain its addition.
Moreover, we know [24] the next result:

Proposition 3.1. Let us consider u, v ∈ DFN . If u⊕ v ∈ DFN where u⊕ v
denotes the addition of u and v using the Zadeh’s extension principle, then u⊕v
and u⊕

W
v are identical, where u⊕

W
v is the discrete fuzzy number obtained from

u and v according to Theorem 2.1.

Remark 3.1. A consequence of the previous proposition is that if we prove a
property for the operation ⊕

W
in the set of fuzzy natural numbers, we will obtain

the same property for the operation ⊕ in this set.

Theorem 3.1. [10] The set FNN of the fuzzy natural numbers is a commuta-
tive monoid with the Zadeh’s addition as a monoidal operation.

3.2 Maximum and Minimum of Fuzzy Natural Numbers

With respect to the maximum and the minimum of two fuzzy natural numbers,
the authors have proved in [6] the following proposition:

Proposition 3.2. [6] Let u, v be two fuzzy natural numbers. Then MAX(u, v),
defined through the extension principle, coincides with MAXw(u, v). So, if u, v ∈
FNN , MAX(u, v) is a fuzzy natural number and MAX(u, v) ∈ FNN . Anal-
ogously, MIN(u, v), defined through the extension principle, coincides with the
fnn MINw(u, v). So, if u, v ∈ FNN , then MIN(u, v) is a fuzzy natural number
and MIN(u, v) ∈ FNN .

But we have studied in [7] the associativity, commutativity, idempotence, absorp-
tion and distributivity for the operations MINw and MAXw between discrete
fuzzy numbers in general and between fuzzy natural numbers in particular and
we obtained the following proposition:
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Proposition 3.3. [7] The set of discrete fuzzy numbers whose support is a se-
quence of consecutive natural numbers (FNN ,MINw,MAXw) is a distributive
lattice.

If we gather the previous Propositions 3.2 and 3.3, then we obtain the following
consequence:

Proposition 3.4. [7] The set of discrete fuzzy numbers whose support is a se-
quence of consecutive natural numbers (FNN ,MIN ,MAX) is a distributive
lattice.

With the aim of studying the monotony for the addition of two fuzzy natural
numbers, we need a definition of order:

Definition 3.1. [7] From the operations MINw and MAXw, we can define a
partial order on FNN on the following way:
u � v if and only if MINw(u, v) = u, or equivalently, u � v if and only if
MAXw(u, v) = v for any u, v ∈ FNN . Equivalently, we can also define the
partial ordering in terms of α-cuts:

u � v if and only if min(uα, vα) = uα

u � v if and only if max(uα, vα) = vα

Proposition 3.5. [10] Let u, v, w, t ∈ FNN . If u � v and w � t where �
denotes the partial order in FNN defined in Definition 3.1 then u⊕ w � v ⊕ t,
where ⊕ denotes the Zadeh’s addition.

3.3 Discrete Fuzzy Numbers Obtained by Extending Discrete
t-norms(t-conorms) Defined on a Finite Chain

Let us consider a discrete t-norm(t-conorm) T (S) on the finite chain L =
{0, 1, · · · , m} ⊂ N. If X and Y are subsets of L, then the subset {T (x, y)|x ∈
X, y ∈ Y} ⊆ L will be denoted by T (X, Y). Analogously, S(X, Y) = {S(x, y)|x ∈
X, y ∈ Y}.

So, if we consider the α-cut sets, uα = {xα
1 , ..., xα

p }, vα = {yα
1 , ..., yα

k }, for u
and v respectively then T (uα, vα) = {T (x, y)|x ∈ uα, y ∈ vα} and S(uα, vα) =
{S(x, y)|x ∈ uα, y ∈ vα} for each α ∈ [0, 1], where u0 and v0 denote supp(u) and
supp(v) respectively.

Definition 3.2. [8] For each α ∈ [0, 1], let us consider the sets

Cα = {z ∈ T (supp(u), supp(v))|minT (uα, vα) ≤ z ≤ maxT (uα, vα)} and

Dα = {z ∈ S(supp(u), supp(v))|minS(uα, vα) ≤ z ≤ maxS(uα, vα)}

Theorem 3.2. [8] There exists a unique discrete fuzzy number that will be de-
noted by T (u, v)(S(u, v)) such that T (u, v)α = Cα(S(u, v)α = Dα) for each
α ∈ [0, 1] and T (u, v)(z) = sup{α ∈ [0, 1] : z ∈ Cα}(S(u, v)(z) = sup{α ∈ [0, 1] :
z ∈ Dα})
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From now on the set AL
1 = {u ∈ FNN | supp(u) ⊆ L = {0, 1, · · · , m}} will be

called the set of bounded fuzzy natural numbers and each element of this set
will be called a bounded fuzzy natural number (in short bfnn). In [9] the authors
showed the next result

Theorem 3.3. The triplet (AL
1 , MINw, MAXw) is a bounded distributive lat-

tice and the fnn 0̂ and m̂, defined by 0̂(i) = 1 if i = 0 and 0̂(i) = 0, otherwise,
m̂(i) = 1 if i = m and m̂(i) = 0, otherwise, are the lower and the upper bound,
respectively.

On the other hand, it is well known [1] that it is possible to generalize the concept
of t-norm (t-conorm) using any bounded partially ordered set instead of the unit
interval. Using this idea and Theorem 3.3 we can build t-norms and t-conorms
on the bounded distributive lattice AL

1 .

Theorem 3.4. [9] Let T (S) be a divisible t-norm(t-conorm) on L and let

T (S) : AL
1 ×AL

1 → AL
1

(A, B) �−→ T (u, v)(S(u, v))

be the binary operation (which will be called the extension of the t-norm(t-
conorm) T (S) to AL

1 ), where T (u, v)(S(u, v)) are defined according to Theorem
3.2. Then, T (S) is a t-norm(t-conorm) on the bounded set AL

1 .

4 Operations on Fuzzy Natural Number-Valued Multisets

4.1 FNN-Valued Multisets[10]

Definition 4.1. A Fuzzy Natural Number-valued multiset defined over an uni-
verse X is a mapping M : X → FNN i.e. for all x ∈ X, M(x) is a fuzzy natural
number.

Remark 4.1. We will denote the set of Fuzzy Natural Number-valued multisets
defined over an universe X by FNNM(X). Finally, the abbreviation fnnm will
denote a Fuzzy Natural Number-valued multiset.

The properties of the addition of fuzzy natural numbers studied in the previous
Section 3, will allow us to define the addition of fuzzy natural number-valued
multisets and to study the monoidal structure of this set.

Definition 4.2. Let A, B : X → FNN be two Fuzzy Natural Number-valued
multisets. The sum of A and B will be the Fuzzy Natural Number-valued Multiset
pointwise defined for all x ∈ X by

(A + B)(x) = A(x) ⊕B(x)

where the fnn A(x)⊕B(x) is obtained following the Zadeh’s extension principle
or equivalently using the method considered in Theorem 2.1.
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Proposition 4.1. The set FNNM(X) of the fuzzy natural number-valued mul-
tisets over X is a commutative monoid with the addition as a monoidal operation.

Analogously to the addition, the properties of the maximum and minimum of
fnn studied in the previous section will allow us to define the maximum and
minimum of fuzzy natural number-valued multisets and to study the order and
the lattice structure of this set.

Definition 4.3. Let A, B : X → FNN be two Fuzzy Natural Number-valued
Multisets. The join and the meet of A and B will be the Fuzzy Natural Number-
valued Multiset, pointwise defined for all x ∈ X as

(A ∨B)(x) = MAX{A(x), B(x)} and (A ∧B)(x) = MIN{A(x), B(x)}

respectively, where the fnn MAX{A(x), B(x)} and MIN{A(x), B(x)} are ob-
tained according to the method presented in Proposition 2.1.

Proposition 4.2. As long as, for all x ∈ X, A(x) ∈ FNN and B(x) ∈ FNN ,
then MAX{A(x), B(x)} and MIN{A(x), B(x)} can be obtained by means of the
extension principle.

Proposition 4.3. Let A, B : X → FNN be two Fuzzy Natural Number-valued
Multisets. The binary relationship:
A ≤ B if and only if A ∨ B = B and/or A ∧ B = A i.e. MAX{A(x), B(x)} =
B(x), ∀x ∈ X (or MIN{A(x), B(x)} = A(x), ∀x ∈ X) is a partial order on the
set FNNM(X).

Proposition 4.4. The set FNNM(X) of the fuzzy natural number-valued mul-
tisets over X is a lattice with the partial order defined in Proposition 4.3 and
the meet and join operations proposed in Definition 4.3.

Proposition 4.5. Let A, B, C, D ∈ FNNM(X). If A ≤ B and C ≤ D where ≤
denotes the partial order in FNNM(X) defined in Proposition 4.3 then A+C ≤
B + D, where + denotes the addition considered in Definition 4.2.

5 Bounded Fuzzy Natural Numbers-Valued Multisets

Let us consider the finite chain L = {0, 1, · · · , m} of natural numbers and the
set AL

1 = {A ∈ FNN | supp(A) ⊆ L} of bounded fuzzy natural numbers.

Definition 5.1. Let X be a finite set or univers. A bounded fuzzy natural number-
valued multiset is a function

M : X −→ AL
1

x �−→M(x)

where M(x) is a bounded fuzzy natural number. Usually, the function M(·) is
called count or multiplicity of M .
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Remark 5.1. We will denote the set of Bounded Fuzzy Natural Number-valued
multisets defined over an universe X by BFNNM(X). Finally, the abbreviation
bfnnm will denote a Bounded Fuzzy Natural Number-valued multiset.

The lattice structure on the set of fuzzy natural numbers considered in the
previous section, will allow us to define similar algebraic structures and lattice
operations (meet and join) on the set BFNNM(X).

5.1 Distributive Bounded Sublattices of FNNM(X)

According to Proposition 4.4, we know that FNNM(X) constitutes a partially
ordered set which is a lattice. Now, using this fact, we want to see that the set
BFNNM(X) is a bounded distributive sublattice of the lattice FNNM(X).

Definition 5.2. Let A, B : X → BFNN be two Bounded Fuzzy Natural Number-
valued Multisets. The join and the meet of A and B will be the Bounded Fuzzy
Natural Number-valued Multiset, pointwise defined for all x ∈ X as

(A ∨B)(x) = MAX{A(x), B(x)} and (A ∧B)(x) = MIN{A(x), B(x)}

respectively, where the bfnn MAX{A(x), B(x)} and MIN{A(x), B(x)} are ob-
tained according to the method presented in Proposition 2.1.

Remark 5.2. It is straightforward to see that if A(x), B(x) ∈ AL
1 for all x ∈ X

then the fnn (A∨B)(x) = MAX{A(x), B(x)} and (A∧B)(x) = MIN{A(x), B(x)}
belong to BFNN . So, the above operations (A∨B) and (A∧B) are well defined.
Moreover from proposition 3.2, MAX{A(x), B(x)} and MIN{A(x), B(x)} can
be obtained by means of the extension principle as well.

Similarly to Proposition 4.3, it is possible to build a partial order on the set
BFNNM(X) using the operations join and meet considered in Definition 5.2:

Proposition 5.1. Let A, B : X → BFNN be two Bounded Fuzzy Natural
Number-valued Multisets. The binary relationship:
A ≤ B if and only if A ∨ B = B and/or A ∧ B = A i.e. MAX{A(x), B(x)} =
B(x), ∀x ∈ X (or MIN{A(x), B(x)} = A(x), ∀x ∈ X) is a partial order on the
set BFNNM(X).

Now, we will use this partial order to show that the set BFNNM(X) has a
structure of bounded distributive lattice.

Proposition 5.2. The set BFNNM(X) of the bounded fuzzy natural number-
valued multisets over X is a bounded distributive lattice with the partial order
defined in Proposition 5.1 and the meet and join operations proposed in Defini-
tion 5.2.

Proof. The distributive lattice structure follows because (AL
1 , MIN, MAX) is

a bounded distributive lattice (see Proposition 3.3). Moreover it is easy to see
that the bfnnm M0 such that M0(x) = 0̂ for all x ∈ X (being 0̂ the minimum of
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lattice of bounded fuzzy natural numbers (AL
1 , MIN, MAX)) is the minimum

of BFNNM(X). And, Mm such that Mm(x) = m̂ for all x ∈ X (being m̂ the
maximum of the lattice of bounded fuzzy natural numbers (AL

1 , MIN, MAX))
is the maximum of BFNNM(X).

5.2 Triangular Norms and Triangular Conorms on BFNNM(X)

As we have discussed in the previous Section 3.3, we know [1] that it is possible
to consider t-norms(t-conorms) on any bounded partially ordered set. For this
reason, we can define t-norms(t-conorms) on the bounded distributive lattice
(BFNNM(X), MIN, MAX, M0, Mm).

Definition 5.3. A t-norm(t-conorm) T(S) on the bounded partially ordered set
BFNNM(X) is a function

T(S) : BFNNM(X)×BFNNM(X)→ BFNNM(X)
(A, B) �−→ T(A, B)(S(A, B))

such that fulfills the following properties:

i) Commutativity: For all M, N ∈ BFNNM(X)

T(A, B) = T(A, B) and S(A, B) = S(A, B)

ii) Monotonicity: For A ≤ B, C ≤ D

T(A, C) ≤ T(B, D) and S(A, C) ≤ S(B, D)

iii) Associativity: For all A, B, C ∈ BFNNM(X)

T(T(A, B), C) = T(A, T(B, C)) and S(S(A, B), C) = S(A, S(B, C))

iv) Boundary condition: For all A ∈ BFNNM(X)

T(A, Mm) = A and S(A, M0) = A

In the next proposition we will see that it is possible to construct a t-norm on
the bounded distributive lattice BFNNM(X) from a t-norm defined on the
bounded distributive lattice AL

1 .

Proposition 5.3. For each t-norm T defined on AL
1 it is possible to build a t-

norm T on the bounded distributive lattice BFNNM(X) on the following way:
T(A, B) is the bfnnm such that for each x ∈ X

T(A, B)(x) = T (A(x), B(x))

Proof. It is straightforward because T is a t-norm.

Analogously,
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Proposition 5.4. For each t-conorm S defined on AL
1 it is possible to give a

t-norm S on the bounded distributive lattice BFNNM(X) on the following way:
S(A, B) is the bfnnm such that for each x ∈ X

S(A, B)(x) = S(A(x), B(x))

Proof. It is straightforward because S is a t-conorm.

From Theorem 3.4, we know that if T (S) are divisible t-norm(t-conorm) on
L = {0, · · · , m} it is possible to construct a t-norm(t-conorm) on the bounded
distributive lattice of bounded fuzzy natural numbers AL

1 . Using this fact we
will see that for each divisible t-norm(t-conorm) on L it is possible to obtain a
t-norm(t-conorm) on bounded partially ordered set BFNNM(X).

Proposition 5.5. For each divisible t-norm T defined on the finite chain L it
is possible to build a t-norm T on the bounded distributive lattice BFNNM(X).

Proof. From Theorem 3.4 for each divisible t-norm T on L it is possible to obtain
a t-norm T on AL

1 . Now from Proposition 5.3 the proof is straightforward.

Similarly,

Proposition 5.6. For each divisible t-conorm S defined on the finite chain L it
is possible to build a t-conorm S on the bounded distributive lattice BFNNM(X).

6 Conclusion

We have introduced a possible extension of the concept of multiset, the bounded
fuzzy natural number-valued multisets. On these bags, a bounded distributive
lattice structure is presented and triangular operations have been defined.

Future studies aim to investigate the properties of these triangular operations
and their application to build negation function and implication function on this
bounded lattice.
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Abstract. In this paper we consider a multicriteria aggregation model

where local utility functions of different sorts are aggregated using Sugeno

integrals, and which we refer to as Sugeno utility functions. We propose a

general approach to study such functions via the notion of pseudo-Sugeno

integral (or, equivalently, pseudo-polynomial function), which naturally

generalizes that of Sugeno integral, and provide several axiomatizations

for this class of functions.
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utility function, overall utility function, Sugeno utility function, axiom-

atization.

1 Introduction

The importance of aggregation functions is made apparent by their wide use, not
only in pure mathematics (e.g., in the theory of functional equations, measure
and integration theory), but also in several applied fields such as operations
research, computer and information sciences, economics and social sciences, as
well as in other experimental areas of physics and natural sciences. For general
background, see [1,14] and for a recent reference, see [13].

In many applications, the values to be aggregated are first to be transformed
by mappings ϕi : Xi → Y , i = 1, . . . , n, so that the transformed values (which
are usually real numbers) can be aggregated in a meaningful way by a function
M : Y n → Y . The resulting composed function U : X1 × · · · ×Xn → Y is then
defined by

U(x1, . . . , xn) = M(ϕ1(x1), . . . , ϕn(xn)). (1)

Such an aggregation model is used for instance in multicriteria decision making
where the criteria are not commensurate. Here each ϕi is a local utility function,
i.e., order-preserving mapping, and the resulting function U is referred to as
an overall utility function (also called global preference function). For general
background see [2].

In this paper, we consider this aggregation model in a purely ordinal decision
setting, where Y and each Xi are bounded chains L and Li, respectively, and

V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 79–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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where M : Ln → L is a Sugeno integral (see [10,19,20]) or, more generally, a
lattice polynomial function. We refer to the resulting compositions as pseudo-
Sugeno integrals and pseudo-polynomial functions, respectively. The particular
case when each Li is the same chain L′, and each ϕi is the same mapping ϕ : L′ →
L, was studied in [8] where the corresponding compositions U = M ◦ ϕ were
called quasi-Sugeno integrals and quasi-polynomial functions. Such mappings
were characterized as solutions of certain functional equations and in terms of
necessary and sufficient conditions which have natural interpretations in decision
making and aggregation theory.

Here, we take a similar approach and study pseudo-Sugeno integrals from
an axiomatic point of view, and seek necessary and sufficient conditions for a
given function to be factorizable as a composition of a Sugeno integral with unary
maps. The importance of such an axiomatization is attested by the fact that this
framework subsumes the Sugeno utility model. Since overall utility functions (1)
where M is a Sugeno integral, coincide exactly with order-preserving pseudo-
Sugeno integrals (see Sect. 5 in the companion paper [9]), we are particular
interested in the case when the inner mappings ϕi are local utility functions.

The paper is organized as follows. In Sect. 2 we recall the basic definitions
and terminology, as well as the necessary results concerning polynomial func-
tions (and, in particular, Sugeno integrals) used in the sequel. In Sect. 3, we
focus on pseudo-Sugeno integrals as a tool to study certain overall utility func-
tions. We introduce the notion of pseudo-polynomial function in Subsect. 3.1 and
show that, even though seemingly more general, it can be equivalently defined
in terms of Sugeno integrals. An axiomatization of this class of generalized poly-
nomial functions is given in Subsect. 3.2. Sugeno utility functions are introduced
in Subsect. 3.3, as certain order-preserving pseudo-Sugeno integrals, and then
characterized in Subsect. 3.4 by means of necessary and sufficient conditions
which extend well-known properties in aggregation function theory. Within this
general setting for studying Sugeno utility functions, it is natural to consider
the inverse problem which asks for factorizations of a Sugeno utility function
as a composition of a Sugeno integral with local utility functions. This question
is addressed in Sect. 4, and left as an open problem to be considered in the
companion paper [9] submitted to this same volume.

2 Lattice Polynomial Functions and Sugeno Integrals

2.1 Preliminaries

Throughout this paper, let L denote an arbitrary bounded chain endowed with
lattice operations ∧ and ∨, and with least and greatest elements 0L and 1L,
respectively, where the subscripts may be omitted when the underlying lattice
is clear from the context. A subset S of a chain L is said to be convex if for
every a, b ∈ S and every c ∈ L such that a ≤ c ≤ b, we have c ∈ S. For any
subset S ⊆ L, we denote by cl(S) the convex hull of S, that is, the smallest
convex subset of L containing S. For instance, if a, b ∈ L such that a ≤ b, then
cl({a, b}) = [a, b] = {c ∈ L : a ≤ c ≤ b}.
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For an integer n ≥ 1, we set [n] = {1, . . . , n}. Let σ be a permutation on [n].
The standard simplex of Ln associated with σ is the subset Ln

σ ⊆ Ln defined by

Ln
σ = {x ∈ Ln : xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n)}.

Given arbitrary bounded chains Li, i ∈ [n], their Cartesian product
∏

i∈[n] Li

constitutes a bounded distributive lattice by defining

a ∧ b = (a1 ∧ b1, . . . , an ∧ bn), and a ∨ b = (a1 ∨ b1, . . . , an ∨ bn).

For k = 1, . . . , n and c ∈ Lk, we use xc
k to denote the vector whose ith component

is c, if i = k, and xi, otherwise.
In the case when Li = L, for all i ∈ [n], we also use the following notation. For

c ∈ L and x ∈ Ln, let x∧ c = (x1 ∧ c, . . . , xn ∧ c) and x∨ c = (x1 ∨ c, . . . , xn ∨ c),
and denote by [x]c the n-tuple whose ith component is 0, if xi ≤ c, and xi,
otherwise, and by [x]c the n-tuple whose ith component is 1, if xi ≥ c, and xi,
otherwise.

Let f :
∏

i∈[n] Li → L be a function. The range of f is given by ran(f) =
{f(x) : x ∈

∏
i∈[n] Li}. Also, f is said to be order-preserving if, for every

a, b ∈
∏

i∈[n] Li such that a ≤ b, we have f(a) ≤ f(b). A well-known example
of an order-preserving function is the median function med : L3 → L given by
med(x1, x2, x3) = (x1∧x2)∨(x1∧x3)∨(x2∧x3). Given a vector x ∈ Lm, m ≥ 1,
set 〈x〉f = med(f(0), x, f(1)).

2.2 Basic Background on Polynomial Functions and Sugeno
Integrals

In this subsection we recall some well-known results concerning polynomial func-
tions that will be needed hereinafter. For further background, we refer the reader
to [4,5,6,7,11,12,18].

Recall that a (lattice) polynomial function on L is any map p : Ln → L which
can be obtained as a composition of the lattice operations ∧ and ∨, the projec-
tions x �→ xi and the constant functions x �→ c, c ∈ L.

Fact 1. Every polynomial function p : Ln → L is order-preserving and range-
idempotent, that is, p(c, . . . , c) = c, for every c ∈ ran(p).

Polynomial functions are known to generalize certain prominent fuzzy integrals,
namely, the so-called (discrete) Sugeno integrals. Indeed, as observed in [17],
Sugeno integrals coincide exactly with those polynomial functions q : Ln → L
which are idempotent, that is, satisfy q(c, . . . , c) = c, for every c ∈ L, and in
particular satisfy ran(q) = L. We shall take this as our working definition of the
Sugeno integral; for the original definition (as an integral with respect to a fuzzy
measure) see, e.g., [13,19,20].

As shown by Goodstein [11], polynomial functions over bounded distributive
lattices (in particular, over bounded chains) have very neat normal form repre-
sentations. For I ⊆ [n], let eI be the characteristic vector of I, i.e., the n-tuple
in Ln whose i-th component is 1 if i ∈ I, and 0 otherwise.
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Proposition 2 (Goodstein [11]). A function p : Ln → L is a polynomial func-
tion if and only if

p(x1, . . . , xn) =
∨

I⊆[n]

(
p(eI) ∧

∧
i∈I

xi

)
. (2)

Furthermore, the function given by (2) is a Sugeno integral if and only if p(e∅) =
0 and p(e[n]) = 1.

Remark 3. Observe that, by Proposition 2, every polynomial function p : Ln →
L is uniquely determined by its restriction to {0, 1}n. Also, since every lattice
polynomial function is order-preserving, we have that the coefficients in (2) are
monotone increasing, i.e., p(eI) ≤ p(eJ) whenever I ⊆ J . Moreover, a function
f : {0, 1}n → L can be extended to a polynomial function over L if and only if
it is order-preserving.

Remark 4. It follows from Goodstein’s theorem that every unary polynomial
function is of the form

p(x) = s ∨ (x ∧ t) = med(s, x, t) =

⎧⎨⎩
s, if x < s,
x, if x ∈ [s, t],
t, if t < x,

(3)

where s = p(0), t = p(1). In other words, p(x) is a truncated identity. Figure 1
shows the graph of this function in the case when L is the real unit interval [0, 1].

Fig. 1. A typical unary polynomial function

It is noteworthy that every polynomial function p as in (2) can be represented
by p = 〈q〉p where q is the Sugeno integral given by

q(x1, . . . , xn) =
∨

∅�I�[n]

(
p(eI) ∧

∧
i∈I

xi

)
∨
∧

i∈[n]

xi.



Sugeno Utility Functions I: Axiomatizations 83

2.3 Characterizations of Polynomial Functions

The following results reassemble the various characterizations of polynomial
functions obtained in [5]. For further background see, e.g., [6,7,13].

Theorem 5. Let p : Ln → L be a function on an arbitrary bounded chain L.
The following conditions are equivalent:

(i) p is a polynomial function.
(ii) p is median decomposable, that is, for every x ∈ Ln,

p(x) = med
(
p(x0

k), xk, p(x1
k)
)

(k = 1, . . . , n).

(iii) p is order-preserving, and cl(ran(p))-min and cl(ran(p))-max homogeneous,
that is, for every x ∈ Ln and every c ∈ cl(ran(p)),

p(x ∧ c) = p(x) ∧ c and p(x ∨ c) = p(x) ∨ c, resp.

(iv) p is order-preserving, range-idempotent, and horizontally minitive and max-
itive, that is, for every x ∈ Ln and every c ∈ L,

p(x) = p(x ∨ c) ∧ p([x]c) and p(x) = p(x ∧ c) ∨ p([x]c), resp.

Remark 6. Note that, by the equivalence (i) ⇔ (iii), for every polynomial
function p : Ln → L, p(x) = 〈p(x)〉p = p(〈x〉p). Moreover, for every function
f : Lm → L and every Sugeno integral q : Ln → L, we have 〈q(x)〉f = q(〈x〉f ).

Theorem 5 is a refinement of the Main Theorem in [5] stated for functions over
bounded distributive lattices. As shown in [7], in the case when L is a chain,
Theorem 5 can be strengthened since the conditions need to be verified only
on vectors of a certain prescribed type. Moreover, further characterizations are
available and given in terms of conditions of somewhat different flavor, as the
following theorem illustrates [7].

Theorem 7. A function p : Ln → L is a polynomial function if and only if it
is range-idempotent, and comonotonic minitive and maxitive, that is, for every
permutation σ on [n], and every x, x′ ∈ Ln

σ,

p(x ∧ x′) = p(x) ∧ p(x′) and p(x ∨ x′) = p(x) ∨ p(x′), resp.

3 Pseudo-Sugeno Integrals and Sugeno Utility Functions

In this section we study certain prominent function classes in the realm of mul-
ticriteria decision making. More precisely, we investigate overall utility func-
tions U :

∏
i∈[n] Li → L which can obtained by aggregating various local utility

functions (i.e., order-preserving mappings) ϕi : Li → L, i ∈ [n], using Sugeno
integrals.

To this extent, in Subsect. 3.1 we introduce the wider class of pseudo-polyno-
mial functions, and we present their axiomatization in Subsect. 3.2.
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As we will see, pseudo-polynomial functions can be equivalently defined in
terms of Sugeno integrals, and thus they model certain processes within mul-
ticriteria decision making. This is observed in Subsect. 3.3 where the notion of
a Sugeno utility function U :

∏
i∈[n] Li → L associated with given local utility

functions ϕi : Li → L, i ∈ [n], is discussed. Using the axiomatization of pseudo-
polynomial functions, in Subsect. 3.4 we establish several characterizations of
Sugeno utility functions based on Sugeno integrals given in terms of necessary
and sufficient conditions which naturally extend those presented in Subsect. 2.3.

3.1 Pseudo-Sugeno Integrals and Pseudo-Polynomial Functions

Let L and L1, . . . , Ln be bounded chains. In the sequel, we shall denote the top
and bottom elements of L1, . . . , Ln and L by 1 and 0, respectively. This conven-
tion will not give rise to ambiguities. We shall say that a mapping ϕi : Li → L,
i ∈ [n], satisfies the boundary conditions if for every x ∈ Li,

ϕ(0) ≤ ϕ(x) ≤ ϕ(1) or ϕ(1) ≤ ϕ(x) ≤ ϕ(0).

Observe that if ϕ is order-preserving, then it satisfies the boundary conditions.
A function f :

∏
i∈[n] Li → L is a pseudo-polynomial function if there is a

polynomial function p : Ln → L and there are unary functions ϕi : Li → L,
i ∈ [n], satisfying the boundary conditions, such that

f(x) = p(ϕ1(x1), . . . , ϕn(xn)). (4)

If p is a Sugeno integral, then we say that f is a pseudo-Sugeno integral. As the
following result asserts, the notions of pseudo-polynomial function and pseudo-
Sugeno integral turn out to be equivalent.

Proposition 8. A function f :
∏

i∈[n] Li → L is a pseudo-polynomial function
if and only if it is a pseudo-Sugeno integral.

Proof. Clearly, every pseudo-Sugeno integral is a pseudo-polynomial function.
Conversely, if f :

∏
i∈[n] Li → L of the form f = p(ϕ1(x1), . . . , ϕn(xn)) for a

lattice polynomial p, then by setting φi = 〈ϕi〉p and taking q as a Sugeno integral
such that p = 〈q〉p, we have

f(x) = 〈q(ϕ1(x1), . . . , ϕn(xn))〉p = q(〈ϕ1(x1)〉p, . . . , 〈ϕn(xn)〉p)
= q(φ1(x1), . . . , φn(xn)),

and thus f is a pseudo-Sugeno integral. !"

Remark 9. Clearly, f(x0
k) ≤ f(x) ≤ f(x1

k) or f(x1
k) ≤ f(x) ≤ f(x0

k) depending
on whether ϕk(0) ≤ ϕk(x) ≤ ϕk(1) or ϕk(1) ≤ ϕk(x) ≤ ϕk(0), respectively.
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3.2 A Characterization of Pseudo-Sugeno Integrals

Throughout this subsection, we assume that the unary maps ϕi : Li → L con-
sidered, satisfy the boundary conditions.

We say that f :
∏

i∈[n] Li → L is pseudo-median decomposable if for each
k ∈ [n] there is a unary function ϕk : Lk → L such that

f(x) = med
(
f(x0

k), ϕk(xk), f(x1
k)
)

(5)

for every x ∈
∏

i∈[n] Li. Note that if f is pseudo-median decomposable w.r.t.
unary functions ϕi : Li → L, i ∈ [n], then for every x ∈

∏
i∈[n] Li and k ∈ [n],

we have f(x0
k) ≤ f(x) ≤ f(x1

k) or f(x1
k) ≤ f(x) ≤ f(x0

k).

Theorem 10. Let f :
∏

i∈[n] Li → L be a function. Then f is a pseudo-Sugeno
integral if and only if f is pseudo-median decomposable.

Proof. First we show that the condition is necessary. Suppose that f :
∏

i∈[n]

Li → L is of the form f(x) = q(ϕ1(x1), . . . , ϕn(xn)) for some Sugeno integral
q and unary functions ϕk satisfying the boundary conditions. Without loss of
generality, assume that k = 1. So let us fix the values of x2, . . . , xn, and let us
consider the unary polynomial function u (y) = q (y, ϕ2 (x2) , . . . , ϕn (xn)).

Setting a = ϕ1 (0) , b = ϕ1 (1) , y1 = ϕ1 (x1), the equality to prove takes the
form u (y1) = med (u (a) , y1, u (b)). This becomes clear if we take into account
that u is of the form (3), and by the boundary conditions either a ≤ y1 ≤ b or
b ≤ y1 ≤ a (see also Fig. 1).

To verify that the condition is sufficient, just observe that applying (5) re-
peatedly to each variable of f we can straightforwardly obtain a representation
of f as f(x) = p(ϕ1(x1), . . . , ϕn(xn)) for some polynomial function p. Thus, f
is a pseudo-polynomial function and, by Proposition 8, it is a pseudo-Sugeno
integral. !"

3.3 Motivation: Overall Utility Functions

Despite the theoretical interest, the motivation for the study of pseudo-Sugeno
integrals (or, equivalently, pseudo-polynomial functions) is deeply rooted in mul-
ticriteria decision making. Let ϕi : Li → L, i ∈ [n], be local utility functions (i.e.,
order-preserving mappings) having a common range R ⊆ L, and let M : Ln → L
be an aggregation function. The overall utility function associated with ϕi,
i ∈ [n], and M is the mapping U :

∏
i∈[n] Li → L defined by

U(x) = M(ϕ1(x1), . . . , ϕn(xn)). (6)

For background on overall utility functions, see e.g. [2].
Thus, pseudo-Sugeno integrals subsume those overall utility functions (6)

where the aggregation function M is a Sugeno integral. In the sequel we shall
refer to a mapping f :

∏
i∈[n] Li → L for which there are local utility functions
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ϕi, i ∈ [n], and a Sugeno integral (or, equivalently, a polynomial function) q,
such that

f(x) = q(ϕ1(x1), . . . , ϕn(xn)), (7)

as a Sugeno utility function. As it will become clear in [9], these Sugeno utility
functions coincide exactly with those pseudo-Sugeno integrals (or equivalently,
pseudo-polynomial functions) which are order-preserving. Also, by taking L1 =
· · · = Ln = L and ϕ1 = · · · = ϕn = ϕ, it follows that Sugeno utility functions
subsume the notions of quasi-Sugeno integral and quasi-polynomial function in
the terminology of [8].

Remark 11. Note that the condition that ϕi : Li → L, i ∈ [n] have a common
range R is not really restrictive, since each ϕi can be extended to a local utility
function ϕ′

i : L′
i → L, where Li ⊆ L′

i, in such a way that each ϕ′
i, i ∈ [n], has the

same range R ⊆ L. In fact, if Ri is the range of ϕi, for each i ∈ [n], then R can
be chosen as the interval

cl(
⋃

i∈[n]

Ri) = [
∧

i∈[n]

ϕi(0),
∨

i∈[n]

ϕi(1)].

In this way, if f ′ :
∏

i∈[n] L
′
i → L is such that f ′(x) = q(ϕ′

1(x1), . . . , ϕ′
n(xn)),

then the restriction of f ′ to
∏

i∈[n] Li is of the form f(x) = q(ϕ1(x1), . . . , ϕn(xn)).

3.4 Characterizations of Sugeno Utility Functions

In view of the remark above, in this subsection we will assume that the local
utility functions ϕi : Li → L, i ∈ [n], considered have the same range R ⊆ L.
Since local utility functions satisfy the boundary conditions, from Theorem 10
we get the following characterization of Sugeno utility functions.

Corollary 12. A function f :
∏

i∈[n] Li → L is a Sugeno utility function if and
only if it is pseudo-median decomposable w.r.t. local utility functions.

We will provide further axiomatizations of Sugeno utility functions extending
those of polynomial functions given in Subsect. 2.3 as well as those of quasi-
polynomial functions given in [8]. For the sake of simplicity, given ϕi : Li → L,
i ∈ [n], we make use of the shorthand notation ϕ(x) = (ϕ1(x1), . . . , ϕn(xn)) and
ϕ−1(c) = {d : ϕ(d) = c}, for every c ∈ R.

We say that a function f :
∏

i∈[n] Li → L is pseudo-max homogeneous (resp.
pseudo-min homogeneous) if there are local utility functions ϕi : Li → L, i ∈ [n],
such that for every x ∈

∏
i∈[n] Li and c ∈ R,

f(x∨ d) = f(x)∨ c (resp. f(x∧ d) = f(x)∧ c), whenever d ∈ ϕ−1(c). (8)

Fact 13. Let f :
∏

i∈[n] Li → L be a function, and let ϕi : Li → L, i ∈ [n], be
local utility functions. If f is pseudo-min homogeneous and pseudo-max homo-
geneous w.r.t. ϕ1, . . . , ϕn, then it satisfies the condition

for every c ∈ R and d ∈ ϕ−1(c), f(d) = c. (9)
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Lemma 14. If f(x1, . . . , xn) = q(ϕ(x1), . . . , ϕn(xn)) for some Sugeno integral
q : Ln → L and local utility functions ϕ1, . . . , ϕn, then f is pseudo-min homoge-
neous and pseudo-max homogeneous w.r.t. ϕ1, . . . , ϕn.

Proof. Let R be the common range of ϕ1, . . . , ϕn, let c ∈ R and d ∈ ϕ−1(c). By
Theorem 5 and the fact that each ϕk is order-preserving, we have

f(x ∨ d) = q(ϕ(x ∨ d)) = q(ϕ(x) ∨ ϕ(d))
= q(ϕ(x) ∨ c) = q(ϕ(x)) ∨ c = f(x) ∨ c,

and hence, f is pseudo-max homogeneous. The dual statement follows similarly.
!"

For x, d ∈
∏

i∈[n] Li, let [x]d be the n-tuple whose ith component is 0Li , if xi ≤
di, and xi, otherwise, and dually let [x]d be the n-tuple whose ith component
is 1Li, if xi ≥ di, and xi, otherwise. We say that f :

∏
i∈[n] Li → L is pseudo-

horizontally maxitive (resp. pseudo-horizontally minitive) if there are local utility
functions ϕi : Li → L, i ∈ [n], such that for every x ∈

∏
i∈[n] Li and c ∈ R, if

d ∈ ϕ−1(c), then

f(x) = f(x ∧ d) ∨ f([x]d) (resp. f(x) = f(x ∨ d) ∧ f([x]d)). (10)

Lemma 15. If f :
∏

i∈[n] Li → L is order-preserving, pseudo-horizontally mini-
tive (resp. pseudo-horizontally maxitive) and satisfies (9), then it is pseudo-min
homogeneous (resp. pseudo-max homogeneous).

Proof. If f :
∏

i∈[n] Li → L is order-preserving, pseudo-horizontally minitive and
satisfies (9) w.r.t. ϕ1, . . . , ϕn, then for every x ∈

∏
i∈[n] Li, c ∈ R, d ∈ ϕ−1(c)

f(x) ∧ c = f(x) ∧ f(d) ≥ f(x ∧ d) = f((x ∧ d) ∨ d) ∧ f([x ∧ d]d)
= f(d) ∧ f([x]d) ≥ f(d) ∧ f(x) = f(x) ∧ c.

Hence f is pseudo-min homogeneous w.r.t. ϕ1, . . . , ϕn. The dual statement can
be proved similarly. !"

Lemma 16. Suppose that f :
∏

i∈[n] Li → L is order-preserving and pseudo-
min homogeneous (resp. pseudo-max homogeneous), and satisfies (9). Then f
is pseudo-max homogeneous (resp. pseudo-min homogeneous) if and only if it is
pseudo-horizontally maxitive (resp. pseudo-horizontally minitive).

Proof. Suppose that f :
∏

i∈[n] Li → L is order-preserving and pseudo-min ho-
mogeneous and satisfies (9) w.r.t. ϕ1, . . . , ϕn. Assume first that f is pseudo-max
homogeneous w.r.t. ϕ1, . . . , ϕn. For every x ∈

∏
i∈[n] Li and d ∈ ϕ−1(c), where

c ∈ R, we have

f(x ∧ d) ∨ f([x]d) =
(
f(x) ∧ c

)
∨ f([x]d) =

(
f(x) ∨ f([x]d)

)
∧
(
c ∨ f([x]d)

)
= f(x) ∧ f(d ∨ [x]d) = f(x),

and hence f is pseudo-horizontally maxitive w.r.t. ϕ1, . . . , ϕn.
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Conversely, if f is pseudo-horizontally maxitive w.r.t. ϕ1, . . . , ϕn, then by
Lemma 15 f is pseudo-max homogeneous w.r.t. ϕ1, . . . , ϕn. The dual statement
can be proved similarly. !"

Lemma 17. If f :
∏

i∈[n] Li → L is order-preserving, pseudo-min homogeneous
and pseudo-horizontally maxitive, then it is pseudo-median decomposable w.r.t.
local utility functions.

Proof. Let x ∈
∏

i∈[n] Li and let k ∈ [n]. If f is pseudo-horizontally maxitive,
say w.r.t. ϕ1, . . . , ϕn, then f(x) = f(x∧ d)∨ f([x]d), where the kth component
of d ∈ ϕ−1(ϕk(xk)) is xk. Now if f is pseudo-min homogeneous, then f(x∧d) =
f(x1

k ∧ d) = f(x1
k) ∧ ϕk(xk), and by the definition of [x]d, we have f([x]d) ≤

f(x0
k). Thus,

f(x) = med
(
f(x0

k), f(x), f(x1
k)
)

=
(
f(x0

k) ∨ f(x)
)
∧ f(x1

k)

=
(
f(x0

k) ∨ (f(x1
k) ∧ ϕk(xk))

)
∧ f(x1

k) = f(x0
k) ∨
(
f(x1

k) ∧ ϕk(xk)
)

= med
(
f(x0

k), ϕk(xk), f(x1
k)
)
.

Since this holds for every x ∈
∏

i∈[n] Li and k ∈ [n], f is pseudo-median decom-
posable. !"

We can also extend the comonotonic properties as follows. We say that a function
f :
∏

i∈[n] Li → L is pseudo-comonotonic minitive (resp. pseudo-comonotonic
maxitive) if there are local utility functions ϕi : Li → L, i ∈ [n], such that for
every permutation σ on [n], and every x, x′ such that ϕ(x), ϕ(x′) ∈ Ln

σ,

f(x ∧ x′) = f(x) ∧ f(x′) (resp. f(x ∨ x′) = f(x) ∨ f(x′)).

The following fact is straightforward.

Fact 18. Every Sugeno utility function of the form (7) is pseudo-comonotonic
minitive and maxitive. Moreover, if a function is pseudo-comonotonic minitive
(resp. pseudo-comonotonic maxitive) and satisfies (9), then it is pseudo-min
homogeneous (resp. pseudo-max homogeneous).

Let P be the set comprising the properties of pseudo-min homogeneity, pseudo-
horizontal minitivity and pseudo-comonotic minitivity, and let Pd be the set
comprising the corresponding dual properties. The following result generalizes
the various characterizations of polynomial functions given in Subsect. 2.3.

Theorem 19. Let f :
∏

i∈[n] Li → L be an order-preserving function. The fol-
lowing assertions are equivalent:

(i) f is a Sugeno utility function.
(ii) f is pseudo-median decomposable w.r.t. local utility functions.
(iii) f is P1 ∈ P and P2 ∈ Pd, and satisfies (9).
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Proof. By Corollary 12, we have (i) ⇔ (ii). By Lemma 14, we also have that
if (i) holds, then f is pseudo-min homogeneous and pseudo-max homogeneous.
Furthermore, by Fact 18 and Lemmas 15, 16 and 17, we have that any two
formulations of (iii) are equivalent. By Lemma 17, (iii)⇒ (ii). !"

Remark 20. By Fact 13, if P1 and P2 are the pseudo-homogeneity properties,
then (9) becomes redundant in (iii). Similarly, by Lemma 17, Corollary 12, and
(i) ⇒ (iii) of Theorem 19, if P1 is pseudo-min homogeneity (pseudo-horizontal
minitivity) property, and P2 is pseudo-horizontal maxitivity (pseudo-max homo-
geneity) property, then (9) is redundant in (iii).

4 Concluding Remarks

Theorem 19 provides necessary and sufficient conditions for an order-preserving
function f :

∏
i∈[n] Li → L to be a Sugeno utility function, that is, to be factor-

ized into a composition

f(x1, . . . , xn) = q(ϕ1(x1), . . . , ϕn(xn)), (11)

where ϕi : Li → L, i ∈ [n], are local utility functions and q is a Sugeno integral.
However, knowing that f is a Sugeno utility function, no clues are given on how
to derive such a factorization (11). Thus, we are left with the following problem:

Problem. Given a Sugeno utility function f :
∏

i∈[n] Li → L, construct local
utility functions ϕk : Lk → L, k ∈ [n], and a Sugeno integral q such that f
fulfills (11).

This problem is considered and solved in the companion paper [9] also submitted
to MDAI2010.
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Abstract. In this paper we address and solve the problem posed in the

companion paper [3] of factorizing an overall utility function as a com-

position q(ϕ1(x1), . . . , ϕn(xn)) of a Sugeno integral q with local utility

functions ϕi, if such a factorization exists.
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1 Introduction

In the companion paper [3], we considered a multicriteria aggregation model
where local utility functions (i.e., order-preserving mappings) ϕi : Li → L, i =
1, . . . , n, are aggregated using a (discrete) Sugeno integral q : Ln → L, thus
giving rise to an overall utility function f : L1 × · · · × Ln → L defined by

f(x1, . . . , xn) = q(ϕ1(x1), . . . , ϕn(xn)). (1)

Such functions were called Sugeno utility functions in [3]. More general classes of
functions were also considered, where the inner functions ϕi are not necessarily
order-preserving, and where the outer function q is either a Sugeno integral
or a (lattice) polynomial function. The resulting functions were referred to as
pseudo-Sugeno integrals and pseudo-polynomial functions, respectively.

This aggregation model is deeply rooted in multicriteria decision making,
where the variables xi represent different properties of the alternatives (e.g.,
price, speed, safety, comfort level of a car), and the overall utility function (also
called global preference function) assigns a score to the alternatives that helps
the decision maker to choose the best one (e.g., to choose the car to buy). A
similar situation is that of subjective evaluation (see [1]): f outputs the overall
rating of a certain product by customers, and the variables xi represent the
various properties of that product. The way in which these properties influence
the overall rating can give information about the attitude of the customers. A
factorization of the (empirically) given overall utility function f in the form (1)
can be used for such an analysis; this is our main motivation for addressing this
problem.

V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 91–103, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In [3] we established necessary and sufficient conditions which guarantee the
existence of factorizations of functions f : L1×· · ·×Ln → L as compositions (1).
However, no hint was given on how to obtain such factorizations. In this paper,
we address and solve this problem by providing a canonical construction of such
a Sugeno integral q and utility functions ϕi so that their composition satisfies
f = q(ϕ1, . . . , ϕn).

The paper is organized as follows. In Sect. 2 we recall the background on lat-
tice polynomial functions, Sugeno integrals and Sugeno utility functions needed
throughout the paper (for further background and references see the compan-
ion paper [3]). In Sect. 3 we present a method to construct a factorization of
a Sugeno utility function f , which is illustrated in Subsect. 3.3 by means of a
concrete example. Finally, in Sect. 4 we prove the correctness of the procedure
by showing that the Sugeno integral and the local utility functions constructed
in Sect. 3 indeed give a factorization of f .

2 Preliminaries

2.1 Lattice Polynomials and Sugeno Integrals

Let L be a chain endowed with the lattice operations a ∧ b = min {a, b} and
a ∨ b = max {a, b}. Clearly, L is a distributive lattice. A chain L is complete if
every nonempty subset S of L has a greatest lower bound (infimum) denoted by∧

S, and a least upper bound (supremum) denoted by
∨

S. A chain is bounded,
if it has least and greatest elements, usually denoted by 0L and 1L, respectively,
or simply by 0 and 1, when there is no risk of ambiguity. Observe that if L
is complete, then it is bounded. In most applications the chains considered are
either closed real intervals or finite chains, and these are all complete. Hence
throughout the paper, L1, . . . , Ln and L will always denote complete chains.

An n-ary (lattice) polynomial function on L is a function p : Ln → L that
can be built from projections (x1, . . . , xn) �→ xi and constants by a finite num-
ber of applications of the lattice operations ∧,∨ (for a recent reference, see [2]).
The notion of polynomial functions subsumes certain important fuzzy integrals,
namely, Sugeno integrals. As it was observed in [8,9], (discrete) Sugeno integrals
can be defined as certain polynomial functions, namely, those polynomial func-
tions q : Ln → L satisfying q (a, . . . , a) = a for all a ∈ L. We will work with this
definition of the Sugeno integral; for the original definition (as an integral with
respect to a fuzzy measure) see, e.g., [7,10,11].

Polynomial functions have a neat disjunctive normal form representation, as
shown by the following theorem of Goodstein [5]. Let [n] = {1, . . . , n}, and for
I ⊆ [n] let eI ∈ Ln be the characteristic vector of I, i.e., the vector whose ith
component is 1 if i ∈ I and 0 if i /∈ I.

Theorem 1. A function p : Ln → L is a polynomial function if and only if

p (x1, . . . , xn) =
∨

I⊆[n]

(
p (eI) ∧

∧
i∈I

xi

)
.

Such a function is a Sugeno integral iff p (e∅) = 0 and p
(
e[n]

)
= 1.
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In the sequel we will make use of the following property of polynomial
functions [2].

Proposition 2. For every polynomial function p : Ln → L and k ∈ [n] we have

p
(
x1, . . . , xk−1, p (x1, . . . , xn) , xk+1, . . . , xn

)
= p (x1, . . . , xn) .

An important polynomial function is the median function med : L3 → L defined
by med (x, y, z) = (x ∧ y)∨ (x ∧ z)∨ (y ∧ z). If a, b, c are pairwise different, then
med (a, b, c) is the middle one of these three elements (w.r.t. the ordering of L),
while if there is a repetition among a, b, c, then med (a, b, c) equals this repeated
value.

2.2 Sugeno Utility Functions

By a Sugeno utility function we mean a function f : L1 × · · · × Ln → L of the
form

f (x1, . . . , xn) = q (ϕ1 (x1) , . . . , ϕn (xn)) , (2)

where q : Ln → L is a Sugeno integral, and each ϕi : Li → L is an order-
preserving function, so-called local utility function. Such functions can model
various situations where one needs to aggregate several inputs into a single out-
put in a meaningful way. The local utility functions ϕi map the various inputs
xi (which are measured on possibly different scales Li) into a single scale L, and
then the aggregation function q, in this case a Sugeno integral, combines them
into a single value. For general background see [1,4,6,7].

A function ϕi : Li → L satisfies the boundary conditions if ϕi (xi) lies be-
tween ϕi (0Li) and ϕi (1Li) for all xi ∈ Li. Pseudo-Sugeno integrals were defined
in [3] as functions f of the form (2), where q is a Sugeno integral, and the inner
functions ϕi satisfy the boundary conditions. Order-preserving functions clearly
satisfy the boundary conditions, hence the class of pseudo-Sugeno integrals sub-
sumes the class of Sugeno utility functions. We will see in Sect. 5 that Sugeno
utility functions coincide with order-preserving pseudo-Sugeno integrals.

A fundamental tool in our study of Sugeno utility functions is the following
pseudo-median decomposition formula. This result was stated and proved in [3]
in a stronger form, where the pseudo-median decomposition formula was shown
to characterize the wider class of pseudo-Sugeno integrals.

Theorem 3. If f : L1 × · · · × Ln → L is a Sugeno utility function as in (2),
then for all k ∈ [n] and x ∈ L1 × · · · × Ln we have

f (x) = med
(
f
(
x0

k

)
, ϕk (xk) , f

(
x1

k

))
, (3)

where x0
k (resp. x1

k) is the vector obtained from x by replacing its kth component
by 0Lk

(resp. 1Lk
).

Let us give a rough idea of how we can use the pseudo-median decomposition to
extract from the global function f information about the local utility functions
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ϕk. The key observation is that if f
(
x0

k

)
< f (x) < f

(
x1

k

)
, then (3) implies that

ϕk (xk) = f (x). So let us imagine that we fix all but the kth component of x, and
we continuously increase xk from 0 to 1 in Lk. Let a (resp. b) be the first (resp.
last) value of xk where f (x) > f

(
x0

k

)
(resp. f (x) < f

(
x1

k

)
). Then f (x), viewed

as a unary function of xk, consists of three pieces: it is constant s = f
(
x0

k

)
from

0 to a, coincides with ϕk from a to b, and is constant t = f
(
x1

k

)
from b to 1

(see Fig. 1, where Lk and L are chosen to be the unit interval [0, 1] ⊆ R). Thus
we can see some part of ϕk through the “window” [a, b]. Fixing the components
of x (other than xk) to some other values, we may open other windows, which
may expose other parts of ϕk. If we could find sufficiently many windows, then
we could recover ϕk but, unfortunately, this is not always the case. (In fact,
as we shall see in the example of Subsect. 3.3, the local utility functions are
not always uniquely determined by f .) In Sect. 3 we will develop this idea to
find a candidate for ϕk, and we will show in Sect. 4 that the candidate that we
construct is indeed appropriate in the sense that it can be used in factorizing a
given Sugeno utility function.

Fig. 1. The graph of ϕk as seen through a window

3 The Construction

Throughout this section let f : L1 × · · · × Ln → L be a Sugeno utiliy function.
Knowing that f can be factorized as in (2), we will show how to construct in
a canonical way a possibly different Sugeno integral qf and local utility func-
tions ϕf

i such that f = qf
(
ϕf

1 , . . . , ϕf
n

)
. It is important that qf and ϕf

i can be
computed only from f , without having any information about q and ϕi (which
are assumed to exist). In the first subsection we construct the Sugeno integral
qf , and then we describe the procedure to find suitable local utility functions
ϕf

i . The latter is substantially more involved, therefore we conclude this section
with a concrete example, and we defer the proof of correctness of the procedure
to Sect. 4.
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We will assume in the sequel that f depends on all of its variables. If this is
not the case, e.g., f does not depend on its first variable, then there is a Sugeno
utility function g : L2×· · ·×Ln → L such that f (x1, . . . , xn) = g (x2, . . . , xn). In
this case one could consider the function g instead of f , and find a factorization
for this function. (If g still has inessential variables, then we can eliminate them
in a similar way.)

3.1 Constructing the Sugeno Integral

The following result, which is essentially a generalization of Theorem 1, provides
an appropriate Sugeno integral in order to factorize a Sugeno utility function.

Theorem 4. If f (x1, . . . , xn) = q (ϕ1 (x1) , . . . , ϕn (xn)) is a Sugeno utility func-
tion, then f (x1, . . . , xn) = qf (ϕ1 (x1) , . . . , ϕn (xn)), where qf : Ln → L is the
polynomial function given by

qf (y1, . . . , yn) =
∨

I⊆[n]

(
f (eI) ∧

∧
i∈I

yi

)
.

Proof. We need to prove that the following identity holds:

f (x1, . . . , xn) =
∨

I⊆[n]

(
f (eI) ∧

∧
i∈I

ϕi (xi)
)
. (4)

We apply induction on n. If n = 1, then the right hand side of (4) takes the
form f (0) ∨ (f (1) ∧ ϕ1 (x1)) = med (f (0) , ϕ1 (x1) , f (1)), which equals f (x1)
by (3). Now suppose that the statement of the theorem is true for all Sugeno
utility functions in n− 1 variables. Applying the pseudo-median decomposition
to f with k = n we obtain

f (x1, . . . , xn) = med (f0 (x1, . . . , xn−1) , ϕn (xn) , f1 (x1, . . . , xn−1)) (5)
= f0 (x1, . . . , xn−1) ∨ (f1 (x1, . . . , xn−1) ∧ ϕn (xn)) ,

where f0 and f1 are the (n− 1)-ary Sugeno utility functions defined by

f0 (x1, . . . , xn−1) = f (x1, . . . , xn−1, 0) ,

f1 (x1, . . . , xn−1) = f (x1, . . . , xn−1, 1) .

Let us apply the induction hypothesis for these functions:

f0 (x1, . . . , xn−1) =
∨

I⊆[n−1]

(
f0 (eI) ∧

∧
i∈I

ϕi (xi)
)

=
∨

I⊆[n−1]

(
f (eI) ∧

∧
i∈I

ϕi (xi)
)
,

f1 (x1, . . . , xn−1) =
∨

I⊆[n−1]

(
f1 (eI) ∧

∧
i∈I

ϕi (xi)
)

=
∨

I⊆[n−1]

(
f
(
eI∪{n}

) ∧∧
i∈I

ϕi (xi)
)
.

Substituting back into (5) and using distributivity we obtain the desired equality
(4). !"
The polynomial qf given in the above theorem is a Sugeno integral if and
only if f (0, . . . , 0) = 0 and f (1, . . . , 1) = 1. It is natural to assume that
the latter holds, since otherwise the parts of L that lie outside the interval
[f (0, . . . , 0) , f (1, . . . , 1)] are “useless”; we may remove them without changing
anything in the problem.
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3.2 Constructing the Local Utility Functions

We only present the construction of ϕf
1 ; the other local utility functions can

be constructed similarly. For any x1 ∈ L1 we partition L2 × · · · × Ln into the
following four disjoint sets:

Wx1 = {(x2, . . . , xn) : f (0, x2, . . . , xn) < f (x1, x2, . . . , xn) < f (1, x2, . . . , xn)} ,

Lx1 = {(x2, . . . , xn) : f (0, x2, . . . , xn) < f (x1, x2, . . . , xn) = f (1, x2, . . . , xn)} ,

Ux1 = {(x2, . . . , xn) : f (0, x2, . . . , xn) = f (x1, x2, . . . , xn) < f (1, x2, . . . , xn)} ,

Ex1 = {(x2, . . . , xn) : f (0, x2, . . . , xn) = f (x1, x2, . . . , xn) = f (1, x2, . . . , xn)} .

Observe that Ex1 bears no information on x1; we only introduce it for notational
convenience.

From the pseudo-median decomposition formula (3) we know that

f (x1, x2, . . . , xn) = med (f (0, x2, . . . , xn) , ϕ1 (x1) , f (1, x2, . . . , xn)) .

Examining this formula, we immediately get the following implications for all
x1 ∈ L1 and (x2, . . . , xn) ∈ L2 × · · · × Ln:

(x2, . . . , xn) ∈ Wx1 =⇒ ϕ1 (x1) = f (x1, x2, . . . , xn) ,

(x2, . . . , xn) ∈ Lx1 =⇒ ϕ1 (x1) ≥ f (x1, x2, . . . , xn) ,

(x2, . . . , xn) ∈ Ux1 =⇒ ϕ1 (x1) ≤ f (x1, x2, . . . , xn) .

Thus, ifWx1 is not empty, then we can see ϕ1 (x1) through a window, and we can
determine its exact value. Furthermore, Lx1 and Ux1 provide lower and upper
bounds, respectively, whenever they are not empty. We introduce the following
notation for these values:

ϕ1 (x1) = wx1 = f (x1, x2, . . . , xn) if (x2, . . . , xn) ∈ Wx1 , (6)

ϕ1 (x1) ≥ lx1 =
∨

(x2,...,xn)∈Lx1

f (x1, x2, . . . , xn) if Lx1 �= ∅, (7)

ϕ1 (x1) ≤ ux1 =
∧

(x2,...,xn)∈Ux1

f (x1, x2, . . . , xn) if Ux1 �= ∅. (8)

If any of the sets Wx1 ,Lx1 ,Ux1 is empty, then the corresponding values
wx1 , lx1, ux1 are undefined.

Now we are able to define a function ϕf
1 : L1 → L that will serve as a replace-

ment of ϕ1:

(W) if Wx1 �= ∅ then let ϕf
1 (x1) = wx1 ;

(L) if Wx1 = ∅,Lx1 �= ∅,Ux1 = ∅ then let ϕf
1 (x1) = lx1 ;

(U) if Wx1 = ∅,Lx1 = ∅,Ux1 �= ∅ then let ϕf
1 (x1) = ux1 ;

(LU) if Wx1 = ∅,Lx1 �= ∅,Ux1 �= ∅ then let ϕf
1 (x1) = lx1 .
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It is important to note that ϕf
1 is computed only from f , without reference to

ϕ1. Let us also observe that the four cases above cover all possibilities since
Wx1 = Ux1 = Lx1 = ∅ is ruled out by the assumption that f depends on its first
variable. In the case (LU) we could have chosen any element from the interval
[lx1 , ux1 ] (see Remark 6); we chose lx1 just to make the construction canonical.
We will also prove in Lemma 8 that ϕf

1 is indeed a good candidate in the sense
that f = q

(
ϕf

1 , ϕ2, . . . , ϕn

)
.

3.3 An Example

Let us illustrate our construction with a concrete (albeit fictitious) example.
Customers evaluate hotels along three criteria, namely quality of services, price,
and whether the hotel has a good location. Service is evaluated on a four-level
scale L1: *<**<***<****, price is evaluated on a three-level scale L2: -<0<+
(where “-”means expensive, thus less desirable, and “+”means cheap, thus more
desirable), and the third scale is L3: n(o)<y(es). In addition, each hotel receives
an overall rating on the scale L : 1 < · · · < 8, which gives the overall utility
function f : L1 × L2 × L3 → L (see Table 1(a)). We will find a factorization
of this function, and we will analyse its structure in order to draw conclusions
about the nature of the “human aggregation” that the customers (unconsciously)
perform when forming their opinions about hotels. First we apply Theorem 4 to
find the underlying Sugeno integral:

qf (y1, y2, y3) = 1 ∨ (2 ∧ y1) ∨ (2 ∧ y2) ∨ (3 ∧ y3)
∨ (2 ∧ y1 ∧ y2) ∨ (8 ∧ y1 ∧ y3) ∨ (6 ∧ y2 ∧ y3) ∨ (8 ∧ y1 ∧ y2 ∧ y3) .

Since 1 (resp. 8) is the least (resp. greatest) element of L, this polynomial func-
tion qf is indeed a Sugeno integral. We can simplify qf by cancelling those terms
which are absorbed by some other terms in the disjunction:

qf (y1, y2, y3) = (2 ∧ y1) ∨ (2 ∧ y2) ∨ (3 ∧ y3) ∨ (y1 ∧ y3) ∨ (6 ∧ y2 ∧ y3) .

We will be able to perform further simplifications after constructing the local
utility functions. Table 1(b) shows the partitions of L2 × L3 corresponding to
the four possible elements x1 ∈ L1. The numbers in parentheses are the values of
f (x1, x2, x3) (recall that we do not compute any values for the sets Ex1); these
are used to compute the numbers lx1 , wx1 , ux1 shown in Table 1(c). This table
contains these data for all x2 ∈ L2 and x3 ∈ L3 as well, together with the values
of ϕf

1 (x1) , ϕf
2 (x2) , ϕf

3 (x3).
Now that we know that the greatest value of ϕf

2 is 6, we can simplify the
Sugeno integral qf by replacing 6 ∧ y2 ∧ y3 with y2 ∧ y3, and “factoring out”
y1 ∨ y2:

(3 ∧ y3) ∨ ((y1 ∨ y2) ∧ (2 ∨ y3)) = med (3 ∧ y3, y1 ∨ y2, 2 ∨ y3) .

Note that this polynomial function is different from qf , but it gives the same
overall utility function f . This example shows that the Sugeno integral is not
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Table 1. The hotel example

(a) The overall utility function

service price location f

* - n 1

** - n 2

*** - n 2

**** - n 2

* 0 n 2

** 0 n 2

*** 0 n 2

**** 0 n 2

* + n 2

** + n 2

*** + n 2

**** + n 2

* - y 3

** - y 3

*** - y 7

**** - y 8

* 0 y 5

** 0 y 5

*** 0 y 7

**** 0 y 8

* + y 6

** + y 6

*** + y 7

**** + y 8

(b) The partitions of L2 × L3

* ** *** ****

(-,n) U* (1) L** (2) L*** (2) L**** (2)

(0,n) E* E** E*** E****
(+,n) E* E** E*** E****
(-,y) U* (3) U** (3) W*** (7) L**** (8)

(0,y) U* (5) U** (5) W*** (7) L**** (8)

(+,y) U* (6) U** (6) W*** (7) L**** (8)

(c) The local utility functions

l w u ϕf
1

* 1 1

** 2 3 2

*** 2 7 7

**** 8 8

l w u ϕf
2

- 1 1

0 5 5

+ 6 6

l w u ϕf
3

n 1 1

y 8 8

uniquely determined by f , and neither are the local utility functions (e.g., we
could have chosen ϕf

1 (**) = 3 according to Remark 6).
To better understand the behaviour of f , let us separate two cases upon the

location of the hotel:

f (x1, x2, x3) = med
(
3 ∧ ϕf

3 (x3) , ϕf
1 (x1) ∨ ϕf

2 (x2) , 2 ∨ ϕf
3 (x3)

)
(9)

=
{

ϕf
1 (x1) ∨ ϕf

2 (x2) ∨ 3, if x3 = y,(
ϕf

1 (x1) ∨ ϕf
2 (x2)

)
∧ 2, if x3 = n.

We can see from (9) that once x3 is fixed, what matters is the higher one of
ϕf

1 (x1) and ϕf
2 (x2). Thus, instead of aiming at an average level in both, a

better strategy would be to maximize one of them. Moreover, ϕf
1 either outputs
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very low or very high scores, whereas ϕf
2 is almost maximized once the price is

not very bad. Hence it seems more reasonable to focus on service rather than on
price. The third variable can radically change the final outcome, but little can
be done to improve the location of the hotel.

4 Proof of Correctness

In this section we show that the construction described in the previous section
indeed provides a factorization of the Sugeno utility function f . First we prove
that the functions ϕf

i are local utility functions, i.e., order-preserving functions.
As before, we only consider the case i = 1; the other cases can be treated in an
analogous way.

Theorem 5. For any Sugeno utility function f , the function ϕf
1 defined by the

rules (W),(L),(U),(LU) in Sect. 3 is order-preserving.

Proof. We fix a ≤ b ∈ L1 and show that ϕf
1 (a) ≤ ϕf

1 (b). First let us assume
thatWa �= ∅, and let us fix an arbitrary (x2, . . . , xn) ∈ Wa. Then ϕf

1 (a) = wa =
f (a, x2, . . . , xn), and since f is order-preserving, by the definition of Wa we get

f (0, x2, . . . , xn) < f (a, x2, . . . , xn) ≤ f (b, x2, . . . , xn) ≤ f (1, x2, . . . , xn) .

If f (b, x2, . . . , xn) < f (1, x2, . . . , xn) then (x2, . . . , xn) ∈ Wb, hence, by (6),
ϕf

1 (b) = wb = f (b, x2, . . . , xn). If f (b, x2, . . . , xn) = f (1, x2, . . . , xn), then
(x2, . . . , xn) ∈ Lb, therefore ϕf

1 (b) ≥ lb ≥ f (b, x2, . . . , xn) by (7). In both cases
we obtain that

ϕf
1 (a) = wa = f (a, x2, . . . , xn) ≤ f (b, x2, . . . , xn) ≤ ϕf

1 (b) ,

since f is order-preserving.
The caseWb �= ∅ can be dealt with similarly. So let us consider the remaining

case Wa =Wb = ∅. Then

La ∪ Ua = L2 × · · · × Ln \ Ea = L2 × · · · × Ln \ Eb = Lb ∪ Ub.

Futhermore, from a ≤ b we can conclude that La ⊆ Lb and Ua ⊇ Ub by making
use of the fact that f is order-preserving. This implies that either La ⊂ Lb and
Ua ⊃ Ub, or La = Lb and Ua = Ub. In the first case, choosing an arbitrary
(x2, . . . , xn) ∈ Lb \ La = Ua \ Ub we obtain the desired inequality with the help
of (7) and (8): ϕf

1 (a) ≤ ua ≤ f (a, x2, . . . , xn) ≤ f (b, x2, . . . , xn) ≤ lb ≤ ϕf
1 (b) .

In the second case, we claim that f (a, x2, . . . , xn) = f (b, x2, . . . , xn) for
all (x2, . . . , xn) ∈ L2 × · · · × Ln. This is clear if (x2, . . . , xn) ∈ Ea = Eb. If
(x2, . . . , xn) ∈ La = Lb, then

f (a, x2, . . . , xn) = f (1, x2, . . . , xn) = f (b, x2, . . . , xn) .

If (x2, . . . , xn) ∈ Ua = Ub, then

f (a, x2, . . . , xn) = f (0, x2, . . . , xn) = f (b, x2, . . . , xn) .
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Thus, when determining la and lb according to (7), we have to compute the join
of exactly the same elements, hence la = lb (if they are defined). Similarly, we
have ua = ub whenever they are defined. Therefore ϕf

1 (a) and ϕf
1 (b) coincide,

no matter which rule (L),(U) or (LU) was used to compute their values. !"

Remark 6. We can see from the proof of the above theorem that (LU) could
be relaxed: ϕf

1 (x1) could be chosen to be any element of [lx1 , ux1 ] with the
convention that whenever we encounter the same interval [lx1 , ux1 ] for different
values of x1, we always choose the same element of this interval. This guarantees
that ϕf

1 will be order-preserving. All of the proofs below work with this relaxed
rule as well, since they rely only on the fact that ϕf

1 (x1) ∈ [lx1 , ux1 ] whenever
ϕf

1 (x1) is determined by rule (LU).

Next we prove that the function ϕf
1 can be used in the factorization of the

Sugeno utility function f . Let us recall that, since f is a Sugeno utility func-
tion, f (x1, x2, . . . , xn) = q (ϕ1 (x1) , ϕ2 (x2) , . . . , ϕn (xn)) for some Sugeno in-
tegral q and local utility functions ϕi. Let us denote f ′ (x1, x2, . . . , xn) =
q
(
ϕf

1 (x1) , ϕ2 (x2) , . . . , ϕn (xn)
)
. Observe that f ′ is also a Sugeno utility function.

Lemma 7. For all (x2, . . . , xn) ∈ L2 × · · · × Ln we have

f ′ (0, x2, . . . , xn) = f (0, x2, . . . , xn) ,

f ′ (1, x2, . . . , xn) = f (1, x2, . . . , xn) .

Proof. We prove the first equality; the proof of the second equality is similar.
Let us observe first that W0 = L0 = ∅, and U0 �= ∅, since otherwise we had L2×
· · ·×Ln = E0, contradicting our assumption that f depends on its first variable.
Thus ϕf

1 (0) is determined by the rule (U), and ϕf
1 (0) = u0 ≥ ϕ1 (0) according to

(8). Since q is order-preserving, this immediately implies that f ′ (0, x2, . . . , xn) ≥
f (0, x2, . . . , xn). For the other inequality we treat the two cases (x2, . . . , xn) ∈ U0

and (x2, . . . , xn) ∈ E0 separately.
If (x2, . . . , xn) ∈ U0, then f (0, x2, . . . , xn) is one of the elements whose meet

gives u0 in (8), therefore u0 ≤ f (0, x2, . . . , xn). Thus we have

f ′ (0, x2, . . . , xn) = q
(
ϕf

1 (0) , ϕ2 (x2) , . . . , ϕn (xn)
)

= q (u0, ϕ2 (x2) , . . . , ϕn (xn))

≤ q
(
f (0, x2, . . . , xn) , ϕ2 (x2) , . . . , ϕn (xn)

)
= q
(
q (ϕ1 (0) , ϕ2 (x2) , . . . , ϕn (xn)) , ϕ2 (x2) , . . . , ϕn (xn)

)
.

By Proposition 2, the right hand side equals

q (ϕ1 (0) , ϕ2 (x2) , . . . , ϕn (xn)) = f (0, x2, . . . , xn) .

Hence we can conclude that f ′ (0, x2, . . . , xn) ≤ f (0, x2, . . . , xn).
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Now let us assume that (x2, . . . , xn) ∈ E0. We have observed at the beginning
of the proof that ϕf

1 (0) = u0 ≥ ϕ1 (0). In a similar manner one can see that
ϕf

1 (1) = l1 ≤ ϕ1 (1), and therefore ϕf
1 (0) ≤ ϕf

1 (1) ≤ ϕ1 (1) since ϕf
1 is order-

preserving. This allows us to make the following estimate:

f ′ (0, x2, . . . , xn) = q
(
ϕf

1 (0) , ϕ2 (x2) , . . . , ϕn (xn)
)

≤ q (ϕ1 (1) , ϕ2 (x2) , . . . , ϕn (xn))
= f (1, x2, . . . , xn) .

However, f (1, x2, . . . , xn) = f (0, x2, . . . , xn) as (x2, . . . , xn) ∈ E0, so we can
again conclude that f ′ (0, x2, . . . , xn) ≤ f (0, x2, . . . , xn). !"

Lemma 8. For all (x1, . . . , xn) ∈ L1 × · · · × Ln we have f ′ (x1, . . . , xn) =
f (x1, . . . , xn) .

Proof. Using the pseudo-median decomposition and Lemma 7 we obtain the
following expression for f ′:

f ′ (x1, x2, . . . , xn) = med
(
f ′ (0, x2, . . . , xn) , ϕf

1 (x1) , f ′ (1, x2, . . . , xn)
)

= med
(
f (0, x2, . . . , xn) , ϕf

1 (x1) , f (1, x2, . . . , xn)
)
.

Thus it suffices to show that

med
(
f (0, x2, . . . , xn) , ϕf

1 (x1) , f (1, x2, . . . , xn)
)

= f (x1, x2, . . . , xn) . (10)

We separate four cases with respect to the partition of L2 × · · · × Ln.
If (x2, . . . , xn) ∈ Wx1 , then ϕf

1 (x1) = wx1 = ϕ1 (x1) by (6), hence (10) is
nothing else but the pseudo-median decomposition of f .

If (x2, . . . , xn) ∈ Lx1 , then ϕf
1 (x1) ≥ lx1 no matter which one of the rules

(W),(L),(U),(LU) was used to define ϕf
1 (x1). Then by (7) and by the definition

of Lx1 we get

ϕf
1 (x1) ≥ lx1 ≥ f (x1, x2, . . . , xn) = f (1, x2, . . . , xn) .

Therefore, the left hand side of (10) equals f (1, x2, . . . , xn), and right hand side
has the same value, since (x2, . . . , xn) ∈ Lx1 .

The case (x2, . . . , xn) ∈ Ux1 follows similarly. Finally, if (x2, . . . , xn) ∈ Ex1 ,
then the left hand side of (10) is f (0, x2, . . . , xn) = f (1, x2, . . . , xn) indepen-
dently of the value of ϕf

1 (x1), and right hand side has the same value, since
(x2, . . . , xn) ∈ Ex1 . !"

Now we are ready to prove the main result of this paper.
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Theorem 9. For any Sugeno utility function f , the Sugeno integral qf and the
local utility functions ϕf

i defined in Sect. 3 give a factorization of f :

f (x1, . . . , xn) = qf
(
ϕf

1 (x1) , . . . , ϕf
n (xn)

)
.

Proof. Lemma 8 shows that f (x1, . . . , xn) = q
(
ϕf

1 (x1) , ϕ2 (x2) , . . . , ϕn (xn)
)
.

In a similar way one can show that ϕ2 can be replaced by ϕf
2 : f (x1, . . . , xn) =

q
(
ϕf

1 (x1) , ϕf
2 (x2) , . . . , ϕn (xn)

)
. By recursive reasoning, we can replace the local

utility functions one by one, and we get

f (x1, x2, . . . , xn) = q
(
ϕf

1 (x1) , ϕf
2 (x2) , . . . , ϕf

n (xn)
)
.

Now applying Theorem 4 to this latter factorization of f we obtain
f (x1, . . . , xn) = qf

(
ϕf

1 (x1) , ϕf
2 (x2) , . . . , ϕf

n (xn)
)
. !"

5 Concluding Remarks

We have given a method to factorize any Sugeno utility function f into a com-
position f = qf

(
ϕf

1 , . . . , ϕf
n

)
of a Sugeno integral qf with local utility functions

ϕf
i . Such a factorization can be applied to analyse the behaviour of f , which can

be useful in many problems in decision making. However, in many situations, we
do not know whether our overall utility function f is a Sugeno utility function.
This can be decided by making use of the various characterizations given in [3].
Alternatively, one can apply the construction of Sect. 3 directly to f . If at some
point the construction fails (e.g, there are several values for wx1 or lx1 > wx1 ,
etc.), then f does not have such a factorization. If the construction works, then
we obtain a function qf

(
ϕf

1 (x1) , ϕf
2 (x2) , . . . , ϕf

n (xn)
)
. If this function coincides

with f , then we have obtained the desired factorization of f , otherwise f is not
a Sugeno utility function.

As we have mentioned, the pseudo-median decomposition formula (3) is valid
for the wider class of pseudo-Sugeno integrals [3]. Let us observe that in our
proofs we never made use of the fact that the functions ϕi are order-preserving,
only the order-preservation of f (and the pseudo-median decomposition) was
used. Thus Theorems 5 and 9 hold in this more general setting, and this implies
that a pseudo-Sugeno integral is order-preserving if and only if it is a Sugeno
utility function.
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Abstract. The main problem addressed in this paper is the merging

of numerical information provided by several sources (databases, ex-

perts...). Merging pieces of information into an interpretable and useful

format is a tricky task even when an information fusion method is cho-

sen. Fusion results may not be in suitable form for being used in decision

analysis. This is generally due to the fact that information sources are

heterogeneous and provide inconsistent information, which may lead to

imprecise results. In this paper, we propose the use of Formal Concept

Analysis and more specifically pattern structures for organizing the re-

sults of fusion methods. This allows us to associate any subset of sources

with its information fusion result. Once a fusion operator is chosen, a

concept lattice is built. With examples throughout this paper, we show

that this concept lattice gives an interesting classification of fusion re-

sults. When the fusion global result is too imprecise, the method enables

the users to identify what maximal subset of sources that would support

a more precise and useful result. Instead of providing a unique fusion

result, the method yields a structured view of partial results labelled by

subsets of sources. Finally, an experiment on a real-world application has

been carried out for decision aid in agricultural practices.

1 Introduction

In this paper, we present a method for managing information fusion based on
Formal Concept Analysis (FCA) when information is numerical. The problem
of information fusion is encountered in various fields of application, e.g sen-
sor fusion, multiple source interrogation systems. Information fusion consists
of merging, or exploiting conjointly, several sources of information for answer-
ing questions of interest and make proper decisions [1]. A fusion operator is an
operation summarizing all information given by sources into an interpretable
information, for example the interval intersection for numerical information.

Several fusion operators were proposed for combining uncertain information
[2, 3, 4, 5, 6, 7] and no universal method is available [2]. Dubois and Prade [2]
overviewed how fuzzy set theory can address the information fusion problem

V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 104–115, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Table 1. Information

dataset given by sources

m1 m2

g1 [1, 5] [1, 9]
g2 [2, 3] [1, 3]
g3 [4, 7] [6, 7]
g4 [6, 10] [8, 9]

Table 2. A formal context

m
1

m
2

g1 ×
g2 ×
g3 × ×
g4 ×

Fig. 1. Concept lattice

raised from Table 2

and proposed several fusion operators for numerical information. More recently,
a fusion operator based on the notion of Maximal Consistent Subset (MCS) has
been proposed for finding a global point of view when no meta-knowledge is
available about sources (reliability, conflict) [8, 9]. These works apply the fusion
operator on the set of all sources and consider the resulting information. Other
approaches define their proper fusion operator in a lattice structure to combine
symbolic information [6,7].

In this work, we use FCA to study all subsets of sources and their infor-
mation fusion results. The main ability of FCA is to produce formal concepts
corresponding to maximal sets of sources associated with a fused information.
The concepts are ordered and form a structure called concept lattice. We show
that this lattice contains the information fusion result considering all sources
proposed by [2,8, 9]. Moreover, the lattice is meaningful for organizing informa-
tion fusion results of different subsets of sources and allows more flexibility for
the user. Moreover, the lattice keeps a track of the origin of the information such
as presented in [3] for the fusion of symbolic information.

This work can be used in many applications where it is necessary to find a
suitable value summarizing several values coming from multiple sources. Here,
we use an experiment in agronomy for decision helping in agricultural practices.

The paper is organized as follows. Section 2 presents and illustrates the basics
of fusion operators. Section 3 introduces the preliminaries on FCA and its gen-
eralization for handling numerical data. Then, Section 4 shows how FCA is well
suited for organizing different information fusion results. Section 5 describes a
real-world experiment: a concept lattice embedding fusion results is interpreted
for making decisions about agricultural practices.

2 Basics of Numerical Information Fusion Operators

According to previous works, there are three kinds of behaviors for the fusion
operators: conjunctive, disjunctive and trade-off operators [1,2,4].

Before introducing these operators, we introduce the following notations: n
is the number of sources. Im is the set of all values given for the variable m.
fm : Im → R denotes a fusion operator returning the fusion result for variable m.

The conjunctive operator is the counterpart to a set intersection. The im-
precision and the uncertainty in the information associated with the result of a
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conjunction is less than the imprecision or the uncertainty of each source alone. A
conjunctive operator makes the assumption that all the sources are reliable, and
usually results in a precise information. If there is some conflict in the information
(i.e. at least one source is not fully reliable), then the result of the conjunction can
be insufficiently reliable, or even empty. The conjunctive operator for a variable
m is defined by fm(Im) =

⋂
i=1,...,n Ii, e.g., in Table 1, fm1(I1, . . . , I4) = ∅ rep-

resents the intersection of intervals of m1 with I1 = [1, 5], I2 = [2, 3], I3 = [4, 7]
and I4 = [6, 10].

The disjunctive operator is the counterpart to a set union. The uncertainty
(or the imprecision) resulting from a disjunction is higher than the uncertainty
(or the imprecision) of all sources together. A disjunctive operator makes the
assumption that at least one source is reliable. The result of a disjunctive op-
erator can be considered as reliable, but is also often (too) weakly informative.
The disjunctive operator for the variable m, is defined by fm(I) =

⋃
i=1,...,n Ii,

e.g. , fm1(I1, . . . , I4) = [1, 10] that represents the union of the intervals of m1.
The trade-off operators lie between conjunctive and disjunctive behaviors, and

are typically used when sources are partly conflicting. They try to achieve a good
balance between informativeness and reliability [2]. The fusion based on MCS is
an example of trade-off operators.
Maximal consistent subset fusion method. When no information is avail-
able about sources, like conflict between sources, or reliability of sources, a rea-
sonable fusion method should take into account the information provided by all
sources. At the same time, it should try to keep a maximum of informativeness.
The notion of MCS is a natural way to achieve these two goals.

The idea of MCS goes back to Rescher and Manor [10]. This notion is currently
used in the fusion of logical formulas [5] but also of numerical data [8,9]. Given a
set of n intervals I = {I1, I2, . . . , In}, a subset K ⊆ I is consistent if

⋂|K|
i=1 Ki �= ∅

with Ki ∈ K and maximal if it does not exist a proper super-set K ′ ⊇ K that is
also consistent. In Table 1, the set K1 = {I1, I2} is a MCS of the set Im1 , since
I1 ∩ I2 �= ∅ and is maximal w.r.t. intersection property.

Fig. 2. MCS computed from Table 1 for the variable m1

The fusion opera-
tor of n sources based
on MCS consists in
applying a disjunc-
tive operator on their
MCS. For example,
the MCS fusion re-
sult for m1 in Table 1
is fm1(I1, . . . , I4) =
[2, 3] ∪ [4, 5] ∪ [6, 7], as illustrated in Figure 2. The MCS notion appears as a
natural way to conciliate the two objectives of gaining information and of re-
maining in agreement with all sources in information fusion problem. Generally,
finding MCS is a problem having exponential complexity [11]. Dubois et al. [8]
introduce a linear algorithm to compute the MCS of n intervals.
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Properties of fusion operators. Generally, all fusion operators are commuta-
tive and idempotent. The conjunctive and disjunctive operators are associative
but not the trade-off fusion operators (more details in [9]). If the final result of
the fusion is not convex, it is always possible to take its convex hull (loosing some
information in the process but gaining computational tractability). Conjunctive
fusion result is convex but this is not the case for the others operators in general.

In conclusion, for merging numerical information, a common fusion operator
has to be used. This is specially important in case of heterogeneous sources.
Fusion operators are often based on assumptions or on meta-knowledge available
about the sources (reliability, conflict) and the domain. Sometimes, it happens
that the fusion result is not directly useful for decision. For example, in [12] the
fused information must be convex, and the convexification of MCS leads to an
imprecise result. Here, we propose to identify and characterize interesting subsets
of sources, providing more useful fused information. Accordingly, we show how a
fusion operator can be embedded in the framework of Formal Concept Analysis
(FCA) to build a concept lattice yielding a structured view of partial results
labelled by subsets of sources, instead of providing a unique fusion result.

3 Formal Concept Analysis

3.1 Basics

Formal concept analysis (FCA) [13] starts with a formal context (G, M, I) where
G denotes a set of objects, M a set of attributes, and I ⊆ G×M a binary relation
between G and M1. The statement (g, m) ∈ I is interpreted as “the object g has
attribute m”. An example of formal context is given by Table 2 where a table
entry contains a cross (×) iff the object in row has the attribute in column, e.g.
g1 has the attribute m1, i.e. (g1, m1) ∈ I. The two operators (·)′ define a Galois
connection between the powersets (2G,⊆) and (2M ,⊆), with A ⊆ G and B ⊆M :

A′ = {m ∈M | ∀g ∈ A : gIm} B′ = {g ∈ G | ∀m ∈ B : gIm}

For A ⊆ G, B ⊆ M , a pair (A, B), such that A′ = B and B′ = A, is called a
(formal) concept, e.g. ({g1, g2, g3}, {m1}). In (A, B), the set A is called the extent
and the set B the intent of the concept (A, B). Concepts are partially ordered by
(A1, B1) ≤ (A2, B2)⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1), e.g. the concept ({g3}, {m1, m2})
is a sub-concept of ({g1, g2, g3}, {m1}). With respect to this partial order, the
set of all formal concepts forms a complete lattice called the concept lattice of
the formal context (G, M, I). Figure 1 shows the concept lattice2 associated with
the context in Table 2. On the diagram, each node denotes a concept while a
line denotes an order relation between two concepts. Due to reduced labeling,
the extent of a concept is composed of all objects lying in the extents of its
sub-concepts. Dually, the intent of a concept is composed of all attributes in the
1 In this paper, we similarly use the terms object and information source on one hand,

and variable and attribute on the other hand.
2 The lattice diagram is designed with ConExp, http://conexp.sourceforge.net/.

http://conexp.sourceforge.net/
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intents of its super-concepts. The top concept ($) is the highest and the bottom
concept (⊥) is the lowest in the lattice.

The concept lattice provides a classification of objects in a domain. It entails
both notions of maximality and generalization/specialization: a concept corre-
sponds to a maximal set of objects (extent) sharing a common maximal set
of attributes (intent) ; the generalization/specialization is given by the partial
ordering of concepts.

However, real-world data like in biology, agronomy, etc., are not binary, but
rather consist in complex data composed of numbers, graphs, etc. The data are
classically processed with FCA after a data transformation, called conceptual
scaling, e.g. discretization. Transformations generally imply an important loss
of information and arbitrary choices, which must be avoided in the context of
information fusion. For example, an object has the attribute m1 (resp. m2) in the
binary Table 2 iff its values for this attribute are less than 7 (resp. greater than 5)
in the numerical Table 1. With other choices, we may obtain another table, and
hence another concept lattice with a different interpretation. Therefore, handling
numerical data for information fusion purposes with FCA is not straightforward.

3.2 Pattern Structures for Complex Data

Instead of transforming data, one may directly work on the original data. For
that purpose, a pattern structure is defined as a generalization of a formal con-
text to complex data [14]. It still maps objects to their descriptions, the latter
being partially ordered. When working with classical FCA, the object descrip-
tions are sets of attributes, and are partially ordered by set inclusion, w.r.t. set
intersection: let P, Q ⊆ M two attributes sets, then P ⊆ Q ⇔ P ∩Q = P , and
(M,⊆), also written (M,∩), is a partially ordered set of object descriptions. The
set intersection ∩ behaves as a meet operator, denoted by !, in a semi-lattice:
it is idempotent, commutative, and associative. Therefore, a pattern structure
naturally entails a Galois connection between the powerset of objects (2G,⊆)
and a meet-semi-lattice of descriptions denoted by (D,!).

Formally, let G be a set of objects, let (D,!) be a meet-semi-lattice of potential
object descriptions and let δ : G −→ D be a mapping. Then (G, (D,!), δ) is
called a pattern structure. Elements of D are called patterns and are ordered by
the subsumption relation%: given c, d ∈ D one has c % d⇐⇒ c!d = c. A pattern
structure (G, (D,!), δ) gives rise to the following derivation operators (·)�, given
A ⊆ G and d ∈ (D,!):

A� =
�

g∈A

δ(g) d� = {g ∈ G|d % δ(g)}

These operators form a Galois connection between (2G,⊆) and (D,%). (Pattern)
concepts of (G, (D,!), δ) are pairs of the form (A, d), A ⊆ G, d ∈ (D,!), such
that A� = d and A = d�. For a pattern concept (A, d), d is called a pattern
intent and is a common description of all objects in A, called pattern extent.
When partially ordered by (A1, d1) ≤ (A2, d2)⇔ A1 ⊆ A2 (⇔ d2 % d1), the set
of all concepts forms a complete lattice called a (pattern) concept lattice.



Managing Information Fusion with Formal Concept Analysis 109

Pattern structures allow to consider complex data in full compliance with the
FCA formalism. It requires to define a meet operator on object descriptions,
inducing their partial order. In fact, as for scaling in classical FCA, the choice of
an operator depends on expert knowledge, and to which extent will the resulting
concept lattice be used. Several attempts were done to define such operators, on
sets of graphs [14], numerical data [15], logical formulas [16], etc. In the following,
we discuss how a fusion operator can be seen as a meet operator.

4 Organizing Information Fusion Results with FCA

We show here that FCA provides a suitable framework for organizing sources
and their information fusion results, allowing more flexibility for the users of
fusion results.
Definition (Information fusion space). An information fusion space Dm is
composed of the information available for a variable m and all their possible
fusion results, w.r.t a fusion operator fm.

For example, with the variable m1 in Table 1 and fm as the interval intersec-
tion, Dm = {[1, 5], [4, 7], [6, 10], [2, 3], [4, 5], [6, 7], ∅}.

4.1 Formalizing a Fusion Operator as a Meet Operator

Let us consider a single variable m ∈ M , its fusion space Dm corresponding to
a chosen fusion operator fm. When fm is idempotent, commutative and asso-
ciative, (Dm, fm) is a meet-semi-lattice, since fm behaves as a meet operator.
This is the case for any conjunctive or disjunctive fusion operator, and we have
c ! d = fm(c, d), ∀c, d ∈ Dm, meaning that the meet of two elements of Dm

corresponds to their fusion.

Fig. 3. A meet-semi-lattice

of intervals

For example, let us consider the numerical vari-
able m1 in Table 1, and the conjunctive fusion
operator fm1 that corresponds to the interval in-
tersection ∩. Figure 3 shows the meet-semi-lattice
(Dm1 , fm1). The interval labelling a node is the
meet of all intervals labelling its ascending nodes,
i.e. the resulting information fusion w.r.t fm1 of the
sources given the intervals labelling its ascending
nodes. In the example, fm1([4, 7], [6, 10]) = [6, 7] is the fusion of objects g3 and
g4 for the variable m1, and fm1([2, 3], [1, 5]) = [2, 3] for objects g1 and g2. There-
fore, we have partially ordered the fusion space Dm1 with c ∩ d = c ⇔ c ⊆
d, ∀c, d ∈ Dm1 . This order is a particular instance of the pattern subsumption
relation defined in pattern structures. It means, in this example, that an interval
is subsumed by any larger one, e.g. [2, 3] % [1, 5] since [2, 3] ⊆ [1, 5]. For example,
we have [2, 3]! [1, 5] = [2, 3]⇔ [2, 3] % [1, 5] in terms of semi-lattice, correspond-
ing to [2, 3]∩ [1, 5] = [2, 3]⇔ [2, 3] ⊆ [1, 5] in interval inclusion terms. Note that
a disjunctive fusion operator is handled similarly.
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4.2 Building a Concept Lattice from Information Sources

Given G a set of sources, m ∈M a single variable, (Dm, fm) the meet-semi-lattice
of fusion results, and δ a mapping that gives to any object its information for
the variable m, then (G, (Dm, fm), δ) is a pattern structure. On the example,
we have (G, (Dm1 , fm1), δ). (Dm1 , fm1) is described in the previous subsection.
Descriptions of sources g1 and g2 are respectively δ(g1) = [1, 5] and δ(g2) = [2, 3].
Then, the general Galois connection can be used to compute and order concepts:

{g1, g2}� = [1, 5] ! [2, 3] [2, 3]� = {g ∈ G | [2, 3] % δ(g)}
= fm1([1, 5], [2, 3]) = {g ∈ G | [2, 3] ⊆ δ(g)}
= [2, 3] = {g1, g2}.

Since {g1, g2} = [2, 3] and [2, 3]� = {g1, g2}, the pair ({g1, g2}, [2, 3]) is a concept.
Efficient FCA algorithms can extract the set of all formal concepts and order
them within a concept lattice [17]. They can be easily adapted to compute in
pattern structures [14, 15]. The lattice of our example is given in Figure 4.

4.3 Concept Lattice Interpretation

A concept (A, d) of (G, (Dm1 , fm1), δ), is interesting from many points of view,
as illustrated with the concept ({g1, g2}, [2, 3]).

• Its intent d provides the fusion resulting from objects in A, e.g. [2, 3] is the
conjunctive fusion fm1 of the information from sources g1 and g2.
• No other object can be added to A without changing d, e.g. {g1, g2} is the

maximal set of sources whose conjunctive information fusion is [2, 3].
• The extent A keeps the track of the origin of the information, e.g. it is known

that the new information [2, 3] comes from the information of g1 and g2.

Fig. 4. A concept lattice raised

from Table 1 for the variable m1

The resulting concept lattice provides a suit-
able classification of information sources and
their information fusion results. In Figure 4, a
concept extent is read with reduced labelling.
However, for sake of readability, intents are
given for each concept (not reduced). For ex-
ample, the node labelled with [6, 7] represents
the concept ({g3, g4}, [6, 7]). Due to concept
ordering, a concept provides the fusion result
of a subset of the extent of its super-concepts
(generalization/specialization). Then, the navigation in the lattice gives inter-
esting insights into the fusion results. This allows more flexibility for decision
making. For example, in related works, only the fusion of information of all ob-
jects is considered which corresponds to the most general concept ($) in the
lattice. This result does not always allow to make a decision, e.g. an empty in-
tersection in our example. Then it is interesting to observe subsets of objects,
by navigating in the lattice.
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4.4 Lattice Based on Maximal Consistent Subsets

The fusion operator fm based on the notion of MCS is idempotent and commuta-
tive, but not associative. For example in Table 1, fm1(fm1([1, 5], [2, 3]), [4, 7]) =
[2, 3] ∪ [4, 7] and fm1(fm1([1, 5], [4, 7]), [2, 3]) = [2, 3] ∪ [4, 5]. Then, the fusion
operator cannot be directly used as a meet operator to build a concept lattice.

Fig. 5. Concept lattice with MCS

However, since this operator returns the
union of all MCS, we can firstly compute all
MCS for a given variable, denoted by the
set K and then use the disjunctive opera-
tor on the MCS as a meet operator to de-
fine a meet-semi-lattice (K,∪). Formally, we
consider (O, (K,∪), δ) as a pattern structure
where O is a multi-set of sources, each ele-
ment is set of sources of one MCS k ∈ K,
i.e. δ(o) ∈ K, ∀o ∈ O. For example, the MCS
of intervals for m1 are [2, 3], [4, 5] and [6, 7]
given respectively by {g1, g2}, {g1, g3} and {g3, g4}. Then, O represents the
multi-set {{g1, g2}, {g1, g3}, {g3, g4}} with δ({g1, g2}) = [2, 3] (meaning that the
interval of values [2, 3] is related to the sources g1 and g2), δ({g1, g3}) = [4, 5]
and δ({g3, g4}) = [6, 7]. Then, we use an interval union as a meet operator. The
resulting concept lattice is given in Figure 5. A concept extent is read with re-
duced labelling. A concept intent is given here for each concept. For example, in
Figure 5, the right concept in the second line is ({{g1, g2}, {g1, g3}}, [2, 3]∪ [4, 5])
giving the values of m1 w.r.t. the sources {g1, g2} and {g1, g3}. Moreover, these
values represent the MCS fusion result of the subset {g1, g2, g3}. The concept $
corresponds to the union of all MCS that is the MCS fusion result of all sources.

The method used here to obtain the lattice based on MCS does not consider
all subsets of objects with their MCS fusion results. This is due to the non-
associativity of the MCS fusion operator. Thus, the concept lattice does not
contain all subsets of G with their MCS fusion results since the interval union
is used on the MCS of data and not directly on the data given by sources.
Nevertheless, the concept lattice helps us to keep the origin of the information
and gives more flexibility for the users in the choice of a maximal consistent
subset of sources in many application fields.

4.5 Embedding Several Variables in the Concept Lattice

Sources can provide values for different variables. For example, Table 1 involves
objects described by vectors of intervals, where each dimension, i.e. column,
corresponds to a unique variable, e.g. the description of the object g1 is denoted
by δ(g1) = 〈[1, 5], [1, 9]〉. It can be interesting to compute the fusion information
for all variables simultaneously.

To formalize a pattern structure in this case, one defines a meet operator, i.e.
fusion operator in our settings, for each dimension, or variable. Assuming that
there is a canonical order on vector dimensions, the meet of two vectors is defined
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as the meet on each dimension. This induces a partial order of object descrip-
tions [15]. Thus, we consider the pattern structure (G, (D,!), δ), where G is a
set of sources, (D,!) is a meet-semi-lattice of vectors, and each vector dimension
is provided with the fusion operator fm corresponding to the variable m.

Going back to Table 1, descriptions of objects g1 and g2 are respectively the
vectors 〈[1, 5], [1, 9]〉 and 〈[2, 3], [1, 3]〉. When the fusion operator for both dimen-
sion is the interval intersection, the meet of these two vectors is 〈[1, 5], [1, 9]〉 !
〈[2, 3], [1, 3]〉 = 〈[2, 3], [1, 3]〉. The subsumption relation for vectors is defined sim-
ilarly: 〈[2, 3], [1, 3]〉 % 〈[1, 5], [1, 9]〉 as [2, 3] ⊆ [1, 5] and [1, 3] ⊆ [1, 9]. Then, the
general Galois connection can be used to compute and order concepts:

{g1, g2}� = 〈[1, 5], [1, 9]〉 � 〈[2, 3], [1, 3]〉 〈[2, 3], [1, 3]〉� = {g ∈ G | 〈[2, 3], [1, 3]〉 � δ(g)}
= 〈[2, 3], [1, 3]〉 = {g1, g2}

In this way, a concept represents a set of sources and their fusion w.r.t. all
variables, such as no other source can be added without changing the fusion
result for any variable. The variables can be either symbolic or numerical since
a fusion operator is chosen for each variable.

When the fusion operator is based on MCS, we follow the pre-processing
introduced above for each variable (see Section 4.4). Then, we consider the set of
all MCS for all variables. Thus, we consider the pattern structure (O, (K,!), δ),
where O is the set of subsets of sources providing the MCS for all variables,
(K,!) is a meet-semi-lattice of vectors. Each subset in O is described for each
dimension by a maximal interval of values if the subset represents a MCS for
the corresponding dimension, otherwise the dimension description is empty. In
the example, recalling that an object denotes a set of sources giving a MCS,
the description of the object {g1, g2} is δ({g1, g2}) = 〈[2, 3], [1, 3]〉 where [2, 3]
and [1, 3] are respectively a MCS for m1 and m2. By contrast, the description
of the object {g3, g4} is δ({g3, g4}) = 〈[6, 7], ∅〉 since the subset {g3, g4} does not
represent a MCS for the variable m2.

This framework on fusion operators has been used on real-world data as ex-
plained in the next section.

5 A Real-World Application in Agronomy

Data and problem settings. Agronomists compute indicators for evaluating
the impact of agricultural practices on the environment. Questions such as the
following are of importance: what are the consequences of the application of a
pesticide given its characteristic, the period of application, and the characteris-
tics of the field? The risk level for a pesticide to reach groundwater is computed
by the indicator Igro in [18]. Agronomists try to make a diagnosis w.r.t. the
value of Igro. A value below 7 indicates that the farmer has to change its prac-
tices (pesticide, soil, date, etc.). By contrast, a value above 7 indicates that
the practices of the farmer are environmental friendly [19]. Pesticide character-
istics depend on the chemical characteristics of the product while pesticide pe-
riod application and field characteristics depend on domain knowledge [19]. This
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knowledge lies in information sources among which books, databases, and expert
knowledge in agronomy. Then values for some characteristics vary w.r.t. sources.

Table 3. Characteristics

of Sulcotrione

DT50 koc
day L/kg

BUS [2,74] ?
PM11 [15,72] ?
PM12 ? [44,940]
PM13 ? [44,940]
INRA ? [1.08,8.98]
Com98 [2,6] [17,160]
AGXf [2,6] [1.08,160]
AGXl [15,74] [1.08,160]

Here, we are interested in the use of pesticide sulcotri-
one and its influence on the groundwater. Sulcotrione
is a herbicide marketed since 1993. It is used to control
a wide range of grasses weeds in maize crops. Sulcotri-
one is generally weakly absorbed by soils [20]. Three
characteristics of Sulcotrione are needed to compute
the indicator Igro, namely DT 50, koc, and ADI (more
details on these characteristics can be found in [18],
and are not crucial for the understanding of this pa-
per). Table 3 (simplified data) gives the values of the
characteristics DT 50 and koc according to 9 different
information sources. The symbol “?” represents the
case when the information source does not give data for the characteristic. The
value of ADI for the sulcotrione is 0.00005. Agronomists look to find a suitable
value for each characteristic to be considered for computing the Igro indicator,
hence facing an information fusion problem.

Lattice construction and interpretation. To combine the different pieces of
information, a common fusion operator has to be defined. In this application,
(1) the sources are heterogeneous (2) no a priori knowledge about sources and
characteristics is available. Therefore, an appropriate fusion operator is the MCS
fusion operator. The MCS for the variable DT 50 are K1 and K2, resp. K3 and K4

for koc (see Table 4). Table 5 results from the pre-processing of Table 3, detailed
in Section 4.4. The resulting concept lattice is given in Figure 6 with 16 concepts.
A concept extent is read with reduced labelling. A concept intent is not given in
vectorial form for sake of readability: it is read from the intents of sub-concepts,
for example, the intent of the concept C1 is {(DT 50, [15, 72]), (koc, [44, 160])}.
But, if two sub-concepts intents give different values for a same attribute,
then the union of values is considered. For example, the intent of the concept
C2 is {(DT 50, [2, 6] ∪ [15, 72]), (koc, [44, 160])} and its sub-concepts intents are
{(DT 50, [2, 6])}, {(DT 50, [15, 72])} and {(koc, [44, 160])}. Moreover, each con-
cept intent in the lattice represents the MCS fusion result of the subset of
sources in the extent. The highest concept in the lattice corresponds to the
MCS fusion result of all sources for all characteristics. For example, the “most
right-down” concept is ({K1}, {(DT 50, [2, 6])}) where [2, 6] is the MCS fusion
result of the subset K1 = {BUS, Com98, AGXf} and its “most right” super-
concept is ({K1, K2}, {(DT 50, [2, 6]∪ [15, 72])} where [2, 6]∪ [15, 72] is the fusion
result of the set K1 ∪K2 = {BUS, PM11, AGXl, Com98, AGXf}.
Results and discussion. The computing of a lower and higher bound for
the indicator and the consequences of the results on agronomic practices and
pollution are detailed and discussed in [12], but will not be detailed here as this
is not necessary. It is required to consider the convex hull of the fusion result for
computing the indicator. The concept lattice allows the users of Igro and experts
to give several diagnosis for the farmer. For example, let us consider the concept
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Table 4. Label of all MCS

K1 {BUS, Com98, AGXf}
K2 {BUS, PM11, AGXl}
K3 {INRA, Com98, AGXf, AGXl}
K4 {PM12, PM13, Com98, AGXf, AGXl}

Table 5. Table 3 pre-processed

DT50 (days) koc (L/kg)
K1 [2,6] ∅
K2 [15,72] ∅
K3 ∅ [1.08,8.98]
K4 ∅ [44,160]

Fig. 6. Concept lattice built from Table 5

$ that represents the fusion result of all sources for all characteristics. Then,
DT 50 and koc lie respectively in [2, 72] and [1.08, 160]. With these values, the
computed value for Igro is [4, 10]. This interval is not useful since all values in
[4, 10] are neither smaller than 7 nor greater than 7 and the expert cannot make
a decision on the practices of the farmer.

Now the indicator Igro can be also computed choosing either intervals of values
in higher or lower level concepts. For instance, if we consider the values of DT 50
in [2, 6], koc in [44, 160] then we obtain the interval [9.97, 10] for Igro and the
practices of the farmer are environmental friendly since the Igro value is greater
than 7. However, if DT 50 = [15, 72] and koc = [1.08, 8.98], the resulting interval
for Igro is [4.32, 4.32] indicating that the farmer must change its practices since
values of Igro are smaller than 7. Anyhow, we obtain, with these concepts, precise
results of Igro, which is not the case with the fusion global result when using
the most general concept. The concept lattice allows to identify what maximal
subsets of sources support the most precise results. A further step is to consider
these precise results in a decision process.

6 Conclusion

In this paper, we claim that Formal Concept Analysis has the capability of sup-
porting a decision making process in the presence of information fusion problems,
even when information are complex, e.g. numbers, thanks to the formalism of pat-
tern structures. A real-world experiment in agronomy showed that when a fusion
result does not allow to make a decision, the concept lattice helps the expert by
considering an ordered hierarchy of concepts, given the fusion from different max-
imal sets of sources. Some fusion operators can directly be used to build a con-
cept lattice, e.g. conjunctive and disjunctive operators. To deal with the operator
based on maximal coherent subsets (MCS), we proposed to transform the data
since MCS is not an associative operator, and the resulting concept lattice entails
fusion results of interest.

We have considered the case when information are represented by fuzzy in-
tervals and possibility distributions in [21]. As perspective, it is interesting to
study how other fusion operators can be embedded in a concept lattice, as well
as meta-information on sources (when available).
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Abstract. This paper proposes two types of kernel fuzzy c-means al-

gorithms with an indefinite kernel. Both algorithms are based on the

fact that the relational fuzzy c-means algorithm is a special case of the

kernel fuzzy c-means algorithm. The first proposed algorithm adaptively

updated the indefinite kernel matrix such that the dissimilarity between

each datum and each cluster center in the feature space is non-negative,

instead of subtracting the minimal eigenvalue of the given kernel ma-

trix as its preprocess. This derivation follows the manner in which the

non-Euclidean relational fuzzy c-means algorithm is derived from the

original relational fuzzy c-means one. The second proposed method pro-

duces the memberships by solving the optimization problem in which the

constraint of non-negative memberships is added to the one of K-sFCM.

This derivation follows the manner in which the non-Euclidean fuzzy re-

lational clustering algorithm is derived from the original relational fuzzy

c-means one. Through a numerical example, the proposed algorithms are

discussed.

Keywords: Indefinite Kernel, Kernel Fuzzy c-Means, Non-Euclidean

Relational Fuzzy c-Means, Non-Euclidean Fuzzy Relational Clustering.

1 Introduction

Fuzzy c-means (FCM) [1] is a well-known fuzzy clustering method that is de-
rived from hard c-means (HCM), also called k-means. Among the many FCM
variants proposed thus far, one is the FCM algorithm based on the concept of
regularization by entropy [2]. This algorithm is called entropy regularized FCM
(eFCM) and is discussed not only because of its usefulness but also because of
its mathematical relationships with other techniques. We call the FCM proposed
in [1] standard FCM (sFCM) in order to distinguish it from eFCM.

In order to cluster data with nonlinear borders, three algorithms [3], [4] have
been proposed using nonlinear transformation from the original pattern space
into a higher-dimensional feature space with kernel functions in Support Vec-
tor Machine (SVM) [5]. These algorithms are called K-HCM, K-sFCM, and
K-eFCM, and they are derived from HCM, sFCM, and eFCM, respectively. For
simplicity, we generally call them K-CM.
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An explicit mapping is generally unknown for kernel data analysis but their
inner product should be known. However, an explicit mapping has been intro-
duced by one of the authors and the appearance of K-CM in a higher-dimensional
space has been described via kernel principal component analysis using the ex-
plicit mapping [6], [7].

A kernel matrix must be positive-definite for K-CM. However, an irrespon-
sibly introduced kernel matrix is not always positive-definite. In particular, K-
sFCM with an indefinite kernel matrix has a risk in that memberships cannot
be calculated after the dissimilarity between a datum and a cluster center is
updated to be negative, whereas K-HCM and K-eFCM can be continued even if
it is negative although the meaningfulness of the obtained result is unknown. Al-
though indefinite kernel matrices can be transformed to positive-definite ones by
subtracting the minimal eigenvalue from their diagonal components, this incurs
some computational costs.

While the above mentioned clustering methods assume that the data are given
as the points in Euclidean space, there are the case that only the dissimilarity or
similarity between each datum, called relational data, is given. sFCM has been
developed for such relational data into relational fuzzy c-means (RFCM) [8];
however, RFCM has a drawback in that it cannot be applied to non-Euclidean re-
lational data. In order to overcome this drawback, non-Euclidean RFCM (NER-
FCM) has been proposed [9], in which RFCM is executed by adaptively updating
relational data. On the other hand, fuzzy analysis (FANNY) [10], a relational
clustering method for non-Euclidean relational data, has been extended to more
general fuzzifier parameters into non-Euclidean fuzzy relational clustering (NE-
FRC) [11]. Both FANNY and NEFRC are obtained by solving the optimization
in which the constraint of non-negative memberships is added to that of RFCM.

In this paper, two types of algorithms are proposed for K-sFCM with an
indefinite kernel matrix. Both algorithms are based on the fact that RFCM is
a special case of K-sFCM. The first proposed algorithm is derived in a manner
similar to how NERFCM is derived from RFCM, and the second one is derived
in a manner similar to how NEFRC is derived from RFCM.

The remainder of this paper is organized as follows. In the second section, we
introduce K-CM, RFCM, NERFCM, and NEFRC. In the third section, we show
that RFCM is a special case of K-sFCM; this serves as the basis for our two
proposed algorithms. In the fourth section, we propose two types of K-sFCM
with an indefinite kernel matrix. In the fifth section, we show some numerical
examples. In the last section, we conclude this paper.

2 Preliminaries

In this section, we introduce K-CM, RFCM, NERFCM, and NEFRC. K-CM,
that is, K-HCM, K-sFCM, and K-eFCM, is the basis for our proposed methods.
RFCM and NERFCM are introduced because the manner in which RFCM is
modified into NERFCM is applied in our first proposed method to modify K-
sFCM. NEFRC is introduced because we follow this derivation for our second
proposed method.
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2.1 K-CM

For a given data set X = {xi | i ∈ {1, . . . , N}}, K-CM assumes that the kernel
matrix K ∈ RN×N is given. Let H be a higher-dimensional feature space, Φ :
X → H be a map from data set X to the feature space H, W = {Wj ∈ H |
j ∈ {1, · · · , C}} be a set of cluster centers in the feature space, and ui,j (i ∈
{1, · · · , N}, j ∈ {1, · · · , C}) be the membership by which xi belongs to the j-th
cluster. The set of ui,j is denoted by u ∈ RN×C , and this is called the partition
matrix.

K-CM is obtained by solving the following optimization problem:

minimize
u,W

N∑
i=1

C∑
j=1

ui,j‖Φ(xi)−Wj‖2H (1)

subject to
C∑

j=1

ui,j = 1 (2)

with ui,j ∈ {0, 1} for K-HCM,

minimize
u,W

N∑
i=1

C∑
j=1

um
i,j‖Φ(xi)−Wj‖2H (3)

(4)
subject to Eq. (2) for K-sFCM, and

minimize
u,W

N∑
i=1

C∑
j=1

ui,j‖Φ(xi)−Wj‖2H +
N∑

i=1

C∑
j=1

ui,j log(ui,j) (5)

subject to Eq. (2) for K-eFCM. Generally, Φ cannot be given explicitly, and a
kernel function K : x × x → R is assumed to be given; this function describes
the inner product value on the feature space by pairs of elements in the data set

K(xi, xj) = 〈Φ(xi), Φ(xj)〉. (6)
However, it can be interpreted that Φ can be given explicitly by letting H =
RN , Φ(xi) = ei, the �-th element of which is δi,	 of Kronecker’s delta, and by
introducing K ∈ RN×N such that

Ki,j = 〈Φ(xi), Φ(xj)〉. (7)
From this discussion, K-CM is given by the following algorithm.

Algorithm 1 (K-CM)

Step 1. Fix m > 1 for K-sFCM and λ > 0 for K-eFCM. Assume a kernel
matrix K ∈ RN×N and an initial partition matrix u.

Step 2. Update cluster centers as

Wj = (u1,j , · · · , uN,j)
T

/

N∑
i=1

ui,j (8)

for K-HCM and K-eFCM, and

Wj =
(
um

1,j , · · · , um
N,j

)T
/

N∑
i=1

um
i,j (9)

for K-sFCM.
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Step 3. Update dissimilarity between each data and each cluster center as
di,j = (ei −Wj)TK(ei −Wj). (10)

Step 4. Update membership as

ui,j =
{

1 (j = arg mink di,k)
0 (Otherwise) (11)

for K-HCM,

ui,j = 1/

C∑
k=1

(
di,j

di,k

)1/(m−1)

(12)

for K-sFCM, and

ui,j =
exp(−λdi,j)∑C

k=1 exp(−λdi,k)
(13)

for K-eFCM.
Step 5. If (u, d, W ) converge, terminate this algorithm. Otherwise, return to

Step 2.

2.2 RFCM, NERFCM, and NEFRC

RFCM, NERFCM, and NEFRC assume that the dissimilarity data matrix R ∈
RN×N is given, in which Ri,j is the dissimilarity between the datum xi and the
datum xk. RFCM is obtained by solving the following optimization problem:

minimize
u

C∑
j=1

∑N
i=1

∑N
k=1 um

i,ju
m
k,jRi,k

2
∑N

t=1 um
t,j

(14)

subject to Eq. (2). RFCM is given by the following algorithm.

Algorithm 2 (RFCM)

Step 1. Fix m > 1 and assume an initial partition matrix u.
Step 2. Update vj ∈ RN as

vj =
(
um

1,j, · · · , um
N,j

)T
/

N∑
i=1

um
i,j . (15)

Step 3. Update di,j as
di,j = (Rvj)i − vT

j Rvj/2. (16)
Step 4. Update membership as

ui,j = 1/

C∑
k=1

(
di,j

di,k

)1/(m−1)

. (17)

Step 5. If stopping criterion is satisfied, terminate this algorithm. Otherwise,
return to Step 2.

We say that a matrix R ∈ RN×N is Euclidean if there exists a set of points
{y1, · · · , yN} ∈ RN−1 such that Ri,j = ‖yi − yj‖22, and we say that R is non-
Euclidean if no such set of points exists. A given R is not always Euclidean, and
in this case, RFCM has a risk in that the membership cannot be calculated after
di,j is updated to be negative.
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In order to overcome this drawback, the following revision of R, called β-
spread, has been considered:

Rβ = R + β(1− E), (18)
where β is a scalar; 1, an N × N matrix all elements of which are 1; and E,
the N -dimensional unit matrix. RFCM with β-spread is given by the following
algorithm of NERFCM.

Algorithm 3 (NERFCM)

Step 1. Fix m > 1 and assume an initial partition matrix u. Set β = 0.
Step 2. Execute Step 2 in Algorithm 2.
Step 3. Update di,j as

di,j = (Rβvj)i − vT
j Rβvj/2. (19)

Step 4. If di,j < 0, update Δβ, di,j , and β as
Δβ = max{−2di,j/‖ei − vj‖2}, (20)

di,j ←di,j + Δβ/2‖ei − vj‖2, (21)
β ←β + Δβ. (22)

Step 5. Execute Step 4 in Algorithm 2.
Step 6. If a stopping criterion is satisfied, terminate this algorithm. Otherwise,

return to Step 2.

Modification (20)–(22) of the original RFCM algorithm calculates a reasonable
underestimate of the minimal shift required to transform the current Rβ into a
Euclidean matrix; this shift is then implemented by updating the current di,j

and β.
In order to overcome the drawback of RFCM, another modification, non-

Euclidean fuzzy relational clustering (NEFRC), has been proposed by solving
the optimization problem in which the constraint of non-negative membership

ui,j ≥ 0 (23)
is added to that of RFCM, that is, Eq. (14), (2). By solving this optimization
problem, NEFRC is given by the following algorithm.

Algorithm 4 (NEFRC)

Step 1. Fix m > 1 and assume an initial partition matrix u. Set β = 0.
Step 2. Calculate ai,j ∈ R as

ai,j =
mum−2

i,j

∑N
k=1 um

k,jRi,k∑N
k=1 um

k,j

−
mum−2

i,j

∑N
	=1

∑N
k=1 um

k,ju
m
	,jRk,	

2
(∑N

k=1 um
k,j

)2 . (24)

Step 3. Define the sets J− and J+ as

J− =

{
j | 1/ai,j∑C

k=1 1/ai,k

< 0

}
, (25)

J+ =

{
j | 1/ai,j∑C

k=1 1/ai,k

≥ 0

}
. (26)

.
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Step 4. Calculate membership as

ui,j =

⎧⎪⎪⎨⎪⎪⎩
0

(j ∈ J−)
1/ai,j∑C

k=1 1/ai,k

(j ∈ J+)

(27)

Step 5. If a stopping criterion is satisfied, terminate this algorithm. Otherwise,
return to Step 2.

3 RFCM Is a Case of K-sFCM

RFCM is a special case of K-sFCM. This is shown as follows. First, the update
equation of vj (15) in RFCM is described as

vj =

∑N
i=1 um

i,jei∑N
i=1 um

i,j

; (28)

this corresponds to (9) in K-sFCM. Second, the update equation of di,j (16) in
RFCM is described as

di,j = (ei − vj)T
(
−1

2
PRP

)
(ei − vj), (29)

where
P =E − 1/N, (30)
E :N -dimensional unit matrix, (31)
1 :N -dimensional matrix with all elements of 1; (32)

this corresponds to (10) in K-sFCM with the kernel matrix K = − 1
2PRP . Last,

the update equation of ui,j (17) in RFCM corresponds to (12) in K-sFCM.
From the above discussions, we find that RFCM corresponds to K-sFCM with
the kernel matrix K = − 1

2PRP . This relationship can apply to RHCM and
K-HCM, and entropy regularized RFCM and K-eFCM.

4 Indefinite K-sFCM

The kernel matrix must be positive-definite for K-CM. However, an irresponsibly
introduced kernel matrix is not always positive-definite. K-sFCM with an indefi-
nite kernel matrix has a risk in that the memberships cannot be calculated after
the dissimilarity between a datum and a cluster center is updated to be negative.
For example, if C = 2, m > 2, di,1 = −2, and di,2 = 1, then (di,1/di,2)1/(m−1)

and (di,2/di,1)1/(m−1) are no longer real valued, and the algorithm cannot be
continued. On the other hand, K-HCM and K-eFCM can be continued even if it
is negative, although the meaningfulness of the obtained result is unknown. Al-
though indefinite kernel matrices can be transformed to positive-definite ones by
subtracting the minimal eigenvalue from their diagonal components, this incurs
needs some computational costs.

In this section, we propose two algorithms for K-sFCM with an indefinite
kernel matrix (IK-sFCM). The first one executes K-sFCM by updating the ker-
nel matrix adaptively such that the dissimilarity between each datum and each
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cluster center is non-negative; this is equivalent to the manner in which RFCM
is modified into NERFCM. The membership in the second one is obtained by
solving the optimization problem such that the constraint of non-negative mem-
berships is added to the relaxed problem of K-sFCM; this is equivalent to the
manner in which FANNY and NEFRC are obtained.

4.1 Indefinite K-sFCM by Revising Kernel Matrix

In this subsection, we propose an algorithm for K-sFCM with an indefinite kernel
matrix (IK-sFCM), in which K-sFCM is executed by updating the kernel matrix
adaptively such that the dissimilarity between each datum and each cluster
center is non-negative. This derivation is equivalent to the manner in which
RFCM is modified into NERFCM.

The proposed algorithm is described as follows.

Algorithm 5 (IK-sFCM by Revising Kernel Matrix)

Step 1. Fix m > 1 for K-sFCM. Assume a kernel matrix K ∈ RN×N and an
initial partition matrix u. Set β = 0 and K0 = K.

Step 2. Execute Step 2 in Algorithm 1.
Step 3. Update di,j as

di,j = (ei −Wj)TKβ(ei −Wj). (33)
Step 4. If di,j < 0, update Δβ, di,j , and β as

Δβ =max{−di,j/‖ei −Wj‖22}, (34)

di,j ←di,j + Δβ‖ei −Wj‖2, (35)
β ←β + Δβ, (36)

Kβ ←Kβ + ΔβE. (37)
Step 5. Execute Step 4 in Algorithm 1.
Step 6. If a stopping criterion is satisfied, terminate this algorithm. Otherwise,

return to Step 2.

We can see that K-sFCM (Algorithm 1) and this proposed algorithm are identi-
cal except for Eqs. (34)–(37) that apply whenever some negative di,j is encoun-
tered. di,j corresponds to the squared Euclidean distance between

√
KβΦ(xi)

and
√

KβWj if Kβ is positive-definite. It follows that a negative value of di,j

implies that the feature space H is no longer a Euclidean space, indicating that
the current value of β should be incremented by some Δβ > 0 so that the K-
sFCM iteration can be continued for the new shift value β + Δβ. We consider
that the definition of the increment Δβ in (34) is reasonable in that it provides
a meaningful lower bound for the minimal increment Δβ required to make the
new Kβ positive-definite only for (ei −Wj). To see this, we rewrite the formula
for Δβ in (34) as

Δβ = max{−((ei −Wj)TKβ(ei −Wj))/((ei −Wj)T(ei −Wj))}, (38)
in which we see that Δβ is the maximum of CN Rayleigh quotients involving
−Kβ. Δβ defined as the maximum of the Rayleigh quotients will provide a useful
underestimate of the largest eigenvalue of −Kβ, that is, the smallest eigenvalue
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of Kβ. Underestimation is important as we want to avoid excessively adding β
from the diagonal elements of Kβ , because this could adversely affect both the
computational complexity of the algorithm and the interpretability of clustering
outputs.

Although this discussion provides some justification for Eq. (34), it is still nec-
essary to verify that the updated di,j in Eq. (35) are non-negative and correspond
to di,j for the newly updated β in Eq. (36). The updated di,j is non-negative iff
the right-hand side of Eq. (35) satisfies

di,j + Δβ‖ei −Wj‖22 ≥ 0, (39)
that is,

Δβ ≥ −di,j/‖ei −Wj‖22. (40)
Therefore, the non-negativity of di,j follows from Eq. (34) and (40). Finally, we
verify that di,j in Eq. (35) is consistent with Eq. (33) for the shift β + Δβ in
Eq. (36). Letting di,j(γ) denote di,j in Eq. (33) corresponding to Kγ , we can
show that

di,j(β + Δβ) =di,j(β) + Δβ‖ei −Wj‖22. (41)
In summary, modifications (34)–(37) of the original K-sFCM calculate a reason-
able underestimate of the minimal shift required to transform the current Kβ

into a positive-definite one only for (ei −Wj); this shift is then implemented by
updating the current di,j and β.

4.2 Indefinite K-sFCM by Non-negative Constraint of Membership

In this subsection, we propose another algorithm for K-sFCM with an indefi-
nite kernel matrix (IK-sFCM). In this algorithm, the membership is obtained by
solving the optimization problem in which the constraint of negative member-
ships is added to the relaxed one of K-sFCM. This derivation is equivalent to the
manner in which FANNY and NEFRC are obtained. We note that we cannot
use this derivation for K-HCM and K-eFCM because the obtained algorithms
with the constraint of non-negative memberships are the same as the respective
original ones.

First, we describe the proposed algorithm and then, we discuss its derivation.
The proposed algorithm is described as follows.

Algorithm 6 (IK-sFCM with Non-negative Membership Constraint)
Step 1. Fix m > 1 and assume a kernel matrix K ∈ R

N×N and an initial
partition matrix u.

Step 2. Execute Step 2 in Algorithm 1.
Step 3. Execute Step 3 in Algorithm 1.
Step 4. Calculate ai,j ∈ R as

ai,j = mdi,ju
m−2
i,j . (42)

Step 5. Define the sets J− and J+ as

J− =

{
j | 1/ai,j∑C

k=1 1/ai,k

≤ 0

}
, (43)

J+ =

{
j | 1/ai,j∑C

k=1 1/ai,k

> 0

}
. (44)
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Step 6. Update the membership ui,j as

ui,j =

{
0 for j ∈ J−,

1/ai,j∑C
k=1 1/ai,k

for j ∈ J+.
(45)

Step 7. If a stopping criterion is satisfied, terminate this algorithm. Otherwise,
return to Step 2.

We can see that K-sFCM (Algorithm 1) and this proposed algorithm are iden-
tical except for equations for updating the memberships, Eqs. (12) in K-sFCM
and Eqs. (42)–(45) in Algorithm 6. Eqs. (42)–(45) are obtained by solving the
following optimization problem:

minimize
u

N∑
i=1

C∑
j=1

um
i,j(Φ(xi)−Wj)TK(Φ(xi)−Wj) subject to ui,j ≥ 0 (46)

and Eq. (2). If K is positive-definite and the non-negative condition of u is
deleted, the above optimization problem corresponds to that for K-sFCM. The
Lagrange function L for this optimization problem is given as

L(u) =
N∑

i=1

C∑
j=1

um
i,j(Φ(xi)−Wj)TK(Φ(xi)−Wj)

−
N∑

i=1

γi

⎛⎝ C∑
j=1

ui,j − 1

⎞⎠− N∑
i=1

C∑
j=1

ψi,jui,j , (47)

where γ and ψ are Karush-Kuhn-Tucker vectors. The optimal condition is de-
scribed as

∂L

∂ui,j
=0, (48)

C∑
j=1

ui,j =1, (49)

ψi,j ≥0, (50)
ψi,jui,j =0. (51)

The optimal ui,j is obtained by fixing i ∈ {1, · · · , N} as follows. By introduc-
ing ai,j ∈ R as

ai,j = mum−2
i,j (Φ(xi)−Wj)TK(Φ(xi)−Wj), (52)

condition (48) is given as
ui,jai,j − γi − ψi,j = 0, (53)

from which we have ui,j as

ui,j =
γi

ai,j
+

ψi,j

ai,j
. (54)

Condition (49) determines γi, and ui,j is given as

ui,j =
1/ai,j∑C

k=1 1/ai,k

−
∑C

k=1 ψi,k/ai,k

ai,j

∑C
k=1 1/ai,k

+
ψi,j

ai,j
. (55)

If ψi,j = 0 for all j ∈ {1, · · · , C}, we have

ui,j =
1/ai,j∑C

k=1 1/ai,k

. (56)
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If ψi,j > 0 for at least one j ∈ {1, · · · , C}, we have ui,j = 0 from condition (51).
Let the two sets J− and J+ be defined as

J− ={j | ui,j = 0}, (57)

J+ ={j | ui,j > 0}. (58)
ψi,j for j ∈ J− is given as

ψi,j =
ψi,j

∑
k∈J− /ai,k − 1∑

k∈J− 1/ai,k +
∑

k∈J+ 1/ai,k
, (59)

and we solve for ψi,j to obtain

ψi,j = − 1∑
k∈J− 1/ai,k

for j ∈ J−. (60)

Using this result, ui,j for J+ is obtained as

ui,j =
1/ai,j∑C

k∈J+ 1/ai,k

. (61)

The above discussion is summarized into Eqs. (42)–(45) in Algorithm 6.
On the other hand, the updating equation of Wj is not derived from any

optimization problem but only follows Eq. (9) in Algorithm 1. Even if we consider
the following optimization problem for Wj as

minimize
W

N∑
i=1

C∑
j=1

um
i,j(Φ(xi)−Wj)TK(Φ(xi)−Wj), (62)

no optimal solutions for Wj exist because K is not positive-definite and this
objective function is not convex. Therefore, we consider that the proposed algo-
rithm lacks for some theoretical background, and this must be investigated in
our future work.

We can see an analogy between Algorithm 6 and Algorithm 4 in that Eqs. (43)–
(45) and Eqs. (25)–(27) are equivalent and that the three decomposed equations
of Eq. (24) with two intermediate variables W̃j and d̃i,j as

ai,j =md̃i,ju
m−2
i,j , (63)

d̃i,j =(ei − W̃j)T(
1
2
PRP )(ei − W̃j), (64)

W̃j =

∑N
k=1 um

i,jek∑N
k=1 um

i,j

, (65)

correspond to Eq. (42), (10), and (9), respectively,

5 Numerical Example

In this section, we compare our two proposed algorithms with K-sFCM to divide
the simple data set, constructed by 11 elements in the two dimensional Euclidean
space, shown in Fig. 1 into two clusters. We can expect a correct clustering to
identify of the left five points as one cluster, the right five points as another
cluster, and the other point in the midst as in-between.
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We applied our two proposed algorithm and K-sFCM to this problem with
the fuzzifier parameter m = 2 using the following three kernel matrices

K(	) = −1
2
PR(	)P + α	E (� ∈ {1, 2, 3}), (66)

where
R

(1)

i,̃i
=‖xi − xĩ‖22, (67)

R
(2)

i,̃i
= R(3) =‖xi − xĩ‖21, (68)

α1 = α2 =0, (69)
α3 =48. (70)

The maximal and minimal eigenvalues of K(	) are shown in Table. 1, from which
we can find that K(1) is positive-semidefinite, K(2) is indefinite, K(3) is positive-
semidefinite by subtracting the minimal eigenvalue from the diagonal compo-
nents of K(2).

Table 1. Maximal and minimal eigenvalues, and definiteness of K(�)

K(1) K(2) K(3)

λmax 212 278 326

λmin 0 -48 0

definiteness positive-semidefinite indefinite positive-semidefinite

In the result with each algorithm and with each kernel matrix from the initial
partition matrix

u =
(

0.75 0.75 0.75 0.75 0.75 0.25 0.25 0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25 0.25 0.75 0.75 0.75 0.75 0.75 0.75

)
, (71)

the membership value u1,1 for each case is described in Table 2. From these
results, we find the following things:

1. Although K-sFCM can produce results for positive-semidefinite kernel ma-
trices, K(1) and K(3), it cannot be continued for indefinite one, K(2). This
exemplifies our motivation of this paper.
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2. Even if the given kernel matrix K(2) is indefinite, K-sFCM can produce a
result by adjusting K(2) into K(3), subtracting the minimal eigenvalue −48
from the diagonal components of K(2). However, such the obtained member-
ships are fuzzier. This shows the defect of adjusting a given indefinite kernel
matrix to a positive-semidefinite one by subtracting the minimal eigenvalue
from the diagonal components of the given kernel matrix.

3. All three algorithms produce the same results for positive-semidefinite ker-
nel matrices, K(1) and K(3). This exemplifies that all three algorithms are
identical for positive-semidefinite kernel matrix.

4. Comparing the result of K-sFCM with K(3) and the ones of our first proposed
algorithm (Algorithm 5) with K(2), our first proposed algorithm produce
clearer memberships than K-sFCM by adjusting the given kernel matrix
K(2) into K(3). This exemplifies that, although both algorithms adjust a
given kernel matrix, our first proposed algorithm suppresses the adjusting
at the minimum for the dissimilarity between each data and each cluster
center to be non-negative.

5. Comparing our two proposed algorithms (Algorithm 5 and Algorithm 6) with
K(2), both algorithms produce the same memberships. It is not unknown
whether this observation can be proved for other data set and other indefinite
kernel, which should be investigated as our future work.

Table 2. Obtained membership u1,1 by our two proposed algorithms and K-sFCM

u1,1

K-sFCM (Algorithm 1) Algorithm 5 Algorithm 6

K(1) 0.93 0.93 0.93

K(2) — 0.90 0.90

K(3) 0.75 0.75 0.75

6 Conclusion

In this paper, we proposed two types of kernel fuzzy c-means clustering al-
gorithms with an indefinite kernel matrix. Both algorithms are based on the
fact that RFCM is a special case of K-sFCM. Following the manner in which
RFCM is modified to NERFCM, the first proposed algorithm executes K-sFCM
by adaptively updating the kernel matrix such that the dissimilarity between
each datum and each cluster center is non-negative. The membership in the
second one is obtained by solving the optimization in which the constraint of
non-negative memberships is added to the relaxed one of K-sFCM; this follows
the optimization problems of FANNY and NEFRC.

In our future work, (1) we intend to investigate the proposed algorithms with
K-HCM and K-eFCM for an indefinite kernel matrix because the meaningfulness
of the obtained result is unknown despite the fact that they can be continued
even if it is negative; (2) we will experiment the performance og the proposed
methods with bigger and more complicated data; and (3) we will apply the
proposed methods to semi-supervised fuzzy clustering methods [12].
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Abstract. The method of fuzzy c-regression models is known to be use-

ful in real applications, but there are two drawbacks. First, the results

have a strong dependency on the predefined number of clusters. Second,

the method of least squares is frequently sensitive to outliers or noises.

To avoid these drawbacks, we apply a method of sequentially extracting

one cluster at a time using noise-detecting method to fuzzy c-regression
models which enables an automatic determination of clusters. Moreover

regression models are based on least absolute deviations (FCRMLAD)

which are known to be robust to noises. We show the effectiveness of the

proposed method by using numerical examples.

Keywords: sequential clustering, fuzzy clustering, fuzzy c-regression

models, least absolute deviations.

1 Introduction

Two major data analysis problems are known to be data classification and regres-
sion. The former has the output of categories whereas the latter has continuous
output. There is another class of problems of data clustering, which is related
to classification problems in the sense that the result is classes although it does
not assume any output variable.

An interesting application of clustering and regression is the combination
of the both, which is known to be c-regression problem, that is, the method
should output c regression models of which each model has a cluster of data. A
best-known method for this is fuzzy c-regression models (FCRM) [7] which is a
variation of fuzzy c-means (FCM) [1], [9].

A drawback in this method is that we have to specify the number of clusters
beforehand and the result strongly depends on that number. In the case of
data clustering, one of the authors [3], [5] proposed an algorithm of sequential
extraction of clusters using a noise-detecting method based on the idea of Davé
and Krishnapuram [2].

In this paper we focus on c-regression models and apply this idea. Moreover
it has been noted that regression models based on the least absolute deviation
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(LAD) are more robust to noises than the ordinary least square method. We
hence propose two algorithms for LAD c-regression models. One uses the linear
programming, whereas the other is far more efficient. Instead, the second algo-
rithm is for scalar-valued independent variable alone, while the first can be used
for vector-valued independent variables.

The proposed method of sequential fuzzy c-regression models based on least
absolute deviations is called SFCRMLAD for simplicity. To show effectiveness
of the proposed method, we compare it with fuzzy c-regression models based
on least squares (called FCRMLS), fuzzy c-regression models based on least ab-
solute deviations (called FCRMLAD), and sequential fuzzy c-regression models
based on least squares (SFCRMLS) by an illustrative example.

2 Fuzzy c-Regression Models

Fuzzy c-Regression Models (FCRM), which is to obtain clusters and corre-
sponding regression models, have been proposed by Hathaway and Bezdek [7].
We assume data set (x1, y1), . . . , (xn, yn) in which x1, . . . , xn ∈ Rp are data
of the independent variable x and y1, . . . , yn ∈ R are those of the dependent
variable y.

Our aim is to determine the c regression models:

y = fi(x; βi) + ei, i = 1, . . . , c (1)
and assume the regression models to be linear:

fi(x; βi) =
p∑

j=1

βijxj + βi,p+1 (2)

for simplicity. We put

zk = (xk, 1)T = (xk1, . . . , xkp, 1)T (3)
βi = (βi1, . . . , βi,p+1) (4)

in order to simplify the derivation.
In this paper, we use two different criteria: least squares (LS) and least ab-

solute deviations (LAD). We call FCRM based on LS and LAD for Fuzzy c-
Regression Models Based on Least Squares (FCRMLS) and Fuzzy c-Regression
Models Based on Least Absolute Deviations (FCRMLAD), respectively.

2.1 Fuzzy c-Regression Models Based on Least Squares

Fuzzy c-Regression Models Based on Least Squares (FCRMLS) use the next
dissimilarity between yk and fi(xk; βi)

Dki = (yk − fi(xk; βi))2 (5)

and consider the next objective function:

JFCRMLS(U, B) =
n∑

k=1

c∑
i=1

(uki)mDki (6)
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where uki is the membership parameter which represents the belongingness of
(xk, yk) against regression model i, m is the fuzzify parameter, U is a membership
matrix and B = (β1, . . . , βc) is a regression parameter.

The algorithm of FCRM is following:

FCRMLS Algorithm
FCRMLS1: Set the initial value U

FCRMLS2: Repeat calculation B and U as solutions of alternative optimiza-
tion of (6) until convergence.

End of FCRMLS

The initial values of U are randomly generated using uniform distribution on a
unit interval. An alternative optimization means that one of U and B is fixed
and the objective function is minimized with respect to the other variable, which
is used throughout various fuzzy clustering algorithms.

The optimal solutions for U and B are as follows:

uki =
(1/Dki)

1
m−1∑c

j=1(1/Dkj)
1

m−1
, (7)

βi = (
n∑

k=1

(uki)mzkzT
k )−1(

n∑
k=1

(uki)mykzk). (8)

2.2 Fuzzy c-Regression Models Based on Least Absolute Deviations
for Vector-Valued Independent Variables

The method based on LAD requires more computation than LS but is known to
have robustness [4], [6], [10]. Notice that when we compare the LS to the squared
Euclidian distance, the LAD can be compared to the L1 metric (Manhattan
distance).

Fuzzy c-Regression Models Based on Least Absolute Deviations (FCRMLAD)
uses the next dissimilarity between yk and fi(x; βi):

Dki = |yk − fi(xk; βi)| (9)

and consider the next objective function:

JFCRMLAD(U, B) =
n∑

k=1

c∑
i=1

(uki)mDki. (10)

The optimal solution for U is same as that of FCRMLS. In the case of FCRM-
LAD, we have to solve a linear programming problem to obtain the optimal B.
Since there is no guarantee that βij is non-negative, we put

βij = β+
ij − β−

ij (11)

where β+
ij and β−

ij (i = 1, . . . , c, j = 1, . . . , p + 1) are non-negative variables.
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Thus the minimization of JFCRMLAD is equivalent to the following linear
programming problem:

min
c∑

i=1

n∑
k=1

(uki)mrki

yk −
p+1∑
j=1

(βij+ − βij−)zkj ≤ rki

yk −
p+1∑
j=1

(βij+ − βij−)zkj ≥ −rki

rki, βij+, βij− ≥ 0

where the variables are rki, β+
ij and β−

ij (i = 1, . . . , c, k = 1, . . . , n, j =
1, . . . , p + 1).

2.3 Fuzzy c-Regression Models Based on Least Absolute Deviations
for Scalar-Valued Independent Variables

If the independent variable x is scalar-valued, the optimal solution of B can
be solved by a more efficient algorithm based on an old idea of Boscovich (see,
e.g., [6]).

Since each regression equation is independent, we optimize them separately
and consider the next objective function:

min
n∑

k=1

(uki)m | yk − βi1xk − βi2 | (12)

We assume
n∑

k=1

(uki)m(yk − βi1xk − βi2) = 0 (13)

which means the sum of the residuals between the data set and the estimated
regression equation is zero. We put

x̄i =
∑n

k=1(uki)mxk∑n
k=1(uki)m

(14)

ȳi =
∑n

k=1(uki)myk∑n
k=1(uki)m

(15)

and substitute (14) and (15) into (12) and obtain

βi2 = ȳi − βi1x̄i. (16)

We substitute (16) into (12) and obtain

min
n∑

k=1

(uki)m | xk − x̄i ||
yk − ȳi

xk − x̄i
− βi1 | (17)
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We put

wki = (uki)m | xk − x̄i |, (18)

αki =
yk − ȳi

xk − x̄i
(19)

and substitute (18) and (19) into (17) and obtain

min
n∑

k=1

wki | αki − βi1 | . (20)

Although (20) is not differentiable on R, we extend the derivative of (20) on
αki:

dF (βi1) =
n∑

k=1

wkisgn(αki − βi1) (21)

where

sgn(w) =

{
1 (w > 0)
−1 (w < 0)

(22)

Thus, dF (βi1) is a step function which is right continuous and monotone non-
decreasing. So, the minimization element for (20) is one of αki at which dF (βi1)
changes its sign. More precisely, αri is the optimal solution of (20) if and only if
dF (βi1) < 0 for βi1 < αri and dF (βi1) ≥ 0 for βi1 ≥ αri.

The optimal solution for βi1 is calculated as follows:

βi1 = αri =
yr − ȳi

xr − x̄i
. (23)

We thus have the next algorithm to derive the optimal βi:

Algorithm: Optimization of βi in a single regression model
Step1: Calculate

x̄i =
∑n

k=1(uki)mxk∑n
k=1(uki)m

, (24)

ȳi =
∑n

k=1(uki)myk∑n
k=1(uki)m

, (25)

wki = (uki)m | xk − x̄i | (26)

αki =
yk − ȳi

xk − x̄i
. (27)

Step2: Rearrange αki in ascending order and store them in α
′
ki.

Step3: Rearrange wki corresponding to the order of α
′
ki and store them in qki.
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Step4: Calculate

S = −1
2

n∑
k=1

qki

r = 0
While(S < 0){

r = r + 1
S = S + qri

}
βi1 = α

′
ri (28)

βi2 = ȳi − βi1x̄i (29)

3 Sequential Fuzzy Clustering

One of the authors has proposed different algorithms for sequential extraction
of clusters [3], [5], that is, one cluster is extracted at a time and another cluster
will be found from the rest of data, and the extraction continues until no sufficient
data exist. Among these methods, we use an algorithm based on noise clustering
[8].

Sequential fuzzy clustering (SFC) uses the next objective function:

JSFC =
n∑

k=1

(uk1)mDk1 +
n∑

k=1

(uk0)mδ. (30)

Note that there are only two clusters: uk1 is the membership to the extracted
cluster 1 and uk0 is the membership to the noise cluster 0; δ > 0 is a parame-
ter which represents every object has a constant dissimilarity δ from the noise
cluster.

This algorithm applies a variation of noise clustering [8], [2] to extract regres-
sion models sequentially.

The optimal solution of U is calculated as follows:

uk1 = (1/Dk1)
1

m−1

(1/Dk1)
1

m−1 +(1/δ)
1

m−1
(31)

uk0 = (1/δ)
1

m−1

(1/Dk1)
1

m−1 +(1/δ)
1

m−1
(32)

and the optimal solution B for regression models is calculated as same as that
in FCRM.

We put X as a data set which we aim to analyze and C(t) is the number t
cluster which is extracted by SFC. Algorithm of SFC is following:
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SFC Algorithm
SFC1: Set the initial elements of data set X(0) = X , t = 0, the initial value U

and B.
SFC2: Repeat alternate optimization for (30) until convergence.
SFC3: Extract cluster C(t+1) that belongs to the elements with uk1 > 0.5.
SFC4: Let X(t+1) = X(t)−C(t+1). If X(t+1) does not have sufficient elements

to extract one more cluster, stop; otherwise go to SFC2.
End of SFC

We apply SFC to FCRMLS and FCRMLAD, and call them Sequential Fuzzy c-
Regression Models Based on Least Squares (SFCRMLS) and Sequential Fuzzy c-
Regression Models Based on Least Absolute Deviations (SFCRMLAD),
respectively.

4 Numerical Examples

In this section, we show numerical examples of clustering for an artificial data
set and a real data set called GDP data*1. The former is the example of data
set which contain many noises, while the latter is the example of data set which
contain few noises.

Figures 1 and 2 show the results using FCRMLS and FCRMLAD where two
clusters are assumed. Figures 3 and 4 show the sequentially extracted clusters
using SFCRMLS and figure 5 describes overall results of SFCRMLS. Figures 6
and 7 show the sequentially extracted clusters using SFCRMLAD and figure 8
describes overall results of SFCRMLAD. For noisy data, our proposed algorithm
SFCRMLAD seems to have more robustness than FCRM and SFCRM, and
its results are almost the same as those of FCRMLAD. Note moreover that
SFCRMLAD does not need the predefined number of clusters.

Figures 9-12 show the results using FCRMLS, FCRMLAD, SFCRMLS and
SFCRMLAD, respectively. For non-noisy data, SFCRMLAD seems to have alo-
most same performance as FCRMLS, FCRMLAD and SFCRMLS.

To summarize, our proposed approach SFCRMLAD can handle both of noisy-
data and non-noisy data without predefining the number of clusters. This char-
acteristic is very important because we can have an appropriate clustering result
without knowing the degree of noise in data set and its appropriate number of
clusters.

*1 This data set which is unpublished shows relation between GDP and energy con-

sumption in Asian countries.
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Fig. 1. Two regression models using

fuzzy c-regression models based on

least squares (FCRMLS), where two

clusters were assumed
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Fig. 2. Two regression models using

fuzzy c-regression models based on least

absolute deviations (FCRMLAD), where

two clusters were assumed
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Fig. 3. First extracted cluster of

SFCRMLS, δ = 10000
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Fig. 4. Second extracted cluster of

SFCRMLS, δ = 10000
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Fig. 5. Overall results of sequential ex-

traction of clusters using SFCRLS δ =

10000 where +, ×, and ∗ mean first

cluster, second cluster and noise cluster,

respectively
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Fig. 6. First extracted cluster of

SFCRMLAD, δ = 100
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Fig. 7. Second extracted cluster of

SFCRMLAD, δ = 100
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Fig. 8. Overall results of sequential ex-

traction of clusters using SFCRMLAD

δ = 100 where +, ×, and ∗ mean first

cluster, second cluster and noise cluster,

respectively
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Fig. 9. Three regression models for

GDP data using fuzzy c-regression mod-

els based on least squares (FCRMLS),

where three clusters were assumed
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Fig. 10. Three regression models for

GDP data using fuzzy c-regression mod-

els based on least absolute deviations

(FCRMLAD), where three clusters were

assumed
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Fig. 11. Overall results of sequential ex-

traction of clusters for GDP data using

SFCRMLS δ = 90000 where +, ×, � and

∗ mean first cluster, second cluster, third

cluster and noise cluster, respectively
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Fig. 12. Overall results of sequential ex-

traction of clusters for GDP data using

SFCRMLAD δ = 300 where +, ×, � and

∗ mean first cluster, second cluster, third

cluster and noise cluster, respectively
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5 Conclusion

We have studied algorithms of sequential fuzzy clustering which relates to noise
clustering [8] and we proposed algorithms for regression models based on least
absolute deviations. We moreover showed their usefulness by numerical examples.

We emphasize sequential algorithms shouldn’t be overlooked because they
have the strong advantage of the automatic determination of the number of
clusters. Moreover, since there are many variations of fuzzy clustering, we can
apply sequential algorithms to those variations in clustering and that would
bring us further development of clustering algorithms.

Real world problems sometimes have many data with many dimensions and
complex structures. As a future work, we will apply our algorithm against the
data which has more dimensions and clusters.
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Abstract. Suppressed fuzzy c-means (s-FCM) clustering was introduced

with the intention of combining the higher convergence speed of hard c-
means (HCM) clustering with the finer partition quality of fuzzy c-means

(FCM) algorithm. Suppression modifies the FCM iteration by creating a

competition among clusters: lower degrees of memberships are reduced

via multiplication with a previously set constant suppression rate, while

the largest fuzzy membership grows by swallowing all the suppressed

parts of the small ones. Suppressing the FCM algorithm was found suc-

cessful in terms of accuracy and working time. In this paper we introduce

some generalized formulations of the suppression rule, leading to an in-

finite number of new clustering algorithms. Based on a large amount of

numerical tests performed in multidimensional environment, some gener-

alized forms of suppression proved to give more accurate partitions than

FCM and s-FCM.

Keywords: fuzzy c-means algorithm, suppressed fuzzy c-means algo-

rithm, competitive clustering, context sensitive suppression rules.

1 Introduction

One of the first important applications of fuzzy logic [13] was the introduction of
fuzzy partitions [8] in classification theory. After several more steps of evolution
(e.g. Dunn [3]), Bezdek [2] reached the alternative optimization (AO) solution
of fuzzy clustering, named fuzzy c-means algorithm (FCM), which improved the
partition performance of the previously existing hard c-means clustering (HCM)
by extending the membership logic. FCM outperformed HCM in the terms of
partition quality, at the cost of a slower convergence.

Several researches have been elaborated to improve the convergence speed
of FCM and to introduce modified algorithms with improved characteristics
[7,10,11,12]. One of the recent such approaches was the suppressed fuzzy c-
means algorithms (s-FCM) proposed by Fan et al. [4], having the main goal to
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c© Springer-Verlag Berlin Heidelberg 2010



A Generalized Approach to the Suppressed Fuzzy c-Means Algorithm 141

make the convergence quicker without significantly losing from the quality of the
partition. The authors introduced an extra computational step in each iteration
of the FCM algorithm, aimed to strengthen the competition among clusters
according to a suppression rate α ∈ [0, 1]. They found that s-FCM successfully
accomplished its main goals, and is insensitive to the fuzzy exponent m, but they
failed to provide any evidence of the competition that stands behind s-FCM.

In a previous work [9] we have provided a detailed characterization of the
competitive behavior of s-FCM, by the means of a newly introduced quasi-
learning rate (QLR). In this paper, we propose some extensions to the theory of
suppressed FCM by providing some generalized suppression rules based on the
QLR. The rest of this paper is structured as follows. Section 2 presents the back-
ground works standing at the basis of our investigations. Section 3 introduces
several types of generalized suppression rules, and provides analytical details on
their characteristics. Section 4 produces a numerical analysis of the generalized
suppression rules. Conclusions are given in the last section.

2 Preliminaries

2.1 Fuzzy and Hard c-Means

The conventional FCM partitions a set of object data into a number of c clusters
based on the minimization of a quadratic objective function, formulated as:

JFCM =
c∑

i=1

n∑
k=1

um
ik||xk − vi||2 =

c∑
i=1

n∑
k=1

um
ikd2

ik , (1)

where xk represents the input data (k = 1 . . . n), vi represents the prototype
or centroid value or representative element of cluster i (i = 1 . . . c), uik ∈ [0, 1]
is the fuzzy membership function showing the degree to which input vector xk

belongs to cluster i, m > 1 is the fuzzyfication parameter or fuzzy exponent, and
dik = ||xk − vi||. According to the definition of fuzzy sets, for any input vector
xk, we have

∑c
i=1 uik = 1. The minimization of the objective function is reached

by alternately applying the optimization of JFCM over {uik} with vi fixed, and
the optimization of JFCM over {vi} with uik fixed, [5]. During each cycle, the
optimal values are computed from the zero gradient conditions, and obtained as
follows:

u�
ik =

d
−2/(m−1)
ik∑c

j=1 d
−2/(m−1)
jk

∀ i = 1 . . . c, ∀ k = 1 . . . n , (2)

v�
i =
∑n

k=1 um
ikxk∑n

k=1 um
ik

∀ i = 1 . . . c . (3)

According to the alternative optimization (AO) scheme, formulae (2) and (3)
are alternately applied, until cluster prototypes stabilize.

HCM is the extreme case of FCM, when m → 1. In this case the partition
logic is restricted to two values: 0 and 1. In every iteration, input vectors are
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assigned to one cluster each, whose prototype is situated closest from the input
vector. Ties are resolved arbitrarily.

Using fuzzy memberships instead of the hard ones leads to finer partitions,
which unfortunately are obtained in far more iterations [2,4].

2.2 Suppressed Fuzzy c-Means

The suppressed fuzzy c-means algorithm was introduced by Fan et al. [4], having
the declared goal of improving the convergence speed of FCM, while keeping its
good classification accuracy. The proposed suppression is performed by an extra
step inserted in the optimization algorithm between the application of formulae
(2) and (3). After having computed the new fuzzy membership functions of
vector xk with respect to all clusters, that is the uik values (i = 1 . . . c), the
cluster to which the vector belongs most is declared winner, and the degrees of
membership are adjusted according to the following formula:

μik =
{

1− α + αuik if i = wk

αuik if i �= wk
, (4)

where wk stands for the index of the cluster that won the competition for input
vector xk, and α (0 ≤ α ≤ 1) represents the so-called suppression rate. These
modified memberships, which also satisfy the probabilistic constraint, will be
then used instead of the uik values at the computation of the new cluster pro-
totypes.

It is obvious, that the two extreme values of α reproduce already known
algorithms. In this order, α = 1 produces no suppression and thus we have the
FCM algorithm, while α = 0 reduces all non-winner degrees of membership to
zero, causing a binary partition specific to the HCM algorithm.

Fan et al. [4] proposed using constant suppression rates in order to obtain
quick convergence. They did not give a recipe for choosing a suppression rate
that is optimal in any sense, or suitable for any given purpose. The proposed
suppression schemes were found successful in speeding up the FCM algorithm,
and keeping its accuracy in certain studied cases.

Later, Hung et al. [6] introduced some time varying suppression techniques in-
spired by optimal control strategies. Their approach proved successful in finding
details on ophtalmological MRI images.

In a previous work [9] focusing on identifying the behavior of s-FCM, we
have established a mathematical relation describing the effect of suppression. We
found that the proportional suppression of non-winner memberships is mathe-
matically equal to a virtual shortening of the distance between the winner clus-
ter’s prototype and the given input vector. This phenomenon is depicted in Fig.
1. We have characterized this phenomenon with a quasi learning rate (QLR)
denoted by ηs, defined as in the case of conventional competitive algorithms:

ηs = 1−
d′wkk

dwkk
. (5)
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Fig. 1. The effect of suppression: cluster 2 is the winner here, so wk = 2. The virtually

reduced distance provides an increased membership degree to the winner cluster, while

all non-winner memberships will be proportionally suppressed.

Starting from Eqs. (2), (4), and (5), we have computed the formula of the
QLR and obtained the followings:

ηs =

⎧⎨⎩1−
(
1 + 1−α

αuwkk

) 1−m
2

if 0 < α ≤ 1
1 if α = 0

, (6)

where uwkk is the fuzzy membership of vector xk with respect to its winner
cluster, α is the suppression rate, and m is the fuzzy exponent. In the singularity
case α = 0, we have a winner-takes-all competition indicated by ηs = 1, while
the winner fuzzy membership cannot be zero (uwkk ≥ 1/c).

Figure 2 exhibits some constrained plots of the QLR function, showing the
behavior of the suppression operation.

3 Methods

The suppressed FCM algorithm, as proposed by Fan et al. [4], works with a
constant suppression rate. Varying the suppression rate could possibly occur
two different ways:

1. Time variant suppression means to apply a suppression rate that varies from
iteration to iteration, as a function of the iteration count. This suppression
rule was applied by Hung et al. in [6].

2. Context sensitive or data sensitive suppression means to define a time in-
variant rule of suppression, which provides a dedicated suppression rate αk

to each input vector xk in each iteration.

Considering the fact that the most important goal of the suppression is to achieve
a quicker convergence without losing the fine partitioning quality of FCM, it is
not advisable to change the suppression rule in every iteration. This is why
in the followings, we will exploit the possibilities of the second generalization
way, namely we will define some specific suppression rules and will apply them
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Fig. 2. Graphs of the learning rate in various circumstances: (a) with constant uwkk =

0.8 and different values of m, plotted against α; (b) with constant m = 2 and different

values of winner membership uwkk, plotted against α; (c) with constant α = 0.5 and

different values of m, plotted against uwkk; (d) with constant m = 2 and different

values of α, plotted against uwkk

until the convergence is achieved. All algorithms that will be proposed in the
followings, will be called generalized suppressed FCM (gs-FCM), but there will
be several types of them.

3.1 Proposed Suppression Rules

Constant learning rate. Let us define the first suppression rule such a way,
that the QLR value is constant: for any input vector xk in any iteration, suppres-
sion rate αk is chosen so that ηs = θ, where θ ∈ [0, 1] is a predefined constant.
Obviously θ = 0 implies no suppression, making the algorithm equivalent with
FCM, while θ = 1 brings us back to the HCM algorithm.

For any other value of θ, taking m > 1 and uwkk > 0 for granted, we may
apply the first row of Eq. (6), and we obtain

1−
(

1 +
1− αk

αkuwkk

) 1−m
2

= θ ⇔ 1− αk

αkuwkk
= (1 − θ)

2
1−m − 1 , (7)

which then yields

αk =
[
1− uwkk + uwkk(1− θ)

2
1−m

]−1

. (8)

Figure 3 represents the variation of the suppression rate αk against the winner
fuzzy membership uwkk, under various constraints. On the left side, curves stand
for different values of the parameter θ at constant fuzzy exponent m = 2. On
the right side, plots represent αk vs. the winner fuzzy membership for various
fuzzy exponents m at constant learning rate θ = 0.5. In the followings we will
refer to this suppression rule and the derived algorithms as θ-type gs-FCM.

Learning rate defined as a function of the winner fuzzy membership.
In this section we will suppose, that the QLR varies according to a function
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Fig. 3. Graphical representation of the αk suppression rate vs. the value of the winner

fuzzy membership: at constant fuzzy exponent m = 2 (left), and constant learning rate

θ = 0.5 (right)

of the winner membership uwkk: ηs = f(uwkk), where f : [0, 1] → [0, 1] is a
continuous function. This implies:

1−
(

1 +
1− αk

αkuwkk

) 1−m
2

= f(uwkk)⇔ 1− αk

αkuwkk
= (1− f(uwkk))

2
1−m − 1 , (9)

leading to

αk =
[
1− uwkk + uwkk(1− f(uwkk))

2
1−m

]−1

. (10)

For example, a learning rate that linearly decreases with the winner fuzzy
membership, can be defined by f(uwkk) = 1−ρuwkk with 0 ≤ ρ ≤ 1, which gives
the suppression rate

αk =
[
1− uwkk + ρ

2
1−m u

3−m
1−m

wkk

]−1

. (11)

Figure 4 exhibits the behavior of the above described example. On the left
side, the variation of the quasi learning rate against the winner fuzzy membership
is shown, for three different values of the parameter ρ. This is the definition of
the ρ-type generalized suppression rule, which is invariant of the fuzzy exponent
m. On the right side, the variation of the obtained suppression rate αk against
the winner fuzzy membership uwkk is displayed, under various constraints.

In order to prove the flexibility of the generalized s-FCM algorithm, let us
introduce some suppression rules derived from further ηs(uwkk) functions. Figure
5 shows the characteristics of two such algorithms: on each graph, the dotted
line represents the definition function, while the continuous lines indicate the
resulting suppression rules. In section 4, we will refer to these algorithms as
special algorithm 1 (left) and special algorithm 2 (right).
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Fig. 4. Learning rate defined as a function (ηs = 1 − ρuwkk) of the winner fuzzy

membership: plot of learning rate vs. winner fuzzy membership (left), and the result-

ing suppression rates vs. winner fuzzy membership, captured in various circumstances

(right)

Direct formula between μwkk and uwkk. According to this approach, we
may formulate a direct dependence rule between the winner fuzzy membership
before and after suppression. For example, let us increase the winner fuzzy mem-
bership with the relativistic speed addition formula

μwkk =
uwkk + τ

1 + uwkkτ
, (12)

where 0 ≤ τ ≤ 1. Extreme value τ = 0 makes no suppression giving the con-
ventional FCM algorithm, while τ = 1 obviously yields the HCM. In any other
case, according to Eq. (4), we will have

1− αk + αkuwkk =
uwkk + τ

1 + uwkkτ
⇔ αk(1− uwkk) = 1− uwkk + τ

1 + uwkk
. (13)

In case of uwkk = 1 the suppression rate is irrelevant, so we get

αk =
1 + uwkkτ − uwkk − τ

(1− uwkk)(1 + uwkk)
=

1− τ

1 + uwkkτ
. (14)

In the followings, we will refer to the above formula as the τ -type suppression
rule. Another suppression rule can be derived from the equation μwkk = uσ

wkk

with σ ∈ [0, 1]. Parameters τ and σ have similar effects on suppression at the
boundaries of the interval: zero value means no suppression (FCM), while τ = 1
or σ = 1 leads to HCM.

Figure 6 shows the characteristics of two different suppression rules based
on direct formula between μwkk and uwkk. The image on the left side contains
two sets of curves representing plots of the learning rate against the winner
fuzzy membership, in case of various choices of σ or τ , while the right side
image displays plots of the obtained suppression rates against the winner fuzzy
membership, under the same circumstances.



A Generalized Approach to the Suppressed Fuzzy c-Means Algorithm 147

Fig. 5. Learning rate defined as functions of the winner fuzzy membership, demon-

strated on two odd shaped functions: ηs = (2 + sin(2πuwkk))/4 (left), and ηs =

(1 − uwkk) − 1
6

sin(6πuwkk) (right). On both sides, the dotted line represents ηs vs.

uwkk, while the continuous graphs display αk vs. uwkk.

3.2 Algorithm

Let us summarize the steps of the generalized s-FCM algorithm:

1. Initialize cluster prototypes with randomly chosen vectors from the input
dataset, and set the value of the fuzzy exponent m.

2. Choose suppression rule and set the value of the parameters, if any (e.g. θ,
ρ, σ, or τ).

3. Compute fuzzy membership with the conventional formula of FCM, Eq. (2).
4. For each input vector xk, find the winner cluster, set wk equal to the index

of the winner cluster, and compute the suppression rate αk according to the
suppression rule, with Eq. (8), (10), or (14).

5. For each input vector xk, compute suppressed fuzzy memberships with the
conventional suppression formula 4, using the suppression rate αk.

6. Update cluster prototypes using the suppressed fuzzy memberships, as in
the original suppressed FCM algorithm.

7. Repeat steps 3-6 until the norm of the variation of the cluster prototypes
reduces under a predefined constant ε.

4 Numerical Analysis

In the followings, we will present some numerical analysis of the functional char-
acteristics of the conventional suppressed FCM algorithm and its generalizations.
These tests were performed in multidimensional environment, using the WINE
dataset [1], which consists of 178 labeled feature vectors of 13 dimensions, divided
into three clusters of different sizes.

A series of numerical tests targeted the clustering accuracy. Each tested algo-
rithm (s-FCM, gs-FCM of types θ, ρ, τ) with each parameter setting (m varied
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Fig. 6. Direct formula between the winner membership before and after suppression

– two different suppression rules: plot of learning rate vs. winner fuzzy membership

(left), and the resulting suppression rates vs. winner fuzzy membership, captured in

various circumstances (right)

from 1.2 to 3.2, suppression parameter varying from 0 to 1 with step of 0.01)
was performed 200 times, using previously selected random initializations of
cluster prototypes. The labels of the input vectors were used as ground truth.
The number of correct decisions was averaged along the 200 tests, separately for
each algorithm. The obtained accuracy results are displayed in Figs. 7 and 8.

Figure 7 exhibits the average number of correct decisions produced by each
algorithm, plotted against the value of the suppression parameter α, θ, ρ, or
τ , at six different values of the fuzzy exponent m. In order to emphasize the
correlation among the curves, two of the plots were reversed (plotted against
1 − θ and 1 − τ , respectively). This figure reveals that gs-FCM can produce
better accuracy than s-FCM, and both gs-FCM and s-FCM can perform better
than the conventional FCM algorithm, when using suitably adjusted parameters.

Figure 8 displays averaged accuracy and speed results of the above mentioned
four algorithms at selected values of their parameters, and the two special algo-
rithms presented in Fig. 5, all plotted against the fuzzy exponent m. This figure
suggests that the generalized suppression schemes can improve the accuracy of
clustering, while the convergence is definitely quicker than in case of the conven-
tional FCM. Comparing the performances of gs-FCM variants one can remark
that more accurate solutions usually demand a few iterations more than less
accurate ones. Although it seems strange, the special algorithm 2 can produce
excellent partitions when using with high valued fuzzy exponent.

Table 1 makes a comparison of the proposed algorithms, showing the best
averaged misclassification rates obtained by these algorithms along the variation
interval of their suppression parameter. It is visible, that for any value of the
fuzzy exponent, the suppression rule of type θ performed better than all others.
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Fig. 7. The accuracy of the conventional s-FCM, compared with the generalized sup-

pressions of type θ, ρ, and τ , at various levels of the fuzzy exponent m
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Fig. 8. Comparative evaluation of six clustering algorithms: number of correct decisions

out of 178, plotted against fuzzy exponent m (top), number of necessary iterations

plotted against fuzzy exponent m (bottom)

Table 1. Lowest misclassification rates of each algorithm at various fuzzy exponents

Exponent Fuzzy Suppressed Generalized suppressed FCM

m c-means [2] FCM [4] θ-type ρ-type τ -type

1.2 4.4944 % 4.2388 % 4.2388 % 5.1826 % 4.2416 %

1.4 4.4944 % 4.2416 % 4.2360 % 5.0169 % 4.2388 %

1.6 4.4944 % 4.1826 % 4.0169 % 5.0225 % 4.1545 %

1.8 4.4944 % 4.1404 % 3.9972 % 5.0337 % 4.1320 %

2.0 5.0562 % 4.1348 % 3.9916 % 5.0169 % 4.1208 %

2.2 5.6180 % 4.1236 % 3.9775 % 4.9944 % 4.0927 %

2.4 6.7416 % 4.1124 % 4.0056 % 4.9691 % 4.0843 %

2.6 7.8652 % 4.0927 % 4.0000 % 4.7612 % 4.0702 %

2.8 8.4270 % 4.0955 % 3.6208 % 4.5843 % 4.0646 %

3.0 9.5506 % 4.0843 % 3.5758 % 4.5646 % 4.0534 %

3.2 10.674 % 4.0758 % 3.5702 % 4.5449 % 4.0449 %
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5 Conclusions

In this paper we have proposed several different generalization schemes for the
suppressed FCM algorithm, from which an infinite number of new clustering
algorithms can be derived. Numerical tests have revealed the superiority of cer-
tain generalized forms over FCM and s-FCM. Further works will aim at testing
several more suppression functions on a wider scale of test data sets, to reveal
further properties of the generalized suppressed fuzzy c-means algorithm.
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Abstract. Recently, semi-supervised clustering has been remarked and

discussed in many researches. In semi-supervised clustering, pairwise

constraints, that is, must-link and cannot-link are frequently used

in order to improve clustering results by using prior knowledges or

informations. In this paper, we will propose a clusterwise tolerance

based pairwise constraint. In addition, we will propose semi-supervised

agglomerative hierarchical clustering algorithms with centroid method

based on it. Moreover, we will show the effectiveness of proposed method

through numerical examples.

Keywords: semi-supervised clustering, agglomerative hierarchical clus-

tering, centroid method, clusterwise tolerance, pairwise constraints.

1 Introduction

The aim of data mining methods is to discover important properties or knowl-
edges from a large quantity of data. Recently, semi-supervised learning has also
been remarked and discussed in many researches [1]. In the field of clustering
[2,3], pairwise constraints are frequently used in order to improve clustering
results by using prior knowledges or prior informations [4,5]. Also, pairwise con-
straints problems are considered by using probabilistic model [6], fuzzy clustering
model [7]. In addition, soft constraints which are introduced as penalty terms to
the objective function are another way [9,10]. In case of the methods with soft
constraints, pairwise constraints are not always satisfied. These hard and soft
constraints are frequently considered in semi-supervised learning methods.

In recent years, semi-supervised clustering which are based on k-means and
fuzzy c-means clustering heve been widely discussed [4,7,9,10]. Also, semi-
supervised clustering methods which are based on agglomerative hierarchical
clustering (AHC) are discussed [11,12,13]. In these methods, pairwise constraints
reffered to must-link and cannot-link are used as a prior or background knowl-
edges about which objects should be in the same or different cluster [4]. However,
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because of the squared Euclidean-norm which is used as dissimilarity, it is dif-
ficult to introduce pairwise constraints in the Euclidean space. In Constrained
Complete–Link(CCL) proposed by Klein [12], cannot-link constraint is handled
as d(G, G′) = +∞. This means that a point is at the infinity, which generally
breaks the Euclidean space. In order to avoid such problems, the significant
methods with kernel function have been proposed [7,10]. In these methods with
kernel function, pairwise constraints are considered not input space but high-
dimensional feature space.

By the way, the concept of clusterwise tolerance has been proposed in order
to handle different sizes or shapes of clusters [14]. This clusterwise tolerance is
based on the concept of tolerance [15]. The squared Euclidean-norm is rewritten
as the dissimilarity between data with clusterwise tolerance vector and cluster
center. By using the concept of clusterwise tolerance, we can handle different
sizes or shapes of clusters in the Euclidean space. From that sense, we propose
clusterwise tolerance based pairwise constraints in order to introduce pairwise
constraints into the Euclidean space in natural way. In addition, we propose
semi-supervised agglomerative hierarchical clustering method based on it.

The contents of this paper are the followings. In the second section, we in-
troduce some symbols, agglomerative hierarchical clustering algorithm (AHC)
and pairwise constraints. In the third section, we propose clusterwise tolerance
based pairwise constraints. In the forth section, we propose semi-supervised ag-
glomerative hierarchical clustering using clusterwise tolerance based pairwise
constraints. In the fifth section, we show the effectiveness of proposed method
through numerical examples. In the last section, we conclude this paper.

2 Preparation

First, a set of data or objects to be clustered is given. A data set is denoted
by X = {x1, . . . , xn} in which xk, (k = 1, . . . , n) is an object. In most cases,
x1, . . . , xn are vectors of real p-dimensional space 'p, that is, an object xk ∈ 'p.
Generally, a hard cluster is denoted by Gi is a subset of X . A set of clusters is
denoted as follows:

G = {G1, G2, . . . , GC} ,

where the clusters are disjoint and their union is a set of data as follows:

C⋃
i=1

Gi = X, Gi ∩Gj = ∅ (i �= j).

2.1 Agglomerative Hierarchical Clustering

In agglomerative hierarchical clustering (AHC), the dissimilarity denoted by
d(G, G′) (G, G′ ∈ G) is used for measuring nearness between two clusters.

First, we describe a general algorithm of AHC [16,17].
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Algorithm 1. AHC
AHC 1 Assume that initial clusters are given by

G =

{
Ĝ1, Ĝ2, . . . , ĜN0

}
.

Set C = N0. (C is the number of clusters and N0 is the initial number of clusters)

Gi = Ĝi(i = 1, . . . , C).

Calculate d(G, G′) for all pairs G, G′ ∈ G.

AHC2 Search the pair of minimum dissimilarity:

(Gp, Gq) = arg min
G,G′∈G

d(G, G′
).

Merge: Gr = Gp ∪ Gq.

Add Gr to G and delete Gp, Gq from G.

C := C − 1.

If C = 1 then stop and output the dendrogram. Otherwise, go to AHC 3.

AHC 3 Update dissimilarity d(Gr, G
′′) for all G′′ ∈ G.

Go to AHC 2.

End AHC.

2.2 Centroid Method

In AHC procedure, there are five methods for updating dissimilarity, that is,
single linkage, complete linkage, average linkage, centroid method, and ward
method. Especially, centroid method and ward method are based on the Eu-
clidean space.

In this paper, we focus centroid method described below. First, we note two
definitions of centroid method, that is, the centroid of cluster and the dissimi-
larity between two clusters.

Let the centroid of a cluster G be

M(G) =
1
|G|
∑

xk∈G

xk, (1)

and let the squared Euclidean-norm used as dissimilarity be

d(G, G′) = ‖M(G)−M(G′)‖2. (2)

2.3 Pairwise Constraints

Typical examples of pairwise constraints are must-link and cannot-link [4]. These
constraints are considered as a prior or background knowledges about which
objects should be in the same or different cluster. A set ML = {(xi, xj)} ⊂ X×X
consists of must-link pairs so that xi and xj should be in the same cluster, while
another set CL = {(xk, xl)} ⊂ X × X consists of cannot-link pairs so that xk
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and xl should be in different cluster. Obviously, ML and CL are assumed to be
symmetric, that is, if (xi, xj) ∈ ML then (xj , xi) ∈ ML, and if (xk, xl) ∈ CL
then (xl, xk) ∈ CL.

In many studies, these pairwise constraints are considered as hard constraints.
This means that pairwise constraints ML and CL are always satisfied in cluster-
ing procedures and results. Many semi-supervised clustering methods based on
such hard constrains have been proposed in order to improve clustering results
by using background knowledges or prior informations of data sets [4,5,7].

3 Clusterwise Tolerance Based Pairwise Constraints

3.1 Clusterwise Tolerance

Each object has the tolerance κk which means the upper bound of clusterwise
tolerance vectors. A tolerance κk means the admissible range of each cluster-
wise tolerance vector. A set of clusterwise tolerance vector is defined as Δ =
{δ11, . . . , δkl, . . . , δnn} in which δkk is a clusterwise tolerance vector. δ11, . . . , δnn

are vectors of p-dimensional real space 'p. A clusterwise tolerance vector is the
vector within the range of tolerance.

If (xi, xj) ∈ ML, δij and δji are calculated to be near each other, while
(xk, xl) ∈ CL, δkl and δlk are calculated to be distant each other.

A constraint for clusterwise tolerance vector is as follows:

‖δkl‖2 ≤ (κk)2 (κk ≥ 0) , ∀k, l. (3)

Figure 1 shows a clusterwise tolerance in '2.

Fig. 1. An illustrative example of the concept of clusterwise tolerance
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In this example, (x1, x2) ∈ ML and (x1, x3) ∈ CL. Also, each object has toler-
ance. Therefore, the dissimilarity by centroid method are calculated as follows:

d(x1, x2) = (‖x1 − x2‖ − κ1 − κ2)
2
,

d(x1, x3) = (‖x1 − x3‖+ κ1 + κ3)
2 ,

d(x2, x3) =‖x2 − x3‖2.

3.2 Clusterwise Tolerance Based Pairwise Constraints

First, a set of must or cannot-linked objects are defined. A set ML (G; x) consists
of must-linked objects which in cluster G with an object x, while CL (G; x)
consists of cannot-linked objects which in cluster G with an object x.

ML (G; x) = {ξ | ξ ∈ G, (ξ, x) ∈ ML} , (4)
CL (G; x) = {ξ | ξ ∈ G, (ξ, x) ∈ CL} . (5)

In adition, ML (G; G′) is defined as an union of sets ML (G; x), while CL (G; G′)
is defined as an union of sets CL (G; x) as follows:

ML (G; G′) =
⋃

x∈G′
ML (G; x) , (6)

CL (G; G′) =
⋃

x∈G′
CL (G; x) . (7)

A concept of clusterwise tolerance based pairwise constraints uses these sets
in order to calculate the clusterwise tolerance which is defined between clusters.

Here, we propose clusterwise tolerance based pairwise constraints. A value of
K (G; G′) is the sum of tolerance κk which in a set of must or cannot-linked
objects.

K (G; G′) =
∑

xk∈ML(G;G′)

κk −
∑

xl∈CL(G;G′)

κl. (8)

If K (G; G′) > 0, G is considered must-linked cluster with G′, while K (G; G′)
< 0, G is considered cannot-linked cluster with G′. The upper bound of cluster-
wise tolerance is defined as |K (G; G′) |. Obviously, it is depended on the value
of κk whether G is must or cannot-linked with G′. Therefore, K(G; G′) and
K(G′; G) are asymmetric.

Next, we show an illustrative example of clusterwise tolerance based pairwise
constraints. Figure 2 is a simple example of proposed method.

In this example, (x1, x4), (x3, x5) ∈ ML and (x2, x6) ∈ CL. Therefore, ML
(G; G′), CL (G; G′) and K(G; G′) are as follows:

ML (G; G′) = {x1, x3} ,

CL (G; G′) = {x2} ,
K (G; G′) = κ1 + κ3 − κ2.
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Fig. 2. An illustrative example of clusterwise tolerance based pairwise constraints

Also, ML (G′; G), CL (G′; G) and K(G′; G) are as follows:

ML (G′; G) = {x4, x5} ,

CL (G′; G) = {x6} ,
K (G′; G) = κ4 + κ5 − κ6.

It assumed that each κk is the same value, K(G; G′) and K(G′; G) are both
positive. This means that G and G′ are must-linked clusters each other.

4 Semi-supervised Agglomerative Hierarchical Clustering
Using Clusterwise Tolerance Based Pairwise
Constraints

In this section, we propose semi-supervised AHC with centroid method us-
ing clusterwise tolerance based pairwise constraints (AHC–CTP). In proposed
method, the centroid of each cluster is calculuted as the same procedure (1),
while the dissimilarity between two clusters are as follows:

d (G, G′) =

⎧⎨⎩ (‖M (G)−M (G′) ‖ −K (G; G′)−K (G′; G))2

(‖M (G)−M (G′) ‖ > K (G; G′) + K (G′; G)) ,
0 (otherwise) .

(9)

Next, we describe an algorithm of AHC–CTP.
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Algorithm 2. AHC–CTP
AHC–CTP 1 Assume that initial clusters are given by

G =

{
Ĝ1, Ĝ2, . . . , ĜN0

}
.

Set C = N0. (C is the number of clusters and N0 is the initial number of clusters)

Gi = Ĝi(i = 1, . . . , C).

Set ML, CL, κk and M(G).

Calculate K(G; G′) using (8) for all pairs G, G′ ∈ G.

Calulate d(G, G′) using (9) for all pairs G, G′ ∈ G.

AHC–CTP 2 Search the pair of minimum dissimilarity:

(Gp, Gq) = arg min
G,G′∈G

d(G, G′
).

Merge: Gr = Gp ∪ Gq.

Add Gr to G and delete Gp, Gq from G.

C := C − 1.

If C = 1 then stop and output the dendrogram. Otherwise, go to AHC–CTP 3.

AHC–CTP 3 Update ML(Gr; G
′′), CL(Gr; G

′′), K(Gr; G
′′), M(Gr) and d(Gr, G

′′)
for all G′′ ∈ G.

Go to AHC–CTP 2.

End AHC–CTP.

5 Numerical Examples

In this section, we show numerical examples with a simple artificial data set.
This data set consists of nine objects allocated in two dimensional pattern space
described in Table 1. This data set should be classified into three clusters.

First, we show classification result of conventional centroid method. Fig. 3 is
an illustrative example of conventional centroid method. In these classification
results, ‘◦’, ‘(’, and ‘×’ mean each cluster.

G1 = {x1, x3, x4, x5, x6} ,
G2 = {x7, x8, x9} ,
G3 = {x2} .

Table 1. Data set {xk | xk ∈ 	p, k = 1 ∼ 9}

k (xk1, xk2)

1 (2.00,3.00)

2 (2.00,7.00)

3 (2.50,5.00)

4 (4.00,5.00)

5 (5.00,5.00)

k (xk1, xk2)

6 (6.00,5.00)

7 (7.50,5.00)

8 (8.00,3.00)

9 (8.00,7.00)
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Second, we show classification result of proposed method with ML described
as follows:

ML = {(x1, x3), (x2, x3), (x7, x8), (x7, x9)} .

Here, each object which in ML has the tolerance κk = 1.0. Fig. 4 is an illus-
trative example of these conditions. The classification result of proposed method
with ML is as follows:

G1 = {x1, x2, x3} ,

G2 = {x4, x5, x6} ,

G3 = {x7, x8, x9} .

Third, we show classification result of proposed method with CL described as
follows:

CL = {(x3, x4), (x6, x7)} .

Here, each object which in CL has the tolerance κk = 1.0. Fig. 5 is an illus-
trative example of this case. The classification result of proposed method with
CL is as follows:

G1 = {x1, x2, x3} ,

G2 = {x4, x5, x6} ,

G3 = {x7, x8, x9} .

In addition, we show classification result of proposed method with ML and
CL described as follows:

ML = {(x2, x3), (x6, x7)} ,

CL = {(x1, x8), (x4, x5)} .

Here, each object which in ML or CL has the tolerance κk = 1.0. Fig. 6 is
an illustrative example of this case. The classification result of proposed method
with ML and CL is as follows:

G1 = {x1, x2, x3, x4} ,
G2 = {x5, x6, x7, x8} ,
G3 = {x9} .

From these results, the effectiveness of proposed method is shown. In AHC
procedure, each object is merged one by one. In our proposed method, the pair-
wise constraints are handled by using clusterwise tolerance based ones with-
out breaking the Euclidean space. Moreover, the difference between proposed
method and conventional one is verified. As a result, merging process which
is obtained in the form of dendrogram is different from conventional centroid
method. These kinds of properties are quite different from other semi-supervised
clustering methods which are based on pairwise constraints.
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Fig. 3. Classification result of conven-

tional centroid method
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Fig. 4. Classification result

with κk = 1.0 and ML =

{(x1, x3), (x2, x3), (x7, x8), (x7, x9)}
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Fig. 5. Classification result with

κk = 1.0 and CL = {(x3, x4), (x6, x7)}
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Fig. 6. Classification result with κk =

1.0 and ML = {(x2, x3), (x6, x7)}, CL =

{(x1, x8), (x4, x5)}

6 Conclusions

In this paper, we proposed semi-supervised agglomerative hierarchical cluster-
ing using clusterwise tolerance based pairwise constraints (AHC–CTP). The
proposed method can handle the pairwise constraints without breaking the Eu-
clidean space by using the concept of clusterwise tolerance. Moreover, we showed
the effectiveness of proposed method through numerical examples. The proposed
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method is quite different from other semi-supervised clustering methods which
are based on pairwise constraints.

In future works, we will show numerical examples with various kinds of data
sets. Next, we will compare the proposed method with conventional AHC meth-
ods from the viewpoint of merging process in dendrogram. Moreover, we will
consider the way to apply the clusterwise tolerance based pairwise constraints
to non-hierarchical clustering methods.
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Abstract. Segmenting the gallbladder from an ultrasonography (US)

image allows background elements which are immaterial in the diagnos-

tic process to be eliminated. In this project, several active contour models

were used to extract the shape of the gallbladder, both for cases free of

lesions, and for those showing specific disease units, namely: lithiasis,

polyps, anatomical changes, such as folds or turns of the gallbladder.

First, the histogram normalization transformation was executed allow-

ing the contrast of US images to be improved. The approximate edge of

the gallbladder was found by applying one of the active contour models

like the motion equation, a center-point model or a balloon model. An

operation of adding up areas delimited by the determined contours was

also executed to more exactly approximate the shape of the gallblad-

der in US images. Then, the fragment of the image located outside the

gallbladder contour was eliminated from the image. The tests conducted

have shown that for the 220 US images of the gallbladder, the area error

rate (AER) amounted to 16.4%.

1 Introduction

Computer-assisted methods aimed at facilitating the extraction of organ shapes
from medical images and helping to diagnose disease entities are currently rapidly
developed. However, for some important organs like the gallbladder there are no
ready, practical solutions to help physicians in their work.

The job of extracting the gallbladder structure from US images is a difficult
process because images have uneven backgrounds, as shown in Fig. 1. In addition,
there is a large variety of gallbladder shapes in US images due to individual traits
of patients, among other reasons. US images can also present such disease units
as lithiasis, polyps, changes of the organ shape like folds, turns and others which
hinder extracting the contour.

In general, literature includes many publications about extracting shapes of
organs from US images. One group of algorithms are these that detect edges in
the image [1, 2]. Edges are usually located in areas with a high gradient value
on the image, where the values of the grey level clearly change, e.g. from black
to white. Edge algorithms yield inexact results when detecting an edge that is
dotted and unclear. They are also computationally complex and leave noise which

V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 163–174, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. An example US image of the gallbladder

needs to be eliminated later. Another solution is offered by algorithms based
on textures. Richard and Keen [11] have developed an algorithm designed for
detecting edges in US images using the classification of pixels corresponding to
specific characteristics of textures. Although the algorithm is fully automatic, the
authors note that it is computationally complex. The computational complexity
of methods based on texture analysis is usually equal to O(n4) : W × H × r2

where: W is the image width, H is its height, and r denotes the lenght of the
ROI side.

Algorithms based on deformable models like 2D AAM (the active appearance
model) and the active contour (ACM) yield very exact results with relatively
low calculation [13, 15]. They are usually semi-automatic methods where the
initial contour or the average shape model is initiated by the user. AAM mod-
els contain information about the average shape of an object, e.g. the lumbar
section of the spine on a digital x-ray image [13] and data describing the most
characteristic modifications of this shape observed in the training set. The form
of the model may be modified by algorithms which try to fit it to the actual
shape while not allowing unnatural deformations to appear. The active contour
is a mathematical model of a deformable curve located within a two-dimensional
environment of an external field created by the local characteristics of the image.
The fitting of the model to the shape of the object is an iterative process just
as in the case of AAM. Active contour models have been used for US images
to determine the shape of such organs as: the carotid artery [7] and the liver
[6]. However, they have not yet been used to support the US diagnostics of the
gallbladder. In this publication, the following active contour models have been
used to determine the approximate area of the gallbladder: the motion equation,
the center-point model and the balloon model. To more exactly approximate the
shape of the gallbladder in US images, an operation of adding areas delimited
by the determined contours was also executed. The research was conducted on
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220 cases from different patients, including US images without lesions and ones
showing lesions like: lithiasis, polyps and changes in the shape of the organ,
such as folds or turns of the gallbladder. This article has the following structure.
Section 2 presents methods of determining the contour of the gallbladder in US
images. Section 3 describes the method for segmenting the gallbladder shape in
US images. The following section discusses the experiments conducted. The last
section contains a summary and sets out directions of future research.

2 Determining the Gallbladder Contour in US Images

This section presents a method of determining the approximate contour of the
gallbladder in US images. First, the histogram normalization transformation is
executed in order to improve the contrast of US images. The next action is to
determine the approximate contour of the gallbladder by applying one of the
active contour like the motion equation, a center-point model and a balloon
model. To more precisely approximate the shape of the gallbladder, the adding
up of areas for the determined contours can be used.

2.1 Histogram Normalization Transformation

The histogram is a one-dimensional statistical function obtained by counting the
number of pixels corresponding to specific grey levels. The histogram normal-
ization transformation makes it possible to improve the contrast of images if the
values of image brightness do not cover the entire range of possible values.

Let g : M2 → Z be a grey level US image containing the structure of the
gallbladder and (x, y) ∈ [0, M−1]× [0, M−1] define the coordinates of the pixel.
Then: g(x, y) ∈ Z. The Z set defines integers from the [0, 2B−1] interval, whereas
B is the number of bits chosen to represent a single pixel. Assuming that a single
pixel is represented by one byte of memory, we get Z = {g : g(x, y) ∈ [0, 255]}.
The histogram h(k) : Z → Z is defined as the following set:

h(k) = {(x, y) : g(x, y) = k} (1)

where k ∈ [0, 255] is the value of the grey level.
Let gHN : M2 → Z be the histogram normalization transformation. It is

represented by the following relationship:

gHN (x, y) = LUT (k) =
255

gmax − gmin
· (k − gmin) if gmin < k < 255 (2)

Where LUT (look-up table) is the adjustment table allowing grey levels of the
input image to be changed according to the values stored in that table. We
assume that LUT (k) = 0 if k ≤ gmin and LUT (k) = 255 if k ≥ 255. The gmax

variable is the maximum value of grey levels on the image, whereas gmin is the
minimum value.

Details of these operations are shown in Fig. 2. Figures 2(a) and 2(b) ) contain
the image of the gallbladder structure g and its histogram h(k). Figures 2(c) and
2(d) show the gHN image after the histogram normalization transformation and
the streched histogram graph.
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Fig. 2. Transformations in a US image of the gallbladder. (a) A US image containing

the structure of the gallbladder. (b) The histogram h(k). (c) The image after the his-

togram normalization transformation. (d) The histogram graph after the normalization

transformation.

2.2 Active Contour Method

An active contour is a mathematical model of a deformable curve made of an
abstract, flexible material which reacts to deformations like rubber and springy
wire at the same time [8]. In a 2D image analysis context, an active contour
is a flat curve which can change its shape dynamically and fit itself to image
elements such as edges or borders. The concept of contour shape formation for
matching image edges is explained in Fig. 3. The objective of contour movements
is to find the best fit, in terms of some cost function, as a trade-off between the
contour curvature and the boundary of the image object under analysis. In [8]
the potential energy function of the active contour has been proposed to play the
role of this cost function. The energy function is given by the following integral
equation:

ES =
∫ Sm−1

0

[Ei(v(s)) + Ee(v(s)) + Ep(v(s))]ds (3)
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where the parametric equation v(s) = (x(s), y(s)) defines the position of the
curve, Ei represents the internal potential energy of the contour, Ee is the en-
ergy which models external constraints imposed onto the contour shape, and
Ep represents component energies derived from image features, e.g. the image
brightness distribution. The notation of the energy function in the discrete for-
mat is more convenient in the computer implementation of deformable models:

ES =
Sm−1∑
s=0

[Ei(v(s)) + Ee(v(s)) + Ep(v(s))] (4)

In this case, the energy equation is interpreted as the total of component energies
of all nodal points. The symbol s symbol is the index identifying the nodal point.

Fig. 3. Building a model of the active contour method. Arrows represent the directions

in which nodal points move towards the edge of the analyzed object.

2.3 Motion Equation Model

In this project, the motion equation model proposed in article [9] has been used.
This model is treated here as a flexible object of a specific mass moving within
an environment of a defined viscosity. Energy ES is minimized by changing it
into the kinetic energy of moving masses of nodal points, subsequently lost as a
result of moving within a viscous environment. To model the shifts of individual
nodal points, a motion equation of the following form is used:

m
δ2v(s, t)

δt2
+ l

δv(s, t)
δt

= F (s, t) (5)

F (s) = −∇ES(s) (6)

where v(s, t) is the vector of the nodal point coordinates, m is the mass assigned
to every node of the graph, l is the viscosity coefficient of the environment,
and F is the vector representing all forces acting on the nodes of the structure.
The force F for a single nodal point can be determined as the negated value of
the gradient of energy ES calculated in the image (6). The use of the motion
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equation (5) to describe contour dynamics makes it possible to quickly determine
the contour balance state and does not require determining the total minimum
value of energy ES shown by equation (4). In the computer implementation,
equation (5) is presented in the discrete form of:

m[v(s, t)− 2v(s, t− 1) + v(s, t− 2)] + l[v(s, t)− v(s, t− 1)] = F (s, t− 1) (7)

After determining the location of the nodal point at the moment t, we obtain
a formula allowing the location of nodal point at the time t to be calculated
iteratively based on the values of forces F and their location in the previous two
iterations. We obtain:

v(s, t) =
F (s, t− 1) + m(2v(s, t− 1)− v(s, t− 2)) + lv(s, t− 1)

m + l
(8)

The numerical convergence and stability of equation (8) depends on the values of
parameters m and l, as well as on the way in which force F has been defined. In
the case of deformable models, the value of this force depends on many factors,
including the features of the analyzed image. The energy minimization method
coupled with the motion equation makes it possible to subsequently, in individ-
ual iterations, change the location of individual nodal points or of all points at
the same time. In the first case, the order of node location modification can be
random or defined. If the location of all nodes is modified in the same iteration,
equation (8) can be written in the matrix form. The locations of nodes in iter-
ation t are determined based on the values calculated in the previous iteration.
The iterative equations have the following form:

xt =
Axt−1 + fx(xt−1, yt−1) + m(2xt−1 − xt−2) + lxt−1

m + l
(9)

yt =
Ayt−1 + fy(xt−1, yt−1) + m(2yt−1 − yt−2) + lyt−1

m + l
(10)

In the case of the active contour, matrix A is a pentadiagonal one. For other
models, it is a sparse matrix in which the number of elements per row is constant.
The number of multiplication and addition operations increases linearly along
with the increasing number of nodal points, and not with the square of their
number. This is why this method is convenient for models with a large number
of nodal points.

2.4 Center-Point Model and Balloon Model

In the case of objects that are oval in shape, the active contour model can
be simplified by restricting the freedom of movement of individual nodal points
[15], Fig. 4(a). The modification of the original model consists in individual nodal
points moving only along half lines with beginnings in the center point. These
half lines are distributed radially at equal angular intervals and their number is
equal to the number of nodal points. A model in which the movement of nodes
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is restricted in the above manner is called a center-point model. In this model,
the location of every nodal point is defined by its s index which unambiguously
determines the half line slope angle α(s) = 2π/Sm and by the r(s) coordinate
which is the distance of the nodal point from the center point (the beginning of
the half line). The equation allowing the coordinates in the polar system to be
replaced with coordinates in the Cartesian system has the following form:

v[s] = [x(s), y(s)] = [x0 + r(s)cos2π/Sm · s, y0 + r(s)sin2π/Sm · s] (11)

where (x0, y0) are the coordinates of the center point.
In the case of the balloon model [5], the contour curve is treated as the skin of

the balloon on the inner side of which the compressed gas which fills the balloon
exerts a pressure. The force vector is perpendicular to the tangent to the curve
of the contour and oriented to the outside of the area delineated by this curve
as shown in Fig. 4(b).

Fig. 4. Active contour models: (a) A model with a center point with the coordinates

(x0, y0) (b) A balloon model.

2.5 Adding Up Areas Determined Using Active Contour Models

The software being developed to facilitate determining the shape of the gall-
bladder in US images adds up areas identified using active contour models such
as the motion equation, the balloon model and the center-point model. This is
aimed at facilitating a more exact approximation of the gallbladder shape in
US images. Adding up areas in an image is an elementary operation defined in
mathematical morphology [12].

Let us assume that the set GB ⊂ M2 determines the area of the gallbladder
approximated by the total of k ≥ 1 of sets obtained by using active contour
models, i.e.:

GB = GB1 ∪GB2 ∪ · · · ∪GBk (12)

During the experiments conducted it turned out that by adding up areas,
the shape of the gallbladder can be determined more precisely, particularly if
anatomical anomalies like gallbladder folds or turns occur.

Fig. 5 presents the extraction of the shape of a folded gallbladder using the
sum of three sets GB = GB1 ∪GB2 ∪GB3 representing areas delineated with
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Fig. 5. Extracting the shape of the gallbladder in US images using active contour

methods. (a) The gallbladder edge marked using the motion equation model. (b) The

gallbladder contour obtained using the center-point model.(c) The gallbladder edge

marked after using the balloon model. (d) The edge of the gallbladder shape determined

by adding up the three areas determined under (a), (b) and (c).

the contour calculated using: the motion equation model - Fig. 5(a), the center-
point model - Fig. 5(b) and the balloon model - Fig. 5(c). As a result of adding up
these three areas, a better approximation of the gallbladder shape was obtained,
as shown in Fig. 5(d).

3 Gallbladder Segmentation in a US Image

The proposed method of segmenting the gallbladder shape in a US image makes
use of the calculated values of coordinates identifying the gallbladder contour
determined using one of the active contour models presented in sections 2.3 and
2.4 or using the method of area adding up presented in section 2.5. In order to
extract the organ from the image, we have defined two areas identifying image
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fragments: GB - the area inside the gallbladder contour and BG - the area
constituting the image background. Under these assumptions, the segmentation
is executed in such a way that in the US image showing the gallbladder and
defined by the mapping gHN : M2 → Z after the histogram normalization (2),
its fragment is replaced with the BG area in which all pixels are set to white in
colour. We obtain:

g′ =
{

gHN if (x, y) ∈ GB
255 (white) if (x, y) ∈ BG

(13)

Figure 6 presents the gallbladder segmentation in a sample US image. Fig. 6(a)
shows an image with the gallbladder contour marked. Fig 6(b) and 6(c) contain
the US image with the segmented shape of the gallbladder and its histogram
h(k).

Fig. 6. The gallbladder segmentation in a US image. (a) An image with the gallbladder

contour marked. (b) The segmented shape of the gallbladder. (c) Histogram of the

image with the segmented shape of the gallbladder.

Figures 7(a) and 7(c) show images with the gallbladder contour marked. Fig-
ures 7(b) and 7(d) contain the US images with the segmented shape of the
gallbladder. Figures 7(a) and 7(b) show images with with lithiasis, while figures
7(c) and 7(d) a fold of the gallbladder.
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Fig. 7. The gallbladder segmentation in US images using active contour methods. (a),

(b) An image with visible cholecystolithiasis. (c), (d) A gallbladder fold.

4 Completed Experiments and Selected Research Results

In order to estimate the precision of models used to determine the approximate
contour of the gallbladder, the area error rate (AER) was used. The material
from the Department of Image Diagnostics of the Regional Specialist Hospital
in Gdańsk, Poland, was used.

4.1 Area Error Rate

The area error rate AER is an estimated value which allows a percentage change
in the difference between occupied areas of an image to be compared. The differ-
ence in areas is calculated between the area extracted using the active contour
model and that extracted manually (MSR). Let Lvaccon ⊂ Z2 be the fragment
of the image obtained using the active contour method and Lvmanual ⊂ Z2 sig-
nify the image fragment extracted manually. Let UR = Lvaccon ∪Lvmanual and
IR = Lvaccon ∩ Lvmanual. The AER is defined as follows:
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AER =
aUR − aIR

aMSR
× 100% (14)

It was assumed that aUR is the number of pixels within the area UR, while aIR

signifies the number of pixels within the area IR, and aMSR is the number of
pixels in the manually extracted area MSR. The MSR area of the gallbladder
surface was determined by a radiologist and the AER for the 220 US images
analyzed amounted to 16.4%. Table 1 presents the results of experiments for
particular disease units in relation to the number of cases.

Table 1. Test results for 220 US images of the gallbladder

Patients No. of images AER

No lesions 100 11%

Lithiasis 70 21%

Polyp 20 18.7%

Fold/Turn 30 15.2%

Total 220 16.4%

5 Summary and Further Research Directions

This article presents a method of segmenting the shape of the gallbladder from
US images developed for a computer system supporting the early diagnostics
of gallbladder lesions. First, the histogram normalization transformation was
executed allowing the contrast of US images to be improved. The approximate
edge of the gallbladder is determined by applying one of the active contour
models like the motion equation, a center-point model or a balloon model. To
more precisely approximate the shape of the gallbladder, the adding up of the
determined contours can be used. The fragment of the image located outside the
gallbladder contour is eliminated from the image. The active contour method
using the applied models coupled with the area adding up operation yielded
quite precise results for both healthy organs and those showing specific disease
units, namely: lithiasis, polyps, folds and turns of the gallbladder. For the 220
US images analyzed, the area error rate amounted to 16.4% Further research
will be aimed at reducing the AER for images showing lesions such as lithiasis
and polyps, if they are located close to the gallbladder edge. In addition, there
is a need to make it possible to more precisely approximate tapering ends and
the approximation of corners in the gallbladder contours determined.
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Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 75–84. Springer,

Heidelberg (2006)

4. Ciecholewski, M., Ogiela, M.: Automatic Segmentation of Single and Multiple Neo-

plastic Hepatic Lesions in CT Images. In: Mira, J., Álvarez, J.R. (eds.) IWINAC
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Abstract. Most existing data mining (DM) approaches look for pat-

terns in a single table. Multi-relational DM approaches, on the other

hand, look for patterns that involve multiple tables. In recent years, the

most common DM techniques have been extended to the multi-relational

case, but there are few dedicated to star schemas. These schemas are com-

posed of a central fact table, linking a set of dimension tables, and joining

all the tables before mining may not be a feasible solution. This work

proposes a method for frequent pattern mining in a star schema based

on FP-Growth. It does not materialize the entire join between the tables.

Instead, it constructs an FP-Tree for each dimension and then combines

them to form a super FP-Tree, that will serve as input to FP-Growth.

1 Introduction

While most existing data mining approaches look for patterns in a single data
table, multi-relational data mining (MRDM) approaches look for patterns that
involve multiple tables (relations) from a relational database or data warehouse.
In recent years, the most common types of patterns and approaches considered
in data mining have been extended to the multi-relational case and MRDM now
encompasses multi-relational (MR) association rule discovery, MR decision trees
and MR distance-based methods, among others. MRDM approaches have been
successfully applied to a number of problems in a variety of areas[4].

From those works, just a few are dedicated to frequent itemset mining on star
schemas [2,8,10].

This work aims to find frequent patterns in a set of tables of a data warehouse,
following a star schema, without materializing the join of its tables.

A data warehouse is a subject-oriented, integrated, time-variant, and non-
volatile collection of data in support of management’s decision-making process
[7]. In terms of data modeling, a data warehouse consists of one or several dimen-
sional models that are composed of a central fact table and a set of surrounding
dimension tables, each corresponding to one of the dimensions of the fact table.
The most used dimensional model is the star schema, which consists of multiple
dimension tables that are associated by foreign keys to a central fact table.

At first glance, it may seem easy to join the tables of a star schema, and then
do the mining process on the joined result[8]. However, when multiple tables

V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 175–186, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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are joined, the resulting table will be much larger and the mining process more
expensive and time consuming. There are two major problems: First, in large
applications, often the join of all related tables cannot be realistically computed
because of the distributed nature of data, large dimension tables and the many-
to-many relationship blow up. Second, even if the join can be computed, the
multifold increase in both size and dimensionality presents a huge overhead to
the already expensive pattern mining process:
(1) the number of columns will be close to the sum of the number of columns in
the individual tables.
(2) If the join result is stored on disk, the I/O cost will increase significantly for
multiple scanning steps;
(3) For mining frequent itemsets of small sizes, a large portion of the I/O cost
is wasted on reading the full records containing irrelevant dimensions;
(4) Each tuple in a dimension table will be read multiple times in one scan of
the joined result. The number of times that a tuple appears in the fact table is
the number of times the whole tuple will be read in the joined result.
One of the great potential benefits of MRDM is the ability to automate the
mining process to a significant extent. Fulfilling this potential requires solving
the significant efficiency problems that arise when attempting to do data mining
directly from a relational database, instead of a single pre-extracted flat file[3].

The proposed algorithm is an adaptation of FP-Growth [5] to mine a star
schema. The main idea is to adapt the construction of the FP-Tree, so that
FP-Growth can run.

Like FP-Growth, it scans each table only twice: first to count the support of
each item, and second to construct the FP-Tree. It is divided in 3 stages:

1. Support Counting: The fact table is scanned to count the support of each
foreign key.

2. Local Mining: An FP-Tree is constructed for each dimension table (DimFP-
Tree), with a slight modification of the original FP-Tree, taking into account
the support calculated in the previous step.

3. Global Mining: The FP-Trees of each dimension are combined to form a
Super FP-Tree, according to each fact and an established order of dimen-
sions. This Super FP-Tree is then mined with FP-Growth, without a change,
giving all the frequent patterns.

Several orders for the dimensions were studied and are presented and compared
in this work.

The rest of this paper is organized as follows. Section 2 presents the re-
lated work on MRDM on star schemas. The proposed algorithm is described on
section 3. Section 4 gives some experimental results and section 5 presents the
conclusions.

2 Related Work

The work related to multi-relational pattern mining on star schemas is increasing.
Experiments showed that the approach of “mining before join” outperforms the
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approach of “join before mining” even when the latter adopts known to be fastest
single-table mining algorithms[8].

Jensen and Soparkar (2000) presented an Apriori based algorithm [2], that
first generates frequent itemsets in each single table using a slightly modified
version of Apriori[1], and then looks for frequent itemsets whose items belong
to distinct tables via a multi-dimensional count array. It does not construct
the whole joined table but processes each row as the row is formed, thus storage
cost for the joined table is avoided. However, the number of candidates generated
explodes as the number of dimensions, attributes and values increase.

Ng et al.(2002) proposed an efficient algorithm without actually performing
the join operation [8]. They perform local mining on each dimension table, and
then “bind” two dimension tables at each iteration, i.e. mine all frequent itemsets
with items from two different tables without joining them. After binding, those
two tables are virtually combined into one, which will be “binded” to the next
dimension table. They use vertical data format, and a prefix tree to compress
the fact table and to speed up the calculation of support.

Xu and Xie (2006) proposed MultiClose [10], which discover frequent closed
itemsets without materializing join tables. It first converts the dimension tables
to vertical data format, and then mines each of them with a closed algorithm.
After local mining, frequent closed itemsets are stored in two-level hash table
result trees, and the frequent closed itemsets across two tables are discovered by
traversing those result trees.

Several multi-relational methods have been developed by the Inductive Logic
Programming community over the recent years, but they are usually not scalable
with respect to the number of relations and attributes in the database. Therefore
they are inefficient for databases with complex schemas. Another drawback of
the ILP approaches is that they need the data in the form of prolog tables.

There are other algorithms for finding multi-relational frequent itemsets, how-
ever they just consider one common attribute at a time. They would have to run
as much times as the number of dimensions, since there is no attribute common
to all the tables. Instead, in a star schema, the fact table has one attribute in com-
mon with each dimension, and the dimensions have no common attribute between
them. The patterns discovered by those algorithms will not reflect the relation-
ships between dimensions.

The proposed algorithm also mines star schemas without computing the entire
join nor materializing join tables. After constructing an FP-tree for each dimen-
sion, the corresponding tables are discarded. The trees already take into account
the minimum frequency and incorporate transaction ids. The super FP-tree that
represents the whole star is then constructed, by aggregating the dimension trees
all together, based on the fact table. Finally, this tree in mined using the known
pattern growth method, FP-Growth[5].

3 Mining Stars

Consider a relational database modeled as a star schema.
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There are multiple dimension tables, which we will denote as A, B, C, ..., each
containing only one primary key, denoted by transaction id (tid), some other
attributes and no foreign keys. In fact, what we want is to discover potentially
useful relationships among the attributes, other than primary keys. The set of
values for an attribute is called the domain of the attribute.

In order to simplify our discussion we assume the fact table, denoted as FT,
only contains the tids from dimension tables as foreign keys (tidA, tidB, tidC ,
...). If it contains some fields other than primary keys, we can place them into
an extra dimension table and insert a new foreign key corresponding to it into
the fact table. They are considered facts or measures.

As example, lets consider a dataset of the real movies database used in the
experiments, only with three dimensions: Award (A), Studio (B) and Movie (C).
Table 1 presents a conceptual representation of the dimension tables, where ai,
bi and ci denote the tid of dimension tables A, B and C, respectively, and xi, yi

and zi denote each possible value of A, B and C. Table 2a shows the fact table.
This example will be used to show how the proposed algorithm works, with a

minimum support equals to 40% of the database. The sample of the database has

Table 1. Dimension Tables

(a) Table A

tidA Itemsets Support

a1 x1 3

a2 x2x3x4 1

a3 x5x6x7 5

a4 x8x6x7 1

(b) Table B

tidB Itemsets Support

b1 y1 2

b2 y2y3y4 1

b3 y5y3y6 1

b4 y7y3y6 2

b5 y8y3 1

b6 y9y3y6 2

b7 y10y11y6 1

(c) Table C

tidC Itemsets Support

c1 z1z2 1

c2 z3z4 1

c3 z5z4 1

c4 z6z4 1

c5 z7 1

c6 z8z2 1

c7 z9z4 1

c8 z10z11 1

c9 z12z4 1

c10 z13z4 1

Table 2. Fact table and the frequent itemsets corresponding to each tid

(a) Fact Table

tidA tidB tidC

a3 b2 c1

a3 b4 c2

a3 b6 c3

a3 b4 c4

a1 b1 c5

a1 b5 c6

a3 b7 c7

a1 b1 c8

a2 b3 c9

a4 b6 c10

(b) Denormalized Fact

ItemsetsA ItemsetsB ItemsetsC

x6x7x5 y3 –

x6x7x5 y3y6 z4

x6x7x5 y3y6 z4

x6x7x5 y3y6 z4

– – –

– y3 –

x6x7x5 y6 z4

– – –

– y3y6 z4

x6x7 y3y6 z4
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10 transactions, therefore 40% of it corresponds to 4 transactions. This means
that an itemset is frequent if its support is no less than 4 transactions.

Let I = {i1, i2, . . . , im} be a set of distinct literals, called items. A subset of
items is denoted as an itemset. A transaction T = (tid, X) is a tuple where tid
is a transaction-id and X is an itemset in I. Each table, in a relational database
D, is a set of transactions. The support (or occurrence frequency) of an itemset
It, is the number of transactions containing It in the database. It is frequent if
its support is no less than a predefined minimum support threshold, σ.

In a database modeled as a star schema, where there are several tables, we
have to be more specific: the local support of an itemset It, with items belonging
to a table A (A.localSup(It)), is the number of occurrences of It in A. For
example, on table 1a, A.localSup(x1) = 1 and A.localSup(x6) = 2. The global
support (or just support) of an itemset It is the number of transactions of the
fact table containing all the tids that contain It, as in equation 1:

globalSup(It) =
tid(It)∑

tid

FT.localSup(tid) (1)

Following the example above, globalSup(x1) = FT.localSup(a1) = 3 and
globalSup(x6) = FT.localSup(a3) +FT.localSup(a4) = 5 + 1 = 6.

3.1 The Algorithm

Star FP-Growth mines multiple relations for frequent patterns in a database
following a star schema. The result is the same as mining the joined table, but
without materializing it.

It is based on FP-Growth [5], and the main idea is to construct a Super FP-
Tree, combining the FP-Trees of each dimension, so that the original FP-Growth
can run and find multi relational patterns. Like FP-Growth, it scans each table
only twice: first to count the support of each item and second to construct the
FP-Tree.

The overall steps are:

Step 1: Support Counting: The fact table is scanned to count the support
of each tid of each dimension. In the example, the tid support is shown in
the third column of each dimension table (Table 1).

Step 2: Local Mining: An FP-Tree is constructed for each dimension table
(DimFP-Tree), with a slight modification of the original FP-Tree, taking into
account the support calculated in the previous step.

Step 3: Global Mining:
Step 3.1: Construct the Super FP-Tree: The DimFP-Trees of each dimension are

combined to form a Super FP-Tree, according to each fact and an established
order among dimensions.

Step 3.2: Mining the Super FP-Tree: Run FP-Growth [5], without a change,
with the Super FP-Tree and the minimum support threshold. The result of
this step is a list of all patterns, not just those relating to one dimension,
but also those which relate the various dimensions.
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Constructing the DimFP-Tree. A DimFP-Tree is very similar to an FP-
Tree[5]. There are two major differences between the construction of a DimFP-
Tree and an FP-Tree:

First, the support used here is the global support of each item, i.e. we consider
the occurrences of an item in all database, not only in the item’s table. There-
fore, a node does not start with the support equals to one, but with support =
support(T ), with T the tid of the transaction that originated the node. It also is
not incremented by only one, but by support(T ).

For example, b4 has a support = 2, which means that that transaction occurs
two times in the database. Adding two times the same transaction with support =
1 is the same as adding it one time with support = 2. Starting a node with support
= support(T ) and incrementing by support(T ) avoids being repeatedly inserting
the same transaction.

Second, instead of the header table, the DimFP-Tree has other structure, the
branch table, that keeps track of the path correspondent to each tid. It stores the
last node of that path for each tid. This structure will help the global mining. If we
want to know which frequent items belong to a tid, we follow the link in that table
to find the last node, and then we just have to climb through its parents till we
reach the root node. The items of the nodes in the path we took are the frequent
items of that transaction.

The result is the same as if we have the table with the transactions and their
frequent sorted items. However, the size of the tree is usually much smaller than its
original database, therefore, not having that table materialized in memory usually
saves a lot of space and avoids duplicates [6]. If we keep the table instead of the
tree, and if two transactions have the same frequent items, those items will be
repeated two times. With the tree, there is just one path corresponding to the two
transactions. Further, shared parts can also be merged using the tree. Therefore,
in a larger scale, the more transactions there are, the greater the difference.

Lets consider the construction of the DimFP-Tree (figure 1b) of table B:
Step 2 starts with a first scan to the table B to calculate the support of each

item. Only y3 and y6 are frequent, i.e. have a support no less than four transactions
(sup(y3) = 7 and sup(y6) = 6). Therefore, only the itemsets containing just y3
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Fig. 1. DimFP-Trees for each dimension table



Pattern Mining on Stars with FP-Growth 181

and/or y6 would be frequent, according to the anti-monotone property[1]. For each
transaction b1, b2, . . . , b7, frequent items are selected and sorted according to the
support descending order, and then inserted in the tree. At the same time, the
branch table is constructed, linking each tid to the respective node in the tree.
b1, for example, does not have any frequent item, therefore its branch link links
to the root node. b3 corresponds to the first path of the tree, therefore its branch
link points to the last node in that path. The other transactions follow the same
reasoning. Figure 1 shows the results for all dimensions.
Constructing the Super FP-Tree. The Super FP-Tree is just like an FP-
Tree, since it will serve as input to FP-Growth. The construction is very similar
to the construction of an FP-Tree [5]. Despite this, there are three differences:

First, it is not necessary the first scan to any table to calculate the supports.
They are already calculated and stored in each dimension tree.

Second, a fact is a set of tids, therefore the denormalization of each fact is nec-
essary before ordering the items or inserting them in the tree. A denormalized fact
is an itemset with the items corresponding to its tids. Through the branch table
of each DimFP-Tree we can get the path corresponding to the itemset of each tid.
Furthermore, according to the anti-monotone property, if an itemset is not fre-
quent, no other itemset containing it will be. Thus, we only check the frequent
items in the transactions of each tid, ensuring that the final tree has only the fre-
quent items of each dimension. Table 2b, one can see the result of denormalizing
each fact of our example.

And third, the ordering of items in a transaction does not have to be the fre-
quency descending order. As verified in the improvement of FP-Growth proposed
in [6], an FP-tree based on frequency descending ordering may not always be
minimal.

The support descending ordering enhances the compactness of the FP-tree
structure. However, this does not mean that the tree so constructed always
achieves the maximal compactness. With the knowledge of particular data char-
acteristics, it is sometimes possible to achieve even better compression.

There are two related and important properties of the FP-tree that can be
derived from its construction process [6].

On one hand, given a transaction database DB, and without considering the
root, the size of an FP-tree is bounded by

∑
T∈DB |freq(T )|.

The height of the tree is bounded by maxT∈DB{|freq(T )|}, where freq(T )
gives the frequent items of transaction T.

This means that the number of nodes of an FP-Tree (size) is, at most, the
number of frequent items in all the transactions, and the number of levels (height)
is, at most, the maximal number of frequent items in a transaction.

On the other hand, given a transaction database DB, the number of paths in
an FP-tree is bounded by |DB|, i.e., it is, at most, the number of transactions in
the database, if each transaction contributes to one different path of the FP-tree,
with the length equal to the number of frequent items in that transaction.

With those lemmas in mind, several orders among dimensions were studied
and compared in terms of the properties defined above. The three most relevant
are the following:
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1. Support descending order of items

This ordering does not have into account any order of dimensions. After de-
normalizing the fact, the transaction may have items from multiple dimensions.
Sorting them in a support descending order may result in an itemset with items
from multiple dimensions intermixed. This is the order used in the original FP-
Growth. So, the tree resulting from applying this ordering is the same as the
tree resulting from joining the tables in one and applying directly FP-Growth
to it (but in this case, the joining is not materialized).

2. Support descending order of dimensions
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Fig. 2. Super FP-Tree with a support

descending order of dimensions

As the support descending ordering en-
hances the compactness of the FP-tree
structure, it is a promising order for the
dimensions. Dimensions with higher sup-
port are more likely to be shared and thus
arranged closer to the top of the FP-tree.

Since each dimension can have multiple
items with different supports, we consider
that the dimension support corresponds
to the support of its least frequent item.
Dimensions with the same support are or-
dered alphabetically, and the items of a
dimension are also ordered in a support
descending order.

Note that, with this ordering, items
from multiple dimensions are not inter-
mixed. Items from dimensions with higher
support will always appear before those
from dimensions with lower support.

In our example, the lowest support in dimensions is five in dimension A, and
six in B and C. The support descending order of these dimensions is B → C → A
((yis) → (zis) → (xis)). Figure 2 presents the resulting Super FP-Tree. The
branch table shows the items according to this ordering.

3. Path ascending order of dimensions

If we look at the number of paths of a tree, |paths| (or just P ), we can state
that, when joining 2 or more trees of different |paths| (i.e. adding one tree to
every leaf of the other), the order in which the trees are joint influences the size
of the resulting tree. Note that the |paths| of the joined tree is always the same
and equals to

∏
t∈TS |P (t)|, where TS is the set of the trees we want to join.

The number of paths of a tree is the same as the number of leafs.
Its size (without the root) is given by

|TS|∑
i=1

⎛⎝i−1∏
j=1

P (tj)

⎞⎠× size(ti) (2)



Pattern Mining on Stars with FP-Growth 183

where P (t) gives the number of paths in the tree t and TS is the set of trees in
the order they are joint. The explanation is the following: a tree is inserted in
each leaf of the tree immediately above, which in turn, was also inserted in each
leaf of the preceding tree.

For example, imagine we have a tree A with 1 path, and another, B, with 3
paths (Figure 3a and 3b). If we join A with B, a copy of B is inserted in each
leaf of tree A. Therefore, the resulting tree will have 4 nodes (without the root),
as shown in figure 3c. Joining B with A will result in a tree with more nodes, 6
(figure 3d). This is because, the more leafs the tree above had, more copies of
the tree below are needed.

�

(a) Tree A

�

(b) Tree B

�

(c) A with B

�

(d) B with A

Fig. 3. Joining two trees

As we stated, joining trees in a path ascending order, will result in the smallest
tree. However, joining two DimFP-Trees is not that linear. We may have to insert
one tree not just in the leafs of the other, but also in a middle node, if that node
corresponds to the last node of one transaction. Expressions above are also valid
for this case, if we consider that P (t) gives the number of nodes that correspond
to the last node of a transaction.

Summing, this ordering consists in joining DimFP-Trees in a path ascending
order. Dimensions with the same number of paths are ordered alphabetically,
and the items of one dimension are ordered in a support descending order, like
the other orderings.

These orderings have been applied to the movies database and the results are
presented in section 4. Note that the set of frequent items is independent of the
order applied. The result is the same for every orderings.

4 Experimental Results

The Super FP-Tree is the main structure of this algorithm. This is the tree that
will be mined with FP-Growth, and this is the tree that holds the patterns we want
to find. Therefore, the Super FP-Tree is the central object of these experiments.

Our goal is to analyze the impact of different orderings on the performance
of our algorithm. In order to do that, the three orderings for the construction of
the Super FP-Tree are compared, varying the minimum support threshold and
the time spent in each step is analyzed.

The dataset is a real movies database[9]. The real database has six dimensions,
with different numbers of records, from about 20 to 11000, and with a fact table
with about 11000 transactions.
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Among the data, we encounter a description of the directors, producers and
awards received for each film and time information about them.

To achieve reliable results, the data was split into five equal datasets. The
tests were applied to each dataset and we considered the average of each local
result. Therefore, we analyze about 2000 facts at each time.

When comparing the size of the Super FP-Tree (figure 4), i.e. the number of
nodes, the tree that is more compact is the one resulting from applying some
order to the dimensions. In terms of compression, the support descending and
path ascending orders of dimensions are very similar, and better than the support
descending order of items. In this experiments, this ordering gave always the tree
with more nodes. This difference happens because assigning an ordering for the
dimensions, taking into account their characteristics and the properties described
above, increase the number of shared nodes, and therefore, the compactness of
the Super FP-Tree.

Note that the support descending order of items gives the same results as
constructing an FP-Tree from the flat table (resulting from the join of the star),
therefore, it serves as a reference to the other orderings.

Fig. 4. Average size of the Super FP-

Tree

Fig. 5. Average time on Super FP-Tree

construction

In terms of the number of paths in the Super FP-Tree, the resulting trees
are very similar. Although the support descending order of items gives the less
compact tree, it gives a tree with slightly less paths than the other orders.

The average time spent in the mining process was also studied. On average,
98% of the time is spent in the construction of the DimFP-Trees (step 2), and
counting the global support (step 1) only takes 0,20% of the time. The difference
between the application of the three orderings is mostly seen in step 3. As can be
seen in figure 5, the support descending order of items takes less time construct-
ing the Super FP-Tree than the other orders. With the support descending and
the path ascending orders of dimensions, each transaction of the fact table has
to be ordered according to that ordering before it can be inserted in the tree,
yielding the previous results.

Even though the time for the construction of the Super FP-Tree is smaller
for the support descending order of items, the FP-Growth will take longer to
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Fig. 6. Average time of FP-Growth
Fig. 7. Average total time on Star FP-

Growth

execute (figure 6), due to resulting tree’s size (figure 4 shows its size is bigger).
Therefore, in the end, the total time needed for running Star FP-Growth (figure
7) is very similar for all orderings.

The size of the trees, as well as the time spent, depend not just on the size and
characteristics of the data, but also on what the user wants. As minimum support
decreases, the number of patterns increases, and therefore the tree and time will
also increase. However, the memory needed to keep the trees will generally be
much less than the memory needed to keep the tables.

The computer used to run the experiments was an Intel Xeon E5310 1.60GHz
(Quad Core), with 2GB of RAM. The operating system used was GNU/Linux
amd64 and the algorithm was implemented using the Java Programming lan-
guage (Java Virtual Machine version 1.6.0 02). The tables were maintained in
memory, as well as all the trees. However, the dimension tables were freed before
Global Mining, as well as the fact table before running FP-Growth.

5 Conclusions

Star FP-Growth is a simple algorithm for mining patterns in a star schema.
It does not perform the join of the tables, making use of the star properties.
Building a tree for each dimension taking into account the global support of
items allows us to discard the respective table and to keep only the frequent
items. The main purpose is to prepare the FP-Tree that represents the data,
combining the dimension trees, so that it can serve as input to FP-Growth.

Three orderings for dimensions were analyzed and the results state that ap-
plying a support descending or a path ascending order for the dimensions achieve
better compression than the usual support descending order of items. The time
spent in the mining process was very similar for both orderings, but it actu-
ally depends on the size and characteristics of the data, and on what we want:
minimum support, performance, memory.

Using a pattern growth method and the FP-Tree gives us an important benefit:
the size of an FP-tree is bounded by the size of its corresponding database
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because each transaction will contribute at most one path to the FP-tree, with
the length equal to the number of frequent items in that transaction. Since there
are often a lot of sharing of frequent items among transactions, the size of the
tree is usually much smaller than its original database. Unlike the Apriori-like
method which may generate an exponential number of candidates in the worst
case, under no circumstances, may an FP-tree with an exponential number of
nodes be generated.

If the tree cannot be maintained in main memory, several techniques can be
used, whether representing and storing the tree in hard disk, or partitioning the
database into a set of projected databases, and then for each projected database,
constructing and mining its corresponding FP-tree [6].

The proposed algorithm can also be generalized to be applied to a snowflake
structure, where there is a star structure with a fact table FT , but a dimension
table can be replaced by another fact table FT ′, which is connected to a set of
other dimension tables. We can consider mining across dimension tables related
by FT ′ first. Then consider the resulting Super FP-Tree as a derived DimFP-Tree
and continue processing the star structure with FT . This means that mining a
snowflake starts from their “leaves”.
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Abstract. This paper proposes a mix of noise filtering, fuzzy clustering, neural 
mapping and predictive techniques for one-subsequence-ahead forecasting of 
nonstationary time series. Optionally, we may start with de-noising the time 
series by wavelet decomposition. A non-overlapping subsequence time series 
clustering procedure with a sliding window is next addressed, by using a lower-
bound of the Dynamic Time Warping distance as a dissimilarity measure, when 
applying the Fuzzy C-Means algorithm. Afterwards, the subsequence time 
series transition function is learned by neural mapping, consisting of deriving, 
for each subsequence time series, the degrees to which it belongs to the c cluster 
prototypes, when the p⋅c membership degrees of the previous p subsequences 
are presented as inputs to the neural network. Finally, this transition function is 
applied to forecasting one-subsequence-ahead time series, as a weighted mean 
of the c cluster prototypes to which it belongs, and the S&P 500 data are used 
for testing. 

Keywords: Computational intelligence, Subsequence time series fuzzy 
clustering, Neural mapping, One-subsequence-ahead forecasting of time series. 

1   Introduction 

The prediction of financial markets is a very complex task, because the financial time 
series are inherently noisy, non-stationary, and deterministically chaotic (i.e., short-
term random but long-term deterministic). In principle, stock trading can be profitable 
if the direction of price movement can be predicted consistently. However, due to the 
“near-random-walk” behavior of stock prices, many experimental works show little 
evidence of predictability when out-of-sample forecasts are considered.  

In order to ameliorate the stock market forecasting accuracy, numerous 
computational intelligence based techniques have been proposed previously. Among 
them, feedforward and recurrent neural networks (NNs) gained increasing popularity. 
Hybridizations of NNs and genetic algorithms (GAs) have also been proposed in an 
attempt to avoid the local convergence of the gradient descent algorithms and thus to 
accurately predict the stock price index and the direction of its change. They, 
however, did not bear outstanding prediction accuracy partly because of the 
tremendous noise and non-stationary characteristics in stock market data. 
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On the other hand, the presence of short-term randomness suggests that larger 
profits can be consistently generated if long-term movements in the stock are 
accurately predicted rather than short-term movements. Unfortunately, most of the 
proposed models focused on the accurate forecasting of the levels (i.e. value) of  
the underlying stock index (e.g., the next day's closing price forecast). Actually, the 
absolute value of a stock price is usually not as interesting as the shape of up and 
down movements. As an alternative to one-value-ahead forecast, the approach in this 
paper proposes a novel one-subsequence-ahead forecasting technique, which focuses 
on the predictability of the direction of stock index movement. Our approach also 
differs from other studies that consider the sign of movements and thus convert the 
prediction problem into a classification task, which can be carried out with 
classification tools, such as Support Vector Machines, random forest, logit models 
and so on. 

The proposed framework consists of four stages: the preprocessing stage; the 
subsequence time series fuzzy clustering stage; the neural mapping based learning 
stage of the subsequence time series fuzzy transition function; the one-subsequence-
ahead time series forecasting stage. 

2   Time Series Preprocessing 

This stage consists of de-noising data by wavelet decomposition and some other 
transformations that rely heavily on the selection of a distance measure for clustering. 

The Discrete Wavelet Transform (DWT, [8]) uses scaled and shifted versions of a 
mother wavelet function, usually with compact support, to form either an orthonormal 
basis (Haar wavelet, Daubechies) or a bi-orthonormal basis (Symlets, Coiflets). 
Wavelets allow cutting up data into different frequency components (called 
approximations and details), and then studying each component with a resolution 
matched to its scale. They can help de-noise inherently noisy data such as financial 
time series through wavelet shrinkage and thresholding methods, developed by David 
Donoho ([2]). The idea is to set to zero all wavelet coefficients corresponding to 
details in the data set that are less than a particular threshold. These coefficients are 
used in an inverse wavelet transformation to reconstruct the data set. An important 
advantage is that the de-noising is carried out without smoothing out the sharp 
structures and thus can help to increase both the clustering accuracy and predictive 
performance. 

Care has to be taken in choosing suitable transformations such that the time series 
distance measure chosen in the clustering stage is meaningful to the application. 
Normalization of data is common practice when using Fuzzy C-Means, which means 
applying scaling and vertical translation to the time series as a whole. Moreover, as 
we already mentioned, the absolute value of a stock price is not as interesting as the 
shape of up and down movements. Thus, for allowing stock prices comparisons 
subsequence by subsequence, a local translation is also necessary, in such a way to 
have each subsequence starting from zero. A subset of 8192 daily closing prices 
drawn from the S&P 500 stock index data and used for training, as well as the 
normalized and de-noised data are shown in Fig. 1, were a level 5 decomposition with 
Sym8 wavelets and a fixed form soft thresholding were used. 
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Fig. 1. A normalized and de-noised data subset, drawn from the S&P 500 stock index data 

3   Subsequence Time Series Fuzzy Clustering 

The idea in subsequence time series (STS) clustering is as follows. Just a single long 
time series is given at the start of the clustering process, from which we extract short 
series with a sliding window. The resulting set of subsequences are then clustered, 
such that each time series is allowed to belong to each cluster to a certain degree, 
because of the fuzzy nature of the fuzzy c-means algorithm we use. The window 
width and the time delay between consecutive windows are two key choices. The 
window width depends on the application; it could be some larger time unit (e.g., 32 
days for time series sampled as daily S&P 500 stock index, in our application). 
Overlapping or non-overlapping windows can be used. If the delay is equal to the 
window width, the problem is essentially converted to non-overlapping subsequence 
time series clustering. We will follow this approach, being motivated by the Keogh’s 
criticism presented in [6], where using overlapping windows has been shown to 
produce meaningless results, due to a surprising anomaly: cluster centers obtained 
using STS clustering closely resemble ”sine waves”, irrespective of the nature of 
original time series itself, being caused by the superposition of slightly shifted 
subsequences.  

Using larger time delays for placing the windows does not really solve the problem 
as long as there is some overlap. Also, the less overlap, the more problematic the 
choice of the offsets becomes.  

Since clustering relies strongly on a good choice of the dissimilarity measure, this 
leads to adopting an appropriate distance, depending on the very nature of the 
subsequence time series. 

Let 1,, −+= wmm yyS …  be a subsequence with length w of time series 
nyyY ,,1 …= , where 11 +−≤≤ wnm . Subsequences will be represented as vectors 

in a w-dimensional vector space. For relatively short time series, shape-based 
distances, such as pL  norms, are commonly used to compare their overall 
appearance. The Euclidean distance ( 2L ) is the most widely used shape-based 
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distance. Other pL  norms can be used as well, such as Manhattan ( 1L ) and Maximum 
( ∞L ), putting different emphasis on large deviations. 

There are several pitfalls when using an pL  distance on time series: it does not 

allow for different baselines in the time sequences; it is very sensitive to phase shifts 
in time; it does not allow for acceleration and deceleration along the time axis (time 
warping). Another problem with pL  distances of time series is when scaling and 

translation of the amplitudes or the time axis are considered, or when outliers and 
noisy regions are present.  

A number of non-metric distance measures have been defined to overcome some of 
these problems. Small distortions of the time axis are commonly addressed with non-
uniform time warping, more precisely with Dynamic Time Warping (DTW, [1], [5]). 
The DTW distance is an extensively used technique in speech recognition and allows 
warping of the time axes (acceleration–deceleration of signals along the time 
dimension) in order to align the shapes of the two time series better. The two series 
can also be of different lengths. The optimal alignment is found by calculating the 
shortest warping path in the matrix of distances between all pairs of time points under 
several constraints (boundary conditions, continuity, monotonicity).   

The warping path is also constrained in a global sense by limiting how far it may 
stray from the diagonal. The subset of the matrix that the warping path is allowed to 
visit is called the warping window. The two most common constraints in the literature 
are the Sakoe-Chiba band and the Itakura parallelogram. We can view a global or 
local constraint as constraining the indices of the warping path kk jiw ),(= , such that 

j − r ≤ i ≤ j + r, where r is a term defining the allowed range of warping, for a given 
point in a sequence. In the case of the Sakoe-Chiba band (see Fig. 2), r is independent 
of i; for the Itakura parallelogram, r is a function of i. 

DTW is a much more robust distance measure for time series than 2L , allowing 

similar shapes to match even if they are out of phase in the time axis. Unfortunately, 
however, DWT is calculated using dynamic programming with time complexity 

)( 2nO . Recent approaches focus more on approximating the DTW distance by 

bounding it from below. For example, a novel, linear time (i.e., with complexity 
reduced to )(nO ), lower bound of the DTW distance, was proposed in [7]. The 
 

                  

        (a)                                                          (b) 

Fig. 2. (a) Aligning two time sequences using DTW. (b) Optimal warping path with the Sakoe-
Chiba band as global constraints. 
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intuition behind the approach is the construction of a special “envelope” around the 
query. It can be shown that the Euclidean distance between a potential match and the 
nearest orthogonal point on the envelope lower bounds the DTW distance. To index 
this representation, an approximate bounding envelope is created. 

Let },,{ 1 nqqQ …=  and },,,{ 1 mccC …=  be two subsequences and kk jiw ),(=  

be the warping path, such that j − r ≤ i ≤ j + r, where r is a term defining the range of 
warping for a given point in a sequence. The term r can be used to define two new 
sequences, L  and U , where ):min( ririi qqL +−= , ):max( ririi qqU +−= , with L  and 

U  standing for Lower and Upper, respectively. An obvious but important property of 
L  and U  is the following: 

ii
LqUi i ≥≥∀ , . Given L and U, a lower bounding 

measure for DTW can now be defined (see Fig. 3): 
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(1) 

We are now going to generalize the fuzzy c-means algorithm to subsequence time 
series clustering. In this particular context, the entities to be clustered, denoted by kx , 

and the cluster prototypes (centroids), denoted by iv , are both set-defined objects, i.e. 

subsequence time series. The centroids are computed as weighted means, where the 
weights, denoted by iku , are the fuzzy membership degrees to which each 

subsequence belongs to a cluster. Both the DTW and LB-Keogh distances outperform 

2L  and thus qualify better to be used with the fuzzy c-means algorithm. However, the 

LB-Keogh’s lower bound of DTW distance has been preferred, due to its linear time 
complexity. Fig. 4 plots the cluster centroids (prototypes) and the subsequence time 
series grouped around each centroid. 
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Fig. 3. The lower bounding function LB-Keogh(Q,C). The original sequence Q is enclosed in 
the bounding envelope of U and L. 
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Fig. 4. The cluster centroids and the subsequence time series grouped around each centroid 

4   Estimation of the Fuzzy Transition Function between Clusters 
by Neural Mapping  

At this stage, a fuzzy transition function between clusters must be learned, which is a 
nonlinear vector function mapping a number of p  -c dimensional membership 

degree vectors )( 1+− jtSTSμ , pj ,,1 …= , into a -c dimensional membership degree 

vector )( 1+tSTSμ , i.e., ( ))(,),()( 11 +−+ = pttt STSSTSfSTS μμμ … , where 1+tSTS  is 

the subsequence time series to be predicted. In our experiment, 2=p  and 5=c . 

Neural networks are well known for their capability to be universal approximators 
(i.e., to estimate almost any computable function on a compact set arbitrarily closely, 
provided that enough experimental data are available). Actually, we use a multilayer 
perceptron network with two layers: one hidden layer with the tan-sigmoid transfer 
function and one output layer with the log-sigmoid transfer function (the latter allows 
constraining the output of the network between 0 and 1). The dimensions of input and 
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Fig. 5. Accurate neural mapping: actual and predicted membership degrees to which each of the 
256 subsequence time series belongs to one of the 5 clusters 
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output spaces are cp ⋅  and c , respectively. This neural architecture is known to have 

the capability of approximating any nonlinear function with a finite number of 
discontinuities arbitrarily well, given sufficient neurons in the hidden layer. 

5   One-Subsequence-Ahead Forecasting of Time Series 

The one-subsequence-ahead forecast can then be obtained as a weighted mean of the 
c  cluster prototypes ( iv ), each one representing a subsequence time series: 

( )∑ = ++ ⋅=
c

i tit STSvSTS
1 11 μ . (2) 
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Fig. 6. One-subsequence-ahead forecasting of 4 unseen subsequences (i.e., not included in the 
training dataset). This covers 4*32=128 daily stock price index value forecasts. 

Each forecast is a 32-length subsequence, obtained as follows: the membership 
degrees of the previous p  subsequences to each of the c  clusters are first computed; 

the membership degrees to which the next subsequence belongs to each cluster are 
then found by neural mapping; these membership degrees are finally used to compute 
the weighted mean of the c  cluster prototypes ( iv ), representing the forecast. 

6   Conclusion 

Predicting price levels is an intriguing, challenging, and admittedly risky endeavor. 
Technical analysis uses trend following strategies to forecast future price movements 
and to infer trading decision rules, based on the assertion that price changes have 
inertia. Although experimental works show little evidence of predictability, many 
traders consider accuracy rates of about (or greater than) 55% to be consistently 
profitable. However, one-value-ahead forecasting of price levels is not as useful as the 
shape of long-term up and down movements, due to their inherent short-term 
randomness. The approach in this paper proposed a novel one-subsequence-ahead 
forecasting framework, based on a mix of computational intelligence techniques that 
allow the prediction of stock index movements in a more robust way, focusing on 
predicting one price subsequence rather than one price level at a time.  
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Abstract. In order to analyze the distribution of mind-sets (collections

of evaluations) in a group, a hierarchical clustering of decision tables has

been examined. By the method, we know clusters of mind-set but the

clusters are not always optimal in some criterion. In this paper, we de-

velop non-hierarchical clustering techniques for decision tables. In order

to treat positive and negative evaluations to a common profile, we use a

vector of rough membership values to represent individual opinion to a

profile. Using rough membership values, we develop a K-means method

as well as fuzzy c-means methods for clustering decision tables. We ex-

amined the proposed methods in clustering real world decision tables.

Keywords: Decision table, rough membership function, clustering,

K-means, fuzzy c-means.

1 Introduction

The rough set approaches [8] to data mining and knowledge discovery are popular
and applied to various fields such as expert systems, decision analysis, medical
informatics, civil engineering, and so on. They treat the inconsistency among
data reasonably and induce decision rules as well as important attributes. In
this paper, we take a step toward the application of rough sets to group decision
support. So far, rough set approaches have been applied mainly to single decision
tables with homogeneous evaluations of objects. However, as is often encountered
in the real world, individual evaluations are diversified. Then it is not always a
good idea to put all individual opinions in a single decision table.

Some researchers [1,5] have proposed to treat the mind-set of each individual
as a decision table, i.e., a collection of evaluations by a person, and investigated
the analysis of multiple decision tables. A group of researchers [1,6] in Kan-
sei engineering initiated this approach. They proposed merging individual rules
to obtain rules supported by more designers in the setting of product design
development. The individual design rules are induced from each decision table
by the rough set approach and thus, it may require a big computational effort.
Inuiguchi and Miyajima [5] and Inuiguchi [2] have been proposed to define rough
sets under multiple decision tables in order to reduce the computational load.
Once rough sets are defined under multiple decision tables, we may extend rough
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set approaches to cases with multiple decision tables. From this point of view,
Inuiguchi [3] has proposed rule induction method under multiple decision tables.
Yamamoto and Inuiguchi [9] has extended this approach to cases when condition
and decision attributes are ordinal and monotonous.

Considering the variety of individual opinions and mind-sets, Inuiguchi and
Furudono [4] proposed clustering decision tables so that each cluster is composed
of decision tables representing similar mind-sets. By such a clustering method, we
may roughly figure out the distribution of mind-sets in a population. Inuiguchi
and Furudono’s approach is based on an agglomerative hierarchical clustering
algorithm (AHC algorithm, for short) so that the result is not always optimal in
the sense of a certain evaluation function under a selected number of clusters.
Moreover the adopted similarity measure does not reflect the differences between
individual opinions of cluster members and cluster opinions.

In this paper, we develop a non-hierarchical clustering algorithm for multiple
decision tables. More precisely, we investigate K-means clustering and fuzzy c-
means clustering for multiple decision tables. We develop those clustering meth-
ods for multiple decision tables. We examine the performances of those methods
by numerical experiments using real world data.

In next section, we briefly introduce the rough set theory and the previous
clustering approach. In Section 3, we develop the non-hierarchical clustering
algorithms. In Section 4, we describe the numerical experiments and show the
results. The advantages of the proposed approaches are emphasized.

2 Rough Set Theory and the Previous Approach

2.1 Decision Tables and Rough Sets

Rough sets are often applied to decision tables. A decision table is composed of
a set of objects U , a set of condition attributes C and a decision attribute d. A
decision table is denoted by (U, C ∪ {d}). We regard each attribute a ∈ C ∪ {d}
as a function from U to Va, where Va is the set of attribute values a takes. An
example of a decision table is given in Table 1. In Table 1, we have U = {ui, i =
1, 2, . . . , 10}, C = {Design, Function, Size} and d = Dec. (Decision).

Given a decision table (U, C ∪ {d}), we define a condition attribute pattern
which we call a profile InfC(u) of an object u ∈ U by

InfC(u) =
⋃

a∈C

{〈a, a(u)〉}, (1)

where a(u) shows the attribute value of u with respect to attribute a ∈ C ∪{d}.
The set WU

C of all profiles in the given decision table is defined by

WU
C = {InfC(u) : u ∈ U}. (2)

Let Vd be the set of decision attribute values. An opinion can be seen as an
evaluation of a profile so that a pair (w, vd), w ∈ WU

C , vd ∈ Vd is regarded as
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Table 1. An example of decision table

object Design Function Size Dec.

u1 classic simple compact accept

u2 classic multiple compact accept

u3 classic multiple normal reject

u4 modern simple compact reject

u5 modern simple normal reject

u6 classic multiple compact accept

u7 modern multiple normal reject

u8 classic simple compact accept

u9 classic multiple normal accept

u10 modern multiple normal reject

Table 2. A profile-based decision table

profile Design Function Size σ

w1 classic simple compact (2,0)

w2 classic multiple compact (2,0)

w3 classic multiple normal (1,1)

w4 modern simple compact (0,1)

w5 modern simple normal (0,1)

w6 modern multiple normal (0,2)

an opinion in this paper. Then frequency function σC and rough membership
function μC are defined as follows for an opinion (w, vd),

σC(w, vd) = |Inf−1
C (w) ∩ d−1(vd)|, (3)

μC(w, vd) =
|Inf−1

C (w) ∩ d−1(vd)|
|Inf−1

C (w)|
, (4)

where Inf−1
C and d−1 are inverse images of InfC and d, respectively, i.e.,

Inf−1
C (w) = {u ∈ U : InfC(u) = w} and d−1(vd) = {u ∈ U : d(u) = vd}.

σC(w, vd) shows the number of objects whose profiles are w and whose decision
attribute values are vd. μC(w, vd) shows the ratio of objects which take decision
attribute value vd to all objects whose profiles are w. Given σC(w, vd) for every
vd ∈ Vd, we obtain μC(w, vd) as

μC(w, vd) =
σC(w, vd)∑

vd∈Vd

σC(w, vd)
. (5)

However σC(w, vd) cannot be obtained from μC(w, vd) for every vd ∈ Vd. We
can rewrite a decision table described by profiles w ∈ WU

C and frequencies
{σC(w, vd) : vd ∈ Vd}. For example, the decision table shown in Table 1 can
be rewritten as a table shown in Table 2. In Table 2, each entry in column ‘σ’
shows a vector (σC(wj , accept), σC(wj , reject)). In rough set analysis, the order
of objects appearing in a decision table does not affect the results of the anal-
ysis. Then having a decision table described by profiles w ∈ WU

C as in Table 2
is equivalent to having a usual decision table as in Table 1. From this fact, we
assume that decision tables are given by using profiles in what follows.

The lower and upper approximations composing a rough set with respect to
vd ∈ Vd are defined as sets of profiles instead of objects by;

C(vd) = {wi ∈WU
C : μC(wi, vd) = 1}, (6)

C(vd) = {wi ∈WU
C : μC(wi, vd) > 0}. (7)
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The relations of C(vd) and C(vd) with usual lower and upper approximations
C∗(v̂d) and C∗(v̂d) are given as

C∗(v̂d) = Inf−1
C (C(d(v̂d))) = Inf−1

C (C(vd)), (8)
C∗(v̂d) = Inf−1

C (C(d(v̂d))) = Inf−1
C (C(vd)), (9)

where v̂d is a set of objects taking decision attribute value vd ∈ Vd, i.e., v̂d =
{u ∈ U | d(u) = vd}. A rough set of v̂d is often defined by a pair (C∗(v̂d), C∗(v̂d)).
In this paper, a pair (C(vd), C(vd)) is called a rough set with respect to vd.

2.2 Agglomerative Hierarchical Clustering of Decision Tables

In this paper, we assume that p decision tables Ti, i = 1, 2, . . . , p are given.
Those decision tables have common condition attributes C and a common deci-
sion attribute d. However, objects can be different among those decision tables.
Accordingly, we assume that Ui is the object set of decision table Ti so that the
profile set of decision table Ti is written by WUi

C . For the sake of simplicity, we
define WC =

⋃
WUi

C .
Given a similarity between decision tables, we may apply AHC algorithms.

Then we describe the similarity proposed by Inuiguchi and Furudono [4]. The
pairs of elements of lower approximations and the corresponding decision at-
tribute value can be considered the essential parts of decision makers’ opinions.
They proposed a similarity using lower approximations.

First, a representative of a cluster of decision tables is defined. Let T =
{T1, . . . , Tp} be a cluster of decision tables. The relative frequency of an opinion
(w, vd) can be defined by

τT (w, vd) =

∣∣{T ∈ T : w ∈ CT (vd)}
∣∣

|T | , (10)

where |Z| shows the cardinality of a set Z and CT (vd) is the lower approximation
of vd under a decision table T . Then the representative of cluster T is defined
as a distribution of relative frequencies over profiles.

Given a decision table Tk ∈ T , the reflection degree of Tk in the cluster T
can be defined as a weighted average of relative frequencies τT (w, vd) of profiles
(w, vd) such that w ∈ CTk(vd). The weights are determined by frequencies of
profiles appeared in Tk. Namely, the reflection degree of Tk, R(Tk) is defined by

Rq(Tk) =

∑
vd∈Vd

∑
w∈CTk (vd)

∣∣∣Inf−1
Tk,C(w) ∩ d−1

Tk
(vd)
∣∣∣ τT (w, vd)q

∑
vd∈Vd

∑
w∈CTk (vd)

∣∣∣Inf−1
Tk,C(w) ∩ d−1

Tk
(vd)
∣∣∣ , (11)

where Inf−1
Tk,C(w) is a set of objects which have profile w in decision table Tk.

d−1
Tk

(vd) is a set of objects whose decision attribute values take vd in decision
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table Tk. q is a constant parameter introduced to control the significance of high
degree concurrence. However, q = 1 seems appropriate as far as Inuiguchi and
Furudono’s experiments [4]. We assume that q = 1 in what follows.

Then the average of Rq(T ) over all T ∈ T can be regarded as the strength
forming a cluster T . Namely, it can be defined as

Fq(T ) =

∑
T∈T

Rq(T )

|T | . (12)

The higher Fq(T ) is, the easier cluster T forms. Then the similarity among
decision tables in a cluster T can be defined by Fq(T ).

For the sake of utilizing this idea in the AHC algorithm, we can define the
similarity between two clusters T 1 and T 2 by

S(T 1, T 2) = Fq(T 1 ∪ T 2). (13)

Using this similarity between two clusters of decision tables, we can classify
decision tables by the following AHC algorithm:

Step 1. Define q = 1. Let cl = p and T i = {Ti}, i = 1, 2, . . . , n, where p is the
number of given decision tables. Calculate Sq(T i, T j) for all i and j such
that i, j ∈ {1, 2, . . . , n} and i �= j.

Step 2. Combine two clusters having the highest similarity. Namely, let

Sq(T s, T r) = max
i,j:i�=j

Sq(T i, T j)

and add T ′ = T s ∪ T r and erase T s and T r. Update cl = cl − 1. If cl = 1
then output the dendrogram and terminate the algorithm.

Step 3. Calculate Sq(T ′, T j), for all j ∈ {1, 2, . . . , p} such that j �=, r. Repeat
the procedure until the termination at Step 2.

3 Non-hierarchical Clustering of Decision Tables

3.1 The Dissimilarity Measure

In order to apply K-means/fuzzy c-means clustering algorithms to p deci-
sion tables, the definitions of cluster center (representative) and some simi-
larity/dissimilarity measure between a decision table and a cluster center are
requested. This is because the clustering algorithms usually optimize the sum
of similarity/dissimilarity measures between decision tables and corresponding
cluster centers. In order to utilize the similarity measure defined by (13) with
singletons T 1 and T 2, we should define the cluster center as a decision table.
In some way, it is possible but the resulting optimization problem becomes in-
tractable due to the discreteness and complexity of the cluster center.

A similarity/dissimilarity measure by which the optimization problem be-
comes tractable is preferable. In order to define such a similarity/dissimilarity
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measure, we identify a decision table Ti with a totally ordered set of rough
membership values (a vector of rough membership values),

μTi =
{

μTi

C (w, vd) : w ∈ WC , vd ∈ Vd

}
, (14)

where μTi

C (w, vd) is the rough membership value of profiles w ∈WTi

C at decision
attribute value vd under decision table Ti. When opinion (w, vd) does not appear
in Ti, we define μTi

C (w, vd) = 0. Note that if profile w is missing in Ti, we have∑
vd∈Vd

μTi

C (w, vd) = 0. The order is defined by profile w and decision attribute
value vd.

The center of q-th cluster can be defined also by a totally ordered set of
variables τq(w, vd) in the unit intervals [0, 1], i.e.,

τ q = {τq(w, vd) : w ∈ WC , vd ∈ Vd} . (15)

As the result, we may define a dissimilarity measure, more specifically, a distance
between decision table Ti and the clustering center τ q by

D(μTi , τ q) =
∑

w∈WC

∑
vd∈Vd

(
μTi

C (w, vd)− τq(w, vd)
)2

. (16)

The adoption of rough membership value brings not only in the tractabil-
ity of the optimization problems but also in the consideration of opinions with
μTi

C (w, vd) < 1.

3.2 K-Means Clustering

Let us divide p decision tables into k clusters. Using rough membership values
μTi and cluster centers τ q, we may use the following objective function to be
minimized for K-means clustering:

Jkm(U, V ) =
p∑

i=1

k∑
q=1

uiqD(μTi , τ q), (17)

where U = {uiq : i = 1, 2, . . . , p, q = 1, 2, . . . , k} and V = {τ q : q = 1, 2, . . . , k}.
We impose the following constraints on U :

Ukm =

{
k∑

q=1

uiq = 1, uiq ∈ {0, 1}, i = 1, 2, . . . , p, q = 1, 2, . . . , k

}
. (18)

As is in the literature [7], this clustering problem is solved by the alternative
optimization technique and the following algorithm is obtained:

Step 1. Generate initial values Ū ∈ Ukm for U .
Step 2. Calculate V̄ = arg minV Jkm(Ū , V ).
Step 3. Calculate Ū = arg minU∈Ukm

Jkm(U, V̄ ).
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Step 4. If Ū or V̄ is convergent. stop; else go to Step 2.

Optimal solutions at Steps 2 and 3 are respectively obtained as

τ̄q(w, vd) =
p∑

i=1

ūiqμ
Ti

C (w, vd), ūiq =
{

1, if q = arg minl D(μTi , τ l),
0, otherwise. (19)

There are several convergence criteria [7] but we adopt the following rule in
this paper. Let Û = {ûiq : i = 1, 2, . . . , p, q = 1, 2, . . . , k} be the value of U
in the previous iteration and ε be a sufficiently small positive constant value. If
maxi,q |ūiq− ûiq| < ε, we consider that Ū = {ūiq : i = 1, 2, . . . , p, q = 1, 2, . . . , k}
is convergent.

3.3 Fuzzy c-Means Clustering

In fuzzy c-means clustering, a fuzzy membership of a decision table to a cluster
is allowed. The objective function to be minimized is defined by

Jfcm(U, V ) =
p∑

i=1

c∑
q=1

(uiq)mD(μTi , τ q), (20)

where p decision tables are divided into c clusters and m > 1. Because of the
fuzziness in membership uiq, the constraint on U is relaxed to

Ufcm =

{
k∑

q=1

uiq = 1, uiq ∈ [0, 1], i = 1, 2, . . . , p, q = 1, 2, . . . , k

}
. (21)

The algorithm is the same as K-means clustering algorithm with replacements
Ukm with Ufcm and Jkm with Jfcm.

Optimal solutions at Steps 2 and 3 are respectively obtained as

τq(w, vd) =

p∑
i=1

(ūiq)mμTi

C (w, vd)

p∑
i=1

(ūiq)m

, uiq =

⎡⎣ c∑
r=1

(
D(μTi , τ q)
D(μTi , τ r)

) 1
m−1

⎤⎦−1

. (22)

Note that when m = 1, Jfcm degenerates to Jkm and the clustering methods
become equivalent although their constraints are different. Then m > 1 would
be interesting in the fuzzy c-means clustering.

3.4 Fuzzy c-Means Clustering with Entropy Regularization

Viewing the objective function Jfcm with m > 1 as a kind of regularization, fuzzy
c-means clustering with entropy regularization [7] has been proposed adopting
an entropy function as a regularization function.

Jefc(U, V ) =
p∑

i=1

c∑
q=1

(uiq)D(μTi , τ q) + λ−1

p∑
i=1

c∑
q=1

uiq log uiq, (23)
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where λ > 0. The constraints on uiq are the same as usual fuzzy c-means clus-
tering, i.e., Ufcm.

Even in this case, the algorithm is the same as K-means clustering algorithm
with replacements Ukm with Uefc and Jkm with Jfcm.

Optimal solutions at Steps 2 and 3 are respectively obtained as

τq(w, vd) =
p∑

i=1

ūiqμ
Ti

C (w, vd), uiq =
e−λD(μTi ,τ q)

c∑
r=1

e−λD(μTi ,τ r)

. (24)

3.5 A Modification

In the clustering results of the previously described methods, we can observe
that the sum of τ̄r(w, vd), vd ∈ Vd is not always one. This can be seen easily by
a case that μTi

C (w, vd) = 0 for vd ∈ Vd, i = 1, . . . , p− 1 and μ
Tp

C (w, vd) = 1/|Vd|
for vd ∈ Vd. From (19), (22) and (24), we know that τ̄r(w, vd) = 0 if ūpr = 0
and τ̄r(w, vd) ≤ 1/|Vd| otherwise, and that if ūpr > 0 for r = 1, 2, . . . , c, we have
τ̄r(w, vd) < 1/|Vd| for some r ∈ [1, c]. On the other hand, for w ∈

⋂p
i=1 WUi

C ,
from (19), (22) and (24), we know

∑
vd∈Vd

τ̄r(w, vd) = 1.
The fact

∑
vd∈Vd

τ̄r(w, vd) < 1 may debase the quality of clustering results
because absent profiles are improperly reflected to clustering centers τ q, q =
1, 2, . . . , p.

Two modifications are conceivable for the modification of this debasement:
one is to introduce the estimated value to absent profiles as done by Inuiguchi
and Miyajima [5] and Yamamoto and Inuiguchi [9] and the other is to discard the
decision tables missing w on calculation of τq(w, vd), q = 1, 2, . . . , p, vd ∈ Vd. In
this paper, we take the latter approach. The modification is very simple. Namely,
we replace WC with WUi

C in (16).

4 Examinations by Real World Data

4.1 Data Sets

To examine the performances of the proposed approaches in comparison with
the previous AHC approach, we execute numerical experiments. We use two
real data sets which we collected through questionnaires. Data-set 1 concerns
the student preference among Japanese companies to be employed. We collected
data from 18 university students belonging to laboratories in systems engineering
field. Twenty-one companies were selected and each student evaluated 12 compa-
nies randomly chosen from 21 companies. The questionnaire includes company’s
business activity (conservative/innovative), internationality (high/low), job of-
fer (specialist/regular), contribution to society (high/low) and employment wish
(high/medium/low).

Data-set 2 concerns preferences among simple pictorial figures. We collected
data from 21 people. Each examinee evaluates his/her fondness (like/dislike) of
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36 pictorial figures. The 36 pictorial figures are all combinations of 4 shapes, 3
colors and 3 patterns.

Due to the page restriction, we describe the part of results in the experiments
with Data-set 1.

4.2 Experiments

We applied k-means, fuzzy c-means, entropy based fuzzy c-means, modified fuzzy
c-means and the previous AHC method to Data-set 1. Using 10 different ran-
dom seeds, we prepared 10 initializations for those methods. For the number of
clusters, we consider three cases p = 3, 4, 5. The parameters m and λ are varied
appropriately: m for fuzzy c-means is varied from 1.1 to 1.5 with step size 0.1,
λ for entropy based fuzzy c-means from 0.9 to 1.3 with step size 0.1 and m for
modified fuzzy c-means varied from 1.2 to 2.0 with step size 0.2.

We calculate 10 criteria for evaluations of clustering performances. Among
them, in this paper, we describe three criteria. Adopting the idea of variable
precision rough set model [10], we define the opinions (w, vd) of decision table
Ti by μTi

C (w, vd) ≥ α and opinions (w, vd) in a cluster Gq by τq(w, vd) ≥ β
with predetermined values α, β ∈ [0.5, 1]. For the sake of simplicity, we use the
following profile sets:

CTi
α (vd) = {w ∈ V Ui

C | μTi

C (w, vd) ≥ α}, C
Gq

β (vd) = {w ∈ V Ui

C | τq(w, vd) ≥ β}.
(25)

CTi
α (vd) corresponds to the set of positive members with respect to vd in the

variable precision rough set model. We define positive members of cluster Gq by

Ti ∈ Gq
def⇔ uiq ≥ 0.5, (26)

where, Ti ∈ Gq stands for Ti is a positive member of Gq. Note that we may have
decision tables Ti which are not positive members of any clusters and decision
tables Ti which are positive members of two clusters.

Assuming that we cluster p decision tables to c clusters Gq, q = 1, 2, . . . , c,
the following three criteria are considered:

Concurrence of opinions between a cluster and its members: A con-
currence magnitude of opinions between Gq and Ti ∈ Gq can be defined by

Cnc(Gq , Ti) =
∑

vd∈Vd

∑
w∈C

Ti
α (vd)∩C

Gq
β (vd)

∣∣∣Inf−1
Ti,C

(w) ∩ d−1
Ti

∣∣∣ . (27)

Then the total concurrence magnitude of the clustering results can be defined
by

TCnc =
c∑

q=1

∑
Ti∈Gq

Cnc(Gq, Ti). (28)
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Conflict of opinions between a cluster and its members: A conflict
magnitude of opinions between Gq and Ti ∈ Gq can be defined by

Cnf(Gq, Ti) =
∑

vd
1∈Vd

∑
vd

2∈Vd
vd

2 �=vd
1

∣∣∣CTi
α (v1

d) ∩C
Gq

β (v2
d)
∣∣∣ . (29)

Then the total conflict magnitude of the clustering results can be defined by

TCnf =
c∑

q=1

∑
Ti∈Gq

Cnf(Gq, Ti). (30)

Ratio of between-cluster difference to within-cluster difference: The
difference between clusters Gq and Gr is defined by

BCl(Gq, Gr) =
∑

w∈VC

∑
vd∈Vd

(τq(w, vd)− τr(w, vd))2. (31)

The total between-cluster difference is defined by

TBCl =
c−1∑
q=1

c∑
r=q+1

BCl(Gq, Gr). (32)

On the other hand, the within-cluster difference of a cluster Gq can be defined
by

WCl(Gq) =
1
|Gq|

∑
Ti∈̄Gq

∑
w∈VC

∑
vd∈Vd

(μTi

C (w, vd)− τq(w, vd))2. (33)

Then the total within-cluster difference is defined by

TWCl =
c∑

q=1

WCl(Gq) (34)

Finally, the ratio of between-cluster difference to within-cluster difference is
defined by

RBW =
TBCl

TWCl
(35)

Considering the page restriction, in Table 3, we show only the results in the
case of p = 4 when the previous AHC method seems to perform the best clas-
sification. In Table 3, KM, FCM(m), AHC, EFC(λ) and MFC(m) stand for K-
means, fuzzy c-means with parameter m, the conventional AHC, entropy-based
fuzzy c-means with parameter λ and modified fuzzy c-means with parameter m.
Entry ‘ave±dev’ of Table 3 shows the average value and the standard deviation
of 10 executions.

As shown in Table 3, by selecting a suitable parameter, fuzzy c-means cluster-
ing including entropy-based and modified ones can produce a better clustering
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Table 3. Results of Numerical Experiments (p = 4 : α = β = 0.5)

KM FCM(1.1) FCM(1.2) FCM(1.3) FCM(1.4) FCM(1.5)

TCnc 39.3±5.83 45.3±5.59 43.9±4.01 41.3±3.41 24.0±0 0±0

TCnf 6.00±2.05 5.1±2.21 4.60±1.56 3.50±1.02 1±0 0±0

RBW 8.76±2.75 17.17±6.30 19.81±5.54 12.90±2.73 8.30±0 0±0

AHC EFC(0.9) EFC(1) EFC(1.1) EFC(1.2) EFC(1.3)

TCnc 30 35±7.35 37.7±5.31 40.6±4.27 41.4±3.32 41.6±3.41

TCnf 2 2.60±0.49 2.90±1.30 3.20±1.17 3.00±1.18 3.10±1.04

RBW 31.44 10.63±5.31 11.49±3.16 13.75±3.27 15.83±3.50 16.54±3.60

MFC(1.2) MFC(1.4) MFC(1.6) MFC(1.8) MFC(2.0)

TCnc 86.9±2.21 88.9±1.37 85.6±2.94 80.6±0.92 66.8±3.82
TCnf 7.90±1.92 7.60±1.50 6.70±0.64 4.70±0.46 2.60±0.80
RBW 72.25±13.59 77.10±9.50 77.45±9.49 75.11±10.69 68.85±6.87

results in the concurrence of opinions between a cluster and its members as well
as in the conflict of opinions between a cluster and its members than K-means
clustering. However the conflict of opinions between a cluster and its members is
not improved in the usual fuzzy c-means and in the entropy-based fuzzy c-means
from that of the conventional AHC.

The improvement by the modified fuzzy c-means is remarkable in the concur-
rence of opinions as well as in the ratio of between-cluster difference to within-
cluster difference. In the usual fuzzy c-means and the entropy-based fuzzy c-
means, cluster opinions are less than the modified fuzzy c-means because τq

tends to be small for profiles absent in some decision tables.
From the stability of the obtained results can be observed by counting how

many times the same results are obtained in 10 executions with different ini-
tializations. The conventional AHC and FCM(1.4) were stable so that they pro-
duced same results in 10 executions. EFC(1.1) and MFC(1.8) were rather stable
because they produced same results 8 times and 6 times. However, K-means
method was not stable at all because it produced 10 different results.

From the quality of classification and the stability, fuzzy c-means approach,
especially the modified one would be useful in clustering decision tables.

5 Concluding Remarks

We have proposed K-means clustering and fuzzy c-means clustering of decision
tables. The results of the numerical experiments show that the modified fuzzy
c-means clustering methods are advantageous in the concurrence of opinions
between a cluster and its members as well as in the ratio of between-cluster
difference to within-cluster difference.

The adopted treatment of missing profiles in this paper is to discard decision
tables with no evaluation of the profile. The alternative approach, i.e., estimat-
ing the decision attribute values of missing profiles by the existing evaluations
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in decision tables is one of our future topics. The proposed dissimilarity mea-
sure reflects neither the number of objects supporting opinions, the certainty
on opinions nor the similarity between decision attribute values. The consid-
erations of other dissimilarity measures and the examinations by real data are
also future research topics. Moreover, we should tactfully use hierarchical and
non-hierarchical clustering methods to a set of decision tables. As is known in
the literature, the former is useful when the suitable number of clusters is un-
known, while the latter is useful when it is known. The dissimilarity measures
can be shared in both methods. The relations between those methods have not
considerably investigated yet. The mutual developments of both methods would
be helpful to discover the useful/convincing clustering approaches. Finally, the
evaluations of the clustering results of decision tables are one of most difficult
and important issues. They are useful in the selection of clustering results and
should reflect the aim/application of the analysis. Some unique evaluations for
clustering decision tables would be desired.
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Revisiting Natural Actor-Critics with Value Function
Approximation

Matthieu Geist and Olivier Pietquin

IMS Research Group, Supélec, Metz, France

Abstract. Actor-critics architectures have become popular during the last decade
in the field of reinforcement learning because of the introduction of the policy gra-
dient with function approximation theorem. It allows combining rationally actor-
critic architectures with value function approximation and therefore addressing
large-scale problems. Recent researches led to the replacement of policy gradi-
ent by a natural policy gradient, improving the efficiency of the corresponding
algorithms. However, a common drawback of these approaches is that they re-
quire the manipulation of the so-called advantage function which does not satisfy
any Bellman equation. Consequently, derivation of actor-critic algorithms is not
straightforward. In this paper, we re-derive theorems in a way that allows reason-
ing directly with the state-action value function (or Q-function) and thus relying
on the Bellman equation again. Consequently, new forms of critics can easily be
integrated in the actor-critic framework.

1 Introduction

Reinforcement learning (RL) is generally considered as the machine learning answer
to the optimal control problem. In this paradigm, an agent learns to control optimally
a dynamic system through interactions. At each time step i, the dynamic system is in
a given state si and receives from the agent a command (or action) ai. According to
its own dynamics, the system transits to a new state si+1, and a reward ri is given
to the agent. The objective is to learn a control policy which maximizes the expected
cumulative discounted reward.

Actor-critics approaches were among the first to be proposed for handling the RL
problem [1]. In this setting, two structures are maintained, one for the actor (the control
organ) and one for the critic (the value function which models the expected cumula-
tive reward to be maximized). One advantage of such an approach is that it does not
require knowledge about the system dynamics to learn an optimal policy. However, the
introduction of the state-action value (or Q-) function [2] led to a focus of research
community in pure critics methods, for which the control policy is derived from the
Q-function and has no longer a specific representation. Actually, in contrast with value
function, state-action value function allows deriving a greedy policy without knowing
system dynamics, and function approximation (which is a way to handle large prob-
lems) is easier to combine with pure critics approaches. Pure critic algorithms therefore
aim at learning this Q-function. However, actor-critics have numerous advantages over
pure critics: a separate representation is maintained for the policy (in which we are

V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 207–218, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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ultimately interested), they somehow implicitly solve a problem known as dilemma be-
tween exploration and exploitation, they handle well large action spaces (which is not
the case of pure critics, as some maxima over actions have always to be computed), and
above all errors in the Q-function estimation can lead to bad derived policies.

A major march for actor-critics is the policy gradient with function approximation
theorem [3,4]. This result allows combining actor-critics with value function approx-
imation, which was a major lack of the field. Another important improvement is the
natural policy gradient [5] which replaces the gradient ascent over policy parameters by
a natural gradient ascent improving consequently the efficiency of resulting algorithms.
These results share the drawback that they lead to work with the advantage function
which does not satisfy a Bellman equation. Consequently, derivation of practical al-
gorithms is not straightforward, as it requires estimating the advantage function which
is unnatural in RL. In this paper, we reformulate (and re-prove) the theorems so as
to work directly with the state-action value function (policy gradient with state-action
value function approximation in Sec. 2 and natural policy gradient with approximation
in Sec. 3). The position of this contribution compared to previous works is discussed
in Sec. 4. This allows a very straightforward derivation of new actor-critic algorithms,
some of them being proposed here (Sec. 5) and briefly experimented (Sec. 6). All re-
sults are given for the discounted cumulative reward case, however they can be easily
extended to the average reward case.

2 Policy Gradient

The system to be controlled is standardly modeled as a Markov decision process
(MDP) {S, A, P, R, γ} [6]: S is the (finite) state space, A the (finite) action space,
P ∈ P(S)S×A the set of transition probabilities, R ∈ R

S×A×S the deterministic re-
ward function and γ the forgetting factor. Actions are selected according to a stochastic
policy π ∈ P(A)S which has to be optimized. The criteria to be maximized is the
expected discounted cumulative reward starting in state s0 and then following the pol-
icy π:

ρ(π) = E[
∞∑

i=0

γiri|s0, π] (1)

State-action and state value functions are respectively defined as:

Qπ(s, a) = E[
∞∑

i=0

γiri|s0 = s, a0 = a, π] and V π(s) = Ea|s,π[Qπ(s, a)] (2)

Both state-action and state value functions satisfy a Bellman equation:

Qπ(s, a) =
∑
s′∈S

p(s′|s, a)(r(s, a, s′) + γ
∑
a′∈A

π(a′|s′)Qπ(s′, a′)) (3)

V π(s) =
∑
s′,a

p(s′|s, a)π(a|s)(r(s, a, s′) + γV π(s′)) (4)
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The advantage function is defined as their difference: Aπ(s, a) = Qπ(s, a) − V π(s).
The advantage function does not satisfy any Bellman equation and it is obvious that
Ea|s,π[Aπ(s, a)] = 0. Let also dπ be the discounted weighting of states encountered
starting at s0 and then following π: dπ(s) =

∑∞
i=0 γip(si = s|s0, π).

Let the policy πω be parameterized by a parameter vector ω (and differentiable with
respect to its parameters). We also assume that it is never zero (∀s, a, ω, πω(a|s) > 0).
The policy gradient approach consists in correcting parameters by following a gradient
ascent:

ωi = ωi−1 + αi∇ωρ(πωi−1) (5)

An important result is the policy gradient theorem (see [3] for a proof).

Theorem 1 (Policy gradient). The gradient of the performance metric respectively to
the policy parameters is:

∇ωρ(πω) =
∑
s∈S

dπ(s)
∑
a∈A

Qπω(s, a)∇ωπω(a|s) (6)

An interesting thing would be to replace the true state-action value function Qπω(s, a)
by some approximation Q̂(s, a). Actually, it is possible thanks to the policy gradient
with function approximation theorem [3,4], if the approximation is “good enough” and
if the representations for the actor and the critic are “compatible”. The proposed ap-
proach differs from previous ones on this last point.

Definition 1 (Semi-compatible approximation). Let the approximation of the state-
action value function be parameterized by two parameter vectors θ and ξ such that:

Q̂θ,ξ(s, a) = fθ(s, a) + gξ(s) (7)

This approximation is said to be semi-compatible if its state-action part fθ is compatible
with the policy parameterization in the sense that:

∇ω ln πω(a|s) = ∇θfθ(s, a) (8)

This definition differs from previous works in the sense that it adds a state-dependent pa-
rameterization gξ to the approximation, whereas in previous approaches the Q-function
is approximated by only fθ. However, Ea|s,πω

[fθ(s, a)] = Ea|s,πω
[θT∇ω ln πω(a|s)] =

θT∇ωEa|s,πω
[1] = 0, thus fθ is an approximation of the advantage function rather than

of the state-action value function. On the other hand, Ea|s,πω
[Q̂θ,ξ(s, a)] = gξ(s), thus

gξ is an approximation of the value function. We propose to rederive all classic results
with this new parameterization. The interest of this approach is that it simplifies the
design of the critic, as it implies to work directly with the state-action value function.

Theorem 2 (Policy gradient with state-action value function approximation). Let
Q̂θ,ξ be semi-compatible as defined before. Moreover, assume that it is a good approx-
imation in the sense that it is a local optimum of the square error between the true
state-action value function Qπω and its approximation1 (in other words, the distance

1 As
∑

s∈S dπ(s) = 1
1−γ

, dπ is not really a distribution and the notation Es|dπ [h(s)] =∑
s∈S dπ(s)h(s) is slightly abusive.
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between the true state-action value function and its estimate should be small):

∇θ,ξEs,a|dπω ,πω
[(Qπω (s, a)− Q̂θ,ξ(s, a))2] = 0

⇔ Es,a|dπω ,πω
[(Qπω(s, a)− Q̂θ,ξ(s, a))∇θ,ξQ̂θ,ξ(s, a)] = 0 (9)

Then the policy gradient satisfies:

∇ωρ(πω) =
∑
s∈S

dπ(s)
∑
a∈A

Q̂θ,ξ(s, a)∇ωπω(a|s) (10)

Proof. The gradient of Q̂θ,ξ is: ∇θ,ξQ̂θ,ξ(s, a) = [∇T
θ fθ(s, a),∇T

ξ gξ(s)]T . Let also

ΔQ(s, a) be defined as: ΔQ(s, a) = Qπω(s, a) − Q̂θ,ξ(s, a). Part of condition (9)
corresponding to parameters θ can thus be extracted and expanded thanks to the semi-
compatibility condition (8):

0 = Es,a|dπω ,πω
[ΔQ(s, a)∇θfθ(s, a)]

= Es,a|dπω ,πω
[ΔQ(s, a)∇ω ln πω(a|s)]

=
∑
s∈S

dπω (s)
∑
a∈A

πω(a|s)ΔQ(s, a)∇ω ln πω(a|s)

However πω(a|s)∇ω ln πω(a|s) = ∇ωπω(a|s) thus:∑
s∈S

dπω (s)
∑
a∈A

ΔQ(s, a)∇ωπω(a|s) = 0 (11)

Substracting Eq. (11) to Eq. (6) gives the result:

∇ωρ(ω) =
∑
s∈S

dπω (s)
∑
a∈A

Qπω(s, a)∇ωπω(a|s)− 0

= Es|dπω [
∑
a∈A

(Qπω(s, a)−ΔQ(s, a))∇ωπω(a|s)]

=
∑
s∈S

dπω (s)
∑
a∈A

Q̂θ,ξ(s, a)∇ωπω(a|s) (12)

!"
Notice that this results still holds by replacing Q̂θ,ξ(s, a) by fθ(s, a)+b(s) where b(s) is
any baseline only depending on states, see [3]. Moreover, the minimum variance base-
line for the state-action value function estimator is the value function V πω(s) itself [7].
Recall that gξ(s) is in fact an estimate of this value function, so using Q̂θ,ξ lets envision
a low variance estimate.

Thanks to this result, new actor-critics algorithms can be naturally derived. The actor
is the policy πω parameterized by ω, corrected by a gradient ascent using for example
a sampled version of (10), and the critic is the approximated state-action value function
Q̂θ,ξ parameterized by [θT , ξT ] satisfying the semi-compatibility condition (8) and for
which parameters are learnt such that condition (9) is satisfied.

However, another important progress for actor-critics is to correct policy parameters
according to a natural gradient ascent, and we examine this point before proposing some
practical algorithms.
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3 Natural Policy Gradient

The idea of natural policy gradient is to correct the policy representation according to
a natural gradient ascent rather than a gradient ascent. The natural gradient ∇̃ is the
gradient pre-multiplied by the inverse of the Fisher information matrix [8]:

∇̃ρ(πω) = G−1(ω)∇ρ(πω) (13)

with the Fisher information matrix being equal to (see [5]):

G(ω) = Es,a|dπω ,πω
[∇ω ln πω(a|s)∇T

ω ln πω(a|s)] (14)

The natural policy gradient was first introduced in [9] from a pure actor perspective. It
was then used in [5] from an actor-critic perspective. They show an important result: the
natural gradient is actually the advantage function parameter vector under the compati-
ble approximation assumption. We show here that this result still holds for the proposed
extended parameterization Q̂θ,ξ.

Theorem 3 (Natural policy gradient with state-action value function approxima-
tion). Let Q̂θ,ξ be semi-compatible as defined before and satisfying condition (9). Then
the natural policy gradient satisfies:

∇̃ωρ(πω) = θ (15)

Proof. Under these assumptions, theorem 2 applies:

∇ωρ(ω) =
∑
s∈S

dπω (s)
∑
a∈A

Q̂θ,ξ(s, a)∇ωπω(a|s) (16)

=
∑
s∈S

dπω (s)
∑
a∈A

(fθ(s, a) + gξ(s))∇ωπω(a|s)

As the term gξ does not depends on actions, it disappears from the above equation:∑
a gξ(s)∇ωπω(a|s) = gξ(s)∇ω

∑
a πω(a|s) = gξ(s)∇ω1 = 0. As ∇ωπω(a|s) =

πω(a|s)∇ω ln πω(a|s) and as fθ(s, a) = θT∇ω ln πω(a|s) (semi-compatibility condi-
tion), Eq. (16) leads to:

∇ωρ(ω) =
∑
s∈S

dπω(s)
∑
a∈A

fθ(s, a)∇ωπω(a|s) (17)

= Es,a|dπω ,πω
[θT∇ω ln πω(a|s)∇ω ln πω(a|s)]

= Es,a|dπω ,πω
[∇ω ln πω(a|s)∇T

ω ln πω(a|s)]θ

Recall the definition (14) of G(ω), this leads to: ∇ωρ(ω) = G(ω)θ. This last equation
and the natural gradient definition (13) lead directly to the result:

∇̃ρ(ω) = G−1(ω)∇ρ(ω) = G−1(ω)G(ω)θ = θ (18)

!"

Thanks to this result, other actor-critic algorithms can be derived. The principle is the
same as previously, but the gradient ascent is replaced by a natural gradient ascent,
which is actually straightforward thanks to the above result.
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4 Position to Previous Works

In previous works [3,5,7], theorems are derived using a parameterization fθ of the ad-
vantage function. In order to obtain practically a critic, the advantage function (which
does not satisfy a Bellman equation) has to be estimated. This is done either by adding a
value component to the advantage function [5] or by using a TD error (linked to a value
estimate) as the target for the advantage function. In this paper, we consider directly a
parameterization of the Q-function and rederive theorems consequently. From a techni-
cal point of view, the new proofs heavily rely on the fact that the policy gradient is in-
variant to a state-dependent bias, which is a long known result [3]. Consequently, we do
not really propose new theoretical insights on actor-critic architectures. However, from
a practical point of view, our approach allows working directly with the state-action
value function, which makes easier critics derivations. Moreover, notice that resulting
algorithms are different from previously published ones, as shown in the next section.

5 Deriving New Actor-Critic Algorithms

Given these results, deriving practical actor-critic algorithms is quite direct. The actor
is updated according to the natural-gradient, and the only remaining choice is the critic
learner. We propose three critics here, the first one being based on TD with function
approximation [6] and on a two-timescale approach [7], the two other ones being based
on a Kalman-based Temporal Differences framework [10].

5.1 TD-NAC

The first algorithm, which we call TD-NAC (TD-based Natural Actor-Critic), is based
on the classical TD with function approximation. A semi-compatible parameterization
Q̂θ,ξ is adopted, and the critic is updated as follows:(

θi

ξi

)
=
(

θi−1

ξi−1

)
+ αiδi∇θ,ξQ̂θi−1,ξi−1(si, ai) (19)

where αi is the learning rate and δi the temporal difference error:

δi = ri + γQ̂θi−1,ξi−1(si+1, ai+1)− Q̂θi−1,ξi−1(si, ai) (20)

Deriving the critic update rule is thus a very direct application of the TD algorithm,
much more direct than starting from the advantage function. A remaining problem is to
ensure condition (9). We follow [7] and use two different timescales for the actor and
the critic. The actor is updated using another learning rate βi such that:∑

i

αi =
∑

i

βi = ∞,
∑

i

α2
i =
∑

i

β2
i < ∞, lim

i→∞
βi

αi
= 0 (21)

The idea behind this is that in order to ensure condition (9), the actor should remain
stationary from the critic point of view. Conditions (21) ensure that the critic converges
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faster. The TD-NAC algorithm can be summarized as follows, the temporal difference
error δi being defined in Eq. (20):

θi = θi−1 + αiδi∇ω ln πωi−1(si|ai) (22)

ξi = ξi−1 + αiδi∇ξgξi−1(si) (23)

ωi = ωi−1 + βiθi (24)

This algorithm is very close2 to algorithm 3 in [7], which was actually first proposed
in [11]3 (who call it NTD for Natural policy gradient using the Temporal Differences).
Their principle is to estimate the value function (ξi parameters) and to use the associated
temporal difference error as a target for the advantage function, which is actually a form
of bootstrapping. This is less direct than the proposed approach which considers directly
the Q-function and is therefore less dependent to the learning algorithm used to estimate
it. The critic update for these algorithms is as follows:

δ′i = ri + gξi−1(si+1)− gξi−1(si) (25)

θi = θi−1 + αi∇θ(fθi−1(si, ai))(δ′i − fθi−1(si, ai)) (26)

ξi = ξi−1 + αi∇ξ(gξi−1(si))δ′i (27)

Recall that gξi−1 (resp. fθi−1) is an approximation of the value (resp. advantage) func-
tion. Therefore, the difference between TD-NAC and NTD is that Eai+1|si+1 [δi] is used
instead of δi for the θ update, and that Eai|si

[[Eai+1|si+1 [δi]] is used instead of δi for
the ξ update. Roughly speaking, the value function estimate is sometimes used instead
of state-action value function estimate. These slight variations about the TD error are
not new in reinforcement learning, see for example [12] and references therein.

5.2 KNAC

TD-NAC is based on a first-order critic. Using a second-order critic should speed up
learning, as such algorithms are more sample-efficient. Actually, [5] introduced a nat-
ural actor-critic based on the Least-Squares Temporal Differences (LSTD) algorithm
of [13]. However, in order to satisfy condition (9), this actor-critic algorithm is usu-
ally considered in a batch setting. Contrary to TD-NAC for which policy is improved
at each time-step, the policy is maintained, its state-action value function is evaluated
using obtained trajectories, and then the policy is improved. The advantage of using a
second-order algorithm is thus somehow lost, as the policy cannot be improved after
each interaction.

Kalman Temporal Differences (KTD) is another second-order algorithm, introduced
in [10]. It has some interesting aspects, such as nonlinear parameterization handling.
However, the feature we are interested in is its ability to handle non-stationarities. In
an (online) actor-critic, the policy is updated after each interaction and is therefore not
stationary. Consequently, the associated state-action value function is non-stationary

2 In [7] algorithms are derived in the average reward case. However, extension to the discounted
cumulative reward case is quite direct, and what we say is based on this extension.

3 This algorithm is really derived in the discounted reward case.
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too. To handle this problem (linked to condition (9)), the two-timescale approach is
used in TD-NAC (the actor is stationary from the critic point of view). We argue that
using a critic which tracks the state-action value function rather than converging to it
is another manner to handle this problem, and thus to satisfy condition (9). Actually,
[14] show theoretically that this condition is at least satisfied for a deterministic MDP
and a stationary policy, and they show empirically that it still holds for non-stationary
policies. This idea of using an adaptive critic also appears in [15], where a recursive
form of LSTD integrating a forgetting factor (less general than the evolution model of
KTD to be presented) is considered4.

A semi-compatible parameterization Q̂θ,ξ is adopted. KTD algorithm is derived from
a so-called state-space formulation5, which in our case is given by:⎧⎪⎨⎪⎩

(
θi

ξi

)
=

(
θi−1

ξi−1

)
+ vi

ri = Q̂θi,ξi(si, ai)− γQ̂θi,ξi(si+1, ai+1) + ni

(28)

The first equation is the evolution equation, it specifies that parameters (which are mod-
eled as random variables) evolve according to a random walk driven by the evolution
noise vi (to be chosen by the practitioner). It allows handling non-stationarity and avoid-
ing local minima. The second equation is the observation equation which links the re-
ward to the estimated state-action value function through a sampled Bellman equation.
The observation noise ni (also to be chosen) is an inductive bias which arises from the
fact that the true state-action value function does not necessarily exists in the hypothesis
space spanned by parameters.

The critic practical update is obtained directly from state-space model (28) and using
the KTD-SARSA algorithm described in [10]. It is not difficult, but it takes room, so
it is not fully described here. It should be sufficient to know that the critic is updated
according to: (

θi

ξi

)
=
(

θi−1

ξi−1

)
+ Ki(ri − r̂i) (29)

where Ki is the Kalman gain, which computation is detailed in the aforementioned
paper, and where r̂i is the prediction of the reward according to past estimates of the
parameters and using the observation equation. Actually, ri − r̂i is a temporal differ-
ence error which takes into account the statistical nature of parameters in this model.
The actor is updated according to the natural gradient ascent (24), θi being estimated
by KTD. Notice that here there is only one βi learning rate (there is no learning rate
for KTD). We call the resulting natural actor-critic algorithm KNAC (Kalman-based
Natural Actor-Critic), which can be summarized:(

θi

ξi

)
=
(

θi−1

ξi−1

)
+ Ki(ri − r̂i) (30)

ωi = ωi−1 + βiθi (31)

4 However, quite surprisingly, they also consider eligibility traces which induce a memory effect
and therefore harm the non-stationary handling ability.

5 The name state-space comes from the Kalman filtering literature and should no be confused
with the state space of the MDP.
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Recall that the main difference between NTD and TD-NAC is the replacement of the
state-action value function by the value function in the temporal difference error. This
can be easily adapted to KNAC: the term Q̂ξi(si+1, ai+1) can be replaced by gξi(si+1)
in the observation equation of state-space model (28):⎧⎪⎨⎪⎩

(
θi

ξi

)
=

(
θi−1

ξi−1

)
+ vi

ri = fθi(si, ai) + gξi(si)− γgξi(si+1) + ni

(32)

We call this alternative algorithm aKNAC for averaged KNAC.

6 Experimental Results

In this section, we compare the three proposed new actor-critics to the NTD algorithm
of [11] (which we recall to be equivalent to what would have been algorithm 3 of [7] in
the discounted cumulative reward case). The benchmark on which these algorithms are
compared is the inverted pendulum as described for example in [16].

This task requires balancing a pendulum of unknown length and mass at the up-
right position by applying forces to the cart it is attached to. Three actions are allowed:
left force (-1), right force (+1), or no force (0). The associated state space consists in
vertical angle ϕ and angular velocity ϕ̇ of the pendulum. Deterministic transitions are
computed according to physical dynamics of the system, and depends on current ac-

tion a: ϕ̈ = g sin(ϕ)−βmlϕ̇2sin(2ϕ)/2−50β cos(ϕ)a
4l/3−βml cos2(ϕ) where g is the gravity constant, m and

l the mass and the length of the pendulum, M the mass of the cart, and β = 1
m+M . The

reward is the cosine of the angular position, that is ri = cos(ϕi), and the episode ends
when |ϕi| ≥ π

2 . The discount factor γ is set to 0.95.
The policy is parameterized according to a Gibbs distribution. Let p be the size of

the ω parameter vector (and thus of θ) and q the size of the ξ parameter vector. Let
φ(s, a) = (φi(s, a))1≤i≤p be a linear feature vector. The parameterized policy is given
by:

πω(a|s) =
exp
(
φ(s, a)T ω

)∑
b∈A exp (φ(s, b)T ω)

(33)

The semi-compatibility condition is therefore:

∇θfθ(s, a) = ∇ω ln(πω(a|s)) = φ(s, a) −
∑
b∈A

πω(b|s)φ(s, b) (34)

Consequently, the fθ function is given by:

fθ(s, a) = (φ(s, a) −
∑
b∈A

πω(b|s)φ(s, b))T θ (35)

The parameterization is composed of a constant term and a set of 9 equispaced Gaussian
kernels (centered in {−π

4 , 0, π
4 } × {−1, 0, 1} and with a standard deviation of 1) for

each action. Thus there is a set of p = 30 basis functions. A parameterization has also
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to be chosen for the gξ part of the estimated state-action value function. Let ψ(s) =
(ψi(s))1≤i≤q be a feature vector, we choose a linear parameterization:

gξ(s) = ψ(s)T ξ (36)

The parameterization is also composed of a constant term and a set of 9 equispaced
Gaussian kernels (centered in {−π

4 , 0, π
4 } × {−1, 0, 1} and with a standard deviation

of 1). Thus there is a set of q = 10 basis functions.
Some parameters have to be chosen for all algorithms. The ones we provide here

allow obtaining good results. They are probably not optimal (better results could cer-
tainly have been obtained by testing more systematically all parameters), however or-
ders of magnitude are valid. For all algorithms, the initial parameter vector [θT

0 , ξT
0 ]

is set to zero. For NTD and TD-NAC the critic learning rate is set to αi = α0
αc

αc+i
2
3

with α0 = 10−2 and αc = 104. For all algorithms the actor learning rate is set to
βi = β0

βc

βc+i with β0 = 10−3 and βc = 104. These learning rates satisfy the two-
timescale condition (21) for NTD and TD-NAC. KNAC and aKNAC are based on KTD.
This critic is a second-order algorithm for which parameters are modelled as random
variables. A prior variance over theses parameters P0 has to be chosen. Here we set
P0 = I with I the identity matrix. Evolution and observation noises have also to be
chosen. They are centered by assumption, and KTD only needs their second-order mo-
ments. In this experiment, the variance of the observation noise is set to Pni = 10−1.
An adaptive evolution noise is chosen, and its variance is set to Pvi = ηPi−1 where
η = 10−5 is a forgetting factor and Pi−1 is the estimate of parameters variance at time
i− 1 which is computed in the KTD algorithm. See [14] for a discussion on the choice
of these parameters.

Algorithms are compared on their ability to learn the optimal policy. At the begin-
ning of each episode the pendulum is initialized in a position close to the equilibrium
(ϕ, ϕ̇) = (0, 0). The performance is measured as the number of steps the pendulum
is maintained is the admissible zone (otherwise speaking, the length of the episode) in
function of the number of episodes. A maximum of 3000 timesteps is allowed (the opti-
mal policy would lead to an infinite episode). Consequently, the higher the curve is, the
better the control is (and the better the corresponding algorithm too). Results presented
on Fig. 1 are averaged over 100 independent trials.

Results of NTD and TD-NAC are not significantly different. Both algorithms learn
the optimal policy in about 1600 episodes. However TD-NAC critic is simpler to derive
(or at least more direct). KNAC learns the optimal policy faster, in about 600 episodes.
This was to be expected: NTD and TD-NAC are based on a first-order critic, which is
less sample-efficient than KTD which is a second-order critic. The aKNAC algorithm is
even more efficient than KNAC, it learns the optimal policy in about only 200 episodes.
We explain this by the fact that the aKNAC critic takes into account the expectation over
action (by replacing Q̂θ,ξ(s′, a′) by gξ(s′) = Ea′|s′ [Q̂θ,ξ(s′, a′)] in the observation
equation). This provides a better state-action value function estimation, see Bellman
Eq. (3). These results show empirically the validity of the proposed alternative actor-
critic theorems, as well as the interest of using a second-order critic handling non-
stationarities to speed up learning in an online setting.
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Fig. 1. Comparison of algorithms on the inverted pendulum task

7 Conclusion

In this paper we have presented alternative results concerning policy gradient with func-
tion approximation and natural policy gradient. They allow working directly with the
state-action value function rather than with the advantage function. If these results do
not change fundamentally the recent actor-critic theory, they allow deriving new critics
in an easier way, as the state-action value function satisfies a Bellman equation, contrary
to the advantage function. We have also illustrated the ease of critic design by introduc-
ing three new actor-critic algorithms, TD-NAC, KNAC and aKNAC. The first one is
derived using TD with function approximation and a two-timescale approach, and it is
close to the NTD algorithm [11] and to algorithm 3 of [7] as discussed before. KNAC
and aKNAC are derived using the KTD framework of [10] which provides second-order
function approximators able to handle non-stationarities. All these algorithms have been
compared on the classic inverted pendulum task.

Actor-critic with function approximation is a very interesting paradigm. However,
a number of questions remain open. An important problem is to design a critic which
satisfies condition (9). So far, most of critics were designed in a batch setting [5] or
using a two-timescale approach [7]. In this paper, we have proposed to use a critic
which handles non-stationarities in order to satisfy this condition. Interesting perspec-
tives would be to provide some guarantees for the proposed approach (that is choosing
a provably appropriate evolution noise) and to discover new ways to ensure this condi-
tion. Another important point is the (semi-) compatibility condition and its implications.
Actually, choosing a parameterization for the state-action value function or the policy
is a difficult and problem-dependent choice itself. This condition renders this choice
even more difficult. An interesting perspective would be to propose some feature se-
lection framework (that is learning the structure of the representation in addition to its
parameters) for such actor-critic algorithms.
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Abstract. In this paper we present and empirically evaluate a ‘continuity-cost 
model’ for Internet query sessions made by users. We study the relation of 
different ‘cost factors’ for a user query session, with the continuity of the user 
in that query session, and the order of the query in the query session. We define 
cost indicators from the available query log data, which are to be studied in 
relation to continuity and to the order/number of the query (1st, 2nd, 3rd, ..). 
One of our hypotheses is that cost related factors will reflect the step by step 
nature of the query session process. We use descriptive statistics together with 
rule induction to identify the most relevant factors and observable trends, and 
produce three classifier data models, one for each ‘query number’, using the 
‘continuity flag’ as classifier label. Using the cost factors, we identify trends 
relating continuity/query number to user behavior, and we can use that 
information, for example, to make decisions about caching and query 
recommendation. 

Keywords: Web-mining, web query-sessions, data analysis and modeling. 

1   Introduction 

Individual user behavior when searching for information in Internet may at first sight 
seem a chaotic activity, especially when we try to analyse high volume search engine 
logs looking for trends and patterns. In the literature there are many authors who have 
tried analysing web search data, deriving descriptive factors from the basic 
information, and a smaller number of authors who have proposed ‘behavior models’ 
based on empirical observations and user studies, such as Fox [1], Hassan[2], Baeza-
Yates[3], Nettleton[4] and Ntoulas[5]. 

In [1], Fox carried out a user study of 146 users and 2560 query sessions, in which 
the users proportioned feedback about the grade of satisfaction of their query session. 
Bayesian modeling and 'gene analysis' techniques were used for modeling using 
factors such as clickthrough, the time spent on the search result page, and how the 
user exited from the session. In [2], Hassan conducted experiments to show that 
models using user behavior are more predictive of goal success than those using 
document relevance. Their data was derived from a commercial search engine query 
log, with a total of 2172 query sessions, and they defined "sequence models" using 
time distributions, related to ‘cumulative gain’, with a Markov model representation. 
Their findings proposed that for user behavior, sequence and time distributions are 
more accurate than static models or predictions based on document relevance. 
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In [3], the user’s path was traced through web site links, relating the user behavior 
to the connectivity of each site visited, and different schemes are evaluated for 
modeling user behavior, including Markov Chains. Sugiyama [6] evaluated 
constructing user profiles from past browsing behavior of the user, which required 
identified users and one day’s browsing data. Lee et al [7] developed an approach for 
the automatic detection of user ‘goals’ in web search, using a reduced set of 30 pre-
selected queries from which ambiguous queries had been eliminated. 

User behavior can be modeled in different ways. For example, the Markovian model 
[2,3] describes and represents transitions between frequent states in a query session, in 
the form of a finite state model. Silverstein[8] made the observation that Web users in 
general tend to formulate short queries, select few pages and an important proportion of 
them refine their initial query in order to retrieve more relevant documents.  

Craswell [9] proposed a “position-bias” score to model the way users choose 
search engine results, which is similar to the ‘SRC’ factor we have defined (see 
Section 3). Teevan [10] has adopted a more classic IR approach, such as that based on 
statistics of re-finding and relevance feedback. An alternative approach is the “query 
clarity” feature proposed by Cronen-Townsend et al [11]. This model has a greater 
complexity, being based on the query language IR model which requires access to 
statistics of the content of each document. In [11], a method was presented for 
predicting query performance by computing the relative entropy between a query 
language model and the corresponding collection language model. The resulting 
'clarity score' measures the coherence of the language usage in documents whose 
models are likely to generate the query. They propose that 'clarity scores' measure the 
ambiguity of a query with respect to a collection of documents. 

‘Continuity-cost model’. Our analogy in the current work to model user search 
behavior is to consider that the user approaches information search and selection as a 
series of succesive steps, which we propose has a broad analogy to the Nash’s 
‘centipede game’ [12,13].  The ‘centipede game’ represents a sequence of steps by a 
person, each with a given ‘cost’ and perceived ‘benefit’. After each step of the game, 
the person can decide to continue or to quit, and it is assumed that this decision is 
influenced by the persons’ perception of the cost incurred and benefit achieved. In the 
web search context, and with the data we have available (typical large volume web 
log), we clearly have ‘cost’ data (time spent, clicks made, …), but we do not have 
‘benefit’ data, the latter being much more difficult to know or to quantify. In the 
present study, we define an approximation to ‘benefit’, in which we detect patterns 
where the user seems to be showing interest in specific documents (results).  

The rest of the paper is organized as follows: in Section 1.1 we outline the 
motivations for the study; in Section 2 we describe the design of the cost-continuity 
model, its application to web search and how query sessions are represented; in 
Section 3 we describe the basic available data and derived factors; in Section 4 we 
describe the data analysis of user continuity for query sessions using descriptive 
statistics and create a classifier model using rule induction; finally, some conclusions 
are presented in Section 5. 

1.1   Motivations for the Study 

We will now comment two aspects which can be applied by the approach and which 
are the practical motivation of the work: (i) Optimization of the use of the Cache and 
(ii) User support and query recommendation. 
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Cache: If we can anticipate with a reasonable accuracy that the user will continue 
in the same query session, then we can use this information to make decisions about 
retaining the results of the previous query in the cache. The saving on selective 
caching with respect to caching everything “just in case” is very significant, in terms 
of computational cost and memory storage cost, for the millions of queries being 
constantly launched in large search engines. Therefore we can directly equate a 
‘continuity’ flag to the flag which tells us to keep the results of a query in the cache.  
We can define two types of cost and saving: (i) the cost of keeping the results in cache 
and the saving obtained by not keeping them in cache - this is a memory use 
consideration; (ii) the cost of having to re-execute the query to generate all the results 
and the saving of not having to re-execute the query – this is a computational 
consideration. Other authors, such as Teevan [10], have adopted different approaches, 
such as that based on statistics of re-finding, or caching on a per-query basis. 

User Support and Query Recommendation: If we can detect trends with a vision 
of the query session as a whole, then we can help the user by giving them ‘meta 
information’ to guide their query session, rather than hints simply on a per-query 
basis. This implies an understanding of the user intent which improves on the typical 
spelling corrections or ‘did you mean’ hints. The system would indicate how the user 
can improve his search strategy, with contextual suggestions. As with the case of 
Caching, a more simplistic approach is to offer query recommendations based only on 
the current query. We propose that the query session approach is more complex but 
provides a significantly more complete picture of what the user is doing as a sequence 
of events.  

2   Design of the Cost-Continuity Model 

In this Section we explain the approach and design of the ‘Cost-continuity model’.  
We propose that the steps in the query session have a continuity which depends on 

the cost incurred by the user, and the perceived information gain (distribution pattern) 
of the user. For example, one possible behavior (distribution) may be identified which 
indicates that the user is ‘homing in on’, or spending more time reading, specific 
information which is relevant to his/her query. The user may discontinue a search 
sequence for two main reasons: (i) the user has  found the information he was looking 
for, or is at least satisfied with the information found; (ii) the user has not found the 
information he was looking for, and the cost incurred has exceeded that which the 
user was prepared to spend on the given search. We could also postulate a third option 
(iii) when the user doesn't know how to reformulate their query to make progress. In 
the present work we have considered this option as included in option (ii), given that 
the user may perceive a potential high cost for obtaining the information. Also, an 
interpretation of “think-time” has been factored into the cost formula (See Section 3). 

2.1   Application of the ‘Cost-Continuity Model’ to Web Search 

In the case of a query session, we assume that there is a payoff in terms of an 
increasing cumulative information gain which reaches a maximum value after N 
queries, and an increasing cumulative cost in terms of time and effort. In a query 
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session, the user makes one or more queries Qi, each with its distribution bi in terms 
of information gain and cost ci in terms of user effort, the latter of which we can 
measure in terms of elapsed time, number of clicks, and other available data. In the 
case of a session in which the user progressively refines his query, we could say that, 
after each query and/or after each click on a result, the user will evaluate if it is 
worthwhile to spend more time searching and clicking, or if with the information he 
already has, he has satisfied his information need and will therefore leave the “game”. 

With reference to Fig. 1, each successive query (Q1, Q2 …) has an option to 
continue (C) or terminate (T). If the option to terminate is taken after making query 
Qi, (vertical leg of the sequence), then the benefit will be bi and the cost ci. We recall 
that the benefit will intuitively represent the users interest (for which we have used a 
“distribution” factor, see Section 3) and the cost will represent the time and effort 
made by the user. We note that, in the two player centipede game [12,13], the values 
at each leg ‘T’ (Fig. 1), correspond to the payoff for player 1 and player 2, 
respectively. In the ‘Continuity –cost model’ with one player, the values correspond 
to the distribution and the cost, respectively. The user has the option to continue 
clicking on results for the current query, or can postulate a new query, or can quit the 
session.  

 

 
 
 
 
 
 
 

 
Fig. 1. ‘Cost model’ representation of a query session, where Q1, Q2 …, are queries, C 
indicates that the user continues, T indicates that he terminates, b1=benefit for Q1 and c1=cost 
for Q1 

2.2   Representation of Query Sessions 

One difficulty for studying real query sessions is the high proportion of queries which 
seem chaotic in nature. This is due to different reasons: non-expert users, users who 
have inefficient or ineffective search methods, poor style in formulating queries, lack 
of knowledge of what they are searching for, a high number of spelling and 
typographical errors etc.  

If we limit our study by selecting query sessions which appear to follow a logical 
sequence of queries to find some specific information, we still have complex situation 
in which we must identify trends and anticipate what a user will do. If we are dealing 
with anonymous users in a high volume search engine query log, we have to wait at 
least until they (seem to have) completed a query and studied the returned documents, 
in order to make any assessment about what they will do next (for example, launch 
another query). A query session may consist of just one query, or two queries, or three 
or more, although the majority (a frequency of 95% was found for TodoCL [14]) do 
not consist of more than three queries. Also, for the first three queries, the ratio of 



 A Cost-Continuity Model for Web Search 223 

users who quit to those who make a new query (in the same query session) is 75% and 
25%, respectively. We propose dividing the possible options of what a user may do 
into six categories. Thus, after posing a first query (Q1) the user can quit, or continue. 
If the user continues he will pose a second query (Q2), from which he can continue or 
quit, and if the user continues after the second query, he will pose a third query (Q3) 
from which he can continue or quit. This subdivision enables us to study the data for 
each ‘query level’, and partitioned by those who quit and those who continue. In ‘well 
formed’ queries, we assume the user has kept following the same informational ‘trail’ 
and has not deviated to another theme or changed the basic objective of what s/he is 
looking for. 

3   Basic Available Data and Derived Factors 

Basic Available Data Attributes: For each query and results browsing in a query 
session, we have the following data: (i) Number of clicks made by the user; (ii) hold 
time for each document (result) clicked on, from which we derived the average hold 
time and the total elapsed time for a query; (iii) the ranking of each of the documents 
clicked in the results list of the search engine, from which we can derived the average 
ranking and the sum of the rankings; (iv) number of terms in the query; (v) number of 
documents retrieved by the query. We also have the total number of documents 
indexed by the search engine, which of course is a constant for all the calculations, 
and is used in the derived factor C1 (see below). 

3.1   Derived Cost Factors 

The following factors have been developed as an approximation to the effort spent for 
a given query. 

Query Formulation Cost 1 (C1). Let DT be the total number of documents indexed 
by the search engine, DR the number of documents retrieved by the given query. Then 
we define the cost factor as: 

                                    

( )
( )

( )
( )T

R

T

D
D

D

D

D
C1 R

T

log

1log
1

log

log 1 +−== +  (1) 

which serves as a kind of IDF (Inverse Document Frequency) and gives us an idea of 
the ‘goodness’ of the terms chosen. This is because the smaller the ratio, the fewer 
results are returned and the more specific the query is. This formula gives an 
approximation for the time/effort spent by the user to think of which terms to use. We 
assume that the query terms are well formed (correct spelling and use of valid 
characters). Modern search engines usually filter user queries for spelling and correct 
usage. 

As an alternative to the query formulation cost feature proposed based on an 
anonymous web log, a user study could be conducted to establish cost features. A 
second alternative would be to try to estimate the average time that a given user 
spends looking at search results, and then subtract it from the "hold time" to get some 
estimate of query reformulation time.  
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Query Formulation Cost 2 (NUMTERMS): The number of terms in the query, 
which is a data value derived directly from the search engine log.  

Effort Spent Locating Documents in Results (SRC). We define SRC as the sum 
of the rankings of the documents clicked by the user. This gives an approximation for 
the effort the user spends locating the documents which s/he finds interesting. 
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∈
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DocsClickedi
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That is, SRC is equal to the sum of the rankings of the clicked documents: if the user 
clicks documents ranked 1, 5 and 8, then the SRC will be equal to 1+5+8=14. 

Our definition of SRC is similar to "position-bias" scoring models, such as that 
proposed by Craswell [9]. An alternative approach would be the “query clarity” 
feature proposed by Cronen-Townsend et al [11]. However, this model has a greater 
complexity, being based on the query language model which requires access to 
statistics of the content of each document. 

Elapsed Time. We define ELAPSED_TIME as the sum of hold times for the 
documents selected for a given query. This is a data value derived directly from the 
search engine log. 

Other Factors. We define the following factor separately from the cost factors, 
given that it is proposed as a sort of ‘benefit’ or ‘interest measure’. 
Browsing Time Distribution (SDISTRIB). This is a factor defined in terms of the 
distribution of the hold times. HOLDTIME H represents the number of seconds a user 
maintained open a given document selected from the results list. It is also implicitly 
related to NUMCLICKS, the number of clicks made by the user on results documents 
for the corresponding query. Thus, for one query of a query session, we make the 
following definition:  

                    Distribution ∑∑ ≅
−

2
2)(

HT
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(3) 

This provides information about the “time distribution” of the query, one of the key 
factors included in the models defined in [2,3].    

Ratios. Calculated for the second and third queries for the following variables: 
Elapsed_Time, Av_HoldTime, NumTerms, C1, SRC, SDistrib, NumClicks, 
Docs_Retrieved, Av_Rank. Thus, for example, Ratio_Elapsed_Time represents the 
elapsed time of the current query divided by the elapsed time of the previous query. 

Accumulators. Calculated for the second and third queries of the following 
variables: Elapsed_Time, Av_HoldTime, NumTerms, C1, SRC, SDistrib, 
NumClicks, Docs_Retrieved, Av_Rank. Thus, for example, Sum_Docs_Retrieved 
represents the number of documents retrieved by the current query plus the number of 
documents retrieved by all previous queries, in the current query session. 

Choice of Factors: We initially applied a Principal Components and Chi-Square 
analysis to the basic data variables, the candidate derived factors and the continuity 
flag for each query level. Variables were then selected based on the best correlation 
values. With respect to the definitions, the SRC, C1 and SDISTRIB factors were 
partially inspired from the literature: SRC is similar to the "position-bias" scoring 
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model of Craswell [9], C1 is a pseudo IDF value, see Teevan [10] and SDISTRIB is a 
similar idea to that presented in [2,3].  

Example Data Values for a Query Session: With reference to Fig. 2, we see a 
real query session of three queries, taken from the query log data used for the study. 
We observe that the user progressively refines the query, by adding more specific 
query terms. Above each query we see the values for the number of clicks and the 
number of documents retrieved, and below each query we see the calculated values 
for the four cost factors and the distribution factor, as described in Section 3. 

 
 
 
 
 
 
 
 
 

 

 

Fig. 2. Example of a State diagram for a Query Session 

4   Data Analysis of User Continuity for Query Sessions 

In this Section we show results of the data analysis and data modeling using the 
IM4Data (IBM Intelligent Miner for Data V6.1.1) Data Mining tool [15].  

4.1   Preprocessing and Data Sampling 

The original data has one line per click, with only the time stamp and the rank of the 
clicked document. Therefore we calculated the hold time of a document using a 
standard criteria in web search log analysis, which is to consider it as the time to the 
next click. We initially select 10,000 candidate clicks from a web query log of 
252,000, whose hold time is not zero (unique clicks) nor excessively large (there are 
characteristics including very long hold times, in general greater than 900 seconds, 
which may indicate the user is inactive before the screen window which contains the 
document). In the literature studied on web search logs, a value of approx. 900 
seconds is generally used as a limit for valid hold times [3,8]. It is important to note 
that if there is no click on a new document for the current query results, which occurs 
more often when there are few clicks per query, then the value of the last "hold time" 
is taken as time to next click (if there is a new query) or the average of the hold times 
of the current query (if there is more than one) or zero if there has been no document 
selections. This introduces an approximation, but we have observed empirically that 
in general it gives a good estimation of the true hold time, and statistically is much 
better than assigning hold time equal to zero.   
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4.2   Data Analysis - Descriptive Statistics 

We have used the IM4Data [15] Bi-variate Statistics option using the Chi-Squared 
statistic. This allows us to rank the variables by the chi-square statistic relative to the 
partition variable (continuity) and visualize and compare the trends for each variable 
in one partition with the corresponding variable in the other partition. In Figs. 3 and 4, 
the resulting graphics for each attribute are in descending order (from left to right) of 
the Chi-Squared statistic, which gives the importance relative to the partition variable. 
Numeric attributes are represented by a histogram of their distribution. In all the 
histograms, the grey filled rectangles indicate the frequency for the whole dataset, and 
the other rectangles (which terminate above or below the grey rectangles, represent 
the frequency for the given partition. 

Descriptive Statistics: Query 1. We will now make some observations about the 
most significant tendencies shown by variables in the dataset corresponding to the 
first query of a query session. With reference to Fig. 3, we observe that for users who 
choose to continue (right hand figure, partition=11) the attribute NUMCLICKS has a 
higher frequency for fewer clicks (distribution for the given partition shown by 
unfilled rectangles with grey borders). This means that users who continue have 
made, in general, fewer clicks on results.  

 

 

 

 

 

 

 

 

 

  

Fig. 3. Distributions of attributes of dataset ‘Query 1’, for users who quit (left) and users who 
continue (right); attributes ordered by Chi-Square 

Also, if we observe the attribute SD_HOLDTIME, there is a lower frequency for 
small standard deviations, which means that hold times tend to be more different for 
users who go on to make a second query. This same tendency is shown by the derived 
factor SDISTRIB, which, we recall, is derived from the hold times of the documents. In 
the case of ELAPSED_TIME, we observe that users who continue spend slightly more 
time looking at the documents. This slight tendency is also shown by AV_HOLDTIME. 
In the case of SRC, a stronger tendency is visible, in which a higher frequency is shown 
for small values. This indicates that users who continue tend to choose results which are 
closer to the top of the ranking. Finally, SD_RANK tends to have lower frequencies for 
lower standard deviations of RANK, which means that the selected results tend to be 
more dispersed for users who go on to make a second query. 
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4.3   Classification Using Tree Induction 

We have used the IM4Data tree induction algorithm to produce an induced tree of the 
input attributes with the classifier label as the continuity flag, for each query number. 
For the sake of brevity, we only show details of the decision tree for Query 1. 

Induced Classification Tree: Query 1. With reference to Fig. 4, we see the 
pruned tree (to level 6) induced by IM4Data on the Query 1 dataset, including the 
details of the decision nodes and classification nodes. We observe that attributes 
‘NUMCLICKS’ and ‘SD_HOLDTIME’ have been used in the upper part of the tree 
(NUMCLICKS < 1.5, SD_HOLDTIME < 19.92). Thus, they represent the most 
general and discriminatory factors to classify ‘PARTITION’, that is the users who 
continue (PARTITION=11) and users who do not continue (PARTITION=10). We 
note that lower down in the tree the attributes ‘SDISTRIB’, ‘SRC’ and ‘AV_RANK’ 
have been used, which implies they are used for more specific cases. The triangular 
nodes indicate that a sub-tree exists below the level of the pruning limit, and the 
corresponding classification data is given. An example rule derived from the decision 
tree of Fig. 4 is: 

IF NUMCLICKS < 1.5   THEN 11 (continue): 100%, 51 

which is interpreted as: if the number of clicks is less than 1.5 then there are 51 cases 
(with 100% accuracy) in which the user continues. A second example rule derived 
from the decision tree of Fig. 5 is: 

IF NUMCLICKS BETWEEN 1.5 AND 2.5 AND HOLDTIME < 19.92 
THEN 11 (continue): 100%, 26 

Which is interpreted as: if the number of clicks is between 1.5 and 2.5 and the hold 
time is less than 19.92 then there are 26 cases (with 100% accuracy) in which the user 
continues. The relationship between NUMCLICKS, SD_HOLDTIME and 
AV_HOLDTIME could be as a consequence that these measures express a similar 
 

 

 

Fig. 4. Pruned Classification Tree: dataset ‘Query 1’ 
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kind of information. One option would be normalize and aggregate them to reduce the 
final number of measures, which may give a greater balance to the classification tree. 

Classification Precision. With reference to Table 1, we present the test results 
(test folds) for the tree induction model built from the Query 1, Query 2 and Query 3 
datasets. We observe that the model for Query 1 is the strongest (overall precision 
over 5 folds is 92.59%). The model for Query 2 has a precision of 78.57%, and the 
model for Query 3 has an overall precision of 76.78. For the Query 1 model, the low 
percentage of false positives and false negatives over the five folds indicates that we 
have a ‘robust’ model. Also the classification accuracy for the minority class 
(‘continue’) is high, at 81.3%. We observe that the results for Queries Q2 and Q3, 
indicate that it is progressively more difficult to model the data, for successive 
queries. With reference to Q2 and Q3, the precision for the ‘continue’ class drops to 
65.6% for Q2 and 58.5% for Q3, with false negative rates of 32.4% and 41.9%, 
respectively.  

Table 1. ‘Query 1, 2 and 3 ’: test precision for 5x2 fold cross validation  

Q1 Q2 Q3

MP* MP MP

fold1
stop† 97.5,  6.54

93.07
89.1,  12.8

82.27
81.9, 16.1

79.55
continue†† 94.9,  3.48 86.4,  11.7 60.0, 45.0

fold2
stop 94.9,  3.48

93.44
86.4,  11.7

80.08
78.7, 10.8

71.25
continue 88.8,  15.9 62.5,  31.5 58.3, 40.9

fold3
stop 93.3,  6.22

90.44
85.3,  12.4

80.03
87.1, 15.8

71.25
continue 82.1,  19.0 66.7,  27.6 54.0, 37.2

fold4
stop 100.0,  7.81

93.68
77.8,  14.0

74.64
73.5, 16.8

79.26
continue 75. 2, 0.0 66.3,  35.1 62.8, 43.0

fold5
stop 96.2,  6.05 92.40 78.1,  11.8

76.09
75.6, 15.9

76.43
continue 80.4,  13.0 70.3,  35.0 57.6, 44.2

Geometric 
mean for 

folds

stop 96.3,  5.82
92.59

83.2,  11.8
78.57

79.2, 14.9
76.78continue 81.3,  3.18 65.6,  32.4 58.5, 41.9

True Negative, False Negative}  

Note that, in Table 1, with reference to True/False Positive/Negative, a Positive 
result corresponds to ‘stop’ and a Negative result corresponds to ‘continue’. 
Therefore, a True Positive corresponds to ‘stop=true’ and a True Negative 
corresponds to ‘continue’ ≡’not stop’=’true’. The nature of query sessions indicates 
that it is progressively more difficult to identify trends in user behavior beyond the 
first query of the query session. Also, the majority of users (79%) are classifiable by 
the Query 1 model. We note that the best results for Query models 1 and 2 were 
obtained by using the inputs chosen by a Principal Components analysis. On the other 
hand, the best inputs for Query model 3 were found by using Chi-Square. Finally, we 
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note that, although we gave all inputs (basic, derived factors, summations and ratios) 
to Query models 2 and 3, the best results were given by the ratios and summations, 
and many of the derived cost factors were used preferentially to the basic data 
attributes. In the case of the Query 1 model, we used only the basic data and factors, 
given, of course, that the ratios and summations do not exist for the first query. 

5   Conclusions 

In this paper we have presented and evaluated a novel conceptual model for defining 
individual user behavior during query sessions for Internet search. We have defined 
some novel cost/distribution calculations which we have used, together with the basic 
query log data, as descriptive variables of the query sessions.  The partition category 
is a flag which indicates if the user will make a new query (‘continue’) or finish the 
query session (‘quit’). We have used descriptive statistical techniques and rule 
induction to look for trends in the data, using real query sessions taken from the 
‘TodoCL’ query log. The work has enabled us to identify different trends for each 
query level (1st, 2nd and 3rd query), and define a strong model for the first Query 
(overall precision of 92.6% with low false positive and false negative rates), relating 
the continuity flag to the input attributes, which covers the majority (79%) of the 
queries sent to the search engine.  
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Abstract. Unlike propositional logic which works on truth or falsity of

statements, human judgements are subjective in nature having certain

degree of uncertainty. Two different people will analyse and interpret a

document in two different ways based on their background and current

focus. In this paper we present an enhanced framework of subjective

logic for automated single document analysis where each sentence in the

document represents a proposition, and ‘opinions’ are constructed about

this proposition to focus the degree of uncertainty associated with it. The

‘opinion’ about a sentence determines the significance of that sentence in

a document. The input arguments are built automatically from a docu-

ment in the form of evidence; then they are analyzed based on subjective

logic parameters. Two different approaches are described here. The first

utilises “bag of words” concept. However, this approach tends to miss

the underlying semantic meanings of the context, so we further enhanced

it into the latter approach which incorporates semantic information of

the context, by extending the basic definitions of subjective logic.

1 Introduction

Subjective logic [1] is a logic which operates on subjective beliefs about the world,
and uses the term opinion to denote the representation of a subjective belief.
An ‘opinion’ can be interpreted as a probability measure containing secondary
uncertainty, and as such subjective logic can be seen as an extension of both
probability calculus and binary logic. It is suitable for modeling and analysing
situations involving uncertainty and incomplete knowledge [1], [2].

Jøsang et al. [2] claims that, subjective logic is mainly designed to apply and
interpret different real world problems in artificial intelligence reliability anal-
ysis [3], authentication [4], and legal reasoning [5] where evidence is gathered
from multiple sources with manual intervention like the case of open systems.
Subjective logic also seems very suitable for reasoning about intrusion attacks
because on the one hand an attack can be considered to be a crisp event, i.e.
an attack either takes place or not, while on the other beliefs about intrusion
can have varying degrees of certainty [6]. By analogy we can infer that any kind
of decision making process, which works on crisp event but has uncertainty as-
sociated with its judgement or consequence can be dealt with subjective logic.

V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 231–242, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In a document computing area, the picture is quite different; where only source
of information is the document itself. This represents more of a closed system
where the information source is restricted to a particular origin; which is a doc-
ument in this case. When analysing single documents using subjective logic, the
sets of arguments are generated automatically as evidence from the information
available in it. It is mainly done by exploiting the structure and semantics of the
text being considered.

When a document is read by a human, they analyse it by identifying the
main idea of the source text and filtering what is essential in the information
conveyed by the text. This step further involves differentiating complementary or
superfluous information according to the intended purposes of the writers, with
respect to what they aim at the readers to grasp. In [7], the authors have pointed
out that the context of a given piece of text is interpreted and understood by a
different person in a different fashion. Thus we see that human understanding
and reasoning is subjective in nature unlike propositional logic which deals with
either truth or falsity of a statement. Furthermore information provided by dif-
ferent persons can be either linguistically or factually different, with a prevalent
degree of impreciseness and uncertainty.

In this paper, our main aim is to formulate an enhanced model based on subjec-
tive logic to analyse documents in a way which more similar to human judgements
capturing uncertainty. Each sentence of a document represents specific facts about
the document; we consider them to be propositions and define ‘opinions’ about
these propositions. Thus we present a framework for automatically determining
opinions about a sentence, using subjective logic because of its property of ‘uncer-
tain probability’ measure. We portray two different concepts; ‘bag of words’ and
further enhancement of the model with semantic information from the document;
as ‘bag of words’ tend to lose the semantic binding of the context.

2 Representing Uncertain Probabilities: Subjective Logic
(SL) Basics

In subjective logic, first order measure of evidence are expressed as belief mass
distribution functions over frame of discernment. All these belief measure rep-
resentations in subjective logic, which are called ‘opinions ’, also contain a base
rate parameter which express the a priori belief in the absence of evidence. Philo-
sophically, ‘opinions’ are quantitative representations of evidence as perceived by
humans or by other intelligent agents [8]. This portraits a scenario which is an
open system where evidence are gathered from different sources.

A frame of discernment Θ contains the set of possible states. It is assumed
that the system cannot be in more than one elementary state at the same time.
However, if an elementary state is assumed to be true then all the superstate
can be considered true as well. In fact Θ is by definition always true because it
contains a true state.

The elementary states in the frame of discernment Θ will be called atomic
states because they do not contain any substates. The powerset of Θ, denoted
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by 2Θ, contains atomic states, and all possible combinations of atomic states,
including Θ. A frame of discernment can be finite or infinite, in which cases the
corresponding powerset is also finite or infinite.

An observer assigns a belief mass to various states based on its strength of
belief that the state (or one of its substates) is true. We have directly taken
the basic definitions from the original paper [2] which we have used to build up
evidence from a document in our study.

Definition 1 (Belief Mass Assignment). Let Θ be a frame of discernment.
If with each substate x ∈ 2Θ a number mΘ(x) is associated such that:
1. mΘ(x) ≥ 0
2. mΘ(∅) = 0
3.
∑

x∈2Θ mΘ(x) = 1
then mΘ is called a belief mass assignment in Θ, or BMA for short. For each
substate x ∈ 2Θ, the number mΘ(x) is called the belief mass of x.

Definition 2 (Belief Function). Let Θ be a frame of discernment, and let mΘ

be a BMA on Θ. Then the belief function corresponding with mΘ is the function
b : 2Θ → [0, 1] defined by:

b(x) =
∑
y⊆x

mΘ(y), x, y ∈ 2Θ (1)

Definition 3 (Disbelief Function). Let Θ be a frame of discernment, and let
mΘ be a BMA on Θ. Then the disbelief function corresponding with mΘ is the
function d : 2Θ → [0, 1] defined by:

d(x) =
∑

y∩x=∅
mΘ(y), x, y ∈ 2Θ. (2)

Definition 4 (Uncertainty Function). Let Θ be a frame of discernment, and
let mΘ be a BMA on Θ. Then the uncertainty function corresponding with mΘ

is the function u : 2Θ [0, 1] defined by:

u(x) =
∑

y∩x �=∅
y�x

mΘ(y), x, y ∈ 2Θ. (3)

From Josang’s concept, we can get the Belief Function Additivity which
is expressed as:

b(x) + d(x) + u(x) = 1, x ∈ 2Θ, x �= ∅. (4)

Definition 5 (Relative Atomicity). Let Θ be a frame of discernment and
let x, y ∈ 2Θ. Then for any given y �= ∅ the relative atomicity of x to y is the
function a : 2Θ → [0, 1] defined by:

a(x/y) =
|x ∩ y|
|y| , x, y ∈ 2Θ, y �= ∅. (5)



234 S. Manna, B.S.U. Mendis, and T. Gedeon

It can be observed that x ∩ y = ∅ ⇒= 0 and that y ⊆ x ⇒ a(x/y) = 1. In
all other cases relative atomicity will be a value between 0 and 1. The relative
atomicity of an atomic state to its frame of discernment, denoted by a(x/Θ),
can simply be written as a(x). If nothing else is specified, the relative atomicity
of a state then refers to the frame of discernment.

Definition 6 (Probability Expectation). Let Θ be a frame of discernment
with BMA mΘ then the probability expectation function corresponding with mΘ

is the function E : 2Θ → [0, 1] defined by:

E(x) =
∑

y

mΘ(y)a(x/y), x, y ∈ 2Θ. (6)

Definition 7 (Opinion). Let Θ be a binary frame of discernment with 2 atomic
states x and ¬x, and let mΘ be a BMA on Θ where b(x), d(x), u(x), and a(x)
represent the belief, disbelief, uncertainty and relative atomicity functions on x
in 2Θ respectively. Then the opinion about x, denoted by wx is the tuple defined
by:

w(x) ≡ (b(x), d(x), u(x), a(x)). (7)
For compactness and simplicity of notation we will in the following denote be-
lief, disbelief, uncertainty and relative atomicity functions as bx, dx, ux and ax

respectively.

Definition 8 (Ordering of Opinions). Let ωx and ωy , be two opinions. They
can be ordered according to the following criteria by priority:
1. The opinion with the greatest probability expectation is the greatest opinion.
2. The opinion with the least uncertainty is the greatest opinion.
3. The opinion with the least relative atomicity is the greatest opinion.

3 Subjective Logic in Document Analysis

How can we define evidence in a document related to its overall meaning1? This
is what we are building here automatically. We consider words, phrases or co-
occurrence of words, semantic associations, or a sentence itself to be evidence
present in a document. Now, based on this, our basic motivation is to formulate
‘opinion’ about a proposition, which is a sentence in this case. Stronger the opin-
ions about a sentence, more is its significance in the document. These opinions
are measured by probability expectation of a sentence as defined in (6). Greater
the probability expectation, more significant is the sentence.

3.1 Representation of a Document

Assumptions. We propose the following framework for the practical applica-
tion of subjective logic in a document computing context.
1 From here, we simply write ‘evidence’ to express that the “evidence in a document

related to its overall meaning”.
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1. All the words or terms (removing the stop words) in a document are atomic.
However, some sentences can have single word.
2. The sentences are unique, i.e., each of them occur only once in a given
document.

A document consists of sentences. In this paper, a sentence is considered to
be a set of words. In a document, sentences are separated by stop marks (”.”,
”!”, ”?”). Terms (stop words excluded) are extracted and the frequencies (i.e.
number of occurrences) of the words in each sentence are calculated.

Let us now define the notations which we will be using in the paper. Θ is the
frame of discernment. We represent a document as a collection of words, which is

Θ = Dw = {w1, w2, ..., wn} (8)

where, Dw is a document consisting of words. w1, w2...wn and |Dw| = n. Now,

ρ(Θ) = {{w1}, {w2}, ..., {w1, w2, w3, ..., wn}} ≡ 2Θ (9)

|ρ(Θ)| = 2n (10)

Since a document is a collection of sentences, it can also be represented as

Ds = {s1, s2, ..., st} (11)

where t is a finite integer and each si is an element of ρ(Θ). Each sentence is
comprised of words, which belong to the whole word collection of the document
Dw. We thus represent each sentence by,

Sl = {wiwk...wr} ∈ Θ (12)

where, 1 ≤ i, k, r ≤ n and Sl ∈ ρ(Θ).

3.2 Example of Documents

Eg:1- A generic example. In fig.1, we illustrate a generic document D with
four sentences Ds = {s1, s2, s3, s4} and a list of unique words
Dw = {w1, w2, w3, w4, w5}. Atomic events are the single words w1 to w5 and the
non atomic events are the sentences from s1 to s4; but in this case s3 and s4

are atomic. Each sentence is composed of both atomic and non atomic events.
These are used as evidence for subjective logic formulation in this study.

Eg:2- A specific example. Here is another sample document which consists
of four different real sentences, Ds = {s1, s2, s3, s4}.
1. A plane hits a skyscraper.
2. A plane crashed into a tall building.
3. People gathered to find out the cause.
4. Reporters arrived to collect information about the crash.

We will refer to this example in the following sections for explaining our
representations of subjective logic.
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(b) Real example

Fig. 1. Representation of ‘bag of words’ form of sentences in a document

3.3 Modeling ‘Opinions’ about a Sentence in a Document

In this section we present the formulation of ‘opinion’ about a sentence in a
document using subjective logic explained in sec.2. Now, let us explain step-wise
computation of opinion based on sec.2 equations for the examples considered.
Examples 1 and 2 as shown in subsec.3.2 are of same kind expect the fact that
eg.2 represents real words in place of symbols of eg.1. So, in this section, we
illustrate the computation for any one of these, i.e, eg.1.

BMA calculation: BMA is explained in def.1. Now, for a document, we cal-
culate BMA for each event by,

m(x) =
F (x)

Z
, (13)

where F (x) =
∑t

k=1 fxk
, where t is the total number of sentences in the docu-

ment, x ∈ 2Θ, and fxk
is the frequency of occurrence of event x in sentence k.

In other words, it is the total frequency of that event in all the sentences (or the
whole document).

Z =
∑
∀x �=Φ

F (x), x ∈ 2Θ (14)

Z is the total frequency of the all the existing events (whose frequency is non
zero). In the given example 1, we have 7 valid states and their corresponding
frequencies in the document are: F ({{w1}) = 1, F ({w2}) = 2, F ({w3}) =
1, F ({w4}) = 2, F ({w5}) = 1, F ({w1, w2}) = 1, F ({w2, w3, w4}) = 1}.
Therefore, Z = 9 in this case. Using (13), we calculate BMA for each of the
states (or events) in the given example shown in fig.1. So, for eg.1, we have
m(w1) = 1

9 , m(w2) = 2
9 , m(s1) = m(w1, w2) = 1

9 ... m(s4) = m(w5) = 1
9

Figure 1(b) is the diagrammatic representation of example 2 of subsec.3.2. The
words shown in the diagram are processed by stemming and stop words removed.
This is a ‘bag of words’ representation of the document. Here, the number of
atomic states (or events) are 14 and non-atomic states are 4. Now total frequency
for all of these 18 states is 21 (which means Z = 21) (calculated exactly in the
same way as the generic example). Now, using (13), we get the BMA for each
of these states respectively; provided the frequency of each non stop words in
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each sentence is 1 as per example 2; such as, m(hit) = 1
21 , m(skyscraper) = 1

21 ,
m(plane) = 2

21 , m(crash) = 2
21 ...and so on.

Belief, Disbelief, and Uncertainty. Using definitions from sec. 2, we use
equations (1), (2), and (3) to calculate the belief, disbelief and uncertainty of a
sentence respectively. We illustrate the computation using eg.1’s s1 by,
b(s1) = m(w1) + m(w2) + m(w1, w2) = 4

9
d(s1) = m(w3) + m(w4) + m(w5) = 4

9
u(s1) = 1−(b(s1)+d(s1)) = 1

9 ; using (4). For eg.2, we calculate these parameters
in the same way as shown for eg.1.

Calculation of relative atomicity, probability expectation and ‘opinion’
about a sentence. Here inorder to calculate probability expectation, we first
need to find relative atomicities. Again, using equations (5), (6), and (7) of sec. 2,
we compute relative atomicity for sentence s1 of eg.1 as:
a(s1/w1) = |s1∩w1|

|w1| = 1
1 = 1

a(s1/w2) = |s1∩w2|
|w2| = 1

1 = 1

... a(s1/w5) = a(s1/s4) = |s1∩w5|
|w5| = 0

1 = 0
Likewise, we calculate the atomicity for other sentences. So, the probability
expectation is then obtained by, E(s1) = m(w1)a(s1/w1) + m(w2)a(s1/w2) +
m({w1, w2})a(s1/{w1, w2}) + ... + m(w5)a(s1/w5) Thus E(s1) = 13

27 = 0.48.
Thus opinion (ωs1 or ω(s1))about a sentence s1 can be expressed using these four
parameters by (7) as, ω(s1) = (0.44, 0.44, 0.11, 4.33). Likewise, we compute
the parameters in the same way for eg.2.

4 Extension of Subjective Logic with Semantic
Information of a Document

In this section, we extend basic subjective logic model explained in the previous
sec.3 where we have already shown, how to define ‘opinion’ about a sentence in
a document considering words, phrases and sentences to be atomic or composite
events as different sources of evidence. But we used ‘bag of words’ for formulating
this measure, which is a superficial approach according to information retrieval
context. Only root form of words are used for frequency measure where the
underlying semantic relations between events are ignored. Hence, here we use
semantic similarity as a measure to find relatedness of concepts of sentences
whose ‘opinions’ are desired.

4.1 Why Do We Need Semantic Information?

What we write or say are very context sensitive. A same word can be linguisti-
cally expressed differently in different contexts; at the same time, different words
can linguistically express same thing at a particular context. If we look at our
example 2 of sec.3,
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sentence 1 : “A plane hits a skyscraper.”
sentence 2 : “A plane crashed into a tall building.”
Anyone can easily infer that both the sentences are similar in their context
though different words are used to express it. Similarly, if we look at other two
sentences,
sentence 3 : “People gathered to find out the cause.”
sentence 4 : “Reporters arrived to collect information about the crash.”
the inference will again be same.

In fig.2, we illustrate 4 sentences with overlap only if the words in them are
exactly same with same parts of speech (POS) tag. The dotted lines show which
words are most similar in their meanings in sentences. In sentence 1 and 2,
phrases ‘hits a skyscraper’ is similar as ‘crashed into a tall building’ or the word
pairs like ‘hits’ and ‘crash’, ‘people’ and ‘reporters’, ‘gathered’ and ’arrived’ etc
have great similarity in their meanings. Index terms are not enough to find this
kind of analogies as they look for only exact matches between words, which
in this case failed to find any kind of relations among the sentences of eg.2.
We thus extend and redefine subjective logic belief measures by incorporating
semantic information about word, phrase, and sentence similarities from the
document. To accomplish this, we used WordNet [9] as a lexical dictionary to
gather semantic information about each word of sentences; thus making the
whole decision making process context sensitive.

S1 S2 

S3 

S4

plane hit 
skyscraper tall 

building 

people 
gather 

find 
cause 

reporter 
information  

arrive   
collect   
crash 

crashed 

Fig. 2. An example of a document with semantic overlap

4.2 Measure of Semantic Similarity

Two words are contextually similar, if they share similar senses. To perform this
automatically, we require WordNet [9], an online lexicon database, to compute
this measure. Each word can have one or more synsets based on different senses
of their existence also in different parts of speech like noun, verb, adjective, and
adverb. Same word in different parts of speech convey different meaning to the
context in which they are used. In both sentences 2 and 4, the word ‘crash’
occurs but in two different parts of speech; verb for former and noun for latter;
obviously imparting different sense to the context. So, considering only root form
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of any word, misses out the semantic meaning of it. To overcome this problem
of ‘bag of words’ concept, we introduce a similarity measure α.

Definition 9 (Semantic Similarity). Let Θ be a frame of discernment, and
let x, y ∈ 2Θ. Then for any x and y, semantic similarity is the function α :
2Θ → [0, 1] defined by

α(x, y) = SimScore(x, y) x, y ∈ 2Θ. (15)

where SimScore(x, y) is a function which determines the semantic similarity
measure between x and y provided the elements of x and y are in the same parts
of speech. This can be any kind of similarity score like gloss overlap [10], path
based measures [11], [12], edge based measures or sentence similarity measure
[13]. We use a threshold κ to define the degree of similarity. Thus we can say,
α = 1, x and y are identical
κ ≤ α < 1, x and y are similar
0 ≤ α < κ, x and y are dissimilar, where κ ∈ [0, 1].
Generally κ = 0.5 is taken as a standard value for similarity scores [14].

4.3 Enhanced Belief Measures Using Semantic Information

In this section, we present an extension of subjective logic formulation for doc-
ument analysis using semantic information. The equations are redefined using
the similarity score α as shown in (15).

Computation of BMA: We compute belief mass assignment in the same way
as shown in (13). The only difference is in the frequency calculation of atomic
states; where we consider parts of speech of the words as well instead of only
the root forms. For example, in eg.2, the word ‘crash’ is in two different parts
of speech (POS) in s2 and s4, so these belong to two separate atomic events.
Likewise, ‘plane’ being in same POS (noun) for both sentences 1 and 2 will have
a total frequency count of 2 for that state.

Now, for example 2, there are 18 different states existing, and the frequency
of each state can be represented as: F ({planenoun}) = 2, F ({hitverb}) = 1,
F ({crashnoun}) = 1, F ({crashverb}) = 1, F ({buildingnoun}) = 1, ...,
F ({planenoun, hitverb, skyscrapernoun}) = F (s1) = 1. Thus we get Z = 19 for
this case. We compute BMA by (13) using these values computed,
m(planenoun) = 2

19 , m(buildingnoun) = 1
19 and likewise for other events.

Similarity scores for example 2: For different belief measures, we need to use
similarity score between two events. Let us assign similarity scores for each word
pair belonging to same parts of speech (using example 2). Suppose, sentence
1 be the proposition we considered. So some of the similarity scores which are
necessary for finding opinion about s1 can be:
α(planenoun

s1
, planenoun

s2
) = 1, α(planenoun

s1
, buildingnoun

s2
) = 0.1,

α(hitverb
s1

, crashverb
s2

) = 0.7, α(skyscrapernoun
s1

, planenoun
s2

) = 0.08,
α(skyscrapernoun

s1
, buildingnoun

s2
) = 0.85, α(planenoun

s1
, peoplenoun

s3
) = 0.03,
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α(planenoun
s1

, causenoun
s3

) = 0.01, ...
Likewise we compute α for all other word pairs. For this analysis, we also re-
quire similarity between composite events which can be computed using hierar-
chical document signature [13]. Using this method, word-sentence similarity and
sentence-sentence similarity can be computed. Now, let us present some similar-
ities of composite events for s1,
α(s1, s2) = 0.5, α(s1, planenoun

s2
) = 0.8, α(s1, crashverb

s2
) = 0.6, α(s1, talladj

s2
) =

0.01, ..., α(s1, peoplenoun
s3

) = 0.02, α(s1, f indverb
s3

) = 0.01, α(s1, gatherverb
s3

) =
0.01, ..., α(s1, reporternoun

s4
) = 0.01, α(s1, s4) = 0.2. The values of α shown here

are solely based on intuitions and general understanding of semantics of the text
considered.

Definition 10 (Semantic Belief Function). Let Θ be a frame of discern-
ment, mΘ be a BMA and α be semantic similarity on Θ respectively. Then the
belief function corresponding with mΘ and alpha is the function bs : 2Θ → [0, 1]
defined by:

bs(x) =
∑

∀y|α(x,y)≤1

mΘ(y), x, y ∈ 2Θ, y ⊆ x (16)

Thus, as per the similarity values provided, belief of sentence 1 is computed
as,

bs(s1) = m(planenoun)× α(s1, planenoun) + m(hitverb)× α(s1, hitverb)
+m(skyscrapernoun)× α(s1, skyscrapernoun) + m(s1)× α(s1, s1)

=
2
19
× 0.8 +

1
19
× 0.5 +

1
19
× 0.4 +

1
19
× 0.8

Definition 11 (Semantic Disbelief Function). Let Θ be a frame of discern-
ment, mΘ be a BMA and α be semantic similarity on Θ respectively. Then the
disbelief function corresponding with mΘ and α is the function ds : 2Θ → [0, 1]
defined by:

ds(x) =
∑

∀y|α(x,y)<κ

α(x, y)mΘ(y), x, y ∈ 2Θ. (17)

Now for disbelief calculation, we look for 0 ≤ α < κ. Here, α(s1, peoplenoun
s3

) =
0.02, α(s1, gatherverb

s3
) = 0.01, α(s1, reporternoun

s4
) = 0.01, are all less than κ =

0.5, s1 do not have significant semantic overlap with sentences s3 and s4. So,
they are part of disbelief. Thus,

ds(s1) = α(s1, peoplenoun
s3

)m(peoplenoun
s3

) +

α(s1, gatherverb
s3

)m(gatherverb
s3

) +
... + α(s1, reporternoun

s4
)m(reporternoun

s4
) +

... + α(s1, s3)m(s3) + ...

= (0.02× 1
19

) + (0.01× 1
19

) + (0.01× 1
19

) + ...
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Definition 12 (Semantic Uncertainty Function). Let Θ be a frame of dis-
cernment, mΘ be a BMA and α be semantic similarity on Θ respectively. Then
the disbelief function corresponding with mΘ and α is the function us : 2Θ →
[0, 1] defined by:

us(x) =
∑

1>∀y|α(x,y)≥κ

α(x, y)mΘ(y), x, y ∈ 2Θ. (18)

In case of uncertainty calculation, we consider 1 > α ≥ κ, where κ = 0.5.
Here, α(s1, s2) = 0.5, α(s1, planenoun

s2
) = 0.8, α(s1, crashverb

s2
) = 0.6,..., have

α ≥ 0.5; so these implies that s1 has substantial overlap with s2. Thus,

us(s1) = α(s1, planenoun
s2

)m(planenoun
s2

) +

α(s1, crashverb
s2

)m(crashverb
s2

) + ...

α(s1, s2)m(s2)

= (0.8× 2
19

) + (0.6× 1
19

) + ... + (0.5× 1
19

)

In this situation, the Semantic Belief Function will no longer hold strict ad-
ditivity like (4) and is thus expressed as:

bs(x) + ds(x) + us(x) ≤ 1, x ∈ 2Θ, x �= ∅. (19)

Definition 13 (Semantic Relative Atomicity). Let Θ be a frame of dis-
cernment, let x, y ∈ 2Θ, and let α(x, y) be semantic similarity of x and y. Then
for any given y �= ∅ the relative atomicity of x to y is the function a : 2Θ → [0, 1]
defined by:

as(x/y) =

∑|y|
j=1

∨|x|
i=1 α(xi, yj)
|y| , x, y ∈ 2Θ, xi ∈ x, yj ∈ y. (20)

where xi and yi are atomic elements of x and y respectively. So, according to
fig.2, as(s1/s2) = 1.0+0.7+0.85

4 , where α(planenoun
s1

, planenoun
s2

) = 1,
α(hitverb

s1
, crashverb

s2
) = 0.7, and α(skyscrapernoun

s1
, buildingnoun

s2
) = 0.85 (as-

suming α values based on meanings) respectively; but this is not the case when
‘bag of words’ are considered.

The probability expectation and opinion will remain same as (6) and (7)
except the fact that the parameters will be replaced by the extended parameters
based on semantic analysis, and hence represented as,

Es(x) =
∑

y

mΘ(y)as(x/y), x, y ∈ 2Θ. (21)

ws(x) ≡ (bs(x), ds(x), us(x), as(x)). (22)

Now, using the parameters like belief, disbelief, uncertainty, relative atomicity
and BMA computed for s1 we can get probability expectation (21) and opinion
(22).
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5 Conclusion

In this paper, we presented an enhanced framework of subjective logic for docu-
ment analysis. Two different aspects of the model are shown. The former is simple
computation of the original subjective logic [2] model using ‘bag of words’. For
the latter, we redefined all the definitions based on the semantic relatedness of
concepts encountered in sentences and have shown how this approach is more
significant for document analysis. As a future work we tend to determine the
similarity threshold κ automatically by using some optimization algorithms.

References

1. Jøsang, A.: Artificial reasoning with subjective logic. In: Proceedings of the Second

Australian Workshop on Commonsense Reasoning, vol. 48 (1997), Perth:[sn]

2. Jøsang, A.: A logic for uncertain probabilities. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems 9(3), 279–311 (2001)

3. Jøsang, A.: Reliability Analysis with Uncertain Probabilities. In: Proceedings of the

4th International Conference on Probabilistic Safety Assessment and Management

(PSAM4). Springer, Heidelberg (1998)

4. Jøsang, A.: An algebra for assessing trust in certification chains. In: Proceedings

of the Network and Distributed Systems Security Symposium (NDSS 1999). The

Internet Society, San Diego (1999) (Citeseer)

5. Jøsang, A., Bondi, V.: Legal reasoning with subjective logic. Artificial Intelligence

and Law 8(4), 289–315 (2000)

6. Svensson, H., Jøsang, A.: Correlation of Intrusion Alarms with Subjective Logic

7. Pardo, T., Rino, L., Nunes, M.: Extractive summarization: how to identify the

gist of a text. In: The Proceedings of the 1st International Information Technology

Symposium–I2TS, Citeseer, pp. 1–6 (2002)

8. Jøsang, A.: Belief Calculus. ArXiv Computer Science e-prints (June 2006)

9. Miller, G.: WordNet: a lexical database for English. Communications of the

ACM 38(11), 41 (1995)

10. Lesk, M.: Automatic sense disambiguation using machine readable dictionaries:

How to tell a pine cone from an ice cream cone. In: Proceedings of the 5th Annual

International Conference on Systems Documentation, pp. 24–26. ACM, New York

(1986)

11. Lin, D.: Using syntactic dependency as local context to resolve word sense ambi-

guity. In: Annual Meeting-Association For Computational Linguistics, vol. 35, pp.

64–71. Association For Computational Linguistics (1997)

12. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-

omy. In: International Joint Conference on Artificial Intelligence, Citeseer, vol. 14,

pp. 448–453 (1995)

13. Manna, S., Gedeon, T.: Semantic Hierarchical Document Signature In Determining

Sentence Similarity. In: Proceedings of the 19th International Conference on Fuzzy

Systems (accepted 2010)

14. Achananuparp, P., Hu, X., Shen, X.: The evaluation of sentence similarity mea-

sures. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182,

pp. 305–316. Springer, Heidelberg (2008)



V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 243–254, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Ontology-Based Anonymization of Categorical Values 

Sergio Martínez, David Sánchez, and Aida Valls  

Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili 
Avda. Països Catalans, 26, 43007 Tarragona, Spain 

{sergio.martinezl, aida.valls, david.sanchez}@urv.cat 

Abstract. The analysis of sensible data requires a proper anonymization of 
values in order to preserve the privacy of individuals. Information loss should 
be minimized during the masking process in order to enable a proper 
exploitation of data. Even though several masking methods have been designed 
for numerical data, very few of them deal with categorical (textual) information. 
In this case, the quality of the anonymized dataset is closely related to the 
preservation of semantics, a dimension which is commonly neglected of 
shallowly considered in related words. In this paper, a new masking method for 
unbounded categorical attributes is proposed. It relies on the knowledge 
modeled in ontologies in order to semantically interpret the input data and 
perform data transformations aiming to minimize the loss of semantic content. 
On the contrary to exhaustive methods based on simple hierarchical structures, 
our approach relies on a set of heuristics in order to guide and optimize the 
masking process, ensuring its scalability when dealing with big and 
heterogenous datasets and wide ontologies. The evaluation performed over real 
textual data suggests that our method is able to produce anonymized datasets 
which significantly preserve data semantics in comparison to apporaches based 
on data distribution metrics.  

Keywords: Ontologies, Data analysis, Privacy-preserving data-mining, K-
anonymity, Semantic similarity. 

1   Introduction 

Statistical agencies are an important source of information for intelligent data analysis 
and decision making. Those agencies collect responses of a set of individuals for 
which privacy must be guaranteed. So, before distributing the data, a masking method 
should be used in order to anonymize the data file and minimize the re-identification 
risk. The privacy level associated to masked data is typically related to the fulfilment 
of the k-anonymity property [16]. This property establishes that each anonymized 
record in a data set (i.e. a set of attribute values associated to an individual) has to be 
indistinguishable with at least k-1 other records within the same dataset, according to 
its individual attribute values.  

However, in order to preserve the utility of the values (i.e. to make the anonymized 
data as useful as possible from the analysis and data mining point of view), it is 
important that the anonymization method minimizes the information loss that is 
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inherent to the masking process. This is measured by means of a quality metric. Up to 
this moment, most of the attention has been paid to numerical data or bounded 
categorical attributes. The goal of the masking methods for numerical data was to 
maintain the statistical characteristics of the dataset [4]. For categorical attributes, 
which represent a discrete enumeration of modalities (i.e. bounded vocabulary), 
quality metrics are focused on maintaining the probability distribution of the values in 
the masked file. This has been criticized by several authors [19] as value distribution 
does not capture important dimensions of data utility. In fact, as categorical attributes 
typically represent concepts, their utility should be associated to the preservation of 
their inherent semantics. Omitting those semantics during the anonymization process 
can hamper the application of data analysis or decision making processes on those 
data, since the conclusions obtained can be significantly different from those obtained 
from the original data file. 

In any case, with the success of the Information Society, textual data have grown 
both in size and importance. Those values can be obtained with traditional 
questionnaires where the user can answer with a short sentence or a noun phrase, such 
as “Main hobby” or “Most preferred type of food”. This kind of attributes has a 
potentially unbounded set of values that represent a concept with a concrete semantic. 
Those attributes are more challenging than those corresponding to a limited set of 
modalities. In order to properly interpret and compare them, the similarities between 
their meaning, at a conceptual level, should be taken into consideration (e.g. for 
hobbies, trekking is more similar to jogging than to dancing). 

Due to the ambiguity of human languages and the complexity and knowledge 
modelling, very few masking methods have considered the semantics of attribute 
values in some degree. In fact, many approaches [1, 15, 16] completely ignore this 
issue, dealing with textual data in a naïve way, proposing arbitrary suppressions or 
substitutions aimed to fulfil k-anonymy and preserve the distribution of the input data, 
but neglecting the importance of the meaning of the data. As it will be discussed in 
Section 2, even though there exist approaches exploiting knowledge structures during 
the anonymization, they consider semantics in a very shallow and ad-hoc manner and 
tackle the anonymization in an exhaustive manner, hampering their scalability and 
applicability as a general-purpose solution. 

In order to overcome those limitations, we propose a new method of local 
anonymization for unbounded categorical attributes, which exploits ontologies [2] as 
knowledge background to support the anonymization process from a semantic point 
of view. Ontologies offer a formal, explicit and machine readable structuring of a set 
of concepts by means of a semantic network where multiple hierarchies are defined 
and semantic relations are explicitly modelled as links between concepts [6]. Thanks 
to initiatives such as the Semantic Web [3], many ontologies have been created in the 
last years, bringing the development of general purpose knowledge sources (such as 
WordNet [5] for English words), as well as specific domain terminologies (e.g. 
medical sources such as UMLS -Unified Medical Language System-). 

Due to the large size of general purpose ontologies (with respect to ad-hoc 
knowledge structured exploited in previous approaches [1, 7, 12, 15, 16]), our 
algorithm tackles the anonymization in an heuristic fashion, providing better 
scalability with respect to the size of the ontology and the input data than related 
works based on exhaustive search. 
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The rest of the paper is organized as follows. Section 2 reviews methods for 
privacy protection of categorical data that take into account some kind of semantic 
information. Section 3 introduces classical metrics aimed to measure data quality and 
present other ways of semantically measuring the information loss by exploiting 
ontologies. In section 4, the proposed anonymization method is detailed. Section 5 is 
devoted to evaluate our method by applying it to real data obtained from a survey at 
the National Park “Delta del Ebre” in Catalonia, Spain. The final section contains the 
conclusions and future work. 

2   Related Work 

In the previous knowledge-based masking methods, the set of values of a categorical 
attribute are represented by means of Value Generalization Hierarchies (VGHs) [1, 7, 
12, 15, 16]. In those cases, ad-hoc manually constructed tree-like structures are 
defined according to input data, where categorical labels represent leafs of the 
hierarchy and they are recursively subsumed by common generalizations. The 
masking process consists on substituting the original values by a more general one, 
obtained from the hierarchical structure. This generalization process decreases the 
number of distinct tuples and, in consequence, increases the level of k-anonymity. In 
general, for each value, different generalizations are possible according to the depth 
of the tree. Typically, the selection is made according to a quality metric that 
measures the information loss derived from the value substitution.   

More in detail, in [11, 15, 16] authors propose a hierarchical scheme in which all 
values of an attribute are generalized to the same level of the VGH. The number of 
valid generalizations for an attribute is the height of the VGH for that attribute. The 
concrete generalization is selected by generating all the possible ones for each value 
and selecting the combination that provides the closest generalizations in all cases 
fulfilling the desired level of k-anonymity. In this case, the level of generalization is 
used as a measure of information loss.  

Iyengar [8] presented a more flexible scheme which also uses a VGH, where each 
value of an attribute can be generalized to a different level of the hierarchy. This 
scheme allows a much larger space of possible generalizations. Again, for all values, 
all the possible generalizations fulfilling the k-anonymity are generated. Then, a 
genetic algorithm finds the optimization of a set of information loss metrics.  

T. Li and N. Li [12] propose three generalization schemes. First, the Set 
Partitioning Scheme (SPS) represents an unsupervised approach in which each 
partition of the attribute domain represents a generalization. This supposes the most 
flexible generalization scheme but the size of the solution space grows enormously, 
meanwhile the benefits of a semantically coherent VGH are not exploited. The 
Guided Set Partitioning Scheme (GSPS) uses a VGH to restrict the partitions of the 
attribute domain and exploits the height of the lowest common ancestor of two values 
as a metric of semantic distance. Finally, the Guided Oriented Partition Scheme 
(GOPS) adds ordering restrictions to the generalized groups of values to restrict even 
more the possible generalizations. In all three cases, all the possible generalizations 
allowed by the proposed scheme are constructed, selecting the one that minimizes the 
information loss (evaluated by means of the discernibility metric [1]).  
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He and Naughton [7] propose a partitioning algorithm in which generalizations are 
created in a Top-Down fashion and the best one, according to quality metric 
(Normalized Certainty Penalty [17]), is recursively refined. Xu et al. [19] proposes a 
Utility-based generalization algorithm. The method supports defining different 
“utility” functions for each attribute, according to the importance of each attribute. 

All the approaches relying on a VGH present a series of drawbacks. On one hand, 
VGHs are manually constructed from the attribute value set of the input data. So, 
human intervention is needed in order to provide the adequate semantic background 
in which those algorithms rely. If input data values change, the VGH should be 
modified accordingly. Even though this fact may be assumable when dealing with 
reduced sets of categories (e.g. in [12] a dozen of different values per attribute are 
considered in average) this hampers the scalability and applicability of the 
approaches, especially when dealing with unbounded textual data (with hundreds or 
thousands of individual answers). On the other hand, the fact that VGHs are 
constructed from input data (which represents a limited sample of the underlying 
domain of knowledge), produces ad-hoc and small hierarchies with a much reduced 
taxonomical detail. It is common to observe VGHs with three or four levels of 
hierarchical depth whereas a detailed taxonomy (such as WordNet) models up to 16 
levels [5]. From a semantic point of view, VGHs offer a rough and biased knowledge 
model compared to fine grained and widely accepted ontologies. As a result, the space 
for valid generalizations that a VGH offers would be much smaller than when 
exploiting an ontology. Due to the coarse granularity of VGHs, it is likely to suffer 
from high information loss due to generalizations. As stated above, some authors try 
to overcome this problem by making arbitrary generalizations, but this introduces a 
considerable computational burden and lacks of a proper semantic background. 
Moreover, the quality of the result would depend on the structure of the VGH that, 
due to its limited scope, offers a partial and biased view of the domain.       

From the point of view of semantic understanding of the input data, in order to 
overcome the limitations of the presented methods, one may consider their application 
over a wide and detailed general ontology like WordNet. WordNet [5] is a freely 
available lexical database that describes and organizes more than 100,000 general 
English concepts, which are semantically structured in an ontological fashion. 
WordNet contains words (nouns, verbs, adjectives and adverbs) that are linked to sets 
of cognitive synonyms (synsets), each expressing a distinct concept (i.e. a word 
sense). Synsets are linked by means of conceptual-semantic and lexical relations such 
as synonymy, hypernymy (subclass-of), meronymy (part-of), etc. The result is a 
network of meaningfully related words, where the graph model can be exploited to 
interpret concept’s semantics. Hypernymy is, by far the most common relation, 
representing more than an 80% of all the modeled semantic links. The maximum 
depth of the noun hierarchy is 16. Polysemous words present an average of 2.77 
synsets (i.e. they belong to almost three different hierarchies) and up to 29 different 
senses (for the “line” word). Considering those dimensions, the size of the 
generalization space would be several orders of magnitude bigger than when using 
ad-hoc VGHs. However, as most of the presented approaches make generalizations in 
an exhaustive fashion, the generalization space is exponentially large according to the 
depth of the hierarchy, the branching factor and the values to evaluate. So, those 
approaches are computationally too expensive and hardly applicable in such a big 
ontology like WordNet.  
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In order to be able to exploit the semantic background provided by big ontologies 
like WordNet, we present a non-exhaustive heuristic value substitution which, 
bounding the search space according to the input data values and based on the theory 
of semantic similarity (see Section 3), is able to scale well in such a big ontology 
while minimizing the loss of semantics.  

3   Quality Metrics 

As stated above, the goal of an anonymization method is finding a transformation of 
the original data, which satisfies k-anonymity while minimizing the information loss 
and, in consequence, maximizing the utility of the resulting data. 

In the literature, various metrics have been proposed and exploited [1, 7, 8, 11, 12, 
19] to measure the quality of anonymized data. Classical metrics, such as 
Dicernability Metric (DM) [1], evaluate the distribution of n records (corresponding 
to n individuals) into g groups of identical values, generated after the anonymization 
process. Concretely, (DM) assigns to each record a penalty based on the size of the 
group gi to which it belongs after the generalization (1). A uniform distribution of 
values in equally sized groups (with respect to the original data) is the goal. 

                                             
∑

=

=
n

i
igDM

1

2

                                                     

(1)

 

However, metrics based on data distribution do not capture how semantically 
similar the anonymized set is with respect to the original data. As stated in the 
introduction, preservation of semantics when dealing with textual attributes is crucial 
in order to be able to interpret and exploit anonymized data. In fact, this aspect is, 
from the utility point of view, more important than the distribution of the anonymized 
dataset when aiming to describe or understand a record by means of its attributes. 

In order to minimize the loss of semantics between original and anonymized 
datasets, we propose relying on the theory of semantic similarity [9]. Semantic 
similarity measures the taxonomical alikeness between words based on the semantic 
evidences extracted from one or several knowledge sources. Ontologies like WordNet 
offer wide and detailed views of knowledge domains and, in consequence, represent 
an ideal source from which computing semantic similarity [9]. As stated in the 
introduction, ontologies offer a graph model in which semantic interrelations are 
modeled as links between concepts. As a result, semantic similarity can be estimated 
as a function of the taxonomic inter-link distance.          

In an is-a hierarchy, the simplest way to estimate the distance between two 
concepts c1 and c2 is by calculating the shortest Path Length (i.e. the minimum 
number of links) connecting these concepts (2) [14]. 

  
2121 min candcconnectingedgesaisof#),c(cdis pL −=
 

(2) 

However, this measure omits the fact that equally distant concept pairs belonging 
to an upper level of the taxonomy should be considered as less similar that those 
belonging to a lower level, as they present different degrees of generality. Based on 
this premise Wu and Palmer’s measure [18] also takes into account the depth of the 
concepts in the hierarchy (3). 
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where N1 and N2 are the number of is-a links from c1 and c2 respectively to their Least 
Common Subsumer (LCS), and N3 is the number of is-a links from the LCS to the 
root of the ontology. It ranges from 1 (for identical concepts) to 0. 

Based on the same principles Leacock and Chodorow [10] also proposed a 
measure that considers both the shortest path between two concepts (in fact, the 
number of nodes Np from c1 to c2) and the depth D of the taxonomy in which they 
occur in a non-linear fashion (4). 

)2/log(),( 21& DNccsim pcl −=
    

(4) 

Those measures will be exploited by our approach in order minimize the loss of 
semantics during the substitution of sensible values. 

4   Ontology-Based Anonymization of Categorical Data 

Exhaustive generalization methods are too expensive to be applicable over wide 
ontologies like WordNet. Moreover, the fact that values to anonymize correspond to 
leafs of the VGH implies that values are only substituted by more general ones (which 
unnecessarily imposes constraints on the space of valid generalizations).  

Our approach, which aims to provide local anonymization of attribute values, 
tackles the problem in a different manner. Thanks to the wide coverage of WordNet, 
one would be able to map sensible values to ontological nodes which do not necessary 
represent leafs of a hierarchy. As a result, semantically related concepts can be 
retrieved going through the hierarchy/ies to which the value belongs. Moreover 
ontological hierarchies are designed in a much general and fine grained fashion than 
ad-hoc VGHs, according to the agreement of domain knowledge experts and the input 
data. Those facts open the possibility of substituting sensible values by a much wider 
and knowledge-coherent set of semantically similar elements, including taxonomical 
subsumers (as done in generalization methods) but also with hierarchical siblings 
(with the same taxonomical depth) or specializations (located in a lower level). In 
fact, in many situations, a specialization may be more similar that a subsumer 
because, as stated in section 3, concepts belonging to lower levels of a hierarchy have 
less differentiated meanings due to their concreteness. As a result, the value change 
would result in less information loss and a higher preservation of data utility from a 
semantic point of view.  

In order to ensure that value substitutions lead to the fulfillment of the desired 
degree of privacy, we should substitute each sensible value for another one that 
increases the level of k-anonymity. This implies that either value pairs are substituted 
for a new one which is “near” to both of them, or that one value is changed for 
another one already existing in the data set; in both cases, the goal is to make both 
values indistinguishable. It is important to note that, in all cases, the loss of semantic 
content would be equivalent: if all values of the dataset are semantically far, so are 
their related nodes, resulting in an inevitable high loss of semantics either by 
changing them for the nearest node to both of them or by substituting one for the 
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other. As the first option would lead to an enormous set of possible substitutions 
according to all the semantically related concepts available in the ontology for each 
sensible value, we opted for the second strategy. As a result, the space of valid 
substitutions is bounded to the number of different values available in the dataset.  

The most appropriate value to which a non anonymous one should be substituted is 
the one that minimizes the semantic distance with respect to the original. So, semantic 
similarity metrics introduced in section 3 (which explore and quantify the distance of 
ontological nodes in the semantic network) can be used to select the substitution and 
minimize the loss of semantic content. As a result of a value replacement, the number 
of different values is decreased and the k-anonymity is increased. The process is 
repeated until the whole dataset fulfills the desired k-anonymity level. 

As we are dealing with values represented by text labels, it is also necessary to 
morphologically process them in order to detect different lexicalizations of the same 
concept (e.g. singular/plural forms). We apply a stemming algorithm to detect 
conceptually equivalent values in the dataset. 

Notice that the order in which the values to be replaced are selected may affect the 
anonymization. The generation of the optimum result implies generating all possible 
substitution iterations for all sensible values and picking the order that maximizes the 
quality of the result set. As unbounded textual attributes may usually correspond to a 
high number of different answers, many of them being unique, the amount of values 
not fulfilling the k-anonymity would be high. Consequently, as the cost of generating 
all the possible combinations is O(n!), it is computationally too expensive. In order to 
ensure the scalability of our approach, we implemented several heuristics that aim to 
select, at each step, the substitution that would likely maximize the quality of the 
result.   

The first heuristic consists on selecting the value with the lowest number of 
repetitions in the original set (i.e. the more identifiable). The motivation is that those 
values would require a higher number of substitutions in order to fulfill the desired k-
anonymity level. In case of a tie (e.g. several unique values, which would be very 
common with free text attributes), the algorithm selects the value for which its best 
substitution (according to the quality metric) leads to the minimum semantic 
information loss (according to the same quality metric), aiming to maximize the 
quality of the result dataset. Finally, if several replacements imply the same 
information loss (which would be quite rare), the algorithm selects the value for 
which the k-anonymity level resulting from that change is lower. Again, values which 
are more difficult to anonymize are prioritized, as they require more substitutions.  

Formally, the algorithm has the following inputs: D, a set of n categorical values 
for a single attribute (i.e. an unbounded list of textual noun phrases, each one referring 
to an ontological concept) and the desired level of k-anonymity. The algorithm 
outputs the anonymized version of D. 

 
1   Ontology-based local anonymization (D, k) 
2      D’ := stem (D) 
3      D’ := rank by number of repetitions (D’) 
4      v := first value (D’) 
5      while (number of repetitions (v, D’) < k) do 
6         V := values with the same number of repetitions (v, D’) 
7         Vmax := set of values with the maximum similarity (D’, V) 
8         v’ := value with minimum resulting k-anonymity (D’, Vmax) 
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9         D’ := replace all occurrences of the value in the set (v’, D’) 
10        D’ := rank by number of repetitions (D’) 
11        v := first value (D’) 
12     end while 
13  end 

 
First, all words of the attribute dataset are stemmed, so that, two words are 

considered equal if their morphological roots are identical (line #2). The set is 
ascending ranked according to the number of value repetitions; then, the first value (v) 
is the register with the lowest k-anonymity (line #4). It checks if the corresponding 
value fulfils the k-anonymity according to the number of repetitions (line #5). If k-
anonymity is fulfilled, the entire set will be anonymized. Otherwise, the value should 
be replaced. The algorithm selects all the values with the same minimum number of 
repetitions (line #6) and finds another value in the dataset which results in the 
maximum semantic similarity according to a given semantic metric (from those 
introduced in section 3) (line #7). If several substitutions are equally optimum, the 
value whose replacement results in the lowest k-anonymity level (i.e. repetitions) is 
selected (line #8). Finally, all the occurrences in the dataset for that value are 
substituted (line #9) and the dataset is reordered. The process finishes when no more 
replacements are needed, because the dataset is k-anonymous. 

The most computationally expensive function corresponds to the calculation of the 
semantic similarity between value pairs, executed p2 times in the line #7, being p the 
number of different labels in the attribute (p ≤ n, being n the total number of attribute 
values). In the worst case, when the main loop (line #5) ends, this calculation is 
executed p2·p= p3 times. However, as the total set of different values are known a 
priori and do not change during the masking process (unlike generalization methods), 
it is possible to pre-calculate and store the similarities between all of them. This 
avoids repeating similarity measuring calculus for already evaluated value pairs. In 
this manner, the calculation of the similarity measure is executed a priori only p2 
times. It is important to note that the computational cost of our algorithm uniquely 
depends on the number of different labels, unlike the related works that depend on the 
total size of the dataset and on the depth and branching factor of the hierarchy (which 
represent an exponentially large generalization space). 

5   Evaluation 

We have evaluated the proposed method by applying it to a dataset consisting on 
textual answers to the question “What has been the main reason to visit Delta del 
Ebre?” retrieved from polls made by “Observatori de la Fundació d’Estudis Turístics 
Costa Daurada” at the Catalan National Park “Delta del Ebre”. Examples of common 
answers are: nature, relaxation, fauna, culture, second residence, etc.  

The dataset consists on a set of textual and unbounded answers regarding user 
preferences expressed by means of a noun phrase (with one or several words). As 
answers are open, the disclosure risk is high and, therefore, individuals are easily 
identifiable. The dataset is composed by 975 individual registers, with 221 different 
responses, being 84 of them unique. Note that this sample represents a much wider 
and heterogeneous test bed than those reported in related works [12], which are 
focused on bounded categorical values. 
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As those answers correspond to general and widely used concepts (i.e. sports, 
beach, nature, etc.) all of them have been found in WordNet 2.1 (that it is used to 
calculate semantic similarities), corresponding to one or several synsets. The Porter 
Stemming Algorithm [13] was used to extract the morphological root of words and to 
detect semantically equivalent answers. WordNet queries for concepts also implement 
stemming in order to map each concept label to different lexicalizations.   

We evaluated our approach from two points of view. First, we measured the 
contribution of the designed heuristics in guiding the substitution process towards 
minimizing the information loss form a semantic point of view (as detailed in section 
4). We used Wu and Palmer, Leacock and Chodorow and Path Length measures (see 
section 3) as quality metrics.  

As baseline, we implemented a naïve substitution method that consists on replacing 
each sensible value by a random one from the same dataset. Following the same basic 
algorithm presented in section 4, each random change would increase the level of k-
anonymity; the process ends when all values are anonymized. Values are ordered 
alphabetically, in order to avoid depending on the initial order of data. The results 
obtained for the random substitution are the average of 5 executions. 

We compared our heuristic approach against the random substitution for different 
levels of k. To evaluate the quality of the masked dataset from a semantic point of 
view, we measured how semantically similar the replaced values are, in average, with 
respect to the original ones. We computed the averaged difference of semantics 
between original and anonymized sets using the Wu and Palmer’s (Fig. 1) and Path 
Length (Fig. 2) measures. 

Analyzing the figures, we can observe that our approach is able to improve the 
random substitution by a considerable margin. This indicates the usefulness and 
necessity of a heuristic substitution aimed to minimize the semantic content loss of 
the original dataset. This is even more noticeable for a high k level. Evaluating the 
semantic distance in function of the desired level of k-anonymity, one can observe a 
linear tendency with a very smooth growth. This is very convenient and shows that 
our approach performs well regardless the desired level of anonymization. Regarding 
the different semantic similarity measures, they provide very similar and highly 
correlated results. This is coherent, as all of them are based on the same ontological 
features (i.e. absolute path length and/or the taxonomical depth) and, even though 
 

 

Fig. 1. Semantic similarity of the 
anonymized dataset 

 

Fig. 2. Distance Path Length of the 
anonymized dataset 
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similarity values are different, the relative ranking of words is very similar. In fact, 
Path length and Leacock and Chorodow measures gave identical results as the later is 
equivalent to the former but normalized to a constant factor (i.e. the ontology depth). 

On the other hand, in order to show the importance of a semantically focused 
anonymization, we simulated the effect that a more traditional making schema, aimed 
to optimize the distribution of the masked dataset (as stated at the beginning of 
section 3), will represent on the resulting dataset. This has been done by using the 
Discernability metric (eq. 1) in our algorithm instead a semantic similarity measure as 
a quality metric. Both approaches (semantic, based on Wu and Palmer’s measure, and 
distributional, based on Discernability metric) have been compared by evaluating the 
semantic loss of the anonymized dataset (for different levels of k). Again, this loss is 
computed as the semantic similarity with respect to the original data by means of the 
Wu and Palmer’s measure (see Fig. 3).  

 

Fig. 3. Semantic similarity for our method with respect to a distributional metric 

The figure shows that the optimization of dataset distribution and the preservation 
of information semantics are not correlated. In fact, there exists a very noticeable 
semantic loss in the resulting dataset for k values above 5. As stated in the 
introduction, the utility of textual information is highly dependent on its semantics. 
One can see that classical approaches focused on providing uniform groups of masked 
values may significantly modify dataset’s meaning, hampering their exploitation.   

From a temporal perspective, executing our method over a 2.4 GHz Intel Core 
processor with 4 GB RAM, the runtime of the anonymization process ranged from 0.7 
to 1.3 seconds (according to the desired level of k-anonymity) as shown in Fig. 4. The 
pre-calculus of the semantic similarities between all value pairs of the dataset lasted 
2.24 minutes. One can easily see how, as stated in section 4, similarity computation 
represents the most computationally expensive function, and how the minimization of 
the number of calculus results in a very noticeable optimization of runtime. Runtimes 
are also much lower than those reported by related works (several hours [12, 19]) 
based on generalization schemas and very limited VGHs and bounded categorical 
data (3-4 levels of depth and an average of a dozen of values [12]). This shows the 
scalability of our method when applied with large and heterogeneous textual data and 
big and wide ontologies like WordNet.    
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Fig. 4. Anonymization process runtime according to the level of k-anonymity 

6   Conclusions 

Categorical anonymization aims avoiding disclosure by fulfilling a desired level of k-
anonymity and, at the same time, maximizing of data utility in order to properly 
exploit them. Previous approaches neglected or very shallowly considered the 
semantic content of textual data.  

This paper proposes a local masking method for unbounded categorical data based 
on the exploitation of wide and general ontologies aimed to preserve the semantics of 
the dataset. Special care has been put in ensuring the scalability of the method when 
dealing with large and heterogeneous datasets (which are very common when 
involving text attributes) and big ontologies like WordNet. By enabling the 
exploitation of those already available ontologies we avoid the necessity of 
constructing ad-hoc hierarchies according to data labels like VGH-based schemas, 
which supposes a serious cost and limits the method’s applicability.  

As future lines of research, we plan to extend our method to global anonymization 
of complete registers, where different attributes should be masked simultaneously. 
We will also compare our results with those obtained when using an ad-hoc VGH 
instead of WordNet [20].  
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Abstract. Social networking web sites or social networks for short (SNs)

have become an important web service with a broad range of applica-

tions. In an SN, a user publishes and shares information and services.

We propose a utility function to measure the rational benefit derived by

a user from her participation in an SN, in terms of information acquired

vs information provided. We show that independently and selfishly max-

imizing this utility leads users to “free-riding”, i.e. getting information

about other users and offering no information about themselves. This

results in SN shutdown (no functionality). We then propose protocols

to achieve a correlated equilibrium between users, in which they coordi-

nate their disclosures in view of jointly maximizing their utilities. The

proposed protocol can be used to assist an SN user in making rational

decisions regarding which of her attributes she reveals to other users.

Keywords: Social networks, Data privacy, Game theory.

1 Introduction

Social networking web sites or social networks for short (SNs) have become an
important web service with a broad range of applications: collaborative work,
collaborative service rating, resource sharing, friend search, etc. Facebook, MyS-
pace, Xing, LinkedIn, etc., are well-known examples. In an SN, a user publishes
and shares information and services.

There are two types of privacy in SNs:

– Relationship privacy. In some SNs, the user can specify how much it trusts
other users, by assigning them a trust level. It is also possible to establish
several types of relationships among users (like “colleague of”, “friend of”,
etc.). The trust level and the relationship type are used to decide whether
access is granted to resources and services being offered. The availability
of information on relationships (trust level, relationship type) has increased
with the advent of the Semantic Web and raises privacy concerns: know-
ing who is trusted by whom and to what extent discloses a lot about the
users thoughts and feelings; in fact, knowing relationships discloses the so-
cial network topology and this can allow re-identification of users even if
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they pretend to stay anonymous [5]. Relationship privacy is about allow-
ing the normal operation of the SN while allowing users to preserve their
relationships and trust levels as private as possible (see [2,3]).

– Content privacy. This type of privacy applies to all SNs and is the subject
of this paper. The information content a user publishes clearly affects her
privacy. Recently, a privacy risk score [4] has been proposed for the user to
evaluate the privacy risk caused by the publication of a certain information.
Let the information attributes published by the users in an SN be labeled
from 1 to n. Then the privacy score risk of user j is

PR(j) =
n∑

i=1

	∑
k=1

βikV (i, j, k) (1)

where V (i, j, k) is the visibility of user j’s value for attribute i to users who
are k links away from j and βik is the privacy sensitivity of attribute i (how
embarrassing it is for a user to reveal attribute i to people k links away). The
visibility V (i, j, k) = 1 if user j makes her attribute j visible to those users
k links away from j; it is zero otherwise. An interesting special case is the
dichotomous case, in which an attribute is either kept hidden or published
for everyone; in the dicotomous case, V (i, j) = 1 means that user j publishes
her attribute i and V (i, j) = 0 means user j keeps her attribute i secret. The
dichotomous privacy score is

PR2(j) =
n∑

i=1

βiV (i, j) (2)

Regarding the above privacy risk score, note that the greater it is for a user, the
lower is the privacy preservation utility for that user. On the other hand, PR(j)
is a monotonically increasing function of the sensitivity of the user’s attributes
and the visibility these attributes get. Also, as noted in [4], the sensitivity βik is
monotonically increasing with k, that is, if k < k′ then βik ≤ βik′ .

1.1 Contribution and Plan of This Paper

The aim of this paper is to provide protocols to assist a user in an SN in making
rational decisions regarding which of her attributes she reveals to other users.

In Section 2, we define the utility a user derives from participating in an SN as
the functionality the user gets divided by privacy risk score the user incurs. By
functionality, we mean what the user can see about other users in the SN (we do
not mean performance or similar issues). In terms of that privacy-functionality
utility, we show in Section 3 that, if users independently choose their disclosure
strategies, the dominant strategy (and hence the Nash equilibrium) is for SN
users to “free-ride”, i.e. to try to learn as much as possible from other users and
disclose nothing about themselves, which leads to shutting down the SN. This
zero-utility outcome can be improved for all users if they coordinate their strate-
gies. In Section 4, we propose protocols to assist users in achieving correlated
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equilibrium, that is, to help them to jointly maximize their utilities by revealing
their attributes to each other in a correlated way. Simulation results are given
in Section 5. Finally, conclusions and future research directions are summarized
in Section 6.

2 A Privacy-Functionality Score

As mentioned above, our definition of user utility can be roughly summarized as
the amount of information the user can see about other users in the SN divided
by the amount of information the user shows about herself. This “rational” utility
does not probably explain the attitude of the typical Facebook user, who tends to
tell her friends a lot about herself, without caring much what she gets in return.
Our definition of utility is more adapted to social networks for professionals,
like Xing or LinkedIn: in those networks, employers and job applicants tend to
disclose their information in a more targeted and cautious way.

We quantify the above idea of the utility a user j derives from participating
in an SN by using the following privacy-functionality score

PRF (j) =

∑N
j′=1,j′ �=j

∑n
i=1

∑	
k=1 βikV (i, j′, k)I(j, j′, k)

1 + PR(j)

=

∑N
j′=1,j′ �=j

∑n
i=1

∑	
k=1 βikV (i, j′, k)I(j, j′, k)

1 +
∑n

i=1

∑	
k=1 βikV (i, j, k)

(3)

where I(j, j′, k) is 1 if j and j′ are k links away from each other, and it is 0
otherwise.

Note that:

– PRF (j) decreases as the privacy score PR(j) in its denominator increases,
that is, as user j discloses more of her privacy.

– PRF (j) increases as its numerator increases; this numerator adds up the
components of privacy scores of users j′ �= j due to those users disclosing
attribute values to j.

The dichomotous version of the privacy-functionality score is simply:

PRF2(j) =

∑N
j′=1,j′ �=j

∑n
i=1 βiV (i, j′)

1 + PR(j)

=

∑N
j′=1,j′ �=j

∑n
i=1 βiV (i, j′)

1 +
∑n

i=1 βiV (i, j)
(4)

3 The SN Functionality-Privacy Game with Independent
Strategies

If we regard PRF (j) as a game-theoretic utility function [6], the higher PRF (j),
the higher the utility for user j. Let us first deal with the dichotomous case, for
simplicity.



258 J. Domingo-Ferrer

The set of possible strategies Sj available to user j are the numbers from
0 to 2n − 1. In the binary expression of a strategy sj ∈ Sj , a 1 in position
i ∈ {0, · · · , n−1}means that, under sj , j publishes attribute i+1 (V (i+1, j) = 1),
whereas a 0 means that, under sj , j keeps attribute i+1 secret (V (i+1, j) = 0).

Now, consider a strategy vector s = (s1, · · · , sN) formed by the strategies
independently and selfishly chosen by all users. When user j chooses sj , denote
by s−j the N − 1 dimensional vector of the strategies chosen by the other users.
If we use PRF2(j) to quantify the utility uj(s) incurred by user j, we have

uj(s) =

∑N
j′=1,j′ �=j

∑n
i=1 βiV (i, j′)

1 +
∑n

i=1 βiV (i, j)
(5)

where the values V (i, j), i = 1, · · · , n, are those specified by the binary expansion
of sj .

It turns out that the strategy vector all zeros, i.e. s0 = (0, 0, · · · , 0) is domi-
nant, because, for any user j and each alternate strategy vector s′, we have

uj(s0
j , s

′
−j) ≥ uj(s′j , s

′
−j) (6)

Disclosing no information is better for user j than disclosing some information,
assuming that each user chooses her strategy independently. Since a dominant
strategy is also a Nash equilibrium [6], the strategy vector s0 is also a Nash
equilibrium; this can be checked directly, because Inequality (6) implies

uj(s0
j , s

0
−j) ≥ uj(s′j , s

0
−j)

Thus, it turns out that rational and independent choice of strategies leads to
no user offering any information on the SN, which results in the SN being shut
down. It is easy to show that this also holds in the general case (k > 1).

A similar pessimistic result is known for the P2P file sharing game, in which
the system goal is to leverage the upload bandwidth of the downloading peers:
the dominant strategy is for all peers to attempt “free-riding”, that is, to refuse
to upload [1], which causes the system to shut down.

Example 1. The simplest version of the above game is one with two users having
each one attribute, which they may decide to keep hidden (a strategy denoted
by H , which implies visibility 0 for the attribute) or publish (a strategy denoted
by P , which implies visibility 1). Assuming a sensitivity β = 1 for that attribute
and using Expression (5), the user utilities for each possible strategy vector are
as follows:

u1(H, H) = 0; u1(H, P ) = 1; u1(P, H) = 0; u1(P, P ) = 1/2

u2(H, H) = 0; u2(H, P ) = 0; u2(P, H) = 1; u1(P, P ) = 1/2
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This simple game can be expressed in matrix form:

User 2 H P
User 1 0 0

H
0 1

1 1/2
P

0 1/2

The above matrix corresponds to the Prisoner’s Dilemma [6], perhaps the best-
known and best-studied game. Consistently with our argument for the general
case, it turns out that (H, H) is a dominant strategy, because:

u1(H, P ) = 1 ≥ u1(P, P ) = 1/2; u1(H, H) = 0 ≥ u1(P, H) = 0

u2(P, H) = 1 ≥ u1(P, P ) = 1/2; u2(H, H) = 0 ≥ u2(H, P ) = 0

The second and fourth equations above guarantee that (H, H) is a Nash equi-
librium (in fact, the only one). The Prisoner’s Dilemma with N > 2 users is
known as the Pollution Game [6] and corresponds to the dichotomous SN game
considered above.

4 The SN Functionality-Privacy Game with Correlated
Strategies

The outcome of independent rational behavior by users, provided by Nash equi-
libria and dominant strategies, can be inferior to a centrally designed outcome.
This is clearly seen in Example 1: the strategy (P, P ) would give more utility
than (H, H) to both users. However, usually no trusted third-party accepted by
all users is available to enforce correlated strategies; in that situation, the prob-
lem is how User 1 (resp. User 2) can guess whether User 2 (resp. User 1) will
choose P .

Using a solution based on cryptographic protocols for bitwise fair exchange of
secrets would be an option, but it seems impractical in current social networks,
as it would require a cryptographic infrastructure, unavailable in most SNs.

A more practical solution to this problem may be based on direct reciprocity
(i.e. tit-for-tat) or reputation, two approaches largely used in the context of
P2P file-sharing systems. We describe below two correlated equilibrium pro-
tocols based on tit-for-tat and reputation, respectively. They are intended as
“assistants” to the human user of the SN in deciding whether to disclose an
attribute to another user; however, the ultimate decision belongs to the human,
who may quit and renounce to reach the equilibrium. In particular, in both pro-
tocols, User 1, as the initiator, first takes the risk of not being corresponded
by User 2. However, the “loss” of User 1 will be limited to those attributes she
disclosed in the last iteration. User 1 will not disclose to User 2 her remaining,
more sensitive attributes.
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In both protocols, we introduce user-dependent attribute sensitivities. For
example, whereas some people boast their religion (and even dress according to
it), for other people this is a very sensitive attribute. Also, when a user evaluates
the sensitivity of the attributes received from the other user, the evaluating user
is forced to use her own sensitivity scale, because she cannot be assumed to know
the evaluated user’s sensitivity scale. The real sensitivity scale of an individual
is normally highly confidential; for that same reason, if someone discloses her
sensitivity scale, there is no guarantee that it is her real scale.

4.1 Adaptation of the Dichotomous Game to Tit-for-Tat

In the protocol below, βij denotes sensitivity of attribute i according to User j’s
sensitivity scale. We assume that disclosing an attribute means making it visible
to the other user in the protocol (not to all users): therefore, we write V (i, j, j′)
to denote the visibility of attribute i granted by User j to User j′. Initially, all
visibilities are assumed to be zero.

Protocol 1 (Tit-for-tat correlated equilibrium)
User 1 does:

1. Set Quit := 0.
2. While Quit = 0 do:

(a) If User 1 has already disclosed all her attributes (V (i, 1, 2) = 1 for all i)
then set Quit := 0.

(b) Disclose to User 2 the attribute i∗ such that

i∗ = arg min
i:V (i,1,2)=0

βi,1

that is, the least sensitive attribute among those not yet disclosed. Dis-
closure implies setting V (i∗, 1, 2) := 1.

(c) Request User 2 to disclose to User 1 the same attribute i∗ disclosed by
User 1 to User 2.

(d) If User 1 does not receive User 2’s value for the same attribute i∗, then
set Quit := 1.

While simple, Protocol 1 has the shortcoming of requiring that the ordering
of attributes by sensitivity be the same for User 1 and User 2. Indeed, after
User 1 discloses her least sensitive attribute i∗, she expects User 2 to disclose
exactly that same attribute i∗. This will only happen if User 2 also considers
i∗ as her least sensitive undisclosed attribute. In case User 1 does not get i∗,
she will consider there is no reciprocity and she will quit the protocol; thus, the
protocol lacks robustness. One could change the protocol so that the exchange
of attributes is groupwise (several attributes exchanged at a time). However, the
issue arises as to which is a reasonable group size: e.g. disclosing all attributes
in a single iteration is very robust but it is quite risky for User 1, who makes the
first move. The reputation of User 2 is a way to decide on the group size. This
the idea of the protocol in the next section.
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4.2 Adaptation of the Non-dichotomous Game to Reputation

We adapt the non-dichotomous game as follows:

– The parameter k ∈ {1, · · · , �} will be used as an intimacy level rather than
as a link distance; the greater k, the lower is intimacy. When a User j first
interacts with another User j′, User j admits User j′ in the lowest intimacy
level k ∈ � (that of first-time acquaintances). Subsequent interactions may
result in User j′ being admitted by User j into higher intimacy levels (with
smaller k).

– Attribute sensitivities βijk will now depend on the specific attribute i, the
sensitivity scale of User j and the intimacy level k.

– Each User j assigns to each other User j′ a reputation vjj′ defined as the
maximum sensitivity of the attributes User j is willing to show to User j′.
Note that reputation is different from intimacy level: a user is probably less
intimate with her psychotherapist than with an office colleague, but she
surely assigns a greater reputation to her psychotherapist.

– The visibility V (i, j, j′, k) denotes whether attribute i is first made visible by
User j to User j′ at intimacy level k. That is, V (i, j, j′, k) = 1 means that k
is the greatest value (the lowest intimacy level) for which attribute i is made
visible by User j to User j′; on the other hand, V (i, j, j′, k) = 0 may mean
that either the attribute is not visible to j′ at level k or that it is visible and
was first made visible by j to j′ for some k′ > k.

In this way, the utility for User j becomes

PRF (j) =

∑N
j′=1,j′ �=j

∑n
i=1

∑	
k=1 βijkV (i, j′, j, k)

1 +
∑n

i=1

∑	
k=1 βijkV (i, j, j′, k)

(7)

The above definition of visibility ensures that disclosure of attribute i by User
j′ to User j is counted in PRF (j) only for one intimacy level, the lowest one
(that is, the greatest k) at which attribute i is disclosed by User j′ to User j.

Note that, in Expression (7), the sensitivities in the numerator are those
corresponding to User j, because User j does not know the sensitivity scale of
the other users j′.

We next specify a protocol for correlated equilibrium in a game with two
users, each of which have values for n attributes numbered from 1 to n, with
the sensitivity of user j’s attribute i vs level k users being βijk. Reputation v12

in the protocol below is taken in the same range as attribute sensitivities. All
visibilities are initially zero.

Protocol 2 (Reputation-based correlated equilibrium)
User 1 does:

1. If available, use a previous value v12 for the reputation of User 2. If none
is available, initialize v12 with a prior estimate (this guess may be human-
assisted, if the human behind User 1 wishes it). Set k := � and Quit := 0.

2. While k ≥ 1 and Quit = 0 do:
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(a) Disclose to User 2, that is, set V (i, 1, 2, k) := 1, all attributes i such that
V (i, 1, 2, k) = 0 and βi,1,k ≤ v12; if there are no disclosable attributes,
set Quit := 1.

(b) Request User 2 to disclose to User 1 the same attributes disclosed by
User 1 to User 2.

(c) If User 1 does not receive User 2’s values for the same attributes User 1
disclosed, then
– Set Quit := 1.

Else
– Call Update(v12).
– Set k := k − 1.

Protocol 2 is more robust than Protocol 1 because in the former the users ex-
change several attributes at a time, not just one, so that some differences in
the attribute sensitivity ordering can be tolerated. In Protocol 2, the procedure
Update(v12) is used by User 1 to decide whether:
– The reputation v12 is kept unaltered in the next iteration;
– The reputation v12 is increased to the maximum between v12 and the max-

imum sensitivity of the attributes received from User 2, according to User
1’s own sensitivity scale;

– The reputation v12 is decreased due to the content of the attributes disclosed
by User 2 in the current iteration (e.g. if User 2 reveals that she has been
in jail, this may be a very sensitive attribute, but probably it will cause her
reputation vs User 1 to decrease). In particular, decreasing v12 to 0 is a way
for User 1 to quit Protocol 2.

Clearly, updating someone’s reputation is a procedure that is likely to need
the intervention of the human behind User 1, as it involves subjective judgment.
Specifically, User 1 (or rather the human behind her) might decide not to increase
the reputation of User 2 to the the maximum sensitivity of the attributes received
from User 2 if User 1 does not wish to correspond to the overtures of User 2.
However, even if the reputation stays the same or decreases, User 2 might learn
new attributes from User 1 in the next intimacy level k − 1, because of the
monotonicity of the sensitivities, i.e. because βijk′ ≤ βijk for all k′ < k. If User
1 wants to make sure that User 2 will not learn any further attribute, User 1
should set

v12 < min
i

βi,1,k−1

which will cause the protocol to be quit in the next iteration.
In Protocol 2, User 2, when requested at Step 2b for the first time, acts in

slave mode but proceeds much like User 1:

– User 2 assigns an initial reputation v21 to User 1 (maybe in a human-assisted
way).

– User 2 uses the same value of k as User 1 in every iteration (starting with
k = �).

– User 2 updates v21 (similarly to the way described above for User 1 vs v12).
– User 2 decides whether she can disclose the attributes i requested by User in

Step 2b above (by setting V (i, 2, 1, k) := 1) by checking whether βi,2,k ≤ v21.
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5 Simulation Results

In this section, we report on experimental results. We simulated Protocol 2
(N = 2 users). We took the number of attributes to be n = 10 and the number
of intimacy levels to be � = 16. We did the following 1000 times:

– Generate attribute sensitivities βij	, for i = 1, · · · , 10 and j = 1, 2 by ran-
domly and uniformly drawing from [0, 1].

– For k = � − 1 down to 1 generate βijk, for i = 1, · · · , 10 and j = 1, 2 by
randomly and uniformly drawing from [0, βi,j,k+1].

– Run Protocol 2 for the previous attribute sensitivities. Initial reputations
are randomly and uniformly drawn from [0, 1]. The human-made decision in
Update(v) about the other user’s reputation was simulated as follows:
• Leave v unaltered with probability 0.45.
• Increase v with probability 0.45 to the maximum between v and the

maximum sensitivity of the attributes received from the other user (ac-
cording to the decision-maker’s sensitivity scale).
• Decrease v with probability 0.1 to a value uniformly and randomly drawn

from [0, v].

The average number of iterations performed in one run of Protocol 2 was 10.99,
that is, the protocol was quit on average after 11 iterations, out of the maximum
16 iterations.

Figure 1 shows the growth of User 1 and User 2’s utilities as Protocol 2 pro-
gresses. Utilities are measured with Expression (7). It can be seen that utilities
start growing for both users (improving the utility for both users is the purpose
of correlated equilibrium) and they stabilize after the first four iterations.

Fig. 1. Evolution of the user utilities measured with Expression (7)
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Fig. 2. Evolution of the user reputations

Figure 2 shows the evolution of the reputations User 1 and User 2 assign to
each other. Users start with an initial reputation, then this reputation increases
because they reveal some highly sensitive attributes; in the next higher intimacy
levels, attribute sensitivities are lower because of monotonicity, hence reputa-
tion cannot grow due to new high-sensitivity disclosures; it can only decrease,
according to the simulated Update(v).

6 Conclusions

We have characterized the utility a user derives from an SN as the information
she learns on other users divided by the information she discloses on herself. In
terms of this utility, we have shown that, if a user must choose a disclosure strat-
egy without knowing the strategies of other users, her best option is to reveal
nothing, which renders the SN useless and provides zero utility to all users. How-
ever, better outcomes are possible if users coordinate their disclosure strategies,
that is, if they attempt to achieve a correlated equilibrium. We have provided
protocols to pursue such an equilibrium by assisting the user in rationally decid-
ing which of her attributes she reveals. Empirical results show that our second
protocol results in a utility increase for the two users participating in it.

Future research will include:

– Extending our protocols from pairwise correlated equilibria (taking the users
of the SN two by two) to groupwise correlated equilibria (simultaneously
correlating strategies of N > 2 users);
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– Investigating other utility functions which could reasonably model the dis-
closure attitude of users of SNs for personal contact like Facebook;

– Incorporating concepts such as security and user authentication, which are
quite challenging due to the very nature of social networks.
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Abstract. In the data privacy context, specifically, in statistical dis-

closure control techniques, microaggregation is a well-known microdata

protection method, ensuring the confidentiality of each individual. In this

paper, we propose a new approach of microaggregation to deal with se-

mantic sets of categorical data, like text documents. This method relies

on the WordNet framework that provides complete semantic relationship

taxonomy between words. Therefore, this extension aims ensure the con-

fidentiality of text documents, but at the same time, it should preserve

the general meaning. We apply some measures to evaluate the quality of

the protection method relying on information loss.

1 Introduction

It is not uncommon to find situations where we need to provide information
regarding the contents of a set of confidential documents. Documents such as
research project proposals, research papers submitted for publication, confiden-
tial law suites, medical records, confidential reports (by companies of law en-
forcement agencies), etc. cannot be publicly revealed, but being able to provide
some information about them might be very useful. The information disclosed
should provide enough accuracy to allow generic tasks such as the classification of
documents into categories of topics, but preserving their confidentiality.

A simple approach in these situations is to provide, for each document, a vec-
tor of keywords or terms. These terms can be manually specified, or most com-
monly, automatically generated. For instance, by providing the N most frequent
terms for each document. The terms, are then used by classification, clustering,
or generic information retrieval algorithms. The problem with this approach is
to ensure that the vector of terms from the document do not reveal confidential
information. A relatively large vector provides more accuracy but at the same
time might reveal too much information regarding the contents of the document.

In this paper we propose a novel approach to deal with this problem. Given
a set of confidential documents we provide a vector of terms for each document,
which ensures that a certain degree of confidentiality is preserved. The degree of
confidentiality or privacy is measured in terms of k-anonymity with respect to the
whole set of documents. That is, in the resulting set of document vectors, there

V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 266–276, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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will be k indistinguishable vectors. To do so we rely in semantic generalizations
through the use of a semantic microaggregation approach for categorical data,
which makes use of WordNet [5].

2 Plan of the Paper and Preliminaries

Given a set of confidential documents and a vector of terms that represent them,
we use a semantic microaggregation approach to ensure k-anonymity among the
documents.

To evaluate our approach, we rely on relatively large document vectors (50
and 100 terms) automatically generated from the documents. The documents are
a set of papers published in the proceedings of the conference Modeling Decisions
for Artificial Intelligence (MDAI), in the years 2007 [13], 2008 [14], and 2009 [15],
which sum up to ≈ 50. The terms are selected based on their frequency. Note
that how the terms are generated or selected does not have much influence in our
solution, we have choose this technique because it is the most common approach.
In Section 2.1 we overview the generation of document vectors.

Given the document vectors, we apply a semantic microaggregation to pro-
duce the protected vectors. Microaggregation is a well known technique used in
statistical disclosure control and we extend it here to use semantic information.
Section 2.2 reviews microaggregation. Our proposal on semantic microaggrega-
tion is introduced in Section 3. Section 4 provides some results from our proposal,
and Section 5 concludes the paper.

2.1 Document Vectors

We have a set of m confidential documents D, and each document is represented
by a document vector, which contains the most relevant terms of the docu-
ment. The relevance of the selected terms is determined by their frequency. The
documents are automatically parsed and tokenized following [4], then we elimi-
nate common English stop-words, words with less than tree letters, and words
which are not in WordNet. The resulting set of terms are used to calculate the
document vectors.

By considering only the words included in WordNet we are eliminating some
words, which can result in a loss of information. These words are normally com-
mon names or very specific terms used in specific research fields. It is important
to remark that in this work we are using WordNet as a generic ontology for
the English language. When the application domain is known, other domain-
specific ontologies can be used such as the UMLS (Unified Medical Language
System) [11] for biomedical data.

Each document is represented by a vector d, which contains the N most
frequent terms t with their associated frequency weight w. The weight ωi,j is
computed as:

ωi,j =
ni,j∑
k nk,j

(1)
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where ni,j is the number of occurrences of the term ti in document dj , and∑
k nk,j is the number of occurrences of all the terms in document dj .
The document vector dj for the jth document is sorted by frequencies.

Formally,

dj = ((tσ(1),j , ωσ(1),j), (tσ(2),j , ωσ(2),j), . . . , (tσ(N),j , ωσ(N),j) (2)

where σ is a permutation such that ωσ(i),j ≥ ωσ(i+1),j for all i = 1, .., N − 1.
The vector of relevant terms based on their frequency provides a good

approximation to the contents of the document. Moreover it can easily be used
for classification of documents in categories or topics by automated algorithms.

2.2 Microaggregation

Microaggregation is a statistical disclosure control technique, which provides
privacy by means of clustering the data into small clusters and then replacing
the original data by the centroids of the corresponding clusters.

Privacy is ensured because all clusters have at least a predefined number of
elements, and therefore, there are at least k records with the same value. Note
that all the records in the cluster replace a value by the value in the centroid of
the cluster. The constant k is a parameter of the method that controls the level
of privacy. The larger the k, the more privacy we have in the protected data.
Thus, k can be seen as the privacy level provided by the microaggregation.

Microaggregation was originally [1] defined for numerical attributes, but later
extended to other domains. E.g., to categorical data in [9] (see also [3]), and in
constrained domains in [10].

From the operational point of view, microaggregation is defined in terms of
partition and aggregation:

– Partition. Records are partitioned into several clusters, each of them
consisting of at least k records.

– Aggregation. For each of the clusters a representative (the centroid) is
computed, and then original records are replaced by the representative of
the cluster to which they belong to.

From a formal point of view, microaggregation can be defined as an optimiza-
tion problem with some constraints. We give a formalization below using uij to
describe the partition of the records in the sensitive data set X . That is, uij = 1
if record j is assigned to the ith cluster. Let vi be the representative of the ith
cluster, then a general formulation of microaggregation with g clusters and a
given k is as follows:

Minimize SSE =
∑g

i=1

∑n
j=1 uij(d(xj , vi))2

Subject to
∑g

i=1 uij = 1 for all j = 1, . . . , n
2k ≥

∑n
j=1 uij ≥ k for all i = 1, . . . , g

uij ∈ {0, 1}
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Algorithm 1. MDAV
Data: X: original data set, k: integer

Result: X’: protected data set

begin1

while (|X| ≥ 3 ∗ k) do2

Compute average record x̄ of all records in X;3

Consider the most distant record xr to the average record x̄;4

Form a cluster around xr. The cluster contains xr together with the5

k − 1 closest records to xr;

Remove these records from data set X;6

Find the most distant record xs from record xr;7

Form a cluster around xs. The cluster contains xs together with the8

k − 1 closest records to xs;

Remove these records from data set X;9

if (|X| >= 2 ∗ k) then10

Compute the average record x̄ of all records in X;11

Consider the most distant record xr to the average record x̄;12

Form a cluster around xr. The cluster contains xr together with the13

k − 1 closest records to xr;

Remove these records from data set X;14

Form a cluster with the remaining records;15

end16

For numerical data it is usual to require that d(x, v) is the Euclidean distance.
In the general case, when attributes V = (V1, . . . , Vs) are considered, x and v
are vectors, and d becomes d2(x, v) =

∑
Vi∈V(xi − vi)2. In addition, it is also

common to require for numerical data that vi is defined as the arithmetic mean
of the records in the cluster. I.e., vi =

∑n
j=1 uijxi/

∑n
j=1 uij . As the solution of

this problem is NP-Hard [6] when we consider more than one variable at a time
(multivariate microaggregation), heuristic methods have been developed.

MDAV [2] (Maximum Distance to Average Vector) is one of such existing
algorithms. It is explained in detail in Algorithm 1, when applied to a data set
X with n records and A attributes. The implementation of MDAV for categorical
data is given in [3].

Note that when all variables are considered at once, microaggregation is a
way to implement k-anonymity [7,8].

3 Semantic Microaggregation

In order to provide a semantic microaggregation of the document vectors, we
use a semantic approach both for the partition of the data into clusters, and
for the aggregation of vectors to compute the centroids of the clusters. The
partition is based on a semantic distance on vectors, which relies in the Wu-
Palmer similarity [12] to compute distances between terms using WordNet. On
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the other hand, the aggregation is computed by generalizing terms in a WordNet
taxonomy. The following sections provide a description of our approach.

WordNet structures nouns, verbs, adjectives, and verbs, into sets of cogni-
tive synonyms called synsets which express concrete concepts. These synsets are
interlinked by several conceptual-semantic and lexical relations.

3.1 Term Distance

We rely on the Wu-Palmer measure, which provides a similarity function for two
given synsets, defined as:

simwup(s1, s2) =
2 depth(lcs(s1, s2))

depth(s1) + depth(s2)
(3)

where lcs(s1, s2) denotes the least common subsumer (most specific ancestor
node) of the two synsets s1 and s2 in a WordNet taxonomy, and depth(s) is
the length of the path from s to the root of the taxonomy. Given that multiple
inheritance is allowed in WordNet taxonomies, there might be more than one
candidate for lcs(s1, s2), in this case the deepest one in the taxonomy is chosen.
Note that this similarity ranges from 1 (equal synsets) to 0 (actually never
reaches 0, which is only assigned to non-comparable synsets).

We can easily convert simwup into a distance function as:

dstwup(s1, s2) = 1− simwup(s1, s2) (4)

Since a term (or word) can belong to more than one synset in WordNet that is,
it can have more than one conceptual meaning, we opt to determine the distance
between terms as the minimum distance between all their subsets. If we denote
as syns(t) the set of synsets that contain the term t, we define our distance dstt
on two terms t1, t2 as:

dstt(t1, t2) = min{dstwup(si, sj) | (si, sj) ∈ syns(t1)× syns(t2)} (5)

As an example, Table 1 show the term distance dstt between the terms computer
and butterfly. For each term we find their sysnsets and we take the minimum
dstwup between each pair of sysnset. Synsets are denotes with a name followed
of a letter denoting whether the synset is a noun (n) or verb (v), and an ID. As
shown, we have that dstt(′computer′,′ butterfly′) = 0.4286.

Table 1. Example of term distance calculation

���������butterfly

computer 〈computer.n.01〉 〈calculator.n.01〉
〈butterfly.n.01〉 0.6190 0.4286
〈butterfly.n.02〉 0.9048 0.8888

〈butterfly.v.01〉 - -

〈butterfly.v.02〉 - -

〈chat up.v.01〉 - -
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3.2 Document Vector Distance

Once we have defined the semantic distance between terms, we use it to define
the semantic distance between two document vectors. In order to do the partition
term of the microaggregation process.

We define the document distance as the mean of the minimum semantic dis-
tances between the terms of both documents. More precisely, we take the mini-
mum distance between the first term of the first document and all terms of the
second one. This process is then repeated for all terms of the first document.
Then, the mean of these minimum distances is returned. This distance is defined
as:

dstdoc(d1, d2) =
1

len(d1)

∑
ti∈d1

min
tj∈d2

dstt(ti, tj) (6)

where len(d1) is the length of the first document.

As an example, we consider two simple document vectors d1 and d2 with four
terms each one with their respectively frequencies.

d1 = ((′butterfly′, 6), (′performance′, 4), (′pen′, 2), (′dog′, 2))
d2 = ((′computer′, 8), (′cat′, 6), (′approach′, 4), (′beetle′, 2))

Table 2 shows all the distances between the terms of the different vectors and
emphasizes the minimum ones. Note that the dashes in this table denotes the
impossible relations, because when a term of the first document is assigned to
other of the second document, this one is removed from the list of possible terms
of the second document and then the other distances will be performed with the
remaining terms.

Finally, we calculate the mean with these minimum distances to compute the
semantic distance between both documents.

dstdoc(d1, d2) = 1
4 (0.130 + 0.250 + 0.143 + 0.333) = 0.214

Table 2. Distances between terms of two documents

�������tj ∈ d2

ti ∈ d1
’butterfly’ ’performance’ ’pen’ ’dog’

’computer’ 0.428 0.600 0.333 -

’cat’ 0.454 0.444 0.333 0.143
’approach’ 0.238 0.250 - -

’beetle’ 0.130 - - -

3.3 Document Vector Aggregation

The second operation of the microaggregation is the aggregation, which com-
putes a new vector, that represents the cluster representative or centroid. In this
case, we need to form this centroid taking into account the semantic meaning of
the different elements of the vectors.
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The semantic aggregation process for two different document vectors is defined
as the aggregation function C:

C(d1, d2) =
⋃

ti∈d1

{lch(ti, arg min
tj∈d2

dstt(ti, tj)), (7)

α(ti, arg min
tj∈d2

dstt(ti, tj))}

where lch(ti, tj) (lowest common hypernym) denotes the lowest term in the
WordNet hierarchy, which both terms, ti and tj , have in common, and α(ti, tj)
is the mean frequency of both terms. This ensures the preservation of the fre-
quencies in the microaggregated data. Note that the term distance is used again
to find the semantically closer relation between the terms of both documents, in
order to generalize the meaning of each pair in one term using the function lch.

As we said, this definition of C only accepts two documents vectors. But, it
can be generalized easily. For clusters with more than two elements, the process
will iterate aggregating the centroid, obtained with the two first documents with
the following vector, and so on for all the vectors of the cluster.

The following example illustrates an aggregation process between two docu-
ment vectors. We use the same simple vectors d1 and d2 used in the previous
section. In Table 3 we can see the lowest term in common in the hierarchy by
the relation of the two terms that have the minimum distance between them,
and also, it shows the mean of both frequencies. The resulting centroid for this
cluster is the following:

C(d1, d2) = ((′insect′, 4), (′action′, 4), (′instrumentality′, 5), (′carnivore′, 4))

Table 3. Hypernyms between terms with minimum distance of two documents

�����d2

d1
(’butterfly’, 6) (’performance’, 4) (’pen’, 2) (’dog’, 2)

(’computer’, 8) - - (’instrumentality’, 5) -

(’cat’, 6) - - - (’carnivore’, 4)

(’approach’, 4) - (’action’, 4) - -

(’beetle’, 2) (’insect’, 4) - - -

3.4 Ilustrative Example

In order to understand better the semantic microaggreation process explained
above, we give a toy example, using an original small dataset integrated by four
documents as input of the process.

Table 4 (top) shows firstly the original file, integrated by four documents with
three terms and their respective term frequency for each of them. The table also
shows the protected output file obtained after the microaggregation process with
a k value of 2. As you can see the output file has four documents as the original
file, but it only has two different records. The first document centroid represents
the set of documents that talk about computers parts, and the second one join
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the two original documents that talk about different animals. Therefore, we
can say that with the protected file we can deduce the general topics of the
documents, but we cannot know the specific topics of the original dataset.

Table 4. Example of semantic microaggregation. Original and its respective protected

dataset.

Original Data File

((’keyboard’, 0.3), (’laptop’, 0.4), (’software’, 0.3))

((’horse’, 0.7), (’dog’, 0.2), (’cat’, 0.1))

((’hardware’, 0.3), (’screen’, 0.3), (’computer’, 0.4)))

((’lion’, 0.5), (’monkey’, 0.3), (’tiger’, 0.2))

Protected Data File

((’abstraction’, 0.3), (’computer’, 0.4), (’instrumentality’, 0.3))

((’big cat’, 0.3), (’carnivore’, 0.2), (’placental’, 0.5))

((’abstraction’, 0.3), (’computer’, 0.4), (’instrumentality’, 0.3))

((’big cat’, 0.3), (’carnivore’, 0.2), (’placental’, 0.5))

4 Evaluation

In order to evaluate the semantic microaggregation described we have used 50
published papers during the last three years in the Modeling Decisions for Ar-
tificial Intelligence(MDAI) conference. We have created two different data sets
from these 50 documents. One with a set of document vectors with the 50 more
frequent terms, and another with the 100 most frequent terms. To simplify, we
call them respectively f50x50 and f100x50.

As stated in Section 2.1 we only consider the words included in WordNet,
which result in some minor loss of information. In this concrete case we lose
some common names (for example from the bibliography of each paper), and
some very specific terms. More precisely, if we consider the set of words from
f50x50 f100x50 with words included in WordNet and without them, the average
similarity measured by the Jaccard similarity between both sets is 0.769557,
and 0.771153 respectively1. Again we recall that this works is just an illustrative
experiment that could be improved by considering domain-specific ontologies.

Both files have been protected with different values of the parameter k in the
range from 2 to 10, and then, compared them with different evaluation measures.
We have not computed values of k greater than 10 due to the limited size or the
test dataset, and to the fact that as we will see, with k = 10 we already have a
high degree of information loss.

The first measure, SSE, is the sum of squares to measure homogeneity in
clustering and is defined as

SSE =
g∑

i=1

ni∑
j=1

(dstdoc(xij , x̄i))2 (8)

1 The Jaccard similarity coefficient measures the similarity between two sets A and B
as

|A∩B|
|A∪B| .



274 D. Abril, G. Navarro-Arribas, and V. Torra

Table 5. Evaluation values of both data sets according to k

k
Data

SSE SSA SST L
Set

2
f50x50 4.938 30.929 35.867 13.766

f100x50 4.936 37.119 42.055 11.736

3
f50x50 11.407 21.390 32.797 34.780

f100x50 12.049 29.733 41.782 28.838

4
f50x50 15.693 21.556 37.249 42.131

f100x50 16.647 22.759 39.406 42.245

5
f50x50 20.404 11.890 32.294 63.181

f100x50 21.070 19.157 40.227 52.377

6
f50x50 23.072 17.372 40.444 57.046

f100x50 24.516 18.336 42.852 57.212

7
f50x50 25.109 11.332 36.441 68.903

f100x50 26.712 18.981 45.693 58.560

8
f50x50 27.034 8.986 36.0194 75.053

f100x50 27.662 16.101 43.763 63.209

9
f50x50 28.529 10.085 38.614 73.883

f100x50 30.107 11.657 41.764 72.088

10
f50x50 31.670 5.680 37.350 84.793

f100x50 31.455 10.857 42.312 74.341

where g is the number of groups and ni the number of individuals in the ith
group. Naturally, (ni ≥ k and n =

∑g
i=1 ni). In the same way xij is the jth

record in the ith group and x̄i denotes the average data vector over the ith
group. The lower SSE, the higher the within-group homogeneity.

The SSA measure is a measure to evaluate homogeneity between-groups.

SSA =
g∑

i=1

ni(dstdoc(x̄i, x̄))2 (9)

where x̄ is the average vector over the whole set of n individuals. The higher
SSA, the lower the between-groups homogeneity.

The SST measure is the total sum of squares (SST = SSA + SSE), or,
equivalently,

SST =
g∑

i=1

ni∑
j=1

(dstdoc(xij , x̄))2 (10)

The last measure is the normalized information loss and is defined as

L =
SSE

SST
× 100 (11)

The optimal k-partition is defined by the one that minimizes the SSE measure
(i.e., maximizes the within-group homogeneity) and maximizes the SSA measure
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Fig. 1. Plot of information loss (L) vs. privacy level k

(i.e, minimizes the between-group homogeneity). Note that the higher within-
group homogeneity, the lower the information loss.

Table 5 shows the evaluation values defining how optimal is the k-partition for
each one of these protected files. As expected, the SSE values increases as k in-
creases. It means that within-group homogeneity decreases when the number of
documents per cluster increases.

On the contrary, SSA values decrease when k decrease. This is reasonable be-
cause when k grows, there are less centroids and homogeneity between clusters
decreases.

Finally, we focus on the information loss. As expected, when k increases, the
information loss also increases. Moreover, we can appreciate that the dataset
with 50 terms, f50x50, results into a higher information loss than the dataset
with 100 terms. You can see it clearly in Figure 1.

After the analysis, we can say that the best parameter is the k with values
between 3 and 5, because they are the ones with a lower information loss value.
At this point, we do not consider 2 as an acceptable value for k, because in this
case the protection level is too weak for ensuring data confidentiality.

5 Conclusions

In this paper, we have introduced an extension of microaggregation for text doc-
uments, taking into account the semantic meaning of terms. Thanks to WordNet
framework, we have modified the partition and the aggregation parts of MDAV
algorithm adapting their functionality with semantic relationships. Furthermore,
we have presented some results analyzing this semantic microaggregation.
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As a future work, we will study information loss extensively when applying dif-
ferent information retrieval tools. We will also consider the use of frequencies of
the terms when computing the semantic distances. Moreover, we will research in
disclosure risk measures techniques for this microaggregation extension.
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Abstract. Statistical Disclosure Control protection methods perturb the non-
confidential attributes of an original dataset and publish the perturbed results
along with the values of confidential attributes. Traditionally, such a method is
considered to achieve a good privacy level if attackers who try to link an origi-
nal record with its perturbed counterpart have a low success probability. Another
opinion is lately gaining popularity: the protection methods should resist not only
record re-identification attacks, but also attacks that try to guess the true value of
some confidential attribute of some original record(s). This is known as attribute
disclosure risk.

In this paper we propose a quite simple strategy to estimate the attribute disclo-
sure risk suffered by a protection method: using a classifier, constructed from the
protected (public) dataset, to predict the attribute values of some original record.
After defining this approach in detail, we describe some experiments that show
the power and danger of the approach: very popular protection methods suffer
from very high attribute disclosure risk values.

Keywords: Attribute Disclosure Control, Classification, Privacy-Preserving Data
Perturbation.

1 Introduction

There are many real situations where confidential individual data is published by statis-
tical agencies, to be used by decision makers, politicians, researchers, etc. This dissem-
ination should ensure, however, that the privacy of individuals is protected in some way,
to be in accordance with current laws and regulations. A very popular way to achieve
a certain level of privacy in this scenario is the application of perturbative protection
methods to the data, before making it public. The research community that studies such
protection methods is known as Statistical Disclosure Control (SDC) [1]. The general
SDC scenario is as follows. An entity has a dataset X containing some confidential
information. The entity releases a protected version X ′ of the dataset to the public, so
that external parties can use this data for analysis. Besides protecting the privacy of the
individuals, the main goal is that the protection method preserves as much as possible
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the statistical utility of the original data. Of course, the values of privacy and statistical
utility are inversely related.

There are several ways to measure this trade-off. Maybe the most simple and intuitive
one is the score [4] metric. It just measures the average between two quantities: one
of them analyzes the information loss produced by the application of the protection
method, and the other one evaluates the risk that an intruder can obtain any information
that breaks the privacy of the individual, after the protected dataset has been released.

Information loss (IL) measures the statistical utility of the protected dataset, com-
paring its usefulness with respect to the one of the original one. Different approaches
are used to calculate the information loss. Originally, in [4] the authors calculate the
average divergence of some statistical values when they are computed on both the orig-
inal and the protected datasets. A probabilistic variation of these measures (PIL) was
presented in [12] to ensure that the information loss value is always within the interval
[0,1].

In the computation of the risk component of the score (called disclosure risk), one
of the considered values is the risk of re-identification (also known as entity disclo-
sure risk): an intruder wants to link an original record with the corresponding protected
record in the released dataset, using some record linkage protocol [19]. The entity dis-
closure risk is then the percentage of correct links that are found by the record linkage
protocol. For example, in any perturbation method that ensures k-anonymity [18], the
entity disclosure risk is upper bounded by 1/k, where k is the minimum number of
indistinguishable records in the protected dataset.

Recently, many researches have also considered the problem of estimating the at-
tribute disclosure risk for confidential attributes [11,20]. Traditionally, perturbative
protection methods are only applied to the non-confidential attributes of the datasets,
whereas the original confidential attributes remain unchanged. Maybe an intruder is not
able to successfully link an original record with its protected record (for example due
to k-anonymity). But he may still be able to predict some values of some confidential
attributes for this original record with very high probability. This probability is what we
call the attribute disclosure risk. Perturbation methods which suffer from high attribute
disclosure risk should be considered as bad ones, even if their entity disclosure risk
values are low. Up to now, most of the works analyzing the attribute disclosure risk are
focused on anonymization methods ensuring k-anonymity. This has led to the definition
of concepts such as p-sensitive k-anonymity [20] and l-diversity k-anonymity [11].

In this paper, we propose a way to estimate the attribute disclosure risk of any SDC
perturbation method (enjoying k-anonymity or not), by means of classification tech-
niques. Roughly speaking, the idea is to use the protected dataset X ′ as the training
dataset of a classifier having as output (class label) a confidential attribute at. The origi-
nal dataset X is then used as the testing dataset. The percentage of original records that
are correctly classified (in other words, the accuracy of the classifier) will be considered
as an estimation (more specifically, a lower bound) of the attribute disclosure risk, for
the corresponding SDC perturbation method and attribute at. After detailing this new
approach to estimate the attribute disclosure risk, we will describe a set of experiments
that we have run, considering different classifiers and SDC perturbation methods. Our
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experiments show that the attribute disclosure risk is sometimes very high, even for
configurations where entity disclosure risk is close to negligible.

The rest of the paper is organized as follows. Firstly, in Section 2 we introduce some
basic concepts about classification techniques and anonymization methods. Then, in
Section 3 we detail our approach of using classification methods to estimate the attribute
disclosure risk of a SDC perturbation protocol. The experiments that we have performed
are described in Section 4, where we also highlight some of the most relevant obtained
results. Finally, Section 5 concludes the paper and contains some lines for possible
future work.

2 Preliminaries

In this section we briefly describe the basic concepts on classification and SDC
anonymization methods needed to understand the rest of the paper.

2.1 Classification Introduction

The task of a classifier is to learn from specific examples of instances, each one rep-
resented by a set of attribute values and labeled by class values, a general mapping
from the attribute space to classes that allows to classify or predict the class values for
future instances. The performance of a classifier is measured as its ability to produce
correct labels on unseen data. Since one cannot measure the performance of a classifier
on future data, this performance is evaluated by studying the behavior of the classifier
on a testing labeled dataset. The most simple and common measure for classifier per-
formance is the percentage of records in the testing dataset that are correctly classified.
This percentage is called the accuracy (ACC) of the classifier.

While many classifiers have been defined in the literature, none is universally better
than the others in terms of their predictive power. The choice of the classifier depends
therefore on the characteristics of the data and on the requirements of the classification
task and the model built (computational cost, stability, interpretability etc.) The main
classifiers used in data mining practice are Decision Trees, Naive Bayes, k-Nearest
Neighbor (k-NN), and the Support Vector Machine (SVM).

The Decision Tree classifier [17] builds tests of single attribute values that lead to
subsets of instances with a highly predictable class label. Decision trees are highly
popular due to their interpretability.

The SVM classifier [21] lifts the classification task from its original data space to
a much more high-dimensional feature space, and then learns a linear classifier in that
space using the so called kernel trick that performs the computation in the data space.
SVM often produces higher performance than other classifiers, but suffers from lack of
interpretability.

The Naive Bayes classifier [5] predicts a class by combining, in a simple manner,
prior probabilities of a class value as determined by values of each individual attribute.
Naive Bayes is highly efficient to learn and to apply.

The k-nearest neighbor classifier [2] determines the class of an instance by choosing
the most common class of its k closest neighbors. The method is often chosen due to
understandability of its underlying principle by the users.
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2.2 Anonymization Methods

In our experiments we consider different SDC perturbative methods. They are described
below using the following generic notation: X is the original dataset, with n rows (or
records) and m columns (or attributes). Therefore, xij represents the value of record i
for attribute j.

Additive and Multiplicative Noise. are perhaps the simplest and most intuitive data
perturbation methods. In additive noise [6], each value xij of the original dataset X
is replaced with x′

ij = xij + ε, where ε is the noise. The simplest approach is that
ε is a normally distributed error drawn from a random variable ε ∼ N(0, σ2

ε ), and
that the variance of ε is proportional to that of the original attributes. In multiplicative
noise [10,7] each original value xij is replaced with x′

ij = xij · ε, where the noise ε
follows a specific distribution which depends on the original values for attribute j.

Rank Swapping. [3] with parameter p and with respect to an attribute j can be defined
as follows. Firstly, the records of X are sorted in increasing order of the values xij of
the attribute j. To simplify notation, let us assume that the records are already sorted,
that is xij ≤ x	j for all 1 ≤ i < � ≤ n. Then, each value xij is swapped with an-
other value x	j , randomly and uniformly chosen from the limited range i < � ≤ i + p.
When rank swapping is applied to a dataset, the algorithm explained above is run for
each attribute to be protected, in a sequential way. The parameter p is used to control
the swap range. Normally, p is defined as a percentage of the total number of records
in X . Therefore, when p increases, the difference between xij and x	j may increase
accordingly. This fact increases privacy, but of course the differences between the orig-
inal and the protected dataset are higher, thereby decreasing the statistical utility of the
data. As noted in [15], the fact that each value is swapped with a value in a fixed, closed
rank makes this basic rank swapping method more prone to re-identification attacks,
decreasing privacy protection offered by this method. To mitigate this drawback, a vari-
ant of rank swapping is proposed in [15], where some values (with a small but still
non-negligible probability) are swapped with values out of the theoretical rank. In this
paper we use rank swapping p-distribution: It defines the swap interval using a normal
probability distribution defined by μ = σ = 0.5 · p.

Microaggregation. is one of the most common methods used to obtain k-anonymity
for numerical data: groups of k close records are identified and substituted by their cen-
troid. In this way, an original record is protected against disclosure risk in the sense
that k protected records have exactly the same probability to correspond to that original
record. To achieve minimum information loss, the goal is to find an optimal microag-
gregation that minimizes the sum of distances between original records and protected
records (centroids). Since the optimal solution to this problem is NP-hard [16] (for the
general multivariate case), many effective heuristic algorithms have been proposed to
provide good quality results.

Among these methods, we can list the Centroid-based fixed-size (CBFS) algo-
rithm [8]. It works as follows. Firstly, the average record x̄ of all records in X is com-
puted. The most distant record xr to the average record x̄ is considered, and a cluster
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around xr is formed, containing xr together with the k − 1 closest records to xr . All
records belonging to this cluster are removed from X . Among the remaining records,
the most distant record to x̄ is considered, a cluster is formed, etc. The process is re-
peated until all the records are assigned to one cluster. Finally, the protected dataset X ′

is built by replacing each original record in X with the centroid of the cluster to which
the record belongs.

In the last years, some researchers have pointed out that k-anonymity may not be
enough to ensure privacy. The notions of p-sensitivity [20], l-diversity [11] and
t-closeness [9] have been proposed to address this weakness of k-anonymity. The goal
is to ensure that the distribution of the confidential values in each of the final clusters
satisfies some properties (a minimum number of different values, a minimum entropy
value, a distribution very close to the distribution of the confidential values in the en-
tire original dataset X , etc.). In our experiments, we have tuned CBFS in several ways
to provide either p-sensitivity or l-diversity. These modifications, of course, lead to a
decrease of the statistical utility, with respect to standard CBFS.

3 Estimating Attribute Disclosure Risk through Classification

Attributes in a dataset X = Xnc||Xc can be divided into non-confidential and confiden-
tial attributes, depending on the kind of information they contain. Since the most inter-
esting statistical information is usually contained in confidential attributes, Xc a typical
approach when implementing a SDC perturbation method in practice is to keep these
attributes unchanged and to apply the perturbation method ρ only to non-confidential
attributes: X ′

nc = ρ(Xnc). Therefore, the protected dataset that is released to the public
is X ′ = X ′

nc||Xc.
Once a protected dataset X ′ is published, different kinds of attacks can be mounted

by intruders. In the most extreme case, an intruder is assumed to know all the original
non-confidential attributes corresponding to some record x ∈ X , for example if he has
obtained this information from another dataset. The goal of the intruder is to obtain the
values of the confidential attributes for this record. A way of obtaining this information
is by correctly linking x with the corresponding protected record x′ ∈ X ′. The success
probability of this re-identification attacks are what we call entity disclosure risk.

As we have pointed out in the Introduction, a SDC protection method should not
be considered secure only because it leads to low values for the entity disclosure risk.
Maybe it is difficult for the intruder to link an original record with its corresponding
protected record, but this attacker has a way to predict (some) values of the confiden-
tial attributes of the original records with high probability. Given a perturbed dataset
X ′, a confidential attribute at∗ of the original dataset X , and the value of all the non-
confidential attributes of some original record x ∈ X , we define the attribute disclosure
risk for at∗ as the probability that an intruder obtains the correct value of attribute at∗

for record x. We will denote this value as ADR(at∗, x).
The most naive approach that an intruder can follow to obtain the correct value of

attribute at∗ for record x is to look for the most dominant value of attribute at∗ in X ′,
and to claim that this will be the value for record x. In other words, the percentage
of records that have the dominant value in attribute at∗ is already a lower bound for
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ADR(at∗, x). The goal when designing a good re-identification method is to obtain
more realistic estimations for the attribute disclosure risk suffered by the perturbation.

3.1 The Proposed Approach

For example, a less naive intruder could take the original record x ∈ X , look for the
protected record x′

c ∈ X ′ which is the closest to x and output the value of attribute at∗

for x′ as the candidate. Maybe the record x′
c is not the protected record corresponding

to x, but even in this case there are some chances that the value of the attribute at∗ is the
same. More generally, an intruder could look for the k protected records in X ′ which
are the closest to x, and take the most dominant value among the values of attribute
at∗ for these records as the candidate for the value of attribute at∗ for x. Note that
this last strategy is very related to what the k-nearest neighbor classifier does. Our idea
is to generalize this approach even further, by considering any possible classifier. The
resulting strategy that an intruder could follow to obtain the value of attribute at∗ for x
is as follows.

1. Taking the dataset X ′ as input and the attribute at∗ as the label class, construct a
classifier C for this class.

2. Apply the classifier C to the (future) instance x to predict the class value for x.
3. Output the obtained prediction as the candidate for the value of attribute at∗ for x.

To estimate the attribute disclosure risk of attribute at∗ offered by a perturbation method,
the implementer (who knows the entire original dataset X) can run this routine for each
original record x ∈ X and count the percentage of records for which the true value of
attribute at∗ is found with this strategy.

A good way to estimate the ADR is to follow the standard procedure of k-fold cross
validation, adapted to the situation that we are considering: the original dataset X is
randomly partitioned into k subsamples, a single subsample is retained as the validation
data (non-protected) for testing the ADR, and the remaining k − 1 subsamples are
protected. The cross-validation process is then repeated k times (the folds), with each
of the k subsamples used exactly once as the validation data. The k results from the
folds then can be averaged (or otherwise combined) to produce a single estimation.10-
fold cross-validation is commonly used.

We define the attribute disclosure risk induced by classifier C on attribute at∗,
ADRC(at∗), as the probability that the strategy described above leads to a correct guess
of the value of at∗ for a given original record.

4 Experimental Analysis

In this section we explain the experiments we have carried out to test the values of the
attribute disclosure risk that can be estimated using our approach.

4.1 Description of Datasets, Perturbation Methods and Classifiers

Regarding the datasets X , we have selected two datasets from the UCI repository [14]
and one dataset extracted from the U. S. Census Bureau [13] using the Data Extraction
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System (DES). These three data sets have the following properties: (i) the attributes are
numerical; (ii) there is an attribute with a few (and quite uniformly distributed) possible
values, which will be chosen as the class confidential attribute, at∗. The description of
these datasets can be found in Table 1. For the class confidential attribute at∗, we have
noted the percentage of records in the dataset that belong to each class; in particular, let
us recall that the percentage of the dominant value already gives the naive lower bound
for ADR(at∗).

Table 1. Datasets description

Abalone Vehicle Census
Records 4177 846 13518

Attributes 9 19 13

Classes M(36%) opel(25%) L (20%)
F(31%) saab(25%) VL (20%)
I(33%) bus(25%) M (20%)

van(24%) H (20%)
VH (20%)

Finally, we have considered the SDC protection methods described in
Section 2.2. We have applied many different parameterizations for each of the
tested SDC methods, from few protection to a lot of protection. For additive noise
addition, we have used the following values for the variance modification, α ∈
{1, 2, 3, 5, 10, 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 750, 1000}. For mul-
tiplicative noise addition, we have used α ∈ {2.5, 5, 7.5, 10, 12.5, 15, 20, 25, 50, 100,
150, 200, 250, 300, 350, 400, 450, 500}. For rank swapping p-distribution, we have con-
sidered the values p ∈ {1, 3, 5, 12, 25, 35, 50}. Recall that p determines the average of
the normal distribution which defines the length of the interval where swapping is done.
For k-microaggregation, we have used CBFS with different values for the parameter
k ∈ {5, 10, 15, 20, 25, 50, 75, 100, 125, 150}. Regarding our versions of CBFS which
ensure p-sensitivity or l-diversity, we have used the same ten values for parameter k,
and then values p ∈ {2, 3} and l ∈ {2, 3} for the parameters related to sensitivity and
diversity of the chosen class attribute. Note that the values of p, l make sense only when
they are smaller than the number of possible values for the class attribute (which is 3,4
or 5 in the considered datasets).

Regarding the classifiers, we have used the implementations available in WEKA
[22], for the four classifiers: Decision Trees (DT), Naive Bayes (NB), k-Nearest Neigh-
bors (k-NN), and Support Vector Machines (SVM), which are the most popular and
effective classifiers used in everyday data mining practice. The classifier method k-NN
depends on a parameter k. For each dataset, we have done one experiment with k-NN
for different values of k, between 2 and 20, without protecting the training dataset this
time, and we have selected the value of k which gives the best results.

4.2 Presentation of the Results

Table2 contains the results obtained with some of the considered parameterizations of
the SDC perturbation methods. We have included in these tables three different but
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significative parameterizations for each SDC method, reflecting weak protection,
medium protection and high protection levels. For each parameterization, we first in-
clude for completeness the probabilistic information loss (PIL), so to provide a mea-
sure on the data utility offered by each method. Then, we give the entity disclosure
risk (EDR) value obtained through a standard distance-based record linkage approach:
for each original record x, the protected record x′

c ∈ X ′ which is the closest to x
is output as the candidate for being the protected version of x. The EDR is the per-
centage of original records which are correctly linked by following this approach. Fi-
nally, we have followed the strategy described in Section 3.1 to compute the attribute
disclosure risk ADRC(at∗) induced by classifier C on attribute at∗, for the classifiers
C =DT,NB,SVM,kNN. For simplicity, we have denoted the maximum of these val-
ues ADRC(at∗) simply as ADR, and we have included in the table only this maximum
value, which is the most accurate lower bound for the real attribute disclosure risk, in
each case.

Table 2. Results obtained with the three datasets and different SDC perturbation methods

Abalone Census Vehicle
PIL EDR ADR PIL EDR ADR PIL EDR ADR

Noise, α = 3 7.90% 64.8% 54.49% 10.65% 79.34% 92.02% 21.16% 90.65% 73.51%
Noise, α = 10 24.65% 24.53% 54.37% 27.47% 41.17% 90.17% 30.82% 81.89% 73.16%
Noise, α = 100 73.94% 0.00% 53.20% 77.59% 0.12% 73.53% 80.15% 2.58% 63.82%
MultNoise, α = 5 13.50% 68.20% 54.44% 14.85% 81.62% 91.77% 23.55% 89.41% 73.00%
MultNoise, α = 10 24.81% 24.75% 54.32% 28.00% 41.30% 89.97% 30.62% 82.07% 73.00%
MultNoise, α = 100 74.29% 0.00% 53.27% 77.18% 0.10% 73.95% 80.26% 2.24% 62.00%
RS p-dist, p = 2 22.12% 38.45% 54.37% 27.82% 66.58% 91.85% 21.14% 79.93% 73.29%
RS p-dist, p = 10 29.00% 0.00% 54.35% 38.68% 0.00% 83.20% 34.44% 3.21% 66.77%
RS p-dist, p = 50 39.96% 0.00% 53.20% 40.35% 0.00% 50.61% 47.49% 0.00% 47.52%
CBFS, k = 5 39.05% 4.61% 54.56% 44.01% 8.38% 91.11% 53.25% 8.31% 71.75%
CBFS, k = 25 58.08% 0.57% 54.01% 59.48% 1.10% 90.01% 69.82% 1.18% 64.43%
CBFS, k = 100 63.55% 0.03% 54.10% 67.14% 0.00% 86.23% 76.39% 0.00% 42.44%
CBFS 2-sen, k = 25 58.08% 0.55% 54.13% 77.99% 0.85% 89.69% 70.02% 1.14% 65.26%
CBFS 3-sen, k = 25 73.00% 0.00% 45.00% 86.58% 0.29% 77.92% 70.48% 1.12% 64.43%
CBFS 2-div, k = 25 61.55% 0.40% 54.37% 88.00% 0.10% 76.62% 70.83% 1.07% 63.48%
CBFS 3-div, k = 25 86.00% 0.00% 40.00% 92.73% 0.00% 53.58% 74.14% 1.01% 58.53%

4.3 Discussion of the Results

On the one hand, observing Table 2, we can see that the information loss (PIL) value
obviously increases with the protection parameter; on the other hand, the entity disclo-
sure risk (EDR) value always decreases when the protection is higher. Regarding the
values of the attribute disclosure risk (ADR), we notice that they remain quite high,
even when the EDR values significantly decrease. See for example the Census dataset
protected using additive noise with α = 100. In this configuration the EDR value is
equal to 0.12% (almost no disclosure risk) while the ADR value is equal to 73.53%.
This means that one intruder is able to predict (infer) the confidential information of
one individual with a probability around 75%. Note that the naive approach of selecting
the majority class in this Census dataset would lead to an attribute disclosure risk value
around 20%.
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In addition, one could have a clear expectation that ADR values should decrease
as the level of protection applied to a dataset increases. But this is not the case with
many of the considered combinations of dataset / protection method. See for instance
the results with the Abalone dataset protected using additive (or multiplicative) noise,
rank swapping or standard CBFS. In such combinations the ADR values are more or
less constantly over 50%, whilst the random expected value (majority class) would be
around 36%. Then in this case, it is clear the intruder is able to discover some knowl-
edge about the data owners independently of the method (and configuration) used to
protect the dataset. The same fact applies in the CBFS 2-sensitive and CBFS 2-diversity
configurations.

Only when we consider 3-sensitivity or 3-diversity (the maximum possible) we reach
ADR values close to the one obtained with the naive majority approach. The main
drawback of these two configurations is their high PIL value, i.e. their statistical utility is
quite low. In the case of datasets having more than three possible confidential values, the
ADR values obtained by our approach for these two configurations are still very high.
See for instance the values obtained with the Census dataset (there ares five possible
confidential values for the class at∗), with the CBFS 3-diversity method. In this case, the
ADR is equal to 58.53%, almost three times higher than value that would be obtained
through the majority class strategy.

Summing up, the obtained (and sometimes startling) results illustrate that the SDC
protection methods we test should be revisited in order to be less prone to attribute
re-identification attacks.

5 Conclusions

We have proposed in this work the use of classifiers on the protected released dataset to
measure the attribute disclosure risk (ADR) suffered by SDC perturbation methods. We
have provided a set of formal definitions for the resulting estimations of the attribute
disclosure risk, as well as a set of experiments showing that this approach leads to quite
high values of the ADR for many popular SDC protection methods.

As future work we would like to work on a generic post-processing technique, which
can be applied to any protected dataset X ′ with the goal of reducing the attribute dis-
closure risk suffered by X ′.
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Abstract. Machine learning has became a popular method for intru-

sion detection due to self-adaption for changing situation. Limited to

lack of high quality labeled instances, some researchers focused on semi-

supervised learning to utilize unlabeled instances enhancing classifica-

tion. But involving the unlabeled instances into learning process also

introduces vulnerability: attackers can generate fake unlabeled instances

to mislead the final classifier so that a few intrusions can not be detected.

We show how attackers can influence the semi-supervised classifier by

constructing unlabeled instances in this paper. And a possible defence

method which based on active learning is proposed. Experiments show

that the misleading attack can reduce the accuracy of the semi-supervised

learning method and the presented defense method against the mislead-

ing attack can obtain higher accuracy than the original semi-supervised

learner under the proposed attack.

Keywords: semi-supervised learning, intrusion detection, active

learning.

1 Introduction

Recently, machine learning has been applied to many real world problems. Es-
pecially, intrusion detection, which monitors network packets to detect whether
malicious behavior happens, begins to utilize machine learning techniques [1].
However, as high quality history data requires heavy labor of experts or expen-
sive monitoring process, it is hard to collect a large number of labeled instances
for training. Thus, some researchers focus on using semi-supervised learning
methods to aid classification by unlabeled instances, which is easier to collect
than labeled instances [2,3].

Unfortunately, attackers may actively disturb the learning process to mislead
the intrusion detection system using learning methods. For example, Newsome et
al. [4] found a correlated outlier attack against a Bayes-based learning method.
The attacker could add some features, which can be found in normal instances,
to malicious instances. Thus the classifier trained on such dataset tends to
misclassify normal instances to malicious instances.

Currently, such attacks against learning methods are mainly aiming at super-
vised learning methods. When semi-supervised learning methods are introduced

V. Torra, Y. Narukawa, and M. Daumas (Eds.): MDAI 2010, LNAI 6408, pp. 287–298, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



288 F. Zhu et al.

to intrusion detection systems, such attacks can not work because the great
amount of unlabeled instances could provide distribution information to correct
the misled classifier.

Nevertheless, since the unlabeled instances can be easily collected, the at-
tackers are more likely to pollute them. We present a novel attack method to
defeat the semi-supervised learning for intrusion detection and propose a defense
technique in this paper. This work is to remind researchers that semi-supervised
learning may be very dangerous because the unlabeled instances can be easily
polluted by attackers.

The rest of the paper can be described as follows: the related work is intro-
duced in section 2; and we present a semi-supervised learning framework for
intrusion detection in section 3; then we show a misleading attack against the
semi-supervised learning method in section 4; a possible defense method is pro-
posed in section 5; and we show the experimental results in section 6; finally, we
draw the conclusions in section 7.

2 Related Work

2.1 Machine Learning for Intrusion Detection

Wenke Lee et al. [1] utilized data mining method to find features relevant to
intrusions and proposed an anomaly filter to block such intrusions. From that
time, machine learning became a hot direction in intrusion detection.

The current intrusion detection techniques include misuse and anomaly
detection.

– Misuse detection. Attack behaviors are explicitly defined and all events
matching these specification are classified as intrusions.

– Anomaly detection. A model of normal events is build and all events deviating
the normal models are predicted as intrusions.

There are only few researches focusing on machine learning for misuse detection,
such as the methods proposed by C. Kruegel et al. [5] and Dae-Ki Kang et al.
[6].

Currently, anomaly detection is the major application of machine learning
techniques in the area of intrusion detection. Related work includes K-Nearest
Neighbor Classifier[7], Application-Layer intrusion detection[8], instance-based
approaches[9], clustering methods[10], probabilistic learning methods[11] and so
on.

2.2 Semi-supervised Learning

Semi-supervised learning aims to build better classifiers using both labeled and
unlabeled instances in the situation that few labeled instances are available and
a large number of unlabeled instances can be easily collected.
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Some assumptions should be satisfied for semi-supervised learning, including
[12]: (1)If two points x1, x2 are close, then so should be the corresponding outputs
y1, y2. (2)If two points are in the same structure (a cluster or a manifold),
then they are likely to have the same labels. They can be called the clustering
assumptions, which make sense in many real world applications. Based on these
assumptions, labels of many unlabeled instances can be predicted by nearby
labeled instances with high certainty.

A large number of semi-supervised learning methods were proposed in recent
years. They can be sumerized into the following categories: self training[13], gen-
erative models[14], low density separation[15], and graph-based methods[16,17].

2.3 Attacks against Machine Learning for Intrusion Detection

According to the methods used to attack machine learning systems, typical at-
tacks against machine learning process can be summarized into two categories
[18]: Causative attacks and Exploratory attacks.

– Causative attacks : The attackers pollute the training instances to mislead
the trained classifier. Such attacks include the red herring attack[4], the
correlated outlier attack[4], the allergy attack [19] and so on.

– Exploratory attacks : The attackers do not alter the training instances but
probe the generated classier to find the classification boundary. Thus the
instances can be misclassified by the classifier will be known by the attackers.
Typical attacks include the polymorphic blending attack [20], the reverse
engineering attack [21], the mimicry attack against ”stide” [22] and so on.

Causative attacks are more dangerous than Exploratory attacks but need very
strong assumptions. The attackers need to change the labeled instances for
launching Causative attacks. But in the intrusion detection environment, the
labeled instances are verified by human experts and are carefully protected.
Thus, they are not easy to be polluted.

3 A Semi-supervised Learning Framework for Intrusion
Detection

The task of intrusion detection is to monitor network packets and classify them
as normal or malicious according to the features of network packets.

In this section, we construct a framework of semi-supervised learning for
intrusion detection.

3.1 Preliminaries

The instance space X is a nonempty set containing several instances. Each in-
stance xi is a feature vector < xi1, xi2, · · · , xim >. Let Y = {y1, y2, · · · , yp} be
the set of possible labels. We just consider normal and malicious in this paper,
thus there are only 0, 1 ∈ Y . 0 denotes normal and 1 denotes malicious.
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The target function f to be learned is a function f : X → Y that classifies
any x ∈ X as a member of Y . Y has p elements. The notion < x, f(x) > denotes
a labeled instance and < x, ? > denotes an unlabeled instance where ? ∈ Y .
L denotes the whole set of labeled instances and U denotes the whole set of
unlabeled instances.

There are l labeled instances: < x1, y1 >, · · · , < xl, yl >, and u unlabeled
instances:< xl+1, ? >, · · · , < xl+u, ? >. Usually, we have l + u. The total
number of instances is n = l + u.

A typical supervised machine learning process can be divided into 2 stages:
the training stage and the testing stage.

– In the training stage, the system collects lots of labeled instances L and then
trains a classifier h, which is a function mapping x ∈ X to y ∈ Y , on L.

– In the testing stage, the new coming unlabeled instance is submitted to the
trained classifier h and then h returns h(x) to the system.

When using semi-supervised learning method, the classifier will be trained on
labeled instances and unlabeled instances.

3.2 General Learning Process

The general learning process for intrusion detection can be described as follows.
First, the system monitors the network packets and transforms each packet

to an instance. Then after a long time of monitoring, there are lots of collected
instances. Human experts can analyze those instances and label some of them.
Thus, there are labeled instances and unlabeled instances in the system. Since
labeled instances require the labor of human experts and then it could be tedious
and time consuming, there are often too few labeled instances compared with
unlabeled instances.

After that, the system utilizes machine learning methods to train a classifier
on historical labeled instances and classifies the new coming instance using the
generated classifier.

3.3 The Naive Bayes Classifier

We use Naive Bayes as our basic classifier for intrusion detection.
The classifier f can be defined as follows:

f(x) = arg maxyj∈Y P (yj |x1, x2, . . . , xm) (1)

= arg maxyj∈Y

P (x1, x2, . . . , xm|yj)P (yj)
P (x1, x2, . . . , xm)

(2)

= arg maxyj∈Y P (x1, x2, . . . , xm|yj)P (yj)x (3)

= arg maxyj∈Y P (yj)
∏

i

P (xi|yj) (4)

P (xi|yj) and P (yj) can be calculated on the labeled instances L.
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3.4 Self Training for Intrusion Detection

According to the clustering assumption, there should be only few instances near
the classification boundary, thus the distribution of unlabeled instances can be
used to determine the classification boundary.

For simplification, we choose the self training method, which is a typical
semi-supervised learning method, to train the classifier. Algorithm 1 shows the
process.

Algorithm 1. the Self-training-based Semi-supervised Learning Algorithm
repeat

1.Train the Naive Bayes classifier f on L;

2.Predict f(x) for each x in U ;

3.Select m instances with the lowest entropy from U as A and Add them with

their predicted label f(x) to L;

4.Delete A from U ;

until U = ∅

4 A Misleading Attack

The self training method can enhance classification by using unlabeled instances
because the distribution of unlabeled instances provide information of the clas-
sification boundary. But in real environments, the classifier can not distinguish
whether an unlabeled instance is fake or true because the attacker can send any
network packet that the monitoring sensor simply transforms it into an instance
and submit it to the learning process. Thus, the attacker can generate a large
number of fake unlabeled instances to change the distribution of instances and
then to influence the classification boundary when the learning process involve
unlabeled instances.

In this section, we propose a method to generate fake unlabeled instances to
attack the semi-supervised learning method presented in section 3. The attack
just misleads the classifier to recognize malicious packets as normal packets.

4.1 Instance Template Selection

First, we select some unlabeled instances which have the highest uncertainty in
U and are classified as normal by the classifier. In this situation, it implies such
instances are normal and near the classification boundary. These instances will
be the templates of new generated instances.

The uncertainty of an instance can be defined as the class distribution entropy
of that instance.

C(x) =
∑
y∈Y

(−P (y|x)logP (y|x)) (5)

Formula 5 shows the definition of uncertainty where x denotes an instance and
Y denotes the class label set.
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4.2 Misleading Instance Generation

After the instance templates are selected, we randomly select a few attributes of
those instances and disturb the value of those attributes a little. Several instances
will be constructed on each instance template.

After misleading instances are generated, we should evaluate the instance to
ensure it still belongs to normal and its uncertainty is still high.

The evaluation function is defined in formula 5. And we specify a threshold ε.
If the uncertainty of the generated instance is below ε, then it will be abandoned.

The algorithm can be described in Algorithm 2.

Algorithm 2. Instance Generation Algorithm
Input: an instance templates set TES, a number t to specify how many instances

can be generated on each instance template, the certainty threshold ε and a set G
of generated instances.

Begin:
repeat

1.For each instance xi ∈ TES,

repeat
1.1Select a subset of attributes ;

1.2Add some change to the value of the selected attributes;

1.3Evaluate the certainty of the new generated instance and delete the instance

with the uncertainty below ε.
1.4Add the changed instance into G.

until t new generated instances were added into G
until xi ∈ TES are all iterated

The algorithm can guarantee these new generated instances are classified as
normal and have high uncertainty. Thus the number of normal instances near
the classification boundary is much larger than normal situations and then the
classifier tends to recognize the instances near the classification boundary as
normal. Then if the attacker launches an intrusion whose corresponding instance
is near the classification boundary, it could be misclassified.

5 Possible Defense

The reason why the attack can mislead the classifier lies on the fact that the un-
labeled instances can be generated without any verification and their labels can
only be predicted by the current classifier. Thus, the attackers can easily change
the density of distribution in the neighborhood of the classification bound-
ary. This could be dangerous because we determine the classification boundary
according to density of distribution in semi-supervised learning.

Nevertheless, if we can obtain the labels of such generated instances, the true
classification boundary can be determined.

Therefore, we can utilize active learning to defense the misleading attack.
In active learning, the system can query the label of an instance and receive
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a ”oracle” telling the true label of the instance. The main advantage of active
learning compared to other learning methods is that it can choose the most
informative instances for labeling, thus the labeling cost could be saved. Then
we can only query the labels of a few uncertain instances to determine the ”real”
classification boundary.

The key problem of active learning is how to evaluate the informative instance
for labeling. A typical way is to use the class distribution entropy for evaluation.
Therefore, we present the semi-supervised learning algorithm with defense in
Algorithm 3.

Algorithm 3. the Self-training-based Semi-supervised Learning Algorithm with
Defense

repeat
1.Train the Naive Bayes classifier f from L;

2.Predict each x in U ;

3.Select n instances with the highest entropy from U and query the true labels of

them.

4.Add these instances with their true labels into L and delete them from U .

5.Train the Naive Bayes classifier f from L again;

6.Select m instances with the lowest entropy from U as A and Add them with

their predicted label f(x) to L;

7.Delete A from U ;

until U = ∅

In Algorithm 3, any instances with high uncertainty are sampled for labeling.
These instances are near the classification boundary, thus the misleading attack
can not change the classification boundary very much.

6 Experiments Results

6.1 Methodology

We conducted a series of experiments to test the methods proposed in this paper.
The tested methods can be described as follows.

– NaiveBayes classifier for intrusion detection (NB): The NaiveBayes method
is used to train the intrusion detection classifier.

– Self-training-based NaiveBayes classifier for intrusion detection (SSLNB):
The NaiveBayes method is used to train the intrusion detection classifier
and unlabeled instances were selected to enhance the classification based on
the self training method shown in Algorithm 1;

– Self-training-based NaiveBayes classifier under the misleading attack
(SSLNBMA): Lots of fake instances are generated to mislead the self-training-
based NaiveBayes classifier;
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– The active learning method defending the misleading attack (ALSSL): We
use the active learning method to query the labels of some uncertain in-
stances and train the classifier on them with the labeled instances so that
the true classification boundary can be determined.

We select the datasets from the 1999 KDD intrusion detection contests as our
test dataset. The datasets were provided by MIT Lincoln Lab. They were gath-
ered from a local-area network simulating a typical military network enviroment
with a wide variety of intrusions over a period of 9 weeks. The datasets can be
download form the UCI KDD repository [23].

In the datasets, each instance has 41 features and 1 class feature which in-
cludes 22 attack types and the normal event. For simplification, we transformed
the dataset into a 2-class dataset with ”normal” and ”malicious” as the class
labels. The whole intrusion detection dataset is quite large and we selected 5000
instances from the original dataset randomly as our benchmark dataset.

When testing each method we listed above, the dataset was randomly divided
into three part: the unlabeled set US, the labeled set LS and the testing set
TS. TS contains 800 instances. When the experiment begins, LS contains only 1
instance selected randomly and US contains the rest. Then we selected 1 instance
in US randomly and move it into LS in each iteration. Thus we trained the basic
classifier on LS and recorded the accuracy of the classifier on TS.

We change the classifier in the experiments. In NB, the classifier is the Naive-
Bayes classifier. In SSLNB, the classifier is the selftraining-based NaiveBayes
classifier described in Algorithm 1 and in each iteration, we prelabel 200 in-
stances. In SSLNBMA, we generated fake instances based on Algorithm 2 and
ε is set to 0.292. In ALSSL, we query 2 instances for labeling in each iteration.

6.2 Results

Figure 1-3 show the results of these experiments. Each recorded data is the
average of 20 runs.

In Figure 1, we show the learning curve of the NB method comparing with
that of the SSLNB method. The vertical axis shows the accuracy of the classifier
and the horizontal axis shows the number of labeled instances.

From Figure 1, we can see all the learning curves climb rapidly at the be-
ginning and then continue to rise slowly. At last, both curves tend to reach the
accuracy about 97.5%. Maybe in other areas, the accuracy about 97.5% is good
enough. But in intrusion detection, a classifier with the accuracy about 97.5%
could cause heavy damage. A classifier for intrusion detection could face thou-
sands of network packets a day, the accuracy about 97.5% means lots of them
can be misclassified. Even if there is only one misclassified event which can get
the root permission of the targeted system, the intrusion detection classifier fails.
Thus, the accuracy about 97.5% does not mean that the classifier is sufficient to
protect the system. But, we do not focus on accuracy in this paper. What we
care about is whether the semi-supervised learning can raise the accuracy com-
pared with supervised learning and whether the misleading attack can reduce
the accuracy.
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Fig. 1. Learning curves of NB and SSLNB

In figure 1, the SSLNB method has a superior performance than the NB
method. It means that we can just label a small number of instances and then
the classifier can quickly raise the accuracy by using lots of unlabeled instances
with no cost.
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Fig. 2. Learning curves of SSLNB and SSLNBMA

Figure 2 shows the learning curves of the SSLNB method under the misleading
attack with different number of fake instances generated. In the experiment, we
change the number of generated instances. From figure 2, we can found the
attack can cause no obvious decline in accuracy when there are 1000 generated
instances. But when we generated 10000 fake instances, the accuracy of the
SSLNB method under the misleading attack is a little lower than that of the
SSLNB under no attacks. Moreover, when 100000 fake instances were generated,
the accuracy of the SSLNB method under the misleading attack has a very
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obvious decline than that of other learning curves. In real environments, it is
more dangerous because the attacker can easily construct millions of such fake
instances in very short time.
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Fig. 3. Learning curves of SSLNB and ALSSL

Figure 3 exhibits the learning curves of the SSLNB under the misleading
attack when we utilize the active learning method. It shows that the misleading
attack can not decrease the accuracy when active learning is used for defense.
The only cost of the defense is that the active learning need to ask for the real
label of the generated instances. This requires complicated analysis and labor of
human experts. But for security, the labeling cost is worthy.

7 Conclusions

Machine learning have been used for intrusion detection to construct more adap-
tive classifiers. Currently, semi-supervised learning begin to play important role
in this area due to limited high quality labeled instances. But it will fail if the
attacker exploit the vulnerability of semi-supervised learning.

In this paper, we build a general semi-supervised learning framework for intru-
sion detection based on self training. And then we propose a misleading attack
method, in which a large number of fake instances were generated, aiming at
the self training method. Such attack can reduce the accuracy of the build semi-
supervised learner. We also presented a possible defense method, which utilize
active learning, to handle the misleading attack.

We would like to pursue the following directions: build the semi-supervised
learning framework based on support vector machines and then provide more
formal analysis of the attack and defense techniques related to semi-supervised
learning.
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